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Titre : Modele entropique pour le calcul de dose en radiothérapie externe et curiethérapie

Résumé : ce travail est dédié au développement et à la validation d’un nouvel algorithme
de résolution de l’équation de Boltzmann sur une grille cartésienne pour le transport et
le dépôt d’énergie de particules énergétiques et de rayons X dans les tissus humains. Ce
modèle basé sur une fermeture entropique fournit un outil mathématique efficace perme-
ttant de calculer la dose délivrée avec une précision comparable à celle des codes référents
de Monte Carlo (MC) en un temps de calcul fortement réduit et sans exigence de puis-
sance de calcul. Contrairement aux méthodes basées sur une discrétisation angulaire aux
ordonnées discrètes de la solution, telles que le modèle développé dans le logiciel Acuros,
le modèle entropique est basé sur l’écriture d’un nombre réduit d’équations aux moments
pour les électrons et les photons dont la fermeture est assurée par le H-théorème de Boltz-
mann. En conservant une bonne précision de calcul, l’algorithme peut simuler différentes
techniques de traitement telles que la radiothérapie externe - éventuellement en présence
de champ magnétique pour la radiothérapie guidée par IRM - la curiethérapie ou la ra-
diothérapie intra-opératoire. Le modèle a été comparé aux simulations MC en utilisant le
code PENELOPE ; il a montré une excellente précision et de bonnes performances pour
différents matériaux et structures géométriques. Le protocole de validation mis en place
a consisté à simuler les distributions de doses dans des fantômes numériques complexes
en termes de géométries (hétérogénéités) et de composition (os, poumons, air, prothèses).
Pour la curiethérapie et la radiothérapie externe, des simulations réalistes basées sur des
tomographies et utilisant l’espace de phase réel de la source ont été effectuées. Le code est
capable de calculer des distributions de dose tridimensionnelles avec des voxels de 1 mm3

sans incertitudes statistiques en quelques secondes au lieu de plusieurs minutes comme
PENELOPE le propose. Dans les applications à la curiethérapie, nous montrons que les
distributions de dose diffèrent significativement de celles calculées avec les approximations
TG-43, grâce à une prise en compte plus précise des inhomogénéités et des compositions
chimiques des matériaux ainsi que des forts gradients de densité. Pour les deux appli-
cations, le modèle entropique montre un excellent accord avec les calculs PENELOPE
dans le critère de mesure d’erreur gamma-index 1 % / 1 mm. Cette thèse de doctorat
présente les bases mathématiques et les différentes étapes d’optimisation et de validation
du modèle entropique pour la radiothérapie. Les comparaisons avec les simulations MC
démontrent une excellente précision et efficacité du modèle. Grâce au temps de calcul
considérablement réduit et à sa précision, ce modèle est un candidat prometteur pour
devenir un algorithme de calcul de dose en temps réel référent.

Mots-clés : Modele entropique; Calcul de dose; Équation de Boltzmann; Radiothérapie
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Title : Entropic model for dose calculation in external beam radiotherapy and brachyther-
apy

Abstract : This work is dedicated to development of a completely new Grid-Based
Boltzmann Solver (GBBS) for the transport and energy deposition by energetic particles
and x-rays in human tissues. The entropic closure and structured mathematical formu-
lation provide an efficient framework enabling calculations of the delivered dose with an
accuracy comparable to Monte Carlo (MC) codes in a strongly reduced computational
time and without any special processing power requirement. In contrast to discrete or-
dinates angular discretization methods, such as Acuros, the entropic model is based on
a reduced number of moment equations for the electrons and photons closed with Boltz-
mann’s H-theorem. Keeping a good accuracy of calculations, the algorithm can simulate
different treatment techniques such as the external radiotherapy even in presence of mag-
netic field (e.g., MRI-guided radiotherapy), brachytherapy or intra-operative radiation
therapy. The model has been compared with the full MC simulations by using the code
PENELOPE and showed a good accuracy and performance for different materials and
geometric structures. The validation procedure consisted in simulating dose distributions
in complex numerical phantoms including a large number of heterogeneity shapes and
materials such as bone, lung and air. For both, brachytherapy and external beam radio-
therapy, simulations based on CT scans and using the real phase-space of the source, have
been performed. The code is capable of calculating three-dimensional dose distributions
with 1 mm3 voxels without statistical uncertainties in a few seconds instead of several
minutes like PENELOPE. In brachytherapy applications the calculated dose distributions
significantly differ from the ones calculated with the TG-43 approximations, thanks to
a more accurate account for the material inhomogeneities and strong density gradients.
For both applications the entropic model shows an excellent agreement with PENELOPE
calculations within the 1% / 1mm gamma-index criterion. This Ph. D. thesis presents
the mathematical background and different steps of optimization and validation of the
entropic model for the radiotherapy applications. Comparisons with the MC simulations
demonstrates an excellent accuracy and efficiency of the model. Thanks to the signifi-
cantly reduced computational time and its accuracy, this model is a promising candidate
to become a real-time dose calculation algorithm.

Key words : Entropic model; Dose calculation; Boltzmann equation; Radiotherapy
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Introduction

Introduction

Nowadays radiotherapy is among the most important and common techniques that are
adopted for cancer treatment. The aim of radiotherapy consists in killing cancer cells
with the use of ionizing radiations that are able to spare the healty tissue surrounding
the tumor volume. The ionizing radiation consists in a beam of high energetic particles
such as photons, electrons, protons, neutrons or ions. Specifically, two main techniques
are widely used for the delivery of radiotherapy treatments: external beam radiotherapy
and brachytherapy.

In external beam radiotherapy the ionizing particle beam is generated with the use of
linear accelerators (LINAC). These machines accelerate to the desired energy a primary
electron bunch that can be directly used or can be converted in x-ray photons for treat-
ment. The external beam radiotherapy treatment has greatly improved in the last 40
years. The introduction of three dimensional imaging prompted the technological devel-
opment of optimized delivery techniques. The first step of improvement consisted in the
introduction of the three dimensional conformal radiation therapy (3DCRT). The parti-
cle beam is thus shaped in order to match the projected outline of the targeted tumor
volume. Then, the introduction of Intensity–Modulated Radiation Therapy (IMRT) and
of Image Guided RadioTherapy (IGRT) further increased the precision in the external
beam radiotherapy treatments.

Brachytherapy is a type of radiotherapy in which sealed radioactive sources are placed
directly inside the tumore or next to it. In brachytherapy, the precondition for clinical
applications is given by the direct clinical tumor access and by a tumor volume of lim-
ited size. The low dose rate (LDR) brachytherapy is used as a permanent implantation.
In this case the radioactive sources remain in the tissues and gradually become inactive
as radioactivity decays over time. The main application of LDR brachytherapy is the
prostate cancer treatment. On the contrary, the high dose rate (HDR) brachytherapy is
used as a temporary implant mainly for gynecological cancer, breast cancer and prostate
cancer. Today, the use of brachytherapy is in strong decline [46, 53, 81, 85] despite the
presence of several studies showing a better overall survival of the treated patients [46, 53].
This is mainly due to the strong technological advances in external beam radiotherapy
of the last decades.
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Introduction

In both external beam radiotherapy and brachytherapy, the dose is calculated using math-
ematical models that can predict the dose distribution in the patient starting from the
beam configuration or the source disposition. This is done before the treatment delivery.
Several models have been developed for dose calculation. The most common models are
the kernel based models, which are based on a precalculated distribution of dose. This is
released by an elemental photon beam incident in a medium (kernel). The main advan-
tage of these models consists in their fast optimization of the dose distribution delivered
with intensity modulated techniques. However, they show a lack of accuracy in hetero-
geneous media.

In principle, an exact dose calculation can be performed by solving the linear Boltzmann
transport equation (LBTE). This equation describes the transport and the interactions
of particles with the media. The linearity is an important property that results from the
underlying assumptions that interactions between projectiles particles can be neglected
and that the ambient medium properties are not modified by the interaction with the
injected particles. Due to a high number of indipendent variables, i.e. a high dimension-
ality of the phase space, the solution of LBTE is extremely costly and difficult.

The Monte Carlo method is a statistical approach for the solution of the LBTE. The
Monte Carlo method has been chosen as the gold standard for calculations in medical
physics, due to its capability of accurately solving LBTE. However, this technique is very
time consuming due to ithe intrinsic statistical approach. In the last decades, ad hoc
Monte Carlo codes have been developed in order to speed up the dose calculation. How-
ever, due to some approximations used to improve the computational effort, these codes
present some limitations of accuracy when used with new technological development such
as the MRI-guided radiotherapy.

Deterministic solvers represent an alternative method with respect to the Monte Carlo
codes for the solution of the LBTE. The deterministic models can be divided into two
categories: those using the discrete ordinate and those using the moments. Discrete or-
dinates methods are based on the discretization of the LBTE in all its variables. Acuros
(Varian Medical Systems) is the only deterministic code available in clinical context and
it belongs to the family of discrete ordinates methods.

Angular moments methods represent an alternative to discrete ordinates methods. They
are based on the solution of LBTE, but they require considerably less computational
effort. This is due to the reduction of the degrees of freedom of the LBTE, which is
obtained by integrating the equation over the direction variable. The entropic model
developed at the CELIA laboratory belongs to the category of angular moments method.

2



Introduction

This numerical code has been developed during the past years with the aim of solving
different applications in plasma physics and astrophysics. Only in the last few years,
the solution of applications to particle transport in cold matter and more specifically to
radiotherapy has been approached with this code. These works were mainly focused on
the mathematical properties of the model and only the principal physical cross sections
were firstly implemented in the numerical code [20, 34, 108]. For these reasons, even
showing good mathematical properties and a competitive performance in terms of calcu-
lation effort, the entropic model was far from a possible clinical implementation.

The aim of the present thesis is therefore the implementation, optimization and validation
of the entropic model in its physical parameters, in order to calculate a dose distribution
with an accuracy comparable to Monte Carlo codes despite the reduced number of degree
of freedom. In this work, the model is applied to both external beam radiotherapy and
brachytherapy applications.

This work is organized as follows.

The first Chapter is devoted to the presentation of the context and of the applications
in medical physics of the present study. The main radiotherapy techniques are briefly
presented, with a focus on external photon beam radiotherapy and brachytherapy. These
latter techniques are the ones that will be resolved by the proposed model in the present
work. Moreover, a brief revision of the numerical models present in literature for dose
calculations in treatment planning is carried out.

The second Chapter is devoted to the presentation of the physical interactions taking
place in the transport of electrons, positrons and photons in the radiotherapy energy
regime. A first analysis of electrons and positrons is detailed, since these particles are
responsible for the dose deposition. We focus on inelastic collisional and radiative scat-
terings and then on the elastic scattering that is responsible for the diffusion of charged
particles. We also draw a presentation of the phenomena involving photons, by describ-
ing the three most probable processes in the energy range covered by the radiotherapy
applications, i. e. the photoelectric scattering, the Compton scattering and the pair
production in nuclear field.

In the third Chapter, the entropic model is presented and analyzed as it has been con-
ceived for medical physics applications. The Boltzmann transport equation is derived in
its linearized form. Thus, the entropic model is derived to model the coupled transport
of photons and electrons. A detailed analysis is devoted to the beam initialization in the
model, which is strictly dependent on the anisotropy of the beam. For this reason, a
method to translate a phase-space initialization suitable for a Monte Carlo code into an
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anisotropy distribution for entropic models is proposed. Moreover, in the last part of the
chapter, the protocol of validation of the model with respect to the PENELOPE Monte
Carlo code is presented.

