
HAL Id: tel-03214205
https://theses.hal.science/tel-03214205

Submitted on 1 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Flatness-based constrained control and model-free
control applications to quadrotors and cloud computing

Maria Bekcheva

To cite this version:
Maria Bekcheva. Flatness-based constrained control and model-free control applications to quadro-
tors and cloud computing. Automatic. Université Paris Saclay (COmUE), 2019. English. �NNT :
2019SACLS218�. �tel-03214205�

https://theses.hal.science/tel-03214205
https://hal.archives-ouvertes.fr

 Flatness-based Constrained
Control and Model-Free Control
Applications to Quadrotors and

Cloud Computing

Thèse de doctorat de l'Université Paris-Saclay
préparée à l’Université Paris-Sud

École doctorale n°580 Sciences et technologies de l'information
et de la communication (STIC)

Spécialité de doctorat: Automatique

Thèse présentée et soutenue à Gif-sur-Yvette, le 11/07/2019, par

 Maria BEKCHEVA

Composition du Jury :

Silviu Iulian NICULESCU, Directeur de Recherche CNRS
Université Paris-Saclay – L2S Président

Emmanuel DELALEAU, Professeur des Universités
École nationale d’ingénieurs de Brest – Dépt. de Mécatronique Rapporteur

Didier THEILLIOL, Professeur des Universités
Université de Lorraine – CRAN Rapporteur

Mireille BAYART, Professeur des Universités
Université de Lille - CRISTAL Examinatrice

Michel FLIESS, Directeur de Recherche CNRS Emérite
Ecole Polytechnique -LIX Examinateur

Cédric JOIN, Professeur des Universités
Université de Lorraine – CRAN Examinateur

Hugues MOUNIER, Professeur des Universités
Université Paris-Sud (Université Paris-Saclay) – L2S Directeur de thèse

Luca GRECO, Maître de Conférences
Université Paris-Sud (Université Paris-Saclay) – L2S Co-Directeur de thèse

N
N

T
: 2

01
9S

AC
LS

21
8

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

Flatness-based Constrained Control and
Model-Free Control Applications to
Quadrotors and Cloud Computing

Maria Bekcheva

Université Paris-Saclay
Université Paris-Sud

A thesis submitted for the degree of
PhD

July 2019

I dedicate this thesis to my dear parents and Alireza.

Remerciements

Mes premiers remerciements sont adressés à mon directeur de thèse Hugues Mounier.
Je lui suis très reconnaissante pour ces années, durant lesquelles il m’a guidée sur
plusieurs sujets, m’a encouragée dans les moments de doute et m’a conseillée avec
patience et pédagogie. Je remercie Hugues d’être un directeur tolérable avec un
esprit moderne, libre et innovant. Ce fut un privilège de travailler avec lui. Je
remercie également mon co-directeur Luca Greco pour ses précieux conseils, son
aide et ses encouragements durant ces années de collaboration.

Je voudrais remercier Michel Fliess et Cédric Join. Cédric m’a guidée et
encouragée durant ces deux dernières années. J’ai beaucoup appris à son contact et
je tiens à le remercier très chaleureusement pour ses précieux conseils et bienveillance.
Je remercie très chaleureusement Michel Fliess pour sa bonne humeur, et ses paroles
toujours encourageantes. Ma recherche a été profondément influencée par ses travaux
et on peut déceler cette influence tout au long de ce mémoire. Je suis très heureuse
d’avoir pu bénéficier de ses lumières. Il m’a fait partager avec enthousiasme son
ample culture scientifique et son expérience.

Je suis honorée d’avoir eu comme rapporteurs Emmanuel Delaleau et Didier
Theilliol. Un grand merci pour leur relecture attentive de mon manuscrit, leurs
suggestions et corrections avisées.

Je remercie Silviu Niculescu de m’avoir fait l’honneur de présider mon jury de
thèse, et pour ses précieux conseils et son aide tout au long de ma thèse.

Je tiens aussi à remercier Mireille Bayart, qui a accepté d’examiner mon travail.

J’aimerai remercier toute l’équipe de L2S et l’école doctorale STIC pour leurs
aides et sympathies et tout particulièrement Gilles Duc pour ses conseils adminis-
tratives et pédagogiques éclairés.

Je remercie mes collègues docteurs et doctorants de L2S. Ce fut un grand plaisir
de vous connaître, de partager nos recherches et de vous retrouver autour des

di�érents repas et pauses-café.

Je remercie infiniment mes parents et mon frère Branko, pour leur soutien et
amour.

Enfin, je voudrais exprimer toute ma gratitude à Alireza qui, jour après jour,
partage mes joies et mes peines, me supporte, m’encourage, m’inspire, me conseille,
m’aime.

Résumé

Motivation

L’Automatique, avec son sous-domaine mathématique Théorie du Contrôle,
étudie les propriétés et la commande des systèmes dynamiques en ingénierie. Chaque
système contrôlé est composé de commandes (on dit aussi entrée ou contrôle) u,
d’états x et de sorties y. L’objectif de la théorie du contrôle est de concevoir une
commande de telle sorte que les états et les sorties atteignent un objectif défini.
Les commandes agissent sur les états qui représentent habituellement la dynamique
interne du système. Alors que les sorties représentant les composants mesurables,
sont liés aux états. Lorsque la commande dépend uniquement de la mesure de
sortie et que seule l’erreur entre la référence et la sortie mesurée est utilisée dans la
conception, la commande est appelée une rétro-action (on dit aussi retour d’état
ou feedback). La commande de rétroaction ou le cadre avec un degré-de-liberté
échoue souvent pour les systèmes non linéaires, où il n’existe pas de solution globale
asymptotiquement stable qui satisfait les contraintes du système (comme indiqué
dans [95]).

Dans cette thèse, nous travaillons dans le cadre de la platitude di�érentielle
ou le cadre avec deux degrés de liberté, qui est composé de deux parties : un
générateur (ou une planification) des trajectoires et une commande de rétroaction
pour réduire les erreurs dues aux perturbations et incertitudes. Les travaux de
recherche de Fliess et de ses collègues [54–56] sur les systèmes di�érentiellement
plats et leurs propriétés ont permis d’approfondir la compréhension du suivi de
trajectoire par le paramétrage des trajectoires du système. Pour un système plat
[55], tous les états et les entrées peuvent être paramétrés via une sortie plate et la
planification de trajectoire est obtenue sans résoudre les équations di�érentielles.
De plus, dans le cadre des systèmes plats, le comportement de chaque variable
du système peut être facilement analysé. De ce point de vue, la conception de la
commande peut donc être décomposée en deux étapes :

• Conception des trajectoires de référence pour les sorties plates. Des calculs
hors ligne des commandes en boucle ouverte (feedforward).

• Calcul en ligne des commandes en boucle fermée afin de stabiliser le système
autour des trajectoires de référence (stabilisation ou feedback).

Cette conception en deux étapes convient mieux qu’une commande classique de
rétro-action (schéma de stabilisation) c’est-à-dire un cadre avec un degré de liberté.
La première étape consiste à obtenir une solution du premier ordre au problème de
suivi de trajectoire en tenant compte du modèle du système (comme dans un schéma
classique de stabilisation pure). La deuxième étape est une étape de ra�nement, où
l’erreur entre les valeurs mesurées réelles et les références suivies sera beaucoup plus
petite que dans le cas de la stabilisation pure. Le cadre avec deux degrés de liberté
est une solution plus attrayante compte tenu de l’e�ort de calcul, de la complexité
et de la stabilité. En outre, de nombreuses classes de systèmes non linéaires sont
di�érentiellement plates [55], ce qui les rend plus faciles à analyser.
Cependant, lorsque les systèmes plats sont confrontés au problème de la commande
avec contraintes, il y a encore de grandes di�cultés qui subsistent.

Contraintes

Les contraintes sont présentes dans tous les systèmes contrôlés et peuvent avoir
des e�ets néfastes sur la performance du système si elles ne sont pas prises en
compte dans la conception de la commande. En général, les contraintes découlent
des relations constitutives et physiques existantes entre les composants du système
et son environnement de travail. Le plus souvent, les contraintes sont identifiées
par des contraintes d’entrée, contraintes d’état et/ou contraintes de sortie :

• Contraintes d’entrée
Les contraintes d’entrée dépendent des contraintes de l’actionneur. L’actionneur
(par exemple, moteur, vanne, interrupteur) est un composant mécanique qui
reçoit un signal de commande et une source d’énergie (par exemple, électricité,
liquide, air), et convertit l’énergie du signal en mouvement ou force. Les
actionneurs sont soumis à des saturations d’amplitude et de vitesse. Ils ne
sont capables de fournir qu’une quantité limitée de mouvement ou de force.
L’actionneur peut prendre une valeur entre une limite inférieure et supérieure
u

min

< u < u
max

. Dans certaines applications, les saturations sont évitées
en choisissant des actionneurs plus puissants, mais cela peut ne pas être une
solution permanente. Un exemple courant d’actionneur est le moteur à courant
continu qui est présent dans chaque système de véhicule aérien sans pilote
(UAV) pour fournir un mouvement de rotation. Le moteur à courant continu
est limité en tension et en courant. D’autres exemples de contraintes d’entrée
sont : le couple maximal disponible pour les dispositifs mécatroniques ou la
puissance de refroidissement/chau�age limitée pour les réacteurs chimiques.

• Contraintes d’état
Des contraintes d’état peuvent provenir de la structure du système. On peut
considérer les exemples suivants : dans les robots mobiles non-holonomes
(par exemple, un chariot avec deux roues motrices avant et deux roues arrière
qui ne peuvent pas se déplacer latéralement), les contraintes sur les vitesses
longitudinales et angulaires; dans les systèmes sous-actionnés (par exemple, le
quadrirotor), les contraintes sur les angles; dans les processus chimiques, les
contraintes sur les variables du processus.

• Contraintes de sortie
Les contraintes de sortie sont généralement définies par l’environnement
de travail. Dans la planification des mouvements, les robots mobiles se
déplacent d’un point à l’autre tout en évitant les obstacles de l’environnement.
Dans certaines applications, pour des raisons de sécurité ou de confort, des
contraintes de sortie sont imposées par la demande des utilisateurs. Par
exemple, limitations sur les vitesses longitudinales, les vitesses angulaires, les
températures.

La trajectoire de référence doit tenir compte des contraintes du système. Une
telle trajectoire qui se trouve à l’intérieur du domaine d’état admissible et qui
respecte les contraintes s’appelle une trajectoire réalisable. Si les contraintes du
système ne sont pas prises en compte, la trajectoire peut être irréalisable et la
mission définie peut ne pas être accomplie. L’échec d’une mission se produit par
exemple lorsque les actionneurs atteignent leurs limites et ne peuvent pas fournir
les entrées d’actionnement souhaitées par le contrôleur.

Il est donc susceptible d’avoir un générateur de trajectoires qui définit un
ensemble de trajectoires de référence réalisables c-à-d feed-forwarding trajectoires
qui répondront aux contraintes définies. Une approche systématique capable de
satisfaire les contraintes au préalable et d’intégrer la satisfaction des contraintes
directement dans la formulation de la commande est un avantage clé. Ce fait nous
motive à intégrer systématiquement les contraintes dans la conception de trajectoire.

Perturbations

Pour un système physique, à part la satisfaction des contraintes, le traitement des
perturbations est essentiel à son bon fonctionnement. Par exemple, un quadrirotor
devrait suivre sa trajectoire malgré les perturbations dues au vent ou la variation
de masse (lorsqu’il transporte une charge). Cependant, lors de la compensation des
perturbations, les trajectoires de référence dans le temps doivent induire un mouve-
ment su�samment lent, c’est-à-dire diminuer sa vitesse ou changer sa trajectoire
de référence initiale afin d’éviter les saturations des moteurs du quadrirotor.

Par conséquent, un problème de contrôle important est de savoir comment
concevoir la trajectoire de référence dans la présence de perturbations de manière à
ce que les contraintes soient respectées. Dans la pratique de l’automatique, pour
annuler les perturbations, un contrôleur en boucle fermée ou un contrôleur de
rétroaction est utilisé pour surmonter les limites du contrôleur en boucle ouverte.
Les perturbations du système peuvent être divisées en deux groupes :

• perturbations internes, par exemple, le modèle du système est inconnu ou en
partie inconnu, les incertitudes des paramètres du modèle, et

• pertubations externes, par exemple, le bruit des capteurs, les rafales de vent
ou toute autre perturbation de l’environnement.

Pour traiter les perturbations du système, dans cette thèse, nous utilisons la
Commande sans modèle. La Commande sans modèle (CSM), présenté par Michel
Fliess et Cédric Join [47, 48], a déjà prouvé sa puissance à travers un large éventail
d’applications réussies[1, 49, 93, 96, 105] et même, avec des résultats expérimentaux
[59, 60] où le modèle du système et ses perturbations sont inconnus. Les tentatives
réussies pour une commande sans modèle non-linéaire et pour une commande
sans modèle pour les systèmes à retard sont présentées dans [26, 106] et dans [37]
respectivement. La première preuve détaillée de la stabilité de la commande sans
modèle qui fournit des informations sur les paramètres de contrôle, a été donnée
dans [35].
Organisation de la thèse et contributions
Cette thèse est consacrée à deux problèmes : le premier est la commande des
systèmes di�érentiellement plats avec contraintes, et le second est l’application de
la Commande sans modèle en utilisant sa robustesse par rapport aux dynamiques et
pertubations non modélisées du système et de son environnement (voir Figure 1.1).

Le but ultime de ce projet de thèse est de montrer que les contraintes peuvent être
satisfaites par les entrées c-à-d les feedforwarding nominales, et que les perturbations
internes et externes peuvent être gérées par la Commande sans modèle. Puisque
l’objectif derrière ces deux problèmes de contrôle (les contraintes et les perturbations),
est essentiel pour presque tous les systèmes de contrôle, il est intéressant de noter à
quel point peu de recherche est faite pour traiter simultanément ces deux problèmes.
La di�culté vient de la nécessité de replanifier rapidement la partie feedforwarding
lorsqu’une perturbation importante se produit, si la partie feedback augmente.
Lorsque de telles perturbations se produisent, une replanification rapide de la
trajectoire est essentielle pour éviter la saturation de l’actionneur. Dans [127] est
présenté une commande composée de deux parties : la première partie est construite
selon la platitude di�erentielle et la seconde partie suit la commande sans modèle
pour un cas particulier où la perturbation et sa dérivée sont supposées bornées.

Mais que se passe-t-il lorsqu’une perturbation importante se produit soudaine-
ment ? Comment replanifier rapidement une nouvelle trajectoire de référence ?

Pour ce faire, nous avons étudié la planification de trajectoire sous contraintes
présentée dans la première partie de la thèse, où nous définissons un ensemble
de trajectoires réalisables.

• Dans le chapitre 2, nous nous concentrons sur la génération de trajectoires
réalisables plutôt que sur la stabilisation ou le feedback. Notre but est d’écrire
les contraintes d’entrée et d’état en termes de la sortie plate et ses dérivés.
Nous proposons d’utiliser les courbes de Bézier comme trajectoires de référence
pour la sortie plate en raison de leurs propriétés utiles (une des clés dans
la conception de notre contrôle en boucle ouverte sous contraintes). Nous
montrons comment les entrées exprimées par les sorties plates, représentées
chacune par une courbe de Bézier, peuvent être exprimées sous la forme
d’une combinaison de courbes de Bézier. On obtient ainsi des équations
explicites pour les points de contrôle d’entrée et d’état en fonction des points
de contrôle des sorties plates. Nous recherchons ensuite les régions réalisables
des points de contrôle de Bézier, c’est-à-dire un ensemble de trajectoires de
référence réalisables. Il existe un certain nombre d’approches connexes [43,
62, 63, 79, 80, 120, 128, 129, 136] qui reposent toutes sur des procédures
d’optimisation pour obtenir une trajectoire de référence réalisable. De plus, les
systèmes di�érentiellement plats avec contraintes sont généralement attaqués
en utilisant la commande optimale (voir, par exemple, [38, 42, 108, 111, 126]).

• Dans le chapitre 3, nous étudions les systèmes avec des contraintes en
présence de retards sur l’état ou l’entrée. Une grande partie de la littérature
d’automatique est consacrée à l’étude des systèmes linéaires et non linéaires
avec des retards [119], mais peu de résultats sont capables de traiter les
contraintes. Les contraintes sur l’entrée ou les variables d’état d’un système à
retard sont généralement traitées avec des méthodes numériques impliquant
le calcul d’intervalles invariants de trajectoire [103] et d’ensembles invariants
positifs [32, 70], ou plus complexes, mais similaires dans leur esprit, les
approches de la commande prédictive (voir par exemple [87, 107]). Dans le
cadre des systèmes à retards, une approche systématique capable d’intégrer
directement dans la formulation de la commande, la satisfaction des contraintes
sur les entrées/états reste manquante.

La seconde partie de la thèse présente la Commande sans modèle (CSM) [48]
qui estime et annule les perturbations et la dynamique inconnue du système en se
basant sur une modélisation ultra-locale. L’apport de la deuxième partie de la thèse

réside dans deux applications de la Commande sans modèle à deux systèmes
de nature di�érente :

• Dans le chapitre 4, nous proposons une commande qui évite les procédures de
modélisation/identification du système de quadrirotor tout en restant robuste
par rapport aux perturbations endogènes (la performance de contrôle est
indépendante de tout changement de masse, inertie, e�ets gyroscopiques ou
aérodynamiques) et exogènes (vent, bruit des mesures). Pour atteindre notre
objectif, en se basant sur la structure en cascade du quadrirotor, nous divisons
le système en sous-systèmes de position et d’attitude, chacun contrôlé par une
CSM indépendante de la dynamique du système. Ensuite, nous donnons des
résultats probants sur la stabilité pratique de la commande proposée. Nous
validons notre approche de contrôle dans trois scénarios réalistes : en présence
d’un bruit de mesure inconnu, avec des perturbations du vent variant dans le
temps et des variations de masse inconnues.

• Dans le chapitre 5, nous utilisons la CSM pour contrôler l’élasticité horizontale
d’un système Cloud Computing. Comparé aux algorithmes commerciaux de
"mise à l’échelle automatique", notre approche facilement implémentable se
comporte mieux, même avec de fortes fluctuations de charge de travail. Ceci
est confirmé par des expérimentations sur le cloud public Amazon Web Services
(AWS).

• Enfin, au chapitre 6, nous résumons les travaux de recherche de la thèse et
nous proposons, dans une perspective, une commande de type « boîte grise »
à l’aide des deux études présentées ci-dessus.

Contents

1 Introduction 1
1.1 Motivation . 1

1.1.1 Constraints . 2
1.1.2 Disturbances . 3

1.2 Thesis Organization and Contributions 4

2 Constraints on Nonlinear Finite Dimensional Flat Systems 9
2.1 Chapter overview . 10
2.2 Di�erential flatness overview . 14
2.3 Problem statement: Trajectory constraints fulfilment 15

2.3.1 General problem formulation 15
2.3.2 Constraints in the flat output space 16
2.3.3 Problem specialisation . 18
2.3.4 Closed-loop trajectory tracking 20

2.4 Preliminaries on Symbolic Bézier trajectory 21
2.4.1 Definition of the Bézier curve 22
2.4.2 Bézier properties . 22
2.4.3 Quantitative envelopes for the Bézier curve 24
2.4.4 Symbolic Bézier operations 26
2.4.5 Bézier time derivatives . 27

2.5 Constrained feedforward trajectory procedure 30
2.6 Feasible control points regions . 31

2.6.1 Cylindrical Algebraic Decomposition 33
2.6.2 Approximations of Semialgebraic Sets 35

2.7 Applications . 37
2.7.1 Longitudinal dynamics of a vehicle 37
2.7.2 Quadrotor dynamics . 41

2.8 Closing remarks . 54
2.A Geometrical signification of the Bezier operations 57
2.B Trajectory Continuity . 57

xiii

xiv Contents

3 Constraints on Linear Flat Systems with Delays 61
3.1 Chapter Overview . 62
3.2 R-freeness for delay linear systems 63

3.2.1 Algebraic setting and preliminaries 64
3.3 Stabilization of the system . 65
3.4 B-splines preliminaries . 65

3.4.1 B-splines . 66
3.4.2 B-spline properties . 67

3.5 Constrained Trajectory Generation Procedure 68
3.5.1 Derivative property of the B-spline curve 68
3.5.2 Integral property of B-spline curve 69
3.5.3 Degree elevation and knot insertion 70
3.5.4 Reference trajectory design procedure 70

3.6 Example: Car-following model . 71
3.7 Closing remarks . 74

4 Cascaded Model-Free Control of Quadrotors 77
4.1 Chapter overview . 79
4.2 Quadrotor model . 81
4.3 Control design . 83

4.3.1 Preliminaries for Model-Free Control 83
4.3.2 Cascaded-model-free approach for the quadrotor 85
4.3.3 Outer-loop Position control 86
4.3.4 Inner-loop Attitude control 87

4.4 Practical stability . 87
4.4.1 The system error dynamics 88

4.5 Stability results . 89
4.6 Stability proof . 90

4.6.1 Position error subsystem . 91
4.6.2 Attitude error subsystem . 91
4.6.3 Verification of the assumptions 91

4.7 Aggressive trajectory tracking . 92
4.7.1 The Lissajous trajectory . 93
4.7.2 The B-spline trajectory . 94

4.8 Simulation results . 96
4.8.1 Scenario 1: Unknown measurement noise 97
4.8.2 Scenario 2: Unknown time-varying wind disturbance 100
4.8.3 Scenario 3: Mass parameter variation 104

4.9 Closing remarks . 105
4.A Boundedness of the interconnection term 109
4.B Bound on the estimation error e

F

. 110

Contents xv

5 Model-Free Control Framework for Cloud Resource Elasticity 113
5.1 Introduction . 114

5.1.1 Data is driving the revolution 114
5.1.2 Utility Computing and Cloud Computing 115
5.1.3 Problem statement . 116

5.2 Existing approaches . 119
5.3 Model-Free Control . 120

5.3.1 The ultra-local model . 120
5.3.2 Intelligent controllers . 121
5.3.3 Estimation of F . 121

5.4 Model-Free setting in the Cloud framework 123
5.5 Experiments . 124

5.5.1 Experimental Setup . 126
5.5.2 Experimental results . 127

5.6 Closing remarks . 129

6 Conclusion and Future Works 135
6.1 Results summary and advantages 135
6.2 Limits and further development tracks 136
6.3 Future work: Robust control of flat systems 137

References 139

xvi

1
Introduction

1.1 Motivation
Control System Engineering, together with its mathematical sub-field Control
Theory, studies the properties of dynamical systems in engineering. Each control
system is composed of inputs u, states x and outputs y. Control theory’s aim is
to design a control input such that the states/outputs reach a defined goal. The
inputs act on the states which usually represent the internal dynamics of the system.
While the outputs representing the measurable components, are related to the states.
When the control input solely depends on the output measure, and only the error
between the reference goal and the measured output is used in the design, the control
is called a feedback control. The feedback controller or the one-degree-of-freedom
framework often fails for nonlinear systems, where a global asymptotically stable
solution that satisfies the system constraints does not exist (as stated in [95]).

In this thesis, we work in the framework of di�erential flatness or the two-
degree-of-freedom framework, which is a combination of a trajectory generator and a
feedback controller. Fliess and his coworkers research work [54–56] on di�erentially
flat systems and their properties led to a deeper understanding of trajectory tracking
through the system trajectories parametrization. For a di�erentially flat system
[55], all the states and the inputs can be parametrized through a so-called flat
output and the trajectory planning can be obtained immediately without solving
di�erential equations. Moreover, with the flatness property, the behaviour of each
system variable can be easily analyzed. From this perspective, the control design
can thus be decomposed in two steps:

1

2 1.1. Motivation

• Design of flat outputs reference trajectory; o�-line computation of the open-
loop controls (feedforward part).

• On-line computation of the complementary closed-loop controls in order to
stabilize the system around the reference trajectories (feedback part).

This two-step design is better suited than a classical feedback controller (stabilization
scheme) i.e. one-degree of-freedom framework. The first step obtains a first-order
solution to the tracking problem while following the model instead of forcing it (like
in a usual pure stabilization scheme). The second step is a refinement one, where the
error between the actual measured values and the tracked references will be much
smaller than in the pure stabilization case. The two-degree-of-freedom framework is
a more attractive solution considering the computational e�ort, tuning complexity
and stability. In addition, many classes of nonlinear systems are di�erentially flat
[55], which makes them easier to analyse.
However, when the flat systems are faced with the problem of constrained control,
there are still great di�culties that remain.

1.1.1 Constraints
Constraints are present in all control systems and may lead in damaging e�ects on
the system performance unless they are accounted in the control design. In general,
constraints arise from the constitutive and physical relationships existing between
the components of the control system, and its working environment. Most often
constraints are identified as input, state and/or output constraints:

• Input constraints:
The inputs constraints depend on the actuator constraints. Actuator (for
e.g. , motors, valves, switches) is a mechanical component of a system that
receives a control signal and a source of energy (e.g. , electricity, liquid, air),
and converts the signal energy into motion or force. Actuators are subject
to magnitude and rate saturations. They are able to deliver only a limited
amount of motion or force. The actuator can take a value between a lower
and upper limit u

min

< u < u
max

. In some applications, the saturations are
avoided by choosing more powerful actuators but this may not be a permanent
solution. A common example of actuator is the DC motor which is present in
every unmanned aerial vehicle (UAV) system to deliver a rotational motion.
The DC motor is constrained in input voltage and current (which without
load is equivalent to a velocity or acceleration). Other examples for input
constraints are: maximum available torque for mechatronic devices or limited
cooling/heating power for chemical reactors.

1. Introduction 3

• State constraints:
State constraints may arise from the system’s structure. We can considered
the following examples: in non-holonomic mobile robots (e.g. , a cart with
two forward driving wheels and two back wheels that cannot move sideways),
constraints on forward and angular velocities; in underactuated systems (e.g.
, a quadrotor), constraints on the angles; in chemical processes, constraints
on the process variables.

• Output constraints:
The output constraints are usually defined by the working environment. In
motion planning, mobile robots steer from one point to another while avoiding
the obstacles in the environment. In some applications, for safety or comfort
reasons, output constraints are imposed by the user demand. For instance,
limitations on the longitudinal velocities, angular velocities, temperatures.

The reference trajectory should consider the system’s constraints. Such a
trajectory that lies inside the admissible state domain and that does not violate the
constraints is called a feasible trajectory. If system’s constraints are not considered,
the trajectory may be infeasible and the defined task may not be accomplished.
Task unaccomplishment occurs for example when actuators hit their limits, and
cannot deliver the actuation inputs desired by the controller.

It is therefore likely to have a trajectory generator that defines a set of feasible
reference trajectories i.e. feed-forwarding trajectories that will fulfil the defined
constraints. A systematic approach able to satisfy the constraints beforehand and
to embed the constraint satisfaction directly in the control formulation is a key
advantage. This fact motivates us to embed systematically the constraints in the
trajectory design based on the flatness property.

1.1.2 Disturbances

For a physical system, besides constraints fulfilments, dealing with uncertain
disturbances is essential to its well functioning. For example, a quadrotor should
track its trajectory despite the wind perturbations or mass variation (when carrying
a payload). However, when compensating the disturbances, the reference trajectories
in time must induce a su�ciently slow motion i.e. decreasing its velocity or change
its initial reference trajectory in order to avoid saturations of the quadrotors motors.

Consequently, an important control problem is how to design the reference
trajectory in the presence of disturbances such that the constraints are fulfilled. In

4 1.2. Thesis Organization and Contributions

control engineering practice, to cancel the disturbances, a closed-loop controller or
a feedback controller is used to overcome the limitations of the open-loop controller.
Moreover, the so-called robust controllers are able to compensate for disturbances
that may a�ect the nominal evolution of the system. The system disturbances
may be divided in two groups:

• internal disturbances, for, e.g., unknown model or partly model mismatching,
model parameter uncertainties, and

• external disturbances, for, e.g., sensor noise, wind gusts or any other environ-
mental disturbance.

To deal with the system disturbances, in this thesis, we employ the Model-
Free Control. The Model-Free Control (MFC), introduced by Michel Fliess and
Cédric Join [47, 48], already proved its power through a wide range of successful
applications[1, 49, 93, 96, 105] and even, with experimental results [59, 60], where
the system model and disturbances are unknown. Successful attempts for nonlinear
MFC and for delay systems are presented in [26, 106] and in [37] respectively. The
first detailed proof of stability of the MFC that provides insights to the tuning
of the control parameters, was given in [35].

1.2 Thesis Organization and Contributions
This thesis is devoted to two problems: the first is the control of di�erentially
flat systems with constraints, and the second is the application of the Model-Free
Control using its robustness with respect to unmodelled dynamics and uncertainty
of the system and its environment (see Figure 1.1).

Remark 1.1 Each thesis chapter is self-explanatory and contains all the necessary
introduction and preliminaries to its presented contents. In this introduction, we
define the main lines of thought which we explain in more details in the corresponding
chapters.

The ultimate goal of this thesis project is to show that constraints can be
fulfilled through the nominal feedforwarding inputs, and that internal and external
disturbances can be managed by the MFC. Since the goal behind these two control
problems (the constraints and the disturbances), are essential for almost every
control system, it is interesting to note how little research is done in simultaneously
dealing with these two problems. The di�culty arises from the need to quickly
re-plan the feedforwarding part when a big disturbance occurs i.e. the feedback part

1. Introduction 5

Chapter 1
Introduction

Chapter 5
Model-Free

Control Framework for
Cloud Elasticity

Model-Free Control
Applications

Chapter 6
Conclusion

 And
Future Works

Flatness-based Constrained
Control

Chapter 4
Cascaded Model-Free
Control of Quadrotors

Chapter 3
 Constraints on Linear

Flat Systems with Delays

Chapter 2
Constraints on Nonlinear
Finite Dimensional Flat

Systems

Figure 1.1: Organization of the thesis

increases. When such disturbances occur, a fast trajectory re-planning is essential
to avoid actuator saturation. In [127], is discussed the control law composed of
two parts: first part is constructed following di�erential flatness and second part
is following the model-free control law for a special case where the disturbance
and its derivative are assumed to be bounded.

But what happens when a big disturbance suddenly occurs? How to quickly
re-plan a new reference trajectory ?

To that purpose, we studied the constrained trajectory approach presented in
the first part of the thesis, where we define a set of feasible trajectories.

• In Chapter 2, we focus on trajectories generation rather than feedback
transformations. Our goal is to write the state/input constraints in terms of

6 1.2. Thesis Organization and Contributions

flat output and its derivatives. We propose to use Bézier curves as reference
trajectories because of their useful properties (one of the keys in the design of
our constrained open-loop control). We show how the inputs expressed by the
flat outputs, each represented in terms of a Bézier curve, can be expressed
as a combination of Bézier curves. We thus obtain explicit equations for the
input/state control points as functions of the flat output control points. We
then search for feasible regions of the Bézier control points i.e. a set of feasible
reference trajectories. There are a number of existing related approaches [43,
62, 63, 79, 80, 120, 128, 129, 136], which all rely on optimization procedures to
obtain a flat output reference trajectory. Moreover, di�erentially flat systems
with constraints are generally attacked through the use of optimal control
problems (see, e.g. [38, 42, 108, 111, 126])).

• In Chapter 3, we study the presence of delays in the state or the input that
characterizes many natural as well as artificial systems. A large part of the
control literature is thus devoted to the study of linear and nonlinear delay
systems [119], but few results are able to handle constraints. Constraints in
the input or the state variables of a delay system are usually tackled with
numerical methods entailing the computation of trajectory invariant intervals
[103] and positively invariant sets [32, 70], or more complex, but similar in
spirit, Model Predictive Control approaches (see for instance [87, 107]). A
systematic approach capable of embedding the constraint satisfaction directly
in the control formulation is still lacking for delay systems.

The second part of the thesis presents the Model-Free Control framework [48]
which estimates and cancels the unknown disturbances and/or unknown system
dynamics. The contribution of the second part of the thesis lies in two applications
of the Model-Free Control (MFC) of di�erent nature:

• In Chapter 4, we propose a controller design that avoids the quadrotor’s
system identification procedures while staying robust with respect to the
endogenous (the control performance is independent of any mass change,
inertia, gyroscopic or aerodynamic e�ects) and exogenous disturbances (wind,
measurement noise). To reach our goal, based on the cascaded structure of a
quadrotor, we divide the system into positional and attitude subsystems each
controlled by an independent Model-Free controller of second-order dynamics.
Then, we give proof results on the practical stability of the proposed control

1. Introduction 7

design. We validate our control approach in three realistic scenarios: in
presence of unknown measurement noise, with unknown time-varying wind
disturbances and mass variation.

