
HAL Id: tel-03211910
https://theses.hal.science/tel-03211910

Submitted on 29 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

High Throughput Low Latency Online Image Processing
by GPU/FPGA Data Coprocessors using RDMA

Techniques
Raphael Ponsard

To cite this version:
Raphael Ponsard. High Throughput Low Latency Online Image Processing by GPU/FPGA Data
Coprocessors using RDMA Techniques. Signal and Image processing. Université Grenoble Alpes
[2020-..], 2020. English. �NNT : 2020GRALT071�. �tel-03211910�

https://theses.hal.science/tel-03211910
https://hal.archives-ouvertes.fr


 

THÈSE 

Pour obtenir le grade de 

DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES 

Spécialité : SIGNAL IMAGE PAROLE TELECOMS 

Arrêté ministériel : 25 mai 2016 

 
Présentée par 

RAPHAEL PONSARD 
 

Thèse dirigée par DOMINIQUE HOUZET, Université Grenoble Alpes  
et codirigée par Vincent FRISTOT, Université Grenoble Alpes,  
et Nicolas JANVIER, ESRF, Grenoble 
 
préparée au sein du Laboratoire Grenoble Images Parole Signal 
Automatiques   
dans l'École Doctorale Electronique, Electrotechnique, Automatique, 
Traitement du Signal (EEATS) 
 

Traitement en temps réel, haut débit et faible 
latence d’images par coprocesseurs GPU & FPGA 
utilisant les techniques d’accès direct à la 
mémoire distante 
 
High Throughput, Low Latency Online Image 
Processing by GPU/FPGA Coprocessors using 
RDMA Techniques 
 
Thèse soutenue publiquement le 10/12/2020, 
devant le jury composé de :  

Madame LAURENCE PIERRE 
PROFESSEUR DES UNIVERSITÉS, UNIVERSITÉ GRENOBLE ALPES, 
Présidente du jury 
Monsieur DOMINIQUE HOUZET 
PROFESSEUR DES UNIVERSITÉS, GRENOBLE INP,  
Directeur de thèse 
Monsieur BRICE GOGLIN 
DIRECTEUR DE RECHERCHE, INRIA BORDEAUX – SUD - OUEST, 
Rapporteur 
Monsieur EMMANUEL FARHI 
INGENIEUR HDR, SYNCHROTRON SOLEIL- GIF-SUR-YVETTE, 
Rapporteur 
Monsieur NICOLAS JANVIER 
Ingénieur, ESRF GRENOBLE,  
Invité 
Monsieur VINCENT FRISTOT 
MAITRE DE CONFÉRENCE, UNIVERSITÉ GRENOBLE ALPES,  
Invité 



High Throughput Low Latency Online Image Processing by
GPU/FPGA Data Coprocessors using RDMA Techniques

c⃝2020
by

Raphaël Ponsard



3

Abstract— The constant evolution of X-ray photon sources associated to the in-
creasing performance of high-end X-ray detectors allows cutting-edge experiments that
can produce very high throughput data streams and generate large volumes of data that
are challenging to manage and store.

In this context, it becomes fundamental to optimize processing architectures that
allow real-time image processing such as raw data pre-treatment, data reduction, data
compression, fast-feedback. These data management challenges have still yet not been
addressed in a fully satisfactory way as of today, and in any case, not in a generic manner.

This thesis is part of the ESRF RASHPA project that aims at developing a RDMA-
based Acquisition System for High Performance Applications. One of the main charac-
teristics of this framework is the direct data placement, straight from the detector head
(data producer) to the processing computing infrastructure (data receiver), at the high-
est acceptable throughput, using Remote Direct Memory Access (RDMA) and zero-copy
techniques with minimal Central Processing Unit (CPU) interventions.

The work carried out in this thesis is a contribution to the RASHPA framework,
enabling data transfer directly to the internal memory of accelerator boards. A low-
latency synchronisation mechanism between the RDMA network interface cards (RNIC)
and the processing unit is proposed to trigger data processing while keeping pace with
detector. Thus, a comprehensive solution fulfilling the online data analysis challenges is
proposed on standard computer and massively parallel coprocessors as well.

Scalability and versatility of the proposed approach is exemplified by detector emu-
lators, leveraging RoCEv2 (RDMA over Converged Ethernet) or PCI-Express links and
RASHPA Processing Units (RPUs) such as Graphic Processor Units (GPUs) and Field
Gate Programmable Arrays (FPGAs).

Real-time data processing on FPGA, seldom adopted in X ray science, is evaluated
and the benefits of high level synthesis are exhibited.

The framework is supplemented with an allocator of large contiguous memory chunk
in main memory and an address translation system for accelerators, both geared towards
DMA transfer.

The assessment of the proposed pipeline was performed with online data analysis as
found in serial diffraction experiments. This includes raw data pre-treatment as foreseen
with adaptive gain detectors, image rejection using Bragg’s peaks counting and data
compression to sparse matrix format.



4

Traitement en temps réel, haut débit et faible latence, d’images par copro-
cesseurs GPU & FPGA utilisant une technique d’accès direct à la mémoire
distante

Résumé— L’amélioration permanente des sources de rayonnement X, ainsi que
les gains en performances des détecteurs de dernière génération rendent possibles des
expériences qui peuvent produire des quantités énormes de données à haut débit, aussi
difficiles à gérer qu’à stocker.

Dans ce contexte, il devient indispensable d’améliorer les systèmes de calculs et de
permettre le pré-traitement en temps réel des données brutes, la réjection de celles qui
sont inutiles, la compression voire la supervision en temps réel de l’expérience. Ces
problématiques de gestion des flux de données n’ont pas encore reçu de réponse générique
pleinement satisfaisante.

Cette thèse fait partie d’un projet plus vaste, le projet RASHPA de l’ESRF, visant
à développer un système d’acquisition haute performance basé sur le RDMA (Remote
Direct Memory Access). Une des caractéristiques essentielles de ce projet est la capacité
à transférer directement des données de la tête du détecteur vers la mémoire de l’unité de
calcul, au plus haut débit possible, en utilisant les techniques d’accès direct à la mémoire,
sans copies inutiles, et minimisant le recours à un processeur.

Le travail réalisé pendant cette thèse est une contribution au système RASHPA, qui
rend possible, non seulement le transfert de données dans la mémoire du système de
calcul, mais aussi directement dans la mémoire interne de cartes accélératrices dans le
cas de système à l’architecture hétérogène.

Un mécanisme de synchronisation à faible latence entre carte réseau et unité de calcul
est proposé, déclenchant le traitement des données au rythme du détecteur.

Cela permet de fournir une solution globale au traitement de données en temps réel,
tant sur ordinateurs classiques que sur accélérateurs massivement parallèles.

Pour illustrer la versatilité de l’approche proposée, plusieurs simulateurs de détecteurs
ont été réalisés, s’appuyant sur les protocoles RoCEv2 ou PCI Express pour la partie
transport, ainsi que diverses unités de calcul compatibles RASHPA à base de cartes
graphiques (GPU) ou de circuits reconfigurables (FPGA).

Le traitement de données en temps réel sur FPGA, encore peu pratiqué dans les
sciences du rayon X, est évalué en s’appuyant sur les récentes avancées de la synthèse de
haut niveau (HLS).

La qualification du pipeline de calcul proposé a été faite en s’inspirant d’expériences
de cristallographie en série (SSX). Il comprend un pré-traitement des données brutes
comme prévu pour un détecteur à gain adaptatif, la réjection d’images en fonction du
nombre de pics de Bragg, et la compression des données au format matrice creuse.



i

To Arlette and Nathalie,

Cette thèse n’aurait pas été possible sans l’esprit d’initiative de Pablo et Nicolas à la
tête de ISDD et de EU. Ils m’ont fait confiance et ont bien voulu me confier un projet
aussi important pour le rayonnement scientifique de l’ESRF. Je leur en suis profondément
reconnaissant. Merci aussi à Marie qui gère le DDP avec brio pour son support constant.

Dominique et Vincent ont assuré l’encadrement universitaire, tâche peu commode à
distance et leurs conseils et pressions m’ont permis d’aboutir dans les temps.

Je veux aussi saluer ici Andy et Petri grâce à qui j’ai pu faire mes premiers pas à
l’ESRF dès 1999 et bien sûr l’équipe TANGO avec qui j’ai tout découvert à l’époque du
fonctionnement de cette grandiose machine.

Pendant ces trois années de thèse passées si vite, Jérôme n’a pas compté son temps
pour m’introduire aux subtilités de la programmation des GPUs, domaine dans lequel
il excelle, mais aussi pour me faire découvrir la cristallographie ou les arcanes du calcul
scientifique. Merci aussi à tous les collègues du DAU.

Pendant mon séjour, l’équipe RASHPA s’est progressivement étoffée et j’ai beaucoup
appris avec Wassim, grand mâıtre du FPGA et Aurélien qui m’a beaucoup impressionné
avec son esprit de méthode. Je salue toute l’équipe EU pour son accueil sympathique.

Alejandro et Samuel m’ont aussi énormément apporté.
Laura a été très courageuse quand elle a accepté de relire et de corriger le manuscrit

en anglais.
Je profite aussi de cette occasion pour saluer aussi tous mes anciens collègues de l’E.N.

et bien sûr tous mes camarades que j’ai un peu laissé tomber pendant cette période un
peu frénétique.

Pardon à tous ceux que je ne cite pas nommément, vous êtes bien trop nombreux !
Cela a été un grand bonheur.



ii

Contents

Contents ii

List of Figures v

List of Tables vii

Listings viii

1 Introduction 1
1.1 Making Science using X-ray Radiation . . . . . . . . . . . . . . . . . . . 2

1.1.1 ESRF-EBS Grenoble, The European Synchrotron . . . . . . . . . 4
1.1.2 X-ray Detectors and Experimental Setup Overview . . . . . . . . 9

1.2 Full Throughput X-ray 2D Imaging Experiments . . . . . . . . . . . . . . 11
1.3 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.1 Data Transfer Issues and RDMA Mitigation Techniques . . . . . . 12
1.3.2 Real-time Data Analysis with GPU/FPGA Accelerators . . . . . 14
1.3.3 Contributions to RASHPA Data Acquisition Framework . . . . . 15

1.4 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 State of the Art: Data Transfer & RASHPA 18
2.1 High-throughput Networking . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 Bottlenecks Related to Memory Management . . . . . . . . . . . 21
2.1.2 PCI-e Interconnect . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1.3 Direct Memory Access Overview . . . . . . . . . . . . . . . . . . . 24
2.1.4 Memory Allocation Challenges . . . . . . . . . . . . . . . . . . . . 26
2.1.5 Limitations of Conventional Networking Techniques . . . . . . . . 27
2.1.6 Overview of RDMA Techniques . . . . . . . . . . . . . . . . . . . 29

2.1.6.1 RoCEv2 Assessment in the Frame of the RASHPA project 31
2.1.6.2 Messaging Accelerator Library . . . . . . . . . . . . . . 33

2.1.7 Prospects beyond DMA Techniques . . . . . . . . . . . . . . . . . 33
2.2 Hardware Accelerators Overview . . . . . . . . . . . . . . . . . . . . . . 34

2.2.1 GPU accelerators . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2.2 PCI-e P2P Transfer into GPU/FPGA Device Memory . . . . . . 37
2.2.3 Parallel Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2.4 FPGA Accelerators . . . . . . . . . . . . . . . . . . . . . . . . . . 40



iii

2.3 The RASHPA Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.3.1 Paradigms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.3.2 Overview of the Frameworks in HEP or Astronomy . . . . . . . . 43
2.3.3 Contribution to RASHPA Processing Unit Specifications . . . . . 44

3 RASHPA Data Source Simulators 47
3.0.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1 REMU Detector Emulator . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.1.1 Micro-benchmark of Network Protocols . . . . . . . . . . . . . . . 49
3.1.2 Programming with Verbs . . . . . . . . . . . . . . . . . . . . . . . 49
3.1.3 Event Implementation . . . . . . . . . . . . . . . . . . . . . . . . 53
3.1.4 Proof of Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 RASHPA PCI-e Implementation . . . . . . . . . . . . . . . . . . . . . . . 54
3.2.1 Reduced RASHPA . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.2.2 FPGA Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2.3 Firmware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2.4 Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.2.5 Allocation of Large Memory Buffers . . . . . . . . . . . . . . . . . 58

3.3 RASHPA RoCE using Xilinx IP . . . . . . . . . . . . . . . . . . . . . . . 61
3.4 Outcome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4.1 Results of the RoCEv2 version . . . . . . . . . . . . . . . . . . . . 62
3.4.2 Results of the PCIe version . . . . . . . . . . . . . . . . . . . . . 62

4 Online Accelerated Data Processing using RASHPA 64
4.1 RASHPA Processing Units . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1.1 General Working . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.1.2 Address Translation System . . . . . . . . . . . . . . . . . . . . . 69
4.1.3 CPU Accelerated RPU . . . . . . . . . . . . . . . . . . . . . . . . 70
4.1.4 GPU Accelerated RPU . . . . . . . . . . . . . . . . . . . . . . . . 71
4.1.5 FPGA Accelerated RPU . . . . . . . . . . . . . . . . . . . . . . . 72

4.1.5.1 Proposed FPGA design . . . . . . . . . . . . . . . . . . 74
4.1.5.2 HLS Kernel and Host Application . . . . . . . . . . . . . 74

4.2 Image Processing for SSX Experiments . . . . . . . . . . . . . . . . . . . 76
4.2.1 Raw-data Pre-treatment . . . . . . . . . . . . . . . . . . . . . . . 78
4.2.2 Data Rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.2.3 Compression to Sparse Matrix . . . . . . . . . . . . . . . . . . . . 79
4.2.4 Azimuthal Integration . . . . . . . . . . . . . . . . . . . . . . . . 79
4.2.5 Ultra Low Latency Control . . . . . . . . . . . . . . . . . . . . . . 80

4.3 Outcome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.3.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.3.2 Results with CPU / OpenMP . . . . . . . . . . . . . . . . . . . . 81
4.3.3 Results on GPUs . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3.3.1 NVIDIA CUDA Evaluation . . . . . . . . . . . . . . . . 81
4.3.3.2 AMD OpenCL Evaluation . . . . . . . . . . . . . . . . . 83
4.3.3.3 REMU PCI-e / GPU RPU evaluation . . . . . . . . . . 83



iv

4.3.4 Results on FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.3.5 Results on POWER9 Computer . . . . . . . . . . . . . . . . . . . 87

5 Conclusion 92
5.1 Outcome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2.1 Disaggregated Storage . . . . . . . . . . . . . . . . . . . . . . . . 94
5.2.2 Integration Challenges . . . . . . . . . . . . . . . . . . . . . . . . 96

Bibliography 97

A Articles in Journals and Conferences 104

B Hardware and Software Contributions 106

C Résumé de la thèse en langue française 108



v

List of Figures

1.1 The first Radiography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Just the good wavelength . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 X ray source brilliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 GE synchrotron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 SR in the World . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 ESRF Construction work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.7 ESRF and Beamlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.8 Jungfrau 16M detector image. . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.9 Moore’s Law in X sciences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1 Multiple fields related to the work . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2 RASHPA system overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 Computer Memory Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4 Computer Memory Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5 PCI-Express topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.6 CPU affinity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.7 TCP State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.8 RNIC programming internals . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.9 RoCE Datagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.10 LibVMA Mellanox Messaging Accelerator . . . . . . . . . . . . . . . . . . . 35
2.11 Gen-Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.12 Hardware accelerators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.13 Connectx-5 RNIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.14 View of a RASHPA system . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.15 View of Region of Interests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.16 RASHPA GPU Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1 REMU Sequence diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2 Smartpix Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.3 RASHPA DMA Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.4 Multiple data transfer using RASHPA . . . . . . . . . . . . . . . . . . . . . 58
3.5 REMU PCI-e block design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.6 PCIe BAR Alignment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.7 Efficiency of BDs soft-processing . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1 Overview of a RASHPA-RPU . . . . . . . . . . . . . . . . . . . . . . . . . . 67



vi

4.2 The RASHPA-Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3 ROMU sequence diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.4 GPU processing pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.5 Low latency synchronization mechanism . . . . . . . . . . . . . . . . . . . . 73
4.6 RPU FPGA design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.7 Overview of an SSX Experiment . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.8 Rear view of the Jungfrau 16M detector . . . . . . . . . . . . . . . . . . . . 78
4.9 Maximum throughput along a GPU system . . . . . . . . . . . . . . . . . . 83
4.10 CUDA Stream execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.11 Transfer throughput from CPU and RNIC to GPU memory . . . . . . . . . 85
4.12 Transfer throughput from FPGA board. . . . . . . . . . . . . . . . . . . . . 86
4.13 PCI-e latency measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.14 IBM AC922 POWER9 Architecture . . . . . . . . . . . . . . . . . . . . . . . 90
4.15 Overview of interconnect on the POWER9 . . . . . . . . . . . . . . . . . . . 91

5.1 Overview of NVMEoF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95



vii

List of Tables

2.1 RDMA variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 Available bandwidth without packet losses . . . . . . . . . . . . . . . . . . . 50
3.2 RDMA bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3 Verbs API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1 GPU Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84



viii

Listings

3.1 Buffer descriptors calculations. . . . . . . . . . . . . . . . . . . . . . . . . 59
4.1 Low latency task launch . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2 AXI-Master interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.3 Host Application triggering FPGA computing . . . . . . . . . . . . . . . 76
4.4 Raw data pre-processing using OpenMP . . . . . . . . . . . . . . . . . . 82
4.5 OpenCL kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.6 HLS Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88



ix

Acronyms

AXI Advanced eXtensible Interface. 74

CPU Central Processor Unit. 12

CUDA Compute Unified Device Architecture. 17, 65

DAQ Data Acquisition System. 11

ESRF European Synchrotron Radiation Facility. 15, 19, 51

FPGA Field Programmable Gate Array. 12, 14, 27, 40, 72

GPU Graphics Processor Unit. 12, 14

HLS High Level Synthesis. 41

HPC High Performance Computing. 15, 31

I/O Input and Output. 22

MMU Memory Management Unit. 22

PCI-e Peripheral Component Interconnect Express. 17, 23, 49, 66

RASHPA RDMA-based Acquisition System for High Performance Applications. 15

RDMA Remote Direct Memory Access. 12

REMU RASHPA detector EMulator. 53

RNIC RDMA Network Interface Card. 12, 48

RoCEv2 RDMA Over Converged Ethernet. 17, 19, 93

ROMULU RASHPA back end receiver. 68



x

Glossary

Data Transfer Process is an ongoing data transfer Process between two RASHPA
nodes. A RASHPA module can produce multiple concurrent DTPs from differ-
ent data slices (temporal sampling) or from different Region of Interest (spatial
sampling). 42

DMA stands for Direct Memory Access and describes an inner computer component in
charge of data transfer from one memory region to another. DMA can be of two
forms: Memory Mapped or Streamed. 24

High Level Synthesis is a development flow aiming at FPGA design using High Level
language and concepts instead of convoluted low level, error prone, highly special-
ized techniques.. 74

RASHPA Buffer is the memory region allocated in the destination computer for the
data transfers. It must be compatible with DMA operations. 42

RASHPA Manager is a software application in charge of configuring and monitoring a
RASHPA system. It can perform capabilities retrieval of RASHPA nodes prior con-
figuration, start/stop the acquisition and manage the errors. It uses XML telegram
for communication on a dedicated control link. 42

RASHPA Processing Unit is an hardware entity that can ingest incoming data flow
from an RNIC in its internal memory and that can process those data when triggered
properly.. 66

RDMA Remote DMA is the generalization of the DMA concept to remotely connected
computers. In this memoir, we focused on gigabit Ethernet links and RoCE proto-
col. 29



xi

Acknowledgments

This work is part of the T2.a technology program proposed in the frame of ESRF-EBS
Detector Development Plan (DDP).



1

Chapter 1

Introduction

Contents
1.1 Making Science using X-ray Radiation . . . . . . . . . . . . . . . . . . 2

1.1.1 ESRF-EBS Grenoble, The European Synchrotron . . . . . . . 4

1.1.2 X-ray Detectors and Experimental Setup Overview . . . . . . 9

1.2 Full Throughput X-ray 2D Imaging Experiments . . . . . . . . . . . . 11

1.3 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.1 Data Transfer Issues and RDMA Mitigation Techniques . . . 12

1.3.2 Real-time Data Analysis with GPU/FPGA Accelerators . . . 14

1.3.3 Contributions to RASHPA Data Acquisition Framework . . . 15

1.4 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 16



CHAPTER 1. INTRODUCTION 2

Exploiting the full performance of the new generation X-ray 2D image detectors in
terms of throughput, is challenging when using existing hardware and software solutions.
This thesis aims at proposing contributive techniques to mitigate these difficulties.

This first chapter will give a broad overview of photon science and the minimal prereq-
uisites on detector hardware. Some X-ray imaging techniques demanding in processing
power are presented as well. Then we will describe the problem in detail and present the
original intentions for this project. The significance of the thesis and our contributions
are then stated before finally specifying the outcome of our work.

1.1 Making Science using X-ray Radiation

Please note that this section provides merely a brief introduction to the long and rich
history of X-rays.

X-rays have a history parallel to that of Modern Physics and to the general under-
standing of fundamental laws of electromagnetism in the late 19th century. This leads to
the unification of formerly unrelated topics, such as light or electricity and mysterious
artefacts in electrostatic or magnetic phenomenons.

X-rays were discovered by chance in 1895 by W. Roengten, who noticed a faint shim-
mering from a fluorescent screen at a remote location while he was studying the effect of
high voltage in vacuum tubes.

Shortly, he discovered some of the interesting properties of the invisible and yet un-
known radiation and took the first radiography in history presented in Figure 1.1. Be-
cause he did not know their origin he named them X-rays after the x in mathematics,
the symbol of an unknown value.

The first X-ray sources in the late 19th were evacuated sealed tubes. Last ones are
the kilometer long linear accelerators called XFELs (XFree Electron Laser), built since
late 20th century, and producing extremely short (femtosecond range) and intense X-ray
flashes with the properties of laser light. X-rays produced in a sealed tube, XFELs or
at a synchrotron facility are fundamentally the same form of electromagnetic radiations
and differ only by their respective energy and by the process of how they are produced.

Charged particles (e.g., electrons and ions) moving at high speeds lose some energy
when their acceleration is changed. This is the case when they hit the cathode in Crook’s
tube or when their trajectory is curved by a bending magnet. This lost energy is the
source of the X-rays. Relativistic particles at high speed (close to the speed of light) are
extremely energetic and produce intense X-ray beam.

There are no natural source of synchrotron radiation on Earth. But there are such
natural sources in the Universe, e.g. in some rotating stars. Synchrotron Radiation (SR)
is one of the most important emission processes in astrophysics.

Synchrotron radiation was first observed in year 1947 as a byproduct during the
first high-energy-physics (HEP) experiments conducted in circular accelerators where
particles get accelerated periodically when they go through an RF cavity. Thus, they
acquire during each revolution, synchronously, more and more energy. This is the origin
for the name. The first synchrotron accelerator, that could stand on a table, is shown in



CHAPTER 1. INTRODUCTION 3

Figure 1.1: Left: picture of W. Röngten. Right: The first medical radiography taken in
history by W. Röngten, the hand of his wife Anna Bertha Ludwig and her ring. (Source:
Wikipedia)

Figure 1.4. During these early discoveries, SR was mainly a kind of a nuisance for the
experimentalists.

As the particle energy is higher, the produced X-rays are much more intense than
those produced by Crooks-like tubes. A SR beam is also pulsed, highly collimated and
has a narrow spectral range [44]. Indeed they have many interesting properties, that
shortly attracted the attention of many researchers looking for powerful light sources.

Synchrotron radiation scientists became kind of parasites on nuclear physics experi-
ments, during the so-called 1st generation synchrotron era, before they built their own
facilities, those being the 2nd generation synchrotron facilities.

There has been an amazing increase in brilliance of X-ray sources, see Figure 1.3, and
a successful new science and technology has emerged to fruitfully employ SR in multiple
research fields. This has boosted new usages and applications in industry, structural
biology, condensed materials investigation, anthropology or cultural heritage studies, etc.
X rays are mainly used for observation purpose and may be used in combination with
heated or cooling enclosure, high pressure diamond anvil, laser beam, etc.

SR facilities are essential to science today and are in use all around the world. The



CHAPTER 1. INTRODUCTION 4

Figure 1.2: The electromagnetic spectrum comparing the size of objects that can be
studied with various techniques. X-rays have the perfect wavelength necessary to perform
investigations in material sciences.

fact is that X-rays have the right characteristics in terms of wavelength for many research
fields as shown in Figure 1.2.

X-rays are not limited to 2D imaging based experiments. Many other techniques,
fluorescence, spectroscopy, scalpel in brain surgery and uncountable other techniques are
foreseen. However, in the context of this thesis, the focus will only be on the 2D image
topic.

2D imaging techniques are not limited to collect digitized density variations of a
sample, as done in the first X-ray image or modern scanners. It can also record scattering
images containing information on the 3D atomic arrangement in a crystal. A high flux
beam is likely to burn fragile samples during the data collection. Many techniques are
under scrutiny in order to decrease the amount of radiation dose needed. This enables
an increased acquisition rate in order to observe the kinetics of chemical reactions.

All this contribute to the success of X-ray science and explains why there are numerous
SR sources operating all around the world, see Figure 1.5 and why so many scientists are
competing for beam time.

1.1.1 ESRF-EBS Grenoble, The European Synchrotron

The european synchrotron project started in the 1980s, and construction work was com-
pleted 10 years later in 1995 see Figure 1.6. The ESRF accelerator ring was the first to
implement Insertion Devices that boost brilliance by the mean of additive interference in



CHAPTER 1. INTRODUCTION 5

Figure 1.3: The brilliance measures the number of photons by unit of time, solid angle,
square section. As no optical technique can improve it, it is considered as the best
measure of X-ray flux. (Sources: J. Susini, ESRF)



CHAPTER 1. INTRODUCTION 6

Figure 1.4: From left to right: Langmuir, Elder, Gurewitsch, Charlton and Pollock made
the first observation of the SR light around the vacuum chamber of a 1947 general electric
synchrotron. (Source: NSLS, Brookhaven)

produced X-rays. Thanks to continuous innovations, the ESRF has since its early days
been continuously in the top rank of the third generation synchrotrons.

A synchrotron radiation facility is a complex piece of engineering sections, including
the core components shortly described below:

• a linear accelerator (linac), to produce the electrons at a given rate and give them
a first acceleration, using a series of oscillating electric potentials.

• a booster synchrotron, to give them the equivalent of 6 GeV energy, in a fraction of
a second, a level at which they behave as relativistic particles.

• a storage ring, a 850 m polygon, were electrons move straight in a high vacuum
tube, focused by multi-pole magnets and bent by bending magnets at 32 edges.

• and multiple beamlines, tangent to the bending magnets, collecting the X-ray flux,
that will be applied in the experimental hutches. Each beam line is 3 folded: optic
hutch, experimental hutch, and control room.

• and there are also radiofrequency cavities (RF), vacuum pumps, beam alignment
devices, timing system, computing and networking infrastructure, etc that we will
not describe here.



CHAPTER 1. INTRODUCTION 7

Figure 1.5: World map of Synchrotron Radiation sources in operation or under construc-
tion. Proof of their invaluable service to science community, many SR facilities are in
operation all around and counting. (Source: ESRF)

The ESRF is a world-class research center, with 700 staff members and a vast com-
munity of users. To keep its place in the world leading group of synchrotron, continuous
upgrades and improvements are ongoing in all domains.

The ESRF resumed just recently to user-mode after one year and a half of shutdown.
During this time the Extremely Brilliant Source (ESRF-EBS) upgrade program took
place, which were mainly replacement of the storage ring. The ESRF is as of August
2020, the most brilliant fourth generation source!

Using recently invented HMBA (Hybrid Multi Bend Achromat) lattice by [51] in place
of the standard bending magnets in the storage ring, a physicists dream enabling new sci-
ence became a reality. Brilliance (x100) and focus (/30) have been considerably improved
opening up new fields of investigation for fundamental research. It will also permit im-
proved understanding of materials with the possibility to reach spatial resolution at the
nanometer level, enabling unprecedented characterisation and understanding of materials
and living matter.

Most of the 43 beamlines were kept as is with minor upgrades but eight are completely
being redesigned.

Throughout this thesis, the ID29-EBSL8 beamline devoted to serial x-ray diffraction
experiments, one of the most demanding in photon science, will serve us to exemplify the



CHAPTER 1. INTRODUCTION 8

(a)

(b)

Figure 1.6: The European Synchrotron, Grenoble, France. From construction work (a)
in 1986 to the first light (b) in 1995: 10 years of hard work (Source: ESRF)

(a) (b)

Figure 1.7: (a) The European Synchrotron Radiation Facility (ESRF) today in the Euro-
pean Photon and Neutron science campus (EPN) and (b) a map of the ESRF beamlines.
(Source: ESRF).



CHAPTER 1. INTRODUCTION 9

data processing challenges.

1.1.2 X-ray Detectors and Experimental Setup Overview

X-ray science and SR are a vast research field and it is quite impossible to give a com-
prehensive overview of the topic. The size of the accelerator community to which SR
contributes as a large part, the growing and counting number of facilities of any size all
around the world, is a vivid proof that these light sources provide invaluable services in a
broad spectrum of research topics. The work of [66] provides meaningful general insights
on this topic.

For sure, not all X-ray experiments are producing large amounts of data and do not
rely on online data processing. However a growing number does.

A selection of innovative demanding X-ray experimental setups is given below:

• In Serial Synchrotron X ray crystallography (SSX), i.e. diffraction experiments on
proteins, a flow of a liquid containing small crystals is sent through a pulsed beam.
The idea is to collect the signal of one unique crystal at a time. One of the major
characteristics of serial diffraction is the amount of raw data produced. Most of the
captured frames do not contain information, hence are useless. Up to 90% of all
the collected signal is empty because no crystal is hit by the beam. The main data
treatment is then to sort out frames to be saved and those which can be discarded.
This selection is called the veto algorithm.

