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1
Introduction

The main topic of this PhD is the fusion of 3D point cloud and hyper-
spectral data for the extraction of geometric and radiometric features
of forest trees. In this introduction chapter, it is our main interest to
explain the importance of studying forests by establishing the mu-
tual influence with the environment and other life forms, including
the human activities along the time. That would be the starting point
to highlight the value of forests, in particular, mountain forests. We
describe the contribution of the remote sensing technologies to im-
prove the task of monitoring mountain forests at individual tree-level.
We introduce independently the benefits and shortcomings of LiDAR
and hyperspectral data, and how the integration of these two type
of data can solve the characterization of individual trees. We will
also give the details of the general organization of the manuscript by
answering the proposed research questions.
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Chapter 1. Introduction

1.1 Forest

Forests trees are the predominant terrestrial ecosystem that are distributed across the Earth.
According to the Global Forest Resources Assessment report presented by the Food and Agricul-
ture Organization of the United Nations (FAO) [1] in 2020, forest is defined as “Land spanning
more than 0.5 hectares with trees higher than 5 meters and a canopy cover of more than 10%, or
trees able to reach these thresholds in situ. It does not include land that is predominantly under
agricultural or urban land use" [2]. The world has a total forest area of 4.06 billion hectares (ha),
which represents 31% of the total land area [1, 3].

Although forests are not distributed equally among the world’s people or geographically, the
forest area is equivalent to 0.52 ha per person. Almost half the forest area is relatively intact, and
more than one-third is primary forest. Different ecozones at different latitudes and elevations are
formed distinctly [1]. The tropical forest has the largest proportion of the world’s forest area (45%)
near the equator, followed by the boreal near the poles, temperate at mid-latitudes, and subtropical
domains as it is illustrated in Figure 1.1. Higher elevation areas support forests similar to those at
higher latitudes, and the precipitation also affects forest composition.

1.1.1 The ancient relationship between forest and climate

Forest trees have played an important role in our planet’s life and environment evolution. The
world’s first trees dominated Earth in the Mid Devonian period, 393 - 383 million years ago [4,5].
Evidences from Catskill region near Cairo NY, USA, show extensive root systems containing the
genus Archaeopteris, a group that has much more modern characteristics, with leaves and root
systems comparable to subsequently dominant seed plants, such as spruces or pines. Paleontolo-
gist studies [6,7] point out that these trees formed the first forests that became crucial in absorbing
carbon dioxide from the atmosphere, adding oxygen to the atmosphere, affecting the climate and
influencing conditions that fostered the emergence of other life forms.

The Devonian Plant Hypothesis offers an explanation of environmental changes associated
with the evolution of forest trees [8]. Climate changes and mass extinctions occurred during the
late Devonian period due to the increase in plant material. This contributed to reducing global
temperatures, and potentially caused short but intense periods of glaciation. Archaeopteris might
have been able to form extensive forest ecosystems with properties such as 20 m height trunks
and 1.6 m deep root systems. This suggests Archaeopteris influenced the ecology of late Devo-
nian plant communities and Devonian landscapes, and probably played weathering role similar to
present trees [4].

Figure 1.1: Proportion and distribution of global forest area by climatic domain, 2020 [1].

2



1.1. Forest

Figure 1.2: An ancient and close relationship: Archaeopteris, the ancestors of modern forests
trees, influenced the environment of late Devonian period, which favored other life forms.

Nowadays, climate change is a topical issue discussed in the Paris agreement, where leaders
committed to limit global temperature rise well below 2.0 degrees Celsius [9]. This agreement sup-
ports the UN-REDD program, which is a collaborative initiative from United Nations on reducing
emissions from deforestation and forest degradation in developing countries [10]. It highlights the
enormous need of sustainable management of forests by leveraging the tree benefits in tempera-
ture moderation, air purification, biodiversity preservation and reduction of noise pollution [11]. In
this way, UN-REDD emphasizes the mitigation role of forest trees towards meeting up to a quarter
of greenhouse gas emissions reductions up to 2030 [12] for preserving life on Earth. Figure 1.2
presents this ancient interaction among forest trees, the environment and the human activities.

1.1.2 The need for forest mapping and management

From ancient times, the encounter between humans and forest trees has been complex. Trees were
tremendously relevant for almost all human activities: making clothes; providing food, fuel and
fodder; constructing houses; making tools, weapons and wheels; providing shelter and shade [13].
Studies from the Amazon forests reveal that Brazil nut tree growth reflects human occupation
intensity and management 400 years ago [14, 15]. When ancient humans constructed dwellings
within the forest, they created gaps in the canopy, allowing for additional light to cultivate preferred
species [15]. This confirms the influence of human populations and their management practices
for plant domestication, plant dispersal, forest management, and landscape alteration since the
time of native societies.

It is difficult to set up when forestry began. Agriculture and forestry initially evolved through
practical experience with results strongly influenced by physical conditions and existing cultural,
political, and economic factors. The roots of modern forestry and silviculture stem from devel-
opments in western Europe, from the late Middle Ages onward [16]. Forestry is defined as the
science, art, and practice of creating, managing, using and conserving forests and associated re-
sources for human benefit to achieve desired goals, needs and values [17]. A branch of forestry
is silviculture, which is a field of study that deals with the knowledge and techniques used to es-
tablish and manipulate vegetation and to direct stand and tree development to create or maintain
desired conditions [18].

3



Chapter 1. Introduction

Figure 1.3: Distribution of wood volume per species at the national scale in France according to
forest inventory memory released by the IGN (Institut national de l’information géographique et
forestière) in 2019 [19].

Globally, about 1.15 billion ha of forest is managed primarily for the production of wood and
non-wood forest products [1]. The wood volume provided from the mountain forests is 745 mil-
lions m3, which is equivalent to 31% of the total area in France [20, 21]. The forest inventory of
IGN [19] provides an estimation of the wood stock as it is presented in Figure 1.3. The volume
per hectare, deciduous volume or conifer volume can be derived through extrapolation of field in-
ventories. In the context of this project, mountain forests in metropolitan France call our attention
for three reasons: it is an important source of wood, which is superior that the national average;
it is a key element of the landscape, which is of enormous relevance for the inhabitants of these
territories [22]; and it is a biodiversity area hosting numerous endangered species. In alpine areas,
silviculture is mostly driven by large trees of certain species which value makes forest manage-
ment economically sustainable [23]. The ability to identify and characterize those trees in very
heterogeneous forests has great interest for forest operation planning [24].

Trees are renewable resources with an enormous impact to individuals and communities. From
an industrial point of view, the need of determining wood quality becomes imperative for the ser-
viceability of end products, and it is influenced by the forest management practices. Wood quality
can be quantified [25], for instance, the quality of structural timber can be described by the stiff-
ness, the straightness, and the stability; which are related to the wood density and driven by radial
(pith-to-bark) and axial (top-to-bottom) variations in cell anatomical and chemical properties [26].
Therefore, the final price and quality of the wood are associated to the knots, intermode length and
wood density. In fact, a good understanding of crown architecture can serve as a base to model the
wood quality [27].

FAO [1] defines an individual tree as “a woody perennial with a single main stem, or in the
case of coppice with several stems, having a more or less definite crown". Although this definition
denotes a compositional and structural description, it does not consider quantitative aspects such
as radiometric or geometric features. It reveals conceptual vagueness relative to an objective
physical property [28], which is not precise for inventory purposes. This leads us to quantify a
set of measurements in order to characterize trees, for instance: tree height, stem length, crown
length, diameter at breast height, and crown area [29]. From these measurements, it is possible to
estimate more complex tree variables such as above-ground biomass of trees [30, 31].

4



1.1. Forest

(a) Plot 3b (b) Plot 4

Figure 1.4: Forest inventory carried by the staff of INRAE (Institut national de recherche pour
l’agriculture, l’alimentation et l’environnement) in the site of Chamrousse in summer 2018.

1.1.3 The scope of forest inventories

The purpose of ensuring sustainable forestry management requires to assess the current forest con-
ditions, extent and quantity through inventory plots as we observe in Figure 1.4. Forest inventory
is used to understand the development of forest trees by estimating means and totals for measures
of forest characteristics over a defined area [32–34]. The possibility of monitoring individual tree
architecture has great potential [35, 36]. For instance, information on tree crown 3D architecture
will help researchers understand the mechanisms underlying competition and growth [37,38]. Be-
sides, the ability to monitor forest growth and mortality at the tree level will help forest managers
to understand and then prevent the effects of climate change on stand dynamics.

Our understanding of the effect of competition on tree growth is mostly based on field diameter
measurements [38]. Tree growth models are important tools to predict the development of each
tree within a forest [39]. This type of models consists of diameter and height increment functions
to forecast the growth and the mortality probability for each tree in a predefined time interval [40].
The tree growth is not independent of its neighbor’s growth. There is a competition for performing
photosynthesis and for accessing to the light and mineral nutrients. The link between the stand
level and the individual tree level can be given by important competition variables described by the
crown ratio and the open grown trees overlapping [41]. An accurate tree characterization provides
relevant inputs to support these deterministic models. Such knowledge will help forest managers
adapt their practices toward species mixture, which is often proposed as a way to improve forest
resilience in the context of climate change [42], or different diameter structures [43].

In a field survey, forestry technicians collect data on the ground by applying sampling proce-
dures [44]. Conventionally, systematic sampling is more efficient for representing land distribu-
tion. The sampling units may be stands, plots, strips or points; by having circular, rectangular or
square plots [33,44]. The size and the number of plots are defined according to the expected num-
ber of measurements, the parameters of interest and the statistical precision. However, field-based
inventories are time-consuming and labor-intensive to be collected, providing rough estimates
of stand attributes with typical limitations in the sampling because of terrain or vegetation fac-
tors [45]. Due to the large extensions of forest, measurements from the ground represent a real
challenge for human intervention, involve important costs in employing measurement crews and
provide a limited number of individual stands [30]. Remote sensing technologies are applied either
for full-cover (entire area of interest) or sampling approaches (sample area). The advancements
of remote sensing offer a faster and less expensive collection and analysis of georeferenced data
[46] from ground-based, atmospheric and Earth-orbiting platforms [47] for large areas.
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Chapter 1. Introduction

(a) The RGB color model involves the combina-
tion of red, blue and green bands from the visible
spectrum.

(b) Electromagnetic spectrum of different ranges of energy de-
scribed by the wavelength values [51].

Figure 1.5: (a) Illustration of the visual color perception model incorporated in the RGB cam-
eras. (b) Description of the electromagnetic spectrum according to different ranges of energy
characterized by the wavelength.

1.2 Principles of remote sensing

The remote sensing term was first conceived by Evelyn Pruitt of the US Office of Naval Re-
search in the 1950s [48]. It is defined as the science of information acquisition concerning the
Earth’s surface without having contact with it [49,50]. This technology makes use of the properties
of electromagnetic wave emitted, reflected or diffracted by the sensed objects [51]; for the purpose
of processing, analyzing and employing this information [52]. The human visual perception is able
to retrieve information in the visible light from the electromagnetic spectrum (see in Figure 1.5)
in the range between 400 - 700 nm. The color information that we perceive, can be represented by
combining the data that comes from three channels or bands: blue (B, 440 - 510 nm [53]), green
(G, 540 - 560 nm [54]) and red (R, 630 - 685 nm [53]). In this way, RGB camera in Figure 1.5(a)
combines the RGB bands for approaching our visual perception. The advantage of the instrumen-
tation in remote sensing is these devices are designed to detect all other forms of electromagnetic
energy beyond the visible light. For instance, it is possible to cover the infrared information in the
range of 700 - 1000 nm of the electromagnetic spectrum in Figure 1.5(b).

Remote sensing instruments can be divided into two groups: passive and active sensors [50,
51]. Passive sensors use natural energy from the sun as a source of illumination. In this group,
there are radiometers for measuring the intensity of electromagnetic radiation in select bands;
and spectrometers, which are designed to detect, measure, and analyze the spectral content of
reflected electromagnetic radiation [55, 56]. In a different manner, active sensors are character-
ized by providing their own source of illumination, and by measuring the energy that is reflected
back. This group includes different types of radio detection and ranging (radar) sensors, altime-
ters, and scatterometers. The majority of active sensors operate in the microwave band of the
electromagnetic spectrum, which gives them the ability to penetrate the atmosphere under most
conditions [55, 56]. In forest monitoring, the main goal is to extract forest variables by taking
advantage of the instruments carried aloft in spaceborne [57, 58] or airborne acquisitions such as
Goddard’s LiDAR, Hyperspectral and Thermal (G-LiHT), which provides an analytical framework
for plant species composition, plant functional types, biodiversity, biomass and carbon stocks, and
plant growth [59]. Following the remote sensing instrumentation, we review the principles of two
types of technologies: hyperspectral imaging and LiDAR.
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1.2. Principles of remote sensing

(a) A cross-track line recorded by a push-broom
imaging sensor on the aircraft [64].

(b) Light dispersion onto a two-dimensional array of detectors in
an imaging spectrometer [64].

Figure 1.6: Mechanism for hyperspectral data acquisition on the aircraft. (a) The geometry of the
push-broom data-collection. (b) An imaging spectrometer disperses light onto a two-dimensional
array of detectors.

1.2.1 Hyperspectral imaging

Hyperspectral imaging was first mentioned in the scientific community for discussing the results
of imaging spectrometry in 1985 [60]. This passive remote sensing technology deals with the
information extracted from objects or scenes lying on the Earth surface, by measuring the radiance
acquired by airborne or spaceborne sensors [61] in hundreds of contiguous, registered, spectral
bands [60]. A hyperspectral image is formed by two spatial dimensions and one spectral dimension
[62]. Taking advantage of this information, we are able to monitor phenomena that could not be
detected with a broadband imaging system [47]. We focus on those bands covering the visible,
near-infrared, and shortwave infrared spectral bands in the range from 300 to 2500 nm [63].

Push-broom imaging sensor is a common format for hyperspectral data acquisition on the
aircraft, as it is observed in Figure 1.6. A cross-track line of spatial pixels is decomposed into K
spectral bands. The area coverage rate is the swath width times the platform ground velocity v.
The area of a pixel on the ground is the square of the ground sample distance (GSD), as we see
in Figure 1.6(a). The spectral decomposition is carried out by using any of several mechanisms,
such as a diffraction grating or a wedge filter [64]. An imaging spectrometer disperses light onto a
two-dimensional array of detectors. The spatial dimension contains ny elements in the cross-track
axis, and the spectral dimension is formed by K elements; by obtaining a total of N = K × ny

detectors, as it is represented in Figure 1.6(b).
For forestry purposes, hyperspectral data provides absorption features of the vegetation, which

are associated to the biochemical attributes to estimate foliage components. In Figure 1.7, we
show the mean spectral signatures of four main species of the Chamrousse site in the Northern
Alpes, France. In addition to the RGB bands, another two important regions are identified from
research studies: red-edge band in 690 - 710 nm [54] and near-infrared (NIR) in the range of
760 - 850 nm [53]. This information is relevant for forest applications [49, 65] for detecting plant
stress [66], measuring chlorophyll content [54, 67–71], identifying small differences in percent of
green vegetation cover [69, 72–76], discriminating land-cover types [77–80], sensing subtle vari-
ations in leaf pigment concentrations [54, 68, 69, 73, 81–83], improving the detection of changes
in sparse vegetation, assessing absolute water content in leaves [73, 84], among others. In this
context, spectral information collected from forests is sensitive to the complexity of the canopy
structure, because of the disparate configuration of trees [85]. Foliage and branches may be in-
terfered with background reflectance when interacting with incoming radiation, which introduces
uncertainty in the measurements [86, 87]. Depending on the application, it is important to ensure
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Chapter 1. Introduction

Figure 1.7: Mean spectral signatures of four main species located in the Chamrousse site, in the
Northern Alpes, France: Abies alba (ABAL), Fagus sylvatica (FASY), Picea abies (PIAB),
Pinus uncinata (PIUN) and “other" species. The spectral bands of blue, green, red, red-edge
and NIR are higlighted in their respective ranges.

the most effective and efficient use of hyperspectral information. Data processing methods are con-
cerned on extracting feature descriptors by identifying and removing the redundant bands [88]. In
this thesis, the hyperspectral limitations are addressed by integrating complementary and indepen-
dent information for exploring the vertical dimension of the canopy through the LiDAR data.

1.2.2 LiDAR

The laser technology was firstly approached by Charles Townes and Arthur Schawlow in Bell
Labs in 1958 [89]. Among the innovative results of this emerging technology, a new generation
of sensors and instruments are available nowadays. For instance, LiDAR technology has con-
tributed in different applications such as: topographic mapping, flood risk assessments, watershed
analysis, forestry modeling and analysis, habitat ecology, landslide investigation, 3D building
modelling, road extraction and snow depth measurement [89–91]. LiDAR is an acronym for light
detection and ranging [47]. The airborne LiDAR provides the explicit 3D coordinates (x,y,z)
of a point cloud, return intensity, return number, number of returns, point classification, among
other attributes [92]. In comparison with other remote sensing modalities, the depth measurement
provided by airborne laser scanning (ALS) is clearly unique [47]. The term airborne laser is fre-
quently associated to those systems that acquire LiDAR data from aircraft. The basis of all ALS
systems is emission of a short-duration pulse of laser light and measurement of the elapsed time
between emission and detection of the reflected light back at the sensor [62].

A common LiDAR system in Figure 1.8 consists of a laser scanner coupled with Global Posi-
tioning System and Inertial Navigation System (GPS/INS) navigation components, as a means of
geo-referencing the position and orientation of the platform’s movement [89, 93]. A wide swath
is produced by the laser scanner mounted on the platform over which the distances to the mapped
surface are measured [89]. The distances from the sensor to the mapped surface are computed by
the time-of-flight between the laser pulse transmission and detection [90,94]. Figure 1.8(a) shows
the data acquisition for three scenarios. In the first scenario, the laser pulse creates three distinct
echoes after hitting the canopy. A remaining fraction of the laser pulse hits the ground providing
rise to a last echo. In the second scenario, the laser beam is reflected from a sloping surface, yield-
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(a) (1) Laser pulse creates three distinct echoes from canopy. (2) The
laser beam is reflected from a sloping surface. (3) The pulse is reflected
from a flat surface [94].

(b) Cross section showing LiDAR point cloud
data (above) and the corresponding landscape
profile (below).

Figure 1.8: (a) LiDAR data acquisition for three scenarios. (b) LiDAR point cloud profile visual-
ization.

ing an extended echo pulse width. In the third scenario, the pulse is reflected from a flat surface,
resulting in a single echo with a similar amplitude as of the outgoing laser pulse. Then all types
of information are used in the post-processing in order to calculate the coordinates of the 3D point
cloud as we observe in Figure 1.8(b).

LiDAR data is a useful tool to describe the 3D topographic profile of the Earth’s surface, veg-
etation cover, and man-made objects [89], hence, the 3D structure of forest. In fact, LiDAR tech-
nology has provided outstanding results for estimating measurements of tree height [45, 95–98],
canopy size [45, 96–98], and modeling [99], forest inventory [45, 95, 97], forest fuel model-
ing [100, 101], forest structure characterization [102], etc. Describing the forest at the tree level
rather than with statistical point cloud metrics makes it easier to propose relevant conservation ac-
tions to forest managers. In the last years, decision makers benefited from available forest inven-
tory approaches based on ALS [103]. The density improvement of ALS data collections makes the
inventory more intuitive by applying individual tree crown (ITC) segmentation techniques [104].
However, the spectral and spatial information from LiDAR data is limited to describe general
groups of species, for instance, conifers and broadleaves [85]. Then, the integration of LiDAR
data with hyperspectral images can be more efficient for describing species composition.

1.3 Motivation

Forests have played a key role for the planet evolution, influencing all life forms and becom-
ing primary source for supplying human needs. Therefore, it makes sense that these environments
were tremendously affected over time. For instance, the forest cover in France decreased dur-
ing the middle age as consequence of the intensity of land use, such as agriculture and human
settlements [105]. The pressure on forest came to a maximum at the beginning of the industrial
revolution before coal and oil were used as energy sources. Mining, glass making, brick making,
and the metal working industries were dependent on wood or on charcoal made from wood [16].
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Forest area has been increasing from now on, especially after the interruption of traditional
farming practices [106]. The distance from core areas of economic and urban development pro-
duced agricultural land abandonment, mainly in remote areas, such as mountains; where agricul-
ture is not economically sustainable [107, 108]. This goes hand in hand with the advancement
of efficient policies oriented to lower fossil emissions by using forests, either as substitution for
non-renewable sources or for carbon storage [109, 110].

Mountain forests provide environmental ecosystem services (EES) to communities: supplying
of recreational landscapes [111], protection against natural hazards [112, 113], supporting bio-
diversity conservation [114], among others. Forest stands are also characterized by the species
mixture and complex distribution of canopy structure [102]. In order to manage forests in such a
way to balance and maintain those EES through space and time [112, 115], a good knowledge of
the resource (location) is required.

Mountain forests stands are very heterogeneous and timber harvesting is really challenging in
these areas due to the slope and terrain roughness [116]. As a consequence, timber harvesting is
economically possible but for trees of higher value. This is why we are interested to map each
tree and estimate its characteristics, including quality, which is related to its shape and growth
conditions. Forest trees are well described by biophysical and biochemical parameters [85, 86].
For instance, the tree height, the crown length, the crown area, the crown radius, the diameter at
breast height are biophysical descriptors of individual trees. The species composition at leaf level
are characterized by the biochemistry of the foliage components, which can be described by the
pigment concentration, the water content or the dry matter content [85].

Field inventories are not able to provide a wall to wall cover of detailed tree-level information
on a large scale due to topography conditions in mountainous regions, which usually incur much
higher expenses. On the other hand, remote sensing tools seem to be a promising technology
characterized by the time efficient and the affordable costs for studying forests areas. For in-
stance, LiDAR data provide detailed information from the vertical distribution and location of the
trees [85, 86]. This makes it suitable for single tree detection and crown delineation [45, 96–98],
from which is possible to derive biophysical parameters. However, single-wavelength measure-
ments by LiDAR systems do not provide enough information for estimating biochemical prop-
erties, which limits the potential for mapping forest tree species [85, 86]. Hyperspectral data are
associated to absorption features in the canopy reflectance spectrum, which generate abundant in-
formation for the characterization of tree species at pixel level [85]. However, the complexity of
canopy structure and the illumination conditions influence the spectral measurements, beyond the
limitations in exploring the vertical dimension and the spatial resolution.