• In Chapter 5, we use Model-Free Control to control the “horizontal elasticity”
of a Cloud Computing system. When compared to the commercial “Auto-
Scaling” algorithms, our easily implementable approach behaves better, even
with sharp workload fluctuations. This is confirmed by experiments on the
Amazon Web Services (AWS) public cloud.

• Finally, in Chapter 6, we summarize the research work of the thesis and
propose, as a perspective, a unified gray-box framework using the two above
presented studies.

8

2
Constraints on Nonlinear Finite

Dimensional Flat Systems

Contents
2.1 Chapter overview . 10
2.2 Di�erential flatness overview 14
2.3 Problem statement: Trajectory constraints fulfilment 15

2.3.1 General problem formulation 15
2.3.2 Constraints in the flat output space 16
2.3.3 Problem specialisation 18
2.3.4 Closed-loop trajectory tracking 20

2.4 Preliminaries on Symbolic Bézier trajectory 21
2.4.1 Definition of the Bézier curve 22
2.4.2 Bézier properties . 22
2.4.3 Quantitative envelopes for the Bézier curve 24
2.4.4 Symbolic Bézier operations 26
2.4.5 Bézier time derivatives 27

2.5 Constrained feedforward trajectory procedure 30
2.6 Feasible control points regions 31

2.6.1 Cylindrical Algebraic Decomposition 33
2.6.2 Approximations of Semialgebraic Sets 35

2.7 Applications . 37
2.7.1 Longitudinal dynamics of a vehicle 37
2.7.2 Quadrotor dynamics . 41

2.8 Closing remarks . 54
2.A Geometrical signification of the Bezier operations . . 57
2.B Trajectory Continuity . 57

9

10 2.1. Chapter overview

Abstract: This chapter presents an approach to embed the input/state/output
constraints in a unified manner into the trajectory design for di�erentially flat
systems. To that purpose, we specialize the flat outputs (or the reference trajectories)
as Bézier curves. Using the flatness property, the system’s inputs/states can be
expressed as a combination of Bézier curved flat outputs and their derivatives.
Consequently, we explicitly obtain the expressions of the control points of the
inputs/states Bézier curves as a combination of the control points of the flat outputs.
By applying desired constraints to the latter control points, we find the feasible regions
for the output Bézier control points i.e. a set of feasible reference trajectories.

2.1 Chapter overview
Motivation

The control of nonlinear systems subject to state and input constraints is one
of the major challenges in control theory. Traditionally, in the control theory
literature, the reference trajectory to be tracked is specified in advance. Moreover
for some applications, for instance, the quadrotor trajectory tracking, selecting
the right trajectory in order to avoid obstacles while not damaging the actuators
is of crucial importance.

In the last few decades, Model Predictive Control (MPC) [22, 89] has achieved
a big success in dealing with constrained control systems. Model predictive control
is a form of control in which the current control law is obtained by solving, at each
sampling instant, a finite horizon open-loop optimal control problem, using the
current state of the system as the initial state; the optimization yields an optimal
control sequence and the first control in this sequence is applied to the system. It
has been widely applied in petro-chemical and related industries where satisfaction
of constraints is particularly important because e�ciency demands operating points
on or close to the boundary of the set of admissible states and controls.

The optimal control or MPC maximize or minimize a defined performance
criterion chosen by the user. The optimal control techniques, even in the case
without constraints are usually discontinuous, which makes them less robust and
more dependent of the initial conditions. In practice, this means that the delay
formulation renders the numerical computation of the optimal solutions di�cult.

A large part of the literature working on constrained control problems is focused
on optimal trajectory generation [42, 79]. These studies are trying to find feasible
trajectories that optimize the performance following a specified criterion. Defining

2. Constraints on Nonlinear Finite Dimensional Flat Systems 11

y

yr

Stabilized System
Two degree of freedom control scheme

 Flat System

Stabilizing
Feedback

Feedforwarding
Control

yd

ud u

The chosen
trajectory

Online Update of the Regions

Symbolic Constrained
Reference Management

System Specification:
- Flat Model
- Input/State Constraints
- Singularities

Environment Changes
(Example: new obstacles)

Conditions (Feasible regions)
on the reference trajectory

Stage B

Stage A

A1

A2

B1 B2

Figure 2.1: Two degrees of freedom control scheme overview

the right criterion to optimize may be a di�cult problem in practice. Usually, in such
cases, the feasible and the optimal trajectory are not too much di�erent. For example,
in the case of autonomous vehicles [76], due to the dynamics, limited curvature,
and under-actuation, a vehicle often has few options for how it changes lines on
highways or how it travels over the space immediately in front of it. Regarding the
complexity of the problem, searching for a feasible trajectory is easier, especially
in the case where we need real-time re-planning [68, 69]. Considering that the
evolution of transistor technologies is reaching its limits, low-complexity controllers
that can take the constraints into account are of considerable interest. The same
remark is valid when the system has sensors with limited performance.

Research objective and contribution

In this chapter, we propose a novel trajectory-based framework to deal with system
constraints. We are answering the following question:

Question 2.1 How to design a set of the reference trajectories (or the feed-forwarding
trajectories) of a nonlinear system such that the input, state and/or output con-
straints are fulfilled?

12 2.1. Chapter overview

For that purpose, we divide the control problem in two stages (see Figure 2.1).
Our objective will be to elaborate a constrained reference trajectory management
(Stage A) which is meant to be applied to already pre-stabilized systems (Stage B).

Unlike other receding horizon approaches which attempt to solve stabilization,
tracking, and constraint fulfilment at the same time, we assume that in Stage
B, a primal controller has already been designed to stabilize the system which
provide nice tracking properties in the absence of constraints. In stage B, we
employ the two-degree of freedom design consisting of a constrained trajectory
design (constrained feedfowarding) and a feedback control.

In Stage A, the constraints are embedded in the flat output trajectory design.
Thus, our constrained trajectory generator defines a feasible open-loop reference
trajectory satisfying the states and/or control constraints that a primal feedback
controller will track and stabilize around.

To construct Stage A we first take advantage of the di�erential flatness property
which serves as a base to construct our method. The di�erential flatness property
yields exact expressions for the state and input trajectories of the system through
trajectories of a flat output and its derivatives without integrating any di�erential
equation. The latter property allows us to map the state/input constraints into
the flat output trajectory space.

Then, in our symbolic approach (stage A1), we assign a Bézier curve to each flat
output where the parameter to be chosen are the so-called control points (yielding
a finite number of variables on a finite time horizon) given in a symbolic form.
This kind of representation naturally o�ers several algebraic operations like the
sum, the di�erence and multiplication, and a�ords us to preserve the explicit
functions structure without employing discrete numerical methods. The advantage
to deal with the constraints symbolically, rather than numerically, lies in that
the symbolic solution explicitly depends on the control points of the reference
trajectory. This allows to study how the input or state trajectories are influenced
by the reference trajectory.

We find symbolic conditions on the trajectory control points such that the
states/inputs constraints are fulfilled.

We translate the state/input constraints into constraints on the reference
trajectory control points and we wish to reduce the solution of the systems of
equations/inequations into a simpler one. Ideally, we want to find the exact set
of solutions i.e. the constrained subspace.

We explain how this symbolic constrained subspace representation can be
used for constrained feedforwarding trajectory selection. The stage A2 can be
done in two di�erent ways.

2. Constraints on Nonlinear Finite Dimensional Flat Systems 13

• When a system should track a trajectory in a static known environment, then
the exact set of feasible trajectories is found and the trajectory is fixed by our
choice. If the system’s environment changes, we only need to re-evaluate the
exact symbolic solution with new numerical values.

• When a system should track a trajectory in an unknown environment with
moving objects, then, whenever necessary, the reference design modifies the
reference supplied to a primal control system so as to enforce the fulfilment of
the constraints. This second problem is not addressed in the thesis.

Our approach is not based on any kind of optimization nor does it need
computations for a given numerical value at each sampling step. We determine a set
of feasible trajectories through the system constrained environment that enable a
controller to make quick real-time decisions. For systems with singularities, we can
isolate the singularities of the system by considering them as additional constraints.

Existing Methods

• Considering actuator constraints based on the derivatives of the flat output
(for instance, the jerk [58, 143], snap [91]) can be too conservative for some
systems. The fact that a feasible reference trajectory is designed following the
system model structure allows to choose a quite aggressive reference trajectory.

• In contrast to [136], we characterize the whose set of viable reference trajecto-
ries which take the constraints into account.

• In [131], the problem of constrained trajectory planning of di�erentially
flat systems is cast into a simple quadratic programming problem ensuing
computational advantages by using the flatness property and the B-splines
curve’s properties. They simplify the computation complexity by taking
advantage of the B-spline minimal (resp. maximal) control point. The
simplicity comes at the price of having only minimal (resp. maximal) constant
constraints that eliminate the possible feasible trajectories and renders this
approach conservative.

• In [63], an inversion-based design is presented, in which the transition task
between two stationary set-points is solved as a two-point boundary value
problem. In this approach, the trajectory is defined as polynomial where only
the initial and final states can be fixed.

• The thesis of Bak [7] compared existing methods to constrained controller
design (anti-windup, predictive control, nonlinear methods), and introduced a
nonlinear gain scheduling approach to handle actuator constraints.

14 2.2. Di�erential flatness overview

Outline

This chapter is organized as follows:

• In section 2.2, we recall the notions of di�erential flatness for finite dimensional
systems.

• In section 2.3, we present our problem statement for the constraints fulfilment
through the reference trajectory.

• In section 2.4, we detail the flat output parameterization given by the Bézier
curve, and its properties.

• In section 2.5, we give the whole procedure in establishing reference trajectories
for constrained open-loop control. We illustrate the procedure through two
applications in section 2.7.

• In section 2.6, we present the two methods that we have used to compute the
constrained set of feasible trajectories.

2.2 Di�erential flatness overview
The concept of di�erential flatness was introduced in [55, 56] for non-linear finite
dimensional systems. By the means of di�erential flatness, a non-linear system can
be seen as a controllable linear system through a dynamical feedback.

A model shall be described by a di�erential system as:

ẋ = f(x, u) (2.1)

where x œ Rn denote the state variables and u œ Rm the input vector. Such a
system is said to be flat if there exists a set of flat outputs (or linearizing outputs)
(equal in number to the number of inputs) given by

y = h(x, u, u̇, ..., u

(r)) (2.2)

with r œ N such that the components of y œ Rm and all their derivatives are
functionally independent and such that we can parametrize every solution (x, u) of
(2.1) in some dense open set by means of the flat output y and its derivatives
up to a finite order q:

x = Â(y, ẏ, ..., y

(q≠1)), (2.3a)
u = ’(y, ẏ, ..., y

(q)) (2.3b)

2. Constraints on Nonlinear Finite Dimensional Flat Systems 15

where (Â, ’) are smooth functions that give the trajectories of x and u as functions
of the flat outputs and their time derivatives. The preceding expressions in (2.3),
will be used to obtain the so called open-loop controls. The di�erential flatness
found numerous applications, non-holonomic systems, among others (see [126]
and the references therein).

In the context of feedforwarding trajectories, the “degree of continuity” or the
smoothness of the reference trajectory (or curve) is one of the most important
factors. The smoothness of a trajectory is measured by the number of its contin-
uous derivatives. We give the definitions on the trajectory continuity when it is
represented by a parametric curve in the Appendix 2.B.

2.3 Problem statement: Trajectory constraints
fulfilment

Notation

Given the scalar function z œ CŸ(R,R) and the number – œ N, we denote by z

È–Í

the tuple of derivatives of z up to the order – 6 Ÿ: z

È–Í = z, ż, z̈, . . . , z(–). Given
the vector function v = (v

1

, . . . , v
q

), v
i

œ CŸ(R,R) and the tuple – = (–
1

, . . . , –
q

),
–

i

œ N, we denote by v

È–Í the tuple of derivatives of each component v
i

of v up to
its respective order –

i

6 Ÿ: v

È–Í = v
1

, . . . , v(–1)

1

, v
2

, . . . , v(–2)

2

, . . . , v
q

, . . . , v(–

q

)

q

.

2.3.1 General problem formulation

Consider the nonlinear system

ẋ(t) = f(x(t), u(t)) (2.4)

with state vector x = (x
1

, . . . , x
n

) and control input u = (u
1

, . . . , u
m

), x
i

, u
j

œ
CŸ([0, +Œ),R) for a suitable Ÿ œ N. We assume the state, the input and their
derivatives to be subject to both inequality and equality constraints of the form

C
i

(xÈ–x

i

Í(t), u

È–u

i

Í(t)) 6 0 ’t œ [0, T], ’i œ {1, . . . , ‹ in} (2.5a)

D
j

(xÈ—x

j

Í(t), u

È—u

j

Í(t)) = 0 ’t œ I
j

, ’j œ {1, . . . , ‹eq} (2.5b)

with each I
j

being either [0, T] (continuous equality constraint) or a discrete set
{t

1

, . . . , t
“

}, 0 Æ t
1

6 · · · 6 t
“

6 T < +Œ (discrete equality constraint), and
–x

i

, —x

j

œ Nn, –u

i

, —u

j

œ Nm. We stress that the relations (2.5) specify objectives (and

16 2.3. Problem statement: Trajectory constraints fulfilment

constraints) on the finite interval [0, T]. Objectives can be also formulated as a
concatenation of sub-objectives on a union of sub-intervals, provided that some
continuity and/or regularity constraints are imposed on the boundaries of each
sub-interval. Here we focus on just one of such intervals.

Our aim is to characterise the set of input and state trajectories (x, u) satisfying
the system’s equations (2.4) and the constraints (2.5). More formally we state
the following problem.

Problem 2.1 (Constrained trajectory set) Let C be a subspace of CŸ([0, +Œ),R).
Constructively characterise the set C cons ™ C n+m of all extended trajectories (x, u)
satisfying the system (2.4) and the constraints (2.5).

Problem 2.1 can be considered as a generalisation of a constrained reachability
problem (see for instance [43]). In such a reachability problem the stress is usually
made on initial and final set-points and the goal is to find a suitable input to
steer the state from the initial to the final point while possibly fulfilling the
constraints. Here, we wish to give a functional characterisation of the overall
set of extended trajectories (x, u) satisfying some given di�erential constraints. A
classical constrained reachability problem can be cast in the present formalism by
limiting the constraints C

i

and D
j

to x and u (and not their derivatives) and by
forcing two of the equality constraints to coincide with the initial and final set-points.

Problem 2.1 is di�cult to be addressed in its general setting. To simplify
the problem, in the following we make some restrictions to the class of systems
and to the functional space C . As a first assumption we limit the analysis to
di�erentially flat systems [55].

2.3.2 Constraints in the flat output space

Let us assume that system (2.4) is di�erentially flat with flat output1

y = (y
1

, . . . , y
m

) = h(x, u

ÈfluÍ) , (2.6)

with flu œ Nm. Following Equation (2.3), the parameterisation or the feedforwarding
trajectories associated to the reference trajectory y

r

is

x

r

= Â(y
r

È÷xÍ) (2.7a)
u

r

= ’(y
r

È÷uÍ) , (2.7b)
1We recall that the flat output y has the same dimension m as the input vector u.

2. Constraints on Nonlinear Finite Dimensional Flat Systems 17

with ÷x œ Nn and ÷u œ Nm.
Through the first step of the dynamical extension algorithm [44], we get the

flat output dynamics
Y
____]

____[

y(k1)

1

= „
1

(yÈµy

1Í, u

Èµu

1 Í)
...

y(k

m

)

m

= „
m

(yÈµy

m

Í, u

Èµu

m

Í) ,

(2.8)

with µy

i

= (µy

i1

, . . . , µy

im

) œ Nm, µu

i

= (µu

i1

, . . . , µu

im

) œ Nm and k
i

> max
j

µy

ji

.
The original n-dimensional dynamics (2.4) and the K-dimensional flat output
dynamics (2.8) (K = q

i

k
i

) are in one-to-one correspondence through (2.6) and
(2.7). Therefore, the constraints (2.5) can be re-written as

≈
i

(y
r

ÈÊin
i

Í) 6 0 ’t œ [0, T], ’i œ {1, . . . , ‹ in} (2.9a)
∆

j

(y
r

ÈÊeq
j

Í) = 0 ’t œ I
j

, ’j œ {1, . . . , ‹eq} (2.9b)

with
≈

i

(y
r

ÈÊin
i

Í) = C
i

((Â(y
r

È÷x Í))È–x

i

Í, ’(y
r

È÷uÍ)È–u

i

Í),

∆
j

(y
r

ÈÊeq
j

Í) = D
j

((Â(y
r

È÷xÍ)È—x

j

Í, ’(y
r

È÷uÍ)È—u

j

Í)

and Êin

i

, Êeq

j

œ Nm.

Remark 2.1 We may use the same result to embed an input rate constraint u̇

r

.

Thus, Problem 2.1 can be transformed in terms of the flat output dynamics
(2.8) and the constraints (2.9) as follows.

Problem 2.2 (Constrained flat output set) 2 Let C
y

be a subspace of Cp([0, +Œ),R)
with p = max((k

1

, . . . , k
m

), Êin

1

, . . . , Êin

‹

in , Êeq

1

, . . . , Êeq

‹

eq). Constructively characterise
the set C cons

y

™ C m

y

of all flat outputs satisfying the dynamics (2.8) and the
constraints (2.9).

Working with di�erentially flat systems allows us to translate, in a unified fashion,
all the state and input constraints as constraints in the flat outputs and their
derivatives (See (2.9)). We remark that Â and ’ in (2.7) are such that Â(yÈ÷

x

Í)
and ’(yÈ÷

u

Í) satisfy the dynamics of system (2.4) by construction. In other words,
the extended trajectories (x, u) of (2.4) are in one-to-one correspondence with
y œ C m

y

given by (2.6). Hence, choosing y solution of Problem 2.2 ensures that
x and u given by (2.7) are solutions of Problem 2.1.

2Here the max operator is applied elementwise on each vector.

18 2.3. Problem statement: Trajectory constraints fulfilment

2.3.3 Problem specialisation

For any practical purpose, one has to choose the functional space C
y

to which all
components of the flat output belong. Instead of making reference to the space
C gen := Cp([0, +Œ),R), mentioned in the statement of Problem 2.1, we focus on
the space C gen

T

:= Cp([0, T],R). Indeed, the constraints (2.9) specify finite-time
objectives (and constraints) on the interval [0, T]. Still, the problem exhibits an
infinite dimensional complexity, whose reduction leads to choose an approximation
space C app that is dense in C gen

T

. A possible choice is to work with parametric
functions expressed in terms of basis functions like, for instance, Bernstein-Bézier,
Chebychev or Spline polynomials.

A scalar Bézier curve of degree N œ N in the Euclidean space R is defined as

P (s) =
Nÿ

j=0

–
j

B
jN

(s), s œ [0, 1]

where the –
j

œ R are the control points and B
jN

(s) =
1

N

j

2
(1 ≠ s)N≠jsj are

Bernstein polynomials [34]. For sake of simplicity, we set here T = 1 and we
choose as functional space

C app =
I

Nÿ

0

–
j

B
j

N |N œ N, (–
j

)N

0

œ RN+1, B
j

œ C0([0, 1],R)
J

(2.10)

The set of Bézier functions of generic degree has the very useful property of
being closed with respect to addition, multiplication, degree elevation, derivation
and integration operations (see section 2.4). As a consequence, any polynomial
integro-di�erential operator applied to a Bézier curve, still produces a Bézier curve
(in general of di�erent degree). Therefore, if the flat outputs y are chosen in C app

and the operators ≈
i

(·) and ∆
j

(·) in (2.9) are integro-di�erential polynomials, then
such constraints can still be expressed in terms of Bézier curves in C app. We stress
that, if some constraints do not admit such a description, we can still approximate
them up to a prefixed precision Á as function in C app by virtue of the denseness
of C app in C gen

1

. Hence we assume the following.

Assumption 2.1 Considering each flat output y
r

œ C app defined as

y
r

=
Nÿ

j=0

–
j

B
jN

(s),

2. Constraints on Nonlinear Finite Dimensional Flat Systems 19

the constraints (2.9) can be written as

�
i

(y
r

ÈÊ

in
i

Í) =
N

in
iÿ

k=0

⁄
ik

B
kN

(s), (2.11)

�
j

(y
r

ÈÊ

eq
j

Í) =
N

eq
iÿ

k=0

”
jk

B
kN

(s) (2.12)

where

⁄
ik

= rin

ik

(–
0

, . . . , –
N

)

”
jk

= req

jk

(–
0

, . . . , –
N

)

rin

ik

, req

jk

œ R[–
0

, . . . , –
N

]

i.e. the ⁄
ik

and ”
jk

are polynomials in the –
0

, . . . , –
N

.⌅

Set the following expressions as‹ in

rin = (rin

1,0

, . . . , rin

‹

in
,N

in

‹

in
),

req = (req

1,0

, . . . , req

‹

eq
,N

eq

‹

eq
),

r = (rin, req),

the control point vector – = (–
1

, . . . , –
N

), and the basis function vector B =
(B

1N

, . . . , B
NN

). Therefore, we obtain a semi-algebraic set defined as:

I (r,A) =
Ó
– œ A | rin(–) 6 0, req(–) = 0

Ô

for any parallelotope

A = [–
0

, –̄
0

] ◊ · · · ◊ [–
N

, –̄
N

], –
i

, –̄
i

œ R fi {≠Œ, Œ}, –
i

< –̄
i

(2.13)

Thus I (r,A) is a semi-algebraic set associated to the constraints (2.9). The
parallelotope A represents the trajectory sheaf of available trajectories, among which
the user is allowed to choose a reference. The semi-algebraic set I (r,A) represents
how the set A is transformed in such a way that the trajectories fulfill the constraints
(2.9). Then, picking an – in I (r,A) ensures that y

r

= –B automatically satisfies
the constraints (2.9).
The Problem 2.2 is then reformulated as :

Problem 2.3 For any fixed parallelotope A, constructively characterise the semi-
algebraic set I (r,A).

20 2.3. Problem statement: Trajectory constraints fulfilment

This may be done through exact, symbolic techniques (such as, e.g. the Cylidrical
Algebraic Decomposition) or through approximation techniques yielding outer
approximations I out

l

(r,A) ´ I (r,A) and inner approximations I inn

l

(r,A) ™
I (r,A) with lim

læŒ
I out

l

= lim
læŒ

I inn

l

= I . ⌅
This characterisation shall be useful to extract inner approximations of a special
type yielding trajectory sheaves included in I (r,A). A specific example of this
type of approximations will consist in disjoint unions of parallelotopes:

I inn

l

(r,A) =
€

jœI

l

B
l,j

, ’i, j œ I
l

,B
l,i

fl B
l,j

= ÿ (2.14)

This class of inner approximation is of practical importance for end users, as
the applications in Section 2.7 illustrate.

2.3.4 Closed-loop trajectory tracking
So far this chapter has focused on the design of open-loop trajectories while assuming
that the system model is perfectly known and that the initial conditions are exactly
known. When the reference open-loop trajectories (x

r

, u

r

) are well-designed i.e.
respecting the constraints and avoiding the singularities, as discussed above, the
system is close to the reference trajectory. However, to cope with the environmental
disturbances and/or small model uncertainties, the tracking of the constrained
open-loop trajectories should be made robust using feedback control. The feedback
control guarantees the stability and a certain robustness of the approach, and is
called the second degree of freedom of the primal controller (Stage B2 in figure 2.1).

We recall that some flat systems can be transformed via endogenous feedback
and coordinate change to a linear dynamics [55, 126]. To make this chapter self-
contained, we briefly discuss the closed-loop trajectory tracking as presented in [88].

Consider a di�erentially flat system with flat output y = (y
1

, . . . , y
m

) (m being
the number of independent inputs of the system). Let y

r

(t) œ C÷(R) be a reference
trajectory for y. Suppose the desired open-loop state/ input trajectories (x

r

(t), u
r

(t))
are generated o�ine. We need now a feedback control to track them.

Since the nominal open-loop control (or the feedforward input) linearizes the
system, we can take a simple linear feedback, yielding the following closed-loop
error dynamics:

e

(÷) + ⁄
÷≠1

e

(÷≠1) + · · · + ⁄
1

ė + ⁄
0

e = 0 (2.15)

where e = y ≠ y

r

is the tracking error and the coe�cients � = [⁄
0

, . . . , ⁄
÷≠1

] are
chosen to ensure an asymptotically stable behaviour (see e.g. [56]).

2. Constraints on Nonlinear Finite Dimensional Flat Systems 21

Remark 2.2 Note that this is not true for all flat systems, in [66] can be found an
example of flat system with nonlinear error dynamics.

Now let (x, u) be the closed-loop trajectories of the system. These variables
can be expressed in terms of the flat output y as:

x = Â(yÈ÷≠1Í), u = ’(yÈ÷Í) (2.16)

Then, the associated reference open-loop trajectories (x
r

, u

r

) are given by

x

r

= Â(y
r

È÷≠1Í), u

r

= ’(y
r

È÷Í)

Therefore,

x = Â(yÈ÷≠1Í) = Â(y
r

È÷≠1Í + e

È÷≠1Í)

and

u = ’(yÈ÷Í) = ’(y
r

È÷Í + e

È÷Í, ≠�e

È÷Í).

As further demonstrated in [88][See Section 3.3], since the tracking error e æ 0
as t æ Œ that means x æ x

r

and u æ u

r

.
Besides the linear controller (Equation (2.15)), many di�erent linear and non-

linear feedback controls can be used to ensure convergence to zero of the tracking
error. For instance, sliding mode control, high-gain control, passivity based control,
model-free control, among others.

Remark 2.3 An alternative method to the feedback linearization, is the exact
feedforward linearization presented in [67] where the problem of type "division by
zero" in the control design is easily avoided. This control method removes the
need for asymptotic observers since in its design the system states information is
replaced by their corresponding reference trajectories. The robustness of the exact
feedforwarding linearization was analyzed in [69].

2.4 Preliminaries on Symbolic Bézier trajectory
To create a trajectory that passes through several points, we can use approximating
or interpolating approaches. The interpolating trajectory that passes through the
points is prone to oscillatory e�ects (more unstable), while the approximating
trajectory like the Bézier curve or B-Spline curve is more convenient since it
only approaches defined so-called control points [34] and have simple geometric

22 2.4. Preliminaries on Symbolic Bézier trajectory

interpretations. The Bézier/B-spline curve can be handled by conveniently handling
the curve’s control points.
The main reason in choosing the Bézier curves over the B-Splines curves, is the
simplicity of their arithmetic operators presented further in this Section. Despite
the nice local properties of the B-spline curve, the direct symbolic multiplication3

of B-splines lacks clarity and has partly known practical implementation [98].

In the following Section, we start by presenting the Bézier curve and its properties.
Bézier curves are chosen to construct the reference trajectories because of their nice
properties (smoothness, strong convex hull property, derivative property, arithmetic
operations). They have their own type basis function, known as the Bernstein basis,
which establishes a relationship with the so-called control polygon. A complete
discussion about Bézier curves can be found in [116]. Here, some basic and key
properties are recalled as a preliminary knowledge.

2.4.1 Definition of the Bézier curve

A Bézier curve is a parametric one that uses the Bernstein polynomials as a basis.
An nth degree Bézier curve is defined by

f(t) =
Nÿ

j=0

c
j

B
j,N

(t), 0 6 t 6 1 (2.17)

where the c
j

are the control points and the basis functions B
j,N

(t) are the Bernstein
polynomials (see Figure 2.2). The B

j,N

(t) can be obtained explicitly by:

B
j,N

(t) =
A

N

j

B

(1 ≠ t)N≠jtj for j = 0, . . . , N.

or by recursion with the De Casteljau formula:

B
j,N

(t) = (1 ≠ t)B
j,N≠1

(t) + tB
j≠1,N≠1

(t).

2.4.2 Bézier properties

For the sake of completeness, we here list some important Bézier-Bernstein properties.

3The multiplication operator is essential when we want to work with polynomial systems.

2. Constraints on Nonlinear Finite Dimensional Flat Systems 23

j = 2
j = 3

j = 4
j = 0

j = 1

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2.2: Bernstein Basis for degree N = 4.

C4

C2

C0

Figure 2.3: The convex hull property for Bézier curve (N = 4) with control points
c

j

(j = 0, . . . , 4).

24 2.4. Preliminaries on Symbolic Bézier trajectory

Lemma 2.1 Let n be a non-negative polynomial degree. The Bernstein functions
have the following properties:

1. Partition of unity.
nq

j=0

B
j,N

(t) © 1
This property ensures that the relationship between the curve and its defining
Bézier points is invariant under a�ne transformations.

2. Positivity. If t œ [0, 1] then B
j,N

(t) > 0.
It guarantees that the curve segment lies completely within the convex hull of
the control points (see Figure 2.3).

3. Tangent property. For the start and end point, this guarantees f(0) = c
0

and
f(1) = c

N

but the curve never passes through the intermediate control points.

4. Smoothness. B
j,N

(t) is N ≠ 1 times continuously di�erentiable. Hence,
increasing degree increases regularity.

2.4.3 Quantitative envelopes for the Bézier curve
Working with the Bézier curve control points in place of the curve itself allows a
simpler explicit representation. However, since our framework is not based on the
Bézier curve itself, we are interested in the localisation of the Bézier curve with
respect to its control points, i.e. the control polygon. In this part, we review a
result on sharp quantitative bounds between the Bézier curve and its control polygon
[81, 104]. For instance, in the case of a quadrotor (discussed in Section 2.7.2), once
we have selected the control points for the reference trajectory, these envelopes
describe the exact localisation of the quadrotor trajectory and its distance from
the obstacles. These quantitative envelopes may be of particular interest when
avoiding corners of obstacles which traditionally in the literature [117] are modelled
as additional constraints or introducing safety margin around the obstacle.

We start by giving the definition for the control polygon.

Definition 2.1 (Control polygon for Bézier curves (see [104])). Let f = q
N

j=0

c
j

B
j,N

(t)
be a scalar-valued Bézier curve. The control polygon �

f

= q
N

j=0

c
j

H
j

(t) of f

is a piecewise linear function connecting the points with coordinates (tú
j

, c
j

) for
j = 0, . . . , N where the first components tú

j

= j

N

are the Greville abscissae. The hat
functions H

j

are piecewise linear functions defined as:

H
j

(t) =

Y
____]

____[

t≠t

ú
j≠1

t

ú
j

≠t

ú
j≠1

t œ [tú
j≠1

, tú
j

]
t

ú
j+1≠t

t

ú
j+1≠t

ú
j

t œ [tú
j

, tú
j+1

]
0 otherwise.

2. Constraints on Nonlinear Finite Dimensional Flat Systems 25

An important detail is the maximal distance between a Bézier segment and
its control polygon. For that purpose, we recall a result from [104], where sharp
quantitative bounds of control polygon distance to the Bézier curve are given.

Theorem 2.1 (See [104], Theorem 3.1) Let f = q
N

j=0

c
j

B
j,N

be a scalar Bézier
curve and let �

f

be its control polygon. Then the maximal distance from f to its
control polygon is bounded as:

Îf ≠ �
f

ÎŒ,[0,1]

6 µŒ(N) Î�
2

cÎŒ = D
max

(2.18)

where the constant µŒ(N) = ÂN/2ÊÁN/2Ë
2N

4 only depends on the degree N and the
second di�erence of the control points Î�

2

cÎŒ := max
0<j<N

|�
2

c
j

|.

The j
th second di�erence of the control point sequence c

j

for j = 0, . . . , N is given by:

�
2

c
j

= c
j≠1

≠ 2c
j

+ c
j+1

.

Based on this maximal distance, Bézier curve’s envelopes are defined as two
piecewise linear functions:

• the lower envelope �
f

= q
N

j=0

e
j

H
j

= q
N

j=0

(c
j

≠ D
max

)H
j

and,

• the upper envelope �̄
f

= q
N

j=0

ē
j

H
j

= q
N

j=0

(c
j

+ D
max

)H
j

such that �
f

6 f 6 �̄
f

.
The envelopes are improved by taking e

0

= ē
0

= c
0

and e
N

= ē
N

= c
N

and
then clipped with the standard Min-Max bounds 5. The Min-Max bounds yield
rectangular envelopes that are defined as

Definition 2.2 (Min-Max Bounding box (see [116])). Let f = q
N

j=0

c
j

B
j,N

be a
Bézier curve. As a consequence of the convex-hull property, a min-max bounding
box is defined for the Bézier curve f as:

min
0<j<N

c
j

6
Nÿ

j=0

c
j

B
j,N

6 max
0<j<N

c
j

.

Remark 2.4 As we notice, the maximal distance between a Bézier segment and
its control polygon is bounded in terms of the second di�erence of the control point
sequence and a constant that depends only on the degree of the polynomial. Thus,
by elevating the degree of the Bézier control polygon, i.e. the subdivision (without
modifying the Bézier curve), we can arbitrary reduce the distance between the curve
and its control polygon.

