N

N

Analysis and design of post-quantum cryptographic
algorithms: PKP-based signature scheme and
ultra-short multivariate signatures

Eliane Koussa

» To cite this version:

Eliane Koussa. Analysis and design of post-quantum cryptographic algorithms: PKP-based signature
scheme and ultra-short multivariate signatures. Cryptography and Security [cs.CR]. Université Paris-
Saclay, 2020. English. NNT: 2020UPASGO027 . tel-03212069

HAL Id: tel-03212069
https://theses.hal.science/tel-03212069v1

Submitted on 29 Apr 2021

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://theses.hal.science/tel-03212069v1
https://hal.archives-ouvertes.fr

universite
PARIS-SACLAY

Analysis and design of some
post-quantum cryptographic algorithms

PKP-based signature scheme and ultra-short multivariate signatures
Thése de doctorat de I'université Paris-Saclay

Ecole doctorale n°580 Sciences et technologies de l'information et de la
communication (STIC)

Spécialité de doctorat: Informatique

Unité de recherche: Université Paris-Saclay, UVSQ, CNRS, Laboratoire de
mathématiques de Versailles, 78000, Versailles, France.

Référent: Université de Versailles -Saint-Quentin-en-Yveline

These présentée et soutenue a Versailles, le 18/12/2020, par

ELIANE KOUSSA

Composition du Jury

Louis GOUBIN

Professeur, HDR, Université de Versailles
Saint-Quentin en Yvelines (LMV/UVSQ)
Pierre-Alain FOUQUE

Professeur, HDR, Université de Rennes 1 (DI/ENS) Rapporteur & Examinateur
David NACCACHE

Professeur, HDR, Ecole normale supérieure (DI/ENS) Rapporteur & Examinateur
Christina BOURA

Maitre de Conférences, Université de Versailles
Saint-Quentin en Yvelines (LMV/UVSQ)
Jean-Charles FAUGERE

Professeur, HDR, INRIA, Sorbonne Université
(LIP6/Uni Paris 6), Co-fondateur et CTO de Examinateur
CRYPTONEXT

Aline GOUGET MORIN

Experte sénior en cryptographie, Thales DIS / Gemalto
Meudon

Gilles MACARIO-RAT

Ingénieur, Orange Labs Examinateur

Président

Examinatrice

Examinatrice

N~
(QV]
(@)
O
2
o
-
(@)
Al
o
(QV]

Jacques PATARIN
Professeur, HDR, Université de Versailles

Saint-Quentin en Yvelines (LMV/UVSQ) Directeur de these

NNT

fd
qu
p -
O
fd
O
O
-O
O
O
O
7p
D
-
|_




ECOLE DOCTORALE

[ ]
universite
PARIS-SACLAY

Sciences et technologies
de l'information et de
la communication (STIC)

ultra-courtes de type multivariées
Mots clés:

Résumé: La construction d’un ordinateur quantique remet-
trait en cause la plupart des schémas a clef publique util-
isés aujourd’hui. Par conséquent, il existe actuellement un
effort de recherche important pour développer de nouveaux
schémas cryptographiques post-quantique. En particulier,
nous nous intéressons aux schémas post-quantiques dont
la sécurité repose sur la dureté de la résolution de certains
problemes mathématiques tels que le probléme PKP et le
probléme HFE. Ce travail étudie d’abord la complexité de
PKP. Et aprés une analyse approfondie des attaques con-
nus sur PKP, nous avons pu mettre a jour certains résultats
qui n’étaient pas précis, et fournir une formule de complexité
explicite qui nous permet d’identifier les instances difficiles
de ce probleme et de donner des ensembles de parametres
sécurisés. PKP a été utilisé en 1989 pour développer le
premier schéma d’identification a divulgation nulle de con-
naissance (ZK-IDS) qui a une implémentation efficace sur
les cartes a puce. Dans un deuxiéme temps, nous op-
timisons le ZK-IDS basé sur PKP, puis nous introduisons
PKP-DSS: un schéma de signature digitale basé sur PKP.
Nous construisons PKP-DSS a partir du ZK-IDS basé sur

Titre: Analyse et conception d’algorithmes de cryptographie post-quantique: Schéma de signature basé sur PKP et signatures

Cryptographie post-quantique, Cryptographie a clé publique, Cryptographie multivariée, Schéma
d’identification zero-knowledge, Schéma de signature digitale, Signatures ultra-courtes

PKP en utilisant la transformation Fiat-Shamir (FS) tradi-
tionnelle qui convertit les schémas d’identification en sché-
mas de signature. Nous développons une implémentation a
temps constant de PKP-DSS. Il semble que notre schéma
soit trés compétitif par rapport aux autres schémas de sig-
nature FS post-quantiques. Etant donné que PKP est un
probleme NP-dur et qu’il n’y a pas d’attaques quantiques
connues pour résoudre PKP nettement mieux que les at-
taques classiques, nous pensons que notre schéma est
post-quantique.

D’autre part, nous étudions les schémas de signature a clé
publique de type multivariés qui fournissent des signatures
ultra-courtes. Nous analysons d’abord les attaques les
plus connues contre les signatures multivariées, puis nous
définissons les parameétres minimaux permettant une signa-
ture ultra-courte. Nous présentons également de nouveaux
modes d’opérations spécifiques afin d’éviter des attaques
particulieres. Deuxiémement, nous fournissons divers ex-
emples explicites de schémas de signature ultra-courts,
pour plusieurs niveaux de sécurité classique, qui sont basés
sur des variantes de HFE sur différents corps finis.

multivariate signatures

scheme , Digital signature scheme, Ultra-short signatures.

Abstract: The construction of large quantum comput-
ers would endanger most of the public-key cryptographic
schemes in use today. Therefore, there is currently a
large research effort to develop new post-quantum secure
schemes. In particular, we are interested in post-quantum
cryptographic schemes whose security relies on the hard-
ness of solving some mathematical problems such as the
Permuted Kernel Problem (PKP) and the Hidden Field
Equations (HFE). This work investigates first the complexity
of PKP. And after a thorough analysis of the State-of-the-
art attacks of PKP, we have been able to update some re-
sults that were not accurate, and to provide an explicit com-
plexity formula which allows us to identify hard instances
and secure sets of parameters of this problem. PKP was
used in 1989 to develop the first Zero-Knowledge Identifi-
cation Scheme (ZK-IDS) that has an efficient implementa-
tion on low-cost smart cards. In a second step, we optimize
the PKP-based ZK-IDS and then we introduce PKP-DSS:
a Digital Signature Scheme based on PKP. We construct
PKP-DSS from the ZK-IDS based on PKP by using the tra-

Title: Analysis and design of some post-quantum cryptographic algorithms: PKP-based signature scheme and ultra-short

Keywords: Post-quantum cryptography, Public-key cryptography, Multivariate cryptography, Zero-knowledge identification

ditional Fiat-Shamir (FS) transform that converts Identifica-
tion schemes into Signature schemes. We develop a con-
stant time implementation of PKP-DSS. It appears that our
scheme is very competitive with other post-quantum FS sig-
nature schemes. Since that PKP is an NP-hard problem and
since there are no known quantum attacks for solving PKP
significantly better than classical attacks, we believe that our
scheme is post-quantum secure.

On the other hand, we study multivariate public-key signa-
ture schemes that provide“ultra™short signatures. We first
analyze the most known attacks against multivariate signa-
tures, and then define the minimal parameters that allow
ultra-short signature. We also design some specific new
modes of operations in order to avoid particular attacks.
Second, we provide various explicit examples of ultra-short
signature schemes that are based on variants of HFE. We
present parameters for several level of classical security:
80, 90, 100 bits in addition to 128, 192, and 256 bits; for
each level, we propose different choices of finite fields.
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CHAPTER 1

General introduction

In modern society, electronic communication (also known as e-communication) is becoming more and
more essential for most human activities, where individuals are extensively using technology in order to
communicate, or to easily share information at anytime and any place on the planet. Electronic commu-
nication is fundamental and vital in numerous fields such as medicine, business, finance, market, social
networking, etc.

Given the growing need for such type of information exchange, it is therefore, important to establish effi-
cient methods to highly manage and protect the shared data in order to guarantee its correctness, integrity
and durability.

Several security aspects exist in order to keep information and data from intentional or accidental alter-
ation, modification or exposure. Using various technologies and standards, data security has a large
number of applications as key and passwords management, private communications, secure transactions
and financial data, etc.

A large number of technical and legal methodologies is required in order to accomplish information and
data security. Cryptography is one of the main resources that provides these technical and legal means.

Cryptography grants privacy for information and protection for stored data or even for exchanged data
through untrusted electronic lines. It ensures data sensitivity and information security by employing math-
ematical techniques that are associated with aspects of data security such as secrecy, integrity, authen-
ticity and non-repudiation.

Cryptography is mainly a combination of three scientific fields: mathematical theory, computer science and
engineering. It can be classified into three principal categories based on the number of employed keys for
encryption and decryption in a cryptographic algorithm: Secret Key Cryptography (known as SKC), Public
Key Cryptography (known as PKC), and Hash functions.

The main type of algorithms that will be used and discussed throughout this work will be the public key
based cryptosystems.

Public Key Cryptography (PKC) is considered to be one of the most significant improvements in cryp-
tography for the last three centuries. PKC strongly relies on a fundamental tool, the so-called one-way
functions which are mathematical functions known to be easy to compute on every input, but difficult to
invert given the image of a random input.

The most known and used candidates for one-way functions with PKC schemes are:

¢ Integer Multiplication and factorization: While computing the product of two integers is easy, it is
relatively difficult to express a composite number as a product of smaller integers.



For significantly large composite numbers, there is no known classical polynomial algorithm to solve
its decomposition (factorization) problem that is the FACT problem.

e Discrete exponentiation and logarithms: While exponentiation over a modulus can be easily per-
formed, it is relatively hard to invert this process that requires computing a discrete logarithm.
There is no efficient classical algorithm known to solve in polynomial time the discrete logarithm
problem that is known also as the DLOG problem.

The security of various important public-key cryptographic protocols frequently used nowadays (such as
RSA public key encryption, Diffie-Hellman key exchange, etc.) is essentially based on the mathematical
hardness of solving the integer factorization FACT and the discrete logarithm DLOG problem.

Despite the fact that there are no efficient algorithms known to solve these problems on classical com-
puters but, since Shor’s quantum factoring algorithm [64], it is well known that a technological advance
such as the development of a quantum computer will question the difficulty of both of these problems
[64]; therefore, it might make completely obsolete such primitives as RSA scheme and Diffie-Hellman key
exchange.

Quantum computers are believed to solve problems that are conjectured to be impossible to crack using a
classical computer. All electronic communication channels will become more vulnerable to being hacked
or even to being completely paralyzed. The development of quantum computers puts at risk the integrity
of encrypted data.

Thus, it is essential to anticipate such technological breakthrough, therefore the need for post-quantum
cryptography and quantum-secure cryptographic schemes.

In the coming decades, quantum computers would constitute a significant threat essentially to public key
based cryptographic schemes. Consequently, the race to build new algorithms believed to withstand both
of classical and future quantum attacks is basically focused on asymmetric schemes.

Post-quantum cryptography is the initiation of new type of cryptographic schemes called “quantum-safe”
algorithms (also known as post-quantum cryptographic algorithms). It is possible to run these algorithms
on today’s classical computers but, they will be resistant to attacks carried out on tomorrow’s quantum
computers.

Post-quantum cryptography is based, in particular, on the fundamental assumption that there is no quan-
tum polynomial algorithm to solve the “NP-Hard" problems [8].

A wide range of families has been suggested for post-quantum cryptography. The most trustworthy fami-
lies include: multivariate cryptography, code-based cryptography, lattice-based cryptography, hash-based
signatures, and supersingular elliptic curve isogeny cryptography.

There is another variety of schemes that might be potentially quantum-safe and it does not make part of
the above cited families. It is particularly based on specific “NP-Hard" problems.

This work aims to develop new public key based cryptographic schemes that provide different levels of
security against both classical and quantum threats.

These schemes will belong to the multivariate cryptographic algorithms family or more generally based on
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specific NP-Hard problems such as the Permuted Kernel Problem PKP [63].

Multivariate cryptography involves asymmetric cryptographic schemes whose security relies on the hard-
ness of solving a system of multivariate polynomials, of small degree over a finite field. Many multivariate
schemes have been proposed presenting different types of functionalities. Several multivariate schemes
have been broken, while there still exist some interesting and secure schemes: typically variants of the
Hidden Field Equations HFE [25, 55].

The main advantage of multivariate cryptography is that it is historically known for its efficiency to construct
short signature schemes. Moreover, on top of being flexible in terms of designing distinct schemes and
variants, multivariate cryptography allows the development of successful schemes over small binary fields.

Public key cryptography, not only provides data security, but can also be used for user authentication and
more precisely for digital signatures.

Digital signatures, the analogue form of handwritten signatures, binds the identity of an entity to a certain
document and information which leads to protect the integrity of data in addition to the entity authentica-
tion.

The maijor goals of this thesis can be summarized as follows:

¢ To build a post-quantum digital signature scheme whose security is based on the difficulty of robust
mathematical problems such as PKP.

e To develop multivariate signature schemes, based on variants of the HFE problem, which provide
ultra-short signatures.

Post-quantum signatures

One of the principal goals is to study the design of post-quantum signatures constructed from identifica-
tion schemes based on “NP-Hard" problems.

One of these problems is the Permuted Kernel Problem: the problem of finding a permutation of a known
vector such that the resulting vector is in the kernel of a given matrix. This is a classical NP-Hard com-
binatorial problem which requires only simple operations such as basic linear algebra and permuting the
entries of a vector.

For quite some time, no new attacks have been reported on PKP, thus it is possible to estimate the con-
crete complexity of the problem and then utilize it to introduce new cryptographic schemes.

In 1989, Shamir [63] proposed a five-move ZK-ldentification scheme, based on PKP.

The so-called Fiat-Shamir paradigm [35] is a technique to convert a Zero-Knowledge (ZK) identification
scheme into a signature scheme.

The main idea of Fiat-Shamir transform is to use the interactions exchanged during a ZK identification
protocol as a signature. This leads to a signature scheme whose security is directly based on the difficulty
of solving an algorithmic problem.

Typically, this technique was used in [22] to construct the MQDSS multivariate signature scheme. MQDSS
is built from a ZK scheme whose security relies on the difficulty of solving a random set of quadratic equa-
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tions (a specific case of the PoSSo), in order to obtain an efficient post-quantum signature scheme.

Chen et al. [22] proved that, in the random oracle model, applying the Fiat-Shamir transform to this five-
move identification scheme provides a secure signature scheme.

A different line of work resulted in the Picnic signature scheme. Chase et al. [20] constructed this digital
signature scheme by applying the Fiat-Shamir transform to an identification scheme whose security relies
purely on symmetric primitives.

Before the NIST post-quantum standardization process, a cryptosytem, like MQDSS or Picnic, that pro-
duces signatures of significant length was considered completely impractical.

The situation now seems completely different with a greater emphasis on the security.

Thus, it is important to examine the possibility of having other post-quantum ZK schemes based on NP-
Hard problems, in particular as PKP.

Ultra-short signatures

Another principal goal is to design secure signature schemes that provide ultra-short signatures. It is
known that multivariate cryptography successfully provides such types of signatures.

Nowadays, the most widely used signature schemes, such as RSA, DSA, Elliptic Curve schemes, produce
signatures of considerable lengths. Therefore, and for some specific application such as watermarking,
QR codes, etc., it is useful to define new standards that provide ultra-short signatures. These will mainly
belong to the multivariate family of cryptosystem.

The so-called C* algorithm is the first public-key multivariate-based cryptographic algorithm. It was pro-
posed by T. Matsumoto and H. Imai in 1988 [51]. C* was later broken in [54] by J. Patarin, who suggested
a way to fix it with the Hidden Field Equations (HFE) scheme in 1999 [56].

Various multivariate-based schemes have failed. However, some multivariate schemes as UOV [45], vari-
ants of HFE [25| |55], Rainbow [28], and Gemss [19] could make the basis for robust schemes.

The HFE family cryptosystems, proposed by J. PATARIN [59], is one of the best known and most studied
schemes among all Multivariate Public Key Cryptosystems MPKCs. It can be used for public-key encryp-
tion and also for signatures, but it is generally more efficient for signatures schemes.

The HFE family consists of many variants due to the fact that it is always possible to apply different modi-
fications (namely perturbations), and even to use different finite field (I is mostly used).

Considering the existence of some quasi-polynomial time algorithms to attack the "nude HFE", it is
strongly recommended to always use suitable perturbations.

Therefore, the main motivation is to propose some sets of parameters for ultra-short HFE-based signature
schemes over a finite field that can be signed and verified in less than one minute on a standard modern
computer, despite the public-key size and by considering distinct levels of security.

4


https://www.nist.gov/

Cryptanalysis

Cryptanalysis is a complementary aspect of the design that allows studying the hidden information of a
cryptographic system in order to eliminate weak primitives, and thus to choose suitable parameters that
guarantee security and efficiency.

Most of the time, cyptnalysis involves studying and analysing pure mathematical problems.

Since this work aims to design a post-quantum signature scheme based on the difficulty of solving hard
problems (as the Permuted Kernel Problem PKP for example), then the first thing to look at is the com-
plexity analysis of the underlying problem.

To do so, one must review all the well-known mathematical methods to solve this problem to determine
and develop the most effective tool to solve the problem.

After the examination of all the possible approaches to solve the mathematical problem, an explicit com-
plexity bound can be provided to better estimate the efficiency of the best attacks. Hence, it is possible to
determine optimal parameters for hard instances of the underlying problem.

For multivariate cryptography, algebraic cryptanalysis is a general method for evaluating the security of a
wide variety of cryptosystems.

This relatively recent technique is now widely considered as a fundamental tool in cryptanalysis. The main
idea of this technique is to model a multivariate cryptographic primitive by a set of non-linear equations.
The system of equations is constructed to link the solutions of this system with secret information of the
considered cryptographic primitive (for example, the secret key of an encryption scheme).

Considering the goal of developing ultra-short multivariate-based signature schemes, algebraic cryptanal-
ysis can offer a powerful framework for studying the security of designed multivariate signature schemes.
The starting point here is to use a well-known tool proposed in the literature: the Grébner bases. This tool
seems well suited to systems that appear in algebraic cryptanalysis which often have naturally a specific
structure.

Therefore, in this thesis, we provide the security analysis of different problems (such as the Permuted
Kernel Problem (PKP), and the Hidden Field Equations (HFE)) via classical and algebraic cryptanalysis.
On the other hand, we propose new post-quantum and classical signature schemes.






CHAPTER 2

Introduction générale

Dans la société moderne, la communication électronique (également connue sous le nom de e-communication)
devient de plus en plus essentielle pour la plupart des activités humaines, ou les individus utilisent large-
ment la technologie pour communiquer ou pour partager facilement des informations a tout moment et en

tout lieu sur la planéte. La communication électronique est fondamentale dans de nombreux domaines

tels que la médecine, les affaires, la finance, le marché, les réseaux sociaux, etc.

Compte tenu du besoin croissant d’un tel type d’échange d’informations, il est donc important de mettre

en place des méthodes efficaces pour gérer et protéger de maniere optimale les données partagées afin

de garantir leur exactitude, leur intégrité et leur durabilité.

Il existe plusieurs aspects de la sécurité qui empéchent I'altération, la modification ou I'exposition (inten-
tionnelle ou accidentelleles) des informations et des données. Utilisant diverses technologies et normes,
la sécurité des données possede un grand nombre d’applications comme la gestion des clés et des mots
de passe, les communications privées, les transactions sécurisées et les données financieres, etc.

Un grand nombre de méthodologies techniques et juridiques est nécessaire pour assurer la sécurité des
informations et des données. La cryptographie est I'une des principales ressources qui fournit ces moyens
techniques et juridiques.

La cryptographie garantit la confidentialité des informations et la protection des données stockées ou
méme des données échangées via des lignes électroniques non fiables. Elle garantit la sécurité des don-
nées et des informations sensibles en utilisant des techniques mathématiques associées a des aspects
de la sécurité des données tels que le secret, l'intégrité, 'authenticité et la non-répudiation.

La cryptographie est principalement une combinaison de trois domaines scientifiques: la théorie mathé-
matique, l'informatique et I'ingénierie. Elle peut étre classée en trois catégories principales en fonction
du nombre de clés utilisées pour le cryptage et le décryptage dans un algorithme cryptographique: la
cryptographie a clé secréte, connue sous le nom de SKC (Secret Key Cryptography), la cryptographie a
clé publique, connue sous le nom de PKC (Public Key Cryptography), et les fonctions de hachage.

Les principaux types d’algorithmes qui seront utilisés et discutés tout au long de ce travail seront les cryp-
tosystémes a clé publique.

La cryptographie a clé publique (PKC) est considérée comme I'une des améliorations les plus significa-
tives de la cryptographie au cours des trois derniers siécles. La cryptographie s’appuie fortement sur un
outil fondamental, les fonctions dites a sens unique qui sont des fonctions mathématiques connues pour
étre faciles a calculer sur toutes les entrées, mais difficiles a inverser étant donné I'image d’une entrée
aléatoire.



Les candidats les plus connus et utilisés pour les fonctions a sens unique avec des schémas PKC sont:

e Multiplication et factorisation d’entiers: bien que le calcul du produit de deux entiers soit facile, il est
relativement difficile d’exprimer un nombre composé comme un produit d’entiers plus petits.
Pour les nombres composeés significativement grands, il n’y a pas d’algorithme polynomial non quan-
tique connu pour résoudre son probleme de décomposition (factorisation) qui est le probleme FACT.

e Exponentiation discréte et logarithmes: alors que I'exponentiation sur un module peut étre facile-
ment réalisée, il est en général relativement difficile d’'inverser ce processus qui nécessite le calcul
d’un logarithme discret.

De méme que pour la factorisation, il n’y a pas d’algorithme efficace connu non quantique pour ré-
soudre en temps polynomial le probléme du logarithme discret connu aussi sous le nom de probléme
DLOG.

La sécurité de divers protocoles cryptographiques a clé publique importants fréquemment utilisés de nos
jours (tels que le chiffrement a clé publiqgue RSA, I'échange de clés Diffie-Hellman, etc.) est essentielle-
ment basée sur la dureté mathématique de la résolution de la factorisation d’entiers FACT ou sur le
probléme du logarithme discret DLOG.

Bien qu'il n’existe pas d’algorithmes efficaces connus pour résoudre ces probléemes sur les ordinateurs
classiques. Le développement d’'un ordinateur quantique puissant remettra en question la difficulté de
ces deux problemes [64]; et par conséquent, cela pourrait rendre complétement obsolétes des primitives
telles que le schéma RSA et I'échange de clés Diffie-Hellman. En effet, I'algorithme de factorisation
quantique de Shor [64] résout les deux problemes (FACT et DLOG) avec une complexité polynomial sur
un ordinateur quantique.

On pense que les ordinateurs quantiques résolvent des problemes supposés impossibles a résoudre avec
un ordinateur classique. Tous les canaux de communication électroniques deviendront plus vulnérables
au piratage ou méme a la paralysie compléte. Le développement des ordinateurs quantiques mettera
donc en péril 'intégrité des données chiffrées par les algorithmes habituels.

Ainsi, il est essentiel d’anticiper cette avancée technologique, et d’ou le besoin de la cryptographie post-
quantique et de schémas cryptographiques sécurisée contre les attaques quantiques.

Dans les décennies a venir, les ordinateurs quantiques constitueraient une menace importante essen-
tiellement pour les schémas cryptographiques a clé publique. Par conséquent, la course a la construction
de nouveaux algorithmes censés résister a la fois aux attaques quantiques comme classiques est essen-
tiellement dirigée vers les schémas asymétriques.

La cryptographie post-quantique est l'initiation d’'un nouveau type de schémas cryptographiques appelés
algorithmes de sécurité quantique (également connus sous le nom d’algorithmes cryptographiques post-
quantiques). |l est possible d’exécuter ces algorithmes sur les ordinateurs classiques d’aujourd’hui, mais
ils seront résistants aux attaques menées sur les ordinateurs quantiques de demain.

La cryptographie post-quantique est basée, en particulier, sur 'hypothese fondamentale qu’il n’y a pas
d’algorithme polynomial quantique pour résoudre les problemes “ NP-dur ” [8].

8



Un large éventail de familles a été suggéré pour la cryptographie post-quantique. Les familles les plus
étudiées sont: la cryptographie multivariée, la cryptographie a base de code, la cryptographie sur les
réseaux, les signatures a base de hachage et la cryptographie par isogénie sur les courbes elliptiques
supersinguliéres.

Il existe une autre variété de systémes qui pourraient étre sirs face aux attaques quantiques et qui ne font
pas partie des familles citées ci-dessus. Elle est notamment basée sur des problémes particuliers connus
sous le nom des problémes “ NP-hard ”. Ce sont souvent des problemes combinatoires qui permettent
de développer des schémas d’authentifications ou de signatures, mais pas de chiffrement.

Ce travail vise a développer de nouveaux schémas cryptographiques a clé publique qui offrent différents
niveaux de sécurité contre les menaces classiques et quantiques.

Ceux-ci appartiendront a deux familles: les algorithmes cryptographiques multivariés, et les algorithmes
basés sur des problémes NP-dur spécifiques tels que le probleme du noyau permuté PKP (Permuted
Kernel Problem) [63].

La sécurité de la cryptographie multivariée repose sur la dureté de la résolution d’un systeme de polynémes
multivariés, de petit degré sur un corps fini. De nombreux schémas multivariés ont été proposés présen-

tant différents types de fonctionnalités. Plusieurs schémas multivariés ont été cassés, alors qu’il existe

encore des schémas intéressants et sécurisés: en particulier des variantes de HFE (Hidden Field Equa-

tions) [25, 55].

Le principal avantage de la cryptographie multivariée est qu’elle est historiquement connue pour son effi-

cacité a construire des schémas de signature courtes. En plus d’étre flexible en termes de conception de

schémas et de variantes distinctes, la cryptographie multivariée permet le développement de schémas

efficaces sur de petits corps.

La cryptographie a clé publique assure non seulement la sécurité des données, mais peut également étre
utilisée pour I'authentification des utilisateurs et plus précisément pour les signatures digitales.

Les signatures digitales, 'analogue des signatures manuscrites, associent I'identité d’'une entité a certains
documents et informations, ce qui permet de protéger I'intégrité des données en plus de I'authentification
de l'entité.

Les principaux objectifs de cette thése peuvent étre résumés comme suit:

e La construction d’'un schéma de signature digitale post-quantique dont la sécurité est basée sur la
difficulté du problémes mathématique robustes tels que PKP.

e Le développement de schémas de signature multivariés, basés sur des variantes du probléme HFE,
qui fournissent des signatures ultra-courtes.

Signatures post-quantiques

Lun des principaux objectifs est d’étudier la conception de signatures post-quantiques construites a partir
de schémas d’identification basés sur des problemes “ NP-durs .

Un de ces problemes est le probleme du noyau permuté PKP: le probléme de trouver une permutation
d’un vecteur connu de telle sorte que le vecteur résultant soit dans le noyau d’une matrice donnée. |l
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s’agit d’'un probléme combinatoire NP-dur classique qui ne nécessite que des opérations simples telles
que l'algebre linéaire de base et la permutation des entrées d’un vecteur.

Depuis un certain temps, aucune nouvelle attaque n’a été signalée sur PKP, il est donc possible d’estimer
la complexité concréte du probléme puis de I'utiliser pour introduire de nouveaux schémas cryptographiques.

En 1989, Shamir [63] a proposé un schéma d’identification ZK (Zero-Knowledge) en cing passes, basé
sur PKP.

Le paradigme Fiat-Shamir [35] est une technique permettant de convertir un schéma d’identification Zero-
Knowledge (ZK) en schéma de signature.

Lidée principale de la transformation Fiat-Shamir est d’utiliser comme signature les interactions échangés
lors d’'un protocole d’identification ZK. Cela conduit a un schéma de signature dont la sécurité est directe-
ment basée sur la difficulté de résoudre un probléme algorithmique.

Généralement, les auteurs de [22] ont utilisé cette technique pour construire le schéma de signature mul-
tivariée MQDSS. MQDSS est construit a partir d'un schéma ZK dont la sécurité repose sur la difficulté
de résoudre un ensemble aléatoire d’équations quadratiques (un cas particulier du PoSSo: Polynomial
System Solving ), afin d’obtenir un schéma de signature post-quantique efficace.

Chen et al. ont prouvé que, dans le modéle d’oracle aléatoire, I'application de la transformation Fiat-
Shamir a ce schéma d’identification en cing passes fournit un schéma de signature sécurisé.

Une ligne de travail différente a abouti au schéma de signature Picnic. Chase et al. [20] ont construit
ce schéma de signature digitale en appliquant la transformation Fiat-Shamir a un schéma d’identification
dont la sécurité repose uniqguement sur des primitives symétriques.

Avant le processus de standardisation post-quantique du NIST, un cryptosytéme, comme MQDSS ou
Picnic, qui produit des signatures de longueur significative était complétement considéré irréaliste.

La situation semble cependant maintenant différente avec un plus grand accent sur la sécurité.

Ainsi, il est important d’examiner la possibilité d’avoir d’autres schémas ZK post-quantiques basés sur
des problemes NP-durs, en particulier comme PKP.

Signatures ultra-courtes

Un autre objectif principal est de concevoir des schémas de signature sécurisés qui fournissent des
signatures ultra-courtes. On sait que la cryptographie multivariée fournit avec succés de tels types de
signatures.

De nos jours, les schémas de signature les plus largement utilisés, tels que RSA, DSA, schémas de
courbe elliptique, produisent des signatures de longueurs d’environ 3000 bits (pour RSA) ce qui est rela-
tivement grand pour certains applications; DSA et les courbes elliptiques ont des signatures plus courtes.
Par conséquent, et pour certaines applications spécifiques comme les codes QR par exemple, il est utile
de définir de nouvelles normes qui fournissent des signatures ultra-courtes. Celles-ci appartiendront a la
famille de la cryptographie multivariée .

Lalgorithme dit C* est le premier algorithme cryptographique multivarié a clé publique. Il a été proposé
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par T. Matsumoto et H. Imai en 1988 [51]. C* a ensuite été cassé dans [54] par J. Patarin, qui a suggéré
un moyen de le corriger avec le schéma HFE (Hidden Field Equations) en 1999 [56].

Divers schémas multivariés ont échoué. Cependant, certains schémas multivariés comme UOV [45], vari-
antes de HFE [25, 55|, Rainbow [28], et Gemss [19] pourraient constituer la base de schémas robustes.

La famille de cryptosystémes basés sur HFE, proposée par J. Patarin [55], fait partie des schémas les
plus connus et les plus étudiés parmi tous les cryptosystémes a clé publique multivariés MPKC. HFE et
ses variantes peuvent étre utilisés pour le chiffrement a clé publique et également pour les signatures,
mais il est généralement plus efficace pour les schémas de signatures.

La famille HFE se compose de nombreuses variantes du fait qu’il est toujours possible d’appliquer dif-
férentes modifications (notamment des perturbations), et méme d’utiliser des corps finis différents (F5 est
le plus souvent utilisé).

Compte tenu de I'existence d’algorithmes en temps quasi-polynomial pour attaquer le " HFE nu", il est
fortement recommandé de toujours utiliser des perturbations appropriées.

Par conséquent, la motivation principale est de proposer quelques ensembles de paramétres pour des
schémas de signature ultra-courts basés sur des variantes de HFE sur un corps fini qui peuvent étre
signés et vérifies en moins d’une minute sur un ordinateur moderne standard, malgré la taille de la clé
publique et en considérant des niveaux de sécurité distincts.

Cryptanalyse

La cryptanalyse est un aspect complémentaire de la conception qui permet d’étudier les informations
cachées d’'un systéme cryptographique afin d’éliminer les primitives faibles, et ainsi de choisir des paramétres
adaptés qui garantissent la sécurité et I'efficacité.

La cryptanalyse implique la plupart du temps d’étudier et d’analyser des problemes mathématiques purs.

Puisque ce travail vise a concevoir un schéma de signature post-quantique basé sur la difficulté de ré-
soudre des problemes difficiles (comme le probléme du noyau permuté PKP par exemple), alors la pre-
miére chose a regarder est I'analyse de complexité de ce probléme.

Pour ce faire, il faut revoir toutes les méthodes mathématiques bien connues pour résoudre ce probleme
afin de déterminer et de développer 'outil le plus efficace pour résoudre le probléme.

Aprés I'étude de toutes les approches possibles pour résoudre le probléeme mathématique, une borne
de complexité explicite peut étre fournie pour mieux estimer I'efficacité des meilleures attaques. Par con-
séquent, il est possible de déterminer les parameétres optimaux pour I'état de 'art actuel pour les instances
difficiles du probleme.

Pour la cryptographie multivariée, la cryptanalyse algébrique est une méthode générale pour évaluer la
sécurité d’une grande variété de cryptosystemes.

Cette technique relativement récente est aujourd’hui largement considérée comme un outil fondamental
de la cryptanalyse. Lidée principale de cette technique est de modéliser une primitive cryptographique
multivariée par un ensemble d’équations non linéaires.

Le systéme d’équations est construit pour relier les solutions de ce systéme aux informations secrétes de
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la primitive cryptographique considérée (par exemple, la clé secréte d’'un schéma de chiffrement).

Compte tenu de I'objectif de développement de schémas de signature multivariés ultra-courts, la crypt-
analyse algébrique peut offrir un cadre puissant pour étudier la sécurité des schémas de signature multi-
variées congus.

Le point de départ ici est d’utiliser un outil bien connu proposé dans la littérature: les bases de Grébner.
Cet outil semble bien adapté aux systéemes qui apparaissent en cryptanalyse algébrique qui ont souvent
naturellement une structure spécifique.

Par conséquent, dans cette thése, nous fournissons I'analyse de sécurité de différents problemes (tels que

le probléeme du noyau permuté (PKP) et le probleme (HFE)) via la cryptanalyse classique et algébrique.
D’autre part, nous proposons de nouveaux schémas de signature post-quantiques et classiques.
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CHAPTER 3

An overview of cryptography
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3.1 Introduction

Most of modern cryptographic schemes are heavily based upon mathematical theories, specifically on
Number theory and algebra. This chapter focuses on some essential mathematical definitions required
for the construction and the security analysis of a variety of cryptosystems.

Basic techniques from algebra, number theory, and computational complexity are briefly described in next
sections in addition to essential cryptographic concepts and some related terms.

3.2 Mathematical background

This section provides some basic mathematical tools used to develop secure cryptographic schemes.

3.2.1 Number theory and Algebra

Number theory is a branch of mathematics dedicated mainly for the study of integers and number-theoretic
functions, while algebra is devoted to the study of mathematical symbols and the rules for using them.
Some of the major concepts of number theory and algebra that frequently occur in cryptology are defined
below.

Let Z be the set of all integers Z = {...,—2,-1,0,1,2,...}.

Definition 1 (Prime number) An integer p > 1 is a prime number if its only divisors are 1 and p. An
integer that is not prime is said to be composite.



In digital electronic, it is important to represent each number by a sequence of binary digits similarly to the
most common representation, namely the decimal representation.

Theorem 1 (Representation of integers) A positive integer x can be expressed, using an integerb > 1
as a base, uniquely in the form:

T =apb" + an_ 10" '+ ...+ arb+ ao,
where the a;s are integers such that 0 < a; < banda, >0 fori € {0,...,n—1}.
By taking the base b, the representation length of any integer x can be expressed as
llogyz] +1=n+1,

where log, x is the logarithm of = to base b.
The representations are named according to the value of b. The most used representations are binary
(b = 2), decimal (b = 10) and hexadecimal (b = 16).

Definition 2 (Congruence modulo n) Letn be a positive integer.
The integers x and y are said to be congruent modulo n, written x = y (mod n), if x and y have the same
remainder when divided by n. The integer n is called the modulus of the congruence.

The congruence modulo n satisfies the following:

e forany z,y € Z, x = y (mod n) if and only if n divides = — .

Reflexivity: for any z € Z, x = = (mod n).

Symmetry: for any xz,y € Z, if x = y (mod n) then y = x (mod n).

Transitivity: for any x,y, z € Z, if x = y (mod n) and y = z (mod n), then = = z (mod n).

Forany x,y,z,t € Z, if x = y (mod n) and z = t (mod n), then x + z = y + ¢t (mod n) and zz = yt
(mod n).

Rings and finite fields

An algebraic structure is formed of a set A, a certain number of operations, and a finite collection of
conditions (also known as axiomes), that these operations must follow. Algebraic structures also involve
special roles for some elements of the set A.

Most common examples of algebraic structures include groups, rings, field... .

Definition 3 (Ring) A ring R = (A, +,-) consists of an addition operation (denoted arbitrarily +) and a
multiplication operation (denoted arbitrarily -), fulfilling the following conditions:

e Closure law: forany a,b € A, a+be Aanda-b € A.

e Associative law: for any a,b,c € A, (a+b)+c=a+ (b+c)and(a-b)-c=a-(b-c).
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Identity law: there are an additive zero element denoted Or, and a multiplicative identity element
denoted 1, such that for any a € A, the following holds:

a+0=04a=na, and l-a=a-1=a.

Commutative law: for any a,b € A, a +b="b+ a.

Distributive laws: for any a,b,c € A, (a+0b)-c=a-c+b-candc-(a+b)=c-a+c-b.

Inverse law: for any a € A, there is an element b € A such that

a+b=>b+a=0, whereb is the additive inverse of a and denoted by — a.

