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Abstract

Blockmodeling is a set of techniques initially designed to analyse social networks but
whose practical interest becomes larger, as we will see further in this thesis for termi-
nology graphs.

One of the goals of blockmodeling is to reduce a large, potentially incoherent net-
work to a smaller comprehensible structure that can be interpreted more readily.

There is great interest in capturing the cluster structure of a network in terms of
equivalences, blocks and partitions. Up to now, most blockmodeling methods are fo-
cused in fitting the network structure to only one type of structure pattern.

However, there are a variety of social networking applications in which it is inter-
esting to consider more than one type of pattern simultaneously, so that the structure
of the network can take the form of several indicators for underlying relationships.

The research question is, how to deal with the situations where an analyst has sev-
eral relations types of relations for a set of actors. Thus, we propose an optimization
model, which we call the extended generalized blockmodeling. The main objective of
extended generalized blockmodeling is to find the partition size and the set of patterns
that has the best representation of the network structure. The extended generalized
blockmodeling expands the possibilities of the framework, making it possible to ana-
lyze networks without any prior knowledge about them.

The extended generalized block modeling belongs to the class of highly combina-
torial problems, the exact method is only suitable for small networks, so the second
question is how to make this approach viable for medium and large networks.

Therefore, we propose the first non-exact approach to generalized extended block
modeling, based on the VNS algorithm as an alternative for medium-sized networks.
Even though the results found by the heuristic may not be the best of all the solutions
to the problem, the experiments show that it converges to a satisfactory result in a not
prohibitively long time.

The third question, which we address in this thesis, is the extended generalized
blockmodeling a suitable approach in the field of bibliometrics and Natural Language
processing. To do so, we analyse the network of terms concerning terrorism research.

For all these questions, we demonstrate the numerical results, based on artificial
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and real datasets benchmarks. These results allow the exploration of the application
opportunities of the extended generalized block modeling as well as it’s limitations.

Key words: social networks, blockmodeling, terminology graphs, heuristics, VNS
Heuristic.
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Résumé

Le blockmodeling est un ensemble de techniques initialement conçues pour analyser
les réseaux sociaux mais dont l’intérêt pratique devient plus grand, comme nous le
verrons plus loin dans cette thèse pour les graphes terminologiques.

L’un des objectifs du blockmodeling est de réduire un grand réseau potentiellement
incohérent en une structure compréhensible plus petite qui peut être interprétée plus
facilement.

Il y a un grand intérêt à capturer la structure de cluster d’un réseau en termes
d’équivalences, de blocs et de partitions. Jusqu’à présent, la plupart des méthodes de
modélisation par blocs visent à adapter la structure du réseau à un seul type de modèle
de structure.

La question de recherche est de savoir comment gérer les situations où un analyste
a plusieurs types de relations pour un ensemble d’acteurs. Ainsi, nous proposons un
modèle d’optimisation, que nous appelons le extended generalized blockmodeling. Le
principal objectif de extended generalized blockmodeling est de trouver la taille de la
partition et l’ensemble de modèles qui a la meilleure représentation de la structure du
réseau.

Le extended generalized blockmodeling élargit les possibilités du framework, per-
mettant d’analyser les réseaux sans aucune connaissance préalable à leur sujet.

Le extended generalized blockmodeling appartient à la classe des problèmes haute-
ment combinatoires, la méthode exacte ne convient que pour les petits réseaux, donc la
deuxième question est de savoir comment rendre cette approche viable pour les réseaux
moyens et grands.

Par conséquent, nous proposons la première approche non exacte pour le extended
generalized blockmodeling, basée sur l’algorithme VNS comme alternative pour les
réseaux de taille moyenne. Même si les résultats trouvés par l’heuristique ne sont
peut-être pas la meilleure de toutes les solutions au problème, les expériences montrent
qu’elle converge vers un résultat satisfaisant dans un temps qui n’est pas prohibitif.

La troisième question, que nous abordons dans cette thèse, est le extended gener-
alized blockmodeling, une approche appropriée dans le domaine de la bibliométrie et
du traitement du langage naturel. Pour ce faire, nous analysons le réseau de termes
concernant la recherche sur le terrorisme.
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Pour toutes ces questions, nous démontrons les résultats numériques, basés sur des
benchmarks de jeux de données artificiels et réels. Ces résultats permettent d’explorer
les opportunités d’application de la modélisation de bloc généralisée étendue ainsi que
ses limites.

Mots clés: réseaux sociaux, blockmodeling, graphes terminologiques, heuristique,
VNS heuristique
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Chapter 1

Introduction

More and more social networks become accessible and, even for small networks, the
quantity of data that they carry can be quite huge. There is an increasing need of trans-
forming this data into something more comprehensive which can allow social analysts
to theorize and analyze data in order to extract information [19]. Blockmodeling is a
framework to describe a social network as a small structure, which can be easily inter-
preted, by clustering units regarding some kind of equivalence [34].

The obtained structure is a reduced graph (whose nodes are the clusters), which is
represented as a relational matrix, called image matrix. It can be specified or obtained as
process result. The main idea of equivalence is to find predefined patterns of relations
among actors of the network, where every predefined pattern also know as ideal block,
has a social meaning.

The conventional part of the blockmodeling framework is designed to deal with two
type of equivalences: structural equivalence and regular equivalence (formally defined
in chapter 2). Structural equivalence is very strict [19] and does not correspond to most
of the real relationships. Regular equivalence is an attempted to make it more flexible
and is considered as a weak property.

The notion of equivalence has been merged into a more general framework where
the relations between the clusters (the image matrix) must be as close as possible to
ideal blocks. For instance, the complete ideal block, that is a block where all the entries
are 1, correspond to the structural equivalence.

The generalized blockmodeling expand the possibilities of the framework, but also
require some previous knowledge, as the size of the partition and a pre-definition of the
ideal models. Extended generalized block-modeling, introduced here, makes it possible
to analyze networks without any prior knowledge about them.
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Chapter 1. Introduction

1.1 Motivation and Objectives

Blockmodeling was a tool originally designed to help social psychologists and sociolo-
gists get informations about the social groups, such as: membership, arrangement, and
articulation of the members, by arranging social relational data into pre-defined struc-
tural layout, also called ideal block. Despite its origin, blockmodeling has also become
a useful tool for discerning the structural groups of any network.

In general, blockmodeling provides a general framework for fitting data by using
an explicit criterion function capturing the difference between structure pattern and
network. However, despite this generality, there remain some open problems:

1. For small networks, be they real or artificial networks, these structures are rela-
tively straightforward to discern, for an example take a look in figure 1.1. How-
ever, once networks are large or complex, identifying their structure becomes a
difficult task [19].

2. To date, and to the best of our knowledge, all blockmodeling methods have fo-
cused on optimization approaches that require prior knowledge about the net-
work, we can cite some of the most popular works [18], [39], [10] and [9] etc. In
addition, current optimization techniques can deal only with networks with few
nodes.

The objective of this work is to describe a new optimitzation approach that does
not require any information about the network, and also analyze the strengths and
weaknesses of the proposed method in the application field.

Figure 1.1: Complex versus small networks
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1.2. Contributions of the Thesis

1.2 Contributions of the Thesis

This thesis begins by investigating, in the first chapters, combinatorial optimisation
techniques to address the blockmodeling problem without any prior information. The
methodologies proposed and tested in the first part are then used to approach clus-
tering problems on particular graphs called "terminology graphs". To our knowledge,
applying blockmodeling concepts to analyse this graph have been never investigated.

The thesis contributions is this twofold in the optimization point of view:

1. We give a formalisation of the extended generalised blockmodeling, that accord-
ing to our studies, is the first and most complete approach: it allows to analyse
networks without any a prior knowledge about them. The other models require
at least to know the size of the partition (i.e. the number of sub-sets that the par-
tition will contain) and a pre-definition of the ideal models.

2. For the extend generalised block-modeling, we proposed the first integer linear
programming model. To improve the model, we applied different optimisation
techniques, to reduce the computational difficulty. But after all improvements,
the model remains limited to small networks (no more than 20 nodes).

3. To solve larger instances, we designed heuristic algorithm, using variable neigh-
borhood search techniques. Computational experiments showed that the VNS
method provides very good (often proven optimal) solutions computed in short
computing times.

4. Through an analysis of a terminological graph, we show, in another chapter, that
generalised extended blockmodeling provides a flexible and effective method for
analysing networks of terms, in particular to analyse thematic evolution through
time.

1.3 Organization of the document

The document is organised as follows. Up to now, in this first chapter, an overview
and structure of the thesis have been presented. The new section below will fix the
notations used in this dissertation.

In the Chapter 2, basic notions of network analysis and blockmodeling are intro-
duced. The notion of "equivalence" as the central concept in blockmodeling is reviewed.
Lastly, we present the formalisation of extended generalised blockmodeling.

Chapter 3 presents the 0-1 linear programming model proposed for the problem.
The decision variables, criterion function, required input, general and block type con-
strains are presented in detail. We also discusses the conceptual changes into block-
modeling framework, when changing some general constraints in the model. Further
more in this chapter, we present the techniques applied to reduce the computational
complexity and also an analysis of experimental results obtained and limitations.

3



Chapter 1. Introduction

Chapter 4, presents a variable neighbourhood search (VNS) heuristic algorithm spe-
cially designed for extended generalised blockmodeling. A literature review followed
by comparative analysis between existent similar techniques are presented. Later on,
in this chapter, the proposed (VNS) algorithm is described in details. The last section,
of this chapter, presents preliminary results.

Chapter 5 concerns the application and evaluation of the ideas presented in chapter
3 and 4 in the field of terminology graph clustering. The chapter begins with a state-
of-the-art on terminology graphs and relevant works done to decompose such types of
graphs. Then the chapter advances to an analysis of the strengths and weaknesses of
using extended generalised blockmodeling for these graphs. Finally, chapter 6 provides
the conclusion of the results, discusses encountered difficulties and outlines future re-
search directions.

1.4 Basic definitions

In this section, we formally define the basic definitions for the blockmodeling frame-
work. We also introduce the notation, that we will use throughout this thesis.

1.5 Introduction to networks

Networks can be found everywhere, wherever we find sets of elements in which some
pairs of elements are, in some sense, connected with each other, we can form a network.
Elements can be people, but may also be groups, organizations, nation states, web sites,
or scholarly publications etc. For each of these, finite number of relationship between
pairs of elements, can be established. The most common examples are networks among
people, organizations, countries etc. A formal definition of networks was already pro-
vided in section 1.5.2.

Since the 1970s, the empirical study of networks has played a central role in social
science, and many of the mathematical and statistical tools used for studying networks
have been first developed in sociology [36], but can be also applied in other fields.

These are certainly exciting times for the research community, besides the large
group of networking applications that can be found nowadays, the techniques are nor-
mally general enought, to be broadly used for different types of applications.

1.5.1 Types of networks

In general, networks can be classified into different types according to several criteria.
The most common types are based in the set of possible values that edge relations can
take, as an example we can cite: binary, signed and valued networks. A binary network
simply distinguishes whether there is a connection between pairs of elements. In a
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1.5. Introduction to networks

signed network, each edge has a positive or negative sign, while in a valued network
we measure connection between pairs.

For example « Andrea follows Rodrigo » on Twitter is a example of a binary rela-
tionship, « Max likes Alex’s comments » on Facebook is signed relationship it encoded
a positive sign, while « Anna retweeted 4 tweets from Andrea » is valued relationship, it
quantifies edges relation. Another way to classify networks is by the nature of relation-
ship, Facebook friends and LinkedIn connections require mutual confirmation, those
are undirected network types. Following on Twitter and LiveJournal is Asymmetric
relationship even if a follow-back tie can exist, it’s directed network.

Another criterion used to classify networks is based on the number of different sets,
if all elements come from the same set the network is referred as one-mode, if there
are two sets then it is two-mode and so on. As one-mode network, we can take a
league of baseball, there is only one set of elements, the players. Corporations employ
people networks, these are composed of two different set of elements: corporations and
people, so we can say it’s two-mode network. Most of blockmodeling techniques deal
with one-mode and two-mode networks, more than two is quite rare. This dissertation
focuses on one-mode undirected binary networks.

1.5.2 Network

A network is defined as G = (V, R) where V = (v1, . . . , vn) are the set of nodes and
R set of edges. An edge is a pair (i, j) of nodes i, j ∈ V that can be viewed in practice
as a relation between i and j R : (V × V) can be represented by an adjacency matrix
S = S(G) whose rows and columns are indexed by the vertices of G, and Skl = 1 if
vertex vk is connected to vertex vl , zero otherwise.

1.5.3 Cluster and Clustering

A cluster c, as showed in table 1.3, is a set of nodes which share structural characteristics"
defined in terms of their relations in R.

Sharing "structural characteristics means the way that the nodes composing the
cluster are connected. If, for instance, we are interested in finding in a social network
fully connected community, the "structural characteristic" of identified clusters will be
the fact that all nodes are (almost) connected to all others. Many other characteristics,
inside the clusters and between them may be drawn. These characteristics are at the
root of the notion "ideal blocks" introduced latter.

A set of cluster forms a clustering C = {c1, c2, . . . , cn} which is partition of the set

V :
n
⋃

k=1

ck = V, if ck ∩ cl = ∅ and ∀ ki 6= l. The clustering C also divide the edge relation

R : (V ×V) into blocks: R(ck, cl) = E ∩ ck × cl .

5



Chapter 1. Introduction

1.5.4 Block and ideal block

Let ck and cl be two clusters. A block is a sub-matrix of S whose lines are indexed by ck

components, and columns by cl ones.

a b c b e f g h i j l m n
a 0 0 1 1 1 0 0 0 0 0 0 0 0
b 1 0 1 0 0 0 0 0 0 0 1 0 0
c 1 0 0 1 0 0 0 0 0 0 1 0 0
d 1 1 1 0 0 0 0 0 0 0 0 0 0
e 1 0 1 1 0 0 0 0 0 0 0 1 1
f 0 0 0 0 1 0 0 0 0 0 0 0 0
g 0 1 0 0 0 0 0 1 1 0 0 0 0
h 0 1 0 0 0 0 1 0 1 0 0 0 0
i 0 1 0 0 0 0 1 1 0 0 0 0 0
j 1 0 0 0 0 1 0 0 0 0 0 0 0
l 1 1 0 0 0 0 0 0 0 1 0 0 0
m 1 0 0 0 0 1 0 0 0 1 0 0 0
n 0 0 0 0 1 1 0 0 0 0 0 0 0

Table 1.1: Adjacency matrix S

c1 c2 c3 c4
a b e f j l m n g h i c d

c1

a 0 0 1 0 0 0 0 0 0 0 0 1 1
b 1 0 0 0 0 1 0 0 0 0 0 1 0
e 1 0 0 0 0 0 0 0 0 0 0 1 1
f 0 0 1 0 0 0 1 1 0 0 0 0 0
j 1 0 0 1 0 0 0 0 0 0 0 0 0
l 1 1 0 0 1 0 0 0 0 0 0 0 0

c2
m 1 0 0 1 1 0 0 0 0 0 0 0 0
n 0 0 1 1 0 0 0 0 0 0 0 0 0

c3

g 0 1 0 0 0 0 0 0 0 1 1 0 0
h 0 1 0 0 0 0 0 0 1 0 1 0 0
i 0 1 0 0 0 0 0 0 1 1 0 0 0

c4
c 1 0 0 0 0 1 0 0 0 0 0 0 1
d 1 1 0 0 0 0 0 0 0 0 0 1 0

Table 1.2: Clustering S into (k = 4)

c1
a b e f j l

c3

g 0 1 0 0 0 0
h 0 1 0 0 0 0
i 0 1 0 0 0 0

Table 1.3: block (c3, c1)

In the case where ck = cl the block is called diagonal, and non-diagonal otherwise.
A block represents the relationships between ck and cl units. The way that clusters are
connected (or not) gives meaningful informations about their relationships. Suppose,
for instance, that ck 6= cl and that all elements of ck, are in relation with all elements

6



1.5. Introduction to networks

of cl , and vice-et-versa: all elements of ck, are in relation with all elements of cl . If the
network represents a social network, and arcs friend relationships, one may say that
ck and cl individuals have the same friends. Similarly, if ck = cl , with each individual
connected to each others, then we can say that the cluster ck forms a community of
friends. Notice in this example that the single important property is the fact that each
member of the cluster ck share the same relations with the other cluster cl . The number
of elements in ck or cl do not play any role. This property of ck members is called
"structural equivalence" and will be defined more formally later as well as with the
notion of regular equivalence.

In graph terminology, the graphs induced by the relationships example are called
complete bipartite graph (when ck 6= cl) and clique when (ck = cl). Moreover, if we
consider these relationships in terms of matrix values (block) we obtain rectangular
or square block entirely composed of 1 values. The state-of-the-art in blockmodeling
called it a "complete block". Many other block types have been considered in the liter-
aturee defining a set of block called "ideal blocks". The corresponding exhaustive list
is given below. In table 1.1 ideal blocks are given in matrix forms. In table 1.2 each
form are described, accompanied by a practical interpretation in terms of social net-
works. Notice that a similar interpretation will be given in the case of terminology
graphs (chapter 5). Figure 1.3 then gives some graphical illustrations.

Formally the set of ideal blocks will be noticed β. It is very important to keep in
mind that β defined type of relations between clusters whatever is the number of com-
ponents of each cluster.

When we say, for instance, that we want to find clusters in such a way that all
non-diagonal blocks are ideally null, it means that we want clusters with no relation
between them. In our model presented later we will distinguished diagonal to non-
diagonal blocks, which give us flexibility to decide what ideal blocks, among β, we
seek to find in the diagonal and off-diagonal part. For any block (ck, cl) to find, we
notice β(ck, cl) ⊆ β the set of ideal blocks associated to it.

7
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l l l

k

1 1 1

k

0 0 0

k

1 0 1
1 1 1 1 1 1 1 0 0
1 1 1 0 0 1 1 0 1
1 1 1 1 0 1 1 1 0

complete row-dominant column-dominant

l l l

k

1 0 0

k

1 0 1

k

1 1 0
1 0 1 1 0 0 0 0 0
0 1 1 1 0 1 1 0 1
0 0 1 0 0 1 0 0 1

regular row-regular column-regular

l l l

k

0 0 0
k

0 0 0 1

k

0 0 1
0 0 0 0 0 0 1 0 1 0
0 0 0 0 1 0 0 0 0 0
0 0 0 row-functional 1 0 0
null column-functional

Table 1.4: Block type adjacency matrix examples

Block type Description

Null fully covered by 0
Complete fully covered by 1
Regular one covered rows and columns
Row regular each row is one covered
Column regular each column is one covered
Row dominant there is a row filled with 1
Column dominant there is a column filled with 1
Row functional there is only one 1 in each row
Column functional there is only one 1 in each column

Table 1.5: Types of Connections

1.6 Measures of network

In this section, we formally define some metrics used by social network analysis, pre-
sented in Chapter 2. Measures are a common method used to understand networks and
their nodes. Node centrality concepts and measures help determine the importance of
a node in a network [2].

Various centrality measures have been proposed over the years, the three most pop-
ular concepts in (SNA) are: closeness, degree centrality and betweenness. Besides cen-
trality measures, we wil also mathematically define in this section: network density,

8
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complete row− dominant column− dominant

regular row− regular column− regular

nullnull row− f unctional column− f unctional

Figure 1.2: Type of graph

clustering coefficient, geodesic distance and diameter, that are also measures widely
used to analyse social networks.

1.6.1 Closeness centrality

For a graph G with n number of nodes with n = |V|, the closeness centrality of a node
vi is represented mathematically as:

closeness(vj) =
n− 1

∑
n
i=1(vi, vj)

9



Chapter 1. Introduction

where d(vi, vx) denotes the geodesic distance between (shortest paths) linking node vi

to node vj.

1.6.2 Degree centrality

The easiest way of measuring a node’s centrality is by counting the number of other
nodes connected directly to this node, is a measure indicating the importance of node
in the network.

degree(vj) =
n

∑
i=1

l(vi, vj)

where n is the number of nodes in the network and l(vi, vj) = 1 if and only if node i
and j are connected, 0 otherwise.

1.6.3 Betweenness centrality

Regarding Alizera et al.(2012)[4] betweenness centrality measures the fraction of all
shortest paths that pass through a given node or in simple terms it quantifies the num-
ber of times a node acts as a bridge along the shortest path between two other nodes. It
can be expressed as:

betweenness(vl) =
n

∑
i 6=1

gij(vl)

gij
; i 6= j 6= l

where gij is the geodesic distance (shortest paths) connecting vi to node vj and gij(vl) is
the geodesic distance connecting vi to node vj that contains vl .

1.6.4 Network density

Network density describes the portion of the possible connections, is a measure of the
proportion of existent number of edges in the network divided by the possible maximal
number of edges. For undirected simple graphs, the network density can be defined as:

density =
|R|

n(n− 1)
)

where R is the set of edges and n = |V|.

1.6.5 Clustering coefficient

The clustering coefficient of a graph G is the average over the clustering coefficients of
its nodes. Let’s, consider the following three nodes: vi, vj and vl with mutual relations,
relations between vi and vj as well as between vi and vl , it is supposed to represent the

10
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likeliness that vj and vl are also related. The clustering coefficient for a graph can be
expressed as:

clustering coefficient =
3× number of triangles of node

number of triples of node

1.6.6 Geodesic distance

For a graph G the number of edges of the shortest path that connects the nodes vi and
vi is called geodesic distance and denoted by d(vi, vj).

1.6.7 Diameter distance

The graph diameter of a graph is the length max(vi ,vj)d(vi, vj) of the longest shortest
path between any two graph nodes (vi, vj).

11
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Chapter 2

State-of-the-art in social network
analysis and blockmodeling

Networks are data structure already formally defined in 1.5.2. Network analysis is the
general name given to certain number of techniques and methodological tools for an-
alyzing networks. Blockmodeling is a set of techniques initially designed to analyse
social networks but whose practical interest becomes larger as we will see for terminol-
ogy graphs.

This chapter begins with a state-of-the-art section on social network analysis moti-
vations, contributions, and tools will be highlighted in Section 2.1. As one of one this
tool in which this thesis is focused, blockmodeling concepts and current techniques
will be reviewed in Section 2.5. In particular, the concept of equivalence will be intro-
duced in section 2.3. The definitions, strengths and weaknesses of structural and regu-
lar equivalence are showed in subsections 2.3.1 and 2.3.2. Indirect and direct blockmod-
eling methodologies are reviewed. Generalised blockmodeling concepts are discussed
in 2.6 and finally a new approach will be suggested in section 2.7.

2.1 Social network analysis

Social network analysis is a methodology for studying the connections and behavior of
individuals within social groups [15].

Actors are usually people, but they can also be animals, organizations or nations.
It can be applied to various problems in different disciplines, not limited to social net-
works: a reason why many authors use also the term « network analysis ». Since this
work is not limited to social networks, we use also the general terms as network analy-
sis.

Network analysis concentrate its attention on how nodes are connected with each
other and how these structure can be studied and analyzed, rather than treating indi-
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Chapter 2. State-of-the-art in social network analysis and blockmodeling

viduals (persons, organizations, states) as discrete units of analysis, it focuses on how
the structure of ties affects individuals and their relationships [31]. It looks to see the
extent to which the structure and composition of ties affect the norms.

For social network analysis, "norms" is the concept that tells individuals how they
should behave and what they should expect of others. It reduces the uncertainty and
help to define "how things should be" in a particular group behaviors patterns imposed
by group that are considered acceptable on a group [38].

According to Hogan [22] the roots of social network analysis are found in the math-
ematical study of graph theory and empirical studies of social psychology.

In figure 2.1 we display a taxonomy of graph theory approaches for social network-
ing analysis research, based on the study done by Chelmis et al.(2011)[13].