4 Note that the notationÁxË means the ceiling of x, i.e. the smallest integer greater than or
equal to x, and the notationÂxÊ means the floor of x, i.e. the largest integer less than or equal to
x.

5Unfortunately the simple Min-Max bounds define very large envelopes when applied solely.

26 2.4. Preliminaries on Symbolic Bézier trajectory

2.4.4 Symbolic Bézier operations
In this section, we present the Bézier operators needed to find the Bézier control
points of the states and the inputs. Let the two polynomials f(t) (of degree m)
and g(t) (of degree n) with control points f

j

and g
j

be defined as follows:

f(t) =
mÿ

j=0

f
j

B
j,m

(t), 0 6 t 6 1

g(t) =
nÿ

j=0

g
j

B
j,n

(t), 0 6 t 6 1

We now show how to determine the control points for the degree elevation and
for the arithmetic operations (the sum, di�erence, and product of these polynomials).
For further information on Bézier operations, see [40]. Some illustrations of the
geometrical significance of these operations are included in the Appendix 2.A.

Degree elevation: To increase the degree from n to n + r and the number of
control points from n + 1 to n + r + 1 without changing the shape, the new control
points b

j

of the (n + r)th Bézier curve are given by:

b
j

=
min(n,j)ÿ

i=max(0,j≠r)

1
n

i

21
r

j≠i

2

1
n+r

j

2 g
i

j = 0, 1, . . . , n + r (2.19)

The latter constitutes the so-called augmented control polygon. The new control
points are obtained as convex combinations of the original control points. This is
an important operation exploited in addition/subtraction of two control polygons
of di�erent lengths and in approaching the curve to a new control polygon by
refining the original one.

Addition and subtraction: If m = n we simply add or subtract the coe�cients

f(t) ± g(t) =
mÿ

j=0

(f
j

± g
j

)B
j,m

(t) (2.20)

If m > n, we need to first elevate the degree of g(t) m ≠ n times using (2.19)
and then add or subtract the coe�cients.

Multiplication: Multiplication of two polynomials of degree m and n yields
a degree m + n polynomial

f(t)g(t) =
m+nÿ

j=0

Q

a
min(m,j)ÿ

i=max(0,j≠n)

1
m

i

21
n

j≠i

2

1
m+n

j

2 f
i

g
j≠i

R

b

¸ ˚˙ ˝
Control points of the product

B
j,m+n

(t) (2.21)

2. Constraints on Nonlinear Finite Dimensional Flat Systems 27

2.4.5 Bézier time derivatives
We give the derivative property of the Bézier curve in Proposition 2.1 which is
crucial in establishing the constrained trajectory procedure.

Lemma 2.2 (see [83]) The derivative of the jth Bernstein function of degree n > 1
is given by

DB
j,N

(t) = N (B
j≠1,N≠1

(t) ≠ B
j,N≠1

(t)) for j = 0, . . . , N. (2.22)

for any real number t and where B≠1,N≠1

= B
N,N≠1

= 0.

Proposition 2.1 If the flat output or the reference trajectory y is a Bézier curve,
its derivative is still a Bézier curve and we have an explicit expression for its control
points.

Proof 2.1 Let y(q)(t) denote the qth derivative of the flat output y(t). We use the
fixed time interval T = t

f

≠ t
0

to define the time as t = T ·, 0 6 · 6 1. We can
obtain y(q)(·) by computing the qth derivatives of the Bernstein functions.

y(q)(·) = 1
T q

Nÿ

j=0

c
j

B(q)

j,N

(·) (2.23)

Letting c(0)

j

= c
j

, we write

y(·) = y(0)(·) =
Nÿ

j=0

c(0)

j

B
j,N

(·) (2.24)

Then,

y(q)(·) =
N≠qÿ

j=0

c(q)

j

B
j,N≠q

(·) (2.25)

with derivative control points such that

c(q)

j

=

Y
_]

_[

c
j

, q = 0
(N ≠ q + 1)

T q

1
c(q≠1)

j+1

≠ c(q≠1)

j

2
, q > 0.

(2.26)

We can deduce the explicit expressions for all lower order derivatives up to
order N ≠ 1. This means that if the reference trajectory y

r

(t) is a Bézier curve
of degree N > q (q is the derivation order of the flat output y), by di�erentiating
it, all states and inputs are given in straightforward Bézier form.

28 2.4. Preliminaries on Symbolic Bézier trajectory

0 0.5 1
0

1

2

3

4

5

0 0.5 1
0

5

10

15

0 0.5 1

-50

0

50

Figure 2.4: The time derivatives when T = 1

Example 2.1 Through a simple example of a double integrator, we want to rep-
resent the link between the time interval and the time derivatives. For a changing
position y, its time derivative ẏ is its velocity, and its second derivative with respect
to time ÿ, is its acceleration. Even higher derivatives are sometimes also used: the
third derivative of position with respect to time is known as the jerk.

We here want to show the e�ect of the fixed time period T on the velocity,
acceleration, etc. We remark the connection between the time scaling parameter
appearing in the trajectory parameterization. We have a simple double integrator
defined as:

ÿ = u (2.27)

As a reference trajectory, we choose a Bézier curve y = q
N

i=0

a
i

B
i,N

of order
N = 4. Due to the Bézier derivative property, we can explicitly provide the link
between the time interval T and control points of the Bézier curve’s derivatives.

ẏ =
N≠1ÿ

i=0

a(1)

i

B
i,N≠1

(2.28a)

ÿ =
N≠2ÿ

i=0

a(2)

i

B
i,N≠2

(2.28b)

where a(1)

i

and a(2)

i

are the control points of the first and the second derivative of the
B-spline curve respectively. We have the expressions of the a(1)

i

and a(2)

i

in terms of
the a

i

. This fact allow us to survey when the desired reference trajectory will respect
the input constraints i.e. a(2)

i

= f
1

(a(1)

i

) = f
2

(a
i

). That means that if ’a(2)

i

< K

then u < K.

2. Constraints on Nonlinear Finite Dimensional Flat Systems 29

0 5 10
0

1

2

3

4

5

0 5 10
0

0.5

1

1.5

2

0 5 10
-1.5

-1

-0.5

0

0.5

1

1.5

Figure 2.5: The time derivatives when T = 10

0 50 100
0

1

2

3

4

5

0 50 100
0

0.05

0.1

0.15

0.2

0 50 100
-0.01

-0.005

0

0.005

0.01

Figure 2.6: The time derivatives when T = 100

Proposition 2.2 If we take a Bézier curve as reference trajectory y
r

(t) =
Nq

j=0

c
j

B
j,N

(t)
for a flat system such that the input is a polynomial function of the flat output and
its derivatives, then the open loop input is also a Bézier curve u

r

= B(y
r

, ..., y(q)

r

) =
mq

i=0

U
i

B
i,m

(t).

Remark 2.5 We should take a Bézier curve of degree N > q to avoid introducing
discontinuities in the control input.

Example 2.2 In the case of a chain of integrators u
r

(t) = y(q)

r

(t) by imposing for
all K

l

6 c(q)

j

6 K
h

, we ensure an input constraint K
l

6 u
r

(t) 6 K
h

.

30 2.5. Constrained feedforward trajectory procedure

2.5 Constrained feedforward trajectory procedure
We aim to find a feasible Bézier trajectory (or a set of feasible trajectories, and
then make a suitable choice) y

r

(t) between the initial conditions y

r

(t
0

) = y

initial

and the final conditions y

r

(t
f

) = y

final

. We here show the procedure to obtain the
Bézier control points for the constrained nominal trajectories (y

r

, x

r

, u

r

).

Given a di�erentially flat system ẋ = f(x, u), the reference design procedure
can be summarized as:

1. Assign to each flat output (trajectory) y
i

a symbolic Bézier curve y
r

(t) =
Nq

j=0

–
j

B
j,N

(t) of a suitable degree N > q (q is the time derivatives of the flat

output) and where – = (–
0

, . . . , –
N

) œ RN+1 are its control points.

2. Compute the needed derivatives of the flat outputs using Equation (2.25).

3. Use the Bézier operations to produce the system model relationships (2.11)-
(2.12), and to find the state reference Bézier curve x

r

(t) =
mq

i=0

X
i

B
i,m

(t) and

input reference Bézier curve u

r

(t) =
mq

j=0

U
j

B
j,m

(t) respectively, such that

(X
i

, U
j

) = r
k

(–
0

, . . . , –
N

), k = 0, . . . , m + n + 2) are functions of the output
control points.

4. If needed, calculate the corresponding augmented control polygons by elevating
the degree of the original control polygons in order to be closer to the Bézier
trajectory.

5. Specify the initial conditions, final conditions, or intermediate conditions on
the flat output or on any derivative of the flat output that represent a direct
equality constraint on the Bézier control points. Each flat output trajectory
has its control points fixed as follows:

–(i)

0

= y(i)(t
0

), (2.29a)
–(i)

N

= y(i)(t
f

), for i = 0, . . . q, (2.29b)
–

j

œ [–
j

, –̄
j

] for j = 1, . . . N ≠ 1, (2.29c)

where –
j

, –̄
j

œ R are the limits of the j
th control point. By using the Bézier

properties, we will construct a set of constraints by means of its control points.
We have a special case for the paralellotope where the first and last control
point are fixed –

0

= –̄
0

= y(t
0

) and –
N

= –̄
N

= y(t
f

) respectively.

2. Constraints on Nonlinear Finite Dimensional Flat Systems 31

6. We consider a constrained method based on the Bézier control points since
the control point polygon captures important geometric properties of the
Bézier curve shape. The conditions on the output Bézier control points –

j

,
the state Bézier control points X

i

and the the input control points U
j

result
in a semi-algebraic set (system of polynomial equations and/or inequalities)
defined as:

I (r,A) = {– œ A | r
k

(–) ú
k

0, k œ {1, . . . , l} , ú
k

œ {<,6, >,>, =, ”=}}
(2.30)

Depending on the studied system, the output constraints can be defined as in
equation (2.13), or remain as A = RN+1.

7. Find the regions of the control points –
j

, j = 1, . . . N ≠ 1, solving the system
of equality/inequalities (2.30) by using an appropriate method. We present
two kind of possible methods in Section 2.6.

2.6 Feasible control points regions
Once we transform all the system trajectories through the symbolic Bézier flat output,
the problem is formulated as a system of functions (equations and inequalities)
with Bézier control points as parameters (see equation (2.30)). Consequently
the following question raises:

Question 2.2 How to find the regions in the space of the parameters (Bézier control
points) where the system of functions remains valid i.e. the constrained set of feasible
feed-forwarding trajectories?

This section has the purpose to answer the latter question by reviewing two
methods from semialgebraic geometry 6 :

In the first method, we formulate the regions for the reference trajectory control
points search as a Quantifier Elimination (QE) problem. The QE is a powerful
procedure to compute an equivalent quantifier-free formula for a given first-order
formula over the reals [30, 132]. Here we briefly introduce the QE method.
Let f

i

(X, U) œ Q[X, U], i = 1, . . . , l be polynomials with rational coe�cients where:
6The theory that studies the real-number solutions to algebraic inequalities with-real number

coe�cients, and mappings between them, is called semialgebraic geometry.

32 2.6. Feasible control points regions

• X = (x
1

, . . . , x
n

) œ Rn is a vector of quantified variables

• U = (u
1

, . . . , u
m

) œ Rm is a vector of unquantified (free) variables.

The quantifier-free Boolean formula Ï(X, U) is a combined expression of polynomial
equations (f

i

(X, U) = 0) , inequalities (f
i

(X, U) Æ 0), inequations (f
i

(X, U) ”= 0)
and strict inequalities (f

i

(X, U) > 0) that employs the logic operators · (and), ‚
(or), ∆ (implies) or … (equivalence).
A prenex or first-order formula is defined as follows:

G(X, U) = (Q
1

x
1

) . . . (Q
n

x
n

)[Ï(X, U)]

where Q
i

is one of the quantifiers ’(for all) and ÷ (there exists). Following the
Tarski Seidenberg theorem (see [30]), for every prenex formula G(X, U) there exists
an equivalent quantifier-free formula Â(U) defined by the free variables.

The goal of the QE procedure is to compute an equivalent quantifier free
formula Â(U) for a given first-order formula. It finds the feasible regions of free
variables U represented as semialgebraic set where G(X, U) is true. If the set U

is non-empty, there exists a point u œ Rm which simultaneously satisfies all of the
equations/inequalities. Such a point is called a feasible point and the set U is then
called feasible. If the set U is empty, it is called unfeasible. In the case when m = 0,
i.e. when all variables are quantified, the QE procedure decides whether the given
formula is true or false (decision problem). For instance,

• given a first order formula ’x [x2 + bx + c > 0], the QE algorithm gives the
equivalent quantifier free formula b ≠ 4c < 0;

• given a first order formula ÷x [ax2 + bx + c = 0], the QE algorithm gives
the equivalent quantifier free formula (a ”= 0 · b2 ≠ 4ac Ø 0) ‚ (a = 0 · b ”=
0) ‚ (a = 0 · b = 0 · c = 0).

As we can notice, the quantifier free formulas represent the semi-algebraic sets
(the conditions) for the unquantified free variables verifying the first order formula
is true. Moreover, given an input formula without quantifiers, the QE algorithm
produces a simplified formula. For instance (for more examples, see [20]),

• given an input formula (ab 6 0) · (a + b = 0) · (b2 + a2 > 0) ‚ (a2 = ≠b2),
the QE algorithm gives the equivalent simplified formula a + b = 0.

2. Constraints on Nonlinear Finite Dimensional Flat Systems 33

On the other hand, given an input formula without unquantified free variables
(usually called closed formula) is either true or false.

The symbolic computation of the Cylindrical Algebraic Decomposition (CAD)
introduced by Collins [27] is the best currently known QE algorithm for solving
real algebraic constraints (in particular parametric and non-convex case) (see
[130]). This method gives us an exact solution, a simplified formula describing
the semi-algebraic set.

The QE methods, particularly the CAD, have already been used in various
aspects of control theory (see [3, 118] and the references therein): robust control de-
sign, finding the feasible regions of a PID controller, the Hurwitz and Schur stability
regions, reachability analysis of nonlinear systems, trajectory generation [78].

Remark 2.6 (On the complexity) Unfortunately the above method rapidly becomes
slow due to its double exponential complexity [84]. Its e�ciency strongly depends
on the number and on the complexity of the variables (control points) used for a
given problem. The computational complexity of the CAD is double exponential
i.e. bounded by (sd)2O(n) for a finite set of s polynomials in n variables, of degree
d. There are more computationally e�cient QE methods than the CAD, like the
Critical Point Method [11] (it has single exponential complexity in n the number of
variables) and the cylindrical algebraic sub-decompositions [140] but to the author
knowledge there are no available implementations.

For more complex systems, the exact or symbolic methods are too computation-
ally expensive. There exist methods that are numerical rather than exact.

As a second alternative method, we review one such method based on approx-
imation of the exact set with more reasonable computational cost. The second
method known as the Polynomial Superlevel Set (PSS) method, based on the paper
[31] instead of giving us exact solutions tries to approximate the set of solutions by
minimizing the L1 norm of the polynomial. It can deal with more complex problems.

2.6.1 Cylindrical Algebraic Decomposition

In this section, we give a simple introduction to the Cylindrical Algebraic Decomposi-
tion.

34 2.6. Feasible control points regions

Input of CAD: As an input of the CAD algorithm, we define a set of polynomial
equations and/or inequations in n unknown symbolic variables (in our case, the
control points) defined over real interval domains.

Definition of the CAD: The idea is to develop a sequence of projections that
drops the dimension of the semi-algebraic set by one each time. Given a set S

of polynomials in Rn, a cylindrical algebraic decomposition is a decomposition
of Rn into finitely many connected semialgebraic sets called cells, on which each
polynomial has constant sign, either +, ≠ or 0. To be cylindrical, this decomposition
must satisfy the following condition: If 1 6 k < n and fi is the projection from
Rn onto Rn≠k consisting in removing the k last coordinates, then for every pair of
cells c and d, one has either fi(c) = fi(d) or fi(c) fl fi(d) = ÿ. This implies that the
images by fi of the cells define a cylindrical decomposition of Rn≠k.

Output of CAD: As an output of this symbolic method, we obtain the total
algebraic expressions that represent an equivalent simpler form of our system.
Ideally, we would like to obtain a parametrization of all the control points regions
as a closed form solution. Finally, in the case where closed forms are computable for
the solution of a problem, one advantage is to be able to overcome any optimization
algorithm to solve the problem for a set of given parameters (numerical values),
since only an evaluation of the closed form is then necessary.

The execution runtime and memory requirements of this method depend of the
dimension of the problem to be solved because of the computational complexity. For
the implementation part, we will use its Mathematica implementation7 (developed
by Adam Strzebonski). Other implementations of CAD are QEPCAD, Redlog,
SyNRAC, Maple.

Example 2.3 From [74], we present an example in which we want to find the
regions of the parameters (a, b) œ R2 where the following formula is true, not only
answering if the formula is true or not.
Having as input

F =
Ó
(a, b) œ R2 : f

1

(a, b) =
Ô

a2 ≠ b2 +
Ô

ab ≠ b2 ≠ a > 0, f
2

(a, b) = 0 < b < a
Ô

7 see https://reference.wolfram.com/language/ref/CylindricalDecomposition.html

2. Constraints on Nonlinear Finite Dimensional Flat Systems 35

the corresponding CAD output is given by
;

a > 0 · b <
4
5a

<

As we notice, given a system of equations and inequalities formed by the control
points relationship as an input, the CAD returns a simpler system that is equivalent
over the reals.

2.6.2 Approximations of Semialgebraic Sets

Here we present a method based on the paper [31] that tries to approximate the
set of solutions. Given a set

K = {x œ Rn : g
i

(x) > 0, i = 1, 2, . . . , m}

which is compact, with non-empty interior and described by given real multivariable
polynomials g

i

(x) and a compact set B ∏ K, we aim at determining a so-called
polynomial superlevel set (PSS)

U(p) = {x œ B : p(x) > 1}

The set B is assumed to be an n-dimensional hyperrectangle. The PSS can capture
the main characteristics of K (it can be non convex and non connected) while
having at the same time a simpler description than the original set. It consists in
finding a polynomial p of degree d whose 1-superlevel set {x | p(x) > 1} contains
a semialgebraic set B and has minimum volume. Assuming that one is given a
simple set B containing K and over which the integrals of polynomials can be
e�ciently computed, this method involves searching for a polynomial p of degree
d which minimizes

s
B p(x)dx while respecting the constraints p(x) > 1 on K and

p(x) > 0 on B. Note that the objective is linear in the coe�cients of p and that
these last two nonnegativity conditions can be made computationally tractable
by using the sum of squares relaxation. The complexity of the approximation
depends on the degree d. The advantage of such a formulation lies in the fact that
when the degree of the polynomial p increases, the objective value of the problem
converges to the true volume of the set K.

Example 2.4 To better review the latter method, we illustrate it with an example
for a two dimensional set given in [31]. In order to compare the two presented

36 2.6. Feasible control points regions

methods, we also give its CAD solution. Having the following non-convex semi-
algebraic set:

K = x œ R2 :

Y
_____]

_____[

f
1

(x) = 1 + 2x
2

> 0,

f
1

(x) = 2 ≠ 4x
1

≠ 3x
2

> 0,

f
1

(x) = 10 ≠ 28x
1

≠ 5x
2

≠ 24x
1

x
2

≠ 18x2

2

> 0,

f
1

(x) = 1 ≠ x
2

≠ 8x2

1

≠ 2x
1

x
2

≠ x2

2

≠ 8x2

1

x
2

≠ 6x
1

x2

2

> 0

with a bounding box B = [≠0.8, 0.6] ◊ [≠0.6, 1.0], and setting d = 8 , the degree of
the polynomial p(x). The algorithm yields the feasible region represented in Figure
2.7a.

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(a) Inner Polynomial Superlevel Set approx-
imation of 8th-degree of the region K (the
inner surface of the red line).The black rect-
angle represents the bounding box.

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-0.5

0.0

0.5

1.0

x1

x2

(b) The region found by the CAD algorithm
(the inner surface of the blue line).

Figure 2.7: The feasible regions by the two methods

For the same set, even without specifying a particular box, the CAD algoririthm
finds the following explicit solution:
3

x
1

= ≠5
8 · x

2

= ≠1
2

4

‚
Q

a≠5
8 < x

1

< ≠1
6 · ≠1

2 6 x
2

6 ≠8x2

1

≠ 2x
1

≠ 1
2(6x

1

+ 1) ≠ 1
2

ı̂ıÙ64x4

1

≠ 160x3

1

≠ 12x2

1

+ 28x
1

+ 5
(6x

1

+ 1)2

R

b

‚
3

x
1

= ≠1
6 · ≠1

2 6 x
2

6 7
8

4

‚
Q

a≠1
6 < x

1

<
1
2 · ≠1

2 6 x
2

6 ≠8x2

1

≠ 2x
1

≠ 1
2(6x

1

+ 1) + 1
2

ı̂ıÙ64x4

1

≠ 160x3

1

≠ 12x2

1

+ 28x
1

+ 5
(6x

1

+ 1)2

R

b

‚
3

x
1

= 1
2 · x

2

= ≠1
2

4

2. Constraints on Nonlinear Finite Dimensional Flat Systems 37

As we can observe, the PSS method (Figure 2.7a) gives us a good approximation
of the feasible region, almost the same as the exact one obtained by the CAD
algorithm (Figure 2.7b). However, in some cases, we observed that the PSS method
may have some sensibilities when its bounding box is not well defined.

2.7 Applications
2.7.1 Longitudinal dynamics of a vehicle
The constraints are essentials in the design of vehicle longitudinal control which
aims to ensure the passenger comfort, safety and fuel/energy reduction. The
longitudinal control can be designed for a highway scenario or a city scenario. In the
first scenario, the vehicle velocity keeps a constant form where the main objective
is the vehicle inter-distance while the second one, deals with frequent stops and
accelerations, the so-called Stop-and-Go scenario [135]. The inter-distance dynamics
can be represented as an single integrator driven by the di�erence between the
leader vehicle velocity V

l

and the follower vehicle velocity V
x

, i.e., ḋ = V
l

≠ V
x

.
In this example, suppose we want to follow the leader vehicle, and stay within a
fixed distance from it (measuring the distance through a camera/radar system).
Additionally, suppose we enter a desired destination through a GPS system, and sup-
pose our GPS map contains all the speed information limits. Our goal is the follower
longitudinal speed V

x

to follow a reference speed V
xr

(t) œ [0, min(V
l

, V
max

)], V
max

œ
R > 0 given by the minimum between the leader vehicle speed and the speed limit.

The longitudinal dynamics of a follower vehicle is given by the following model:

MV̇
x

(t) = u(t)
r

≠ C
a

V 2

x

(t) (2.31)

where V
x

is the longitudinal speed of the vehicle, u is the motor torque, taken as
control input and the physical constants: M the vehicle’s mass, r the mean wheel
radius, and C

a

the aerodynamic coe�cient.
The model is di�erentially flat, with V

x

as a flat output. An open loop control yielding
the tracking of the reference trajectory V

xr

by V
x

, assuming the model to be perfect, is

u
r

(t) = r
1
MV̇

xr

(t) + C
a

V 2

xr

(t)
2

(2.32)

If we desire an open-loop trajectory u
r

œ C0, then for the flat output, we should
assign a Bézier curve of degree d > 1. We take V

xr

as reference trajectory, a
Bézier curve of degree 4 i.e. C4-function.

V
xr

(t) =
4ÿ

i=0

a
i

B
i,4

(t),

V
xr

(t
0

) = V
i

, V
xr

(t
f

) = V
f

38 2.7. Applications

where the a
i

’s are the control points and the B
i,4

the Bernstein polynomials.
Using the Bézier curve properties, we can find the control points of the open-loop
control u

r

in terms of the a
i

’s by the following steps:

1. First, we find the control points a(1)

i

for V̇
xr

by using the Equation (3.10):

V̇
xr

=
3ÿ

i=0

a(1)

i

B
i,3

(t)

2. We obtain the term V 2

xr

by

V 2

xr

=
4ÿ

i=0

a
i

B
i,4

(t)
4ÿ

i=0

a
i

B
i,4

(t) =
8ÿ

i=0

p
i

B
i,8

(t)

which is a Bézier curve of degree 8 and where the control points p
i

are
computed by the multiplication operation (see Equation (2.21)).

3. We elevate the degree of the first term up to 8 by using the Equation (2.19)
and then, we find the sum of the latter with the Bézier curve for V 2

xr

. We end
up with u

r

as a Bézier curve of degree 8 with nine control points U
i

:

u
r

(t) = rMV̇
xr

+ rC
a

V 2

xr

= rM
3ÿ

i=0

a
i

B
i,3

(t) + rC
a

(
4ÿ

i=0

a
i

B
i,4

)2 =
8ÿ

i=0

U
i

B
i,8

(t)

with U
i

= r
k

(a
0

, . . . , a
4

).

Symbolic input constraints

We want the input control points U
i

to be

U
min

< U
i

< U
max

i = 0, . . . , 8 (2.33)

where U
min

= 0 is the lower input constraint and U
max

= 10 is the high input
constraint. By limiting the control input, we indirectly constraint the fuel consump-
tion. The initial and final trajectory control points are defined as V

x

(t
0

) = a
0

= 0
and V

x

(t
1

) = a
4

= 1 respectively.
The constraint (2.33) directly corresponds to the semi-algebraic set: The

constraint (2.33) corresponds to the semi-algebraic set i.e. the following system

2. Constraints on Nonlinear Finite Dimensional Flat Systems 39

of nonlinear inequalities:
Y
____________________]

____________________[

0 < U
0

= 4 a
1

< 10
0 < U

1

= a
1

+ 3 a2
2

< 10
0 < U

2

= 4 a

2
1

7

≠ 5 a1
7

+ 12 a2
7

+ 3 a3
7

< 10
0 < U

3

= 15 a2
14

≠ 10 a1
7

+ a
3

+ 6 a1 a2
7

+ 1

14

< 10
0 < U

4

= 18 a

2
2

35

≠ 10 a1
7

+ 10 a3
7

+ 16 a1 a3
35

+ 2

7

< 10
0 < U

5

= 10 a3
7

≠ 15 a2
14

≠ 6 a1
7

+ 6 a2 a3
7

+ 5

7

< 10
0 < U

6

= 4 a

2
3

7

+ 5 a3
7

≠ 3 a1
7

≠ 9 a2
7

+ 10

7

< 10
0 < U

7

= 5

2

≠ 3 a2
2

< 10
0 < U

8

= 5 ≠ 4 a
3

< 10

(2.34)

In order to solve symbolically the system of inequalities i.e. to find the regions of
the intermediate control points a

i

, we use the Mathematica function CylidricalDe-
composition. The complete symbolic solution with three intemediate control points
(a

1

, a
2

, a
3

) is too long to be included. Since the latter is too long to be included, we
illustrate the symbolic solution in the case of two intermediate control points (a

1

, a
2

) :

(0 < a
1

6 0.115563 · ≠a
1

< a
2

< 1.33333)
‚

1
0.115563 < a

1

6 0.376808 · 0.142857
1
≠3.a2

1

+ 2.a
1

≠ 1
2

< a
2

< 1.33333
2

‚
3

0.376808 < a
1

6 1.52983 · 4a
1

≠ 2
3.a

1

+ 4 < a
2

< 1.33333
4

‚
1
1.52983 < a

1

< 2 · 0.333333
Ô

15.a
1

≠ 17 ≠ 0.333333 < a
2

< 1.33333
2

The latter solution describing the feasible set of trajectories can be used to make
a choice for the Bézier control points: "First choose a

1

in the interval (0, 0.115563]
and then you may choose a

2

bigger than the chosen ≠a
1

and smaller than 1.33333.
Or otherwise choose a

1

in the interval (0.115563, 0.376808] and, then choose a
2

such
that 0.142857 (≠3a2

1

+ 2.a
1

≠ 1) < a
2

< 1.33333, etc."

In Figure 2.8, we illustrate the feasible regions for the three intermediate
control points (a

1

, a
2

, a
3

) by using the Mathematica function RegionPlot3D. We
can observe how the flat outputs influences the control input i.e. which part of
the reference trajectory influences which part of the control input. For instance
in (2.34), we observe that the second control point a

1

influences more than a
2

and a
3

the beginning of the control input (the control points U
0

, U
1

, U
2

). The
previous inequalities can be used as a prior study to the sensibility of the control
inputs with respect to the flat outputs.

It should be stressed that the goal here is quite di�erent than the traditional
one in optimisation problems. We do not search for the best trajectory according

40 2.7. Applications

Figure 2.8: Feasible region for the control points of V
xr

when U
min

= 0 and U
max

= 10.

to a certain criterion under the some constraints, but we wish to obtain the set
of all trajectories fulfilling the constraints; this for an end user to be able to pick
one or another trajectory in the set and to switch from one to another in the same
set. The picking and switching operations aim to be really fast.

Simulation results

The proposed control approach has been successfully tested in simulation. For the
physical parameters of the vehicle, academic values are chosen to test the constraint
fulfilment. For the design of the Bézier reference trajectory, we pick values for a

1

, a
2

and a
3

in the constrained region. As trajectory control points for V
xr

, we take the
possible feasible choice a

0

= 0, a
1

= 2, a
2

= 2.3, a
3

= 1.3, a
4

= 1. Simulation results
for the constrained open-loop input are shown in Figure 2.9.

The form of the closed-loop input is

u = Mr
1
V̇

xr

≠ ⁄(V
x

≠ V
xr

)
2

+ rC
a

V 2

x

(2.35)

where ⁄ = 9 is the proportional feedback gain chosen to make the error dynamics
stable. Figure 2.10 shows the performance of the closed-loop control. For both
schemes, the input respects the limits.

As shown in Figure 2.11, choosing a control point outside of the suitable region
(a

1

= 5.5) can violate the closed-loop input limits.

2. Constraints on Nonlinear Finite Dimensional Flat Systems 41

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8 1

0

2

4

6

8

10

Figure 2.9: Open-loop input control

2.7.2 Quadrotor dynamics
Motivation

Over the last decade, the quadrotors have been a subject of extensive research
study and have been used in a wide range of industrial and commercial applications.
The quadrotors have become so popular due to their agility that allows them
to hover as well as takeo� and land vertically while still being able to perform
agressive trajectories 8.

However, during aggressive trajectory design, it is di�cult to ensure trajectory
feasibility while trying to exploit the entire range of feasible motor inputs. Moreover,
in many applications, their role is to fly in complex cluttered environments, hence
there is a necessity of output constraints. Therefore, the constraints on the inputs
and states are one of the crucial issues in the control of quadrotors.

8A trajectory is considered as an aggressive one if during its tracking, one of the quadrotor
motors is close to a saturation.

42 2.7. Applications

0 0.2 0.4 0.6 0.8 1
0

1

2

0 0.2 0.4 0.6 0.8 1

0

5

10

Figure 2.10: Closed-loop performance of trajectory tracking

Fortunately, with the hardware progress, today the quadrotors have speed limits

of forty meters per second and more comparing to few meters per second in the

past [41]. Therefore, it is important to conceive control laws for quadrotors to a

level where they can exploit their full potential especially in terms of agility.

In the famous paper [91], is proposed an algorithm that generates optimal

trajectories such that they minimize cost functionals that are derived from the

square of the norm of the snap (the fourth derivative of position). There is a

limited research investigating the quadrotor constraints (see [21] and the papers

therein) without employing an online optimisation.

The following application on quadrotor is devoted to unify the dynamics

constraints or demands constraints with the environmental constraints (e.g. ,

fixed obstacles).

2. Constraints on Nonlinear Finite Dimensional Flat Systems 43

0 0.2 0.4 0.6 0.8 1
0

2

4

0 0.2 0.4 0.6 0.8 1

0

5

10

Figure 2.11: When control point a
1

is out of the its region

Simplified model of quadrotor

A (highly) simplified nonlinear model of quadrotor is given by the equations:

mẍ = ◊u
1

(2.36a)
mÿ = ≠„u

1

(2.36b)
mz̈ = ≠mg + u

1

(2.36c)
I

x

◊̈ = u
2

(2.36d)
I

y

„̈ = u
3

(2.36e)
I

z

Â̈ = u
4

(2.36f)

where x, y and z are the position coordinates of the quadrotor in the world frame,
and ◊, „ and Â are the pitch, roll and yaw rotation angles respectively. The constant
m is the mass, g is the gravitation acceleration and I

x

, I
y

, I
z

are the moments
of inertia along the y, x directions respectively. The thrust u

1

is the total lift

44 2.7. Applications

generated by the four propellers applied in the z direction, and u
2

, u
3

and u
4

are
the torques in ◊, „ and Â directions respectively. As we can notice, the quadrotor is
an under-actuated system i.e. it has six degrees of freedom but only four inputs.

A more complete presentation of the quadrotor model can be found in the Section
4.