A ring is called a commutative ring ifa -b=0b-a forany a,b € A.

Definition 4 (Invertible element) An element a # 0 of a ring R is called an invertible element if there
exist an element b of R such thata -b=1b-a = 1. The elementb is the multiplicative inverse of a, and it is
denoted by a'.

Definition 5 (Field) A field is a commutative ring in which all non-zero elements are invertible.

Definition 6 (Finite field) A finite field F (also known as Galois field GF) is a field with a finite number of
elements. The number of elements is also referred to as the order of the field.

Existence and uniqueness of finite fields:
e [Fis a finite field with ¢ elements if and only if ¢ = p™ for some prime number p and integer m > 1.
e For every prime power order ¢ = p™, there exists a unique finite field I of order p™ denoted by F,=
or also by GF(p™).
3.2.2 Computational complexity theory

Computational complexity theory is a computer science concept that allows classification of computational
problems according to the amount of difficulty and resources needed to solve them. The complexity mea-
sures include time, storage space, the amount of communication, the processors number, etc... Mainly,
time and space storage are the most important resources to look at.

A computational problem is an abstract task to be solved by an algorithm: a finite collection of mathemat-
ical steps and instructions that are computer-implementable.

Definition 7 (Algorithm) An algorithm is a well-determined process or formula for solving a problem or
for performing a computation. It takes an input string, referred to as a problem instance, and outputs a
solution corresponding to the input.

Definition 8 (Deterministic algorithm) An algorithm is said to be deterministic if it follows the same
sequence of operations on the same given input.
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Definition 9 (Probabilistic algorithm) A probabilistic algorithm is a type of non-deterministic algorithms
whereby either the execution path or the output of the algorithm might differ even when given the same
input. On each computation step there are two possible next steps. The next move to take is chosen
according to some probability distribution.

The efficiency of an algorithm to solve a computational problem is measured by the time required to find
a solution. The running time of an algorithm depends on the problem instance. In fact, large instances
require more time to solve than normal instances. Therefore, the time (or storage space, or any other
measure of complexity) needed to run an algorithm depends on the length of the problem instance (the
input string).

Definition 10 (Input size) For a given algorithm, the size of an instance is defined as the total number of
bits required to binary-represent the instance using a suitable encoding scheme.

For example:

e the number of bits needed to encode a positive integer = is |log x| + 1 which is generally approxi-
mated by log x.

e the number of bits needed to encode a matrix with m rows, n columns, and positive integer entries,
each at most z, is approximately mn log x.

Definition 11 (Running time) The running time of a given algorithm is defined as the number of opera-
tions or steps executed on a particular input.

A step can be considered as a bit comparison or assignment.

Complexity measures

There are several distinct ways to measure the running time complexity of an algorithm based on the size
of its input:

e The worst-case complexity is a function (representing time versus input size) defined by the
maximal number of operations (steps) to be executed on any input.

e The average-case complexity is a function defined by the average number of operations to be
executed on any instance. It can be done by running the algorithm several times on different inputs
of the same size, then the average complexity is given as the total running time divided by the
number of trials.

e The best-case complexity is a function defined by the minimum number of operations to be exe-
cuted on any instance.

In practice, the complexity of an algorithm is usually measured by its worst-case complexity. However, it
is complicated to derive the exact form of the functions cited above. Therefore, an asymptotic analysis is
usually used instead in order to determine approximations of the running time complexity. The asymptotic
analysis allows to study the growth of the running time of an algorithm when the input size increases
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without bound.

The most used asymptotic notations to represent running time complexity of algorithms are listed below.
The notations require the definition of two non-negative functions f and g valued for non-negative integers
n. Let f(n) be the running time of an algorithm on inputs of size n, and g(n) be an arbitrary time complexity
to be related to the algorithm.

e Asymptotic upper bound, also known as Big O notation, defines an upper bound on the growth of
the running time for sufficiently large input sizes n.
f(n) = O(g(n)) means that there exists some positive constant ¢ such that 0 < f(n) < cg(n) for
large enough n.

e Asymptotic lower bound, also known as 2 notation, defines a lower bound on the growth of the
running time for sufficiently large input sizes n.
f(n) = Q(g(n)) means that there exists some positive constant ¢ such that 0 < cg(n) < f(n) for
large enough n.

e Asymptotic tight bound, also known as 6 notation, defines an upper and a lower bound on the
growth of the running time for sufficiently large input sizes n.
f(n) = 0(g(n)) means that there exist two positive constants ¢; and ¢z such that 0 < c1g(n) < f(n) <
cog(n) for large enough n.

The most commonly used notation to express the running time complexity is the Big O notation.

Definition 12 (Polynomial Time algorithm PT) An algorithm is said to be of polynomial time if its worst-
case running time function is polynomial in the size of the algorithm input.

The worst-case running time function of a PT algorithm is of the form O(n*), where n is the input size and
k is a constant.

An algorithm is said to be of exponential time if its worst-case running function cannot be bounded.

Definition 13 (Sub-exponential Time algorithm) An algorithm is said to be of sub-exponential time if its
worst-case running time function is of the form exp(O(n)), where n is the input size.
Complexity classes

The notion of polynomial time algorithms yields different complexity classes that can be summarized as
follows:

e The complexity class P (deterministic polynomial time problems) is the set of problems that can be
solved, using a deterministic algorithm, in polynomial time.

e The complexity class N'P (non-deterministic polynomial time problems) is the set of problems that
can be solved, using a non-deterministic algorithm, in polynomial time.

e The complexity class co-NP (complementary non-deterministic polynomial time problems) is the
set of the complement problems (i.e. problems resulting from reversing the yes and no answers) of
the NP problems.
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It is possible to convert one problem to another, such process is called a reduction operation. Therefore,
another complexity classes can be defined using the reduction operation:

e The complexity class N'P-hard: a problem A is said to be N'P-hard if for every problem B in the NP
class, there exists a reduction from B to A in deterministic polynomial time.

e The complexity class N'P-complete: a problem A is said to be N"P-complete if A is an NP problem
and if for every problem B in the N'P class, there exists a reduction from B to A in deterministic
polynomial time.

The following inclusions hold:
P CNPand P C co-NP,

while there are some outstanding unsolved problems:
1. IsP=NP?
2. IsNP =co-NP?
3. IsP=NPnNco-NP?

3.3 Basic concepts of cryptography

Cryptography is the science of protecting private communications and information in the presence of ma-
licious third parties referred to as adversaries. Cryptography relies heavily on mathematical concepts and
computer science techniques allowing the conversion of an ordinary text called plain-text into apparent
nonsense text called ciphertext (the process of encryption) and back again upon arrival (the process of
decryption).

The encryption/decryption processes are controlled each by an algorithm (a set of rule-based calcula-
tions) and a key (a string of characters that can be public or remains secret). Cryptography is closely
related to the encryption and decryption processes using mathematical algorithms, whereas cryptanaly-
sis is the term used for the analysis of encryption schemes in order to search for algorithm vulnerabilities
and breach cryptographic or information security systems to gain access to the content of ciphertexts.
Cryptology is the term reffering to the combined study of both cryptography and cryptanalysis.

The main goals of cryptography is to ensure the following information security objectives:

e Confidentiality refers to keeping the content of sensitive data from being available or disclosed to
illegitimate parties.

e Data integrity refers to assuring that the shared information cannot be modified by unauthorized
parties without the modification being detected.

¢ Authentication (Identification) allows each party to verify and confirm the identity of the other party
participating in the communication (authentication of parties). It provides also the verification of the
origin/destination of the delivered information (authentication of data).
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¢ Non-repudiation refers to preventing a party from denying the intention in the creation or transmis-
sion of previous commitment at later stage.

Cryptographic algorithms are further classified into three distinct categories according to the number of
keys utilized for encryption and decryption:

e Symmetric cryptography or Private/Secret-key cryptography (SKC)
e Asymmetric cryptography or Public-key cryptography (PKC)

e Hash functions

3.3.1 Symmetric cryptography

Symmetric-key cryptography (also known as Secret-key cryptography) refers to cryptographic techniques
in which a single common key is used for both encryption and decryption processes.

The sender and the receiver must already share the same key or, uncommonly, different keys but linked
in a simple computable way. Therefore, symmetric cryptographic algorithms employ a shared key that is
known to both sender and receiver and remains secret to other parties. The sender/creator encrypt the
plain-text using a shared key and sends the corresponding ciphertext to the receiver. The receiver uses
the same shared key to decrypt the ciphertext and obtain the original plain-text.

The significant drawback of symmetric-key cryptography is the secure exchange of the key that is used
by both parties for encryption and decryption as well. The key distribution problem yields a new type of
cryptography : the asymmetric cryptography.

3.3.2 Asymmetric cryptography

Unlike symmetric-key cryptography, asymmetric-key cryptography (also known as Public-key cryptogra-
phy) refers to cryptographic techniques in which two different keys are used for encryption and decryption
processes.

Each party possesses a key pair (a public key and a private key). The private key must remain secret at
all the times, while its paired public key may be freely shared across the network so if any party needs to
communicate with an another party can use its corresponding public key. The public key is used for data
encryption and the ciphertext is then decrypted withe the paired secret key.

3.3.3 Hash functions

The concept of hash functions depends on a special type of functions, namely one-way functions. There
are some type of functions that are essential in cryptography. The definitions of such functions are given
below.
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Definition 14 A function f from a set X to a setY is defined by a rule that assigns to each element z € X
a unique elementy € Y. y is the image of x under f and it is denoted by y = f(x).
The subset of Y consisting of all outputs of f is denoted by f(X) = Im(f) = {f(z) | z € X}.

Definition 15 (One-way function) Let f be a map from a set X to a setY. f is called to be one-way
function if it is easy to compute the image f(x) for any x € X, but it is computationally hard to find for
essentially all y € Im(f) a suitable x € X such thaty = f(x).

Informally, a one way function is a function for which computation in one direction is straightforward, yet
difficult in the reverse direction.

Definition 16 (Trapdoor function) A trapdoor function is a one-way function f : X — Y coming with
the property that given a special information, called the trapdoor, it is then feasible to compute for any
y € Im(f) a suitable v € X such thaty = f(x).

Cryptographic hash functions refer to mathematical deterministic algorithms that use basically no key.
Hash functions are one-way functions that take numeric data of arbitrary length as input and map to a
bit string of fixed length. The output of a hash function is called the message digest or the hash value.
Practically, it is impossible to recover the original input of a hash function knowing the corresponding hash
value. Cryptographic hash functions provide ideally the following properties:

e Pre-image resistance: While it is easy to compute the hash value of an input or a message m;
knowing a hash value H, it is hard to find any message m such that H = Hash(m).

e Second pre-image resistance: Given a fixed message my, it is hard to find a message ms # m;
such that Hash(m,) = Hash(ma).

e Collision resistance: It is hard to find two different message m; and ms such that Hash(m;) =
Hash(ms).

3.3.4 The difference between Symmetric, Asymmetric and Hash function cryptography

e Symmetric cryptography requires the use of a single key for both encryption and decryption pro-
cesses, asymmetric key requires the use of a key pair, whereas hash function require no key for
encryption or for decryption.

e Symmetric cryptography is generally faster than asymmetric and hash function cryptography but, it
is less secure comparing to the other types of cryptography. Symmetric cryptography is ideally used
to encrypt large amount of data.

e The disadvantage of symmetric algorithms is that the key must remain secret, and yet must be
transmitted to the second party. Asymmetric cryptography was introduced to overcome this key
exchange problem, and the hash function cryptography to provide higher levels of security.
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4.1 Introduction

In this thesis we study the conversion of an Identification scheme (IDS) into a Digital Signature Scheme
(DSS) using the well known technique of Fiat-Shamir (FS) [35]. Hence, we first introduce some of the
formal definitions of an Identification scheme (IDS). Also, the structure of an identification protocol and its
essential properties will be presented.

Authentication methods

Authentication is the identity verification process of an entity (a person, a user, or a device ) that asks
for access to the objects, services, data or resources of the system. Validating the identity authorizes
or rejects the usage request of the required services. So that, the authentication process provides the
identification of the user, and the authentication of its identity before getting into the system. It can be
divided into two distinct phases:

¢ |dentification: it answers the question of who is the user?.

e Data-origin authentication: it answers the question of is the user really who he/she claims to be?.

Identification scheme (IDS)

Identification is the concept whereby one entity ascertains through cryptographic methods the identity of
another entity involved in a protocol which is known as identification protocol. Consider a party A Alice
that needs to identify herself to a second party B Bob seeking for example Bob’s help. If both parties meet
face to face, Bob can recognize Alice by her face, voice, or other physical characteristics. People identify



one another by associating unique characteristics for each other. But, the situation is different when Alice
and Bob are communicating over an insecure channel intercepted by an adversary C Charly.

During a digital conversation, and similarly to the physical world, each entity must be associated and
represented with something unique that should be provided only by the entity itself. Most importantly, an
identification protocol over an open line must be protected from impersonation attacks; so that an adver-
sary C Charly fails to assume the identity of the legitimate party A Alice in the communication with the
other party B Bob. Even Bob should be incapable to impersonate Alice.

Informally, an identification scheme consists of a challenge-response interaction between a Prover P and
a Verifier V:

e The Verifier V sends a challenge to the Prover P,

e The Prover P responds with a valid answer that only 7 has knowledge of in order to be identified.

The Verifier V checks the response given by the Prover P and then verifies if he is whomever he claims
to be.

4.2 Formal definitions and general structure

In an identification scheme (IDS), a Prover P tries to convince a Verifier V about its identity without letting
a read adversary successfully assume the identity of the legitimate Prover P. The goal is to have a secure
identification scheme IDS that prevents an impersonation attack. More precisely:

Definition 17 (General structure) . Lef A\ € N be a security parameter.
An identification scheme IDS consists of three probabilistic polynomial time (PPT) algorithms
IDS(1N = (KEYGEN, P, V) such that:

e the key generation KEYGEN algorithm takes as input a security parameter A and returns a public
and secret key pair (pk, sk) + KEYGEN(1%),

e the ProverP algorithm takes as input the secret key sk and the ongoing conversation with the Verifier
VY and then sends the next message to V,

e the Verifier V deterministic algorithm takes as input the public key pk and a full conversation tran-
script. V outputs a boolean value b with b = 1 signaling an identity validation, and b = 0 a rejection.

An identification scheme must satisfy a completeness condition that every true statement could be justified
by the Prover P, with knowledge of the secret key sk, and the probability that the Verifier is convinced is
almost 1.

More formally:

Definition 18 (Completeness) An Identification scheme (KEYGEN, P, V) is called complete if when both
parties P and V follow the protocol correctly and honestly, the verifier V accepts the identification with
probability 1. In other words, we have:

A
Py (pk, sk) < KEYGEN(ll )| _ 1

(P(sk), V(pk)) =

Y
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where (P(sk), V(pk)) stands for the interaction between P with input sk and V' with input pk.

Roughly speaking, the structure of an identification scheme (IDS) uses the concept of a commitment
scheme which covers generally two important phases. The first, namely commit phase, the Prover P com-
mits to a statement or a value Com that remains hidden to the Verifier V ( hiding property, see Section
[4.5.1). The second, so called reveal phase, during which the committed statement or value is revealed
with some additional information that helps the Verifier to check opening correctness of the commitment.
The committed value Com must be unchangeable after the commit phase, so that the Prover cannot open
its committed value in multiple ways (binding property, see Section 4.5.1).

More precisely, an IDS that uses the idea of a commitment scheme can be defined as follows:

Definition 19 (Commitment scheme) A commitment scheme consists of a triplet algorithms (SETUP,
ComMIT, VERIFY) such that:

e the setup algorithm SETUP(1*) generates, for a given security parameter \, the public parameters
of the protocol,

e the commit algorithm takes as input the message to commit to m and a uniformly random bit string
r, and outputs a commitment com < COMMIT(r, m),

e the Verify algorithm VERIFY takes as input the commitment/random value pair (com, r) and the origi-
nal message m, computes a commitment com using the message/random pair communicated to the
Verifier during the opening phase, and outputs a boolean value b with b = 1 whether com = com,
and b = 0 otherwise.

The commitment scheme is non-interactive in terms of the VERIFY algorithm and can be considered as a
derandomization of the CoMMIT algorithm. The random string r used to commit to a statement or value
is, at the same time, used to open and reveal the commitment to the Verifier.

By abusing the notation, we often omit mentioning the commitment randomness. We use com < COMMIT(m)
which denotes implicitly the process of the commitment randomness using r ( com « COMMIT(r,m) ).
Similarly, during the verification phase, com = CoMMIT(m) actually includes that the Prover communicates

r to the Verifier, and that the Verifier checks COMMIT(r, m).

4.3 Canonical Identification Scheme (IDS)

A general case of an identification scheme is a three-move protocol between a Prover P and a Verifier V.
It is presented in Fig. [4.1]and defined as follows:

Definition 20 (Canonical three-move IDS ) A three-move canonical identification scheme
IDS = (COMMIT, CHALLENGE, PROVE, VERIFY) is a protocol in which both of the prover P and the Verifier
V algorithms are divided into two sub-algorithms P = (Py, P,) respectively V = V1,V f):

e P, is the COMMIT algorithm that takes as input the secret key sk and outputs the first move which is
the initial commitment com and a state St,
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e V) is the CHALLENGE algorithm that samples the first challenge ch from the challenge set ChSet,
e P, is the PROVE algorithm that takes as input (sk, com, ch, St) and outputs a response rsp,

e Vf is the VERIFY algorithm that takes as input the interaction transcript (pk,com, St, ch,rsp) and
outputs a final decision b, b = 1 for acceptance orb = 0 for rejection.

Prover & (sk) Verifier V(pk)

(St.com) «~— P (sk)
com

ch S ChSet
ch

resp «—— % (St.ch)

resp

b +— Vf(pk, com, ch, resp)

Figure 4.1: Canonical three-move identification scheme

It is possible to extend a canonical three-move identification scheme and perform 2n + 1-move identifica-
tion scheme. The conversation-transcript of this latter consists of the first move taken by P and multiple
rounds of challenge and response messages: n challenges ch; randomly sampled from ChSet; and n re-
Sponses rsp.

Similarly to a three-move IDS, the formal definition of a 2n + 1-move IDS is:

Definition 21 (2n + 1-move IDS ) A 2n + 1-move canonical identification scheme
IDS = (COMMIT, CHALLENGE, PROVE, VERIFY) is a protocol in which both of the prover P and the Verifier
V algorithms are divided into n + 1 sub-algorithms P = (Py,-- - , Pny1) respectivelyV = (Vi,--- , Vy, Vf):

e P, is the COMMIT algorithm that takes as input the secret key sk and outputs the first move which is
the initial commitment com and a state St,

e V) is the CHALLENGE algorithm that samples the first challenge ch, from the challenge set ChSet;,
e P, is the PROVE algorithm that takes as input (sk, com, ch, St) and outputs the first response rsp,,

o forie{3,--- ,n+1}:
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1. V; is the CHALLENGE algorithm that samples the i-th challenge ch; from the challenge set ChSet;,

2. P; is the PROVE algorithm that takes as input (sk,com, ch;, St) and outputs the i-th response
rsp;,

e Vf is the VERIFY algorithm that takes as input the interaction transcript

(pk,com, St,chy,rspy, -+, ch,11,r1sp,, 1) and outputs a final decision b, b = 1 for acceptance or b = 0
for rejection.

A classic example of 2n + 1-move identification schemes IDS is a five-move IDS for n = 2. This variant
involves two rounds of both challenges and responses as presented below in Fig. 4.2}

Prover 7 (sk) Verifier V(pk)
(St.com) +— P, (sk)
Com .
ch1 ..i ChSetl
ch1
espl «— 75 (St,chil
resp 5 (St.chl) respl
ch2 ‘L ChSet2
ch2
resp2 «—— %5 (St,ch2) resp?2
b «—— Vf(pk, com, chl, respl, ch2, resp2)

Figure 4.2: Five-move identification scheme

We also provide a useful definition of a special case of a five-move identification scheme where the
challenge sets ChSet; and ChSet, verify respectively |ChSet;| = ¢ and |ChSets| = 2.

Definition 22 (Five-move qg2-identification scheme) A five-move identification scheme is said to be a
qg2-identification scheme if the sizes of its two challenge sets ChSet; and ChSet, are respectively ¢ and 2.
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4.4 Zero-Knowledge protocols

The most known class of identification schemes are the so-called zero-knowledge identification proofs
or zero-knowledge identification protocols, commonly referred to as ZKPs, which allow one entity (the
Prover P) to prove to an another entity (the Verifier V) the knowledge of a certain secret without sharing
or revealing underlying information apart the knowledge of the claimed secret.

One can trivially demonstrate the possession of some secret data by simply exposing the data itself, the
essential potential of using zero-knowledge proof is that such protocols eliminate the transfer of any sen-
sitive data when communicating with one another.

Zero-knowledge protocols ZKPs are probabilistic proofs and not proofs in the mathematical sense of the
term. In other terms, zero-knowledge protocols ZKPs are not deterministic which implies ZKPs don't
demonstrate the possession of a confidential information with the same surety and certainty as reveal-
ing the entire information. Instead, ZKPs provide the accumulation of small unrelated information which
shows that the possession of the claimed secret is strongly probable.

There are two variants of zero-knowledge proofs:

¢ Interactive ZKP whereby two entities a Prover P and a Verifier V interact by exchanging a series
of messages involving commitments (generated by P), challenges (generated by V) and responses
(given by P) over multiple rounds.

¢ Non-interactive ZKP is an almost one round protocol whereby no interaction is needed between a
Prover P and a Verifier V.
P sends a proof transcript in a single message to V. Then, the Verifier V uses the proof transcript
handed by the Prover P, and verify its (in)validity by himself without needing any further assistance
from the Prover P.
Unlike an interactive ZKP, it is not necessary to repeat interaction between P and V.

Note that, it is possible to convert an interactive protocol into a non-interactive protocol by replacing
the Verifier ¥V by a hash function (or something similar) that computes the challenges over the set of
commitments without the intervention of V.

4.5 Security properties of an IDS

The classical form of identification schemes are the commitment schemes based on zero-knowledge
concepts. And when it comes to such schemes, several security properties must be considered.

4.5.1 Security of a commitment identification scheme

As stated informally in Section 4.2, a commitment scheme must verify two essential security properties:
the hiding property guarantees that there is no leak information about the message to commit to by
sending the commitment to the Verifier, and the binding property guarantees the inability of the Prover to
change the commitment and open it in two distinct ways.
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Definition 23 (Computationally hiding) Let ComMmIT(1}) be a commitment scheme with security param-
eter A € N. COMMIT is computationally hiding if and only if, for any probabilistic polynomial time PPT algo-
rithm A, it is computationally hard to distinguish between com = COMMIT(r, m) and com’ = COMMIT(r, m’)
for any two messages m, m’ and a uniformly random string r. More formally:

‘Pr [A(CommIT(r,m)) = 1] — Pr[A(COMMIT(r,m’)) = 1]‘ = negl(\).

Definition 24 (Computationally binding) Let CoMmIT(1") be a commitment scheme with security pa-
rameter A € N. COMMIT is computationally hiding if and only if, for any PPT algorithm A, it is computa-
tionally hard to come up with two valid commitments com = COMMIT(r, m), com’ = COMMIT(r/, m’) for two
different messages m # m’ such that com = com’. More formally:

Pr{(r,m,r",m') « A(1*) A m #m’ COMMIT(r,m) = COMMIT(T’,m’)] = negl(\).

4.5.2 Security of a zero-knowledge identification scheme ZK-IDS

This section formally states the essential properties of a secure zero-knowledge identification scheme
ZK-IDS against passive impersonation attack without knowledge of the secret key.

The notion of passive attacks implies that an attacker (called an impersonator), besides the public key,
has an access to the view of some number of valid interaction transcripts between a legitimate prover and
a verifier. On the other hand, the notion of active attacks is much stronger where an attacker is able to
actively cheat and modify a transcript during an interactive protocol. Therefore, the security against active
attacks is obviously harder to be achieved than against passive attacks.

However, an identification scheme IDS must satisfy the properties given below that ensure the security
against passive attacks.

e Completeness
The completeness property of zero-knowledge proofs guarantees that the Prover P, with knowledge
of secret with an overwhelming probability, will be able to convince the Verifier V to accept the proof.

A formal definition of completeness is given in Definition[18] Section

e Soundness
The Prover P can always anticipate the Verifier challenge, and generate a response to send. Thus,
a non-legitimate Prover, with no possession of the claimed secret, is able to convince the Verifier V
to accept a false statement with some small probability called soundness error.
More formally:

Definition 25 (Soundness with soundness error ) An identification scheme (KEYGEN,P,V) is
called Sound with soundness error «, if for any probabilistic polynomial time adversary A, we have

(pk,sk) + KEYGEN(1*)

o (A(1*, pk), V(pk)) = 1

<k+e(A),
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for a given security parameter \, and some negligible function ().

e Zero-knowledge
The zero knowledge property guarantees that the Verifier V extracts no information beyond the fact
that the statement claimend by the Prover P is true.

The idea of zero-knowledge property is that whatever the Verifier V learns from the execution of
the protocol, he could have learned by himself without any intervention from the Prover. In other
words, any Verifier V can use a simulator (a non-interactive algorithm) of the scheme that outputs,
in polynomial time, a transcript indistinguishable from a real interaction between the Prover and the
honest Verifier (who is following the proof properly (see Definition[26)) in question.

This property is what makes the protocol zero-knowledge.

Definition 26 ((computational) Honest-Verifier Zero-Knowledge HVZK) An identification scheme
(KEYGEN, P, V) is called HVZK if there exists a Simulator S (a probabilistic polynomial time algorithm
PPT) that outputs transcripts that are computationally indistinguishable from transcripts of honest execu-
tions of the protocol. This implies that, for any PPT adversary A, we have:

Pr 1+ A(sk, pk, (P(sk), V(pk)))] =~ Pr[1 < A(sk,pk,S(pk))]

where (P(sk), V(pk)) stands for a valid transcript of V interacting with an honest Prover P.
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5.1 Introduction

This chapter focuses on Digital Signature Schemes (DSS), which are public-key cryptographic primitives
generally, that provide the authenticity of electronic messages and documents.In the physical world, tra-
ditional handwritten signatures or stamped seals on typed documents associate a specific sender to the
content of the document.

Similarly, in a digital medium, digital signature schemes guarantee validation to the receiver that the doc-
ument was sent by the claimed signer. When properly implemented, digitally signed messages may be
more effective and resistant to forgery than the handwritten signatures.

Digital Signatures based on symmetric/asymmetric cryptography

A digital signature scheme (DSS) facilitate validation and authentication of electronic documents, and al-
lows a digital identification for users.

The digitally signing technique is employed in two ways, namely DSS based on symmetric (private-key)
cryptography and DSS based on asymmetric (public-key) cryptography. Symmetric based signatures in-
volve only a single private key shared between the signer and the receiver. The private key is used at
the same time to sign a document (by the signer) and also to verify the signature (by the receiver). While
asymmetric based signatures use a pair of different keys: a private key used to produce the signature is
kept as secret and never shared, a public key used to verify the message authenticity is freely shared with



any user.

An asymmetric based signature scheme is secure against message forgery by any user who does not
have the private key used to sign the document. But, when using symmetric based signature scheme,
both of the signer and the verifier share the same private key thus, the verifier can forge any message
since he holds the private key that produces the signature.

Therefore, public-key based signature schemes are more commonly used and have various advantages
over the private-key based signature schemes.However, this work is limited to public-key based signature
schemes only.

Digital Signature Algorithm

As mentioned previously, digital signature schemes (
DSS) are typically based on public-key schemes and use a pair of public key and a private key.

A digital signature scheme performs essentially two separate algorithms:

¢ A private signing algorithm authorizing an entity, namely a signer, to securely sign an electronic
document using a private key which is referred to as the signing key. The signing algorithm produces
a digital signature.

¢ A public verification algorithm allowing an entity, namely a receiver of the signature, to verify the
authenticity of the message using the corresponding public key which is referred to as the verifica-
tion key. The verification algorithm outputs a boolean value to express validity or invalidity of the
signature.

In order to obtain an efficient scheme, both of signing and verification algorithms must be relatively fast
and not too complex in terms of computation.

The properties of a DSS
When properly implemented, a digital signature schemeDSSensures several properties (detailed in Sec-
tion that make the scheme effective.

Firstly, a DSS bind the signer to the signed document or message, so the receiver is assured that the
document is indeed signed by the claimed signer (authenticity property). Moreover, every document has
its unique signature which cannot be moved and used to sign other documents (uniqueness property).

Secondly, once a document has been digitally signed, it is not possible to modify the content of the docu-
ment and the signature remains valid (integrity protection).

Finally, a digital signature scheme prevents an entity (generally the signer) from denying consent and the
signature of the content of the signed document (non-repudiation property).
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The relation between an IDS and a DSS

As stated previously, an Identification Scheme IDS is an interactive protocol between a Prover P and a
Verifier V allowing P to prove its identity to V. P is able to prove to V its identity, but V is not capable of
proving to an another entity.

A Digital Signature Scheme (DSS) is a non-interactive scheme nearly equivalent to an IDS whereby P (or
the signer) is able to V (or the receiver) its identity, but P is not capable even to prove it to himself.

The difference between an identification and a signature scheme can be shown when the Verifier V tries
to prove the Prover’s identity to a third party. In a identification scheme, V is able to establish a reasonable
transcript of a fictitious conversation by properly choosing the challenges and the answers of the tran-
script, although such scenario is not possible in a digital signature scheme. V cannot create a credible
transcript.

However, signature schemes provide signatures (and thus, identifications) that can be verified anytime,
while identification schemes provide identifications that should be verified immediately during the execu-
tion of the protocol.

In some cases, it is possible to transform an identification scheme into a signature scheme by applying a
standard technique detailed later.

5.2 Formal definitions and general structure

The most-known digital signature schemes are the public-key based schemes. This Section describes
how a digital signature schemes (DSS) based on asymmetric cryptography work, and provides formal
definitions and properties of such schemes.

General structure of Digital Signature Scheme DSS
Technically speaking, a public-key based signature scheme consists basically of three components: a key
and parameters generation algorithm, a signing algorithm, and a verification algorithm.

Protocol steps of a DSS

A basic digital signature of a message m can be summarized by the following steps:

e The two participants in the digital signature scheme (DSS), the signer (or the Prover P) and the
receiver (or the Verifier V), generate each its own public/secret key pair denoted by (pk/sk)p, re-
spectively (pk/sk)y.

The secret (private) key sk is used for signing the message m, while the public key pk is used to
verify the signature.

e The signer (Prover P) encrypts the message m, or more generally a hashed value of m, using his
secret key skp and a signing algorithm. This latter outputs a digital signature of m that is sent to the
receiver (Verifier V) along with the original message m.
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e The receiver feeds the original message m, its corresponding digital signature, and the public-key
of the signer pky to a verification algorithm. This latter outputs a boleean value which indicates the
acceptance or rejection of the digital signature.

When using a hashed value of the original message m instead of m, the verifier must compute first
a hashed value of m using the same public hash function utilized by the signer.

Formal definition of a DSS

The signing/verification process for a digital signature scheme described above can be formulated as
follows:

Definition 27 (General structure) Let \ € N be a security parameter.
A digital signature scheme DSS consists of three probabilistic polynomial time (PPT) algorithms
DSS(1N = (KEYGEN, SIGN, VERIFY) such that:

e the key generation KEYGEN algorithm takes as input a security parameter A\ and returns a public
and secret key pair (pk, sk) + KEYGEN(1%),

e the signing SIGN algorithm takes as input the secret key sk and the message m, then produces a
digital signature o of the message m,

e the VERIFY deterministic algorithm takes as input the public key pk, the message m, and the signa-
ture o. VERIFY outputs a boolean value b with b = 1 signaling the signature validation, and b = 0 the
rejection.

Importance of a Digital Signature Scheme DSS

Among various cryptographic schemes, a public-key based digital signature scheme yields information
security and added guarantees to the origin, identity, and a signer’s approval of an electronic message or
document.

The advantages of signing a message digitally is presented below:

e Message authentication
When the receiving party verifies and accepts the digital signature using the public-key of the sender,
he is then convinced that signature has been signed by sender who is the only owner of the corre-
sponding secret-key sk. This authenticates the sender as the legitimate signer.

¢ Integrity
When an adversary tries to modify a digitally signed message, the receiver is able to detect the
changes and then revokes the signature. Note that, in most cryptographic signing algorithms, it is
computationally impossible to change a message and its digital signature to obtain a new message
with valid signature.

¢ Non-repudiation
When signing a message digitally, sufficient evidence exists to prevent the signer from denying later
time signing the message. Non-repudiation property is assured by a DSS since that each signature
is binded to a unique signer who possess the signature key (the secret-key).
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5.3 Attacks against Digital Signature Schemes DSSs

Digital signature schemes are vulnerable to different attacks where an outside adversary attempts to
intervene with the transmission of an electronic document or message.

5.3.1 Basic attacks scenarios

An adversary A is capable of attacking a legitimate signer’s digital signature if A succeeds to launch, with
non-negligible probability, any of the following attacks models (listed in ascending order of hardness) :

¢ A key-only attack where an adversary A is given only the public-key pk of the signer. As mentioned
earlier, the public-key serves as the verification key in a digital signature protocol.

e Message attacks in which an adversary has access to examine in advance signatures that cor-
respond to known messages or furthermore to chosen messages. Message attacks are typically
subdivided into the following classes:

— Known-message attack, the adversary A is able to obtain valid signatures for a set of mes-
sages which are known only and not chosen by adversary.

— Generic chosen-message attack, the adversary A chooses a variety of messages before
trying to attack the signer’s scheme. Then A proceeds by asking the signer for a valid signature
of each chosen message. Such attack is generic because the messages may be ‘randomly’
chosen and independently of the signer’s public-key pk. Therefore, a generic chosen-message
attack can be used against any signer.

— Directed chosen-message attack, such attack is nearly the same as the generic chosen-
message attack (listed above), with the only distinction that the adversary A chooses the set
of messages for which A wants to obtain signatures from the signer after knowing the signer’s
public-key but before obtaining any valid signature.

Note that, both of the generic and directed chosen-message attacks are non-adaptive attacks.

— Adaptive chosen-message attack, the adversary A is able to demand signatures of chosen
messages that rely on the signer’s public key, and most importantly .4 can adeptly request
signatures of messages of his choice that depend on the signatures of previously chosen mes-
sages

In principle, the most difficult attack to achieve is the adaptive chosen-message attack. In such
type of attack, an adversary given access to several message/signature pairs can possibly derive a
pattern and then forge a signature. Thus, a digital signature scheme must be designed in a way to
be secure against the adaptive chosen-message attacks.

5.3.2 Goal of an adversary

An adversary A performs a successful digital signature forgery when A is able to generate a valid signa-
ture of a message m and deceive the receiver as if m is signed by a legitimate signer.

The different goals of an adversary to probabilistically forge a signature can be classified as follows ((listed
in descending order of hardness)):
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A total break, the adversary A is able to either determine the secret-key that is the signing key of
the scheme.
Thus, the scheme is totally breakable.

¢ A universal forgery attack, the adversary A efficiently constructs a signing algorithm identical to
the valid signing algorithm of the signer. A is then able to output a valid signature for any given
message.
Thus, the scheme is universally forgeable.

¢ A selective forgery attack, the adversary A is capable of producing a valid signature for a given
target message chosen by A prior to the attack.
Thus, the scheme is selectively forgeable.

¢ An existential forgery the adversary A is capable of producing some valid signatures of messages.
In such attacks, A needs to have no control over the messages, and the content of the messages
may be irrelevant; as long as the messages/signatures pairs are valid, then .4 succeeds the forgery.
Thus, the scheme is existentially forgeable.

Basically, a secure digital signature secure must not even be existentially forgeable.

5.3.3 Security notions for digital signature schemes

The security notions for digital signature schemes (DSSs) manifest as combinations of attack scenarios
and security goals (Section[5.3.2). A DSS is considered secure if an adversary is unable to achieve
the weakest goal when performing the strongest attack scenario.

Therefore, the standard security notion for digital signature scheme is namely existential unforgeability
against adaptive chosen message attacks.

EUF-CMA security

In this section, an informal definition of the EUF-CMA security is presented using an experiment denoted

by Expggg SMA(A) that the adversary .4 should follow to break a digitally signed message.

Let A be the security parameter of the scheme DSS(1%) = (KEYGEN, SIGN, VERIFY).

An adversary A proceeds the EUF-CMA game ExpELSJSF(SMA(A) as follows:

e Setup. Let (pk,sk) + KEYGEN(1*) be the key pair of the scheme, the public key pk is then handed
to the adversary A.

e Queries. The adversary A queries for signatures (at most k times) on a list ) of chosen messages
Q = (my,---,my),for some k € N* ( Adaptive chosen-messages).
Given access to a signing oracle SIGN, .4 obtains corresponding signatures (o1,---,0%) to the
messages m;s. The adversary’s query m; may adeptly depend on signatures of previous queries
mq,...,m;—1 ( Adaptive chosen-message attack).

o (Existential) Forgery. The adversary A must output a message/signature pair (m*, o*) such that:
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1. the message m* is not one of the previously queried messages mi, ..., mg, it means that
m* ¢ Q.

2. the message/signature pair (m*, o*) constitute a valid forgery. The VERIFY algorithm V f of the
signature scheme accepts o* as a valid signature of m* which means that 1 < V f(pk, m*, o*).