The taxonomy divides SNA techniques into five area: random walks, temporal
graphs, visualization, metrics and network structure.

Random walks concern to methods used to understand how information is spread-
ing across the network. A temporal graph is a graph in which connections between
vertices are active at specific times, and such temporal information leads to completely
new patterns and knowledge that are not present in a non-temporal graph [26]. Visu-
alization methods focus its efforts in how to understand network data and display the
analysis result.

Metrics measure network properties. It is a useful tool for understanding the be-
havior and relationships in a network, so it has a special attention in this section. There
are several types of metrics, the most common and often important are: centrality, di-
ameter, geodesic distance, density and cluster coefficient.

Centrality concepts seeks to quantify the influence of every node in the network,
several types have been proposed in the literature, leading to many different defini-
tions. The most popular in SNA are: degree centrality, betweenness centrality and
closeness centrality [20].

These metrics raise important information about the network and are formally de-
fined in chapter 1, below we present the intuitive description.

• Closeness centrality calculates the shortest paths between all nodes, assigning to
each node a score based on its sum of shortest paths that indicates the capacity of
a node to be reached.

• Degree centrality gives an importance score based on the number of connections
held by each node, it’s usefull information for finding popular individuals.

• Betweenness centrality measures the number of times a node lies on the short-
est path between other nodes, it shows which nodes act as "bridges", it’s crucial
information to identify nodes who influence the flow around a system.

• Clustering coefficient is a measure of the degree to which nodes in a graph tend
to cluster together.

14



2.1. Social network analysis

• Geodesic distance measures the shortest path between two nodes.

• Diameter, on the other hand measures the distance of nodes in a network and is
defined as the maximum geodesic distance between any pair of nodes.

Following taxonomy another classification that deserves attention is network structure.
The network structure focuses its study on the network topology and its characteristics,
it incorporates community detection techniques.

Communities structures are groups of vertices which share common properties within
the graph. They are said to be present in a network, if it can be divided into sets of
nodes, such that the connection between nodes of network follows a pattern.

As states by Farrag et al.(2007), detecting communities in networks is one of the fun-
damental approaches that provide a solution for networks disciplines where systems
are often represented as graphs.

According Fortunato et al.(2012)[23] there has been a major effort in the last years to
devise algorithms capable of extracting a complete information about the community
structure of graphs. Community-detection facilitate informative visualization of social
networks, and can be considered a summary of the whole network [21].

A number of community-detection algorithms and methods based in graph theory
have been proposed in literature, it can be sub-divided into four categories:

1. Node-centered: refers to the methods in which each node of a group must sat-
isfy certain properties, for example we can mention the algorithm to discover the
maximum clicks.

2. Group-centered: these are methods that requires the total group to meet an ex-
plicit condition, for example, the group density is greater than or equal to a certain
threshold, and remove the nodes with a grade below the typical average degree.

3. Network-centric: are the methods in which the goal is to partition the network
nodes into disjoint sets. As examples, we can mention the following approaches:
clustering supported vertex similarity using Jaccard similarity and Cosine simi-
larit, Latent space models supported k-means clustering, blockmodeling approx-
imation based on exchangeable graph models, spectral clustering are using mini-
mum cut problem that the number of edges between the two sets is reduced and
so on.

4. Hierarchy-centric: refers to the methods that construct a hierarchical structure of
communities, as examples, we have divisive hierarchical grouping and agglom-
erative hierarchical grouping.

In this dissertation we focus our interest into non-overlapping blockmodeling tech-
niques, based on the relation between community members. As we could see in this
section, blockmodeling is one of many other tools conceived for network analysis that
has its roots in graph theory and it’s the focus of this thesis. It’s presented in this chap-
ter.
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Chapter 2. State-of-the-art in social network analysis and blockmodeling

Figure 2.1: A taxonomy of graph theory approaches in Social Networking Analysis Research

2.2 Roles and positions

Positions and roles are key concepts in social network analysis. According to Wasser-
man and Faust (1994) [45] several SNA techniques to describe the structural properties
of the network are concerned with the dual notions of social position and social role.

In social network analysis, these terms translate into procedures for analyzing struc-
tural similarities and patterns of node relationships. Those notions of position and role
is defined in terms of equivalence (presented in next section 2.3) of node with respect
to some formal mathematical property.

Structural equivalence, discussed in section 2.3.1, is one the set of property for defin-
ing position. Actors that are structurally equivalent are in identical "positions" with
regard to all other actors, and they should be exactly substitutable in order to be con-
sidered to be in the same position.

Regular equivalence is the set of mathematical properties used to capture the social
notion of role. Actors are said to be regularly equivalent if they have the similary re-
lation with members of other sets. Hanneman (2005)[24] state that regular equivalence
captures the idea of the "role" that an actor plays with respect to occupants of other
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2.3. Equivalences for binary networks

"roles" in a structure. An example is given in section 2.3.2 to illustrate and help to grasp
the concept.

2.3 Equivalences for binary networks

An equivalence relation, in a mathematical point of view, is a binary relation defined
in a given set of elements (x, y, z, . . .), and respecting a given set of properties. If the
relation is noticed, let’s say R, the properties to respect are precisely: the reflexivity
(xRx), the symetry (xRy⇐⇒yRx) and the transitivity (xRy and yRz=⇒xRz). The
equivalence relation divides the set into partitions called equivalence classes. Each
component in a equivalence class are then considered to be equivalent according to the
equivalence relation.

To illustrate this standard concept, let us consider the classical equivalence relation
in graph theory, defined on the node set (V) of a directed graph G = (V, R). In this
relation, two nodes x and y will be equivalent (i.e xRy) iff there exist a directed path
from x to y and another one from y to x. It can be shown that R is an equivalence
relation. As we already know from basic graph theory concepts, the equivalence classes
corresponding to this relation defined the strongly connected components of G (see []).
Each component representing a set of nodes which are possible to reach (following a
directed path) from any other node of the class.

If we look at clustering problems in the light of equivalence relation, one may in-
terpret clusters as set of nodes sharing properties that makes them equivalent. Then
clusters can be viewed as equivalence classes of an equivalence relation to define. As
two different equivalence relations may lead to (possibly) two clusterings, one may re-
mark that "good", "bad" or "optimal" clustering does not make sense if the properties
defining the classes we want to compute is not given.

There is no "ideal" clustering unless the word "ideal" is clearly defined. We will see
that in our case "ideal" will be related to the type of blocks (or subgraphs) we would
like to see in the clustering. It is important also to see that defining only the equivalence
relation is not sufficient to find the corresponding classes.

Implementing an efficient computational procedure is necessary in practice to de-
rive the classes. For instance, to find strongly connected components, polynomial time
algorithms based on depth (or breadth)-first-search algorithm are usually used. Thus
another relation should be accompanied to another associated algorithm with which
the corresponding clusters can be generated.

The researches on social network graphs and blockmodeling are at the origin of
other equivalence relations such as : structural and regular equivalences.

17



Chapter 2. State-of-the-art in social network analysis and blockmodeling

2.3.1 Structural equivalence

Structural equivalence concept has been defined by Lorrain and White (1971). Before
giving its formal definition, we introduce below the intuitions and motivations that
support it. Intuitively, two nodes (individuals) will be structurally equivalent iff they
are connected to the rest of the network in « identical » ways. « identical » means that
the two nodes are linked to exactly the same nodes. The Wasserman and Faust Network
is used as the following example [45].

2

5

7

83

6

1

4 9

Figure 2.2: Wasserman and Faust Network

Classes built from structural equivalence are groups of individuals having the same
connection to the same neighbours. We can also use the term "position" to refer to a
collection of nodes that are structurally equivalent because they are in identical "posi-
tions" in the structure of the network. More formally the structural equivalence can be
mathematically defined as follows:

If G = (V, R) 1 and ≡ is an equivalence relation on V then ≡ is a structural equivalence if
and only if for all a, b, c ∈ V such that a 6= c and b 6= c, a ≡ b implies:

1. aRb if and only if bRa;

2. aRc if and only if bRc;

3. cRa if and only if cRb;

4. aRa if and only if bRb;

Structural equivalence clusters can be traduced in terms of blocks. To understand
this, let us consider our previous example. The adjacency matrix of the graph is given
below and we indicate in the line and column indices the clusters respecting structural
equivalence.

Note that the blocks in table 2.2 are either null or complete. According to the defini-
tion of structural equivalence this is not a surprise as shown in the following result due
to Batagelj, Ferligoj, and Doreian, 1992.

1 V is used instead of P in the original definition to keep a uniform notation in the dissertation.

18



2.3. Equivalences for binary networks

1 2 3 4 5 6 7 8 9
1 0 0 0 1 0 0 0 0 1
2 0 0 0 0 1 0 1 0 0
3 1 0 0 1 0 1 0 1 1
4 1 0 0 0 0 0 0 0 1
5 0 1 0 0 0 0 1 0 0
6 1 0 1 1 0 0 0 1 1
7 0 1 0 0 1 0 0 0 0
8 1 0 1 1 0 1 0 0 1
9 1 0 0 1 0 0 0 0 0

Table 2.1: Adjacency matrix

c1 c2 c3
6 3 8 4 1 9 2 5 7

c1

6 0 1 1 0 0 0 1 1 1
3 1 0 1 0 0 0 1 1 1
8 1 1 0 0 0 0 1 1 1

c2

4 0 0 0 0 1 1 0 0 0
1 0 0 0 1 0 1 0 0 0
9 0 0 0 1 1 0 0 0 0

c3

2 0 0 0 0 0 0 0 1 1
5 0 0 0 0 0 0 1 0 1
7 0 0 0 0 0 0 1 1 0

Table 2.2: Permuted and partitioned adjacency matrix

Theorem 2.3.1. There are are four possible blocks respecting structural equivalence : null (all 0)
block and complete (all 1) block; and for diagonal blocks also null block with 1’s on the diagonal
and complete block with 0’s on the diagonal.

0 1 1 1 1 1
1 0 1 1 1 1
1 1 0 1 1 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

Table 2.3: Examples of structural blocks

Proof. see Batagelj, Ferligoj, and Doreian, 1992.

These kind of blocks will belong to a set of "ideal" blocks in our generalized block-
modeling problem.
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2.3.2 Regular equivalence

Regular equivalence has been introduced by White and Reitz, 1983. Two nodes (in-
dividuals) will be regularly equivalent iff they are equivalent connected to equivalent
others. Formally, if G = (V, R) 2and ≡ is an equivalence relation on V then ≡ is a
regular equivalence if and only if for all a, b, c ≡ V, a ≡ b implies:

1. aRc implies there exists d ∈ V such that bRd and d ≡ c;

2. cRa implies there exists d ∈ V such that dRb and d ≡ c.

The formal definition means that if a is regularly equivalent to c then if a is in rela-
tion with a node b then there must exist an individual d equivalent to b with which c is
in relation. The concept is actually more easy to grasp intuitively than formally. As a
practical example, let us consider the wife’s class [24], composed only of married wom-
ens with children, and the husband’s class, composed of married men with children,
and finally the kids class, composed of children.

The wives, are considered equivalent because each one has a certain pattern of ties
with a husband and child. Those women that belongs to the wife’s class do not have
ties to the same husband and child. Which means, they are not structurally equivalent,
they have a different husband and child. They won’t be automorphically 3 equivalent.
But they are similar because they have the same relationship with members who belong
to the same subset.

wifes husband

kids

Figure 2.3: Regular equivalence example

Regarding Hanneman et al.(2005) [24], even if regular equivalence is a weak type
of equivalence, due to a flexible definition, the concepts and methods used to identify
and describe regular sets of equivalence are a good mathematical representation of the

2 V is used instead of P in the original definition to keep a uniform notation in the dissertation.
3 Automorphisms constitute the "symmetries" of a graph
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sociological concept of role, centerpiece of most sociological theories, that strongly con-
tribute to the development of networks analyses. Let’s analyse the relationship between
classes (groups).

Figure 2.4 displays three versions of Everett Network (Borgatti and Everett 1989),
graph a) represent nodes and their connections, no classification is made, therefore all
nodes have the same color. Graph b) is clustered according structural equivalence, in
this scenario there are six colorings, meaning, six equivalent classes. Nodes of the same
color belong to the same group, and have the same position in the network, as displayed
in the image, they are connected in the exact same way. Graph c), is clustered regarding
regular equivalence, thus the graph was divided into three equivalence classes.

As we can notice in figure 2.4, the idea is to bring out some main features of the
network by clustering the nodes into categories of nodes depending on the type of
equivalence, so the big question is, what are meaningful types to use ?
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a) The Everett network

Figure 2.4: Clustering by different type of equivalences

Regardless of the equivalence relation considered we pointed out before that find-
ing the corresponding classes need efficient computational procedures. Two types of
procedures classified as direct or indirect by Batagelj et al. (1992) have been proposed
in the litterature. We review them in the section below.

2.3.3 The usual steps for solving clustering problems

Doreian et al.(2005) [19]provide a list of usual steps for solving a clustering problem,
the steps are:

1. Select the set of units V.

2. Measure the appropriate variables for the given problem. Variables can be mea-
sured with different scale types, they should be standardized.
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3. Choose an appropriate dissimilarity between units for the given problem and
types of variables used.

4. Define an appropriate criterion function to evaluate the selected type of cluster-
ing.

5. Define an algorithm for the given clustering problem.

6. Determine the clustering(s) that optimize(s) the chosen criterion function with
the selected algorithm. An approximate solution may be necessary if there is no
exact algorithm solution or if an excessive amount of computing time is needed
to obtain an exact solution.

The first two steps do not require further discussion, the units and the type of rela-
tions must be defined before the analysis begins.

Regarding the choice of an appropriate dissimilarity, the third step of Doreian’s list,
it should be done carefully respecting the mathematical properties.

There are a large number of dissimilarities, therefore several studies in the litera-
ture concerning the choice of dissimilarity. For more information please check: Sokal
and Sneath (1963), Clifford and Stephenson (1975), Everitt (1974), Gordon (1981), Lorr
(1983), and Hubalek (1982).

Regarding step four, a criterion function can be constructed indirectly by means of
appropriately defined (dis)similarity measures or directly by use of network data, and
it’s discussed in the next section. For the steps 5 and 6, we reserve chapter 3 and 4.

2.4 Indirect and directed approach

There are several blockmodeling procedures, Batagelj et al. (1992) proposed to classify
into direct and indirect approaches.

1. Indirect approach: reduction to the standard data analysis problems (cluster anal-
ysis, multidimensional scaling) by determining a dissimilarity matrix between
units which is compatible with the selected type of equivalence;

2. Direct approach: construction of a criterion function P(C) which measures the fit
of the clustering C to the network data, and solving the corresponding optimiza-
tion problem.

2.4.1 Indirect approach

Indirect cluster approach

The objective of indirect cluster approach is to find, in a given network, a set of ho-
mogeneous or well separated clusters defined according to some measured variables.
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It can be represented in general terms as the optimization problem which seeks for an
partion C∗, such that:

P(C∗) = min
C∈Φ

P(C) (2.1)

where C is a partition of V, Φ is the set of all feasible partitions, and P : Φ −→ R is
a criterion function. The conventional blockmodeling is based on a criterion function
constructed indirectly; in this case, Ward’s (1963) [33] criterion function is the most used
and is formulate as the problem of finding a partitions with k clusters, and P is defined
as:

P(C) = ∑
c∈C

∑
v∈c

d( f (v), tc) (2.2)

where f (v) = {V1,V2, . . . ,Vn} is the vector with the description values associate to the
node v and tc is the center of the cluster c and can be express as:

tc = (V1c,V2c, ...,Vnc) (2.3)

and Vic is the average of the variables Vi, i = 1, . . . , n, for the units from the cluster c,
expressed as:

Vic =
∑v∈c Vi(v)

|ci|
(2.4)

and d is the euclidean distance.

As an example let’s consider the set of five units V = {a, b, c, d, c} that have mea-
surements based on two variables (V1,V2), as display in table 2.4.

a b c d e
V1 1 2 3 5 5
V2 1 3 2 3 5

Table 2.4: Variable measurements

By using Ward’s criterion function 2.2, where tc = (V1,V2) is the center of the cluster
c and the dissimilarity d is the euclidean distance, we can caculate all possible partitions
in to two clusters 2.5, as the following example:
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∑
v∈c1

d( f (a), tc1) = d((1, 1)− (1, 1)) = 0 (2.5)

∑
v∈c2

d( f (b), tc2) = d((2, 3)− (
2 + 3 + 5 + 5

4
,

3 + 2 + 3 + 5
4

)) = 1, 77 (2.6)

∑
v∈c2

d( f (c), tc2) = d((3, 2)− (
2 + 3 + 5 + 5

4
,

3 + 2 + 3 + 5
4

)) = 1, 46 (2.7)

∑
v∈c2

d( f (d), tc2) = d((5, 3)− (
2 + 3 + 5 + 5

4
,

3 + 2 + 3 + 5
4

)) = 1, 27 (2.8)

∑
v∈c2

d( f (d), tc2) = d((5, 5)− (
2 + 3 + 5 + 5

4
,

3 + 2 + 3 + 5
4

)) = 2, 15 (2.9)

P(C1) = 0 + 1, 77 + 1, 46 + 1, 27 + 2, 15 = 6, 65 (2.10)

the lowest value for P(C15) = 5.41 and best partition C∗ = {{a, b, c}, {d, e}}

C c1 c2 tc1 tc2 P(C)
1 a bcde (1.0, 1.0) (3.75, 3.25) 6.65
2 b acde (2.0, 3.0) (3.50, 2.75) 8.18
3 c abde (3.0, 2.0) (3.25, 3.00) 8.67
4 d abce (5.0, 3.0) (2.75, 2.75) 7.24
5 e abcd (5.0, 5.0) (2.75, 2.25) 5.94
6 ab cde (1.5, 2.0) (4.33, 3.33) 6.66
7 ac bde (2.0, 1.5) (4.00, 3.67) 7.21
8 ad bce (3.0, 2.0) (3.33, 3.33) 9.58
9 ae bcd (3.0, 3.0) (3.33, 2.67) 9.48
10 bc ade (2.5, 2.5) (3.67, 3.00) 8.48
11 bd ace (3.5, 3.0) (3.00, 2.67) 9.34
12 be acd (3.5, 4.0) (3.00, 2.00) 8.08
13 cd abe (4.0, 2.5) (2.67, 3.00) 8.58
14 ce abd (4.0, 3.5) (2.67, 2.33) 9.11
15 de abc (5.0, 4.0) (2.00, 2.00) 5.41

Table 2.5: All partitions and Values of the Criterion Function

Indirect blockmodeling approach

The indirect blockmodeling approach is the one where a given partitioning of a network
is done by defining a (dis)similarity measure between pairs of units first and then, on
this basis, an appropriate clustering criterion function. For the indirect approach, some
standard steps, as shown in figure 2.5, have to be considered. The process consists, first,
of defining a node property4 as description of the units. As an example of such node
properties, we can cite the degree and distribution of triads.

4 node properties are also similarity measure
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RELATION

DESCRIPTIONS OF UNITS

DISSIMILARITY MATRIX

CLUSTERING ALGORITHMS

* hierarchical algorithms,
* relocation algorithm,
* leader algorithm, etc.

* adjacency matrix
* path matrix
* triad
* orbit

R

Q

D

Figure 2.5: Indirect blockmodeling schema

The second step is to ensure that the selected description matches with the chosen
type of equivalence. This mathematical exercise can be done for structural equivalence;
Therefore, for other types of equivalence, it’s quite complex to verify.

Batagelj (1991)[6] states that a property is considered a structural equivalent, if it
depends only on the v unit and the relation R, without relying on the label of units. For
instance, degree is a structural property and distribution of triads is a counterexample,
to see the proof, please check out [6].

The next step is to calculate the matrix of dissimilarities based on description, it’s
an important step that must be done carefully, since the selected dissimilarity measure
must also be compatible with the chosen equivalence. Some examples of dissimilarities
are: manhattan distance, euclidean distance and Jaccard dissimilarity. The same math-
ematical exercise done for a unit property, should be done for dissimilarities, but now
working with a pair of units, an example of can be find in Doreian et al.(2005:181)[19].

Once the description and the dissimilarity measure is defined, there are different
efficient clustering algorithms that can be applied, such as hierarchical algorithms, the
reallocation algorithm, and so on. For an application example of indirect method, let’s
consider Knoke directed information network, example given by [24].

The intuition here is based on structural equivalence. If we try to identify the nodes
that are most similar to others, intuitively by looking at a graph in 2.6, we can see that
nodes 2,5, and 7 are structurally similar since they have reciprocal ties with each other
and almost everyone else.

The unit description is based in the degree properties, so when looking across the
rows we can count out-degrees, and when looking down the columns, we can count
in-degrees. Based in the degree similarities we can see which are the central nodes and
which are the isolated ones.
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Figure 2.6: Knoke directed information network

Two nodes are said to be structurally equivalent if they have the same patterns of
ties with other nodes, this means their scores in rows and columns is similar.

1 Coun 2 Comm 3 Educ 4 Indu 5 Mayr 6 WRO 7 News 8 UWay 9 Welf 10 West
1 Coun — 1 0 0 1 0 1 0 1 0
2 Comm 1 — 1 1 1 0 1 1 1 0
3 Educ 0 1 — 1 1 1 1 0 0 1
4 Indu 1 1 0 — 1 0 1 0 0 0
5 Mayr 1 1 1 1 — 0 1 1 1 1
6 WRO 0 0 1 0 0 — 1 0 1 0
7 News 0 1 0 1 1 0 — 0 0 0
8 UWay 1 1 0 1 1 0 1 — 1 0
9 Welf 0 1 0 0 1 0 1 0 — 0
10 West 1 1 1 0 1 0 1 0 0 —

Table 2.6: Adjacency matrix for Knoke information network

We can see the similarity of the nodes if we expand the matrix as showed in 2.6 by
adding the row vector just after the column vector for each, like that each node can be
represented as single column, as can be see in table 2.7.

The chosen dissimilarity measure is the Euclidean distance. The Euclidean distance
between two vectors is equal to the square root of the sum of the squared differences
between them.

Using the Ward’s (1963) criterion function with the agglomerative algorithm, we
have as a result the dendrogram in figure 2.8.

Another useful approach to understanding the bases of similarity and difference
among sets of structurally equivalent actors is the block model, and a summary based
on it called the image matrix. Because we working with raw adjacency matrix, the
adjacencies can be turned into a valued measure of dissimilarity by calculating geodesic
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2.4. Indirect and directed approach

1 Coun 2 Comm 3 Educ 4 Indu 5 Mayr 6 WRO 7 News 8 UWay 9 Welf 10 West
— 1 0 1 1 0 0 1 0 1
1 — 1 1 1 0 1 1 1 1
0 1 — 0 1 1 0 0 0 1
0 1 1 — 1 0 1 1 0 0
1 1 1 1 — 0 1 1 1 1
0 0 1 0 0 — 0 0 0 0
1 1 1 1 1 1 — 1 1 1
0 1 0 0 1 0 0 — 0 0
1 1 0 0 1 1 0 1 — 0
0 0 1 0 1 0 0 0 0 —
— 1 0 0 1 0 1 0 1 0
1 — 1 1 1 0 1 1 1 0
0 1 — 1 1 1 1 0 0 1
1 1 0 — 1 0 1 0 0 0
1 1 1 1 — 0 1 1 1 1
0 0 1 0 0 — 1 0 1 0
0 1 0 1 1 0 — 0 0 0
1 1 0 1 1 0 1 — 1 0
0 1 0 0 1 0 1 0 — 0
1 1 1 0 1 0 1 0 0 —

Table 2.7: Concatenated row and column adjacencies for Knoke information network

Figure 2.7: Euclidian distances in sending for Knoke information network

distances, take a look at 2.9.