Di�erential flatness of the quadrotor

Here, we describe the quadrotor di�erential parametrization on which its o�ine
reference trajectory planning procedure is based. The model (2.36) is di�erentially
flat. Having four inputs for the quadrotor system, the flat output has four
components. These are given by the vector:

F = (x, y, z, Â).

By equation (2.36c), we easily obtain expression of the thrust reference u
1r

u
1r

= m(z̈
r

+ g) (2.37)

Then, by replacing the thrust expression in (2.36a)–(2.36b), we obtain the angles
◊

r

and „
r

given by

◊
r

= mẍ
r

u
1r

= ẍ
r

z̈
r

+ g
(2.38a)

„
r

= ≠mÿ
r

u
1r

= ≠ÿ
r

z̈
r

+ g
(2.38b)

We then di�erentiate (2.38a), (2.38b) and Â
r

twice to obtain (2.36d)–(2.36f) re-
spectively. This operation gives us u

2

, u
3

and u
4

.

u
2r

= I
x

◊̈
r

= I
x

(g + z̈
r

)

A

x(4)

r

≠ 2 x(3)

r

(z̈
r

+ g) ≠ ẍ
r

z(3)

r

)
(z̈

r

+ g)2

z(3)

r

≠ ẍ
r

z(4)

r

z̈
r

+ g

B

, (2.39)

u
3r

= I
y

„̈
r

= I
y

(g + z̈
r

)

A

≠y(4)

r

+ 2 y(3)

r

(z̈
r

+ g) ≠ ÿ
r

z(3)

r

)
(z̈

r

+ g)2

z(3)

r

+ ÿ
r

z(4)

r

z̈
r

+ g

B

, (2.40)

and
u

4r

= I
z

Â̈
r

. (2.41)

A more complete model of a quadrotor and its flatness parametrization can be
found in [125] and [57].

2. Constraints on Nonlinear Finite Dimensional Flat Systems 45

Constraints

Given an initial position and yaw angle and a goal position and yaw angle of the
quadrotor, we want to find a set of smooth reference trajectories while respecting the
dynamics constraints and the environmental constraints. Quadrotors have electric
DC rotors that have limits in their rotational speeds, so input constraints are vital
to avoid rotor damage. Besides the state and input constraints, to enable them to
operate in constrained spaces, it is of great importance to impose output constraints.

We consider the following constraints:

1. The thrust u
1

We set a maximum ascent or descending acceleration of 4g (g=9.8 m/s2), and
hence the thrust constraint is defined as:

0 < u
1

6 Umax

1

= 4 m·g = 20.79 N, (2.42)

where m is the quadrotor mass which is set as 0.53 kg in the simulation. By
the latter constraint, we also avoid the singularity for a zero thrust.

2. The pitch and roll angle
In applications, the tilt angle is usually inferior to 14 degrees (0.25rad). We
set

|„| 6 �max = 0.25rad (2.43)

|◊| 6 �max = 0.25rad (2.44)

3. The torques u
2

, u
3

et u
4

With a maximum tilt acceleration of 48 rad/s2, the limits of the control inputs
are:

|u
2

|, |u
3

| 6 48I
xx

= 0.3 N·m (2.45)

|u
4

| 6 48I
zz

= 0.5 N·m (2.46)

where I
xx

, I
yy

, I
zz

are the parameters of the moment of inertia, I
xx

= I
yy

=
6.22◊10≠3kg · m2, I

zz

= 1.12◊10≠2kg · m2.

4. Collision-free constraint
To avoid obstacles, constraints on the output trajectory x, y, z should be
reconsidered.

46 2.7. Applications

Scenario 1: In this scenario, we want to impose constraints on the thrust, and
on the roll and pitch angles.

Constrained open-loop trajectory u
1r

We specialize the flat output z
r

to a sigmoid between two quasi constant altitudes,
a situation frequently needed in practice:

z
r

(t) = H
f

≠ H
i

2 (1 + tanh(“(t ≠ t
m

))) + H
i

(2.47)

where H
i

is the initial altitude and H
f

is the final altitude of the quadrotor; “ is the
slope parameter of the tanh and t

m

is the time when the quadrotor is taking o� (see
Figure 2.12). The maximum value for z

r

(t) is the final altitude H
f

(see fig. 2.12).
The easy numerical implementation of the derivatives of z

r

(t) is due to the
nice recursion. Let R = tanh(“(t ≠ t

m

)) and C = H
f

≠ H
i

2 . The first four
derivatives of z

r

(t) are given as:

ż
r

= “C(1 ≠ R2)

z̈
r

= ≠2“2CR(1 ≠ R2)

z(3)

r

= 2“3C(1 ≠ R2)(1 ≠ 3R2)

z(4) = ≠8“4CR(3R4 ≠ 5R2 + 2)

0 2 4 6 8 10
0

0.5

1

1.5

2

0 2 4 6 8 10

-50

0

50

Figure 2.12: The reference trajectory for z
r

(t) (left) and its derivatives (right) with
H

i

= 0m and H
f

= 2m, t
m

= 5s and parameter “ = 2.

2. Constraints on Nonlinear Finite Dimensional Flat Systems 47

The maximum values for its derivatives depend only on “ and C, and their
values can be determined. We obtain their bounds as:

H
i

6 z
r

6 H
f

,

0 6 ż
r

6 b
1

“C, b
1

= 1;

≠b
2

“2C 6z̈
r

6 b
2

“2C, b
2

= 4
Ô

3
9 ;

≠b
3

“3C 6 z(3)

r

6 b
3

“3C, b
3

= 2
3 , b

3

= 2;

≠b
4

“4C 6 z(4) 6 b
4

“4C, b
4

¥ 4.0849.

Consequently, from the thrust limits (2.42), we have the following inequality

0 < m(≠b
2

“2 + g) 6 u
1r

= m(z̈
r

+ g) 6 m(b
2

“2 + g) < Umax

1

.

The input constraint of u
1r

will be respected by choosing a suitable value of
“ and C such that

“2C < min
; 1

b
2

3
Umax

1

m
≠ g

4
,

g

b
2

<
. (2.48)

Figure 2.13 depicts the constrained open-loop trajectory u
1r

that is well chosen by
taking “ = 2 and H

f

= 2m. On the other hand, in Figure 2.14 is shown the violation
of the thrust constraints when “ = 7 is chosen out of the constrained interval (2.48).

0 2 4 6 8 10

0

5

10

15

20

Figure 2.13: The reference trajectory for u
1r

(t) for a value of “ = 2 and H
f

= 2m.

48 2.7. Applications

0 2 4 6 8 10

-10

0

10

20

30

Figure 2.14: When the value for “ is out of the defined interval, the constraints on the
open-loop trajectory u

1r

(t) are not respected. The reference trajectory for u
1r

(t) for a
value of “ = 7.

Constrained open-loop trajectories ◊
r

et „
r

In the rest of the study, we omit the procedure for the angle „
r

since is the
same as for the angle ◊

r

.

1. In the first attempt, the reference trajectory x
r

will be a Bézier curve of degree
d = 6 with a predefined control polygon form as:

A

x

=
I

a, a, a,
a + b

2 , b, b, b

J

.

The aim of the first and the final control point repetitions is to fix the velocity
and acceleration reference equilibrium points as : ẋ

r

(t
0

) = ẋ
r

(t
f

) = 0 and
ẍ

r

(t
0

) = ẍ
r

(t
f

) = 0.

The control polygon of the velocity reference trajectory ẋ is :

A

ẋ

=
I

0, 0,
d

T

b ≠ a

2 ,
d

T

b ≠ a

2 , 0, 0
J

.

The control polygon of the acceleration reference trajectory ẍ is :

A

ẍ

=
I

0,
d(d ≠ 1)

T 2

a + b

2 , 0, ≠d(d ≠ 1)
T 2

a + b

2 , 0
J

.

2. Constraints on Nonlinear Finite Dimensional Flat Systems 49

The proposed form of Bézier curve provide us the explicit bounds of its second
derivative ẍ

r

when a = 0 such that ẍmin

r

= ≠144

25

b

T

2 and ẍmax

r

= 144

25

b

T

2 .

From the Equations (2.43) and (2.38a), we get

≠144

25

b

T

2

b
2

“2C + g
6 ◊

r

= ẍ
r

z̈
r

+ g
6

144

25

b

T

2

≠b
2

“2C + g
(2.49)

0 5 10
0

5

10

15

20

25

0 5 10
0

2

4

6

8

0 5 10
-4

-2

0

2

4

Figure 2.15: The Sigmoid Bézier trajectory x
r

, the velocity trajectory ẋ
r

and the
acceleration trajectory ẍ

r

with their respective control polygons when a = 0 and b = 25.

0 2 4 6 8 10

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Figure 2.16: The open-loop trajectory ◊
r

(t) for Sigmoid Bézier trajectory

50 2.7. Applications

2. In a second case, the reference trajectory x
r

can be any Bézier curve. However,
we need to impose the first and last controls points in order to fix the initial
and final equilibrium states. For the example, we take a Bézier trajectory of
degree d = 8 with control polygon defined as:

A

x

= {a, a, a, –
1

, –
2

, –
3

, b, b, b} .

When “ = 2 and H
i

= 0m, H
f

= 2m are fixed, the minimum and maximum
values for z̈

r

are also fixed. Therefore, to impose constraints on ◊
r

, it remains to
determine ẍ

r

, i.e. the control points of x
r

ẍ
r

6 (≠b
2

“2C + g)�max = Xmax ¥ 1.682m/s2, (2.50)

ẍ
r

> ≠(b
2

“2C + g)�max = Xmin ¥ ≠3.222m/s2. (2.51)

The initial and final trajectory control points are defined as x
r

(t
0

) = a = 0
and x

r

(t
f

) = b = 2 respectively. Therefore, for ẍ
r

where T = t
f

≠ t
0

= 10, we
obtain the following control polygon A

ẍ

= (a
ẍi

)6

i=0

:

A

ẍ

=
;

0,
14–

1

25 ,
14–

2

≠ 28–
1

25 ,
14–

1

≠ 28–
2

+ 14–
3

25 ,
14–

2

≠ 28–
3

+ 28
25 ,

14–
3

≠ 28
25 , 0

<
.

As explained in the previous section, to reduce the distance between the control
polygon and the Bézier curve, we need to elevate the degree of the control polygon
A

ẍ

. We elevate the degree of A

ẍ

up to 16 and we obtain a new augmented control
polygon A

A

ẍ

by using the operation (2.19) (see Figure 2.17 (right)).
The equation (2.50) translates into a system of linear inequalities i.e. semi-

algebraic set defined as :

Xmin < aA

ẍi

= f(–
1

, –
2

, –
3

) < Xmax i = 0, . . . , 16. (2.52)

We illustrate the feasible regions for the control points by using the Mathematica
function RegionPlot3D (see Figure 2.18).

Scenario 2: In this scenario, we discuss the output constraints.

2. Constraints on Nonlinear Finite Dimensional Flat Systems 51

0 5 10
0

2

4

6

8

10

12

14

0 5 10
-6

-4

-2

0

2

4

6

8

0 5 10
-5

0

5

Figure 2.17: The Bézier curve x
r

, ẋ
r

, ẍ
r

(blue lines) and their respective control
polygons (black linear piecewise lines) with a = 0, –

1

= 8, –
2

= 12.5 , –
3

= 9 and b = 2.
The augmented control polygon for ẍ

2

is represented by the magenta line.

Figure 2.18: Feasible region for the intermediate control points of x
r

(t) while fulfilling
the constraints on the roll angle.

52 2.7. Applications

0 2 4 6 8 10

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Figure 2.19: The constraints on the open-loop trajectory ◊
r

(t) are respected.

Constrained open-loop trajectories x
r

and y
r

Here we discuss the scenario when the quadrotor has already been take o� by
an initial Bézier curve that fulfils the previous input/state constraints and avoids
the known static obstacles. Then, suddenly appear new obstacle in the quadrotor
environment. To decide, whether the quadrotor should change its trajectory or
continue to follow the initial trajectory, we use the quantitative envelopes of the
Bézier trajectory presented in Section 2.4.3 to verify if its envelope region overlaps
with the regions of the new obstacle.

We construct the quantitative envelopes for x
r

and y
r

using Section 2.4.3. We
find the maximal distance of the Bézier curve w.r.t. to the chosen control polygon.
We choose as intermediate control points for x

r

and y
r

(–
1

= 8; –
2

= 12.5; –
3

= 9
and —

1

= 4; —
2

= 2.5; —
3

= 2 respectively). The bounded region of the chosen
reference trajectories x

r

and y
r

are depicts in Figure 2.21.
In particular, the figure 2.20 demonstrates the benefit of the bounded trajectory

region. We can precisely determine the distance between the quadrotor pathway
and the obstacles.

Scenario 3: In this scenario, we discuss the input constraints u
2

and u
3

when
the quadrotor is in hover mode i.e. moving in a horizontal plane.

Constrained open-loop trajectories u
2

and u
3

By the previous constraints on ◊
r

and u
1r

, we implicitly constrain the torque input
u

2r

. A more general case can also be treated if we assume that when the quadrotor

2. Constraints on Nonlinear Finite Dimensional Flat Systems 53

Figure 2.20: The constrained reference trajectories x
r

(t) and y
r

(t) and their quantitative
bounded region w.r.t. to the chosen Bézier control polygon.

reaches the desired altitude, it moves in a horizontal plane. In that case by having
slow dynamics for z

r

(t) such that z̈
r

¥ 0, we therefore have:

u
2r

= C
x

x(4)

r

(2.53a)

u
3r

= C
y

y(4)

r

(2.53b)

where C
x

= I
x

g
and C

y

= ≠I
y

g
are constants. The latter forms a system of linear

inequalities of the control points of x
r

and y
r

.

Constrained open-loop control for u
4r

For u
4r

, we have a simple double integrator as:

u
4r

= I
z

Â̈
r

(2.54)

To find the regions for control points a
Âi

, we proceed in the same way as in the
previous Section 2.7.2.

54 2.8. Closing remarks

Figure 2.21: The quantitative envelopes for the reference trajectories x
r

(t) and y
r

(t)
(the yellow highlighted regions). The augmented control polygons for x

r

(t) and y
r

(t)
(magenta line). For the simulation, the intermediate control points for x

r

and y
r

are
–

1

= 8; –
2

= 12.5; –
3

= 9 and —
1

= 4; —
2

= 2.5; —
3

= 2 respectively.

Remark 2.7 Our constrained trajectory reference study provides a set of feasible
reference trajectories. Using the simplified models in the trajectory planning helps
us to find the reference trajectory conform to the system dynamics constraints. On
the other hand, these models can not serve as a basis for the feedback law design
since it will increase the uncertainties and the mismatch with the system. For that
purpose, in Chapter 4, we present the non-linear tracking of the aggressive reference
trajectories by using a model-free controller.

2.8 Closing remarks
We have presented a control design for non-linear flat systems handling input/state
constraints through the reference trajectory design.

The state/input constraints are translated into a system of inequalities and
equalities where the variables are the Bézier control points. This enables the
input/state/output constraints to be considered into the trajectory design in a unified
fashion. This allows us to develop a compact methodology to deal both with control
limitations and space constraints as those arising in obstacle avoidance problems.

The core value of this work lies in two important advantages:

2. Constraints on Nonlinear Finite Dimensional Flat Systems 55

• The low complexity of the controller; fast real-time algorithms.

• The choice i.e. the user can select the desired feasible trajectory. The
sub-optimality may be seen as a drawback.

In the context of trajectory design, we find a successful simpler or approximated
semi-algebraic set defined o�-line. The closed form solution of the CAD establishes
an explicit relationship between the desired constraints and the trajectory param-
eters. This gives us a rapid insight into how the reference trajectory influences
the system behaviour and the constraints fulfillment. Therefore, this method
may serve as sensitivity analysis that reflects how the change in the reference
trajectory influences the input reference trajectory. Also, for fault-tolerant systems,
in spirit of the papers [24, 25, 85, 133], this approach may be useful for the control
reconfiguration when an actuator fault occurs.

Our algorithm can deal with asymmetric constraints that may be useful in
many situations e.g., for a vehicle where acceleration is created by a motor, while
deceleration is achieved through the use of a mechanical brake. Increasing tracking
errors and environment changes are signs that a re-planning of the reference
trajectory is needed. Having the symbolic form of the exact solution, allows
us a quick re-evaluation over a new range of output constraints, or with a new
set of numerical values for the symbolic variables. In such case, the replanning
initial conditions are equivalent to the system current state.

56

Appendix

2.A Geometrical signification of the Bezier op-
erations

Here we present the geometrical signification of the degree elevation of the Bezier
trajectory y(t) (Figure 2.22), the addition (Figure 2.23) and the multiplication
(Figure 2.24) of two Bézier trajectories.

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.2

0.4

0.6

0.8

Figure 2.22: Degree Elevation of Bézier curve.

2.B Trajectory Continuity
In the context of feedforwarding trajectories, the "degree of continuity" or the
smoothness of the reference trajectory (or curve) is one of the most important

57

58 2.B. Trajectory Continuity

0 0.5 1
0

0.2

0.4

0.6

0.8

1

0 0.5 1

0.2

0.4

0.6

0.8

1

0 0.5 1

0.5

1

1.5

2

Figure 2.23: Addition of two Bézier curves.

0 0.5 1
0

0.2

0.4

0.6

0.8

1

0 0.5 1

0.2

0.4

0.6

0.8

1

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 2.24: Multiplication of two Bézier curves.

factors. The smoothness of a trajectory is measured by the number of its continuous
derivatives. We here give some definitions on the trajectory continuity when it
is represented by a parametric curve [10].

Parametric continuity A parametric curve y(t) is n-th degree continuous
in parameter t, if its n-th derivative d

n

y(t)

dt

n

is continuous. It is then also called
Cn continuous.

The various order of parametric continuity of a curve can be denoted as follows:

• C0curve i.e. the curve is continuous.

• C1curve i.e. first derivative of the curve is continuous. For instance, the
velocity is continuous.

• C2 curve i.e. first and second derivatives of the curve are continuous. (The
acceleration is continuous)

2. Constraints on Nonlinear Finite Dimensional Flat Systems 59

• C3curve i.e. first, second and third derivatives of the curve are continuous.
(the jerk is continuous)

• Cncurve i.e. first through nth derivatives of the curve are continuous.

Example 2.5 Lets take a linear curve for the joint position of a robot, as:

p(t) = pi + pf ≠ pi

Ttt
t

where pi is the initial position, pf is the final position and Ttt is the time interval.We
obtain for the velocity and the acceleration the following curves:

• for the velocity: v(t) = ṗ = p

f ≠p

i

Ttt

• for the acceleration a(t) = p̈ =
Y
]

[
Œ, t = 0, Ttt

0, 0 < t < Ttt

In this example, we can observe infinite accelerations at endpoints and discontinuous
velocity when two trajectory segments are connected.

60

3
Constraints on Linear Flat Systems with

Delays

Contents
3.1 Chapter Overview . 62
3.2 R-freeness for delay linear systems 63

3.2.1 Algebraic setting and preliminaries 64
3.3 Stabilization of the system 65
3.4 B-splines preliminaries 65

3.4.1 B-splines . 66
3.4.2 B-spline properties . 67

3.5 Constrained Trajectory Generation Procedure 68
3.5.1 Derivative property of the B-spline curve 68
3.5.2 Integral property of B-spline curve 69
3.5.3 Degree elevation and knot insertion 70
3.5.4 Reference trajectory design procedure 70

3.6 Example: Car-following model 71
3.7 Closing remarks . 74

61

62 3.1. Chapter Overview

Abstract: We consider the control of di�erentially flat linear delay systems
with constraints. The constraints can be given on the state and/or on the control.
Linear delay systems are here envisioned as modules over a ring of di�erential and
distributed delay operators. Due to the nice Bezout property that this ring enjoys,
the controllability notions of freeness, projectivity and torsion freeness coincide.
Thanks to the flatness (corresponding to freeness for linear systems) property, all
constraints are reported on the flat output (the basis of the corresponding module).
We then make use of polynomial B-splines as specialisations for the flat output; the
constraints are finally expressed as inequalities in these B-splines control points.

3.1 Chapter Overview
This chapter addresses our previous result from Section 2 to the case of lin-
ear delay systems.

We propose a control design technique based on the R-freeness property for
infinite linear systems (delay systems [51, 99, 101], partial di�erential equations
[61, 100]) which is an extension of the di�erential flatness originally developed
for finite dimensional systems. Other algebraic related approaches include [28,
112, 122]. According to this method, all the states and the control input of the
linear delay system can be parametrized through a so-called R-flat output by
using di�erentiations, delays and advances. In other words, the nominal input and
the states can be expressed as a linear combination of the delayed and advanced
reference trajectory and its derivatives.

As in the previous chapter, our goal is to write the state/input constraints in
terms of the R-flat output and its derivatives. The idea is to translate the beauty
and simplicity of the freeness property of a delay system (analogue of flatness
for finite dimensional system) into constrained control via B-spline procedures
for the reference trajectories.

Due to the linearity of the system we are able to present it through the context
of the B-spline curves (no more need of the product operator). In some applications
we need to keep fixed some part of the curve and to modify only a specific region;
this can be achieved very naturally in the context of the B-spline curves. The
Bezier curve can accurately represent a trajectory, but it has the drawback that
any modification of the control points will modify the entire curve. The adoption
of B-spline curves is motivated by their peculiar properties, which allow a natural
remapping of the constraints from the input/state to the flat output, while leaving

3. Constraints on Linear Flat Systems with Delays 63

su�cient flexibility to express a rich class of reference trajectories. We establish
explicit relations between the control points of the B-spline describing the reference
trajectory and those of the B-spline expressing the control input and states with
delays. This way, the constraints on input and states is directly translated in a set
of inequalities for the control points of the reference trajectory.

Once the constrained open-loop trajectories are generated o�ine, and in order to
guarantee the stability and a certain robustness of the approach, we need a feedback
control. There are many di�erent linear and nonlinear feedback controls that can
be used to ensure convergence to zero of the tracking error. We obtain a stable
trajectory tracking with prescribed tracking error dynamics if distributed delays
are admitted in the feedback law. This is a model based prediction.

Outline

The outline of this chapter is as follows.

• In section 3.2, we recall the definition of fi-freeness for delay linear systems
and in the section 3.3, we give a stabilizing feedback law for a class of delay
systems that makes use of predictor forms elaborated with distributed delays.

• In section 3.4, we give an overview of the B-splines curves and its properties.

• In section 3.5, we detail the procedure in establishing reference trajectories
for constrained open-loop control.

• In section 3.6, we illustrate an example on car-following with human memory
e�ects.

The results from this chapter have been published in [13].

3.2 R-freeness for delay linear systems

We shall use a module theoretic approach framework developed, among others, in
[50, 99]. The adopted framework emphasizes on equations (rather than solutions)
in order to study a given system. When dealing with linear equations, a system is
associated with a module over a ring, this notion playing for di�erential equations
the role played by vector spaces for linear algebraic equations. The basic definitions
can be found in [45, 99].

64 3.2. R-freeness for delay linear systems

3.2.1 Algebraic setting and preliminaries

We shall consider linear delay systems as modules over the polynomial ring R[d

dt

, ”
1

, . . . ,

”
r

] where the ”
i

’s play the role of localized delay operators. This ring is isomorphic
to the ring R[s, e≠h1s, . . . , e≠h

r

s] (the variable s plays the role of d

dt

, the h
i

’s being
the amplitudes of the corresponding delays). In order to involve distributed delays,
we use an extended ring: S

r

= R(s)[e≠h1s, . . . , e≠h

r

s] fl E, where E denote the ring
of entire functions. This ring is a Bézout domain i.e. any finitely generated ideal in
this domain is principal. A typical element of S

r

is (1 ≠ e≠h

i

s)/s (it is an entire
function, since 1 ≠ e≠h

i

s = h
i

s ≠ h2

i

s2 + h3

i

s3 + · · · is zero when s = 0), which
corresponds to a distributed delay operator in the time domain. Another slightly
larger ring is R[s, s≠1, e≠h1s, . . . , e≠h

r

s] which contains the integration (through
application of the s≠1 operator).

Definition 3.1 Given a ring R (commutative, with unity and no zero divisors,
such as one of the above), an R-system is a module over R.

We shall consider three controllability notions, corresponding to algebraic properties
of the corresponding module.

Definition 3.2 An R-system � is called R-torsion free (resp. projective, free)
controllable if the corresponding module is torsion free (resp. projective, free).

Let us recall that, on a Bezout ring (as well as on a principal ideal domain
such as R[d

dt

]), the three notions coincide.
In the next sections, by using this R-freeness formalism, we obtain all the system

open-loop trajectories z
r

(the states and the inputs) as functions of the R-flat output
y

r

, a finite number of its derivatives, time delays, and advances.
In the case of a R-free delay system, we embed constraints K

l

, K
h

œ R on a
system open-loop trajectory by imposing:

K
l

6 z
r

6 K
h

with

z
r

= R(y
r

, ẏ
r

, . . . , ”±j

i

y(q)

r

, ◊y(q)

r

, . . . , ”±j

i

y(“)

r

, ◊y(“)

r

),

where ”±j

i

y
r

(t) = y
r

(tûj·
i

), are delays and advances respectively, and (◊y
r

)(t) =
s

t

t≠h

e(t≠·)y
r

(·)d· represents a distributed delay.

3. Constraints on Linear Flat Systems with Delays 65

3.3 Stabilization of the system

Here by the means of distributed delays in the feedback law, we avoid pure predictions
(torsion-free controllable) i.e. the delay is compensated by the controller [102]. The
control law achieves asymptotic tracking compensating the e�ects of the input
delay. With this, we want to overcome the delay in the closed-loop which may
be a source of poor system performance and instability.

Let us first consider one of the simplest system, i.e. a linear system with
commensurate delay in the input

ẏ(t) = u(t ≠ h) (3.1)

for which the open-loop control yields

u
r

(t) = ẏ
r

(t + h).

For the closed-loop control, setting

u(t) = ẏ
r

(t + h) ≠ K
p

e(t + h), e(t) = y(t) ≠ y
r

(t) (3.2)

e(t + h) =
⁄

t+h

t

ė(·)d· + e(t)

we obtain

u(t) = ẏ
r

(t + h) ≠ K
p

⁄
t+h

t

ė(·)d· ≠ K
p

e(t)

= K
p

1
≠

⁄
t+h

t

ẏ(·)d· +
⁄

t+h

t

ẏ
r

(·)d· ≠ e(t)
2

+ ẏ
r

(t + h)

Finally, we obtain a closed-loop control

u(t) = K
p

1
≠

⁄
t

t≠h

u(·)d· +
⁄

t+h

t

ẏ
r

(·)d· ≠ e(t)
2

+ ẏ
r

(t + h)

which involves only distributed delays of finite support but no pure predictions.

3.4 B-splines preliminaries

Using a B-spline curve as reference trajectory is a simple way to reduce the problem
of infinite unspecified function f(t) into a finite dimensional one determined by
control points c

j

associated to a basis functions B
j,d

.

66 3.4. B-splines preliminaries

3.4.1 B-splines
The B-spline B

j,d

depends on the knots t
j

, . . . , t
j+1+d

. This means that if the knot
vector is given by t = (t

j

)n+d+1

j=1

for some positive integer n, we can form n B-splines
{B

j,d

}n

j=1

of degree d associated with this knot vector. A B-spline curve (or a linear
combination of B-splines) is a combination of B-splines of the form

f =
nÿ

j=1

c
j

B
j,d

(3.3)

where c = (c
j

)n

j=1

are n real numbers. We formalise this in a definition.

Definition 3.3 (B-spline curves). Let

t = (t
j

)m=n+d+1

j=1

= [0, . . . , 0
¸ ˚˙ ˝

d + 1

, t
d+1

, . . . , t
m≠d≠1

, 1, . . . , 1
¸ ˚˙ ˝

d + 1

]

be a non-decreasing sequence of real numbers, i.e. , a knot vector for a total of
n B-splines. The linear space of all linear combinations of these B-splines is the
spline space S

d,t

defined by

S
d,t

=
;

nÿ

j=1

c
j

B
j,d

| c
j

œ R for 1 6 j 6 n
<

An element f =
nq

j=1

c
j

B
j,d

of S
d,t

is called a B-spline curve or a spline function, of

degree d with knots t, and (c
j

)n

j=1

are called the control points of the B-spline curve
(see Fig.3.1).

Definition 3.4 (Cox-DeBoor recursion formula) Let d be a nonnegative integer
and let t = (t

j

), the knot vector or knot sequence, be a non-decreasing sequence of
real numbers of at least d + 2. The jth B-spline of degree d (order k) with knots t

is defined by:

B
j,k,t

(x) = x ≠ t
j

t
j+d

≠ t
j

B
j,d≠1,t

(x) + t
j+k

≠ x

t
j+1+d

≠ t
j+1

B
j+1,d≠1,t

(x)

for all real numbers x, with

B
j,0,t

(x) =
Y
]

[
1, if t

j

6 x < t
j+1

0, otherwise

Remark 3.1 • Choosing the knot vector in this way guarantees the start and
end tangent property.

3. Constraints on Linear Flat Systems with Delays 67

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2
B-Spline-curve with 7 control points of order 5

Figure 3.1: The B-spline curve and its control polygon.

• Each control point movement only has local e�ects.

Definition 3.5 (Control polygon for B-spline curve (see [83])). Let f = q
n

j+1

c
j

B
j,d

be a spline in S
d,t

. the control points of f are the points with coordinates (tú
j

, c
j

) for
j = 1, . . . , n where

tú
j

= t
j+1

+ · · · + t
j+d

d
(3.4)

are the knot averages of t. The control polygon of f is the piecewise linear function
obtained by connecting neighbouring points by straight lines.

3.4.2 B-spline properties

B-splines play a central role in the representation of B-spline curves. For that
purpose, we report here the most important properties.

Lemma 3.1 ([83], page 40) Let d be a nonnegative polynomial degree and let
t = (t

j

) be a knot sequence. The B-splines on t have the following properties:

1. Local knots. The jth B-splines B
j,d

depends only on the knots t
j

, t
j+1

, . . . , t
j+d+1

.

2. Local support

68 3.5. Constrained Trajectory Generation Procedure

• If x is outside the interval [t
j

, t
j+d+1

) then B
j,d

(x) = 0. In particular, if
t
j

= t
j+d+1

then B
j,d

is identically zero.

• If x lies in the interval [t
µ

, t
µ+1

) then B
j,d

(x) = 0 if j < µ ≠ d or j > µ.

3. Positivity. If x œ (t
j

, t
j+d+1

) then B
j,d

(x) > 0. the closed interval [t
j

, t
j+d+1

]
is called the support of B

j,d

.

4. Piecewise polynomial. The B-spline B
j,d

can be written

B
j,d

(x) =
j+dÿ

k=j

Bk

j,d

(x)B
k,0

(x) (3.5)

where each Bk

j,d

(x) is a polynomial of degree d.

5. Special values. If z = t
j+1

= . . . = t
j+d

< t
j+d+1

then B
j,d

(z) = 1 and
B

i,d

(z) = 0 for i ”= j.

6. Smoothness. If the number z occurs m times among t
j

, t
j+1

, . . . , t
j+d+1

then
the derivatives of B

j,d

of order 0, 1, . . . , d ≠ m are all continuous at z.

3.5 Constrained Trajectory Generation Procedure
In this section we present the design of the desired B-spline trajectory y

r

(t). The
initial equilibrium point is its first control point y

initial

= c
0

and the final equilibrium
point is its last control point y

final

= c
n

.
For the sake of completeness, we state a few necessary B-spline ingredients

(derivative, integral, and degree elevation) that are crucial for our procedure.

3.5.1 Derivative property of the B-spline curve

Theorem 3.1 (see [83]) The derivative of the jth B-spline of degree d on t is given
by

DB
j,d

(x) = d

A
B

j,d≠1

(x)
t
j+d

≠ t
j

≠ B
j+1,d≠1

(x)
t
j+1+d

≠ t
j+1

B

(3.6)

for d > 1 and for any real number x.

According to the previous theorem, if the flat output or the reference trajectory
y

r

is a B-spline curve, its derivative is still a B-spline curve and we can explicitly
compute its control points.

3. Constraints on Linear Flat Systems with Delays 69

Let y(‹)(x) denote the ‹
th derivative of y(x). If x is fixed, we can obtain y(‹)(x)

by computing the ‹th derivatives of the basis functions:

y(‹)(x) =
nÿ

j=1

c
j

B(‹)

j,d

(x) (3.7)

Letting c(0)

j

= c
j

, we write

y(x) = y(0)(x) =
nÿ

j=1

c(0)

j

B
j,d

(x) (3.8)

Then,

y(‹)(x) =
n≠‹ÿ

j=1

c(‹)

j

B
j,d≠‹

(x) (3.9)

with derivative control points such that

c(‹)

j

=

Y
__]

__[

c
j

, ‹ = 0
d ≠ ‹ + 1

t
j+d+1

≠ t
j+‹

1
c(‹≠1)

j+1

≠ c(‹≠1)

j

2
, ‹ > 0

(3.10)

and a vector knot

t

(‹) = 0, . . . , 0
¸ ˚˙ ˝
d ≠ ‹ + 1

, t
d+1

, . . . , t
m≠d≠1

, 1, . . . , 1
¸ ˚˙ ˝
d ≠ ‹ + 1

Remark 3.2 We should take a B-spline curve of degree d > ‹, where ‹ is the
derivation order of the flat output, to avoid introducing discontinuities.