Chapters 4 and 5 are dedicated to the validation of the M1 model, i.e. the first mem-
ber in the angular moments hierarchy of the entropic model, on external photon beam
radiotherapy applications, thanks to a systematic comparison of our algorithm with the
Monte-Carlo PENELOPE code. At first, homogeneous cases are resolved in order to anal-
yse the impact of the anisotropy initialization on the solution of the Boltzmann equation.
Moreover, on these simple tests, more realistic energy initialization corresponding to the
bremsstrahlung process of photons generation. This requires the fact that primary and
secondary particles need to be treated separately to avoid numerical issues. Other tech-
niques for the optimization of the code and the accuracy preservation are proposed. Then,
the validation on different heterogeneous cases is conducted in Chapter 5.

In Chapter 6, preliminary validation on brachytherapy applications is carried out. The
model is tested on low dose rate brachytherapy applications. This choice is due to the
fact that in this energy regime the photoelectric effect and the chemical composition of
the different materials play an important role in the dose deposition.

In Conclusions we summarize the main results of this work showing the perspectives for
the future developments.
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Chapter 1

Context of the study

1.1 Radiotherapy

Radiation therapy or radiotherapy is one of the most important techniques used for cancer
treatment. The aim of radiotherapy is to kill cancer cells and shrink tumors with the use
of ionizing radiations. With the use of photons, electrons, protons, neutrons or ions, high
radiation dose concentrations are reached in the tumor volume while the healthy tissues
and organs receive as low dose concentration as possible. The absorbed dose, following the
the International Bureau of Weights and Measures, is defined as mean energy imparted
(by ionizing radiation) per unit mass. The unit of ionizing radiation absorbed dose is
Gray (Gy), Gy = J / kg [100]. Depending on the delivery technique we can define two
main types of radiotherapy:

• External beam radiotherapy: this type of radiotherapy is delivered using an external
source of radiation;

• Brachytherapy: this type of radiotherapy is delivered using radioactive sealed sources
directly into or next to the tumor.

Let us now describe more in detail the external beam radiotherapy and brachytherapy.

1.1.1 External beam radiotherapy

In external beam radiotherapy (EBRT) the ionizing radiation beam is directed to the
patient from the external source. The tissues can be irradiated with different types of
particles such as high energy photons, electrons, protons, α particles or carbon ions, see
Figure 1.1.

In external electron or photon radiotherapy, the treatment unit is typically a linear
accelerator (LINAC), see Figure 1.2. In a linear accelerator, electrons gain energy by
interacting with a synchronized radio-frequency electromagnetic field. The accelerat-
ing waveguide consists of a long cylindrical tube, containing a series of circular baffles.
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Figure 1.1: Bragg curves for elecron beam (black), carbon ions beam (red), photon beam
(dark blue) and proton beam (light blue) used for external beam radiotherapy.
Image from CERN Courier with permission.

Bunches of electrons generated by the electronic gun are injected into the guide in syn-
chronism with pulsed microwave radiation. The accelerated bunch of electron is finally
deflected with a magnetic field in order to be used for radiotherapy. This magnetic field is
generated by a system of coils that is placed just before the head of the accelerator. Once
the electron beam is created and bended in order to be perpendicular to the irradiated
surface, it is narrow, tipically a few mm in diameter, and is essentially Gaussian in profile.
This narrow pencil electron beam is not suitable for clinical use. If the electron beam is
to be used for therapy, the originally narrow beam is broadened by a scattering foil. The
electrons entering the patient skin are almost monoenergetic having the maximum energy
achieved in the acceleration. The electron radiotherapy is mostly used for treatment of
tumours up to about 70 mm deep (range in water on an electron beam with initial energy
of ' 14 MeV [9]).

Figure 1.2: Image of an Elekta Infinity linear accelerator. Image from Elekta with permission.

In photon radiotherapy, the source of electrons is focused onto a high atomic number
target (generally tungsten), and their energy is converted into bremsstrahlung radiation.
Due to this process the photon spectrum is broad with the maximum energy near to the
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maximum energy of the electrons incident on the target.
The introduction in the 1980’s of three dimensional imaging techniques, such as Com-

puter Tomography (CT) and Magnetic Resonance Imaging (MRI), greatly improved the
anatomy informations and prompted implementation of the Three Dimensional Confor-
mal Radiation Therapy (3DCRT). From this moment each selected beam aperture would
be designed to match the projected outline of the target, sparing the healthy tissues. In a
first time, the beam aperture was shaped with the use of a high atomic number shielding.
In a second time the Multi-Leaf Collimator (MLC) was implemented in the accelerator
head. It consists of a large number of high atomic number leaves that can be moved
individually as shown in Figure 1.3.

Figure 1.3: A Multi-Leaf Collimator (MLC) consists of a large number of highly absorbing
tungsten leaves (on the order of 20–80 on each side) that can be positioned indi-
vidually to create field openings with complex shapes. Image from Varian Medical
Systems with permission.

A strong improvement of the treatment delivery is represented by the Intensity Mod-
ulated Radiation Therapy (IMRT). The definition of IMRT given by Bortfeld is the
following [15]:

IMRT is a radiation treatment technique with multiple beams in which at
least some of the beams are intensity-modulated and intentionally deliver a
non-uniform intensity to the target. The desired dose distribution in the
target is achieved after superimposing such beams from different directions.
The additional degrees of freedom are utilized to achieve a better target dose
conformality and/or better sparing of critical structures.

In IMRT the particle beams are shaped and modulated in their intensity by the use
of the multileaf collimator. This delivery technique reduces the dose in particularly
sensitive critical organs and increase the dose in the target volume. In IMRT treatments
several fields are used with a static or step-and-shoot technique [30, 110] or dynamically
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[4, 84]. Another example of dynamic IMRT is the tomotherapy. Tomotherapy (i.e.
“slice therapy”) machines can be considered as a combination of a CT scanner and a
linear accelerator that can deliver the radiation in a fan-shaped distribution, similar to
CT imaging with a continuously rotating radiation source, while the patient is moved
through the machine along the rotation axis.

Even if 3DCRT and IMRT give a high number of degrees of freedom in order to
deliver precisely a high radiation dose to the planned location, uncertainties exist in many
circumstances, such as tumor target definition, patient immobilization, and organ motion
(morpological variations, breathing motion ...). In order to reduce these uncertainties
the Image Guided RadioTherapy (IGRT) has been introduced [143]. Time-resolved (4D)
imaging techniques for modeling intra-fraction organ motions are nowadays available.
Moreover, the accelerator systems are equipped with diagnostic imaging sources as the
Cone Beam Computer Tomography (CBCT) able to check the position of the tumor
immediately before beam delivering. However the CBCT scan cannot be used during
the treatment delivery. The most recent technology available on the market is the MRI-
Linac for MRI guided radiotherapy. This machine combines a MRI scanner with a linear
accelerator in a single system, as shown in Figure 1.4. With MR images it is possible to
obtain high-quality soft tissue contrast, making the visualization of tumors in soft tissue
areas (brain, liver, prostate, lung ...) simpler than with CT images. Thus, in principle it
is possible to modify the treatment plan in order to adjust the beam configuration while
the patient is on the treatment table. However, due to the presence of the magnetic field,
the trajectories of the secondary electrons are modified inducing a modification in the
planned dose distribution.

Figure 1.4: Scheme of the MRI-Linac Elekta. The system is the result of the collaboration
between Elekta and at the University Medical Center Utrecht. The 1.5 T MRI
scanner is integrated with a 6 MV radiotherapy accelerator. Image from Elekta
with permission.
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1.1.2 Brachytherapy

Brachytherapy is a type of radiotherapy in which sealed radioactive sources are placed
directly into or next to tumor. Brachytherapy is characterized by a steep dose fall off
with increasing distance to the radioactive source. The dose fall off is approximately
proportional to 1/r2, where r is the distance to the source [94]. The precondition for
clinical applications for brachytherapy is the direct clinical tumor access and limited size
tumor volume. The most common sites for administration of brachytherapy nowadays are
gynecologic and prostate cancers. Furthermore, brachytherapy is used for breast, skin,
anus and rectum, sarcoma, head and neck, bladder, lung, esophagus, bile duct, liver and
ocular malignancies [132].

Brachytherapy can be classified by the rate at which the dose is delivered. The dose
rate has the units of Gray per hour [Gy/h]. The ICRU 38 Report refers to a dose rate
of 0.4 to 2 Gy/h as a Low Dose Rate (LDR), 2 to 12 Gy/h as a Moderate Dose Rate
(MDR), and greater than 12 Gy/h as a High Dose Rate (HDR) [26].

The LDR and HDR brachytherapy are used with different implantation techniques.
The LDR brachytherapy is used with a permanent implantation. In this case the ra-
dioactive sources remain in the tissues and gradually become inactive as the radioactivity
decays over time. The most important application of the LDR brachytherapy is the
prostate cancer using permanently implanted 125I seeds. This technique consists in the
insertion of sources into the prostate gland using long needles via a transperineal approach
combined with transrectal ultrasound guidance as shown in Figure 1.5. The ultrasound
probe allows control of the needle position and seed loading within the prostate. The
needles are guided by a template with a Cartesian grid.

Figure 1.5: Prostate treatment scheme. The transrectal ultrasound probe gives a real time
image of the prostate and of the inserted needles. Image from Prostate Cancer
Foundation of Australia with permission.

On the other hand HDR brachytherapy is used with the temporary implantation. In
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this case the radioactive sources are removed after the desired radiation dose is achieved.
This technique is used especially for the treatment of gynecological cancer, breast cancer
and prostate cancer. Among gynecologic brachytherapy applications, cervix cancer is the
most common site, and the vast majority of all brachytherapy procedures worldwide are
in locally advanced cervix cancer [50] treated definitely with a combination of external
beam radiochemotherapy and brachytherapy. The radioactive source used for this kind
of brachytherapy is generally 192Ir. The source is contained in an afterloading system, see
Figure 1.6, providing protection from radiation exposure by securing the radiation source
in a shielded structure. Once the applicator or catheters are placed into or next the tissue
with the cancer, they are connected to the afterloader. In a first step a dummy source, i.e.
non radioactive source, is driven through the attached applicators and catheters in order
to check for obstructions. Only after that the radioactive source exits the afterloader and
travels through all the catheters stopping in all the planned positions.

Figure 1.6: Examples of afterloader systems. The radiation source is contained in a shielded
afterloader and is driven in catheters through the connector disposal on the top.
Image from Varian Medical Systems with permission.