Even though it was widely used in the 1980s, according to Doreian et al. (2005:
183)[19], there are at least three serious problems in the indirect approach:

1. make sure that a (dis)similarity measures is compatible with selected equivalence.

2. Although this can be done for structural equivalence, it seems unlikely that such
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Figure 2.8: Dendogram of structural equivalence data

Figure 2.9: Profile similarity of geodesic distances of rows and columns of Knoke information net-
work
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2.4. Indirect and directed approach

a measure can be specified for regular equivalence.

3. if other equivalence types are specified, it will be necessary to construct compati-
ble (dis)similarity measures for them also.

2.4.2 Direct approach

The direct approach to blockmodeling was first introduced in two papers in the journal
Social Networks 14 (Batagelj et al., 1992b; Batagelj et al., 1992a). The first one (Batagelj
et al., 1992b) introduced direct methods for structural equivalence and compared them
with indirect methods, while the second one (Batagelj et al.,1992a) introduced methods
for regular equivalence.

While indirect approaches require the use of (dis)similarity measures for all pairs of
units and a compatibility study between selected measures and equivalence, the direct
approach is more general.

The standard steps for the direct approach are illustrated in figure 2.10. In addition,
since direct methods incorporate a criterion function into the procedure of searching
for the optimal partition, we can be certain that if we check all possible partitions that
the optimal partitions will be found. As being pointed out in the early comparisons
(Batagelj et al., 1992b; Batagelj et al., 1992a), no such guarantee is offered by indirect
methods.

The direct approach is the one where the criterion function is the center stage and it
reflects directly the selected equivalence, it captures the discrepancy measure, between
the partition and concern equivalence type. The procedure proposed in this work be-
longs to the family of algorithms that falls into the category of direct approaches, we
present the following formal definition.

Assuming that a network is defined as G = (V, R), where V is a set of units/nodes
and R. Denoting β as the set of all equivalence relations of a selected type (e.g., regular
or structural equivalence) over G, so every equivalence relation B on V defines a partion
C. If we are able to construct a criterion function P(C) with the following properties:

1. P(C) ≥ 0

2. P(C) = 0⇔ C ≡ B⇔ B ∈ β

By property 1, the minimal value of P(C) is zero, by property 2, P(C) is equal to zero,
if and only if C corresponds to a clustering C associated to equivalence relation B.
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RELATION

CRITERION FUNCTION

OPTIMIZATION

Figure 2.10: Direct blockmodeling schema

2.5 Conventional blockmodeling

The conventional blockmodeling is characterized by restricted attention to structural
and regular equivalence; use of indirect and direct approach, with little or no attention
to how well an established blockmodel fits the network data that have been blockmod-
eled.

According to Doreian, most of the previous empirical work on blockmodeling was
done using the conventional model.

The conventional blockmodeling characterizes the fundamental ideas of blockmod-
eling and, even if it has restrictions, it is the starting point for broader concepts.

2.6 Generalized blockmodeling

In a chronological order of development, first came structural equivalence proposed by
Lorrain and White (1971), which imposes very stringent properties. The term regular
equivalence was first proposed by White and Reitz (1983). It’s an attempt to relax struc-
tural equivalence, therefore, that is considered as a weak type of equivalence, because
is too flexible and can fit to almost everything. Later on, searching for general math-
ematical theory, Everett and Borgatti (1994), published a paper where they mention a
variety of other types of equivalences which are special cases of structural and regular
equivalences. As mentioned in section 2.5, these early blockmodeling studies devoted
to structural and regular equivalence are known in the literature as conventional block
models, and are characterized by:

1. an indirect approach is used; does not deal with data directly, it needs to be trans-
formed in some way and then clustered.

2. attention is strictly restricted to structural and regular equivalence, and induce
block types are: null blocks, complete blocks, and regular (one covered for both
rows and columns) blocks.
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3. has little or no attention on how well the network fits to the blockmodels

Doreian et al.(1994) in their paper "Partitioning networks based on generalized concepts of
equivalence" observe that different types of equivalence generally lead to different types
of blocks. They also argue that an appropriate generalization of the idea of equiva-
lence is one in which each block, from a particular image matrix, is free to conform to
a different form of equivalence. So, instead of developing new equivalence types and
deriving the set of allowed blocks, they propose to start with a set of permitted ideal
blocks knowing that partitions established in terms of this new blocks will represent
new equivalences. Generalized block modeling is characterized as a direct approach,
where no transformation is required in the network data. Morever, a much broader set
of block types is used to define equivalence instead of adding different equivalences in
the definition. The last difference between conventional and generalized blockmodel-
ing comes from the possibilities of pre-specification of block types (not only the allowed
block types, but also their positions). In the generalized blockmodeling the criterion
function is the center stage; its going evaluates a partition based on set of permitted
blocks (ideal blocks). Let’s formalize generalized blockmodeling as optimization prob-
lem, starting by repeating some definitions and notations:

• A network is defined as N = (V, R), where V is a set of nodes = {v1, v2, . . . , n}
and R a set of edges that can also be considered as a binary matrix S :(vi, vj) ∈
R⇔ Sij = 1.

• C = {c1, c2, . . . , cn} is partition of the set V. Φ is a set of all feasible partitions. A
partition C also partitions the relation R into blocks. Each such block consists of
units belonging to clusters ci and cj and all arcs leading from cluster ci to cluster
cj. If i = j, the block R(ci, cji) is called a diagonal block.

• Let β(ci, cj) denote a set of all ideal blocks corresponding to block(ci, cj).

Then the global error of clustering C can be expressed as:

P(C) = ∑
ci ,cj∈C

min
B∈β(ci ,cj)

(R(ci, cj), B) (2.11)

where the term d(R(ci, cj), B) measures the difference (error) between the block R(ci, cj)
and the ideal block B. As said before in subsection ??, the are nine block types in the
literature well defined: null, complete, regular, row-regular, column regular, column-
dominant, row-dominant, row-functional and column-functional. The block type in-
consistencies are computed as defined in table 2.8. The quantities used in the expres-
sions for deviations have the following meaning:

• st total block sum = number of 1s in a block

• nr cardinality i - number of rows in a block,

• nc cardinality j - number of columns in a block,

• pr number of non-null rows in a block,

• pc number of non-null columns in a block,
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• mr maximal row sum,

• mc maximal column sum,

• sd diagonal block sum = number of 1s on a diagonal,

• d diagonal error = min(sd, nr − sd)

• Throughout the number of elements in a block is nrnc

Block type Inconsistences (R(ci, cj), B) Image matrix position

Null
st off-diagonal
st + d − sd diagonal

Complete
nrnc − st off-diagonal
nrnc − st + d + 2sd − nr diagonal

Row-dominant
(nc − mr − 1) nr diagonal, sd = 0otherwise
(nc − mr) nr

Col-dominant
(nc − mc − 1) nr diagonal, sd = 0otherwise
(nc − mc) nr

Row-regular (nr − pr) nc

Col-regular (nc − pc) nr

Regular (nr − pr) nc + (nr − pr) nr

Row-functional st − pr + (nr − pr) nc

Col-functional st − pc + (nr − pc) nr

Table 2.8: Deviations Measures for Types of Blocks

Ron

Tom
Frank

Boyd
Tim John

Jerry

Ben
Arnie

Darrin

Sandy

Jay

Jeff

Figure 2.11: Baseball team - Diagram

To better illustrate the generalized blockmodeling thinking process, let’s consider as
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a practical example a baseball team network. The network consists of 13 boys, and each
boy was invited to name his three best friends. The vertices are the boys and the edges
represent the relationship "my best friend". The presence of a 1 indicates a best friend
relationship between two boys and 0 represents the absence, more details in Table 2.9

1 2 3 4 5 6 7 8 9 10 11 12 13
Ron 1 0 0 1 1 1 0 0 0 0 0 0 0 0
Tom 2 1 0 1 0 0 0 0 0 0 0 1 0 0
Frank 3 1 0 0 1 0 0 0 0 0 0 1 0 0
Boyd 4 1 1 1 0 0 0 0 0 0 0 0 0 0
Tim 5 1 0 1 1 0 0 0 0 0 0 0 1 1
John 6 0 0 0 0 1 0 0 0 0 0 0 0 0
Jeff 7 0 1 0 0 0 0 0 1 1 0 0 0 0
Jay 8 0 1 0 0 0 0 1 0 1 0 0 0 0
Sandy 9 0 1 0 0 0 0 1 1 0 0 0 0 0
Jerry 10 1 0 0 0 0 1 0 0 0 0 0 0 0
Darrin 11 1 1 0 0 0 0 0 0 0 1 0 0 0
Ben 12 1 0 0 0 0 1 0 0 0 1 0 0 0
Arnie 13 0 0 0 0 1 1 0 0 0 0 0 0 0

Table 2.9: Baseball team - Adjacency matrix

In Figure 2.11, Jeff’s arrow towards Tom shows that Jeff likes Tom enough to rank
him among his three best friends. Tom does not see Jeff in the same way. The same
thing happened between Ben and Jerry, Ben has lines in one direction but not in the
other. Boyd and Frank have a reciprocal connection to Ron. The rest of the figure can
be read in the same fashion. All information concerning this relation is contained in the
diagram.

By restricting our attention to structural equivalence connections, and assuming
there are four clusters, and applying the direct approach, the best and unique parti-
tion is:

1 3 4 5 2 6 10 11 12 13 7 8 9

c1

Ron 1 0 1 1 1 0 0 0 0 0 0 0 0 0
Frank 3 1 0 1 0 0 0 0 1 0 0 0 0 0
Boyd 4 1 1 0 0 1 0 0 0 0 0 0 0 0
Tim 5 1 1 1 0 0 0 0 0 0 0 0 0 0

c2 Tom 2 1 1 0 0 0 0 0 1 0 0 0 0 0

c3

John 6 0 0 0 1 0 0 0 0 1 1 0 0 0
Jerry 10 1 0 0 0 0 1 0 0 0 0 0 0 0
Darrin 11 1 0 0 0 1 0 1 0 0 0 0 0 0
Ben 12 1 0 0 0 0 1 1 0 0 0 0 0 0
Arnie 13 0 0 0 1 0 1 0 0 0 0 0 0 0

c4

Jeff 7 0 0 0 0 1 0 0 0 0 0 0 1 1
Jay 8 0 0 0 0 1 0 0 0 0 0 1 0 1
Sandy 9 0 0 0 0 1 0 0 0 0 0 1 1 0

Table 2.10: Baseball team partition with (k = 4) based in structural equivalence

and the closest ideal blockmodel pattern:

As result of direct approach, the criterion function return the number of inconsis-
tencies, by block, of the partition, for this particular case, there are 20 inconsistencies
associated with the partition, as displayed in Table 2.12.

The ideal blockmodel associated to the diagonal block (c1, c1) is complete with two
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c1 c2 c3 c4

c1 complete null null null
c2 null null null null
c3 null null null null
c4 null complete null complete

Table 2.11: Baseball team image matrix for partition with (k = 4) based in structural equivalence

c1 c2 c3 c4

c1 2 1 1 0
c2 2 0 1 0
c3 5 1 7 0
c4 0 0 0 0

Table 2.12: Structural equivalent partition - Deviation error

inconsistencies, because there is no connection from Frank to Tim, nor from Boyd to
Tim. The block (c1, c2), has one inconsistency, Boyd has identified Tom as best friend in
what otherwise would be a null block.

The same thing hapens with the block (c1, c3), where the connection between Frank
and Darrin, is seen as an inconsistency, and so on.

Jerry

BenAmie

JohnTim
Boyd

Frank

Darrin

Tom

Ron

Jeff

Jay

Sandy

C2

C1

C3

C4

Figure 2.12: Structural equivalent partition - Diagram

The bigger number of inconsistency is concentrated in two blocks: (c1, c3) and (c3, c3),
it can be verified in Table 2.12, it suggests taking a closer look at the blockmodeling con-
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nections pattern and maybe partition size.

By using a relaxed the set of permitted block types and keeping the partition size as
four, we have as best unique partition:

1 2 5 6 10 11 12 13 7 8 9 3 4

c1

Ron 1 0 0 1 0 0 0 0 0 0 0 0 1 1
Tom 2 1 0 0 0 0 1 0 0 0 0 0 1 0
Tim 5 1 0 0 0 0 0 0 0 0 0 0 1 1
John 6 0 0 1 0 0 0 1 1 0 0 0 0 0
Jerry 10 1 0 0 1 0 0 0 0 0 0 0 0 0
Darrin 11 1 1 0 0 1 0 0 0 0 0 0 0 0

c2
Ben 12 1 0 0 1 1 0 0 0 0 0 0 0 0
Arnie 13 0 0 1 1 0 0 0 0 0 0 0 0 0

c3

Jeff 7 0 1 0 0 0 0 0 0 0 1 1 0 0
Jay 8 0 1 0 0 0 0 0 0 1 0 1 0 0
Sandy 9 0 1 0 0 0 0 0 0 1 1 0 0 0

c4
Frank 3 1 0 0 0 0 1 0 0 0 0 0 0 1
Boyd 4 1 1 0 0 0 0 0 0 0 0 0 1 0

Table 2.13: Partition with (k = 4) based on generalized blockmodeling

and connection pattern can be summarized as:

c1 c2 c3 c4

c1 regular row-dominant null row-dominant
c2 col-dominant null null null
c3 col-dominant null complete null
c4 col-dominant null null complete

Table 2.14: Baseball team image matrix for partition with (k = 4) using generalized blockmodeling

The error distribution across the blocks is equals zero, there are no inconsistencies:

c1 c2 c3 c4

c1 0 0 0 0
c2 0 0 0 0
c3 0 0 0 0
c4 0 0 0 0

Table 2.15: Generalized blockmodeling partition - Deviation error

The partition is in exact accordance with the given set of ideal blocks types, it’s a
clear improvement. Figure 2.13 displays the network with the partition produced by
generalized approach, that has an interesting interpretation.

To help the interpretation, the clusters are labeled as follows: c1 corresponds to the
cluster (Ron, Tom, Tim, John, Jerry, and Darrin); the cluster with (Ben and Arnie) is label
as c2; c3 corresponds to cluster composed of Jeff, Jay, and Sandy; and c4 is the labeled
for the cluster (Frank and Boyd). Cluster c3 is made up of actors that are between
themselves structurally equivalent: internally they are a maximal complete subgraph.
Externally they all send a tie to Tom, that belongs to cluster c1, meaning that Tom is the
element bridge between blocks c3 and c1. The nodes in c3 are not connected to other
clusters, the blocks: (c3, c2) and (c3, c4) are all null.
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The internal structure of cluster c1 is in accordance to the regular block type. As
John is connected to Ben and Arnie, the block (c1, c2) is row-dominant. Similarly, Tim
is connected to both Boyd and Frank, making the block (c1, c4) also row-dominant.

The block (c2, c1) is column-dominant, with Ben and Arnie connected to John. Since
the nodes in c2, are not connected to the other clusters, except c1, the blocks (c2, c4) and
(c2, c3) are all null. Because Frank and Boyd both cite Ron as best friend, the (c4, c1) is
column-dominant. As these two nodes also have a reciprocal connection, the internal
structure of the cluster is complete.

Finally, no connections between nodes from c4 to c2 or either c3.

C2

C1

C3

C4

Jerry

Ben

Arnie

John

Tim

Boyd Frank

Darrin

Tom

Jeff

Jay

Sandy
Ron

Figure 2.13: Generalized blockmodeling - Diagram

2.7 Extended generalized blockmodeling

As being mentioned earlier in this chapter, the conventional part of the block-modeling
framework is designed to deal with two type of equivalences: structural equivalence
and regular equivalence.

Structural equivalence is very strict and does not correspond to most of the real rela-
tionships. Regular equivalence is an attempt to make it more flexible and is considered
as a weak property.

The notion of equivalence has been merged into a more general framework where
the relations between the clusters (the image matrix) must be as close as possible to ideal
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blocks. For instance, the complete ideal block, that is a block where all the entries are 1,
correspond to the structural equivalence. The generalized block-modeling expands the
possibilities of the framework, but also requires some previous knowledge, as the size
of the partition and a pre-definition of the ideal models.

The extended generalized blockmodeling, introduced here, makes it possible to an-
alyze networks without any prior knowledge about them. For a formalization, let us
repeat some definitions and notations:

Given a clustering C = {c1, c2, . . . , cn}, let β(ci, cj) denote the set of all ideal blocks
corresponding to block R(ci, cj). β(ci, cj) defines the desired relationship between ci

and cj. We note F B
ij the error of clustering expressed as measures of difference from the

ideal block B ∈ β(ci, cj). F B
ij is a distance between B and R(ci, cj). Let eij be the minimal

error for the block R(ci, cj) :

eij = min
B∈β(ci ,cj)

F B
ij .

The global error is therefore:

P(C) = ∑
ci ,cj∈C

eij

Definition 2.7.1. Let N = (V, R) be the network and K be a integer, the generalized block-
modeling is defined as problem of finding a clustering C made of K clusters such that minimizes
the sum of discrepancy measures between the investigated empirical block model and the set of
ideal models.
Definition 2.7.2. The extended generalized blockmodeling is defined as problem of finding the
partition size and the set of ideal blocks that reduces the global error. The extended generalized
blockmodeling is the following combinatorial optimization problem :

min
C∈C

P(C)

That is the extended problem relaxes the cardinality constraint of the clustering and
we search among all possible clusterings.

To get a concrete idea of the number of possible partitions, let’s take as an example a
set with five units V = {a, b, c, d, e}. Considering that the number of partitions is fixed
to two, and the position of ideal blocks are pre-defined, we are going to have a set of 15
possible combinations.

In general, however, if there are n units, there are:

2n−1 − 1

different partitions with two clusters. The number of partitions exponentially increases
with the number of units.
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c1 c2 partition

1 a bcde {a, bcde}
2 b acde {b, acde}
3 c abde {c, acde}
4 d abce {d, abce}
5 e abcd {e, abcd}
6 ab cde {ab, cde}
7 ac bde {ac, bde}
8 ad bce {ad, bce}
9 ae bcd {ae, bcd}
10 bc ade {bc, ade}
11 bd ace {bd, ace}
12 be acd {be, acd}
13 cd abe {cd, abe}
14 ce abd {ce, abd}
15 de abc {de, abc}

Table 2.16: All partitions with k = 2

For the extended generalized blockmodeling, where we search among all possible
clusterings, meaning n units into k clusters, the number of all possible partitions is
equal to the second-order Stirling number sum-up to the all possible combinations of
the number of ideal blocks z in k positions :

S(n, k) =
1
k!

k

∑
i=0

(−1)k−i

(

k
i

)

in +

(

z
k

)

If we wanted to cluster the preceding five units into three clusters, we could search
for the best clustering over the set of 25 partitions. In contrast, the number of all possible
partitions of 50 units into 10 clusters is:

S(50, 10) = 562949953421311

Clearly, searching across all partitions to locate those partitions with the smallest
value of a criterion function is a tough computational problem.

For general graphs, most clustering problems are NP-hard. On the other hand, 1-
dimensional clustering problem can be solved efficiently. The complexity of most 2-
dimenslonal clustering problems is not known [8].

In the next chapter we present the integer linear programing model proposed to
tackle the extended generalized problem defined in this section.

2.7.1 Concluding Remarks
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Chapter 3

ILP for Extended Generalized
Blockmodeling

Blockmodeling is a technique which has been developed for analysing networks, and
especially social networks (which are, most of the time, given through a binary rela-
tion between peoples or units). It consists in clustering (i.e. partitioning) the nodes of
the network in such a way that the relationships between two clusters as well as the
relationships inside a cluster match as well as possible some predefined models (the
so-called ideal blocks). In this chapter, we will provide the first Combinatorial Opti-
mization model to Blockmodeling. We will provide numerical experiments and general
comments on the approach.

3.1 Introduction

The aim of this chapter is to summarize the model that has been implemented and
numerically tested. It is assumed that the set of ideal blocks (the targets of the clusteri-
sation) are the following ones :

1. Null block: this block is made of "zeros". Actually, according to the kind of block
to which it is assigned, there exists 3 types of null blocks. Whenever, the null
block is assigned to a diagonal block, 3 variations have to be considered: Null
block with a null diagonal, Null block with a diagonal of 1 and Null block with-
out diagonal (without any request for the diagonal). Whenever the Null block is
assigned to a non-diagonal block,its own diagonal does not make sense.

2. Complete block: This block is made of one with the same 3 variations as for Null
block whenever the Complete block is assigned to a diagonal block.

3. Row Regular block: At least one 1 in each row.

4. Column Regular block: symmetric case of the Row Regular, each column has at
least one 1.
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5. Regular block: an ideal block which is both row and column regular.

6. Row Dominant block: this block must have at least one line of 1, except on the
diagonal whenever the Row Dominant block is assigned to a diagonal block.

7. Column Dominant block. Symmetric Ideal block of the Row Dominant block (that
is a Column Dominant block has a column of one - may be except on the diago-
nal).

8. Row Functional: same as the Row Regular block except that each line must have
exactly one 1.

9. Column Functional: symmetric of the previous one, same as Column Regular,
except that each column must contain exactly one 1.

The remainder of this chapter is organized as follows. In the next section, we give
the data of our problem while at section 3.4 we present the decision variables, which
basically consist of the set of quantities that need to be determined in order to solve our
problem. The entire model is presented in section 3.5, where we start by presenting the
objective function used to evaluate the quantitative criterions, imposed by the shared
constraints 3.5.2 and 3.5.3 which are the set of inequality and equality that express the
limitations on decisions. Note that modelling some of the above ideal blocks leads to
introducing additional variables, that we will introduce whenever it will be needed. In
section ?? we provide the numerical experiments and in the last section we present the
conclusions and some remarks.

3.2 The proposed ILP approach

3.3 Data

The data are the following ones:

• A relation matrix s, or a binary relation R, or a graph G = (V, E) since the 3
entities are equivalent. In the remaining of the paper, we will work with the
relation matrix s, that is: sij = 1 if and only if iRj, which, in turn, is equivalent to
(i, j) ∈ E. Note that s is symmetric⇔ R is symmetric⇔ G is undirected.

• N the number of nodes in G.

• K the number of clusters that is requested by the user. In our generic approach, K
is either the exact number of clusters that the user wishes or a maximum number
of clusters (that is, the user can let the program choose the right number of clusters
between 1 and K). Obviously, these two options lead to different models. In this
paper, we will present the model whenever the program chooses the number of
clusters.

• βk,l the set of ideal blocks that have to be considered for the block (k, l). In practice,
it seems very difficult to establish such a set a priori. We therefore decided to
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consider only two configurations (also to be defined by the user): βd and βo. βd

is the set of ideal blocks to be considered for the diagonal blocks, while βo is
the set of ideal blocks for off-diagonal blocks, i.e. ∀k ∈ {1, ..., K}, βk,k = βd and
∀k ∈ {1, ..., K}, ∀l ∈ {1, ..., K}, l 6= k, βk,l = βo

• Pb
k,l , ∀k ∈ {1, ..., K}, ∀l ∈ {1, ..., K} and ∀b ∈ βk,l , a penalty coefficient for assigning

b to (k, l).

3.4 Decision Variables

In this section, for the sake of clarity, we only introduce the "shared" decision vari-
ables, that are the decision variables which are indispensable for modelling the prob-
lem, whatever the sets βk,l are. Nevertheless, modelling some particular ideal blocks
leads to introducing new variables. They will be listed when necessary.

• Fb
k,l the error (or deviation) of block (k, l) if the ideal block b is chosen for (k, l).

Fb
kl =







deviation of (k, l) with respect to b if b is assigned to k, l

0 otherwise

• wb
kl =







1 if b is assigned to (k, l)

0 otherwise

• xik =







1 if entity i is assigned to cluster k

0 otherwise

• yijkl = xikxjl =







1 if i is assigned to cluster k and j to cluster l

0 otherwise

• ek =







1 if cluster k is empty

0 otherwise

Note that this variable is forced to zero whenever the user wishes to fix the num-
ber of clusters.