The development of hyperspectral and LiDAR sensors has captured the attention of several
scientific contributions that seek the fusion of this information with applications to sustainable
management of forests for trees characterization. Hyperspectral and LiDAR systems provide in-
dependent and complementary data that are relevant for the assessment of biophysical and bio-
chemical attributes of forested areas [85]. To go further, the following questions are addressed
in this work. First, if the method to be used for data fusion is according to the variables to pre-
dict, how data processing methods are applied in each level of data fusion for forest monitoring?
Within this purpose, different taxonomies have been proposed to group methods toward data fu-
sion [87, 117, 118] for forest monitoring [119, 120].

The performance of these methods is associated to the spatial and spectral resolution of the
remote sensing data. LiDAR data acquisitions of high spatial resolution provide the conditions
to delineate individual trees with high accuracy. Then, if we consider the shape and the size
of individual trees, how a crown shape model can improve the segmentation of individual tree
crowns? Finally, if LiDAR and hyperspectral data can be used to estimate biophysical and bio-
chemical parameters, which combination of feature sets contribute to characterize the forest tree
species composition? The purpose of this thesis is to answer these three questions by reviewing
and exploring unsupervised and supervised machine learning techniques (Figure 1.9).
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1.3. Motivation

Figure 1.9: Data fusion of LiDAR and hyperspectral data: (a) 3D point cloud from LiDAR data.
(b) 2D LiDAR representation in the canopy height model. (c) Image cube representation of all the
bands in the hyperspectral image. (d) Spectral signature of a pixel in the hyperspectral image.

To answer the first question, a literature review of data fusion of LiDAR and hyperspectral data
for forest monitoring, has been organized in different methods and levels. Most of the authors con-
verge at three levels of data representation [87, 117–120]: low level or observation level, medium
level or feature level, and high level or decision level. The first level consists of the integration of
reflectance information and the coordinates of LiDAR points for alignment [117]. Although, the
output of this level of fusion by itself does not provide explicit information for forest application,
the corrected data reduces geometric and radiometric distortions. The second level is about the
extraction of feature descriptors to form a new set of data representation [117]. At this level of
fusion, a new feature set derived from the LiDAR and hyperspectral data, can provide more con-
sistent and discriminatory information to establish relationships with forest tree composition. The
majority of fusion schemes reaches the decision level, in which each modality is processed inde-
pendently to develop rule-based models [117–119]. Several studies use the supervised methods
to integrate features from different remote sensing modalities for species mapping [69, 121–135],
the estimation of functional, physiological [54, 73, 136–149] and structural attributes [150–158],
above-ground biomass and carbon density [74, 159–162], and land cover maps [77–80].

Airborne data vendors provide remote sensing acquisitions processed at low level fusion by
applying geometric and radiometric corrections [77], and by exploiting the high spatial resolution
of LiDAR data. In fact, if LiDAR technology can describe in detail the canopy vertical distribu-
tion [85], it seems consistent to use these data to answer the second question, how a crown shape
model can improve the segmentation of individual tree crowns? In several studies, the individual
tree crown (ITC) delineation can be posed as a 3D segmentation approach using a LiDAR point
cloud [163]. Studies for automatic segmentation of trees [96,97] extract tree crown shape informa-
tion by using allometric equations in order to estimate the parameters of the algorithms. We pro-
pose a new framework for ITC delineation by introducing a crown shape model [164]. A proper
ITC delineation provides accurate estimation of the crown architecture given by the tree height, the
crown area, the crown radius and the crown height [45,96–98]. In addition to that, the information
obtained from the ITC delineation can serve as an input for later stages of processing LiDAR and
hyperspectral data at decision level fusion, such as tree species classification [159, 165].

To answer the third question, which combination of feature sets contribute to characterize the
forest tree species composition?, we focus on the data fusion at medium and high level. At medium
level, we proceed to extract feature descriptors from each modality [69, 130, 132, 135]. Features
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can be computed at point, pixel and object (tree) level. Dechesne et al. [165] suggest to rasterize
the point features from LiDAR data in order to be aligned with the hyperspectral grid. From
the hyperspectral data, we extract vegetation indices that has been demonstrated in other studies
to characterize forest tree species [69, 74, 76]. We propose an approach for selecting features
that produce a better forest tree species classification. The present dissertation contributes to the
understanding of forest characteristics by exploiting hyperspectral images and LiDAR data, by
combining these two modalities to derive tree species composition within a heterogeneous canopy
of a mixed forest.

1.4 Objectives

In this thesis, we present the integration of remotely sensed data for the analysis of forest areas.
In particular, we focus our attention on hyperspectral and LiDAR data that are of primary impor-
tance in the study of forest areas. Our attention is also devoted to the use of unsupervised and
supervised machine learning techniques for the use of the information contained in such data ac-
quired over forest areas. To summarize, the thesis objectives answer the three scientific challenges
described in Section 1.3, more specifically, we address the following questions:

• Q1. How data processing methods are applied in each level of data fusion for forest moni-
toring?

The last review of data fusion for forest monitoring was carried in 2014 [87]. Since then,
new contributions have emerged to tackle this problem [166, 167]. We propose a literature
review on the integration of hyperspectral imaging and LiDAR data by grouping data pro-
cessing methods in general process at each level of data fusion, by illustrating the potential
relationships found in these studies. Although different authors propose a variety of tax-
onomies for data fusion, we classified our reviewed methods according to three levels: low
level or observation level, medium level or feature level, and high level or decision level.
This review examines the relationship between the three levels of fusion and the methods
used in each considered approach. A set of 50 contributions oriented to forest monitoring
applications that combines hyperspectral images and LiDAR data at different levels of fu-
sion are reviewed. This work was published in the book series "Data Handling in Science
and Technology" in January 2020 and the work is presented in Chapter 2:

TUSA, E., LAYBROS, A., MONNET, J. M., DALLA MURA, M., BARRÉ, J. B., VINCENT,
G., DALPONTE, M., FÉRET, J. B. CHANUSSOT, J. (2020). FUSION OF HYPERSPECTRAL

IMAGING AND LIDAR FOR FOREST MONITORING. IN Data Handling in Science and
Technology (VOL. 32, PP. 281-303). ELSEVIER.

• Q2. How a crown shape model can improve the segmentation of individual tree crowns?

Ferraz et al. [96, 97] proposed the adaptive 3D mean shift (AMS3D) for ITC delineation.
This approach is based on adaptive kernel size that is suitable for tropical forests, but it
could lead to an undersegmentation effect by merging adjacent coniferous tree crowns. We
present an AMS3D approach based on the adaptation of the kernel profile size through an
ellipsoid crown shape model, which fits the coniferous tree crowns that are present in tem-
perate forests. The algorithm parameters are estimated based on allometry equations derived
from 22 forest plots in two study sites described in Chapter 3. The ellipsoid crown shape
model with a superellipsoid (SE) kernel profile of n = 1.5 presents the highest recall and the
best Jaccard index, especially for conifers. This work was published in the journal "IEEE
Geoscience and Remote Sensing Letters" in August 2020 and it is presented in Chapter 4:
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TUSA, E., MONNET, J. M., BARRÉ, J. B., DALLA MURA, M., DALPONTE, M., CHANUS-
SOT, J. (2020). INDIVIDUAL TREE SEGMENTATION BASED ON MEAN SHIFT AND

CROWN SHAPE MODEL FOR TEMPERATE FOREST. IEEE Geoscience and Remote Sensing
Letters.

• Q3. Which combination of feature sets contribute to characterize the forest tree species
composition?

We aim to investigate the integration of feature descriptors from HI and LiDAR by using the
intra-set and inter-set feature importance by using random forest (RF) score and 5-fold cross
validation. We consider the following feature sets: 160 hyperspectral bands (HI), 61 vege-
tation indices detailed in chapter 2, the principal components (PC) obtained by using robust
PCA (rPCA) [127] from HI, 72 LiDAR features explained in [165], and their PC by using
rPCA. Previously, the dataset is created from the field inventory information by projecting
the tree crowns, by selecting the non-overlapping pixels and by removing pixels associated
to non-vegetation, low objects and shadow. RF is aplied for the feature classification [76].
The overall accuracy of tree species classification at pixel-level was 78.1%. Our approach
showed that 78.3% of trees were correctly assigned overall, by having conifers such as Nor-
way Spruce (Picea abies) and mountain pine (Pinus uncinata) with producer’s accuracies
above 90%. This approach was presented in the conference "XXIV International Society
for Photogrammetry and Remote Sensing (ISPRS) Congress" in August 2020 and the work
is detailed in Chapter 5:

TUSA, E., MONNET, J. M., BARRÉ, ,J.B., M, D. M., CHANUSSOT, J. (2020). FUSION

OF LIDAR AND HYPERSPECTRAL DATA FOR SEMANTIC SEGMENTATION OF FOREST

TREE SPECIES. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2020,
487–494, 2020. DOI:HTTP://DX.DOI.ORG/10.5194/ISPRS-ARCHIVES-XLIII-B3-2020-
487-2020

1.5 Thesis structure

This work is divided in 6 chapters:

• Chapter 2 presents and discusses the existing methods for data fusion by defining three
levels: low- or observation-level, medium- or feature-level and high- or decision level. Dif-
ferent forest monitoring applications are reviewed according to these levels of fusion.

• Chapter 3 describes the datasets used for the algorithm assessment: the study areas compo-
sition, the field data procedures and instruments, and the specifications of the remote sensing
instruments.

• Chapter 4 presents the ITC delineation method based on 3-D Adaptive Mean Shift (AMS3D)
and the ellipsoid crown shape model by adapting the kernel and the influence for detecting
conifers and broadleaves.

• Chapter 5 explains the tree species classification approach for the integration of LiDAR and
hyperspectral information, by selecting feature descriptors and by transforming feature sets
into a new feature space.

• Chapter 6 presents conclusions and perspectives for this thesis.
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2
Data Fusion

Hyperspectral data contains meaningful reflectance attributes of
plants or spectral traits, while LiDAR data offers alternatives for an-
alyzing structural properties of canopy. The fusion of these two data
sources can improve forest characterization. The method to use for
the data fusion should be chosen according to the variables to pre-
dict. This chapter presents a literature review on the integration of
hyperspectral imaging and LiDAR data by considering applications
related to forest monitoring. Although different authors propose a
variety of taxonomies for data fusion, we classified our reviewed
methods according to three levels of fusion: low level or observa-
tion level, medium level or feature level, and high level or decision
level. This review examines the relationship between the three levels
of fusion and the methods used in each considered approach.
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Chapter 2. Data Fusion

2.1 Principles of fusion

As we mentioned in chapter 1, LiDAR data provide detailed geometric information, which
makes it suitable for single tree detection and crown delineation [45, 96–98]. However, single-
wavelength measurements by LiDAR systems is not enough for estimating biochemical properties,
which is meaningful for mapping forest tree species [86]. At the same time, hyperspectral data de-
scribe a bi-dimensional representation of absorption features in the canopy reflectance spectrum,
which allows the characterization of tree species at pixel level. However, the spectral measure-
ments are sensitive to the complexity of the canopy structure and the illumination conditions [85].

The purpose of integrating remote sensing modalities is to achieve fused data from informa-
tion of different spatial, spectral and temporal resolutions [118]. The output of the integration of
these complementary and independent data is more refined, more robust and more accurate than
individual data sources [117]. In this manner, data fusion improves the quality of information for
decision making, by benefiting from the development of hyperspectral and LiDAR sensors. The
problem of data fusion has captured the attention of several scientific contributions that seek for
applications of main interest for sustainable management of forests: from trees to stand character-
ization [119, 120, 124].

Data fusion [117,118,168] gathers a group of methods and approaches that combines multiple
sources of data. Particularly, different categories have been proposed to describe the fusion of
hyperspectral images and other remote sensing modalities [117, 118], such as LiDAR data for
forest monitoring [119, 120, 124]. Table 2.1 summarizes the main fusion categories considered in
different studies: domain, resolution, nature of images, methods and data processing. Focusing
on our interest of data processing, all the authors converges at three level of data representation
defined clearly by Dechesne [165] as follows: low level or observation level, medium level or
feature level, and high level or decision level. In this chapter, these three categories are going to
be studied according to our literature review on data fusion for forest applications.

Table 2.1: Fusion categories (domain, resolution, nature of images, method and processing) de-
scribed by levels proposed by five different authors. For data processing, three levels are defined:
low level or observation level, medium level or feature level, and high level or decision level.

Categories
Authors

Chaudhuri et
al. [117]

Kandare [120]
and Torabzadeh
et al. [124]

Pohl et
al. [118, 168]

Dechesne [119]

Domain
Spatial

Frequency

Resolution Pan-sharpening

Nature of images Multimodal image
fusion

Method

Empirical or statistical

Physical

Hybrid

Processing

Pixel or signal Data
Subpixel

Observation
Pixel

Feature or region Product Feature

Decision or symbolic Multilevel Decision
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Figure 2.1: Graphical representation of processes for ilustrating fusion methods: a) Unit of data
symbolizes the spatial space and the type of information. b) A block expresses the task for pro-
cessing data and information. c) Interaction arrow for representing the inputs and outputs of
processing blocks. d) Input simultaneity to a processing block

For each level of fusion, diagrams that describe interactions among processes and their in-
puts and outputs, illustrate the processes involved at each level. Units of data are represented in
Figure 2.1 a), for clarifying how data evolves through every processing task. Every unit of data
describe the type of information: spectral bands, height, feature, and so on; and also, the spatial
space in which this information is represented: point level, pixel level, region level and object
level. Additionally, a block represents tasks for processing data and information as it is observed
in Figure 2.1 b), and finally, the arrows in Figure 2.1 c) and d) depict the interactions between
these units of data and processes.

2.2 Low-level

This level is the most basic and fundamental fusion for understanding and processing the
data [117]. It corresponds to the fusion of the reflectance of hyperspectral images and the coor-
dinates of LiDAR point cloud [119]. This level of fusion preserves most of the original informa-
tion [118]. In Figure 2.2, we describe processes for geometric and radiometric correction.

2.2.1 Geometric correction

Geometric correction is concerned with placing spectral information in their proper planimetric
(x,y) map location so it can be associated with other spatial information [169]. This task involves
different data fusion processes. Some studies correct distortions from the point cloud coordinates
by using real world coordinates pixels [154] or by direct georeferencing [130]. Geometric correc-
tion algorithms are implemented in several computational packages: Tiff [144], CaliGeo available
in ENVI [160], and HyperspecIII software [131,133]. In this review, we are concerned about three
types of geometric correction: orthorectification, co-registration and back projection.

Before explaining the geometric correction processes, it is imperative to define the canopy
height model (CHM), which is the most common raster representation of LiDAR data for fusion
at this level. CHM can be created in different ways. First, the point cloud is classified as ground
and vegetation points by using the TerraScan software [159, 170]. Then, the digital terrain model
(DTM) is derived from the ground points, and the digital surface model (DSM) from all the points.
The CHM is simply computed by subtracting the DTM from the DSM. A second approach is based
on the creation of a terrain surface, which is not necessarily a DTM; for instance, a TIN surface.
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Figure 2.2: Illustration of fusion at low level or observation level

Then, the point cloud is normalized to compute directly a CHM that can be slightly lower than the
one obtained in the first approach. Several studies prefer the use of specific softwares for creat-
ing the CHM: Tiff [156, 171], TerraScan [128, 151, 152], FUSION [139, 172], eCognition [129],
LAStools [78, 158]. When CHM contains empty pixels called "pits", the R package lidR [173]
implements a pit-free algorithm for LAStools following the method proposed by [174]. Addition-
ally, CHM is used to threshold forest from forest gaps and low canopy heights [80, 126], or for
establishing a framework for extraction of features [122].

The processes of orthorectification and co-registration can be applied separately or integrated
as a workflow. Orthorectification is the process of geometrically adjusting the hyperspectral im-
age to an orthogonal image (DSM) by transforming coordinates from the image space to the
ground space and removing tilt and relief displacement, for creating a planimetrically correct
image [169, 175]. Usually, remote sensing images are orthorectified and georeferenced before
being sent to users. Sometimes these procedures are not accurate enough to identify individual
trees. Co-registration methods for remote sensing datasets of wooded landscapes can improve
the results [77]. For instance, the AROP package performs automated precise registration and
orthorectification [176].

Co-registration is the translation and rotation alignment process in order to obtain a registered
hyperspectral image by considering the LiDAR-derived DSM as reference [169]. This task has
demonstrated the effectiveness and potentialities for decision-level process such pixel classifica-
tion [177]. The process of co-registration of two image modalities requires the use of ground con-
trol points (GCP) [121]. Shen et al. [69] apply the nearest-neighbor interpolation by using more
than 30 GCP with an accuracy of 0.25 m. Alonzo et al. [123,137] use Delaunay triangulation with
137 GCP. Alternatively, other approaches do not require GCP for the registration process. For
instance, the NGF-Curv algorithm proposed by Refs. [77, 127, 156] is based on the minimization
of an objective function that contains similarity and regularization terms. NGF-Curv algorithm is
implemented in the image registration software package called FAIR [178]. A second approach
that avoids GCP is implemented in the GeFolki package [179], which is based on a local method
of optical flow derived from the Lucas-Kanade algorithm, with a multiscale implementation, and
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a specific filtering including rank filtering. The disadvantage of the registration methods without
GCP is these are biased by shading effects, which are present in mountainous forest.

Back projection of LiDAR point cloud onto the image plane allows a better co-alignment
than the image orthorectification with the CHM because of altitude distortions associated with the
irregular porous surface of forest canopy. Back projection was implemented by Brell et al. [180] on
hyperspectral imagery, by improving the geometric alignment between the hyperspectral images
and LiDAR data. Alternatively, the process of spectral projection onto the 3D point cloud is
implemented by Asner et al. [134], through a sun-canopy ray tracing for sunlit. In this way, LiDAR
data with known solar position provided 3D maps of illumination geometry for each canopy.

2.2.2 Radiometric correction

The radiometric correction aims at converting radiance values of hyperspectral images into re-
flectance [169]. In the forest monitoring applications, authors do not establish a strict sequence
for applying radiometric correction. In some studies, images are atmospherically corrected before
co-registration by using the Atmospheric and Topographic Correction software ATCOR-4, which
implements the radiative transfer model MODTRAN [54,77,123,130,132,136,137,142,144,148,
154, 160]. Another task based on MODTRAN model for minimizing atmospheric effects, it is
implemented in the Fast Line-of-Sight Atmospheric Analysis of Spectral Hypercubes, FLAASH
algorithm, which is available in the image analysis software ENVI [74, 122, 128, 135, 143, 181].
Alternatively, the model ACORN is used to improve aerosol correction [78, 145–147, 149]. Ad-
ditionally, there are other algorithms implemented in SpectralView [131, 133] or QUAC [73] for
these correction purposes.

Another strategy for radiometric correction is implemented through normalization algorithms.
For instance, the value of each pixel was normalized with respect to the sum of the original values
of the same pixel in all the bands, by resulting in a significant improvement of the final classifi-
cation accuracies [159]. This relative radiometric normalization is applied to the single images
to obtain a uniform mosaic image [121]. The radiometric correction implemented after back pro-
jection involves a fusion strategy, by comparing the LiDAR return intensity and the hyperspectral
information at the same wavelength [182]. This procedure requires spectral information beyond
the VNIR spectral range.

2.3 Medium-level

Feature descriptors provide complementary information that is combined to form a composite
set of features [117]. In this section, our literature review considers four important processes
illustrated in Figure 2.3: feature extraction, feature stacking, feature selection and feature fusion.

2.3.1 Feature extraction

The main goal of these features is to represent the most relevant information from the original data
[183]. From the fusion approaches, we have identified the following groups of feature descriptors:
statistical, structural, topographic, vegetation indices, textural and dimension reduction.

• Statistical features have been widely used for forest tree characterization. In Table 2.2,
a summary of statistical features are associated with their references and the data source:
height from 3D point cloud, return intensity, CHM and spectral band. For instance, Dech-
esne et al. [165] compute these features by using three cylindrical neighborhoods around
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Figure 2.3: Fusion at medium level or feature level

each LiDAR point. Then, these features are projected on the CHM. In parallel, a set of
statistical descriptors is computed at each spectral band by considering the same cylindri-
cal radius. In Refs. [69, 73], authors compute these statistical features for every crown,
which are extracted manually from field measurements [79] or by applying a segmentation
algorithm. A review of segmentation approaches is described in the subsection of fusion at
decision level.

• Topographic features or terrain features describe landscape level variations, which are
related to the topography or soil [126]. A list of these type of features is described in
Table 2.3. Cao et al. [75] compute these features from heights at the 3D point cloud. In [54,
126], these features are rasterized into a 2D representation.

• Structural features are summarized in Table 2.4, which are derived from LiDAR data. In
Refs. [73,123,137,155], authors compute these features by using the point cloud associated
to each individual crown, which has been previously segmented in the CHM. Torabzadeh et
al. [125] carry out these computations by handling return intensity.

• Vegetation indices (VI) derived from hyperspectral data are organized in 5 groups in the
next tables: broadband greenness in Table 2.5, narrowband greenness in Table 2.6, light
use efficiency in Table 2.7, leaf pigments in Table 2.8, dry or senescent carbon and canopy
water content in Table 2.9. VI provide important radiometric characteristics for quantifying
biophysical and biochemical indicators [69]. Studies show different strategies for the com-
putation of these features. For instance, La et al. [152] obtain the NDVI index directly from
the software ENVI. Kandare et al. [73] works at object level for averaging the pixel values
inside every segmented crown at each band for deriving 16 VI. Luo et al. [74] focusing
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Table 2.2: List of statistical feature descriptors with the respective references divided by the data
source: height from 3D point cloud, amplitude of the return signal, CHM or spectral band

No. Statistical feature Point cloud Return
intensity

CHM Spectral
band

1 Minimum [69, 165] [139] [165]

2 Maximum [69, 73–75, 155, 165] [139] [165]

3 Mean [74, 75, 155] [165] [165]

4 Median [165] [165]

5 Standard deviation [69, 73–75, 165] [139] [165]

6 Variance [73]

7 Median absolute deviation
from median

[165] [165]

8 Mean absolute deviation
from median

[165] [165]

9 Mean absolute deviation
from mean

[165] [165]

10 Skewness [73, 155, 165] [139] [165]

11 Kurtosis [73, 155, 165] [139] [165]

12 Percentiles [69, 73, 74, 125, 155, 165] [125]

13 Interquartile distance [69] [139]

14 Coefficient of variation [69, 73–75, 155]
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Table 2.3: List of topographic feature descriptors with the respective references divided by the
data source: height from 3D point cloud or CHM

No. Topographic
feature

Point
cloud

CHM No. Topographic fea-
ture

Point
cloud

CHM

1 Aspect [162] [126] 2 Foliage height diver-
sity

[54]

3 Hillshade [75] [126] 4 Profile curvature [75, 162]

5 Slope [75, 162] [126] 6 Elevation data [126]

7 Tree height [54] [126] 8 Topographic wetness
index

[75]

9 Plant area index [54] 10 Compound topo-
graphic index

[162]

11 Disection [162] 12 Heat load index [162]

13 Planar curvature [162] 14 Heat load index [162]

15 Site exposure in-
dex

[162] 16 Surface relief ratio [162]

17 Total curvature [162] 18 Vector ruggedness
model

[162]

on the group of narrowband greenness because these VI reduces the saturation effect and
improve the biomass estimation.