The scheme is said to be EUF-CMA secure if the probability that .4 wins the game Exppg§ih) (A) de-
scribed above is negligible. More formally:

Definition 28 (EUF-CMA security) A digital signature scheme DSS(1*) = (KEYGEN, SIGN, VERIFY) is

existentially unforgeable under chosen-message attacks if the advantage of any probabilistic polynomial

time PPT adversary A running at most k queries to sign in Expp,3f3\"(A) is negligible in A:

AGELFOMA — [ SucciUF oA ExpfEENN ) )] = meai()

where ) is the security parameter of the scheme.

5.4 The Fiat-Shamir Transform

This Section describes a well-known technique due to A. Fiat and A. Shamir, namely the Fiat-Shamir
FS paradigm [35], for transforming a secure Zero-Knowledge Identification Scheme ZK-IDS into a Digital
Signature Scheme DSS.

The basic idea behind this technique is to replace the random pick of the Verifier V with the output of some
deterministic hash function. Therefore, the interaction between a Prover P and a Verifier V is omitted and
replaced by a non-interactive proof of knowledge.

The Fiat-Shamir paradigm

The FS transform was originally designed to convert a three-move identification scheme into an existen-
tially secure digital signature scheme against adaptive chosen-message attacks.

Recall the definition of an identification scheme given in Section
Let IDS = (COMMIT, CHALLENGE, PROVE, VERIFY) be a canonical three-move identification protocol that
is summarized by the following steps:

e the ComMIT algorithm, executed by the Prover P, on input a pair of secret and public key (sk, pk)
outputs the initial commitment com and a state St,

e the CHALLENGE algorithm, executed by the Verifier V, outputs the first challenge ch from the chal-
lenge set ChSet,

e the PROVE algorithm, executed by the Prover P, on input (sk, com, ch, St) returns a response rsp,

¢ the VERIFY algorithm, executed by the Verifier V, on input the interaction transcript (pk, com, St, ch, rsp)
returns a final decision b, b = 1 for acceptance or b = 0 for rejection.
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The Fiat-Shamir FS transform [35] uses a cryptographic hash function H as a random oracle to replace
the challenge of the Verifier V. The hash function # must output a hashed value having the same length
as the challenge of the identification scheme. Note that, the KEYGEN algorithm that generates the signing
and verification key pair (sk, pk) is the same for both identification and signature schemes.

The FS paradigm can be defined as follows:

Definition 29 (The Fiat-Shamir transform ) Let /DS = (KEYGEN, COMMIT, CHALLENGE, PROVE, VERIFY)
be a three-move canonical identification scheme, and let H be a cryptographic hash function. The Fiat-
Shamir FS method converts IDS into a signature scheme DSS = (KEYGEN, SIGN, VERIFY), by proceeding
as follows to digitally sign a message m :

e P the Prover (signer) computes, using the COMMIT algorithm that takes on input the secret key sk,
a commitment value com and a state St,

e P computes,using a publicly known hash function H, the challenge ch < H(com,m),

e P computes, using the PROVE algorithm that takes on input (sk,com,ch,St), a response rsp «+
PROVE(sk, com, ch, St),

e P returns a signature o = (com, rsp).

In order to verify the signature, the Verifier V given the verification key pk, the message m, and the
signature o proceeds as follows:

e V parses the signature o as com and rsp,
e V computes, using the same hash function of the signing algorithm H, the challenge ch < H(com,m),

e V outputs, using the VERIFY algorithm that takes on input the interaction transcript (pk, com, St, ch, rsp),
a final decision b, b = 1 for acceptance or b = 0 for rejection.

Security of the FS paradigm

The (in)security of the Fiat-Shamir FS transform has been studied by many researchers. Some of the
studies have established sufficient and necessary assumptions on the identification schemes to provide
secure digital signature schemes [1, {7} {38, [59].

The authors of [59] are the first to prove the security against adaptive chosen- message attacks for signa-
ture schemes built from zero-knowledge IDS using the FS transform under some conditions.

The Fiat-Shamir FS transform yields efficient digital signature schemes unforgeable under chosen-message

attack in the random oracle model when the underlying identification scheme is secure against imperson-
ation under passive attack [1].
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Multivariate cryptography
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6.1 Introduction

Post-quantum cryptography involves public-key cryptosystems that are secure against both classical and
quantum attacks. The most promising classes for public key post-quantum cryptographic systems [9] in-
volve code-based, hash-based, lattice-based, multivariate based, and supersingular elliptic curve isogeny.

At present, several international competitions have been launched to standardize quantum-resistant public-
key cryptographic schemes.

Multivariate cryptography is a branch of post-quantum cryptography whose security relies on the difficulty
of solving systems of multivariate equations over a finite field which is NP-hard [41]. This problem is known
as MQ (Multivariate Quadratic equations) when the polynomials are quadratic, otherwise it is known as
the PoSSo (Polynomial System Solving) problem [33].

Various multivariate-based scheme have failed. However, some multivariate schemes as UOV [45], LUOV
[19] , variants of HFE [25| 55], Rainbow [28], and Gemss [19] could make the basis for quantum-safe
schemes.



The HFE family cryptosystems, proposed by J. PATARIN [595], is one of the best known and most studied
schemes among all multivariate public-key cryptosystems MPKCs.

It can be used for public-key encryption and also for signatures, but it is generally more efficient for signa-
tures schemes.

The HFE family consists of many variants due to the fact that it is always possible to apply different modi-
fications (namely perturbations), and even to use different finite field (5 is mostly used).

Moreover, as we will see next, one can use another degree than 2 for the public multivariate equations.

6.2 Multivariate public-key cryptography

Let IF, be a finite fiel with ¢ elements, where ¢ is a prime power.
Multivariate cryptography is the analysis of public-key cryptographic schemes based on multivariate poly-
nomials in several variables over a finite field IF,,.

The security of multivariate public-key cryprosystems, known as MPKCs, relies on the existence of a spe-
cific family of functions that is the "trapdoor one-way functions" (See Section for basic definitions).
The employed trapdoor one-way function is a nonlinear (usually quadratic) polynomial map over a finite
field IF,.

Multivariate asymmetric cryptosystems are considered as potential candidates for post-quantum cryptog-
raphy due to the NP-hardness of the problem of solving systems of multivariate equations [36].

There exists a polynomial-time quantum algorithm, namely Shor’s algorithm [Shor], that weakens the com-
putational difficulty for solving the mathematical problems behind today’s most utilized public-key schemes
(RSA, ElGamal, ...).

Then, the advent of quantum computer makes the security of existing public-key schemes potentially
vulnerable to efficient quantum attacks.

Therefore, it is important to build new quantum resistant cryptosystems that rely on a class of problems
known to be unbreakable by a quantum computer such as NP-hard problems.

Recently, there has been a massive progress in multivariate public key cryptography. Some of the multi-
variate cryprosystems are not as safe as originally claimed, however, stronger schemes have withstood
the cryptanalysis and are still viable.

Multivariate cryptography can be used for public-key encryption and also for signatures, but it is generally
more efficient for signatures schemes.
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6.2.1 General construction

A multivariate public-key cryptosystem MPKC involves a set (P) of m multivariate polynomials, generally
of degree two, in n variables over a finite field I, as follows:

pr(z1,...,xn) = E agjl-)xi:cj + Z ,31»(1).%‘ + ’7(1)
1<i<j<n i=1
pg(ajl, e ,J,‘n) = Z al(?)xixj + Z ,31»(2)%' + 7(2)
(73) e 1<i<j<n i=1
Pt sma) = 5 alMwmy+ 3 B4+
1<i<j<n i=1

where the coefficients «;;, 5; and v are in I, the field with ¢ elements. Each multivariate polynomial pys,
for k € {1,...,m}, is of a small degree d (in this case d is equal to two).

Note that, the set of polynomials (P) (given above) presents quadratic polynomials p;s.

Next Section provides a more general definition where the polynomials p;s are of any small degree d.

PoSSo problem:
Let F, be a finite field of order ¢, and {p1,p2,...,,pm} C Fy[z1, 22, ..., 2,] be a set of multivariate polyno-
mials.
The Polynomial System Solving (PoSSo) problem is defined as follows:
Input: Given a set of polynomials P = {p1, p2,...,pm} C Fylx1, z2, ... ,x,] of small degree d.
Question: Find - if there exists - a vector & = (21, ..., Z,) € F ", such that:
p1(Z1,...,&n) =0

p2(Z1,...,&n) =0

pm(i'l,...,.i'n> =0

The PoSSo problem is proven to be NP-Hard [36]. When d = 2, the problem is known as the MQ pprob-
lem, where MQ stands for Multivariate Quadratic.

In all multivariate cryptosystems, the public key consists of a set of multivariate polynomials. In practice,
a PoSSo-based multivariate scheme is built using an easily invertible map P’ : F,” — F,™, known as
the central map. The structure of P’ is then hidden via two invertible affine maps S : F,”" — F,” and
T :F"—F"

Therefore, the public key P = (p1,...,pm) is the composition, on the left and on the right, P = SoP'o T :
F," — I, that is by assumption hard to invert without any information on the trapdoor.
The private key is the triplet of the maps P’, S, and 7.

6.2.2 The standard processes

This section summarizes the major types of processes in multivariate cryptography.
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Encryption process

For most PoSSo-based multivariate schemes, the encryption step is the same.

The messages belong to the vector sace F,”, while the encrypted messages belong to the vector space
F,™.

More precisely, in order to encrypt a message a = (a1, ..., a,) € F,", it suffices to evaluate the public key
P(a)=8oP oT(a)=(p1,...,pm)-

Then, the encrypted message (ciphertext) ¢ = (ci1,...,cn) € F,™ is given by:

c=(c1y...yom) = (p1(at,...,;an), ..., pm(a,...,am)).

The computational complexity of the encryption process depends on the degree d of the public key poly-
nomials.

Assuming that the polynomials p;s are quadratic, then the number of operations required to proceed the
encryption thus to evaluate the public key is in:

O(mn?) operations.

In fact, the number of monomials of degree d = 2 in n variables is given by (”;d). An evaluation of
a quadratic polynomial of the public key requires ("4?) multiplications and ("}?) — 1 additions at most.

Thus, each evaluation involves (2("4?) — 1) ~ n? arithmetic operations.

Therefore, the overall complexity of an evaluation of the public key is given by O(mn?) operations.
Decryption process
In order to decrypt a given encrypted message c € F,*, one must invert the computation of the ciphertext

¢ = P(a) corresponding to the plaintext a € F,".

Since that P is the composition of maps P = S o P’ o T. Therefore, only the entity who possesses the
trapdoor information (P’, S, T) is able to achieve the decryption process:

a=P He)=T toP oS5 (o).

One must compute respectively z = S7!(c) € F,™, y = P""(z) € F,*, and a = T !(y). Note that, the
number of public polynomials m must be greater than or equal to the number of variables n in order to
have a unique solution.

Signature process

On the contrary of the encryption process, a signature scheme does not require the uniqueness property.
In fact, the following condition holds m < n for signature schemes in order to guarantee that one can sign
any message.

A signature of a given message a is generated using a public hash function H : {0,1}* — F,™, and the
private key (the trapdoor information).
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Similarly to the decryption process, the generation of a signature s employs the inversion of P on the
hashed value h = H(a) of the message a:

s=P Y h) =T toP toS(h).

One must compute respectively x = S71(h) e F,™, y = P'~(z) € F,", and s = T 1(y).
The computation of P'~1(x) yields a possible (among several) pre-image of = under the special map 7’.
Since that m < n, then every message has a signature

Verification process

In order to verify a signature s € F," of a message a, one must first compute the hashed value h = H(a) €
[F,", then evaluate the public map P at the value s to get i’ = P(s).
The signature is valid if and only if 2’ = h, otherwise the signature is rejected.

Ciphertext / Signature ¢/5 € F" 4
Decryption
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Figure 6.1: The classical processes of Multivariate Cryptography

6.2.3 Major attacks on MPKCs

The standard techniques generally utilized to attack multivariate cryptosystems can be classified into three
main classes.

Most of the methods intend to analyze the difficulty of the PoSSo problem or to recover the secret keys.
Next Section provides briefly the major attacks on a multivariate public key crypstosystem MPKC;
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Direct attacks

The direct attack, also known as the Grébner basis attack, aims to solve the public system y = P(xz)
directly by finding a solution = € ;" for the PoSSo problem.

The most common technique for solving a set of multivariate polynomials is to use Grébner basis compu-
tations (see Section|[7.2) that involve generally the following algorithms: F4 [32], F'5 [31], and/or the hybrid
approach [11].

A detailed description of such method will be given in next Sections 7.2

Rank attacks

The main goal of using rank attack is to benefit from the special structure of the central map P’ utilized by
a multivariate cryptosystem in order to find (a part of) the private key.

The rank attack is related to the MinRank problem [23]. The security of various multivariate public-key
scheme relies on the hardness of solving MinRank. For instance, this problem appears in the cryptanaly-
sis of several MPKC (such as HFE [46, 55], TTM [39], etc, ...).

By associating to the public (quadratic) polynomials their quadratic forms, the MinRank problem consist
of finding a linear combination of these forms of low rank.

Therefore, it is possible to extract partial information or even extract the private key of the scheme.

Differential attacks

The differential attack consists of studying the effect of inserting differential information input to the public
key A(z,2') = P(z +a') — P(x) — P(2') for x, 2’ € F,™.

The differential attack helps exploiting the structure and the behavior of the scheme in order to recover
the central map.

6.2.4 Classical trapdoor functions

This Section describes the basic types of central maps P’ usually used in multivariate public-key crypto-
graphic schemes MPKCs.

Triangular systems

An efficient method to obtain an easily invertible central map P’ = (p),...,p),) is to employ the triangular
structure over a finite field I,.

Given a system P'(z) = y € F,” of m equations and n variables. The special structure of P’ is the
following:
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1
Po(2,. . xn) =
Pl(x) =y :
plmf1(xm—1>xn) = Ym-1
\ plm(xn) = Um

By the construction given above, the system can be inverted by finding first a solution z,, for the last
equation p/,(z,) = ym, and next, substitute the value found in the previous equation p/, ,(zp—_1,2,) =
Ym—1 in order to find this time z,,_; and so on until the first equation p (z) = pi(z1...,2 —n) = y1.

The main idea of this method can be generalized in order to solve at each step a small number of equations
in less number of variables. Proceeding this way enables the inversion of the central map.

This type of construction was used in several number of multivariate schemes such as TTM [52], TTS
[70Q], etc... . However, various attacks were proposed on such schemes to recover the key [39) [69].

Big field type

Unlike the previous approach, the construction method described in this Section involves a bigger Field
L = F4» that is an extension of the ground field F, of degree n.
More precisely, the Big Field approach uses a morphism ¢ : L — F,” between the extension F,~» and the
corresponding vector space F,”. Given an easily invertible map P’ : L — L, the multivariate polynomial
map is a map over F,":

P'=¢oPog,

then, the structure of P’ is then masked by two invertible affine linear maps S and 7 in IF,".
The Big Field type was used in the C* of Matsumoto and Imai [51], and then it was attacked later by J.
Patarin in [54] and generalized in the HFE [55] cryptosystem.

Unbalanced Oil and Vinegar variants

The Oil and Vinegar method used in the construction of the Unbalanced Oil and Vinegar scheme UOV
[45]. Given two integers o and v such thatn = o+v, V ={1,...,v},and O = {v+1,...,n}. The variables
x1,...,x, are the vinegar variables and the z,1, ..., z, are the oil variables. The quadratic polynomials
of the central map have the following UOV-form:

k k k
p?c = Z al(j)xixj + Z 5i(j)l'¢$j + Z ’71-( ).CUZ' + (S(k),
(Ii,x]‘)EOXV (xi,xj)EVXV z; €OUV

where 1 < k < m, and the coefficients «;;, 3;;, v; and ¢ are in F,.

The main goal is to specialize certain variables, in order to obtain linear polynomials. Since that, the
vinegar variables are combined quadratically while the oil variables are only combined with vinegar vari-
ables in a quadratic way. Therefore, by assigning random values to the vinegar variables, the system of
equations becomes linear in the oil variables that can be efficiently solved.
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The robustness of this approach is based on the fact that is difficult to distinguish the oil variables from the
vinegar variables. Even though, some attacks were introduced when using weak parameters, this type
has a good practical resistance to attacks with reasonable parameters.

6.3 HFE

One of the most known multivariate public-key cryptosystem is the Hidden Field Equations HFE, that uses
an HFE trapdoor function. Hidden field Equations (HFE) scheme was proposed by J. PATARIN at Euro-
crypt [59] to repair the algorithm C* of Matsumoto and Imai [51]. The basic idea of HFE is to hide the
special structure of a univariate polynomial F' over some finite field (usually Fs») which allows F' to have a
quadratic polynomials representation in the small field.

6.3.1 HFE(q,n,D) shape

LetF = F, be afinite field of ¢ = p™ elements for some prime number p, E = [~ its n-th degree extension,
and ¢ : E — F™ the canonical isomorphism between E and the corresponding vector space F". Given
(01,...,0,) abasis of E as an F-vector space, we have:

¢: E =Fyn — F"
VZZ%@@' — (V1. 0p).
=1
Let 7* be the following map:
.F* : Fqn — Fqn

V —  F(V),

with F' € E[X] is a univariate polynomial of the special form:

q‘+¢’<D . 4¢'<D _
F= ) o X+ > X7 44, (6.1)
0<i<j<n 0<i<n

where «; ;, 8;,7 € F4», and F is of degree at most D € N. Then, I has the HFE(D) shape that allows to
have multivariate quadratic polynomials representation over [F using the map F = ¢ o F* o ¢~ L

F F? — F
(V1. o) > (fi(vr, .o cyvn), oo, fu(v, .oy n)),

with the quadratic polynomials (f1,..., fn) € (Fy[z1,...,2z,])" such that:
F(gb_l(xla cees .Z'n)) = (b_l(fl’ R fn)

F( zn:@ﬂfz) = zn:‘%fi
i—1 i—1
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6.3.2 HFE problem

Basically, 7* is chosen to be an easily invertible and evaluated map. Using the canonical isomorphism ¢,
the map F* can be transformed into a quadratic map F = ¢ o F* o ¢~ !. Thus, F can be written as a set
of n quadratic polynomials (f1,..., fn) in n variables (z1,...,z,) over F.

In order to build a PoSSo-based cryptosystem, the original structure of 7 must be hidden since it is possible
to find solutions of F'(x) = a, a € F4» in polynomial time. To do so, one uses two invertible affine maps

S, T :F*"—=F".

Therefore, the public key consists of

P:SofoT:Sogbo]:*ogb_loT, (6.2)

and the secret key that yields the inversion of the public key is given by S, 7 and F*.

Thus, it is difficult to compute the inverse of P when its decomposition remains secret.

HFE is one of the most studied algorithm in cryptography. It can be used for authentication, encryption
and also signature purposes.

6.3.3 HFE perturbations

The previous sections present the basic HFE. This latter, namely "Nude HFE", is a basic version of degree
2.
This section introduces several variations that can increase the security of HFE or its efficiency [55].

6.3.3.1 The minus modifier HFE-

This variant consists of omitting some multivariate polynomials from the public key of an HFE-based
scheme P = (p1,...,pn). It is named HFE- due to the act of hiding public equations which leads to an
under determined system. Hence, this modifications is more often used for signatures schemes.

More precisely, HFE- involves using the following projection:

T F* — F*2,

where s € N* denotes the number of removed polynomials. Thus, the construction of the public key comes
as P =moSoFoT forthe original HFE-based scheme. Hence, the public key is seen as n — s quadratic
multivariate polynomials in n variables.

6.3.3.2 The vinegar modifiers HFEv and HFEw

While the first modification discussed earlier affects the public key, this section presents a variation which
affects the structure of the private HFE shaped polynomial.
It consists of adding some extra variables, namely vinegar variables (z1, ..., z,) € FY, where v € N denotes
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the number of vinegar variables. The secret HFE shaped polynomial is now a function of these vinegar
variables. Its multivariate representation over the ground field should remain quadratic in the original HFE
case.

Note that, there are two classifications of vinegar variants:

e External vinegar modifier v, where the extra variables (z1, ..., z,) € F¥ are randomly chosen.

e Internal vinegar modifier w, where each extra variable z; € F, fori € {1,...,v} is a linear combina-
tion of the original variables (z1,...,z,) € F".

Recall the special form of the the HFE shaped polynomial

q'+¢i<D ¢'<D
F(X): Z Ogi’jXq +a + Z ﬂqu +’Y,
0<i<j<n 0<i<n

where (78D Bi, voe Fqn.
HFEVv (respectively HFEw) consists of replacing F* with a complicated map from Fyn» x F? to Fyn:

q'+q <D q'<D
F(X,21,...,2y) = Z i X + Z Bi(z1y ..oy 20) X + (21, .., 20),
0<i<j<n 0<i<n

where «; ; € Fyn, and g;,v : F* — F4» are respectively a linear and a quadratic random maps.
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7.1 Introduction

This Section provides an introduction to the Grébner basis technique that is a classical method for solving
systems of polynomial equations in several variables. The polynomial systems solving problem, known as
PoSSo (see Section [6.2.1)), arises widely in many scientific areas. Therefore, it is important to determine
the complexity of this problem.

We review known algorithms for computing Grébner bases as well as for solving algebraic systems of
equations. In order to define their complexity bounds, essential properties of such systems like the de-
gree of regularity (d,.,) will be detailed.

Recall first the PoSSo problem: Let K = F, be afinite field of order ¢, and { f1, f2,...,, fm} C Klz1, 22, ..., 4]
be a set of multivariate polynomials.

The Polynomial System Solving (PoSSo) problem is defined as follows:

Input: Given a set of polynomials { f1, fo,..., fm} in K[z1, 22, ... ,z,] of small degree d.

Question: Find - if there exists - a vector z = (24, ..., Z,,) € F,", such that:

fm(Z1,...,Zn) =0

The PoSSo problem, proven to be NP-Hard [michael1979computers], is a fundamental problem which
regularly occurs in the cryptanalysis of most cryptographic problems. Hence, several methodologies have
been developed for its resolution.



7.2 Computing a Grobner basis

The classical technique for solving the PoSSo problem and for studying the solutions of a system of mul-
tivariate polynomials involves Grébner basis computations. Specific notations and definitions related to
the Grdbner basis solving tool will detailed in next Sections. We refer the readers to [2, |11} [26] for more
details.

7.2.1 Monomial orderings

Let K = F, denote a finite field of characteristic p, and I an ideal of the polynomial ring in n variables
K[z1,z2,...,x,]) over K.

Basically, solving a system of m polynomials {fi, f2,..., fm} in Klz1,z9,...,z,] consists of finding the
zero-locus of the system that is the set of points = = (z1,z2,...,2,) € K" on which the functions f;s
simultaneously vanish.

In algebraic geometry, the set of roots corresponding to a system of polynomials constitutes an algebraic
variety.

Definition 30 (Algebraic variety)

LetL O K be a field extension of K.

Given an ideal I = (f1,..., fm), the algebraic variety V1,(I) is the set of all common roots in L™ on which
the elements of the ideal I vanish:

() = VL(fi,- s fm) = {(z1,...,2n) €L" | fi(z1,...,20) =0, V1 <i<m}.

In multivariate cryptography, the most interesting systems of polynomials are the ones that have a finite
number of solutions.

Definition 31 (zero-dimensional ideal)
An ideal I is zero-dimensional if its corresponding variety V (I) is finite.

The degree of an ideal I, denoted by deg(l), is the cardinal of the associated variety V where the elements
are counted with multiplicities.

Given a system of polynomial equations, the Grébner basis of the ideal I generated by the polynomials
allows the study of the algebraic variety V' (I). Such solving tool requires a specific monomial order.

Definition 32 (Monomial order)
A monomial ordering, also known as an admissible ordering, is a relation < on the set of all monomials
M, satisfying the following properties:

1. Total order: Ymy1, ms € M, if m1 # mgy then my < mgy Ormo < my.
2. Respecting-multiplication: ¥Ymy, ms, mg € My, if m1 < mo then myms < maoms.

3. Well-ordering: every non-empty subset of monomials has a smallest element with respect to the
ordering <.
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Considering the order on the variables x; > x5 > ... > x,, the most used orders, among several monomial
orderings, are the following:

e Lexicographic order lex: also known as dictionary order due to its similarity with the alphabetical
order used in lexicography for dictionaries.

2052 a0 <oy a'x . afn ifthere exists 1<i<mn such that
aj=p0; for 1<j<i and o; <f;.

e Graded reverse lexicographic order grevlex: it compares the total degree first (sum of all exponents),
and when a tie appears, it applies a reverse lexicographic order

n n
a1 02 « 61 62 1
27wy <grevies T7 T xﬁ” if E o < E Bi
i=1 i=1

n n
or Y a; = > B andthereexists i, 1<i<n suchthat Vj i<j<n,
=1 =1
Q;j = ,Bj and o > 51

When a specific monomial order is chosen, it is then possible to sort the terms of a given polynomial.
The leading monomial of a polynomial f, denoted by LM_(f), is the largest (monic) monomial in the set
of all monomials occurring in f. The leading term, denoted by LT-(f), is the product of LM~(f) and its
corresponding coefficient ¢ that is ¢ x LM<(f).

Moreover, LT (1) is the set of all leading terms of the elements of an ideal I.

7.2.2 Grobner basis
Let I be anideal I C K[zy,...,z,], and < a specific monomial order.

Definition 33 (Grébner basis [17])

A finite set of polynomials G = {gu,...,g9s} C I is a Grébner basis of I, with respect to a monomial order
<, if LT<(I) the set of all leading terms of I is generated by the leading terms of the g;s:

(LT<(91), -, LT<(gs)) = (LT<(I))
In other words, V f € I, there exists g € G such that LT.(f) is divisible by LT-(g).

Given an ideal I and with respect to a monomial order, a Grébner basis G of I always exists, but it is not
unique. For a given monomial order, the uniqueness can be guaranteed by defining the so-called reduced
Grébner basis.

Definition 34 (Reduced Grébner basis)
LetI C K[z1,...,x,]. Afinite subset G = {g1,...,9s} C I is a reduced Grébner basis of I if
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1. G forms a Grébner basis of 1
2. The corresponding coefficient of LT (g) is equal to 1, for every g € G

3. No monomial of g lies in (LT (G — g)).

Buchberger’s algorithm is the oldest method of transforming a set generators GG of an ideal I into a Gréb-
ner basis [17]. This latter generalizes the Euclidean algorithm for GCD computation and the Gaussian
elimination for linear systems. Numerous methods were developed to improve this algorithm like the
Faugere’s F'4 and F'5 algorithms [31, 32].

Below, an alternative algorithm to compute a Grébner basis that applies the Gaussian elimination on the
so-called matrices of Macaulay will be introduced.

Let M (d) be the set of all monomials of degree less than or equal to d and u?d the i-th element of M (d) with
a descending order according to <. Let £, = ("1%) be the cardinal of M(d). Finally, for f € Klz1,...,z,),
let Coef f(f, u=") be the coefficient of f associated to ;="

Definition 35 (Macaulay’s matrix)

Given a monomial order <, an integer D > 0, and a set of polynomials { f1, ..., fm} C Klz1,...,z,], each
of degree d;, such that d; < dy < ... < d,, respectively, the Macaulay’s matrix of degree D, denoted by
Macp({f1,-.., fm}), is the matrix containing the coefficients of the polynomials u,f(D —di) fi of degree less
than or equal to D for every i, 1 < i < m and for every k, 1 < k < {p_g,), where {p_g4,) denoted the
cardinal of M (D — d;).

,LLl - ,UJ2 b ldOtS b /L;
<(D—-d
1,( 1)f1
<(D—-d
,( 1)f1

<(D—d
MZLS_dl D

D—d;
: Coef f( g "™ 1y, ")
S(D=dm) ¢ ..

M1< D—d
2—( g

I

<(D—dm
MZ:E—dm )fm

It was shown in D. Lazard [49, [50], that it is possible to deduce a Grébner basis of I = (f1,..., fm) by
considering the Echelon form (where the only authorized elementary operations is the combination rows)
of the Macaulay’s matrix.

The system of polynomials can be solved using the Grébner basis technique by computing, successively,

52



the Echelon forms of the Macaulay’s matrix. The F4 [32] utilizes the same principles of Buchberger’s
algorithm, and when the degree D up to which one should go, the algorithm F'4 provides a clear picture
on the computational complexity of the Grébner basis technique.

Therefore,in order to determine the complexity of such algorithms, it is important to introduce the notion
of degree of regularity.

Intuitively, d,., is the minimal degree for which a set of polynomials of degree d = d,.., can form a Grébner
basis. Usually, it is defined for homogeneous polynomials, but it can be extended for the other case.

Definition 36 (degree of regularity)

Given a zero-dimensional homogeneous ideal I C K[z, z2,...,z,], the degree of regularity of I is the
smallest integer d > 0 such that the polynomials of degree d in I constitutes a generating set of all
monomials of degree d inn variables, i.e.

dregt) = min{d € N | dimae({f € 1 = degr) = ap) = (T4,

where, dimy is seen as the dimension of a K-vector space.

As stated before, the degree of regularity involves the dimension of the vector space I; = {f € I : deg(f) = d}.
This notion of dimension is strongly related to the corresponding Hilbert series of the ideal I. The most
known method for computing the dimension of an ideal and the degree of its algebraic variety is to define

an explicit form of the Hilbert series of the ideal. Denote by S,, = K[z, ..., z,].

Foragivend e N, let (S,)q = {f € S, : deg(f) = d} be a K-vector space.

Definition 37 (Hilbert function)
The Hilbert function associated to a homogeneous ideal I = (fi,..., fn) s defined as follows:

HFd,m,dm (n) = dzm(Sn/I)d = dZm((Sn)d/Id) = dim(Sn)d — dim([d),
where d,, = (di,--- ,dn) and each d; corresponds to the degree of the homogeneous polynomial f;.

After a certain degree (the degree of regularity), the Hilbert function that depends on d will be equal to a
certain polynomial, the so-called Hilbert polynomial. The degree of this latteris exactly the dimension of
the ideal I.

The Hiloert series is given by : HSy.,4,,(2) = Y. HFym.a,, (n)z%
dm = dm
Now, it is possible to give a concrete bound for the complexity of a Grébner basis computation.

7.2.3 Complexity analysis and solving strategy

In order to obtain an effective solving strategy in terms of speed and low memory usage, it is important to
adapt a very precise monomial order.

In practice, it is not always simple and easy to compute a Grébner basis directly. Actually, the choice of a
monomial order affects directly the computation’s complexity.

When dealing with zero-dimensional ideals, the computation of a Grdbner basis with respect to the lex
order is not complicated numerically. In fact, the structure of such basis can be given as follows:
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Theorem 2 (Elimination)[P.113, |26]

Given anideal I € K[zy,...,z,], let G be a Grébner basis of I with respect to the lex order with z, > ... >
xn. Foreveryt, 0 <(<n-1G; = GNK[zpyy,...,z,] constitutes a Grébner basis of the ideal

Iy, = 1IN K[$g+1, ,xn]

Therefore, when a lexicographic order lex is used, the reduced Grébner basis G = (g1,...,gs) of I has
the following triangular shape:

gl(l‘lv L2y, ey :En)
gi(l'la L2, ey mn)
gi-i-l (x27 cey xn)
gj(z2, ..., Tn)
gj+1(x3, ey xn)
gs(xn)

In practice, the lex order tends to be the most costly while the grevlex order seems to be easier: it
produces, almost all the time, the Grébner basis that are the easiest to compute.

Thus, the maximal degree of polynomials intervening during the computation of the basis is smaller for
the greviex order than other monomial orders [49].

In terms of complexity, d,., forms an upper bound to the maximal degree reached during Grobner basis
computation of a zero dimensional ideal.

Proposition 1 (Complexity bound [31|]) Given a zero-dimensional ideal I, the computational complexity
of the corresponding Grébner basis is given by:

o)
dreg
where 2 < w < 3 is the linear algebra constant.

The general strategy for solving a system of polynomials using the Grébner basis technique can be sum-
marized by:
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Solving strategy.

e First, compute a Grobner basis of the system of polynomials with respect to the GrevLex order;

e Then, apply a specific algorithm to convert the used monomial order, such as the FGLM algorithm
[34].

e Finally, a Groébner basis for the lex order is carried out. This monomial order is very useful to express
the solutions of the corresponding system of polynomials.

The FGLM algorithm [34], named after its designers, Faugeére, Gianni, Lazard and Mora, takes as input
a Grdbner basis with respect to a monomial order and gives a second Grébner basis with respect to an
another order.

Generally, The main interest is to solve systems of polynomials over a finite field. For this reason, a
suitable algorithm, for the resolution over a field, is designed that is the Hybrid approach [11]).

7.3 Resolution with the Hybrid Approach

The basic idea of this approach is to combine two known techniques for solving systems of polynomials:
the exhaustive search and the Grébner basis.

By fixing certain variables, not only one but several, some subsystems are expected to be easier to solve.
Therefore, it is important to carefully choose the number of variables to be fixed between exhaustive
search and the computation using the Grébner basis.

Technically, the Hybrid approach brings a gain in the number of operations needed for solving a system of
equations.

Hybrid approach’s complexity

[[11]] The complexity of the Hybrid approach can be easily deduced from the Grébner basis method. As
mentioned above, solving systems of polynomials requires two steps: the computation of a first Grébner
basis and then the change of the monomial order.

Also, as stated before, this algorithm involves an exhaustive search, so its complexity depends on the
number of variables k£ > 0 to fix, and it can be determined as follows.

Proposition 2 Let{fi,..., fm} € K[z1,...,2,] be a zero-dimensional system, where K is of order equal
toq.
Let D™*(k) be the maximum number of solution in K counted with multiplicities of the following system:

{filzr, . wp_p,vn, k), (@, Tk, v, - Ug) )

for any fixed values (vi, ..., v;) € K¥.
The complexity of the Hybrid approach is given by:

0<k<n

min (qk (Complemity(;g(n —k,dyeg (k) +O <(n — k:)Dmax(k)”>>> .
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Proof: This bound is the sum of the complexity of both the Grébner basis technique and FGLM algorithm
for solving a system of n — k variables. It is multiplied by the cost of an exhaustive search on the k& fixed
variables. u
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8.1 Introduction to PKP

The permuted kernel problem, also known as PKP, was first introduced by A. Shamir in 1989 [63]. The
author of [63] proposed a new public-key scheme, a Zero-Knowledge (ZK) Identification scheme, based
on the intractability of PKP that possesses a very efficient implementation on low-cost smart cards. The
permuted kernel problem is an algebraic problem where the goal is to find a permutation of a given vector
so that the reordered vector is in the kernel of a publicly known matrix.

Informally, the permuted kernel problem is defined as follows:
e Given a matrix A and a vector V,
e Find a permutation 7 such that AV, = 0.

Even though PKP requires only simple mathematical operations that involve basic linear algebra compu-
tations, it has been proven to be an NP-Hard problem [36].



The simplicity of PKP has led to a larger theoretical analysis, and to a significant attention for using this
latter in cryptographic applications. The so-called PKP problem has been widely studied in several papers
[6l 137, 140, [57, 60]. Despite the research efforts and for appropriate parameters, the problem PKP is still
exponential.

This chapter investigates the theoretical analysis behind the permuted kernel problem PKP and its com-
plexity over a finite field. It also provides a summary of previously known algorithms used to solve this
problem. The main contribution of this chapter is to provide an updated complexity analysis of the most
efficient algorithm for solving instances of the permuted kernel problem.

The permuted kernel problem [63] is defined next over a finite field IF,,.

8.1.1 Description of the permuted kernel problem

The permuted kernel problem (PKP) is a combinatorial problem on which the security of an efficient
ZK Identification scheme is based [63]. A reduction of the 3-Partition problem proves that PKP over a
finite field F,, is an NP-Hard problem [36, pg.224] in the good reasoning (i.e the hardness of PKP grows
exponentially with p).

Given a prime number p and two random numbers m,n € N*, PKP is defined as follows:

Input. A finite field IF,,, a matrix A € M, (F,) and an n-vector V' € F,".
Question. Find a permutation 7 over (1,...,n) such that A x V, =0 (mod p), where

Vi = Vaays -+ Vam))-

Note that, all the arithmetic operations carried out are modulo p.

8.1.2 Practical complexity considerations

It is more suitable to assume that the matrix A € M,,,«,,(IF,) is of rank exactly m. Otherwise an equivalent
matrix of A could be expressed with fewer significant lines. In order to have a hard instance of PKP, n—m
(which is the dimension of the kernel of A of rank m) must be large enough so that the kernel of the matrix
A has sulfficiently enough elements.

By denoting A, = (a;s(;)), the effect of a permutation o over the columns of A, it is easy to see that
AV, = AV. Also, up to a certain reordering of the columns of A, one may assume that A is given in its
systematic form:

A = (ai5)1<icma<j<n = [A'|I],

where A" = (a;;)1<i<m,1<j<n—m € Mux(n—m)(Fp) @nd I is the identity matrix of size m.
It is more preferable that the n-vector V' be with no double (distinct coordinates) in F,,. So that, the number
of possible solutions decreases, and at the same time the search space expands.

The probability of an arbitrary vector to be in the kernel of the matrix A € M,,x, with coefficients in I,
and whose rank is equal to m, is equal to p~™. Since that the n-vector V' has distinct entries, then its
orbit under the possible permutations consists of n! vectors. Therefore, in order to obtain in average one
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solution for a PKP instance, then n! must be approximately equal to p™ (n! ~ p™).