We can now introduce the model.
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3.5 Model

3.5.1 Objective Function

We want to minimize the total (and penalized) deviation:

min
K

∑
k=1

K

∑
l=1

∑
b∈βk,l

Pb
k,l F

b
k,l

3.5.2 Shared Constraints

Shared Constraints are constraints which are independent from the ideal blocks.

• Each node i must belong to one cluster:

K

∑
k=1

xik = 1 ∀i ∈ {1...N} (3.1)

• A non-empty cluster muts have at least one node

N

∑
i=1

xik ≥ 1− ek ∀k ∈ {1...K} (3.2)

• Each block must have an ideal block:

∑
b∈βk,l

wb
ik = 1 ∀k ∈ {1...K} ∀l ∈ {1...K} (3.3)

• Linearisation constraints:

yijkl ≤ xik ∀k ∈ {1...K} ∀l ∈ {1...K} ∀i ∈ {1...N} ∀j ∈ {1...N} (3.4)

yijkl ≤ xjl ∀k ∈ {1...K} ∀l ∈ {1...K} ∀i ∈ {1...N} ∀j ∈ {1...N} (3.5)

yijkl ≥ xik + xjl − 1 ∀k ∈ {1...K}, ∀l ∈ {1...K}, ∀i ∈ {1...N}, ∀j ∈ {1...N}, i 6= j(3.6)

3.5.3 Ideal Block Constraints

In this subsection, the model for computing the error for each block and each available
ideal block are given.
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Null Block Constraints

For a Null Block, the error is the number of 1 that the block (k, l) contains. As indicated
previously, there exist 3 variations for the null block, when it is assigned to a diagonal
block: with a zero diagonal, a one diagonal or without taking into account the diagonal.
Hence, we will consider 3 constraints according to the kind of null block and to their
position.

• If k 6= l, that is for a non-diagonal block or for k = l without taking into account
the diagonal (NBWD in the remaining):

F0
kl ≥

N

∑
i=1

∑
j 6=i

sijyijkl + N2(w0
kl − 1) ∀(k, l)such that NBWD ∈ βkl (3.7)

Note that the maximum deviation for the Null Block is N2 and, thus, if the Null
block is not selected for (k, l), the right hand of the constraints becomes non posi-
tive, so that the constraint is no more active.

• if k = l and the Null Block is actually a Null Block with diagonal of 1(NBDO in
the remaining), then the error must also include the number of 0 on the diagonal.
For this purpose, it is needed to introduce a new variable δ0

k to summarize the
number of 0 on the diagonal. We then have to introduce a new constraint:

δ0
k =

N

∑
i=1

(1− sii)xik ∀k ∈ {1, ..., K} (3.8)

The constraint for computing the error is thus:

F1
kk ≥ δ0

k +
N

∑
i=1

∑
j 6=i

sijyijkk + N2(w1
kk − 1) ∀(k, l)such that NBDO ∈ βkl (3.9)

• if k = l and the Null Block is actually a Null Block with diagonal of 0 (NBDZ), the
deviation must now include the number of 1 on the diagonal. Hence, we have to
introduce a new variable δ1

k and a new constraint:

δ1
k =

N

∑
i=1

siixik ∀k ∈ {1, ..., K} (3.10)

and then:

F2
kk ≥ δ1

k +
N

∑
i=1

∑
j 6=i

sijyijkk + N2(w2
kk − 1) ∀(k, l)such that NBDZ ∈ βkl (3.11)
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Complete Block Constraints

The Complete block is quite similar to the Null Block, except, obviously, that it is full of
1. We thus have to consider the same three cases:

• If k 6= l, that is for a non-diagonal block or for k = l without taking into account
the diagonal (CBWD):

F3
kl ≥

N

∑
i=1

∑
j 6=i

(1− sij)yijkl + N2(w3
kl − 1) ∀(k, l)such that CBWD ∈ βkl (3.12)

• if k = l and the Complete Block is actually a Complete Block with diagonal of
(CBDZ):

F4
kk ≥ δ1

k +
N

∑
i=1

∑
j 6=i

(1− sij)yijkk + N2(w4
kk − 1) ∀(k, l)such that CBDZ ∈ βkl(3.13)

• if k = l and the Complete Block is actually a Complete Block with diagonal of 1
(CBDO):

F5
kk ≥ δ0

k +
N

∑
i=1

∑
j 6=i

(1− sij)yijkk + N2(w5
kk − 1) ∀(k, l)such that CBDO ∈ βkl(3.14)

Row Regular Block Constraints

For this block (RRB in the remaining), the deviation is actually the number of lines
which are not 1-covered. In other words, we need to count the number of null lines.
That can be done by introducing new variables:

αik =







1 if i belongs to cluster k and if the corresponding line is not 1-covered

0 otherwise

We thus have:

∑
j 6=i

sijyijkl + αik ≥ xik ∀i ∈ {1, ..., N}, ∀k ∈ {1, ..., K} (3.15)

and:

F6
kl ≥

N

∑
i=1

αik + N(w6
kl − 1) ∀(k, l)such that RRB ∈ βkl (3.16)
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Column Regular Block Constraints

This is the symmetric case of the Row Regular Block (CRB in the remaining). We thus
need to count the number of null lines in the block (k, l):

γjl =







1 if j belongs to cluster l and if the corresponding column is not 1-covered

0 otherwise

with the following constraint:

∑
i 6=j

sijyijkl + γjl ≥ xjl ∀j ∈ {1, ..., N}, ∀l ∈ {1, ..., K} (3.17)

and:

F7
kl ≥

N

∑
j=1

γjl + N(w7
kl − 1) ∀(k, l)such that CRB ∈ βkl (3.18)

Regular Block Constraints

This block (RB) is both Row and Column Regular, so that:

F8
kl ≥

N

∑
i=1

γil +
N

∑
i=1

αik + 2N(w8
kl − 1) ∀(k, l)such that RB ∈ βkl (3.19)

Row Dominant Block Constraints

This ideal block (RDB) must contain at least one row of 1, may be except on the diagonal
(whenever it is assigned to a diagonal block). Once more, we actually have to consider
several cases.

• If k 6= l, that is for a non-diagonal block, the deviation is thus the minimum
number of 1 that we have to add to reach a complete line of 1. Hence, the "error"
related to node i, if it belongs to cluster k, is exactly the difference between the
number of columns in block (k, l) and the number of 1 on line i, that is:

N

∑
j=1

xjl −
N

∑
j=1,j 6=i

sijyijkl

We therefore need to introduce a new variable:

ϑikl =







missing number of 1 in block l on line i if i belongs to k

0 otherwise
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and a new constraint:

ϑikl ≥
N

∑
j=1

xjl −
N

∑
j=1,j 6=i

sijyijkl + N(xik − 1)

Furthermore, since we are looking for the smallest number of 1, we must also
have:

F9
kl ≤ ϑikl

and

F9
kl ≥

N

∑
i=1

ziklϑikl + N(1− w9
kl)

where zikl is a binary variable which indicates if i is achieving the smallest error
for block (k, l). Thus, an additional constraint must be added:

N

∑
i=1

zikl = 1− ek

and, since we can’t select i for achieving the minimum if it does not belong to
block k:

zikl ≤ xik

Nevertheless, we have to linearise the products ziklϑikl which implies to introduce
a new and non-negative variable oikl . Finally, modelling the Row Dominant block
for a non-diagonal block induces the following constraints:

ϑikl ≥
N

∑
j=1

xjl −
N

∑
j=1,j 6=i

sijyijkl + N(xik − 1) ∀i ∈ {1...N}, ∀(k, l)s.t. RDWD ∈ βkl(3.20)

F9
kl ≤ ϑikl ∀i ∈ {1...N}, ∀(k, l)s.t. RDWD ∈ βkl (3.21)

F9
kl ≥

N

∑
i=1

oikl + N(1− w9
kl) ∀(k, l)s.t. RDWD ∈ βkl (3.22)

N

∑
i=1

zikl = 1− ek ∀(k, l)s.t. RDWD ∈ βkl (3.23)

zikl ≤ xik ∀i ∈ {1...N}, ∀(k, l)s.t. RDWD ∈ βkl (3.24)

oikl ≤ Nzikl ∀i ∈ {1...N}, ∀(k, l)s.t. RDWD ∈ βkl (3.25)

oikl ≤ ϑikl ∀i ∈ {1...N}, ∀(k, l)s.t. RDWD ∈ βkl (3.26)

oikl ≥ ϑikl + N(zikl − 1) ∀i ∈ {1...N}, ∀(k, l)s.t. RDWD ∈ βkl (3.27)
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• For a diagonal block (k = l), the Row Dominant Block without taking into account
the diagonal, following the same steps as above, gives:

ϑikk ≥
N

∑
j=1,j 6=i

xjl −
N

∑
j=1,j 6=i

sijyijkk + N(xik − 1) (3.28)

F10
kk ≤ ϑikk (3.29)

F10
kk ≥

N

∑
i=1

oikk + N(1− w10
kk) (3.30)

N

∑
i=1

zikk = 1− ek (3.31)

zikk ≤ xik (3.32)

oikk ≤ Nzikk (3.33)

oikk ≤ ϑikk (3.34)

oikk ≥ ϑik + N(zikk − 1) (3.35)

• For a diagonal block (k = l), the Row Dominant Block with diagonal of 1, follow-
ing the same steps as above, gives:

ϑikk ≥
N

∑
j=1,j 6=i

xjl −
N

∑
j=1,j 6=i

sijyijkk + (1− sii)xik + N(xik − 1) (3.36)

F11
kk ≤ ϑikk (3.37)

F11
kk ≥

N

∑
i=1

oikk + N(1− w11
kk) (3.38)

N

∑
i=1

zikk = 1− ek (3.39)

zikk ≤ xik (3.40)

oikk ≤ Nzikk (3.41)

oikk ≤ ϑikk (3.42)

oikk ≥ ϑik + N(zikk − 1) (3.43)
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• And for a diagonal block (k = l), the Row Dominant Block with diagonal of 0
gives:

ϑikk ≥
N

∑
j=1,j 6=i

xjl −
N

∑
j=1,j 6=i

sijyijkk + siixik + N(xik − 1) (3.44)

F12
kk ≤ ϑikk (3.45)

F12
kk ≥

N

∑
i=1

oikk + N(1− w12
kk) (3.46)

N

∑
i=1

zikk = 1− ek (3.47)

zikk ≤ xik (3.48)

oikk ≤ Nzikk (3.49)

oikk ≤ ϑikk (3.50)

oikk ≥ ϑik + N(zikk − 1) (3.51)

Column Dominant Block Constraints

This is obviously the symmetric case of the Row Dominant Block. Hence, we still have
4 cases to consider:

• For a non-diagonal block (k, l):

ϑ′jkl ≥
N

∑
i=1

xik −
N

∑
i=1,i 6=j

sijyijkl + N(xjl − 1) (3.52)

F13
kl ≤ ϑjkl (3.53)

F13
kl ≥

N

∑
j=1

o′jkl + N(1− w13
kl ) (3.54)

N

∑
j=1

z′jkl = 1− el (3.55)
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z′jkl ≤ xjl (3.56)

o′jkl ≤ Nz′jkl (3.57)

o′jkl ≤ ϑ′jkl (3.58)

o′jkl ≥ ϑ′jkl + N(z′jkl − 1) (3.59)

where ϑ′, o′ and z′ are variables similar to the previous section.

• For a diagonal block (k = l), the Column Dominant Block without taking into
account the diagonal gives:

ϑ′jkk ≥
N

∑
i=1,j 6=i

xik −
N

∑
i=1,i 6=j

sijyijkk + N(xjk − 1) (3.60)

F14
kk ≤ ϑ′jkk (3.61)

F14
kk ≥

N

∑
j=1

o′jkk + N(1− w14
kk) (3.62)

N

∑
j=1

z′jkk = 1− ek (3.63)

z′jkk ≤ xjk (3.64)

o′jkk ≤ Nz′jkk (3.65)

o′jkk ≤ ϑ′jkk (3.66)

o′jkk ≥ ϑjk + N(zjkk − 1) (3.67)

• For a diagonal block (k = l), the Column Dominant Block with diagonal of 1
gives:

ϑ′jkk ≥
N

∑
i=1,i 6=j

xik −
N

∑
i=1,i 6=j

sijyijkk + (1− sjj)xjk + N(xjk − 1) (3.68)
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F15
kk ≤ ϑ′jkk (3.69)

F15
kk ≥

N

∑
j=1

o′jkk + N(1− w15
kk) (3.70)

N

∑
j=1

z′ikk = 1− ek (3.71)

z′jkk ≤ xjk (3.72)

o′jkk ≤ Nz′jkk (3.73)

o′jkk ≤ ϑ′jkk (3.74)

o′jkk ≥ ϑ′jk + N(z′jkk − 1) (3.75)

• And for a diagonal block (k = l), the Column Dominant Block with diagonal of 0
gives:

ϑ′jkk ≥
N

∑
i=1,i 6=j

xik −
N

∑
j=1,j 6=i

sijyijkk + sjjxjk + N(xjk − 1) (3.76)

F16
kk ≤ ϑ′jkk (3.77)

F16
kk ≥

N

∑
j=1

o′jkk + N(1− w16
kk) (3.78)

N

∑
j=1

z′jkk = 1− ek (3.79)

z′jkk ≤ xjk (3.80)

o′jkk ≤ Nz′jkk (3.81)

ojkk ≤ ϑ′jkk (3.82)

o′jkk ≥ ϑ′jk + N(z′jkk − 1) (3.83)

50



3.5. Model

Row Functional Block Constraints

The Row Functional Ideal Block (RFB in the remaining) is defined as having exactly
one 1 per line. As a consequence, the deviation of block (k, l) with respect to the Row
Functional Block is the sum over the lines of the error on each line which, in turn, is
equal to the absolute value of the difference between the number of 1 on the line and
1. We thus need to introduce a new variable which will represent this absolute value
(taking into account that we are minimizing the total deviation):

θikl =



















|
N

∑
j=1

sijyijkl − 1| if i belongs to k

0 otherwise

and the corresponding constraints:

θikl ≥ −1 +
N

∑
j=1

sijyijkl + N(xik − 1) ∀i ∈ {1, ..., N}, ∀(k, l) s.t. RFB is inβkl (3.84)

θikl ≥ 1−
N

∑
j=1

sijyijkl + N(xik − 1) ∀i ∈ {1, ..., N}, ∀(k, l) s.t. RFB is inβkl (3.85)

which ensures that θikl is actually equal to the absolute value whenever i ∈ k. The
global deviation is then:

F17
kl ≥

N

∑
i=1

θikl + N2(w17
kl − 1) ∀(k, l) s.t. RFB is inβkl (3.86)

Column Functional Block Constraints

The Column Functional Ideal Block (CFB in the remaining) is the symmetric of the Row
Functional Block, so that we need to define:

θ′jkl =



















|
N

∑
i=1

sijyijkl − 1| if j belongs to l

0 otherwise

and to add the following constraints:

θ′jkl ≥ −1 +
N

∑
i=1

sijyijkl + N(xjl − 1) ∀j ∈ {1, ..., N}, ∀(k, l) s.t. CFB is inβkl (3.87)
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θ′jkl ≥ 1−
N

∑
i=1

sijyijkl + N(xjl − 1) ∀j ∈ {1, ..., N}, ∀(k, l) s.t. CFB is inβkl (3.88)

F18
kl ≥

N

∑
j=1

θ′jkl + N2(w18
kl − 1) ∀(k, l) s.t. CFB is inβkl (3.89)

3.6 Computational Experiment

To evaluate the scalability and behavior of ILP, we generated synthetic datasets using
the LFR benchmark provided by Lancichinetti et al. (2008) [35]. The advantage of using
a synthetic data is that it allows control of the data distributions used for testing so that
it helps to make a fair comparison of algorithm performance. LFR is a benchmark so-
lution that generates artificial networks which resemble real-world networks and also
provide the built-in community structure.

Knowing that it is impossible to define a single metric that will provide a fair com-
parison in all possible situations, the benefits of LFR over other methods is that it repre-
sents the heterogeneity in the distributions of node degrees and community sizes. The
heterogeneity distributions of node degree, whose tails often decay as power laws, is
an important feature of real network responsible for a number of remarkable features,
such as resilience to random failures/attacks [3], and the absence of a threshold for
percolation [16] and epidemic spreading [37].

LFR requires as input parameters: the exponent values of the power law of the de-
gree distribution γ and of the community-size distribution β, amount of inter-community
connections defined by the mixing parameter µ, an average node degree kmin, and the
maximum degree kmax.

The algorithm generates an unspecified number of communities with a defined
number of vertices, with an average degree that can vary and are distributed according
to a power-law. In addition, the community sizes also follow a power-law distribution,
taking in account the amount of inter-community connections.

In our experiments we set the exponent values of γ and β to 2 and 1 respectively,
following other networks examples (Clauset et al. 2009). The average degree kmin is
adjust regarding the size of the networks, as it follow kmin = {4, 4N/9, 2N/3} and
kmax = (N − 1). Four different values of the mixing parameter µ = {0.1, 0.3, 0.2, 0.6}
are used. The first one corresponds to well-separated communities, while the second
one is not far from the limit where the networks have no community structure. For each
configuration of the synthetic datasets, we generate 10 different community-model for
simmetric and directed networks. In the presented set of experiments, the network size
used are N = 15 and N = 20, once the proposed ILP model is limited to instances sizes
where N < 25.
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The results suggest that ILP Model is sensitive to changes in the mixing parameter
µ, and in most examples, performances get better when the average degree increases
and mixing parameter decreases. This may be due to an increase of the density inside
clusters that makes the community more visible. On the other hand, if the links be-
tween clusters increase in the same proportion, the effect is distributed among many
communities.

The ILP model presented in this chapter explores the symmetry of the problem by
generating half the variable space for a non oriented graph. Such a strategy can be used
since variables can be exchanged without changing the structure of the problem.

All reported results show on average symmetric networks perform better, even if
time can vary significantly for instances with bigger values for kmin.

The experiments were conducted on anllllllll/ AMD 2.6 GHz server with 500 GB of
memory and running Debian GNU/Linux 7 and developed using C++.
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N = 15
(4 ≥ k ≥ 14)

N = 15
(6 ≥ k ≥ 14)

N = 15
(10 ≥ k ≥ 14)

µ Average time µ Average time µ Average time
0.1 224,065 0.1 163,597 0.1 133,843
0.2 230,532 0.2 240,340 0.2 137,36
0.3 235,35 0.3 347,256 0.3 152,462
0.6 291,206 0.6 352,239 0.6 177,044

N = 20
(4 ≥ k ≥ 19)

N = 20
(8 ≥ k ≥ 19)

N = 20
(13 ≥ k ≥ 19)

µ Average time µ Average time µ Average time
0.1 2699,465 0.1 2252,961 0.1 2152,047
0.2 2500,000 0.2 2300,025 0.2 2023,062
0.3 3000,583 0.3 3044,687 0.3 2332,837
0.6 2044,532 0.6 2089,571 0.6 2505,503

Table 3.1: Symmetric Networks

N = 15
(4 ≥ k ≥ 14)

N = 15
(6 ≥ k ≥ 14)

N = 15
(10 ≥ k ≥ 14)

µ Average Time µ Average Time µ Average Time
0.1 859,904 0.1 839,556 0.1 73,128
0.2 830,98 0.2 754,43 0.2 137,36
0.3 687,713 0.3 929,399 0.3 208,984
0.6 1069,941 0.6 524,647 0.6 113,48

N = 20
(4 ≥ k ≥ 19)

N = 20
(8 ≥ k ≥ 19)

N = 20
(13 ≥ k ≥ 19)

µ Average Time µ Average Time µ Average Time
0.1 2548,841 0.1 2362,241 0.1 1733,811
0.2 2600,750 0.2 2467,056 0.2 1990,017
0.3 3605,17 0.3 2958,363 0.3 2942,173
0.6 3023,843 0.6 2403,17 0.6 3249,491

Table 3.2: Directed Networks
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3.7 Concluding Remarks

The model presented in this chapter includes 89 families of constraints and a huge num-
ber of variables, even for small graphs. Nevertheless, we have implemented a lighter
(and better but more complicated to expose) version of this model: it turns out that
the "basic" variables xik artificially induce symmetries. In order to eliminate these ar-
tificial symmetries and to reduce the number of x and y variables, we just defined xik

for k = 0, ..., min(i, K). We also eliminated the variables which are necessary equals
(yijkl = yjilk). As a consequence, the expressions of the above constraints are slightly
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modified.

Furthermore, we (still partially) developed a preprocessing step to:

• take advantage of the symmetry of the problem when it has to. If the graph is
undirected, then, Fb

kl = Fb′

lk if b and b′ are symmetric ideal blocks.

• avoid generating "dominated" blocks: for instance, if the graph has no loop (i.e.
if sii = 0∀i) then the Complete Block with diagonal of 0 can only give the same
deviation than the Complete Block without diagonal, and both of them, will be
better than the Complete block with diagonal of 1. It is then sufficient to consider
only one of these 3 ideal blocks.
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Chapter 4

VNS for Extended Generalized
Blockmodeling

In this chapter, we will present a non-exact approach to generalized extended block
modeling, followed by six sections. Section 1 presents a brief description of the limita-
tions of the generalized block modeling problem and ILP formulation. Section 2, is de-
voted to the overview of relevant literature in the field. Then, in section 3, we reviewed
the generalized extended formulation problem in order to facilitate the description of
section 4, where a new approach is presented to the extended generalized blockmodel-
ing problem based on the VNS algorithm. The chapter finishes with a computational
evaluation of the proposed algorithm by comparing it to other relevant works, followed
by concluding remarks.

4.1 Introduction

Intuitive clustering consists of discovering natural groups (clusters) of similar elements
in data set. The importance of uncovering network sub-structures within a network is
historically well grounded. Such efforts are justified by a relevant number of scientific
fields with pratical applications, such as medicine (vanMechelen et al., 2004), biological
science (Madeiraa nd Oliveira, 2004; Preli c et al.,2006; van Uitert et al., 2008), psychol-
ogy (Schepers and van Mechelen, 2011), political science (Doreian et al., 2013; Mische
and Pattison, 2000), computer science (Protti et al.,2009), industrial engineering (Selim
et al., 1998), and organizational science (Davist al., 1941; Galaskiewicz, 1985), as well
as the general literature on classification (Mirkin et al., 1995; van Rosmalen et al., 2009;
Wilderjans et al., 2013).

The extended generalized blockmodeling formulation belongs to a class of discrete
optimization problems with a finite but often also large solution space. Moreover, the
generalization embraces many variants of the problem, such as graph editing, clique
partitioning problem and so on which is known to be NP-hard (Protti et al., 2009).
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Naturally, ILP methods can provide optimal solutions, but, on the other hand, it
requires more computing time. Some exact formulations has been designed for block-
modeling problems: Brusco et al. ( 2013); Brusco and Steinley, 2009), these are restricted
to problems of size 25 × 25 and smaller. In contrast, an approximate procedure designed
by Doreian et al. (2004, 2005) that often find a globally optimal blockmodels for modest
sizes of networks indicating to be scalable for larger networks.

Regarding non-exact methods, the VNS algorithm has been indicated in many dif-
ferent studies as a good alternative to tackle blockmodeling clustering problems, usu-
ally with efficient performance.

According Chan et al. (2014), the current state-of-the-art algorithm (Doreian et
al. 2005), does not scale beyond networks of 100 vertices, generalised blockmodelling
could only be applied to a limited number of small networks. In addition, even though
there are density-based blockmodelling approaches that scale beyond 100 vertices (Xing
et al.2010), the blockmodelling problems which they solve do not have nor consider
block types. Therefore, these existing approaches can not be used to solve the extended
generalized block modeling approach, since it requires prior knowledge of block types
in order to optimize block types.