• X-ray Computed Tomography (XRCT) i.e. a scanner infers the density of the
matter by measuring the image contrast. The first application of GPU computing
for synchrotrons exploited the abilities of GPU to perform Fast Fourier Transform
efficiently and ported the filtered backprojection algorithm for tomographic recon-
struction [8]. This kind of processing is performed offline by PyHST2 software
because the data collection needed to be completed before initiating the process-
ing1.

• Coherent Imaging have appeared in the last decade at X Free Electron Lasers
(XFELs) that were much brighter than SR and have a much more coherent X-ray
beam. These sources are so bright that they blast the sample in femto-seconds but
the electron cloud of the sample diffracts before the sample is destroyed. Collecting
interference patterns from samples has paved the way to powerful microscopy tech-
niques: Coherent Diffraction Imaging (CDI) and Ptychography2 nowadays. They
have become available on the most brilliant synchrotron sources.

Ptychography and other coherent imaging techniques rely on Fourier transform.
Those analysis match perfectly with GPU computing as stated by [11] and is illus-
trated by the success of the PyNX suite3.

1https://gitlab.esrf.fr/mirone/pyhst2
2image reconstruction technique using many interference patterns obtained as the sample is displaced

to various positions
3https://github.com/nx-python/PyNX



CHAPTER 1. INTRODUCTION 10

Not all computations are possible online but a lot of low-level image pretreatment
are: Bragg’s peak detection, background normalization, mean and standard deviation
calculation, thresholding, outliers removal, masking, rejection, ...

The new generation of X-ray detectors features cutting edge capabilities and benefits
from the improvement in different fields of technology. Some of the most promising
improvements are listed below:

• Larger sensor area and modular design for a wider acquisition area. From photons
to digital value, there is a complex process, starting with photon to electron trans-
formation by various means. Large sensors are difficult to manufacture. Therefore
large detectors are comprised of assembly of multiple modules side by side.

• Higher pixel number by surface unit, higher acquisition rate and lower relaxation
time. Last decades has seen the emergence of pixel detectors where every pixel
embeds enough electronics to count each photons individually, benefiting from the
better integration of ASIC chips. Therefore, a larger set of counting capabilities is
possible, such as adaptive gain, pixel binning (merging in a single point the energy
collected from neighboring pixels), etc. They are now collecting images routinely
at hundreds of Hz and even a kHz. This produces a larger amount of raw data, in
more complex formats and creates compelling needs for online data processing.

The SR community has identified some key topics to drive productivity and user ex-
perience in X-ray science [62]. Beside resolving high-throughput data transfer challenges,
three different classes of crucially urgent problems are emerging. They could be worked
out by online data processing. These challenges are sorted by related latency and are
listed below:

• At human rate (fps < 1), it would be desirable to provide a minimum feed-back to
the user, in order to monitor the proper functioning of the current experiment

• At control system rate (fps < 100), it would be interesting to enable remote control
of experiments, automatically survey of sample alignment and similar control loop.

• At full acquisition rate (fps > 1000), performing low level data processing prior
data rejection or compression. This includes raw data pretreatment needed prior
any other processing, geometry reconstruction (offset, rotation), outliers removal
(bad pixel) or masking (beam stop), binning...

In this context, the support of new computing hardware such as GPU and FPGA
boards is clearly a way to explore. But this is not yet the end of standard CPU computing
that are also evolving. By example, an attempt to tackle the challenges of sieving out in
real time the data produced by one of the most challenging detector available as of today
(Jungfrau 32M) is presented in [29] and this work evaluates the vectorized instruction set
of a standard CPU.

All these problems are mostly addressed by RASHPA framework, demonstrating the
strengths of the concepts of the work carried out.



CHAPTER 1. INTRODUCTION 11

1.2 Full Throughput X-ray 2D Imaging

Experiments

Today the throughput of advanced detectors and the needs in associated online data
processing are evolving faster than the capabilities of standard computers. Some of the
encountered issues are related to the data throughput and the afferent bottlenecks along
the data path. The others are related to the processing power required for the data
processing itself and will be discussed later. Of course, these problems of transfer and
processing of data are not specific to X-ray detectors. The following dissertation and
proposal might apply to many other Data Acquisition System (DAQ) systems.

High throughput data transfer itself is a creative research topic and, in this field, in-
novative technologies emerge every day. However, there is yet no one-size-fits-all solution
and probably never will be.

Targeting specifically 2D image detectors, we are somewhat narrowing the problem
and are more prone to propose specific solutions, taking into account their peculiari-
ties. Some of these particularities might be considered as extraneous constraints to the
problem, e.g. the limited processing power of the detector-embedded readout-electronics.
We could instead take benefit of other particularities, e.g. assuming that data transfer
will be lossless in a lab environment. Thus, with properly configured and correctly sized
networking devices, no packet losses should happen. That let us choose a lightweight
transfer protocol.

Since detector developments are long processes that commonly take 5 to 10 years
and detectors usually stay in operation around 10-20 additional years, the generality of
the proposed system should be strongly considered. Most components of the framework
should ideally be hardware agnostic and able to cope with the most disruptive future
innovations. Of course, hardware implementations demonstrates the advantages the so-
lution can offer to the user and are essential to verify that the targeted specifications are
realistic. Due to the lack of available real detectors featuring all the advanced function-
alities, we have developed simulators in order to benchmark the various alternatives of
communication protocols.

The developed framework is intended to be scalable, i.e. possibly address the most
demanding DAQ systems, but also more cost effective solution deprived of the latest
innovative and expensive hardware. It is designed with X-ray detectors in mind, produc-
ing high throughput data streams, but the framework should also match the low-latency
requirements of fast-feedback and control system.

The other significant characteristics of 2D imaging is the huge amount of data which
is generated.

New generation pixel detector, as the PSI Jungfrau shown Figure 1.8, embed more and
more processing power at the pixel level. Consequently the detector readout electronics
that is collecting the data can generate huge throughput.

In many serial experiments, the setup comprises an automatic sample changing sys-
tem, such as robotic arm, rotating disc or liquid jet carrying samples into the X-ray beam.
Experiments like these producing large images (sizes in the MB range), acquired at high
repetition rates (frames per second in the kHz range), are summing up in Tera Bytes of



CHAPTER 1. INTRODUCTION 12

data per minute. Obviously, merely storing the raw data would put a considerable strain
on the storage file system.

As a consequence, end user will have to be ready to provide an online rejection algo-
rithm at the time of the acquisition.

Nevertheless, the ubiquitous workflow: acquisition, transfer, storage and eventually
batch processing, is no more the most effective. It now seems mandatory to perform
online processing and proceed to some form of data compression or even rejection. These
tasks require a considerable computing power and a high throughput that overwhelm
traditional hardware architectures.

This challenge is not specific to photon science but it is tightly coupled to the pre-
viously mentioned data transfer bottlenecks. Many research fields focus on this topic
and the impending end of Moore’s Law has started a rethinking of the way to solve Big
data analysis (see Figure 1.9). Certainly, the peak processing power of a single processor
core does not increase the way it did, but hopefully new paradigms are emerging such as
parallel processing and specialized hardware. The advent of high performance computing
accelerators during the last decade, mainly based on Graphics Processor Unit (GPU) and
Field Programmable Gate Array (FPGA), offer new opportunities to solve the compu-
tationally intensive tasks. One outcome of this work is the assessment of data transfer
directly into the accelerator’s memory, without neither Central Processor Unit (CPU)
intervention or staged memory.

1.3 Research Questions

As the prerequisite for the work, we have identified the main causes of data transfer
bottlenecks from detector to the standard computing unit. They are of multiple and
mixed origins, rooted in both hardware and software.

1.3.1 Data Transfer Issues and RDMA Mitigation Techniques

In the early times of computing hardware the Central Processing Units (CPUs) where
operating much faster than Input/Output (IO) devices. Real-time data processing was
possible but this has not been true for a long time. The most annoying issues are linked
to the complexity of the software stack used in modern architecture. Multiple data copies
are also occurring between supervisor code executing in kernel memory space and user
application in user space. In addition, the trivial task of using a CPU only for data
transfer purposes, from input device to destination memory, wastes CPU cycles that
should be more beneficial to user applications. The CPU must also acknowledge and
handle interruptions issued by the communication device, using kernel context switches
that are highly inefficient when using high-throughput links.

All these issues might be mitigated using Remote Direct Memory Access (RDMA)
techniques and specialized hardware such as RDMA Network Interface Card (RNIC).
DMA engines are specialized components embedded in computer devices such as RNICs
and GPUs that can autonomously handle data transfer from PCI-e devices to the main
memory or the reverse. CPU is thereby kept available for other tasks after having per-



CHAPTER 1. INTRODUCTION 13

Figure 1.8: A scattering image produced by a PSI Jungfrau 16M detector featuring 32
modules, each of 1024 x 512 pixels, 16 bit raw data, operating up to 2.2 kHz. Final image
reconstruction from independent modules requires geometric transformations. (Sources:
Shibom Basu, EMBL)

formed the data transfer configuration. It is even possible to transfer data from one
PCI-e device to another one, using peer to peer (P2P) PCI-e DMA, completely bypass-
ing intermediary staged CPU memory. To operate properly, all that machinery is using
a dedicated programming model that is slightly different from the conventional one. The
abstraction layer fulfilled by this project will perform the tricky details of the low-level
implementation without the end user even noticing.

RDMA is the generalization of this mechanism to the remote computer. Instead of
a single DMA engine, there are two in consideration: one at the source and a second at
the destination. They are inter-connected by network links and the data are streamed
between both ends. We have performed an evaluation benchmark of the alternative
solutions available and selected those compatible with the requirements of the detector
electronics.



CHAPTER 1. INTRODUCTION 14

Figure 1.9: (a) Moore’s Law represented for the computer speed of CPU chips compared
to the X-ray brilliance of coherent light sources. While the computer speed has increased
12 orders of magnitude in 6 decades, the X-ray brilliance has improved by 20 orders of
magnitude in 6 decades. The inset shows the extremely intense XFEL pulses. (Sources:
UCLA Coherent Imaging Group)

1.3.2 Real-time Data Analysis with GPU/FPGA Accelerators

With the advent of the end of Moore’s law, the peak processing power of a single CPU
appears to be bounded. This enforces the use of heterogeneous computing systems, fea-
turing new highly parallel hardware accelerators that have become more easily available
the past 10 years. Among these are the well known Graphics Processor Unit (GPU),
which is already successfully implemented in many demanding fields. But also Field Pro-
grammable Gate Array (FPGA), which has a still more limited adoption, but is geared
towards critically low-latency scenario.

However, if those devices are efficient number crunchers, they are not fully autonomous
black boxes, and thereby remain tightly coupled to the host computer. The main CPU
must issue sequences of commands on a regular basis and must monitor the accelerator
status as well. These commands include: i) explicit data movement from main CPU to
accelerator memory, in both directions: Host to Device (H2D) and Device to Host (D2H),
ii) launching the code processing on the accelerator synchronously with the DMA engine
at data transfer completion.



CHAPTER 1. INTRODUCTION 15

This whole work of configuration cannot be done once, at the initial startup of FP-
GA/GPU data processing. It definitely must be performed on the fly during the whole
process, at least for GPUs.

1.3.3 Contributions to RASHPA Data Acquisition Framework

This work is part of a larger project, namely the RDMA-based Acquisition System for
High Performance Applications (RASHPA) framework initiated by the Instrumentation
Service and Development Division (ISDD) at the European Synchrotron Radiation Fa-
cility (ESRF) (ESRF). The initial ideas of the RASHPA framework date from year 2013
[37], but remained for a long time at the stage of draft specifications. In the frame of the
ESRF Detector Development Plan (2017 DDP), it was decided to restart the project and
to continue until the achievements of the work would be satisfying.

In addition to the assessment of the RDMA over Converged Ethernet (RoCE) as a
sustainable and robust transfer solution in the frame of RASHPA, our contribution is an
extension to this framework called RASHPA Processing Units (RPUs). We have added
support for data processing by GPU & FPGA accelerated code, thereafter called kernels,
thus offering a comprehensive solution to the online data processing challenges in the
context of X-ray techniques.

This extension includes a low-latency synchronization mechanism between RDMA
network interface cards (RNIC) and the processing hardware, either CPUs, GPUs or
FPGAs accelerator in charge of the online data processing. The transfer of the detec-
tor images onto the accelerator is made to overlap with the computation carried out,
potentially hiding the transfer latency.

By applying a solution which is rarely reported in the literature, we managed to get
the GPU kernels pre-launched and put them on hold in advance, in order to start them
as soon as possible after being triggered by the RDMA engine at the end of the data
transfer. The persistent kernel in the GPU, a continuously spinning kernel, despite being
somewhat orthogonal to the underlying GPU’s hardware, is investigated to limit the
overhead due to kernel launch time. In addition we attempted to provide a programming
methodology.

Another key contribution aiming at low-latency use, such as seen in alignment or
control systems, is the successful deployment of the RASHPA paradigms with FPGA
based accelerators. FPGAs have formerly been confined to very low level I/O. However,
design of customized systems with demanding timing requirements are getting attention
in High Performance Computing (HPC) fields for their highly configurable model and
latency performances. In the same way as for other RPU instances, data are moved
directly from the RNIC to the FPGA board internal memory, bypassing CPU and main
memory, to be processed by user-defined IP blocks. These IP blocks usually designed
using convoluted low level HDL, are evaluated in this work using high level synthesis
language applying standard math expressions.

We supplemented the RASHPA framework with a collection of kernel modules, ad-
dressing the challenge of memory allocation suitable for DMA. This includes large (multi
GB) contiguous memory allocation in Linux host. We also address memory allocation on



CHAPTER 1. INTRODUCTION 16

internal memory of GPU and FPGA devices. This is pertaining to PCI-e peer to peer
compliant devices which memory can be accessed directly from network card.

Scalability and versatility of the proposed system is exemplified with several imple-
mentations of detector simulators. These are either full fledged software or FPGA-based
implementations and hardware accelerated RPUs. They feature rejection and compres-
sion pipelines which are suitable for serial diffraction experiments conducted on syn-
chrotrons on different hardware platforms and links.

The significance of this thesis it that the actual situation hampers the use at full
capacity of existing new generation X-ray detectors and is detrimental to foreseen ex-
perimental setups. The data transfer architectures used today for data copying and
dispatching are very CPU intensive. They implicitly attain performance limitations that
impose the reduction of the maximum achievable frame rate or duty cycle of the detec-
tors, consequently never exploiting their full capability. As a detrimental result, online
data processing at their maximum throughput is simply not achievable.

Thanks to the approach proposed in this thesis, the RASHPA framework will hope-
fully help the scientists to get their result, or at least a preliminary feedback on them,
in real time. This was a compelling need long hoped for, but only achievable by build-
ing the missing bridge between data flow and processing system. This is now becoming
reality thanks to recent breakthrough in RDMA techniques and the tremendous pro-
cessing power, low-latency of GPUs or other massively parallel architectures, like FPGA
accelerators.

1.4 Organization of the Thesis

This thesis work emphasises the detailed specifications of efficient data transfer and pro-
cessing framework for X-ray detectors, leveraging zerocopy / RDMA techniques.

The initial RASHPA draft, limited to transfer and storage into CPU memory prob-
lematic has been extended to data processing itself and generalized to support hardware
accelerators. It takes benefit from GPUs and FPGAs, fully bypassing main memory and
the CPU bottlenecks encountered in traditional processing flow.

The main contributions of this work can be outlined according to the chapters. After
this introduction, the remainder of the memoir is structured as follows:

• The chapter 2 State of the Art: Data Transfer & RASHPA, gives a general overview
of the key technologies involved in high throughput data transfers. We present the
flaws of standard hardware and software and expose RDMA alternative capable to
perform direct data movement from detector head to computing unit.

Then we present today available massively parallel processing hardware such as
GPUs that are ubiquitous in High performance Computing (HPC) and FPGAs as
well. These are emerging as a new competitive technology in the field of ultra low
latency data processing.

The key concepts and philosophy behind RASHPA in its primitive stage are pre-
sented. Then we introduce our main contribution, the concept of RASHPA Pro-



CHAPTER 1. INTRODUCTION 17

cessing Unit (RPU), that supplements the already existing RASHPA Receiver (RR)
with data processing capabilities.

• It is followed by chapter 3 RASHPA Data Source Simulators, where we perform the
assessment of RDMA Over Converged Ethernet (RoCEv2) as a RASHPA-compliant
protocol and describe the chosen approach to integrate a processing unit into a
RASHPA system. We propose to add two new core components to the existing
framework: i) a scheduler application in charge of event handling and recurring
configuration, ii) an address translation system geared towards DMA engine of the
data transfer in the RNIC of the receiver.

Adequacy study and performance measurements lead us to the development of
detector simulators as proof of concept. First version is a full fledged RASHPA
compliant mockup. It is targeting mainly the development of a code base hiding as
much as possible the programming details related to RDMA transfer.

In addition, two FPGA-based RASHPA simulators are also presented as a feasi-
bility study: i) a REMU-PCIE version, leveraging data transfer over Peripheral
Component Interconnect Express (PCI-e) long distance links and performing its
assessment, i) a REMU-ERNIC version, evaluating a recently available Xilinx IP
(ERNIC) featuring RoCE protocol, and comparing its performance with an ESRF
custom IP.

• Then chapter 4 Online Accelerated Data Processing using RASHPA, presents sev-
eral versions of RASHPA data processing units: i) multi-threaded/vectorized ap-
plication running on standard CPU that serves as a reference platform, ii) GPU
accelerator, using Compute Unified Device Architecture (CUDA) on NVIDIA board
or OpenCL kernel on AMD board, iii) configurable FPGA device, featuring ultra
low latency data processing by programmable IP block developed by applying High
Level Synthesis approach.

The synchronization of data processing at the end of RDMA transfer is discussed
and implemented accordingly.

The assessment of a comprehensive acquisition chain is exemplified by online data
analysis such as found in serial crystallography setup, featuring raw data pre-
treatment, rejection and compression algorithms.

• Finally chapter 4 concludes our work, summarizes our contributions and provides
an outlook:

i) Acceptance by the end-user of a new and complex framework might be improved
with a better integration to more widely recognized parallel computing framework
such as ESRF internally developed Lima [47], or Python Numpy scripting language
which is very popular in the scientific community.

ii) The direct data transfer to remote SSD, so called disaggregated storage, has
gained momentum recently, as NVMEoF and RDMA technologies are well fitting
together. The RASHPA philosophy being sufficiently generic, it will apply naturally
to the crucial challenges of data persistence.



18

Chapter 2

State of the Art: Data Transfer &
RASHPA

Contents
2.1 High-throughput Networking . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 Bottlenecks Related to Memory Management . . . . . . . . . 21

2.1.2 PCI-e Interconnect . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.3 Direct Memory Access Overview . . . . . . . . . . . . . . . . 24

2.1.4 Memory Allocation Challenges . . . . . . . . . . . . . . . . . . 26

2.1.5 Limitations of Conventional Networking Techniques . . . . . . 27

2.1.6 Overview of RDMA Techniques . . . . . . . . . . . . . . . . . 29

2.1.7 Prospects beyond DMA Techniques . . . . . . . . . . . . . . . 33

2.2 Hardware Accelerators Overview . . . . . . . . . . . . . . . . . . . . . 34

2.2.1 GPU accelerators . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2.2 PCI-e P2P Transfer into GPU/FPGA Device Memory . . . . 37

2.2.3 Parallel Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2.4 FPGA Accelerators . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3 The RASHPA Framework . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3.1 Paradigms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3.2 Overview of the Frameworks in HEP or Astronomy . . . . . . 43

2.3.3 Contribution to RASHPA Processing Unit Specifications . . . 44



CHAPTER 2. STATE OF THE ART: DATA TRANSFER & RASHPA 19

This chapter outlines what we learned from previous contributors to the field. As
illustrated in Figure 2.1, this work is related to multiple and rather independent topics.
In each domain, it is often dealing with unusual or corner case developments. We had
to dig into cumbersome or not well documented features of API, encountered numerous
issues caused by utilization of not yet mature technologies and have been struggling
to get the advertised features working. Our main challenge has been devising generic
components without relying on specific features of proprietary technologies.

These topics are mainly related to computer sciences, high performance networking
and parallel processing, especially leveraging GPU coprocessors.

At first, an overview is given of the RASHPA Framework in its initial state at the
beginning of this work. Then we present the methodology applied to perform the assess-
ment of RDMA Over Converged Ethernet (RoCEv2) as a satisfactory RASHPA protocol
and subsequently how has been implemented data processing support into the framework.

We then present some considerations on Linux operating system internals related to
memory allocation, real time scheduling and high performance computing relevant with
this work.

In this dissertation, the review of parallel algorithms is kept to the minimum. The
algorithms are related to X-ray crystallography but the proposed implementations are
simplistic as we are focusing on data transfer and synchronization mechanisms, rather
than on data analysis itself. At this stage of the project, the only thing that matters, is
the timing requirements which must remain compatible with the acquisition frame rate.

The rest of this chapter provides a presentation of the general concepts & philosophy
behind the RASHPA framework that is the foundation of this thesis. Here is defined the
working principle of a RASHPA Processing Unit.

2.1 High-throughput Networking

This section comprises discussions on the origin of the multiple bottlenecks encountered
during data transfer. Figure 2.2 give an overview of the different devices and relative
throughputs of the interconnects implemented in a typical acquisition system.

Data transfer bottlenecks may appear in multiple locations along the data path. They
might be related to capacity of the links, to the hardware device in charge of the data
transfer itself or to the software in use to perform the data movement. The affected data
transfer throughput will obviously be capped by the slowest one.

The potential issues in the list presented below will be described and it will be specified
which one are addressed by our contributions:

• The bottlenecks inside the detector electronics are not discussed in this work. This
is the purpose of the readout electronics embedded in the detector side to solve these
issues and for the rest of this project, we assume that the detector is able to push
data on the network links at its full capacity. The actual work performed to design
suitable RASHPA compliant detector electronics, performed by other contributors
of the European Synchrotron Radiation Facility (ESRF), will not be described in
this thesis [32].



CHAPTER 2. STATE OF THE ART: DATA TRANSFER & RASHPA 20

Figure 2.1: This thesis embraces multiple research fields and topics of diverse technologies.

• Contention in network links from detector to the remote computing unit is also out
of scope for this work. A RASHPA system is intended to have its own network
infrastructure. If network infrastructure is shared with different applications and
computers, it is possible to tune the network devices (switches) and reserve the re-
quired bandwidth for the data acquisition system. Using modern switches, Quality
of Service (QoS) is configurable and neither packet loss nor contention will occur
in a lab environment. However a lossless network is mandatory for proper RDMA
transfer1.

• The transfer from a Network card to the CPU memory by user application is the
main bottleneck. Historically, due to the complexity of operating systems (OS),
multiple data copies were required between driver running in kernel space and ap-
plication in user space [33]. Handling the interrupts coming from the NIC board by
the CPU was inefficient as well. These issues are addressed by RDMA techniques
that are used extensively in this work. The highest bandwidth network cards com-
mercially available are using this techniques. However, it is worth to note that
many progress have been done in the Linux kernel design and networking driver as
well.

• A CPU application fetches data and code from main memory. This uses the memory
channels of the processor, which have various performances depending on the access
pattern. Accesses to subsequent and properly aligned data (called coalescent) are

1https://community.mellanox.com/s/article/understanding-qos-configuration-for-roce



CHAPTER 2. STATE OF THE ART: DATA TRANSFER & RASHPA 21

Figure 2.2: An overview of hardware in use and the general working of the investigated
use case. A remotely connected X-ray detector by Gigabit Ethernet links produce data to
a computing unit. On top is presented the standard solution: offline data processing by
CPU. The proposed solution, below, features RDMA network card that offload CPU from
data transfer and bypass software bottlenecks. Massively parallel hardware accelerators
perform the online data analysis.

most efficient than random accesses to scattered data. It also greatly depends on the
hardware topology in Non Uniform Memory Access (NUMA) systems as presented
in [43]. Good CPU affinity and coalescent accesses are the key points of an efficient
data processing.

2.1.1 Bottlenecks Related to Memory Management

We will at first consider the bottleneck issues inside the computer. Subsequently, we will
deal with the network connected devices.

There is many different memory hardware in modern CPU design. The Dynamic
Random Access Memory (DRAM) is used as main storage for data and instructions. It
features high density storage but requires periodic refresh that limits its performances.
Static Random Access Memory (SRAM) are found in Level 1 or 2 CPU caches. They
are much more efficient in term of speed than DDR but more costly in term of power
consumption and they require more transistors in the silicon chip. They are therefore
available in more limited quantity2.

2one DDR cell: one transistor by bit, one SRAM cell: 6 transistors or 4 + 2 resistors



CHAPTER 2. STATE OF THE ART: DATA TRANSFER & RASHPA 22

All these kinds of memory are used in the computer architecture. There is an access
hierarchy, based on their relative speed and capacity as shown in Figure 2.3. Most
frequently accessed data are stored in cache line of 64 bytes in high speed memory cache.
These caches are embedded in each processor core (Level 1) or shared by multiple cores
(Level 2). Caches are automatically flushed/invalidated when they are full or when the
associated physical memory changes as in case of DMA transfer. Maintaining cache
coherency takes time.

In addition, for robustness and security reasons, Linux operating system implements
a sophisticated virtualization machinery to perform memory addressing. Data and in-
structions are referenced by virtual addresses that are translated to physical addresses by
a Memory Management Unit (MMU) on the basis of four look-up tables, and cached in a
Translation Lookaside Buffer (TLB). All processes are virtually executing at the same ad-
dress, i.e. 0x80000000 in Linux system, but obviously, code and data are actually stored
at different physical memory locations. A process has only access to its code and data
segment, but not directly to other processes nor to kernel memory space. The mapping
between virtual address and physical memory is made on the basis of pages. These pages
are usually 4 KB long. The page location might be transparently changed by the Mem-
ory Management Unit. Memory pages are reputed movable when they are not explicitly
pinned. Thus the memory management system can mitigate memory fragmentation by
the aggregation of large chunks of contiguous free space.

Processors have at least two modes of operation referred to as rings, user and super-
visor, which change the available instruction set in a given mode. It is allowed only in
supervisor mode to perform Input and Output (I/O) operations or MMU configuration.
One can go from user to supervisor mode only in a controlled way using interrupts or
system-call. To ensure robustness of the system, user applications are denied direct access
to supervisor space. Data buffers must be copied by kernel code to and from memory in
application user space to and from kernel module or driver code memory space. Going
from one run level to the other, called context switching, has a cost in time as it is storing
register contents in the stack, and is restoring them later.

All this clever machinery, added to multiple translations involved in virtualization to
translate from virtual to physical address, has a time budget that may not be negligible
at high throughput. Figure 2.4 shows the different bandwidth measured during data
transfer in memory.

Modern processors also feature rich sets of vectored instruction or Single Instruction
Multiple Data (SIMD) applying once the same operation on multiple data such as Intel
Intrinsics3. Application performances benefit automatically from these instructions gen-
erated by a properly configured compiler. Effective Vectorization with OpenMP SIMD
is presented in [20].

The proposed system has to perform both smoothly and efficiently the foreseen data
transfer while preserving virtualization, cache coherency and user / kernel space isolation.
Bypassing the bottlenecks will require new approaches presented throughout this memoir.

3https://software.intel.com/sites/landingpage/IntrinsicsGuide/



CHAPTER 2. STATE OF THE ART: DATA TRANSFER & RASHPA 23

Figure 2.3: (a) Memory Hierarchy in modern computers includes several levels of caches.
Data migration and coherency is performed by specialized hardware. Memory Manage-
ment Unit performed the address translation related to virtualization. Table (b) shows
some numbers on bandwidth and latency.

2.1.2 PCI-e Interconnect

Peripheral boards and devices are connected to CPU and main memory by Peripheral
Component Interconnect Express (PCI-e) which has its own specific data transfer limits.

The today standard, PCI-e gen 3.0, can carry up to 8 Gb/s per lanes. 1, 4, 8 or 16
lanes are generally available on a given device, depending on the processor capabilities.
Hence a throughput of 128 GT/s could be expected for a PCIe gen. 3 device with a x16
width. A host processor (server versions) has generally 48 (Intel) or 128 (Amd) lanes.

Thus, PCIe gen3 x16 maximum bandwidth is approximately 126 Gb/s taking into
account diverse overhead and data encoding. However, the observed throughput on
commercially available hardware such as GPUs or FPGAs is capped around 12GB/s
when using standard driver4.

PCIe Root Complex ensures transfer from/to device to/from main memory or from
device to another device (peer to peer PCI-e (P2P) transfer). PCI-e switches can route
data transfer from one PCI-e device to another on the same switch, completely bypassing
the CPU.

The inter-node transfer performance vary mostly according to CPU affinity as shown
Figure 2.6 and this is especially important for RNIC as explained in [36]. In servers

4https://www.xilinx.com/support/answers/68049.html



CHAPTER 2. STATE OF THE ART: DATA TRANSFER & RASHPA 24

Figure 2.4: Observed CPU to CPU bandwidth by several techniques and memory type.
Due to cache size effect, small size transfer from pinned memory are the fastest. The
numbers greatly depend on the chosen hardware, the cache hit ratio, etc and are given
only for comparison purpose on the same server.

with multiple processor sets (or even on some high end CPU), there are multiple PCIe
interconnects, at least one for each CPU. As the inter-CPU set interconnect5 is a severe
bottleneck, it is wise to allocate memory on the same interconnect as the CPU core in
use and the PCI-e device.

2.1.3 Direct Memory Access Overview

Direct Memory Access (DMA) is a key feature to perform high bandwidth transfer for
PCIe based applications. DMA frees up CPU resources from being wasted for data
movement and helps improving the overall system performances. A CPU performs data
transfer staged in its internal registers, requiring two operations: loading from memory to
register, then storing. It can generally perform 8, 16, 32 or 64 bit wide (aligned) memory
access. However, using instructions from the vectorized instruction sets when available,
the CPU could transfer packed data, up to 512 bits (Intel SSE, AVX512) and saturate
the available bandwidth of PCIe interconnect.