3.5.2 Integral property of B-spline curve

Similar to the derivation operation, an integral of a B-spline is a B-spline and we
are able to find the control points of the integral of the B-spline curve in terms of
the control points of the initial B-spline curve.
The indefinite integral of a B-spline function f(x) (see [34]):

f(x) =
nÿ

j=1

c
j

B
j,d

(x) (3.11)

on the knot vector (t
j

)n+d+1

j=1

is given by the B-spline function g(x) where

g(x) =
⁄

x

t1

nÿ

j=1

c
j

B
j,k

(u)du =
nÿ

j=1

A
t
j+k+1

≠ t
j

k

iÿ

i=1

c
i

B

B
j,k+1

(x), t
k

6 x 6 t
n+1

.

(3.12)

70 3.5. Constrained Trajectory Generation Procedure

Hence the integral of a B-spline is presented as:

g(x) =
⁄

x

t1
f(u)du =

n+1ÿ

j=1

e
j

B
j,k+1

(x), (3.13)

where

e
1

= 0, e
j+1

= 1
d + 1

jÿ

i=1

c
i

(t
i+d+1

≠ t
i

) 1 6 j 6 n. (3.14)

The knot vector for g(x) matches that of the original curve except for the extra knot
at both ends due to the increased degree. For a definite integral of a B-spline we have:

⁄
x2

x1
f(u)du =

⁄
x2

t1
f(u)du ≠

⁄
x1

t1
f(u)du = g(x

2

) ≠ g(x
1

),

t
k

6 x
1

, x
2

6 t
n+1

.

Remark 3.3 Notice that the input constraints in the presence of commensurable
and/or distributed known delay in the state x(t ≠ h) or

s
t

t≠h

x(·)d· can be given in
straightforward algebraic manner.

Thanks to the integral property, we can easily deal with distributed delay in the
state. For instance, consider a system in the form:

ẏ =
⁄

t

t≠h

y(·)d· + y(t ≠ h) + u (3.15)

where y is the flat output. An open loop control allowing the tracking of y
r

by y is:

u
r

= ẏ
r

(t + h) ≠
⁄

t

t≠h

y
r

(·)d· ≠ y
r

(t + h). (3.16)

3.5.3 Degree elevation and knot insertion

To accomplish an addition and/or subtraction of two B-spline curves f(x) and g(x)
with di�erent degrees d

f

and d
g

respectively s.t. d
f

< d
g

, first, we need to increase
(d

g

≠ d
f

) times the degree of f(x). A good visual algorithm of the degree elevation
and knot insertion of the B-spline reference trajectory can be found in [113].

3.5.4 Reference trajectory design procedure

The simple-minded idea on the reference trajectory design is based on the following
steps:

• Assign a B-spline reference trajectory to each flat output.

• Find the analytical B-spline expressions of the states and the inputs.

3. Constraints on Linear Flat Systems with Delays 71

• Express the input/state constraints as inequalities in terms of the B-spline
control points and find the suitable region for each control point of the B-spline
reference trajectory by using the B-spline properties (see the previous sections
3.5.1, 3.5.2, 3.5.3).

We find the relationship between the input control points U
i

and the control
points of the reference trajectory c

j

such that U
i

= �
i

(c
1

, . . . , c
n

). Our aim is to
constraint K

l

6 |U
i

| 6 K
h

by choosing suitable regions for the reference trajectory.

Remark 3.4 To solve the system of inequalities, we use symbolic computation
of the Cylindrical Algebraic Decomposition (CAD) algorithm which is the best
currently known algorithms for solving many classes of problems related to systems
of real polynomial equations and inequalities [130]. By using Cylindrical Algebraic
Decomposition, we compute the regions in which one chooses the values for c

j

’s of
the reference trajectory.

3.6 Example: Car-following model

We investigate a car-following model including human drivers memory e�ects from
[124]. For the sake of clarity, we consider a simplified example. The dynamics
of two vehicles, when the first vehicle follows the second vehicle is represented
by the following equations:

ÿ
1

= –
⁄

h+”

h

f(·)H(t ≠ ·)d· ≠ K
p

(y
2

≠ y
1

) (3.17a)

ÿ
2

= u (3.17b)

where y
1

and y
2

are the positions of the first and the second vehicle respectively,
H(t) = y

2

(t)≠y
1

(t) is the headway perturbation between the vehicles, u is the motor
torque, taken as control input and the constants: – > 0 is the measure of the driver’s
aggressiveness per unit vehicle mass and K

p

is the human regulation parameter.
The delayed action/decision of human drivers is represented using distributed delays.
As distribution function f(t), as stated in [124], we take the uniform distribution,
which is a good fit for modelling the short-term memory of drivers:

f(·) =

Y
_]

_[

1
”

, h 6 · 6 h + ”

0, otherwise,
(3.18)

72 3.6. Example: Car-following model

where h is the memory dead-time and ” is the memory window. For the sake of
simplicity, we take ” = (k ≠1)h, k œ N. The model (3.17a)-(3.17b) is R[s, s≠1, e≠hs]-
free, with basis (or flat output) given by H, i.e. all system variables can be
di�erentially parametrized by H.

With the notation ŷ
1

, ŷ
2

and û for the Laplace transform, (3.17a)-(3.17b) is given
by:

s2ŷ
1

= –e≠hs

1 ≠ e≠”s

”s
(ŷ

2

≠ ŷ
1

) ≠ K
p

(ŷ
2

≠ ŷ
1

), (3.19)

s2ŷ
2

= û (3.20)

Let

a(s) = s2 ≠ K
p

+ –e≠hs

1 ≠ e≠”s

”s
.

We get a di�erential parametrization of the system as

ŷ
1

=
A

a(s)
s2

≠ 1
B

Ĥ,

ŷ
2

= a(s)
s2

Ĥ,

û = a(s)Ĥ.

From where, we obtain the time domain expression for the open loop control:

u
r

(t) = Ḧ
r

(t) ≠ K
p

H
r

(t) + –

”

⁄
t

t≠”

H
r

(· ≠ h)d· (3.21)

u
r

(t) = Ḧ
r

(t)
¸ ˚˙ ˝

first term

≠K
p

H
r

(t)
¸ ˚˙ ˝

second term

+ –

(k ≠ 1)h

⁄
t≠h

t≠kh

H
r

(·)d·
¸ ˚˙ ˝

third term

(3.22)

We take as symbolic reference trajectory H
r

a B-spline curve with degree
d = 4, knot vector

T = {0, 0, 0, 0, 0, 10/3, 20/3, 10, 10, 10, 10, 10}

and control points vector A = (a
j

)7

j=1

as

H
r

=
7ÿ

j=1

a
j

B
j,d

. (3.23)

The constraints we consider are the following:

1. Distance constraint: H
min

6 H 6 H
max

3. Constraints on Linear Flat Systems with Delays 73

2. Actuator limit: U
min

6 u 6 U
max

.

The first constraint will be respected by choosing the control points for the
reference trajectory H

r

such that H
min

6 a
j

6 H
max

.
For the second constraint, using the properties of the B-spline curve, we

can find the control points of the open-loop control u
r

in terms of the a
j

’s by
following these steps:

1. First, we find the control points a(2)

j

for the second derivative Ḧ
xr

by using
the formula (3.10):

Ḧ
xr

=
5ÿ

j=1

a(2)

j

B
j,1

(t)

2. We obtain the third term
s

t≠h

t≠kh

H(·)d· by
⁄

t≠h

t≠kh

H(·)d· =
8ÿ

j=1

e
j

B
j,5

(t)

which is a B-spline curve of degree 5 and where the control points e
i

are
calculated by the integral operation (3.14).

3. We elevate the degree of the first term and the second term up to 5 and then,
we add additional knots in order to end up with the same number of control
points in the three terms. After, we can find the sum of these terms. We end
up with u

r

as a B-spline curve of degree 8 with control points U
i

:

u
r

(t) =
14ÿ

i=1

U
i

B
i,5

(t)

We want all the input control points to respect the actuator limits U
min

6 u 6 U
max

.
The latter form a system of inequalities that can be used as a prior study to the
sensibility of the control inputs with respect to the flat outputs. To solve this
system, we use the Mathematica function CylindricalDecomposition for the symbolic
computation of the Cylindrical Algebraic Decomposition. We compute the regions
in which to choose the values for a

i

’s of the reference trajectory. For the sake of
clarity, instead of keeping U

min

, U
max

symbolically, we give a value for the constraints
U

min

= 0.2 and U
max

= 10. The initial and final trajectory points are defined as
H

r

(t
0

) = a
1

and H
r

(t
f

) = a
7

respectively. The condition under which the reference
trajectory H

r

will respect the input constraint is

a
2

œ R

a
i

<
1
20(1 ≠ 20a

i≠2

+ 40a
i≠1

), for 3 6 i 6 6.

74 3.7. Closing remarks

0 2 4 6 8 10

time (s)

0

2

4

6

8

10

0 2 4 6 8 10

time (s)

-5

0

5

Figure 3.2: Closed-loop performance.

The reference 4th degree B-spline trajectory is specified with the control points
a

1

= 0.5; a
2

= 2; a
3

= 2; a
4

= 5; a
5

= 6; a
6

= 5; a
7

= 4 chosen in the
constrained region.

Figure 3.2 depicts the performance of the closed-loop control.

3.7 Closing remarks
This work seeks to find an explicit constraint on the control input and/or the state
of a linear delay system. It thus provides a useful tool that can be implemented on
various applications using the B-spline curves and flat system theory. By expression
of the flat outputs in the form of B-spline curves, the input controls depend on

3. Constraints on Linear Flat Systems with Delays 75

the control points and the degree of the B-spline curves (flat outputs). In our
future works, we shall develop our approach further for systems represented by
partial di�erential equations.

76

4
Cascaded Model-Free Control of

Quadrotors

Contents
4.1 Chapter overview . 79
4.2 Quadrotor model . 81
4.3 Control design . 83

4.3.1 Preliminaries for Model-Free Control 83
4.3.2 Cascaded-model-free approach for the quadrotor 85
4.3.3 Outer-loop Position control 86
4.3.4 Inner-loop Attitude control 87

4.4 Practical stability . 87
4.4.1 The system error dynamics 88

4.5 Stability results . 89
4.6 Stability proof . 90

4.6.1 Position error subsystem 91
4.6.2 Attitude error subsystem 91
4.6.3 Verification of the assumptions 91

4.7 Aggressive trajectory tracking 92
4.7.1 The Lissajous trajectory 93
4.7.2 The B-spline trajectory 94

4.8 Simulation results . 96
4.8.1 Scenario 1: Unknown measurement noise 97
4.8.2 Scenario 2: Unknown time-varying wind disturbance . . 100
4.8.3 Scenario 3: Mass parameter variation 104

4.9 Closing remarks . 105
4.A Boundedness of the interconnection term 109
4.B Bound on the estimation error e

F

. 110

77

78 4. Cascaded Model-Free Control of Quadrotors

4. Cascaded Model-Free Control of Quadrotors 79

Abstract: In the subject of quadrotor controller design, usually modelling and
identification are tedious and time-consuming tasks. In this chapter, we propose a
controller design that avoids the quadrotor’s system identification procedures while
staying robust with respect to endogenous and exogenous disturbances. To reach
our goal, based on the cascaded structure of a quadrotor, we divide the system into
positional and attitude subsystems each controlled by an independent model-free
controller. We validate our control approach in three realistic scenarios: in presence
of unknown measurement noise, unknown time-varying wind disturbances and mass
variation. We provide simulations on a realistic nonlinear quadrotor model following
an aggressive position-yaw trajectory.

4.1 Chapter overview
In the last decade the use of unmanned aerial vehicles (UAVs) has increased
significantly. From package delivery services, military uses and disaster management
to photography and entertainment, the use-cases are numerous. Among the UAVs,
quadrotors have been subject to intense research and development. One of the main
challenges is modeling quadrotor dynamics and parameters estimation. This process
can be tedious, time consuming and prone to modeling errors. A considerable amount
of the literature has been devoted to model-based controls (Backstepping and sliding-
mode techniques [19], Inner-Outer Loop Control by applying PID controller for
the inner-loop and nested saturation controller for the outer-loop [21], Generalized
Proportional Integral (GPI) observer based controller [125], Model Predictive
Control [2]) among other methods. In these model-based approaches, the modeling
accuracy can directly impact the controller success and performance. Moreover,
many quadrotor applications are outdoor and may be faced with environmental
uncertainties. Among the meteorological uncertainties, the wind e�ect has one
of the highest impacts on the quadrotor performance while being very hard to
predict. Therefore, in the model definition, the wind is usually considered as a
predefined constant. As suggested in the papers [18, 92, 115], in practice, using
a PID have shown more advantages than more advanced quadrotor controllers
because of its simplicity and robustness. We chose to use the model-free control
(MFC) since it has been already shown successful in practice (see [48], [33] and
the references therein, and [1, 94, 114]) that the MFC have better performances
and advantages over a simple PID. These facts motivate us to present a cascaded-
model-free approach for a quadrotor while considering more realistic situations like
time-varying wind disturbances, measurement noise and mass value variation. We
make our contribution in the following framework:

80 4.1. Chapter overview

• We use a minimalist structure upon which our control scheme rests (see
Equations (4.12), (4.14), (4.19a)-(4.19c)). This structure is independent of
any mass, inertia, gyroscopic or aerodynamic e�ects; the only information we
use is that each positional and rotational dynamics is of second order and that
the thrust produced by the propellers is suitably projected onto the inertial
frame.

• Because of the underactuated nature of the quadrotor, we consider an inner-
outer structure of the quadrotor that allows us to divide the control into two
stages. At the first stage, we show that it is possible to apply a model-free
control in the outer loop and from there, we derive the desired thrust, and
the desired roll and pitch angles. We then apply again the model-free control
in the inner loop for the second stage.

• No precise information of the quadrotor physical parameters is required. For
instance, it will be inconvenient and in some cases imprecise to measure the
mass value [137] of the quadrotor together with its payload during each flight.
For this purpose, we test the system robustness when the mass varies up to
almost a factor of 2 during the flight.

• For the simulations, we have tested our approach with a realistic quadrotor
model that contains gyroscopic and aerodynamic e�ects.

Recent studies have shown the interest in dividing the control problem into two
parts: one based on the model and the other based on the model-free control to
cope with model uncertainties and/or external perturbations. In [138], model-free
sliding-mode control (based on a linearized model) is studied, in [142] a model-free
backstepping control (based on a linearized model) and an LQR control have been
experimentally tested on a real system. In these studies, the control law is still
partially linked to the system model knowledge.
In several works, the yaw angle is assumed to be zero due to high nonlinear coupling
in position and attitude dynamics. In [139], an event-driven model-free control
is compared with several other controls while taking zero reference for the yaw
angle. This limits the maneuverability of quadrotors. In our case we show that the
quadrotor can follow aggressive maneuvers while tracking the yaw angle Â. This is
a huge advantage with clear benefits on time and energy. The position-yaw tracking
as mentioned in [121] can be useful in di�erent use-cases e.g. Aerial Screwdriver
task (the quadrotor should turn a screw), the Aerial Grasp (multiple quadrotors
rotate their Â-angle to grasp an object), etc.

4. Cascaded Model-Free Control of Quadrotors 81

Outline

This chapter has the following outline:

• In Section 4.2, we briefly describe the quadrotor dynamics focusing on its
structure.

• Then, in Section 4.3, we review the Model-Free Control and we present our
cascaded Model-Free approach.

• In Section 4.4, we discuss the practical stability analysis of the proposed
approach.

• Finally, we validate our approach in Section 4.8 by testing it on three scenarios
when the quadrotor is faced with unknown measurement noise, with unknown
time-varying wind disturbances and mass value variation. The simulation
results confirm its robustness while tracking two di�erent types of aggressive
position trajectory in the three chosen scenarios.

A part from this chapter has been published in [12].

4.2 Quadrotor model

Th quadrotor system has six degrees of freedom, position motion in three directions
and rotational motion around three axes, but it has only four actual inputs. Hence
it is an underactuated system and all of its motions are dependent of its attitude.
The schematic configuration of a quadrotor we adopted in this study is shown in
Figure 4.1 that includes the corresponding forces, angles and angular speeds.

A nonlinear model of quadrotor based on the Newton-Euler formalism (see
the paper [82] for further information on the quadrotor model) is given by the
following equations:

• Position dynamics

mẍ = (sin Â sin „ + cos Â sin ◊ cos „)u
1

≠ A
x

ẋ, (4.1a)

mÿ = (≠ cos Â sin „ + sin Â sin ◊ cos „)u
1

≠ A
y

ẏ, (4.1b)

mz̈ = ≠mg + cos ◊ cos „u
1

≠ A
z

ż, (4.1c)

82 4.2. Quadrotor model

�2

�
yaw

�
pitch

�
roll

�3

�4

yaxis

�1

mg

xaxis

y

x

z

zaxis

Figure 4.1: The quadrotor system.

• Attitude dynamics

I
x

„̈ = u
2

+ ◊̇Â̇(I
y

≠ I
z

) + J
r

◊̇�
r

, (4.2a)
I

y

◊̈ = u
3

+ „̇Â̇(I
z

≠ I
x

) ≠ J
r

„̇�
r

, (4.2b)
I

z

Â̈ = u
4

+ ◊̇„̇(I
x

≠ I
y

), (4.2c)

where x, y and z are the position coordinates of the quadrotor’s center of gravity,
and ◊, „ and Â are the pitch, roll and yaw rotation angles respectively. The constant
m is the mass, g is the gravitation acceleration, I

x

, I
y

, I
z

are the moments of inertia,
and J

r

is the moment of inertia of the rotors. The controllers are: u
1

the total thrust
generated by the four propellers applied in the z direction; u

2

, u
3

and u
4

the torques
in the ◊, „ and Â directions respectively. The constants A

x

, A
y

and A
z

are the drag
force coe�cients for velocities in the corresponding directions of the inertial frame.
The position dynamic model (4.1a)-(4.1c) contains the gravity force mg, the thrust
force in the z direction and the drag force. The attitude dynamic model (4.2a)-(4.2c)
describing the roll, pitch and yaw rotations contains three terms which are the
actuators action, the gyroscopic e�ect resulting from the rigid body rotation, and
finally the gyroscopic e�ect resulting from the propeller rotation coupled with the
body rotation.
The control inputs u

1

, u
2

, u
3

, u
4

, and the speed �
r

are defined as:
u

1

= b(�2

1

+ �2

2

+ �2

3

+ �2

4

),
u

2

= b(�2

4

≠ �2

2

),
u

3

= b(�2

3

≠ �2

1

),
u

4

= d(�2

1

+ �2

3

≠ �2

2

≠ �2

4

),
�

r

= �
1

≠ �
2

+ �
3

≠ �
4

(4.3)

4. Cascaded Model-Free Control of Quadrotors 83

Symbols and values Variables
m = 0.53kg Quadrotor mass
I

x

, I
y

= 6.228◊10≠3kg · m2 Inertia parameters
I

z

= 1.121◊10≠2kg · m2 Inertia parameter
J

r

= 6.01◊10≠5kg · m2 Rotor inertia moment
b = 3.13◊10≠5N · s2 Thrust coe�cient
d = 7.5◊10≠7Nm · s2 Drag coe�cient
A

x

, A
y

, A
z

= 0.25kg / s Drag force coe�cients

Table 4.1: The parameters and their corresponding values for the quadrotor simulation.

where �
i

is the angular speed of the ith rotor, and b and d are the thrust and
the drag coe�cients respectively.

This model will be used for the simulation. Table 4.1 lists the parameter values
used for the simulation model in Section 4.8.

Remark 4.1 The aerodynamic e�ects are di�cult to model. Some have significant
impact only in high velocities. Note that several other aerodynamic e�ects could
be included in the model, e.g. the dependence of thrust on angle of attack, blade
flapping and airflow disruptions that have been studied in [71] and [72].

4.3 Control design

In this Section, we first summarize some of the main ideas on Model-Free Control
(MFC) introduced in [48]. Then, we construct the cascaded-model-free controller
for the quadrotor using only a minimal nominal dynamics.

4.3.1 Preliminaries for Model-Free Control

The unknown di�erential equation describing the input/output behavior of a finite-
dimensional system with a single control variable u and a single output variable y

E(y, ẏ, . . . , y(ÿ), u, u̇, . . . , u(Ÿ)) = 0,

E : Rÿ+1 ◊ RŸ+1 æ R, E œ CŒ(Rÿ+1 ◊ RŸ+1)

can be described as:

y(‹) = E(t, y, ẏ, . . . , y(‹≠1), y(‹+1), . . . , y(ÿ)u, u̇, . . . , u(Ÿ)), (4.4)

84 4.3. Control design

where 0 < ‹ 6 ÿ,
ˆE

ˆy(‹)

”= 0. For simplicity, the Equation (4.4) can be represented
in short time interval by an ultra-local model as:

y(‹) = F + –u (4.5)

where

• – œ R is a non-physical constant parameter chosen such that –u and y(‹) will
be of the same order of magnitude. In the recent study [37], – is considered
as a time-varying parameter in order to overcome the presence of unknown
delays.

• the time-varying function F (t) is approximated by a piecewise constant
function. It represents the rest of the unmodelled dynamics in the input-
output behaviour of the system and the unknown endogenous and exogenous
disturbances. Therefore, it adapts to the changes of the system at each
actuation step.

Obtaining a good estimate of F̂ can be achieved by considering it as ‹th iterated
integral on a short time interval [t ≠ T, t] (see [52]). For instance, when ‹ = 2, we
can rewrite the equivalent of the equation (4.5) in the Laplace domain as:

s2Y (s) ≠ sy(0) ≠ ẏ(0) = F

s
+ –U(s) (4.6)

We get rid of the initial conditions y(0) and ẏ(0) by di�erentiating twice the
equation (4.6) w.r.t. to the Laplace variable s.

2Y (s) + 4s
dY

ds
+ s2

d2Y

ds2

= 2F

s3

+ –
d2U

ds2

(4.7)

To greatly attenuate the noise, we multiply the both sides of equation (4.7) by s≠3

2
s3

Y (s) + 4 1
s2

dY

ds
+ 1

s

d2Y

ds2

= 2F

s6

+ –

s3

d2U

ds2

(4.8)

In the time domain, we get

F̂ = 5!
2T 5

⁄
t

t≠T

1
(M2 ≠ 4‡M + ‡2)y(‡) ≠ –

2 M2‡2u(‡)
2
d‡, (4.9)

where M = T ≠ ‡. The choice of the window T results in a trade-o�. The larger is
T , the smaller is the e�ect of noise and the larger is the error due to truncation. For
a precise mathematical foundation on the treatment of the noise through iterated
time integrals, see [46], which is based on non-standard analysis, and also [90] which

4. Cascaded Model-Free Control of Quadrotors 85

rests on Jacobi polynomials. The closed-loop control applied to the ultra-local model
(4.5) is defined as the so-called intelligent controller

u = ≠ F̂ ≠ y(2)

d

+ C(e)
–

(4.10)

where y
d

is the output reference trajectory, e = y ≠ y
d

is the tracking error, and
C(e) = K

p

e + K
d

ė is a PD controller. Combining (4.5) and (4.10), it yields the
following closed-loop error dynamics

ë + K
d

ė + K
p

e = e
F

= F ≠ F̂ . (4.11)

If the estimate F̂ is good, the error e
F

ƒ 0 is small and choosing the gains such
that K

p

> 0, K
d

> 0 guarantees a good tracking of y
d

.

4.3.2 Cascaded-model-free approach for the quadrotor

Problem statement: We want to ensure that the quadrotor tracks the desired time-
varying position trajectory (x

d

, y
d

, z
d

) and yaw angle Â
d

without precise information
of the physical parameters and forces (for instance, the mass, the inertias and the
aerodynamic forces) and despite external disturbances. We propose a cascaded
model-free setting of the quadrotor based on a minimal dynamics (see Equations
(4.12), (4.14), (4.19a)-(4.19c)).

Inspired by the quadrotor dynamics structure, we divide the control in two stages
(see Figure 4.2): the outer loop with slow dynamics which controls the position, and
the inner loop with fast dynamics which controls the attitude. From the quadrotor
structure, we observe that the position dynamics depends on the attitude dynamics.

u1
θd;φd

u2; u3; u4x; y; z

xd; yd; zd Position
Control

 d

Attitude
Control

vx; vy
Desired Attitude
Transformation

θ;φ; Attitude
Dynamics

Position
Dynamics

Quadrotor

Figure 4.2: Cascaded control overview (The subscript d denotes desired trajectory).

86 4.3. Control design

4.3.3 Outer-loop Position control
The model-free setting of the vertical z-dynamics (4.1c) is given by

z̈ = F
z

+ –
z

u
1

(4.12)

where F
z

represents the neglected dynamics and the external disturbances, and
–

z

is a constant parameter. To estimate the time-varying F
z

over a time interval
of length T , we use Equation (4.9) yielding

F̂
z

= 5!
2T 5

⁄
t

t≠T

1
(M2 ≠ 4‡M + ‡2)z(‡) ≠ –

2 M2‡2u
1

(‡)
2
d‡, M = T ≠ ‡.

We then set the control law for the thrust u
1

as:

u
1

= 1
–

z

(≠F̂
z

+ z̈
d

≠ K
pz

e
z

≠ K
dz

ė
z

) (4.13)

where e
z

= z ≠ z
d

and ė
z

= ż ≠ ż
d

are the tracking errors of the vertical position
and velocity respectively. To operate safely the quadrotor requires a positive thrust
u

1

> 0.
The model-free setting of the xy-dynamics (4.1a)-(4.1b) is given by

A
ẍ
ÿ

B

=
A

F
x

F
y

B

+ –
xy

R
Â

A
sin „

sin ◊ cos „

B

u
1

. (4.14)

where –
xy

=
A

–
x

0
0 –

y

B

are constants, and F
x

and F
y

are the neglected dynamics and

disturbances for x and y respectively. The rotation matrix R
Â

œ SO(2) is given by

R
Â

=
A

sin Â cos Â
≠ cos Â sin Â

B

, R≠1

Â

= RT

Â

, ÎR
Â

Î = 1.

Here, Î·Î denotes the Euclidean norm.
Setting a new virtual input (v

x

, v
y

)T defined as:
A

ẍ
ÿ

B

=
A

v
x

v
y

B

= R
Â

A
sin „

d

sin ◊
d

cos „
d

B

u
1

, (4.15)

we obtain

v
x

= 1
–

x

(≠F̂
x

+ ẍ
d

≠ K
px

e
x

≠ K
dx

ė
x

), (4.16a)

v
y

= 1
–

y

(≠F̂
y

+ ÿ
d

≠ K
py

e
y

≠ K
dy

ė
y

). (4.16b)

where e
x

= x ≠ x
d

and e
y

= y ≠ y
d

are the tracking errors for x and y respectively.
From there, we can deduce the reference trajectories ◊

d

and „
d

for the attitude

4. Cascaded Model-Free Control of Quadrotors 87

dynamics by expressing the virtual input measures v
x

and v
y

in the body frame
where Â = 0 (no yaw dependence) by defining v̄

x

and v̄
y

as:
A

sin „
d

sin ◊
d

cos „
d

B

= 1
u

1

R≠1

Â

A
v

x

v
y

B

,
A

v̄
x

v̄
y

B

(4.17)

Hence we consider the following desired angles „
d

and ◊
d

:

„
d

= arcsin(v̄
x

), (4.18a)

◊
d

= arcsin
3

v̄
y

cos „
d

4
. (4.18b)

4.3.4 Inner-loop Attitude control

The attitude dynamics (4.2a)-(4.2c) is given by the following:

„̈ = F
„

+ –
„

u
2

, (4.19a)
◊̈ = F

◊

+ –
◊

u
3

, (4.19b)
Â̈ = F

Â

+ –
Â

u
4

(4.19c)

The attitude control performance is crucial since it is directly related to the actuators
e�ciency. After deducing the desired attitude „

d

, ◊
d

from the slow outer loop (4.18a)-
(4.18b), the fast inner loop is stabilized by an MFC controller as

u
2

= 1
–

„

(≠F̂
„

+ „̈
d

≠ K
p„

e
„

≠ K
d„

ė
„

), (4.20)

u
3

= 1
–

◊

(≠F̂
◊

+ ◊̈
d

≠ K
p◊

e
◊

≠ K
d◊

ė
◊

), (4.21)

where e
„

= „ ≠ „
d

, e
◊

= ◊ ≠ ◊
d

, ė
„

= „̇ ≠ „̇
d

, ė
◊

= ◊̇ ≠ ◊̇
d

are the tracking errors
of the angular positions and estimated angular velocities respectively. Similarly,
for the yaw angle, we apply the Model-Free control as

u
4

= 1
–

Â

(≠F̂
Â

+ Â̈
d

≠ K
pÂ

e
Â

≠ K
dÂ

ė
Â

). (4.22)

4.4 Practical stability
In this section, the closed-loop practical stability of our scheme is studied. First, we
define the position error dynamics and the attitude error dynamics separately, and
we recognize a cascade structure with an interconnection term which is dependent
on the attitude subsystem. Without considering the interconnection term, the
control laws from the previous section stabilize asymptotically each of the error

88 4.4. Practical stability

dynamics subsystems. By means of cascaded systems results and the obtained
bound of the interconnection term, the complete system is practically stable when
the convergence errors are bounded.

We rewrite the quasi-model-free quadrotor setting in a more compact form as

p̈ = F
xy

+ –
xy

R
Â

“(„, ◊)u
1

, (4.23a)

z̈ = F
z

+ –
z

u
1

, (4.23b)

r̈ = F
r

+ –
r

u
23

, (4.23c)

Â̈ = F
Â

+ –
Â

u
4

, (4.23d)

where p = (x, y)T , F
xy

= (F
x

, F
y

)T , “(„, ◊) = (sin „, sin ◊ cos „)T , r = („, ◊)T ,
F

r

= (F
„

, F
◊

)T , –
r

= (–
„

, –
◊

)T and u
23

= (u
2

, u
3

)T .

4.4.1 The system error dynamics

We define the position tracking error as X
p

= (X
1p

, X
2p

) where X
1p

= (p≠p
d

, z≠z
d

)T ,
X

2p

= (ṗ ≠ ṗ
d

, ż ≠ ż
d

)T œ R3 and the attitude tracking error as X
r

= (X
1r

, X
2r

)
where X

1r

= (r ≠ r
d

, Â ≠ Â
d

)T , X
2r

= (ṙ ≠ ṙ
d

, Â̇ ≠ Â̇
d

)T œ R3.
By replacing the rotation angles („, ◊)T with („

d

+ e
„

, ◊
d

+ e
◊

)T and by means
of the trigonometric relations, we compute the following expressions of “(„, ◊):

“(„, ◊) =
A

sin(„
d

+ e
„

)
sin(◊

d

+ e
◊

) cos(„
d

+ e
„

)

B

= “(„
d

, ◊
d

) +
A

sin(e
„

/2) cos(„
d

+ e
„

/2)
≠ sin(◊

d

)a
y

+ cos(„
d

)a
x

≠ a
x

a
y

B

= “(„
d

, ◊
d

) + �(e
„

, e
◊

, r
d

)

(4.24)

where

a
x

= sin(e
◊

/2) cos(◊
d

+ e
◊

/2)

a
y

= sin(e
„

/2) sin(„
d

+ e
„

/2).

We can thus rewrite (4.23a) as:

p̈ = F
xy

+ –
xy

R
Â

u
1

(“(„
d

, ◊
d

) + �(e
„

, e
◊

, r
d

))
= F

xy

+ –
xy

v + –
xy

R
Â

u
1

�(e
„

, e
◊

, r
d

)
(4.25)

where R
Â

u
1

�(e
„

, e
◊

, r
d

) is the interconnection term.
We can define the system error dynamics as:

4. Cascaded Model-Free Control of Quadrotors 89

Ẋ
p

=
A

X
2p

Ẋ
2p

B

, (4.26)

Ẋ
r

=
A

X
2r

Ẋ
2r

B

, (4.27)

where

Ẋ
2p

=
A

p̈ ≠ p̈
d

z̈ ≠ z̈
d

B

=
A

F
xy

+ –
xy

R
Â

u
1

≠ p̈
d

F
z

+ –
z

u
1

≠ z̈
d

B

=
A

u
xy

u
1

B

+
A

–
xy

(R
Â

u
1

�(e
„

, e
◊

, r
d

) ≠ v)
0

B

.