In this chapter we present a VNS heuristic approach designed to extended general-
ized blockmodeling class of problems, capable to deal with instances with 300 vertices.

4.2 Literature overview

The increasing interest in social network analyses, in the last few years, combined
with the limitations imposed by direct methods, has led to a variety of research ef-
forts devoted to the development of new approaches to tackle block-modeling prob-
lems through non-exact methods.

Most blockmodeling applications focus on problems where the purpose is to group
a set of objects. Among the first methods used to accomplish such task are Ward’s
hierarchical grouping method (1963) and p-median clustering (Mulvey and Crowder,
1979). Another common alternative is to apply some variant of the K-means partition-
ing algorithm (Forgy, 1965; Hartigan and Wong, 1979; MacQueen, 1967), that focuses
on the minimization of the sum of the squared Euclidean distance of each object from
its cluster centroid.

According to Dorean et al. (2005) the main limitations with those first studies, is that
they use the data indirectly to cluster the objects based on some distance measures, as
discussed in chapter 2, section indirect methods.

Alternatively Doreian et al. (2004, 2005) propose a relocation heuristic for block-
modeling based on structural equivalence, that deals directly with the data. The algo-
rithm starts with a random partition and improves it using basically two operations:
by transferring objects from one cluster to another and exchanging the cluster member-
ships of objects in different clusters. The relocation algorithm manages to converge to a
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blockmodel that is locally optimal in the sense that there is no transfer or exchange that
will reduce the number of inconsistencies with ideal block structure. The algorithm is
restarted multiple times, to generate a large number of random initial partitions, in-
creasing then the chances of finding the global optimum (or, at least, avoiding a poor
local optimum).

A specific study dedicated to generalized blockmodeling is presented by Brusco
and Steinley (2007) [11]. In this paper they focus on generalized block modeling using
a VNS method to cluster a two-mode binary matrix. The two-mode clustering prob-
lems arise when it is necessary to cluster two disjointed sets of entities of a matrix. As
examples that illustrate such problems, we can mention: clustering a group of women
and social events attended (Davis, Gardner, and Gardner, 1941), clustering Supreme
Court justices and a collection of judicial cases (Doreian et al., 2004), and clustering
government organizations and political projects relevant to the organizations (Mische
and Pattison, 2000).

Brusco and Steinley (2007) [11] ended the study concluding their algorithm per-
forms extremely well, but the value of the method is diminished by the assumption
that block placements are known. In addition, according to the authors, their approach
has two main limitations: the first one is associated with the method and analyses re-
ported in the paper. All simulation and analyses are restricted to structural equivalence.
Second, is the assumption that the number of clusters for both row and column objects
was known. As mention by Brusco and Steinley (2007) [11], the determination of the ap-
propriate number of clusters remains a challenging issue in one-mode cluster analysis,
and is even more complex in two-mode clustering.

Later on, Brusco et al. (2013) publish a VNS method for a two-mode block-modeling
problem in social network analysis, where they do a extensive comparative study us-
ing artificial and real networks, the VNS heuristic proposed outperformed relocation
heuristic (RH) and tabu search (TS) method for all problems. Again, the technique is
based in the assumption that block placements are fixed, as the size of partition as well.
Overall, their results suggest that the VNS heuristic is a promising approach.

Another interesting study is by Chan et al. (2014) [32] using evolutionary comput-
ing. They present two new algorithms: first, a genetic algorithm based approach and
the second, a simulated annealing based one. Their approach permits partial or com-
plete pre-specification of block models, allowing confirmatory and exploratory types
of analysis to be performed. Although for all analyzed experiments the image matrices
are pre-specified. Genetic algorithms are known to be able to tackle hard combinato-
rial optimisation problems. However the success of any (GA) approach really depends
on the design of its search operators and appropriate integration. Chan et al.(2014)
had developed a efficient approach, faster than existing ones and capable to deal with
medium-sized real world networks.

In this chapter we described our VNS approach to tackle the extend generalized
blockmodeling designed for medium-sized real-world networks that do not require
pre-specified information.
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4.3 Formulation

To facilitate the description of the VNS approach proposed in this chapter, let us recall
some basic notations and definition of extended generalized blockmodeling problem.

1. A network is a set of objects NxN which can be defined as a graph G = (V, R),
where V is a set of nodes and R a set of edges.

2. The set of edges are represented by the binary matrix S : (vi, vj) ∈ R⇔ Sij = 1, if
vertex vi is connected to vertex vj, and 0 otherwise.

3. A cluster c is a set of nodes of V = {v1, . . . , vn} that share structural characteristics
in terms of relationship B. Let’s consider C as the clustering which divides the
relation R into blocks: R(ck, cl) = R ∩ ck × cl .

4. If S is the adjacency matrix of G. The block (k, l) associated to the partitions Ck

and Cl is a sub-matrix of S, where the line indexes are in Ck, and the column
indexes in Cl .

5. An ideal block B is type of graph and can be see as a matrix, used to define the
desired relationship between the clusters ci and cj.

6. Let F B
ij be clustering deviation measure, which expresses error between the block

(k, l) and an ideal block B ∈ β(ci, cj), and eij be the minimal error for the block
R(ci, cj) :

eij = min
B∈β(ci ,cj)

F B
ij .

7. The global error is therefore:

P(C) = ∑
ci ,cj∈C

eij

Definition 4.3.1. The extended generalized blockmodeling is defined as problem of finding the
partition size and the set of ideal blocks that reduces the global error. The extended generalized
blockmodeling is the following combinatinal optimization problem:

min
C∈C

P(C)

4.4 The variable neighborhood search algorithm

Metaheuristics are a general framework to build heuristics. The Variable Neighborhood
Research (VNS) is a metaheuristic framework to solve combinatorial optimization prob-
lems, which explores a solution space by performing iteratively neighborhood changes.

The VNS was first introduced by Mladenović and Hansen in 1997, it has been sug-
gested as an effective methodology to deal with a variety class of blockmodeling prob-
lems by different authors.
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The VNS consists basicaly of a stochastic component, shaking phase, and a deter-
ministic component, the local search. The shaking randomized selection of a neighbor,
the local search compare the solution obtained with the incumbent one and will be
accepted as a new starting point, if an improvement was made, otherwise it will be
rejected. The iterative process is repeated until the stopping criteria are met.

Let N = {N(1), N(2), . . . , N(k)} denote a finite set of neighborhoods, where Nk(s) is
the set of solutions in the kth neighborhood of solution s, the basic steps of the algorithm
are announced as follows:

1. Initialization:

• Set the neighborhood structure Nk

• Determine an initial solutions s

• Set k = 1

2. Repeat:

• Shaking: Generate a random solutions s′ in Nk(s)

• Local search: Apply some local search method with s′ as initial solution, let
s′′ be the new local optimum obtained.

• Move or not: If s′ is better than s the incumbents, then sets s = s′ and con-
tinue the search with k = 1 else k = k + 1

4.4.1 Initialization

The initial solution can be created in many ways. Hansen and Mladenović (2002) in
[25], present a scheme for a large class of problems, in order to obtain an efficient VNS
implementation. They say, based in their experiments, that VNS results depend very
little on the chosen initialization rule. Their suggestion is: the simplest rule is thus best
one. They also states that might be such problems which this approach is not extended.

Happens that many VNS researches conducted on the blockmodeling problem shows
that the selection of a good initial solution is crucial for avoiding convergence to poor
local maxima.

Some implementations of the blockmodeling, such as Brusco and Steinley (2007)[11],
use purely random assignment of objects to clusters, to establish initial partition. This
approach can guarantees a good coverage of the search space, but for large networks it
require many iterations until a local optimum is reached.

Another common approach used on the blockmodeling problem, consists of con-
structing the initial partition using some degree of randomness, by fixing few elements
into some clusters and let the rest of the elements be assigned randomly. The draw back
of this approach is that, for each iteration, the partition may not change that much, in-
creasing the probability of getting stuck in a local minima.
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Knowing that the initial solution plays an important role, by helping to decrease
the time an heuristic need to achieve an acceptable outcome, we design a initialization
process which measures distance between candidate solutions.

The initialize procedure randomly generates all possible partition sizes, then calcu-
lates the deviation value P(C) for each partition, choosing as first incumbent the candi-
date solution which holds the smallest value of P(C). P holds the size of the candidate
solutions sorted in descending order with respect to deviation measure, P will be used
in the shaking phase.

Algorithm 1

1: function INITIALISE( P) ⊲ σ(n) is a permutation randomly generated and n = |V|
2: i← n
3: t← σ(i)
4: C its a random partition with t clusters
5: while i ≥ 1 do
6: if (P(C) = 0) then
7: return C
8: end if
9: t← σ(i− 1)

10: C∗ its a random partition with t clusters
11: if P(C) > P(C∗) then
12: C ← C∗

13: j← |P|
14: Pj+1 ← t
15: end if
16: i← i− 1
17: end while
18: return C
19: end function

In table 4.1, we enumerate execution steps of initialize procedure for the graph G
wich has as set of nodes V = {a, b, c, d, e}.

i σ(i) random partition Cσ(i) P(C) P(C∗) P = {∅}

1 σ(1) = 3 Cσ(1) = {a, b}{c, d}{e} 20 - P = {3}
2 σ(2) = 2 Cσ(2) = {a, d}{b, c, e} 18 20 P = {2, 3}
3 σ(3) = 5 Cσ(3) = {a}{b}{c}{d}{e} 19 18 P = {2, 3}
4 σ(4) = 1 Cσ(4) = {a, b, c, d, e} 22 18 P = {2, 3}
5 σ(5) = 4 Cσ(5) = {a}{b, c}{d}{e} 16 22 P = {4, 2, 3}

Table 4.1: initialize execution
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4.4.2 Shaking

Shaking is the process of skipping the current solution to a random neighborhood el-
ement, using or not some sort of strategy to generate random perturbations. It allows
the algorithm to randomly explore the solution space, preventing the process from get-
ting stuck in minimal locations. A shake generally does not improve overall quality of
the process, but it provides a different point of view in the search space. Our proposed
VNS algorithm uses two shaking neighborhood strategies:

• Shaking cluster elements: This strategy generates minor perturbations in the
current solution. Algorithm 2 presents the function SHAKECELEMENTS, the idea
here is to add a new empty cluster, and randomly choose a node and move to the
empty cluster.

• Shaking size of partition: This approach significantly moves away from the
current solution, it’s also the component which adds more diversification in the
search space; such statregy is also known in the literature as intensified shaking.

The procedure chooses a partition size in P to generate a completely new random
solution, jumping to a complete new neighborhood.

Due to this diversification, the procedure can expand the search to unexplored
regions in the solution space, this expansion consists of visiting solutions that
have not been examined previously, which does not guarantee any improvement
in the value of the objective function, only generates another candidate entry.

Algorithm 3 presents the function SHAKEPSIZE which is done in very simple
manner as most VNS-based heuristics.

Algorithm 2

1: function SHAKECELEMENTS(C) ⊲ λ(C′)Returns the number of clusters in a
partition C′

2: k← λ(C)
3: C′ ← C
4: add the empty cluster ck+1 in C′

5: for the partition C′move a node from ck to ck+1
6: return C′

7: end function

Algorithm 3

1: function SHAKEPSIZE(P)
2: k← σ(P)
3: generate randomly the partition C′ with k clusters
4: return C′

5: end function

Figure 4.1 shows the comparison of shake strategies. The shaking cluster element
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Shaking cluster elements

Shaking partition size

c1 = {a, b}

c2 = {c, d}

c3 = {e}

c3 = {e}

c2 = {b, a}

c1 = {c}

c2 = {c, d, e}

c1 = {a, b}

New Solution(C′)Current Solution (C)

c4 = {d}

4 2 3P

σ(P) = 4

New Solution(C′)

c2 = {c, d, e}

c1 = {a, b}

Current Solution (C)

Figure 4.1: Shaking mechanism schema

strategy generates a new C′ solution based on C, so there will always be fixed factor.
We can also notice in the figure 4.1, that in the second approach, when compared to
the first one, has as only predefined component, the partition size, and it generates a
completely new random solution C′.

4.4.3 Local Search

Local search is based on the concept of a neighborhood. Identifying an appropriate
neighborhood improvement methodology depends on the type of problem and overall
strategy. This is an important step in designing a VNS heuristic, as it defines local
search performance and the quality of solution.

The most popular neighborhood improvement methods are: first improvement and
best improvement. Hansen and Mladenović suggest, if the initial solution is chosen
randomly, the first improvement may be most appropriate, but when using some con-
structive heuristic, best improvement rule might be the best.

Algorithm 4 presents the function LOCALSEARCH. Once having defined the ini-
tial solution, the local search perform systematically MOVES and SWAPS on the current
solutions, until no further moves and swaps are allowed.
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Algorithm 4

1: function LOCALSEARCH(C)
2: C ← MOVE(C)
3: C ← SWAP(C)
4: return C
5: end function

The most traditional approach for MOVE operations, is to take an element u from
a cluster ci and places it into the cluster cj. In our implementation, while moving ele-
ments, the function can add and remove clusters from the partition.

Algorithm 5

1: function MOVE(C) ⊲ Let C be an initial partition
2: Let C

′
be the new clustering

3: Let v be a vector with n random elements, where n = |V|
4: for all u ∈ V do
5: for all (cj ∈ C) and (u /∈ cj) do
6: move u in cj

7: Let C∗ be the new clustering
8: if P(C∗) < P(C) then
9: C

′
= C∗

10: remove all empty cluster in C
11: end if
12: end for
13: if λ(C) < N then ⊲ λ(C)Returns the number of clusters in a partition C
14: Add empty cluster cj to C
15: move u in cj

16: Let C∗ be the new clustering
17: if P(C∗) < P(C) then
18: C

′
= C∗

19: end if
20: end if
21: end for
22: return C

′

23: end function
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The second one is swap, it interchanges elements between clusters. Let v ∈ ci and
w ∈ cj, the swap procedure takes the element v and place it in cj and element w and
places into the cluster ci, if the operation improves the value of P(C) then the new
incumbent will be accepted.

Algorithm 6

1: function SWAP(C) ⊲ Let C be an initial partition with k clusters
2: Choose randomly a node v ∈ V
3: Let i be the cluster index of v in C
4: for all (cj, cl) ∈ C do
5: for all pairs of nodes (v, w) ∈ cjcl do
6: Swap v and w
7: Let Cij be the new clustering
8: Let C∗ = min

B∈β(ci ,cj)
F B

ij

9: if P(C) > P(C∗) then
10: C = C∗

11: end if
12: end for
13: end for
14: return C
15: end function

The idea behind the proposed approach, relies on the fact that the local minima,
with respect to one or several neighborhoods, are relatively close to each other. We
use the best improvement strategy while moving elements between clusters and first
improvement when performing swaps.

N(k−1)

s′7
s′6

MOVE

s′8
s′7

s′9
s′10

s′6

s′2

s′3
s′4

s′1
s′5

N(k+1)
N(k)

initial solutian s′1

new solutian s′6

initial solutian s′6
SWAP

N(k−1)

new solutian s′10

Figure 4.2: Local seach strategy
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Figure 4.2 displays the local search approach, using moves and swaps, as neighbor-
hood operation strategy. The move operation, starts with a pre-defined neighbour s′1,
performing a descent in the neighborhood N(k), exploring all existent neighbours, and
also close neighbour in the neighborhood N(k+1) and N(k−1). The new incumbent is
going to be set as the one which has the smallest value among all visited solutions, s′6.

The swap operation receives as input the the best solution found while perfoming
moves, in the figure s′6, and it will start perfoming exchanges between clusters, chang-
ing the current solution every time a better solution is found.

Figure 4.3 illustrate the basic idea behind move and swap operations, while move
operates on structurally different neighborhoods N(1), . . . , N(k), swap typically operates
at one type of neighborhood with variable depth, for a neighborhood N(k) it changes k
variables.

s′
N(1)

SWAP

s′

N(2)

N(1)

N(3)

MOVE

Figure 4.3: Illustration of the neighborhoods used by move and swap

4.4.4 VNS for the extended generalized blockmodeling

Algorithm 7 presents the VNS function and in the previous sections we have explained
in details the the functions embedded in the general procedure.

Let a set Nk denotes the set of neighborhood structures (k = 1, . . . , kmax), the method
begins by calling INITIALISE function, which generates kmax random solutions, where
the best is selected to be Ccurrent, as given in algorithm 1. If P(Ccurrent) = 0, the algorithm
stops. Otherwise, local search is performed.

The ILS, begins with move operations, making a descent in the neighborhood Nk,
then it explores a close solution in neighborhoods Nk+1 andNk−1, by adding and re-
moving a cluster in a move operation.

The local search finish by exchange nodes between cluster in a given neighborhood,
the swap phase as display in algorithm 6. The best solution will be replaced by the new
one if the solution is improved.
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After, depending on the size of the current solution, shake elements or shakePsize
will be executed. The first one introduces a new neighborhood structure. The second
jumps to another neighborhood among the best ones kept in P.

The VNS loop is performed until the running time telapsed reaches tmax or the num-
ber of visited neighborhood kcur reaches kmax.

Algorithm 7

1: function VNS-EGBM(tmax, kmax)
2: Ccurrent ← INITIALISE(P)
3: Cbest ← Ccurrent

4: telapsed = 0
5: while (P(Ccurrent) > 0 and telapsed ≤ tmax and kcur ≤ kmax) do
6: Ccurrent ← LOCALSEARCH(Ccurrent)
7: if P(Cbest) > P(Ccurrent) then
8: Cbest ← Ccurrent

9: end if
10: if (λ(Ccurrent) 6= n) then ⊲ λReturns the number of clusters of partition
11: Ccurrent ← SHAKECELEMENTS(Ccurrent)
12: else
13: Ccurrent ← SHAKEPSIZE(P)
14: end if
15: kcurrent ← kcurrent + 1
16: telapsed ← telapsed + 1
17: end while
18: return C∗

19: end function

4.5 Computational Experiment

In this section, we first analyze the efficiency of the proposed method and then the
quality of the solutions found. To this end, we use artificial datasets, generated with
the LFR benchmark, to evaluate the scalability and optimisation. Then real datasets
are used to evaluate the speed and optimization of our VNS approach, regarding to the
evolutionary computation method proposed by Chan et al. (2014), since their numerical
results outperforms other studies.

4.5.1 Artificial datasets and experimental settings

To test scalability, we generated a family of networks with increasing sizes. We evalu-
ated our VNS approach in a population of synthetic network with sizes of 50, 100, 200,
300, 400, and 500. For each size, we generated ten different instances with the LFR al-
gorithm, in order to test efficiency, once LFR generates unspecified communities based
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on the following settings: µ mix parameter, which indicates the amount of connections
between communities, the average node degree kmin, and the maximum node degree
set to kmax.

To generate the six synthetic networks, the following parameter settings were used:
µ = 0.3, kmin = 6% of network size, and kmax = 10% of network size. Based on the
previous configuration, the LFR program produces three files:

1. The network file contains the list of edges;

2. A community file contains a list of the nodes and their membership;

3. The last one, is named statistics, is the file that contains the degree distribution
(in logarithmic bins), the community size distribution, and the distribution of the
mixing parameter;

The network file is the input to the heuristic, the second file: community along with
statistics, are used to evaluate and analyze the quality of the heuristic solution. It turns
out that this configuration set produces charts with nontrivial topological features; This
type of topology often occurs in graphs that model real systems. These networks are
also known as complex networks, and finding topological resources that can differen-
tiate a community and an intercommunity relationship is a very challenging task [14],
[44]

Figure 4.4 display the correspondence between nodes and communities, and also
community statitics generated by LFR algorithm for a network with 50 nodes, named
instance 5. Figure 4.9, shows the network communities distribution generated by LFR
highlighted in different colors.

Since LFR algorithm produces random topology features for the built communities,
in the first conducted experiment, one hundred percent of the results, VNS found a
partition that differs from the partition generated by the community builder.

To illustrate this scenario, let’s analyse the results of instance 5, after running VNS
heuristic in extended generalized mode, that is, without imposing restrictions on posi-
tion, block type, or size, it finds P(C) = 0.

Based only on the pattern of links, the network is divided into two commnunities:
where the ties inside C1 has a row-regular block pattern, and pattern of links in C2
are said column-regular, as display in figure 4.7. The relantionship inter-community
are also following the same pattern, and depending on reading orientation, it can be
classified as row-regular or column-regular.

This topological features shows a orientation in the relationship intra and inter com-
munity, such information can be useful, knowing that every type of block has a mean-
ing, this specific one shows that’s possible to split the graph following the relationship
orientation. Such topological configuration may be hand when studing the flow of
spreading information. Table 4.2 shows that running the extended generalized mode
in population of networks with increasing sizes, it finds P(C) = 0 in a short time.

This happens because the extended generalized mode is very flexible, allowing the
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50 100 200 300 400 500
deviation measure 0 0 0 0 0 0
time (seconds) 0 6 92 229 58 968

Table 4.2: VNS heuristic in extended generalized mode

heuristic to quickly converge to a local minimum. Although the extended generalized
blockmodeling has more block types than the conventional one, it will also have a larger
set of multiple solutions, helping to converge P(C) = 0.

Now let’s look at the built-in community and topology features of instance 5. If we
calculate the block modeling fit for the LFR partition, we can see that for this partition
there is no ideal block set, at least defined in the literature, which can perfectly fit the
generated community. Figure 4.5 shows the closest ideal blockmodel pattern, the de-
viation measure and the communities. In table 4.6, display the permuted and blocked
relational matrix.

Going even further in the analysis of network instance 5, we run the VNS, this
time fixing the number of communities to twelve, same generated by LFR, the parti-
tion found has another community distribution that reduces even more P(C). Figures
4.11 and 4.12 display the new community arrangement.

To better assess scalability, using the population mentioned before, as second exper-
iment, we reduce the set of block types β to complete blocks placed in the diagonal and
null blocks off-diagonal. Knowing that among the population used in the experiments,
there is no network that can meet the topological constraints and generate partition
with P(C) = 0.

Even decreasing the number of ideal block to two, such change increased substan-
tially the running time and objective cost. This behaviour is complete understandable
and also expected because now we solving the graph partion problem, which falls un-
der the category of NP-hard problem, using a graph which does not have such connec-
tions pattern.

50 100 200 300 400 500
deviation measure 16 38 108 187 248 -
time (seconds) 55 1136 25598 148856 504515 -

Table 4.3: Synthetic Communities
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Figure 4.4: Community and statistics file example N = 50
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Figure 4.5: Blockmodel pattern, deviation measure and community distribution
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Figure 4.6: Relational matrix
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Figure 4.7: Partition with the smallest value of P(C)

Figure 4.8: Partition with the smallest value of P(C)
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Figure 4.9: LFR community.

Figure 4.10: LFR connections within communities
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Figure 4.11: New community distribution

Figure 4.12: Network representation
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4.5.2 Benchmark algorithms and real datasets

To evaluate the performance of the proposed VNS heuristic, we use a comparative ex-
periment scenario, where performance reflects a measure of speed and optimization.
We compare the results find by our proposed VNS approach with the results in [32],
since they tackle the generalized blockmodeling problem for real medium size net-
works.

The three datasets used in our experiments are Enron’s email dataset, a communica-
tion network for summer doctoral schools, and an airport route network. The network
resources have been kindly provided by Chan Jeffrey.