The robustness of PKP comes from, on one hand, the big number of permutations, on the other hand,
from the small number of possible permutations which may suit the kernel equations. More precisely, PKP
is hard because it obligates the choice of a vector, with already fixed set of entries, from the kernel of the
matrix A.

8.2 Solving PKP: best known algorithms

Due to the efficient Identification scheme IDS based on PKP and introduced in the rump session of Crypto
89 [63], various solving tools and attacks were proposed that are all exponential.

8.2.1 Exhaustive search

The exhaustive search, also known as brute-force attack, consists of examining all possible candidates
(permutations of a set on n elements) for the solution in order to determine whether a candidate satisfies
the problem’s conditions. Despite the fact that this search technique is very general and naive, mainly
when the search space is large, it is important to consider its complexity which is in n!.

8.2.2 J. GEORGIADES method

J. GEORGIADES [37] was the first to improve the exhaustive search for solving an instance of the permuted
kernel problem. The main idea of the algorithm is to decrease the set of suitable permutations by finding
some new equations.

Assuming that the rank of the matrix A is equal to m, the rank-nullity theorem states that the dimension of
the kernel (null space) of A is equal to dz‘m(kzer(A)) = n—m. Hence, there are n —m linearly independent
vectors that span the kernel of A. It is possible to fix the last m components of each vector while first
n —m components are constants depending on A. Consequently, the kernel of the matrix A can be stated
as follows:

U1,1 U2,1 Un—m,1
U1,2 U292 Un—m,2
KGT(A) == )\1 UIl’m + )\2 U207m +--+ )\n—m uniomﬁn ) (81)
1 0
0 0 1

where u1 1, ..., Un—m,m belong to F,, and so does the \;s.
Thus, the kernel of A is the set of vectors:

(frfor oo s M A2 Anm ) (8.2)
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n—m
where fj = Z ui,j)\i, je {1, RN m} .
=1

So that, to findZ the secret permutation =, it suffices to find the right n — m components (the \;s) of the
corresponding vector V., and the other m components can be easily deduced from the kernel equations
and

In other words, it suffices to correctly pick and place (n — m) values out of n. Therefore, the number of
permutations to be considered will be reduced from n! to:

n! n!
(n—(n—m)) m!’
Moreover, since that V' is publicly given, then the components of V. are also known, as well as all their
symmetrical expressions. For example the sum of the vector components, the sum of their squares, etc...
Hence, one may successfully establish relations between the \;s to decrease the cost of the attack. As a
matter of fact, V' = (v, ..., v,) is known, and its permutation V;; = (x1,...,2z,) € Ker(A) is of the form
given in Thus, the following relations in FF,, hold:

Zn:v;" modp = zn:x;” modp = if[JrZ)\f mod p, (Gy)
=1 =1 ] ]

where r is a positive integer.

When giving small values for r (for example r = 1, 2), the equations|G,] stated above might be very useful
and easy to compute.

For r = 1 (resp. r = 2), it is easy to represent some of the \;s (resp. \;x;) as a linear combination
(resp. quadratic equation) of the other n —m — 1 (resp. n — m — 2) values. This will reduce, by taking r = 2,

the possible permutations to:
n! n!
(n—(n—m—2))! B (m+2)!
Note that, the use of symmetric equations of higher degree (r > 2) might not be very beneficial due to its
computational complexity.

8.2.3 A time-memory trade-off

The authors of [6] introduce a new type of attack that is a time-memory trade-off leading to a faster method
for solving PKP instances. The proposed approach reduces both of time and space complexities required
to solve the PKP problem.

Recall that, solving a random PKP instance means to find a permutation 7 of a vector V' such that Ax V, =
0. Hence, using the reduced systematic form of the matrix A, PKP can be represented as:

m,l m,n—m
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Consequently, in order to find the permutation = one must solve a system S of m equations in n variables
carried out from the matrix-vector product described above.

The algorithm consists of choosing of the system S only 0 < k& < m equations to solve out of m. Due to
the block form of A, a sub-system of S formed by & equations involves only n — m + k variables namely
Va1)s -+ Va(n—m+k)- 1he algorithm employs an another parameter 0 < &’ < n —m + k that determine the
storage amount needed in the first step of the algorithm.

The approach is essentially divided into two steps:

Step1: precomputation. Recall that the aim is to solve & relations in n — m + k variables. The algorithm
computes, for each k' — uple (Vy(1y, - .-, Vzar)), the following values:

k/
b= ai;Vagj)
j=1

k/
b =Y i Vi
j=1

Then, the (nfi;g,), possible k¥’ — uples and their corresponding values (b1, - ,b;) are stored. Note that,

for each of the p* possible value of the vector (by,--- ,b;) the &' — uple (Vz@y,---» Veay) can be easily
accessed.

The first step of the algorithm costs (nfi}ﬁ,), matrix-vector product. The memory required is nearly equal to
(n%), k' — uples. Also, for each (by, - - -, b;,) value corresponds approx. p_k(n%;ﬂ,)! k' — uples.

Step2: exhaustive trial. The exhaustive search is performed over the remaining components

(Va41)s - - +» Va(n—m+k))- There are (m+27:—k)' possible values of such vector.

For each tested vector, the corresponding values are computed from the & equations:

n—m-+k
a= Y, d,Vag
j=k'+1
n—m-+k
k=D, a;Ve()
Jj=k+1
Now, using the precomputation step, a list of probable (Vy(,..., V) is obtained. Obviously, the k
relations can be represented as:
b1 +¢c1 =0
b + ¢ = 0.
Moreover, the &' — uple (Vi1 - - -, Vzary) is certainly one of the possible k' — uples for the (—cy, ..., —c)

value of (by,...,bg).
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For every vector (Vi(w41);---» Vetm—m+k)) g€nerated, there are in average p—k(n’jijﬁ,)! (Veays - Veaen))
values. For each probable solution (Vy(1), ..., Va(n—m+k)), the remaining unsolved equations from (&’ + 1)
to (m) give successively only one possible value for the last components V., 1 k+1)s - - -5 Va(n)-

The required storage space of this step is negligible. In contrast, the required time is approximately equal
to sup( +ZL,€)! (nf;a)! p k. G e 7y) matrix vector product.

Thus, for every pair (k, k'), the total time complexity for solving PKP, using this time-memory attack is
about:

n! + sup( n! n! Lk n! )
D EE—— u
-t P K k) ) mr K — k)
and the total space required is about:
n!
— K
=)l -vectors.

8.2.4 Patarin-Chauvaud attack

J. Patarin and P. Chauvaud combine in [57] the two ideas presented in the previous attacks (see Sections
[.2.3). The resulting algorithm decreases the time required to attack PKP. It also presents some
new ideas in order to reduce this time the memory storage.

Thus, this leads to a new algorithm which is quicker and more efficient than the attacks given above 6 37].

Due to the different variants and the numerous technical considerations proposed by the authors, we refer
the readers to the main article [57] for a more detailed description.

8.2.5 Joux-Jaulmes algorithm

In [40], A. Joux and E. Jaulmes use an algorithm introduced in [42] to present a new time-memory trade-off
algorithm for solving the permuted kernel problem PKP. This latter involves the so-called 4SET problem
(see [40. [42] for more details) that can be stated as follows:

Input. An n-vector P of prime numbers p;s P = (p1,...,pn), four sets S; of n—vectors such that |S;| = NV
fori=1...4,andn sets Dq,...,D,.
Question. Find v € Sy,...,v@® € Sy, dy € Dy,...,d, € D, such that:

Viell,..., n], vz(l) + 1)52) + vi(g) + v§4) =d; (mod p;)

The solving tool of the 4SET problem is divided into two phases: a precomputation phase called the A-
Phase, and a main loop called the B-Phase that consists essentially of two enumeration steps (detailed
in [40]). For reasonable choice of parameters, the authors of [40] define a time complexity bound of the
algorithm that is given by:

O((” - k)¢N1N2N3N4),

Where ¢ = H 'D | for suitable choices of 1 < k < n. As stated in [40], it is feasible to reduce an instance

of PKP to the 4SET problem. The algorithm builds upon the useful |G, ] equations [37] described in Section
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The linear equation |G, | (for » = 1) describes the fact that the sum o of the components of the vector
V (that is the same for V) is independent of the secret permutation «. By taking into consideration the
linear equation[G,}, the kernel vector V; verifies:

(AE)‘Im_i_]_)Vﬂ- - . 5
0
when considering the systematic form of A = [A'|I]. Thus, Aj € M(;s1)x(n—m—1)(Fp), and I,y is the
identity matrix of order (m + 1).

In order to view a PKP instance as 4SET instance, A{, can be seen as a composition of four roughly equal
parts, so:

(A1 A A5 A L)) Ve = | . | (8.3)
0
where A} isa (m + 1) x (n;) matrix and ny +ng +ng +ng =n—m — 1.
Recall that, V. is the reordered vector under the permutation = of the vector V. The sets S; need to be
determined in order to apply the 4SET problem. Since A is an (m + 1) x (n;) matrix, S; is the set of

m + 1-vectors: the product of A’ by all the possible n; combinations of the components of V. So, the size
of S;is equalto N; = 2

(n—my)!"

The Joux-Jaulmes algorithm considers all the prime numbers p;s to be equal to the prime number p given
in the PKP instance. To determine the m + 1 sets D;, the vector V;; must be decomposed, similarly to
the matrix A}, V; = (V" V™ VOV v{™) such that for i € [1,. .., 4], V™ is an n;-vector where, as we
quoted before, ny +ns+n3+ng =n—m—1. So, V5(”) is the vector formed by the last (m + 1) components
of V. Hence, the matrix-vector product can be reformulated as follow:

0 v(ﬂ) ]
A/1V1(7r) + A/2V2(7r) + Agvé(w) + Azl‘/;lw) _ . . V5(7r) _ nTerl -D
0 N

(m

The value of V; ) depends on the V/"s , for i € [1,...,4], so does the m + 1-vector D. The first component

of D depends on vff_)m that has n possible values. Thus, D; is the set of these possible n values. Since
V' has no double entries, the set D, is composed by n — 1 elements, and so on. In this way, the sets

D1, ..., Dy, are built such that each one has in average:
ntr-D+ ., +n-—m) elements.
m+1
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In order to define the solving time complexity, when dealing with bit operations, it is indispensable to pack
32 or even 64 = 25 bit operations in one word operation. It is equivalent to divide the complexity by 2°.
In summary, the authors of [40] gives the following time complexity for their algorithm (see [40] for more
details):

n!?

X 2_6),
(n—n1 —n2)l(n —n3 —ny)!

(’)((m—i—l—k)xwx

Where k = log|p,| (1).
It appears in [40p] that this new approach is the most efficient to solve PKP.

The following sections show that the performance of Joux-Jaulmes attack on PKP had been misjudged.
Joux-Jaulmes attack is much more complicated than expected.
Thus, the next section details the choice of the most efficient solving tool for PKP.

8.3 Concrete security of PKP

The goals of this Section are twofold: to fix the complexity bound of the algorithm introduced by Joux-
Jaulmes, and to provide the best solving tool for PKP.

8.3.1 Complexity Analysis of Joux-Jaulmes algorithm

Note that, this section the notations of Section

As stated before, any PKP instance can be reduced and seen as an instance of the 4SET problem. Thus,
it is possible to apply on PKP the same solving strategy of the 4SET problem. In [40], the Joux-Jaulmes
algorithm was introduced to solve PKP and it consists of a main loop involving two enumerations phases:
A-Phase and B-Phase. The authors assume that the second enumerating phase (B-Phase) dominates
the time complexity of their technique. Without going too far into the complexity analysis of Joux-Jaulmes
approach, we found that the overall complexity is wrongly estimated. By taking into consideration a rea-
sonable choices of parameters, it appears that the time complexity of Joux-Jaulmes algorithm is controlled
most of the time by the A-Phase.

Recall that the analysis of Joux-Jaulmes [40] leads to the following:

The number of operations required to proceed the A-Phase is in:
n!
CA—Phase = O( max { N1 log(N2)y¢, (m+1— ka} )
While the B-phase needs approximately:

n!?

Cophase = O( max {Nglog(Ny), (m +1 - k) 07} ),

(n —n1 —na)l(n —n3 —ny)!

Where, N; = 2

(n—n;)!"
Therefore, the total time complexity which is determined by the effect of the main loop involving the two
Phases, can be expressed as follows:

27° x ¢ % (CAfphase + CBfPhase)a
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Where ¢ = p” is the cost of the main loop containing the two phases A and B, and 279 is for packing bit
operations.

The following table approves what it is claimed previously: the algorithm’s overall complexity is dominated
by the A-phase.

Note that, Table uses the same parameters given in [40], and of the form (PKPp(m, n)), .

Parameters Sets | A-phase Complexity | B-phase Complexity | Overall Complexity
(PKP251(16, 32)) 21572 218.02 993.55

(PKP25 (15, 32)) 216,13 21802 293.96
(PKP251(24, 48)) 294.45 932.09 2100.1
(PKPas51(34,64)) 213567 24067 9270.19

Table 8.1: The A/B-Phase complexity of JOUX-JAULMES algorithm

Experimental results confirm that, for suitable sets of parameters minimizing the total time complexity,
the A-phase dominates, and the total complexity is way more greater than announced. Therefore, the
JOUX-JAULMES algorithm is not very efficient for solving PKP.

8.3.2 Simplest and most efficient algorithm

This Section presents complexity bounds estimations for some techniques that helps solving the permuted
kernel problem (PKP). It is convenient to assume that an elementary operation is defined by the compu-
tation of a tuple, such as a vector-matrix product in F,,. Therefore, a memory unit is defined by the space
needed to store a tuple.

8.3.2.1 Improvement and Generalization of existing attacks.

The robustness of the permuted kernel problem (PKP) was widely investigated. Some of the most com-
mon algorithms were introduced in previous Sections.

This Section is a build-up on existing solving techniques for PKP in order to upgrade the solving complex-
ity bound of the permuted kernel problem.

As summarized in Section the time-memory trade-off technique reduces the complexity time for
solving instances of PKP at a significant cost of increasing the storage (memory). The algorithm is de-
signed to speed up the solving time by performing a pre-computation step on a subset of the search
space.

Moreover, J. Patarin and P. Chauvaud bring together the solving tool proposed by J. Georgiades (see
Section along with the time-memory trade-off algorithm (see Section in a way to decrease
the time needed to solve a PKP-based instance [57]. Furthermore, the authors of [57] propose some
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interesting ideas that decreases the memory usage.

Since that several variants were presented in [57], only few variants will be used and cited in this work
(See [57] for further details):

e "Set integration" technique: performs an exhaustive search (also known as brute-force attack) on
only a subset of values, instead of all the ordered tuples of values. Such method yields a consider-
able decrease of the size of the initial pre-computation step.

¢ "Middle values" technique: performs an exhaustive search on a number of "middle values" in order
to find solutions with respect to some fixed middle values.

¢ "Pre-computation on the matrix A" method: investigates the possibility of dealing with a sub-system
that can be expressed with less variables. This technique leads to probabilistic algorithms.

Likewise, G. Poupard in [60] provides a generalization of the "Middle values" technique, in addition to its
corresponding complexity analysis. But, it seems to be imprecise since that no clear details were given.
Thus, next section considers all the existing algorithms for solving the permuted kernel problem, and
provides a fresher look on the best solving techniques.

8.3.2.2 Our method : Extension of the most efficient attacks.

This Section combines most of the previously described solving methods for the permuted kernel prob-
lem. It provides a new software that yields an efficient complexity analysis. Moreover, an approximate
time (and space) complexity bound is established next.

Let £V denotes a tuple of k values, where k£ denotes conveniently at the same time a subset of indexes
and the number of elements of this subset. Similarly, k.7 A is a sub-matrix of A with some given subsets
of indexes.

The algorithm provided in this Section is mainly based on the techniques proposed by Patarin-Chauvaud
in [57] and G. Poupard [60]. The extension of these two techniques pushes further the implementation in
order to provide higher security levels.

More specifically, the algorithm employs four essential variants:

1. The use of symmetric polynomial equations of small degrees|G,]

2. A time complexity reduction: by performing a pre-computation step and an exhaustive search on a
sub-set of variables, instead of the whole ordered tuples of variables [6, 57].

3. A memory complexity reduction: by introducing some middle values that helps solving a simple
system of equations [57].

4. Carry out a pre-computation on the matrix A which leads to probabilistic algorithms (See Section

8.3.2.3).

The starting point is to bring together, in Alg. [1} the first two ideas given above (Section|8.3.2.2) for solving
PKP. This method exploits usefully the special form of the matrix A = (A’||I).
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Algorithm 1 A1 : Solve PKP (n,m, p)

Require: 0 <k <mandl+r+m—k=n
1: select k equations, and split their variables into two sets [ and r
2: for all [-tuple [V do
3: compute C <+ k.lA x IV
store (C,1V) in a file F, so that given a value C, one can efficiently access all the corresponding
[-tuples
5: end for
6: for all r-tuple »V do
7:  compute C + —k.rA xrV
8
9

A

pick from Fy a list L of I-tuples associated with C'
filter the list L by keeping only the [-tuples compatible with »V/
10:  for all [-tuple [V in L do

11: compute the last variables sV < (m — k).(I+r)A x (I + 1)V
12: if the values s are compatible with (I + ) then

13: (I +r+ s) is a solution

14: end if

15:  end for

16: end for

For this algorithm, the time and space complexities are given by the following formulas:

n!

(n—=10V
. n! n! n!
time = (=1 + (n—1)! + Ko=) (8.5)

space =

In order to provide a first clear image on the parameter sets, several tests are carried out, using Alg. (1, on
prime fields for different values of n. Thus, Fig. provides the time complexity for solving PKP by Alg.
[l

Note that, the number m of equations is implicitly estimated by the closest integer for log(n!)/log(p).
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Figure 8.1: Time complexity of Alg. for various values of p

The second step is to combine almost all of the variations cited in Section8.3.2.2, Therefore, Alg. |2 leads
to a more synthetic description of Poupard’s algorithm mixed with the techniques of pre-computed files
and "Middle values". Moreover, this Section provides a detailed complexity of the extended method which

has not been estimated before (cf. equations [8.6/and [8.7] below).
Note that, we keep the notations used in [60, Fig. 3].
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Algorithm 2 A2 : Solve PKP (n,m, p)

Require: i+ j+r+m=nandc+cd <mandd<candl+k=r+d
1: for all j-tuple ;V do
2:  compute Cy + c.jA x jV
3: store (Cy,jV) in afile Fj so that, given a value Cy, one can efficiently access all the corresponding
j-tuples
4: end for
5. for all [-tuple [V do
6: compute Cy < d.lA x IV
7. store (C,1V) in afile F, so that given a value C5, one can efficiently access all the corresponding

[-tuples

8: end for

9: for all c-tuple of "Middle values" ¢C do
10:  for all i-tuple iV do
11: compute Cy + cC — c.iA x iV
12: pick from Fy a list L of j-tuples associated with Cy
13: filter the list Ly by keeping only the j-tuples compatible with iV and get (j + i)-tuples
14: for all (j + ¢)-tuple j + iV of Ly do
15: compute Cy + .(j+i)Ax (j+9)V
16: store (C1,(j+14)V) in a file F; so that given a value C;, one can efficiently access all the

associated (j + i)-tuples
17: end for
18: for all k-tuple £V do
19: compute Cy < dC — d.kA x kV
20: pick from F; a list Ly of I-tuples associated with Cs
21: filter the list Ly by keeping only the I-tuples compatible with £V and get (I + k)-tuples
22: for all (I + k)-tuple (I + k)V of L, do
23: compute (c —d)V <+ (¢ —d)C — (c—d).(I+k)A x (I + k)V and keep only the compatible
values with (I + k)V and get (r + ¢)-tuples
24: for all ¢/-tuple ¢’V compatible with (r + ¢)V do
25: compute C1 < —(¢).(r+ c)A x (r + ¢)V
26: pick from Fy a list L; of j + i-tuples associated with C;
27: filter the list L, by keeping only the (5 + i)-tuples compatible with r + ¢+ ¢V and get
(j+i+r+c+)-tuples

28: forall (j+i+r+c+)tuple (j+i+r+c+c)VinL;do
29: compute the last variables sV < (m —c—d).(j+i+r+c+ )AX(j+i+r+c+ )V
30: if the values s are compatible with (j +i +r + ¢+ ¢) then
31: (j+i+r+c+ +s)is asolution
32: end if
33: end for
34: end for
35: end for
36: end for
37: end for 71

38: end for




For this algorithm, the time and space complexities are estimated as follows:

n! n! n!

space = = + (=1 + pen—(i+4)) (©6)
time = n! + ! + " +
m—3)'" (n=0!" (n—(i+j))
pen! penl P n — (c - d))! (8.7)

=R =G T = reta))
(n—(c—a))!

+ —
pln—(i+j+r+c+d))

As stated in [60], the importance of this algorithm is for realistic attacks, where memory storage is limited.
However, from a theoretical point of view, the previous algorithm is the most efficient method for solving
the permuted kernel problem.

8.3.2.3 Probabilistic method

This Section describes the method used for the step of "Pre-computation on the A matrix" introduced in
[57]. Similarly to other techniques cited in the aim of the pre-computation on A is to reduce the
complexity of solving the permuted kernel problem. The particularity of such method is that it limits the
search space to a subsystem with less variables than expected.

First, when dealing with a set of m equations in n variables over F,,, an accurate estimation of the proba-
bility to find a subset of k£ equations in only r variables is explicitly detailed below.
The following results hold:

Claim: The probability that a random linear equation in Fy[z,...,z,] is expressed in only r variables

Z1,. .., T, IS give by:
n—r IN\T
P ()06

Proof: Consider a random linear equation in n variables over F,. The coefficients of the equation are
randomly and uniformly chosen in [F,. The probability that a given variable z; does not occur in the
equation is the probability that its corresponding coefficient is equal to 0, which is in % There are n — r
variables with coefficients equal to zero.

The coefficients of the r variables are assumed to be independently chosen at random. Therefore, the
number of variables that appears in the equation follows the binomial distribution with parameters n and
5 ; hence the result. [ |
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Claim: The probability that a set of £ random linear equations in n variables over F), is expressed in only r

variables is given by:
()G 05

Proof: The probability that a given variable does not occur in the k& equations #. Therefore, the number

of variables that appears in k£ equations follows the binomial distribution with parameters » and # ; hence
the result. [

Claim: Given a set of m linear equations over [, the number of distinct linear sub-spaces formed by &

equations is defined by :

k—1 pm . pz

ki
o PP

Proof: The number of k-tuples of linearly independent equations is given by :

[Ir -

=0

All the tuples that have equivalent bases of the same sub-space are related by a given isomorphism over

Iﬁ‘g. These isomorphisms amount to Hf;ol pF — p’. Hence the number of distinct linear sub-spaces formed

by k equations is equal to:

k—1 pm . pi

k_ i
o PP

Claim: Given a set of m linear equations over F,, the number of distinct linear sub-spaces of k£ equations
that can be expressed in r variables is approximately given by:

k—1 ;

1 \n—r 1\" mo_ pt
<n>< k) (1_ k) XHpk: pz
r)\p p o PP =D

Proof: Even though, the sub-spaces of dimension k in the linear space are not uniformly distributed over
all the possibilities, but it is very close to the product of the number of sub-spaces by the probability that
one subspace has the required property. This result has been experimentally verified. [ |

The method of using sub-spaces of equations with less variables speeds up the search algorithm. It
appears that the probability of finding such sub-sets is massively small.
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8.4 Secure Parameters Sets and PKP application

As stated before, PKP was utilized in 1989 to construct a Zero-Knowledge Identification scheme (IDS) [63].
There has been renewed interest in the PKP-based IDS. In fact, it is possible to transform the PKP-based
IDS into a post-quantum digital signature scheme. Thus, it is important to analyze the security of PKP, in
order to upgrade the complexity bounds of each existing solving tool for the permuted kernel problem.

A realistic picture of the efficiency and the complexity bound of nearly all of the known methods for solving
PKP is now given in Section [8.3.2.2] in addition to an upgraded complexity bound for the most efficient
attack. Consequently, it is possible to define by now secure parameters sets for PKP instances.

The following table shows that the most efficient attack to solve PKP is our approach that is an extended
version of Patarin-Chauvaud [57] and Poupard [60] techniques. The corresponding complexity bound for
the extended approach which is established in Section is computed using a Magma code given in
Appendix [Al

Note that, the same parameters sets, of the form (PKP,(m,n)), used in [13] will be presented here.

Parameters Sets (PKP251(41,69)) | (PKPsog(54,94)) | (PKP4g93(47,106))
Security level 2128 2192 2256

Brute force attack 2326 2485 2565

J. Georgiades attack 2151 2236 2356
Time-memory trade-off 2131 2196 2262
Joux-Jaulmes attack 2286 2413 2432

Extended approach 2130 2193 2257

Table 8.2: Complexity bounds for PKP’s best known algorithms

8.5 Conclusion

This Chapter investigated the complexity of the so-called problem PKP. We presented a summary of the
previously best known algorithms devoted to solve this problem.

Some of these published algorithms and results are not accurate or genuine. Therefore, this chapter re-
viewed and upgraded some of these algorithms.

Contrary to what is shown in [40], and after a thorough analysis of the State-of-the-art attacks of PKP, we
claimed that the Joux-Jaulmes attack [40] is not the most efficient algorithm for solving PKP.
In fact, the complexity of the Joux-Jaulmes attack underestimate the amount of a certain important phase
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of the algorithm.

Moreover, by combining methods, namely the approach of Patarin-Chauvaud and Poupard [60], we have
been able to provide an explicit complexity bound (see equations and given above) of the best
algorithm for solving hard instances of PKP.

Also, we have been able to develop a Magma code (see Appendix [A) that gives a realistic picture on

the security level of the permuted kernel problem. Such code is very useful to establish secure sets of
parameters in order to arise hard instances of PKP.
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PKP-based Signature Scheme (PKP-DSS)
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9.1 Introduction

The most widely used public-key schemes today rely on the discrete logarithm problem or the integer
factorization problem. Since that quantum computers are believed to be able to solve these two computa-
tional problems and to outperform the classical computers, thus building a functional quantum computer
would endanger a large number of common public-key cryptographic protocols. Even though, it might
take a few years for quantum computations to be feasible, it is important to anticipate such breakthrough
and build new public-key cryptosystems that are resistant to quantum attacks. Therefore, researchers are
making great effort and progress in order to develop new quantum-based secure algorithms.

Moreover, the American National Institute of Standards and Technology (NIST) has launched a Post-
Quantum Cryptography standardization process (https://www.nist.gov/) to standardize new quantum
public-key algorithms. Due to this competition, there has been renewed interest in developing signature


https://www.nist.gov/

schemes by applying the Fiat-Shamir transform (FS) [35] to zero-knowledge identification schemes (ZK-
IDS) whose security relies on the quantum hardness of some NP-Hard problem [8].

Quantum computers are expected to be incapable of solving NP-Hard problems in sub-exponential time
(the worst case). Therefore, zero-knowledge identification schemes based on such type of problems con-
stitute potential candidates for post-quantum cryptography. One of those problems is the permuted kernel
problem (PKP, described in Section [8.1.1): the problem of finding a permutation of a given vector such
that the reordered vector is in the kernel of a known matrix. This is a classical NP-Hard combinatorial
problem that requires only simple operations such as basic linear algebra and permuting the entries of a
vector. It has been a while since no new attacks have been reported on PKP. Hence, it is convenient to
utilize the concrete hardness of this problem to build secure cryptographic schemes.

A five-move zero-knowledge identification scheme (ZK-IDS) based on the permuted kernel problem was
introduced by A. Shamir in [63]. A well known technique, namely the Fiat-Shamir transform [35], is com-
monly used to convert zero-knowledge identification schemes into signature schemes. In this work, the
Fiat-Shamir paradigm [35] will be used to transform the PKP-based IDS into a new digital signature
scheme DSS that is provably secure in the Random Oracle Model (ROM).

9.2 PKP-based Identification Scheme (PKP-IDS)

This section presents first the original 5-move zero-knowledge identification scheme (ZK-IDS) based on
the computational hardness of the permuted kernel problem [63, 48], noted here PKP-IDS. Then, our
optimized version of PKP-IDS will be introduced in addition to the proof that the optimized identification
scheme based on PKP is secure.

9.2.1 The original 5-move PKP-IDS

This Section provides the original PKP-IDS [48, |63], and also its slightly modified version. The original
PKP-IDS consists of three probabilistic polynomial time algorithms DS = (KEYGEN, P, V) that will be
described next.

Generation of the public key and secret key in PKP-IDS

The users first agree on a prime number p, and on n, m, the dimensions of the matrix A. The public-key
in PKP-IDS is an instance of the problem PKP, a solution to this instance is the secret-key.

Thus, the prover picks a (right) kernel-vector w € Ker(A), then randomly generates a secret permutation
of n elements sk = 7 and finishes by computing v =w_ 1.

The key generation algorithm is summarized in Alg. [3
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Algorithm 3 KEYGEN(n,m,p)

A & e

w & Ker(A)

T ﬁ Sh

V< W1

Return (pk = (A, v),sk =)

9.2.1.1 5-move identification protocol: Prover P and Verifier V.

The prover P and the verifier V are both interactive algorithms that accomplish the identification protocol
in five moves.

The five moves are composed of one commitment, two challenges addressed from the verifier to the
prover, and two responses sent from the prover to the verifier.

The identification protocol is summarized in Alg.

Recall, the definitions of completeness, honest-verifier zero-knowledge (HVZK), and of soundness error
given in Section 4.5.2

It was shown in [63] that PKP-IDS is complete. If the commitment scheme utilized during the process is
computationally hiding then PKP-IDS is computationally honest-verifier zero-knowledge, and if the com-
mitment scheme is computationally binding, then PKP-IDS is sound with soundness error:
p+1
R=—.
2p

It is usually possible to successfully cheat in such zero-knowledge identification schemes. A dishonest
prover in the underlying identification scheme may be able to previously guess and then anticipate some
of the challenges. Therefore, there is a nonzero probability, namely a soundness error «, that a dishonest
prover impersonate the legitimate prover.

In the case of PKP-IDS, the soundness error is equal to %. Thus, it is necessary to repeat the protocol
several times in order to reduce the probability of fraud. Sequentially repeating the zero-knowledge proof
N times yields an identification scheme with knowledge error equal to

N
Krepeated = K -

Hence, it suffices to repeat the protocol D\/logQ(l%ﬂ times to get a soundness error x < 27, where \
is the security parameter.
The scheme is built in such a way that executing the protocol does not reveal any secrets (Zero-knowledge).
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Algorithm 4 The original 5-move PKP-based identification protocol

P(sk, pk) V(pk)

o & Sh
r &
Co < COMMIT(c, Ar)
C; « CoMMIT(mo, rs)

Co,C1
c ﬁ Fp
°
Z <4 Y5+ CVro
LN
b {0,1)
PR
if b = 0 then
rsp < o
else
rsp < mo
end if
rsp
if b = 0 then
accept if Co = COMMIT (o, Az,-1)
else
accept if C; = COMMIT(o,z — ¢Vrp)
end if
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9.2.2 The modified version of PKP-IDS

Several optimizations will be provided in order to reduce the communication cost of the identification
scheme, as well as the computational cost of the algorithm.

This Section presents first an explanation of few standard optimizations that are common for identification
protocols based on zero-knowledge proofs.

Then, some novel optimizations will be given that are appropriate to the specific context of the PKP-based
identification scheme PKP-IDS.

Hashing the commitments.

During the commitment phase of the protocol, instead of sending all the 2N commitments

C(()l), Cgl), e ,C((]N), C&N) the prover can simply hash all the commitments together using a collision resis-
tant hash function  and sends only the hash h = ’H(C(()l), e ,C%N)).

Then, the prover includes the N commitments Cﬁ?bi in the second response. Since that the verifier can
recover the C by himself, he then has all the 2V commitments, so it is possible to hash them together
and check if their hashed value matches h.

This optimization reduces the number of communicated commitments from 2N to N, at the cost of trans-

mitting a single hashed value.

Use seeds and PRG.

Instead of directly choosing the permutation o at random, it is always possible to choose instead a random
seed of \ bits and use a pseudo random generator PRG to expand this seed into a permutation o.

Thus, instead of transmitting o, it is more practical to just transfer the \-bit seed. This reduces the com-
munication cost per permutation from log,(n!) bits to just A bits.

For example for 128-bits of security, n is equal to n = 69, so the communication cost per permutation
drops from log,(69!) ~ 327 bits to just 128 bits.

Matrix A in systematic form.

This Section describes specific optimizations for PKP-IDS.

With high probability, elementary row operations can be performed on the matrix A in order to put A in its
symmetric form (I,,]|A’), for some (n — m) x m matrix A’.

Since row operations do not affect the right kernel of A, one can just choose the matrix A of this form
during key generation, without affecting the security of the scheme.

Such optimization makes the protocol more efficient because multiplying by a matrix of this form requires
only (n — m) x m multiplications instead of n x m multiplications for a general matrix multiplication.

Key generation optimization.

Obviously, it is not very efficient to include in the public key the matrix A = [c¢f*, i € {1,--- ,n}], where ¢/
is the i-th column of A.

The main idea is to just pick a random seed, and use a pseudo random generator PRG to expand this
seed in order to obtain the matrix A.
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The public key is then composed of a random seed, and the vector v of length n. However, it is possible
to slightly improve the algorithm better than this. We can use a seed to generate A* which is formed by
the first n — 1 columns ¢f,--- ;¢4 | of A and the vector v.

Then, a random permutation  is picked, and one must solve for the last column ¢ of A such that v, is
in the right kernel of A.

Now, the public key only consists of a seed and a vector of length m (instead of a vector of length n).
Another important advantage of this approach is there is no need to perform a Gaussian elimination this

way (and in fact this was the motivation behind this optimization).

The optimized key generation procedure is given by the following algorithm Alg.

Algorithm 5 KEYGEN(n,m,p)

sk.seed < Randomly sample X bits
(seed, pk.seed) < PRGy(sk.seed)
7 < PRG; (seed;)

(A*,v) < PRGa(pk.seed)

Compute c2 from A* and v

sk < sk.seed

pk < (pk.seed, c’)

Return (pk, sk)

Sending seeds instead of permutations.

Due to the second optimization cited above, it is useful to transfer a \-bit seed instead of o, if the chal-
lenge bit b = 0. On the other hand, when the challenge b = 1, one still need to transmit the permutation
wo, because it is not possible to generate both of the permutations ¢ and wo using a pseudo random
generator PRG.

However, such problem can be solved. It is possible to generate r, using a pseudo random generator
PRG, and then send its seed instead of transmitting no. The r, seed can be utilized to compute no,
because if the verifier possesses z and r,, then he is able to compute z — r, = cv,.

And since v and c are known, it is easy to recover wo from cv,, (the parameters are chosen in a way that
the entries of v are all distinct, so there is a unique permutation that maps v to v.,).

Moreover, sending the seed for r, does not reveal additional information than sending wo itself, because
given z and 7o it is trivial to compute r,, so this optimization does not affect the security of the scheme.
However, the problem is when ¢ = 0, then the ¢v,, = 0, and so the verifier cannot recover wo. In order
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to solve this problem, the challenge space is then restricted to be F, \ {0}. Such condition affects the
soundness error by increasing it to 2})’%2 instead of %. But this is not a big deal.

The main advantage of this optimization is that the signature size is now constant. Without using this
optimization, a response to the challenge b = 0 would be smaller than a response to b = 1. By applying

the optimization described in this Section, the response to the second challenge is always a random seed,
regardless the value of b.

A one round of the modified version of the original PKP-based IDS is summarized in Algorithm [6]
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Algorithm 6 The modified 5-move of PKP-IDS
P(sk, pk) V(pk)

seedy, seed; il {0, 1}
o + PRGy(seed,)

r, < PRGy(r,.seed)
Co < COMMIT(0, Ar)
C, « CoMMIT(mo, )

Co,C1
—
c & F,\ {0}
C
%
Z <4 Ty + CVyo
z
e
b {0,1)
b
%
rsp < seed,
rsp
if b = 0 then

o < PRG(rsp)
accept if Co = COMMIT (o, Az,-1)
else
r, < PRGy(rsp)
if z — r, is not a permutation of cv then
Return reject

else
Let p € S, such that cv, =z — r,.
end if
accept if C; = COMMIT(p, r,)
end if

9.2.3 Security Proofs of the modified scheme

This Section presents some essential definitions to an identification scheme and details the three essen-
tial properties that a zero-knowledge protocol must satisfy. We show that the modified version of PKP-IDS
still verify these properties.

84



2¢-ldentification schemes and 2¢-extractors.

A 2g-Identification Scheme [21] is a 5-move identification scheme, where the first challenge is drawn
uniformly at random from a challenge space of size ¢, and the second challenge is a random bit. Therefore,
a transcript of an execution of a 2¢-protocol looks like (com, ¢, rspy, b, rsp,). We now state the properties of
a 2g-protocol more formally:

Definition 38 (2¢-Identification scheme,[21]) A 2q¢-/dentification scheme is a canonical five-move iden-
tification scheme (KeyGen, P, V) with challenge spaces Ch; and Chy for which it holds that |Ch,| = q and
|Che| = 2. Moreover, we require that the probability of the commitment com to take a certain value is a
negligible function of the security parameter.

we define the notion of a 2¢g-extractor, which is an algorithm that can extract the secret key from 4 tran-
scripts that satisfy some properties. This is useful because when there exists a 2¢g-extractor for a 2¢-
Identification scheme, this implies that the identification scheme has soundness with knowledge error at
most % Moreover, this implies that applying the Fiat-Shamir transform to the identification scheme
results in a secure signature scheme.