In the last decades, the utilization of brachytherapy for the treatment of cervix cancer
and prostate cancer is in decline [46, 53, 81, 85]. The reasons are not completely clear
but could be attributed to the recent advances in surgery (laparoscopic and robotics tech-
niques) and to the new EBRT technologies such as IMRT, Stereotactic Beam Radiation
Therapy (SBRT) and heavy particle radiotherapy. Moreover these alternative techniques
have higher reimbursement rates relative to brachytherapy and do not suffer from a lack
of training of the medical staff [96, 106, 132]. However, there are clear indications that
patients treated with combined EBRT and brachytherapy have significantly better overall
survival than patients treated exclusively with EBRT [46, 53]. Several studies have been
conducted on the dosimetric differences among external beam therapy versus brachyther-
apy for prostate and cervix cancer [42, 43]. The results of these studies demonstrate the
superiority of brachytherapy in sparing the organ at risk and the tissues surrounding the
tumor as shown in Figure 1.7.
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Figure 1.7: Dosimetric differences among volumetric modulated arc therapy (VMAT), inten-
sity modulated proton therapy (IMPT), intensity modulated carbon-ion therapy
(IMIT), low dose rate brachytherapy (LDR-BT) and high dose rate brachytherapy
(HDR-BT). Brachytherapy techniques were superior in terms of bladder, rectum
and normal tissue sparing. Image from Georg et al. [42] with permission.

Geometric deviations of few mm may have considerable impact on a given dose distri-
bution due to the steep brachytherapy gradients [70]. The catheter implantation defines
the volume which can be reached with a relevant dose, and therefore the quality of the
implantation is of specific importance in brachytherapy. With real-time imaging it is
possible to steer the catheters into place with a high accuracy and safety for the pa-
tient. Real-time imaging can in principle be performed with ultrasound (US), MRI, CT
and endoscopy. MRI has a better soft tissue contrast with respect to US and CT. For
both prostate and cervical cancer brachytherapy postimplant dosimetry seems to be more
accurate when evaluated with MRI vs. CT/US [28, 130, 139] as shown in Figure 1.8.

With the advances in 3D imaging and image based target and organ definition, the
grounds were laid for significant advances in treatment planning. The detailed assessment
of the 3D dose distribution has allowed for new approaches in prescribing and reporting
doses for the tumor targets as well as for organs at risk [132].

Developments in treatment delivery verification are therefore currently highly war-
ranted. Several promising technologies have emerged during the last years opening a
window to automation, real-time verification and improved verification of applicator ge-
ometry. Treatment planning is currently a process which takes e.g. 30 min - 2 h including
image transfer, contouring and treatment planning. Since organ and catheter movements
may occur on time scales of less than 1 h, the delivered dose may not be identical to
planned dose [131]. If imaging is performed directly before treatment delivery these un-
certainties can be reduced. Initiatives with on-board imaging such as flat-panel imaging
are ongoing, and furthermore the first initiatives to build integrated MRI-delivery rooms
are emerging [60].
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(a) (b)

Figure 1.8: LDR brachytherapy postimplant seed images: (A) MR image of mid-gland
postimplant, and (B) corresponding CT slice. The MR image shows a better
resolution of the soft tissues and avoids seed induced artifact typical of the CT
image. Image from Crook et al. [28] with permission.

1.2 Treatment planning system and dose computation
methods

Once a patient has been diagnosed with cancer, he undergoes to images aquisitions.
Generally, in this step, computed tomography scan (CT-scan) and/or magnetic resonance
imaging (MRI) are used to acquire the anatomical structures of the patient and the
tumor localization. This sequence of images is imported in a software for treatment
planification called Treatment Planning System (TPS). After a preliminary phase of
contouring, the medical team, which is composed of dosimetrists, medical physicists and
radiation oncologists, designs an individual treatment plan. The best alternatives for
beam orientations, different field settings or better source placement in brachytherapy
are chosen, in order to achieve the optimal dose distribution in the tumor volume sparing
the neighbouring healthy tissues.

In the planning step, the dose calculation cannot be avoided in order to predict and
visualise the dose distribution in the patient. The dose is calculated using mathemati-
cal models that can predict the dose distribution in the patient starting from the beam
configuration. Several models have been developed for the dose calculation. Constant
improvements have been proposed to increase the precision of these models and to fullfil
the needs of radiotherapists. In the next sections we revise the most important mod-
els that are used in treatment planning for external photon beam radiotherapy and/or
brachytherapy.
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1.2.1 Kernel based models

The kernel based algorithms have a common root in the use of convolution/superposition
technique.

The superposition method is based on the separation between the primary and the
secondary particles. If we consider separately the primary photons and the secondary
particles, the dose can be considered as the sum of the contributions of the secondary
particles generated from primary photon interactions in distant voxels and deposing their
energy in a small volume surrounding the point of interest. The dose calculated in a
given point P (x, y, z) reads:

DP (x, y, z) =

∫ ∫ ∫
V

p (x′, y′, z′) s (x, x′, y, y′, z, z′) dV, (1.1)

where DP is the dose calculated in an element of volume surrounding P , which is deter-
mined by its position (x, y, z), V is the scattering volume, p is the fluence of the primary
photons in the control volumes dV1, dV2 and dV3 and s represents the energy fractions
that are diffused in P by the control volumes per unit of primary fluence. This is sketched
in Figure 1.9.

Figure 1.9: The superposition principle: the dose at P can be considered as the sum of the
contributions of energy deposited in a small volume surrounding P by particles
(electrons, photons) originating from primary photon interactions in distant vol-
ume elements dVi. Image from Mayles et al. [86] with permission.

The energy deposition kernel is defined as a distribution of dose released in a medium
due to an elementary photon beam incident at the origin of coordinates of the kernel.
These kernels are normally pre-calculated with Monte Carlo simulations. Energy depo-
sition kernels are categorized according to the geometry of the elementary beam that
delivers the incident energy. Several kernels exist but we focus on the two most impor-
tant: the point kernel and the pencil kernel. The point kernel is defined as the pattern
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of energy deposited in an infinite medium around a primary photon interaction site. The
pencil kernel is defined as the pattern of energy deposited in a semi-infinite medium from
an infinitesimal and monodirectional beam. In Figure 1.10 the two kernel geometries are
shown.

Figure 1.10: Irradiation geometries for point kernel (left) and pencil kernel (right). Image
from Ahnesjo et al. [3] with permission.

1.2.1.1 Pencil beam algorithms

Pencil beam algorithms [3, 52, 74, 90, 129] are based on the pencil kernels. In the
beginning they were derived for the transport of electron beams and then also for photons.
This method assumes that any collimated photon beam incident on the patient is a
conglomeration of lots of smaller pencil beams with an infinitesimal diameter. For this
reason they are particularly adapted for dose calculations and optimization in IMRT
technique.

The dose calculation at a given point is given by the sum of the contributions of every
pencil beam that is part of the irradiation field. The dose calculated with the pencil
beam kernel method in a point P (x, y, z) is expressed by the relation:

D (x, y, z) =
µ

ρ

∫ ∫ ∫
V

Ψ (x′, y′, z′)KPB (x− x′, y − y′, z − z′) dV, (1.2)

where P ′(x′, y′, z′) is the penetration point on the patient surface, µ/ρ is the mass atten-
uation coefficient, Ψ is the energy fluence, µ/ρ ·Ψ is the Total Energy Released per unit
MAss (TERMA) from P ′(x′, y′, z′), The KPB factor represents the pencil beam kernel in
a given point P (x, y, z) that is the fractional energy deposition due to primary energy
fluence entering in point P ′(x′, y′, z′).

This type of algorithms are fast but they are accurate only in a homogeneous medium
[27, 41, 148]. This is due to the fact that electrons travel a short path and contribute to
the dose at points which have a distance of few mm to a couple of cm for higher energy
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photon beams. In a homogeneous medium and for a sufficiently large field size, i.e. with
lateral dimensions larger than the range of the secondary electrons in the medium, the
electronic elquilibrium is achieved for most of the points inside the beam. This is not true
at the interfaces between two different materials where electron disequilibrium occurs and
should be taken into account.

1.2.1.2 Collapsed cone convolution algorithms

Differently from the pencil beam, the collapsed cone convolution algorithms are based on
the point kernel. In point kernel models the source is built by summing the contributions
coming from all other points of the kernel. The peculiarity of this method is the ability
of imposing a dependence in space, which is not the case of the pencil beam methods.

According to Ahnesjo et al. [3], the propagation of the primary photons is computed
by ray-tracing. In a second step the dose is calculated by superposition of appropriately
weighted point kernels. The dose calculated at a given point r with the point kernel
method can be expressed as:

D(~r) =

∫ ∫ ∫
V

T (~s)h(~r − ~s)d3s (1.3)

where T (~s) is the TERMA from the primary photon energy fluence in the volume el-
ement d3~s and h(~r − ~s) is the kernel calculated between the two points ~r and ~s. The
dose calculated with this method is exact for an arbitrary distribution of the fluence of
monoenergetic photons incident in a parallel beam on an infinite medium. A direct ap-
plication of kernel superposition is very time consuming because the integral (1.3) has to
be calculated numerically with a loop over both ~r and ~s.

In order to reduce the computational times, one could neglect the influence of the
voxels that are far from the considered point and also to discretize in angles the con-
tributions of the secondary electrons coming from a point kernel. This method inspires
the Collapsed Cone Convolution (CCC) algorithms [2], which is widely implemented in
several commercial TPSs. In these algorithms, the energy is transported along the cone
axis, with the departure point corresponding to the center of the voxel where the TERMA
is computed as shown in Figure 1.11.

The energies that are computed from the beam propagation in each voxel are then used
by summing them for each neighbouring voxel in order to compute the dose deposition on
the axis. Calculation times are of the order of minutes and a relatively accurate result is
obtained in dense tissues. However, for the low-dense tissues, the algorithm shows some
discrepancies when comparing it with the results of a Monte Carlo code [41].

The collapsed cone convolution methods are extensively used in clinical practice for
both applications in external beam radiotherapy and brachytherapy.
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Figure 1.11: In the collapsed cone approximation, all energy released from primary photons at
elements on a cone axis and flowing in coaxial cones is rectilinearly transported
and deposited on the axis. Image from Ahnesjo et al. [2] with permission.

1.2.2 Monte Carlo methods

The Monte Carlo method is a statistical approach to the study of integro-differential
equations [87]. The Monte Carlo algorithm can be considered as a probabilistic method
of solution of a Boltzmann kinetic equation. The solution is found as an estimate of
a parameter of a distribution or, more generally, of a given function of the parameter.
Because of statistical nature in the Monte Carlo method the numerical solution has an
uncertainty. For radiation transport problems, this technique simulates the tracks of
individual particles, as shown in Figure 1.12, by sampling appropriate quantities from
the probability distributions governing the individual physical processes, using machine-
generated random numbers.

Figure 1.12: Simulation of an electron beam with initial energy of 5 MeV propagating in a
water domain with a thickness of 5 cm. In red are represented the electron tra-
jectories, in blue the positron trajectories and in yellow the photon trajectories.
The simulation has been performed with the PENELOPE shower.exe program.
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The range of applications of the Monte Carlo method is very broad. Due to its
capability of accurately solve the linear Boltzmann transport equation (LBTE) that we
describe in detail in Chapter 3, the Monte Carlo method has been chosen as the gold
standard for calculations in medical physics. It can be applied to the dose calculations
for the external beam radiotherapy or brachytherapy [22, 55, 126, 142], diagnostic x-ray
applications [14, 146] or even for calibration of dosimetric instrumentation [16, 145].