But in modern computers, data transfer are mainly the task of DMA controllers (also
called DMA engines). Those controllers are located in peripheral devices (PCI-e end
point) and handle data transfer to and from the main memory without CPU intervention.
The DMA engine might also be synthesized in custom FPGA design using standard IP

5Intel QuickPath Interconnect (QPI) or Amd Infinity Fabric



CHAPTER 2. STATE OF THE ART: DATA TRANSFER & RASHPA 25

CPU

Switch

MemoryRoot complex

PCIe
bridge to

PCI/PCI-X
PCIe

endpoint
PCIe

endpoint

PCIe
endpoint

Legacy
endpoint

PCI/PCI-X

Figure 2.5: An overview of Peripheral Component Interconnect Express (PCI-e) topology
showing PCI-e Root Complex and bridges (Source: Wikipedia).

Figure 2.6: A snapshot from lstopo graphic user interface, showing a two CPU set com-
puter and both PCIe-interconnects. Best throughput are achieved for data transfer from
device to memory in the same interconnect and from PCI-e card to card with good affinity.



CHAPTER 2. STATE OF THE ART: DATA TRANSFER & RASHPA 26

such as the Xilinx IPs CDMA6 or the XDMA7.
The software application must configure the DMA controller with a list of data transfer

commands, mainly Buffer Descriptors (BDs), i.e. addresses and length of the memory
regions, both at source and destination. BD processing proceeds in three successive steps:

i) The memory buffer must be pinned to prevent the memory management unit from
moving it during a DMA transfer. This can take some time. ii) Then the virtual addresses
of BDs given by the main application must be translated into their respective physical
addresses used by the DMA engine. iii) And then, the data movement operations are
performed autonomously through the PCI-e interconnect.

Physical addresses of recently used BDs might be cached internally for later reuse and
performance reasons, .

Taking all this in consideration, it is important to optimize the duration of the data
transfer. An efficient online data analysis essentially depends on a judicious memory
allocation strategy. How to do this depends on the size of the data, their actual location,
the targeted destination, the cache states, the capabilities of the DMA engine involved.

2.1.4 Memory Allocation Challenges

In the process of this work, we had to solve the problem of large memory buffer allocation
suitable with RASHPA concepts and compatible with the Linux underlying operating
system. Large memory allocation has always been a challenge for operating system
designers and developers as explained in [42].

Here are some existing techniques on Linux based systems which include:

• The Reserved Memory regions are not visible from the Linux Operating System.
By definition, this memory region is non-movable and does therefore work well with
DMA. Then, the issue is to make the data from this memory region accessible from
a normal user-application. With earlier Linux kernel, it was possible to make it
accessible by performing a memory mapping of the pseudo-device /dev/mem. This
was the method foreseen in the initial RASHPA design. For security reasons this is
not possible anymore when using recent Linux kernel version.

• The regular on-demand user-memory allocation procedure by malloc. Those mem-
ory regions are scattered in 4 KB pages in physical memory that can be migrated
during memory management operations to different physical locations. Therefore,
they must be pinned to be suitable for DMA. This takes time and requires a huge
number of different descriptors in case of multi-GB allocations. There is an upper
limit at 4 GB (set by OS rlimit).

• Allocation of memory backed by 2 MB or 1 GB pages, called Huges pages instead
of regular 4 KB pages is possible on high-performance workstations. But a single

6https://www.xilinx.com/support/documentation/ip documentation/axi cdma/v4 1/pg034-axi-
cdma.pdf

7https://www.xilinx.com/support/documentation/ip documentation/xdma/v4 1/pg195-pcie-
dma.pdf



CHAPTER 2. STATE OF THE ART: DATA TRANSFER & RASHPA 27

multi gigabyte allocation in Huges pages is not guaranteed to be contiguous. That
memory is pinned by the operating system during allocation.

The last two methods are performing memory allocation from user space. But it
is not possible to get the physical addresses required for the DMA operations from
user space. A kernel module must be implemented on purposely, performing a call
to the function get user pages.

• Virtual memory might be allocated from kernel space using kmalloc. But it is
reserved for small size allocation that does not match our use case.

• Contiguous Memory Allocation (CMA) from kernel space was introduced in the
Linux kernel 3.12 precisely for this purpose [61]. A large pool of memory specified
at boot time is eligible to CMA allocation but when it is not in use, it remains
available by other non-CMA application. Such an allocation is done by a kernel
module using dma alloc coherent system call. It provides also the physical addresses
needed by the DMA engine. The proposed method is leveraging the Contiguous
Memory Allocator (CMA) which is present on purposely in the Linux kernel.

2.1.5 Limitations of Conventional Networking Techniques

The Internet Protocol (IP) dates from the launch of the internet in the early 1970’s [17]
and was continuously upgraded until now. This library stack worked great and still does
today on standard hardware. It has been constantly optimized: interrupt coalescing
technique consolidates multiple hardware event in a single one, large buffers may be
passed by reference between kernel and user application, parallel or vectorized I/O such
as recvmmsg are allowing to receive multiple messages from a socket using a single system
call, receive side scaling dispatch data transfer on multiple processor cores, etc...

But the demanding requirements of ultra-fast data links prevent to use it as is as
stated in [16] that reports 33Gb/s maximum achieved when using UDP on a 100 gigabit
Ethernet links.

Our use case in high-performance detectors has a non standard characteristics. A
typical readout electronics monitors the photon sensors and transfer acquisition data at
high speed into its internal memory. Such an embedded system uses Field Programmable
Gate Array (FPGA) with a limited power budget. This is in particular the case for the
FPGA of the family endorsed for this purpose. Such FPGAs are not well tailored nor
have the sufficient memory resources to implement high-level network protocols such as
the transmission control protocol (TCP). Indeed, TCP requires complex software stacks,
features of sophisticated error handling and automatic data re-transmission as shown in
Figure 2.7.

Therefore, detector electronics generally implements less sophisticated, single-sided
data transfer to the computing unit, such as the User Datagram Protocol (UDP). We
will restrict our approach to UDP data transfer in the rest of this thesis.

However, even using UDP with the traditional software library, the well known Socket
API, packet losses might be experienced. Those dropped packets are not lost during the
transmission phase but along the path within the operating system. This is a well known



CHAPTER 2. STATE OF THE ART: DATA TRANSFER & RASHPA 28

flaw [50], related to the inner complexity of the network stack and many time-consuming
tasks executed under the hood: data copies from/to the user and kernel memory space,
complex interrupt handling and processor context-switches, etc. Fine-tuning of the op-
erating system, e.g. increasing internal buffers, carefully allocating interrupted handling
and disabling the Linux kernel from pre-emptively scheduling tasks onto the core dedi-
cated to the receiving task, enables higher rates to be achieved [33]. However, the result
does not scale well above 10 Gb/s.

Such a setup has been implemented in the field of X-ray science for the SLS detector
software [18] and is successfully tested with a PSI Eiger 500K detector featuring two 10
Gb/s Ethernet links. It successfully aggregated 5 Gb/s on each link.

The data plane development kit (DPDK) [23] is an interesting framework which con-
sistently implements these principles The whole application code runs in user space to
achieve low latency. It is kept busy polling the status of the NIC. This works well with
standard network cards and even with RNIC adaptors, at the price of a fully dedicated
core devoted to the network traffic.

Below is presented a review of network solutions encountered on commercially avail-
able detectors:

• Detector with proprietary hardware/protocol: Some vendors provide proprietary
solutions featuring a black box computer as interface. The vast majority of avail-
able solutions leverages Ethernet links with custom protocol. For reference, the
theoretical maximum speed is 148 Mpps using 100 Gigabit Ethernet. The main
drawbacks is that packets cannot be routed by standard switches.

• Detector producing UDP data flows such presented in [40]: Datagram are sent
without reception acknowledgement from the receiver. The protocol does not ensure
neither packet ordering nor lost detection that must then be handled separately and
explicitly. The data flow can be routed using standard switches.

• Detector producing TCP data flows: This is a connected protocol where sent packets
are acknowledged at the destination. It generates an extra load on the links. In
addition to that, to ensure the possibility to re-transmit lost packets, a copy of
the sent data must be stored for some time. That requires memory and complex
processing algorithms. TCP is therefore rarely used with real detectors.

• ZeroMQ Sockets: ZeroMQ, 8, is an optimized socket library originally developed
for high-frequency trading applications when microseconds matter. It has since the
beginning largely been reused by the scientific community. It relies on TCP sockets
at low level and therefore seems hardly suitable to the embedded electronics of a
detector. However, detector vendors sometimes provide a black box computer that
produce ZeroMQ data flow as Eiger Dectris presented in [34].

ZeroMQ defines several transfer patterns optimizing the data communication pro-
cesses between the stakeholders. With REP/REQ peer to peer pattern, a single

8https://zguide.zeromq.org/



CHAPTER 2. STATE OF THE ART: DATA TRANSFER & RASHPA 29

Figure 2.7: Packet journey through Linux kernel shown here to exhibit its internal com-
plexity. It is only on an overview of the Transport Communication Protocol (TCP) State
Machine and error handling mechanism. This techniques does not scale much at high
throughput and therefore TCP becomes inefficient. (Source: Linuxfoundation.org)

response is given by the peer to the requester. PUB/SUB implements the publish/-
subscribe model while PUSH/PULL performs a round robin amongst the connected
sockets. The last pattern was found slightly more efficient in our measurements.
Interestingly, a development of an UDP version of ZeroMQ, that was in a early
draft stage at the beginning of this project, is in progress. It operates with the
RADIO/DISH pattern, i.e. one way broadcasting9. It has not yet been evaluated if
this protocol could be supported in a detector with the aforementioned constraints.

As far as networking is concerned, the rest of our work will relies on data transfer
produced by a FPGA based design, producing UDP/IP datagram and received in data
processing server by commercially available RNIC.

2.1.6 Overview of RDMA Techniques

RDMA is the generalization of DMA between remotely connected computers equipped
with dedicated NIC such as shown Figure 2.8 or FPGA boards embedding high speed
NIC. Dating from mid 1990, one of the first working implementation used in a Top 500
HPC computer is presented in [7]. The distinct advantage of this data-transfer solution

9http://api.zeromq.org/master:zmq-udp



CHAPTER 2. STATE OF THE ART: DATA TRANSFER & RASHPA 30

Figure 2.8: General procedures of an RDMA network Interface Card (RNIC). The user
application posts asynchronously Work Requests for Receive Or Send operation. Those
requests are processed one by one by the RNIC hardware: for Receive operation, when
data arrives, for Send operation immediately. Work Completion Queue is updated with
the status of the last operation.

is to bypass the CPU and operating system and move ingress data directly to their final
destination. Several RDMA variants are available but only a few of them are compatible
with the requirements for high performance over long-distance communication.

Infiniband (IB) from Open Fabrics Alliance is promoted mainly by Mellanox Tech-
nologies (now Nvidia). It was the first implementation of RDMA commercially successful
and widely used in HPC field up to now. It has a cost as it uses proprietary hardware:
RNIC, switches and cables featuring built-in loss less transfer capabilities.

Other solutions are available using commodity Ethernet. The internet Wide Area
RDMA Protocol (iWARP)10 is built on top of the TCP/IP stack to ensure lossless trans-
missions on the Ethernet. We did not evaluate this solution as it relies on the TCP
stack, which seemed incompatible to us with the capacities of detector electronics that
were being developed at that time. Interestingly, there are preliminary studies of Grant
et al. and Lenkiewicz et al. of a UDP/iWARP implementation which deserve further
investigation [14] [28] .

10https://www.chelsio.com/nic/rdma-iwarp/



CHAPTER 2. STATE OF THE ART: DATA TRANSFER & RASHPA 31

Table 2.1: RDMA variants and compliance with the RASHPA framework.

Variant iWarp Infiniband RoCEv1 RoCEv2 custom1

protocol TCP/IP IB Ethernet UDP/IP
Ethernet

FPGA + MAC IP

RASHPA
compliance

TCP
tricky

to embed

requires
special

hardware
and links

not
routable

OK
cost

lack of software
resources

1 requires dedicated FPGA board at destination

2.1.6.1 RoCEv2 Assessment in the Frame of the RASHPA project

RoCE is an alternate solution that makes IB compatible with the already deployed Eth-
ernet infrastructure. There are two implementations of RoCE: RoCEv1 is nonroutable by
standard Ethernet switches, while RoCEv2, which encapsulates the RDMA payload in a
UDP/IP datagram, is routable at the price of a slight overhead. The vendor roadmaps
favor a wider and general adoption of RoCE. This technology received considerable inter-
est, because it is promising RDMA performances and seamless integration into existing
infrastructures as stated by Eitan in [10]. Miao et al. proposed SoftRDMA, which is a
software implementation of RoCE on a standard NIC that may be valuable for low-cost
solutions or for research and development purposes in [38]. An overview of RDMA can
be found in the work of Romanow et al.[54]. Performances and best-practice studies can
be found in the work of MacArtur et al.[31]. Tsai et al or Wang et al. have investi-
gated RDMA performance in the High Performance Computing (HPC) field [63] [64] at
research facilities. Mohr et al. performed a comprehensive evaluation of the upgrade of
the fast-acquisition system at CERN and showed the key advantages of the technology
[39].

RoCE technology matured very recently and this has caused some delay in the course
of our work, since at the beginning of this work, the Mellanox OFED stack was not yet
available for the Linux distribution/kernel version used at the ESRF. Mellanox developers
were providing patches and help porting the driver to the kernel in use. This improved
greatly over time as the Mellanox code was integrated in the upstream Linux kernel. This
kind of issue is a major drawback for long term projects as are detector developments.
Engineering teams always fear the potential obsolescence of not well established API and
often prefer solutions based on proven building blocks.

Table 2.1 describes the different protocols and API available for the developer.
Our work is based on RDMA programming using the rdma-core libraries11 that are

the userspace components for the Linux Kernel’s drivers/infiniband subsystem. The code
is split in several libraries but we used only the one called ibverbs. IB is for Infiniband,
but RoCE and iWarp are also using the same verbs. We did not use the rdmacm library
for Communication Management that provides low level configuration mechanism of the
RDMA transfer. The RASHPA framework has indeed its own communication manager.

11https://github.com/linux-rdma/rdma-core



CHAPTER 2. STATE OF THE ART: DATA TRANSFER & RASHPA 32

We did neither not use higher level libraries such as libFabrics12 or OpenUCX 13 largely
used in HPC application. As a reminder, at detector side, there is an FPGA based design,
featuring an unidirectional data link that prevent the implementation of sophisticated
communication stack.

The main programming concepts and definitions from the developer point of view are
presented below:

• i) The Queue Pair is a data structure describing the transport protocol. There are
three main types of Queue Pair: Unreliable Datagram (UD), Unreliable Connected
(UC) and Reliable Connected (RC). Park et al. present a review of transport and
their distinctive characteristics in [45]. Unreliable means a single-sided transfer
without guarantee of the data delivery. Connected means peer to peer (P2P) com-
munication, always from the same source to the same destination during the life of
the queue pair.

A Reliable QP produces acknowledgement of packet reception and re-transmission
of lost packets.

Only the UD queue pair supports multi-casting to beforehand registered receivers.
This technique could be possibly used in a future extension of our work to support a
generic event concept that could be pushed to multiple receivers without overhead.

In normal configurations UD queue pairs are P2P as the other types. Consequently,
when it is desirable to send data to multiple destinations as required by our project,
we would have to send data multiples times

• ii) The operations on Queue Pairs are called Verbs, because only their functional
aspects are defined. There is not any precisely defined Application Programmer
Interface (API). In practice, the rdma-core code implementation serves as reference
API. Several verbs exist: WRITE and SEND, and also Atomic operations not used
nor described here.

WRITE and SEND differ only in the way destination address is handled: when
using WRITE operation, the destination address is embedded in the datagram.
While using SEND operation, it is up to the receiver to set the destination address.

Up to now, to the best of our knowledge, there are not yet commercially available
detectors implementing any kind of zero copy techniques. The Brazilian synchrotron
presented a project for the PI mega detector in [3]. It relies on RoCEv1 protocol. With
this version of RoCE, the Ethernet datagram are produced in a custom format that is
not routable by standard switches.

However, we are confident it is feasible to exploit RoCE features in the context of a
data acquisition system compliant with the RASHPA Framework.

On the receiver side, it would be possible to implement a dedicated FPGA board,
performing tunneling between Gigabit Ethernet RoCE and PCI-e interconnect. But,

12https://ofiwg.github.io/libfabric/
13https://ofiwg.github.io/libfabric/



CHAPTER 2. STATE OF THE ART: DATA TRANSFER & RASHPA 33

for economic reasons regarding hardware and man power costs involved in the develop-
ment of such a card, a dedicated RNIC such as provided by Mellanox/Broadcom/Marvell
companies is the easiest solution.

On a detector module deprived of PCI-e support, it would not be possible to imple-
ment such a NIC. However, an intellectual property core (IP) implementing a subset of
the RoCEv2 core in FPGA was designed by [32]. It is not exactly a versatile RNIC as
shown in Figure 2.8 because it has been purposely designed to perform detector data
transfer foreseen in RASHPA specifications. Performance evaluations are very good as
it can reach peak bandwidth. It implements a parallel calculation of the RoCE invari-
ant check redundancy code that would be costly otherwise. To our knowledge, it was
the first RoCEv2 IP publicly available until the recently announced Xilinx embedded
RDMA-enabled NIC (ERNIC IP14). A system on a chip or a dedicated integrated circuit
may also be considered to implement the RoCEv2 protocol as in the work of [15] or such
as the commercially available BlueField chip from Mellanox Technologies [35].

The Figure 2.9 show several datagrams of verb and their distinctive features.

2.1.6.2 Messaging Accelerator Library

The libVMA is a software library developed by Mellanox Technologies for their RNICs.
This library is able to intercept and preempt any system calls from the application soft-
ware to the IP stack and transparently replace them by DMA transfer as shown in
Figure 2.10.

It is more or less a transparent substitution of the legacy socket API called by RDMA
socket using the rsocket API [59]. The LD PRELOAD Linux environment variable is
used by dynamic library loader of the operating system to change the library in use.
Thus, without rewriting legacy code, one can partly benefit of the hardware acceleration
capabilities.

But to take benefits from all the features of RDMA, such as fully autonomous data
placement at destination location, it is mandatory to develop a dedicated application.
That contribution will be detailed in the chapter 3.

2.1.7 Prospects beyond DMA Techniques

Standard DMA engines are performing very efficiently data movements to main mem-
ory. But it is possible to further optimize the process by moving the data directly to
the cache memory of the destination processor. This requires the management of the
cache coherency between the different processors to work well and a special communica-
tion protocol for this purpose. A first implementation for Intel processor, called Direct
Cache Access (DCA), was presented in [21]. Such optimized DMA might be more widely
accessible through standardized approach such as the Cache Coherent Interconnect for
Accelerators15. CCIX is already available on some ARM processors or ZynqMP SoC.

An extension of this concept is the Gen-Z interconnect, currently under development
by major firms, including AMD, ARM, Broadcom, Cray, Dell EMC, Hewlett Packard

14https://www.xilinx.com/products/intellectual-property/ef-di-ernic.html#documentation
15https://www.ccixconsortium.com/



CHAPTER 2. STATE OF THE ART: DATA TRANSFER & RASHPA 34

Figure 2.9: Snapshot of several RDMA verbs and their distinctive features. (a) WRITE
Datagram on Unreliable Connected (UC) Queue Pair. The destination address is em-
bedded in the payload with the data. The proposed RASHPA implementation uses this
verb. (b) SEND Datagram on Unreliable Datagram (UD) Queue Pair. There is no des-
tination address and it is up to the data receiver to set the destination address. (c) A
large data transfer can automatically be split in multiple datagrams. Not used here. (d)
WRITE WITH IMM Datagram on Unreliable Connected (UC) Queue Pair. The 32 bit
immediate value is used to implement events in RASHPA system.

Enterprise, Huawei, IDT, Micron, Samsung, SK hynix, and Xilinx. This protocol is
devised to attach remotely connected devices as shown in [19]. System on Chips (SoCs),
memory, SSD, network cards, GPU accelerators, FPGA boards might be directly inter
connected to the main System. For the sake of efficiency, the interconnect is done at the
level of the cache-coherency system of the CPUs. With Gen-Z interconnect, the CPUs
would access any of a pool of network-attached memory using the usual READ &WRITE
semantics. The first hardware development kits are available but commodity devices are
not yet.

A RASHPA system could be nicely implemented using such Gen-Z components.

2.2 Hardware Accelerators Overview

The advent of Moore’s law in electronics is highlighted by the diversity and the success of
the so-called hardware accelerators. These devices are similar to mainstream processors,
but integrated in the same silicon chip in a ever growing number. There are many



CHAPTER 2. STATE OF THE ART: DATA TRANSFER & RASHPA 35

Figure 2.10: An application using LibVMA can bypass IP stack at run time. The exe-
cutable code is kept the same: system calls to the Socket API are intercepted by libVMA.
The actual data transfer are offloaded to the RNIC hardware accelerator. There are ob-
viously some limitations on the performances.

kind of this devices, from many-core CPUs to GPUs or TPUs. We will not discuss
exhaustively here all thes architecture and restrict to the well established solutions (GPUs
and FPGAs).

The computationally intensive task of converting the raw data produced by images
detectors and the subsequent online processing imposes the use of such massively parallel
computing engines.

2.2.1 GPU accelerators

Graphic processing units (GPUs) are now routinely used for some application in high-
performance and scientific computing computing due to their superior raw computing
performances and ease of use.

These devices, originally designed for the gaming industry and 2D/3D image synthesis,
took benefit from the mass market and now offer amazing processing power at low price.
They have been quickly diverted from their initial target and exploited for highly intensive
arithmetic data processing.

A GPU application is split in two parts: i) a host application executing on main
CPU, performing sequential execution of the non parallel section of the algorithm, ii) the
GPU accelerated kernels, performing the main data processing. Data movements must
be scheduled between both devices at the right time.



CHAPTER 2. STATE OF THE ART: DATA TRANSFER & RASHPA 36

Figure 2.11: Gen-Z is a promising interconnect. It is based on a memory centric model
and aims at attaching directly the remote resource to the cache controller of the processor.
(Source: Genzconsortium slide)

A GPU board includes a PCI-e bridge interconnect, a fast GDDR memory, called
global memory, two DMA engines, and several data processing engine called Streaming
Multiprocessors (SM) with their own shared (cache) memory. Each of them is executing
the GPU program, called kernel according to the Single Instruction, Multiple Thread
model (SIMT). SIMT meaning that each instruction of a kernel is executed in groups of
32 parallel threads (called a Warp). Each thread of a given warp is executing the same
instruction once at a time on different data. In case of conditional execution (divergence),
only a part of the threads are kept activated. If there is a resource contention in a block,
the scheduler can instruct the warp to execute another block. The overall computation is
performed by multiple concurrent warps on the available resources of the SM. The data
are arranged on a grid of 1, 2 or 3 dimensions. The grid is split in equal size blocks of up
to 1024 threads.

The instruction set is more reduced than the one available on a processor geared
towards desktop applications, but features generally integer and floating point arithmetic
on 16/32/ or 64 bits. Commonly available GPUs feature tens of SM and tens of GB of
DDR16. Thus, even if the GPUs are clocked relatively low compared to CPUs, they exhibit
astonishing GFlops capability. GPUs are today already used for offline data processing.
They are naturally the best candidates to manage data streams produced by demanding
photon science encountered in many synchrotron radiation experiments.

16Nvidia Quadro RTX6000 24GB DDR6, 4608 Threads in 72 SM, 96KB shared memory per SM



CHAPTER 2. STATE OF THE ART: DATA TRANSFER & RASHPA 37

However, to sustain this type of data treatment for a long duration, it is essential to
transfer the detector data into the GPU memory continuously. The events required to
synchronize computation to data flow must be triggered at the lowest possible latency.

Low-latency and zero-copy data transfer are exactly the aims of the RASHPA Frame-
work. This work demonstrated its actual implementation on the GPU devices. We will
show in chapter 4 how we have defined and implemented the generic concept of RASHPA
Processing Units (RPUs) in the RASHPA ecosystem.

NVIDIA GPU hardware and CUDA programming tools are counting as 80% of the
High Performance Computing (HPC) market and are driven by the actual growth of
the Artificial Intelligence (AI) market. For this reason, focus has been put on Nvidia
hardware. But AMD board has been also implemented in the experimental setup to
check the adequacy of the proposed solution to multiple technical hardware and software
platforms.

The main criteria for choosing the GPU programming model was the availability of
fine control over the data movement between host and GPU.

High level approaches such as OpenACC (Open ACCelerators) and OpenMP (Open
Multi-Processing) are programming standards for parallel computing. Both have support
for GPUs. They supports C-like language programming driven by high level #pragma
directives. The developer does not explicitly take care of the convoluted data placements
between host and accelerator, that are managed transparently. But this is precisely such
control over data movement that is needed in this project. Therefore our approach in not
geared in its actual implementation, towards such high level programming pattern.

2.2.2 PCI-e P2P Transfer into GPU/FPGA Device Memory

A RNIC, capable of directly accessing the GPU memory, bypassing staged main memory,
would be a key advantage in order to properly address the low latency challenges. This
feature is called PCI-e DMA Peer to Peer (DMA P2P). Quadro and Tesla NVIDIA
GPUs feature this technology called GPUDirect RDMA in NVIDIA jargon, which was
developed conjointly by NVIDIA and Mellanox Technologies [60]). There are several
version of GPUDirect, interlinked

It is available as a Linux kernel module called nv peer mem17 and is presented in [2].
The process of integrating this glue code in a standardized way in the Linux kernel is
undergoing but not yet completed. It is worth noting that it is only available with some
classes of devices built for professional usage and closely tied to the CUDA runtime.
Even on a compliant board, access to this technology is not possible from an OpenCL
application. Gillert et al. explained that the closed source GPU driver and OpenCL
runtime handle differently the memory allocation from CUDA or OpenCL, preventing
the latter to use GPUDirect [13].

GPUDirect technology is only one among others features related to PCI-e intercon-
nect. Hereafter are summarized the other findings in the literature about some promising
capabilities:

17https://github.com/Mellanox/nv peer memory



CHAPTER 2. STATE OF THE ART: DATA TRANSFER & RASHPA 38

Figure 2.12: FPGA and GPU boards used as accelerators in our project: (a) Xilinx
Alveo U200 64 GB DDR4, Virtex Ultrascale+, 2x 100 GBE, PCI-e gen3 x 16, (b) Nvidia
Quadro RTX6000, 24 GB DDR5, PCI-e gen3 x16

• In [55] is presented the gdrcopy library and is shown how a host application can
map and then perform read/write access to the GPU internal memory at high speed
using Intel Intrinsics extended instruction sets (MMX, SSE or AVX).

• DirectGMA is the equivalent of GPUDirect for AMD Firepro GPUs. There exist
slightly different flavors of this technology for more recent GPU boards. DirectGMA
works quite the same way than the Nvidia counterpart and the software support is
nowadays integrated in the RoCM (AMD open source) driver18.

• D. Rossetti at al. have developed the GDASync library (GPUDirect Asynchronous)
presented in [56] and [57]. That library enables a GPU to directly trigger data trans-
fer in an RNIC. It is a promising feature but it cannot yet fulfill the requirements
of this project. In this current implementation, the GPU can only trigger an RNIC
in order to send egress data, but not in order to receive ingress data. In addition,
the possibility for the RNIC to trigger directly the GPU is lacking at the time of
writing.

• StorageDirect stands for direct GPU to SSD data transfer. It is the NVIDIA um-
brella for the latter technology supplemented with RDMA NVMEoF techniques

18https://rocmdocs.amd.com/en/latest/Remote Device Programming/Remote-Device-
Programming.html



CHAPTER 2. STATE OF THE ART: DATA TRANSFER & RASHPA 39

Figure 2.13: The Connectx-5 EN is a dual port 100 Gigabit Ethernet Remote DMA
compatible Network card (RNIC) from Mellanox Technologies (now Nvidia).

and file system management. It is not yet publicly available. This could be used
to extend the RASHPA framework to persistent storage unit. This point received
considerable momentum recently and it will be mentioned in the outlook subsec-
tion 5.2.1 of the thesis.

2.2.3 Parallel Algorithms

As stated before, this thesis does not explore new solutions to mathematical or com-
putational problems encountered in X ray imaging. The proposed algorithms are using
standard approaches and they are presented in chapter 4.

In this section are exposed only the implementation details related to the RASHPA
system. Kernels were written from scratch using CUDA language. Nvidia’s offer for de-
velopers includes standard parallel code libraries such as Fast Fourier Transform (cuFFT),
Linear Algebra Solver (cuBLAS), Sparse Matrix (cuSPARSE), etc The cuSPARSE library
is intended for sparse matrix calculation but could not be implemented in the proposed
code. A side issue was encountered during its evaluation: it has not been possible to
obtain good performances using the built-in dense-to-sparse matrix conversion function.
Actually, this library was highly efficient when used in the standard way. But it ap-
peared that its internal code contains hidden memory buffer operations. Such operations



CHAPTER 2. STATE OF THE ART: DATA TRANSFER & RASHPA 40

prevent concurrent CUDA streams to overlap when used concurrently in the processing
pipeline. A memory allocation or deallocation force thread synchronizations, i.e. the
code execution is serialized instead of being parallelized. As emphasized in the work of
Yang et al., there are many other hidden synchronization disseminated in the libraries
or programming patterns [67]. This is a real concern for those who want to perform
real-time control using GPUs .

The proposed online data analysis relies on iterative launches of CUDA kernel. De-
creasing task-launch latency was of crucial importance.

Dynamic Parallelism is the possibility to launch a kernel from another CUDA kernel,
bypassing the usual host invocation. But unfortunately, it does not decrease the kernel
launch time as stated by [9].

CUDA Streams were extensively used in this work. Streams are sequences of CUDA
kernel or data transfer between host and GPU that can be executed in parallel. This
way, data transfers can overlap computations. CUDA Asynchronous Task Graphs, a new
approach to perform more complex kernel scheduling than the standard CUDA Streams,
are described in [52]. It would be worth investigating the possibilities even if in the
literature, it is mentioned that the kernel launch time is decreased on host side but not
GPU side [1].

Seldom adopted in the literature, a spinning kernel, also called persistent kernel, is
a continuously running kernel, suppressing drastically the tasks-launch overhead. This
method can not solve generically all the ultra-low latency problems, but on suitable
workload, it could be very efficient. Perret et al. proposed a control system for the
adaptive optic of a large telescope performed this way [46].