Definition 39 (2¢-extractability) A 2q-identification scheme
(KeyGen, P, V) has 2q-extractability, if there exists a polynomial-time algorithm that given four transcripts

com, ¢, rsp(i), b, rsp(i) fori from 1 to 4, such that
1 2

M =@ £ 6) = @)
rspgl) = rspgz) rspgg) = rsp§4)
b = p® £ p2) = p)

can efficiently extract a secret key.

Theorem 3 e The modified version of PKP-IDS is complete.

e If the commitment scheme is computationally binding, then the scheme is sound with soundness

_ _D
error r = 5.

e If the commitment scheme used is computationally hiding and the outputs of PRG; and PRGs are
indistinguishable from uniform randomness, then the scheme is computationally honest-verifier zero-
knowledge.

Proof:
Completeness.

When b = 0, if the prover follows the protocol honestly, then the verification of the commitment will succeed
if
Ar=Az;' = A(r 4+ v, pp-1),

which holds if and only if Av,, = 0.
Therefore, if 7 is a solution for the permuted kernel problem, then the verifier will accept the transcript.
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During an honest execution when is equal to b = 1, the verifier will always accept the procedure, regard-
less of whether 7 was a solution for the PKP problem or it is not.

Soundness.

First, one must show that the underlying scheme possesses a ¢2-extractor.
Therefore, we prove that, given four accepted transcripts of the following form (Co, C1, ¢®, 2 (@) rsp(®))
for i from 1 to 4, such that

cV) = (@ £ B = @
2D = 52 L) _ @)

b = pB) £ p2) = p*»)

It is possible to efficiently extract a solution for the permuted kernel problem PKP.

By relabeling the transcripts if necessary, it is convenient to assume that b = 5(3) = 0 and v = p(®» = 1.
Consider first the transcripts 1 and 3.

Let o = PRG;(rsp'")) and o’ = PRG, (rsp®)), and let x = Azﬁ_l,)1 and x’ = Azfj),l.

Since that both of the transcripts are accepted, then

Co = COMMIT(o,x) = COMMIT(0”, x').

Therefore, the computationally binding property of Com implies that, with overwhelming probability, the
following holds o = ¢’ and x = x/.

Now, consider the transcripts 2 and 4.

Let y = PRGy(rsp(®) and y’ = PRGy(rsp*).

Since that both of the transcripts are accepted, then z(?) — y and z® — y’ are the corresponding permu-
tations of ¢ v and ¢Yv respectively.

Let p and ' be the permutations such that c?'v, = z2) — y and v/ = z() — y.

Since that both of the transcripts are accepted, then the following holds

Cy = CoMMIT(p,y) = CommIT(o ,3/),

so the computationally binding property of Com implies, with overwhelming probability, the following p = p’
andy =y’
Now, by putting everything together, the following holds

0=A(z, 2y —2,71)
— A(Z((TQ_)I ZJ4_)1)
= A(c(2)vpg_1 — Y1 — 0(4)vpo_1 +Y,-1)

= (c? — 0(4))Avpa_1 :

Since ¢ — ¢ is nonzero, this means that po—! is a solution for the permuted kernel problem PKP.
Moreover, the extractor can efficiently extract such solution, because he is able to extract p from either
transcript 2 or 4, and he can also extract o from either transcript 1 or 3.
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It is known that 2¢-extractability implies soundness with error %1 where ¢ is the size of the first challenge
space [21, [62].
In our case, the first challenge space has p—1 elements, so the optimized IDS employs a soundness error
of .

p—2

Honest-Verifier Zero-knowledge.

To prove the property of Honest-Verifier Zero-Knowledge, one must construct a simulator that outputs
transcripts that are computationally indistinguishable from transcripts of honest executions of the identifi-
cation scheme.

First, the simulator picks a uniformly random value ¢ € F,, \ {0} and a random bit b (also uniformly).

The cases of b = 0 and b = 1 will be separately discussed:

Case b = 0 : The simulator picks a random seed seedy, and a uniformly random vector z, computes
o0 = PRG (seedy) and Cy = COMMIT (o, Az).

The simulator also commits to a dummy value in order to get C;.

Next, the simulator outputs (Cy, Cy, ¢, z, b, seed,).

This distribution is indistinguishable from honestly generated transcripts with b = 0.

Indeed, the values c, z, seed( are indistinguishable from uniformly random values in both simulated and
honest transcripts (with the assumption that the output of PRGs is indistinguishable from the uniform dis-
tribution).

The first commitment Cy = COMMIT(0, Az,-1) is a function of seedy and z, so it also has the same distri-
bution in both simulated and honest transcripts.

Finally, the commitment C; is never opened, so the computationally hiding property of the CoOMMIT function
guarantees that C; in the simulated transcript is computationally indistinguishable from the C; in an honest
transcript.

Case b = 1 : The simulator picks a random seed seed; and a random permutation p uniformly, and
computes r, = PRGy(seed;), z = c¢v, + 1, and C;.

The simulator also commits to a dummy value in order to produce a commitment Cy, then the simulator
outputs the transcript (Co, Cy, ¢, z, b, seedy).

The simulated transcripts are indistinguishable from honestly generated transcripts when b = 1.

It is clear that ¢ and seed; are uniformly random values in both simulated transcripts and honestly gener-
ated transcripts.

Moreover, in both simulated and real transcripts, z is equal to PRGy(seed; )+cv,, and C; = Com(p, PRGa(seed1))
where p is indistinguishable from a uniformly random permutation (with the assumption that the output of
PRG; is indistinguishable from a uniformly random permutation).

Therefore, z and C; have the same distribution in the simulated and the honest transcripts.
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Finally, the computationally hiding properties of the CoMMIT function guarantees that the value of Cg in
the simulated transcripts is indistinguishable from that of Cy in the honestly generated transcripts.
[ |

9.2.4 Communication cost

This Section provides the communication complexity of N rounds of the modified version of the pkp-based
N

IDS, where the soundness error of N iterations is given by k = (ﬁ

The commitment consists of a single hashed value, which is only 2 bits.

The first response consists of IV vectors of length »n over F,,, so this costs Nn[log, p| bits of communica-

tion.
Lastly, the final responses composed of N random \-bit seeds, N commitments (which consist of 2 bits
each) and N commitment random strings (which consist of A bits each), so this costs 4V \ bits of commu-

nication.

In total, the communication cost (ignoring the challenges) is

2\ + N (n[logy p] +4A) .
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9.3 PKP-based Digital Signature Scheme (PKP-DSS)

This Section provides the main contribution of this thesis that is to build a digital signature scheme, based
on the computational hardness of the permuted kernel PKP problem.

The digital signature scheme will be derived from the modified version of the PKP-based IDS described in
Section It is a simple and direct application of the well-known paradigm of Fiat-Shamir [35] detailed
in Section

Note that, the derived signature scheme is the Fiat-Shamir Transform of N parallel rounds of the 5-move
identification protocol. All random generations are turned into deterministic generations using Pseudo-
random generators and secret seeds.

The key generation algorithm is the exact same as the key generation algorithm employed in the modified
identification scheme that is detailed in Alg.

In order to digitally sign a message m, the signer performs the first phase of the commitment scheme to
get a commitment com. Then, the first challenge ¢ = (c1,-- - , cn) is computed using the message m and
the commitment com by evaluating a hash function H; (m||com).

Next, the signer proceeds the next phase of the identification protocol to get the N response vectors
rsp; = (Z(l), ce ,Z(N)).

After that, the signer uses a second hash function in order to obtain the challenges b = (b1,...,by) from
m, com and rspy as Ha(m||com, rspy).

Then, the last step of the identification protocol is to derive a vector composed of the second responses
rsp2 = (rsp(l), T rsp(N)>
Therefore, the signature is simply given by (com, rsp;, rsp,).

In order to verify the signature (com, rspy, rsp,) for a given message m, the verifier simply applies the hash
functions H; and - to obtain respectively c and b.

Next, the verifier checks if (com, ¢, rsp;, b, rsp,) is a valid transcript for the PKP-based identification proto-
col.

The signing and the verification algorithms are detailed in Algorithm|7|and
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Algorithm 7 Sign(sk, m)

: derive A, v and 7 from sk.
: for ifrom1to N do '
pick A-bit seeds seed(”) and seed'” uniformly at random

]
2

3

4 o « PRG(seed!)

5: rf,) — PRGQ(seed( ))

6 0 ) — CommiT(0®, Ar(),
7 — CommIT (w0 @, r$).
8

9

: end for
: com = Heom (CV, €V, (M, M)
10: ¢ ), (m]|com). ct e F,\ {0}

11: for i from 1to NV do
12: z(i) — r((f) + c(i)v

wo ()
13: end for
14: rspy « (21, ..., zV))
15: b1 ... b(N) Ay (m)|com||rsp;)

16: for ¢ from 1 to N do

17: rspg) — (seedb< Hcgz b(z))
18: end for
19: rspy < (rspatV), -+ rspp V)

20: Return (com, rsp,, rspy)

A valid signature of a message m by PKP-DSS [g]is then a tuple (com, rsp, rsp,), where com, rsp; and rsp,
hold the (vector of parallel) commitments and responses of the non interactive prover.

The implicit values of #;(m/||com) and Ha(m||com||rsp;) represent the (vector of parallel) challenges of the
non interactive verifier.
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Algorithm 8 Verify(m, pk,o = (com, rsp1, rspz))

1: W, W) < 3y (m]|com).

2: b - bY) — Hy(m)|com||rsp; )

3: Parse rsp; as z(V), ... ,z(V)

4: Parse rsp, as seedV) ... seed™), Cgljb(l), e 7C§]2)<N)
5. for ifrom1to N do

6: if b =0 then

7: o « PRG (seed®)

g CJ « CommiT(c® Az 1)

9: else
10: rff) — PRGg(seed(i))
11: if z() —r, is not a permutation of cv then
12: Return reject
13: else
14: 7o + the permutation that maps cv to z(9) — r,.
15: end if
16: ) commit(zo® )
17:  end if
18: end for

19: com’ 1= Heom (C{V, V- V), M)
20: Return accept if and only if com = com’

The signature protocol is essentially designed to achieve the standard security concept of a DSS: Existential-
Unforgeability under Chosen Adaptive Message attacks EUF-CMA.

It is known that applying the Fiat-Shamir transform to a 2¢-extractable identification scheme results a EUF-
CMA secure signature scheme in the Random Oracle Model [22, [35].

The EUF-CMA property is explicitly detailed in Section in terms of an experiment. The classical
method of Fiat-Shamir (FS) transforms an interactive proof of knowledge (identification scheme) into a
non interactive one (signature scheme). This work is a direct application of this method to get PKP-DSS
from PKP-IDS. Thus, the following security result holds:

Theorem 4 PKP-DSS is Existential-Unforgeable under Chosen Adaptive Message Attacks (EUF-CMA)
in the random oracle model, if

e the search version of the Permuted Kernel problem is intractable,
e the hash functions and pseudo-random generators are modeled as random oracles,

e the commitment functions are computationally binding, computationally hiding, and the probability
that their output takes a given value is negligible in the security parameter.

The proof is the same as in [22].
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9.3.1 Generic attack

In order to achieve a security level of 2* bits, the cheating probability of the identification scheme based
on the permuted kernel problem PKP is bounded by 2.
Therefore, the scheme PKP-DSS must be iterated N times, where N is chosen such that

b N Y
<274
(Qp_Q)

However, Kales and Zaverucha introduce a recent attack on MQDSS ( similarly to PKP-DSS, MQDSS is
a digital signature scheme built from an identification scheme using the Fiat shamir FS transform, the
scheme is based on the Multivariate Quadratic MQ problem) showing that by considering the condition,
given above on the number of iterations N, does not guarantee that the Fiat-Shamir signature scheme
provide a A bits level of security [43].

The authors of [43] present a generic attack that can be also applied to PKP-DSS.

The attack exploits the fact that if it is possible for an attacker to guess the first challenge or the second
challenge, he can deliver responses that will be accepted by the verifier.

The idea is to split up the attack in two phases.

During the first phase, the attacker tries to guess the values of the NV first challenges, and then utilizes
these values in order to produce commitments.

Then, the attacker derives the challenges from the commitment by assuming that at least £ of his N
guesses are correct.

This phase requires on average

Costy (N, k) = ZN: <pi 1)'€ (§:i>N_k (J]Z)

i=k

trials.

In the second phase, the attacker tried to guess the values of the second challenges, and uses these
values to generate a response.

Then, the attacker derives the second challenges with a hash function and by assuming that his guess
was correct for the N — k rounds of the identification protocol, where he did not guess the first challenge
correctly. This phase requires on average 2V ~* tries.

Therefore, the total cost of the attack is

min_Cost; (N, k) + 2V k.
0<k<N

9.4 Parameter choice and Implementation

9.4.1 Parameter choice

The main parameters that affects mostly the signature scheme PKP-DSS are (p,n,m).
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This Section explicitly details the choice of each set of parameters (p,n, m) following the security level
required.

Note that the first identification scheme based on the permuted kernel problem PKP-IDS [63] was de-
signed with the intention to fit small devices. Therefore, A. Shamir suggested the size of p to be equal to
p =251,

In order to keep the efficiency of the implementation, one must choose p to be a prime number close to a
power of 2, such as 251, 509 and 4093.

A random instance of the permuted kernel problem PKP is solved by finding a kernel n-vector (v,) with
distinct coordinates in F,. Hence, the probability to find such a vector shouldn’t be too small. The prob-
ability of an arbitrary vector to be in the kernel of the matrix A € M,,x, whose rank is equal to m, is
p .

Moreover, if the n-vector v has no repeated entries, its orbit under the possible permutations = contains
n! vectors.

Thus, to get on average one solution, the following constraint must be imposed: n! ~ p™.

On the other hand, by using the complexity of our extended approach of Poupard’s algorithm [60] com-
bined with Patarin-Chauvaud’s method (See Section [8.3.2.2), triplets of (p, n, m) were selected matching
the security requirements and the optimizations of the signatures size.

The parameter choices presented in Table [9.1]provide a secure scheme against all the attacks described
in [47].
Note that, the value of N is chosen to be just large enough such that

min_Costy (N, k) + 2V F > oA
0<k<N

such that the scheme is secure against the generic attack of Kales and Zaverucha [43] detailed in Section

The following parameter sets given in Table are chosen to provide three different security levels.

Parameter Security P n m Iterations Attack
Set level N cost
PKP-DSS-128 128 251 69 41 157 2130
PKP-DSS-192 192 509 94 54 229 2193
PKP-DSS-256 256 4093 106 47 289 2257

Table 9.1: PKP-DSS Parameters sets
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9.4.2 Key and signature sizes

This Section provides the sizes of the public/secret-keys and the signature of PKP-DSS with respect to
the security levels and the parameters given above.

Public key.

The public key consists of the last column ¢ of A and a random seed pk.seed, which is used to generate
A* that is formed by all but the last column of A and the vector v.
Therefore, the public key consist of A\ + m|log,(p)] bits.

Secret key.

The secret key is just a random seed pk.seed that was used to seed the key generation algorithm.
Therefore, it consists of only A bits.

Signature.

Finally, PKP-DSS signature consists of a transcript of the identification protocol (excluding the challenges,
because they are computed with a hash function).

Sect shows that a transcript can be represented with 2\ + N (n[log, p| + 4\) bits, which is also the
signature size.

In Table [9.2) we summarize the key and signature sizes for the parameter sets proposed in the previous
section.

Security Parameters |sk| Ipk| |sig|
level (p,n,m,N) Bytes Bytes KiloBytes
128 (251, 69,41, 157) 16 57 20.4
192 (509, 94, 54, 229) 24 85 45.2
256 (4093, 106,47, 289) 32 103 81.1

Table 9.2: Key and signature sizes for PKP-DSS with the three proposed parameter sets.
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9.4.3 Implementation

In order to demonstrate the efficiency of PKP-DSS and to compare the performance of the scheme to the
other existing Fiat-Shamir signatures, a proof-of-concept implementation in plain C has been made.

The code of our implementation is available on GitHub at [14].

The hash and the commitment functions employed are represented by SHA-3, and SHAKE128 is used as
a function with possible extended output.

The running time of the signing and verification algorithms is dominated by expanding seeds into ran-
dom vectors and random permutations. This can be sped up by using a vectorized implementation of
SHAKE128, and by using vector instructions to convert the random bitstring into a vector over F, or a
permutation in S,,. We leave this task for future work.

Making the implementation constant time.

Most of the key generation and signing algorithms are inherently constant time (signing branches on the
value of the challenge bits b, but this does not leak information because b is public). The only problem
was that applying a secret permutation to the entries of a vector, when implemented naively, involves
accessing data at secret indices.

To prevent this potential timing leak, we use the “djbsort” constant time sorting code [65]. More specifically,
(see Alg.[9) we combine the permutation and the vector into a single list of n integers, where the permuta-
tion is stored in the most significant bits, and the entries of the vector are stored in the least significant bits.

Then, the list of integers is sorted in constant time and the permuted vector is extracted from the low order
bits. Comparing to the naive implementation, this method slows down the signing algorithm by only 11%,
while, there is no significant slowdown for the key generation algorithm.

Algorithm 9 Constant time computation of v = v,

Initialize a list of integers L « ()

L:=[o[1]* B4 v[l],--- ,0[n] * B + v[n]|, where B > n is a constant
sort L in constant time

v' == [L[1] mod B, --- , L[n] mod B|

Return o/

SANE N A
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9.4.4 Performance results

In order to measure the performance of our implementation, experiments were carried out on a device
with a i5-8250U CPU running at 1.8 GHz.

The C code was compiled with gcc version 7.4.0 with the compile option -03.

Table presents the average number of cycles counted over nearly 10000 key generations, signings,
and verifications.

Security Parameters KeyGen Sign Verify
level (p,n,m, N) 103 cycles 103 cycles 103 cycles
128 (251,69, 41,157) 72 2518 896
192 (509, 94, 54, 229) 121 5486 2088
256 (4093, 106,47, 289) 151 7411 3491

Table 9.3: The average number of cycles for PKP-DSS with the proposed parameter sets.

9.4.5 Comparison with existing FS signatures

Table [9.4] provides a comparison of PKP-DSS to MQDSS [22], Picnic, and Picnic2 [20].

One can notice that, for all schemes, the public and secret keys are very small. The main differences
between those schemes are in the signature’s size and speed.

comparing to MQDSS [22], the signature sizes of PKP-DSS are roughly 30% smaller, while our scheme is
faster than the other schemes by a factor of 14 (resp. 30) for the signing (resp. verification) algorithm.

Compared to Picnic [20], PKP-DSS signatures are roughly 40% smaller, and the signing and verification
algorithms are 4 and 9 times faster respectively.

Compared to Picinc2 [20] our scheme is 153 and 170 times faster for signing and verification, but this
comes at the cost of 50% larger signatures.

Finally, compared to SUSHSYFISH [12], a different scheme based on the Permuted Kernel Problem, our
scheme is 3.4 and 6.6 times faster, but at the cost of 45% larger signatures.
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Security Scheme Secret key | Public key | Signature Sign Verify
level (Bytes) (Bytes) (KBytes) 10% cycles | 10° cycles
PKP-DSS-128 16 57 20.4 2.5 0.9
MQDSS-31-48 16 46 28.0 36 27
128 Picnic-L1-FS 16 32 33.2 10 8.4
Picnic2-L1-FS 16 32 13.5 384 153
SUSHSYFISH-1 16 72 14.0 8.6 6
PKP-DSS-192 24 85 45.2 55 2.1
MQDSS-31-64 24 64 58.6 116 85
192 Picnic-L3-FS 24 48 74.9 24 20
Picnic2-L3-FS 24 48 29.1 1183 357
SUSHSYFISH-3 24 108 30.8 22.7 16.5
PKP-DSS-256 32 103 81.1 7.4 3.5
256 Picnic-L5-FS 32 64 129.7 44 38
Picnic2-L5-FS 32 64 53.5 2551 643
SUSHSYFISH-5 32 142 54.9 25.7 18

Table 9.4: Comparison of different post-quantum Fiat-Shamir schemes

9.4.6 Quantum analysis of PKP-DSS

The security of all known digital signature schemes depends on the intractability of certain computational
problems in mathematics. Today’s security proofs are reductions. The goal of such a reduction is to show
that the ability of an attacker to mount a successful attack on a signature scheme implies his ability of
solving a basic computational problem in mathematics.

Till now there are no quantum versions of the known attacks on PKP cited in above, as opposed to
MQDSS where Grover’s algorithm can be used for solving the MQ problem.

Grover’s search algorithm is a quantum algorithm that can speedup the exhaustive search quadratically,
for an unstructured large list of size N = 2* which is encoded in terms of a quantum black-box function
f : {0,1}* — {0,1}, where f(z) = 1 if and only if the search condition is satisfied for a winner z = w,
otherwise f(x) = 0. Grover's algorithm finds with high probability the input z = w using just O(v/N)
evaluations of f.

The following Table shows that the parameters sets proposed for our scheme are still efficient against the
quantum exhaustive search.

Parameters Sets | N = n! | Grover’s algorithm
PKP-DSS-128 ~ 2320 2163
PKP-DSS-192 ~ 2485 2243
PKP-DSS-256 ~ 2969 2282

Table 9.5: The complexity of the Quantum exhaustive search
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However, since the goal is to develop a post-quantum scheme, we should also consider attackers in the
Quantum Random Oracle Model (QROM). The security of the Fiat-Shamir transform in the QROM has
been studied in [44] 66, 67], where the authors of [44], [66] explain that the Fiat-Shamir transform might not
be secure against quantum computers. Thus, new techniques with extra properties (such as "lossy IDS")
were developed to obtain a quantum-secure transform.

However, more recently, a number of works have proven the Fiat-Shamir construction secure in the QROM
[30,67] under very mild conditions. So far, none of these works apply to five-move protocols (which is the
kind of protocol we are considering in this work), but it is very likely that the results can be generalized
to five-move protocols, including ours. We consider this an important open problem in post-quantum
cryptography. Meanwhile, we can keep the initial FIAT-SHAMIR as long as there is neither perfect proof
nor quantum attack.

9.5 Conclusion

In this Chapter, we have introduced a new post-quantum secure signature scheme PKP-DSS: a Digital
Signature Scheme based on the Permuted Kernel Problem (PKP) [63].

PKP is a simple NP-Hard [36] combinatorial problem that consists of finding a kernel for a publicly known
matrix, such that the kernel vector is a permutation of a publicly known vector.

This problem was used to develop an Identification Scheme (IDS) which has a very efficient implementa-
tion on low-cost smart cards.

We optimized this zero-knowledge identification scheme, and then derived PKP-DSS using the traditional
Fiat-Shamir transform [35] to make it non-interactive. Thus, PKP-DSS has a security that can be prov-
ably reduced, in the (classical) random oracle model, to the hardness of random instances of PKP (or, if
wanted, to any specific family of PKP instances).

We proposed parameter sets following the thorough analysis of the State-of-the-art attacks on PKP pre-
sented in [47].

We developed a constant-time implementation of PKP-DSS [14]. We showed that PKP-DSS is competitive
with other signatures derived from Zero-Knowledge identification schemes such as MQDSS, Picnic/Pic-
nic2, and SUSHSYFISH.

The main advantages of our scheme are that signing and verification are much faster than existing Fiat-
Shamir signatures and that the scheme is very simple to implement. Our implementation takes only 440
lines of C code.

Since the PKP is NP-Hard and since there are no known quantum attacks for solving PKP significantly
better than classical attacks, we believe that our scheme is post-quantum secure.
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PART Ill:

CONTRIBUTIONS ON MULTIVARIATE
SIGNATURES
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CHAPTER 10

Ultra-Short Multivariate Public Key
Signatures
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10.1 Introduction

This Chapter introduces multivariate public key signature schemes that come with “ultra”-short signature
sizes. To do so, both of the signing and the verification algorithms might take up to one minute of compu-
tation using a modern personal computer. The proposed schemes are easily adaptable in order to require



only one second of computation if needed, at the cost of increasing the signatures of few additional bits;
and, more generally, a trade-off has to be found between computation time and signature size, it usually
depends on the final purpose of the scheme.

The ultra-short length of signatures leaves the schemes with a minor drawback in terms of the speed
complexity when comparing with other multivariate-based signature schemes (such as GeMMS [19] or
Quartz [25]).

10.1.1 General context.

The RSA cryptosystem [61] is one of the first public-key cryptosystems and is the most-widely used sig-
nature algorithm. The security of the RSA scheme relies on the difficulty of factoring large numbers.
Following the best successful factorization technique, the so-called General Number Field Sieve GNFS
[18] whose complexity is sub-exponential, RSA provides a public key of a size at least equal to 1024 bits
in order to achieve a security of 80 bits (in other words, an attacker would need at least 28° operations to
recover the secret key), and in this case the length of the signature is at least 1024 bits. Similarly, in order
to achieve a security of 128 bits, the RSA cryptosystem provides signature of length greater than 3000 bits.

Lately, the interest is rather directed towards post-quantum branch of cryptography. Post-quantum cryp-
tography refers to cryptographic schemes that could be secure against attacks performed by quantum
computers. Currently, there are mainly six different classes of post-quantum cryptography : Multivariate
cryptography, Symmetric key quantum resistance, Supersingular elliptic curve isogeny cryptography, Lat-
tice, code, and hash-based cryptography.

Multivariate-based cryptography started in 1988 with the C* algorithm of T. Matsumoto and H. Imai [51]. It
was later broken by J. Patarin in [54]. Then, J. Patarin suggested a way to repair the scheme with what is
called the Hidden Field Equations (HFE) in 1999 [56].

Later-on , several variations of the scheme were proposed in order to strengthen the security and over-
come the weak instances of HFE, such as GeMSS [19], Quartz [25], and HFEv— [56].

It turns out that multivariate cryptography is the branch that successfully provides the shortest signatures
among all post-quantum signature schemes. For example, GeMSS produces signatures of size 256 bits
for an expected security level of 128 bits.

10.1.2 Multivariate Signatures

Multivariate cryptography is well-known nowadays due to the robustness of its signature schemes that
constitute potential candidates for post-quantum cryptography. There exists a large number of promising
and practical multivariate signature schemes over a finite field. In general, the existing signature schemes
are classified by the size of the corresponding field into two main categories: single field schemes (such
as UOV [45] and Rainbow [28]), and big field schemes (such as HFEv- [56]).
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Signature generation and verification

Recall that the classical signature and verification process of a multivariate-based scheme over a finite
field IF requires:

¢ A specially chosen invertible map F*
¢ A canonical isomorphism ¢ to transform the map F* into a quadratic map F = ¢o F* o ¢!
e Two invertible affine maps S, 7 : F* — F", to hide the the original structure of F

The public key of a multivariate signature scheme is given by a set of m polynomials in n variables:
P=SoFoT =SopoF*o¢p toT :F*— F", and the secret key is given by S, 7 and F*.

In order to generate a multivariate signature on a message m, one must proceed as follows:

e Compute a hash value of the original message h = H(m) using a publicly known hash function
H :{0,1}* — F™.

e Using the decomposition of P, compute S~1(h) = x and X = ¢~ !(x).
e Solve F(Y) = X using Berlekamp’s algorithm
e Compute ¢(Y) =y c F*and z = T 1(y).

Therefore, the signature of the message m is z € F™.

In order to check the veracity of a signature z, one must evaluate P(z) = b’ € F". If k' = h holds, then the
signature is accepted, otherwise it is rejected.

The main goal of this Chapter is to provide parameters in order to have ultra-short signatures. Short sig-
natures can be useful especially for application in watermarking, QR codes, etc.

In order to design secure multivariate public key signature schemes, one must consider four essential
types of attacks:

e Type 1 refers to attacks that are valid for any public key signature of length L bits. In what follows,
the required security level is of A bits, which means that attacking the signature would require at
least 2* operations.

e Type 2. The most common way to compute a signature S of a message m using a public function
P : Fy — F,™ is to first compute a hash value h = H(m) using a public hash function H, then the
signature is given by:

S =P (h).
To verify the signature, one must check if P(S) = h = H(m), where P is usually a function that can
be easily computed based on a set of quadratic equations.
Type 2 refers to attacks that target this verification process P(S) = H(m).
Note that this verification process is different from the more classical one where the verification

process takes as input the couple (S, m) and returns 1 if S is a valid signature of the message m
and 0 otherwise.
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e Type 3 refers to attacks that target directly the underlying trapdoor P that is a set of m multivariate
(usually quadratic) equations over a finite field .

e Type 4. When using an HFE based trapdoor P with some perturbations, Type 4 refers to attacks
that target the HFE polynomial itself.

These different type of attacks, namely the generic attacks, will be detailed in next sections. Moreover,
different tools will be also given in order to avoid such attacks.

10.2 Generic attacks against multivariate signatures

This Section details each of the attacks cited above. In what follows, let A be the security level required,
and L be the length of a signature S of a given message m.

10.2.1 Type 1 attacks

Let VERIFY be the verification algorithm, that takes as input the signature S and the original message m,
and returns VERIFY(S,m) = 1 if S is a valid signature of the message m, and 0 otherwise.

In order to find a valid signature for a given message m, an attacker could check if VERIFY(S,m) = 1
by enumerating all the possible signatures S of length L; this brute force attack requires to run at most
2l times the verification algorithm VERIFY. By assuming that a single execution of the algorithm VERIFY
requires 2! operations, it is possible to reach a security of \ bits (against this generic attack) as long as
L>\—t.

For example, in order to have a security of 80 bits with signatures of less than 80 bits, the evaluation of the
VERIFY algorithm needs to be “slow”. To do so, we introduce a new mode of operations called the “slow”
mode of operations ( see Section[10.3|) that will be used to define parameters for short signatures.

However, by considering that the maximum time required to check an ultra-short signature will not exceed
a minute on a current personal computer (that is to say a computer performing around 23! operations per
second), the computation power needed to verify a signature has to be around 237 = 23! x 64 operations
per minute. Therefore, to achieve a security level of 80 bits, L must be greater or equal to L > 80— 37 = 43
bits.

The aim of this work is to find values for L (larger than this bound, but as small as possible) that are
possible to obtain for multivariate signatures.

Remark 1 If the signature has only 60 bits of length for example, then by taking into consideration the
birthday paradox, with high probability when signing 23° messages, two messages might have the same
signature.

However, this may not be an issue, because these two messages are signed by a legitimate user, and
therefore there is no dangerous possible attack based on the fact that the two messages possesses the
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same signature.
Moreover, it is also possible to force the legitimate user to not sign more than one billion messages with
the same public key in order to avoid this issue, but it seems to be unnecessary.

10.2.2 Type 2 attacks

For most of the studied signature schemes, the goal is to check if S (of the form S = P~1(H(m))) is a
valid signature of a given message m by the following equality :

where P is publicly given, and H is a public Hash function. Such form of equation open the way to more
possible generic attacks.

Let =z be the output size of the hash function H.

Hash collision attack

A collision attack finds two different inputs m; and ms of a hash function H that produce the same hash
value H(ml) = H(mg)

Since that a signature is given by S = P~1(H(m)), a hash collision of the form H(m) = H(my) yields
the fact that a signature of m; is also a valid signature of ms.

Assume that the hash function H requires 2! operations to compute a Hash value h.

Digital signature schemes are vulnerable to a birthday-paradox attack in order to create hash collisions.
Assuming that H is a z-bit hash function that provide z bits of output, an attacker who computes only 2%/2
(or /27 ) hash operations is likely to find two matching outputs.

Therefore, a collision attack occurs when z/2 < X\ — .

In order to secure a signature scheme against the ability of brute forcing hash collisions on H, the following
must hold:

z > 2\ —2t.

Consider that the maximum time required to compute a hash value using H (as stated before for signa-
tures verification) will not exceed a minute on a current personal computer performing around 23! opera-
tions per second, or around 237 operations per minute. In order to achieve a security for example of A = 80
bits with ¢ < 37, then z must verify :

z > 2 x 80— 2 x 37 = 86 bits.
Generally, there is no problem if z is greater than 86. In case of problem, it is possible to use a verification
algorithm that requires to check if VERIFY(.S,m) = 1 instead of checking if P(S) = H(m) in order to verify

a signature. The main drawback of using VERIFY(S,m) is that it limits the number of possible designs.
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Collision of type P(S) = H(m)

As cited above, let H be a hash function that requires 2! in order to output a hash value of size z, and let
‘P be a function that takes 2% operations in order to be evaluated.
It is possible to carry out an another variation of the birthday attack as follows:

e Generate 2*~* values H(m) and store the hash-values (grouped with corresponding message) such
that they can be subsequently searched on hash-value.

e Generate 2*~* values P(S) and check for matches with any m above; continue until a match is
found i.e. a collision of the form P(S) = H(m).

Due to the birthday paradox, a match can be expected when computing z/2 random evaluations of P;
recall that )\ is the security parameter. To ensure that the parameters provide a secure scheme where no
attack coming with a complexity smaller than 2* operations could be performed, therefore z, ¢, and w must
fulfill the following condition:

21t3 4 outs > 9\

Hence, in order to avoid this attack, the following must hold:

222\ —t—w. (10.1)

Let A denotes A = z — 2\ +t+w. Hence, the condition to have a secure signature scheme given in
can be written as A > 0.

In Section Different mode of operations against the attack cited above will be presented following
the sign of A. Note that, when A > 0 more modes tend to work. By considering that ¢ = 37 for example,
to reach a security level of:

e 280 Alisequalto A =z — 123 + w.
e 2% Alisequalto A =z — 143 + w.
e 2100 Alisequalto A = z — 163 + w.

e 2128 Alisequalto A = z — 219 + w, etc.

10.2.3 Type 3 attacks

As defined above, Type 3 attacks refers to attacks that concern the underlying trapdoor P : IFy — ;" that
is a set of m multivariate (usually quadratic) equations in n variables over a finite field I,.

In order to forge a signature S = P~!(H(m)) for a given message m, an attacker must solve a system of
multivariate equations in n variables.

The Grébner basis technique is a fundamental tool for solving systems of multivariate polynomial equa-
tions. Grdbner basis method is a non-linear generalization of Euclid’s algorithm for the GCD, as well as a
generalization of Gaussian elimination for linear systems. Roughly speaking, a Grébner basis is a set of
multivariate polynomials having special properties that allow easy solutions derivation for complex poly-
nomial systems.
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As a matter of fact, it is possible to transform any multivariate polynomial system, even complicated ones,
into Grébner basis form using specific algorithms (like F4 [32] and F5 [31] algorithms).

Recall from Section[7.2.3|that the computational complexity of such method relies strongly on an important
notion, namely the degree of regularity d,.,, that is the minimal degree for which a set of polynomials of
degree d can form a Grébner basis, and thus can be solved (see [3|[31] for more details).

The complexity of a Grébner basis computation detailed in Section is in:

o)
dreg
where 2 < w < 3 is the linear algebra constant.

Note also that for random systems, the degree of regularity can be evaluated by the computation of the
first non negative coefficient of a Hilbert Series, see [3].

Moreover, as detailed in Section the Grdbner basis basis technique can be improved by combining
the two general techniques for solving polynomial systems over finite fields [11] :

e Exhaustive search technique (brute-force search) is a very general solving technique that consists
of enumerating explicitly all the possible solutions in order to find the right one. The computational
cost of such method is quite large.

e Grobner basis computation, defined previously.

The complexity of the Hybrid approach is given in [11]:

02332” (q’“ (CF5(n =k, dyeg (k) + O <(n — k)DmaX(k)“’> ) ) :

where k is the number of fixed variables, 2 < w < 3 is the linear algebra constant, D"**(k) is the max-
imum number of solutions of the system in Fq counted with multiplicity, and Cr5 is the Groébner basis
computation complexity using the F5 algorithm [31].

When the trade-off & is well chosen, then the hybrid approach constitutes one of the most efficient algo-
rithms for solving polynomial systems.

Choice of the constant of linear algebra w

For practical reasons, the linear algebra constant should be w = 2.81 due to Strassen algorithm.

However, by taking into consideration the fact that the systems are usually not dense, it could be useful,
as a rough evaluation to choose w = 2.37 or w = 2.

When ¢ = 2, the best-known asymptotic complexity for the direct attack is in 20-792™ [5]. A more realistic
estimation is in 20-88m
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When ¢ > 5, the complexity results of [11] will be used. The best-known algorithm is the Hybrid approach
that performs an exhaustive search on some variables, and then performs a Grébner base algorithm (like
F4 or F5).

10.2.4 Type 4 attacks

The principle of Type 4 attacks is to find weakness in the trapdoor function P itself used to digitally sign a
message m.
This Section presents the possible attacks when the employed trapdoor is an HFE based function.

Description of HFE

Hidden field Equations (HFE [55]) cryptosystem is one the most promising asymmetric multivariate schemes.
HFE provides essentially very short signature schemes, fast asymmetric encryption schemes, etc. Since
that the goal is to introduce efficient ultra-short signatures, therefore the trapdoor function used to digitally
sigh messages will mainly be an HFE based function.

The main idea of HFE is to represent a univariate polynomial function as a set of multivariate equations
(usually quadratic) in order to hide the special structure of the polynomial.

Given a finite field I, the special shape of an HFE based univariate polynomial is given by (see Section

6.3):

q'+¢'<D ¢'<D
E am-Xq g -+ E ﬁin + 7,
0<i<j<n 0<i<n

where «; ;, B;,v € Fgn, and F'is of degree at most D € N.
The special form of F' allows a multivariate representation P (see Eq. over F.