• Textural features are widely used in computer vision because these contain information
concerning the structural arrangement of surfaces and their relationship to the surrounding
environment [224]. Gray-Level Co-occurrence Matrix (GLCM) was computed by Dalponte
et al. [79] over the band of 810nm. Alternatively, Cao et al. [75] implemented the texture
analysis after computing Principal Component Analysis (PCA) over the first component.
Plowright et al. [139], extract textural information by using the extended morphological
profile method through circular structuring elements over the first three principal compo-
nents of the hyperspectral data.

• Dimension Reduction is a special form of feature extraction [183]. Most of the feature ex-
traction techniques revised previously, are focused on processing one modality at a time. In
Refs. [69,130,132,135], authors apply PCA for obtaining the most meaningful information
from hyperspectral metrics. In Refs. [75, 151, 152], PCA is obtained by using the software
ENVI.

In Refs. [127, 156], robust PCA (rPCA) is used for feature extraction of hyperspectral im-
agery. For tree crown segmentation purposes, the first principal component was ignored
because it contained illumination information rather than useful features [225]. The second
to fifth principal components were extracted and assigned to corresponding LiDAR points
by using horizontal geospatial coordinates.

Zhang et al. [129], segregate spectral noise in hyperspectral data by applying Minimum
Noise Fraction (MNF) transformation. This is a linear transformation of the original bands
that applies two cascaded PCA and maximizes the ratio of signal to noise. This procedure
can be performed in the software ENVI. Dian et al. [128] select the first 10 MNF bands
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Table 2.4: List of structural feature descriptors with the respective references divided by the data
source: height from 3D point cloud or return intensity

No. Structural feature Point cloud Return
ntensity

1 Crown height [123, 125, 137]

2 Crown widths at selected heights [123, 137]

3 Ratios of crown heights to widths at selected heights [123, 125, 137]

4 Direct measures of return intensity through the crown [123, 137]

5 Distributions of intensity through the crown [123,137]

6 Crown porosity measured by return penetration into the crown [123,137]

7 Occupied length of the vertical column by vegetation [125]

8 Number of detected canopy layers [125]

9 Relative position of the largest canopy layer [125]

10 Cumulative intensity [125]

11 Point density [125]

12 Scatter [165]

13 Planarity [165]

14 Number of local height maxima [165]

15 Number of non-ground points within neighborhoods [165]

16 Cumulative proportional canopy density [69, 73, 155]

17 Canopy volume [155]

18 Crown area [73, 73]

19 Laser intercept index [74]

20 Percentage of returns > 0.5m [139]

21 Canopy cover (Percentage of first returns > 2.0m) [69, 75]
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Table 2.5: Broadband greenness

No. VI Ref. No. VI Ref

1 Normalized Differ-
ence Vegetation Index
(NDVI)

[69, 72–76] 2 Non-Linear Index
(NLI)

[184]

3 Renormalized Differ-
ence Vegetation Index
(RDVI)

[158, 185] 4 Modified Non-Linear
Index (MNLI)

[186]

5 Green Normalized
Difference Vegetation
Index (GNDVI)

[69, 73, 76, 80,
187]

6 Green Leaf Index
(GLI)

[188]

7 Infrared Percentage
Vegetation Index
(IPVI)

[73, 76, 189] 8 Transformed Differ-
ence Vegetation Index
(TDVI)

[190]

9 Triangular Greenness
Index (TGI)

[191] 10 Difference Vegetation
Index (DVI)

[73, 76, 192]

11 Green Difference Veg-
etation Index (GDVI)

[193] 12 Green Red Difference
Index (GRDI)

[192]

13 Difference Difference
Vegetation Index
(DDVI)

[76, 194] 14 Enhanced Vegetation
Index 1 (EVI1)

[69,73,74,76,128,
195]

15 Enhanced Vegetation
Index 2 (EVI2)

[76, 196] 16 Leaf Area Index (LAI) [197]

17 Simple Ratio Vegeta-
tion Index 1 (SRVI1)

[69, 73–76, 126,
198]

18 Modified Simple Ratio
(MSR)

[199]

19 Green Chlorophyll In-
dex (GCI)

[54, 67–69] 20 Green Ratio Vegeta-
tion Index (GRVI)

[200]

21 Green Red Ratio Veg-
etation Index (GRRVI)

[76, 201] 22 Blue Ratio Vegetation
Index (BRVI)

[76, 201]

23 Red Ratio Vegetation
Index (RRVI)

[76, 201] 24 Sum Green Index
(SGI)

[69, 202]

25 Soil Adjusted Vegeta-
tion Index (SAVI)

[69, 74, 75, 203] 26 Optimized Soil Ad-
justed Vegetation In-
dex (OSAVI)

[74, 204]

27 Modified Soil Ad-
justed Vegetation
Index 2 (MSAVI2)

[74, 75, 158, 205] 28 Green Soil Adjusted
Vegetation Index
(GSAVI)

[193]

29 Green Optimized Soil
Adjusted Vegetation
Index (GOSAVI)

[193] 30 Green Atmospheri-
cally Resistant Index
(GARI)

[76, 206]

31 Visible Atmospheri-
cally Resistant Index
(VARI)

[76, 207] 32 Wide Dynamic Range
Vegetation Index
(WDRVI)

[208, 209]
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Table 2.6: Narrowband greenness

No. VI Ref. No. VI Ref

33 Modified Normalized
Difference Vegetation
Index (MNDVI)

[74, 210] 34 Red Edge Normalized
Difference Vegetation
Index (RENDVI)

[76, 80, 126, 211,
212]

35 Modified Red Edge
Normalized Differ-
ence Vegetation Index
(MRENDVI)

[69, 76, 212] 36 Simple Ratio Vegeta-
tion Index 2 (SRVI2)

[74, 210]

37 Modified Red
Edge Simple Ra-
tio (MRESR)

[73, 76, 212, 213] 38 Red Edge Chlorophyll
Index (RECI)

[68, 69]

39 Vogelmann Red Edge
Index 1 (VREI1)

[73, 214] 40 Vogelmann Red Edge
Index 2 (VREI2)

[214]

41 Red Edge Inflection
Point (REIP)

[74, 126, 215] 42 Atmospherically Re-
sistant Vegetation
Index (ARVI)

[73, 74, 76, 216]

43 Modified Chlorophyll
Absorption Ratio In-
dex 1 (MCARI1)

[70] 44 Modified Chlorophyll
Absorption Ratio In-
dex 2 (MCARI2)

[71]

45 Transformed Chloro-
phyll Absorption
Reflectance Index
(TCARI)

[69, 71] 46 Triangular Vegetation
Index (TVI)

[217]

47 Modified Triangular
Vegetation Index 1
(MTVI1)

[71] 48 Modified Triangular
Vegetation Index 2
(MTVI2)

[71, 158]

Table 2.7: Light use efficiency

No. VI Ref. No. VI Ref

49 Photochemical Re-
flectance Index (PRI)

[69, 76, 126, 218,
219]

50 Structure Insensitive
Pigment Index (SIPI)

[69, 73, 220]

51 Red Green Ratio Index
(RGRI)

[69, 221] 52 Photochemical Re-
flectance Ratio (PRR)

[69, 222]
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Table 2.8: Leaf pigments

No. VI Ref. No. VI Ref

53 Anthocyanin Re-
flectance Index 1
(ARI1)

[69, 73, 81] 54 Anthocyanin Re-
flectance Index 2
(ARI2)

[69, 73, 81]

55 Carotenoid Re-
flectance Index 1
(CRI1)

[69, 73, 82] 56 Carotenoid Re-
flectance Index 2
(CRI2)

[69, 73, 82]

57 Carotenoid Re-
flectance Index 3
(CRI3)

[68] 58 Carotenoid Re-
flectance Index 4
(CRI4)

[54, 68]

59 Plant Pigment Ratio
(PPR)

[69, 83]

Table 2.9: Dry or senescent carbon and Canopy water content

No. VI Ref. No. VI Ref

60 Plant Senescence Re-
flectance Index (PSRI)

[73, 76, 223] 61 Water Band Index
(WBI)

[73, 84]

based on eigenvalues.

2.3.2 Feature stacking

One of the most straightforward strategies for fusing features is via vector stacking [226]. Stack-
ing together features from two different sensor modalities form a new fused feature space [227].
Usually, studies evaluate the effect of stacking LiDAR features to the hyperspectral data to im-
prove the tree species discrimination. The main challenge in this fusion strategy is to balance
the amount of information represented by each feature set. For instance, Dalponte et al. [121]
select 40 hyperspectral features and add two LiDAR images (elevation and intensity) for feature
classification. Van Coillie et al. [132] apply PCA independently over the hyperspectral bands
and the LiDAR-derived percentile This height values. By stacking these features, the approach
showed good results for small training set size in tree species classification. Liao et al. [130] fuse
multi-scale features generated from the LiDAR data and the principal components of hyperspec-
tral data, by considering five different windows size, which are associated to the tree crown size.
The multi-scale features are generated by applying a sliding window centered at one pixel over the
hyperspectral images and the CHM.

2.3.3 Feature selection

Unlike feature extraction, in which new features are created, the feature selection methods output
a subset of meaningful features. In Refs. [123, 137], authors use Forward Feature Selection (FFS)
over the structural metrics from LiDAR information. In Refs. [121, 122, 159], hyperspectral fea-
tures were selected from the originals bands by applying Sequential Forward Floating Selection
(SFFS) algorithm and the Jeffries-Matusita distance metric. Torabzadeh et al. [125] apply SFFS
together with transformed divergence as a separability evaluation criterion. Spectral bands and
structural features were separately selected.

Shen et al. [69] apply correlation analysis in order to exclude those metrics that are strongly
correlated with others for classification purposes. Sommer et al. [126] develops a hyperspectral
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band selection based on three conditions: band variance, band correlation and the correlation of
the bands with the components of a PCA. Although, these strategies consolidate criteria for feature
discrimination and avoid issues dealing with high-dimensional data, it is necessary to evaluate the
effect of the amount of features to be selected over the task to improve.

2.3.4 Feature fusion

Linear [166, 228, 229] and non-linear [167] approaches have been proposed for feature fusion
strategies. The linear approach is based on fusion graph algorithm [166, 229] that couples spatial,
spectral and elevation information by extracting morphological profiles (MP) over the first two
principal components of the hyperspectral data and the DSM derived from LiDAR data. Before the
integration of each feature set, these are reduced to the size of the small feature set by using Kernel
Principal Component Analysis (KPCA) [230]. The reduced feature sets are stacked and weighted
by the distance through the edges of the fusion graph. An improvement of this method is achieved
by employing the local spatial neighborhood information in a local graph fusion [166, 228]. This
method reduces the computational complexity and provides a stable performance.

A deep fusion framework [167] is introduced to integrate the complementary information from
hyperspectral and LiDAR data by applying a stacked autoencoder (multiple hidden layers of neu-
rons). The deep learning approach by itself does not provide good results for the species clas-
sification. For this reason, the neighborhood information is considered by using a 5× 5 sliding
window centered pixel, and the PCA algorithm for feature extraction. The classification accuracy
improved from 82.21% to 87.10%.

2.4 High-level

At this level of fusion, each modality is processed independently [119], to develop rule-based
models that require eventually the processing from signal to information [118]. For a decision
level of fusion, the integration of available information refines the results and maintains the best
from the intermediate results [117, 119]. In this section, we focus on four strategies of fusion (see
in Figure 2.4): classification, segmentation, association and prediction-estimation.

2.4.1 Classification

Tree species identification has attracted increasing attention across the remote sensing community.
In 2016, Fassnacht et al. [231] collected 129 studies on species identification, from which 78 are
related with multi/hyperspectral images. The classification methods used in this context are mainly
based on non-parametric classifiers, which are adaptive to any kind of data distribution.

A first approach to use LiDAR information with hyperspectral data at the pixel level consists
in creating masks over non-forest areas [232]. The masks avoid the spectral signature of other
materials and plants to interfere with forest spectra in the classification process. In Refs. [80, 126,
129, 154], NDVI is used to separate vegetation from non-vegetation.

Sunlit criterion is another method for masking used by Refs. [69,73,78–80,125,159] to select
those pixels, whose reflectance value in a determined portion of the spectrum are higher than a
threshold.

A second approach consists in performing the classification from the fused features obtained
in the feature level of fusion. Ballanti et al. [233] compare the performance of Support Vector
Machine (SVM) [75, 79, 121, 122, 125, 132, 135, 155, 159, 161] and Random Forest (RF) [69, 75,
122, 126, 139] classifiers with two different parameters of canopy segmentation. The comparison
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Figure 2.4: Fusion at high level or decision level

confirms that both classifiers performs well (overall accuracy above 90%). The overall SVM
accuracy reaches even 95% for pixel-based samples.

Trier et al. [80] apply deep learning for pixel classification based on 160 hyperspectral channels
in the visible and near-infrared spectrum with promising results. On the other hand, Refs. in [123,
137], they apply Canonical Discriminant Analysis, which uses derived canonical discriminant
functions as linear combinations of the original variables for maximizing the coefficients between-
group separation.

Sankey et al. [131, 133] proposes the mixture-tuned matched filtering sub-pixel classification
technique, by matching the spectral signature in the image pixel to the known spectral signature of
each species. Similar to this technique, Dutta et al. [158] use the Spectral Angle Mapper (SAM)
to classify the spectra of each pixel with respect to a tree species library.

2.4.2 Segmentation

Segmentation strategies are oriented to the partition of an image into non-overlapping regions
based on specific criteria. Several approaches of segmentation are implemented mostly at the
CHM for Individual Tree Crown (ITC) delineation before fusing with already classified hyper-
spectral data. Marker-Based Watershed (MBW) [79, 157, 234] is implemented in the software
Tiff [127, 156] for ITC delineation in the CHM. The algorithm initialization takes the treetop de-
tections based on local maxima filtering [95]. In Refs. [123,137], authors combined two watershed
segmentation routines for locating crowns and subdividing the initial segments.

Region growing algorithm [135,157,159,235] is an ITC segmentation approach implemented
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in the software eCognition [129]. This approach is also initialized with treetop detections and can
be applied to the CHM and the hyperspectral image. The package itcSegment [236] in the software
R implements this algorithm for ITC delineation in Refs. [155, 161].

Region growing can be extended at the 3D point cloud in the Point Cloud Segmentation Al-
gorithm (PCS) available in the software LiForest [69]. In Refs. [127, 156], they applied MBW
for generating local maxima detections in the CHM, which represent the priors for graph cut
segmentation in the 3D point cloud. The subdivision process in each cluster detects subcanopy
trees, which is not feasible for the 2D segmentation algorithms. While Dian et al. [128] applies a
mean shift algorithm for computing an object-based map of the canopy, Ferraz et al. [96, 97] has
extended this technique to the 3D point cloud.

2.4.3 Data association

This approach consists of identifying tree species from delineated trees and voting rules. In
Refs. [79, 127, 155, 158, 159, 161], the classification at ITC level was obtained by aggregating
the classified pixels inside each ITC according to a majority rule. The most frequent species cat-
egory inside of each ITC represents the tree specie. Dian et al. [128] propose a threshold of 50%
of the total amount of pixels to define the specie of the tree. Matsuki et al. [135] propose a crown-
preserving smoothing filter by a weighted vote of the class from neighboring pixels with the aim
of reducing the salt-and-pepper noise due to misclassification while preserving the crown edges.

2.4.4 Prediction-estimation

The objective is to develop prediction models for estimating variables or for assessing specific
characteristics of forest trees. Conventionally, linear regression methods [128, 131, 133, 154] aim
to validate structural attributes such as tree height, crown diameter, base height or crown depth
between LiDAR metrics and field measurements with a high coefficient of determination (R2). Lee
et al. [144] propose a Quadratic Linear Model (QLM) to estimate Photochemical reflectance index
(PRI) as function of the altitudinal gradient with a low R2 between 0.16 and 0.21. Luo et al. [74]
fuse LiDAR metrics and VI to estimate the aboveground and belowground biomass by applying
Partial Least Square Regression (PLSR) [146–148]. This multivariate statistical method deals with
multicollinearity problems due to the high correlations among metrics. From PLSR analysis, Luo
et al. [74] concluded LiDAR metrics are strongly related to forest biomass, while hyperspectral
data does not provide significant improvement. RF [136, 143] is used for richness prediction
with significant results (Adjusted R2 = 0.571). However, the added value of hyperspectral plus
LiDAR data was found to be low. Alternatively for species richness prediction, self-adaptive
Fuzzy C-Means (FCM) clustering [142] was applied by combining VI and tree height data with
a high R2 = 0.83. It is still challenging to determine how to retrieve leaf properties from canopy
reflectance data acquired from airborne imaging spectrometers at tree level.

2.5 Applications

This section reviews a set of 50 contributions oriented to forest monitoring applications that
combines hyperspectral images and LiDAR data at different levels of fusion. In Table 2.10, we
have grouped these studies into five categories by having as reference the work developed by
Torabzadeh et al. [124]. We remark 98% of these works achieve a decision level fusion that
involves tasks of segmentation, classification, data association or prediction-estimation; having
taken into account that 62% of these studies transit through the three levels of fusion. Although
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34% propose approaches both on observation and decision level, most of these contributions apply
the extraction or selection of features from one modality. Finally, 4% remains at one level of
fusion, either observation or decision.

Table 2.10: Studies of forest monitoring classified by the type of application and the level of fusion

Aplication (Number of studies)
Fusion Level

Observation Feature Decision

Species mapping (17)
[69, 121–133]

[134, 135] [134, 135]

Functional and physiological attributes (16)
[73, 136–142]

[54, 143–
149]

[54, 143–
149]

Structural attributes (9)
[150–156]

[158] [157, 158]

Above ground biomass & carbon density (5)
[159–161]

[74, 162] [74, 162]

Landcover maps (4) [77–80] [78–80]

The application of species mapping refers to the mapping of individual tree species which
represent 32% of our studies. 50% of these approaches used SVM to classify between 8 and
23 species by achieving an overall accuracy of 90.8%. Functional and physiological attributes
correspond to the prediction of chemicals in plant leaves such as foliar traits, canopy water content,
site index, imperviousness, among others varibles that represent 32% of the reviewed works. 18%
of the contributions are about structural attributes such as ITC delineation, prediction of height
or Diameter at Breast Height (DBH). This task requires a good segmentation approach, which is
executed by region growing algorithm at the CHM. Above ground biomass and carbon density
(10% of the researched applications) is more accurately estimated by LiDAR data, so enhancing
the estimation with the fusion of hyperspectral images is still a challenge. Finally, 8% of our
studies correspond to landcover maps, which deals with the mapping of large classes of species:
forest and non-forest, or conifers and broadleaves. This application present high overall accuracies
between 67-97.4%, with an ensemble of SVM and Gradient Boosted Machine (GBM) [78].
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3
Material

In this chapter, we describe the datasets used for the algorithm as-
sessment in this thesis. First, we describe the process for obtaining
the data from the field by measuring individual trees. We explain
the procedure to employ the mapping tools and the metrics to be
extracted from the forest trees. In this part, we mention the short-
comings of mapping individual trees and the strategies applied for
having co-registered data. Second, we provide details of the specie
composition, the location and the forest plot characteristics of the
study sites employed in this thesis. Finally, we give the specifications
of the LiDAR and hyperspectral data collected during the airborne
data acquisitions.
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3.1. Field data

3.1 Field data

Remote sensing data have changed the perspectives of characterization of individual trees.
In a field survey, the measurements of the diameter at breast height (DBH) involve an easy and
straightforward procedure, from which other tree geometric characteristics can be derived. For
instance, allometric equations can establish relationships between the tree height and the DBH
through regression models [237–239].

The geometric information from LiDAR data acquisition makes possible to estimate directly
the tree height with high accuracy [240]. In addition to this, the radiometric variables from hyper-
spectral data form a basis for extracting feature descriptors in order to predict forest tree species.
Then, a proper alignment between these two remote sensing modalities and the ground data guar-
antees a proper model calibration for estimation and prediction of variables of interest [241].

In this work, field data is relevant for parameter estimation, training and evaluation of algo-
rithms for individual tree crown (ITC) delineation and forest tree species classification. Accurate
location of trees positions is needed in this regard, as well as reference measures of their charac-
teristics: diameter at breast height (DBH), tree height and crown extension. In order to test the
algorithms in forest stands with various stands and structures, two study sites are used: Cham-
rousse site in France and Pellizzano site in Italy. In the Chamrousse site, plots are located along
an altitude gradient based on the Orchamp long-term monitoring site [242]. Since this chapter
explains the tree measurements procedures for the Chamrousse site. For the Pellizzano, the details
are given in the Ref. [159, 170].

3.1.1 Mapping tools

Global Navigation Satellite System (GNSS) provide signals from space that transmit positioning
and timing data to GNSS receivers. Under open sky conditions, standard accuracy GNSS receivers
are accurate in a range of two meters. However, GNSS accuracy below canopy makes it not possi-
ble to map each tree individualy with a GNSS receiver, otherwise their relative positions could be
wrong. The strategy proposed in this project is to map the tree positions in spherical coordinates
relatively to a central point (sometimes additional points are needed) with the mapping equipment
that is described in this subsection. The geolocation of the central point is measured with a GNSS
receiver operating for at least 5 minutes with 1 s sampling. This protocol was chosen according to
a study made by the research and development unit of ONF, considering a trade-off between ac-
curacy and measurement time. Tree coordinates are converted to projected coordinates by taking
into account the magnetic declination at the date of mapping and the meridian convergence of the
projection system at the location.

The mapping equipment is adapted for working in remote forest areas that usually have limited
road access. This is why these instruments are particularly lightweight for being carried several
hundred meters up and down hills. Figure 3.1 presents the devices used for tree measurements:
clinometer and compass (Figures 3.1(a) and 3.1(b)), hypsometer (Figures 3.1(c)) and transponder
(Figures 3.1(d)). Figure 3.2 showed the stages for tree mapping by locating the GPS point for
referencing every single tree inside the forest plot.