(4.28)

4.5 Stability results
Let u

p

= (u
xy

, u
1

), F
p

= (F
xy

, F
z

). Let d = (p̈
d

, Â
d

) be the desired trajectories. We
define the error dynamics system as a cascaded system

Ẋ
p

= AX
p

+ B

A
u

xy

u
1

B

+ b(X
p

, X
r

, d) (4.29)

Ẋ
r

= AX
r

+ B

A
u

r

u
Â

B

(4.30)

where A =
A

0
3◊3

I
3◊3

0
3◊3

0
3◊3

B

, B =
A

0
3◊3

I
3◊3

B

and the interconnection term b(X
p

, X
r

, d) =

R
Â

u
1

�(e
„

, e
◊

, r
d

).

Assumption 4.1 (Subsystem Globally Asymptotically Stable (GAS)) The equilib-
rium X

p

= 0 of Ẋ
p

= f(X
p

, u
p

(X
p

, F̂
p

) is GAS and the equilibrium X
r

= 0 of
Ẋ

r

= g(X
r

, u
r

(X
r

, F̂
r

) is GAS.

Theorem 4.1 (Attractivity) Given the Assumption 4.1, every solution (X
p

(t), X
r

(t))
either converges to (X

p

, X
r

) = (0, 0) or is unbounded.

Assumption 4.2 (Boundedness) The trajectories X
p

(t, X
p0

) are bounded for all
initial conditions X

p0

.

Assumption 4.3 (Interconnection growth restriction) For two class K functions
“

1

(·) and “
2

(·) di�erentiable at ÎX
r

Î = 0 it holds that

Îb(X
p

, X
r

, d)Î 6 “
1

(ÎX
r

Î) ÎX
p

Î + “
2

(ÎX
r

Î) (4.31)

i.e. the function Îb(X
p

, X
r

, d)Î has at most linear growth in X
p

.

90 4.6. Stability proof

Theorem 4.2 (GAS) If Assumptions 4.1-4.3 hold, the zero equilibrium (X
p

, X
r

) =
(0, 0) of the cascade is GAS.

Assumption 4.4 (Local Exponential stability): The Jacobian linearization (A, B)
of Ẋ

r

= g(X
r

, u
r

(X
r

)) at X
r

= 0 is stable.

Assumption 4.5 (Lyapunov function growth restriction): There exists a positive
semidefinite radially unbounded function V (X

p

) and two positive constants c
2

and
c

3

such that for ÎX
p

Î Ø c
2

Y
___]

___[

ˆV

ˆX
p

f(X
p

, u
p

(X
p

, p̈
d

), p̈
d

) 6 0
.....

ˆV

ˆX
p

..... ÎX
p

Î 6 c
3

V (X
p

)
(4.32)

Assumption 4.6 Let e
Fú = Fú ≠ F̂ú œ LŒ, ú = p, z, r, Â be bounded such that

Îe
FúÎŒ 6 B

Fú (4.33)

where B
Fú are a known constants.

Theorem 4.3 (Boundedness) If Assumptions 4.1 and 4.3-4.5, 4.6 hold, the solu-
tions of the cascaded error system (4.29)-(4.30) converge towards a small vicinity
of the origin for all the initial conditions.

The proof of the Theorems 4.1, 4.2 can be found in [39]. Under these Assumptions,
the boundedness of the states is proven in [123] (Theorem 4.7). In the next section,
we verify that the Assumptions hold for our approach.

4.6 Stability proof

The stability of the connected system (4.1a)-(4.2c) will be ensured if we choose
stabilizing feedbacks as in Section 4.3 and prove that all the error trajectories
(X

p

, X
r

) and the interconnection trajectories are bounded.

4. Cascaded Model-Free Control of Quadrotors 91

4.6.1 Position error subsystem
By replacing the control (4.13)-(4.16) in (4.26), the closed-loop position subsystem
without the interconnection term � is given by:

Ẋ
2p

+ �
p

X
1p

+ �
d

X
2p

=
A

e
F

p

e
F

z

B

(4.34)

where �
p

=

Q

ca
K

px

0 0
0 K

py

0
0 0 K

pz

R

db and �
d

=

Q

ca
K

dx

0 0
0 K

dy

0
0 0 K

dz

R

db.

A
p

=
A

0
3◊3

I
3◊3

≠�
p

≠�
d

B

. We rewrite the position dynamics as

Ẋ
p

= A
p

X
p

+
A

e
F

p

e
F

z

B

(4.35)

where A
p

is a Hurwitz matrix.

4.6.2 Attitude error subsystem
By replacing the controls (4.20)-(4.22) into (4.27), the closed-loop attitude sub-
system is given by:

Ẋ
2r

+ �
p

X
1r

+ �
d

X
2r

=
A

e
F

r

e
F

Â

B

(4.36)

where �
p

=

Q

ca
K

p◊

0 0
0 K

p„

0
0 0 K

pÂ

R

db and �
d

=

Q

ca
K

d◊

0 0
0 K

d„

0
0 0 K

dÂ

R

db.

A
r

=
A

0
3◊3

I
3◊3

≠�
p

≠�
d

B

. We rewrite the attitude dynamics as:

Ẋ
r

= A
r

X
r

+
A

e
F

r

e
F

Â

B

(4.37)

where A
r

is a Hurwitz matrix.

4.6.3 Verification of the assumptions
Assumptions 4.1 and 4.4 hold by choosing the matrices A

p

and A
r

as Hurwitz
matrices. Since A

p

is a Hurwitz matrix, for the nominal system Ẋ
p

= A
p

X
p

there
exist two matrices P = P T > 0, Q > 0 œ R6◊6 such that the Lyapunov function
V (X

p

) = XT

p

PX
p

is positive definite and

ˆV

ˆX
p

f = ≠XT

p

QX
p

6 0 (4.38)

92 4.7. Aggressive trajectory tracking

This satisfies the Assumption 4.5.

The Assumption 4.3 requires that the interconnection term can be upper bounded
by a function with at most linear growth at X

p

. Let X
z

= (e
z

, ė
z

). For Îu
1

Î, we have:

Îu
1

Î = 1
–

z

...(≠F̂
z

+ z̈
d

≠ K
pz

e
z

≠ K
dz

ė
z

)
...

6 1
–

z

(
...F̂

z

... + Îz̈
d

ÎŒ + K
pz

Îe
z

Î + K
dz

Îė
z

)Î)

6 1
–

z

(B
F

z

+ Îz̈
d

ÎŒ) + 1
–

z

(K
pz

Îe
z

Î + K
dz

Îė
z

)Î))

6 m
1

+ m
2

ÎX
z

Î

(4.39)

where m
1

= 1
–

z

(B
F

z

+ Îz̈
d

ÎŒ) and m
2

= 1
–

z

max(K
pz

, K
dz

)
Ô

2 are positive con-
stants. We choose a reference trajectory such that Îz̈

d

ÎŒ is bounded. For sake of
completeness, the bound of �(e

„

, e
◊

, r
d

) is given in the Appendix 4.A, p. 109,
where we show that

�(e
„

, e
◊

, r
d

) 6 m
3

ÎX
r

Î . (4.40)

Hence, the Assumption 4.3 holds such that:

Îb(X
p

, X
r

, d)Î = ÎR
Â

u
1

�(e
„

, e
◊

, r
d

)Î
6 Îu

1

Î Î�(e
„

, e
◊

, r
d

)Î
6 (m

1

+ m
2

ÎX
z

Î)m
3

ÎX
r

Î .

(4.41)

If a small time interval h with respect to system dynamics is selected, as well
as a small filtering time constant T , the bound on e

F

i

will be small (Appendix
4.B, p. 110). The tracking error e will remain in a bounded ball and the system
is practical stable (see Assumption 4.6).

4.7 Aggressive trajectory tracking
Usually, for simplicity, the quadrotor tracks a straight line or circular orbit. In
this Section, we present the two types of agile trajectories that the quadrotor
will follow in three di�erent scenarios:

• unknown measurement noise,

• unknown time-varying wind disturbances, and

• mass value variation.

4. Cascaded Model-Free Control of Quadrotors 93

4.7.1 The Lissajous trajectory

We consider here an aggressive motion: a Lissajous octave curve in the x
d

, y
d

plane and an hyperbolic tangent for z
d

and Â
d

.

x
d

(t) = A sin(at + ”)
y

d

(t) = B sin(bt)
(4.42)

where we take A = 1, B = 1.1, a = 1, b = 2 and ” = 1.7321. The ratio a

b
determines

the form of the curve. We specialize the state z
d

to a sigmoid between two quasi
constant altitudes, a situation frequently needed in practice.

z
d

(t) = H
f

≠ H
i

2 (1 + tanh(“(t ≠ t
m

))) + H
i

(4.43)

where H
i

is the initial altitude and H
f

is the final altitude of the quadrotor; “ is the
slope parameter of the sigmoid and t

m

is the time when the quadrotor is taking o�.

Remark 4.2 By taking reference trajectories as in Section 4.8, we have explicitly
the bounds of their derivatives. For z and Â:The easy numerical implementation of
the derivatives of z(t) is due to the nice recursion. Let R = tanh(“(t ≠ t

m

)) and
C = H

f

≠ H
i

2 . The first two derivatives of z
d

(t) are:

ż
d

= “C(1 ≠ R2)
z̈

d

= ≠2“2CR(1 ≠ R2).

The maximum values for its derivatives depend only on “ and C, and their values
can be determined. We obtain their bounds as:

H
i

6 z
d

6 H
f

, 0 6 ż
d

6 “C, Îz̈
d

Î 6 4
Ô

3
9 “2C = L

z

.

For the second derivatives of the Lissajous curves x and y, we have the following
bounds:

Îẍ
d

Î 6 Aa2,

Îÿ
d

Î 6 Bb2.

We take the same type of reference trajectory for the angle Â. The aim here
is to track the positions x

d

, y
d

and z
d

, and the yaw angle Â
d

. For the control
part, we consider the following values for the alphas: –

x

= 1, –
y

= 1, –
z

= 2
and –

Â

= 90. The controller runs at 20Hz, and the sensor data is updated at
100Hz. As initial positions and initial angles, we take (x

0

, y
0

, z
0

) = (0.5, 0, 0)[m]

94 4.7. Aggressive trajectory tracking

and („
0

, ◊
0

, Â
0

) = (0, 0, 0)[rad] respectively. The initial velocities and initial angular
velocities are zero. Table 4.1 lists the parameter values used in the simulation model.

In the nominal case (without endogenous or exogenous disturbances), we observe
satisfactory results when the position and the angles change significantly. Figure
4.3 depicts the trajectory tracking of the four outputs. Figure 4.4 depicts the
control inputs and Figure 4.5 depicts the estimated unknowns F

i

for i = x, y, z, Â.
The 3D tracking is plotted in Figure 4.6.

4.7.2 The B-spline trajectory

We choose the B-spline curves (the definition of a B-Spline curve can be found
in the Section 3.4) because they are always contained in the convex hull of their
control polygon: the basis functions are positive and sum up to one (partition of
unity), and have a local support [83]. By increasing the degree of the B-spline curve
and/or by inserting extra knots, the distance between the control polygon and the
B-spline curve can be reduced.
We consider here an aggressive motion [x

d

(t), y
d

(t), z
d

(t), Â
d

(t)] : [t
0

t
f

] æ R3 ◊

0 5 10
-1.5

-1

-0.5

0

0.5

1

1.5

0 5 10
-1.5

-1

-0.5

0

0.5

1

1.5

0 5 10
0

2

4

6

0 5 10
0

2

4

6

Figure 4.3: Lissajous trajectory case: Reference trajectories and model-free tracking
trajectories of the four outputs x, y, z and Â

4. Cascaded Model-Free Control of Quadrotors 95

SO(2) defined as a B-spline curve:

x
d

(t) =
10ÿ

j=1

a
xj

B
j,d

,

y
d

(t) =
10ÿ

j=1

a
yj

B
j,d

,

z
d

(t) =
10ÿ

j=1

a
zj

B
j,d

,

(4.44)

with degree d = 4, knot vector t = {0, 0, 0, 0, 0, 2.5, 5, 7.5, 10, 12.5, 15, 15, 15, 15, 15},
and control point vectors A

x

= (a
xj

)10

xj=1

, A

y

= (a
yj

)10

yj=1

and A

z

= (a
zj

)10

zj=1

for x
d

(t), y
d

(t) and z
d

(t) respectively.
We specialize the reference angle Â

d

to a sigmoid between two constant angles
a situation frequently needed in practice.

Â
d

(t) = �
f

≠ �
i

2 (1 + tanh(“(t ≠ t
m

))) + �
i

(4.45)

where �
i

= 0rad is the initial Â-angle and �
f

= 1.5rad is the final Â-angle of the
quadrotor; “ = 0.4 is the slope parameter of the sigmoid and t

m

= 7 .

0 5 10
0

2

4

6

8

10

0 5 10
-3

-2

-1

0

1

2

3

0 5 10
-3

-2

-1

0

1

2

3

0 5 10

-0.02

0

0.02

0.04

0.06

Figure 4.4: Lissajous trajectory case: Control inputs

96 4.8. Simulation results

4.8 Simulation results
To demonstrate the proposed control we consider a realistic quadrotor simulator
where we use the quadrotor model defined by the equations (4.1a)-(4.1c), (4.2a)-
(4.2c) and (4.3) presented in Section 4.2. Similar to the usual case in practice, the
controller runs at 20Hz, and the sensor data is updated at 100Hz. The aim here is
to track the positions x

d

, y
d

and z
d

, and the yaw angle Â
d

. As initial positions and
initial angles, we take (x

0

, y
0

, z
0

) = (≠1.8, 1, 0)[m] and („
0

, ◊
0

, Â
0

) = (0, 0, 0)[rad]
respectively. The initial linear velocities and initial angular velocities are zero. The
control point vectors for the reference trajectories are the following:

A

x

= {≠2, ≠1, 0, 2, 3, 3.5, 3.5, 5, 6.5, 7.5} ,

A

y

= {1.2, 2.5, 3.3, 1.8, 1.5, 2.5, 4, 4, 4, 4} ,

A

z

= {0, 0.2, 0.5, 2.5, 3.5, 3.9, 4.7, 6.5, 5.7, 3.5} .

(4.46)

Our trajectory is parametrized to avoid known static obstacles. In the nominal
case (without disturbances), we observe in Figure 4.7 (trajectory tracking), Figure
4.8 (control inputs) and Figure 4.9 (unknown dynamics estimation) satisfactory
results when the position and the yaw angle change significantly. The 3D tracking
is plotted in Figure 4.10. The control gains that we consider are given in Table

0 2 4 6 8 10
-2

-1.5

-1

-0.5

0

0.5

1

1.5

0 2 4 6 8 10
-10

-8

-6

-4

-2

0

2

4

0 2 4 6 8 10

-15

-10

-5

0

0 2 4 6 8 10
-2.5

-2

-1.5

-1

-0.5

0

0.5

Figure 4.5: Lissajous trajectory case: Estimation of the unknowns F
i

for i = x, y, z, Â

4. Cascaded Model-Free Control of Quadrotors 97

1

2

3

4

5

6

1

0

1.5-1 10.50-0.5-1

Figure 4.6: 3-D Position tracking of Lissajous path

P V P V P V
K

px

3 K
dx

2 –
x

1
K

py

3 K
dy

2 –
y

1
K

pz

10 K
dz

15 –
z

2
K

p„

2 K
d„

0.5 –
„

1
K

p◊

1 K
d◊

0.5 –
◊

1
K

pÂ

3 K
dÂ

2.5 –
Â

9

Table 4.2: The control gains (P: Parameter, V:Value).

4.2. The values for –
i

are chosen from a large possible range each dependant
on the corresponding state dynamics.

4.8.1 Scenario 1: Unknown measurement noise

For this scenario, we include the presence of the measurement noise b(t) ≥ N (0, ‡2)
as an additive white Gaussian noise with zero mean and standard deviation ‡ = 0.15
in the four measured outputs x, y, z and Â. The noisy measured outputs are set as:

x̂ = x + b, ŷ = y + b,

ẑ = z + b, Â̂ = Â + b.
(4.47)

98 4.8. Simulation results

0 5 10 15
-2

0

2

4

6

8

0 5 10 15
1

2

3

4

0 5 10 15
0

2

4

6

0 5 10 15
0

0.5

1

1.5

Figure 4.7: B-Spline trajectory case: Reference trajectories and model-free tracking
trajectories of the four outputs x, y, z and Â in the nominal case.

0 5 10 15
0

5

10

0 5 10 15

-2

0

2

0 5 10 15

-2

0

2

0 5 10 15

-1

0

1

10
-3

Figure 4.8: B-Spline trajectory case: Control inputs in the nominal case.

4. Cascaded Model-Free Control of Quadrotors 99

0 5 10 15
-4

-2

0

2

4

0 5 10 15
-8

-6

-4

-2

0

2

0 5 10 15
-15

-10

-5

0

0 5 10 15
-0.03

-0.02

-0.01

0

0.01

Figure 4.9: B-Spline trajectory case: Estimation of the unknowns F
i

for i = x, y, z, Â in
the nominal case.

Figure 4.10: 3-D Position tracking of the B-spline path in the nominal case. Objects in
the simulation are given just as potential obstacles, but no obstacle avoidance algorithm
is yet used.

100 4.8. Simulation results

0 5 10 15
-4

-2

0

2

4

6

8

0 5 10 15
0

1

2

3

4

0 5 10 15

0

2

4

6

0 5 10 15
-0.5

0

0.5

1

1.5

2

Figure 4.11: B-Spline trajectory case: Tracking trajectories in presence of noise (noisy
measurements and real state position).

B-spline trajectory case

Figure 4.11 shows the noisy sensor measurements (green line) and the tracking
trajectory of the quadrotor (blue dashed line) that follows the desired trajectory
(red line). From the result in Figure 4.11 (trajectory tracking) and Figure 4.12
(control inputs), it is apparent that the control approach is robust to the sensor
disturbances without previous knowledge of the noise.

Lissajous trajectory case

Figure 4.13 shows the trajectory tracking for the x ≠ y Lissajous case in presence
of measurement noise. Figure 4.14 and Figure 4.15 depict the control inputs and
3D position tracking respectively. We observe the same satisfactory results as
in the B-spline trajectory case.

4.8.2 Scenario 2: Unknown time-varying wind disturbance
In this scenario, we investigate the quadrotor tracking in presence of wind distur-
bance that is not constant and is not assumed to be known. The high varying
wind disturbances used in the simulations (displayed in Figure 4.16) are represented
by a sum of sinusoidal waves:

w(t) = 1.5µ
31

+ µ
7

+ 0.5µ
2

+ 0.015µ
11

+ 0.15b(t) (4.48)

4. Cascaded Model-Free Control of Quadrotors 101

0 5 10 15
0

5

10

0 5 10 15

-2

0

2

0 5 10 15

-2

0

2

0 5 10 15
-0.01

0

0.01

0.02

0.03

Figure 4.12: B-Spline trajectory case: Control inputs in presence of noise.

0 5 10
-1.5

-1

-0.5

0

0.5

1

1.5

0 5 10
-1.5

-1

-0.5

0

0.5

1

1.5

0 5 10

0

2

4

6

0 5 10

0

2

4

6

Figure 4.13: Lissajous trajectory case: Tracking trajectories in presence of noise.

where µ
p

(t) = sin
3

tfi

p

4
and b(t) is the random Gaussian noise. We add this

disturbance in the simulation model as an additive force disturbance such that

mẍ = (sin Â sin „ + cos Â sin ◊ cos „)u
1

≠ A
x

ẋ + w(t), (4.49a)
mÿ = (≠ cos Â sin „ + sin Â sin ◊ cos „)u

1

≠ A
y

ẏ + w(t), (4.49b)
mz̈ = ≠mg + (cos ◊ cos „)u

1

≠ A
z

ż + w(t). (4.49c)

102 4.8. Simulation results

0 5 10
0

2

4

6

8

10

0 5 10
-3

-2

-1

0

1

2

3

0 5 10
-3

-2

-1

0

1

2

3

0 5 10
-0.04

-0.02

0

0.02

0.04

Figure 4.14: Lissajous trajectory case: Control inputs in presence of noise.

-1

1.5

0

1

1

2

1.5
0.5

3

1

4

0 0.5

5

0

6

-0.5
-0.5

-1
-1

-1.5 -1.5

Figure 4.15: 3-D Position tracking of Lissajous path in presence of noise.

B-spline trajectory case

We observe the unknowns F
i

for i = x, y, z, Â in the nominal case (see Figure 4.9)
and in the presence of wind disturbance (see Figure 4.18). We show that the

4. Cascaded Model-Free Control of Quadrotors 103

0 5 10 15
-1

-0.5

0

0.5

1

1.5

2

2.5

Figure 4.16: Wind disturbance.

0 5 10 15
-2

0

2

4

6

8

0 5 10 15
1

2

3

4

5

0 5 10 15
0

2

4

6

8

0 5 10 15
0

0.5

1

1.5

Figure 4.17: B-Spline trajectory case: Tracking outputs in presence of wind disturbance.

104 4.8. Simulation results

0 5 10 15

-4

-2

0

2

4

0 5 10 15
-8

-6

-4

-2

0

2

4

0 5 10 15
-15

-10

-5

0

0 5 10 15

-0.02

-0.01

0

0.01

Figure 4.18: B-Spline trajectory case: Estimation of the unknowns F
i

for i = x, y, z, Â
in presence of wind disturbance.

precise estimation of the unknown F
i

for i = x, y, z, Â leads us to a robust control
performance. The trajectory tracked by the quadrotor in presence of time-varying
wind disturbance depicted in Figure 4.17 is almost identical to the nominal case.

Lissajous trajectory case

Figure 4.19 shows the good performance when the unknown wind disturbance
impacts the position tracking.

4.8.3 Scenario 3: Mass parameter variation

One of the useful features of the quadrotor is transporting a payload. Here we
examine the situation when the quadrotor is carrying a payload by changing the
mass value during the flight.

Lissajous trajectory case

The simulations show that the quadrotor successfully picks up the payload at
t = 3s, transports (hovering) and at the end drops o� the payload at t = 8s while
tracking an aggressive position trajectory and yaw angle (see Figure 4.22). We
observe F

z

in the nominal case (Figure 4.3) when the mass value doesn’t change
over time in Figure 4.5 and F

z

when the mass varies in Figure 4.20. We notice that

4. Cascaded Model-Free Control of Quadrotors 105

0 2 4 6 8 10
-1

-0.5

0

0.5

1

0 2 4 6 8 10
-1.5

-1

-0.5

0

0.5

1

1.5

0 2 4 6 8 10
0

2

4

6

0 2 4 6 8 10
0

2

4

6

Figure 4.19: Lissajous trajectory case: Tracking outputs in presence of wind disturbance.

the mass variation is motion dependent and that the good estimate of F
z

results
in changes in the thrust control u

1

(shown in Figure 4.21). So, the quadrotor’s
tracking performance of an aggressive trajectory will be limited by its maximal
thrust. By the latter, we show that the precise estimation of the unknown F

z

leads us to a robust control performance.
In this particular example, we take the variation of the mass parameter but

we would have the same outcome if we had changed several parameters such as
the inertia parameters at the same time.

4.9 Closing remarks
This methodology o�ers a cascaded model-free control design of a quadrotor. It stays
robust, despite unknown disturbances and parameter variation. We have shown that
a complex trajectory tracking on realistic scenarios is feasible. We have analyzed the
practical stability of the proposed closed-loop system (quadrotor and cascaded model-
free controller). Considering the low complexity and the good performances of the
proposed control, it sheds new lights on a possible commercial o�-the-shelf solution.

The final step of any control theory lies in experiment. In terms of future
works, the author hopes to apply the proposed control law in real experiments
with quadrotors.

106 4.9. Closing remarks

0 1 2 3 4 5 6 7 8 9 10
0.5

0.6

0.7

0.8

0.9

0 1 2 3 4 5 6 7 8 9 10
-20

-15

-10

-5

0

Figure 4.20: Lissajous trajectory case: Mass value variation over time and estimation
of the unknown F

z

.

4. Cascaded Model-Free Control of Quadrotors 107

0 5 10
0

2

4

6

8

10

0 5 10
-3

-2

-1

0

1

2

3

0 5 10
-3

-2

-1

0

1

2

3

0 5 10
-0.04

-0.02

0

0.02

0.04

0.06

Figure 4.21: Lissajous trajectory case: The control inputs when the mass varies over
time.

108 4.9. Closing remarks

0 2 4 6 8 10
-1.5

-1

-0.5

0

0.5

1

1.5

0 2 4 6 8 10
-1.5

-1

-0.5

0

0.5

1

1.5

0 2 4 6 8 10
0

1

2

3

4

5

6

0 2 4 6 8 10
0

1

2

3

4

5

6

Figure 4.22: Lissajous trajectory case: The tracking outputs when the mass varies over
time.

Appendix

4.A Boundedness of the interconnection term
For sake of completeness, we include the bound of the interconnection term defined as

ÎR
Â

u
1

�(e
„

, e
◊

, r
d

)Î 6 Îu
1

Î Î�(e
„

, e
◊

, r
d

)Î . (4.50)

• For Îu
1

Î, we have:

Îu
1

Î = 1
–

z

...(≠F̂
z

+ z̈
d

≠ K
pz

e
z

≠ K
dz

ė
z

)
...

6 1
–

z

(
...F̂

z

... + Îz̈
d

Î + K
pz

Îe
z

Î + K
dz

Îė
z

)Î)

6 1
–

z

(B
F

z

+ L
z

) + 1
–

z

(K
pz

Îe
z

Î + K
dz

Îė
z

)Î))

6 M + N Îe
z

Î

(4.51)

where M = 1
–

z

(B
F

z

+ L
z

) and N = 1
–

z

max(⁄
pz

, ⁄
dz

)
Ô

2 are constants.

• For Î�(e
„

, e
◊

, r
d

)Î, we have:

Î�(e
„

, e
◊

, r
d

)Î =
Ò

h2

x

+ h2

y

. (4.52)

Having

|h
x

| 6 | sin(e
„

/2)|,
|h

y

| 6 | sin(e
„

/2) sin(e
◊

/2)| + | sin(e
◊

/2)| + | sin(e
„

/2)|,
(4.53)

and then, by using following inequalities

| sin a| 6 |a|,

|a||b| 6 1
2(|a| + |b|), for |a| 6 1 and |b| 6 1,

(4.54)

we obtain

|h
x

| 6 1
2 |e

„

|,

|h
y

| 6 3
2(| sin(e

◊

/2)| + | sin(e
„

/2)|) 6 3
4(|e

◊

| + |e
„

|).
(4.55)

109

110 4.B. Bound on the estimation error e
F

Then, we compute the squared expressions of (4.55) such that

h2

x

6 1
4e2

„

h2

y

6 9
16(e2

◊

+ e2

„

+ 2|e
◊

||e
„

|)
(4.56)

and knowing that 2|e
◊

||e
„

| 6 e2

◊

+ e2

„

, we obtain

h2

x

6 1
4e2

„

,

h2

y

6 9
8(e2

◊

+ e2

„

).
(4.57)

Finally, we get that

Î�(e
„

, e
◊

, r
d

)Î =
Ò

h2

x

+ h2

y

6
Û

11
8 e2

„

+ 9
8e2

◊

6
Û

11
8 (e2

„

+ e2

◊

) 6 K Îe
r

Î
(4.58)

with K =
Û

11
8 .

The bound of the interconnection term is

ÎR
Â

u
1

�(e
„

, e
◊

, r
d

)Î 6 (M + N Îe
z

Î)K Îe
r

Î . (4.59)

4.B Bound on the estimation error eF

Here we follow the same reasoning as in [139].
The estimation error e

F

= F ≠ F̂ œ R is time-varying, and can be expressed as

e
F

= y(‹) ≠ ‰y(‹) ≠ –(u ≠ û) (4.60)

where û is the control input u in the previous time interval.
Let us suppose, without loss of generality, that ‰y(‹) is the result of a filtering process
of y(‹). For example, in the Laplace domain:

L(‰y(‹)) =
3 1

1 + Ts

4
‹

L(y(‹))

where L designates the Laplace transform. Since this is a filtering process, T

is assumed to be small, i.e. T π 1. In Fourier transform terms, this yields,
following the same steps as in [36]:

F(y(‹)) ≠ F(‰y(‹)) =
A

1 ≠ 1
(1 + 2ifiTÊ)‹

B

F(y(‹)) =
A

1 ≠ 1
(1 + 2ifiTÊ)‹

B
1

2ifiÊ
F(y(‹+1))

= (1 + 2ifiTÊ)‹ ≠ 1
(1 + 2ifiTÊ)‹

1
2ifiÊ

F(y(‹+1)) =
q

‹

k=0

1
‹

k

2
(2ifiTÊ)k ≠ 1

2ifiÊ(1 + 2ifiTÊ)‹

F(y(‹+1))

=
q

‹

k=1

1
‹

k

2
(2ifiTÊ)k

2ifiÊ(1 + 2ifiTÊ)‹

F(y(‹+1)) = T

q
‹

k=0

1
‹

k

2
(2ifiTÊ)k≠1

(1 + 2ifiTÊ)‹

F(y(‹+1))

4. Cascaded Model-Free Control of Quadrotors 111

Thus, the di�erence is, by Plancherel’s theorem:
...y(‹) ≠ ‰y(‹)

...Œ =
...F(y(‹)) ≠ F(‰y(‹))

...Œ 6 T

......

q
‹

k=0

1
‹

k

2
(2ifiTÊ)k≠1

(1 + 2ifiTÊ)‹

......Œ

...F(y(‹+1))
...Œ

And the function

Ï(Ê) =

q
‹

k=0

1
‹

k

2
(2ifiTÊ)k≠1

(1 + 2ifiTÊ)‹

=

(1 + 2ifiTÊ)‹ ≠ 1)
2ifi‹(1 + 2ifiTÊ)‹

has a unique maximum in Ê = 0.
Hence, we have

......

q
‹

k=0

1
‹

k

2
(2ifiTÊ)k≠1

(1 + 2ifiTÊ)‹

......Œ
= Ï(0) =

A
‹

1

B

= ‹

And then we get
...y(‹) ≠ ‰y(‹)

...Œ 6 T‹
...F(y(‹+1))

...Œ = T‹
...y(‹+1)

...Œ
Suppose for instance that y is of some Gevrey class of order — on a compact
subset K µ R, i.e.

÷m
K

, “
K

œ R+, ’k œ N, sup
tœK

|y(k)(t)| 6 m
K

“k

K

(k!)—.

Recall that functions of Gevrey order — < 1 are entire, while analytic for — = 1
and non-analytic if — > 1.

Then, we obtain the following estimate
...y(‹) ≠ ‰y(‹)

...Œ 6 T‹m
K

“‹

K

1
(‹ + 1)!

2
—

Considering u ≠ û, and taking for instance the approximation

û(t) = u(t ≠ h)

where h is the variable sampling period, and supposing u to be Lipschtiz with
constant L, one has

|u(t) ≠ û(t)| 6 Lh

Then, the error e
F

admits the following estimate

e
F

6
...y(‹)(t) ≠ ‰y(‹)(t)

...Œ + – Îû(t) ≠ û(t)ÎŒ 6 T‹m
K

“‹

K

1
(‹ + 1)!

2
—

+ –Lh (4.61)

If a small time interval h with respect to system dynamics is selected, as well as
a small filtering time constant T , the bound on e

F

will small. Then, according to
equation (4.11), the tracking error e will remain in a bounded ball and the system
is practical stable. Notice that in our case ‹ = 2.

112

5
Model-Free Control Framework for Cloud

Resource Elasticity

Contents
5.1 Introduction . 114

5.1.1 Data is driving the revolution 114
5.1.2 Utility Computing and Cloud Computing 115
5.1.3 Problem statement . 116

5.2 Existing approaches . 119
5.3 Model-Free Control . 120

5.3.1 The ultra-local model 120
5.3.2 Intelligent controllers . 121
5.3.3 Estimation of F . 121

5.4 Model-Free setting in the Cloud framework 123
5.5 Experiments . 124

5.5.1 Experimental Setup . 126
5.5.2 Experimental results . 127

5.6 Closing remarks . 129

113

114 5.1. Introduction

Abstract: In cloud computing management, the dynamic adaptation of computing
resource allocations under time varying workload is an active domain of investigation.
Several control strategies were already proposed. Here the Model-Free Control setting
and the corresponding “intelligent” controllers, which are most successful in many
concrete engineering situations, are employed for the “horizontal elasticity”. When
compared to the commercial “Auto-Scaling” algorithms, our easily implementable
approach behaves better, even with sharp workload fluctuations. This is confirmed
by experiments on Amazon Web Services (AWS).