Various attacks are known on HFE. Even though all of those attacks share nearly the same sub-exponential
asymptotic complexity, several variations were proposed to increase the security of HFE or its efficiency
[55] such as (see Section[6.3.3|for details): the — (minus), v (the external vinegar), w (the internal vinegar)
modifiers. Basically, we will consider the HFEv- variant due to its robustness despite all the known attacks,
moreover HFEv- is a potential variant to digital signature schemes.

Probability of having zero solutions

Given a random function f from F to F, where F is a finite set, the probability of f(x) — y = 0 having at
least one solution x for a given value y € [ is about 1-1/e (i.e. 63.2%).

Given a random homogeneous/non-homogeneous polynomial of degree 2 in n variables in Fayn, the prob-
ability of having at least one solution is also about 63%. Since the signature generation process involves
the inversion of a univariate polynomial, therefore, we will need to test in average about 1.5 values in order
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to find a signature.

However, given an homogeneous random polynomial of degree 2 over [F3» when g is odd, the probability is
only 31.6% (2 times less). In this case, one must test in average about 3 values in order to find a signature.
The main reason behind this probability is that for every X, we have f(X) = f(—X) and X # —X (except
if X =0).

Therefore, we will generally choose a non-homogeneous polynomial when ¢ is odd.
Then, the secret linear transformations .S and T' defined in HFE will be chosen to be affine maps (linear
maps with constants).

We expect that the non-homogeneous choice (when an odd ¢) won'’t affect the security of the scheme:
since S and T are linear bijective maps, there is no expected attack that is able to exploits only the degree
1 part of the public equations. However, if it appears that non-homogeneous equations are not a good
choice, then one must use homogeneous solutions, with a probability divided by 2 to be invertible .

Best known attacks

HFEv- was first introduced in [56] due to J. Patarin. It is the basis of the so-called Quartz signature
scheme presented in [25] (see also Appendix [B] for more details on Quartz). The security of the HFEv-
family has been extensively studied. Hence, there are various type of attacks applicable on multivariate
schemes, in particular on HFEv- based schemes:

e Key recovery attacks
e Direct attacks

e Differential attacks

A brief description of these attacks will be given next (see also Section for more details).

10.2.5 Key recovery attacks

Let m be the number of public equations, a be the number of equations removed, v be the number of
external vinegar variables, and let r = [log,(D)] + (a +v) the value that determines the maximum degree
D of HFE in order to have computations in less than a minute, and let n = m + a.

It is possible to attack an instance of HFEv-, that involves the parameters (m, D, r,a,v), by solving a
MinRank instance that has the following form: the goal is to find a linear combination with coefficients in
F,» of K := m square matrices of size n (with entries in IF,) with a small rank r or less. This reduction
corresponds to the key recovery attack described in [68].

Recent improvements have been presented in [4] for solving the MinRank problem, and the key recovery
attack is currently the most threatening attack against HFEv-; previously it was the attack described in
[27]. The authors of [4] use an algebraic modeling of the MinRank problem in order to solve it by direct
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linearization instead of using generic Grébner basis algorithms or the hybrid approach.

The complexity of the most efficient attack is given by

ofseen(()CY))

operations in IF,» as long as there exists an integer b < ¢ in {1, ..., r + 2} that fulfills the condition given in

Eq. (10.3):
n)(K+b—1 : i n I+i—1\(K+b—i—1
(r)( b >—1§;(—1>“<TH>< . )< b > (10.3)

where [ := n is the number of rows of the matrices; in order to define the optimal complexity, it is possible
to omit few columns to get a new instance with n’ columns as mentioned in [4]. Thus, n will be replaced
nin and (10.3), while [ := n must remain the same.

Note that this optimization works if and only if the new MinRank instance still has a single solution. Hence,
the complexity of the attack is the minimum value obtained from for valid choices of b and n’.

10.2.6 Direct algebraic attacks

Direct algebraic attacks aim to solve directly the public equations. More precisely, given a message m,
the goal of an attacker is to find a valid signature S = P~!(m) by using the public equations given by P).
A direct attack can be performed using the Grébner basis techniques as F4 or F5 algorithms.

Let D denotes the degree of the HFE polynomial, a be the number of equations removed, and by v the
number of (external) vinegar variables.

Letr = [log,(D —1)] + 1 be defined as the rank of the quadratic forms associated to the HFE polynomial.

As stated in Section [1} the complexity of the direct attack that involves the Grébner basis technique is

given by
n+ dreg “
("))

Where d,., is the degree of regularity of the system, and 2 < w < 3 is the linear algebra constant. Usually,
w takes the values w = 2 or w = 2.37.

In order to determine the complexity of the Grébner basis methodology, one must first evaluate the value
dreg-

An upper bound on the degree of regularity d,., is defined in [29]:

dreg <2+ (q—1).(r+a+v)/2. (10.4)

The complexity bound given in Eq. shows that an HFEv- based scheme presents smaller degrees of
regularity d,.., than random systems. Moreover, generally d,., is significantly smaller (cf below).

Remark 2 The Hybrid approach, that is a combination of the exhaustive search and the Grébner basis
technique (see Section|[7.3), is known to be the best algorithms for solving random systems. By analyzing
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the security of the HFEv- schemes, it appears that the Hybrid algorithms does not bring remarkable
improvements. Therefore, the direct algebraic attack that will be considered is the pure Grébner basis
algorithm.

As long as the degree of regularity d,., of an HFEv- scheme is not larger than the d,., of a random
system, the experiments show that, when ¢ = 2, d,, can be estimated to be

a+v+r+7

g = | ).

However, there are few results known when ¢ is different from 2. Hence, our own experiments are made
with Magma (cf Appendix [E.1).

We remark that, the degree of regularity d,., starts with the value ¢ (when D = 2), and when ¢ = 5, it
increases of almost one whenever a, v or r increases by one. The situation is different when ¢ = 2, where
a, v, and r generally have to be increased by three.in order to increase the degree of regularity.

Therefore, we will assume that when ¢ > 5, the degree of regularity verifies:
dreg > q—2+7r+a+w,

Remark 3 When g > n, we have noticed that d.., = n + 1. However, our cases of study concerns only
the instances when q < n.

10.2.7 Differential attacks

Differential attacks (defined in Section [6.2.3]) are very efficient when only one monomial is used, even if
some perturbations are used.

In order to avoid a differential attacks, the secret HFE polynomial will involve at least two monomials of
weight two. In other words, the secret HFE polynomial will contain at least the monomials X2 and X?*! if
q is not a power of two, and at least the monomials X! and X?2¢*! otherwise.

Note that, this type of attacks are also efficient when using the w perturbation.

10.3 Mode of operations against the birthday-paradox attack

The mode of operations define the way to deal with plain-texts and cipher-texts during the process of a
cryptographic algorithm. Several mode of operations have been introduced to avoid the birthday-paradox
attack.

Given a multivariate based trapdoor that can be represented as a set of m equations in n variables, if m is
small, therefore the scheme is vulnerable to an efficient birthday-paradox attack against the hash function
that might be the most efficient among all the possible attacks.

This Section presents various modes of operation, including our new modes, namely “ Slow mode of
operation”, and “Multiple independent public keys mode of operation”.
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10.3.1 Most known mode of operations

To avoid the birthday-paradox attack against the ultra-short signatures, several ways have been designed,
usually known as “modes of operation”.

Note that classical signature schemes such as RSA or ECDSA are not threatened by this kind of attack
since their signature lengths are way bigger than the multivariate-based signatures, which makes the
complexity of the birthday paradox attack larger than any other attacks.

Mainly, there exist the Feistel-Patarin, the Gui, the UOV, and the Dragon mode of operations:

Feistel-Patarin mode

Feistel-Patarin mode of operation was first introduced and studied by J. Patarin in [56], and then analyzed
in [24] by N. Courtois. This mode of operation is used in Quartz [25] and in GeMMS [19].

The basic idea of the Feistel-Patarin mode of operation is to roughly iterate the signature process several
times. More precisely, a legitimate signer uses the trapdoor P! in order to sign a message m, and obtain
as signature S = P~1(m), Feistel-Patarin impose the use of the computation 7~! more than once (typi-
cally 4 times).

We refer the readers to [24], [25| 56] for more details.

Gui mode

Gui mode of operation [58] generate & (typically k is equal to two) HFEv- signatures for different hash
values of the same message and by the same public key.

This mode prevents the collision attack, while the length of the public key stays relatively small.

However, Gui mode increases the length of the signature by a factor k. Since that the goal is to obtain
signatures as small as possible, hence, such mode of operation will not be used.

UOV mode

In a UOV scheme, the computation of the secret key remains exactly the same if some specific extra
equations were added to the public key.

Therefore, there is no collision limitations with UOV: the signature can be checked as if VERIFY(S,m) =1
instead of P(S) = H(m).

However, the length of UOV signatures is bigger than the length of HFEv- signatures. So, UOV mode of
operation will not be used to develop ultra-short signatures.
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Dragon mode

The public key of a multivariate cryptographic scheme is given usually by a set of m equations in n
variables of the form:

1 =p1($1, .. -,xn)

Y2 =p2(9€1, .. -,ﬂﬂn)

Ym :pm(l'la . axn)

where p1,po, ..., py are multivariate polynomials of small degree (typically quadratic polynomials).

Sometimes, it is possible to have a public key of the following form:

pl(xlv"'axnaylv"'aym> =0
pZ(xlw"axnvyla"'vym) =0

pm(x17"'axn7y17"'7ym) :O

where p1,po, . .., pm are polynomials of total small degree (typically quadratic or cubic polynomials). Such
systems of polynomials are called “Dragons schemes” in [53]. Dragon systems might provide shorter
signatures since that they avoid Type 2 attacks (see Section[6.2.3} a signature can be verified by checking
if VERIFY(S,m) =1 and notif P(S) = H(m) .

However, it is extremely risky to design a “Dragon scheme” based on an HFE trapdoor function because
some attacks (such as the generalization of the Kipnis-Shamir attack) are much more efficient on Dragon
schemes.

Moreover, when other trapdoor functions (other than HFE) are used, the length of the signature is much
larger. For example, Dragon mode works very well with UOV signatures, but the signature length is larger
than the one given by an HFE trapdoor. Therefore, in this thesis the Dragon mode also will not be used.

10.3.2 The mode of operations developed in this thesis

As stated above, we will not use the aforementioned modes of operation since they usually increase the
size of the signatures, which is not suitable with our main goal that is to provide ultra-short signature
schemes.

Therefore, new modes of operations, namely the “Multiple independent public keys”, the “Slow” mode of
operation, and both of them mixed.

The Slow mode of operation relies on the use of a slow hash function, that is to say a hash function which
requires around one minute to be computed.
Indeed, this new mode of operation perfectly fulfills the requirement of ultra-short signature schemes
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since it does not raise the length of the signature and it is compatible with the one minute of computation
requirement described above.

10.3.2.1 Slow mode of operation

The main idea behind the slow mode of operation is the use of a slow hash function H. It can be chosen
to be the iterations of a standard hash function such as SHA-3 or SHA-256.

Usually, a standard hash function requires 13 cycles per byte, which means that for a data of 72 bytes
(36 words of 16 bits), it requires about 210 cycles. For instance, if one wants to build a hash function for
which the value of t is 37 (i.e. around one minute to compute a hash value), one needs to consider using
(SHA-3) , that is to say the hash function consisting in 227 iterations of SHA-3.

The core of the Slow mode of operation is the slow hash function, nevertheless it is possible to parallelize
the procedure. The security of our ultra-short signature scheme relies on the fact that the user or the
attacker needs to perform 237 operations to sign a message or to verify a signature, the time (that is one
minute) is given as an indication, it is not essential to follow it. In order to have a parallelization version of
our scheme, one could look for parallelizable hash functions that require 237 operations.

For a given security level, this mode of operation is efficient as long as the time required by the slow hash
function is acceptable. If the time required is too large, then it is possible to combine the Slow mode with
other mode of operations (see Section|10.3.2.2), or even to choose an another mode.

10.3.2.2 Multiple independent public keys mode

The main idea of this mode of operation is to use a set of £ independent public keys. The new public
key is a set of k previous public keys. Therefore, the length of the new public key is & times the length of
the previous public key, while the security of the scheme remains the same. Such mode permits to avoid
attacks based on the birthday paradox, but this mode is only realistic when & is not too large.

In this work, a Slow Hash mode (see Section [10.3.2.1) will be used and sometimes a combination of the
Slow Hash mode with the idea of Multiple independent public keys.

Signature generation

In order to sign a message m using the Multiple independent public key mode, one must proceed as
follows:

e First compute H(m) using a slow hash of m. This step requires 2! computations (typically ¢t = 37).

e Generate a random value 1 < R(H(m)) < k, where R is a random generator of numbers between 1
and k. This value gives the number of the public keys that will be used (i.e. the m public quadratic
equations that must be satisfied to sign m).

e Using the corresponding secret key, the signature is then computed.

114



Possible attack

It is possible to attack this mode of operation with a complexity in 2* bits using the birthday-paradox attack
as follows:

e The attacker computes 2*~* values R(H (m)).

e The attacker selects the public key that was obtained the most. In general, it is possible to obtain
about 2**/k values for the selected public key (see Remark below).

e The attacker then computes 22~ values P(S) and looks for a collision with a value obtained in the
previous step. (2" denotes the time required to compute a value P(5)).

This attack succeeds with a good probability when 222~*= > k x 2% where z denotes the output size of
the Hash function.

Since by definition A is equal to A = z — 2\ + ¢ + w, in order to avoid this attack, the following condition
must be satisfied: £ > 272, This yields an acceptable public key length only if — A is not too large.

Remark 4 When 2~ is way larger than k, the number of values obtained in step 2, for a given public
key, is a variable of mean value 2~ /k, and with a standard deviation about the square root of this latter.
Therefore, for the public key with the most solutions, there will be about 2"t /k solutions as claimed.

For example, a simple simulation that generates about 10 millions random values between 1 and 100
shows that the most obtained number appeared nearly 100 732 times in our simulation. This number is
very close fto 100 000 as expected.
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10.4 Parameters choice

In this Section, we first present a large number of experiments and also we define different set of param-
eters for ultra-short signatures.

10.4.1 Grobner basis experiments on random systems

Tables and[10.2] show the results of our experiments with Magma limited to one minute of computa-
tion over a finite field F,.

These experiments evaluate, for different levels of security A = 80,90, etc., the minimum values of m
needed (when solving a random system of m equations in m variables) to reach a security level of 2* bits.
Moreover, the tables provide the minimal m required to solve a system of degree two (resp. of degree
three) when m — s variables are known in nearly one minute of computation.

Signature size with a perfect trapdoor

Similarly to the previous Sections of the Type 1 and 2 attacks, it is possible to provide minimal parameters
for ultra-short multivariate signature schemes according to Type 3 attacks.

As the verifier has a computational power up to 237 operations (i.e. around one minute of compytation),
the signature can be a part S’ of the signature S, containing only ms elements over the considered finite
field.

The value s (30 in our example cell) is chosen in a way that recovering the signature S from S’ takes up
to one minute by the verifier according to our MAGMA implementation.

Once m and s are known, then the length of the signature can be computed as follows:

L :=(m —s) x logy(q).

As stated above, A must not be too small in order to avoid large public keys for the multivariate signature
schemes.

Recall that the goal is to have ultra-short signatures with acceptable public key such that the verification
and signing processes require a reasonable time.

For example, in Table [10.3|the value of A = 10.4 is too large. So, the purpose of the arrows and the new
values on the right (m/, s, L’) is to set new parameters with the same level of security, this time with A as
close to zero as possible.

Note that when A is positive, there is no need to raise the parameters, so there is no right part in the cells
of the Tables.

Moreover, the “+” symbol next to the signature length L means that this length is a lower bound which will
naturally go up while taking into account all the other possible attacks.

Remark 5 Due to the memory restrictions with Magma (a limitation of 366 M Bytes of RAM), in some
cases, there are memory limitations before even reaching the one minute of computations. Therefore, all
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the values in Tables[10.1 and[10.2 can be explicitly computed in less than two minutes and with less than
350 M bytes of RAM.

Surprisingly, Tables[10.1]and[10.2]shows that ¢ = 2 does not appear so far to be the best choice for a finite
field in order to produce very short signatures. Moreover, these tables shows that the length L are very
similar for different values of ¢ (¢ = 5,7,11,...). However, the experiments given here are not sufficient: it
is necessary to consider many more attacks since that the best choice for ¢ is not at all clear yet.

Be:g|r2e§72 80 bits | 90 bits | 100 bits | 128 bits | 192 bits | 256 bits
m = 86 m =100 | m =112 | m = 145 m = 218 m = 290
q=2 s =129 s =30 s =31 s =33 s =37 § =42
L=57+|L=70+ | L=81+ | L=112+ | L =181+ | L =248+
m =43 m = 50 m = 56 m =73 m =113 m = 154
q=4 s =21 s =22 s =123 s =126 s =30 5 =32
L=44+ | L=56+ | L=66+ | L =944+ | L =166+ | L =244+
m =40 m =45 m = 50 m = 66 m = 102 m = 139
q=>5 s =20 s =20 s =21 s=24 § =27 s =30
L=47+ | L=59+ | L=68+ | L=984+ | L=175+ | L = 254+
m =35 m = 40 m =45 m = 59 m =91 m =124
q=717 s=19 s =20 s =20 5 =22 s =26 5 =29
L=45+ | L=57+ | L=71+ | L=104+ | L =183+ | L =267+
m =34 m =39 m = 43 m = 57 m = 88 m =119
q=3_8 s =19 s =19 s =20 s =123 § =27 s =129
L=45+ | L=60+ | L=69+ | L =102+ | L =183+ | L =270+
m = 32 m = 36 m = 40 m = 52 m =81 m =111
q=11 s=18 s=19 s =20 s=21 s =26 s =28
L=49+ | L=59+ | L=170 L =108+ | L =191+ | L = 288+
m =31 m =35 m =39 m = 51 m =179 m = 107
q=13 s =18 s =19 s =20 s =21 § =125 s =28
L=494 | L=60+ | L=T7T1+ | L=112+ | L =200+ | L =293+
m = 30 m =34 m = 38 m = 50 m="T7 m = 104
q=16 s =18 s =18 s=19 s=21 s =26 5 =28
L=48+ | L=64+ | L=76+ | L =116+ | L =204+ | L = 304+
m =29 m = 33 m =37 m =49 m =76 m = 103
q=17 s =17 s =18 s=19 s =21 § =25 § =28
L=504+|L=62+ | L=T4+ | L=115+ | L =209+ | L =307+

Table 10.1:
(w = 2.37).

Experiments with Magma in one minute of computation on random systems of degree two
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Be:gr;;: 80 bits | 90 bits | 100 bits | 128 bits | 192 bits | 256 bits
m = 82 m = 92 m =103 | m =131 m = 196 m = 262
q=2 5§ =22 5§ =22 s =123 s =23 s =23 s =23
L=60+ | L=70+ | L=80+ | L=1084 | L =173+ | L = 239+
m =40 m =45 m = 50 m = 64 m = 96 m = 128
q=4 s =13 s =14 s=14 s=14 s =16 s =17
L=54+ | L=62+ | L=72+ | L=100+ | L =160+ | L = 222+
m =35 m =39 m =44 m = 56 m = 83 m =112
q=>5 s=12 s=12 s =12 s=13 s=14 s=15
L=54+ | L=63+ | L=75+ | L=100+ | L =161+ | L = 226+
m =29 m = 33 m = 36 m = 47 m="T1 m = 96
q=1717 s=11 s =12 s =12 s=13 s=14 s =15
L=51+|L=5394+ | L=684+ | L=96+ | L =161+ | L =228+
m = 27 m = 31 m =34 m =45 m = 68 m = 92
q=38 s=11 s=12 s =12 s=13 s=14 s=15
L=48+ | L=57+ | L=66+ | L=96+ | L=162+ | L =231+
m =25 m = 28 m =31 m = 40 m = 62 m = 83
q=11 s=11 s=11 s=11 s =12 s =13 s =14
L=49+ | L=63+ | L="70 L =104+ | L =170+ | L = 239+
m =24 m=27 | m=230 m =39 m =59 m = 80
q=13 s=11 s=11 s=11 s=12 s=13 s=14
L=49+ | L=60+ | L=71+ | L=100+ | L =171+ | L = 245+
m =23 m = 26 m = 28 m = 37 m = 56 m =76
q=16 s=11 s=11 s=11 s =12 s =13 s =14
L=484+ | L =60+ | L=684+ | L=100+ | L =172+ | L = 248+
m = 22 m =25 m = 28 m = 37 m = 56 m =175
q=17 s =10 s=11 s=11 s=12 s=13 s=13
L=50+ | L=58+ | L=70+ | L=1034+ | L =176+ | L = 254+

Table 10.2: Experiments with Magma in one minute of computation on random systems of degree three
(w = 2.37).

10.4.2 Minimal parameters in the general case

Recall from Section|10.3.2.2|the value A = z —2\+t+w, where z denotes the output of the hash function,
2! the complexity of computing hash values, and 2* the time required to compute P(.9).

A

—m
s+ s
L— L

/
The results shown in Table|10.3|are given in the following form
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Degree 2
w=2 80 bits 90 bits 100 bits 128 bits 192 bits 256 bits
A—->A=0
A=-104 | A=-158 | A=-23.3 | A =-40.1 A=-822 A =-128.0
q=2 94 — 104 108 — 124 | 120 — 144 | 158 — 198 242 — 325 323 — 451
30 — 31 31 — 32 32 — 33 34 — 37 39 — 44 44 — 51
64 — 73+ | 77— 92+ | 88 — 1114+ | 124 — 162+ | 203 — 281+ | 279 — 400+
A=-134 | A=-188 | A=-26.3 | A =-43.1 A= —-83.2 A=-121.8
q=4 47 — 54 54 — 64 60 — 73 79 — 100 122 — 164 166 — 227
21 — 23 23 — 24 24 — 26 27 — 29 31 — 32 32 — 37
52 = 62+ | 62 — 80+ | 72 —> 94+ 104 — 142+ | 182 — 264+ | 268 — 380+
A=-8 A=-136 | A=-191 | A=-36.8 A=-T724 A =—-106.3
q=5 43 — 47 49 — 55 55 — 63 71 — 87 110 — 142 150 — 196
20 — 21 21 — 22 22 — 23 25 — 26 28 — 30 31 - 34
54 — 61+ | 66 — 77+ | 77 — 93+ 107 — 142+ | 191 — 2604 | 276 — 376+
A=+1 A=-44 | A=-71 A =-20.1 A =-48.1 A=-76.7
q=7 m =39 44 — 46 50 — 53 65 — 72 100 — 117 135 — 163
s=19 20 — 21 21 — 22 23 — 25 27 — 29 30 — 32
L =56+ 68 — 704 | 82 — 87+ 118 — 132+ | 206 — 247+ | 295 — 367+
A=+457 |A=+13 | A=-32 A=-13.1 A =—-40.2 A =-61.9
q=8 m = 38 m = 43 48 — 50 63 — 68 96 — 1104 131 — 152
s=19 s =20 21 — 21 23 — 24 27 — 29 30 — 30
L =57+ L =69+ 81 — 87+ 120 — 132+ | 207 — 243+ | 303 — 366+
A=+121 | A=+135 | A=+77 A=+41.1 A=-14.5 A =-30.8
q=11 m =35 m =41 m =45 m = 59 91 — 96 123 — 132
s=19 s =20 s =21 s =23 27 — 27 30 — 30
L =56+ L =173+ L =84+ L =125+ 222 — 239+ | 322 — 353+
A=+4209 | A=+161 | A=+152 | A=+84 A =+40.7 A=-11.2
q=13 m =35 m =39 m =44 m =57 m = 89 120 — 123
s=19 s =20 s =20 s =22 s =26 29
L =60+ L="71+ L =89+ L =130+ L =233+ 337 — 348+
A=+4231 | A=+4237 | A=+243 | A=+214 A =+15.3 A =485
q =16 m = 33 m = 38 m =43 m = 56 m = 86 m = 116
s=18 s=19 s =20 s=21 s =26 s =28
L =60+ L =76+ L =92+ L = 140+ L = 240+ L =352+
A=+4257 | A=+426.7 | A=+277 | A =+421.7 A =+18 A =+13.7
q=17 m = 33 m = 38 m =43 m = 55 m = 85 m = 115
s =18 s=19 s =20 s=21 s =26 s =28
L =62+ L =78+ L =94+ L =139+ L =241+ L = 355+

Table 10.3: Experiments with Magma in one minute of computation to avoid generic attacks (w = 2).

Table provides potential parameters of multivariate signatures in degree 2 when using a perfect trap-
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door, while A keeps a value close to 0, and w = 2, and when the verification process of a signature
requires at most one minute with MAGMA.

Note that, the value of w is generally not so important here: when m is increased in order to have A =~ 0
then very often the same value m will be obtained whatever was the value of w.
10.4.3 Our proposed ultra-short signature and its sets of parameters

This Section presents our ultra-short multivariate signature scheme based on HFEv in degree 2 and on
the slow mode of operation described in Section In order to do so, we will explain the choice of
its parameters step by step. Recall that we want our signatures to be as short as possible, with reasonable
public key size, and verifiable in at most about 2 minutes on a modern personal computer (1 minutes for
the slow hash and 1 minute to recover the whole signature).

10.4.3.1 The choice of the degree D of the HFE polynomial

As stated previously in Section[10.2.7] the trapdoor function must contains at least two monomials in order
to avoid the powerful cryptanalysis on employing only one monomial (even with perturbations [16]). So,
the HFE polynomial will always have at least the two monomials: X2 and X'*¢ .

Given r = [log,(D)].

From our Magma simulations given in Appendix D}, we derive the following maximum values for  according
to ¢ (in order to spend less than one minute of computation for the verification process):

e ifg=2thenr =16,
o ifg=4thenr =09,
e if¢g=5thenr =7,
e if g="7thenr =6,
e if g=8thenr =25,
e ifg=11thenr =25,
o ifg=13thenr =4,
o ifg=16thenr =4,

o ifq=17thenr =4.

An HFEv- scheme combines the two perturbations — (minus) and v (vinegar) (detailed in Section [6.3.3)
which cost almost nothing in signature s whereas they increase the security of the scheme.

Therefore, by considering an HFEv- based trapdoor, it is then possible to choose suitable (maximum)
values for D compatible with one minute of computation. For other costly perturbations (such as the w
perturbation ), one must choose smaller values for D.
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10.4.3.2 The choice of the v and — parameters

When the value of D is chosen, then the required (and minimum) number of vinegar variables v and the
minus — parameters can be chosen in order to avoid the direct attacks and the key recovery attacks from
[4].

10.4.3.3 Our candidate solution

This Section presents parameters of our ultra-short multivariate public key signature based on HFEv
scheme with our new slow mode of operation.

Our parameters are given for the level of security 80 bits to have the shortest possible signatures with a
“reasonable” security, then additional parameters are given for the more classical security levels: 128, 192
and 256 bits, and also for other interesting levels of security. The complexities are evaluated according to
the best known attack, that is usually from the recent key recovery attack mentioned in Section

Security of 80 bits

. Signature Size | Public Key Size
qg |r |m a | v | Complexity | s (bits) (KBytes)
2 |16 104 | 0|0 | 84.4 31|73 69.3
4 |9 |54 |[3|4)816 23 | 76 24.9
5 |7 |47 |5]4]81.0 21 | 82 21.2
7 |6 |39 |5|5]802 19 | 85 16.3
8 |5 |38 |6|5]80.1 19 | 90 17.0
11|/5 |3 |6|6]|837 19 | 97 16.6
134 |3 |7 |6]837 19 | 108 18.6
16 |4 |33 |7 |6]|835 18 | 112 17.4
1714 |33 |7 |6]835 18 | 115 17.8
Security of 90 bits
¢ |r |m o | v | Complexity | f (St;igig)ature Size 5(uBk1I[|Sc) Key Size
2 |16 ]124 |1 |1]932 32 | 94 121.1
4 |9 |64 |54]903 24 | 98 42.2
5 |7 |55 |6|6]937 22 | 105 35.5
7 |6 |46 |7 |6]929 21 | 107 27.9
8 |5 |43 | 7|7 ]926 20 | 111 26.0
115 |41 |7]7]|924 20 | 122 26.6
1314 |39 [8|7]922 20 | 126 26.1
16 |4 |38 |8 |7]|921 19 | 136 26.5
1714 |38 |8 |7]|921 19 | 139 271
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Security of 100 bits

. Signature Size | Public Key Size
q |r |m a | v | Complexity | s (bits) (KBytes)
2 |16 144 |2 | 2| 101.8 33| 115 193.8
4 |9 |73 | 6|6 1029 26 | 118 65.2
5 |7 |63 |7|7]102.3 23 | 126 53.6
7 |6 |53 |8|7]101.5 22 | 130 42.6
8 |5 |50 |8 |8]101.3 21 | 135 40.4
11|/5 |45 | 8|8 100.8 21 | 139 35.9
13|14 |44 | 9|8 100.7 20 | 152 37.5
16 |4 |43 | 9|8 100.6 20 | 160 38.4
1714 |43 | 9|8 100.6 20 | 164 39.2
Security of 128 bits
. Signature Size | Public Key Size
qg |r |m a | v | Complexity | s (bits) (KBytes)
2 16198 |6 |5 | 131.2 37 | 173 530
4 |9 1009 |9 | 1283 29 | 178 171.4
5 |7 |87 | 11|10 ]| 131.7 26 | 191 145.1
7 |6 |72 |11 ]11]130.8 25 | 194 110.1
8 |5 |68 |12] 11| 130.6 24 | 201 104.2
1115 |59 |12 |11 |130.0 23 | 205 84.7
1314 |57 |12 |12 |129.8 22 | 219 85.5
16 |4 |56 |12 |12 |129.8 21 | 236 88.6
17 |4 |55 |12 |12 | 129.7 21 | 238 86.7
Security of 192 bits
. Signature Size | Public Key Size
qg |r |m a | v | Complexity | s (bits) (KBytes)
2 |16 |325| 13| 13| 1934 44 | 307 2450
4 |9 | 164 |17 |17 | 194.4 32 | 332 788.8
5 |7 | 142 |18 | 18 | 193.6 30 | 344 641.2
7 |6 | 117 19| 18| 1924 29 | 351 478.5
8 |5 | 110 | 19| 19| 192.0 29 | 357 444 1
1115 |96 |19 |19 | 1921 27 | 371 366.6
13|14 |89 | 20|20 | 195.8 26 | 382 337.1
16 |4 |8 |20 |20 | 195.6 26 | 400 335.9
17|14 |85 | 20|20 | 195.6 26 | 405 334.0
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Security of 256 bits
. Signature Size | Public Key Size
qg |r |m a | v | Complexity | s (bits) (KBytes)
2 | 161|451 | 21| 21| 257.9 51 | 444 6704
4 |9 | 227 | 25| 25| 257.0 37 | 488 2134
5 |7 | 196 | 26 | 26 | 256.8 34 | 509 1715
7 |6 | 163 |27 | 26 | 256.7 32 | 517 1309
8 |5 | 152 |27 | 27 | 256.2 30 | 528 1186
11 |5 | 132 |28 | 27 | 259.2 30 | 544 980
13 |4 | 123 |28 | 27 | 256.7 29 | 552 885
16 |4 | 116 | 28 | 27 | 256.1 28 | 572 833
17 |4 | 115 | 28 | 27 | 256.0 28 | 581 834

Variants

Many variants of the proposed ultra-short multivariate signature schemes are possible.
For instance, instead of using the — and v perturbations to reach the required level of security, one could
use w (the internal vinegar modifier). We expect that the result security-wise would be very similar.

Another idea is to set » = 2 (since there exists an attack when » = 1 that is not extendable to » = 2) and
to control the complexity of the best known attack with w, with making sure that the computation will never
exceed 1 minute.

Then, the final adjustments can be done by increasing a or v as before. We also expect that the signatures
lengths and the security will be similar.

So far, for our schemes, we have decided to eliminate the use of the “multiple independent public keys”
mode of operation in order to avoid having large public keys. Nevertheless, a trade-off can be found be-
tween large public keys and larger signatures. For some applications, one might prefer to lose few bytes
of memory to store a public key instead of having larger signatures.

Table provides parameters when using this “multiple independent public keys” mode of operation.
This shows that when the public key is larger, the signature is only a few bits smaller.

Recall that 2" denotes the time required to compute a value P(.5), C1 refers to the complexity of the afore-
mentioned key recovery attack whereas C2 refers to the direct attack described in [10]. The parameters
given below present the case of a “Nude" HFE trapdoor with ¢ = 2, D = 32769 (which means r = 16), and
with &k independent public keys. The time considered to sign and verify a signature is about one minute
(237 operations).
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m ro|w A k s | C1 | C2 i)lig:g)ature Size Public Key Size
86 | 16 | 18.2 | -18.8 | 456000 | 29 | 83.6 | 32.32w | 57 17 GBytes

88 |16 | 18.3 | -16.7 | 106000 | 29 | 83.7 | 32.56w | 59 4.2 GBytes

92 |16 | 18.5 | -12.5 | 5800 30 | 83.9 | 33.02w | 62 271 MBytes
94 |16 | 186 | -10.4 | 1352 30 | 84.0 | 33.27w | 64 67.6 MBytes
9% |16 | 18.7 | -8.3 | 316 30 | 84.1 | 33.47w | 66 16.8 MBytes
100 | 16 | 18.9 | -4.1 | 18 31 | 84.3 | 33.89w | 69 1.08 MBytes
104 | 16 | 18.2 | 0.1 1 31 |84.4 | 34.30w | 73 69.3 kBytes

Table 10.4: Ultra-short signatures for a security level of 28V bits using the Nude HFE and k independent
public keys

Remark 6 In Table[10.4, the original (nude) version of HFE with no perturbations is used (o = v = 0).
This may look surprising since several super-polynomial attacks are known on nude HFE and generally, it
is not recommended to use nude HFE.

However, here the goal is to have a scheme that produces very short signatures with 237 operations for
legitimate users and 2%° operations for the non-legitimate users.

Therefore, for this application, a super-polynomial attack (or even a polynomial attack) might not be a
problem.

Remark 7 The complexity of C2 is larger than 28 if 32.32w > 80, it means if w > 2.47. Such assumption
is generally considered very reasonable.

However, if we want to assume a smaller value of w, then it is convenient to choose a = 1 and v = 0 (or
a=0andv = 1) instead of a = v = 0. Such variation will add only one bit to the signature’s length, and
the degree of regularity of C2 should became equal to 8, instead of 7 (because it is expected that this
degree is the integer part of (r +a+ v +7)/3)).

Then, the complexity of C2 becomes at least 35.6w, that is larger than 80 if w > 2.24.

Fast Verification.

It is possible to have a slow hash computation to sign a message, and a fast verification to check the
signature. For example, by adding 10 bits to the signature, the verification can be 1024 times faster. How-
ever, the aim is to have the shortest signatures, so this is not a main concern.

10.5 Discussion about our security model

10.5.1 Examples of implementation of our security model

Recall that, in this paper, all of our schemes rely on a security model where the oracles for the verification
and for the computation of hash values have limited resources; that is to say that each request to one of
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those oracles has a non-negligible cost for an attacker.

As our signatures are “ultra-short”, one of their most valuable interests is for instance that they could
be easily spelled by a human to another one over the phone. For example in a standard PC one
can manage signatures of about 64 bits that can be represented as 16 hexadecimal values such as:
45A5F352CDE20240. This is less than the size of a strong Wifi-Box password to a smartphone for example.
Moreover, if we use Alphanumeric values (Numbers 0...10 + Letters a...z and A... Z, i.e. 62 charac-
ters) then 64 bits represent only 11 Alphanumeric characters such as: 4fDjK457G£D.

A concrete example involving the non-negligible cost of verification and hash computation could be the
following: in order to activate a software, a user needs to enter an ultra-short signature, this signature will
be given to the user over the phone; in this case, the cost of the verification would not be negligible as it
would be done by the user’s personal computer. In such examples, if the user manages to get an illegal
copy of the software and he is looking for a valid signature to activate it, he would have to “pay” the cost
of every verification on his computer.

Another example of our security model involves QR codes; as the ultra-short signatures can fit in small
QR codes, a hand device such a phone could be used to verify them. In such a case, the verification cost
would not be free as well.

Last but not least, if the verification process is done online by a server that receives requests from a user
(a client), it is really easy to create artificially a verification cost. Indeed, the server just has to ask the
client to solve a puzzle before answering. The cost of solving the puzzle, to match our security parame-
ters, would never be more than 1 minute or, similarly, 237 bit operations.

These real-life applications of our security model seem legitimate since for all of them an attacker would
require billions of cell phones or personal computers to be able to verify a signature or to compute a hash
value instantly.

10.5.2 Security of our ultra-short signature scheme in a classical security model

Since we deal with multivariate-based cryptography, our scheme might resist quantum attacks. However,
this work focuses only on attacks with non-quantum computers.