Several general purpose Monte Carlo codes have been developed for radiation trans-
port calculation, which are used in medicine, such as, EGSnrc [68], MCNP [17], ETRAN
[125], GEANT4 [1], PENELOPE [121] and FLUKA [8]. Extensive efforts have been made
to improve the Monte Carlo dose calculation algorithms used in the treatment planning
systems to accurately reproduce all beam geometries and beam modification devices and
to account for the effects of heterogeneities in the full three-dimensional (3D) patient
geometry. In last decades several Monte Carlo toolkits based on general purposes codes
have been developed. These toolkits, used for simulation of linear accelerators and dose
calculation in the patient, are BEAMnrc[119], DOSXYZnrc [138], GATE [61] and PRIMO
[116].

The general purpose codes have been designed for all application types and have
not been optimized for clinical situations. The large number of particles that have to be
simulated gives rise to extremely long calculations. For this reason, general purpose Monte
Carlo codes are not integrated in the existing TPS. In the past decade, several fast Monte
Carlo codes have been developed to improve the efficiency and decrease the calculation
time. The most known fast Monte Carlo code is the Voxel Monte Carlo (VMC) code
developed by Kawrakow and Fippel [66, 67]. The VMC code has been developed firstly
for electron dose calculations and consequently extended to photon beam calculations.
This code, based on the condensed history technique for the electron transport [64] and
on the use of variance reduction techniques [65], has demonstrated a strong speed up in
dose calculations up to 100 times a general purpose Monte Carlo code. Moreover this
code has become the basis of the Nucletron electron beam dose calculation algorithm
[29].

1.2.3 Deterministic methods

The deterministic solvers represent an alternative method with respect to the Monte Carlo
codes for the solution of the LBTE. This method has been applied in different fields of
physics but in the last two decades the interest for its applications for dose calculation
in radiation therapy has consistently grown. The deterministic methods can be divided
in two categories depending on the resolution method used for the solution of the LBTE.
These two methods are the discrete ordinate methods and the moments methods.

The discrete ordinate methods are based on the discretization of all variables of the
LBTE. More specifically with this method the direction variable is divided into a finite
number of discrete angular intervals and is replaced by a discrete set of direction vectors.
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Several academic works have been published on the solution of the LBTE demonstrating
feasibility of this method for the dose distribution calculations [13, 44, 78, 97].

This method is suitable also for dose calculations in presence of an external magnetic
field. In this case the trajectories of electrons can be deviated modifying the dose distribu-
tion in the patient. Thus, it is of great importance to have a model that is able to account
for the Lorentz force. The discrete ordinate methods can simulate the dose deposited in
a MRI-guided radiotherapy as shown in the works of St. Aubin et al. [6, 127, 144]. The
results agreed within 2% − 2mm with the doses calculated with GEANT4 Monte Carlo
code, even for strong magnetic fields as shown in Figure 1.13.

Figure 1.13: Monte Carlo and discrete ordinates formalism comparison. On the left: depth
dose along the central axis. On the right: profiles at the center of the beam
(x=0). A 10 × 10 cm2 field propagates in a heterogeneous phantom composed
by layers of materials with different density and chemical composition. The
phantom used in this simulation consists in a slab of water in the first 10 cm,
in a slab of bone (ρ = 1.85 g · cm−3) between 10 and 12 cm in depth, in a slab
of lung (ρ = 0.26 g · cm−3) between 12 cm and 20 cm in depth and another
slab of water between 20 cm and 30 cm. A magnetic field of 3 T is applied
perpendicularly to the radiation beam. Image from St. Aubin et al. [127] with
permission.

The first deterministic solver incorporated in a commercially available Treatment
Planning System is Acuros® (Varian Medical Systems) [136, 137]. It has been derived
from the Attila solver [140]. Acuros® has been developed for both external photon
beam radiotherapy and brachytherapy. For brachytherapy applications has been named
Acuros® BV and it has been developed exclusively for HDR 192I brachytherapy applica-
tions [104, 107, 149, 150]. The same solver has been implemented for the external photon
beam radiotherapy with the name of Acuros® XB [19, 35].
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This model has been extensively validated in several publications. The first works
comparing Acuros® XB algorithm against measurements, and also against the Anisotropic
Analytical Algorithm (AAA) in water were performed by Fogliata et al. [38, 39, 40]. The
model has been tested with different phantom geometries, beam sizes and energies. Sim-
ilar studies were conducted by other groups [58, 111]. Acuros® XB is able to provide a
high accuracy in different cases and also in presence of heterogeneities where the AAA
algorithm fails as shown in Figure 1.14. Acuros® XB has been also compared with sev-
eral Monte Carlo codes and it has been shown that this solver provides a comparable
accuracy [19].

Figure 1.14: Depth dose curves for a photon 6MV beam calculated with VMC (in blue),
Acuros XB version 10 (in red), and AAA (in yellow) in a heterogeneous phantom.
The phantom consists in an insert, covering laterally only half of the entire
phantom and positioned at 5 cm depth in water. Three different materials and
thicknesses have been chosen for the insert. In the simulation on the left the
heterogeneity is composed by normal lung (ρ = 0.198 g · cm−3) 16 cm thick. In
the simulation in the center the heterogeneity is composed by light lung (ρ =

0.035 g · cm−3) 16 cm thick. In the simulation on the right the heterogeneity is
composed by bone (ρ = 1.798 g · cm−3) 6 cm thick. Image from Fogliata et al.
[39] with permission.

The angular moments method is an alternative to the discrete ordinate methods for a
deterministic solution of the LBTE. This methods consists in the reduction of the number
of variables in the LBTE by taking moments over the direction variable. The details of
this method are discussed in this work. In the past several works applied the moments
method to the dose calculation for external beam radiotherapy with both electron and
photon beam [57, 76, 34, 108]. These publications demonstrate the feasibility of this
method for the dose distribution calculations but did not succeed reaching the precision
required in the medical context. The last work on this model has been done by Page et
al. where the Lorentz force has been introduced [103]. This work has demonstrated the
possibility to implement the magnetic field effects in such a model obtaining good results
in terms of precision as shown in Figure 1.15.
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Figure 1.15: Comparison of dose distributions calculated with the Monte Carlo code FLUKA
(dashed line) and the angular moments method M1 (plain line). A 6 MeV mo-
noenergetic photon beam propagates in a heterogeneous phantom. The numer-
ical phantom consists in a slab of water in the first 5 cm , in a slab of lung
(ρ = 0.26 g · cm−3) between 5 and 15 cm in depth and another slab of water
between 15 cm and 20 cm. A magnetic field of 1 T is defined perpendicularly
to the beam propagation. Image from Page [103] with permission.

1.3 Conclusion

In this Chapter we have briefly introduced the context of this work recalling the techniques
of radiotherapy. We focus on the external photon beam radiotherapy and brachytherapy
that represent the main applications of our model. Moreover the main numerical models
used for the dose calculations in treatment planning are presented. In the following
Chapter we review the radiotherapy treatment related physics.
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Chapter 2

Particle interactions in radiotherapy

2.1 Introduction

In this chapter we present a brief review of the most significant interactions taking place
in the transport of electrons, positrons and photons in the radiotherapy energy range.

We first focus on electrons and positrons, which are responsible for the dose deposition.
The first type of process to be described is the inelastic scattering. The inelastic collisions
are those in which the primary particle experiences a loss of energy. In this sense we
consider both the collisional and radiative processes as inelastic scattering. The collisional
inelastic scattering for electrons is described with the Møller cross section [93] while for
positrons we use the Bhabha formulation [11]. Radiative scattering is described using
the Bethe-Heitler differential cross-section [10]. Then we describe the elastic scattering
that is resposible for diffusion of charged particles. For description of this process the
Mott formulation with the Mòliere screening is used [92]. At the end of this section the
positron annihilation is described [56].

Regarding the photon interactions we focus on three most probable processes in the
energy range covered by the radiotherapy applications. We first describe the photoelectric
scattering that takes place at low energies. In water, taken as referent material in medical
applications, this process is predominant in the energy range between 1 keV and 30 keV.
In order to describe the photoelectric effect we use the simpler Sauter formulation [123]
that in principle is valid only for the K-shell of the atom. Even if this formulation
is not exact, it gives a more comprehensible view of the phenomenon combined with
an acceptable precision. In the energy range between 30 keV and 26 MeV the most
probable interaction for a photon is Compton scattering. For its description we use the
Klein-Nishina cross section obtained in the approximation of a photon collision with a
free electron at rest [72]. The last interactions that we present is the pair and triplet
productions in field of a nuclei and in field of an atomic electron respectively. These
scattering processes become predominant for energies higher than 26 MeV in water but
produce a non-negligible contribution for photon energies higher than 10 MeV.
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2.2 Electron and positron interactions

The most significant interactions of electrons and positrons in the energy range of radio-
therapy include inelastic collisions on atomic electrons, bremsstrahlung interactions with
nuclei, elastic nuclear scattering and positrons annihiliation. Our aim here is to summa-
rize these interactions for reference in the subsequent sections of this work without any
attempt to make a comprehensive review.

2.2.1 Inelastic scattering

The dominant energy loss mechanisms for electrons and positrons in the energy range of
radiotherapy is inelastic scattering. The inelastic scattering can be divided into two main
processes. The first one is the collisional scattering where electrons and positrons collide
with an atomic electron producing electronic excitations and ionisation in the medium.
If the energy transferred to the electron is lower than the binding energy, the latter is
excited and then returns to its stable state. Otherwise, if the energy received by the target
electron is sufficiently high to win the binding energy and to produce a discernible track,
the ejected electron is called a secondary electron. The second process is the radiative
scattering where electrons and positrons interacting with the electrostatic field of atomic
nucleus convert a part of their energy in electromagnetic radiation. In sections 2.2.1.1
and 2.2.1.2 we revise the physical principles of these interactions.

2.2.1.1 Collisional scattering

The inelastic collision is the process where the electron or positron collides with an atomic
electron producing excitations and ionisations in the medium. If after an inelastic collision
two particles emerge, by convention, the particle with the higher energy is considered to
be the primary electron or positron, while the less energetic one is considered to be the
secondary particle. This type of interaction is the dominant energy loss mechanism for
electrons and positrons with intermediate and low energies. In Figure 2.1 a scheme of
the collisional process is reported.

Møller was the first one deriving the cross section for electron scattering on free
electrons [93]. The Møller cross section can be written as differential in the energy loss,
i.e. the knock-on electron energy. If E is the kinetic energy of the incident electron, W
is the kinetic energy of the secondary electron and Z is the atomic number of the crossed
medium, the Møller differential cross section in the energy of the secondary electron for
the electron-electron inelastic scattering is given by:

dσcoll,e−

dW
=

2πr2
0Z

β2

mc2

W 2

(
1 +

(
W

(E −W )

)2

− W

E −W
+

(
E

E +mc2

)2(
W

E −W
+
W 2

E2

))
,

(2.1)
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E
p

E W

s

W

Figure 2.1: Scheme of an ionisation process. The incident electron with a kinetic energy E
scatter on an atomic electron considered at rest. The most energetic electron
emerging from the collision with an angle θp with respect to the impinging par-
ticle direction is called ‘primary electron’ (in black), while the less energetic one,
emerging with an angle θs and energy W , is called ‘secondary electron’ (in blue).

where r0 = 2.817940326 × 10−15m is the classical electron radius and β = v
c
. The total

cross section for collisional scattering is obtained by integrating over the energies at which
the secondary electron can emerge. Due to the fact that the Møller cross section (2.1) is
singular at W = 0, we have to impose a cut-off value for the knock-on electron. For this
reason, the kinematical limits of the energy transfer are given by:

Wcut ≤ W ≤ E

2
, (2.2)

where the upper limit is due to the indistinguishability of the two electrons. Integrat-

ing Eq. (2.1) in the interval [Wcut,
E

2
] we obtain the total cross section for the Møller

scattering.
We define, by convention, the primary electron as the most energetic one emerging

from the collision. The angles at which the primary and secondary electron emerge from
the collision are given by the energy-momentum conservation. Calling θp and θs the
angles of the primary and secondary electron with respect to the direction of the incident
electron, they take the following formulation:

cos θp =

(
E −W
E

E + 2mc2

E −W + 2mc2

) 1
2

cos θs =

(
W

E

E + 2mc2

W + 2mc2

) 1
2

.