The clinometer and compass from Figure 3.1(a) is mounted in the tripod from Figure 3.2(a)
which is located in the GPS point as it is set by the operator in the Figure 3.2(b). For distance
measures, an hypsometer VERTEX III and a transponder (shown in Figures 3.1(c) and 3.1(d),
respectively) are more convenient than laser rangefinders when understory and bushes are present.
These are useful for tree location by setting the transponder in the trunk of the tree as it is illustrated
in Figure 3.2(c), and registering the tree positions.
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(a) Clinometer and compass for tripod (b) Clinometer and compass for manual use.

(c) Hypsometer. (d) Transpoder.

Figure 3.1: Mapping tools used for forest tree inventories.

3.1.2 Geolocation

A precise co-registration among LiDAR (reference) and the field data is imperative for the suc-
cessful characterization of individual forest trees [241]. The use of GPS devices for geolocation of
the forest plots are sensitive to physical obstructions with respect to satellites. The availability and
geometry of satellites can be better described by the dimensionless parameter position dilution of
precision (PDOP) [243]. In fact, this metric increases when conditions are not favourable. For
example, the forest canopy distorts the wave propagation by attenuating or blocking completely
the GPS signal, resulting in a strong multipath effect and high PDOP [244].

Openings and clearings have almost arisen in higher location accuracy than forested sites. For
this reason, GPS position is recorded in a nearby cleared area in order to locate the plot relatively
to the GPS point. Additional reference points may be added when all trees are not visible from the
previously materialized points. The validation of the algorithms for the segmentation of individual
trees requires a GPS signal acquired on the field plots by considering the digital terrain model
(DTM) [241]. For better registration between the tree positions relatively to the LiDAR dataset,
the co-registration procedure in Ref. [245] has been applied.

3.1.3 ITC metrics

This section describes the definition of the main tree parameters considered in this document, and
how these metrics are derived from field measurement, as it is illustrated in Figure 3.3.

• Diameter at breast height: DBH is the diameter measured in cm at 1.3 m vertical height
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(a) Tripod with clinometer and com-
pass

(b) Operator in the tripod (c) Transpoder on the tree

Figure 3.2: Illustration of mapping individual trees in the site of Chamrousse, France by using the
tripod, clinometer, compass, hypsometer and transponder.

above the ground [29, 241, 246]. By assuming the stem cross-sectional shape approaches a
circle, DBH is estimated by measuring the circumference c of the stem cross-sectional by
using a ruban tape. Then, the diameter of the circle that has the same circumference c is
computed as follows: d̂ = c

π
. DBH is important because it correlates closely to the wood

volume in the stem of a tree or the weight (or biomass) of a tree [247].

• Tree height: total tree height is defined as the vertical distance from the ground level at tree
stem to the highest twig of the tree [29, 241, 246]. Tree height is not the trunk length as it is
shown in Figure 3.3(a), where all tree are same height [248]. For tree height measurement,
geometric or trigonometric methods [247] are embodied in the use of hypsometers (see
Figure 3.1(c)) to measure angles and distances to points on the tree. The height of the tree
is important in calculating the trunk volume, in reflecting the competitive position of a tree
in a stand, and in assessing the productivity capacity of the site [247].

• Crown radius: the tree crown size provides important factors in relation to the growth,
health and technical quality of the tree stock [29, 249]. The crown radius is the distance
between the center of the bole and the outer edge of the crown [44]. This metric can be
derived from the crown extension by measuring the radius in the four cardinal directions:
north (N), south (S), east (E) and west (W); as it is represented in Figure 3.3(b)). This
method projects the outline of the crown vertically onto the ground, or more precisely, onto
a horizontal plane [248]. For this horizontal projection, vertical sighting method [250] is
applied to be aligned to the widest spread in the selected direction by using the clinometer
and compass from Figure 3.1(b). Then, the radius can be measured by using the hypsometer
(Figures 3.1(c)) and transponder (Figures 3.1(d)), as it is performed in Figure 3.3(c), where
the transponder is put on the trunk, and the other operator measures the radius in the assigned
direction with the hypsometer. Alternatively, ruban tape can be used to measure the radius
distance as it is illustrated in Figure 3.3(d).

If we consider rN , rS, rE and rW , as the crown radii in the respective four cardinal directions,
the crown area A can be estimated as the summation of four quarters of the area associated
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(a) All trees are the same height, which implies tree height is
not trunk length.

(b) Crown extension measurements in
four directions

(c) Tree Crown extension measured with
clinometer, compass, hypsometer and
transponder.

(d) Tree Crown extension measured with clinometer,
compass, and ruban tape.

Figure 3.3: Tree height and crown spread measurements generated from the field survey in the site
of Chamrousse, France.

to four different ellipses: Â = π

4 (rNrE + rErS + rSrW + rW rN). Although an estimate of the
crown radius r can be derived by applying the quadratic mean of the aforementioned crown
radii [250], the crown area is approached as circle surface in order to estimate the crown

radius by following this expression: r̂ =
√

Â
π

.

• Crown length: this measurement is defined as the distance between the apex of the tree and
the base of the live crown [44]. In some studies, the base of the live crown coincide to the
point half way between the lowest green branches forming green crown all round and the
lowest green branch on the bole [251]. From the field survey, the base is referenced by the
position of the lowest green branch, which has been measured from the tree ground level.

• Basal area: this metric is estimated from the DBH d or directly from the circumference
c, and corresponds to the area of the horizontal section of the tree stem at 1.3 m height
[44, 241]:

g =
πd2

4·104 (3.1)

If a forest stand of surface S is considered for monitoring, the stand-level metrics can be com-
puted from the ITC metrics. A DBH threshold is usually applied to avoid trees that have limited
effect on the topic of interest. Typically, trees with DBH of 17.5 cm are relevant for management
in a harvesting perspective, while DBH of 7.5 cm are for research on the stand dynamics. Lower

36



3.2. Study areas

diameters are interesting for studying regeneration, but inventory is then done on smaller surfaces.
In our case, except for small trees located inside forest gaps, trees that should be visible in the
airborne data have diameters above 7.5 cm.

• Dominant height: This metric is defined as the mean height of the 100 trees with the largest
diameters per hectare.

• Stem density: If we consider S as the surface of the forest area, this attribute is the average
number of trees per hectare:

N =
NT

S
(3.2)

• Basal area, mean diameter: Based on the their counterparts of included trees (gi, di), the
basal area and mean diameter are computed as follows:

G =
1
S

NT

∑
i=1

gi D =
1

NT

NT

∑
i=1

di (3.3)

3.2 Study areas

3.2.1 Chamrousse site

Chamrousse site is located in Belledonne massif, Northern Alps, France [164, 252, 253]; as it is
shown in Figure 3.4. Seven plots were used: four of size of 50× 50 m2, two circular plots of
15 m radius, and a plot of 80×100 m2, which is part of a long-term inventory dataset [22]. Four
forest plots are located along an altitude gradient based on the Orchamp long-term monitoring
site [242]. The forest is dominated by Norway spruce (Picea abies; 37.5%) and other conifers:
silver fir (Abies alba; 31.6%) and mountain pine (Pinus uncinata; 10.6%); broadleaves species
are mainly represented by European beech (Fagus sylvatica; 15.2%). Table 3.2 describes the
percentage distribution of forests tree species among all the seven plots. Tree crown extensions are
measured with ruban tapes in the north, south, east and west directions as the horizontal distance
between the trunk center and the vertical projection of the furthest live branch along that direction.
The field data is summarized in Table 3.1 by considering seven plots with 894 tree crowns.

Table 3.1: Summary of the field measurements at tree- and plot- level in the Chamrousse site:
Minimum (Min), Maximum (Max) and Mean are displayed.

Level Field measurement Min. Max. Mean

Tree

DBH [cm] 7.5 104.5 26.2

Tree Height [m] 2.0 38.4 14.8

Crown area [m2] 0 161.9 23.3

Plot

Mean DBH [cm] 16.3 31.2 25.8

Number of stems/ha 460 980 640

Basal Area [m2/ha] 13.0 64.5 40.8
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Figure 3.4: Chamrousse site is located in the department of Isère, in the Auvergne-Rhône-Alpes
region in eastern France. The area of study is referenced in the Lambert 93 projected coordinate
system.

Table 3.2: Abbreviation, full name and number of tree crowns per species encountered in the
Chamrousse site. The total number of tree crowns is 894.

Abbr. Genus species English name No. %

ABAL Abies alba European silver fir 282 31.6

ACPS Acer pseudoplatanus Sycamore maple 10 1.1

BEPE Betula pendula Silver birch 13 1.5

BEsp Betula sp. Birch 3 0.3

COAV Corylus avellana Common hazel 7 0.8

FASY Fagus sylvatica European beech 136 15.2

FREX Fraxinus excelsior European ash 1 0.1

PIAB Picea abies Norway spruce 335 37.5

PICE Picea cembra Swiss pine 1 0.1

PIUN Pinus uncinata Mountain pine 95 10.6

POTR Populus tremula European aspen 4 0.5

SOAR Sorbus aria Common whitebeam 3 0.3

SOAU Sorbus aucuparia Rowan 3 0.3

38



3.2. Study areas

3.2.2 Pellizzano site

This site [159, 170] is located in the municipality of Pellizzano in the Italian Alps [159, 170] as it
is presented in Figure 3.5. In this site, 15 circular plots were measured: six plots have radius of
15 m and the remaining ones have 20 m radius. Tree crown was derived from the field-measured
distances in the four cardinal directions from the trunk center to the crown boundary assuming an
ellipsoidal shape. The complex forest structure is formed by coniferous trees: 75.7% of Norway
spruce, 9.8% of larch (Larix decidua) and small proportions (more than 10 trees) of broadleaves
such as silver birch (Betula pendula) and common alder (Alnus glutinosa). Table 3.4 describes the
percentage distribution of forests tree species among all the 15 plots. The field data is summarized
in Table 3.3 by considering seven plots with 543 tree crowns.

Figure 3.5: Pellizzano site is located in the Province of Trento, in the Trentino-Alto Adige region in
northern Italy. The area of study is referenced in the WGS 84 / UTM zone 32N projected coordinate
system.

Table 3.3: Summary of the field measurements at tree- and plot- level in the Pellizzano site: Mini-
mum (Min), Maximum (Max) and Mean are displayed.

Level Field measurement Min. Max. Mean

Tree

DBH [cm] 5.0 89.0 32.3

Tree Height [m] 2.5 39.8 21.5

Crown area [m2] 0 123.7 17.1

Plot

Mean DBH [cm] 21.7 58.1 36.7

Number of stems/ha 127 1050 502

Basal Area [m2/ha] 35.7 77.8 55.0
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Table 3.4: Abbreviation, full name and number of tree crowns per species encountered in the
Pellizzano site. The total number of tree crowns is 543.

Abbr. Genus species English name No. %

ABAL Abies alba European silver fir 13 2.4

ACPS Acer pseudoplatanus Sycamore maple 13 2.4

ALGL Alnus glutinosa Common alder 17 3.1

BEPE Betula pendula Silver birch 18 3.3

BEVU Berberis vulgaris European barberry 1 0.2

COAV Corylus avellana Common hazel 3 0.6

FASY Fagus sylvatica European beech 2 0.4

LADE Larix decidua European larch 53 9.8

PIAB Picea abies Norway spruce 411 75.7

POTR Populus tremula European aspen 1 0.2

SAAL Salix alba Willows 1 0.2

SOAU Sorbus aucuparia Rowan 10 1.8

3.3 ALS and hyperspectral data

3.3.1 Chamousse site

Airborne laser scanning (ALS) data were acquired between 11th and 29th of June 2018, using a
Riegl LMS Q780 laser scanner. The point cloud was classified in ground and vegetation classes
by using TerraScan software. The average point density was of 40 points m−2, and the ground
point density was of 8.5 points m−2. The scan frequency was up to 400 kHz with a 60◦ field of
view and the overlap for each stripe was at least 50%.

Hyperspectral data were acquired on 23rd of June 2018 with an Hyspex VNIR 1600 SN0014
sensor. The minimum overlap among the images was 45%. Each image is characterized by 160
spectral bands acquired between 400 and 1000 nm, by a spatial resolution of 0.80 m and by spectral
resolution of 4.5 nm. The images were orthorectified by using the digital surface model (DSM)
generated from the LiDAR point cloud with a resolution of 0.50-m [254]. The relative geometric
precision obtained between two lines on the area of interest is of the order of 2-3 pixels. The
atmospheric corrections were carried out by ATCOR-4 model [255]. The aerosol model used
is “Rural”. Visibility is fixed and configured as constant for each zone; visibility of 60 km was
retained. DSM is then taken into account to adjust the optical thickness levels of the aerosols
on the areas of interest. In order to attenuate the effects of bidirectional reflectance distribution
function (BRDF), ATCOR-4’s BREFCOR module [256] has been implemented to produce albedo-
type data. However, given the small angular opening of the sensor (17◦), the effects of BRDF are
limited and therefore the effect of the BREFCOR corrections as well.

3.3.2 Pellizzano site

ALS data were acquired between 7th and 9th of September 2012, using a Riegl LMS-Q680i laser
scanner. The system mounted on a Multi Mission Aircraft was optimized to measure canopy
structure with a flying speed of about 51 m/s at an altitude of 660 m above ground level. The
scan frequency was 400 kHz with a 60◦ field of view and the overlap for each stripe was at least
30%. Up to five returns were recorded for each emitted pulse and the average point density was
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of 48 points m−2. A digital terrain model (DTM) was generated from the ALS points by using
TerraScan software with a grid size of 0.5 m. ALS point cloud was normalized to obtain a canopy
height model (CHM) by subtracting the DTM from the DSM created from all ALS points.

Hyperspectral data were acquired on 13th of June 2013 with an AISA Eagle II sensor. The
minimum overlap among the images was 20%. Each image is characterized by 65 spectral bands
acquired between 400 and 990 nm and by a spatial resolution of 1 m. The hyperspectral images
were mosaicked in order to create a uniform image, and to reduce minor differences in reflectance
occurring between the different images.
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4
ITC Delineation

An important task for the individual tree crown (ITC) delineation
is segmentation, and previous studies showed that the adaptive 3D
mean shift (AMS3D) algorithm provides effective results. AMS3D
for ITC segmentation has three components for the kernel profile:
shape, weight and size. In this chapter, we present an AMS3D ap-
proach based on the adaptation of the kernel profile size through an
ellipsoid crown shape model. The algorithm parameters are esti-
mated based on allometry equations derived from 22 forest plots in
two study sites. After computing the mean shift (MS) vector, we ini-
tialize the parameters of the ellipsoid crown shape model to derive
the kernel profile size, and further tested two crown shape models
for adapting the size of the superellipsoid (SE) kernel profile. These
schemes are compared with two other MS algorithms with and with-
out kernel profile size adaptation. We select the best algorithm output
per plot based on the maximum F1-score. The ellipsoid crown shape
model with a SE kernel profile of n = 1.5 presents the highest recall
and the best Jaccard index for conifers.
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Chapter 4. ITC Delineation

4.1 Introduction

Decision-support systems for forest management rely on stand attribute information by col-
lecting data on the ground in a field survey [103]. Field-based inventories are time-consuming and
labor-intensive to be collected, providing rough estimates of stand attributes with typical sampling
limitations because of terrain or vegetation factors [45]. Evidently, this challenging task requires
all devices, methods and data available from remote sensing [257] for an analysis at tree level. Re-
mote sensing based tools, in particular, individual tree level analysis, could contribute to producing
more precise inventories; for instance, Crowther et al. [258] estimated the world’s tree population
in 3.04 trillion based on satellite imagery.

Nowadays, decision makers benefit from light detection and ranging (LiDAR) technology,
which provides 3D explicit information for performing the ITC segmentation with a high accuracy
level. Conventional methods for performing the individual tree crown (ITC) segmentation degrade
the 3D information of the point cloud into a 2D image for applying image processing methods,
which are based on local maximum filtering [95]. For 2D segmentation of crown segmentation,
methods such as marker-based watershed [259], seeded region growing [159] or voronoi tessela-
tion [260] are implemented either in Python or in R packages. A recent segmentation comparative
assessment [261] remarked the superior performance of the 3D segmentation algorithms over the
methods based on 2D image. In particular, the adaptive 3D mean shift (AMS3D) [97] clearly
outperforms other segmentation approaches.

The mean shift (MS) algorithm [262,263] is a nonparametric method for finding the maximum
value (mode) of a probability density function (PDF). Each LiDAR point contributes to the PDF
based on the distribution estimated by the kernel profile. The kernel output is a weighted mean
point that is shifted iteratively to locate the mode. A potential ITC is defined by a cluster of points
that converge to the same mode. In [163, 264], the kernel profile shape influences consistently in
the MS performance. For proving this, authors evaluate different kernel profiles: anisotropic sy-
metric (cylinder and superellipsoid) and radially symmetric (sphere).A superellipsoid (SE) kernel
profile improved the segmentation and confirmed the findings of Yilmaz [265], who points out the
anisotropic symmetric kernels preserve most of the non-object region outside of the kernel.

Ferraz et al. in [97] proposed the adaptivity of the kernel profile size in the MS algorithm,
known as AMS3D. The allometry equations for estimating the bandwidths of the cylinder kernel,
are suitable for tropical forests, but this adaptation requires a performance assessment for other for-
est types. This chapter presents a methodology for adapting a SE kernel profile into an ellipsoid
crown shape model for temperate forests. Results demonstrate that the ellipsoid adaptation pro-
vides better segmentation results for coniferous species with respect to other AMS3D approaches.
This work is divided as follows: section 4.2 describes the background of MS algorithm for ITC
segmentation, section 4.3 presents the main contribution of this work by adapting a crown shape
model, section 4.4 describes the datasets, the parameters settings and the most important results
and finally, section 4.5 corresponds to the conclusions and the work perspectives.

4.2 MS segmentation

If we consider a 3D point coordinate xi = (Xi,Yi,Zi), the MS vector, v(xi), is given by the
equation (4.1):

v(xi) =
∑xj∈N(xi) K(xi,xj)xj

∑xj∈N(xi) K(xi,xj)
−xi (4.1)
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where N(xi) represents a set of points xj in the neighborhood of xi described by the kernel profile,
and K(xi,xj) is the kernel function that weights the importance of each point xj through a param-
eter called bandwidth. The selection of the kernel profile shape, weight and size has important
variations that are studied in the subsections 4.2.1, 4.2.2 and 4.2.3.

4.2.1 Kernel profile shape

The kernel profile shape defines the distribution of the points xj in the neighborhood of xi. Ferraz
et al. [96] use a straightforward implementation based on a cylinder of radius rkc and height hk.
Xiao et al. [163] propose the SE profile, N(xi), in equation (4.2) for selecting the set of points
{xj ∈ N(xi)|N(xi)≤ 1}:

N(xi) =
||xh

i −xh
j ||n

rn
k

+
||Zi−Z j||n

an
k

(4.2)

where xi = (xh
i ,Zi) and xh

i = (Xi,Yi) represents the 2D components of xi, xj = (xh
j ,Z j) is a point

in the neighborhood formed by the SE kernel profile with center at xi, ak is the radius of the
intersection of the kernel profile with the z-axis, rk is the radius of the kernel profile circle in xy-
plane, and n is a positive real number that determines the shape of the kernel profile. An ellipsoid
emerges when n = 2, and it becomes a cone when n decreases to 1.

4.2.2 Kernel profile weight

Following the multivariate kernel proposed by Comaniciu et al. [262] for image segmentation, the
kernel weight K(xi,xj) proposed by Ferraz et al. [96] is given in equation (4.3)

K(xi,xj) = Kh
(
xh

i ,x
h
j ,wh

)
Kz (Zi,Z j,wz) (4.3)

where Kh is the horizontal kernel weight, Kz is the vertical kernel weight, wh and wz are their re-
spective bandwidths, which depend on the kernel profile shape. Ferraz et al. [96] use the Gaussian
function for the horizontal kernel weight and Epanechnikov function KF

z for the vertical kernel
weight presented as follows in equations (4.4) and (4.5), respectively:

Kh
(
xi,xj,wh

)
= exp

−γ

∣∣∣∣∣
∣∣∣∣∣xh

i −xh
j

wh

∣∣∣∣∣
∣∣∣∣∣
2
 (4.4)

KF
z (Zi,Z j,wz) = 1−

∣∣∣∣1−d(Zi,Z j,wz)
∣∣∣∣2 (4.5)

where γ = 5, wh = 2× rkc (diameter of the cylinder kernel profile) and d(Zi,Z j,wz) is the vertical
distance function between the point and the mask boundary obtained in expression (4.6)

d(Zi,Z j,wz) = min{din f ,dsup}

din f =

∣∣∣∣∣
∣∣∣∣∣
(
Zi− 1

4 hk
)
−Z j

1
2 wz

∣∣∣∣∣
∣∣∣∣∣

dsup =

∣∣∣∣∣
∣∣∣∣∣
(
Zi +

1
2 hk
)
−Z j

1
2 wz

∣∣∣∣∣
∣∣∣∣∣

(4.6)

where Z j ∈
[
Zi− 1

4 hk,Zi +
1
2 hk
]

and wz =
3
4 × hk. The variables din f and dsup are explained in

equation (13) in [96]. If Zi is the height of a point xi, Z j corresponds to the height of a point
in the neighborhood of xi, which is described by the asymmetric profile cylinder of height, hk:[
Zi− 1

4 hk,Zi +
1
2 hk
]
. The variables din f and dsup quantify the distance between Z j and the vertical
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Figure 4.1: Three different crown shape models in red line: (a) and (b) ellipsoid, (c) hybrid model
and (d) inverted cone; and two kernel profiles in dotted blue line: SE in (a), (b) and (c), and
cylinder in (d). In (a), we illustrate the parameters of the ellipsoid crown model and the SE kernel
profile.

boundaries of the profile cylinder, weighted by the half of the vertical bandwidth wz =
3
4×hk. The

minimum value between din f and dsup defines the vertical distance function between the point and
the mask boundary.

Another combination is proposed by Xiao et al. [163] whose horizontal kernel weight Kh
is a Gaussian function with γ = 0.5 (normal distribution), and the vertical kernel weight KX

z is
described in equation (4.7)

KX
z (Zi,Z j,wz) =

∣∣∣∣∣∣∣∣Z j−Zmin

wz

∣∣∣∣∣∣∣∣ (4.7)

where wz = Zmax−Zmin, corresponds to the difference between the maximum and minimum height
values in the kernel profile by weighting on higher points to converge at the top of a tree.