In the classical security model used to prove the existential unforgeability under chosen message attack
(EUF-CMA), an attacker has access to an oracle that can determine if a given string of bits is a valid
signature for a message. As our signature scheme involves the use of hash functions, the attacker also
needs an oracle that computes hash values. If, like in the classical security model, the attacker has ac-
cess to those oracle “for free” (that is to say at no extra cost than generating the request), our scheme
does not hold since it relies on slow verification and hash computations. Nevertheless, this section shows
that as long as the access to the hash-oracle has a non-negligible cost, our scheme remains secure only
by changing a few of its parameters. Indeed, if the access to the hash-oracle is free, thus the birthday
paradox would be significantly improved (such as the one given in Section [10.2).
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If the access to the verification oracle is free, for a given signature of length L bits and for a security of
2* operations, the attacker can perform a brute force attack on the 27 possible signatures. Usually, when
L > ), this is not a problem, but for the few parameters for which the length of the signature is smaller
than the security )\, the parameters need to be slightly adjusted. For example, for a security level of 28,
with ¢ = 2 (see Section[10.4.3.3), we should set a + v = 7 (instead of 0), and r = 8 (instead of 16), then
the signature length would be 80 bits instead of 73 bits. Similarly, with ¢ = 4, we should set a + v = 9
(instead of 7), and » = 8 (instead of 9), then the signature length would be 80 bits as well. With these
parameters, the other attacks are less efficient, so it enables us to reduce the value of D (from 65536 to
256 for the former and from 262144 to 65536 for the latter) and thus obtain significantly faster signatures.

Note that for 90 bits of security (or more), we do not have to change the parameters given in Section
10.4.3.3|since the lengths of the signatures are already larger than the security parameter \.

Remark 8 To ensure that our proposed signatures are secure against brute-force attacks (i.e. finding at
least one valid signature among the 2" possible bit strings), there is no need for the verification cost to
be as big as 23" operations. Indeed, for the two sets of parameters for which the signatures are shorter
than the security parameter )\, if the verification oracle asks the user/attacker to solve a simple puzzle
before answering his request, it is usually enough. More precisely, with ¢ = 2 and 73 bit-long signatures
(c.f. Section , a puzzle requiring 27 operations to be solved would usually be enough to reach
a security of 80 bits, and with ¢ = 2 and 64 bit-long signatures (Table [10.4 page [124), a puzzle in 2'6
operations would usually be enough.

10.6 Conclusion

At present, the shortest public key signatures are obtained with multivariate signature schemes such as
Quartz, or GeMMS, with signature size typically between 128 and 256 bits, and time to sign and verify the
signature in milliseconds.

In this Chapter, we have studied how to design even shorter signatures when there is no problem for the
signing and verification algorithms to require nearly one minute to be performed (i.e. about 23" operations).

Considering an expected security of 28" bits, we have designed a signature schemes with about 64 bits.
Interestingly, there are many other designs, variants, and parameters that achieve also such results.

In order to avoid the birthday-paradox attack, we have also designed some specific new modes of opera-
tions such as the “Slow Hash” and the “Multiple independent public keys” mode of operations.

The proposed signature schemes provide signatures of length much shorter than other known public key
signatures schemes.
The main idea to have ultra-short signatures is to consider the following:
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e The use of very slow hash functions.
e The use of many independent public keys.

e Some missing bits of the signature can be found much faster by using Grébner basis algorithms
than by using the exhaustive search.

With future progress in cryptanalysis, it is possible to have more efficient attacks against signature schemes,
and therefore there will be a need to add some extra bits to the signature in order to keep the same ex-
pected security level.

As long as the best known attacks against the variants of HFE (for example the — and v perturbations)
are still exponential, then only a few more bits should be enough to keep the expected security level.

127






CHAPTER 11

Conclusions

Chapter [8|focuses on the analysis of the Permuted Kernel Problem (PKP). PKP is the problem of finding
a permutation of a known vector such that the resulting vector is in the kernel of a given matrix.

It was proved to be an NP-Hard combinatorial problem [63].
PKP requires simple operations which involve basic linear algebra computations. Due to its simplicity, the
problem has received significant attentions from theory and application in cryptography.

Chapter [8] provides the theoretical analysis behind the PKP problem over a finite field. We were essen-
tially concerned about this problem because it can be used to build a post-quantum signature scheme
based on the hardness of solving random instances of PKP.

Since that quantum computers are expected to be incapable to solve NP-Hard problems [8], there-
fore,algebraic problems such as PKP, are very interesting nowadays.

We presented an updated complexity analysis for the most efficient algorithm for solving instances of the
Permuted Kernel Problem.

Many researchers investigated the security of PKP, and proposed several solving algorithms.

All the suggested attacks combine exhaustive search with some form of time-memory trade-off.

In Chapter [8] we performed a complexity analysis of all the existing attacks for solving the Permuted Ker-
nel Problem. Interestingly, it appears that the complexity bound given in Joux-Jaulmes paper [40] is not
quite precise. Therefore, we showed that Joux-Jaulmes attack is not the best algorithm for solving PKP.
In order to estimate a concrete security of PKP, we reviewed and compared the best known attack’s effi-
ciency, in terms of the number of operations performed, for different finite fields.

After all, we have been able to bring together Patarin-Chauvaud attack [57] and Poupard algorithm [60] to
provide an accurate program for solving PKP. This latter yields better security estimates that contribute
for secure parameters sets of the Permuted Kernel Problem.

After updating the complexity bounds of PKP’s best algorithms, we performed a Magma implementation
for our program to identify hard instances of PKP, and therefore, to define secure sets of parameters of
this problem for different security levels and with respect to the best attack currently known.

After reviewing in Chapter [8|the complexity analysis of the Permuted Kernel Problem, we were particularly
interested in the design of a post-quantum digital signature scheme based on PKP.
In 1989, A. Shamir [63] introduced a five-move Zero-Knowledge ldentification scheme (ZK-IDS), based



on the complexity of PKP.

Chapter [9 uses the well-known Fiat-Shamir (FS) transform [35] on this identification scheme to develop a
digital signature scheme that is provably secure in the Random Oracle Model (ROM).

The FS method is important since it yields efficient signature schemes in terms of minimal and sufficient
security assumptions.

The main contribution of Chapter [9 is to present PKP-DSS: a Digital Signature Scheme based on PKP
that is post-quantum secure. We used the Fiat-Shamir transform to build PKP-DSS from the 5-move PKP
identification scheme introduced by Shamir [63].

Following the complexity analysis of PKP [47] given in Chapter [8, we have choosen secure parameter
sets of the signature scheme for 128,/192/256 bits of classical security level.

Till now, there are no known quantum algorithms for solving PKP (other than combining Grover search
with the classical algorithms), so we claimed that our signatures achieve the NIST security levels I/lll and
V respectively.

However, we recognize that the (quantum) hardness of PKP deserves more research, and we hope that
this work will inspire researchers to investigate this topic further.

In Chapter [9, we have developed a constant-time C implementation of the new signature scheme. By
constant-time we mean that the running time and the memory access pattern of the implementation are
independent of secret material, therefore blocking attacks from timing side channels.

The resulting signature scheme compares well with other schemes of the same nature as MQDSS and
Picnic/Picnic2. Our scheme is much faster than MQDSS and Picnic/Picnic2 in terms of signing and veri-
fication, we have small public and private keys, and the signature sizes of our scheme are comparable to
those of MQDSS and Picnic2. This makes our signature scheme PKP-DSS competitive with state of the
art post-quantum signature schemes.

PKP-DSS took part of the Chinese competition for the standardization of new post-quantum cryptographic
schemes organized by the Chinese association CACR. PKP-DSS won the third prize of the competition.

Chapter [10| studies another type of signature schemes: multivariate public key signature schemes with
“ultra”-short signatures over finite fields.

In order to build signature schemes with ultra-short signatures, we investigated an efficient idea that is
the time constraint: signing and verifying a signature could require about one minute of computation on a
modern personal computer with a 3GHz frequency processor, a computation power around 3.10° x 60 ~
237 word operations.

Chapter [10] describes generic attacks against multivariate signature schemes. We used these attacks
to determine inferences for optimal parameters that can provide secure ultra-short multivariate signature
schemes.

Chapter[10|provided explicit examples of ultra-short multivariate signature schemes based on the Hidden
Field Equations (HFE) variants.

Additionally, we provided various parameters for such schemes with respect to different security levels
(from 80 to 256 bits) and over different finite fields (from Fs to Fy7).
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CHAPTER 12

Conclusions

Le chapitre [8 se concentre sur I'analyse du probléme du noyau permuté (PKP). PKP est le probléme de
trouver une permutation d’un vecteur connu tel que le vecteur résultant soit dans le noyau d’'une matrice
donnée.

Il s’est avéré étre un probléme combinatoire NP-dur [63].

PKP nécessite des opérations simples qui impliquent des calculs d’algebre linéaire de base. En raison
de sa simplicité, le probléme a regu une attention particuliére de la part de la théorie et de I'application en
cryptographie.

Le chapitre [ fournit I'analyse théorique du probleme PKP sur un corps fini. Nous étions essentiellement
intéressés par ce probléme car il peut étre utilisé pour construire un schéma de signature post-quantique
basé sur la dureté de la résolution d’instances aléatoires de PKP.

Comme on s’attend a ce que les ordinateurs quantiques soient incapables de résoudre les problemes NP
-Hard s [8], par conséquent, les problémes algébriques tels que PKP sont trés intéressants de nos jours.

Nous avons présenté une analyse de complexité mise a jour pour I'algorithme le plus efficace pour ré-
soudre les instances du probleme du noyau permuté.

De nombreux chercheurs ont étudié la sécurité de PKP et ils ont proposé plusieurs algorithmes de réso-
lution.

Toutes les attaques suggérées combinent une recherche exhaustive avec une forme de compromis
temps-mémoire.

Dans le chapitre [8] nous avons effectué une analyse de complexité de toutes les attaques existantes pour
résoudre le probléeme du noyau permuté. Il semble que la borne de complexité donnée dans l'article de
Joux-Jaulmes [40] n’est pas tout a fait précise. Par conséquent, nous avons montré que I'attaque Joux-
Jaulmes n’est pas le meilleur algorithme pour résoudre PKP.

Afin d’estimer une sécurité concréte de PKP, nous avons examiné et comparé I'efficacité de I'attaque la
plus connue, en termes de nombre d’opérations effectuées, pour différents corps finis.

Nous avons pu rassembler I'attaque de Patarin-Chauvaud [57] et I'algorithme de Poupard [60] pour fournir
un programme précis pour résoudre PKP. Ce dernier produit de meilleures estimations de sécurité qui
contribuent aux ensembles de parametres sécurisés du probléme du noyau permuté.

Aprés avoir mis a jour les bornes de complexité des meilleurs algorithmes de PKP, nous avons effectué
une implémentation Magma pour notre programme afin d’identifier les instances efficaces de PKP, et par



conséquent, de définir des ensembles sécurisés de parameétres de ce probleme pour différents niveaux
de sécurité et par rapport a la meilleure attaque connue actuellement.

Aprés avoir examiné dans le chapitre[8]I'analyse de complexité du probleme du noyau permuté, nous nous
sommes particulierement intéressés par la conception d’'un schéma de signature digitale post-quantique
basé sur PKP.

En 1989, A. Shamir [63] a introduit un schéma d’identification a connaissance zéro en cing passes (ZK-
IDS), basé sur la complexité de PKP.

Le chapitre [9] utilise la célebre transformation Fiat-Shamir (FS) [35] sur ce schéma d’identification pour
développer un schéma de signature digitale qui est prouvé sécurisé dans le Random Oracle Model (ROM).
La méthode FS est importante car elle produit des schémas de signature efficaces en termes d’hypothéses
de sécurité minimales et suffisantes.

La principale contribution du chapitre [9 est de présenter PKP-DSS: un schéma de signature digitale basé
sur PKP qui est post-quantique sécurisé. Nous avons utilisé la transformation Fiat-Shamir pour construire
PKP-DSS a partir du schéma d’identification a 5 passes PKP introduit par Shamir [63].

Suite a 'analyse de complexité de PKP [47] donnée dans le chapitre 8] nous avons choisi des ensembles
de parameétres sécurisés du schéma de signature pour les niveaux de sécurité classiques 128/192/256
bits.

Jusqu’a présent, il N’y a pas d’algorithme quantique connu pour résoudre PKP (autre que de combiner
la recherche de Grover avec les algorithmes classiques), nous avons donc affirmé que nos signatures
atteignent respectivement les niveaux de sécurité induiqués par le NIST I/lll et V.

Cependant, nous reconnaissons que la dureté (quantique) de PKP mérite plus de recherche, et nous
espérons que ce travail inspirera les chercheurs a approfondir ce sujet.

Dans le chapitre [9 nous avons développé une implémentation C en temps constant du nouveau schéma
de signature. Par temps constant, nous entendons que le temps d’exécution et le modéle d’acces a la meé-
moire de I'implémentation sont indépendants du matériel secret, bloquant ainsi les attaques temporelles.
Le schéma de signature qui en résulte se compare bien avec d’autres schémas de méme nature que
MQDSS et Picnic/Picnic2. Notre schéma est beaucoup plus rapide que MQDSS et Picnic/Picnic2 en
termes de signature et de vérification, nous avons de petites clés publiques et privées, et les tailles de
signature de notre schéma sont comparables a celles de MQDSS et Picnic2. Cela rend notre schéma de
signature PKP-DSS compétitif par rapport aux schémas de signature post-quantique de méme nature.

On a participé avec PKP-DSS a une compétition chinoise pour la standardisation de nouveaux sché-
mas cryptographiques post-quantiques organisé par I'association chinoise CACR. PKP-DSS a gagné le
troisieme prix de la compétition.

Le chapitre [10| étudie un autre type de schémas de signature: les schémas de signature a clé publique
multivariée avec “ultra”-courtes sur des corps finis.

Afin de construire des schémas de signature avec des signatures ultra-courtes, nous avons étudié une
idée efficace qui est la contrainte de temps: la signature et la vérification d’une signature peuvent néces-
siter environ une minute de calcul sur un ordinateur personnel moderne avec un processeur de fréquence
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3 GHz, une puissance de calcul d’environ 3,10 3.10° x 60 ~ 237 opérations de mots.

Le chapitre [T0]décrit les attaques génériques contre les schémas de signatures multivariées. Nous avons
utilisé ces attaques pour déterminer des inférences pour des parameétres optimaux qui peuvent fournir
des schémas de signatures multivariées ultra-courtes sécurisées.

Le chapitre[10|fourni des exemples explicites de schémas de signatures multivariées ultra-courtes basées
sur des variantes de (HFE).

De plus, nous avons fourni divers paramétres pour de tels schémas en ce qui concerne différents niveaux
de sécurité (de 80 a 256 bits) et sur différents corps finis (de Fs a Fy7).
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APPENDIX A

Magma code for the complexity of PKP

//The first algorithm Af
m:=Round(Log(p, Factorial(n)));
m+:=1; //georgAi1:=function(n,p);iades
SpaceMax:=8x10"15;

TimeMin:=221000;

for k in [1..m] do;

[ :=(n—m+k) div 2;

ri=n—mk—r;

FO:=1.0x Factorial (n) / Factorial(n—1);
size0:=F0;

if size0 gt SpaceMax then continue; end if;
nb1:=1.0x Factorial(n)/ Factorial (n—r);
nb2:=1.0x Factorial(n)/ Factorial (n—(1+r))/p"k;

tpsO:= FO;//*(kxl);
tps1:= nb1;//x(r—k)xk;
tps2:= nb2;//*(l+r—k)*(m-k);

tps:=tpsO+tps1+tps2;
if tps It TimeMin then
TimeMin:=tps;
U:=<Log(2,tps),Log(10,size0), Log(2,tps0), Log(2,tpst),
Log(2,tps2), Log(2,nb1),Log(2,nb2),I, r, k>;
end if;
end for;

return U;
end function;

/! The second algorithm : A2

//the use of sets instead of tuples
for given n,p;

m:=Round(Log(p, Factorial(n)));
m+:=1; //georgiades
SpaceMax:=8x10"15;
TimeMin:=221000;



for kK in [1..m], | in [1..n-m] do;
r:=n—-m-1l+k;
nb0:=Binomial(n,r);
FO:=1.0x Factorial (n—r) / Factorial (n—l-r);
size0:=F0x1;
if size0 gt SpaceMax then continue; end if;
nb1:=1.0x Factorial (r);
nb2:=1.0xnb1xF0/p"k;
tpsO:= FO;//x(kxl);
tps1:= nb1;//x(r—k)xKk;
tps2:= nb2;//x(l+r—k)«(m-k);
tps:=nb0x(tpsO+tps1+ips2);
if tps It TimeMin then
TimeMin:=tps;
U:=<Log(2,tps),Log(10,size0), Log(2,tps0), Log(2,tps1),
Log(2,tps2), Log(2,nb1),Log(2,nb2),I, r, k>;
end if;
end for;
U; exit;

poupard:= function(n,p); // poupard
m:=Round(Log(p, Factorial(n)));
m+:=1; //georgiades
SpaceMax:=8x102150;
TimeMin:=221000;
for j in [0..n-m], i in [O0..n—-m-j],
I in [0..n-m-j—i], ¢ in [0..m], d in [0..c], cc in [0..m-c] do;
ri=n-m-i—j;
K:i=r+d—1;
mm:=c—d;
nf0:=Factorial(n)/ Factorial (n—j);
size_f0:=nf0x]j;
time_fO0:=nfOx(jxcC);
nf2:=Factorial(n)/ Factorial (n—1);
size f2:=nf2x1;
time_f2:=nf2x«(1xd);
nf1:=Ceiling (Factorial(n)/ Factorial (n—(i+j))/p"c);
size_f1:=nf1x(i+j);
time_f1:=Factorial(n)/ Factorial (n—i)x(cxi) // —> compute candidate FO
+nfl1x((i+j)xcc);
size0:=size fO+size_fl+size f2;
if size0 gt SpaceMax then continue; end if;
//choice of k—tuples
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nb1:=Factorial (n)/ Factorial(n—k); // k—tuples_V
time_1:=nb1x((r—1)xd); //calcul entr e F2
//solution F2 in (l+k)
nb2:=1.0x Factorial (n)/ Factorial (n—(k+1))/p~d;
time_2:=1+nb2x(rxmm); //—> donne candidat M
//IM (compatible KL)
nb3_:=1.0xnb2x Factorial (n-mm)x Factorial (n—(k+1))
/ Factorial (n)/ Factorial (n—(k+1+mm));
nb3:=1.0x Factorial (n—-mm)/ Factorial (n—(k+!+m€m))/p"d;
//We complete with N
nb4:=nb3xFactorial (n—(k+!l+m))/ Factorial (n—(k+|+mm+cc));
time_4:=nb4x(cc); //—> candidat F1
//We read F1

nb5:=Ceiling (nb4xnf1 /(p*cc)x Factorial (n—(i+j))* Factorial (n—(l+k+m+cc))
/ Factorial(n)/ Factorial (n—(i+j+!+k+m+cc)));
time_5:=nb5x((m+1)—(c+cc))*«(i+j+r);

tps:=time_fO+time_f2+ p~c

( time_f1 + time_1 + time_2

+ time_4 + time_5);

if tps It TimeMin then

TimeMin:=tps;
U:=<Log(2,tps),Log(10,size0),
jsisl, r, k>;
end if;

end for;

return U;

end function;

U;

exit;

145






APPENDIX B

“Slow-Quartz” signatures (77 bits
signatures)

Quartz belongs to the HFE family, it is a variant that involves both of the vinegar and the minus perturba-
tions. Quartz is an HFEv- based signature scheme introduced in [25] that generates practical signatures
of length 128 bits.

The ground field is Fo, with n = 103, D = 129, a = 3 equations removed, and v = 4 external vinegar
variables.

Quartz was first designed to achieve a security level of 280 bits. At present, the complexity of the best
known attack on Quartz is in 2%0 (see [27]).

More precisely, an evaluation of the direct Grébner basis attack gives the following » = 8 (since D = 129)
and dyeq = 7.

Therefore, the complexity of a Grébner basis computation is in (1$O)w. This leads to a complexity of 2827
when w = 2.37 (and 2%°-® when w = 2, however w = 2.37 is probably more realistic).

The complexity of finding the secret key is much higher due to the difficulty of solving a MinRank instance
that can be evaluated to be about 263 in this case.

At present (2020), and by using Magma, the time required to compute the roots of a polynomial of degree
129 over Fyi0sis nearly 0.095 s.
With the improvement given in GeMMS [19], the time complexity is 23 times smaller: 4.1 ms (see Appendix

D).

Quartz for encryption

The trapdoor used in Quartz is designed for signatures purposes. However, since that the time complexity
is of 4.1 ms which is relatively small, then it is possible to consider using Quartz for an encryption scheme.
Then, the time to decrypt will be 27 x 0,095 s = 12.1 s with Magma, and about 0.5 s with the improved
algorithm.

Nevertheless, we are mainly interested in short signature, then only the signature version of Quartz will
be considered.



Quartz for signatures

Quartz employs the so-called “Feistel-Patarin” (see [24]) mode of operation in order to be able to sign
messages of any length.

Remark 9 In some cases, the value Y = SlowHash(M) to sign has no solution, and one must try again.

This case occurs with probability of nearly 1/e, i.e. about 36,79%. Then, it is convenient to compute Y =
SlowHash(U||M ), where U takes the values 0, then 1, 2 etc. until a solution is found.

The value U can be added to the signature in order to accelerate the signature verification process (this
method was employed in Quartz and GeMMS). Since the goal is to have ultra-short signatures, we will
prefer to keep U, so the various values of U will be tested while checking the signature .

In this section, we will modify the scheme by using the “Slow hash” mode instead of the Feistel-Patarin
mode.

All the parameters of Quartz will remain the same, the only difference is that another mode of operation
called “Slow mode” will be used.

The time required to sign a message will then be much bigger, but the signature will be shorter.
As seen in Section (10.3.2.1} the “Slow mode” operation involves the following two ideas:

1. The use of a slow Hash function in order to avoid the birthday paradox that finds collisions on the
hash values.

2. Not all of the bits that constitute the HFEv- signature will be revealed. The missing bits can be
recovered by using the public key and a Grébner basis computation.

Several tests were performed by using the Magma calculator (Magma V2.25-4). This version of Magma
is limited to two minutes of computation and 300 M Bytes of RAM.

The time required on Magma to solve a system of n = 100 quadratic equations over Fy with s variables is
in:

s = 15 variables: 8,13 ms

s = 16 variables: 10,6 ms

s = 17 variables: 16,5 ms

s = 18 variables: 26,8 ms

s = 19 variables: 45 ms

s = 20 variables: 75,0 ms

s = 21 variables: 0,125 s

s = 22 variables: 0,198 s

s = 23 variables: 0,32 s

s = 24 variables: 0,89 s (or 0,64 s from s = 23)
s = 25 variables: 1,7 s (or 1,28 s from s = 23)
s = 26 variables: 3,36 s (or 2,56 s from s = 23)
s = 27 variables: 6,53 s (or 5,12 s from s = 23)
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s = 28 variables: 12,6 s (or 10,2 s from s = 23)
s = 29 variables: 23,9 s (or 20,4 s from s = 23)
s = 30 variables: 40,9 s

When s = 30, the best way is maybe to perform an exhaustive search on 7 variables and to use the fact
that only 0, 32 s is needed to find the remaining 23 variables.
Therefore, less memory will be used while keeping nearly the same required time.

We present parameters for a “Slow-Quartz” solution based on a previous Quartz function mixed with our
new slow hash mode, and with 16 independent public keys.
The parameters are given below in Table [F.6}

Slow-Quartz 80 bit Security

Signature Size | Public Key Size
(bits) (KBytes)
28100 |3 |4 803 30 | 77 1128

qglr|m a | v | Complexity | s

Table B.1: “Slow-Quartz” parameters

If having 41s as the required time to verify a signature is not an issue, then the signature’s length is given
by 103 (value of n) + 4 (external vinegar) — 30 (fixed variables) = 77 bits (Instead of 128 bits for the initial
Quartz signature).

However, in order to be able to sign messages of any length, one must check if the results of the “Slow
Hash mode” are acceptable. The following holds:

w = log,(100.100.101/2) = 18.94, A = mlogy(q) + w — 123 = —4.06

Then, by considering our “Slow mode”, a hash of 249 minutes ( 16 minutes) is required. Or, a hash of
one minute and 16 independent public keys. Also, a hash of 4 minutes and 4 independent public keys can
be used.

Next, our proposition “Slow-Quartz” will be compared to the original Quartz (we present here the solution
with 16 independent public keys):

Quartz (s = 0, Feistel-Patarin mode)

Length of the public key: 70.5 kBytes

Time to sign: 6 x 4.1 ms = 24.6 ms in average.
Time to check the signature: less than 1 ms
Signature length: 128 bits,

Expected security: 289 (with w = 2.37).

Slow-Quartz (s = 30, Slow Hash and Memory trade-off mode)
Length of the public key: 16 x 70.5 kBytes = 1.1 MBytes

Time to sign: 1.5 x 4.1 ms + 1 minute of slow hash.

Time to check the signature: 41 s + 1 minute of slow hash.
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Signature length: 77 bits,
Expected security: 289 (with w = 2.37).

Note that the results given in Table are slightly better than what is obtained with the original Quartz.
However, the Quartz parameters have been extensively studied, so it may be efficient to use these values.
Moreover, these parameters can be used for encryption schemes, not only to signatures ( see Appendix
B).

Signatures of 77 bits is not too far from being the best signatures schemes. However, in this work we
design schemes with even smaller signatures.

Moreover, we propose smaller signature with expected security of 28 bits, even by assuming w = 2, and
sometimes with smaller public keys.
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APPENDIX C

“Slow- GeMMS-128” signatures

GeMMS-128 [19] is an HFEv- signature scheme with an expected security of 2'2® bits on classical (non-
quantum) computers. It is a potential candidate to the Post-Quantum NIST competition.

GeMMS parameters are the following: ¢ = 2, n = 174, m = 162, a = 12, v = 12, D = 513 (so r = 10). It
employs four rounds of the Feistel-Patarin mode of operation. The length of the signature is in 258 bits.
The length of the public key is equal to 352 KBytes.

Next, we consider our proposed mode of operation, the so-called “Slow Hash and Multiple public keys”,
instead of the Feistel-Patarin mode, with exactly the same HFEv- parameters.

Here A = m — 219 + logy,(m3/2) = 162 — 219 + 21 = —36. This value of A is so negative that it gives
unrealistic size for the public key (nearly 22528 Terabyte), with computations of about one minute, and a
signature size of 152 bits (with s = 34 variables to be found using the 162 quadratic equations).

Some trade-offs exist in order to reduce the huge size of the public key. For example by increasing the
time required to sign, or by using more than one computer in a given time (parallel computing), but here
it seems that it's more reasonable to increase the number m of equations in order to have a smaller A:
the parameters of GeMMS-128 are well suited for the Feistel-Patarin mode, but not well suited for our new
mode of operation.

For example, as cited before, with ¢ = 2, m = 198, a +v = 11, the signature is of 173 bits with an expected
security of 213! bits.

Here the length of the signature, 173 bits, is larger than what might be obtained by using with Slow-GeMMS
(152 bits with a huge public key), but significantly smaller than the classical GeMMS (258 bits).






APPENDIX D

Berlekamp algorithm, and roots finding
with Magma

Berlekamp algorithm.

The Berlekamp algorithm is generally used to find the roots of a polynomial of degree D over F,. for

typical cryptographic values.

The algorithm is divided into two main steps: the computation of the Frobenius application, and the com-

putation of a GCD.

The complexity of the first step that demands the computation of the Frobenius is in O(nD log?(D)) (when
D is larger than n). The complexity of the second step is in O(n.D?). (Asymptotically the complexity is in
O(nD), but from a practical point of view the asymptotic algorithms are not expected to be useful for our

parameters).

The tables given below provide the time required by Magma to find the roots of a polynomial of degree D

over Fyn.
g=2, n=103
D 5 9 17 33 65 129 257 | 513
Time (ms) | 1.13 | 2.06 | 5.05 | 13.3 | 40.8 95 260 | 430
D 1025 | 2049 | 4097 | 8193 | 16385 | 32769
Time (s) 1.1 4.4 9.8 21.0 | 45.5 98.3

Table D.1: Time to compute roots of a polynomial of degree D, ¢ = 2, n = 103.

Remark 10 /n Table[D.1] D = 129 (parameter of Quartz) gives 95 ms. If the improved software of GeMMS
is used, then the time required becomes 4.1 ms (i.e. 23 times faster than Magma) or 11,2 MegaCycles.

q=4, n=47
D 17 65 257 1025
Time (ms) | 429 | 31.2 140 650
D 4097 | 16385 | 65537
Time (s) 217 | 134 80.6

Table D.2: Time to compute roots of a polynomial of degree D, ¢ = 4, n = 47.



g=5, n=43

D 6 26 126
Time (ms) | 20.2 | 76 840
D 626 | 3126 | 15626
Time (s) 45 | 174 | 117

Table D.3: Time to compute roots of a polynomial of degree D, ¢ = 5, n = 43.

g=7, n=40
D 8 50 344
Time (ms) | 9.35 | 105 1630
D 2402 | 16808
Time (s) 10.2 | 110

Table D.4: Time to compute roots of a polynomial of degree D, ¢ = 7, n = 40.

g=11, n=35
D 12 122 1332 14642
Time | 15ms | 360ms | 11.7s | 86.9s

Table D.5: Time to compute roots of a polynomial of degree D, ¢ = 11, n = 35.

q=13, n=35
D 14 170 2198
Time | 23 ms | 540 ms | 11.4 s

Table D.6: Time to compute roots of a polynomial of degree D, ¢ = 13, n = 35.

q=17, n=33
D 18 290 4914
Time | 55ms | 1680 ms | 29.2 s

Table D.7: Time to compute roots of a polynomial of degree D, ¢ = 17, n = 33.
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APPENDIX E

Our Magma simulation on the direct attack
against HFEv-

E.1 Experimental results for public equations of degree 2

Note that the computations are considered over a finite field F,, where m is the number of quadratic
equations, and v is the number of vinegar variables (so, the total number of variables is m + a + v vari-
ables). The number of removed equations is denoted by « (initially, there was m+a equations and now m).

Considering a random system of quadratic equations, the degree of regularity denoted by d,.., verifies the
following:

o lfn<qgthend,,=n+1

e If n > ¢ then, we estimate that d,.g = ¢+ 1+ (n—¢—1).awith a =~ 0.19 for ¢ = 3, a = 0.2 for ¢ = 5,
a~0.33forq="7, a~0.40 for ¢ = 13, a =~ 0.41 for ¢ = 17.

For HFEv- systems, we have got the following results using Magma:

q=3,m =17, D = 4 (so here r = 2, and there are two monomials X2 and X*). Here, the degree of
regularity is d,cgmaz = 7.

v=0anda=0:dp =4

v=0anda=1:dye =
v=0anda=2:d
v=0anda=3:d
v=landa=0:dyg =4
v=2anda =0 :dpey =
v=3anda=0:d

g=3,m=16,a =v =0 (nude HFE)
r =3 dreg =4

r=4 deg =25

r =5 deg =6 (Max)

q=4,m=14,a=v =0 (nude HFE)
r=3: dreg =06
r=4:>dreg =06



r=05":deg =7 (Max)

g =5, m = 13, D = 6 (there are here two monomials X2 and X5). Here, the degree of regularity is

dregmaac = 8.

v=0anda=0:dy =06
v=0anda=1:dwg =7
v=0anda=2:d, =8 (Max)
v=landa=0:dwy =7
v=2anda=0:d =8 (Max)
v=1landa=1:d, =8 (Max)

E.2 Experimental results for public equations of degree 3

qg=3,m =11, a =v =0 (nude HFE with public equations of degree 3)

r=2dreg =4
r=3: dreg =25
r=4:>dreg =06
r=5"dreg =7 (Max)

r=2 dreg =25
r=3">dreg =06
r=4:dreg =38
r=>5dreg =38
r=6:dreg =9 (Max)
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APPENDIX F

Résumeé en Francais: Analyse et
conception d’algorithmes de
cryptographie post-quantique

La cryptographie est une méthode de protection des informations et des communications par le biais de
codes. C’est la science mathématique permettant d’assurer la confidentialité, I'intégrité et I'authenticité
des données en présence de tiers malveillants appelés adversaires.

Les algorithmes cryptographiques sont en outre classés en trois catégories distinctes en fonction du
nombre de clés utilisées pour le chiffrement et le déchiffrement:

e Cryptographie symétrique ou cryptographie a clé privée / secréete (SKC, Secret Key Cryptography ):
La cryptographie a clé symétrique permet I'utilisation d’'une seule clé commune pour les processus
de chiffrement et de déchiffrement a la fois. Lexpéditeur et le destinataire doivent partager la méme
clé (qui reste secréte pour les autres parties) ou, rarement, des clés différentes mais liées d’'une
maniere simple et calculable.

Linconvénient majeur de la cryptographie symétrique est 'échange sécurisé de la clé secrete util-
isée par les deux parties pour le chiffrement et le déchiffrement également. Le probléme de la distri-
bution des clés donne naissance a un nouveau type de cryptographie: la cryptographie asymétrique.

e Cryptographie asymétrique ou cryptographie a clé publique (PKC, Public Key Cryptography): la
cryptographie a clé publique permet l'utilisation de deux clés différentes pour les processus de
chiffrement et de déchiffrement.

Chaque partie posséde une paire de clés (une clé publique et une clé privée). La clé privée doit
rester secréte a tout le temps, alors que la clé publique correspondante peut étre librement partagée
sur le réseau.

La clé publique est utilisée pour le chiffrement, par contre la clé secréte est utilisée pour le déchiffre-
ment. En signature, la clé secrete est utilisée pour signer les messages.

e Fonctions de hachage: une fonction de hachage est une fonction congue pour prendre comme en-
trée une donnée de taille arbitraire, et lui associer une image (une valeur de hachage) de taille fixe.
Le concept des fonctions de hachage dépend d’une propriété essentielle: il est pratiquement im-
possible d’inverser la fonction, par contre le calcul direct d’'une image par cette fonction s’effectue
facilement.

La cryptographie a clef publique est un pilier de la cybersécurité que nous utilisons quotidiennement pour
garantir la confidentialité des communications électroniques (via https, IPSEC, VPN, SSH. . .).



La sécurité des protocoles que nous employons en pratique repose essentiellement sur la difficulté math-
ématique de deux problémes : le logarithme discret (DLOG) et la factorisation des entiers (FACT).

Il est bien connu qu’une percée technologique comme la construction d’'un ordinateur quantique remettrait
en cause la difficulté de ces deux problémes [64] ; rendant ainsi complétement obsoléte des primitives
comme le chiffrement a clef publique RSA ou I'échange de clef Diffie-Hellman. Il est difficile d’imaginer
la situation de panique que pourrait engendrer I'annonce de la conception d’ordinateurs quantiques puis-
sants.

En effet, il est trés probable que 'ensemble des canaux de communications électroniques soient paralysés
ainsi que les transactions bancaires. Nous ne sommes heureusement pas dans cette situation, mais il
semble maintenant indispensable d’anticiper dés aujourd’hui un tel basculement technologique.

Lobjet de la cryptographique post-quantique est de concevoir des cryptosytemes a clefs publiques qui
sont résistants aux attaques classiqgues comme quantiques. C’est un sujet d’étude classique qui a débuté
rapidement apres I'algorithme de Shor [64]. Cette branche de la cryptographie repose, en particulier, sur
I'hypothése fondamentale qu’il n’existe pas d’algorithme polynomial quantique pour résoudre les prob-
[émes NP-durs [8].

Les cryptosystémes post-quantiques les plus prometteurs [36] incluent : les cryptosystémes multivariés,
les cryptosystémes a base de codes, les cryptosystémes a base de réseaux qui sont basés sur la diffi-
culté de trouver un vecteur court dans un réseau Euclidien, les cryptosysteme a base des isogénies sur
les courbes elliptiques supersingulieres, et les cryptosystémes a base de hachage qui utilisent la difficulté
de trouver une collision, ou une pré-image, d’'une fonction de hachage.

De nombreux indicateurs démontrent que I'effort pour développer des cryptosystémes post-quantiques
s’intensifie actuellement. Lindicateur le plus significatif est certainement la nouvelle position de 'organisation
de standardisation américain |https://csrc.nist.gov/l Il est donc probable que la cryptographie post-quantique
envahisse notre quotidien ces prochaines années mais le type de cryptographie post-quantique qui sera
utilisé reste encore lui a définir. On peut donc anticiper une tres forte activité, académique comme indus-
trielle, dans le domaine ces prochaines années. Nous assistons en effet au renouvellement des piliers
mathématiques fondamentaux de la cybersécurité.

Le but de cette thése est d’'une part d’analyser la sécurité des cryptosystémes post-quantiques. D’autre
part, nous allons proposer de nouveaux schémas de signature post-quantiques. Ceux-ci seront de type
multivariés ou plus généralement basés sur des problémes NP-dur.

La théorie de la complexité cherche a classer les problemes de calcul selon leur difficulté intrinseque.
Plus précisément, la classification s’effectue au niveau de la quantité de ressources (espace mémoire,
temps, etc.) requise par un algorithme pour résoudre un probléme algorithmique.

La classe NP-dur est une classe de complexité comprenant des problémes mathématiques dont la diffi-
culté n’est a priori pas remise en cause par 'émergence d’'une ordinateur quantique [41].
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En 1989, A. Shamir a introduit un schéma a clé publique d’une nouvelle nature [63], un schéma d’identification
a divulgation nulle de connaissance (Zero-Knowledge ZK), basé sur le probleme PKP: le probléeme du
noyau permuté PKP (Permuted Kernel Problem).

PKP est un probléme algébrique NP-dur [36] qui a été largement étudié [6, 37, 40, |57, 60]. Malgré I'effort
de recherche, le probléme PKP reste toujours exponentiel. Ce probléeme a été utilisé pour développer un
schéma d’identification (IDS) qui a une implémentation trés efficace sur les cartes a puce a faible colt [63].

Comme les ordinateurs quantiques sont censés étre incapables de résoudre des problemes NP-dur, les
problemes algébriques tels PKP sont tres intéressants de nos jours.