(2.3)
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Figure 2.2: 2D maps of the scattering angle for the primary electron, in panel (a), and for the
secondary electron, in panel (b). The angular distribution of the primary electron
in forward peaked especially for the higher energies. The secondary electron can
emerge from the interaction with a larger angle.

As it can be noticed in Figure 2.2(a), the scattering angle of the primary particle is
highly forward peaked relative to the direction of the incident electron. The angle of
the secondary particle can be large for a small energy transfer. Due to the fact that the
inelastic cross section is highly peaked for small energy transfer and due to the small range
of the low energy electrons in water, we can infer that the inelastic collisional scattering
is not the main cause of the diffusion of an electron beam. Moreover, the Møller cross
section increases rapidly as 1/W 2 at small energies of the secondary electron. That is
why the inelastic scattering is usually divided into catastrophic and soft collisions. We
consider as cathastrophic collisions those producing a secondary electron, while in soft
collisions we take into account only the energy loss of the impinging particle and the
electronic excitation.

Positrons are unstable particles that annihilate with electrons giving photons as de-
scribed in Section 2.2.3. A positron does not interact with matter as a typical charged par-
ticle, since for high energy the competing process of annihilation followed by re-creation
can cause the same transitions as direct scattering [120]. The differential cross section for
binary collisions of positrons with free electrons at rest, is given by the Bhabha formula
[11]:

dσcoll,e+

dW
=

2πr2
0Z

γ − 1

(
1

β2W 2
− B1

W
+B2 −B3W +B4W

2

)
, (2.4)
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where:

γ =
E +mc2

mc2

y =
1

γ + 1

B1 = 2− y2

B2 = (1− 2y)(3 + y2)

B3 = (1− 2y)2 + (1− 2y)3

B4 = (1− 2y)3

(2.5)

For positron-electron collision the kinematical limit of the energy transfer is:

Wcut ≤ W ≤ E. (2.6)

The relations that give the angles at which the incident positron and secondary electrons
emerge relative to the direction of the incident particle are the same as for the electrons.
This means that the positron inelastic scattering is also highly forward peaked.
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Figure 2.3: (a) Møller (electron-electron) and Bhabha (positron-electron) total inelastic cross
section in water, (b) electron and positron range in water. Data from the Monte
Carlo code PENELOPE with permission.

In Figure 2.3(a) we plot the Møller and Bhabha total cross sections in water used in
the Monte Carlo code PENELOPE [121]. As shown, the total cross sections do not differ
significantly in the energy range of interest for medical applications. A slight difference
can be noted for low energies where the range of the particles is of order of 10−5 cm (see
Figure 2.3(b)), that is completely negligible with respect to the lengths of interest for
dose calculation.
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2.2.1.2 Radiative scattering

When fast electrons interact with the Coulombian field of the nucleus, as a result of the
deflection caused by the electrostatic field a part of their energy can be converted into
electromagnetic radiation as shown in Figure 2.4. This process is called the breaking
radiation or bremsstrahlung.

E

E W

W

Figure 2.4: Scheme of electron bremsstrahlung scattering on an atomic nucleus. The electron
is deviated and loses part of its kinetic energy that is converted in an emitted
photon satisfying the conservation laws of energy and momentum.

The fraction of the electron energy converted into bremsstrahlung increases with the
electron energy and, for a given electron energy, is larger for materials of high atomic
number. In each bremsstrahlung event, an electron with kinetic energy E generates a
photon of energy W , which takes values in the interval from 0 to E. For monoenergetic
electrons that slow down and stop in a given material, the bremsstrahlung energy spec-
trum is continuous with a maximum energy that corresponds to the energy of the injected
electrons.

The theory of bremsstrahlung was first formulated by Bethe and Heitler using second-
order perturbation theory and the Born approximation [10]. Salvat et al. [122, 121]
wrote a relatively simple formulation of the Bethe-Heitler differential cross-section for
bremsstrahlung emission by electrons in the field of an atom of atomic number Z and
screening radius R as tabulated value. This formulation reads:

dσrad

dW
= r2

0αZ(Z + η)
1

W

(
W 2

γ mc2
ϕ1(b) +

4

3

(
1− W

γmc2

)
ϕ2(b)

)
, (2.7)

where α is the fine-structure constant, ϕ1(b) and ϕ2(b) are the screening functions defined
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as:

ϕ1(b) = 4 ln(Rmc/}) + 2− 2 ln(1 + b2)− 4b arctan(b−1),

ϕ2(b) = 4 ln(Rmc/}) +
7

3
− 2 ln(1 + b2)− 6b arctan(b−1)

− b2 [4− 4b arctan(b−1)− 3 ln(1 + b−2)],

(2.8)

where:
b =

Rmc

2γ }
W

γmc2 −W
. (2.9)

The radiative differential cross section for positrons reduces to that of electrons in the
high-energy limit but is smaller for intermediate and low energies (see Figure 2.5). This
behaviour has been studied by Kim et al. with the introduction of a scaling law to relate
the electron bremsstrahlung cross section with the positron one [69].
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Figure 2.5: Total cross section for electron and positron bremsstrahlung in water. Data from
the Monte Carlo code PENELOPE with permission.

2.2.1.3 Stopping power for electrons and positrons

The linear stopping power S for charged particles in a given absorber is defined as the
differential energy loss within the material divided by the corresponding differential path
length:

S(E) = −dE
ds
. (2.10)

For electrons and positrons propagating in matter the contribution to the stopping power
is given both by the collisional and radiative scattering as follows:

S(E) = Scoll(E) + Srad(E) = N
∫ E

2

0

W
dσcoll

dW
dW +N

∫ E

0

W
dσrad

dW
dW, (2.11)

where N is the number of atoms per unit volume. In Figure 2.6 we plot the stopping
power calculated for electrons and positrons that propagate in water. As expected the
energy loss do not differ significantly for the two particles.
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Figure 2.6: Stopping power for electrons and positrons propagating in water. The dashed
lines represent the contribution of the collisional scattering to the total stopping
power while the dotted lines represent the contribution of the radiative scattering.
Red color is used for electrons while blue color is used for positrons. Data from
the Monte Carlo code PENELOPE with permission.

2.2.2 Elastic scattering

The elastic interactions are those in which the initial and final quantum states of the
target atom are the same, normally the ground state as shown in Figure 2.7. Because
the mass of a target nucleus is much greater than that of the electron or positron, the
energy lost by the projectile is negligible in this interaction.

E

E

Figure 2.7: Scheme of electron elastic scattering on an atom. In the Mott formulation of the
elastic scattering, the target atom is considered as a frozen charge distribution
and the interaction with the projectile is assumed to reduce to the electrostatic
interaction.
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Elastic collisions of electrons and positrons with kinetic energies larger than a few
hundred eV can be described as scattering of the projectile by the electrostatic field of
the target [121]. The charge distribution of the target atom consists of the nucleus and
the electron cloud. The differential cross section for the elastic scattering is derived by
Mott from the Rutherford differential cross section and reads [147]:

dσ

dΩ
=

2πr2
0Z

2(
1− cos θ + 1

2
η2(E)

)2

(E + 1)2

E2(E + 2)2

(
1 +

απZ

β
√

2
χ(E)

(
1− cos θ +

1

2
η(E)

) 1
2

+

(
RMR − 1− απZ

2β
χ(E)(1− cos θ)

1
2

)
×
(

1− cos θ 1
2
η(E)

1− cos θ

)2
) (2.12)

where:

η2(E) =

(
(E + 1)2

E(E + 2)
− 1

)(
αZ

1
3

0.885

)(
1.13 + 3.76

α2Z2(E + 1)2

E(E + 2)

)
(2.13)

is the Moliere screening parameter. Moreover, RMR is the ratio of Mott-to-Rutherford
scattering determined from numerical calculations for high and low Z elements, and χ(E)

is a tabulated function [32].
Elastic scattering has a prominent influence on the transport of fast electrons and

positrons in matter. In elastic collisions, these particles may undergo large deflections
and, as a result, the space distribution of dose from electrons and positrons depends
strongly on the elastic scattering properties of the medium.

2.2.3 Electron-positron annihilation

When the photon energy exceeds twice the rest-mass energy of an electron, i.e. 1.022

MeV, the process of pair production is energetically possible, as it is explained in Section
2.3.3. The interaction takes place in the Coulomb field of the atom nucleus and the
photon disappears being replaced by an electron-positron pair. All the excess energy
above the 1.022 MeV goes into kinetic energy shared by the positron and the electron.

When the energy of positrons is very low, near the end of their range, they combine
with the atomic electrons of the material. This process is called annihilation. The original
positron and the atomic electron disappear and are replaced by two oppositely directed
0.511 MeV photons known as annihilation radiation as shown in Figure 2.8.

The annihilation in flight of a positron and electron is described by the cross section
formula of Heitler [56]. Nelson has rewritten the Heitler formula translating it into the
laboratory frame, integrating over azimuthal angle and changing from angle to energy
variable [95]. Positrons with kinetic energy E penetrating a medium of atomic number Z
can annihilate with free and at rest electrons by emission of two photons that may have
different energies, say Wl and Wh. If the incident positron has a kinetic energy E, then
the total energy is We+ = E + mc2. The total available energy is Wtot = We+ + mc2.
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E h
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l

Figure 2.8: Scheme for electron-positron annihilation. The annihilation process have place
when a propagating positron collides with an electron of the medium and the
emission of two photons with energies Wl and Wh takes place.

The fraction of the total energy transferred to one photon (e.g. Wl) is:

ζ =
Wl

E + 2mc2
. (2.14)

From the conservation of energy and momentum it follows that the two photons are
emitted in directions with polar angles given by the following relations:

cosθl = (γ2 − 1)
− 1

2

(
γ + 1− 1

ζ

)
,

cosθh = (γ2 − 1)
− 1

2

(
γ + 1− 1

1− ζ

)
.