5.1 Introduction
5.1.1 Data is driving the revolution

From the industry to healthcare, from connected objects to social networks, the
areas may be diverse but together they tell a similar story: the amount of data
and processing work in the world is growing fast. As a result, the traditional IT
infrastructures are not flexible enough to handle this growth. An attractive solution
to this problem is the “limitless” power of cloud computing.

Let us begin with an example: When a website or mobile application is accessed,
an internet connection is created with a distant computer. In this setting, the
distant computer provides a service (here a software) over the internet to its final
user. This service provisioning model is commonly regarded as Software as a Service
or SaaS. A SaaS provider relies on an existing IT infrastructure generally composed
of the following resources: computing, storage, networking, power supply, cooling
systems.

There exist multiple configurations of how, where and by whom the IT infrastruc-
ture is managed. Traditionally the necessary resources were installed and managed
inside the SaaS providers company premises. Due to the complexity in maintaining
a fully functional installation, companies rapidly externalized the hosting of their
IT infrastructure to highly monitored and maintained Data Centers.

With the rapid expansion of internet services, more companies were creating IT
infrastructures to serve their clients worldwide. However, for a software company
at early stages there remains four di�culties in a conventional IT Infrastructure:

• The necessity to invest in costly IT hardware and software upfront.

5. Model-Free Control Framework for Cloud Resource Elasticity 115

2009 2010 2011 2012 2013 2014 2015 2016 2017

time (year)

0

1000

2000

3000

4000

5000

6000

N
u

m
b

er
 o

f
p

u
b

li
ca

ti
o

n
s

w
it

h
 i

n
d

ex
 t

er
m

 "
C

lo
u

d
 C

o
m

p
u

ti
n

g
"

Figure 5.1: Number evolution of publications having "Cloud Computing" as index term
in the IEEE Database (http://ieeexplore.ieee.org)

• To predict and pre-provision an IT installation that can sustain estimated
peak loads of customer requests.

• Any modification or evolution to an infrastructure would take a consider-
able amount of time to physically provision the necessary hardware and
install/configure the required software.

• Recovery from infrastructure failures would be costly and time consuming
and would impact the business significantly.

5.1.2 Utility Computing and Cloud Computing

With the adoption of hardware virtualization in early 2000s and the popularization
of internet usage, a long thought idea from 1960s around a service provisioning
model called Utility Computing became a reality. The service provisioning was
based on a pay-as-you-go model for the use of computing resources. Adding the
capability to provision and use computing resources on-demand through internet
gave birth to Cloud Computing. As shown in Figure 5.1, the scientific contributions
to cloud computing research grew rapidly over the past 10 years.

116 5.1. Introduction

Among early providers of Cloud Computing through a public o�ering, we can
mention Amazon with the commercialization of Elastic Compute Cloud (EC2) in
2006, Google AppEngine in 2008 and Microsoft Azure in 2010.

In recent years, the cloud computing adoption among internet companies grew
exponentially. We mention here some major use cases:

• File Storage: Some Cloud Storage providers are using public cloud infrastruc-
ture to host their services. For example, Apple iCloud relies on Google Cloud
Platform and Amazon Web Services to host and manage its Storage service.

• Video Streaming: As an example, Netflix is extensively using Amazon Web
Services Public Cloud for its video on demand platform.

• Artificial Intelligence: Training machine learning models is mostly done on
high performance GPU instances in the cloud.

• Connected Vehicles: Car manufacturers are using cloud services to provide
connected vehicle services to their customers. For example, Renault-Nissan is
using Microsoft Azure and Amazon Web Services.

• Mobile Applications: A great majority of mobile applications are using
cloud services to provide content (multimedia, user data, etc.) and dynamic
functionalities.

• Banking: Many financial institutions are migrating their traditional infras-
tructures to the cloud. For example, Société Générale is extensively using
Amazon Web Services and Microsoft Azure.

Before going further, let us introduce some commonly used terms in Table 5.1.

5.1.3 Problem statement

Cloud services are usually expected to deliver results in a limited (constrained)
amount of time. Final users expect reactivity in their interaction with the service.
Being able to satisfy computing requests in a given maximum amount of time requires
knowledge of the task complexity and an estimation of a required computing power.
To satisfy the time constrains, the Cloud computing power should adapt itself.
Cloud Users need to optimize and adapt the allocated resources to the performance
needs, in order to maintain Business performance requirements while reducing
Cloud Platform costs. On the other hand, popular Cloud Providers like Amazon
Web Services (AWS), Google Cloud Platforms or Microsoft Azure are all looking

5. Model-Free Control Framework for Cloud Resource Elasticity 117

Term Definition
Cloud User or SaaS Provider An entity who uses cloud infrastructure to create and

o�er internet services.
Final Users or SaaS User An entity who uses the services o�ered by the Cloud

User or SaaS Provider.
Cloud Platform A combination of computer hardware and software that

can provide computing and storage resources over the
internet.

Cloud Provider An entity which create, provide and maintain the Cloud
Platform to the Cloud User.

Virtual Machine is an emulation of a computer system which provides the
necessary functionality to execute an operating system
and its applications.

Computing power Usually measured in number of vCPU (virtual Central
Processing Unit) that is a share of a physical CPU
attributed to a Virtual Machine.

Scalability The ability for a cloud platform to adjust the computing
power to a Cloud User’s need by provisioning and
deprovisioning resources. (Virtual Machines).

Auto-scaling The automatic adjustments of the computing power
based on measurable usage indicators like CPU usage.

User Tra�c/Workload The amount of Final User requests arriving on a SaaS
provider internet service during a period of time.

Table 5.1: Commonly used terms in Cloud Computing.

for ways to provide the most tailored services by optimizing the resource allocation
across clients. Having clear physical limits tied to the number of physical machines
running in their datacenters, the Cloud Provider faces clear resource management
challenges to optimize operating cost. Following this train of thought, the economic
gains coming from an intelligent computing resource management system is totally
obvious.

The survey papers [5, 6] give a clear introduction of the cloud computing
services and resume the benefits and the obstacles that may be encountered by
using them. One of the main features of cloud computing is resource elasticity (the
obstacle 8 from [5, 6]). With this feature, the traditional capacity planning and
resource anticipation procedures disappear. Cloud Users won’t have to guess the
maximum capacity needs and thus under-actuate their resources. Computing power
elasticity/scaling happens in two ways: horizontally and vertically. Vertical up or
down scaling is achieved by adding more computing capacity to an existing machine

118 5.1. Introduction

(more CPU and RAM), while the horizontal scaling adds more machines (VM
instances) to increase computing capacity as a whole. Vertical scaling takes more
time to apply and usually requires system shutdown. On the contrary, horizontal
out or in scaling can be done on a running cloud infrastructure without much
technical side-e�ects. This makes horizontal scaling more interesting economically
and technically.

Horizontal scaling can either be done manually or automatically. Current
computing resource management systems use auto-scaling techniques in order
to meet compute capacity demands. The management software takes as input
standard system metrics like average RAM usage, average CPU usage, average
Network throughput. The Cloud User can either define thresholds on each of these
metrics in order for the management software to trigger the out or in scaling process
(adding or removing compute nodes) or define rules such as peak tra�c scheduling to
scale based on previous recorded compute needs. For example, Amazon algorithms
can trigger scaling actions based on common metrics like average CPU usage. For
example, when scaling out is triggered, the amount of extra resources necessary
is either predefined (step-scaling) or automatically computed (target tracking).
Amazon tends to have a conservative approach and keeps the scaled-out cluster
for an extended amount of time before scaling in. We believe there can be a
clear improvement of this algorithm by more accurately tracking the performance
objectives and adjusting the cluster size with a more agile dynamic (see Figure
5.2). Better performance tracking and clear financial gains are promised. Control
Theory has the necessary tools to solve problems such as auto-scaling in a more
e�cient way than the threshold or rule-based auto-scaling (see [9, 77]).

In this chapter, we employ the Model-Free Control to tackle the "horizontal
elasticity" of a Cloud Services system. For our application to control a running cloud
service, we will use a production-ready 3-tier web service architecture under realistic
workload (English Wikipedia web tra�c) on Amazon Web Services infrastructure.

Outline

This chapter has the following outline:

• In Section 5.2, we briefly describe the related existing approaches.

• In Section 5.3, we review the MFC for systems of first order dynamics.

• In Section 5.4, we present our model-free framework for the "horizontal
elasticity" of a Cloud services system.

5. Model-Free Control Framework for Cloud Resource Elasticity 119

• In Section 5.5, we describe the experimental setup and, then, we report the
successful results from our real experiments.

The results from this chapter have been published in [14].

5.2 Existing approaches
Let us briefly summarize some of the publications (see e.g. [134]) that have already
used control theory to improve horizontal elasticity, with results on public clouds.

In [64], a feedback-based control strategy using a Gain Scheduling policy
to dynamically allocate computing resources to guarantee a pre-defined Service
Level Objective despite the presence of large fluctuating loads and VM failures
is introduced. In [65], the controller gain is programmed to best assign virtual
machines by employing a fuzzy approach without relying on a model. The 30%
benchmark is a sign of underutilization of resources and cannot be considered as
a realistic goal. The behaviour remains relatively similar under di�erent query
loads: Wikipedia, FIFA98 and constant load. For example, under a constant load,
their algorithm adds a considerable number of VMs without having a direct impact
on the average CPU load. Since the workload trajectory is not presented, we
cannot judge the performance of the results. The paper [9] explores the di�erences
between an industrial public cloud, Amazon EC2, and a community-driven research
cloud environment, SAVI, which is a custom OpenStack implementation. They
deployed PID controllers in both type of clouds and made a comparison between
their behaviors. The PID controllers are used under the following conditions: 1)
they can auto-scale only one tier of the application. 2) The goal of the controller is
to maintain utilization of the tier, which can be monitored, to certain levels. By
extension (Equation 2 in the paper [9]), they also control response times of this tier.
3) The input of the system is the number of servers in the controlled cluster. They
assume that the workloads are limited in intensity and that they do not cause the
saturation of the uncontrolled tiers. The PID correctors deployed by [9] supervise a
single floor. The performance for several cloud architectures is compared. Despite
the fine VM granularity in the results, the deviation of the average CPU load
from the 55% benchmark is very high for a production environment with a real
tra�c load. These CPU spikes can make the web application unstable and have
a direct e�ect on the response time. In [109], the experiments are done on the
Amazon EC2 cloud with Docker containers. They compare three di�erent methods:
Thresholds, PID and Model-based (a simple linear model). They do not assume
a model of the application or a model of the cloud as it happens with complex

120 5.3. Model-Free Control

web app
server

EC2 instance

web app
server

EC2 instance

web app
server

EC2 instance

Load Balancer

Users Devices Internet

EC2 instance
Cloud Controller

Amazon
CloudWatch

HTTP requests

Figure 5.2: High-level architecture of the system

optimization algorithms. In [86], it is considered having di�erent types of resources.
Their autoscaling approach consists not only in changing the number of resources
to be allocated, but also in considering the type of resource that need to be added
or removed while respecting fixed budget constraints. In many company use-cases,
good prediction of the workloads is of great importance to manage the resource
provisioning. Recent contribution in this direction is given in [53] where the workload
predictions are determined through e�cient time-series forecasting techniques.

5.3 Model-Free Control
In the previous Chapter, in Section 4.3.1, we briefly reviewed the Model-Free Control
(MFC) and its "inteligent" controller when the system is assumed to be of second
order dynamics. The aim of this section is to review the Model-Free Control (MFC)
for first order dynamics that is used in this chapter.

5.3.1 The ultra-local model
For a system dynamics of first order i.e. ‹ = 1, we replace the unknown global
description by the ultra-local model:

ẏ = F + –u (5.1)

5. Model-Free Control Framework for Cloud Resource Elasticity 121

where

• the control and output variables are u and y,

• the derivation order of y is 1 like in most concrete situations,

• – œ R is chosen by the practitioner such that –u and ẏ are of the same
magnitude.

The following explanations on F may be useful:

• F is estimated via the measure of u and y,

• F subsumes not only the unknown system structure but also any perturbation.

5.3.2 Intelligent controllers

The loop is closed by an intelligent proportional controller, or iP,

u = ≠F ≠ ẏ
d

≠ K
P

e

–
(5.2)

where

• y
d

is the reference trajectory,

• e = y ≠ y
d

is the tracking error,

• K
P

is the usual tuning gain.

Combining Equations (5.1) and (5.2) yields:

ė = K
P

e

where F does not appear anymore. The tuning of K
P

, in order to insure local
stability, becomes therefore quite straightforward. This is a major benefit when
compared to the tuning of classic PIDs.

Remark 5.1 An appropriate choice of y
d

is of utmost importance. Let us emphasize
that this step is almost always knowledge-based.

5.3.3 Estimation of F

The computations below stem from the estimation techniques (see [52]).

122 5.3. Model-Free Control

First approach

The term F in Equation (5.1) may be assumed to be "well” approximated by a
piecewise constant function F̂ . Rewrite then Equation (5.1) in the operational
domain (see, e.g., [141]):

sY = �
s

+ –U + y(0)

where � is a constant. We get rid of the initial condition y(0) by acting on
both sides, through d

ds

:

Y + s
dY

ds
= ≠ �

s2

+ –
dU

ds

Noise attenuation is achieved by multiplying both sides on the left by s≠2. It
yields in the time domain the real-time estimate, thanks to the equivalence between
d

ds

and the multiplication by ≠t,

F̂ (t) = ≠ 6
· 3

⁄
t

t≠·

[(· ≠ 2‡)y(‡) + –‡(· ≠ ‡)u(‡)] d‡ (5.3)

Second approach

Close the loop with the iP (5.2):

F̂ (t) = 1
·

5⁄
t

t≠·

(ẏ
d

≠ –u ≠ K
P

e) d‡
6

(5.4)

Remark 5.2 Note the following facts:

• integrals (5.3) and (5.4) are low pass filters,

• · > 0 might be quite small,

• the integrals may of course be replaced in practice by classic digital filters.

Remark 5.3 A hardware implementation of the above computations is easy [73].

5. Model-Free Control Framework for Cloud Resource Elasticity 123

yUnmodeled
 systemiP Controller

External disturbance

F̂

uyd

Figure 5.3: Model-Free Control scheme

5.4 Model-Free setting in the Cloud framework
In the case of a Cloud services system, we employ the ultra local model of first
order (5.1) and the iP controller (5.2).

• The control output y represents the central processing units (CPU) usage,
during the sampling interval [t ≠ h, t):

– Let CPUh

i

(t) be the average load, over the time interval [t ≠ h, t), of the
ith virtual machine processor, depending on the received requests.

– Let Mh

act

(t), M
min

6 Mh

act

(t) 6 M
max

, be the number of actives virtual
machines.

Therefore

y(t) =
M

h

act(t)ÿ

i=1

CPUh

i

(t) (5.5)

• For the desired trajectory or set-point, y
d

, we choose

y
d

(t) = Mh

act

(t)
2 (5.6)

This choice is a trade-o�. Thus, a set-point equal to 0.3 ◊ Mh

act

(t) (respec-
tively 0.8 ◊ Mh

act

(t)) would imply an under-exploitation (respectively over-
exploitation). Note that any significant overexploitation leads to a significant
delay in the execution of requests. Hence, a deterioration in the quality of
service.

• The control input u represents the cluster cardinality, i.e. the number of
active virtual machines.

124 5.5. Experiments

web app
server

EC2 instance

web app
server

EC2 instance

web app
server

EC2 instance

Load Balancer

Workload

HTTP requests

Average CPU Usage
MFC

CPU Usage Set-point

yd

F̂

Number of VMs

u

Figure 5.4: Control Design

Remark 5.4 In the experiments, in section 5.5, the CPU values used in the
computation of the setpoint and the output measurements are given in percentages.
That’s why, for example, 1/2 in the equation (5.6) corresponds to 50%.

The control design is shown in Figure 5.4.

5.5 Experiments
For our experiments, we implemented the architecture in Figure 5.5.

The architecture components are the following:

1. Workload Generator instances: We create EC2 instances evenly distributed in
5 di�erent geographical regions (North California, Mumbai, Sao Paolo, Paris,
Sydney). For HTTP request generation, Apache JMeter (an advanced API
testing/benchmarking tool) is used with the following plugins:

• Throughput Shaping Timer (to define a time-varying RPS (request per
second) trajectory with an open workload approach)

5. Model-Free Control Framework for Cloud Resource Elasticity 125

Figure 5.5: Experimental Framework

• Ultimate Thread Group (to initialize a su�cient amount of working
threads).

2. DNS and Load Balancing: Amazon Route 53 is the DNS provider and
AWS Application Elastic Load Balancer distributes the tra�c between two
availability zones.

3. Web Application Worker instances: evenly distributed cluster of EC2 instances
in two di�erent availability zones: eu-west-1b and eu-west-1c which are
geographically isolated Amazon Data Centers.

4. Metrics Collection: AWS CloudWatch, a managed metrics collection and
alerting service by Amazon, is used for the following metrics:

126 5.5. Experiments

• Application Elastic Load Balancer: Average Target Response Time,

• EC2 worker instances with detailed monitoring: Average CPU usage per
minute.

5. AWS RDS instance: It is used in the 3 tier web application experiments.

6. Cloud Controller: We create an EC2 instance for our controller with a MySQL
database for controller configurations.

5.5.1 Experimental Setup

In this section, we present the setup within which we conducted our experimenta-
tions:

Web Service

We use Wikipedia English as our 3-tier web application example. The o�cial data
dump of Wikipedia from November 2017 was imported into a big AWS RDS MySQL
instance. The database contains more than 15 million articles stored in an XML
format. MediaWiki (Wikipedia’s O�cial Web Application) is used as front and web
service tier. It is a stateless PHP web application capable of scaling horizontally.
In our experimentation, we don’t serve the media files (photos, videos, etc.).

Instance Sizes

For the sake of good control performance, we use fine scaling granularity i.e.
small size EC2 On-Demand instances: t2.medium (4GB RAM and 2 vCPU). Our
workload generators are also t2.medium instances.

Web Service Response Time

Considering user’s experience, we aim to keep the web service response time
below 1 second.

Cluster Size

To have a consequent computing capacity capable of serving a high number of
initial requests per second; we initialize our cluster with 10 instances. We set
the maximum limit to 40 instances.

5. Model-Free Control Framework for Cloud Resource Elasticity 127

Load balancing limitations

AWS Application Elastic Load Balancer is a managed service capable of scaling
automatically. For the scaling to be able to adjust to the extra tra�c flow, Amazon
recommends having maximum tra�c ramp ups of +50% in a 5 minutes interval.
We adjust our tra�c generation script to meet this limitation.

Reference Setpoint

The reference setpoint is the average CPU usage of the web service worker nodes.
We will try to track the 50% usage mark to keep the web service’s performance
optimal.

We introduce two di�erent workloads:

1. A staircase tra�c

2. A tra�c with strong variations, created by condensing Wikipedia tra�c of
120 hours in 2 hours.

In both cases, we send 1 million page-visit requests during a 2 hours experiments.
In these experiments, we consider two di�erent auto-scaling methods:

1. AWS auto-scaling with the Target Tracking algorithm

2. Model-Free Control

5.5.2 Experimental results
Static Cluster (without auto-scaling)

To begin we use the first workload on a static VM Cluster with a constant number
of nodes (see Figures 5.10 and 5.11). We observe that at Mh

act

(t) =30, i.e. 30 VM,
the cluster is oversized. The average CPU usage is lower than the reference (see
sub-figure Cluster Average CPU Usage). We then change the VM count to 20,
Mh

act

(t) =20 (see Figure 5.11). We observe that the CPU usage remains above the
reference for three quarters of the experiment and saturates at the end. With the
high CPU Usage, many request failures occur at this stage and the service becomes
unavailable (failed requests are shown in orange in the sub-figure Request Count).

128 5.5. Experiments

AWS Target Tracking

Figure 5.12 depicts the results using AWS Target Tracking algorithm (version of April
2018). The CPU Usage reference is set to 50 % and other parameters are set to their
default values proposed by Amazon. This algorithm detects the first peak of tra�c
and increases the number of VM to the maximum allowed. When the tra�c load is
reduced the algorithm tends to keep the cluster at its high capacity for a long period
of time before reducing the cluster size. The following facts should be highlighted:

• The user cannot change the sampling frequency and activation thresholds.

• Amazon does not detail the way they determine the number of VMs.

Model-Free Control

Figure 5.6 shows the results using the Model-Free Control algorithm. We observe
the perfect adaptation of the cluster size Mh

act

(t) (sub-figure VM count) to the
number of requests. The sub-figure TargetResponseTime describes a response time
that is approximately constant, except when a peak load occurs for the first time. In
figure 5.7, in sub-figure Reference Tracking, we observe a very good follow-up of the
desired set-point. The blue curve represents the sum of the CPU usage measured on
each VM (cf. (5.5)) and the green curve represents the desired setpoint (cf.(5.6)).
The sub-figure F estimated depicts an excellent estimate of the workload shape.

To refine the confrontation with the model-free, in the second workload we
introduce very brutal variations which are unusual in practice. According to the
figures 5.8 and 5.9, the iP controller follows the load demands and best adapts
the size of the cluster.

As mentioned before, Amazon Elastic Load Balancing ELB, of type Application1

is designed to adapt to the requests arrival. However, there is a limitation: for a
period of 5 minutes, tra�c must not increase by more than 50 percent 2.

Comparisons

The table 5.2 compares the di�erent methods discussed above by using the following
Key Performance Indicators (KPI):

• Sum of the VM durations (in seconds) during each experimental test.
1See

https://docs.aws.amazon.com/elasticloadbalancing/latest/

application/introduction.html

2See
https:///aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing

5. Model-Free Control Framework for Cloud Resource Elasticity 129

Method Sum of the used
VM durations (in
seconds)

Average deviation of the
CPU from the reference

MFC (fig. 5.6) 127 920 8,53%
AWS Target Tracking (fig. 5.12) 187 080 21,73%
No elasticity, with 20 VM (fig. 5.11) 144 000 28,36%
No elasticity, with 30 VM (fig. 5.10) 216 000 21,78%

Table 5.2: Comparison of the di�erent methods.

• Measurement deviation i.e. Average CPU Usage, with respect to set-point
50% (see the sub-figures: Cluster Average CPU Usage).

In the second column we observe that the autoscaling algorithm based on Model-
Free Control significantly decreases the overall duration of VM instances used
in a single experimentation (≠31.6% compared to AWS Target Tracking). This
measure directly determines the financial cost of a Cloud Infrastructure because
the Computing Resources are billed in seconds of utilization. The third column
shows how well the algorithm tracks the desired CPU set-point. We observe that
the Model-Free Control auto-scaling algorithm shows less deviation from the target
reference CPU usage than the AWS Target Tracking algorithm.

Remark 5.5 Comparisons with other control laws, such as PID control, seem
equally favourable to our approach. The lack of details in the publications, which we
have been able to read, prevents us from saying more here.

5.6 Closing remarks
In this Chapter, we presented our implementation of Model-Free Control to help
overcome one of the main challenges of Cloud Computing, namely Auto-Scaling.
The algorithm was applied on a popular Web Service (Wikipedia) using a real-
life workload. Application possibilities are countless. For example, we can use
our approach on a MapReduce compute cluster used for Big Data Analysis. The
computing queries will represent Business Intelligence requests made by users on a
dataset (see [15, 23]). Fault tolerance, a classical subject in control theory (see, for
example, [17]), obviously appears in Cloud Computing (see, for example, [4]). Like
any computer system, virtual machines are subject to failure. As the cardinality of
VMs is the command, we know [48, 75] that the Model-Free Control easily overcomes

130 5.6. Closing remarks

Figure 5.6: Experimental results when the AWS cluster is under average time-varing
Wikipedia workload.

Figure 5.7: Experimental control design metrics when the AWS cluster is under average
time-varing Wikipedia workload with K

p

= 0.8, – = 1 and T = 1.

5. Model-Free Control Framework for Cloud Resource Elasticity 131

Figure 5.8: Experimental results when the AWS cluster is under sharp time-varing
Wikipedia workload.

Figure 5.9: Experimental control design metrics when the AWS cluster is under sharp
time-varing Wikipedia workload with K

p

= 0.8, – = 1 and T = 1.

132 5.6. Closing remarks

Figure 5.10: Experimental results when no elasticity method is used. The number of
VMs is fixed to 30.

Figure 5.11: Experimental results when no elasticity method is used. The number of
VMs is fixed to 20.

5. Model-Free Control Framework for Cloud Resource Elasticity 133

Figure 5.12: Experimental results with AWS Target Tracking Auto-scaling Algorithm.

these unpredictable events. Interestingly, our approach can be easily applied to
auto-scale the use of containers (see, for example, [16, 110]). Popularized by Linux
and Docker, containers are rapidly gaining ground in production environments.
Note, for example, that [8] studies the elasticity by regulation from a simplified
model. Many other topics, quite similar to this work, also deserve consideration.
These works are the long-anticipated signal of Control Theory’s prominent place
in computer science, especially if one abandons the ambition, too often vain, of
precise mathematical modeling, be it deterministic or probabilistic. May the
mathematicians reassure themselves! Their role will not be diminished if they
participate in the construction of new tools required, Model-Free Control is just
one example among many others to develop if not to invent.

134

6
Conclusion and Future Works

We shall here state the obtained results and emphasize three aspects : at first
some motivations, then the advocated method advantages and finally the limits
and left open questions or further developments. In this thesis, we have presented
two main parts. In the first part, we set the problem of finding the feasible
reference trajectories for the control of di�erentially flat systems with constraints.
In the second part, we proposed two applications of the Model-Free Control to the
quadrotor system and the horizontal elasticity of Cloud Computing system.

6.1 Results summary and advantages
Motivation

• In Chapters 2, 3, we aim to fulfill the need for a systematic approach able to
satisfy the system constraints directly in the control formulation.

• In Chapters 4, 5, we search for a feedback law able to control the system when
the system model is poorly known or too complex to be modelled/identified.
This controller should be robust to external disturbances, and this without
any a priori knowledge on the latter.

Advantages

As far as Chapters 2 and 3 are concerned

• Finding a set of feasible reference trajectories (i.e. in the identified semi-
algebraic set) automatically yields a fulfillment of the system’s constraints.

135

136 6.2. Limits and further development tracks

Indeed, this constraints fulfillment is embedded in the computed semi-algebraic
set whose structure is adapted to the di�erential flatness parametrization.

• The advocated scheme can deal with non-constant constraints on the inputs,
states, and outputs, and, as well their derivatives. Moreover, the constraints
can be any Bézier curve, which is able to approximate any nonlinear constraint.

• All the computations are made o�-line, without involving sampling. This
yields a very fast replanning procedure. Indeed, when one wishes to replan
the trajectory, he can then pick another one from the semi-algebraic feasible
trajectory set.

• When an exact symbolic solution (via the CAD) exists, the solution can be
evaluated quickly for di�erent numerical values.

As far as Chapters 4 and 5 are concerned:

• The proposed cascaded model-free approach for the quadrotor system is
independent from the quadrotor physical parameters (mass, inertia, gyroscopic
or aerodynamic e�ects). The quadrotor can follow aggressive maneuvers while
tracking the yaw angle.

• Dealing with very complex computing systems remotely provided as a service,
the proposed auto-scaling algorithm, enables Cloud Computing users to
more e�ciently manage costly resources by adjusting their computing power
consumption to actual service demands. Our approach also allows Cloud
Providers to better distribute their data centers computing power and therefore
reduce electric power consumption.

6.2 Limits and further development tracks

As far as Chapters 2 and 3 are concerned:

• The proposed approach depends on the non-linear model complexity of
the system. The flat output parametrization may be quite complex for
some systems. A possible way of overcoming this limitation is to find a
an approximative local linear model of the complex nonlinear model. The
constrained trajectory method for such system can then be achieved in a
linear setting.

6. Conclusion and Future Works 137

• The use of Bézier curves has been investigated. It would be nice to have
a scheme with piecewize Bézier curves (aka polynomial splines), the latter
having local deformability wrt to the control points properties.

• The use of shape preserving splines (e.g. Akima, Hermite or Chebyshev
splines) would also be worth investigating, through interpolating rather than
approximating curve based schemes.

As far as Chapters 4 and 5 are concerned:

• A practical perspective on quadrotors is to test the very promising model free
law on a real testbed.

• An application on popular Cloud Computing concepts like container systems
would prove the e�ciency of our approach on a wider scale.

• The model-free approach can further be applied on di�erent levels of the
Cloud Architecture, e.g., the database layer or the load-balancing component.

6.3 Future work: Robust control of flat systems

Systems with constraints and uncertainties are considered for many real applications
of di�erent nature. In this Section, we will briefly describe the research line of the
future works.

In real-time applications, usually, we have a system model, even though we
know that the model is never a true description of the real process. This motivates
us, in this final Chapter, to conclude with a perspective framework for nonlinear
flat systems, where we use the known flat model while considering the uncertain-
ties/disturbances. The stabilization law is using a flatness approach for the known
part (presented in Chapter 2) and a model-free approach (presented in Chapter
4) for the unknown part.This kind of structure is the most common in real-time
applications. This idea is not new and it has been already explored in the recent
book [127] and in the recent papers [29], [97], [144], to name few. The advantage is
that, in our proposal, we can also deal up with the system constraints. We would
then have a very seducing alternative to the well spread MPC (Model Predictive
Control) scheme. In the latter, there is no degree of freedom in the trajectory
choice, since we are left with an optimization problem.

138 6.3. Future work: Robust control of flat systems

Consider the uncertain di�erentially flat system represented as:

y(k) = f(y, ẏ, . . . , y(fl), u) + F (6.1)

In a first time, the unknown part F will be considered as constant like in MFC. In
a second time, for systems with slow dynamics, or for slow sensors, the unknown
part F will be considered as an approximating or interpolating function, e.g. a
spline. Since a (polynomial) spline is a piecewise polynomial function, the above
approximation would be made on a finite time horizon.

References

[1] Hassane Abouaïssa, Michel Fliess, and Cédric Join. “On ramp metering: towards
a better understanding of ALINEA via model-free control”. In: International
Journal of Control 90.5 (2017), pp. 1018–1026.

[2] Kostas Alexis, George Nikolakopoulos, and Anthony Tzes. “Model predictive
quadrotor control : attitude , altitude”. In: IET Control Theory and Applications
6.June 2011 (2012), pp. 1812–1827.

[3] Hirokazu Anai. “E�ective quantifier elimination for industrial applications.” In:
ISSAC. 2014, pp. 18–19.

[4] Hamid Arabnejad et al. “A fuzzy load balancer for adaptive fault tolerance
management in cloud platforms”. In: European Conference on Service-Oriented
and Cloud Computing. Springer, 2017, pp. 109–124.

[5] Michael Armbrust et al. “Above the clouds: A Berkeley view of cloud computing”.
In: University of California, Berkeley, Tech. Rep. UCB (2009), pp. 07–013. arXiv:
05218657199780521865715.

[6] Michael Armbrust et al. “A view of cloud computing”. In: Communications of the
ACM 53.4 (2010), p. 50. arXiv: 05218657199780521865715.

[7] Martin Bak. “Control of Systems with Constraints”. PhD thesis. 2000, pp. 1–17.
[8] Luciano Baresi et al. “A discrete-time feedback controller for containerized cloud

applications”. In: Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering. ACM, 2016, pp. 217–228.

[9] Cornel Barna et al. “Cloud adaptation with control theory in industrial clouds”.
In: Proceedings - 2016 IEEE International Conference on Cloud Engineering
Workshops, IC2EW 2016 (2016), pp. 231–238.

[10] Brian A. Barsky and Tony D. DeRose. “Geometric Continuity of Parametric
Curves: Constructions of Geometrically Continuous Splines”. In: IEEE Computer
Graphics and Applications 10.1 (1990), pp. 60–68.

[11] Saugata Basu. “Algorithms in real algebraic geometry: a survey”. In: arXiv
preprint arXiv:1409.1534 (2014).

[12] Maria Bekcheva, Cédric Join, and Hugues Mounier. “Cascaded Model-Free
Control for trajectory tracking of quadrotors.” In: International Conference on
Unmanned Aircraft Systems (ICUAS). 2018, pp. 1359–1368.

[13] Maria Bekcheva, Hugues Mounier, and Luca Greco. “Control of di�erentially flat
linear delay systems with constraints. IFAC-PapersOnLine, 50(1), 13348-13353.”
In: IFAC World Congress. 2017, pp. 13348–13353.

[14] Maria Bekcheva et al. “Meilleure élasticité « nuagique » par commande sans
modèle”. In: ISTE OpenScience Automatique 2.1 (2018).

139

140 References

[15] Mihaly Berekmeri et al. “Feedback Autonomic Provisioning for Guaranteeing
Performance in MapReduce Systems”. In: IEEE Transactions on Cloud
Computing PP.99 (2016), p. 1.