The first one, Enron email dataset, is the email communication network among En-
ron employees at three different time periods, and we using only the period t1, where
the number of vertices and edges are 270 and 1202, respectively. The second is doctoral
summer school, this network represents the interaction between participants before and
during a summer school. The graph consists of 73 vertices and 1,139 edges. The last
one is the airport routing network, which represents the flight routes between airports,
where each vertex represents an airport, with directed edges representing a flight route.
The network consisted of 561 and nd 10,956 edges.

To make a fair performance comparison, we use the same set of parameters as used
in [32], where the partition size and set of ideal block are fixed as display in table 4.4.
For the airport routing and Enron email dataset the KL-based algorithm takes to long
to finish, so results are not reported in table 4.4.

Doctoral summer school
Obj. Cost Time (in seconds) Partition size Block pattern

Algorithm Mean SD Mean SD

4 x 4

complete
regular
row-regular
column-regular

VNS 102 6 90 2
GA 859.3 114.1 24.2 4.2

KL-based 701 0 27,056.3 845.5
Enron email dataset

Obj. Cost Time (in seconds) Partition size Block pattern
Algorithm - Mean SD

3 x 3

complete
regular

row-regular
column-regular

VNS 789 200 50
GA 2358 516.14 158.27
KL-based N-A N-A N-A

Airport routing
Obj. Cost Time (in seconds) Partition size Block pattern

Algorithm - Mean SD

3 x 3 regular
VNS 0 2500 273.5
GA 0 1543 334.33
KL-based N-A N-A N-A

Table 4.4: VNS, GA and KL-based, comparison
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4.6 Concluding Remarks

We have evaluated our method on both synthetic and real-world networks. The arti-
ficial networks are used to evaluate scalability and quality of solution once the com-
munity distribution is known. We also assess the performance of our VNS approach
by comparing it to benchmark algorithms such as GA and KL, designed to solve the
generalized blockmodeling for mediam sizes real networks with fixed parameters.

We are not able to compare the speed and optimization results of the extended gen-
eralized blockmodeling, since the other approaches require knowing the size of the
partition and a pre-definition of the ideal models.

Besides that, the experiments conducted in this chapter show that the results found
by the heuristic converge to a satisfactory solution, may not be the best of all the solu-
tions to the problem, but it is still valuable because finding it does not require a pro-
hibitively long time and allow the treatement of medium size networks.

As for all networks used in this chapter, there is no ground truth for validation,
and the analysis is constraint to numerical results. The validation of blockmodeling
fitness, community distribution is conducted in chapter 5, where real case scenario is
presented.

All the experiments in this chapter were conducted on AMD 2.6 GHz server with
500 GB of memory and running Debian GNU/Linux 7 and developed using C++.
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Chapter 5

Extended generalized
blockmodeling and bibliometric
analysis

To be able to identify emerging trends from research domains and map scientific knowl-
edge, provides an appropriate understanding of how to progress in a new research di-
rection. Such studies are usually carried out through the analysis of electronic literature
available online.

Bibliometrics is the field that studies publication patterns and develop indicators for
the evolution of scientific activities using statistical and mathematical models. It’s fo-
cused on discovering and understanding regularities that exist in the way information
is produced and used. Units of analysis can be words, metadata fields, publications,
authors, journals, research groups, institutions, sub-fields, disciplines or geographic
regions [47].

Natural language processing (NLP) is a range of computational techniques for the
automatic analysis and representation of human language [12]. Its goal is to aid com-
puters to understand human language.

In this context, Digital Libraries (DL) are definitely a place to study the combination
of bibliometric techniques and Natural Language Processing (NLP), in order to improve
the ability to explore relationships between entities of interest in metrics research.

There are some methods in the literature that work directly at the text level in bib-
liometrics and use NLP techniques. The most common are: Porter (2006); Zitt and
Bassecoulard (1994); Glenisson et al. (2005). However, only few take real advantage of
techniques (NLP).

In this thesis, we are interested in the approach adopted in TermWatch proposed
by Sanjuan et. Al [41], [29], [30] which consists of a combination of techniques from
three disciplines: Natural Language Processing (NLP), Data Mining and Graph The-
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ory, mainly because its approach does not require great databases or long learning pro-
cesses.

Our goal here is to show that the extended generalized blockmodeling is a good
alternative for the graph decomposition process in the TermWatch pipeline. In this
chapter, we evaluate the use of the extended generalized blockmodeling approach in
the field of Natural Language Processing (NLP) and bibliometrics through the analy-
sis of terrorism research datasets between 1990-2006. These datasets are publication
records of peer-reviewed journal articles downloaded from the Web of Science (WoS).

The chapter is organized as it follows: Section 5.1 gives a general description of
TermWatch System. In section 5.2 we present the terminological graph extraction pro-
cess in details. Then in section 5.3 we show how an association graph can highlight a
family of formal concepts and their relations based on the unique atom decomposition.
At section 5.4 we show the analyzes and results obtained using the extended general-
ized blockmodeling as alternative to graph decomposition and some conclusions from
this experiment.

5.1 Overview of TermWatch

As mentioned earlier, TermWatch is the result of a combination of techniques from Nat-
ural Language Processing (NLP), Data Mining and Graph Theory. It’s designed to map
research topics from unstructured texts and track their evolution in time [41].

In TermWatch, (NLP) techniques are used to extract significant units of text and
to identify relevant information between them, called multi-word terminology units.
These multi-word terminological units are nothing more than text chunks. Such text
chunks correspond to domain concepts where the linguistic relations are lexical, syn-
tactic and semantic variations.This first step of grouping of term variants ensures that
semantically closed terms that reflect different aspects of the same topic end up in the
same cluster at the end of the process.

Based on data mining (DM) techniques, TermWatch implements a hierarchical clus-
tering algorithm specially designed for the characteristics of multi-word terms. This
algorithm groups the terms of several words into close semantic classes called compo-
nents; co-occurrence information is optional. Clusters are represented as an undirected
graph.

Then the system decompose the undirected graph which are complex graph into
more legible subgraphs that representes a coherent networks of research topics. This al-
lows to split complex terminological networks of topics extracted by TermWatch based
on their graph theoretic properties in order to identify sub-structures that represent
highly connected sets of topics called central atom and distinct sets of topics called
peripheral atoms.

Even though the system consists of a combination of techniques from three different
disciplines, the entire process, which starts with the extraction of raw texts provenient
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from a set of documents and reaches the mapping of the domain’s topics, can be divided
into five main stages: multiword term extraction, term variants identification, term
clustering, graph decomposition and visualization.

Roughly, a step-by-step strategy, moving from input texts to mapping topics, con-
sists of: first, from an input corpus composed of raw texts, building a scientific corpus
that represents a research question. Second, terminological noun phrases (NPs) of max-
imal length are extracted from the scientific corpus. It can be done throught TreeTagger
Schmid (1994) or any POS tagger algorithm.

In corpus linguistics, part-of-speech tagging (POS tagging or PoS tagging or POST),
also called grammatical tagging or word-category disambiguation, is the process of
marking up a word in a text (corpus) as corresponding to a particular part of speech,
based on both its definition and its context — i.e., its relationship with adjacent and
related words in a phrase, sentence, or paragraph [1].

After the POS tagging, the pipeline select NPs based on their syntactic structure and
also using an enhanced term weighting function in order to retain only domain terms.

In the third step, terms with semantic variants of each others are detected and clus-
tered using a hierarchical algorithm, the result is a three-level structure of domain
terms. The first level are the terms. The second level are components that group to-
gether terms semantically closed or terms synonyms. Then the clustering algorithm
proposed by Ibekwe-SanJuan (1998a) is applied to this second level, to group terms
based in a weighted graph of term variants. Components and clusters are labeled ac-
cording to their most active term and can be used as document features.

The final step consists of decomposing association graphs into atoms. In this stage a
atom is a subgraph without clique separators, and each clique corresponds to a formal
concept.

By definition [7], [43], a clique separator of G, is a set of pairwise adjacent vertices
(that means a complete subgraph), whose removal disconnects the graph.

The major atoms are detected and visualised using force-directed positioning algo-
rithms. The periphery of large atoms is highlighted, to reveal new concepts that arise
in a domain which are normally represented by a larger central atom.

5.2 Terminological graph extraction

5.2.1 Corpus Tagging

Word forms are often ambiguous in their part-of-speech (POS)[42]. For example, the
English word "bear" can be used as a verb "Your efforts will bear fruit" or as a noun
"She saw a bear". As shown in the example, this ambiguity is normally resolved by the
context of a word.
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Automatic part-of-speech taggers use contextual predictability to mark words. A
POS tag is a label assigned to each word in a text corpus to indicate the part-of-speech
and also other grammatical categories such as tense, number (plural/singular), case
etc.

In some cases, the POS tag is useful to distinguish the word sense (the meaning of
the word), as shown in the above sentences, the word bear has completely different
senses. In other cases, it is used to explain the syntactic role of a word and we can often
infer semantic information from this due to our knowledge of how this syntactic role is
commonly used semantically.

POS tag is used into a variety of NLP tasks and are very useful, since it provide
linguistic signal on how a word is being used within the scope of a phrase, sentence, or
document.

To tag the corpus termWatch uses TreeTagger[42]. The TreeTagger method uses a
decision tree and probabilities for part-of-speech tagging in texts and it has been ap-
plied successfully to different languages like German, English, French, Italian, Dutch
or Spanish. Gohring A. (2009) reported a macro-average of 85.44% precision and 80.77%
recall, and a micro-average of 93.53% precision 93.53% recall for Spanish [40]. Table 5.1
display treeTagger sample output for the sentence The TreeTagger is easy to use.The first
column display the word, the second column the tag label, the third column is the tag
description.The last column is the lemma, the lemma is a word that stands at the head
of a definition in a dictionary.

word pos description lemma
The DT singular determiner/quantifier (this, that) the
TreeTagger NP proper noun or part of name phrase TreeTagger
is VBZ verb, 3rd. singular present be
easy JJ adjective easy
to TO infinitive marker to to
use VB verb, base form use

Table 5.1: Example of tags from TreeTagger.

5.2.2 Term Extraction

Once the corpus is tagged, multi-word terms are extracted through contextual rules. As
a rule example, let’s consider the one shown in figure 5.2, used to extract substantive
terminological sentences using preposition of. As result example can be a simple noun
phrases (NPs) like stress disorder or a complex one like post-traumatic stress disorder.

Besides rules, transformation operations, like permutation are used for grouping to-
gether syntactic variants of the same concept, since terms are extracted in two possible
syntactic structures: NPs with prepositional attachment (execution of innocent victims)
and compounds (innocent victims’ execution). In addition, no limit is imposed on the
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length of the terms extracted. More details about rules and operation can be found in
[28]. Unlike other common approaches, such as bag-of-word, the extraction phase uses
rules and transformation operators that respect the structure of domain terminology,
allowing to detect emerging domain terms.

input corpus

treeTagger

corpus tagged

contextual rules

cluster of terms
graph of terms

association graph

graph decomposition

1. corpus tagging

2. term extraction

multi-word terms

wordNet synonyms
identification

linguistic operations

3. term variant identification

4. clustering

5. decomposing the association graph

terminological extraction

Graph Decomposition

Figure 5.1: Termwatch pipeline

if <mod>⋆<N >+of<mod>⋆<N >+<prep1><verb><mod>⋆<N >+
then return:<mod>⋆<N>+ of<mod>⋆<N>+ and<mod>∗<N>+
where: < mod > is a determiner or an adjective
<N> is any of the noun tags
<prep1> is all the prepositions excluding "of"
⋆is the Kleene’s operator (zero or n occurrences of an item)
+ is at least one occurrence

Figure 5.2: Example of contextual rules used to extract multi-word terms
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5.2.3 Term variants identification

In TermWatch, the identification of term variants, also known as terminological varia-
tions, is made through linguistic operations, such as lexical inclusion and substitution,
and also through rules to identify synonym links when searching for multi-word terms
in a WordNet synset.1

Lexical inclusion refers to operations such as insertion (severe poisoning→ severe food
poisoning), modifier or head word expansion (disaster intervention→ disaster intervention
call ), where a shorter term is incorporated into a longer term.

The lexical substitution, is used in the case terms of identical length, sharing a subset
of lexical items and has one divergent item as (political violence threat→ political violence
campaign).

Lexical substitutions generates highly connected graphs of term variants (cliques)
that can include a certain amount of noise (false relationships), as substitutions opera-
tions tend to indicate a loose type of semantic association between terms.

To avoid such noises the graph is filtered using two criteria: keeping only substitu-
tions that involve terms of length≤ 2 if the words in the same grammatical position are
found in the same WordNet Synset.

Termwatch also uses WordNet synset to extract synonym links between multiple
words; therefore, multi-word terms (MWT’s) are considered to be in a synonymy rela-
tion if two of their words are in the same WordNet synset, occupy the same grammatical
role in the terms and are found in the same position.

Table 5.2 displays synonyms found by using WordNet synset extraction approach,
italic words belongs to the same synset. Thanks to those synonymy links, concepts that

Term Synonym identified using WordNet synsets
september 11 wake september 11 aftermath

united states federal agency united states federal bureau

risk society conception risk society concept

Trauma type injury type
Life-threatening problem serious problem
Cyber-terrorist attack hacker attack

Table 5.2: Synonyms acquired from the terrorism corpus using WordNet synsets

appear under different names are not dispersed across different clusters at the end of
the process.

Table 5.3 gives examples of the different relations identified and the number of terms
involved for the terrorism corpus.

1 WordNet is a large lexical database of English. Nouns, verbs, adjectives and adverbs are grouped
into sets of cognitive synonyms (synsets), each expressing a distinct concept. Synset are the groupings of
synonymous words that express the same concept.
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variation type example of term example of variant number of terms number of links
Spelling trauma center trauma centre 93 138
Left exp. food contamination pet food contamination 1,799 2,709
Insertion poisoning case poisoning medical intervention case 41 60
Right exp. disaster intervention disaster intervention call 2,884 4,326
Modifier sub acute stress disorder posttraumatic stress disorder 14,062 95,651
Head sub. political violence threat political violence campaign 13,810 125,385
Wordnet Mod. sub trauma severity injury severity 185 99
Wordnet Head sub. terrorist financing terrorist funding 396 217

Table 5.3: Terminological variations identified between terms in the terrorism corpus

5.2.4 Term clustering

This step consists of clustering the graph of semantic term variants; to do so, TermWatch
implements CPCL (Clustering by Preferential Clustered Link) [27] approach.

Terms (nodes) are grouped according to the type of relationship (edges), that de-
pending on the linguistic meaning, the relationship xRy can be classified into one of
two possible types of roles: COMP or CLAS.

CPCL has two clustering stages: first terms are clustered into connected compo-
nents, throught COMP relations, secondly connected components are clusterd into classes,
this time throught CLAS relations.

COMP relations, are those that induce near-semantic equivalence or links of syn-
onyms, such as spelling variants. This type of connection is generated from operations
such as: permutations, WordNet synonyms, expansions and insertions of modifiers.
These types of relations form components representing the paradigms in the corpus
but don’t say anything about the association between these topics. So they are used as
a prior clustering stage since COMP relations affect the topic change to a smaller de-
gree. The transitive closure COMP* partition the whole set of terms into components.

As stated in [41] these components are not isolated and they are linked by transver-
sal CLAS relations implying a change of headword, thus bringing to light the associa-
tions between research topics in the corpus.

While COMP relationships are used to represent links between synonyms, CLAS
relationships involve a topical change between two terms, that is, where the main word
is different. For instance, the shift of focus from “criminal assault” to the victim in
“criminal assault victim”. This type of relationship results from operations such as
head expansion and replacement.

CLAS relations cluster components based on the following principle: two compo-
nents ci and cJ are clustered if the link between them is stronger than the link between
either of them and any other component ck. which has not been clustered neither with
ci nor with cJ . A link (edge) is draw between two terms (nodes) if one is a COMP rela-
tion of the other, then the first step is to clustering terms for which there is a sequence
of variations in COMP.

First TermWatch partition the graph of term variations in two classes COMP and
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CLAS. Then, based in the COMP subgraph, clusters (components) are labeled by its
most active term. This step ensures that semantically close terms (nodes) which reflect
different aspects of the same topic end up in the same cluster at the end of the process.
Lastly, components formed by COMP relations are clustered using the agglomerative
hierarchical process using the weight of CLAS relationships between each component.

Terms in component “terrorist attack”
terrorist attack, presumed terrorist attack, limited terrorist attack, national terrorist attack,
international terrorist attack, explosive terrorist attack, deliberate terrorist attack,
deliberate smallpox terrorist attack, smallpox attack, covert smallpox attack,
chemical terrorist attack, th terrorist attack, year terrorist attack

Some components in the clique around “terrorist attack”
anthrax infection, toxic chemical, medium representation, 9/11 event,
september 11 at- tack, current PTSD, new york time, pharmaceutical industry,
american history, united kingdom, potential terrorist, militant islam,
safety sense, national terrorist attack im- pact, distress symptom,
decontamination area, immigration policy

Table 5.4: Main component of the cluster “terrorist attack” and related cluster

Table 5.4 shows as example, the content of the biggest cluster automatically labeled
as “terrorist attack” (label of its main component). The other terms in the cluster re-
sult from co-occurrence2 links. The lower part of this table, displays the nodes that
surrounding around the cluster “terrorist attack” which forms a clique.

5.3 Association Graph analysis

Analyzing the relationship between clusters and documents is also necessary, as it al-
lows identification of the association rules and, in doing so, reveals dependencies be-
tween formal concepts into the corpus.

As defined by Agrawal et al, a cluster is said to be related to a document if the cluster
contains at least one term in the document. Clusters are then considered as items and
each document defines an itemset.

More formally, let us define D as a collection of documents d1, d2, . . . , dn and each
document dx as an itemset. We will reference them as document itemsets, and clusters are
then considered as items.

Let S be an integer threshold, so a frequent itemset is a set of items that are included
in at least S document itemsets. Frequent occura ence of itemset allows the revelation of
hidden dependences in general.

Frequent itemsets of size 2 induce an association graph where nodes are items and
there is a link between two nodes i and j if the pair {i, j} is a frequent itemset.

2co-occurrence is the counting of paired data within a collection unit
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This association graph is usually too dense to be visualized; it’s common to use
techniques to select resources based on some measures, such as mutual information or
log probability.

According to Sanjuan [41] this approach has two drawbacks: first, the resulting
graph structure depends on the selected measure. Second, it is not adapted to highlight
larger itemsets. Sanjuan also states that to visualize large frequent itemsets on the asso-
ciation graph, a decomposition approach is needed that preserves cliques induced by
frequent itemsets.

Termwatch uses Formal Concept Analysis (FCA) as formal framework [46] for as-
sociation rules discovery. FCA is a mathematical theory about concepts and concept
hierarchies that allows the derivation of concept hierarchies from datasets. It models
concepts as units of thought, consisting of two parts: extensions and intensions. The
extension consists of all objects belonging to the concept. The intension consists of all
attributes common to all those objects.

FCA can be understood as conceptual clustering method, which clusters simul-
tanously objects and their descriptions.

Using the FCA theory an itemset can be assimilated as a concept used in some doc-
uments. That is, assuming that formal concept is a extension of D, and let an intension
be a set of items I, such that a document dx is related to all items in I if and only if dx

is in D. In this way, a formal concept determines a correspondence between a set of
documents and a set of items.

A frequent itemsets are intensions of some formal concept. Identify in the association
graph the closed frequent itemsets is necessary to better visualize intensions, and the
graph decomposition method seems to be an interesting approach once such techniques
have a tendance to preserve the cliques induced by closed frequent itemsets.

Figure 5.3 displays TermWatch summarized scheme with focus in the association
graph generation. The top left side of the image illustrate sa corpus of documents con-
stituted by raw text.

The upper right corner shows the steps of terminological extraction phases. In this
stage, after the corpus tagging, noun phrases (NPs) are extracted from ISI abstracts,
then multi-word terms are extracted throught contextual rules, as describe in section
5.2.2.

Then the identification of term variants is done through linguistic operations, such
as left expansions, insertions and so on, as describe in n section 5.2.3. The resulting is a
graph of terms where nodes are terms and there is one edge between each term and its
variants.

The graph of terms is clustered first based on COMP relations. These clusters are
called then components, and only those with at least two vertices are considered. Then,
clustered again using the agglomerative hierarchical process based on the weight of
CLAS relations, and each of these components are labelled by the NP having the most
number of variants, as explained in section 5.2.4
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The bottom of figure 5.3, is the composition of three illustrations: a) shows the
clusters resulting from terminological extraction phase; In illustration b) components
(clusters) are now considered as items, and the correspondence between documents
and itemsets is made; c) displays the association graph generated, where components
(nodes) are items and the edge is the results from frequent itemset with size 2.

Association Graph

corpus tagging
+

term
extraction

+
term variants

+
term cluster

Corpus Terminological extraction step

componente A componente B

componente C

association graph

componente A

componente B

componente C

document A

document B

document C

document D

mwt_a
mwt_b

mwt_c
mwt_b

The cluster is labeled as it’s main component.

document A
document B

document C
document D

raw text ...

A

B

C

mwt_a
mwt_c

mwt_h
mwt

mwt_a
mwt_sa

cluster a

componente A

mwt_b
mwt_bf

cluster b

componente B

mwt_c
mwt_cs

cluster c

componente C

Figure 5.3: TermWatch summarized scheme with focus in the association graph.
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5.3.1 Graph decomposition

To study the way clusters are associated with documents, termWatch uses a graph de-
composition approach. Let us start by recalling some notations, G = (V, R) is a graph
with the node set V and the edge set as R. We denote an edge as pair (v1, v2), of nodes
v1, v2 ∈ V.

A decomposition of a graph G is a set of edge-disjoint subgraphs {H1, H2, . . . , Hn}
that partition the nodes of G, such that every edge of G belongs to exactly one Hx. If
Hx is a subset of the nodes, G(Hx) is the subgraph of G induced by Hx; if G(V − Hx) is
disconnected, Hx is a separator.

Various types of separators decompositions have been studied by several authors
by imposing conditions on the paths in the decomposition [5]. We are interested in the
minimum clique separator, so let us provide here few other definitions; A clique is a set
of pairwise adjacent vertices; A subset of vertices Hx is a minimal separator of G if there
exist vi, vj ∈ G such that vi and vj are not connected in G(V − Hx), and Hx is minimal
for inclusion with this property. Then Hx is called minimal clique separator if G[Hx] is
a clique.

To decompose graphs subjacent to corpus, TermWatch uses a graph decomposition
technique based on minimum clique separators that, once removed from the original
graph, will result in several separate subgraphs, called atoms. By definition, an atom is
a sub-graph where there is no clique separator.

M.D. Biha et al. (2007) states that in this kind of graph, it often occurs that there is a
central atom and several small ones. We refer to the biggest atom as the central atom.

This technique reveals the atomic structure of a graph, allowing the uncover ing
of special concepts that work as interfaces between sub-domains or between domain
kernels and external related objects, as well as intrinsically related concepts to the heart
of the domain.

The advantage of atom decomposition is that it’s unique. In addition, the number
of atoms and their distribution size are good indicators of their structural complexity,
besides it can be computed in quadratic time.

The atom decomposition algorithm implemented in termwatch [17], computes the
atomic graph structure and generates subgraphs:

1. the sub-graph that constitutes the central atom if it exists.

2. the network of atoms to visualize those at the periphery and the way they are
connected to the central atom.
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5.4 Case study

To conduct our experiments, we used TermWatch to map the dynamics of research in
terrorism research between 1990-2006.

In our studies we concentrate efforts into the central atom, labelled biological ter-
rorism, the goal is to unfold his internal structure.

The central atom has temporal information, which characterises four periods with
thematic variations.

As discussed in the session before, Termwatch graph decomposition approach is
focus into reveal unique way to structure graph into coherent sub-networks allowing a
close view of a real concept network. However, this graph remains huge and because
it’s large size is quite difficult to visualize relevant informations.