Building scalable accelerated applications requires some form of automatic task man-
agement (dispatching the kernel execution on free nodes, transferring data between nodes,
etc). Framework such StarPU presented in [5] aims to unify development process on het-
erogeneous architecture and to configure the scheduling of parallel tasks.

NCCL19, the Nvidia Collective Communication Library for GPU, or Message Passing
Interface (MPI) implementation such as MVAPICH2-GDR20 are already GPU compliant.
Such framework are widely used at the root of scientific distributed applications and one
major challenge foreseen for the adoption of the RASHPA project by the community will
probably be its fluent integration into largely widespread and adopted framework.

2.2.4 FPGA Accelerators

Field Programmable Gate Array (FPGA) are made of low level hardware cells, such as
LUT Look up table, BRAM block RAM, multiplier, rich set of configurable I/O etc, that
can be individually configured and interconnected. FPGA programming is performed
by a versatile and sophisticated system acting like a memory that can be erased and
reprogrammed at will.

In a CPU system, with say N processing cores available (N in one to a few tens), at
a given time one core is executing only one instruction while at the same moment, N are

19https://github.com/NVIDIA/nccl
20http://mvapich.cse.ohio-state.edu/userguide/gdr/



CHAPTER 2. STATE OF THE ART: DATA TRANSFER & RASHPA 41

executing in the system. With a GPU accelerator, there are a few thousands of threads
available. They run slightly slower than those available on CPUs, but all in all, a GPU
can offer more parallelism for the same number of transistors integrated in silicon as in
a CPU. To get full occupancy of those cores, a massively parallel workload is required,
each core performing roughly the same task at the same time. GPU cores are all the
same, and somehow specialized, e.g. to compute 32/64 bits floats or 8, 16 bit integer,
but they do not handle efficiently less common types, e.g. 14 bit width integers. With a
FPGA design, this is no longer the case. Almost nothing is pre-configured in the silicon
die. Even the processing cores are synthetisable and could be much more heterogeneous
than those on CPU or GPU.

The main drawback of the FPGAs remains their price and also the complexity of the
deployment of such solutions. A parallel software program is required but also a kind of
hardware design on which the program will execute.

Recently the FPGA vendors have made a lot of efforts to provide better development
tool for High Level Synthesis (HLS). Engineering and man power have been mobilized to
assist the developer and decrease the learning curve. With the new generation tools such
as Vitis HLS21 from Xilinx, the Time to Market is significantly decreased compared to
bare HDL code.

Despite being more slowly clocked than a GPU, in the range of a few hundreds MHz,
an FPGA design can possibly perform data processing at very low latency. It is possible
to implement a pipeline without task launch latency and no overhead involved.

2.3 The RASHPA Framework

The data transfer challenge from X ray image detector to computing unit has not been
well addressed for a long time. Traditionally, efforts on detector development for pho-
ton sources have mainly focused on the properties and performances of the detection
front-ends, sensors, ASICs, etc. In many cases the data acquisition chain and the data
processing as well, are treated as a complementary component of the detector system and
added at a later stage of the project.

The compelling need of a global approach of the entire acquisition chain has lead
the ESRF to initiate a few years ago the development of an entirely new design pattern
addressing the aforementioned issues from the ground. This new framework is called
RASHPA: RDMA-based Acquisition System for High Performance Applications.

2.3.1 Paradigms

The main paradigm of the RASHPA framework is that a detector can produce multiple
concurrent data flows to multiple data receivers. Thus a detector can always work at its
full acquisition rate. When the ingress capacity of a data receiver is limited, only the
throughput of the data flow directed to this specific receiver has to be decreased.

This can be done either by sub-sampling the transmitted images either by time slicing
(one of N images acquired) or by spatial slicing (Region of Interest) or both.

21https://www.xilinx.com/products/design-tools/vitis/vitis-platform.html



CHAPTER 2. STATE OF THE ART: DATA TRANSFER & RASHPA 42

The treatment of the whole acquired data might then be achieved by dispatching
concurrently the data flow to multiple receivers in charge of the data processing.

As shown in Figure 2.14 a typical RASHPA system would rely on the following hard-
ware components:

• A peer to peer, unidirectional link for high throughput data transfer. RASHPA
handles single sided data transfer between detector, source node and receiver, des-
tination node for storage or online processing. Data transfers are peer to peer, but
the system manage multiple transfers simultaneously, enabling one-to-many as well
as many-to-one transfers.

• An additional bi-directional control link that serves for configuration purposes and
the high level management of the tasks.

• Two DMA engines are located at both ends, operating in Memory Mapped mode
to Stream (MM2S) at the source node and to Stream to Memory Mapped (S2MM)
at the destination node. Those DMA engines might be implemented in a custom
FPGA board or at convenience, by commercially available solutions such as RDMA
Network Interface Cards (RNIC). It is foreseen the possibility to send a sub-image,
called a Region of Interest (RoI) as shown in Figure 2.15. As a consequence, the
data to be transferred are located in non-contiguous memory regions of a possibly
larger RASHPA Buffer (RB). The scatter/gather capabilities of DMA engines are
highly convenient in this context to send data, line by line. Buffer descriptors,
i.e. size and addresses of data to be sent at source and destination, are just-in-
time computed. For the sake of performance, it is performed by a highly efficient
subsystem in the readout electronics of each detector module. The configuration of
this parametrizable core is performed beforehand by the management system.

Thus, three subsequent operations take place: i) Data serialization at the source
memory, possibly into multiple data flows ii) Data stream transfer over fast links and iii)
De-serialization at the destination node and direct placement of the data in their final
location.

A detector module can produce multiple different data flow simultaneously called
Data Transfer Process (DTP). In addition to this data fan-out capabilities, a RASHPA
receiver can also be used to consolidate multiple ingress data flows. Thus, a single high-
performance computing unit might process the whole data issued from multiple detectors
modules, while, in the same time, another computer may process a subset of the data to
provide user feedback or automatic control purpose.

These Fan-in & Fan-out capabilities are key functional aspects of RASHPA systems.
The RASHPA Manager (RM) is a third party application software geared towards

configuration and monitoring of a whole RASHPA system. Therefore, each RASHPA
node features capability retrieval: data receiver and detector embedded controller as
well are on-demand publishing their functional characteristics, status, etc. The RM
is responsible of the configuration process of the relevant nodes according to the user
requests and to start the acquisition process. This includes the configuration of the
parametrizable core in charge of the preparation of the buffer descriptors to be consumed



CHAPTER 2. STATE OF THE ART: DATA TRANSFER & RASHPA 43

Figure 2.14: Overview of a typical RASHPA system. The multiple and concurrent data
transfer are performed by DMA engines at source and destination.

by the DMA engine in the detector electronics. The RM has a specific API that defines
messages to the nodes by telegram in XML format.

There is no handshake mechanism in the present RASHPA definition and there is
merely no need for it. The RM knows in advance the capabilities of detectors and receiver
as well, and consequently configure all the data transfers at an acceptable throughput.

The assessment of RoCE protocol as RASHPA compliant link is studied in section 3.1
and an event mechanism is also proposed.

2.3.2 Overview of the Frameworks in HEP or Astronomy

We have conducted a survey of the frameworks and technologies used in similar field
of science facing big data challenges: High Energy Physics and Astronomy. All major
facilities and new projects as well have upgrade plan of their IT infrastructure on regular
basis to face the foreseen problem.

The Large Hadron Collider (CERN/LHC) data acquisition chain is presented in [30]
or in [58]. The challenges are partly similar to ours but exacerbated. There are huge
amount of data but the main difference is in the short burst nature of the data flow. Low
latency startup time is very disruptive for computers that typically host simulations that
run for days. The proposed DAQ system includes multiple cascaded trigger system.

The specific computing challenges of the Square Kilometer Area (SKA) telescope are
in the remote location of the antennas, the scarce power supply and synchronization
challenges. They are presented in [28].



CHAPTER 2. STATE OF THE ART: DATA TRANSFER & RASHPA 44

Figure 2.15: A View of Region of Interests (RoI). The end-user might be interested only
by some fraction of the image. Only the related data will then be sent.

Very similar to our approach is the Adaptive Optics controlled by GPU presented in
[46] but the proposed solution is limited to a particular application.

2.3.3 Contribution to RASHPA Processing Unit Specifications

In the early draft of RASHPA specifications, the topic of data processing was not ad-
dressed. It was laid under the sole responsibility of the developer of user applications.

The methodology we followed in extending the RASHPA project comprises the fol-
lowing aspects: i) Keeping compatibility with the previously defined concepts, ii) Estab-
lishing the RASHPA Processing Unit (RPU) concept, embracing different embodiments
of hardware accelerators.

In our approach, a compliant RASHPA-processing system should behave as presented
in Figure 2.16: i) The acquired data are remotely transferred using long haul links into
the host computer or directly into the accelerator internal memory, as done in a classical
RASHPA receiver. ii) Then data enter a staged data processing pipeline and processed
at the pace of the detector. iii) Eventually, results are stored in a burst cache memory in
the host computer.

The proposed extension features a RASHPA Scheduler daemon (RS) in charge of
triggering the data processing pipeline at each RDMA transfer completion. This scheduler
is a software application running on main CPU. It is monitoring the multiple Image events
occurring in the RNIC devices at the end of a transfer on each Data Transfer Process. It



CHAPTER 2. STATE OF THE ART: DATA TRANSFER & RASHPA 45

Figure 2.16: A RASHPA System implementing a GPU accelerator. The multiple modules
from a detector might transfer sub-images to the same GPU for data processing performed
on the consolidate image.

consolidates some of them, at the end of an image stack, into a single global event that
triggers the accelerator device when present or the CPU in charge of the data processing.

The second proposed extension is the Address Translation System (ATS). The RASHPA
ATS is used by the DMA engine at destination and performs the translation of the re-
ceived addresses, from virtual to physical addresses. Indeed, the addresses of memory
buffer in destination computer are set at detector side. But for robustness and security
reasons, these are virtual addresses in the remote computer or accelerator. And therefore
they must be translated as the DMA engine is using physical addresses. In the case of
RoCE protocol and GPU this task is performed by mellanox drivers. But in the case
of custom FPGA accelerator or in the case of PCI-e ove long distance, no such solution
exists.

A typical RASHPA system providing the aforementioned extensions is presented in
the schematics shown in Figure 2.16.

High throughput data transfer and accelerated GPU processing are well studied topics.
However, in the particular frame of embedded readout electronics as envisioned in the
RASHPA project, the most established and proven solutions based on high level code
libraries or frameworks such as those adopted in HPC or Data Center are not fully
satisfactory and can not be implemented as is. They either require some complex hand
shake between the detector and the data receiver using bidirectional link or either a
dedicated processor with a lot of processing power in the detector electronics. These



CHAPTER 2. STATE OF THE ART: DATA TRANSFER & RASHPA 46

solutions can not be applied in our case. Other interesting solutions work well but are
limited to a very particular problem and we are looking for a somewhat more generic
solution.

Therefore we have built our own communication protocol from scratch, with 2D X ray
imaging in mind, selecting an already existing lightweight RDMA data transfer protocol
suitable to the embedded electronics found in detector head. The genericity and scala-
bility of the proposed solution is demonstrated with the implementation of computing
unit featuring heterogeneous accelerators. Its integration with existing framework has
just started.



47

Chapter 3

RASHPA Data Source Simulators

Contents
3.0.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1 REMU Detector Emulator . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1.1 Micro-benchmark of Network Protocols . . . . . . . . . . . . . 49

3.1.2 Programming with Verbs . . . . . . . . . . . . . . . . . . . . . 49

3.1.3 Event Implementation . . . . . . . . . . . . . . . . . . . . . . 53

3.1.4 Proof of Concept . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 RASHPA PCI-e Implementation . . . . . . . . . . . . . . . . . . . . . 54

3.2.1 Reduced RASHPA . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2.2 FPGA Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.3 Firmware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.4 Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2.5 Allocation of Large Memory Buffers . . . . . . . . . . . . . . . 58

3.3 RASHPA RoCE using Xilinx IP . . . . . . . . . . . . . . . . . . . . . 61

3.4 Outcome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4.1 Results of the RoCEv2 version . . . . . . . . . . . . . . . . . . 62

3.4.2 Results of the PCIe version . . . . . . . . . . . . . . . . . . . 62



CHAPTER 3. RASHPA DATA SOURCE SIMULATORS 48

This chapter presents the work carried out in view of the assessment of the RoCEv2
protocol as a sustainable data transfer solution in a RASHPA ecosystem. Only a few
hardware alternatives were worth considering for the reasons presented in chapter 1.
However, it was not known if the RoCEv2 protocol had all the required characteristics
either in the programmability or either in a performance level suitable for a RASHPA
implementation.

Some of the material comprised in this chapter has been published in the Journal of
Synchrotron Radiation (IUCr), issue (Vol 27, 5) [49].

In this chapter, neither data processing nor the strategy to allocate memory on accel-
erator devices will be presented, as it will be extensively discussed in chapter 4. Instead,
the focus is on the implementation details of the data transfer following RASHPA con-
cepts. We propose several contribution in the form of detector mock-up in several versions
on different hardware and links.

3.0.1 Methods

Our test were mainly done on two different hardware:

• Concerning RoCEv2 assessment, our benchmarks were run on a Dell T730 com-
puter with two Intel Xeon CPUs E5-2643 (Sandy Bridge) v3 @ 3.40 GHz and 128
GB memory used as a detector simulator. The 100 Gb/s network card was a Mel-
lanox ConnectX-5 EN in a PCIe generation 3 x16 slot, which is directly connected
by an optical fiber to the analysis computer. This network card behaves similarly
to a standard NIC for TCP-UDP/IP but decodes RoCE datagrams and transpar-
ently offloads the Linux kernel (4.16.0-0.bpo.2-amd64) and the CPU. The Mellanox
Technologies stack in use is OFED-4.4-1.0.0

The data-receiver computer is a Dell T740 (4.16.0-0.bpo.2-amd64) with two Intel(R)
Xeon(R) Gold 6134 (Skylake) CPUs @ 3.20 GHz and 192 GB memory, and a
ConnectX-5 EN card and OFED-4.6-1.0.1 stack.

• In the case of the RASHPA-PCIe proof of concept, a XILINX ALVEO U200 FPGA
board is installed in a PCIE gen3 x16 slot. Workstation is a Supermicro server
featuring two Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz (Ivy Bridge EP) 6
cores and 64GB RAM. Linux kernel 4.19.75 is configured with the CMA DMA
option and our cdma (Contiguous DMA allocator) and our gpua (GPU internal
memory address translator) kernel modules.

3.1 REMU Detector Emulator

In this section, it is discussed how we have implemented the basic functionalities of the
RASHPA Simulator and Receiver using the RoCEv2 protocol. The evaluated hardware
is a standard workstation equipped with a 100Gb/s Connectx-5 EN dual port RDMA
RDMA Network Interface Card (RNIC) from Mellanox Technologies. These RNICs can
also be used as standard network cards in the traditional way, using the standard approach
leveraging the TCP/IP stack. Although the target experiments seem possible at this



CHAPTER 3. RASHPA DATA SOURCE SIMULATORS 49

speed, the performed simulations highlight potential bottlenecks when using the standard
Socket API as shown below. Therefore, a micro benchmark has been developed on
purpose to evaluate RDMA over converged Ethernet (RoCE) techniques. It is concluded
that the available transfer throughput from the RNIC to the compute accelerator inside
the computer, the Peripheral Component Interconnect Express (PCI-e), is at present the
major bottleneck in online processing.

3.1.1 Micro-benchmark of Network Protocols

The throughputs and packet losses when using the Socket API at 100Gb/s were mea-
sured by a testing application (leveraging on recvfrom/sendto call) that also checks the
consistency of the received data.

Table 3.1 presents the maximum throughput achieved without packet loss using the
standard techniques. A comparison of UDP performance is shown using classic socket
API, without (column 1: UDP socket), or with Linux kernel optimization (column 2:
UDP + kernel tuning), and the same code accelerated by the VMA library (Mellanox/lib-
vma) (column 3: UDP-VMA). The DAQ framework under evaluation aimed at transfer-
ring non contiguous memory segments (mapping user-defined Region of Interest in an
image). Therefore mainly small size transfer are measured. The results are more reliable
when the data are always sent to the same destination address than when the data are
sent to 100 000 different memory addresses. This is due to the limited size of the RNIC
cache memory. However, there are anyway always packet losses if the transfer lasts.

Dramatic improvement can be observed when using UDP + libVMA, reaching up to
80 Gb/s, but only when the numbers of destination descriptors is limited. LibVMA is
the Mellanox Messaging Accelerator Library presented in chapter 2

The measurement results when using ZeroMQ are added as reference as it is indeed
one of the most efficient protocols available using the standard Socket API.

No improvement was observed when using libVMA with ZeroMQ, based on TCP
transfers. That is due to the fact that ZeroMQ is already efficiently implemented and
that even by using a hardware accelerator there is no further possible improvement. The
implementation of RDMA into ZeroMQ was attempted in [27].

As expected, it appears that none of the pure software solutions can cope with 100
Gb/s network. The specialized hardware of the RNIC has hence been experimented to
offload the host system and has shown its interest.

3.1.2 Programming with Verbs

The basic facts on RDMA in subsubsection 2.1.6.1 have already been presented.
As a remainder, using the Direct Memory Access (DMA) engine located in the RNIC,

it is possible to bypass the Linux stack and put ingress data directly to its destination
buffer in the CPU memory. The matrix presented in Table 3.3 summarizes which verbs
and which features are available on a given queue pair type. Table 3.2 presents a com-
parison of the maximum bandwidth observed using different verbs. One can see that
the maximum theoretical bandwidth and packets per seconds are achievable with all pro-
gramming techniques. These performances are capped by the hardware. During our tests



CHAPTER 3. RASHPA DATA SOURCE SIMULATORS 50

Table 3.1: Observed bandwidth (in Gb/s) causing packet drops with the usual (non-
RDMA) protocol and the hybrid solution.

Standard UDP ZeroMQ
regular Socket + kernel tuning2 VMA push/pull rep/req

# of desc1 1 105 1 105 1 105 1 105 1 105

size
in bytes

2048 7.2 6.0 10.9 11 26.7 26.1 8 6.6 0.16 0.15
4096 9.1 6.4 22.8 23.1 51.2 45 9.5 8.5 0.30 0.29
82463 9.8 5.2 36.7 27.4 77.0 39.7 11 10 0.57 0.54

Packets are not lost in the link during transfer but during Linux kernel UDP/IP stack processing. Images were send line
by line for a fair comparison within protocols. As stated in the requirements of RASHPA, a detector can send only the
data from a specific Region of Interest (RoI). This data is possibly in non contiguous memory if there is a stride between
the lines of the RoI. ZeroMQ might be more efficient on a larger datagrams. Then, when sending several whole images at
once, 40 Gb/s can be achieved
1 Number of descriptors at destination, either one or 105 when transmitting 107 packets using Mellanox Technologies
ConnectX-5 EN RNIC.
2 increased size of system buffers
3 PSI Jungfrau header size (4xlines of 1024pix (16b) + 54 Byte header)

using the RDMA techniques, we did not notice neither packet drops nor reordering for
any of the variants of RoCE transfer.

At first, a loosely coupled approach has been evaluated between detector and data
receiver using the SEND verb. This verb behaves like data streams or a standard sockets:
there is no data destination addresses set in the datagram and this is up to the receiver
to select where to store the data at its final location.

This implementation leads to halve the computations of buffer descriptors addresses:
i) first half of computations is done in the detector head, setting the source addresses
where to fetch the data in the detector internal memory ii) second half of computations
is done in receiver unit, setting the data destination addresses. Both computations are
performed on the fly according to rules fixed beforehand by RASHPA manager.

Sustainability of this mechanism relies on lossless transmission preserving packet or-
der, precisely the meaning of Coherent in RoCE acronym. However, with properly con-
figured and correctly sized networking devices, no packet losses should happen. It was
confirmed by our tests that there is no issue preserving the packet order if the detector
and receiver are connected back to back.

However, packets travelling through Local Area Network (LAN) may arrive out of
ordered when using network switches with aggregation links. But it is possible to properly
configure the switches, statically associating a given RDMA traffic to a specific link and
thus suppressing this issue.

Remains a synchronization challenge between a receiver and a sender if the latter
starts sending data before the receiver is ready. At the moment the receiver will start
receiving and processing the ingress flow, it can not anticipate where the data has to
be stored. An extra synchronization events is required. Such a mechanism has been
successfully implemented. It is a bit convoluted taking into account the asynchronicity
of the verb operations.



CHAPTER 3. RASHPA DATA SOURCE SIMULATORS 51

Table 3.2: Observed maximum bandwidths from RNIC to CPU memory using RDMA.

size
(in bytes)

RoCE-v2 SEND RoCE-v2 WRITE RDMA RAW

2048 94.5 95.2 33.3
4096 97.6 97.5 60.5
8246 N/A1 N/A1 99.1

Results in Gb/s. Maximum achieved greatly depends on the memory allocation scheme (fragmented memory or not).
1 RoCEv2 MTU max = 4096

Table 3.3: Distinctive characteristics of the main Verbs.

Verb/QP type compatibility SEND WRITE RAW1

Unreliable Datagram qp yes no no
Unreliable Connected qp yes yes no
Reliable Connected qp yes yes no
RAW qp no no yes
RASHPA requirements
unidirectional on UD/UC qp on UC qp yes
multi-cast on UD qp only P2P only yes
data placement from source no yes no
event mechanism IMMEDIATE IMMEDIATE no
max payload 4096 4096 9000
caveats2 40 bytes lost

1 method evaluated for the Jungfrau detector
2 40 bytes are consumed by GRH header (compatibility with IB)

But halving the number of descriptors to process at source has the advantage of
decreasing the overall strain on the detector electronics. That could be a key point when
the processing power of the FPGA is severely limited. The second half of descriptors are
processed on a data receiver running on much more powerful computer.

In the present implementation of RASHPA systems, the WRITE verb on UC queue
pair has been chosen. In this operation mode, the detector device must compute on the
fly two lists of memory addresses: one list for the addresses at the source, and a second
one for the addresses at the destination. In the real detector hardware, the whole process
of generating RoCE datagram is performed by custom IPs, engineered at the European
Synchrotron Radiation Facility (ESRF).

For testing purposes, we have developed micro applications based on libibverbs that
serves either as source or data sink. Low level RDMA programming as done in this
work might be delicate and must follow some rules. The main programming concepts are
described below.

• The RDMA source application has to pre-compute a so-called list of Work Requests
(WR). This is a linked list of descriptors (address, length) identifying source and
destination addresses of the data buffer to be transmitted in the respective memories
of the detector and the data receiver.



CHAPTER 3. RASHPA DATA SOURCE SIMULATORS 52

It is posted to the RNIC send queue and processed by the hardware as soon as
possible (when it has completed the previous one). The Completion Queue can
be potentially polled until an event by the main application in order to monitor
the transfer progress. Posting WR is executed fully in the user space. It is in this
context far less time consuming than standard network operations because none
of the costly tasks such as CPU context switches are required. By the way, some
optimised network cards used in HPC are also capable of executing applications
fully in user mode.

Design of an efficient RDMA application is challenging as it should generate a list
of work requests at the same pace that they are consumed by the RNIC hardware.
Posting a list of work requests after the full consumption of an earlier batch by the
hardware of the RNIC, leads to an inefficient application. Posting work requests
is indeed a relatively long process and the hardware will stay idle until the WR
are ready to be processed. Peak performance is reached following the proposed
implementation: i) at the beginning of the application, post an half of the work
request ii) then enter in the main loop, iterating over the four following operations:
1) post the top half of the work request, 2) poll for completion, 3) post the bottom
half of the work request, 4) poll for completion.

This way, there will be always outstanding work requests in the RNIC.

• The RDMA receiver application is quite similar in principles. Using WRITE verb,
there is no need to post WR. The hardware is fully autonomous while processing
RDMA ingress traffic.

When using the SEND verb, a list of receive WR must be posted on the Receive
Queue and is asynchronously processed by the hardware. One must post receive
WR of at least the same size as the corresponding send WR. Posting at the same
pace than the source is therefore challenging. If there is no more outstanding work
requests, any incoming packets will be silently dropped by the hardware and will be
missed by the application. Posting the work request has a significant time budget.
It is cautious to en-queue enough WR in the receive queue well in advance so that
it never gets empty. Thus the RNIC has always outstanding work requests ready
for any incoming RDMA datagram.

As a reminder, the buffer descriptors in the work requests have to be computed on
the fly as the addresses of the data to transfer are continuously changing. A list of work
requests can count a few thousands of items (precise number is depending of the RNIC
resources) and must be computed during the processing of the previous. The similar
process takes place in the receiver application posting work request in the Receive Queue.

SoftRoCE1, a soft implementation of the RoCE protocol working on standard network
card was evaluated in the course of this work that could serve for low budget solutions
or testing purpose.

1https://github.com/SoftRoCE



CHAPTER 3. RASHPA DATA SOURCE SIMULATORS 53

3.1.3 Event Implementation

The initial draft of RASHPA stated the necessity of an event mechanism but nothing was
precisely defined.

In order to monitor the data transfer in a RASHPA receiver or to process the data
in a RASHPA processing unit, an information on image or line number is needed as
it is progressing. Although there is a Packet Sequence Number (PSN) embedded in
each RoCEv2 datagram, there is unfortunately no way to make it available to the user
application. The proposed RASHPA event implementation is leveraging a special form
of the WRITE verb, IBV SEND WITH IMM verbs. This verb embed in the transmitted
datagram an extra 32 bit value called immediate. At destination, this immediate data is
not stored in memory with the data, but stored in the Work Completion queue, which is
accessible by the receiver control application .

On the receiver side, the CPU is notified by an interrupt handler or it must be busy
polling the RNIC completion queue (CQ). In our tests, one CPU core was permanently
running at 100% to perform this task. When the interrupt handler is taking care of
this task, it is effectively notably decreasing the CPU usage. Polling increases the CPU
utilization, because the system polls the received rings for incoming packets; however, it
may increase the network bandwidth since the incoming packet is handled faster. We
have observed packet drops when using such an interrupt handler in harsh conditions
when high rate events are occurring. This is likely to happen for ingress flow made of
small stacks of images of small height.

Fulfillment of an event mechanism sufficient to trigger data processing has been
achieved with a custom image number, inserted in the last datagram of each stack of
images.

3.1.4 Proof of Concept

As a first proof of concept of RASHPA over Gigabit Ethernet, we have developed the
REMU, a detector simulator. Micro-benchmark had already demonstrated the RoCE fea-
sibility. For the reasons stated above, it leverages WRITE verbs and libibverbs. Events are
transmitted using the aforementioned method. The general working is shown Figure 3.1.

REMU has been designed having in mind the other distinctive RASHPA features and
their assessment with RoCE protocol:

• REMU can put on the network links the raw data of any detector format. The data
are previously uploaded in memory. They are prepared by Python scripts from
existing data-sets or fake experimental data, converted to the specific format of the
targeted detector.

• The simulator is controlled by RASHPA telegrams issued by the RASHPAManager.
The RM is also made of Python scripts. The messages and commands exchanged
between the nodes and RASHPA manager are XML telegrams.

• A Region of Interest (RoI) in the dataset, i.e. a rectangular sub region, can be
defined and selected for data transmission.



CHAPTER 3. RASHPA DATA SOURCE SIMULATORS 54

Figure 3.1: A typical sequence diagram of REMU simulator. It implements one thread
for each ongoing data transfers. Multiple data transfer might be activated concurrently
to fan-out the data to multiple receivers.

• The simulator supports multiple concurrent Data Transfer Process (DTPs). The
DTPs are implemented by a different threads and they are associated to a different
queue pair.

• It is built using a library internally developed at the ESRF, called DaNCE 2, a
collection of reusable library for embedded system.

3.2 RASHPA PCI-e Implementation

Some materials of this chapter have been presented to the Euromicro Digital System
Design DSD20 Conference. The proceedings paper can be found in [48].

2for ESRF internal use only



CHAPTER 3. RASHPA DATA SOURCE SIMULATORS 55

Figure 3.2: View of the Smartpix Detector, which is the first RASHPA compliant system.
The featured links is PCI-e long distance with hardware from One Stop System Company.

The RASHPA specifications are links agnostics. While Gigabit Ethernet solution has
competitive advantages and has been thoroughly presented in the previous section, other
transport solutions are worth considering such as PCI-e over long distance3. This alter-
native solution is promoted by company such as One Stop System. It is still interesting as
it offers very good performances. Latency might even be better than these available with
RoCE (150ns vs 700ns). The main issues are the requirement of specialized hardware
offered by a very small number of vendors and the limited routing capabilities as well.

An already existing detector prototype Smartpix shown Figure 3.2, designed at a
time Gigabit Ethernet was not ready for the expected throughput (around 20 Gb/s),
is leveraging PCI-e. This detector should be the first actual hardware detector to be
RASHPA compliant.

This section presents an FPGA-based RASHPA PCI-e detector simulator. It has been
used to validate a RASHPA compliant allocation of memory in Linux host and an event
mechanism as well.

3https://www.onestopsystems.com/product/pcie-x16-gen-4-cable-adapter



CHAPTER 3. RASHPA DATA SOURCE SIMULATORS 56

Figure 3.3: An Overview of the RASHPA system DMA engines. The typical system
includes both a Memory Mapped to Stream (MM2S) and a Stream to Memory Mapped
(S2MM) DMA engines. The PCI-e version is a reduced form of the latter, with a single
MM2MM DMA engine.

3.2.1 Reduced RASHPA

While Gigabit Ethernet and PCI-e seems totally strangers to each other, it appears
that the RASHPA PCIe version is a simplified version of the generic RASHPA concept.
On can consider it is as a kind of degenerate form of the canonical one. This limited
implementation features only a single DMA engine, transferring data from a memory
mapped region to another memory mapped region as shown Figure 3.3.