4.2.3 Kernel profile size

Following the tree size allometry equations, Ferraz et al. [97] compute the radius rkc and the height
hk of the cylinder kernel profile, by using equations (4.8) and (4.9)

rkc = m1Zi (4.8)

hk = m2Zi (4.9)

where m1 represents the slope of the linear regression between the tree height and the crown
radius, and m2 is the slope between the tree height and the crown depth. In Fig. 4.1(d), this kind
of adaptive kernel size leads to fit an inverted cone as long as it moves on the z-axis. Although this
approach has been assessed for tropical forests by dealing with wide crowns, coniferous trees that
are present in temperate forests, are better described by narrow clusters in the upper parts of the
canopy. As a consequence, the inverted cone approach would lead to an undersegmentation effect
by merging adjacent coniferous tree crowns. An alternative solution to this problem is presented
by Xiao et al. [163] by testing different profile sizes with and without adapting the kernel profile
size. In this work, we compare the previous strategies for controlling the kernel profile size with
our AMS3D approach.

46



4.3. AMS3D based on crown shape model

4.3 AMS3D based on crown shape model

Our objective is to adapt the SE kernel profile size by fitting it into an ellipsoid crown model,
using the parameters m1 and m2 (Fig. 4.1(a)). If the tree crown model is defined by the crown
radius rt in xy-plane and the radius of the intersection of the crown model along the z-axis, at , it is
possible to derive the parameters of the SE kernel profile rk and ak as it is illustrated in Fig. 4.1(a).
Previously, a preprocessing stage is applied in the 3D point cloud by removing the points less than
hmin = 1.5 m [170]. The negative effects of shrubs, grassland and low height objects are avoided
by applying this threshold.

The main core of AMS3D is described in Algorithm 1. The algorithm is initialized with a
point xi and a set of parameters m = {m1,m2}. The output variable ui is the mode derived from
xi. The kernel parameters rk and ak are initialized by the equations (4.8) and (4.9), respectively.
The parameter ak is assumed to be half of the cylinder height hk. These parameters determine
the neighborhood N(ui) by using equation (4.2) and to estimate the weighted mean ui+1. If the
euclidean distance, ∆u, between ui+1 and ui is less than 1×10−7 (threshold selected empirically),
then MS vector (equation (4.1)) converges and ui+1 becomes a mode. This is recorded and the next
point xi+1 is evaluated. If not, a new MS vector is recomputed, ui = ui+1, until it converges. The
incorporation of the crown shape model for controlling the kernel size is executed when the MS
vector does not converge (∆u ≥ 1× 10−7). Although this is the general discrimination condition
to verify if the weighted mean becomes a mode, the kernel profile contains internally the next
discrimination conditions:

• To compute the mode ui of a point xi in the AMS3D algorithm, the number of points in the
neighborhood N(ui) should be greater than 1, otherwise ui = ui+1.

• If the vertical distance, ∆uv, between the maximum and the minimum points in the neigh-
borhood N(ui) is less than 1× 10−7 (approximately 0), then we weight the MS vector by
using the horizontal kernel (Gaussian function) only.

• If the maximum horizontal distance, ∆uh, of the points in the neighborhood N(ui) with
respect to ui is less than 1×10−7 (approximately 0), then we weight the MS vector by using
the vertical kernel (Epanechnikov function, KF

z ) only.

• If ∆uv and ∆uh are less 1×10−7, then ui = ui+1.

The point of maximum height hmax is searched in the cylindrical neighborhood C(ui) of radius
rk and infinite height. The tree crown parameters rt and at are obtained from equations (4.10) and
(4.11):

at =
1
2
(hmax +hmin) (4.10)

rt = (hmax)
α . (4.11)

Equation (4.11) comes from the allometry relationship between the tree height and the crown
radius used for 3D ITC segmentation [98]. The parameter α is estimated by equating the expres-
sions (4.8) and (4.11), when Zi = at . This means that the kernel profile radius should be equal to
the tree crown radius around half of the tree height. It turns out the expression (4.12)

α =
log(m1at)

log(hmax)
. (4.12)

Once the parameters at and rt are obtained, the kernel radius, rke, from the ellipsoid crown
model (Fig. 4.1(b)) that controls the radius rk (Fig. 4.1(a)) from the SE kernel from equation (4.2),
is derived from the ellipse equation in (4.13)
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Algorithm 1: AMS3D with ellipsoid crown model
Input: xi - 3D LiDAR point.
Parameter: m1 and m2 - Allometry coefficients.
Data: {xi, ...,xN} - 3D point cloud.
Output: ui - Mode of the point xi.
for i = 1,..,N do

Initialize ui← xi, rk← m1Zi, ak← 1
2 m2Zi, and ∆u← 107;

while ∆u ≥ 10−7 do

ui+1←
∑uj∈N(ui) K(ui,uj)uj

∑uj∈N(ui) K(uj,ui)
;

∆u← ||ui+1−ui||;
ui← ui+1;
if ∆u ≥ 10−7 then

hmax← max
uj∈C(ui)

(Z j);

Compute at and rt according to (4.10) and (4.11);
Compute rke according to (4.13) ;
Update rk← rke and ak← 1

2 m2Zi;
else

break;

rke =
rt

at

√
2atZi−Z2

i . (4.13)

The parameter ak is updated based on the new estimation of Zi, and rk = rke. In addition to the
ellipsoid crown model, a hybrid crown model (Fig. 4.1(c)) is implemented by using the same ak
parameter and by computing a hybrid kernel radius value rkh =min(rkc,rke) in order to set rk = rkh.

4.4 Experimental analysis

For the experimental setup, Table 4.1 presents a description of six different AMS3D models
assessed in this work. Model F represents the adaptive approach of Ferraz et al. [97] with cylinder
(C) kernel profile (Fig. 4.1(d)). The remaining models implement the (SE) kernel profile from
equation (4.2). Model X represents the approach of Xiao et al. which has two parameters, rk
and b, for estimating ak = b× rk, but no kernel size adaptation. Models E1 and E2 introduce the
ellipsoid crown model (Fig. 4.1(b)), while models H1 and H2 implement the hybrid crown model
(Fig. 4.1(c)), with n = {1.5,2.0}.

For the algorithm evaluation, the cluster points detected as a potential tree from each algorithm,
are projected into the xy-plane for computing the 2D centroid and for fitting an ellipsoidal crown
shape. For every detected tree, we pair with a tree in the inventory based on the matching index,
ITC, which is the ratio of the distance between the assumed tree top and detected maxima, and the
matching distance described in [95].

The matching index ITC is the ratio of the distance between the assumed tree top and detected
maxima, and the matching distance. The equation is described by using the following expression:

IT,C =
dT,C

dmax(ht)
(4.14)
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Table 4.1: AMS3D configurations based on the kernel profile

AMS3D

Model

Shape Weight Size

Type n Kh Vertical Radius Height

F [97] C - γ = 5.0 KF
z rkc hk

X [163] SE 1.5 γ = 0.5 KX
z rk ak

E1 SE 1.5 γ = 5.0 KF
z rke ak

E2 SE 2.0 γ = 5.0 KF
z rke ak

H1 SE 1.5 γ = 5.0 KF
z rkh ak

H2 SE 2.0 γ = 5.0 KF
z rkh ak

Table 4.2: Summary of the field measurements at tree level

No. Average Species

Study site Tree DBH Tree Crown CON BRO

(No. Plots) Crown [cm] Height Area [%] [%]

[m] [m2]

Chamrousse (7) 894 26.2 14.8 23.3 79.8 20.2

Pellizzano (15) 543 29.4 19.6 17.8 87.8 12.2

where the matching distance dmax(ht) is given by

dmax(ht) =
εgps

cos(sterrain)
+ stree× (εh +1)×ht (4.15)

where εgps is the GPS positioning planimetric error (0.97 m, sterrain is the terrain slope (0.25), stree

is the slope of a tilted tree (14%), εh is the height measures accuracy (15%), ht is the height of the
tree and dT,C is the Euclidean distance between detected and reference treetops. This index ITC

can be computed in an R package lidaRtRee.
This index is multiplied by the Jaccard distance Jd = 1− Ji, where Ji is the Jaccard index

equal to VR∩VD
VR∪VD

, VR and VD are the tree volume from reference (ground truth inventory) and from
detections, based on the ellipse area and the tree height. When the potential pair with the lowest
matching factor Jd×ITC is validated, the lists of remaining detected and reference trees are updated
before moving to the next pair. The number of matched trees are called true positives (T P), NR is
the number of reference trees in the inventory and ND is the number of detected trees. Then, three
metrics are computed: Recall= T P/NR, Precision= T P/ND and F1-score.

4.4.1 Dataset

The characteristics of 1437 trees from two study sites [252] are summarized in Table 4.2 with
average values of: diameter at breast height (DBH), tree height and crown area. The percentage
of conifers (CON) and broadleaves (BRO) are also reported. The study areas corresponds to the
Chamrousses site, located in Belledonne massif, Northern Alps, France; and the Pellizzano site
located in the Italian Alps [170]. The description of both study sites are given in chapter 3, in the
subsection 3.2. The remote sensing data description of LiDAR and hyperspectral data is detailed
in subsection 3.3.
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(a) Conifers (1190) (b) Broadleaves (247)

Figure 4.2: Algorithm comparison assessment based on species: (a) 1190 conifers and (b) 247
broadleaves from the sites in Pellizzano and Chamrousse.

4.4.2 Parameters

For the algorithms F, E1, E2, H1 and H2; the parameters m1 and m2 are computed for every plot
on the basis of the ground truth information. For every linear regression, we obtain two confidence
intervals (CI) at 95.0% and 99.9% for generating a set of 5 values per parameter: the slope value,
the upper and lower limits of the two CI. In this way, we run 25 experiments per algorithm in
each plot. The mean value of parameter m1 is 0.131 with minimum and maximum values between
0.025 and 0.316. The parameter m2 has a mean value of 0.786 with minimum and maximum
values between 0.143 and 0.969. The parameters for the model X are selected according to [163],
where rk = {2,3} and b = {1,1.5,2,2.5,3}.

4.4.3 Results and discussion

The overall performance of six AMS3D segmentation schemes are summarized in Table 4.3 based
on four metrics: average Ji, recall, precision and F1-score. The best results per plot were selected
according to the parameter setting with the maximum F1-score. Although F1-score values were
similar among the algorithms with ellipsoid and hybrid crown model, the algorithm E1 presented
the highest recall, i.e. the greatest amount of matched trees, and the highest average Ji, i.e. the best
ITC segmentation. Algorithm F produced undersegmented tree crowns because the kernel radius
enclosed more than one tree at upper layers. This issue is solved in our method by adjusting the
crown radius. Algorithm X maximized F1-score by decreasing the number of detections, which
produced the best precision with respect to other algorithms, but it decreased the number of TP
trees. This algorithm produced better recall values with small kernels by oversegmenting the point
cloud.

Table 4.3: Overall assessment of 6 AMS3D schemes based on 22 forest plots from two study sites

AMS3D Ji [%] Recall [%] Precision [%] F1-score [%]

F [97] 49.1 46.1 72.0 56.2

X [163] 48.5 52.8 74.3 61.7

E1 53.7 59.0 67.4 62.9

E2 52.2 57.1 70.7 63.1

H1 52.6 58.2 67.3 62.4

H2 52.3 58.0 68.4 62.8
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The algorithm E1 is assessed in each study site to remark differences of the point density.
The recall values in the sites of Chamrousse and Pellizzano were 56.6% and 63.0%, respectively.
Although the pulse density of Pellizzano site is three times Chamrousse’s pulse density, the recall
difference between these two sites did not respond in that magnitude. Other factors described
in Table 4.2 can contribute for E1 to deliver better performance in Pellizzano. For instance, the
average tree height is greater in Pellizzano than Chamrousse, presenting more salient trees which
are easy to be segmented. Also, the Pellizzano site has 8.0 points of percentage more conifers than
Chamrousse site.

For the species analysis, an important finding of the algorithm performances is presented in
Fig. 5.8, which corresponds to the results of the segmentation for coniferous and broadleaves
species. In Fig. 4.2(a), E1 obtains the highest recall of 62.0% for conifers by reaching a difference
of 5.9 points of percentage over the algorithm X and 13.6 over F. This difference is compensated
for algorithm F that had the best Ji: 58.2%, 3.8 points of percentage better than algorithm E1. For
broadleaves (Fig. 4.2(b)), none of the presented algorithms performed a recall over 50.0% and Ji

better than 40.0%.
For discussing the species results at plot level, two conifers plots and two forest plots with

more than 50% of broadleaves are selected from both study sites. The histogram of heights are
computed by setting a bin size of 5 m for TP, false negative (FN) and false positive (FP) tree
detections. In addition, the estimation of the gap area can be used as a forest structure descriptor.
The gap area percentage (GAP) is estimated from the rate between the gap area given by a height
threshold every 1 m and the maximum gap area surface (approximately the forest plot surface)
calculated in an R package ForestGapR [266]. The resulting curve overlaps each height histogram
in Fig. 4.3.

(a) Pellizzano - PP5 (21) (b) Chamrousse - PC3 (92)

(c) Pellizzano - PP1 (51) (d) Chamrousse - PC1 (92)

Figure 4.3: Histograms of heights for the TP, FN and FP trees in the conifers plots: (a) plot 5 from
Pellizzano (PP5) and (b) plot 3 from Chamrousse (PC3). Below, the plots with more than 50% of
broadleaves: (c) plot 1 from Pellizzano (PP1) and (d) plot 1 from Chamrousse (PC1). The GAP
curve is represented in black.

In Fig. 4.3, plot 5 from Pellizzano, PP5, (Fig C.25(a)) and plot 3 from Chamrousse, PC3,
(Fig. C.25(b)) obtained the highest recalls: 100% and 72.7%, respectively. PP5 revealed the ideal
scenario for ITC segmentation. E1 detected all the 21 conifers (small plot), whose heights were
greater than 20 m (salient trees). As the GAP curve increased, the number of TP and FP trees
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Figure 4.4: 3D segmentation of PC3 by using algorithm E1. 66 trees out of 92 were matched,
resulting in a recall of 71.7% and a Jaccard index of 54.5%.

increased, because tree crowns became more sparse when the GAP value overpasses 20.8%. The
forest structure of conifers has more sparse upper canopy layers with prominent gap areas. In
contrast to PP5, the majority of trees in PC3 are less than 20 m (Fig. 4.4).

Although PC3 showed a GAP value of 36.5% at 5 m, E1 faced difficulties to segment under-
story trees because the crown shape model that controls the kernel size is calibrated with the height
of the highest point, which makes it suitable for salient trees. In Fig. 4.3, plot 1 from Chamrousse,
PC1, (Fig. C.25(g)) and plot 1 from Pellizzano, PP1, (Fig C.25(c)) obtained lower recalls: 29.3%
and 54.9%, respectively. Two aspects are remarked in these plots. First, most of the trees are lo-
cated at the lower canopy layers (tree heights less than 20 m). It increased the amount of FN trees
with respect to the conifers plots. Second, the canopy of these plots is dense with low GAP values
at the lower canopy layers: 1.5% at 5 m in PC1 and 14.6% at 2 m in PP1. This makes it difficult
to segment groups of understory trees that belong to the same species because a dense point cloud
can lead to undersegmentation. If the LiDAR point density is very low, the clusters that represent
potential ITC become noisy and have low definition to be delineated.

4.5 Conclusion

In this chapter, we presented an AMS3D approach for ITC segmentation by adapting the kernel
profile size through crown shape model and by exploring the optimal parameters. The ellipsoid
crown shape model with a SE kernel profile of n= 1.5 presents the best overall recall of 59.0% and
Jaccard index of 53.7% among the assessed schemes of 3D segmentation. The most outstanding
results of the algorithm are revealed for the coniferous trees. Forest plots with a high presence of
broadleaves trees represent challenging tasks for all ITC segmentation approaches. Future work is
going to be focused on estimating automatically the algorithm parameters in order to consolidate a
tool for end-user purposes. This task will involve the integration with other data modalities, such
as hyperspectral imaging for tree species prediction.
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5
Tree Species Classification

This chapter presents the integration of feature descriptors from hy-
perspectral image (HI) and LiDAR by using the intra-set and inter-
set feature importance for the semantic segmentation of forest tree
species. A fusion methodology is proposed between high-density Li-
DAR data and VNIR HI acquired on French temperate forests along
an altitude gradient. The proposed scheme has three inputs: the
field inventory information, the HI and the LiDAR data. Our ap-
proach can be described in eight stages: polygon projection, non-
overlapping pixel selection, computation of vegetation indices (VI),
LiDAR feature extraction, robust PCA (rPCA), height, vegetation
and shadow mask, feature reduction and classification. The overall
accuracy of tree species classification at pixel-level was 78.1% by
using random forest (RF) classifier, 78.3% of trees were correctly
assigned overall, by having conifers such as Norway Spruce and
mountain pine with producer’s accuracies above 90%.
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5.1 Introduction

Spatial distribution of forest tree species has important benefits for sustainable forest man-
agement [232]. For instance, scientists are able to study the functioning of forested ecosystems
by understanding variables associated to stress, disease patterns, invasive species spread and de-
forestation [127, 232]. This information is very relevant to establish useful exploitation policies
of forests [122]. Conventional ecological survey methods of tree species mapping require an ex-
haustive work that thrives in difficult scenarios, relies on small plot-level datasets and implies a
significant amount of time, manpower and economic resources [144, 232].

Several studies have highlighted the potential of spectral and spatial resolution in remote sens-
ing based tools for monitoring forest ecosystems. Hyperspectral images (HI) and Light Detection
and Ranging (LiDAR) provide high resolution radiometric and geometric information for moni-
toring forests at individual tree crown (ITC) level. The advances in the integration of LiDAR and
hyperspectral sensors make possible to identify tree species at pixel-level with a high accuracy.
The integration of different remote sensing modalities is a challenging task for tree species clas-
sification due to different artifacts such as the lighting variability, the topographic effects and the
atmospheric conditions of the data acquisition. The characterization of ITC can benefit from the
extraction and selection of robust feature descriptors that solve these issues.

Data fusion is implemented at three levels: observation-level, feature-level and decision-
level [252]. Considering that tree species identification is a remote sensing topic posed as a su-
pervised approach [267], recent studies pursue to integrate HI and LiDAR data for improving the
classification (decision-level fusion). In [135], features are extracted from the HI by applying prin-
cipal component analysis (PCA) for reducing the redundancy within the bands [130]. In [127],
the algorithm rPCA is applied for filtering the noise and for selecting relevant features. This
study demonstrated that rPCA improved the classification of six tree species over PCA, with an
overall accuracy of 61.0% at tree-level. The algorithms support vector machines (SVM) [127]
and RF [76, 268] have been used for tree species classification with HI. Although SVM per-
forms superior for high dimensional features, it requires a proper parameter-setting that can be
time-consuming for large datasets. Alternatively, RF can be a good choice for feature selection
(feature-level fusion) and classification [269].

In this chapter, we present the integration of HI and LiDAR data for the classification of four
forest tree species. First, we compute the vegetation indices (VI) from HI, we extract LiDAR
features from the 3D point cloud and we compute the principal components (PC) by using robust
PCA (rPCA). Second, we create the dataset from the field survey data explained in section 3.1.
The pixels selected for the dataset are according to three criteria: height, vegetation and shadow.
The amount of features created can be reduced by considering the intra-set and inter-set feature
importance by using the RF scores and the 5-fold cross validation. Finally, we apply RF for the
pixel classification. This work is divided as follows: section 5.2 refers to the study site and the data
acquisition, section 5.3 presents the contributions based on feature extraction, feature selection and
classification based on RF, section 5.4 discusses the results of feature fusion for the classification
and finally, section 5.5 corresponds to the conclusions and the work perspectives.

5.2 Study area

The study area corresponds to the site of Chamrousse, located in Belledonne massif, Northern
Alps, France. The description of the study site is given in chapter 3, in the subsection 3.2.1 with
the summary of the field measurements at tree- and plot- level in Table 3.1. The remote sensing
data description of LiDAR and hyperspectral data is detailed in subsection 3.3.1.
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5.3 Methodology

The semantic segmentation workflow for forest tree species classification is presented in Fig-
ure 5.1. The proposed scheme has three inputs: the field inventory information, the HI and the
LiDAR data. This approach comprises the following steps: polygon projection, non-overlapping
pixel selection, computation of vegetation indices (VI), LiDAR feature extraction, robust PCA
(rPCA), height vegetation and shadow mask, feature reduction and classification.

Figure 5.1: Semantic segmentation flowchart for forest tree species classification by integrating
HI and LiDAR data. Five types of feature sets are evaluated: the hyperspectral bands represented
in matrix DHI, the vegetation indices in V, the PC obtained by using rPCA from HI in PCHI, the
LiDAR features in DLi and the PC obtained by using rPCA from LiDAR in PCLi.
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5.3.1 Polygon projection

Each tree crown from the inventory is projected into the xy-plane by fitting an ellipsoidal crown
shape. Then, a HI pixel is associated with a crown by verifying if the pixel center coordinate is
inside the crown polygon. The pixel center coordinate, (xc,yc), is computed through the following
equations:

xc = (2ci +1)s f + x0

yc = y0− (2ri +1)s f
(5.1)

where (x0,y0) is the xy coordinates for the upper-left pixel in the image, s f is the half of the spatial
resolution of the image, and (ri,ci) are the coordinates for the row and the column pixel positions
in the image (ri ∈ {0, ...,m} and ci ∈ {0, ...,n} with an image size m×n.

5.3.2 Non-overlapping pixel selection

The crown pixel correspondence becomes challenging when some crown regions overlap among
each other. To overcome this issue, those overlapping pixels that are associated with crown trees of
different species, are not considered in our ground truth. The purpose is to select a representative
set of pure pixels for each species. The overlapping pixels for those trees of the same species, are
labeled to the tree with the greatest height and crown area. This pixel - tree association is relevant
when the training and testing sets are defined for the classification.

5.3.3 Vegetation indices (VI)

In section 2.3.1 of feature extraction, we describe a list of 61 vegetation indices divided in 5 groups
according to the following tables: broadband greenness in Table 2.5, narrowband greenness in
Table 2.6, light use efficiency in Table 2.7, leaf pigments in Table 2.8, dry or senescent carbon
and canopy water content in Table 2.9. We compute these 61 features by using the equations
summarized in Annex B of feature descriptors.

5.3.4 LiDAR features

From the LiDAR 3D point cloud, 72 LiDAR features are computed at point-level according
to [165]. The equations of these features are presented in in Annex B:

• Two vegetation density features: the cumulative sum of local height maxima retrieved
from each radius r f maximum filter within three cylindrical neighborhoods of radius rc ∈
{1.0,3.0,5.0} m. The second feature is computed from the number of points classified as
ground points over the total number of points within each cylindrical neighborhood of radius
rc. The three outputs of the neighborhoods for every point are stacked.