(2.15)

The differential cross section for the positron annihilation is given by:

dσ

dζ
=
Zπ r2

0

γ − 1

1

ζ

(
1 +

2γ

(γ + 1)2
− ζ − 1

(γ + 1)2

1

ζ

)
. (2.16)

2.3 Photon interactions

In this Section, we consider the interactions of photons of energy E with atoms of atomic
number Z. We limit our considerations to the energy range from 1 keV up to 100 MeV,
where the dominant interaction processes are the photoelectric effect, incoherent (Comp-
ton) scattering and electron-positron pair production. Let us now introduce the first
photon interaction that takes place in the low energy regime.
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2.3.1 Photoelectric effect

In the photoelectric effect, a photon of energy E gives all its kinetic energy to a bounded
electron of the medium, as shown in Figure 2.9. The photoelectric process can occur
only if the photon has a kinetic energy greater than the binding energy of the electron.
The direction of emission of the resulting photoelectron, relative to that of the absorbed
photon, is defined by the polar and azimuthal angles, respectively θe and ϕe. Due to the
fact that the incident photon is not polarised the angular distribution of photoelectrons
is independent of ϕe. After a photoelectric collision, due to the vacancy in the original
electron shell, the atom is in an excited state. The vacancy can be filled by an higher
orbital electron with a consequent emission of an X-ray. If the energy released by the
outer electron is given to another electron in a higher shell the latter is ejected as an
Auger electron.

E
e

Ee

Figure 2.9: Scheme for photoelectric effect. A photon of energy E is absorbed by the atom
and an orbital electron is ejected with an energy Ee and an angle θe with respect
to the direction of the impinging photon. In this process, the entire energy of the
photon is absorbed by the atom and then transferred to the atomic electron.

In first approximation, the polar angle θe can be sampled from the K-shell cross
section derived by Sauter [123]. The Sauter differential cross section in the energy of the
photoelectron can be written as:

dσ

dΩ
= α4r2

0

(
Zmc2

E

)5
β3

γ

sin2 θe

(1− βcos θe)4

(
1 +

1

2
γ(γ − 1)(γ − 2)(1− βcos θe)

)
. (2.17)

The Sauter cross-section is adequate only for ionisation of the K-shell by high energy
photons. Nevertheless, no appreciable errors are introduced when Sauter’s distribution is
used to describe any photoionisation event. The reason is that the emitted photoelectron

31



Chapter 2. Particle interactions in radiotherapy

immediately interacts with the medium, and its direction of motion is strongly altered
after travelling a path length much shorter than the photon mean free path. Due to the
strong dependence on the atomic number of the material, the photoelectron cross section
varies significantly even if the variation of Z is small. In Figure 2.10 the plot of the
photoelectric total cross section for water and bone equivalent materials is reported. As
it can be noted, despite to the small difference between the equivalent atomic number
of water and bone, the two cross sections consistently differ. Moreover, in the low-
energy region, discontinuities in the curve of bone appear at photon energies. These
discontinuities correspond to the binding energies of electrons in the various shells of the
‘equivalent atom’ of bone material. The edge lying highest in energy corresponds to the
binding energy of the K-shell electron.
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Figure 2.10: Total cross sections for photoelectric effect in water (ρ = 1.0 g · cm−3, Zeq =

7.22) and bone (ρ = 1.85 g · cm−3, Zeq = 10.63) equivalent materials. The two
discontinuities in the bone curve correspond to the K-shell edges. Data from
the Monte Carlo code PENELOPE with permission.

2.3.2 Incoherent scattering

In the Compton effect, the incident photon with energy E collides with an atomic electron
and gives some of its energy to that electron as shown in Figure 2.11. After the collision
the incident photon energy and direction are changed according to the conservation of the
energy and momentum. The electron, that can be considered at rest before the collision,
has now kinetic energy Ee. The Compton effect is the dominant scattering process for
energies between 30 keV and 26 MeV in water and is the main cause of the energy loss
of photons in radiotherapy applications.

It is worthwhile for a better comprehension to derive the kinematics of the Compton
process from the laws of conservation of the energy and momentum. We introduce the
relativistic energy-momentum 4-vector defined as follows:

~P =
(
Wc−1, ~p

)
=
(
Wc−1, px, py, pz

)
, (2.18)

32



2.3. Photon interactions

E
e

Ee

E`

Figure 2.11: Scheme of photon scattering on an atomic electron. The kinematics of the Comp-
ton scattering consists in the binary collision between a photon (projectile) and
an atomic electron at rest (target). The energies Ee and E′, and the propa-
gation angles θe and θγ of the knock-on electron and of the scattered photon
respectively are correlated by the conservation of energy and momentum.

where W = E +mc2 is the total energy, including the rest energy of the electron mc2 =

0.511 MeV and ~p is the momentum. Let us now analyse the kinematics of a two body
reaction, in which a projectile labelled with the index 1 collides with a target labelled
with the index 2 initially at rest in the laboratory frame of reference. Particles 3 and
4 are the particles after the collision. The energy-momentum 4-vectors of the involved
particles are:

~P1 =
(
W1c

−1, 0, 0, p1

)
,

~P2 =
(
W2c

−1, 0, 0, 0
)

= (mec, 0, 0, 0) ,

~P3 =
(
W3c

−1, p3sin θ3, 0, p3cos θ3

)
,

~P4 =
(
W4c

−1, p4sin θ4, 0, p4cos θ4

)
.

(2.19)

The momentum and energy conservation is expressed as follows:

~P1 + ~P2 = ~P3 + ~P4. (2.20)

The square length of the energy-momentum vector is invariant:

~P · ~P =W2c−2 − ~p2 = (mc)2 , (2.21)
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which gives the following expression

(m4c)
2 = ~P4 · ~P4 =

(
~P1 + ~P2 − ~P3

)(
~P1 + ~P2 − ~P3

)
= ~P1

~P1 + ~P2
~P2 + ~P3

~P3 + 2 ~P1
~P2 − 2 ~P1

~P3 − 2 ~P2
~P3

= (m1c)
2 + (m2c)

2 + (m3c)
2 + 2W1W2c

−2 − 2
(
W1W3c

−2 − p1p3cos θ3

)
− 2W2W3c

−2.

(2.22)

After some algebraic manipulations, we obtain an expression for the exiting angle of the
particle 3:

cos θ3 =
(m4c)

2 − (m1c)
2 − (m2c)

2 − (m3c)
2 − 2W1 (W3 −W2) c−2 +W2W3c

−2

2p1p3

. (2.23)

The magnitude of the momentum is given by

(cp)2 = E
(
E + 2mc2

)
. (2.24)

Recalling the definition of W and substituting in the previous equation, we obtain:

c2p2 =
(
W −mc2

) (
W +mc2

)
=
(
W2 −m2c4

)
, (2.25)

which gives:
cp =

√
W2 −m2c4. (2.26)

With these expressions, we can rewrite relation (2.23) in the following way:

cos θ3 =
m2

4c
4 −m2

3c
4 −m2

2c
4 −m2

1c
4 − 2W1 (W3 −W2) +W2W3

2
√
W2

1 −m2
1c

4
√
W2

3 −m2
3c

4
. (2.27)

By symmetry, an analogous expression for cosθ4 is derived:

cos θ4 =
m2

3c
4 −m2

4c
4 −m2

2c
4 −m2

1c
4 − 2W1 (W4 −W2) +W2W4

2
√
W2

1 −m2
1c

4
√
W2

4 −m2
4c

4
. (2.28)

We introduce the particles mass and energy values for the case of the Compton scat-
tering 

m1 = 0

m2 = me

m3 = 0

m4 = me


W1 = E

W2 = mec
2

W3 = E ′

W4 = mec
2 + E − E ′

. (2.29)

By using these values in Eqs. (2.27) and (2.28) we obtain expressions for the exiting
angles of the secondary photon θγ = θ3 and of the produced electron θe = θ4:

θγ = arccos

(
mc2

E

(
E

mc2
+ 1− E

E ′

))
θe = arccos

( E

mc2
+ 1

)(
1− E

E′

E
mc2

[
2 + E

mc2

(
1− E

E′

)])1/2
 .

(2.30)
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Figure 2.12: Two dimensional maps of the angles of the exiting particles (a) photons (b)
electrons, as functions of the incident photon energy E and the scattered photon
energy Ep.

We now plot the angles expressed in (2.30) as functions of the incident photon energy
E and the scattered photon energy E ′ in Figure 2.12. As shown in Figure 2.12 the
angular distribution of the emitted photon is forward peaked for a small energy loss and
for photons of higher energy. For lower energy photons the angular distribution of the
emitted photon is more isotropic. The relation between the exiting energy of the photon
and its deviation with respect to the initial direction follows from the expression (2.30)
for the angle θγ:

E ′ =
E

1 + E
mc2

(1− cos θγ)
. (2.31)

The differential cross section for the Compton scattering on a free electron at rest is
given by the Klein-Nishina formula [72]:

dσ

dε
= πr2

0

Zmc2

E

(
1

ε
+ ε

)(
1− ε sin2 θγ

1 + ε2

)
, (2.32)

where ε = E ′/E and θγ is the scattering angle of the photon. As it can be seen in
Eq. (2.32), the Compton scattering depends linearly on Z. This simple formulation
represents an approximation for the Compton interaction. In reality, the atomic electrons
are bounded with an ionisation energy of the active shell. The ionization energy can
be neglected in the medical physics application due to the high energy of the incident
particles. Moreover, atomic electrons are not at rest, but move with a certain momentum
distribution, which gives rise to the so-called Doppler broadening of the Compton line.

2.3.3 Pair production

Electron-positron pairs can be created by absorption of a photon following the interaction
with the Coulomb field as shown in Figure 2.13. The most probable interaction takes
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Chapter 2. Particle interactions in radiotherapy

place in the field of the atomic nucleus but for higher energy can occur in the field of
an atomic electron. The massive particle absorbs energy and momentum so that these
two quantities are conserved. If the interaction takes place in the field of an atomic
electron is called ‘triplet production’ because the initial electron at rest obtains also
kinetic energy and thus two electrons and one positron have produced with a significant
amount of kinetic energy. The threshold energy for pair production in the field of a
nucleus (assumed of infinite mass) is 2mc2.

E
e

Ee

p

Ep

Figure 2.13: Scheme of pair production in nuclear field. The photon of energy E interacts
with the electromagnetic field of an atomic nucleus and gives up all its energy
in the process of creating a pair consisting of an electron and a positron with
energy Ee and Ep respectively.

The Bethe-Heitler differential cross section for a photon of energy E to create an
electron-positron pair [10], in which the electron has a kinetic energy Ee = εE−mc2, can
be expressed as

dσ

dε
= r2

0αZ(Z + η)

(
(ε2 + (1− ε)2)(Φ1 − 4fC) +

2

3
ε(1− ε)(Φ2 − 4fC)

)
, (2.33)

where ε is the fraction of the photon energy taken by the secondary electron, η is the
triplet contribution, Φ1 and Φ2 are screening functions of the nucleus reading

Φ1(b) = 2− 2 ln(1 + b2)− 4b arctan(b−1) + 4 ln(Rmc/})

Φ2(b) = 4 ln(Rmc/}) +
4

3
− 2 ln(1 + b2) + 2b2 [4− 4b arctan(b−1)− 3 ln(1 + b−2)],

(2.34)

where
b =

mc2

2E

1

ε(1− ε)
Rmc

}
, (2.35)
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2.4. Conclusion

and fC is the Coulomb correction for high-energy given by

fC = a2[(1 + a2)−1 + 0.202059− 0.03693a2 + 0.00835a4

− 0.00201a6 + 0.00049a8 − 0.00012a10 + 0.00003a12].
(2.36)

coheretly to Salvat et al. [121].