F.1 Létude du probleme PKP

F.1.1 Introduction du probleme

Le probleme PKP (Permuted Kernel Problem) est un probleme algébrique prouvé NP-dur [36]. Il consiste
a trouver un vecteur noyau, sous une contrainte de coordonnées, d’'une matrice donnée. C’est un prob-
léme simple, et nécessite seulement des notions et des opérations basiques de 'algebre linéaire.

PKP est une généralisation du “Partition Problem” |36, pg.224]. Plus précisément, il est défini ainsi:

Donnée. Un corps fini IF,,, une matrice A € M, (F,) et un n-vecteur Ve F,".
Question.Trouver une permutation 7 de n éléments sachant que A x V; =0, ou
Ve = (Vﬁ(j)),j =1,...,n.

Une réduction du “3-Partition Problem” prouve que PKP est un probleme NP-dur [36].

En fait, la solidité de PKP provient, d’'une part, du grand nombre de permutations possibles, d’autre part,
du petit nombre de permutations pouvant convenir aux équations du noyau. Plus précisément, PKP est
difficile car on oblige le choix d’'un vecteur-noyau de la matrice A, sous la condition que les coordonnées
du vecteur sont déja fixés.

F.1.2 Lanalyse des attaques

Lefficacité de 'implémentation du premier IDS, proposé par A. Shamir [63], basé sur le probleme PKP a
conduit a plusieurs outils de résolution. En fait, il existe diverses attaques contre PKP [6, 37, |40, 57, 60],
qui sont tous exponentiels.

A titre de référence, nous mentionnons la recherche exhaustive consistant a examiner toutes les permu-
tations possibles. Sa complexité est évidemment en n!.

J. Georgiades a été le premier a améliorer la recherche exhaustive dans [37]. Lidée de base est de trou-
ver de nouvelles équations afin de réduire 'ensemble des permutations possibles. Ces équations seront
utilisées par toutes les autres attaques.
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Les auteurs de [6] étudient également la sécurité de PKP, ou un compromis temps-mémoire a été intro-
duit. Le schéma proposé dans [6] réduit le temps et I'espace nécessaires pour résoudre le probleme PKP.

De plus, J. Patarin et P. Chauvaud améliorent les algorithmes du probléme du noyau permuté [57].

Les auteurs de [6] réduisent le temps nécessaire pour résoudre le probleme PKP au prix de I'utilisation
d’'une mémoire considérablement volumineuse. Par conséquent, J. Patarin et P. Chauvaud combinent la
méthode présente dans [6] avec l'idée de J. Georgiades. Ainsi, I'ajout des équations de J. Geogiades
conduit a une réduction du temps nécessaire pour attaquer PKP. lls présentent également de nouvelles
idées afin de réduire I'utilisation de la mémoire.

Dans [40], A. Joux et E. Jaulmes introduisent un nouvel algorithme de compromis temps-mémoire qui est
une application au probléme du noyau permuté de I'algorithme décrit dans [42] pour la résolution d'un
probléeme nommé 4SET [42, 40].

La stratégie de résolution de 4SET est composée de deux phases: la phase A qui est une étape de
précalcul, et la phase B qui est une boucle principale composée de deux étapes d’énumération. Les
auteurs de [42] spécifient un choix raisonnable de parameétres pour la technique de résolution de 4SET
appliguée a PKP.

lls supposent avoir la plus meilleure attaque contre PKP. En fait, les auteurs de [40] supposent que la
phase-B contr6le la complexité temporelle de I'algorithme de Joux-Jaulmes qui consiste en deux phases
d’énumérations: Phase-A et Phase-B.

F.1.3 Sécurité concréete du probléeme du noyau permuté PKP

Dans cette section, nous présentons une des principales contributions de cette thése. Lobjectif ici est
double: corriger la borne de complexité de l'algorithme de Joux-Jaulmes, et fournir la meilleure méthode
connue pour résoudre PKP.

F.1.3.1 Analyse de complexité de I'algorithme de Joux-Jaulmes

Comme indiqué précédemment, il est possible de réduire une instance de PKP au probleme 4SET. A.
Joux et E. Jaulmes ont prouvé qu'il est possible d’appliquer la stratégie de résolution de 4SET a PKP.
Lalgorithme de Joux-Jaulmes consiste en deux phases, et ils supposent que la phase B contréle la com-
plexité temporelle de leur approche.

La premiere chose que nous examinons essentiellement est 'analyse de la complexité du probleme PKP.
Nous analysons les méthodes les plus connues pour le résoudre.

En utilisant un code MAGMA (logiciel de calcul formel) pour comparer les différentes attaques, nous con-
statons que la complexité globale de I'algorithme Joux-Jaulmes est mal estimée.

En considérant un choix raisonnable de paramétres, il s’avére que la complexité temporelle de I'algorithme
est dominée dans la plupart des cas par la phase A au contraire a ce qui a été indiqué dans [40].

Le tableau suivant confirme que la complexité globale de I'algorithme est dominée par la phase A.
Notez que, nous utilisons ici les mémes ensembles de paramétres, de la forme (PK P,(m,n)), donnés
dans [40].
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Parametres Phase A Complexité | Phase B Complexité | Complexité globale
(PKP251 16 32)) 245.72 218.02 293.55
(PKP251(15 32)) 946.13 918.02 993.96

(PK Pys51(24,48)) 29445 232.09 1901

(PK Pys51(34,64)) 9135.67 50,67 270,19

Table F.1: La complexité des Phase A/B de I'algorithme Joux-Jaulmes

Les résultats expérimentaux montrent que pour un choix raisonnable des parameétres, la phase A domine,
et la complexité globale est beaucoup plus élevé. Par conséquent, I'algorithme Joux-Jaulmes n’est pas
un outil efficace pour résoudre PKP.

F.1.3.2 l'algorithme le plus simple et le plus efficace

Nous essayons d’estimer une borne de complexité explicite des algorithmes qui servent a résoudre PKP.

Amélioration et généralisation d’attaques déja existantes.

Comme déja mentionné, la méthode de compromis temps-mémoire présentée dans [6] réduit le temps
nécessaire pour résoudre le probléme PKP au prix de I'utilisation d'une mémoire trés volumineuse.

Il est possible de réduire le temps de calcul en effectuant un pré-calcul sur un ensemble de recherche
plus petit impliqguant une sous-matrice A et le sous-systeme correspondant.

J. Patarin et P. Chauvaud combinent cette méthode avec les équations de J. Georgiades dans [57]. Par
conséquent, I'ajout de ces équations conduit a une réduction du temps nécessaire pour attaquer PKP. lls
présentent également de nouvelles idées afin de réduire 'utilisation de la mémoire.

G. Poupard, dans [60] donne une belle généralisation de la méthode utilisée par J. Patarin et P. Chauvaud,
et une analyse de complexité correspondante, mais elle semble imparfaite car les détails de la complexité
ne sont pas clairement donnés.

Ainsi, nous considérons toutes les attaques existantes et leurs améliorations afin d’obtenir une évaluation
plus précise et récente sur I'algorithme le plus efficace pour résoudre PKP.

Notre méthode: Extension des attaques les plus efficaces.

Nous combinons la plupart des méthodes précédemment connues pour résoudre PKP. Nous avons fourni
un nouveau logiciel (voir [A) qui produit une mesure de complexité efficace, et nous établissons des ap-
proximations pour la complexité en temps et en espace mémoire (voir[8.6] et[8.7).

Notre méthode s’appuie principalement sur les travaux de Patarin-Chauvaud [57] et Poupard [60], combi-
nant leurs techniques et poussant plus loin I'implémentation pour maintenir des niveaux de sécurité plus
élevés.

Aprés avoir ainsi obtenu une image réaliste de l'efficacité et de la complexité de presque toutes les
méthodes connues pour résoudre PKP, nous comparons les performances de chaque technique.
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Par conséquent, il est possible de définir désormais des ensembles de paramétres sécurisés pour les
instances PKP.

Le tableau suivant montre que I'attaque la plus efficace pour résoudre PKP est notre version étendue de
Patarin-Chauvaud [57] et Poupard [60].

Parametres (PK P»51(41,69)) | (PK Ps09(54,94)) | (PK Pyo93(47,106))
Niveau de securité 2128 2192 2256
Recherche exhaustive 2326 2485 2565

attaque de J. Georgiades 2151 2236 2356
Temps-mémoire compromis 2131 2196 2262

attaque de Joux-Jaulmes 2286 2413 2432

Notre version étendue 2130 2193 2257

Table F.2: Borne de complexité pour les meilleurs attaques contre PKP

F.1.4 Conclusion

Nous avons examiné les méthodes les plus connues pour résoudre PKP. Nous avons brievement présenté
chacun d’eux et mis a jour certains résultats qui n’étaient pas exacts.

Plus précisément, nous avons trouvé que l'algorithme de Joux-Jaulmes ne représente pas la meilleure
technique pour résoudre le probléeme du noyau permuté.

En combinant des méthodes, a savoir I'approche de Patarin-Chauvaud et Poupard, nous avons pu fournir
une formule de complexité explicite du meilleur algorithme pour résoudre des instances dures de PKP.
Aussi, nous avons construit un programme donnant une image réaliste du niveau de sécurité des in-
stances PKP.

Ce programme est trés utile pour établir des ensembles sécurisés de parameétres afin de créer des in-
stances de PKP difficile a résoudre.
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F.2 PKP-DSS: Schéma de signature basé sur PKP

Nous sommes intéressés par la conception de signatures post-quantiques construites a partir de sché-
mas d’identifications a divulgation nulle de connaissance basés sur des probléemes NP-dur, comme par
exemple le probléme de noyau permuté PKP.

Pourquoi PKP

Ce probléme a été utilisé pour développer le premier schéma d’identification (IDS) dont 'implémentation
est efficace sur les cartes a puce a faible co(t.

La principale raison d’étudier PKP est de construire un schéma de signature basé sur un simple probleme
NP-dur. Par conséquent, nous étudions I'application en cryptographie du probleme PKP sur un corps fini.

Nous sommes essentiellement concernés par ce probléme car depuis peu de temps, aucune attaque
sur PKP n’a été signalée, ce qui rend la construction de systémes basés sur des instances dures de ce
probléme plus applicable, et il est possible d’obtenir a partir de PKP des performances tres intéressantes.

Un schéma a divulgation nulle de connaissance

Un protocole a divulgation nulle de connaissance (Zero-Knowledge ZK) implique une interaction entre
deux entités: un prouveur P et un vérifieur V, ou P, utilisant une clé secréte, prouve la possesion d’'un
secret a V qui ne peut pas, a son tour, le prouver a une autre personne, puisque le vérifieur ne possede
pas la clé secréte.

Suite a I'appel lancé par le NIST pour la standardisation de nouvelles normes post-quantiques, il y a eu
un regain d’intérét pour les schémas d’identification ZK transformés en schémas de signatures digitales
(DSS) via le paradigme de Fiat-Shamir [35]. Cette méthode de transformation est importante car elle
donne lieu a des schémas de signature efficaces en termes d’hypothéses de sécurité minimales et suff-
isantes.

Plus précisément, La transformation dite “Fiat-Shamir” est une technique permettant de convertir un
schéma d’identification a divulgation nulle de connaissance (schéma ZK) en un schéma de signature.
Le principe de la transformation de Fiat-Shamir est d’utiliser comme signature les éléments échangés
lors du déroulement d’un schéma ZK.

Cela permet d’obtenir un schéma dont la sécurité repose directement un probléme algorithmique pour
des instances aléatoires.

F.2.1 PKP 5-passes IDS

Dans cette section, nous présentons le schéma original d’identification PKP-IDS basé sur PKP [63]. Il se
compose de trois algorithmes probabilistes en temps polynomial IDS = (KEYGEN, P, V).

163



KEYGEN: Génération de la clé publique et de la clé secréte dans PKP-IDS.

Le prouveur P et le vérifieur V s’accordent d’abord sur un nombre premier p, et sur n, m, les dimensions
de la matrice A.
La clé publique dans PKP-IDS est une instance de PKP. Une solution a cette instance est la clé secréte.

Ainsi, le prouveur choisit un vecteur-noyau w € Ker(A), puis génere aléatoirement une permutation se-
crete de n éléments sk = 7 et termine en calculant v = w 1.
Nous résumons l'algorithme de génération de clé dans Alg.

Protocole d’identification a 5-passes: Prouveur P et Vérifieur V.

Le prouveur et le vérifieur sont des algorithmes interactifs qui réalisent le protocole d’identification en cing
passes.

Les cing passes se composent d’un engagement et de deux réponses transmises du prouveur au vérifieur
et de deux défis transmis du vérifieur au prouveur.

Le protocole d'identification est réesumé dans Alg.

Le schéma d’identification basé sur PKP vérifie les trois propriétés essentielles pour garantir la sécurité
contre les attaques passives d’'un schéma d’identification a divulgation nulle de connaissance ZK [63]:

e dureness: cette propriété garantit que le Prouveur P, qui posséde la connaissance du secret
avec une probabilité écrasante, sera en mesure de convaincre le vérifieur V d’accepter la preuve de
connaissance.

e Soundness: Le Prouveur P peut toujours anticiper le défi du vérifieur V' et générer une réponse
a envoyer. Ainsi, un prouveur non légitime, sans possession du secret revendiqué, est capable
de convaincre le vérifieur d’accepter une fausse déclaration avec une petite probabilité appelée
“soundness error k”.

Pour PKP-IDS, on a la valeur suivante « = %

¢ Divulgation nulle de connaissance ZK: La propriété de connaissance “zero-knowledge ZK” garan-
tit que le vérifieur V n’extrait aucune information au-dela du fait que la déclaration revendiquée par
le prouveur P est vraie.

F.2.2 La version optimisée de PKP-IDS

Nous décrivons brievement un certain nombre d’optimisations pour réduire le colt de communication du
schéma d’identification, ainsi que le colt de calcul des algorithmes.

Nous commencerons par expliquer quelques optimisations standard qui sont courantes pour les proto-
coles d’identification basés sur des preuves a divulgations nulle de connaissance zéro. Ensuite, nous
expliquerons quelques nouvelles optimisations applicables a PKP-IDS:
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e Hachage des engagements. Dans la phase d’engagement du protocole, au lieu de transmettre
tous les engagements, le prouveur peut simplement hacher tous ces engagements avec une fonc-
tion de hachage résistante aux collisions et ne transmettre que le hash. Avec cette optimisation,
nous réduisons de moitié le nombre d’engagements communiqués.

e Utiliser des graines et Pseudo Random Generators PRG. Au lieu de choisir directement la per-
mutation au hasard, nous pouvons choisir une graine aléatoire de X bits (ou A est le niveau de
sécurité requis) et utiliser un PRG pour étendre cette graine en une permutation. De cette fagon, au
lieu de transmettre la permutation elle-méme, nous pouvons simplement transmettre la graine de A
-bit qui est normalement de taille plus petite que la permutation.

e Matrice A sous forme systématique. C’est une optimisation spécifigue a PKP-IDS. Avec une
forte probabilité, nous pouvons effectuer des opérations élémentaires sur la matrice A et la met-
tre sous une forme spéciale, forme systématique, sans affecter la sécurité du schéma. Cette op-
timisation rend le protocole plus efficace et rend aussi les opérations mathématiques comme la
multiplication plus rapide.

e Optimisation de la génération de clé. Il n'est bien sir pas trés efficace d’'inclure dans la clé
publique la matrice A. En effet, c’est une grande matrice. La premiére idée est de choisir simple-
ment une graine aléatoire et d’utiliser un PRG pour développer cette graine afin d’obtenir la matrice
A de n colonnes et m lignes. Cependant, nous pouvons faire un peu mieux que cela. Nous pou-
vons utiliser une graine pour générer A * qui est formée par les premiéres n — 1 colonnes de A
et le vecteur v. Ensuite, nous choisissons une permutation aléatoire w, et nous résolvons pour la
derniére colonne ¢ de A telle que v, soit dans le noyau de A. Désormais, la clé publique se
compose uniqguement d’une graine et d’'un vecteur de longueur m.

Un autre avantage important de cette approche est que nous n’avons pas besoin de faire une
élimination gaussienne de cette fagon (c’était la motivation derriére cette optimisation). Ainsi, la
procédure de génération de clé de la version modifiée est donnée dans Alg.

Une autre modification essentielle est présentée dans Section

La version modifiee de PKP-IDS vérifie également les propriétés d’un schéma d’identification a divulga-
tion nulle de connaissance, mais cette fois-ci avec un “soundness error” k = 2])’%2.

Il est possible de répéter I'exécution du schéma d’identification de N tours afin de minimiser la valeur de «.

Cout de communication de N tours de I'IDS optimisé.

Sachant que le niveau de sécurité requis est de 2* bits, la phase d’engagement consiste en une seule
valeur hachée de 2\ bits. La premiére réponse est constituée de N vecteurs de longueur n sur [, donc
cela colte Nn[log, p] bits.

Enfin, les réponses finales étant composées de N graines aléatoires de taille A, de N engagements (qui
se composent de 2\ bits chacun) et de N chaines aléatoires d’engagement (qui se composent de \ bits
chacun), cela colte 4N X bits de communication.

Au total, le colt de communication est de 2\ + N (n[log, p] + 4\) bits.
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F.2.3 PKP-DSS: un schéma de signatures basé sur PKP

Nous présentons dans cette Section une contribution principale de ce travail qui est de construire un
schéma de signature digitale (Digital Signature Scheme DSS), basé sur le probleme PKP, a partir de I'IDS
optimisé défini dans la Section précédente.

Il s’agit simplement d’une application directe de la célébre transformation Fiat-Shamir [35].

Lalgorithme de génération de clé est identique a l'algorithme de génération de clé pour le schéma
d’identification.

Pour signer un message m, le signataire exécute la premiére phase du schéma d’engagement pour
obtenir un engagement com. Puis, il dérive le premier défi ¢ = (c1, -+ ,cn) de m et com en évaluant
une fonction de hachage #,(m||com). Ensuite, il effectue la phase suivante du protocole d’identification
pour obtenir les vecteurs de réponse rsp; = (z(1), ..., z(N)). Ensuite, il utilise une deuxiéme fonction de
hachage #, pour dériver le deuxieme défi b = (b1,...,by) de m, com et rsp1 comme Ha(m||com, rspy).
Puis, il termine le protocole d’identification pour obtenir le vecteur des secondes réponses

rspy = (rsp(l)’ e ,rsp(N))_

Ensuite, la signature est simplement composée de (com, rspy, rsp,).

Pour vérifier une signature (com, rspy, rsp,) pour un message m, le vérifieur utilise simplement les fonc-
tions de hachage #1 et H, pour obtenir respectivement c et b.
Ensuite, il vérifie que (com, c, rsp;, b, rsp,) est une transcription valide du protocole d’identification.

Les algorithmes de signature et de vérification sont affichés plus en détail dans les algorithmes 3 et 4.

PKP-DSS vérifie la propriété essentielle d’'un schéma de signature: Existential-Unforgeable under Cho-
sen Adaptive Message Attacks (EU-CMA) dans le modéle de I'oracle aléatoire.

En prenant en considération les meilleurs algorithmes pour résoudre PKP, on présente dans le tableau
suivant plusieurs ensembles de paramétres choisis pour trois niveaux de sécurité différents.

Ensemble de niveau de D n m Itérations | Complexité
parameétre Securité N d’attaque
PKP-DSS-128 128 251 69 41 157 2130
PKP-DSS-192 192 509 94 54 229 2193
PKP-DSS-256 256 4093 106 47 289 2257

Table F.3: Ensemble de paramétres pour PKP-DSS
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Tailles des clés et des signatures

Clé publique pk. Une clé publique se compose de la derniére colonne c2 de A et d’'une graine aléatoire,
qui est utilisée pour générer A* formée par tout sauf la derniére colonne de A et le vecteur v.
Par conséquent, la clé publique se compose de A + m|log,(p)| bits.

Clef secréete sk. Une clé secréte est juste une graine aléatoire qui a été utilisée pour I'algorithme de
génération de clé, elle se compose donc uniquement de \ bits.

Signature sig. Enfin, une signature consiste en N exécutions du protocole d’identification. Une tran-
scription du protocole peut étre représentée avec 2\ + N (n[log, p| + 4)), c’est donc aussi la taille de la
signature.

Dans le tableau suivant, nous résumons les tailles de clé et de signature pour les ensembles de parameétres
proposé dans la section précédente.

Niveau de Paramétres |sk| Ipk| |sig|
sécurité (p,n,m,N) Octets Octets KilOctets
128 (251,69,41,157) 16 57 20,4
192 (509,94, 54, 229) 24 85 45,2
256 (4093, 106, 47, 289) 32 103 81,1

Table F.4: Tailles des clés et des signatures pour PKP-DSS

F.2.4 Comparaison avec d’autres signatures existantes FS

Afin de démontrer l'efficacité de PKP-DSS et de comparer les performances du schéma aux autres sig-
natures Fiat-Shamir existantes, une implémentation en temps constant en utilisant le langage C a été
réalisée.

Le code de notre implémentation est disponible sur GitHub a [14].

Pour mesurer les performances de notre implémentation, nous avons mené des expériences sur un ordi-
nateur portable possédant d’'un processeur i5-8250U fonctionnant a 1,8 GHz.

Le code C a été compilé avec gcc version 7.4.0 avec I'option de compilation -O3.

Les nombres de cycles dans le tableau suivant sont des moyennes de 10 000 générations de clés, signa-
tures et vérifications.

Dans Table nous comparons PKP-DSS a MQ-DSS, Picnic et Picnic2. Nous pouvons voir que pour
tous les schémas, les clés publiques et secrétes sont toutes trés petites.

Les principales différences sont la taille et la vitesse de la signature. Par rapport a MQDSS, les tailles de
signature de PKP-DSS sont environ 30 % plus petites, tout en étant respectivement d’un facteur 14 (resp.
30) plus rapides pour la signature (resp. la vérification).

Par rapport a Picnic, les signatures PKP-DSS sont environ 40 % plus petites, et la signature et la vérifica-
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tion sont respectivement 4 et 9 fois plus rapides.

Par rapport a Picinc2, notre systéme est 153 et 170 fois respectivement plus rapide pour la signature et
la vérification respectivement, mais cela s’effectue au colt de signatures qui sont 50 % plus grandes.
Enfin, comparé a SUSHSYFISH, un autre schéma basé sur le probléme du noyau permuté, notre schéma
est 3,4 et 6,6 fois plus rapide, mais le colt de signatures est 45 % plus grand.

Niveau de Schéma Clé secrete Clé Signature Signer Verification
publique
sécurité (Octets) (Octets) (KOctets) | 106 cycles | 10° cycles
PKP-DSS-128 16 57 20.4 2.5 0.9
MQDSS-31-48 16 46 28.0 36 27
128 Picnic-L1-FS 16 32 33.2 10 8.4
Picnic2-L1-FS 16 32 13.5 384 153
SUSHSYFISH-1 16 72 14.0 8.6 6
PKP-DSS-192 24 85 45.2 5.5 2.1
MQDSS-31-64 24 64 58.6 116 85
192 Picnic-L3-FS 24 48 74.9 24 20
Picnic2-L3-FS 24 48 29.1 1183 357
SUSHSYFISH-3 24 108 30.8 22.7 16.5
PKP-DSS-256 32 103 81.1 7.4 3.5
256 Picnic-L5-FS 32 64 129.7 44 38
Picnic2-L5-FS 32 64 53.5 2551 643
SUSHSYFISH-5 32 142 54.9 25.7 18

Table F.5: Comparaison de différents schémas Fiat-Shamir post-quantique

Jusqu’a présent, il n’y a pas de versions quantiques des attaques connues sur PKP, et puisque ce prob-
léme est connu d’étre NP-dur, alors que nous pensons que notre schéma est post-quantique.

F.2.5 Conclusion

Nous avons introduit un nouveau schéma de signature sécurisée post-quantigue PKP-DSS, qui est basé
sur un schéma d’identification PKP Zero-knowledge.

Nous avons optimisé ce schéma d’identification, et pour le rendre non interactif, nous avons utilisé la
transformation de Fiat-Shamir.

Nous avons développé une implémentation a temps constant de PKP-DSS et nous concluons que notre
schéma est compétitif avec d’autres schémas de signature post-quantique Fiat-Shamir tels que MQDSS,
Picnic / Picnic2 et SUSHSYFISH.

Les principaux avantages de notre schéma sont que la signature et la vérification sont beaucoup plus

rapides que les signatures FS existantes et que le schéma est trés simple a mettre en ceuvre.
Notre implémentation ne prend que 600 lignes de code C, y compris les commentaires et les lignes vides.
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F.3 Signature ultra-courtes de type multivarié

La cryptographie multivariée fournit des schémas cryptographiques a clé publique dont la sécurité repose
sur la difficulté de résoudre un systéme de polynémes multivariés de petits degrés sur un corps fini.
Divers schémas multivariés ont été cassés, alors qu'’il existe encore des schémas intéressants et résis-
tants aux attaques: typiquement des variantes de HFE (Hidden Field Equations) ou de UOV (Unbalanced
Oil and Vinegar) [25, 55, 45].

Le principal avantage de la cryptographie multivariée est qu’elle est historiquement connue pour son
efficacité a construire des schémas de signature courts. De plus, en plus d’'étre flexible en termes de
conception de schémas et de variantes distinctes, la cryptographie multivariée permet le développement
de schémas cryptographiques sur des petits corps comme par exemple Fs.

La famille des schémas de cryptographie basés sur HFE, proposé par J. Patarin [55], est 'une des famille
les plus connues et les plus étudiées parmi tous les cryptosystémes a clé publique multivariés. HFE peut
étre utilisé pour le chiffrement a clé publique et également pour les signatures, mais il est généralement
plus efficace pour les schémas de signatures.

La famille HFE impliqgue de nombreuses variantes en raison du fait qu’il est toujours possible d’appliquer
différentes modifications (a savoir les perturbations), et méme d’utiliser un corps fini différent (Fs est prin-
cipalement utilisé).

Compte tenu de I'existence de quelques algorithmes de temps quasi-polynomiaux pour attaquer “HFE
nu” (c’est-a-dire sans perturbations), il est fortement recommandé de toujours utiliser des perturbations
adaptées.

Plusieurs variantes du schéma HFE ont été proposées afin de renforcer la sécurité et de surmonter les
instances faibles de HFE nu, telles que HFEv- [56], Quartz [25] et GeMSS [19].

F.3.1 Signatures de type multivarié

Le processus classique de signature et de vérification d’'un schéma multivarié sur un corps fini F, néces-
site:

e Une fonction inversible 7* ayant une structure spéciale.

e Un isomorphisme canonique ¢ pour transformer la fonction 7* en une application quadratique F =
poF*ogp L

e Deux fonctions affines inversibles S, 7 : F™* — F™,; pour masquer la structure originale de F.

La clé publique d’'un schéma de signature multivariée est donnée par un ensemble de m polyndbmes en n
variables: P =SoFoT =So¢poF*o¢p toT :F" — F". Etla clé secréte est donnée par S, T et F*.
Afin de générer une signature multivariée d’'un message m, il faut procéder comme suit:

e Calculer une valeur de hachage du message d’origine h = H(m) a I'aide d’'une fonction de hachage
publiquement connue H : {0,1}* — F™.
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e En utilisant la décomposition de P, calculer S™'(h) = z et X = ¢~ ().
e Résoudre F(Y) = X en utilisant I'algorithme de Berlekamp (ou un analogue).
e Calculer p(Y)=ycFretz=T"(y).

Par conséquent, la signature du message m est z € F".

Afin de vérifier la véracité d’une signature z, il faut évaluer P(z) = b’ € F*. Si b’ = h tient, alors la
signature est acceptée, sinon elle est rejetée.

Lobjectif principal ici est de fournir des parametres afin d’avoir des signatures ultra-courtes. Nous nous
autorisons a ce que les algorithmes de signature et de vérification puissent nécessiter prés d’'une minute
de calcul sur un ordinateur moderne.

Afin de concevoir des schémas de signature sécurisés, plusieurs types d’attaques génériques doivent
étre pris en compte, essentiellement les attaques suivantes:

e l'attaque du paradoxe des anniversaires qui crée des collisions sur la sortie de la fonction de
hachage,

e l'attaque par les bases de Grdbner sur la trappe utilisée qui est un ensemble de m équations multi-
variées (généralement quadratiques) en n variables sur un corps fini F,.

e I'attaque qui consiste a trouver une faiblesse dans la fonction de trappe elle-méme. Dans notre
travail, la fonction employée est généralement basée sur HFE. Alors qu’on considere les attaques
possibles sur HFE.

Un mode d’opération définit la maniéere de traiter les textes en clair et les textes chiffrés au cours du pro-
cessus d’un algorithme cryptographique.

Plusieurs modes d’opérations ont été introduits pour éviter essentiellement I'attaque du paradoxe des an-
niversaires. On cite le mode Feistel-Patarin [56], Gui mode [58], UOV mode, Dragon mode [56], etc.

Dans cette thése, on développe de nouveaux modes d’opérations:

e Mode “Plusieurs clés publiques indépendantes”: Lidée principale de ce mode d’opération est d’utiliser
un ensemble de k clés publiques indépendantes. La nouvelle clé publique est 'ensemble de & clés
publiques précédemment calculées.

e Mode “Hachage lent” (également mode de compromis lent et plusieurs clés publiques): Lidée prin-
cipale est d’utiliser une fonction de hachage lente. Pour un niveau de sécurité donné, ce mode
d’opération est efficace tant que le temps requis par la fonction de hachage lente est acceptable.

F.3.2 Choix de paramétres pour des signatures ultra-courtes

Nous effectuons un grand nombre d’expériences en utilisant Magma avec une limitation a une minute de
calcul sur un corps fini F,, et nous définissons également différents ensembles de parametres pour les
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signatures ultra-courtes en prenant en compte tous les types d’attaques possibles contre les signatures
multivariées.

Ces expériences évaluent, pour différents niveaux de sécurité = 80; 90; etc., les valeurs minimales de m
nécessaires (lors de la résolution d’'un systeme aléatoire de m équations en m variables) pour atteindre
un niveau de sécurité de 2* bits. De plus, les tableaux fournissent le minimum m requis pour résoudre un
systeme de degré deux (resp. de degré trois) lorsque m — s variables sont trouvées en effectuant d’une
minute de calcul.

La taille de la signature est donnée par:

L := le premier entier supérieur ou égal a(m — s)logs(q),

le symbole «+» qui apparait dans les valeurs de L signifie que dans certains cas particuliers, comme
lors de I'utilisation d’'une fonction de trappe spécifigue ou méme lors de la prise en compte des attaques
génériques, la longueur de la signature L peut étre augmenté.

Notre solution candidate

Cette section fournit des ensembles de parameétres efficaces pour les signatures ultra-courtes sur un
corps F, lorsque la trappe utilisée est une fonction basée sur HFEv-.

Un schéma HFEv- est une combinaison de deux perturbations - (moins) et v (vinaigre) qui ne coltent
presque rien en signature.

Par conséquent, en considérant une trappe basée sur HFEv-, il faut d’abord fixer le degré D du polyn6mes
HFE, ensuite le nombre requis (et minimum) de variables de vinaigre v et les parameétres moins - peuvent
étre choisis aprés afin d’éviter les attaques directes.

Soit r = [log,(D)], et a le nombre d’équations omis avec la perturbation -, les complexités sont évaluées
en fonction de la meilleure attaque contre un schéma de signature multivarié basé sur HFEv-.

Sécurité de 80 bit

¢ | |m o | v | Complexité | s ;I';[[IIS? de signature ;I'zlcl)litg[z)publlque
2 16104 | 0| 0| 844 31|73 69.3
4 |9 |54 |[3]4]|816 23 | 76 24.9
5 |7 |47 |5]14]81.0 21 | 82 21.2
7 |6 [39 |5|5|802 19 | 85 16.3
8 |5 |38 |6]|5]80.1 19 | 90 17.0
115 |3 |6 |6]|837 19 | 97 16.6
134 |3 |7 |6]|837 19 | 108 18.6
16 |4 |33 |7 |6]|835 18 | 112 17.4
17|14 |33 |7|6]|835 18 | 115 17.8
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Securité de 90 bit

¢ | |m o | v | Complexité | f ;I';[[IIS? de signature ;I'slg:;es;:le publique
2 |16 [124 |1 |1 ]93.2 32 | 94 1211
4 |9 |64 |5|4]903 24 | 98 42.2
5 |7 |55 |6|6]937 22 | 105 355
7 |6 |46 |76 |929 21 | 107 27.9
8 |5 |43 |7|7]926 20 | 111 26.0
115 |41 |7]7]924 20 | 122 26.6
134 |39 |8|7]922 20 | 126 26.1
16 |4 |38 |8 |7 ]| 921 19 | 136 26.5
1714 |38 |8 |7]|921 19 | 139 27.1
Sécurité de 100 bit
¢ |r |m o | v | Complexité | s (Sblgg)ature Taille c(:}l(eOiL::tlls?ueTallle
2 |(16|144 1 2|2 |101.8 33 | 115 193.8
4 |9 |73 | 6|6 1029 26 | 118 65.2
5 (7 |63 |7|7]1023 23 | 126 53.6
7 |6 |53 |8 |7|101.5 22 | 130 42.6
8 |5 |50 |8|8]101.3 21 | 135 40.4
11 |5 |45 | 8|8 100.8 21 | 139 35.9
13|14 |44 |9 |8/ 100.7 20 | 152 37.5
16 |4 |43 | 9|8 100.6 20 | 160 38.4
1714 |43 |9 |8 100.6 20 | 164 39.2
Sécurité de 128 bit
¢ | |m o | v | Complexité | ;I'S[[IIS? de signature ;I'zlcl)litgiz)publlque
2 /116|198 |6 |5 |131.2 37 | 173 530
4 |9 [100|9 |9 | 1283 29 | 178 171.4
5 7 |87 |11 ]10 | 131.7 26 | 191 145.1
7 |6 |72 |11 ] 11| 130.8 25 | 194 110.1
8 |5 |68 |12] 11| 130.6 24 | 201 104.2
115 |59 |[12] 11 | 130.0 23 | 205 84.7
1314 |57 |[12| 12| 129.8 22 | 219 85.5
16 |4 |56 |12 | 12| 129.8 21 | 236 88.6
17 14 |55 (12|12 | 129.7 21 | 238 86.7
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Sécurité de 192 bit

¢ | |m o | v | Complexité | ;I'S[[IIS? de signature ;I'zlcl)litg![z)publlque
2 |16 325 |13 |13 | 1934 44 | 307 2450
4 |9 | 164 |17 |17 | 1944 32 | 332 788.8
5 |7 | 14218 | 18 | 193.6 30 | 344 641.2
7 |6 | 117119 |18 | 1924 29 | 351 478.5
8 |5 | 11019 ] 19| 192.0 29 | 357 444 1
11 |5 |96 | 19| 19| 1921 27 | 371 366.6
134 |89 |20 | 20 | 195.8 26 | 382 337.1
16 |4 |8 | 20| 20| 195.6 26 | 400 335.9
17|14 |85 | 20| 20| 195.6 26 | 405 334.0

Sécurité de 256 bit

¢ | |m o | v | Complexité | s ;I';[[Ilsi de signature '(I';lollitgﬁ)pubhque
2 |16 |451 |21 |21 | 2579 51 | 444 6704
4 |9 | 227 | 25|25 | 257.0 37 | 488 2134
5 |7 | 196 | 26 | 26 | 256.8 34 | 509 1715
7 |6 | 163 |27 | 26 | 256.7 32 | 517 1309
8 |5 | 152 |27 |27 | 256.2 30 | 528 1186
11 |5 | 132 |28 | 27 | 259.2 30 | 544 980
13 |4 | 123 | 28 | 27 | 256.7 29 | 552 885
16 |4 | 116 | 28 | 27 | 256.1 28 | 572 833
17 | 4 | 115 | 28 | 27 | 256.0 28 | 581 834

Dans 'annexe B}, une solution “Slow-Quartz” est présentée basée sur une fonction “Quartz” combinée
avec notre nouveau mode d’opération: hachage lent avec des clés publiques indépendantes.
Les parameétres sont donnés ci-dessous dans le tableau.

Slow-Quartz 80 bits de sécurité

Taille de signature | Taille clé publique
(bits) (KOctets)
281003 |4]803 30 | 77 1128

qglr|m a | v | Complexité | s

Table F.6: Paramétres “Slow-Quartz”
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F.3.3 Conclusion

A I'heure actuelle, les signatures a clé publique les plus courtes sont obtenues avec des schémas de sig-
nature multivariés avec une taille de signature généralement comprise entre 128 et 256 bits, et le temps
de signer et de vérifier le signature en millisecondes.

Dans cette thése, nous avons étudié comment concevoir des signatures encore plus courtes lorsqu’il n’y
a pas de probléme pour que les algorithmes de signature et de vérification nécessitent pres d’'une minute
pour étre exécutés.

Lidée principale pour avoir des signatures ultra-courtes est de prendre en compte les éléments suivants:
l'utilisation de fonctions de hachage trés lentes et aussi I'utilisation de nombreuses clés publiques in-
dépendantes.

Du coup et afin d’éviter I'attaque du paradoxe de I'anniversaire, nous avons également proposé de nou-
veaux modes d’opérations spécifiques tels que le mode d’opérations «Hashage lent» et « Plusieurs clés

publiques indépendantesy.

Nous avons proposé plusieurs ensembles de paramétres pour des schémas de signature dont la taille de
signature est beaucoup plus courte que les autres schémas de signatures de type multivarié.
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