[16] David Bernstein. “Containers and cloud: From lxc to docker to kubernetes”. In:
IEEE Cloud Computing 1.3 (2014), pp. 81–84.

[17] Mogens Blanke et al. Diagnosis and fault-tolerant control. Vol. 2. Springer, 2006.
[18] Samir Bouabdallah, Andre Noth, and Roland Siegwart. “PID vs LQ control

techniques applied to an indoor micro quadrotor”. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). Vol. 3. 2004,
pp. 2451–2456.

[19] Samir Bouabdallah and Roland Siegwart. “Backstepping and sliding-mode
techniques applied to an indoor micro Quadrotor”. In: IEEE International
Conference on Robotics and Automation (ICRA). 2005, pp. 2247–2252.

[20] Christopher W Brown. “An overview of QEPCAD B: a tool for real quantifier
elimination and formula simplification”. In: Journal of Japan Society for Symbolic
and Algebraic Computation 10.1 (2003), pp. 13–22.

[21] Ning Cao and Alan F. Lynch. “Inner-Outer Loop Control for Quadrotor UAVs
with Input and State Constraints”. In: IEEE Transactions on Control Systems
Technology 24.5 (2016), pp. 1797–1804.

[22] Garcia Carlos E., Prett David M., and Morari Manfred. “Model Predictive
Control : Theory and Practice a Survey”. In: Automatica 25.3 (1989), pp. 335–338.

[23] Sophie Cerf et al. “Cost function based event triggered Model Predictive
Controllers application to Big Data Cloud services”. In: 2016 IEEE 55th
Conference on Decision and Control (CDC). Las Vegas, 2016, pp. 1657–1662.

[24] Abbas Chamseddine et al. “Flatness-based trajectory planning/replanning for a
quadrotor unmanned aerial vehicle”. In: IEEE Transactions on Aerospace and
Electronic Systems 48.4 (2012), pp. 2832–2847.

[25] Abbas Chamseddine et al. “Trajectory Planning and Replanning Strategies
Applied to a Quadrotor Unmanned Aerial Vehicle”. In: Journal of Guidance,
Control, and Dynamics 35.5 (2012), pp. 1667–1671.

[26] Aneesh N Chand, Michihiro Kawanishi, and Tatsuo Narikiyo. “Non-linear
model-free control of flapping wing flying robot using iPID”. In: 2016 IEEE
International Conference on Robotics and Automation (ICRA). IEEE, 2016,
pp. 2930–2937.

[27] George E Collins. “Quantifier elimination for real closed fields by cylindrical
algebraic decompostion”. In: Automata Theory and Formal Languages 2nd GI
Conference Kaiserslautern, May 20–23, 1975. Springer, 1975, pp. 134–183.

[28] Giuseppe Conte and Anna Maria Perdon. “Modeling Time-delay Systems by
means of Systems with Coe�cients in a Ring”. In: In Proceedings Workshop on
Modeling and Control of Complex Systems. 2005.

[29] John Cortés-romero et al. “Algebraic estimation and active disturbance rejection
in the control of flat systems”. In: Control Engineering Practice 61.45 (2017),
pp. 173–182.

References 141

[30] Michel Coste. An introduction to semialgebraic geometry. Université de Rennes,
2002.

[31] Fabrizio Dabbene, Didier Henrion, and Constantino M. Lagoa. “Simple
approximations of semialgebraic sets and their applications to control”. In:
Automatica 78 (2017), pp. 110–118. arXiv: 1509.04200.

[32] Michel Dambrine, Jean-Pierre Richard, and Pierre Borne. “Feedback Control of
Time-Delay Systems with Bounded Control and State”. In: Mathematical
Problems in Engineering 1.1 (1995), pp. 77–87.

[33] Brigitte D’Andréa-Novel et al. “A mathematical explanation via intelligent PID
controllers of the strange ubiquity of PIDs”. In: 18th Mediterranean Conference
on Control and Automation (MED). 2010, pp. 395–400. arXiv: 1005.0440.

[34] Carl de Boor. A Practical Guide to Splines. Vol. 27. New York: Springer, 2001.
[35] Emmanuel Delaleau. “A proof of stability of model-free control”. In: 2014 IEEE

Conference on Norbert Wiener in the 21st Century (21CW). Boston, MA, 2014,
pp. 1–7.

[36] Sette Diop. “Observers for sampled data nonlinear systems via numerical
di�erentiation”. In: European Control Conference. Kos, Greece, 2007,
pp. 1179–1184.

[37] Maxime Doublet, Cédric Join, and Frédéric Hamelin. “Model-free control for
unknown delayed systems”. In: Conference on Control and Fault-Tolerant
Systems, SysTol. 2016.

[38] Nadeem Faiz, Sunil Agrawal, and Richard M. Murray. “Di�erentially Flat
Systems with Inequality Constraints: An Approach to Real-Time Feasible
Trajectory Generation”. In: AIAA Journal of Guidance, Control, and Dynamics
24.2 (2001), pp. 219–227.

[39] Guillermo P. Falconi et al. “Admissible thrust control laws for quadrotor position
tracking”. In: 2013 American Control Conference July 2016 (201302),
pp. 4844–4849.

[40] Rida T Farouki and V. T. Rajan. “Algorithms for polynomials in Bernstein form”.
In: Computer Aided Geometric Design 5.1 (1988), pp. 1–26.

[41] Matthias Fassler. “Quadrotor Control for Accurate Agile Flight”. PhD thesis.
University of Zurich, 2018.

[42] Timm Faulwasser, Veit Hagenmeyer, and Rolf Findeisen. “Optimal exact
path-following for constrained di�erentially flat systems”. In: IFAC Proceedings
Volumes (IFAC-PapersOnline) 18.PART 1 (2011), pp. 9875–9880.

[43] Timm Faulwasser, Veit Hagenmeyer, and Rolf Findeisen. “Constrained
reachability and trajectory generation for flat systems”. In: Automatica 50.4
(2014), pp. 1151–1159.

[44] Michel Fliess. “Generalized controller canonical form for linear and nonlinear
dynamics”. In: IEEE Transactions on Automatic Control 35.9 (1990),
pp. 994–1001.

[45] Michel Fliess. “Some basic structural properties of generalized linear systems”. In:
Systems & Control Letters 15 (1990), pp. 391–396.

142 References

[46] Michel Fliess. “Analyse non standard du bruit”. In: Comptes Rendus
Mathematique 342.10 (2006), pp. 797–802. arXiv: 0603003 [cs.CE].

[47] Michel Fliess and Cédric Join. “Model-free control and intelligent PID controllers:
Towards a possible trivialization of nonlinear control?” In: IFAC Proceedings
Volumes (IFAC-PapersOnline) 15.PART 1 (2009), pp. 1531–1550.

[48] Michel Fliess and Cédric Join. “Model-free control”. In: International Journal of
Control 86.12 (2013), pp. 2228–2252. arXiv: 1305.7085.

[49] Michel Fliess and Cédric Join. “Deux améliorations concurrentes des PID Two
competing improvements of PID controllers : A comparison”. In: ISTE
OpenScience Automatique 2 (2018), pp. 1–23.

[50] Michel Fliess and Hugues Mounier. “Tracking control and fi-freeness of infinite
dimensional linear systems”. In: Dynamical Systems, Control, Coding, Computer
Vision. Springer, 1999, pp. 45–68.

[51] Michel Fliess and Hugues Mounier. “On a class of linear delay systems often
arising in practice”. In: Kybernetika 37.37 (2001), pp. 295–308.

[52] Michel Fliess and Hebertt Sira-Ramirez. “Closed-loop parametric identification for
continuous-time linear systems via new algebraic techniques”. In: Identification of
Continuous-time Models from Sampled Data. Springer London, 2008, pp. 362–391.

[53] Michel Fliess et al. “Easily implementable time series forecasting techniques for
resource provisioning in cloud computing”. In: 6th International Conference on
Control, Decision and Information Technologies (CoDIT). Paris.

[54] Michel Fliess et al. “On di�erentially flat nonlinear systems”. In: Nonlinear
Control Systems Design 1992. Elsevier, 1993, pp. 159–163.

[55] Michel Fliess et al. “Flatness and defect of non-linear systems: introductory theory
and examples”. In: International Journal of Control 61.6 (1995), pp. 1327–1361.

[56] Michel Fliess et al. “A lie-bäcklund approach to equivalence and flatness of
nonlinear systems”. In: IEEE Transactions on Automatic Control 44.5 (1999),
pp. 922–937.

[57] Melvin E. Flores and Mark B. Milam. “Trajectory generation for di�erentially flat
systems via NURBS basis functions with obstacle avoidance”. In: Proceedings of
the American Control Conference 2006 (2006), pp. 5769–5775.

[58] Alessandro Gasparetto and Vanni Zanotto. “A technique for time-jerk optimal
planning of robot trajectories”. In: Robotics and Computer-Integrated
Manufacturing 24.3 (2008), pp. 415–426.

[59] Pierre-Antoine. Gédouin et al. “Model-Free Control of Shape Memory Alloys
Antagonistic Actuators”. In: Preprints 17th IFAC World Congress. Seoul, Korea,
2008.

[60] Pierre-Antoine Gédouin et al. “Experimental comparison of classical {PID} and
model-free control: position control of a shape memory alloy active spring”. In:
Control Engineering Practice 19.5 (2011), pp. 433–441.

[61] Nicole Gehring, Joachim Rudolph, and Frank Woittennek. Controllability and
prediction-free control of coupled transport processes viewed as linear systems with
distributed delays. Vol. 46. 26. IFAC, 2013, pp. 13–18.

References 143

[62] Knut Graichen and Michael Zeitz. “Feedforward control design for finite-time
transition problems of non-linear MIMO systems under input constraints”. In:
International Journal of Control 81.3 (2008), pp. 417–427.

[63] Knut Graichen and Michael Zeitz. “Feedforward Control Design for Finite-Time
Transition Problems of Nonlinear Systems With Input and Output Constraints”.
In: IEEE Transactions on Automatic Control 53.5 (2008), pp. 485–488.

[64] Domenico Grimaldi et al. “A feedback-control approach for resource management
in public clouds”. In: Global Communications Conference (GLOBECOM), IEEE.
2015.

[65] Domenico Grimaldi et al. “A Fuzzy Approach based on Heterogeneous Metrics for
Scaling Out Public Clouds”. In: IEEE Transactions on Parallel and Distributed
Systems 9219.c (2017), pp. 1–1.

[66] Veit Hagenmeyer. “Robust nonlinear tracking control based on di�erential
flatness”. In: at-Automatisierungstechnik Methoden und Anwendungen der
Steuerungs-, Regelungs-und Informationstechnik 50.12/2002 (2002), p. 615.

[67] Veit Hagenmeyer and Emmanuel Delaleau. “Exact feedforward linearization based
on di�erential flatness”. In: International Journal of Control 76.6 (2003),
pp. 537–556.

[68] Veit Hagenmeyer and Emmanuel Delaleau. “Continuous-time non-linear
flatness-based predictive control: an exact feedforward linearisation setting with
an induction drive example”. In: International Journal of Control 81.10 (2008),
pp. 1645–1663.

[69] Veit Hagenmeyer and Emmanuel Delaleau. “Robustness analysis with respect to
exogenous pertubations for flatness-based exact feedforward linearization”. In:
IEEE Transactions on Automatic Control 55.3 (2010), pp. 727–731.

[70] Jean-Claude Hennet and Sophie Tarbouriech. “Stability conditions of constrained
delay systems via positive invariance”. In: International Journal of Robust and
Nonlinear Control 8.3 (1998), pp. 265–278.

[71] Gabriel M. Ho�mann et al. “Quadrotor helicopter flight dynamics and control:
Theory and experiment”. In: American Institute of Aeronautics and Astronautics
(2007), pp. 1–20.

[72] Haomiao Huang et al. “Aerodyamics and Control of Automous Quadrotor
Helicopters in Aggressive Maneuvering”. In: ICRA2009 (2009), pp. 3277–3282.

[73] Cedric Join, Frédéric Chaxel, and Michel Fliess. “"Intelligent" controllers on cheap
and small programmable devices”. In: 2nd International Conference on Control
and Fault-Tolerant Systems (SysTol’13). Nice, 2013.

[74] Manuel Kauers. “How to use cylindrical algebraic decomposition”. In: Seminaire
Lothraringien 65.2011 (2011), pp. 1–16.

[75] Frédéric Lafont et al. “A model-free control strategy for an experimental
greenhouse with an application to fault accommodation”. In: Computers and
Electronics in Agriculture 110 (2015), pp. 139–149.

[76] Steven M LaValle. Planning algorithms. Cambridge university press, 2006.

144 References

[77] Harold C. Lim et al. “Automated control in cloud computing”. In: Proceedings of
the 1st workshop on Automated control for datacenters and clouds - ACDC ’09
(2009), p. 13.

[78] Stephen R Lindemann and Steven M Lavalle. “Computing Smooth Feedback
Plans Over Cylindrical Algebraic Decompositions”. In: Robotics:Science and
Systems. Philadelphia, USA, 2006.

[79] W. Van Loock, Goele Pipeleers, and Jan Swevers. “B-spline parameterized
optimal motion trajectories for robotic systems with guaranteed constraint
satisfaction”. In: Mechanical Sciences 6.2 (2015), pp. 163–171.

[80] Christophe Louembet, Franck Cazaurang, and Ali Zolghadri. “Motion planning
for flat systems using positive B-splines: An LMI approach”. In: Automatica 46.8
(2010), pp. 1305–1309.

[81] David Lutterkort. “Envelopes of Nonlinear Geometry”. PhD thesis. Purdue
University, 1999.

[82] Teppo Luukkonen. “Modelling and Ccontrol of Quadcopter”. In: Independent
research project in applied mathematics, Espoo. (2011).

[83] Tom Lyche and Knut Morken. “Spline Methods”. In: (2002).
[84] Victor Magron, Didier Henrion, and Jean-Bernard Lasserre. “Semidefinite

approximations of projections and polynomial images of semialgebraic sets”. In:
SIAM Journal on Optimization 25.4 (2015), pp. 2143–2164.

[85] Philipp Mai, Cédric Join, and Johan Reger. “Flatness-based fault tolerant control
of a nonlinear MIMO system using algebraic derivative estimation To cite this
version :” in: 3rd IFAC Symposium on System, Structure and Control. 2007.

[86] Ming Mao, Jie Li, and Marty Humphrey. “Cloud auto-scaling with deadline and
budget constraints”. In: Grid Computing (GRID), 2010 11th IEEE/ACM
International Conference on. 2010.

[87] Reble Marcus et al. “Model predictive control of constrained non-linear time-delay
systems”. In: IMA Journal of Mathematical Control and Information (2010).

[88] Philippe Martin, Pierre Rouchon, and Richard M. Murray. Flat systems,
equivalence and trajectory generation. 3rd cycle. 2006, p. 81.

[89] David Q. Mayne et al. “Constrained model predictive control: Stability and
optimality”. In: Automatica 36.6 (2000), pp. 789–814.

[90] Mamadou Mboup, Cédric Join, and Michel Fliess. “Numerical di�erentiation with
annihilators in noisy environment”. In: Numerical Algorithms- Springer Verlag
4.50 (2009), pp. 1–27.

[91] Daniel Mellinger and Vijay Kumar. “Minimum snap trajectory generation and
control for quadrotors”. In: Proceedings - IEEE International Conference on
Robotics and Automation (2011), pp. 2520–2525.

[92] Daniel Mellinger, Nathan Michael, and Vijay Kumar. “Trajectory generation and
control for precise aggressive maneuvers with quadrotors”. In: Springer Tracts in
Advanced Robotics 79.2009 (2014), pp. 361–373.

References 145

[93] Lghani Menhour et al. “Multivariable decoupled longitudinal and lateral vehicle
control: A model-free design”. In: Proceedings of the IEEE Conference on
Decision and Control (2013), pp. 2834–2839.

[94] Lghani Menhour et al. “An E�cient Model-Free Setting for Longitudinal and
Lateral Vehicle Control: Validation Through the Interconnected
Pro-SiVIC/RTMaps Prototyping Platform”. In: IEEE Transactions on Intelligent
Transportation Systems 19.2 (2017), pp.461–475. arXiv: 1705.03216.

[95] Mark B Milam. “Real-Time Optimal Trajectory Generation for Constrained
Dynamical Systems”. PhD thesis. 2003.

[96] Taghreed MohammadRidha et al. “A Variable Reference Trajectory for
Model-Free Glycemia Regulation”. In: 2015 Proceedings of the Conference on
Control and its Applications (2015), pp. 60–67.

[97] Rafael Morales, Hebertt Sira-ramirez, and J. A. Somolinos. “Robust control of
underactuated wheeled mobile manipulators using GPI disturbance observers”. In:
Multibody System Dynamics 32.4 (2014), pp. 511–533.

[98] Knut Mørken. “Some identities for products and degree raising of splines”. In:
Constructive Approximation 7.1 (1991), pp. 195–208.

[99] Hugues Mounier. “Propriétés structurelles des systèmes linéaires à retards:
aspects théoriques et pratiques”. PhD thesis. Université Paris–Sud, Orsay, 1995.

[100] Hugues Mounier and Luca Greco. “Modelling and structural properties of
distributed parameter wind power systems”. In: Proceedings of the 22nd
International Symposium on Mathematical Theory of Networks and Systems
(MTNS). 2016.

[101] Hugues Mounier, Pierre Rouchon, and Joachim Rudolph. “Some examples of
linear systems with delays”. In: Journal européen des systèmes automatisés 31.6
(1997), pp. 911–925.

[102] Hugues Mounier and Joachim Rudolph. “Flatness-based control of nonlinear delay
systems: A chemical reactor example”. In: International Journal of Control 71.5
(1998), pp. 871–890.

[103] Charifa Moussaoui, Rosa Abbou, and Jean Jacques Loiseau. “Controller Design
for a Class of Delayed and Constrained Systems: Application to Supply Chains”.
In: Low-Complexity Controllers for Time-Delay Systems. Ed. by Alexandre Seuret
et al. Springer International Publishing, 2014, pp. 61–75.

[104] David Nairn, Jörg Peters, and David Lutterkort. “Sharp , quantitative bounds on
the distance between a polynomial piece and its Bézier control polygon”. In:
Computer Aided Geometric Design 16 (1999), pp. 613–631.

[105] Ibrahima N’Doye et al. “Intelligent Proportional-Integral-Derivative
Control-Based Modulating Functions for Laser Beam Pointing and Stabilization”.
In: IEEE Transactions on Control Systems Technology PP (2019), pp. 1–8.

[106] Ibrahima N’Doye et al. “Intelligent proportional-integral-derivative control-based
modulating functions for laser beam pointing and stabilization”. In: IEEE
Transactions on Control Systems Technology (2019).

146 References

[107] Sorin Olaru and Silviu-iulian Niculescu. “Predictive control for linear systems
with delayed input subject to constraints”. In: IFAC Proceedings Volumes. 2008,
pp. 11208–11213.

[108] Johannes Oldenburg and Wolfgang Marquardt. “Flatness and higher order
di�erential model representations in dynamic optimization”. In: Computers and
Chemical Engineering 26.3 (2002), pp. 385–400.

[109] Pradeep Padala et al. “Adaptive control of virtualized resources in utility
computing environments”. In: In Proceedings of the European Conference on
Computer Systems (2007), pp. 289–302.

[110] Claus Pahl et al. “Cloud container technologies: a state-of-the-art review”. In:
IEEE Transactions on Cloud Computing (2017).

[111] Nicolas Petit, Mark B Milam, and Richard M Murray. “Inversion based
constrained trajectory optimization”. In: Proc. of the 5th IFAC Symposium on
Nonlinear Control Systems (2001), pp. 1–6.

[112] P. Picard, O. Sename, and J-F Lafay. “Weak controllability and controllability
indices for linear neutral systems”. In: Mathematics and Computers in Simulation
45.3-4 (1998), pp. 223–233.

[113] Les Piegl and Wayne Tiller. “Software-engineering approach to degree elevation of
B-spline curves”. In: Computer-Aided Design 26.1 (1994), pp. 17–28.

[114] Philip Polack et al. “Finite-Time Stabilization of Longitudinal Control for
Autonomous Vehicles via a Model-Free Approach”. In: IFAC World Congress.
2017. arXiv: 1704.01383.

[115] Paul Pounds, Robert Mahony, and Peter Corke. “Modelling and control of a large
quadrotor robot”. In: Control Engineering Practice 18.7 (2010), pp. 691–699.

[116] Hartmut Prautzsch, Wolfgang Boehm, and Marco Paluszny. Bézier and B-spline
techniques. Springer Science & Business Media, 2002.

[117] Mohammadreza Radmanesh and Manish Kumar. “Flight formation of UAVs in
presence of moving obstacles using fast-dynamic mixed integer linear
programming”. In: Aerospace Science and Technology 50.December (2016),
pp. 149–160.

[118] Stefan Ratschan. “Applications of Quantified Constraint Solving over the Reals
Bibliography”. In: ArXiv (2012), pp. 1–13. arXiv: arXiv:1205.5571v1.

[119] Jean-Pierre Richard. “Time-delay systems: an overview of some recent advances
and open problems”. In: Automatic Control, IEEE Transactions on 39.10 (2003),
pp. 1667–1694.

[120] Mike Roberts and Pat Hanrahan. “Generating Dynamically Feasible Trajectories
for Quadrotor Cameras”. In: Proc. of Siggraph ’16 (2016), 61:1–61:11.

[121] Anand Sanchez-Orta et al. “Position-Yaw Tracking of Quadrotors”. In: Journal of
Dynamic Systems, Measurement, and Control 137.6 (2015), p. 061011.

[122] Olivier Sename, Rabah Rabah, and Jean-François Lafay. “Decoupling without
prediction of linear systems with delays: A structural approach”. In: Systems &
Control Letters 25 (1995), pp. 387–395.

References 147

[123] Rodolphe Sepulchre, Mrdjan Jankovic, and Petar Kokotovic. Constructive
Nonlinear Control. Springer Science & Business Media, 1996, pp. 1–315. arXiv:
9809069v1 [arXiv:gr-qc].

[124] Rifat Sipahi and Silviu-Iulian Niculescu. “Stability of car following with human
memory e�ects and automatic headway compensation.” In: Philosophical
transactions. Series A, Mathematical, physical, and engineering sciences 368.1928
(2010), pp. 4563–83.

[125] Hebertt Sira-Ramirez. “On the linear control of the quad-rotor system”. In:
Proceedings of the 2011 American Control Conference. 2011, pp. 3178–3183.

[126] Hebertt Sira-Ramirez and Sunil K Agrawal. Di�erentially flat systems. CRC
Press, 2004.

[127] Hebertt Sira-Ramirez et al. Active Disturbance Rejection Control of Dynamic
Systems. First edit. 2017.

[128] Florin Stoican, Vlad-Mihai Ivanusca, and Ionela Prodan. “Obstacle avoidance via
B-spline parameterizations of flat trajectories”. In: 1 (2016), pp. 1002–1007. arXiv:
1603.04911.

[129] Florin Stoican, Ionela Prodan, and Dan Popescu. “Flat trajectory generation for
way-points relaxations and obstacle avoidance”. In: 2015 23rd Mediterranean
Conference on Control and Automation, MED 2015 - Conference Proceedings
(2015), pp. 695–700.

[130] Adam W. Strzebonski. “Cylindrical Algebraic Decomposition using validated
numerics”. In: Journal of Symbolic Computation 41.9 (2006), pp. 1021–1038.

[131] Fajar Suryawan, José De Dona, and Maria Seron. “Splines and polynomial tools
for flatness-based constrained motion planning”. In: International Journal of
Systems Science 43.8 (2012), pp. 1396–1411.

[132] Alfred Tarski. “A decision method for elementary algebra and geometry”. In:
Quantifier elimination and cylindrical algebraic decomposition. Springer, 1998,
pp. 24–84.

[133] Didier Theilliol et al. “Actuator fault-tolerant control design based on
reconfigurable reference input”. In: International Journal of Applied Mathematics
and Computer Science, De Gruyter 18.4 (2008), pp. 553–560.

[134] Amjad Ullah et al. “A control theoretical view of cloud elasticity: taxonomy,
survey and challenges”. In: Cluster Computing 21.4 (2018), pp. 1735–1764.

[135] Jorge Villagra et al. “Robust grey-box closed-loop stop-and-go control To cite this
version : HAL Id : inria-00319591 Robust grey-box closed-loop stop-and-go
control”. In: (2008).

[136] Johannes von Löwis and Joachim Rudolph. “Real-time trajectory generation for
flat systems with constraints”. In: Nonlinear and Adaptive Control. 2002,
pp. 385–394.

[137] Chen Wang et al. “Trajectory Tracking Control for Quadrotor Robot Subject to
Payload Variation and Wind Gust Disturbance”. In: Journal of Intelligent and
Robotic Systems: Theory and Applications 83.2 (2016), pp. 315–333.

148 References

[138] Haoping Wang et al. “Model-free-based terminal SMC of quadrotor attitude and
position”. In: IEEE Transactions on Aerospace and Electronic Systems 52.5
(2016), pp. 2519–2528.

[139] Jing Wang et al. “Event-driven model-free control in motion control with
comparisons”. In: IMA Journal of Mathematical Control and Information 34.4
(2016), pp. 1255–1275.

[140] David J. Wilson et al. “Cylindrical Algebraic Sub-Decompositions”. In:
Mathematics in Computer Science 8.2 (2014), pp. 263–288.

[141] Kosaku Yosida. Operational Calculus: A Theory of Hyperfunctions. 1984.
[142] Younes Al Younes et al. “Robust Model-Free Control Applied to a Quadrotor

UAV”. In: Journal of Intelligent and Robotic Systems: Theory and Applications
84.1-4 (2016), pp. 37–52.

[143] Jing Yu, Zhihao Cai, and Yingxun Wang. “Minimum jerk trajectory generation of
a quadrotor based on the di�erential flatness”. In: Proceedings of 2014 IEEE
Chinese Guidance, Navigation and Control Conference. IEEE, 2014, pp. 832–837.

[144] Eric William Zurita-Bustamante, Alberto Luviano-Juárez, and
Hebertt Sira-Ramirez. “On the Robust Flat-Filtering Control of MIMO nonlinear
systems : The PMSM Experimental Case Study”. In: American Control
Conference. 2018, pp. 6755–6760.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

Titre : Commande de systèmes plats avec contraintes et Applications de la Commande sans Modèle
aux quadrotors et au Cloud Computing

Mots clés : Platitude différentielle, Commande sans modèle, Commande des systèmes avec
contraintes, Quadrotors, Cloud Computing.

Résumé : La	 première	 partie	 de	 la	 thèse	 est	
consacrée	à	 la	 commande	avec	 contraintes	de	
systèmes	 différentiellement	 plats.	 Deux	 types	
de	 systèmes	 sont	 étudiés	 :	 les	 systèmes	 non	
linéaires	 de	 dimension	 finie	 et	 les	 systèmes	
linéaires	 à	 retards.	 Nous	 présentons	 une	
approche	 unifiée	 pour	 intégrer	 les	 contraintes	
d'entrée/état/sortie	 dans	 la	 planification	 des	
trajectoires.	 Pour	 cela,	 nous	 spécialisons	 les	
sorties	plates	(ou	 les	trajectoires	de	référence)	
sous	forme	de	courbes	de	Bézier.	En	utilisant	la	
propriété	 de	 platitude,	 les	 entrées/états	 du	
système	 peuvent	 être	 exprimés	 sous	 la	 forme	
d'une	combinaison	de	sorties	plates	(courbes	de	
Bézier)	 et	 de	 leurs	 dérivées.	 Par	 conséquent,	
nous	 obtenons	 explicitement	 les	 expressions	
des	 points	 de	 contrôle	 des	 courbes	 de	 Bézier	
d'entrées/états	 comme	 une	 combinaison	 des	
points	 de	 contrôle	 des	 sorties	 plates.	 En	
appliquant	 les	 contraintes	 souhaitées	 à	 ces	
derniers	 points	 de	 contrôle,	 nous	 trouvons	 les	
régions	faisables	pour	les	points	de	contrôle	de	
Bézier	 de	 sortie,	 c'est-à-dire	 un	 ensemble	 de	
trajectoires	 de	 référence	 faisables.	 Ce	 cadre	
permet	 d’éviter	 le	 recours,	 en	 général	 fort	
coûteux	 d’un	 point	 de	 vue	 informatique,	 aux	
schémas	d’optimisation.			
			
Pour	 résoudre	 les	 incertitudes	 liées	 à	
l'imprécision	de	 l'identification	et	modélisation	
des	modèles	et	les	perturbations,	nous	utilisons	
la	commande	sans	modèle	(Model	Free	Control-
MFC)	 et	 dans	 la	 deuxième	 partie	 de	 la	 thèse,	
nous	présentons	deux	applications	démontrant	
l'efficacité	de	notre	approche	:	
1.							Nous	 proposons	 une	 conception	 de	
contrôleur	 qui	 évite	 les	 procédures	
d'identification	 du	 système	 du	 quadrotor	 tout	
en	restant	robuste	par	rapport	aux		

perturbations	 endogènes	 (la	 performance	 de	
contrôle	est	indépendante	de	tout	changement	
de	 masse,	 inertie,	 effets	 gyroscopiques	 ou	
aérodynamiques)	 et	 aux	 perturbations	
exogènes	 (vent,	 bruit	 de	 mesure).	 Pour	
atteindre	 notre	 objectif	 en	 se	 basant	 sur	 la	
structure	 en	 cascade	 d'un	 quadrotor,	 nous	
divisons	 le	 système	 en	 deux	 sous-systèmes	 de	
position	 et	 d'attitude	 contrôlés	 chacun	
indépendamment	 par	 la	 commande	 sans	
modèle	 de	 deuxième	 ordre	 dynamique.	 Nous	
validons	notre	approche	de	contrôle	avec	trois	
scénarios	 réalistes	 :	 en	 présence	 d'un	 bruit	
inconnu,	en	présence	d’un	vent	variant	dans	le	
temps	et	en	présence	des	variations	inconnues	
de	 masse,	 tout	 en	 suivant	 des	 manœuvres	
agressives.	
2.						Nous	utilisons	 la	 commande	 sans	modèle	
et	les	correcteurs	«	intelligents	»	associés,	pour	
contrôler	 (maintenir)	 l'élasticité	 horizontale	
d'un	 système	 de	 Cloud	 Computing.	 Comparée	
aux	 algorithmes	 commerciaux	 d’Auto-Scaling,	
notre	 approche	 facilement	 implémentable	 se	
comporte	 mieux,	 même	 avec	 de	 fluctuations	
aigües	 de	 charge.	 Ceci	 est	 confirmé	 par	 des	
expériences	 sur	 le	 cloud	 public	 Amazon	 Web	
Services	(AWS).		

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

Title : Flatness-based Constrained Control and Model-Free Control Applications to Quadrotors and
Cloud Computing

Keywords : Differential Flatness, Model-Free Control, Constrained Control, Quadrotors, Cloud
Computing.

Abstract :	The first part of the thesis is devoted
to the control of differentially flat systems with
constraints. Two types of systems are studied:
non-linear finite dimensional systems and linear
time-delay systems. We present an approach to
embed the input/state/output constraints in a
unified manner into the trajectory design for
differentially flat systems. To that purpose, we
specialize the flat outputs (or the reference
trajectories) as Bézier curves. Using the flatness
property, the system’s inputs/states can be
expressed as a combination of Bézier curved flat
outputs and their derivatives. Consequently, we
explicitly obtain the expressions of the control
points of the inputs/states Bézier curves as a
combination of the control points of the flat
outputs. By applying desired constraints to the
latter control points, we find the feasible regions
for the output Bézier control points i.e. a set of
feasible reference trajectories. This framework
avoids the use of generally high computing cost
optimization schemes.

To resolve the uncertainties arising from
imprecise model identification and the unknown
pertubations, we employ the Model-Free
Control (MFC) and in the second part of the
thesis we present two applications
demonstrating the effectiveness of our
approach:

1. We propose a controller design that avoids
the quadrotor’s system identification procedures
while staying robust with respect to the
endogenous (the control performance is
independent of any mass change, inertia,
gyroscopic or aerodynamic effects) and
exogenous disturbances (wind, measurement
noise). To reach our goal, based on the cascaded
structure of a quadrotor, we divide the system
into positional and attitude subsystems each
controlled by an independent Model-Free
controller of second order dynamics. We

validate our control approach in three realistic
scenarios: in presence of unknown measurement
noise, with unknown time-varying wind
disturbances and mass variation while tracking
aggressive manoeuvres.

2. We employ the Model-Free Control to
control (maintain) the “horizontal elasticity” of
a Cloud Computing system. When compared to
the commercial “Auto-Scaling” algorithms, our
easily implementable approach behaves better,
even with sharp workload fluctuations. This is
confirmed by experiments on the Amazon Web
Services (AWS) public cloud.