As a contribution to the PCI-e version of RASHPA, an FPGA based detector emulator
has been developed. It is four folded:

• implementing an FPGA design as detector proof of concept. It is using an em-
bedded soft-core (Xilinx Microblaze) to perform on-the-fly configuration of a DMA
controller (Xilinx CDMA). It is featuring a PCIe bridge, that is mapping the host
memory into the FPGA internal Advanced eXtensible Interface (AXI) interconnect.

• proposing a firmware application in charge of computing the descriptors to be pro-
cessed by the DMA engine,

• defining an event mechanisms compatible with PCI-e, in order to trigger the data
processing at the end of a DMA data transfer,

• developing an allocator for large contiguous block of central memory. Allocated
memory region are suitable for DMA operations,



CHAPTER 3. RASHPA DATA SOURCE SIMULATORS 57

3.2.2 FPGA Design

We have designed the proposed RASHPA mock-up over PCI-e long distance using a
FPGA board that is presented in Figure 3.5. In addition to the before-mentioned soft-
core Intellectual Property block, it is based on the following standard IP:

• DMA engine (Xilinx CDMA IP) This is the DMA engine operating in scatter /
gather mode: it can transfer a list of buffers, predefined by a list of buffer descriptors
(BD). The idea is to evaluate if the calculation of the next list of BD can be hidden
during the transfer of the previous list.

The system supports multiple simultaneous DMA transfers to multiple destinations
as shown Figure 3.4. As only one single DMA controller is implemented, data
transfers will be serialized by the PCIe-bridge and consequently, a slow PCIe device
will slow-down the whole transfer.

• PCIe Bridge (Xilinx DMA Bridge subsystem IP) This IP handles data transfer
to/from FPGA from/to CPU performing address translation between soft-core ad-
dresses (AXI bus) and host CPU memory map (physical addresses).

• Microblaze soft-processor is clocked at 300MHz by the DDR4 controller. The 512
bit data-width CDMA is transparent in the AXI bus and full throughput can be
achieved over PCIe Gen3 x16 as well. The software was written in C language.

Such a design might not be so efficient than a full HDL based RASHPA system, that
could compute BDs at each clock pulse, quicker than the pace at which they are consumed.
But our design is much faster to design, maintain and synthesize than a pure HDL
solution. For this reason, at the time of writing, the RASHPA PCI-e implementation does
not generate events due to the complexity of the process and the changing specifications.

3.2.3 Firmware

We have developed concomitantly the firmware of the Microblaze processor which con-
figures, controls and monitors the data transfers. Image datasets are uploaded during
initialization using DMA engine from host to FPGA DDR. The firmware is in charge
of the elaboration of the list of buffer descriptors. It builds a new list during the DMA
transfer of the previous one. For a fair evaluation, one has to merge multiple concurrent
data transfers. It as been evaluated if it is beneficial to make overlap computation of the
buffer descriptors with data transfer using a pipeline.

The DMA configuration requires calculation of two memory descriptors: addresses
and size, both at source and destination. This calculation must be done in real-time:
this can not be fully pre-processed in advance as we are handling very large datasets and
storing pre-calculated descriptors would require a huge amount of memory. The proposed
design performs those buffer calculations by software using a soft processor.

To achieve maximum performances, the proposed design implements some perfor-
mance tuning features: the Microblaze soft-core enables data cache, hard multiplier but
does not implements MMU. Timing where met to run all the IPs at 300MHz. Firmware



CHAPTER 3. RASHPA DATA SOURCE SIMULATORS 58

Figure 3.4: Overview of distinctive characteristics of the RASHPA framework. The
system manages simultaneously multiple data transfers from multiple modules to multiple
receivers. Memory Mapped to Stream (MM2S) DMA engine produces the data flow
consumed by the Stream to MM (S2MM) DMA engine.

benefits from compiler optimizations: function in-lining, variables set in processor regis-
ters,...

The buffer descriptor processing is a very simple algorithm but many parameters are
required to fully specify a RoI in a given dataset at source and at destination.

For each buffer, the configuration of the DMA engine is performed by functions similar
to the one presented in Listing 3.1. The algorithmic complexity of the computation
depends of the number of parameters and is tied to the user requirements. The same rule
apply to calculation of destination, taking into account that there is also a double buffer.

3.2.4 Events

RASHPA events must be produced after each stack of images to trigger the data pro-
cessing on the host computer or accelerator. The proposed PCI-e implementation of a
RASHPA event is a PCI-e transaction generated by the firmware, using a memory write
on a designated address that serves as memory lock.

3.2.5 Allocation of Large Memory Buffers

For proper operations, the RASHPA system require contiguous memory regions. This is
mandatory to decrease the number of descriptors required to access the whole memory



CHAPTER 3. RASHPA DATA SOURCE SIMULATORS 59

Listing 3.1: This snippet performs the buffer descriptors (addresses at source and desti-
nation memory) in real-time. These addresses are used by the DMA engine.

1
2 /* Parameters at the source are:

3 FPGA_DDR: AXI address in FPGA board

4 width , height: RoI size in pixels

5 nImages: number of Images

6 w0, h0: image size in pixels at source

7 x0, y0: RoI location

8 Parameters at destination are:

9 DDR_HOST: physical address in host memory

10 OFFSET: used to perform the alignment

11 between AXI and host addresses

12 b: boolean for ping pong buffer

13 bunch: stack of image number

14 w1, h1: image size at destination

15 x1, y1: RoI location

16 */

17
18 //source address calculation

19 BD[i]. addr_src = FPGA_DDR + OFFSET

20 + n * w0 * h0

21 + x0

22 + y0 * w0

23 + i * w0

24 //destination address is changing

25 //to a double buffer

26 BD[i]. addr_dest = DDR_HOST

27 + i * w1

28 + (n % (2 * bunch )) * w1 * h1 + x1 + y1 * w1

29 + (!b) ? 0 : w1 * h1 * 2 * bunch



CHAPTER 3. RASHPA DATA SOURCE SIMULATORS 60

Figure 3.5: Overview of REMU PCI-e block design in Vivado. It features a DMA bridge,
a CDMA controller and a Microblaze softcore in charge of the online configuration of the
buffer descriptors.

region. As X ray detectors may produce huge amount of data, the size of allocation is
expected to be in tens of GB. Such range in sizes would required hundreds of thousand
of descriptors, a number challenging to manage.

A Linux kernel module leveraging the Contiguous Memory Allocator called cdma
has been implemented. This module and a wrapper library are enabling a user land
application to request large contiguous buffer in main memory. It is possible to allocate
all the available memory of a given NUMA set. The physical memory address returned
has to be transmitted one way or another to the FPGA system in charge of the data
transfer taking into account the offset due to the misaligned addresses as shown Figure 3.6.
Cache coherency (RDMA engine writes to physical memory, CPU cores read from their
respective caches) is managed transparently by the system. The CMA DMA feature is
not enabled by default in the Linux kernel provided by standard Linux distribution and
kernel has to be recompiled.

A second kernel module was developed for test purpose to get physical addresses of
user allocated memory using huge-pages techniques. Huge pages size are 1GB in large
(or 2MB depending on processor model). Larger allocations are backed by multiple pages
that are not guaranteed to be contiguous.



CHAPTER 3. RASHPA DATA SOURCE SIMULATORS 61

Figure 3.6: The memory region returned by the Linux CMA is not properly aligned with
the PCI-e bridge Base Address Register (BAR) in the FPGA.

3.3 RASHPA RoCE using Xilinx IP

Recently FPGAs company Xilinx announced the availability of the ERNIC IP, a RoCEv2
implementation4. This IP was evaluated and compared to the ESRF development of [32]
started before the announcement of its availability. ERNIC IP leverages Reliable Con-
nected (RC) queue pairs that do not perfectly match our design pattern as we considered
only uni-directional links. However, with a properly sized system, we can expect neither
packet drop, congestion in switches, nor contention at destination memory. Thus, all ac-
knowledgements would be true. Assuming this, the data initiator has nothing particular
to do and it would be possible to ignore them.

We did some performance evaluations using the reference design proposed by Xilinx.
The proposed design features a Microblaze soft-core to perform ERNIC configuration and
interaction with the user. Thanks to an embedded Linux system, it makes also standard
the IP stack available and thus greatly facilitates remote development process. However
the performances suffers from the time taken to process the list of buffer descriptors when
used as initiator (in this mode, ERNIC starts the data flow). The measured throughput
in this circumstance was not better than 8Gb/s.

When ERNIC was used as receiver, performances are better and one can reach the
maximum throughput. Our measurement where limited by the fact that our RDMA
network card was in a 8x PCI-e gen3 slot, halving the available bandwidth.

4https://www.xilinx.com/products/intellectual-property/ef-di-ernic.html



CHAPTER 3. RASHPA DATA SOURCE SIMULATORS 62

3.4 Outcome

In this chapter we have focused on the data transfer capabilities of the RASHPA frame-
work and respective implementation on RoCE and PCIe. We have designed Detector
simulators and RASHPA Receivers without processing capabilities.

3.4.1 Results of the RoCEv2 version

We have evaluated the feasibility of RDMA data transfer in the frame of high-performance
X-ray detector development using gigabit Ethernet data links after confirming the flaws
of the standard socket API at 100 Gb/s. It appears that one way communication, a
major challenge to stay compatible with detector embedded electronics, is possible using
RoCEv2 Unreliable Connected queue pair and WRITE verb API and commercially avail-
able RNICs in data-receiver computers. The expected throughput is effectively achieved
without usage of the destination CPU, without packet drop, and is solely limited by the
RNIC packet per second message rates for small-size payloads.

Based on the outcome of our benchmarks, one can draw some numerical conclusions,
as far as the data transfer is concerned: in the UDP-based design, 9 Gb/s data transfer
is the limit, with unavoidable packet drops in continuous operation. In a first step
of improvement, with a RDMA-compatible NIC, using the VMA library and without
changing the application software, one can reach almost 26 Gb/s. At the price of the
rewrite of the application code with RDMA API, it is definitively possible to saturate
a 100 Gb/s link without a packet drop. The use of RDMA appears to be a very good
solution to optimize the data transfer from the detector to a data receiver, especially the
RoCEv2 technology preserving existing ethernet infrastructure.

We have also tested the RoCEv2 routable properties in a restricted5 test bench fea-
turing three workstations and a 100Gb/s switch. We noticed that as expected, Ethernet
Global Pause Forwarding by the switch is required if the RASHPA receiver is slower than
the source. We have verified it was possible to fan out detector data to multiple data
receivers from the same computer and to use multiple endpoints at the same time without
causing packet drops. We also checked that mixing RDMA datagram with standard IP
traffic did not cause no packet drops. We tested the reverse functionality, gathering in a
single data receiver, the data flows from multiple detector modules.

In order to do so, we developed a custom benchmark suite including a RoCEv2 sender
and a data sink: rcwrite and rcwritesink. Thanks to the Pause Frame Control, the
hand-shake protocol handled by Ethernet devices, the throughput is automatically shared
between the concurrent data transfers.

3.4.2 Results of the PCIe version

DMA throughput does not suffer limitation in the FPGA design. In our setup with
PCIe gen3 x16, 16GT/s (Giga Transfer) is the theoretical maximum. As expected when
taking into account the diverse overheads, and PCIe Maximum Payload Size, the observed

5it was allowed inside the datacenter during a short period of time



CHAPTER 3. RASHPA DATA SOURCE SIMULATORS 63

Figure 3.7: Efficiency of BDs soft-processing: a dot indicates when Buffer Descriptors
processing by the embedded application has taken more time than the DMA data transfer.

maximum is around 12.8 GB/s. Write operation are more efficient (READ need an extra
step sending address before receiving requested value). Better throughput is achieved
when it is possible to hide the BD processing during ongoing data transfer.

During DMA transfer handled by CDMA engine, the Microblaze soft-core remains
free for other tasks. The Figure 3.7 shows the number of free CPU cycles before DMA
completion, in worst cases (small buffer size). This free time might be used to process
the configuration of the next list of BDs. The DMA transfers take less time than the
BDs preprocessing except, as expected, for small size transfers.

The work carried on the assessment of RoCEv2 and PCI-e long distance gave us
good hope these protocols could be satisfactory implemented in real RASHPA compliant
detectors.



64

Chapter 4

Online Accelerated Data Processing
using RASHPA

Contents
4.1 RASHPA Processing Units . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1.1 General Working . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1.2 Address Translation System . . . . . . . . . . . . . . . . . . . 69

4.1.3 CPU Accelerated RPU . . . . . . . . . . . . . . . . . . . . . . 70

4.1.4 GPU Accelerated RPU . . . . . . . . . . . . . . . . . . . . . . 71

4.1.5 FPGA Accelerated RPU . . . . . . . . . . . . . . . . . . . . . 72

4.2 Image Processing for SSX Experiments . . . . . . . . . . . . . . . . . 76

4.2.1 Raw-data Pre-treatment . . . . . . . . . . . . . . . . . . . . . 78

4.2.2 Data Rejection . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2.3 Compression to Sparse Matrix . . . . . . . . . . . . . . . . . . 79

4.2.4 Azimuthal Integration . . . . . . . . . . . . . . . . . . . . . . 79

4.2.5 Ultra Low Latency Control . . . . . . . . . . . . . . . . . . . . 80

4.3 Outcome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3.2 Results with CPU / OpenMP . . . . . . . . . . . . . . . . . . 81

4.3.3 Results on GPUs . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3.4 Results on FPGA . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3.5 Results on POWER9 Computer . . . . . . . . . . . . . . . . . 87



CHAPTER 4. ONLINE ACCELERATED DATA PROCESSING USING RASHPA 65

This chapter is dedicated to the presentation of our approach of data processing in
the frame of RASHPA-compliant X-ray detectors. The main characteristics of these de-
tectors have been presented in the previous chapter as well as simulator implementations,
engineered due to the unavailability of existing detectors.

Massively parallel coprocessors are already successfully used to perform offline data
processing, i.e. with data previously acquired and stored in a storage system. The draw-
back of this approach is the space required on disks and limited bandwidth of read/write
accesses, hampering efficient data processing.

The other potential issue with offline processing lies in the late detection of potential
data acquisition problems. That is a serious risk considering the scarce accessibility of a
Synchrotron X ray Source and the cost of beam time.

Our contribution to the RASHPA project as far as computing is concerned is four
folded:

• The definition of a generic data processing mechanism that is suitable with the
existing RASHPA framework. It includes a synchronization method between on-
going data transfer and the computing unit.

• The implementation and assessment of this new feature. We will dwell into the
details of different implementations leveraging on multi-core CPU and GPU and
FPGA based accelerators.

• The optimization of the task-launch mechanism for GPU accelerators. In order to
decrease the latency overhead of kernels, they are pre-launched asynchronously on
Compute Unified Device Architecture (CUDA) streams.

• The overall assessment of the system by several data processing algorithms from
SSX science.

In the scope of this thesis, the focus has been be put on data processing performed
in real time, i.e. at the speed of the data transfer. In its primitive design, a RASHPA
Receiver (RR) only addressed data transfer and direct data storage challenges at the final
destination in a large pre-registred memory region. The standard RASHPA receiver did
not handle any data processing as is.

However, it was already foreseen to perform some form of data processing at the source
of the data stream, in the detector electronics. Such data processing had to remain com-
patible with the scarce processing power available in a single module electronics. Low
level pre-processing could be considered such as geometry reconstruction, offsetting, rota-
tion, flip, binning, or other operations staying compatible with the FPGA computational
resources.

An annoying limitation of the data processing at source, is that a module electronics
has access only to its internal memory. It will therefore not be possible to perform any
algorithm requiring the consolidate data from a whole image.



CHAPTER 4. ONLINE ACCELERATED DATA PROCESSING USING RASHPA 66

4.1 RASHPA Processing Units

A new concept as been introduced that extends the philosophy of RASHPA behind its
primitive design. The so-called RASHPA Processing Unit (RPU hereafter) has been
defined as shown Figure 4.1. The core framework has been supplemented with the com-
ponents that were lacking to perform the foreseen data processing.

In this work, a hardware accelerated device is a Peripheral Component Interconnect
Express (PCI-e) extension board in a standard host computer, beside the RNIC involved
in RASHPA networking.

An accelerator board features the following functional items: i) a PCI-e bridge in case
of an extension board, ii) an high speed memory (DDR4/5 or HBM2), in the range of
tens of GB, iii) multiple parallel processors in an integrated circuit (IC), iv) ultra-fast
memory in the silicon die, in the range of tens KB.

The simplest accelerator could be the host computer itself and in this case there is no
PCI-e interconnect.

The general working principle of a RPU is the following: i) the peer device RNIC
DMA engine transfers data to the internal memory on the RPU, ii) the data are then
fetched by the hardware accelerator into its internal registers or shared memory for the
data processing itself, iii) the results are then pushed back to the host main memory.
It has also been considered staged data transfer in central memory, as many low end
accelerators did not support direct data transfer in internal memory.

Only the real-time data processing has been investigating in this research work. Thus,
the available time slot might be very short in case of images of small size, acquired and
transferred at high frame rate. But that does not necessarily imply that the data process-
ing is performed after each image. It could be more efficient to process larger chunks of
data, i.e. by stacks of images processed as a whole. This mechanism enables to decrease
diverse overheads and the number of task launches and transfers. The overall perfor-
mance might also be improved because it increases the parallelism of the computation.
Thus, the accelerator could process some algorithms possibly more efficiently on stacks
of images than on single image.

Such workflow would on the other hand increases the overall latency of the process,
up to the time required for the processing of a stack of image.

4.1.1 General Working

First of all, an event mechanism is required to trigger computation in RPU as soon as a
chunk of data have been fully transferred in the accelerator memory. The implementation
depends on the transfer protocol and its implementation in the detector side as already
been presented in the previous chapter for RoCE and PCI-e as well.

While not being aware of the status of the RDMA transfer, by the very nature of
the RDMA mechanism, the CPU must explicitly be notified by the RNIC of the transfer
completion of a given data chunk. In the proposed system, a CPU application or software
daemon, hereafter called the RASHPA Sequencer (RS) shown Figure 4.2, shall be busy
polling the RNIC completion queue. It is kept on waiting for new events and shall do so



CHAPTER 4. ONLINE ACCELERATED DATA PROCESSING USING RASHPA 67

Figure 4.1: General overview of a RASHPA Processing Units (RPU). This is a three-
tier system: RNIC, GPU, CPU. Major contribution of the work, the RASHPA Scheduler
daemon manages the RNIC and consolidates ingress events. The user application controls
the data processing and movements on the GPU. The Address Translation System (ATS)
performs the virtual to physical address translation.

for any associated RASHPA sources. Thus the multiple module events are consolidated
into a global one.

In addition, the RS is also entitled to enqueue asynchronously commands both to
the RNIC. This point is implementation dependent, but existing RNICs cannot be con-
figured only once at startup, and cannot remain autonomous for the total duration of
the data processing. A periodic monitoring and reconfiguration of these devices must be
performed.

The RS must also detect data processing overrun, when a data transfer is completed
before the end of the previous data processing and thus overwhelms the coprocessor. How-
ever, unidirectional transfer, from detector to RPU, is a key paradigm of the RASHPA
design. Therefore there is no foreseen way to mitigate such overrun issue. But the main
monitoring system, the RASHPA manager (RM), must be notified of the incident and
will pause the acquisition process.

A user application is in charge of the data processing itself, only the scheduling and
the data transfer is on the responsibility of RASHPA.

This user application launches from the host computer a sequence of commands to-
wards the accelerator. Depending on the hardware programming model, these commands
are executed immediately or asynchronously. Four types of commands are identified: i)



CHAPTER 4. ONLINE ACCELERATED DATA PROCESSING USING RASHPA 68

Figure 4.2: Details of the workflow for the RASHPA Scheduler (RS). It has several
functions: configures and handles the events of the RNIC, triggers the accelerator when
data are ready.

data transfer from the host memory to the RPU, when required ii) data processing on the
RPU, iii) data transfer of the results from the RPU back to the host, iv) synchronization
point. On compliant devices, the asynchronous commands are en-queued until execution.
For the sake of efficiency, on the accelerator side, this sequence of operations might be
turned into a multiple stage pipeline if data transfer and data computing can overlap.

Mitigating data transfer costs this way requires to allocate ping pong buffers along
the data path and in the internal memory of the accelerator. Such bounce buffer must
also be DMA compliant (pinned host memory).

RASHPA back end receiver (ROMULU)1, has been implemented as a proof of concept
of a data processing application. It is designed to receive multiple data transfers, consol-
idate events and trigger data processing. During an initialisation phase, it also performs
the allocation of all the bounce buffers. The implementation details vary according to
the link and the coprocessor hardware. This is a multithreaded application: one thread
is dedicated to data transfer, a second one is controlling the actual data processing. A
third one is used for monitoring purpose by the RASHPA manager. The RASHPA PCI-e
version is a variant of this generic scheme.

1so called because it is the REMU brother and companion



CHAPTER 4. ONLINE ACCELERATED DATA PROCESSING USING RASHPA 69

Figure 4.3: UML Sequence diagram of ROMULU, a typical RASHPA Processing Unit.
The application controller creates two threads: one is managing the queue pairs associated
to the RPU and consolidating the end-of-transfer events. The second one is dedicated to
the configuration and scheduling of the data processing.

4.1.2 Address Translation System

The proposed Address Translation System (ATS) aims to provide the physical address
of the internal memory used in an accelerator and used during DMA transfer. Such
operation requires the execution of special system calls from kernel space. Therefore
several kernel modules for the Linux operating system where developed.

• In the case of RoCE protocol, the physical addresses are requested by the RDMA
driver mlx ib using the PeerDirect technology2. This operation takes place during
the memory registration by the ibv reg mr function from the ibverbs library and
automatically searches for a kernel module specific to the accelerator device and
capable to perform the address translation. These drivers are registering to the
RDMA driver mlx ib during the call to ib register peer memory client. When an
application tries to register a new memory address, the RDMA driver iterates over
the peer drivers and requests if the given address is in their memory range. In this
case, the owner acquires the memory region and does the necessary work.

The open-source nv peer mem3 module is dedicated to Nvidia Quadro and Tesla
GPUs. AMD Pro GPUs are supported natively by the open-source Radeon Open

2https://community.mellanox.com/s/article/howto-implement-peerdirect-client-using-mlnx-ofed
3https://github.com/Mellanox/nv peer memory



CHAPTER 4. ONLINE ACCELERATED DATA PROCESSING USING RASHPA 70

Compute platforM (ROCm) driver4. A custom kernel module called fpga peer mem,
for FPGA boards used as computing accelerator has been implemented based on
the model of the latter.

• In the case of PCI-e interconnect, the physical addresses are obtained in a similar
way thanks to proposed modules. The libcdma module is a memory allocator for
large contiguous memory buffer in central memory leveraging Linux CMA and using
dma alloc coherent system call presented in chapter 2. It provides the requested
physical address at the time of the memory allocation.

The proposed libgdma module enables to get the physical address of a memory
allocation performed in a Nvidia GPU memory by the CUDA driver. It is leveraging
nvidia p2p get pages and is inspired from gdrcopy driver5. Similar technique is
available for AMD GPUs using amdkfd query rdma interface.

Then, those physical addresses are passed by the user application to the DMA
controller.

By the way, it is worth to note that in the case of a RASHPA processing unit
in central memory, the addresses in use by a RoCEv2 RASHPA detector are the
user land virtual addresses. It is technically possible to use directly the physical
addresses in host with RoCE but it is considered as a security concern. Therefore,
it is not available as is in the standard software stack. A recompilation of the code
source is required to enable the features.

4.1.3 CPU Accelerated RPU

A bare-bone workstation or server can also serve as RASHPA Processing Unit. In this
case no extra movement are needed from host to accelerator, but data processing still
requires scheduling and double buffering and the generic principles apply.

Modern CPUs have multiple processing cores available for data processing and move-
ments, especially processors used in servers. Each core can take benefit also from Single
Instruction Multiple Data (SIMD) instruction and multithreading. The throughput and
computational performances are tightly related to connectivity: number and width of
data memory channels and contention on locking mechanism as well.

Such CPU-RPU is put on hold by a shared memory lock that is triggered by the
RASHPA Scheduler when a consolidate event occur.

A benchmark application performing element wise data processing on image data
has been developed using an OpenMP compiler. Its evaluation is presented in subsec-
tion 4.3.2.

4https://rocmdocs.amd.com/en/latest/Remote Device Programming/Remote-Device-
Programming.html

5https://github.com/NVIDIA/gdrcopy



CHAPTER 4. ONLINE ACCELERATED DATA PROCESSING USING RASHPA 71

4.1.4 GPU Accelerated RPU

A GPU accelerator is an OEM black box that can only be used using the vendor driver
and API. Its internal operating system, task scheduler, memory management system, etc
are not exposed directly and partially configurable by user.

The general working principle of an RPU applies also to a GPU accelerator. With
GPUs that do not support GPUDirect technology and the like, the RASHPA source will
transfer the data into CPU memory. Once in CPU memory, the data will then be trans-
ferred into the GPU internal memory. Data transfers between CPU and GPU memory
might be inefficient from virtual memory. Pinned host memory exhibits better perfor-
mances but it might be a scarce resource and it must be allocated during initialisation
phase as in takes time.

The GPU device memory may also be directly accessed by the RNIC (peer-to-peer
DMA), removing the transfer step from CPU to GPU memory and decreasing latency.

One key point for efficient GPU-RPU implementation, is the optimization of the data-
transfers from CPU to GPU memory. The proposed implementations leverages CUDA
Streams and Stream Memory Operation. CUDA streams are sequences of operations,
either data transfer from host computer to GPU device or kernels. These commands are
asynchronously en-queued in the stream FIFO (until it is full) and executed one by one.
Different streams can possibly execute in parallel.

It is proposed to create three streams in the GPU:

• H2D: data transfer from CPU to GPU. This transfer can be skipped if GPUDirect
is enabled.

• Kernel computation, using the standard double buffering scheme

• D2H: data transfer from GPU to CPU for the results. This data transfer can overlap
with kernel execution if performed on pinned memory. H2D and D2H might be
concurrent as there are two DMA engines, when there are a enough PCI-e lanes left
free by other devices.

This transforms the previous sequence into a three-stage pipeline in which transfers
overlap with computations as shown in 4.4. The GPU application implements several
double buffers so that the ongoing transfer is carried out in one buffer while computation
is alternatively carried out in the second buffer.

The proposed synchronization mechanism aims at decreasing launch task overhead
performed by using the CUDA driver. The processing tasks or data transfers are en-
queued in multiple streams, so they are ready to be scheduled by the GPU Streaming
Multiprocessors. But the execution of the stream is blocked, put on hold until being
triggered by the end of RDMA data transfer. The proposed memory lock mechanism
is relying on the CUDA stream memory operation called cuStreamWaitValue32 and is
seldom described in the literature.

This waiting operation is en-queued in the streams after each GPU tasks. Upon
notification by the RASHPA event system, the CPU control application in turn triggers
the concurrent execution of GPU streams using the cuStreamWriteValue32 operation.



CHAPTER 4. ONLINE ACCELERATED DATA PROCESSING USING RASHPA 72

Figure 4.4: The GPU processing pipeline: from top to bottom: DMA transfer, CPU
to GPU transfer, data processing, GPU to CPU transfer. The pipeline involves three
heterogeneous systems: RNIC, CPU and GPU. The RNIC cannot directly synchronize
the GPU. Each stage in the execution pipeline is synchronized by an RDMA event or
conditionally by the veto kernel result

The memory lock is shared both by CPU and GPU. The lock is allocated in pinned CPU
memory by cudaHostRegister CUDA function, then using cuMemHostGetDevicePointer,
it is made accessible from the GPU device.

This mechanism removes the launch overhead detrimental to real-time data process-
ing, as shown in Figure 4.5. Hence we measured a total kernel launch time of 4µs in place
of 40µs.

The code snippet presented in Listing 4.1 exhibits the proposed CUDA pipeline and
synchronization mechanism between CUDA streams:

4.1.5 FPGA Accelerated RPU

Field Programmable Gate Array (FPGA) are the most configurable devices available as
of today.

FPGA boards for data processing include a PCI-e interconnect and gigabit Ethernet as
well. Ingress data flow may used one or the other. In our approach, we have used FPGA
accelerators the same way we were using GPU accelerators. The processing model already
applied to CPU and GPU is again applied to FPGA coprocessors. The data pushed by
the detector are received by a RNIC attached to the workstation and then are offloaded
by the internal DMA engine to the accelerator internal memory through the PCI-e bus.



CHAPTER 4. ONLINE ACCELERATED DATA PROCESSING USING RASHPA 73

Figure 4.5: NVIDIA visual profiler snapshot of tasks launch times. Implementing stan-
dard launches from the host upon completion (left) causes driver overhead in the range
of tens of microseconds per operation. Using CUDA stream memory operation (right)
decreases latency to a few microseconds.

A user defined application is in charge of the orchestration on the host computer of the
data processing. It is triggered by the RASHPA scheduler daemon that is consolidating
the end of transfer events occurring at the end of each stack of images.

Some high-end FPGA boards such as the Xilinx Alveo U200 feature also 100 Gigabit
Ethernet connectivity. With such boards, it would be possible to process directly the data
flow inside the FPGA, without any intervention of the CPU system. The host would be
merely used as a storage system.

Such design would be perfectly valid and efficient. It differs slightly of our imple-
mentation choices as the RNIC RoCEv2 compliant engine should be synthesised inside
the FPGA. This block could be implemented using a XILINX ERNIC IP. We did not
investigate further the Vitis Development Kit promoted by Xilinx. This is a full-fledged
solution mitigating all the burden of low level development and interface implementation
between host and accelerator. The host code is written in C or C++ language using the
standard OpenCL and the accelerator code is seamlessly deployed on the reconfigurable
portion of PCIe based Xilinx accelerator cards.

In order to process to the evaluation of the integration of RASPHA in such FPGA
accelerators, a custom design has been proposed and is described in the next section.



CHAPTER 4. ONLINE ACCELERATED DATA PROCESSING USING RASHPA 74

Listing 4.1: This host application en-queues tasks on GPU streams, put on on hold until
being triggered by a RASHPA global event. d statusFlag is the shared memory lock.

1
2 for (i=0; i < nImages; i+=2) {

3 //H2D data transfer on stream s3

4 cuStreamWaitValue32(s3 , d_statusFlag , i, ...