We show here that blockmodeling can help to make apparent information in the
graph generated in the previous decomposition; By testing different types of ideal
blocks, properties such as: temporality, topic homogeneity/heterogeneity may emerge
from the clustering.

The experiment with blockmodeling aims precisely to reveal what kind of property
it’s possible to "isolate", since a cluster, by definition, shares a property. We will see
later on, in the numerical results, that this is the case, since blockmodeling may help:

1. to identify clusters of terms used in the same period (temporal homegeneity).
Thus to automatically guess the number of periods (temporal homogeneity in the
clusters);

2. to identify clusters of terms talking about the same topics. Hence to automatically
detect topics (topic homogeneity in the cluster)

3. to construct clusters of terms talking about different topics. (topics heterogeneity
in the clusters)

The generalized extended block modeling heuristic takes as input data the central
atom, composed of 876 nodes and 2157 edges. We use three different types of block-
models and, for all of them, N as the maximum number of partitions.

The difficulty in finding clusters said temporal homogeneity, is that the association
graph edge represent co-occurence (co-apparition) in documents. Edge may exist be-
tween two term found in documents of two different periods. So temporal information
is not directly included in the graph. It follows that identifying the periods corresponds
to the documents where the nodes appears is not trivial.

Such decomposition difficulty allows us to show, through the probabilistic study,
below, that the emerged properties cannot be found randomly.
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5.4.1 Probability studies on terms graph

Let us consider a graph of terms with n nodes (terms) covering n periods or thematics.
In a mathematical point of view a clustering of G nodes can be viewed as a partition of
its nodes.

Definition 5.4.1. A clustering of G will be said to be « temporal homogeneous » (resp.« thematic
homogeneous ») iff each cluster contains nodes of the same period (resp. thematic).

Temporal (or thematic heterogeneity will refer, at the opposition to at least two dif-
ferent periods (or thematics) in each cluster. We could distinguish two types of het-
erogeneity. A weak one corresponding to the explanations above. And a strong one
where each cluster contains not a only, at least two periods (thematics), but all periods
(thematics).

We will give some probabilities and asymptotic results for homogeneity and hetero-
geneity concepts. Although the definitions given for the concepts deal with period and
thematic, they can be generalized for any type of properties.

It suffices to replace « periods » or « thematics » by « types » (or « classes », or « groups »).
In this case, the terms are of r types (or classes) and the definitions of homogeneity and
heterogeneity remain unchanged using « types » instead of period (and thematic). So
from now, we consider that r in the number of type and will talk about homogeneous
or heteregeneous types. The number of ways to partitions n elements is known as the
Bell Number Bn that corresponds to the number of clusterings and is given by the re-
currence relation:

Bn =
n−1

∑
k=0

BkCn
k

where B0 = B1 = 1, and Cn
k the number of subsets of k elements in a set of n

elements, for example:

Cn
k =

n!
k!(n− k)!

There is no known « simple » non-recurrent expression of Bn depending directly on
n. However, some asymptotic approximation exist. One of them, given below, will be
practical usefulness for our study.

Theorem 5.4.2 (De Brujn, 1981). For any integer n ≥ 2, we have

log Bn

n
= log(n)− log(log(n))− 1 +

log(log(n))
log(n)

+
1

log(n)

+
1
2

[

log(log(n))
log(n)

]2

+ O

[

log(log(n))
(log(n))2

]

.
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From this approximation, we will derive a simpler expression where "dominant"
parts are emphasized.

Corollary 5.4.2.1. For any integer n ≥ 2, we have

log Bn

n
= n log(n)− n− n log(n)ε(n)

where lim
n→+∞

ε(n) = 0.

Proof. It is directly obtained from Theorem 5.4.2 by taking:

ε(n) =
log(log(n))

log(n)
−

log(log(n))
log(n)2 −

1
log(n)2 −

1
2 log(n)

[

log(log(n))
log(n)

]2

−
1

log(n)
O

[

log(log(n))
log(n)2

]

.

All the expression in ε(n) convenges to O when n tends to +∞.

From the corollary, it can be also seen that:

lim
n→+∞

log(Bn) = lim
n→+∞

n log(n)− n.

This equality of the limits will play an important role on the asymptotic results on
probabilities. The following lemma will be also regularly used in our proofs.

Lemma 5.4.3. Let {µn}n≥0 be a real valued series. Then, lim
n→+∞

log(µn) = −∞ if and only if

lim
n→+∞

µn = 0.

Proof. The function « log » being a continuous real valued function, we clearly have

lim
n→+∞

log(µn) = 0⇒ lim
n→+∞

log(µn) = log( lim
n→+∞

µn) = −∞.

Inversely, if lim
n→+∞

log(µn) = −∞ then

∀M ∈ R
+, ∃N ∈ N| ∀n ≥ N, log(µn) ≤ −M.

It follows that µn = elog(µn) ≤ e−M. But lim
n→+∞

e−M = 0 and since µn ≥ 0 we obtain

lim
n→+∞

µn = 0.

Now, let us notice mi ≥ 1, i = 1, 2, . . . , r the number of terms (nodes) in the graph of
the same type i. Using Bell numbers the following result can be proved.
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Theorem 5.4.4. The number of homogeneous clusterings (or partition) is:

r

∏
i=1

Bmi
= Bm1 × Bm2 × . . .× Bmr .

Proof. To have an homogeneous partition, it suffices to partition separately each group
of terms of the same type. An homogeneous partition will be then the union of the
group partition. There are Bmi

ways to partition the nodes of type i. The total number
of homogeneous partition of the n nodes is thus the Bmi

product.

Knowing the total number of homogeneous clusterings, we can now write an ex-
pression giving the probability to have an homogeneous clustering if the clusters are
built randomly.

Theorem 5.4.5. Let us build a clustering with a process for which we know that all clusterings
will have equal chance to be chosen (uniform distribution). In this case the probability to obtain
homogeneous clustering is:

Pm =
∏ i = 1rBmi

Bn

where m is the vector of components m1, m2, . . . , mr; for instance m = (m1, m2, . . . , mr).

Proof. Probability definition: number of homogeneous clusterings divided by the total
number of clusterings.

In the rest of the study, some asymptotic results on the limit of Pm, when ‖ m ‖→
+∞ will be given. Saying that ‖ m ‖→ +∞ means that some components mi tends to
+∞, not necessarily all and uniformly. The notation ‖ . ‖ represents any vector norm
(for instance the euclidean morm). Notice that, as a consequence, when ‖ m ‖→ +∞,
we also have n→ +∞, since n = m1 + m2 + . . . + mr.

Theorem 5.4.6. If r ≥ 2 then

lim
‖m‖→+∞

Pm = 0.

Proof. This result shows that bigger is n and closer to 0 is the probability to find ran-
domly homogeneous clusters, if we have at least 2 differents term (node) types. Notice
that when r = 1 (or period) Pm = 1 since any terms refer to the same period. This
explains why we put r ≥ 2. To prove the theorem we will make use of Corollary 5.4.2.1
and Lemma 5.4.3.
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log(Pm) = log

(

r

∏
i=1

Bmi

)

− log(Bn)

=

(

r

∑
i=1

Bmi

)

− log(Bn).

By corollary 5.4.2.1,

lim
‖m‖→+∞

log (Pm) = lim
‖m‖→+∞

(

r

∑
i=1

log(Bmi
)

)

− n log(n) + n

But as m1 + m2 + . . . + mr = n we have

lim
‖m‖→+∞

log (Pm) = lim
‖m‖→+∞

r

∑
i=1

[log(Bmi
)−mi log(n) + mi] .

Now, let us analyze the limit of each term in brackets:

[log(Bmi
−mi log(n) + mi] .

For each i there is two cases.

Case 1: mi is bounded i.e there exists a real constant M such that mi ≤ M when ‖ m ‖→
+∞. In this case, since:

log(Bmi
)−mi log(n) + mi = log(n)

(

Bmi

nmi

)

then

lim
‖m‖→+∞

log(Bmi
)−mi log(n)−mi ≥

(

lim
‖m‖→+∞

Bmi

nmi

)

= −∞.

Because Bmi
is also bounded and

lim
n→+∞

Bmi

nmi
= 0

thus

lim
‖m‖→+∞

log(Bmi
)−mi log(n)−mi = −∞.

Case 2: mi is not bounded. Thus it tends to +∞. Corollary 5.4.2.1 can be re-used for
log(Bmi

). We have :

lim
‖m‖→+∞

log(Bmi
)−mi log(n)−mi = lim

‖m‖→+∞
mi log(mi)−m1 log(n) + mi

= lim
‖m‖→+∞

log
(mi

n

)mi

.
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Notice that for any i,
mi

n
< 1. Now two sub-cases.

Sub-case 1: if lim
‖m‖→+∞

log
mi

n
= 1 then lim

‖m‖→+∞
log
(mi

n

)m

i
= 0. But also, as

mi

n
+

n−mi

n
= 1

we have

lim
‖m‖→+∞

n−mi

n
= 0.

As consequence, for any j 6= i, lim
‖m‖→+∞

log
(

mj

n

)mj

. It follows that for this

index j, we will necessary have:

lim
‖m‖→+∞

log(Bmj
)−mj log(n)−mj = −∞.

Sub-case 2:
mi

n
has no limit or lim

‖m‖→+∞

mi

n
6= 1.

In this case, it will exist ε < 1 such that
mi

n
≤ ε < 1 for any m. Thus

(mi

n

)mi

≤ εmi . It follows that

lim
‖m‖→+∞

ln
(mi

n

)mi

= −∞.

To resume, we have proved that in any case, it always exists an index i for
which lim

‖m‖→+∞
log(Bmi

)−mi log(n) + mi = −∞. And for any i,

lim
‖m‖→+∞

log(Bmi
)−mi log(n) + mi ≤ 0.

Thus lim
‖m‖→+∞

Pm = −∞. Implying by Lemma 5.4.3 that lim
‖m‖→+∞

Pm = 0

which conclude the proof.

Based on this theorem, we can say that finding randomly homogeneous partition
is hard as n increase. The added-value of the blockmodeling approach can be vali-
dated with this theorem. If homogeneous clusterings are frequently found on large size
instances, this means that it is not the result of randomness but of the fact that the ap-
proach catchrs some properties allowing homogeneity in the clusters. Let’s now try to
have some insights on heterogeneity.
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Theorem 5.4.7. Assuming again that the clusterings are uniformly distributed, the probability
to obtain a strong heterogeneous clustering is :

Hm =
∑

m1
k=1(k!)r−1 ∏

r
i=1 S(mi, k)

Bn
.

where

• S(mi, k) is the number of partitions of the mi terms in k subsets.

• we also assume that : m1 ≤ m2 ≤ . . . ≤ mr.

Proof. To be sure that each cluster in a clustering contains all types, let us proceed as
follows. Suppose that the partition has k subsets, we can partitioned in k subsets each
group of terms, of the same type, and then combine the subsets to obtain k strong het-
erogeneous clusters. Let us illustrate this process by the following picture:

m21 m22 m2k

m11 m12 m1k

mr1 mr2 mrk

m1

m2

mr

1 2 k

Figure 5.4: Illustration process

Each table represents the mi terms of type i. For each i, {mi1, mi2, . . . , mik} is a par-
tition of the mi terms in k subsets mi1, mi2, . . . , mik. A strong heterogeneous cluster, can
be obtained by picking one subset in each table. For instance,

m11 ∪m21 . . . ∪mr1

Notice that many mi1, mi2, . . . , mik are subsets. Their union is thus a subset of the
n terms containing all term types (by construction) if we repeat this picking process k
times we will generate k subsets of the terms, each one being strongly heterogeneous.
For instance:
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m11∪m21 . . . ∪mr1

m11∪m21 . . . ∪mr1

...
...

...
...

m1k∪m2k . . . ∪mrk

is a custering of the n terms in k subsets, each one having all term types. If the par-
tition of each group of terms with same i is giving , there are (k!)r−1 ways to generate a
strongly heterogeneous clustering by the picking process. And for each group of terms
of similar types, there are S(mi, k) possible partitions in k subsets. The total number of
strong heterogeneous clusterings of the n terms, in a subsets, is thus:

(k!)r−1 ×
r

∏
i=1

S(mi, k)

By summing on k, we derive the total number for any number of subsets k. But as
m1 ≤ m2 ≤ . . . ≤ mn, the sum on k must stop at k = m1. Because it is not possible to
partition the m1 terms of type i, in more than m1 subsets. The probability comes directly
by dividing with Bn.

Giving some asymptotic results for strong heterogeneity is more difficult than for
homogeneity. The theorem presents a result valid when ‖ m ‖→ +∞ but for a bounded
value of m1.
Theorem 5.4.8. Let us suppose that m1 ≤ m2 . . . mr, and m1 never exceed a constant M when
m varies then

lim
‖m‖→+∞

Hm = 0.

Proof. Its is known that

S(mi, k) =
1
k!

k

∑
j=0

(−1)k−jCk
j jmi

r

∏
i=1

S(mi, k) =
1

(k!)r

r

∏
i=1

[

k

∑
j=0

(−1)k−jCk
j jmi

]

.

As m1 is bounded, when m varies, so as for k. As a consequence

lim
‖m‖→+∞

r

∏
i=1

S(mi, k) = lim
‖m‖→+∞

1
(k!)r

× km1+m2+...+mr

= lim
‖m‖→+∞

1
(k!)r

× kn
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Thus

lim
‖m‖→+∞

Hm = lim
‖m‖→+∞

∑
m1
k=1

kn

k!
Bn

As Bn tends to infinity

lim
‖m‖→+∞

Hm = 0.

Under the assumptions made all over the theorems finding randomly homogeneous
of strongly heterogeneous clusterings are asymptotically hard. But it is important to
highlight the fact that theorem 4 cand 6 occurs for infinite values of n. Observing « vi-
sually » is not possible in practice because of the very large instance sizes, nor tractable
in practice. For tractable instances, theorem 3 and 5 give exact probabilities.

5.5 Experiment analysis

As described in section 5.4, the network used as case of study, has temporal information
and thematic variation, carried in the way nodes are connected with each other. In this
section we discuss how temporal information and thematic variation is used to measure
if the partition generated by our approach is a relevant representation of the network
structure.

To analyze the quality of the clusters generated by our method, we first resampled
the partition generated by the heuristic, reducing it to 150 nodes, but as we respect the
cluster size proportions the total number of the nodes in a partition can vary. Secondly,
information about time interval and thematic classification was added to all nodes.

To quantify the relevance of the partitions generated by our proposed method, we
first calculate the coefficient of variance to determine how homogeneous (heteroge-
neous) the clusters of a given partition are, with respect to the period and thematic
variation.

The coefficient of variation (CV) is defined as the ratio between the standard devia-
tion σ and the average µ, cv =

σ

µ
, is a standardized measure of dispersion, wich allow

compare variables that have different averages.

As the standard deviation represents how dispersed the data is in relation to an
average, when comparing samples with different averages, it’s use can generate inter-
pretation errors.

Thus, when comparing two sets of data, the most homogeneous will be the one with
the lowest coefficient of variation. As the partitions we compare do not have the same
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number of clusters, and we are interested in the global indicator, we use the average of
(CV) to define which partition is more homogeneous than another.

Using the terrorism network graph, two type of experiments were performed, refer-
enced here as experiment A and experiment B. In experiment A, the set of ideal blocks
are: null blocks off diagonal and complete blocks in the diagonal. Experiment B, seeks
for null blocks off diagonal and row (column) dominant blocks for the diagonal. The
main reason we are using, in both experiments, A and B, non-diagonal blocks, is that
we are interested in analyze connections inside of cluster and not in between clusters.

By comparing the numerical results of experiment A and B, we concluded that ex-
periment A has the most homogeneous partitions, and the reason for that is, the set of
ideal block used are more stricted than B. In addition, this set of ideal blocks tends to
build partitions with more clusters than experiment B.

This is also due to the fact that the set of ideal blocks used in experiment A forces
the heuristic to concentrate its efforts in finding partitons such that, inside of cluster
connections should be perfect (complete block in the diagonal), reducing the number
of links between clusters (null block of diagonal). So reducing the size of clusters, also
reduces objective value of the block modeling problem.

The second aspect that can be seen in the numerical results, when analyzing cluster
variance in the partitions (please check table: 5.7, 5.8, 5.9, 5.10, 5.11), is that for the group
of instances in experiment A, the partitions generated, are composed by cluster of nodes
(terms) with low rate of variation of thematic and period. In addition, the total column
shows that, for all partitions in experiment A, the size of the clusters that compose the
partition tends to be the same, with small differences, even for the partition that has
a bigger desviation error. Table 5.6 displays the deviation error for the partitions in
experiment A and B.

The opposite of experiment A, is experiment B, in terms of numerical results, tables:
5.12, 5.13, 5.14, 5.15, 5.16. The tables show a heterogenous distribution of nodes within
between clusters (column labeled total), and high degree of dispersion between clusters
(column labeled variance), concerning to both, period and thematic classification.

This is due to the fact that set of ideal block in experiment B, be less stricted, and
have a better match in concerning to the characteristics of the terrorism research net-
work. We can also see, by comparing the column named cluster across all tables, that
all partitions of experiment B have a partition size two times smaller than experiment
A.

Another important fact to be highlighted here concerning to the set of ideal blocks
used experiment B is: as it seeks to maximise the number of bridge nodes inside of
cluster reducing the links between cluster, as result we have partitions with the highest
degree of heterogeneity, with respect to period and thematic classification. This set of
ideal block is suitable to the analysis of the evolutions of intensions over time across
different thematics.

101



Chapter 5. Extended generalized blockmodeling and bibliometric analysis

time interval period thematic thematic description

1 1 body injuries in terrorist bombing

1 2 is health care in response to the threat of biological and chemical1992-1995
1 3 post traumatic stress disorders

2 1 body injuries in terrorist bombing

2 2 is health care in response to the threat of biological and chemical1996-1999
2 3 post traumatic stress disorders

3 1 body injuries in terrorist bombing

3 2 is health care in response to the threat of biological and chemical2000-2003
3 3 post traumatic stress disorders

2004-2006 0 0 bioterrorism has emerged and become prominent

Table 5.5: Classification of time interval, period, thematic and thematic description.

partition experiment A experiment B
1 47692 928
2 47794 957
3 47852 1067
4 47896 1108
5 48038 1161

Table 5.6: Deviation Error

5.5.1 Concluding Remarks

In this chapter, we introduce the TermWatch approach to map knowledge, automat-
ically extracting terminology graphs. We used TermWatch to map the dynamics of
terrorism research between 1990 and 2006 and, as a result, we have several disjointed
subgraphs called atoms.

We apply extended generalized block modeling to unfold the internal structure of
the central atom, for this we use two different sets of ideal blocks: complete block and
null block, called experiment A and second dominant and null column, experiment B.

Experimentation shows that set A builds clusters with nodes that emerged in a max-
imum of 2 different periods with little thematic variability. While experiment B gener-
ates partitions with better variability in terms of period and theme, each one seems
more suitable to study the evolution of terms over time.

However, as the central atom remains large for the ILP model, we use the heuristic
approach to study this problem, even if it is proven to converge to a satisfactory result,
we cannot guarantee the optimal result. In addition, the blockmodeling framework can
find multiple equally optimal solutions. But it is valuable because it provides an insight
of how the connections between the nodes are created and evolve over time.
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percentage by of nodes period number of nodes by period
cluster 0 1 2 3 n/c 0 1 2 3 n/c total variation
0 33,3 66,7 0,0 0,0 0,0 3 6 0 0 0 9 2
1 20,0 0,0 60,0 20,0 0,0 2 0 6 2 0 10 2
2 22,2 11,1 66,7 0,0 0,0 2 1 6 0 0 9 2
3 55,6 33,3 11,1 0,0 0,0 5 3 1 0 0 9 2
4 0,0 0,0 40,0 60,0 0,0 0 0 4 6 0 10 3
5 10,0 0,0 30,0 40,0 20,0 1 0 3 4 2 10 2
6 40,0 30,0 30,0 0,0 0,0 4 3 3 0 0 10 2
7 11,1 33,3 22,2 33,3 0,0 1 3 2 3 0 9 1
8 22,2 22,2 55,6 0,0 0,0 2 2 5 0 0 9 2
9 0,0 22,2 33,3 0,0 44,4 0 2 3 0 4 9 1
10 22,2 44,4 33,3 0,0 0,0 2 4 3 0 0 9 1
11 20,0 40,0 0,0 20,0 20,0 2 4 0 2 2 10 1
12 33,3 66,7 0,0 0,0 0,0 3 6 0 0 0 9 2
13 50,0 50,0 0,0 0,0 0,0 5 5 0 0 0 10 3
14 33,3 22,2 11,1 33,3 0,0 3 2 1 3 0 9 1
partition 24,8 29,1 26,2 14,2 5,7 35 41 37 20 8 141 -

percentage of nodes by thema number of nodes by thema
cluster 0 1 2 3 n/c 0 1 2 3 n/c total variation
0 33,3 44,4 0,0 22,2 0,0 3 4 0 2 0 9 1
1 20,0 40,0 40,0 0,0 0,0 2 4 4 0 0 10 2
2 22,2 22,2 55,6 0,0 0,0 2 2 5 0 0 9 2
3 55,6 33,3 11,1 0,0 0,0 5 3 1 0 0 9 2
4 0,0 10,0 60,0 30,0 0,0 0 1 6 3 0 10 2
5 10,0 10,0 10,0 50,0 20,0 1 1 1 5 2 10 2
6 40,0 30,0 10,0 20,0 0,0 4 3 1 2 0 10 1
7 11,1 11,1 55,6 22,2 0,0 1 1 5 2 0 9 2
8 22,2 33,3 44,4 0,0 0,0 2 3 4 0 0 9 1
9 0,0 44,4 11,1 0,0 44,4 0 4 1 0 4 9 2
10 22,2 11,1 66,7 0,0 0,0 2 1 6 0 0 9 2
11 20,0 30,0 30,0 0,0 20,0 2 3 3 0 2 10 1
12 33,3 44,4 22,2 0,0 0,0 3 4 2 0 0 9 1
13 50,0 20,0 30,0 0,0 0,0 5 2 3 0 0 10 2
14 33,3 22,2 22,2 22,2 0,0 3 2 2 2 0 9 0
partition 24,8 27,0 31,2 11,3 5,7 35 38 44 16 8 141 -