• Two shape features: the scatter and the planarity are computed from the eigenvalues of the
covariance matrix within the three cylindrical neighborhoods of radius rc.

• 20 statistical features from each LiDAR point using the cylindrical neighborhoods given in
rc. The height and intensity information from the LiDAR data are used to derive statistical
features: minimum; maximum; mean; median; standard deviation; median absolute devi-
ation from median; mean absolute deviation from median; mean absolute deviation from
mean; skewness; kurtosis; 10th, 20th, 30th, 40th, 50th, 60th, 70th, 80th, 90th and 95th per-
centiles. All the statistical functions are used for the height, while the mean is used for the
intensity only.
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Chapter 5. Tree Species Classification

After computing the LiDAR features at point-level, these features are rasterized at the resolu-
tion of the HI, sc. The feature values of the points inside the pixel that is centered at the coordinate
x = (xc,yc), are weighted according to the function W (x)

W (xi) =Wh(xi)Wv(xi)

Wh(xi) = exp

(
−γ

∣∣∣∣∣∣∣∣x−xi

wh

∣∣∣∣∣∣∣∣2
)

Wv(xi) =

∣∣∣∣∣∣∣∣Zi−Zmin

wz

∣∣∣∣∣∣∣∣
(5.2)

where Wh and Wv are the weighting functions of the horizontal and vertical information, respec-
tively. The point xi represents the xy coordinate of each 3D point inside the cylinder, γ is selected
to be 0.5 (normal distribution), wh is an horizontal bandwidth equal to

√
2sc, Zi represents the z

coordinate of each 3D point inside the pixel and wz = Zmax−Zmin, corresponds to the difference
between the maximum and minimum height 3D point values in the vertical weighting function,
Wv. These weighting functions have been used for finding the maximum value of the 3D point
cloud distributions for 3D segmentation purposes [163]. In this way, the information of the high-
est points close to the pixel center are given more importance because these are associated to the
most illuminated regions in the image.

5.3.5 Robust PCA

From a given data matrix of size m×n, PCA can generate a low-rank matrix L that minimizes the
error S = D−L:

min
L,S
||S||F , s.t. rank(L)≤ r, D = L+S (5.3)

where r� min(m,n) is the target rank of D and || · ||F is the Frobenius norm. Although PCA is
widely used as dimensionality reduction technique, it can be affected by large-amplitude noise.
rPCA [127] is a method proposed to improve the robustness of the PCA for dealing with outliers.
This algorithm pursues to recover a low-rank matrix L from highly noisy measurements D=L+S,
by separating a sparse matrix S. Given the matrix D, the matrices L and S are computed by
satisfying the following condition:

min
L,S

rank(L)+λ ||S||0, s.t.L+S = D (5.4)

where || · ||0 is the l0-norm, λ is a regularization parameter for balancing the importance between
the ranking operator and the sparsity regularization. Equation (5.4) is reformulated as a convex
optimization approach:

min
L,S
||L||∗+λ ||S||1, s. t.L+S = D (5.5)

where || · ||∗ is the nuclear norm, which is the sum of singular values of L; and || · ||1 is the l1-norm.
In [270], authors described the programming implementation of the rPCA algorithm. In this stage,
the matrices L and S are obtained from the HI, DHI, and the rasterized LiDAR features, DLi,
separately. From the matrix L, we compute the PC for each modality as it is explained in [156].

5.3.6 Height, vegetation and shadow mask

The purpose of the height mask is to avoid negative effects due to shrubs, grassland and low height
objects. A threshold value of hmin = 1.5 m [170] is applied over the digital surface model (DSM)
for preserving most of the forest regions. At this point, by merging all the criteria of specie purity,
pixel illumination and height information, a set of nl p labeled pixels associated with nHI = 160
hyperspectral bands and nLi = 72 rasterized LiDAR metrics is processed in the next stage.
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The selection of sunlit pixels is advised because shadowed pixels are affected from a low
signal-to-noise ratio (SNR) [86]. Several strategies have been proposed for shadow removal. In
our approach, the criterion explained by [79], estimated the average of the blue portion of the
spectrum in the range of [450,550] nm. Then, Otsu threshold is calculated over this range. Since
the Otsu threshold value removed approximately 50.0% of the pixels, the minimum threshold is
computed to preserve around 65.0% of our ground truth.

The normalized difference vegetation index (NDVI) is used to separate forest from non-
vegetation [271]. In [161], authors selected a NDVI value greater than 0.5 to consider well-lit,
leafy vegetation pixels. In [137], they used a threshold of 0.6 based on the average NDVI for all
crowns. For our approach, a NDVI value of 0.55 is applied for all forest plots.

5.3.7 Feature reduction

From the workflow presented in Figure 5.1, we are considering 5 types of feature sets: the hyper-
spectral bands represented in matrix DHI, the vegetation indices in V, the PC obtained by using
rPCA from HI in PCHI, the LiDAR features in DLi and the PC obtained by using rPCA from
LiDAR in PCLi. The feature selection for DHI, V and DLi was carried out by calculating the RF
scores to estimate the intra-set feature importance. For instance, let A be a feature set of 5 features
A = [a1,a2,a3,a4,a5], then, the RF scores si are computed for the i-th feature by using 5-fold cross
validation. Figure 5.2 illustrates the 6 subsets in which the dataset is divided. From this data dis-
tribution, 5 subsets are in the training set and the remaining one is used for testing. Since RF score
si ∈ [0,1], this is computed for each of the 5 subsets in the training set by applying the following
equation:

si =
∏

5
j=1 si, j

∑
n f
i=1 ∏

5
j=1 si, j

(5.6)

where j represents the index of the subset in the training set, si, j is the RF score for the i-th feature
associated to the j-th subset and n f is the number of features.

Figure 5.2: Illustration of the dataset distribution for 5-fold cross validation in the training set.
The dataset is divided in 6 subsets, from which 5 subsets are in the training set and the remaining
one is used for testing.
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Chapter 5. Tree Species Classification

For our example presented in A (n f = 5) we obtain [s1,s2,s3,s4,s5], where s4 > s3 > s1 > s5 >
s2. In this way, the features are ordered in decreasing magnitude of importance by creating a sorted
set of features [a4,a3,a1,a5,a2]. By considering this order, each feature forms a new set together
with the features that have higher importance:

• A1 = [a4]

• A2 = [a4,a3]

• A3 = [a4,a3,a1]

• A4 = [a4,a3,a1,a5]

• A5 = [a4,a3,a1,a5,a2]

Each new presented set Ak is evaluated in the RF classifier by applying 5-fold cross validation
to compute the average F1-score, F1k ∈ [0,1]. Then, the question is: how many features should be
selected? The definition of the number of features k to be selected, implies the selection of the set
Ak. For doing this task, we apply the following cumulative error function:

cek = ∑
α

√
α

(
1− k

n f

)2

+(1−α)(1−F1k)
2 (5.7)

where α = {0.05,0.10,0.15,0.20,0.25,0.30,0.35,0.40,0.45,0.5}. The selected Ak is given by the
set of k features with the minimum cek. This procedure is repeated 6 times by changing the subset
in the testing set as we see in Figure 5.2. We group all the selected features generated in each
experience, which forms the final selected feature set. For defining the number of PC for PCHI
and PCLi, we increment the number of PC by one and we test every new set by applying 5-fold
cross validation for computing the average F1-score, F1k. The number of PC will be given by
the minimum cek. Since we repeat this procedure 6 times, we select the maximum number of PC
among the 6 experiences performed.

The feature stacking from a different set to another is given by the inter-set feature importance.
The feature set with the highest F1-score among DHI, V and DLi, is our reference set to which new
features will be added to increase the overall F1-score. Let A3 = [a4,a3,a1] be our reference set
with the highest F1-score, the feature set B = [b1,b2,b3,b4] contains the features to be added to
the set A3. The estimation of the inter-set feature importance is achieved by stacking each feature:

• [a4,a3,a1,b1]

• [a4,a3,a1,b2]

• [a4,a3,a1,b3]

• [a4,a3,a1,b4]

We compute the RF score for each feature set associated to the added feature by using 5-
fold cross validation as we explained before through equation 5.6. The features are ordered in
decreasing magnitude of importance to be stacked sequentially in the reference set as follows:

• B1 = [a4,a3,a1,b3]

• B2 = [a4,a3,a1,b3,b4]

• B3 = [a4,a3,a1,b3,b4,b1]

• B4 = [a4,a3,a1,b3,b4,b1,b2]

The selected Bk is given by the set of k features with the minimum cek. This procedure is
repeated 6 times as it is illustrated in Figure 5.2, and then we group all the selected features
generated in each experience, which forms the final selected feature set.
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5.4. Results and discussion

Table 5.1: Abbreviation, full name and number of tree crowns per species in the study area. The
total number of trees is 479

Abbr. Genus species English name No.

ABAL Abies alba European silver fir 146

ACPS Acer pseudoplatanus Sycamore maple 7

BEPE Betula pendula Silver birch 8

BEsp Betula sp. Birch 2

COAV Corylus avellana Common hazel 3

FASY Fagus sylvatica European beech 68

FREX Fraxinus excelsior European ash 1

PIAB Picea abies Norway spruce 209

PICE Picea abies Norway spruce 1

PIUN Pinus uncinata Mountain pine 29

POTR Populus tremula European aspen 2

SOAR Sorbus aria Common whitebeam 1

SOAU Sorbus aucuparia Rowan 2

5.3.8 Classification

For the tree species classification, tree crowns were selected according to the number of pixels per
crown. Thus, those trees that had more than 4 pixels per crown, were considered in our dataset.
By applying this criterion, an average of 20.5 pixels per crown was obtained which is close to the
average number of pixels per crown selected by Baldeck et al. [272] (24.9 pixels per crown). After
performing the tree crown selection, the number of trees per specie were distributed according to
Table 5.1.

For the RF classifier, the number of decision trees to grow was set to 1000. The training and
test sets were defined by randomly separating trees and by associating the pixels with their crowns.
The tree crowns were divided into six sets. The training set was formed by five of these six subsets,
whose amount of pixels are similar number of samples selected in [127] (1537 pixels).

Our dataset showed a problem of class imbalance, which means the number of trees and pixels
per class are not evenly distributed [268]. To address this problem, two strategies were imple-
mented. First, those tree species that had less than six trees or had less than 1% of total number
of pixels were grouped into a class called “other" species. Second, RF automatically weighted the
classes by considering that these are inversely proportional to the frequency that the class has in
the data [273]. The pixel distribution is described in Table 5.2.

5.4 Results and discussion

The ground truth of the seven plots of the Chamrousse site is illustrated over the images in
Figure 5.3. Four classes of tree species were classified at pixel-level. The tree species PIAB is
present in all forest plots, while the class PIUN is in plot 4 only.

The mask filtering stage from subsection 5.3.6 is illustrated in Figure 5.4 by presenting the
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Chapter 5. Tree Species Classification

Table 5.2: Abbreviation, number and percentage of trees and pixels for four identified species and
one “other" species class

Abbr. Average pixels/tree No. pixel Pixel [%] Tree [%]

ABAL 18.4 2764 28.2 30.5

FASY 23.4 1822 18.6 14.2

PIAB 20.0 4529 46.2 43.6

PIUN 8.2 266 2.7 6.1

Other 16.4 423 4.3 5.6

Overall 20.5 9804 100 100

(a) Plot 1 (b) Plot 1b (c) Plot 2

(d) Plot 3 (e) Plot 3b (f) Plot 4

(g) Plot Premol

Figure 5.3: RGB representation of the forest plots corresponding to the Chamrousse site with the
following color labels: Abies alba (ABAL), Fagus sylvatica (FASY), Picea abies (PIAB),
Pinus uncinata (PIUN) and “other" species
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5.4. Results and discussion

(a) RGB image (b) DSM (c) NDVI (d) Mask filter

Figure 5.4: Height, vegetation and shadow mask applied in plot 3.

Table 5.3: Overall accuracy [%] and F1-score [%] of forest tree species classification for HI and
LiDAR features after before and after removing the shadow pixels.

Ground truth Mask filter

Tree species DHI DLi DHI DLi

ABAL 54.7 60.5 63.8 61.6

FASY 61.6 44.2 71.2 50.9

PIAB 70.8 70.2 77.3 71.5

PIUN 28.8 62.1 40.2 66.1

Other 17.7 4.2 27.9 22.1

Overall accuracy 62.4 61.7 70.6 63.9

RGB representation, the DSM from LiDAR and the NDVI. The effect of this filter was evaluated
at pixel-level in the classifier by considering the spectral information and the LiDAR features.
The overall accuracy is computed by taking into account all the six experiments presented in
Figure 5.2, as it is detailed in Table 5.3. We confirm the findings of Torabzadeh et al. [86], who
removed the shadow pixels for forest tree species classification. In fact, the overall accuracy for
HI increased around 8 points of percentage at the same time that all species improved their F1-
scores. The effect of removing pixels associated with shadow, low objects and non-vegetation
are appreciated in Figure 5.5. One of the main results is the reduction of the spectral variability
generated mainly by shadow pixels, which are generated by the topography of the site, the forest
structure and the illumination conditions. The shadow pixels distort the spectral content and limit
the classification task. Another remark regarding the application of this mask is in the group of
other species. Before the filtering task, this class contains pixels from broadleaves and conifers
(Picea cembra). After filtering the data, this group contains broadleaves species only. Although
the improvement of mask filtering is 2.2 points of percentage for the LiDAR features, the effect
is not visually perceived in Figure 5.4 as we notice for HI data. However, the class other species
showed the most significant F1-score increase from 4.2 to 22.1%.

One of the feature sets that contributes significantly for the tree species classification is the
computation of PC. In Table 5.4, we compare the effect of obtaining the PC from PCA and rPCA.
For HI, the overall accuracy showed an improvement with respect to the result obtained by clas-
sifying just spectral bands (70.6%). The components of rPCA performed better than PCA by
presenting a slightly increase of 1.3 points of percentage between them. The most relevant effect
is given by the class PIUN by providing a F1-score increase from 74.2% to 82.9%. It might be ex-
plained due to fact the algorithm rPCA was applied over each forest plot image and the class PIUN
can be found in the plot 4 only. All the classes showed a F1-score improvement with the exception
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(a) Average normalized HI signatures (b) Filtered HI signatures

(c) Average normalized LiDAR features (d) Filtered LiDAR signatures

Figure 5.5: Normalized average spectral and LiDAR features of all selected pixels from Figure 5.3
for describing forest tree species with the following color labels: Abies alba (ABAL), Fagus
sylvatica (FASY), Picea abies (PIAB), Pinus uncinata (PIUN) and “other" species

of class FASY which performed better with PCA (75.1%). For the LiDAR features, PCA provided
better results than rPCA, but the difference is less than one point of percentage. Both techniques
presented an overall accuracy better than the classification by LiDAR features. The class PIUN
benefited more from rPCA, while the class ABAL performed a better classification with LiDAR
features.

One of the data fusion approaches at feature-level is feature stacking [227]. Table 5.5 presents
the overall accuracy and the F1-scores by feature set and by forest trees species. The last column
presents the results of stacking all feature sets: 160 hyperspectral bands DHI, 61 vegetation indices
in V, 160 PC obtained by using rPCA from HI in PCHI, 72 LiDAR features in DLi and 72 PC
obtained by using rPCA from LiDAR in PCLi. We noticed the VI provided an overall accuracy
increase of 2.2 points of percentage with respect to spectral bands. In fact, all forest tree species
improved the classification performance, in particular the class PIAB with a F1-score of 79%. The
full feature stacking improved the overall accuracy considering an increase of F1-score for all tree
species than individual feature set contribution, with the exception of class PIUN that performed
better with PC.

From the previous results, feature stacking improved the overall accuracy by considering
525 features. We explore if the reduction of the amount of features can maintain or improve
the classification performance. We tested another scheme of data fusion at feature-level based
on the selection of individual features from each feature set, and then we proceeded to stack the
final subsets. To do this task, we implemented the intra-set feature importance based RF score
and 5-fold cross validation in the training set, as it was explained in subsection 5.3.7. Table 5.6
presents the overall accuracy and F1-scores of each feature set by species. We noticed that fea-
ture reduction improved the classification performance of each feature set with the exception of
spectral features. The performance decreased less than one point of percentage for HI because
the classes ABAL, PIAB and other species decreased their results too. Regarding the stacking of

64



5.4. Results and discussion

Table 5.4: Overall accuracy [%] and F1-score [%] of forest tree species classification for HI and
LiDAR features by using PCA and rPCA.

PCA rPCA

Tree species PCHI PCLi PCHI PCLi

ABAL 61.6 58 66.3 55.5

FASY 75.1 53.3 72.1 52.6

PIAB 77.6 73 78.5 72.4

PIUN 74.2 74.9 82.9 77.8

Other 15.3 11.4 29.5 17.1

Overall accuracy 71.9 65.2 73.2 64.5

Table 5.5: Overall accuracy [%], F1-score [%] of forest tree species classification and the number
of features (No.) for each feature set. The last column presents the results of stacking all features.

Feature DHI V PCHI DLi PCLi Stacking

No. 160 61 160 72 72 525

ABAL 63.8 67.8 66.3 61.6 55.5 73.4

FASY 71.2 72.5 72.1 50.9 52.6 72.9

PIAB 77.3 79 78.5 71.5 72.4 80.9

PIUN 40.2 56.1 82.9 66.1 77.8 80.6

Other 27.9 33.5 29.5 22.1 17.1 34.8

Overall accuracy 70.6 72.8 73.2 63.9 64.5 76.1

the selected features, the classes ABAL and PIAB benefited more of this operation with respect to
the other classes that obtained better results by reducing the amount of PC from the hyperspectral
data. An important finding of this operation is the creation of a list of the 25 VI that improved
the classification among the 6 experiments performed. The list of VI and frequency is presented
in Figure 5.6. The description and computation of these VI are presented in Annex B. Figure 5.7
shows the selected feature representation by forest tree species.

A final scheme of fusion was considering the inter-set feature importance presented in subsec-
tion 5.3.7 among the feature sets DHI, V and DLi. The feature set V was considered as reference
set because of its highest accuracy. We started by adding the features from HI. The effect of adding
the selected features did not increase the overall accuracy. We obtained 73.5% and the selected
VI produced an overall accuracy of 73.6%. Then, we proceeded to add the LiDAR features. This
operation reduced the overall accuracy. We maintained the number of PC in HI and LiDAR, and
we performed the feature stacking among 25 features in V, 20 components in PCHI and 22 compo-
nents from PCLi as it is presented in Table 5.7. The overall accuracy of stacking these three feature
sets is slightly better than the previous approach that considers HI and LiDAR features. The main
difference is the reduction of features to obtain 67 features. Most of the species improved their
F1-scores with the exception of other species, but this result is better than the approach of stacking
all selected features presented in Table 5.6.

Tables 5.8 and 5.9 present the species classification at the pixel-level and tree-level, respec-
tively. The overall accuracy at tree-level is 78.3%, which is slightly similar to the accuracy at
pixel-level, 78.1%. The species PIUN, the class in plot 4, obtained the highest producer’s and
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Table 5.6: Overall accuracy [%], F1-score [%] of forest tree species classification and the number
of selected features (No.) for each feature set. The last column presents the results of stacking all
features.

Feature DHI V PCHI DLi PCLi Stacking

No. 38 25 20 20 22 125

ABAL 62.4 69.6 70.8 61.6 60.8 75

FASY 71.8 73 74.9 51.1 54.5 73.3

PIAB 76.3 79.3 80.7 72.5 73 81.3

PIUN 49.4 62.7 86.6 67.8 76.8 80.7

Other 26 31.9 46.5 25.6 19.9 37.4

Overall accuracy 69.8 73.6 76.1 64.4 65.7 76.8

Figure 5.6: Frequency of selected vegetation indices after performing feature reduction according
to the subset distribution presented in Figure 5.2.
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5.4. Results and discussion

(a) Selected HI bands (b) Selected LiDAR features

(c) Selected HI PC (d) Selected LiDAR PC

(e) Selected VI

Figure 5.7: Normalized average selected features from HI and LiDAR data, the selected amount
of PC and the selected VI for describing forest tree species with the following color labels:
Abies alba (ABAL), Fagus sylvatica (FASY), Picea abies (PIAB), Pinus uncinata (PIUN) and

“other" species
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Table 5.7: Overall accuracy [%], F1-score [%] of forest tree species classification and the number
of selected features (No.) after stacking each feature set.

Feature V V + PCHI V + PCHI + PCLi

No. 25 45 67

ABAL 69.6 72.8 74.5

FASY 73 75.3 76.4

PIAB 79.3 81.2 82.2

PIUN 62.7 84.8 90.3

Other 31.9 44.8 43.5

Overall accuracy 73.6 76.7 78.1

user’s accuracy among all species. This class benefited from the data fusion with the PC from HI
and LiDAR features. Figure 5.8 presents the pixel classification of 15 tree crowns. At tree-level,
the classifier predicted just one PIUN tree as PIAB as we observed in Figure 5.8(b) because of
one pixel difference. PIUN, PIAB and ABAL belongs to the group of conifers, so it is expected to
have wrong prediction among them. The species PIAB is the most abundant class of our dataset.
It obtained a producer’s accuracy of 90.6%, but the misclassied pixels from ABAL, FASY and
other species reduce the user’s accuracy as we observed in Figures 5.8(e) and 5.8(f). Although the
producer’s accuracies of ABAL and FASY species are almost similar at tree-level, we noticed that
the most amount of wrong predictions results as PIAB class (Figures 5.8(h) and 5.8(k)) and be-
tween them (Figures 5.8(i) and 5.8(l)). The class other species is the most challenging to classify
because it is diffused into the other species as we observe in Figures s 5.8(b) and 5.8(c). The clas-
sification at tree-level is obtained by applying a majority voting rule to define the species for each
crown [127]. In this approach, authors used rPCA and SVM to obtain an overall accuracy for the
classification of six tree species of 91.7% and 61.1% at the pixel- and tree-level, respectively. Our
results shows more consistency between the pixel- and tree-level by evaluating the entire dataset.