5 cudaMemcpyAsync(d_InAbis , ...

6 cuStreamWriteValue32(s3, d_statusFlag , -1, ...

7 cuStreamWaitValue32(s3 , d_statusFlag , i + 1, ...

8 cudaMemcpyAsync(d_InBbis , dest_addr + buffer_size /2),

9 cuStreamWriteValue32(s3, d_statusFlag , -1, ...

10
11 //kernel data processing on stream s2

12 cuStreamWaitValue32(s2 , d_statusFlag , i, ...

13 applyGainPedestalandCount <<<...>>>(d_InB , d_OutB , ...

14 cuStreamWaitValue32(s2 , d_statusFlag , i + 1, ...

15 applyGainPedestalandCount <<<...>>>(d_InA , d_OutA , ...

16
17 //D2H data transfer on stream s1

18 cuStreamWaitValue32(s1 , d_statusFlag , i, ...

19 cudaMemcpyAsync(h_output1 + offset , d_OutA , ...

20 cuStreamWaitValue32(s1 , d_statusFlag , i + 1, ...

21 cudaMemcpyAsync(h_output2 + offset , d_OutB , ...

22 }

4.1.5.1 Proposed FPGA design

The proposed design of a RASHPA Processing Unit based on FPGA is shown Figure 4.6.
It is built using Xilinx IP and the Advanced eXtensible Interface (AXI) interconnect. It
includes a Xilinx XDMA IP, a DMA controller tightly coupled to a PCI-e Bridge. DDR4
internal memory bank is interconnected by an Advanced eXtensible Interface (AXI) that
is the standard interconnect of Xilinx IPs. The host controlled DMA engine is used to
output the results from the accelerator to the host. The PCI-e bridge is configured as a
bypass to the internal AXI bus. Thus, a third party DMA engine, the one in the RNIC,
can push the ingress data stream into the accelerator. A Microblaze soft-processor has
been added, solely used for debugging purposes.

The host computer is in charge of the configuration of the control registers of the data
processing IP by the AXI-Lite interface. It is in charge of triggering data processing in
the same way.

4.1.5.2 HLS Kernel and Host Application

A custom IP block performing some complex raw data processing for variable gain detec-
tor is proposed. It is an High Level Synthesis (HLS) engineered IP using Xilinx Vitis hls



CHAPTER 4. ONLINE ACCELERATED DATA PROCESSING USING RASHPA 75

Figure 4.6: Overview of a RASHPA Processing Unit based on FPGA design. It includes
an XDMA engine, a PCI-e Bridge, 16GB of DDR4 internal memory, and an HLS en-
gineered data processing IP. The Microblaze soft-processor is used only for debugging
purposes and for envisioned automatic data processing.

tool. This IP has access to the data in the internal DDR4 by AXI bus as Master. It is
presented in Listing 4.2.

The RASHPA subsystem has previously filled this memory region using RNIC peer to
peer DMA. The data processing is then performed by a host application, which schedules
the three subsequent steps of the HLS block.

Listing 4.2: Snippet of a data processing IP with AXI-Master interface.

1 void da ta p ro c e s s i ng ( u16 raw [N] , f loat r e s [N] )
2 {
3 // c r ea t e s an i n t e r f a c e wi th con t r o l r e g i s t e r
4 // used by the hos t user a p p l i c a t i o n to s e t
5 // the address o f the raw data and to t r i g g e r the data proce s s ing
6 #pragma HLS INTERFACE s a x i l i t e port=raw bundle=con t r o l
7
8 // the raw argument uses AXI−Master in t e r connec t to the DDR.
9 #pragma HLS INTERFACE m axi port=raw depth=N u16 raw [N ] ;
10
11 //memcpy i n s t r u c t i o n proceeds to a bu r s t copy o f data
12 // from DDR4 in the DDR board to BRAM in s i d e the FPGA.
13 memcpy( ( void∗) raw , (void∗) raw , N∗ s izeof ( u16 ) ) ;
14
15 // . . . data p roce s s ing here . . .
16
17 // bu r s t memcpy o f the r e s u l t back to the i n t e r n a l DDR4.



CHAPTER 4. ONLINE ACCELERATED DATA PROCESSING USING RASHPA 76

18 //Then i t w i l l be t r an s f e r r e d by the XDMA back to hos t memory .
19 memcpy( ( void ∗) res , ( void∗) r e s ,N∗ s izeof ( f loat ) ) ;
20 }

The host CPU application, which a code snippet is presented in Listing 4.3, uses the
Linux XDMA driver to access the FPGA board resources.

Listing 4.3: Snippet of the host application triggering the data processing on FPGA.

1
2 // acces s AXI−Li t e to s e t arg va lue
3 // us ing con t r o l r e g i s t e r s o f the HLS IP
4 int fd1 = open ( ”/dev/xdma0 user” , . . .
5 void ∗ h l s i p b a s e = mmap( fd1 , . . .
6 ∗( u i n t 3 2 t ∗ ) ( h l s i p +0x10 ) = 0 ;
7 ∗( u i n t 3 2 t ∗ ) ( h l s i p +0x14 ) = 4 ;
8
9 //mmap i n t e r n a l DDR
10 // perform a mapping o f the FPGA in t e r n a l memory
11 // in hos t user−land a pp l i c a t i o n
12 int fd2 = open ( ”/dev/xdma0 bypass” , . . .
13 addr = mmap(memorySize , fd2 , . . .
14
15 // t r i g g e r IP s t a r t
16 // the b i t 0 o f the CR r e g i s t e r
17 // i s s e t to s t a r t the data proce s s ing
18 //by the HLS IP b l o c k
19 ∗( u i n t 3 2 t ∗ ) ( h l s i p +0x00 ) = 1 ;

4.2 Image Processing for SSX Experiments

In this chapter, we present how we propose to address the challenges encountered by
EBSL8 staff in the new experimental facility performing SSX experiments. The foreseen
setup shown Figure 4.7, due to late 2021, comprise a automatic sampling and a new
generation detector. EBSL8 setup is taken as an example in order to compare realistic
figures. It will use a high-end PSI Jungfrau 4M detector, described in [41], and generating
up to 16 GB of data per second, operating continuously during several minutes.

While limiting the scope and the complexity of the GPU algorithm in use, we were
able to check many important high-throughput data transfer issues seldom addressed
in the literature as kernel launch time without the distractions of numerical algorithms
problems.

Synchrotron serial crystallography (SSX) is among the most-demanding cases of pho-
ton science in terms of data throughput. In a typical SSX experiment, a liquid crystalline
polymer (LCP) jet propels micro-crystal samples in a pulsed X-ray beam. In the case
of EBSL8, a rotating chopper produces X-ray pulses synchronous to the data-acquisition



CHAPTER 4. ONLINE ACCELERATED DATA PROCESSING USING RASHPA 77

Figure 4.7: An example of Serial Synchrotron X ray crystallography (SSX) setup. The
main components are the LCP crystal jet, the JUNGFRAU 4M detector and the rotating
chopper (Sources: Daniele De Sanctis, ESRF and Aldo Mozzanica, PSI)

system. This enables the collection of alternate dark and signaling images at a maximum
rate of 2000 images/s. When acquiring 4M pixel 16-bit images, such a high repetition
rate will result in a 128 Gb/s data stream. This will produce nearly 1 TB of raw data in
1 min. Continuous operation requires an efficient online data-reduction scheme.

This cutting edge setup is foreseen to use a new generation pixel detector called
JUNGFRAU. This modular detector will be the reference in the frame of this evaluation.
A rear view of the modules showing the connectivity (two 10 Gb/s optic fiber links per
module) is presented in Figure 4.8.

The JUNGFRAU detector was developed at the Paul Scherrer Institut (PSI, Switzer-
land). It was initially designed for X free-electron laser experiments (XFELs) but its
characteristics are well adapted to other applications with pulsed beams, such as the
SSX experiments. A specific characteristic of the JUNGFRAU detector is automatic se-
lection of the gain level for each individual pixel, depending on the signal detected. The
photon count is derived from the energy deposited in each pixel, which has to be com-
puted from the raw digital value by subtracting a pedestal offset of a previous dark image
and dividing by a gain factor. Three different pedestal values and gain-factor values are
needed for each pixel. Thus, this adds up to 24 million different correction coefficients
for a 4M detector. Hence, the processing of a single JUNGFRAU 4M raw-data frame to
produce a final image requires 4 million 16-bit integer subtractions and 4 million 32-bit
floating-point divisions.



CHAPTER 4. ONLINE ACCELERATED DATA PROCESSING USING RASHPA 78

Figure 4.8: Rear view of the Jungfrau 16M - 32 modules on the left (and JF 4.5M - 5
modules right) showing the connectivity including two 10Gb/s optic fiber per modules
(aqua blue) + one 1 Gb/s control link (blue). (Source: Fillip Leonarsky, PSI)

4.2.1 Raw-data Pre-treatment

The JUNGFRAU detector has three gain levels for each pixel, stored in two of the most
significant bits of the raw data. The pixel value is stored in the 14 remaining bits as an
integer. Therefore, the conversion to the integrated charge is given by the formula:

Pixeli,j [keV ] =
(Rawi,j [ADU ]− Pedei,j [ADU ])

Gaink,i ,j [
ADU
keV

]

where Pixel is the actual energy that was deposited in the pixel during the exposure,
i, j are the pixel coordinates, Gain the constant coefficient matrix, k is the gain level,
Raw is the raw data and Pede the pedestal, dark image transmitted just after the image
with signal, both expressed in Arbitrary Detector Units (ADU).

This computation is inherently parallel. The gain factors are stored in a large constant
dataset, i.e. they remain in the GPU memory, and only require one transfer from the
CPU memory at the beginning of the process. Pedestal data are acquired interleaved



CHAPTER 4. ONLINE ACCELERATED DATA PROCESSING USING RASHPA 79

with image data when the chopper is cutting the beam. These dark images are used to
update the pedestal value for the highest gain. For the two other possible gain regimes,
their pedestal value is expected to be constant.

4.2.2 Data Rejection

One simplistic rejection algorithm counts the intense pixels (considered as Bragg’s peaks)
in each image, without noise correction or outlier removal. A first threshold defines the
signal needed for a pixel to be counted as a Bragg’s peak, while a second threshold defines
the minimum number of such pixels in an image to be accepted. Such counting has been
implemented using atomic addition and shared memory. When a non-pertinent image
is rejected, the third step does not happen. Therefore, the result of the veto kernel
algorithm should conditionally trigger the transfer. As the condition is not evaluated
prior to the launch, we use another stream memory operation lock triggered by the veto
function. A credit-based algorithm controls the number of queued transfers, since the
queue size is limited.

The expected compression factor of 100x would allow to input the data using 100Gb/s
links and saving the data via a simple gigabit links on a distributed file system.

4.2.3 Compression to Sparse Matrix

While the value provided by compression is widely recognized, its application is often
limited because of the high processing cost and the resulting low throughput and high
elapsed time for compression intense workloads. For demonstration purpose, we have
implemented in the online processing pipeline a rudimentary loss-less compression algo-
rithm. Like the previous one, it is counting pixels over a specific threshold, assuming it
is a Bragg’s peak.

The compression to the Compressed Sparse Raw (CSR) matrix format is well adapted
to scattering images, benefiting of their high level of sparsity.

Our code benefits from the seminal work of [6] who performed a comprehensive review
of the main algorithmic patterns encountered in parallel data processing. The cumulative
summation also called scan6 has been used in the proposed sparse matrix conversion.

The meta-programming capabilities of PyCUDA [26] were used to generate the CUDA
code of the cumulative-sum algorithm used in CSR matrix compression. The storage size
of the result matrix was chosen a priori given the expected dataset sparsity.

4.2.4 Azimuthal Integration

The first attempt to use a GPU at the ESRF was related to diffraction tomography where
millions of detector 2D frames are acquired and subsequently reduced to a 1D spectra.
This reduction is called Azimuthal Integration (AI) and it is roughly computing the
average value of all pixels on a given radius, called Debye Scherrer cones. This gave later

6https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-
prefix-sum-scan-cuda



CHAPTER 4. ONLINE ACCELERATED DATA PROCESSING USING RASHPA 80

birth to the pyFAI project. Today, AI for powder diffraction and small angle scattering
experiments is in production on several beam-lines at the ESRF. PyFAI provides the
same numerical results on CPU and on GPU and the latter is about 20x faster. This
advance of GPUs still holds today and pyFAI is now the reference implementation for
azimuthal integration and is used in all X-ray radiation facilities.

The proposed algorithm7 has been implemented porting the work of the ESRF Data
Analysis Unit [4] written in OpenCL language to CUDA. It implements atomic additions
and a cumulative sum in shared memory and Kahan double summation to mitigate error
propagation. We will not develop this subject further outside the scope of this memoir.

4.2.5 Ultra Low Latency Control

Two techniques are considered here to reach ultra-low latency required in foreseen con-
trol application. The first one applies to GPUs even if they have a hardware design
more adapted to bandwidth performances than to low latency challenges. The second
mockup is geared towards FPGA systems. The latency is the time take from an image
acquisition to the completion of the data processing in the RPU. Our system being by
design unidirectional, it would be tricky to measure this value. Thus, we are discussing
here only the general implementations guidelines

A Persistent Kernel is infinitely running on the GPU. Therefore, there are no task
launch overhead during the online processing of long lasting experiments. It is working
with a double buffer and triggering mechanism as in the previously mentioned mecha-
nisms. The proposed implementation is inspired by the work of R. Crovella 8. To achieve
good performances, there are application specific trad-off to mitigate between the size of
the block and the grid of the kernel in use and the available GPU resources. This could
lead to sub optimal implementations in case of subsequent kernels with different block
sizes. Another drawback is that the GPU has 100% utilization even when the application
is idle waiting for data transfer completion.

The possibility and convenience of using FPGAs for certain tasks has been demon-
strated for various types of low latency of on-line image correction as well as data analysis
algorithms such as time autocorrelators for instance, but the lack of suitable development
and implementation environments has prevented its use for synchrotron radiation appli-
cations.

A test bench is foreseen using an FPGA design.

4.3 Outcome

We have developed many pieces of software to demonstrate the feasibility of our approach
in implementing RPU. We did not had performance evaluation in mind at the time of
this work. This task was foreseen in a later step and has been delayed due to the current
pandemic.

7https://github.com/silx-kit/pyFAI/blob/master/pyFAI/resources/openCL/ocl azim CSR.cl
8https://stackoverflow.com/questions/33150040/doubling-buffering-in-cuda-so-the-cpu-can-operate-

on-data-produced-by-a-persiste



CHAPTER 4. ONLINE ACCELERATED DATA PROCESSING USING RASHPA 81

4.3.1 Methods

The previously mentioned testbenches (subsection 3.0.1) are completed with GPU and
FPGA:

• a NVIDIA QUADRO P6000 GPU accelerator is added to the first system for the
assessment of RoCE and GPU processing using GPUDirect.

• The second test bench is dedicated to PCI-e RASHPA. A XILINX ALVEO U200
FPGA board was already installed in the x16 slot. A NVIDIA QUADRO RTX6000
GPU is added and a Connectx-4 as well. Unfortunately, both GPU an RNIC are in-
stallled in a PCIE gen3 x4 slot . Consequently, throughput performances are capped
below 2.8 GB/s from CPU to GPU side. In addition, both cards are not installed
in the same PCIe interconnect, which is detrimental to GPUDirect performances as
data must go through the QPI inter-processor link. Xilinx hardware server is used
to remotely program the FPGA board with the implementation bitstream.

4.3.2 Results with CPU / OpenMP

For comparison purpose, we present the results obtained using an OpenMP multicores
application performing the Jungfrau raw data pre-processing computations. A 12 cores
workstation is not sufficient to process the embarrassingly parallel workload of detector
raw data pre-processing and the throughput is limited to 2.8 GB/s before overwhelming
the computer.

The Listing 4.4 presents the OpenMP code skeleton.
We did not yet evaluate programming neither the Intrinsics instruction set of the

Intel processor that implements the processor vectorized instructions (same instruction
on multiple data) nor the Intel icc compiler.

Line 3 the directive #pragma omp for unroll the data processing loop on multiples
cores for concurrent processing.

Line 5 the #pragma omp simd has been also evaluated but without significant im-
provement.

4.3.3 Results on GPUs

A RASHPA test bench compatible with high-throughput detectors has been upgraded
with a GPU accelerator. Results are shown in Figure 4.9. The kernel execution overlap-
ping data transfer is shown Figure 4.10.

4.3.3.1 NVIDIA CUDA Evaluation

The Table 4.1 presents some timing observed with the proposed system. It must be
noticed that these numerical results depend greatly on the sparcity of the data set used
for the test and merely rely on the RASHPA system performances.



CHAPTER 4. ONLINE ACCELERATED DATA PROCESSING USING RASHPA 82

Listing 4.4: Snippet of an OpenMP CPU application performing raw data pre-treatment
foreseen for an adaptive detector (Jungfrau).

1 void cpuapplyGainPedestalandCount (...)

2 {

3 #pragma omp parallel for

4 for (size_t j = 0; j < height; j++)

5 #pragma omp simd

6 for (size_t i = 0; i < 1024; i++)

7 {

8 float value = 0.f;

9 uint16_t p = 0.f;

10 uint16_t raw = data[i+j*width +2*(N%b)*width* height ];

11 uint16_t gn = raw >> 14;

12 if (gn == 1)

13 {

14 p = data[i+j*width +(2*(N%b)+1)* width*height ];

15 }

16 else

17 value = ((float )(( raw & 0b0011111111111111) - p))

18 / gain[i+j*width+gn*width*height ];

19 outputImage[i+j*width+N*width*height] = round(value );

20 }

21 }

It is possible with specific high-end GPUs (Quadro and Tesla series) to decrease the
transfer latency by directly transferring data from the FPGA card to the accelerator
memory (Peer to Peer PCIe DMA transfer).

It appears that GPUDirect throughput might be limited on some hardware by PCIe
root complex poorly handling peerto-peer transfer [55]. This explains why NVIDIA is
purposely integrating PCIe-switch chips into their high performance DGX computers as
a workaround for this issue.

The maximum possible speed for data processing is defined by the minimum of: (i)
RNIC to CPU speed, which is related to the length of the packet on the network (the
width of the region of interest in the images that are sent), (ii) CPU to GPU speed, which
depends on the size and number of images processed in the GPU. It is wise to transfer
either a large image or a bunch of small images.

For comparison purposes, Figure 4.11 also exposes the performance of the ZeroMQ
protocol, even if it relies on TCP/IP and therefore might not be easily embedded in a
detector FPGA. The latest version of the CrystFEL software suite for SSX experiments
has recently been upgraded with a ZeroMQ/MessagePack interface [65]. It appears that
ZeroMQ is not well adapted to RDMA hardware and performances stay below 6 Gb/s
depending on the selected messaging pattern: request/reply as in CrystFEL.

For good performances in workstation with multiple processors and attached PCIe



CHAPTER 4. ONLINE ACCELERATED DATA PROCESSING USING RASHPA 83

fig4.png

Figure 4.9: An overview of a GPU RASHPA processing Unit. The maximum achieved
throughput is shown along data paths. Because of the lack of existing RDMA-compatible
detectors, the detector was simulated by a workstation. The RDMA network card is a
Connectx-5 from Mellanox Technologies. The processing computer embeds a NVIDIA
QUADRO P6000 GPU accelerator. The GPUDirect technology (step 2) allows bypassing
the extra copy in the central memory (steps 2.1 and 2.2).

interfaces, RNIC and GPU must be connected in the same PCIe bus (and controlled by
a CPU core with the good affinity).

4.3.3.2 AMD OpenCL Evaluation

A validation of OpenCL code in the frame of RASHPA was evaluated. A code snippet
of the synchronization between data transfer and GPU data processing using a mutex is
shown in Listing 4.5.

To the best of our knowledge, there is no synchronization mechanism available with
OpenCL queues similar to that was used in the CUDA version.

4.3.3.3 REMU PCI-e / GPU RPU evaluation

The proposed design for RASHPA over PCI-e long distance is a FPGA based design
described in section 3.2. Observed measurement from FPGA to CPU an GPU data
transfer results are shown in Figure 4.12. The poor bandwidth results using GPUDirect
technology might be explained by several hardware flaws in our test bench: i) FPGA and
GPU not in the same NUMA domain, ii) GPU is in PCI-e gen3 x4 slot, iii) the server has



CHAPTER 4. ONLINE ACCELERATED DATA PROCESSING USING RASHPA 84

Figure 4.10: Snapshot of NVIDIA Profiler of CUDA Stream execution. In a) Four streams
are overlapping and conditional storage is exhibited. Bank0 & 1 are ping-pong buffers
used for storage. b) Thanks to GPUDirect technology, H2D step could be skipped.
c) CSR compression performed sequentially on a stack of four images. All images are
compressed and stored.

Kernel execution time [microseconds per image]

data chunk
Jungfrau
raw-data

pre-processing

Pre-processing +
‘simplistic’

Bragg’s peaks
count

Pre-processing +
CSR matrix
compression

Peak finder
pyFAI

10 x 500K pixels 28 31 147 N/A
10 x 4M pixels 219 240 469 2167
10 x 2070 x 21671 212 240 492 N/A

Results in microseconds for one image of the given size.
1 size of an image from JUNGFRAU 4M detector counting intermodule gaps.

Table 4.1: GPU kernel processing timing on NVIDIA QUADRO P6000 of the proposed
online algorithms, as measured using the NVIDIA profiler.



CHAPTER 4. ONLINE ACCELERATED DATA PROCESSING USING RASHPA 85

100 101 102 103 104 105 106 107

Buffer size [log scale in Bytes, range [4-4KB=RoCE MTU] for RNIC, [1-16MB=4Mpx image] for GPU]

0

20

40

60

80

100

Ba
nd

wi
dt

h 
[in

 G
b/

s]

NVIDIA Quadro P6000
PCIe gen3 x16 4M image

500k image

Observed bandwidth from CPU(virt, pinned) and RNIC (RoCEv2) to GPU Memory
CPU to GPU (virt. mem.)
GPU to CPU (virt. mem.)
CPU to GPU (pinned mem.)
GPU to CPU (pinned mem.)
RNIC to GPU (RoCEv2,GPUDirect)
RNIC to CPU (RoCEv2)
RNIC to CPU (ZMQ as used by crystFEL)

Figure 4.11: Observed transfer throughput from CPU and RNIC to GPU memory. The
transfers from pinned memory are more efficient than from virtual memory. Using RDMA
technology, full bandwidth was achieved from 1 KB. ZeroMQ transfers, which are used
by the CrystFEL online reduction tool, are capped under 10 Gb/s.

Listing 4.5: Snippet of an OpenCL kernel and synchronization mechanism.

1
2 //If the buffer is allocated in shared virtual memory

3 //withclSVMAlloc , a direct data transfer from the RNIC

4 //is handled by the RoCE stack and ROCm driver ,

5 //bypassing the staged memory.

6 void * sharedptr = clSVMAlloc (...);

7
8 //The shared sig variable is a memory lock

9 //triggered at the end of the data transfer.

10 pthread_cond_wait (&sig , &mutex);

11
12 //main loop

13 clSetKernelArgSVMPointer (...);

14 clSetKernelArg (& d_output );

15 clEnqueueNDRangeKernel (...);

16 clFinish(queue );



CHAPTER 4. ONLINE ACCELERATED DATA PROCESSING USING RASHPA 86

Figure 4.12: Transfer throughput from FPGA to CPU and GPU memory through the
PCI-e interconnect.

an old motherboard, which PCIe Root Complex (RC) is badly handling PCI-e peer to
peer requests. The first two issues might be addressed with a better hardware. The latter
is related to the hardware implementation of the PCI-e RC which is known to change
from CPU to CPU as mentioned in subsubsection 4.3.3.1.

For real-time data processing, a low execution jitter is desirable. This jitter was
measured during the transfer of one buffer of 4 bytes. Round-trip is evaluated by a read
operation from the FPGA (the proposed system is one way for now). Based on these
measurements, the distributions shown in Figure 4.13 have been calculated.

4.3.4 Results on FPGA

The assessment of the FPGA RPU was done performing the already discussed raw data
pre-processing for the Jungfrau detector.

The processing loop shown Listing 4.6 is unrolled and pipelined by the compiler.
Each RDMA transfer completion must end-up triggering the data processing: the

host application uses the control registers of the data processing IP (AXI-lite interface
exposed by the PCI-e bridge).



CHAPTER 4. ONLINE ACCELERATED DATA PROCESSING USING RASHPA 87

Figure 4.13: PCI-e latency estimations. As the RASHPA system is single sided, the
latency is measured in a convoluted way.

4.3.5 Results on POWER9 Computer

The IBM AC922 is a powerful server that is employed as building brick in several super-
computers of the top 5 rank, such as Sierra or Summit operated by Oak Ridge National
Laboratory (ORNL). Its architecture is described in [53] and connectivity is shown in
Figure 4.14. As distinctive characteristics, the AC922 benefits from the IBM POWER9
processor and from an impressive PCI-e gen4 interconnect shown Figure 4.15. Its has
been evaluated in the frame of SR experiments in [25].

It features up to 3 GPUs per CPU connected to the main processor by NVLink2
interconnect. An NVLink2 Processor Unit (NPU) handles data transfer to the GPU
Nvidia Tesla as presented in [22]. On such heterogeneous computer, applications with
various compute characteristics and requirements are executed on the most performance-
efficient hardware.

RNICs are plugged in a specific slot of the AC922 which has 2 x8 links in a x16 (known
as bifurcated slot) and shared between the two processors. Thus both PCI-e can benefit
of the full RNIC throughput.

Such a computer seemed appealing as a RASHPA Processing Unit. We had the
opportunity to perform some preliminary testing on this hardware, but only during a
limited period of time. We have observed the expected maximum throughput with a
pipeline featuring staged data in main memory.

But it appeared that using the low latency approach, GPUDirect, with direct place-
ment into the NVIDIA GPU Tesla, was capped below 40 Gb/s. This deceptive figure
seems related to the the connectivity used in this server. Actually the GPU is connected
to the CPU only by a by PCI-e x2 lanes and the the bulk of the traffic, including GPUDi-



CHAPTER 4. ONLINE ACCELERATED DATA PROCESSING USING RASHPA 88

Listing 4.6: High level definition of a data processing IP. It performs the element-wise
raw data processing as foreseen for an adaptive gain detector.

1 void jf_process (...)

2 {

3 memcpy(_raw ,raw ,k*sizeof(in_data_t ));

4 for(int i=0; i < N; i++)

5 {

6 //The \#pragma pipeline is a directive

7 //for the synthesis tools. At the price of

8 //some hardware cell in the FPGA , the

9 //sequential loop is transformed in

10 //concurrent operation. This is possible

11 //when the operations are not competing

12 to access the same addresses.

13 #pragma HLS pipeline

14 int l=(_raw[i] >> 14) & 0x03;

15
16 //adder , floating point divider are synthesised

17 //and instanced to perform the computation.

18 _res[i] = ((_raw[i] & 0x3fff) - _pede[i]) / _g[i+l*N];

19 }

20 ...

21 }

rect RDMA, runs over the CPU-GPU NVLink2 bus. The PCI-e interconnect serves only
for configuration purpose.

Better performances were expected using the Address Translation System (ATS). This
subsystem is depicted and benchmarked by [57]. This is an IBM development recently
integrated to the Linux kernel. It ensures the cache coherency between CPU and GPU
memory, transparently migrating data when needed and overcoming the shortcomings of
existing approaches. This mode of operation is activated when using Unified Memory
programming model. The same data pointer is used either on CPU or GPU memory in
order to simplify development tasks.

The data movements are handled automatically by the operating system by a special
kernel module called nv rsync mem.

We have performed preliminary studies in order to perform RDMA transfer into Uni-
fied Memory allocation region. This is possible when implementing On Demand Paging
(ODP) memory registration9.

This technique requires the implementation, as transport queue pair, of the Reliable
Connected (RC) type. Despite the RASHPA specification request a single sided commu-
nication, it should be doable if all the acknowledgement are positive.

9https://docs.mellanox.com/display/MLNXOFEDv461000/Optimized+Memory+Access



CHAPTER 4. ONLINE ACCELERATED DATA PROCESSING USING RASHPA 89

It is possible to optimize ATS efficiency giving explicitly hints to the system on the
best possible location for the data. But it appeared that the observed throughput stayed
limited to 40Gb/s. As the AC922 server used for testing was not running the officially
supported Linux version, we cannot tell for sure if the RNIC are plugged in the bifurcated
PCI-e slot as it is mandatory to activate ODP features.

The proposed RASHPA Processing Unit is a major milestone in the realization of a
full-fledged RASHPA proof of concepts. It has been successfully implemented on diverse
parallel processing hardware such as GPUs and FPGAs. The event mechanism is able to
trigger data processing at the end of the transfer of a stack of images. We now have all
the components available to make the online data processing, long time a scientist dream,
a reality. Some work has yet to be done to refactor the code, improve the interfaces and
documentation to improve re-usability and support.



CHAPTER 4. ONLINE ACCELERATED DATA PROCESSING USING RASHPA 90

Figure 4.14: Overview of the IBM AC922 POWER9 Architecture and connectivity. The
PCI-e gen4 and NVLink2 are a key advantage for high demanding experiments. (Source:
POWER9 Redbook)



CHAPTER 4. ONLINE ACCELERATED DATA PROCESSING USING RASHPA 91

Figure 4.15: Overview of the POWER9 Processor PCI-e and NVLink2 interconnect
(Source: POWER9 Redbook).



92

Chapter 5

Conclusion

Contents
5.1 Outcome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2.1 Disaggregated Storage . . . . . . . . . . . . . . . . . . . . . . 94

5.2.2 Integration Challenges . . . . . . . . . . . . . . . . . . . . . . 96



CHAPTER 5. CONCLUSION 93

This thesis aimed at investigating how RDMA techniques and massively parallel hard-
ware applied conjointly can help to address ultra-fast data acquisitions challenges. The
work conducted consists in diverse contributions to a previously existing framework called
RASHPA, that was in an early draft stage at the beginning of this thesis.