2.4 Conclusion

In this chapter we presented a brief review of the most important interactions that elec-
trons, positrons and photons can experience crossing a material in the radiotherapy energy
regime. The knowledge of the scattering cross section is fundamental in order to under-
stand the physical processes that take place during the propagation of a particle beam.
In the following sections we use the physics described in this chapter in order to justify
and better understand the numerical strategies that we adopt in our model. In Figure
2.14 we show the plot of the total cross sections for photons and electrons in water.
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Figure 2.14: (a) Electron cross sections in water: the dashed black line represents the total
cross section, the blue line represents the collisional inelastic scattering contri-
bution, the red line represents the elastic scattering contribution and the green
line represents the radiative scattering contribution. (b) Photon cross sections
in water: the dashed black line represents the total cross section, the red line
represents the photoelectric scattering contribution, the blue line represents the
Compton scattering and the green line represents the pair production. Tables
of data from the Monte Carlo code PENELOPE.
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Chapter 3

Moments method for the Boltzmann
transport equation solution

3.1 Introduction

This chapter is devoted to the presentation of the entropic model as it has been con-
ceived for medical physics applications. In the first part of this chapter we introduce the
Boltzmann transport equation, in its linearized form. We present an heuristic derivation
of the equation in order to allow the reader to better understand the equation and the
moments method that is built on it.

Once the linear Boltzmann transport equation is written in its general form for the
coupled transport of photons, electrons and positrons we introduce the entropic model.
The first member of the hierarchy, the M1 model, has been developed by Dubroca and
Feugeas [33] in 1999. Moreover we study some structural limitations of this model as
the simultaneous treatment of two opposite beams or the numerical issues due to the
treatment of the secondary particles. At the end of this section we introduce the second
member of the hierarchy, the M2 model.

An important part of this chapter is devoted to the beam initialization in the M1

model. The M1 model is a mesoscopic model so the kinetic description is partially lost.
In this sense, instead of initialize a phase-space as in a Monte Carlo code, for the M1

model the initialization is strictly dependent on the anisotropy of the beam. For this
reason we propose a method to translate a phase-space initialization suitable for a Monte
Carlo code into an anisotropy distribution for M1.

In the last part of this chapter we describe the method used for the validation of
the M1 model with respect to the PENELOPE Monte Carlo code. Multiple techniques
of comparisons are used in this work in order to analyse precisely the differences and
define the degree of discrepancy between the two codes for the external photon beam
radiotherapy and brachytherapy.
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Chapter 3. Moments method for the Boltzmann transport equation solution

3.2 Boltzmann transport equation

3.2.1 Introduction

The equation that describes the transport and the interactions of particles with the media
is the Boltzmann transport equation that under its linearized form, i.e. when only the
interaction of projectile particles with the ambient atoms is considered and interactions
between the projectile particles are neglected, reads [7, 21]:

1

v

∂ψ(~r, E, Ω̂, t)

∂t
+ Ω̂ · ∇ψ(~r, E, Ω̂, t) + σt(~r, E)ψ(~r, E, Ω̂, t) =∫ ∞

0

dE ′
∫
S2

dΩ̂′ σs(~r, E
′ → E, Ω̂′ → Ω̂)ψ(~r, E ′, Ω̂′, t) +Q(~r, E, Ω̂, t)

(3.1)

where −→r ∈ R3 is the position vector, E is the particle energy, Ω̂ is a unitary vector
defining the direction of particle propagation, S2 is the unit sphere in 3-dimensional
Euclidean space, ψ is the particle flux, σt is the total cross-section, σs is the differential
scattering cross-section and Q is the source term. This equation describes the transport
of particles in a given medium and it can be used for calculating the dose deposition for
medical purposes. Equation (3.1) has seven independent variables: three spatial variables
~r = [x, y, z]T , two angular variables Ω̂ = [cos θ, cosφ sin θ, sinφ sin θ]T , energy E and time
t. Due to a high number of independent variables, i.e. a high dimensionality of the phase
space, the solution of this equation is extremely costly and difficult.

The domain of application of the linearized Boltzmann transport equation is defined
by specifying in Eq. (3.1) expressions for the cross sections. In order to describe the
transport of photons, electrons and positrons we need a system of coupled transport
equations. This is due to the fact that the incident particles can produce particles of a
other species. As described in Chapter 2 photons produce electrons, electrons produce
photons, photons can produce positron-electron pairs or these pairs produce photons.

For medical applications such as dose calculations the linearized form of the Boltzmann
equation is justified and a simpler equation with respect to Eq. (3.1) can be formulated
under two main assumptions:

1. The first assumption is related to the propagation of the particle beam in a medium.
As experimentally measured in [47], the average value of the number of electrons
emitted by an accelerator (a Varian 21Ex in the specific case) in the electron radio-
therapy configuration is (1.68 ± 0.08) × 1011 per steradian [sr−1] and per Monitor
Unit [MU−1]. This number is very small compared to the electron density of water,
which can be considered as material of reference in medical physics applications,
that is 3.34× 1023 electrons per gram [g−1]. From this consideration two important
consequences arise. The first consequence consists in the fact that the binary colli-
sions among the beam particles can be neglected. Moreover, electromagnetic field
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3.2. Boltzmann transport equation

produced by particles can be neglected. The second consequence is that the physi-
cal characteristics of the ambient medium (e.g. temperature, density, composition)
are not modified by the interaction with the injected particles. This means that
the cross sections governing the collision of the transported particles are defined at
the beginning of the simulation and do not change. This consideration justifies the
use of the linearized Boltzmann kinetic equation for radiological purposes.

2. The second assumption is related to the kinetic energy of the injected particles. The
injected particles are relativistic and the energy range considered for the simulations
goes from 1 keV to 20 MeV. This means that the velocity of the medium particles
and the rapidity of the biological response are negligible if compared to the speed
of particles. Moreover, the time required for slowing down the particles is negligible
if compared to the time of irradiation. These assumptions imply that the flux of
injected particles can be considered as constant in time and the equation describing
the transport of particles is time independent.

For a better understanding of the LBTE, we present a heuristic derivation of the
system of coupled photon-electron-positron transport equations and an explaination of
each term in the equations.

3.2.2 Heuristic derivation of the transport equation

The probability to find a particle (photon, electron and positron in our case) in the phase
space is described by the distribution function f(~r, E, Ω̂). It presents the number of
particles in the infinitesimal volume element d~r about the point ~r with energies in dE

about E and with directions in dΩ̂ about Ω̂. The distribution function is related to the
particle flux according to the relation ψ(~r, E, Ω̂) = vf(~r, E, Ω̂), where v is the particle
velocity.

When a particle undergoes an interaction with the electrons or the atomic nuclei
that compose the ambient medium, two reactions may take place: the particle can be
either scattered, or absorbed, or produce a particle of other species. Each interaction is
considered to be local in space and instantaneous in time. Between two interactions, in
absence of an external electromagnetic field, the particle is assumed to propagate in a
straight line. The probability of interaction of the particle with the ambient medium is
governed by cross sections.

We now define more precisely the meaning of different types of cross sections:

• The absorption cross section σa(~r, E) can be defined as the probability that a par-
ticle is absorbed (disappears) over a unit pathlength and another different species
of particle is created. Such a cross section has unit of inverse length and depends
on the particle kinetic energy E and on the spatial position ~r.
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Chapter 3. Moments method for the Boltzmann transport equation solution

• The scattering cross section σs(~r, E) is defined as the probability that a particle
is scattered over a unit pathlength. Such cross section has units of inverse length
and depends on the particle kinetic energy E and on its spatial position ~r. The
probability that a particle with energy E ′ and direction of flight Ω̂′ emerges from
an interaction with a given energy E and direction Ω̂ is defined by the differential
scattering cross section. Assuming that the scattering does not depend on the
azimuthal angle φ, we define µ = Ω̂ · Ω̂′ as the cosine of the collision angle, i.e. the
angle at which a secondary particle comes out of a collision, with respect to the
direction of the colliding particle. The differential cross section is defined as:

σs(~r, E
′, E, µ) =

dσ(~r, E ′, E, µ)

dE dµ
(3.2)

The differential scattering cross sections have units of inverse length inverse energy
and inverse steradian. Moreover, the scattering differential cross sections can be
represented by a Legendre expansion in the following way:

σ(E ′ → E, µ) =
∞∑
L=0

2L+ 1

4π
σL(E ′ → E)PL(µ), (3.3)

where PL(µ) are the Legendre polynomials defined by the Rodrigues’ formula as

PL(µ) =
1

2L L!

dL

dµL
(µ2 − 1)L, (3.4)

and

σL(E ′ → E) =

∫
dΩ̂PL(µ)σ(E ′ → E, µ) = 2π

∫ 1

−1

dµPL(µ)σ(E ′ → E, µ), (3.5)

are the expansion coefficients.

• The total cross section σt(~r, E) = σa(~r, E) + σs(~r, E) can be defined as the proba-
bility that a particle undergoes any interaction per unit pathlength. Such a cross
section has unit of inverse length and depends on the particle kinetic energy E and
on its spatial position ~r.

These absorption, scattering and total cross sections are macroscopic cross sections.
These cross sections are related to the microscopic cross sections introduced in Chapter
2, i.e. the cross sections defined for an element, through the following relation:

σma =
NA ρ

A
σmi (3.6)

where NA is the Avogadro’s constant, ρ is the mass density of the material and A is
gram-atomic weight of an element.
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The transport equation can be defined as a balance relation describing the motion of
particles in the phase space. The phase space consists of three variables (six dimensions)
~r, Ω̂, and E. A differential volume of the phase space is given by:

dP = d3~r dΩ̂ dE. (3.7)

Let P be the volume in phase space, in its most basic form the particle balance equation
reads:

[change rate in P] = [flux of particles entering P]− [flux of particles leaving P]. (3.8)

In order to determine the number of particles in a volume P, we have to integrate f =

f(~r, E, Ω̂) over the spatial volume ∆V , the range of directions ∆Ω̂ and energy range ∆E.
We define the term that takes into account the particles entering P as the “gain” term and
the term that takes into account particles exiting P as the “loss” term. Let us now derive
the balance relation describing distribution of particles in the phase space by analysing
the gain and loss terms.