Table 5.8: Species classification results at pixel-level obtained by the fusion of HI and LiDAR
features

Ground truth

Tree species ABAL FASY PIAB PIUN Other Total Producer’s acc. [%]

ABAL 1912 119 725 1 7 2764 69.2

FASY 113 1387 302 0 20 1822 76.1

PIAB 310 184 3974 13 48 4529 87.7

PIUN 3 0 17 241 5 266 90.6

Other 32 117 121 13 140 423 33.1

Total 2370 1807 5139 268 220 9804

User’s acc. [%] 80.7 76.8 77.3 89.9 63.6 78.1
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(a) PIUN (b) PIUN (c) PIUN

(d) PIAB (e) PIAB (f) PIAB

(g) ABAL (h) ABAL (i) ABAL

(j) FASY (k) FASY (l) FASY

(m) Other (n) Other (o) Other

Figure 5.8: Results of pixel classification for tree-level assessment of 15 tree crowns: (a) PIUN
correctly detected, (b) PIUN detected as PIAB, (c) PIUN correctly detected, (d) PIAB correctly
detected, (e) PIAB correctly detected, (f) PIAB detected as other, (g) ABAL correctly detected, (h)
ABAL detected as PIAB, (i) ABAL detected as FASY, (j) FASY correctly detected, (k) FASY detected
as PIAB, (l) FASY detected as ABAL, (m) Other correctly detected, (n) Other correctly detected,
(o) Other detected as FASY. Legend: Abies alba (ABAL), Fagus sylvatica (FASY), Picea abies
(PIAB), Pinus uncinata (PIUN) and other species
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Table 5.9: Species classification results at tree-level obtained by the fusion of HI and LiDAR
features

Ground truth

Tree species ABAL FASY PIAB PIUN Other Total Producer’s acc. [%]

ABAL 100 5 41 0 0 146 68.5

FASY 5 47 15 0 1 68 69.1

PIAB 9 9 190 0 1 209 90.9

PIUN 0 0 1 28 0 29 96.6

Other 2 8 7 0 10 27 37.0

Total 116 69 254 28 12 479

User’s acc. [%] 86.2 68.1 74.8 100 83.3 78.3

5.5 Conclusions

In this work, we presented a data fusion scheme that integrated features extracted from the
HI and the LiDAR data for semantic segmentation. The potential of rPCA for extracting features
from LiDAR and HI improved the classification together with the vegetation indices. The feature
selection implements two steps: first, the intra-set feature importance was described by the RF
scores and 5-fold cross validation in the training set. The cumulative error function helps to define
the number of features to be accepted in the model. The inter-set feature importance was estimated
for selecting feature sets that can contribute to improve the classification. This method offers the
flexibility of incorporating additional features, which increases the interpretability of the model.
The feature reduction process decreased the dimensionality from 525 to 67 features. The overall
accuracy of tree species classification at pixel-level was 78.1%. Our approach showed that 78.3%
of trees were correctly assigned overall, which represented an improvement of 17.2 points of
percentage with respect to [127]. Although these two remote sensing modalities provided valuable
information, the coniferous classes PIUN and PIAB benefited mainly from feature selection and
integration. However, it became a challenging task for dealing with imbalanced classes of our
dataset, such as other species. Future work is going to be focused in the implementation of tree
species detectors by selecting the most relevant features from HI and LiDAR data for each specific
tree species.
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6
Conclusion and work perspectives

In this final chapter, we summarize the main contributions presented
along this manuscript and we propose some perspectives in which
we can address our future work.
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6.1. How data processing methods are applied in each level of data fusion for forest monitoring?

This PhD thesis deals with the integration of LiDAR and hyperspectral data to characterize
individual forest trees. The leading idea is to improve methods to derive forest information at tree-
level by extracting geometric and radiometric features. This research work considers the issues of
field data required to build and validate the models. Forest plots represent a wide range of forest
structures, from conifers to mixed, multilayered stands. Tree measurements from 894 tree crowns
grouped in 7 plots in mountain forests located in the French Alps are considered along this study.
Besides, a dataset of 573 tree crowns from 15 plots located in the Italian Alps was also taken into
account. For our tree measurements, the accuracy of LiDAR data was employed to co-register
field data. The hyperspectral data were orthorectified by using a DSM, which provided a relative
geometric precision of 2-3 pixels. A more detailed information regarding the field data is provided
in chapter 3.

The contributions of this manuscript may be of great interest for forest managers in order to
account (i) for the inventory of individual tree crowns (ii) for mapping individual tree species, and
these can be summarized as follows:

• An updated review of data fusion methods of LiDAR and hyperspectral data for forest mon-
itoring.

• An improved 3D segmentation algorithm for delineating individual tree crowns based on
Adaptive Mean Shift (AMS3D) and an ellipsoid crown shape model.

• A criterion for feature selection based on random forests (RF) score, 5-fold cross validation
and a cumulative error function for forest tree species classification.

6.1 How data processing methods are applied in each level of data
fusion for forest monitoring?

The continuing advancement of remote-sensing technology has encouraged the use of data
available to the scientific community. The integration of remote sensing data has attracted signif-
icant attention, specially for applications in forest monitoring. Therefore, an exploratory task is
always welcomed to identify the methods and how these can be adapted for this subject in order
to be transferred towards an operative context. From the theoretical point of view, this manuscript
provides a review of data processing methods at each level of fusion in chapter 2. Three levels of
fusion for processing data were identified: observation or low-level, feature or medium-level, and
decision or high-level.

We grouped the methods in processes in order to illustrate the interaction among them, and the
link between data and the spatial domain (point cloud or image grid). An extensive compilation
of feature descriptors are categorized in six groups: statistical, structural, topographic, vegetation
indices, textural and dimension reduction. For the feature sets used in this manuscript, we pro-
vided the equations in annex B. At decision-level, we established the processes that define the
main forest applications: species mapping, the estimation of functional, physiological, structural
attributes, above-ground biomass and carbon density, and land cover maps. From this review, we
highlight that the automatic delineation of individual trees is required for the characterization at
tree-level. Then, considering the high resolution of the LiDAR data in our datasets, a 3D segmen-
tation algorithm is proposed for detecting individual tree crowns.

Additional aspects that can improve this review of data fusion methods can be focused on the
response of the revised methods with respect to specific characteristics of the remote sensing data
such as the spatial or spectral resolution, or the information regarding the type of forest (temperate,
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boreal, tropical, subtropical) or specie composition. For instance, some individual tree crown
segmentation algorithms provide better results in the context of a dense point cloud and sparse
canopies. Although this type of review can generate anticipated value judgments, these aspects
can be helpful to understand the conditions in which the method would perform in a specific
scenario. At this point, the collaboration and networking of the scientific community can also give
an updated feedback through data science challenges.

6.2 How a crown shape model can improve the segmentation of indi-
vidual tree crowns?

Individual tree-level analysis is oriented to extract information regarding the position and size
of the trees. Mountainous forest is a challenging environment because of the horizontal and ver-
tical structure of plots, which makes the parameter setting of the detection algorithms, a difficult
task. In this manuscript, we improved the 3D segmentation algorithm proposed by Ferraz et
al. [96,97] by preserving the input parameters based on allometry equations and by introducing an
ellipsoid crown shape model, as it is explained in chapter 4. The parameters of AMS3D does not
depend on the number and position of treetops, which makes it a good alternative. We tested two
crown shape models for adapting the size of the superellipsoid (SE) kernel profile. These schemes
are compared with two other MS algorithms with and without kernel profile size adaptation. We
select the best algorithm output per plot based on the maximum F1-score. The ellipsoid crown
shape model with a SE kernel profile of n = 1.5 presents the best overall recall of 59.0% and
Jaccard index of 53.7% among the assessed schemes of 3D segmentation.

Our approach solved the problem of the AMS3D proposed by Ferraz et al. [97], which pro-
duced undersegmented tree crowns because the kernel radius enclosed more than one tree at upper
layers. The ellipsoid crown shape model adjusts the crown radius to control the kernel size and
improved the segmentation results. The 3D mean shift algorithm proposed by Xiao et al. [163]
maximized the F1-score by decreasing the number of detections, which produced the best preci-
sion with respect to other algorithms, but it decreased the number of true positive trees. Xiao’s
algorithm produced better recall values with small kernels by oversegmenting the point cloud.
The results obtained show that models are highly dependent on the forest structures, which can be
described by the gap area percentage at different heights of the canopy.

The limitation of the proposed 3D segmentation algorithm is the parameter setting, which de-
pends on the ground truth information. In the short-term, we prepare a 2D segmentation approach
based on mean shift for parameter estimation of the AMS3D. The idea is reducing the number of
parameters to one by introducing the vertical kernel weight function proposed by Xiao et al. [163].
The remaining parameter can be calibrated by applying sensitivity analysis, and by using the sil-
houette coefficient to select the best output segmentation. Hyperspectral data can be integrated in
this approach through an additional kernel. Lee et al. [156] introduces the second to fifth principal
components from hyperspectral data into a 3D graph-cut segmentation approach for estimating
point similarity. The first component is associated to illumination information, so it is affected by
shadow. Similarly, the kernel design can be explored by adding other descriptors (e.g. percentiles).
Finally, the results obtained with the ellipsoid crown shape model open a new experimental area
to find alternative shapes that fits the tree crown according to the type of forest.
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6.3 Which feature combination contribute to characterize the forest
tree species composition?

In the line of individual tree characterization, the identification of forest tree species is of
our concern in the chapter 5 of this manuscript. A pixel-classification workflow was developed
for the identification of four main species: Abies alba (ABAL), Fagus sylvatica (FASY), Picea
abies (PIAB), Pinus uncinata (PIUN) and “other" species. Our dataset for training and testing
was created from the field data which have been preprocessed by using mask filtering based on
height, vegetation and shadow. The effect of removing shadow pixels benefited the identification
of species by reducing the spectral variability. Five set of features were studied in this approach:
160 hyperspectral bands (HI), 61 vegetation indices (VI), the principal components (PC) obtained
by using robust PCA (rPCA) from HI, 72 LiDAR features and the PC obtained by using rPCA
from LiDAR. We performed a fusion at feature level by selecting the amount of features of our
prediction model. This operation was based on the random forests (RF) score, 5-fold cross valida-
tion in the training set and a cumulative error function for defining a criterion of intra-set feature
importance.

An important contribution is the reduction of the amount of features by preserving, or even
enhancing the performance of the classification. The inter-set feature importance was applied
for merging features among the 38 HI, 25 VI and 20 LiDAR features. The classification results
showed the selected vegetation indices combined with the spectral bands and LiDAR features did
not improve significantly the classification. The best feature set combination was given by the
selected 25 VI, 20 PC from HI and 22 PC from LiDAR features. The overall accuracy of tree
species classification at pixel-level was 78.1%. Our approach showed that 78.3% of trees were
correctly assigned overall, by using 67 out of 525 feature descriptors.

Although the algorithm has been validated through the ground truth derived from tree mea-
surements, the matched trees extracted from the AMS3D segmentation algorithm can be also
considered for training and testing our classification algorithm, and also to complement the infor-
mation of individual tree characterization. In this way, we can propose a workflow in which we
can test different datasets and assess its scope for other forest applications.

The shadow effect influences the variability of the spectral signatures of forest tree species. In
our approach, this issue is solved by removing these pixels with mask filter. Another technique
that can be applied to deal with shadows is the unmixing-based approach as it is suggested by
Matsuki et al. [135], who applied it in a complex mixed forest. Spectral unmixing has been
used in other studies to identify group of species: conifers and broadleaves [274]. This technique
results promising because new unmixing-based approaches are oriented to integrate HI and LiDAR
data [275].

Regarding the type of features used in this approach, the performance of VI provided interest-
ing results. Unlike PCA that is a linear method for extracting features, VI establishes non-linear
relationships among the spectral bands. For this reason, it is important to explore the response
of non-linear algorithms for extracting features. For instance, KPCA [230] or autoencoders [166]
have been also considered for the identification of forest tree species.

The criterion for selecting the number of features based on the RF-score and the cumulative
error function was performed in a 5-fold cross validation in the training set. This strategy de-
termined the number of features that contributed most in the classification task. In this way, the
number of VI was determined and the frequency of the selected feature is shown in Figure 5.6. We
consider as a future work, that the number of experiments to select features should be increased in
order to confirm this trend. In addition to that, these results have been compared with single fea-
ture stacking. Since the number of selected features can be determined, we can also explore other
feature selection algorithms such as Forward Feature Selection (FFS) [123, 137], or Sequential
Forward Floating Selection (SFFS) [121, 122, 159].
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In the long term, we can think over the integration with other data modalities, either to improve
the task of individual tree delineation or to increase the feature representation for the specie clas-
sification. The IDTResS competition provided field data of forest plots for three remote sensing
modalities: RGB images, DSM and LiDAR point cloud, and hyperspectral images. The spatial
resolution of the LiDAR point cloud is 6 points m−2, while the hyperspectral grid is 1 m2. RGB
images have the highest spatial resolution of 0.01 m2. Our AMS3D approach relies on a dense
point cloud for delineating tree crowns, so this scenario is an example of how data fusion strategies
can be elaborated in order to improve the performance of current methods.
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B
Feature descriptors

This annex presents the equations for deriving vegetation indices
(VI) and for computing LiDAR features, such as density, shape and
statistical metrics.
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Annexe B. Feature descriptors

B.1 Hyperspectral images

B.1.1 Vegetation indices

In this section, we detail the equations to compute the vegetation indices (VI) from hyperspectral
data by organizing in 5 groups in the next tables: broadband greenness in Tables B.1 and B.2,
narrowband greenness in Table B.3, light use efficiency in Table B.4, leaf pigments in Table B.5,
dry or senescent carbon in Table B.6 and canopy water content in Table B.7. The reflectance values
for the blue band ρBLUE is in the range 440 - 510 nm [53], for the green band ρGREEN is in 540 -
560 nm [54], for the red band ρRED is in 630 - 685 nm [53], for red-edge band ρREDGE is in 690 -
710 nm [54] and for near-infrared band ρNIR is in the range 760 - 850 nm [53]. For the reflectance
band ρi, i represents the wavelength value in nm associated to this band.

B.2 LiDAR data

If we consider a 3D LiDAR point coordinate xi = (Xi,Yi,Zi) and Ii is the intensity associated
to xi, the following LiDAR features are computed at point-level and these are based on the work
of Clément Dechesne et al. [165].

B.2.1 Density features

Two vegetation density features, D1 and D2 are computed by using three different cylindrical
neighborhoods of xi. The first one is based on the number of local height maxima within the
neighborhoods. The second one is related to the number of non-ground points within the neigh-
borhoods. These features are calculated as follows:

D1,rc = ∑
r f∈{1,2,3}

Ntrc,r f (B.1)

D2,rc =
Nsrc

Ntotrc

(B.2)

where Ntrc,r f is the number of local maxima retrieved from a r f maximum filter within the cylin-
drical neighborhood of radius rc ∈ {1,2,3}. Nsr is the number of points classified as ground points
within the cylindrical neighborhood of radius rc and Ntotrc is the total number of points within the
cylindrical neighborhood of radius rc. D1 describes how trees are close to each other and gives
information about the tree crown width. D2 provides information on the penetration rate of the
LiDAR beam.

B.2.2 Shape featueres

The scatter S and the planarity P features are computed for every LiDAR point by following the
equations:

Src =
λ3,rc

λ1,rc

(B.3)

Prc = 2× (λ2,rc−λ3,rc) (B.4)

where λ1,rc ≥ λ2,rc ≥ λ3,rc are the eigenvalues of the covariance matrix within the cylindrical neigh-
borhood of xi with radius rc ∈ {1,2,3}, which are retrieved by applying PCA.
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B.2. LiDAR data

Table B.1: Equations for broadband greenness vegetation indices

No. VI Equation Ref.

1 Normalized Dif-
ference Vegetation
Index

NDV I = ρNIR−ρRED
ρNIR+ρRED

[69, 72–76]

2 Non-Linear Index NLI = ρNIR
2−ρRED

ρNIR2+ρRED
[184]

3 Renormalized Differ-
ence Vegetation In-
dex

RDV I = ρNIR−ρRED√
ρNIR+ρRED

[158, 185]

4 Modified Non-Linear
Index

MNLI = (ρNIR
2−ρRED)(1+L)

ρNIR2+ρRED+L , L = 0.5 [186]

5 Green Normalized
Difference Vegeta-
tion Index

GNDV I = ρNIR−ρGREEN
ρNIR+ρGREEN

[69, 73, 76, 80,
187]

6 Green Leaf Index GLI = (ρGREEN−ρRED)+(ρGREEN−ρBLUE )
2ρGREEN+ρRED+ρBLUE

[188]

7 Infrared Percentage
Vegetation Index

IPV I = ρNIR
ρNIR+ρRED

[73, 76, 189]

8 Transformed Differ-
ence Vegetation In-
dex

T DV I = 1.5 ρNIR−ρRED√
ρNIR2+ρRED+0.5

[190]

9 Triangular Green-
ness Index

T GI = 0.5(λRED − λBLUE)(ρRED − ρGREEN) −
0.5(λRED−λGREEN)(ρRED−ρBLUE)

[191]

10 Difference Vegeta-
tion Index

DV I = ρNIR−ρRED [73, 76, 192]

11 Green Difference
Vegetation Index

GDV I = ρNIR−ρGREEN [193]

12 Green Red Differ-
ence Index

GRDI = ρGREEN−ρRED
ρGREEN+ρRED

[192]

13 Difference Differ-
ence Vegetation
Index

DDV I = (2ρ948−ρ751)− (ρ649−ρ547) [76, 194]

14 Enhanced Vegetation
Index 1

EV I1 = 2.5 ρNIR−ρRED
ρNIR+6.0ρRED−7.5ρBLUE+1 [69, 73, 74, 76,

128, 195]

15 Enhanced Vegetation
Index 2

EV I2 = 2.5 ρNIR−ρRED
ρNIR+2.4ρRED+1 [76, 196]

16 Leaf Area Index LAI = 3.618EV I1−0.118 [197]
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Table B.2: Equations for broadband greenness vegetation indices

No. VI Equation Ref.

17 Simple Ratio Vegeta-
tion Index 1

SRV I1 = ρNIR
ρRED

[69, 73–76, 126,
198]

18 Modified Simple Ra-
tio

MSR =
ρNIR
ρRED

−1√
ρNIR
ρRED

+1
[199]

19 Green Chlorophyll
Index

GCI = ρNIR
ρGREEN

−1 [54, 67–69]

20 Green Ratio Vegeta-
tion Index

GRV I = ρNIR
ρGREEN

[200]

21 Green Red Ratio
Vegetation Index

GRRV I = ρGREEN
ρRED

[76, 201]

22 Blue Ratio Vegeta-
tion Index

BRV I = ρRED
ρBLUE

ρGREEN
ρBLUE

ρREDGE
ρBLUE

ρNIR
ρBLUE

[76, 201]

23 Red Ratio Vegetation
Index

RRV I = ρNIR
ρRED

ρGREEN
ρRED

ρNIR
ρREDGE

[76, 201]

24 Sum Green Index SGI = 1
n ∑

n
i=1 ρi, ρi ∈ [500,600] [69, 202]

25 Soil Adjusted Vege-
tation Index

SAV I = (1+L) ρNIR−ρRED
ρNIR+ρRED+L , L = 0.5 [69, 74, 75, 203]

26 Optimized Soil Ad-
justed Vegetation In-
dex

OSAV I = (1+L) ρNIR−ρRED
ρNIR+ρRED+L , L = 0.16 [74, 204]

27 Modified Soil Ad-
justed Vegetation In-
dex 2

MSAV I2 = ρNIR + 0.5 −
0.5
√

(2ρNIR +1)2−8(ρNIR−ρRED)
[74, 75, 158, 205]

28 Green Soil Adjusted
Vegetation Index

GSAV I = (1+L) ρNIR−ρGREEN
ρNIR+ρGREEN+L , L = 0.5 [193]

29 Green Optimized
Soil Adjusted Vege-
tation Index

GOSAV I = (1+L) ρNIR−ρGREEN
ρNIR+ρGREEN+L , L = 0.16 [193]

30 Green Atmospher-
ically Resistant
Index

GARI = ρNIR−(ρGREEN−γ(ρBLUE−ρRED))
ρNIR+(ρGREEN−γ(ρBLUE−ρRED))

, γ = 1.7 [76, 206]

31 Visible Atmospheri-
cally Resistant Index

VARI = ρGREEN−ρRED
ρGREEN+ρRED−ρBLUE

[76, 207]

32 Wide Dynamic
Range Vegetation
Index

WDRV I = αρNIR−ρRED
αρNIR+ρRED

, α = 0.2 [208, 209]
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B.2. LiDAR data

Table B.3: Equations for narrowband greenness vegetation indices

No. VI Equation Ref.

33 Modified Normal-
ized Difference
Vegetation Index

MNDV I = ρ755−ρ741
ρ755+ρ741

[74, 210]

34 Red Edge Normal-
ized Difference Veg-
etation Index

RENDV I = ρNIR−ρREDGE
ρNIR+ρREDGE

[76, 80, 126, 211,
212]

35 Modified Red Edge
Normalized Dif-
ference Vegetation
Index

MRENDV I = ρNIR−ρREDGE
ρNIR+ρREDGE−2ρ445

[69, 76, 212]

36 Simple Ratio Vegeta-
tion Index 2

SRV I2 = ρ755
ρ712

[74, 210]

37 Modified Red Edge
Simple Ratio

MRESR = ρNIR−ρ445
ρREDGE−ρ445

[73, 76, 212, 213]

38 Red Edge Chloro-
phyll Index

RECI = ρNIR
ρREDGE

−1 [68, 69]

39 Vogelmann Red
Edge Index 1

V REI1 = ρ740
ρ720

[73, 214]

40 Vogelmann Red
Edge Index 2

V REI2 = ρ734−ρ747
ρ715+ρ726

[214]

41 Red Edge Inflection
Point

REIP = 700+40
(

ρ670+ρ780
2 −ρ700

ρ741−ρ700

)
[74, 126, 215]

42 Atmospherically Re-
sistant Vegetation In-
dex

ARV I = ρNIR−(ρRED−(ρBLUE−ρRED))
ρNIR+(ρRED−(ρBLUE−ρRED))

[73, 74, 76, 216]

43 Modified Chloro-
phyll Absorption
Ratio Index 1

MCARI1 = ((ρ700−ρ670)−0.2(ρ700−ρ550))
ρ700
ρ670

[70]

44 Modified Chloro-
phyll Absorption
Ratio Index 2

MCARI2 = 1.5(2.5(ρ800−ρ670)−1.3(ρ800−ρ550))√
(2ρ800+1)2−(6ρ800−5

√
ρ670)−0.5

[71]

45 Transformed Chloro-
phyll Absorption Re-
flectance Index

TCARI = 3((ρ700−ρ670)−0.2(ρ700−ρ550)
ρ700
ρ670

) [69, 71]

46 Triangular Vegeta-
tion Index

TV I = 1
2 (120(ρ750−ρ550)−200(ρ670−ρ550)) [217]

47 Modified Triangular
Vegetation Index 1

MTV I1 = 1.2(1.2(ρ800 − ρ550) − 2.5(ρ670 −
ρ550))

[71]

48 Modified Triangular
Vegetation Index 2

MTV I2 = 1.5(1.2(ρ800−ρ550)−2.5(ρ670−ρ550))√
(2ρ800+1)2−(6ρ800−5

√
ρ670)−0.5

[71, 158]
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Table B.4: Equations for light use efficiency vegetation indices

No. VI Equation Ref.