5.1 Outcome

We conducted the assessment of RDMA Over Converged Ethernet (RoCEv2) in the per-
spective of its integration in the readout electronics of high throughput X-ray detectors.
It is both sustainable and fulfill the requirements of a RASHPA compliant network pro-
tocol. The write verbs from the RDMA API and the Unreliable Connected (UC) queue
pair type was selected as datagram format. It can both fit with a single-sided connection
and with the constraints of embedded detector electronics.

As proof of concept, detector simulators were developed, either as pure software so-
lutions or hardware-based FPGA boards capable of pushing multiple data transfers over
RoCEv2 protocol into the memory of RASHPA receivers.

Similar assessments was performed in the case of data transfer over PCI-e long haul.
A low latency event mechanism is required to notify the receiver when the data trans-

fers, silently offloaded to the DMA engine, are completed. A lightweight implementation
has been proposed on both foreseen communication links. When using the RoCE proto-
col, it is based on the IMMEDIATE version of the WRITE verb.

We also brought contributions to another aspect of the challenge, supplementing
the existing framework with the definition and implementation of what we refer to as
RASHPA Processing Units (RPUs). While a RASHPA receiver is a remotely accessible
pool of memory, a RPU is in addition of being a data sink, a busy processing system
of the ingress data. RPUs have been successfully implemented using the standard CPU
architecture or hardware accelerators such as GPU or FPGA.

In addition to managing the access to the internal memory of the accelerator device
from the RNIC, the proposed system is defining a RASHPA Scheduler (RS) that aims
at orchestrating the data processing. This subsystem manages the underlying hardware
for both devices involved in the tasks. It is split in two functional parts: the first one
managing the RNIC, the second one managing the data processing hardware.

In the first subsystem, a software daemon, an interrupt handler is in charge of handling
possibly multiple events from multiple on going data transfer. These events are then
consolidated in a global event, signaling that a whole new stack of images is ready in
the processing pipeline. The second subsystem is a component of the user application.
It is in charge of managing the workload on the processing hardware and triggering the
accelerator unit when the data are available.

Our implementation of RPUs is supplemented by an Address Translation System
(ATS) in charge of translating virtual to physical addresses as required by the DMA
engine. The same mechanism can be applied to the main memory in the host system and
to the internal memory of the accelerator devices as well. This ATS is plugable into the
driver of the network cards.



CHAPTER 5. CONCLUSION 94

In all, the result of our work is an end-to-end solution, encompassing hardware di-
versity. A variety of long lasting experiments could benefit from this system, when the
amount of produced data exceeds the capacity or throughput of the disk storage, and
therefore requires online rejection.

The only requirement remains the data processing time, which must be less for a given
chunk of data, than the time spent on the data transfer of this given chunk.

In the context of this project, we have defined concepts, developed and validated
softwares and FPGA designs with 2D X-ray image detectors in mind. Hopefully, this
work should be generic enough to be applicable without modifications to a large variety
of data analysis problems and algorithms.

The framework exploits the high throughput capabilities of the RDMA transfer mech-
anisms and the processing power of the hardware accelerators. But its implementation
is not restricted to very high end configurations. It is indeed possible to scale down
the data processing platform to relatively simple and inexpensive configurations when it
would be convenient for economic or practical reasons. One way to achieve this might be
by applying SoftRoCE, an implementation of RoCEv2 which is compatible with standard
Ethernet network cards. The same code base and concepts still apply, the sole difference
being the throughput performance, as the transfer would not be offloaded by a dedicated
hardware on the card.

5.2 Outlook

5.2.1 Disaggregated Storage

In addition to the data processing, there is another challenge which has not yet been
fully addressed by the RASHPA Framework: the data storage in a file system, not only
in a memory buffer. Indeed, even a very large memory buffer could not be sufficient
for a long lasting experiment. A backup strategy on disks has to be planned. For the
sake of performance, it seems essential to skip any data storage operation on disk in the
early stages of the acquisition process [24] but that cannot be completely avoided. Final
storage remains necessary but has to be considered as the last stage of the pipeline.

There are other technical difficulties to overcome when storing scientific data sets,
such as the large number of files to handle, taking into account that each image generates
a file and its associated meta-data. Multiple simultaneous writers and readers support is
also a challenge.

Large storage in the memory buffer could be improved to enable multiple concurrent
access to the data. Various synchrotron facilities are working together on the Bluesky
project [12] to use a so called key-value store (KVS) and leverage some of this issues. Such
a KVS database could be used to absorb bursts of data as long as the central memory is
still much faster than the transport. Cache system like memcached1 or ceph2 could serve
as sharing facilities, with a lightweight put/get API.

1https://github.com/memcached/memcached
2https://github.com/ceph/ceph



CHAPTER 5. CONCLUSION 95

The storage issue might be tackled from another approach. Despite the existing
distributed file systems cannot cope with the expected throughput, remote storage seems
possible using the new generation flash disk. Non-Volatile Memory Express (NVMe) is
a specification for storage devices on Solid State Disks (SSD). These devices are gaining
momentum due to their competitive price per Tera Byte as well as their small form
factor, high density and possible throughput. The NVME over Fabric (NVMEoF3) shown
Figure 5.1 is the RDMA extension of the NVME standard, making a remote disk acting
like a local one. They possibly can be stacked to improve overall performances up to
multi GB per second, even saturating a 100 gigabit Ethernet link. It is hence possible to
share storage resources amid multiple computers (disagregated storage).

A new solution from NVIDIA called Cuda Storage4, is due to integrate flash disk
arrays (NVMEoF), RDMA techniques and GPU devices. This technology is enabling
data transfer directly from the GPU to the remote SSD, like GPUDirect enables direct
transfer from an RNIC to a GPU device. It has recently been upgraded with the cuFile
library including a full support for standard file systems. It is even possible to access
simultaneously to the same file from several GPU.

Figure 5.1: Non-Volatile Memory Express over Fabric (NVMEoF) is the specification for
storage devices, mainly SSD leveraging RDMA techniques. Remote Flash disks appears
in the system like a local PCI-e resource. (Source: SNIA slide)

3https://nvmexpress.org/wp-content/uploads/NVMe Over Fabrics.pdf
4https://developer.nvidia.com/blog/gpudirect-storage/



CHAPTER 5. CONCLUSION 96

5.2.2 Integration Challenges

An other key point for the success of the RASHPA project, would be the seamless in-
tegration to already existing parallel computing frameworks. Some preliminary efforts
have been done, e.g. the integration into Python programming language, which is largely
adopted by the scientific community. Here a Numpy array can be used as a RASHPA
buffer and directly filled by the detector data.

Some work has been initiated to implement RASHPA into the ESRF LIMA project5.
This is an umbrella for all the detectors in use at the ESRF (as of today, more than 20
different kinds of detectors). Lima is featuring a data processing pipeline and the work
is ongoing to make it RASHPA compliant.

A real-life project is foreseen with ID13, an already existing beamline of the ESRF.
This would be a definitive demonstration of the work carried-on. The foreseen experiment
is to scan quickly, at low resolution and low flux a sample to prevent its destruction
by radiation damages. As soon as the interesting site in the sample is detected, the
acquisition should go to high resolution mode, at low speed with high flux of X rays. This
automatic detection will be done thanks to the processing power of a GPU accelerator
by a not yet fully determined imaging algorithm.

The experimental setup deserves further feasibility studies and the implementation
with the mechanical interface, but this should be an interesting demonstration of the
RASHPA capabilities. To the best of our knowledge, such control system has not yet
been demonstrated in the frame of Synchrotron Radiation.

5https://gitlab.esrf.fr/limagroup/lima



97

Bibliography

[1] Steve Abbott. “HIGHLIGHTS OF CUDA 10 FOR SUMMIT”. en. In: (Mar. 2019),
p. 30.

[2] E. Agostini, D. Rossetti, and S. Potluri. “GPUDirect Async: Exploring GPU syn-
chronous communication techniques for InfiniBand clusters”. In: Journal of Paral-
lel and Distributed Computing 114 (Apr. 2018), pp. 28–45. issn: 0743-7315. doi:
10.1016/j.jpdc.2017.12.007. url: http://www.sciencedirect.com/science/
article/pii/S0743731517303386 (visited on 03/11/2019).

[3] Henrique de Almeida et al. “The Back-End Computer System for the Medipix Based
PI-MEGA X-Ray Camera”. In: (Jan. 2018), THBPA03. doi: 10.18429/JACoW-
ICALEPCS2017-THBPA03.

[4] G. Ashiotis et al. “The fast azimuthal integration Python library: pyFAI”. en. In:
Journal of Applied Crystallography 48.2 (Apr. 2015). Number: 2 Publisher: Inter-
national Union of Crystallography, pp. 510–519. issn: 1600-5767. doi: 10.1107/
S1600576715004306. url: //scripts.iucr.org/cgi-bin/paper?fv5028 (visited
on 05/10/2020).

[5] Cédric Augonnet et al. “StarPU: a unified platform for task scheduling on heteroge-
neous multicore architectures”. en. In: Concurrency and Computation: Practice and
Experience 23.2 (2011). eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.1631,
pp. 187–198. issn: 1532-0634. doi: https://doi.org/10.1002/cpe.1631. url:
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.1631 (visited on
12/07/2020).

[6] Guy E. Blelloch. Prefix Sums and Their Applications. Tech. rep. Synthesis of Par-
allel Algorithms, 1990.

[7] N. J. Boden et al. “Myrinet: a gigabit-per-second local area network”. In: IEEE
Micro 15.1 (Feb. 1995). Conference Name: IEEE Micro, pp. 29–36. issn: 1937-4143.
doi: 10.1109/40.342015.

[8] Suren Chilingaryan et al. “A GPU-Based Architecture for Real-Time Data Assess-
ment at Synchrotron Experiments”. In: IEEE Transactions on Nuclear Science 58.4
(Aug. 2011). Conference Name: IEEE Transactions on Nuclear Science, pp. 1447–
1455. issn: 1558-1578. doi: 10.1109/TNS.2011.2141686.

[9] robert Crovella. A question on nested parallelism. en-US. Apr. 2019. url: https://
forums.developer.nvidia.com/t/a-question-on-nested-parallelism/72751

(visited on 10/12/2020).

https://doi.org/10.1016/j.jpdc.2017.12.007
http://www.sciencedirect.com/science/article/pii/S0743731517303386
http://www.sciencedirect.com/science/article/pii/S0743731517303386
https://doi.org/10.18429/JACoW-ICALEPCS2017-THBPA03
https://doi.org/10.18429/JACoW-ICALEPCS2017-THBPA03
https://doi.org/10.1107/S1600576715004306
https://doi.org/10.1107/S1600576715004306
//scripts.iucr.org/cgi-bin/paper?fv5028
https://doi.org/https://doi.org/10.1002/cpe.1631
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.1631
https://doi.org/10.1109/40.342015
https://doi.org/10.1109/TNS.2011.2141686
https://forums.developer.nvidia.com/t/a-question-on-nested-parallelism/72751
https://forums.developer.nvidia.com/t/a-question-on-nested-parallelism/72751


BIBLIOGRAPHY 98

[10] Zahavi Eitan.Mellanox keynote Sigcomm 2018. Aug. 2018. url: http://conferences2.
sigcomm.org/sigcomm/2018/files/slides/kbnet/keynote_2.pdf (visited on
11/08/2018).

[11] V. Favre-Nicolin et al. “PyNX: high-performance computing toolkit for coherent
X-ray imaging based on operators”. en. In: Journal of Applied Crystallography
53.5 (Oct. 2020). Number: 5 Publisher: International Union of Crystallography,
pp. 1404–1413. issn: 1600-5767. doi: 10.1107/S1600576720010985. url: https:
//journals.iucr.org/j/issues/2020/05/00/zy5006/ (visited on 10/04/2020).

[12] Full article: Bluesky’s Ahead: A Multi-Facility Collaboration for an a la Carte
Software Project for Data Acquisition and Management. url: https : / / www .

tandfonline.com/doi/full/10.1080/08940886.2019.1608121 (visited on
09/30/2020).

[13] Alexander Gillert. “Direct GPU-FPGA Communication”. en. In: Thesis (2015),
p. 71.

[14] Ryan E. Grant et al. “Scalable connectionless RDMA over unreliable datagrams”.
en. In: Parallel Computing 48 (Oct. 2015), pp. 15–39. issn: 01678191. doi: 10.1016/
j.parco.2015.03.009. url: https://linkinghub.elsevier.com/retrieve/
pii/S0167819115000617 (visited on 11/10/2018).

[15] Chuanxiong Guo et al. “RDMA over Commodity Ethernet at Scale”. en. In: Pro-
ceedings of the 2016 conference on ACM SIGCOMM 2016 Conference - SIGCOMM
’16. Florianopolis, Brazil: ACM Press, 2016, pp. 202–215. isbn: 978-1-4503-4193-6.
doi: 10.1145/2934872.2934908. url: http://dl.acm.org/citation.cfm?doid=
2934872.2934908 (visited on 03/18/2019).

[16] Nate Hanford and Brian Tierney. “Recent Linux TCP Updates, and how to tune
your 100G host”. en. In: (2016), p. 43.

[17] History of the Internet. en. Page Version ID: 975002821. Aug. 2020. url: https:
//en.wikipedia.org/w/index.php?title=History_of_the_Internet&oldid=

975002821 (visited on 09/07/2020).

[18] A Homs. About SLSDetector UDP receiver, private communication. Feb. 2019.

[19] Seokbin Hong, Won-Ok Kwon, and Myeong-Hoon Oh. “Hardware Implementation
and Analysis of Gen-Z Protocol for Memory-Centric Architecture”. In: IEEE Access
8 (2020). Conference Name: IEEE Access, pp. 127244–127253. issn: 2169-3536. doi:
10.1109/ACCESS.2020.3008227.

[20] Joseph N. Huber, Oscar R. Hernandez, and Matthew Graham Lopez. Effective Vec-
torization with OpenMP 4.5. en. Tech. rep. ORNL/TM–2016/391, 1351758. Mar.
2017, ORNL/TM–2016/391, 1351758. doi: 10.2172/1351758. url: http://www.
osti.gov/servlets/purl/1351758/ (visited on 10/13/2020).

[21] R Huggahalli, R Iyer, and S Tetrick. “Direct Cache Access for High Bandwidth
Network I/O”. en. In: (2005), p. 10.

http://conferences2.sigcomm.org/sigcomm/2018/files/slides/kbnet/keynote_2.pdf
http://conferences2.sigcomm.org/sigcomm/2018/files/slides/kbnet/keynote_2.pdf
https://doi.org/10.1107/S1600576720010985
https://journals.iucr.org/j/issues/2020/05/00/zy5006/
https://journals.iucr.org/j/issues/2020/05/00/zy5006/
https://www.tandfonline.com/doi/full/10.1080/08940886.2019.1608121
https://www.tandfonline.com/doi/full/10.1080/08940886.2019.1608121
https://doi.org/10.1016/j.parco.2015.03.009
https://doi.org/10.1016/j.parco.2015.03.009
https://linkinghub.elsevier.com/retrieve/pii/S0167819115000617
https://linkinghub.elsevier.com/retrieve/pii/S0167819115000617
https://doi.org/10.1145/2934872.2934908
http://dl.acm.org/citation.cfm?doid=2934872.2934908
http://dl.acm.org/citation.cfm?doid=2934872.2934908
https://en.wikipedia.org/w/index.php?title=History_of_the_Internet&oldid=975002821
https://en.wikipedia.org/w/index.php?title=History_of_the_Internet&oldid=975002821
https://en.wikipedia.org/w/index.php?title=History_of_the_Internet&oldid=975002821
https://doi.org/10.1109/ACCESS.2020.3008227
https://doi.org/10.2172/1351758
http://www.osti.gov/servlets/purl/1351758/
http://www.osti.gov/servlets/purl/1351758/


BIBLIOGRAPHY 99

[22] IBM POWER9 NPU team. “Functionality and performance of NVLink with IBM
POWER9 processors”. In: IBM Journal of Research and Development 62.4/5 (July
2018), 9:1–9:10. issn: 0018-8646. doi: 10.1147/JRD.2018.2846978.

[23] Intel. DPDK data plane developement Kit. en-US. 2015. url: https://www.dpdk.
org/ (visited on 11/08/2018).

[24] J. Kieffer, S. Petitdemange, and T. Vincent. “Real-time diffraction computed to-
mography data reduction”. en. In: Journal of Synchrotron Radiation 25.2 (Mar.
2018), pp. 612–617. issn: 1600-5775. doi: 10 . 1107 / S1600577518000607. url:
http://scripts.iucr.org/cgi-bin/paper?co5098 (visited on 02/25/2019).

[25] Jerome Kieffer. Investigation of hardware compression on IBM Power9 - Dr. Jerome
Kieffer et al. Sept. 2019. url: https://www.youtube.com/watch?v=C_OMmLDGc-
I&list=PLPyhR4PdEeGaiiZ_iEi3rexxx830OpgwH&index=4&ab_channel=hdf5

(visited on 10/12/2020).

[26] Andreas Klöckner et al. “GPU Scripting and Code Generation with PyCUDA”.
In: arXiv:1304.5553 [cs] (Apr. 2013). arXiv: 1304.5553. url: http://arxiv.org/
abs/1304.5553 (visited on 07/18/2019).

[27] Alexopoulos Konstantinos S. Extending an asynchronous messaging library using
an RDMA-enabled interconnec. thesis. Oct. 2017. url: https://openlab.cern/
sites/openlab.web.cern.ch/files/2018-03/thesis%5B1%5D.pdf (visited on
10/03/2020).

[28] Przemyslaw Lenkiewicz, P. Chris Broekema, and Bernard Metzler. “Energy-Efficient
Data Transfers in Radio Astronomy with Software UDP RDMA”. In: Future Gen-
eration Computer Systems 79 (Feb. 2018). tex.ids: lenkiewicz energy-efficient 2018
arXiv: 1703.07626, pp. 215–224. issn: 0167739X. doi: 10.1016/j.future.2017.
03.027. url: http://arxiv.org/abs/1703.07626 (visited on 02/25/2019).

[29] Filip Leonarski et al. “JUNGFRAU detector for brighter x-ray sources: Solutions for
IT and data science challenges in macromolecular crystallography”. In: Structural
Dynamics 7.1 (Jan. 2020), p. 014305. doi: 10.1063/1.5143480. url: https:
//aca.scitation.org/doi/10.1063/1.5143480 (visited on 04/20/2020).

[30] Alessandro Lonardo et al. “A FPGA-based Network Interface Card with *GPUDi-
rect enabling realtime GPU computing in HEP experiments..” en. In: Proc. of
GPUHEP 2014 (2015). Medium: PDF Publisher: Deutsches Elektronen-Synchrotron,
DESY, Hamburg, 8691, DESY. doi: 10.3204/DESY-PROC-2014-05/16. url: http:
//www-library.desy.de/preparch/desy/proc/proc14-05/16.pdf (visited on
09/21/2020).

[31] P. MacArthur and R. D. Russell. “A Performance Study to Guide RDMA Pro-
gramming Decisions”. In: 2012 IEEE 14th International Conference on High Per-
formance Computing and Communication 2012 IEEE 9th International Conference
on Embedded Software and Systems. June 2012, pp. 778–785. doi: 10.1109/HPCC.
2012.110.

https://doi.org/10.1147/JRD.2018.2846978
https://www.dpdk.org/
https://www.dpdk.org/
https://doi.org/10.1107/S1600577518000607
http://scripts.iucr.org/cgi-bin/paper?co5098
https://www.youtube.com/watch?v=C_OMmLDGc-I&list=PLPyhR4PdEeGaiiZ_iEi3rexxx830OpgwH&index=4&ab_channel=hdf5
https://www.youtube.com/watch?v=C_OMmLDGc-I&list=PLPyhR4PdEeGaiiZ_iEi3rexxx830OpgwH&index=4&ab_channel=hdf5
http://arxiv.org/abs/1304.5553
http://arxiv.org/abs/1304.5553
https://openlab.cern/sites/openlab.web.cern.ch/files/2018-03/thesis%5B1%5D.pdf
https://openlab.cern/sites/openlab.web.cern.ch/files/2018-03/thesis%5B1%5D.pdf
https://doi.org/10.1016/j.future.2017.03.027
https://doi.org/10.1016/j.future.2017.03.027
http://arxiv.org/abs/1703.07626
https://doi.org/10.1063/1.5143480
https://aca.scitation.org/doi/10.1063/1.5143480
https://aca.scitation.org/doi/10.1063/1.5143480
https://doi.org/10.3204/DESY-PROC-2014-05/16
http://www-library.desy.de/preparch/desy/proc/proc14-05/16.pdf
http://www-library.desy.de/preparch/desy/proc/proc14-05/16.pdf
https://doi.org/10.1109/HPCC.2012.110
https://doi.org/10.1109/HPCC.2012.110


BIBLIOGRAPHY 100

[32] Wassim Mansour, Nicolas Janvier, and Pablo Fajardo. “FPGA Implementation
of RDMA-Based Data Acquisition System Over 100 GbE”. In: arXiv:1806.08939
[physics] (June 2018). arXiv: 1806.08939. url: http://arxiv.org/abs/1806.
08939 (visited on 02/25/2019).

[33] Majkowski Marek. How to receive a million packets per second. en. June 2015. url:
https://blog.cloudflare.com/how-to-receive-a-million-packets/ (visited
on 02/25/2019).

[34] Bruno Martins. “Drinking from the firehose: the ADEiger driver”. en. In: (2017),
p. 16.

[35] Mellanox. PB Bluefield SoC. June 2018. url: http://www.mellanox.com/related-
docs/npu-multicore-processors/PB_Bluefield_SoC.pdf (visited on 06/18/2019).

[36] Mellanox. VMA Performance Tuning Guide — Mellanox Interconnect Community.
Aug. 2018. url: https://community.mellanox.com/docs/DOC-2797 (visited on
11/08/2018).

[37] F Le Mentec et al. “RASHPA: A DATA ACQUISITION FRAMEWORK FOR 2D
X-RAY DETECTORS”. en. In: (2014), p. 4.

[38] Mao Miao et al. “SoftRDMA: Rekindling High Performance Software RDMA over
Commodity Ethernet”. en. In: Proceedings of the First Asia-Pacific Workshop on
Networking - APNet’17. Hong Kong, China: ACM Press, 2017, pp. 43–49. isbn:
978-1-4503-5244-4. doi: 10.1145/3106989.3106995. url: http://dl.acm.org/
citation.cfm?doid=3106989.3106995 (visited on 11/10/2018).

[39] Hannes Mohr. “Evaluation of GPU-based track-triggering for the CMS detector at
CERN’s HL-LHC”. en. In: Report (Oct. 2016), p. 103.

[40] Rajmund Mokso et al. “GigaFRoST: the gigabit fast readout system for tomog-
raphy”. eng. In: Journal of Synchrotron Radiation 24.Pt 6 (Nov. 2017), pp. 1250–
1259. issn: 1600-5775. doi: 10.1107/S1600577517013522.

[41] A. Mozzanica et al. “The JUNGFRAU Detector for Applications at Synchrotron
Light Sources and XFELs”. In: Synchrotron Radiation News 31.6 (Nov. 2018),
pp. 16–20. issn: 0894-0886. doi: 10.1080/08940886.2018.1528429. url: https:
//doi.org/10.1080/08940886.2018.1528429 (visited on 07/17/2019).

[42] Michal Nazarewicz. A deep dive into CMA [LWN.net]. Mar. 2012. url: https:
//lwn.net/Articles/486301/ (visited on 05/07/2020).

[43] Rolf Neugebauer et al. “Understanding PCIe performance for end host networking”.
en. In: Proceedings of the 2018 Conference of the ACM Special Interest Group on
Data Communication - SIGCOMM ’18. Budapest, Hungary: ACM Press, 2018,
pp. 327–341. isbn: 978-1-4503-5567-4. doi: 10 . 1145 / 3230543 . 3230560. url:
http : / / dl . acm . org / citation . cfm ? doid = 3230543 . 3230560 (visited on
02/18/2019).

http://arxiv.org/abs/1806.08939
http://arxiv.org/abs/1806.08939
https://blog.cloudflare.com/how-to-receive-a-million-packets/
http://www.mellanox.com/related-docs/npu-multicore-processors/PB_Bluefield_SoC.pdf
http://www.mellanox.com/related-docs/npu-multicore-processors/PB_Bluefield_SoC.pdf
https://community.mellanox.com/docs/DOC-2797
https://doi.org/10.1145/3106989.3106995
http://dl.acm.org/citation.cfm?doid=3106989.3106995
http://dl.acm.org/citation.cfm?doid=3106989.3106995
https://doi.org/10.1107/S1600577517013522
https://doi.org/10.1080/08940886.2018.1528429
https://doi.org/10.1080/08940886.2018.1528429
https://doi.org/10.1080/08940886.2018.1528429
https://lwn.net/Articles/486301/
https://lwn.net/Articles/486301/
https://doi.org/10.1145/3230543.3230560
http://dl.acm.org/citation.cfm?doid=3230543.3230560


BIBLIOGRAPHY 101

[44] Miroslav Z. Papiz and GraemeWinter. “X-Ray Crystallography, Biomolecular Struc-
ture Determination Methods”. en. In: Encyclopedia of Spectroscopy and Spectrome-
try (Third Edition). Ed. by John C. Lindon, George E. Tranter, and David W. Kop-
penaal. Oxford: Academic Press, Jan. 2017, pp. 640–647. isbn: 978-0-12-803224-4.
doi: 10.1016/B978-0-12-803224-4.00050-9. url: http://www.sciencedirect.
com/science/article/pii/B9780128032244000509 (visited on 10/11/2020).

[45] Jiwoong Park et al. “SoftDC: software-based dynamically connected transport”. en.
In: Cluster Computing 23.1 (Mar. 2020), pp. 347–357. issn: 1386-7857, 1573-7543.
doi: 10.1007/s10586-019-02926-0. url: http://link.springer.com/10.
1007/s10586-019-02926-0 (visited on 06/13/2020).

[46] Denis Perret et al. “Bridging FPGA and GPU technologies for AO real-time con-
trol”. In: Adaptive Optics Systems V. Vol. 9909. International Society for Optics
and Photonics, July 2016, p. 99094M. doi: 10.1117/12.2232858. url: https:
//www.spiedigitallibrary.org/conference-proceedings-of-spie/9909/

99094M/Bridging-FPGA-and-GPU-technologies-for-AO-real-time-control/

10.1117/12.2232858.short (visited on 11/28/2019).

[47] S Petitdemange et al. “The LIMA Project Update”. en. In: (2014), p. 4.

[48] R. Ponsard et al. “Online GPUAnalysis using Adaptive DMA Controlled by Soft-
core for 2D Detectors”. In: 2020 23rd Euromicro Conference on Digital System
Design (DSD). Aug. 2020, pp. 436–439. doi: 10.1109/DSD51259.2020.00075.

[49] R. Ponsard et al. “RDMA data transfer and GPU acceleration methods for high-
throughput online processing of serial crystallography images”. en. In: Journal
of Synchrotron Radiation 27.5 (Sept. 2020). Number: 5 Publisher: International
Union of Crystallography. issn: 1600-5775. doi: 10.1107/S1600577520008140.
url: https://journals.iucr.org/s/issues/2020/05/00/il5050/ (visited on
08/05/2020).

[50] Danny C. Price. “Real-time stream processing in radio astronomy”. In: arXiv:1912.09041
[astro-ph] (Dec. 2019). arXiv: 1912.09041. url: http://arxiv.org/abs/1912.
09041 (visited on 06/11/2020).

[51] Pantaleo Raimondi. “ESRF-EBS: The Extremely Brilliant Source Project”. en. In:
Synchrotron Radiation News (Dec. 2016). issn: 10.1080/08940886.2016.1244462.
url: https://www.tandfonline.com/doi/pdf/10.1080/08940886.2016.
1244462 (visited on 07/17/2019).

[52] Pramod Ramarao. CUDA 10 Features Revealed: Turing, CUDA Graphs, and More.
en-US. Sept. 2018. url: https://devblogs.nvidia.com/cuda-10-features-
revealed/ (visited on 01/22/2020).

[53] Steve Roberts, Pradeep Ramanna, and John Walthour. “AC922 Data Movement
for CORAL”. en. In: 2018 IEEE High Performance extreme Computing Conference
(HPEC). Waltham, MA: IEEE, Sept. 2018, pp. 1–5. isbn: 978-1-5386-5989-2. doi:
10.1109/HPEC.2018.8547707. url: https://ieeexplore.ieee.org/document/
8547707/ (visited on 06/02/2020).

[54] Allyn Romanow. “An Overview of RDMA over IP”. en. In: (2003), p. 22.

https://doi.org/10.1016/B978-0-12-803224-4.00050-9
http://www.sciencedirect.com/science/article/pii/B9780128032244000509
http://www.sciencedirect.com/science/article/pii/B9780128032244000509
https://doi.org/10.1007/s10586-019-02926-0
http://link.springer.com/10.1007/s10586-019-02926-0
http://link.springer.com/10.1007/s10586-019-02926-0
https://doi.org/10.1117/12.2232858
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/9909/99094M/Bridging-FPGA-and-GPU-technologies-for-AO-real-time-control/10.1117/12.2232858.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/9909/99094M/Bridging-FPGA-and-GPU-technologies-for-AO-real-time-control/10.1117/12.2232858.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/9909/99094M/Bridging-FPGA-and-GPU-technologies-for-AO-real-time-control/10.1117/12.2232858.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/9909/99094M/Bridging-FPGA-and-GPU-technologies-for-AO-real-time-control/10.1117/12.2232858.short
https://doi.org/10.1109/DSD51259.2020.00075
https://doi.org/10.1107/S1600577520008140
https://journals.iucr.org/s/issues/2020/05/00/il5050/
http://arxiv.org/abs/1912.09041
http://arxiv.org/abs/1912.09041
https://www.tandfonline.com/doi/pdf/10.1080/08940886.2016.1244462
https://www.tandfonline.com/doi/pdf/10.1080/08940886.2016.1244462
https://devblogs.nvidia.com/cuda-10-features-revealed/
https://devblogs.nvidia.com/cuda-10-features-revealed/
https://doi.org/10.1109/HPEC.2018.8547707
https://ieeexplore.ieee.org/document/8547707/
https://ieeexplore.ieee.org/document/8547707/


BIBLIOGRAPHY 102

[55] Davide Rossetti. Benchmarking GPUDirect RDMA on Modern Server Platforms.
en-US. Oct. 2014. url: https://devblogs.nvidia.com/benchmarking-gpudirect-
rdma-on-modern-server-platforms/ (visited on 02/25/2019).