Table 5.7: Experiment A - Partition A1
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percentage by of nodes by period number of nodes by period
cluster 0 1 2 3 n/c 0 1 2 3 n/c total variation
0 22,2 44,4 33,3 0,0 0,0 2 4 3 0 0 9 1
1 55,6 11,1 11,1 22,2 0,0 5 1 1 2 0 9 2
2 33,3 11,1 22,2 33,3 0,0 3 1 2 3 0 9 1
3 20,0 50,0 10,0 10,0 10,0 2 5 1 1 1 10 2
4 30,0 70,0 0,0 0,0 0,0 3 7 0 0 0 10 3
5 33,3 55,6 11,1 0,0 0,0 3 5 1 0 0 9 2
6 10,0 50,0 20,0 20,0 0,0 1 5 2 2 0 10 2
7 30,0 30,0 30,0 10,0 0,0 3 3 3 1 0 10 1
8 22,2 22,2 55,6 0,0 0,0 2 2 5 0 0 9 2
9 22,2 33,3 22,2 22,2 0,0 2 3 2 2 0 9 0
10 50,0 50,0 0,0 0,0 0,0 5 5 0 0 0 10 3
11 22,2 0,0 44,4 22,2 11,1 2 0 4 2 1 9 1
12 20,0 10,0 50,0 10,0 10,0 2 1 5 1 1 10 2
13 20,0 10,0 30,0 10,0 30,0 2 1 3 1 3 10 1
14 33,3 33,3 33,3 0,0 0,0 3 3 3 0 0 9 1
partition 28,2 32,4 24,6 10,6 4,2 40 46 35 15 6 142 -

percentage of nodes by theme number of nodes by theme
cluster 0 1 2 3 n/c 0 1 2 3 n/c total of nodes variation
0 22,2 11,1 66,7 0,0 0,0 2 1 6 0 0 9 2
1 55,6 22,2 0,0 22,2 0,0 5 2 0 2 0 9 2
2 33,3 33,3 22,2 11,1 0,0 3 3 2 1 0 9 1
3 20,0 30,0 40,0 0,0 10,0 2 3 4 0 1 10 1
4 30,0 60,0 10,0 0,0 0,0 3 6 1 0 0 10 2
5 33,3 33,3 0,0 33,3 0,0 3 3 0 3 0 9 1
6 10,0 50,0 30,0 10,0 0,0 1 5 3 1 0 10 2
7 30,0 40,0 30,0 0,0 0,0 3 4 3 0 0 10 2
8 22,2 22,2 55,6 0,0 0,0 2 2 5 0 0 9 2
9 22,2 0,0 55,6 22,2 0,0 2 0 5 2 0 9 2
10 50,0 20,0 30,0 0,0 0,0 5 2 3 0 0 10 2
11 22,2 33,3 33,3 0,0 11,1 2 3 3 0 1 9 1
12 20,0 20,0 20,0 30,0 10,0 2 2 2 3 1 10 0
13 20,0 20,0 10,0 20,0 30,0 2 2 1 2 3 10 0
14 33,3 44,4 0,0 22,2 0,0 3 4 0 2 0 9 1
partition 28,2 29,6 26,8 11,3 4,2 40 42 38 16 6 142 -

Table 5.8: Experiment A - Partition A2
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percentage by of nodes period number of nodes by period
cluster 0 1 2 3 n/c 0 1 2 3 n/c total variation
0 22,2 44,4 33,3 0,0 0,0 2 4 3 0 0 9 1
1 22,2 11,1 11,1 55,6 0,0 2 1 1 5 0 9 2
2 50,0 20,0 20,0 10,0 0,0 5 2 2 1 0 10 2
3 0,0 30,0 30,0 30,0 10,0 0 3 3 3 1 10 1
4 30,0 70,0 0,0 0,0 0,0 3 7 0 0 0 10 3
5 33,3 22,2 33,3 11,1 0,0 3 2 3 1 0 9 1
6 11,1 33,3 33,3 22,2 0,0 1 3 3 2 0 9 1
7 0,0 10,0 70,0 0,0 20,0 0 1 7 0 2 10 3
8 11,1 0,0 11,1 44,4 33,3 1 0 1 4 3 9 2
9 11,1 55,6 22,2 11,1 0,0 1 5 2 1 0 9 2
10 30,0 20,0 50,0 0,0 0,0 3 2 5 0 0 10 2
11 40,0 20,0 40,0 0,0 0,0 4 2 4 0 0 10 2
12 55,6 44,4 0,0 0,0 0,0 5 4 0 0 0 9 2
13 50,0 20,0 20,0 0,0 10,0 5 2 2 0 1 10 2
14 33,3 55,6 11,1 0,0 0,0 3 5 1 0 0 9 2
partition 26,8 30,3 26,1 12,0 4,9 38 43 37 17 7 142 -

percentage by of nodes theme number of nodes by theme
cluster 0 1 2 3 n/c 0 1 2 3 n/c total variation
0 22,2 11,1 66,7 0,0 0,0 2 1 6 0 0 9 2
1 22,2 22,2 22,2 33,3 0,0 2 2 2 3 0 9 0
2 50,0 20,0 30,0 0,0 0,0 5 2 3 0 0 10 2
3 0,0 20,0 40,0 30,0 10,0 0 2 4 3 1 10 1
4 30,0 60,0 10,0 0,0 0,0 3 6 1 0 0 10 2
5 33,3 44,4 0,0 22,2 0,0 3 4 0 2 0 9 1
6 11,1 0,0 66,7 22,2 0,0 1 0 6 2 0 9 2
7 0,0 50,0 20,0 10,0 20,0 0 5 2 1 2 10 2
8 11,1 0,0 22,2 33,3 33,3 1 0 2 3 3 9 1
9 11,1 55,6 22,2 11,1 0,0 1 5 2 1 0 9 2
10 30,0 20,0 50,0 0,0 0,0 3 2 5 0 0 10 2
11 40,0 30,0 30,0 0,0 0,0 4 3 3 0 0 10 2
12 55,6 11,1 33,3 0,0 0,0 5 1 3 0 0 9 2
13 50,0 10,0 30,0 0,0 10,0 5 1 3 0 1 10 2
14 33,3 33,3 0,0 33,3 0,0 3 3 0 3 0 9 1
partition 26,8 26,1 29,6 12,7 4,9 38 37 42 18 7 142 -

Table 5.9: Experiment A - Partition A3
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percentage by of nodes period number of nodes by period
cluster 0 1 2 3 n/c 0 1 2 3 n/c total variation
0 22,2 33,3 22,2 22,2 0,0 2 3 2 2 0 9 0
1 33,3 55,6 11,1 0,0 0,0 3 5 1 0 0 9 2
2 60,0 20,0 10,0 10,0 0,0 6 2 1 1 0 10 2
3 22,2 0,0 22,2 55,6 0,0 2 0 2 5 0 9 2
4 22,2 77,8 0,0 0,0 0,0 2 7 0 0 0 9 3
5 10,0 20,0 50,0 10,0 10,0 1 2 5 1 1 10 2
6 30,0 10,0 30,0 0,0 30,0 3 1 3 0 3 10 1
7 40,0 20,0 40,0 0,0 0,0 4 2 4 0 0 10 2
8 66,7 33,3 0,0 0,0 0,0 6 3 0 0 0 9 2
9 0,0 33,3 33,3 33,3 0,0 0 3 3 3 0 9 1
10 0,0 66,7 22,2 11,1 0,0 0 6 2 1 0 9 2
11 0,0 10,0 60,0 20,0 10,0 0 1 6 2 1 10 2
12 22,2 44,4 33,3 0,0 0,0 2 4 3 0 0 9 1
13 40,0 10,0 0,0 50,0 0,0 4 1 0 5 0 10 2
14 70,0 0,0 20,0 10,0 0,0 7 0 2 1 0 10 3
partition 29,6 28,2 23,9 14,8 3,5 42 40 34 21 5 142 -

percentage by of nodes theme number of nodes by theme
cluster 0 1 2 3 n/c 0 1 2 3 n/c total variation
0 22,2 0,0 55,6 22,2 0,0 2 0 5 2 0 9 2
1 33,3 33,3 0,0 33,3 0,0 3 3 0 3 0 9 1
10 0,0 66,7 22,2 11,1 0,0 0 6 2 1 0 9 2
11 0,0 20,0 50,0 20,0 10,0 0 2 5 2 1 10 2
12 22,2 11,1 66,7 0,0 0,0 2 1 6 0 0 9 2
13 40,0 20,0 10,0 30,0 0,0 4 2 1 3 0 10 1
14 70,0 20,0 0,0 10,0 0,0 7 2 0 1 0 10 3
2 60,0 20,0 20,0 0,0 0,0 6 2 2 0 0 10 2
3 22,2 0,0 11,1 66,7 0,0 2 0 1 6 0 9 2
4 22,2 66,7 11,1 0,0 0,0 2 6 1 0 0 9 2
5 10,0 50,0 10,0 20,0 10,0 1 5 1 2 1 10 2
6 30,0 30,0 10,0 0,0 30,0 3 3 1 0 3 10 1
7 40,0 20,0 30,0 10,0 0,0 4 2 3 1 0 10 1
8 66,7 0,0 33,3 0,0 0,0 6 0 3 0 0 9 2
9 0,0 22,2 66,7 11,1 0,0 0 2 6 1 0 9 2
partition 29,6 25,4 26,1 15,5 3,5 42 36 37 22 5 142 -

Table 5.10: Experiment A - Partition A4
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percentage by of nodes period number of nodes by period
Cluster 0 1 2 3 n/c 0 1 2 3 n/c total variation
0 27,3 72,7 0,0 0,0 0,0 3 8 0 0 0 11 3
1 22,2 44,4 33,3 0,0 0,0 2 4 3 0 0 9 1
2 22,2 11,1 66,7 0,0 0,0 2 1 6 0 0 9 2
3 22,2 22,2 44,4 0,0 11,1 2 2 4 0 1 9 1
4 30,0 20,0 10,0 20,0 20,0 3 2 1 2 2 10 1
5 20,0 30,0 20,0 30,0 0,0 2 3 2 3 0 10 1
6 0,0 11,1 33,3 11,1 44,4 0 1 3 1 4 9 1
7 11,1 0,0 33,3 55,6 0,0 1 0 3 5 0 9 2
8 55,6 44,4 0,0 0,0 0,0 5 4 0 0 0 9 2
9 22,2 22,2 33,3 22,2 0,0 2 2 3 2 0 9 0
10 33,3 33,3 33,3 0,0 0,0 3 3 3 0 0 9 1
11 0,0 66,7 22,2 11,1 0,0 0 6 2 1 0 9 2
12 33,3 22,2 11,1 33,3 0,0 3 2 1 3 0 9 1
13 33,3 11,1 33,3 11,1 11,1 3 1 3 1 1 9 1
14 22,2 22,2 44,4 11,1 0,0 2 2 4 1 0 9 1
partition 23,7 29,5 27,3 13,7 5,8 33 41 38 19 8 139 -

percentage by of nodes theme number of nodes by theme
cluster 0 1 2 3 n/c 0 1 2 3 n/c total variation
0 27,3 63,6 9,1 0,0 0,0 3 7 1 0 0 11 3
1 22,2 11,1 66,7 0,0 0,0 2 1 6 0 0 9 2
2 22,2 22,2 55,6 0,0 0,0 2 2 5 0 0 9 2
3 22,2 44,4 11,1 11,1 11,1 2 4 1 1 1 9 1
4 30,0 10,0 20,0 20,0 20,0 3 1 2 2 2 10 1
5 20,0 10,0 50,0 20,0 0,0 2 1 5 2 0 10 2
6 0,0 33,3 22,2 0,0 44,4 0 3 2 0 4 9 1
7 11,1 11,1 33,3 44,4 0,0 1 1 3 4 0 9 1
8 55,6 22,2 22,2 0,0 0,0 5 2 2 0 0 9 2
9 22,2 22,2 33,3 22,2 0,0 2 2 3 2 0 9 0
10 33,3 33,3 0,0 33,3 0,0 3 3 0 3 0 9 1
11 0,0 66,7 22,2 11,1 0,0 0 6 2 1 0 9 2
12 33,3 33,3 11,1 22,2 0,0 3 3 1 2 0 9 1
13 33,3 33,3 22,2 0,0 11,1 3 3 2 0 1 9 1
14 22,2 22,2 44,4 11,1 0,0 2 2 4 1 0 9 1
partition 23,7 29,5 28,1 12,9 5,8 33 41 39 18 8 139 -

Table 5.11: Experiment A - Partition A5
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percentage of nodes by period number of nodes by period
cluster 0,0 1,0 2,0 3,0 n/c 0 1 2 3 n/c total variation
0 0,0 20,0 20,0 0,0 60,0 0 1 1 0 3 5 1
1 16,7 16,7 22,2 44,4 0,0 3 3 4 8 0 18 2
2 40,0 40,0 20,0 0,0 0,0 2 2 1 0 0 5 1
3 27,3 9,1 45,5 9,1 9,1 3 1 5 1 1 11 2
4 15,4 38,5 46,2 0,0 0,0 2 5 6 0 0 13 2
5 34,5 17,2 31,0 10,3 6,9 10 5 9 3 2 29 3
6 31,3 58,3 6,3 4,2 0,0 15 28 3 2 0 48 11
7 50,0 0,0 12,5 31,3 6,3 8 0 2 5 1 16 3
partition 29,7 31,0 21,4 13,1 4,8 43 45 31 19 7 145 -

percentage of nodes by theme number of nodes by theme
cluster 0,0 1,0 2,0 3,0 n/c 0 1 2 3 n/c total variation
0 0,0 40,0 0,0 0,0 60,0 0 2 0 0 3 5 1
1 16,7 11,1 44,4 27,8 0,0 3 2 8 5 0 18 2
2 40,0 20,0 40,0 0,0 0,0 2 1 2 0 0 5 1
3 27,3 18,2 18,2 27,3 9,1 3 2 2 3 1 11 1
4 15,4 15,4 61,5 7,7 0,0 2 2 8 1 0 13 3
5 34,5 24,1 10,3 24,1 6,9 10 7 3 7 2 29 2
6 31,3 35,4 22,9 10,4 0,0 15 17 11 5 0 48 5
7 50,0 6,3 18,8 18,8 6,3 8 1 3 3 1 16 3
partition 29,7 23,4 25,5 16,6 4,8 43 34 37 24 7 145 -

Table 5.12: Experiment B - Partition B1
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percentage of nodes by period number of nodes by period
cluster 0,0 1,0 2,0 3,0 n/c 0 1 2 3 n/c total variation
0 0,0 50,0 0,0 50,0 0,0 0 1 0 1 0 2 1
1 15,4 38,5 46,2 0,0 0,0 2 5 6 0 0 13 2
2 25,0 25,0 25,0 0,0 25,0 1 1 1 0 1 4 0
3 33,3 0,0 50,0 16,7 0,0 2 0 3 1 0 6 1
4 29,0 58,1 6,5 6,5 0,0 9 18 2 2 0 31 7
5 40,0 22,9 11,4 25,7 0,0 14 8 4 9 0 35 4
6 42,1 31,6 21,1 0,0 5,3 8 6 4 0 1 19 3
7 22,2 13,9 38,9 22,2 2,8 8 5 14 8 1 36 3
partition 30,1 30,1 23,3 14,4 2,1 44 44 34 21 3 146 -

percentage of nodes by theme number of nodes by theme
cluster 0,0 1,0 2,0 3,0 n/c 0 1 2 3 n/c total variation
0 0,0 50,0 50,0 0,0 0,0 0 1 1 0 0 2 1
1 15,4 15,4 61,5 7,7 0,0 2 2 8 1 0 13 3
2 25,0 0,0 50,0 0,0 25,0 1 0 2 0 1 4 1
3 33,3 66,7 0,0 0,0 0,0 2 4 0 0 0 6 2
4 29,0 41,9 16,1 12,9 0,0 9 13 5 4 0 31 4
5 40,0 8,6 37,1 14,3 0,0 14 3 13 5 0 35 5
6 42,1 26,3 10,5 15,8 5,3 8 5 2 3 1 19 2
7 22,2 30,6 25,0 19,4 2,8 8 11 9 7 1 36 1
partition 30,1 26,7 27,4 13,7 2,1 44 39 40 20 3 146 -

Table 5.13: Experiment B - Partition B2
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percentage of nodes by period number of nodes by period
cluster 0,0 1,0 2,0 3,0 n/c 0 1 2 3 n/c total variation
0 66,7 0,0 0,0 33,3 0,0 2 0 0 1 0 3 1
1 0,0 0,0 40,0 40,0 20,0 0 0 2 2 1 5 1
2 25,0 25,0 16,7 33,3 0,0 3 3 2 4 0 12 1
3 45,5 18,2 36,4 0,0 0,0 5 2 4 0 0 11 2
4 28,6 7,1 28,6 35,7 0,0 4 1 4 5 0 14 2
5 15,8 15,8 21,1 42,1 5,3 3 3 4 8 1 19 2
6 33,3 53,3 13,3 0,0 0,0 15 24 6 0 0 45 9
7 34,2 36,8 18,4 7,9 2,6 13 14 7 3 1 38 4
partition 30,6 32,0 19,7 15,6 2,0 45 47 29 23 3 147 -

percentage of nodes by theme number of nodes by theme
cluster 0,0 1,0 2,0 3,0 n/c 0 1 2 3 n/c total variation
0 66,7 0,0 33,3 0,0 0,0 2 0 1 0 0 3 1
1 0,0 0,0 40,0 40,0 20,0 0 0 2 2 1 5 1
2 25,0 0,0 50,0 25,0 0,0 3 0 6 3 0 12 2
3 45,5 27,3 9,1 18,2 0,0 5 3 1 2 0 11 1
4 28,6 28,6 21,4 21,4 0,0 4 4 3 3 0 14 1
5 15,8 10,5 31,6 36,8 5,3 3 2 6 7 1 19 2
6 33,3 28,9 35,6 2,2 0,0 15 13 16 1 0 45 6
7 34,2 31,6 15,8 15,8 2,6 13 12 6 6 1 38 3
partition 30,6 23,1 27,9 16,3 2,0 45 34 41 24 3 147 -

Table 5.14: Experiment B - Partition B3
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5.5. Experiment analysis

percentage of nodes by period number of nodes by period
cluster 0,0 1,0 2,0 3,0 n/c 0 1 2 3 n/c total variation
0 100,0 0,0 0,0 0,0 0,0 1 0 0 0 0 1 0
1 33,3 0,0 66,7 0,0 0,0 2 0 4 0 0 6 2
2 22,2 11,1 55,6 11,1 0,0 2 1 5 1 0 9 2
3 30,4 47,8 21,7 0,0 0,0 7 11 5 0 0 23 4
4 30,0 20,0 40,0 10,0 0,0 3 2 4 1 0 10 1
5 33,3 61,9 0,0 4,8 0,0 7 13 0 1 0 21 5
6 27,0 10,8 27,0 32,4 2,7 10 4 10 12 1 37 3
7 33,3 38,5 17,9 7,7 2,6 13 15 7 3 1 39 5
partition 30,8 31,5 24,0 12,3 1,4 45 46 35 18 2 146 -

percentage of nodes by theme number of nodes by theme
cluster 0,0 1,0 2,0 3,0 n/c 0 1 2 3 n/c total variation
0 100,0 0,0 0,0 0,0 0,0 1 0 0 0 0 1 0
1 33,3 33,3 33,3 0,0 0,0 2 2 2 0 0 6 1
2 22,2 11,1 55,6 11,1 0,0 2 1 5 1 0 9 2
3 30,4 26,1 43,5 0,0 0,0 7 6 10 0 0 23 4
4 30,0 20,0 50,0 0,0 0,0 3 2 5 0 0 10 2
5 33,3 38,1 28,6 0,0 0,0 7 8 6 0 0 21 3
6 27,0 16,2 24,3 29,7 2,7 10 6 9 11 1 37 2
7 33,3 28,2 17,9 17,9 2,6 13 11 7 7 1 39 3
partition 30,8 24,7 30,1 13,0 1,4 45 36 44 19 2 146 -

Table 5.15: Experiment B - Partition B4
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percentage of nodes by period number of nodes by period
cluster 0,0 1,0 2,0 3,0 n/c 0 1 2 3 n/c total variation
0 0,0 0,0 0,0 100,0 0,0 0 0 0 1 0 1 0
1 22,2 44,4 33,3 0,0 0,0 2 4 3 0 0 9 1
2 11,1 11,1 33,3 0,0 44,4 1 1 3 0 4 9 1
3 25,0 62,5 6,3 6,3 0,0 4 10 1 1 0 16 4
4 66,7 27,8 0,0 5,6 0,0 12 5 0 1 0 18 5
5 25,0 3,1 40,6 25,0 6,3 8 1 13 8 2 32 4
6 18,5 29,6 29,6 22,2 0,0 5 8 8 6 0 27 1
7 42,4 48,5 3,0 6,1 0,0 14 16 1 2 0 33 7
partition 31,7 31,0 20,0 13,1 4,1 46 45 29 19 6 145 -

percentage of nodes by theme number of nodes by theme
cluster 0,0 1,0 2,0 3,0 n/c 0 1 2 3 n/c total variation
0 0,0 0,0 0,0 100,0 0,0 0 0 0 1 0 1 0
1 22,2 22,2 55,6 0,0 0,0 2 2 5 0 0 9 2
2 11,1 22,2 22,2 0,0 44,4 1 2 2 0 4 9 1
3 25,0 37,5 18,8 18,8 0,0 4 6 3 3 0 16 1
4 66,7 11,1 22,2 0,0 0,0 12 2 4 0 0 18 5
5 25,0 18,8 28,1 21,9 6,3 8 6 9 7 2 32 1
6 18,5 11,1 55,6 14,8 0,0 5 3 15 4 0 27 5
7 42,4 36,4 18,2 3,0 0,0 14 12 6 1 0 33 5
partition 31,7 22,8 30,3 11,0 4,1 46 33 44 16 6 145 -

Table 5.16: Experiment B - Partition B5
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Chapter 6

Conclusions and Perspectives

In this chapter, we present a short overview of the dissertation, highlighting the con-
tributions of every chapter to the work carried in this dissertation. Then, the chapter
concludes with some ideas for future research on extended generalized blockmodeling.

The main goal of this dissertation is to present new approach named extended gen-
eralized blockmodeling for binary networks, and in order to establish a common lan-
guage between the reader and this document, in chapter 1, we review basic notions
such as network, cluster and clustering, block and ideal block, and the type of network
measures. The most important contribution of this chapter is the discussion around the
motivation and objectives and the definition basic notions

To put our approach into perspective, in chapter 2 we present the state-of-the-art of
social network analysis and blockmodeling. In this chapter the fundamental ideas of
blockmodeling framework for binary networks as structural equivalence and regular
equivalence are presented, and also present a list of usual steps for solving a clustering
problem.

Chapter 2, also presents an extended study accross the several blockmodeling pro-
cedures, and also propose to use Batagelj et al. (1992) classification, that divide block-
modeling procedures into two classes: direct and indirect approaches. The pros and
cons of indirect and direct approaches are also reviewed. The most important contri-
bution of this chapter, is the definition of generalized blockmodeling and introduction
to the extended generalized blockmodeling, that is the most relevant representative of
the direct approach for the dissertation.

Chapter 3 presents the first combinatorial optimization model to the extended gen-
eralized blockmodeling, and its main contribution to the chapter. We present the data
of our problem, decision variables and objective function used to evaluate the quanti-
tative criterions imposed by constraints, that express the limitations on decisions. We
also provide numerical experiments that show the limit of the ILP model to networks
with a maximum of 20 nodes.

In chapter 4, we propose the first non-exact approach to generalized extended block
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modeling, based on the VNS algorithm as an alternative to the ILP model, main contri-
bution of this thesis. In this chapter, the limitations of the ILP model is briefly described.
The chapters also present some other heuristics and variants of the problem. The chap-
ter ends with analysis of our proposed VNS heuristic and numerical results.

Finally in chapter 5, we evaluate the use of the extended generalized blockmod-
eling approach in the field of Natural Language Processing (NLP) and bibliometrics
through the analysis of terrorism research datasets between 1990-2006.This chapter also
provides a general description of the TermWatch system. The chapter ends with a nu-
merical results which proofs the extended generalized blockmodeling is a useful tool
to study the evolution of research topics in time. The analysis of the case of study con-
ducted in this chapter is the third major contributuion of this thesis.

On carrying out the work on this thesis, several new questions arise and some open
questions were left without being answered, in order to limit the scope of this thesis.
All these questions are presented above in the following.

The extended generalized blockmodeling is currently and only developed for binary
networks but the extension to work with valued networks, using network measures as
new block types, would be a useful line of research.

The extended generalized blockmodeling model presented in this thesis is based on
integer linear programing, and as this problem is a quadratic from nature the lineari-
sation process add to the model a huge number of variables, even for small graphs.
This is one of the reasons the model is limited to small instances. Studying different
techniques to solve the problem using the exact model is definitely another useful line
of research.

The extended generalized blockmodeling model presented in this thesis is designed
to disjointed networks, however several existing network problems are represented
by networks contained overlapping clusters, such adaptatation seems to be another
interesting line of research.
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