49 Photochemical
Reflectance Index

PRI = ρ531−ρ570
ρ531+ρ570

[69, 76, 126, 218,
219]

50 Structure Insensitive
Pigment Index

SIPI = ρ800−ρ445
ρ800−ρ680

[69, 73, 220]

51 Red Green Ratio In-
dex

RGRI =
1
n ∑

n
i ρi

1
m ∑

m
j ρ j

, ρi ∈ [600,700), ρ j ∈ [500,600) [69, 221]

52 Photochemical
Reflectance Ratio

PRR = ρ531
ρ570

[69, 222]

Table B.5: Equations for leaf pigments vegetation indices

No. VI Equation Ref.

53 Anthocyanin Re-
flectance Index
1

ARI1 = 1
ρGREEN

− 1
ρREDGE

[69, 73, 81]

54 Anthocyanin Re-
flectance Index
2

ARI2 =
(

1
ρGREEN

− 1
ρREDGE

)
ρNIR [69, 73, 81]

55 Carotenoid Re-
flectance Index
1

CRI1 = 1
ρ510
− 1

ρGREEN
[69, 73, 82]

56 Carotenoid Re-
flectance Index
2

CRI2 = 1
ρ510
− 1

ρREDGE
[69, 73, 82]

57 Carotenoid Re-
flectance Index
3

CRI3 =
(

1
ρ510
− 1

ρGREEN

)
ρNIR [68]

58 Carotenoid Re-
flectance Index
4

CRI4 =
(

1
ρ510
− 1

ρREDGE

)
ρNIR [54, 68]

59 Plant Pigment Ratio PPR = ρ550−ρ450
ρ550+ρ450

[69, 83]

Table B.6: Equations for dry or senescent carbon vegetation indices

No. VI Equation Ref.

60 Plant Senescence Re-
flectance Index

PSRI = ρ680−ρ550
ρ750

[73, 76, 223]

Table B.7: Equations for canopy water content vegetation indices

No. VI Equation Ref.

61 Water Band Index WBI = ρ970
ρ900

[73, 84]

116



B.2. LiDAR data

B.2.3 Statistical features

Let xj = (X j,Yj,Z j) the 3D coordinate and I j the intensity of all the points within the cylindrical
neighborhood of radius rc of point xi, where j = 1, ...,mc, we can define {xj}mc

j=1 as the set of
neighbors of xi. Then, the following list of statistical features is described in Table B.8 [276].

No. Metric Equation

1 Minimum minZ = min j({Z j}mc
j=1)

2 Maximum maxZ = max j({Z j}mc
j=1)

3 Mean of intensity Ī =
∑

mc
j=1 I j

mc

4 Mean of height meanZ({Z j}mc
j=1) =

∑
mc
j=1 Z j

mc

Z̄ = meanZ({Z j}mc
j=1)

5 Median medZ({Z j}mc
j=1) =

1
2

(
Zb(mc+1)/2c+Zd(mc+1)/2e

)
Z̃ = medZ({Z j}mc

j=1)

6 Standard deviation sZ =
√

1
mc

∑
mc
j=1(Z j−µZ)2

7 Median absolute deviation from median MedmedZ = medZ({|Z j− Z̃|}mc
j=1)

8 Mean absolute deviation from median MeanmedZ = meanZ({|Z j− Z̃|}mc
j=1)

9 Skewness SZ = 1
mc

∑
mc
j=1

(
Z j−Z̄

sZ

)3

10 Kurtosis KZ = 1
mc

∑
mc
j=1

(
Z j−Z̄

sZ

)4

Table B.8: Statistical features

where b.c d.e denote the floor and ceiling functions, respectively. In addition to these metrics, the
10th, 20th, 30th, 40th, 50th, 60th, 70th, 80th, 90th and 95th percentiles were computed for the heights
Z j of the points in the neighborhood of xi.
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C
ITC Delineation results

In this annex, we present the results of the 3D segmentation in the 22
forest plots. Histograms of heights for the true positive (TP), false
negative (FN) and false positive (FP) trees are presented for the 7
plots from the Chamrousse site and the 15 plots from Pellizzano site.
Besides, the field-LiDAR height and crown radius scatterplots are
presented for every plot.
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Annexe C. ITC Delineation results

C.1 Tree matching

In this section, we show the results of the 3D segmentation by applying the 3D Adaptive Mean
Shift (AMS3D) algorithm with ellipsoid crown shape model and superellipsoid kernel profile. The
ITC segmentation is shown in (a), the matched trees or true positive (TP) detections distribution
in the DSM is shown (b), and the false negative (FN) detections are presented in (c).

(a) Chamrousse - PC1 (b) PC1: 27 TP out of 92 trees. (c) PC1: 65 FN out of 92 trees.

Figure C.1: Plot 1 from Chamrousse site: (a) 3D segmentation output, (b) Matched trees or true
positive (TP) detection distribution and (c) false negative (FN) detections.

(a) Chamrousse - PC1b (b) PC1b: 17 TP out of 36 trees. (c) PC1b: 19 FN out of 36 trees.

Figure C.2: Plot 1b from Chamrousse site: (a) 3D segmentation output, (b) Matched trees or true
positive (TP) detection distribution and (c) false negative (FN) detections.
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C.1. Tree matching

(a) Chamrousse - PC2 (b) PC2: 72 TP out of 144 trees. (c) PC2: 72 FN out of 144 trees.

Figure C.3: Plot 2 from Chamrousse site: (a) 3D segmentation output, (b) Matched trees or true
positive (TP) detection distribution and (c) false negative (FN) detections.

(a) Chamrousse - PC3 (b) PC3: 66 TP out of 92 trees. (c) PC3: 26 FN out of 92 trees.

Figure C.4: Plot 3 from Chamrousse site: (a) 3D segmentation output, (b) Matched trees or true
positive (TP) detection distribution and (c) false negative (FN) detections.

(a) Chamrousse - PC3b (b) PC3b: 27 TP out of 39 trees. (c) PC3b: 12 FN out of 39 trees.

Figure C.5: Plot 3b from Chamrousse site: (a) 3D segmentation output, (b) Matched trees or true
positive (TP) detection distribution and (c) false negative (FN) detections.
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Annexe C. ITC Delineation results

(a) Chamrousse - PC4 (b) PC4: 77 TP out of 119 trees. (c) PC4: 42 FN out of 119 trees.

Figure C.6: Plot 4 from Chamrousse site: (a) 3D segmentation output, (b) Matched trees or true
positive (TP) detection distribution and (c) false negative (FN) detections.

(a) Chamrousse - PCPremol (b) PCPremol: 220 TP out of 372
trees.

(c) PCPremol: 152 FN out of 372
trees.

Figure C.7: Plot Premol from Chamrousse site: (a) 3D segmentation output, (b) Matched trees or
true positive (TP) detection distribution and (c) false negative (FN) detections.

(a) Pellizzano - PP1 (b) PP1: 28 TP out of 51 trees. (c) PP1: 23 FN out of 51 trees.

Figure C.8: Plot 1 from Pellizzano site: (a) 3D segmentation output, (b) Matched trees or true
positive (TP) detection distribution and (c) false negative (FN) detections.
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C.1. Tree matching

(a) Pellizzano - PP2 (b) PP2: 28 TP out of 71 trees. (c) PP2: 43 FN out of 71 trees.

Figure C.9: Plot 2 from Pellizzano site: (a) 3D segmentation output, (b) Matched trees or true
positive (TP) detection distribution and (c) false negative (FN) detections.

(a) Pellizzano - PP3 (b) PP3: 21 TP out of 35 trees. (c) PP3: 14 FN out of 35 trees.

Figure C.10: Plot 3 from Pellizzano site: (a) 3D segmentation output, (b) Matched trees or true
positive (TP) detection distribution and (c) false negative (FN) detections.

(a) Pellizzano - PP4 (b) PP4: 10 TP out of 11 trees. (c) PP4: 1 FN out of 11 trees.

Figure C.11: Plot 4 from Pellizzano site: (a) 3D segmentation output, (b) Matched trees or true
positive (TP) detection distribution and (c) false negative (FN) detections.
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Annexe C. ITC Delineation results

(a) Pellizzano - PP5 (b) PP4: 21 TP out of 21 trees. (c) PP4: 0 FN out of 21 trees.

Figure C.12: Plot 5 from Pellizzano site: (a) 3D segmentation output, (b) Matched trees or true
positive (TP) detection distribution and (c) false negative (FN) detections.

(a) Pellizzano - PP6 (b) PP6: 40 TP out of 55 trees. (c) PP6: 15 FN out of 55 trees.

Figure C.13: Plot 6 from Pellizzano site: (a) 3D segmentation output, (b) Matched trees or true
positive (TP) detection distribution and (c) false negative (FN) detections.

(a) Pellizzano - PP7 (b) PP7: 17 TP out of 39 trees. (c) PP7: 22 FN out of 39 trees.

Figure C.14: Plot 7 from Pellizzano site: (a) 3D segmentation output, (b) Matched trees or true
positive (TP) detection distribution and (c) false negative (FN) detections.
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C.1. Tree matching

(a) Pellizzano - PP8 (b) PP8: 44 TP out of 85 trees. (c) PP8: 41 FN out of 85 trees.

Figure C.15: Plot 8 from Pellizzano site: (a) 3D segmentation output, (b) Matched trees or true
positive (TP) detection distribution and (c) false negative (FN) detections.

(a) Pellizzano - PP9 (b) PP9: 22 TP out of 25 trees. (c) PP9: 3 FN out of 25 trees.

Figure C.16: Plot 9 from Pellizzano site: (a) 3D segmentation output, (b) Matched trees or true
positive (TP) detection distribution and (c) false negative (FN) detections.

(a) Pellizzano - PP10 (b) PP10: 7 TP out of 8 trees. (c) PP10: 1 FN out of 8 trees.

Figure C.17: Plot 10 from Pellizzano site: (a) 3D segmentation output, (b) Matched trees or true
positive (TP) detection distribution and (c) false negative (FN) detections.
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(a) Pellizzano - PP11 (b) PP11: 21 TP out of 33 trees. (c) PP11: 12 FN out of 33 trees.

Figure C.18: Plot 11 from Pellizzano site: (a) 3D segmentation output, (b) Matched trees or true
positive (TP) detection distribution and (c) false negative (FN) detections.

(a) Pellizzano - PP12 (b) PP12: 17 TP out of 21 trees. (c) PP12: 4 FN out of 21 trees.

Figure C.19: Plot 12 from Pellizzano site: (a) 3D segmentation output, (b) Matched trees or true
positive (TP) detection distribution and (c) false negative (FN) detections.

(a) Pellizzano - PP13 (b) PP13: 26 TP out of 33 trees. (c) PP13: 7 FN out of 33 trees.

Figure C.20: Plot 13 from Pellizzano site: (a) 3D segmentation output, (b) Matched trees or true
positive (TP) detection distribution and (c) false negative (FN) detections.
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C.1. Tree matching

(a) Pellizzano - PP14 (b) PP14: 18 TP out of 20 trees. (c) PP14: 2 FN out of 20 trees.

Figure C.21: Plot 14 from Pellizzano site: (a) 3D segmentation output, (b) Matched trees or true
positive (TP) detection distribution and (c) false negative (FN) detections.

(a) Pellizzano - PP15 (b) PP15: 22 TP out of 35 trees. (c) PP15: 13 FN out of 35 trees.

Figure C.22: Plot 15 from Pellizzano site: (a) 3D segmentation output, (b) Matched trees or true
positive (TP) detection distribution and (c) false negative (FN) detections.
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C.2 Height histograms

Table C.23 presents the results of height histograms for tree detection in the Chamrousse site.
The gap area percentage (GAP) is estimated from the rate between the gap area given by a height
threshold every 1 m and the maximum gap area surface (approximately the forest plot surface)
calculated in an R package ForestGapR [266]. Tables C.24 and C.25 present the results of height
histograms for tree detection in the Pellizzano site.

(a) Chamrousse - PC1 (b) Chamrousse - PC1b

(c) Chamrousse - PC2 (d) Chamrousse - PC3

(e) Chamrousse - PC3B (f) Chamrousse - PC4

(g) Chamrousse - PCPremol

Figure C.23: Histograms of heights for the true positive (TP), false negative (FN) and false posi-
tive (FP) trees in the Chamrousse site. The GAP curve is represented in black.
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C.2. Height histograms

(a) Pellizzano - PP1 (b) Pellizzano- PP2

(c) Pellizzano- PP3 (d) Pellizzano - PP4

(e) Pellizzano - PP5 (f) Pellizzano - PP6

(g) Pellizzano - PP7 (h) Pellizzano - PP8

Figure C.24: Histograms of heights for the true positive (TP), false negative (FN) and false posi-
tive (FP) trees in the Pellizzano site. The GAP curve is represented in black.
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(a) Pellizzano - PP9 (b) Pellizzano- PP10

(c) Pellizzano- PP11 (d) Pellizzano - PP12

(e) Pellizzano - PP13 (f) Pellizzano - PP14

(g) Pellizzano - PP15

Figure C.25: Histograms of heights for the true positive (TP), false negative (FN) and false posi-
tive (FP) trees in the Pellizzano site. The GAP curve is represented in black.
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C.3. Field-LiDAR height scatterplots

C.3 Field-LiDAR height scatterplots

Field measured height of correctly detected trees plotted against LiDAR height for the Cham-
rousse site is presented in Figure C.26 and for the Pellizzano site is in Figures C.27 and C.28.

(a) Chamrousse - PC1 (b) Chamrousse - PC1b

(c) Chamrousse - PC2 (d) Chamrousse - PC3

(e) Chamrousse - PC3b (f) Chamrousse - PC4

(g) Chamrousse - PCPremol

Figure C.26: Field measured height of correctly detected trees plotted against LiDAR height.
Regression model is indicated with the corresponding adj-R2 and the number of detected trees.
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(a) Pellizzano - PP1 (b) Pellizzano - PP2

(c) Pellizzano - PP3 (d) Pellizzano - PP4

(e) Pellizzano - PP5 (f) Pellizzano - PP6

(g) Pellizzano - PP7 (h) Pellizzano - PP8

Figure C.27: Field measured height of correctly detected trees plotted against LiDAR height.
Regression model is indicated with the corresponding adj-R2 and the number of detected trees.
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C.3. Field-LiDAR height scatterplots

(a) Pellizzano - PP9 (b) Pellizzano - PP10

(c) Pellizzano - PP11 (d) Pellizzano - PP12

(e) Pellizzano - PP13 (f) Pellizzano - PP14

(g) Pellizzano - PP15

Figure C.28: Field measured height of correctly detected trees plotted against LiDAR height.
Regression model is indicated with the corresponding adj-R2 and the number of detected trees.
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C.4 Field-LiDAR crown radius scatterplots

Field measured crown radius of correctly detected trees vs LiDAR crown radius for the Cham-
rousse site is presented in Figure C.29 and for the Pellizzano site is in Figures C.30 and C.31.

(a) Chamrousse - PC1 (b) Chamrousse - PC1b

(c) Chamrousse - PC2 (d) Chamrousse - PC3

(e) Chamrousse - PC3b (f) Chamrousse - PC4

(g) Chamrousse - PCPremol

Figure C.29: Field measured crown radius of correctly detected trees plotted against LiDAR crown
radius. Regression model is indicated with the corresponding adj-R2 and the number of detected
trees.
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C.4. Field-LiDAR crown radius scatterplots

(a) Pellizzano - PP1 (b) Pellizzano - PP2

(c) Pellizzano - PP3 (d) Pellizzano - PP4

(e) Pellizzano - PP5 (f) Pellizzano - PP6

(g) Pellizzano - PP7 (h) Pellizzano - PP8

Figure C.30: Field measured crown radius of correctly detected trees plotted against LiDAR crown
radius. Regression model is indicated with the corresponding adj-R2 and the number of detected
trees.
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(a) Pellizzano - PP9 (b) Pellizzano - PP10

(c) Pellizzano - PP11 (d) Pellizzano - PP12

(e) Pellizzano - PP13 (f) Pellizzano - PP14

(g) Pellizzano - PP15

Figure C.31: Field measured crown radius of correctly detected trees plotted against LiDAR crown
radius. Regression model is indicated with the corresponding adj-R2 and the number of detected
trees.
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D
Graph-based fusion

In this annex, we present the preliminary result of data fusion at
feature-level by using graph-based approach. So far, the scheme of
feature selection presented in chapter 5 generates a higher overall
accuracy than this approach.
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D.1 Introduction

The workflow of the graph-based approach is presented in Figure D.1, it is based on the con-
tribution given by Liao et al. [229]. The original approach uses as feature descriptors: the hyper-
spectral images (HI), the morphological profiles (MPs) derived from two principal components
(PC) from HI and the DSM from LiDAR data. The inputs of our workflow are based on the HI, 25
vegetation indices derived from chapter 5 and the LiDAR features explained in the same chapter,
in the subsection 5.3.4.

Figure D.1: Flowchart for integrating graph-based approach for tree species classification.
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D.2 Assumption

We implement mean shift (MS) algorithm [262] to create local similarity among the pixels
in HI and LiDAR features to enhance the classification results. According to [277], a strategy
for reducing local noise and improving class separability can be implemented through the spatial
filtering. Conventionally, a mean filtering is computed by moving a windows of 3× 3 over each
band. In [165], three circular neighborhoods of radius r f ∈{1.0,3.0,5.0}m are applied to compute
the mean value of every pixel in each band. Since the pixel center coordinate (xc,yc) is known,
the pixels whose centers are inside of the circular neighborhood of each pixel, are selected for
averaging the reflectance in each band. Finally, the three mean values of all pixel associated to
each r f are averaged.

In this annex, the spatial filtering is implemented through MS approach by using a spectral
kernel based on the spectral angle between the spectral signatures. Since every pixel is evaluated,
a circular neighborhood of radius r f is used to filter the spectral signatures by considering the
neighbor’s information. Besides, an horizontal kernel given by a Gaussian function is also con-
sidered in the weighting process. For the LiDAR features, the similarity is given by the euclidean
distance and the horizontal kernel. After performing MS over each feature set in each forest plot,
we build our dataset to evaluate the overall accuracy by using random forests (RF). The overall
accuracy for three radius r f are presented in Table D.1. We noticed that the result obtained with
r f = 1 is better even than the original information for HI. For LiDAR information, we do not
perceive a significant improvement.

Table D.1: Overall accuracy [%] of HI and LiDAR features after applying MS spatial filtering
with three different r f values.

r f [m] DHI DLi

Original 70.6 63.9

1 72.2 64

3 69.5 63.7

5 63.6 60.5

D.3 Graph-based approach

After filtering the hyperspectral information and the LiDAR features with r f = 1, we compute
25 VI in order to extract the PC from each feature set. The number of components is selected to be
25 for the purpose of providing same importance to the three sources of information. These com-
ponents are stacked and then, these are the inputs of the graph-based fusion stage. The resulting
features are classified in the RF classifier.

Although the overall accuracy is 2.8 points of percentage lower than the result obtained with
feature selection, we notice that all species decreased their producer’s accuracy with exception
of the specie PIAB, which is the class with the greatest amount of samples. The graph-based
approach creates local similarities by using KNN algorithm. A perspective in this work resides in
understanding the way in which the edges of the graph are being defined to establish similarities.

140



Table D.2: Species classification results at pixel-level obtained by the integrating of HI and LiDAR
features by using a graph-based approach

Ground truth

Tree species ABAL FASY PIAB PIUN Other Total Producer’s acc. [%]

ABAL 1717 126 919 0 2 2764 62.1

FASY 62 1280 467 0 13 1822 70.3

PIAB 235 160 4098 25 11 4529 90.5

PIUN 1 0 54 211 0 266 79.3

Other 22 100 223 3 75 423 17.7

Total 2037 1666 5761 239 101 9804

User’s acc. 84.3 76.8 71.1 88.3 74.3 75.3



Apport de la fusion LiDAR - hyperspec-
tral pour la caractérisation géométrique
et radiométrique des arbres.

Fusion of 3D point clouds and hyperspectral data for the
extraction of geometric and radiometric features of trees

Résumé

Cette thèse de doctorat porte sur la fusion de LiDAR et de données hyperspectrales
pour caractériser les arbres forestiers individuels. L’idée maîtresse est d’améliorer
les méthodes pour obtenir des informations forestières au niveau de l’arbre en ex-
trayant des caractéristiques géométriques et radiométriques. Les contributions de
ce travail de recherche reposent sur: i) un examen mis à jour des méthodes de fu-
sion de données de LiDAR et des données hyperspectrales pour la surveillance des
forêts, ii) un algorithme de segmentation 3D amélioré pour délimiter les couronnes
d’arbres individuelles basé sur Adaptive Mean Shift (AMS3D) et un ellipsoïde mod-
èle de forme de couronne, iii) un critère de sélection des caractéristiques basé sur le
score aléatoire des forêts (RF), cross-validation à 5 folds et une fonction d’erreur cu-
mulative pour la classification des espèces d’arbres forestiers. Les deux principales
méthodes utilisées pour obtenir des informations forestières au niveau des arbres
sont testées avec des données de télédétection acquises dans les Alpes françaises.

Mots-clés : LiDAR, forêt, hyperspectral, télédétection, AMS3D, classifica-
tion.

Abstract

This PhD thesis deals with the fusion of LiDAR and hyperspectral data to character-
ize individual forest trees. The leading idea is to improve methods to derive forest
information at tree-level by extracting geometric and radiometric features. The con-
tributions of this research work relies on: i) an updated review of data fusion methods
of LiDAR and hyperspectral data for forest monitoring, ii) an improved 3D segmen-
tation algorithm for delineating individual tree crowns based on Adaptive Mean Shift
(AMS3D) and an ellipsoid crown shape model, iii) a criterion for feature selection
based on random forests (RF) score, 5-fold cross validation and a cumulative error
function for forest tree species classification. The two main methods used to derive
forest information at tree level are tested with remote sensing data acquired in the
French Alps.

Keywords : LiDAR, forest, hyperspectral, remote sensing, AMS3D, classifi-
cation.
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