[56] Davide Rossetti and Elena Agostini. “S7128 - HOW TO ENABLE NVIDIA CUDA
STREAM SYNCHRONOUS COMMUNICATIONS USING GPUDIRECT”. en. In:
(2017), p. 75.

[57] Davide Rossetti and Elena Agostini. s8474-gpudirect-life-in-the-fast-lane.pdf. 2018.
url: https://on-demand.gputechconf.com/gtc/2018/presentation/s8474-
gpudirect-life-in-the-fast-lane.pdf (visited on 12/07/2020).

[58] Jörn Schumacher, Christian Plessl, and Wainer Vandelli. “High-Throughput and
Low-Latency Network Communication with NetIO”. en. In: Journal of Physics:
Conference Series 898 (Oct. 2017), p. 082003. issn: 1742-6596. doi: 10.1088/1742-
6596/898/8/082003. url: https://doi.org/10.1088%2F1742-6596%2F898%
2F8%2F082003 (visited on 06/17/2019).

[59] Hefty Sean. 2012 Workshop Mon Rsockets.pdf. 2012. url: http://www.smallake.
kr/wp-content/uploads/2014/04/2012_Workshop_Mon_Rsockets.pdf (visited
on 04/10/2019).

[60] Gilad Shainer et al. “The development of Mellanox/NVIDIA GPUDirect over Infini-
Band—a new model for GPU to GPU communications”. en. In: Computer Science
- Research and Development 26.3 (June 2011), pp. 267–273. issn: 1865-2042. doi:
10.1007/s00450-011-0157-1. url: https://doi.org/10.1007/s00450-011-
0157-1 (visited on 02/25/2019).

[61] Guy Shattah and Christoph Lameter. “Contiguous memory allocation in Linux
user-space”. en. In: (2016), p. 18.

[62] J. B. Thayer et al. “Building a Data System for LCLS-II”. In: 2017 IEEE Nuclear
Science Symposium and Medical Imaging Conference (NSS/MIC). ISSN: 2577-0829.
Oct. 2017, pp. 1–4. doi: 10.1109/NSSMIC.2017.8533033.

[63] Shin-Yeh Tsai and Yiying Zhang. “LITE Kernel RDMA Support for Datacen-
ter Applications”. In: Proceedings of the 26th Symposium on Operating Systems
Principles. SOSP ’17. event-place: Shanghai, China. New York, NY, USA: ACM,
2017, pp. 306–324. isbn: 978-1-4503-5085-3. doi: 10.1145/3132747.3132762. url:
http://doi.acm.org/10.1145/3132747.3132762 (visited on 06/17/2019).

[64] Zhi Wang et al. “RDMAvisor: Toward Deploying Scalable and Simple RDMA as a
Service in Datacenters”. In: arXiv:1802.01870 [cs] (Feb. 2018). arXiv: 1802.01870.
url: http://arxiv.org/abs/1802.01870 (visited on 06/17/2019).

[65] T. A. White et al. “CrystFEL: a software suite for snapshot serial crystallography”.
en. In: Journal of Applied Crystallography 45.2 (Apr. 2012), pp. 335–341. issn: 0021-
8898. doi: 10.1107/S0021889812002312. url: http://scripts.iucr.org/cgi-
bin/paper?db5097 (visited on 01/07/2019).

https://devblogs.nvidia.com/benchmarking-gpudirect-rdma-on-modern-server-platforms/
https://devblogs.nvidia.com/benchmarking-gpudirect-rdma-on-modern-server-platforms/
https://on-demand.gputechconf.com/gtc/2018/presentation/s8474-gpudirect-life-in-the-fast-lane.pdf
https://on-demand.gputechconf.com/gtc/2018/presentation/s8474-gpudirect-life-in-the-fast-lane.pdf
https://doi.org/10.1088/1742-6596/898/8/082003
https://doi.org/10.1088/1742-6596/898/8/082003
https://doi.org/10.1088%2F1742-6596%2F898%2F8%2F082003
https://doi.org/10.1088%2F1742-6596%2F898%2F8%2F082003
http://www.smallake.kr/wp-content/uploads/2014/04/2012_Workshop_Mon_Rsockets.pdf
http://www.smallake.kr/wp-content/uploads/2014/04/2012_Workshop_Mon_Rsockets.pdf
https://doi.org/10.1007/s00450-011-0157-1
https://doi.org/10.1007/s00450-011-0157-1
https://doi.org/10.1007/s00450-011-0157-1
https://doi.org/10.1109/NSSMIC.2017.8533033
https://doi.org/10.1145/3132747.3132762
http://doi.acm.org/10.1145/3132747.3132762
http://arxiv.org/abs/1802.01870
https://doi.org/10.1107/S0021889812002312
http://scripts.iucr.org/cgi-bin/paper?db5097
http://scripts.iucr.org/cgi-bin/paper?db5097


BIBLIOGRAPHY 103

[66] Philip Willmott. “Synchrotron Physics”. en. In: An Introduction to Synchrotron
Radiation. John Wiley & Sons, Ltd, 2019, pp. 51–106. isbn: 978-1-119-28045-3.
doi: 10.1002/9781119280453.ch3. url: https://onlinelibrary.wiley.com/
doi/abs/10.1002/9781119280453.ch3 (visited on 04/19/2020).

[67] Ming Yang et al. “Avoiding Pitfalls when Using NVIDIA GPUs for Real-Time Tasks
in Autonomous Systems”. In: 30th Euromicro Conference on Real-Time Systems
(ECRTS 2018). Ed. by Sebastian Altmeyer. Vol. 106. Leibniz International Pro-
ceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2018, 20:1–20:21. isbn: 978-3-95977-075-0. doi: 10.4230/
LIPIcs.ECRTS.2018.20. url: http://drops.dagstuhl.de/opus/volltexte/
2018/8984 (visited on 11/27/2019).

https://doi.org/10.1002/9781119280453.ch3
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119280453.ch3
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119280453.ch3
https://doi.org/10.4230/LIPIcs.ECRTS.2018.20
https://doi.org/10.4230/LIPIcs.ECRTS.2018.20
http://drops.dagstuhl.de/opus/volltexte/2018/8984
http://drops.dagstuhl.de/opus/volltexte/2018/8984


104

Appendix A

Articles in Journals and Conferences

• Research paper for the Journal of Synchrotron Radiation, section Computer pro-
gram Published in: J. Synchrotron Rad. (2020). 27, 1297-1306

RDMA data transfer and GPU acceleration methods for high-throughput online
processing of serial crystallography images

R. Ponsard, N. Janvier, J. Kieffer, D. Houzet and V. Fristot

https://doi.org/10.1107/S1600577520008140

• Paper for the DSD20/Euromicro Conference

Published in: 2020 23rd Euromicro Conference on Digital System Design (DSD)

Online GPU Analysis using Adaptive DMA Controlled by Softcore for 2D Detectors

R. Ponsard; N. Janvier; D. Houzet; V. Fristot; W. Mansour

https://doi.org/10.1109/DSD51259.2020.00075

• Paper for the RT2020 Conference (co-author)

Oral presentation at the 22nd IEEE Real Time Conference

https://indico.cern.ch/event/737461/contributions/4013042/

FPGA Based Real-Time Image Manipulation and Advanced Data Acquisition For
2D-XRAY Detectors

Wassim Mansour, Rattana Biv, Cyril Ponchut, Raphael Ponsard, Nicolas Janvier,
Pablo Fajardo

• Research paper (co-author)

Under review in IEEE Transactions on Nuclear Science

FPGA Based Real-Time Image Manipulation and Advanced Data Acquisition For
2D-XRAY Detectors

Wassim Mansour, Rattana Biv, Cyril Ponchut, Raphael Ponsard, Nicolas Janvier,
Pablo Fajardo

https://arxiv.org/abs/2010.15450



APPENDIX A. ARTICLES IN JOURNALS AND CONFERENCES 105

• Poster for the Supercomputing 2020 Conference (SC20)

Doctoral Showcase Poster Display

https://sc20.supercomputing.org/program/posters/doctoral-showcase/#schedule



106

Appendix B

Hardware and Software
Contributions

The thesis work was mainly geared towards feasibility studies than optimization and per-
formance challenges. We have designed many mock-up in this purpose, but a ready-to-use
library is still under construction. The final specifications of the RASHPA framework are
still not yet fully defined. The definition process has taken time because many considera-
tions, external to this thesis work, where left unattended or had evolved over time: code
maintainability over years, genericity, broader event concept, etc

We list here our main contributions hoping it would help anyone with similar aims.
Microbenchmark applications, REMU Simulator, ROMULU RPU and GPU kernels

are available, including Python scripts to produce example datasets and plots of the
observed measurements. FPGA softcore-based design (Xilinx Vivado 19.1) and firmware
(C language source code) are available as well.

The code snippet are grouped by family, and are available on the ESRF gitlab: git-
lab.esrf.fr/ponsard. The whole code will shortly be released on github.com/rponsard.

Python scripts are available on several jupyter notebook: RASHPA manager, initial
dataset generation, performance measurements

• UDP micro benchmarks under the testing/udp directory

udp sendto with or without libVMA

recvmmsg

sendfile

• micro benchmarks under the testing/zmq directory

zmq pull/pull

rep/req

radio/dish

• micro benchmarks of UC queue pairs under the testing/rdma directory

ud send



APPENDIX B. HARDWARE AND SOFTWARE CONTRIBUTIONS 107

write using UC qp

multi-threaded data transfer using write

python ICRC calculator

rcwrite

UD send/recv synchronizer

• micro benchmarks of RC queue pairs under the testing/rdma/rc directory

python/C RC source

power9

• full fledged application software under the rashpa poc directory

remu software detector emulator

romulu software data receiver and GPU data processing

librashpa common code

• Xilinx U200 FPGA designs, firmware hand host code

detector emulator remu PCI-e with event mechanism

Xilinx ERNIC IP evaluation in the frame of RASHPA project

data processing using romulu-hls

• Linux kernel modules for memory allocation or physical address resolution

libcma: large contiguous memory allocator

libgma: nvidia GPU memory physical memory provider (for RASHPA PCI-e)

fpga peer mem

AMD GPU memory physical memory provider (for RASHPA PCI-e)

virtual memory with or without huge pages physical address provider

• GPU kernels

CUDA kernels launch time overhead measurement

data processing using multithread and CPU and OpenMP

OpenCL - RoCE

persistent kernel

memory allocation



108

Appendix C

Résumé de la thèse en langue
française

Traitement en temps réel, haut débit et faible latence

d’images par coprocesseurs GPU ou FPGA utilisant

les techniques d’accès direct à la mémoire distante

Introduction

Cette thèse porte sur le transfert à haut débit de données produites par des détecteurs
à rayons X utilisés pour l’imagerie scientifique. Mais cette problématique n’est bien
sûr pas spécifique au domaine précité et le travail réalisé pourra aisément être réutilisé
dans d’autres domaines scientifiques ou industriels confrontés aux mêmes impératifs
d’acquisition rapide.

En utilisant les réseaux et architectures d’ordinateurs traditionnels, on est en effet
confronté à des goulots d’étranglement lors du transfert de ces données vers les unités de
stockage ou de traitement qui empêchent l’utilisation à pleine performance des détecteurs.
L’autre contribution de la thèse, étroitement liée à la précédente, porte sur le traitement
en temps réel des données produites quand elles ont été acheminées, grâce à l’emploi
des architectures massivement parallèles qu’on trouve dans des accélérateurs matériels de
calcul de type GPU ou FPGA. L’objectif est de diminuer autant que possible la quantité
de données à stocker avant leur analyse ultérieure.

Cette thèse s’est déroulée à l’ESRF, Installation Européenne de Rayonnement Syn-
chrotron à Grenoble. Situé sur le Campus Européen de Photo-Neutronique (EPN Cam-
pus), l’ESRF est une des sources de rayonnement X les plus intenses existantes au-
jourd’hui. Après les récents travaux d’amélioration basé sur une innovation majeure
au niveau des aimants de courbure, le projet EBS (Source Extrêmement Brillante),
l’ESRF est maintenant le premier synchrotron complètement opérationnel de quatrième
génération. La brillance, qui mesure l’intensité et la qualité du faisceau, a été multipliée
par 100 et la focalisation grandement améliorée.

Le rayonnement synchrotron n’est pas de nature différente des rayons X utilisés depuis
leur découverte par Roentgen au début du XX siècle. Ils ne diffèrent que par leur intensité



APPENDIX C. RÉSUMÉ DE LA THÈSE EN LANGUE FRANÇAISE 109

considérablement plus importante que celle rencontrée dans les autres sources.
Ces rayons X sont produits par des électrons relativistes portés à une énergie de 6

GeV dans un premier booster et qui dissipent ensuite une partie de leur énergie dans un
anneau de stockage lorsque leur trajectoire est courbée par un champ magnétique. Ils
circulent dans un tube à ultravide de 850 m de circonférence (un polygone régulier de 32
cotés) et sont guidés par des aimants (électro-aimants ou permanents) de focalisation et
de courbure. Tangentiellement à chaque sommet de ce polygone se trouvent les lignes de
lumière qui exploitent le RX produit. D’autres lignes sont situées dans le prolongement
des arêtes pour exploiter le RX produit par des dispositifs magnétiques d’insertion qui
font spiraler les électrons le long de leur trajectoire, produisant un faisceau très intense.

Le RX ainsi produit a de multiples propriétés intéressantes dans de nombreuses dis-
ciplines scientifiques d’exploration de la matière: très grande intensité, impulsion ultra-
courtes, cohérence du rayonnement comme dans un laser, etc... qui expliquent le succès
de ce type d’installation et la diversité des expériences qui y ont cours.

L’amélioration permanente des sources de rayonnement X, s’accompagne aussi des
gains en performances des détecteurs et sont ainsi réalisables des expériences qui peuvent
produire des volumes énormes de données à très haut débit, quantités aussi difficiles à
gérer qu’à stocker. Ainsi les pixel-détecteurs de nouvelle génération embarquent suff-
isamment d’électronique au niveau de chaque pixel qu’ils constituent en fait une source
autonome de données. On peut de plus réaliser de très grands détecteurs avec un assem-
blage de plusieurs de ces modules autonomes.

Dans ce contexte, il devient indispensable de mettre à disposition des utilisateurs des
systèmes de calculs plus performants afin de permettre le pré-traitement en temps réel
des données brutes produites lors de l’acquisition. Parmi ces prétraitements qu’il est
désirable de pratiquer le plus en amont possible dans la châıne d’acquisition figurent : La
conversion des données brutes issues de l’électronique de détection en données utiles La
réjection de celles qui ne sont pas pertinentes ou vides, La compression des données La
supervision en temps réel de l’expérience.

Pour le moment, ces problématiques de gestion des flux de données n’ont pas encore
reçu de réponse générique pleinement satisfaisante.

Cette thèse fait partie d’un projet plus vaste, le projet RASHPA (RDMA-based Ac-
quisition System for High Performance Applications) de l’ESRF, visant à développer un
système d’acquisition haute performance basé sur le concept du RDMA (Remote Direct
Memory Access) : transfert de donnée entre périphérique et mémoire sans recours au
CPU.

Une des caractéristiques essentielles de ce projet est la capacité à transférer directe-
ment des données de la tête du détecteur vers la mémoire de l’unité de calcul, au plus
haut débit possible, en utilisant les techniques d’accès direct à la mémoire (RDMA), sans
copies inutiles entre les différents espaces mémoires (zéro copie), et éliminant le recours
à un processeur.

Le travail réalisé pendant cette thèse est une contribution au système RASHPA, qui
rend possible, non seulement le transfert de données à pleine vitesse dans la mémoire
du système informatique à destination, mais aussi directement dans la mémoire interne
de cartes accélératrices dans le cas de système à l’architecture hétérogène. Ce type
d’architecture se rencontre quand il est fait recours à des calculateurs massivement par-



APPENDIX C. RÉSUMÉ DE LA THÈSE EN LANGUE FRANÇAISE 110

allèles type GPU et FPGA. Les cartes graphiques d’ordinateurs développées pour le
marché de la synthèse d’image 2D/3D et du jeux vidéo ont été détournées de leur utili-
sation initiale en raison de leur capacité de calcul parallèle à un prix imbattable et sont
maintenant massivement utilisées dans le domaine du calcul à haute performance. Nous
avons étudié les différentes techniques existantes de transfert depuis une carte réseau
vers la mémoire de ces dispositifs et les goulots d’étranglement afférents. Un mécanisme
de synchronisation à faible latence entre carte réseau et unité de calcul est proposé,
déclenchant le traitement des données au rythme du détecteur.

Cela permet de fournir une solution globale au traitement de données en temps réel,
tant sur ordinateurs classiques que sur accélérateurs massivement parallèles.

État de l’Art

Après cette introduction, la thèse se poursuit par un état de l’art des principales tech-
nologies rencontrées. Ce projet se situe en effet à l’intersection de plusieurs disciplines
des sciences informatiques : transfert de données à haute vitesse, architecture interne des
ordinateurs, programmation de drivers pour le noyau Linux, techniques de calculs par-
allèles, en particulier sur GPU, développement de circuits pour FPGA. . . Pour chacun
de ces sujets, nous avons eu bien souvent à gérer des détails d’implémentation mal ou
peu documentés ou des modes de fonctionnement peu usités.

Dans cette revue, nous nous sommes limités aux techniques de transfert de données
à haute vitesse et aux accélérateurs avant de présenter les enjeux du projet RASHPA en
cours de développement à l’ESRF.

Pour l’implémentation de la partie réseau dans le cadre de ce projet, nous avons
dû prendre en compte un certain nombre de contraintes relatives à la nature même des
détecteurs à RX, qui sont des systèmes informatiques embarqués destinés à fonctionner
dans des zones expérimentales. Il y a donc une limite à la puissance de calcul qu’on peut
raisonnablement embarquer dans l’électronique d’un module de détecteur. Elle est limitée
par l’encombrement, la consommation électrique, la sensibilité au RX, à la température,
à la pression, etc. . . Cette électronique de détecteur est à base de circuits FPGA :
aussi, il n’a pas été jugé réaliste d’utiliser un protocole réseau trop contraignant (comme
TCP implémentant la réémission automatique de paquets potentiellement perdus, ce qui
nécessite de les stocker temporairement). Pour la même raison, nous souhaitons utiliser
un protocole unidirectionnel, du détecteur vers le dispositif informatique de stockage
ou de traitement, sans acquittement obligatoire du bon acheminement. Il était aussi
intéressant de pouvoir réutiliser les infrastructures réseau existantes de type Ethernet.
Pour toutes ces raisons, le protocole réseau envisagé est RoCE (RDMA over Converged
Ethernet). Mais nous étudions aussi une solution basée sur le bus PCI-e grande distance.
Nous tenons à avoir une solution générique et “hardware agnostique”.

Nous avons bien sûr présenté le principe de fonctionnement d’un contrôleur d’accès
direct à la mémoire (DMA) et sa généralisation au RDMA à travers le bus PCI-e ou un
lien réseau en utilisant des cartes réseaux dédiées (RNIC).

Nous avons ensuite dressé un panorama des innovations de ces dernières années visant
à pallier la loi de Moore (la puissance crête d’un calculateur individuel atteint une limite
liée à la physique des composants utilisés) : les approches “calculs parallèles” se sont



APPENDIX C. RÉSUMÉ DE LA THÈSE EN LANGUE FRANÇAISE 111

généralisées ainsi que le recours à de nouvelles architectures matérielles telles les GPU
et les FPGA. Nous avons recensé les solutions possibles avec le matériel NVIDIA et
le langage CUDA mais nous avons aussi évalué la faisabilité de notre approche avec
le matériel AMD et le langage OpenCL. Nous avons comparé avec les approches multi
processeurs basées sur un compilateur et la bibliothèque OpenMP.

Nous décrivons enfin succinctement le projet RASHPA en cours de développement
à l’ESRF. Il s’agit de développer une série de bibliothèques de code qui cachent les
détails d’implémentation matérielle et spécifient les interfaces nécessaires pour mettre en
œuvre des transferts de données concurrents entre détecteurs multi module et des buffers
mémoires distants à travers un réseau qui supporte le RDMA. L’objet de la thèse est de
supplémenter ce projet encore en phase de définition avec comme récepteur de données
les accélérateurs matériels précités.

Transferts de données RDMA

Nous avons dans une première étape évalué les performances atteintes en utilisant le proto-
cole UDP/IP classique et vérifié que le débit maximum théorique de 100Gb/s sans pertes
ne pouvait pas être atteint avec les bibliothèques traditionnelles (API Sockets TCP/IP).
Les goulots d’étranglement sont multiples : complexité intrinsèque de l’API Socket elle-
même, coûts induits par les commutations de contexte lors des appels systèmes, la gestion
des avalanches d’interruptions, etc...

Nous avons qualifié parmi les variantes de protocoles RDMA disponibles aujourd’hui
le choix de RoCEv2 et du verbe WRITE sur des paires de communications UD comme
solution compatible avec les exigences du projet RASHPA (transfert unidirectionnel,
placement complètement spécifié des données depuis la source, notification d’évènement
tel que la fin de transfert d’une image au CPU). Nous nous sommes assuré que l’emploi
de carte réseau RDMA de type Mellanox convenait pour nos objectifs et qu’il n’était pas
nécessaire de développer nos propres cartes de réception de données à base de FPGA.

Pour illustrer la versatilité de l’approche proposée, plusieurs simulateurs de détecteurs
ont été réalisés, s’appuyant sur les protocoles RoCEv2 ou PCI Express “grande distance”
pour la partie transport.

Les premières contributions de ce travail apparaissent dans ce chapitre 3 et ont fait
l’objet d’une publication dans le Journal of Synchrotron Radiation et d’une communi-
cation lors de la conférence Euromicro/DSD20. REMU est un émulateur de détecteur
complètement logiciel qui suit le protocole RASHPA. Une seconde version matérielle de
REMU basée sur FPGA a aussi été développée pour expérimenter la version PCI-e et ex-
plorer les techniques d’allocation mémoire requises (il faut en effet être capable d’allouer
des buffers de grande taille avec de la mémoire physique contiguë, ce qui requiert un
module noyau Linux dédié). Un récepteur de données ROMULU a été développé pour
compléter le banc de test.

Nous avons aussi évalué le bloc de propriété intellectuelle (IP ERNIC de Xilinx) qui
permet de synthétiser une source RoCEv2 dans un FPGA. Cet IP est devenu disponible
tout récemment alors qu’un membre de l’équipe RASHPA assure le développement de
notre propre IP et nous avons obtenu les premiers éléments de comparaison.



APPENDIX C. RÉSUMÉ DE LA THÈSE EN LANGUE FRANÇAISE 112

Traitement de données en temps réel par Accélérateurs

Dans le 4ème chapitre dédié au traitement des données en temps réel dans un système
RASHPA, nous présentons tout d’abord la définition du concept de RPU (RASHPA
Processing Unit) avant d’en proposer différentes implémentations sur CPU, mais aussi
sur GPU et FPGA. Cette définition est une contribution majeure au système RASHPA
initial qui ne définissait que des buffers de stockage pour les données et ne précisait pas
en détail comment le traitement des données pouvait se passer.

Un RPU est un système matériel composé de deux éléments principaux : une carte
réseau rapide compatible RDMA et un dispositif de calcul dont la mémoire est accessible
par le bus interne de l’ordinateur. Il est complété par un ordonnanceur (Scheduler), une
application qui s’exécute sur la machine hôte, qui relève les événements arrivant sur la
carte réseau à chaque fin de transfert d’image par un module, et qui se charge d’agglomérer
ces multiples événements en un seul événement global qui déclenche le calcul sur toute
une pile d’images par le dispositif accélérateur. Cet ordonnanceur doit aussi alimenter
en commandes tant la carte réseau RNIC que le dispositif de calcul car ceux-ci ne sont
pas complètement autonomes et doivent être alimentés en commandes tout au long du
processus d’acquisition.

Un dispositif de translation des adresses mémoires (ATS) permet la conversion en
temps réel des adresses virtuelles utilisées en adresses physiques requises par les contrôleurs
RDMA.

Nous avons implémenté trois versions de ces RPU sur trois hardware différents : CPU,
GPU et FPGA mais nous avons surtout étudié la version GPU et proposé un mécanisme
de synchronisation très efficace avec le transfert RDMA. Nous avons même évalué la fais-
abilité d’une approche utilisant un seul lancement de code GPU persistant afin d’éliminer
les temps de lancement qui sont non négligeables quand on fait du traitement en temps
réel.

Le traitement de données en temps réel sur FPGA, encore peu pratiqué dans les
sciences du rayon X, est évalué en s’appuyant sur les récentes avancées de la synthèse
de haut niveau (HLS) qui permet le développement du code de calcul en utilisant les
langages de haut niveau en place des HDL traditionnels. Le circuit à base de FPGA
proposé, implémente le transfert PCI-e direct (PCIE P2P DMA) depuis la carte réseau
Mellanox.

La qualification du pipeline de calcul a été faite en s’inspirant d’une expérience en
cours de préparation sur la ligne ID29/EBSL8 de l’ESRF spécialisée en cristallogra-
phie série (SSX). Cette expérience va mettre en œuvre un détecteur Jungfrau de nou-
velle génération particulièrement performant : il produira 1000 images par secondes, de
2048x2048 pixels en 16 bits. Chaque pixel doit être corrigé par l’application d’un coef-
ficient de gain variable selon l’intensité mesurée et la soustraction d’un piédestal (une
image intermédiaire obtenue quand le faisceau X est interrompu).

Le pipeline évalué comprend le pré-traitement des données brutes comme prévu pour
un détecteur à gain adaptatif, la réjection d’images en fonction du nombre de pics de
Bragg, ou la compression des données au format matrice creuse (CSR). Les algorithmes
testés ont été choisis très simples à dessein car il s’agissait dans ce travail d’évaluer la
faisabilité et la généralité du traitement du flot de données en temps réel, en masquant



APPENDIX C. RÉSUMÉ DE LA THÈSE EN LANGUE FRANÇAISE 113

le temps de transfert en parallèle des calculs.

Conclusion

Les principales contributions de la thèse consistent en la qualification de RoCEv2 comme
protocole de transport compatible RASHPA, en la proposition d’un mécanisme de sup-
port des événements, en la définition d’une unité de calcul RASHPA (RPU) et son
implémentation sur plusieurs architectures matérielles. Nous avons vérifié qu’il était
possible de transférer les données sans copies extra numéraires vers les accélérateurs qui
permettent un accès direct à leur mémoire interne. Nous avons développé un pipeline
complet d’analyse de données sur GPU s’inspirant d’un cas réel de cristallographie série
dans lequel les calculs se font en parallèle des transferts de données à vitesse maximum.

Nous présentons en conclusion quelques perspectives pour l’avenir de ce projet : nous
avons identifié la problématique du stockage de données directement depuis le GPU vers
un système de fichier distribué comme étant particulièrement intéressante. Dans la même
veine, l’intégration dans RASHPA des dispositifs de stockage désagrégé comme les SSD
avec le protocole NVMEoF particulièrement adapté au RDMA est un axe à ne pas négliger
non plus. Un autre point clé de la réussite du projet RASHPA réside probablement dans
son intégration sans soucis avec les bibliothèques applicatives de calculs distribués type
MPI ou NCCL déjà utilisées par les développeurs d’applications scientifiques.


	Contents
	List of Figures
	List of Tables
	Listings
	Introduction
	Making Science using X-ray Radiation
	ESRF-EBS Grenoble, The European Synchrotron
	X-ray Detectors and Experimental Setup Overview

	Full Throughput X-ray 2D Imaging Experiments
	Research Questions
	Data Transfer Issues and RDMA Mitigation Techniques
	Real-time Data Analysis with GPU/FPGA Accelerators
	Contributions to RASHPA Data Acquisition Framework

	Organization of the Thesis

	State of the Art: Data Transfer & RASHPA
	High-throughput Networking
	Bottlenecks Related to Memory Management
	PCI-e Interconnect
	Direct Memory Access Overview
	Memory Allocation Challenges
	Limitations of Conventional Networking Techniques
	Overview of RDMA Techniques
	RoCEv2 Assessment in the Frame of the RASHPA project
	Messaging Accelerator Library

	Prospects beyond DMA Techniques

	Hardware Accelerators Overview
	GPU accelerators
	PCI-e P2P Transfer into GPU/FPGA Device Memory
	Parallel Algorithms
	FPGA Accelerators

	The RASHPA Framework
	Paradigms
	Overview of the Frameworks in HEP or Astronomy
	Contribution to RASHPA Processing Unit Specifications


	RASHPA Data Source Simulators
	Methods
	REMU Detector Emulator 
	Micro-benchmark of Network Protocols
	Programming with Verbs
	Event Implementation
	Proof of Concept

	RASHPA PCI-e Implementation
	Reduced RASHPA
	FPGA Design
	Firmware
	Events
	Allocation of Large Memory Buffers

	RASHPA RoCE using Xilinx IP
	Outcome
	Results of the RoCEv2 version
	Results of the PCIe version


	Online Accelerated Data Processing using RASHPA
	RASHPA Processing Units
	General Working
	Address Translation System
	CPU Accelerated RPU
	GPU Accelerated RPU
	FPGA Accelerated RPU
	Proposed FPGA design
	HLS Kernel and Host Application


	Image Processing for SSX Experiments
	Raw-data Pre-treatment
	Data Rejection 
	Compression to Sparse Matrix
	Azimuthal Integration
	Ultra Low Latency Control

	Outcome
	Methods
	Results with CPU / OpenMP
	Results on GPUs
	NVIDIA CUDA Evaluation
	AMD OpenCL Evaluation
	REMU PCI-e / GPU RPU evaluation

	Results on FPGA
	Results on POWER9 Computer


	Conclusion
	Outcome
	Outlook
	Disaggregated Storage
	Integration Challenges


	Bibliography
	Articles in Journals and Conferences
	Hardware and Software Contributions
	Résumé de la thèse en langue française