Gains: Particles can enter the phase volume P in two different ways:

1. Source: the source term describes the number of particles entering the phase vol-
ume due to a specified external source. The source is defined as input data and
does not vary during the simulation. The source is defined by:

Q(~r, E, Ω̂) =
# particles

cm3 ·MeV · sr
(3.9)

The number of particles entering in a phase differential volume due to the external
source is given by ∫

∆V

d3~r

∫
∆E

dE

∫
∆Ω̂

dΩ̂Q(~r, E, Ω̂) (3.10)

2. Inscatter: This refers to the particles that scatter into the phase volume. This term
takes into account the contributions given by all scattering processes to produce
particles in a given phase volume. It is defined by:∫

∆V

d3~r

∫
∆E

dE

∫
∆Ω̂

dΩ̂

∫ ∞
E

dE ′
∫
S2

dΩ̂′ σs(~r, E
′ → E, Ω̂′ → Ω̂)ψ(~r, E ′, Ω̂′) (3.11)

Losses: Particles can exit the phase volume P in two different ways:

1. Absorption: When a particle undergoes collisions, it is possible that a process of
absorption takes place. The number of particles absorbed per unit volume can be
written as follows:

σa(~r, E)ψ(~r, E, Ω̂). (3.12)

Therefore, the number of particles absorbed within the phase volume P is given by∫
∆V

d3~r

∫
∆E

dE

∫
∆Ω̂

dΩ̂σa(~r, E)ψ(~r, E, Ω̂) (3.13)
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2. Outscatter: The term outscattering refers to the loss of particles from a phase
volume due to a scattering interaction. We can describe the rate at which particles
outscatter as follows∫

∆V

d3~r

∫
∆E

dE

∫
∆Ω̂

dΩ̂σs(~r, E)ψ(~r, E, Ω̂). (3.14)

Transport: Let us now consider some arbitrary surface dS with unit normal vector
~en. We can describe the net rate at which particles cross the surface dS having energies
within dE and traveling in directions within dΩ̂ by

Ω̂ · ~en ψ(~r, E, Ω̂) dS dE dΩ̂. (3.15)

The rate at which particles leave the phase volume is given by∫
S∆V

dS

∫
∆E

dE

∫
∆Ω̂

dΩ̂ Ω̂ · ~en ψ(~r, E, Ω̂), (3.16)

where S∆V denotes the surface of ∆V . Applying the divergence theorem, we obtain:∫
∆V

d3~r

∫
∆E

dE

∫
∆Ω̂

dΩ̂ Ω̂ · ∇ψ(~r, E, Ω̂). (3.17)

By using all the introduced terms, it is possible to write the Boltzmann transport equation
in the following form :∫

∆V

d3~r

∫
∆E

dE

∫
∆Ω̂

dΩ̂
(

Ω̂ · ∇ψ(~r, E, Ω̂) + σs(~r, E)ψ(~r, E, Ω̂) + σa(~r, E)ψ(~r, E, Ω̂)
)

=∫
∆V

d3~r

∫
∆E

dE

∫
∆Ω̂

dΩ̂

∫ ∞
0

dE ′
∫
S2

dΩ̂′
(
σs(~r, E

′ → E, Ω̂′ → Ω̂)ψ(~r, E ′, Ω̂′) +Q(~r, E, Ω̂)
)

(3.18)

Since ∆V , ∆E and ∆Ω̂ are all arbitrary, the two integrands are equivalent everywhere.
Moreover we can write the total cross section as σt = σa+σs. Substituting these quantities
into the transport equation yields the following integro-differential equation:

Ω̂ · ∇ψ(~r, E, Ω̂) + σt(~r, E)ψ(~r, E, Ω̂) =∫ ∞
0

dE ′
∫
S2

dΩ̂′ σs(~r, E
′ → E, Ω̂′ → Ω̂)ψ(~r, E ′, Ω̂′) +Q(~r, E, Ω̂)

(3.19)

Equation (3.19) is a generic form of a linear Boltzmann transport equation that de-
scribe the transport of one particle species. In our work we describe propagation of a
photon beam that can interact with the medium generating secondary particles of other
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species. The system of coupled Boltzmann equations for the transport of photons, elec-
trons and positrons is given by:

Ω̂ · ∇ψγ(~r, E, Ω̂) + σγt (~r, E)ψγ(~r, E, Ω̂) =

∫ ∞
0

dE ′
∫
S2

dΩ̂′ σγ,γs (~r, E ′ → E, Ω̂′ → Ω̂)ψγ(~r, E ′, Ω̂′)

+

∫ ∞
0

dE ′
∫
S2

dΩ̂′ σe,γs (~r, E ′ → E, Ω̂′ → Ω̂)ψe(~r, E ′, Ω̂′)

+

∫ ∞
0

dE ′
∫
S2

dΩ̂′ σp,γs (~r, E ′ → E, Ω̂′ → Ω̂)ψp(~r, E ′, Ω̂′)

+Qγ(~r, E, Ω̂),

Ω̂ · ∇ψe(~r, E, Ω̂) + σet (~r, E)ψe(~r, E, Ω̂) =

∫ ∞
0

dE ′
∫
S2

dΩ̂′ σe,es (~r, E ′ → E, Ω̂′ → Ω̂)ψe(~r, E ′, Ω̂′)

+

∫ ∞
0

dE ′
∫
S2

dΩ̂′ σγ,es (~r, E ′ → E, Ω̂′ → Ω̂)ψγ(~r, E ′, Ω̂′)

+

∫ ∞
0

dE ′
∫
S2

dΩ̂′ σp,es (~r, E ′ → E, Ω̂′ → Ω̂)ψp(~r, E ′, Ω̂′),

Ω̂ · ∇ψp(~r, E, Ω̂) + σpt (~r, E)ψp(~r, E, Ω̂) =

∫ ∞
0

dE ′
∫
S2

dΩ̂′ σp,ps (~r, E ′ → E, Ω̂′ → Ω̂)ψp(~r, E ′, Ω̂′)

+

∫ ∞
0

dE ′
∫
S2

dΩ̂′ σγ,ps (~r, E ′ → E, Ω̂′ → Ω̂)ψγ(~r, E ′, Ω̂′),

(3.20)

where ψe, ψγ and ψp are the particles flux for electron, photon and positron respectively
and σet , σ

γ
t and σpt are the total cross section for electron, photon and positron inter-

actions respectively. The eight differential cross sections that appear in the Boltzmann
transport equations take into account all the possible interactions and couple the system
of equations. More in detail:

• σe,es is the electron-to-electron differential cross section and includes collisional scat-
tering, knock-on production, radiative scattering, elastic scattering and Auger pro-
duction following impact ionization;

• σγ,es is the photon-to-electron differential cross section and includes Compton elec-
tron production, photoelectric production, pair electron production and Auger pro-
duction following photoionization;

• σp,es is the positron-to-electron differential cross section and includes knock-on pro-
duction and Auger production following impact ionization;

• σγ,γs is the photon-to-photon differential cross section and includes Compton scat-
tering and fluorescence production following photoionization;

• σe,γs is the electron-to-photon differential cross section and includes bremsstrahlung
production and fluorescence production following impact ionization;
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Chapter 3. Moments method for the Boltzmann transport equation solution

• σp,γs is the positron-to-photon differential cross section and includes bremsstrahlung
production, fluorescence production following impact ionization and annihilation
radiation;

• σp,ps is the positron-to-positron differential cross section and includes collisional
scattering, radiative scattering and elastic scattering;

• σγ,ps is the photon-to-positron differential cross section and includes only the pair
positron production.

The system of coupled equations (3.20) written in a condensed notation and neglecting
the source term reads:

Ω̂·∇ψi(~r, E, Ω̂)+σit(~r, E)ψi(~r, E, Ω̂) =
∑
p=[i,j]

∫
dE ′

∫
S2

dΩ̂σp,is (~r, E ′ → E, Ω̂′ → Ω̂)ψp(~r, E ′, Ω̂),

(3.21)
where i, j are the species of the transported particles, ~r is the position vector, E the
particle energy, Ω̂ the flight direction, ψ(~r, E, Ω̂) is the particle angular flux, σt and σs
the total and the differential cross section.

3.2.3 Boltzmann-CSD equations for charged particles

As shown in Sections 2.2.1.1 and 2.2.1.2 both the collisional and radiative inelastic cross
sections rapidly increase as the energy loss becomes small. Thus, an accurate discretiza-
tion of these cross sections on an energy grid would require an excessive number of
narrow-width mesh. This would make the cost of the computation unaffordable. For this
reason an alternative treatment of charged particles inelastic interactions is required. As
introduced in Section 2.2.1.1, inelastic interactions (both collisional and radiative) can be
divided into two classes: catastrophic interactions, resulting in large-energy losses with
the production of a secondary electron and soft interactions, resulting in small-energy
losses without the production of a secondary particle. Catastrophic interactions are rep-
resented by macroscopic cross sections for which a discretization can be applied with a
sufficiently small number of energy groups. A different approach is required for soft inter-
actions. Due to the fact that a small-energy loss kinematically results in a small deviation,
the cumulative effect of many soft interactions can be approximated by the continuous
energy loss of a charged particle without angular deflection and without production of sec-
ondary particles. This approach is called the restricted continuous slowing-down (CSD)
approximation [7]. In the context of this approximation, the electron or positron flux
satisfies the Boltzmann-CSD equation. By dividing all inelastic interactions into soft
and catastrophic events and by applying the CSD approximation to the former ones, the
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electron and positron transport equations become:

Ω̂ · ∇ψe(~r, E, Ω̂) + σet (~r, E)ψe(~r, E, Ω̂) =

∫
dE ′

∫
S2

dΩ̂′ σe,e∗ (~r, E ′ → E, Ω̂′ → Ω̂)ψe(~r, E ′, Ω̂′)

+
∂

∂E

(
Rcoll
e (E)ψe(~r, E, Ω̂)

)
+

∂

∂E

(
Rrad
e (E)ψe(~r, E, Ω̂)

)
+

∫
dE ′

∫
S2

dΩ̂′ σγ,e(~r, E ′ → E, Ω̂′ → Ω̂)ψγ(~r, E ′, Ω̂′)

+

∫
dE ′

∫
S2

dΩ̂′ σp,e(~r, E ′ → E, Ω̂′ → Ω̂)ψp(~r, E ′, Ω̂′)

Ω̂ · ∇ψp(~r, E, Ω̂) + σpt (~r, E)ψp(~r, E, Ω̂) =

∫
dE ′

∫
S2

dΩ̂′ σp,p∗ (~r, E ′ → E, Ω̂′ → Ω̂)ψp(~r, E ′, Ω̂′)

+
∂

∂E

(
Rcoll
p (E)ψp(~r, E, Ω̂)

)
+

∂

∂E

(
Rrad
p (E)ψp(~r, E, Ω̂)

)
+

∫
dE ′

∫
S2

dΩ̂′ σγ,p(~r, E ′ → E, Ω̂′ → Ω̂)ψγ(~r, E ′, Ω̂′)

(3.22)

where σe,e/p,p∗ (E → E ′,Ω→ Ω′) is the electron-electron / positron-positron differential
cross sections that do not include soft inelastic interactions. Rcoll

e/p(E) and Rrad
e/p(E) are

the restricted collisional and radiative stopping powers for electrons that represent the
continous slowing-down due to soft interactions.

3.3 Entropic model

The moments method has been adopted in a very large range of applications in physics
as one of efficient methods for solving the transport equation. The application of this
method covers astrophysics (see for example the work of Chandrasekhar [23]), radiative
transfer starting from the works of Chandrasekhar [24] and Pomraning [109]. Other fields
of application are the fluid dynamics of rarefied gases (see e.g. [48]) and plasma physics
with applications to the inertial or magnetic confinement fusion [82, 83, 51].

In the present work we adopt the angular moments method with entropic closure
introduced in 1977 in the work by Minerbo [89] on the radiative transport. It is by
questioning the most probable form of the radiative intensity distribution that he has in-
troduced the argument of maximization of the entropy. In his work the closure relation of
the first member was not presented in an analytical form in the Bose-Einstein formalism,
assuming that the photons obey to the Maxwell-Boltzmann one.

An analytical formulation of the angular closure relation has been introduced for the
first time in 1999 by Dubroca and Feugeas [33]. The model has been further developed
by CEA researchers in CELIA laboratory and it created the basis of a rich scientific
production, with applications in different fields such as transport of charged particles in
plasma [31, 134, 112] and more recently in radiotherapy [20, 102]. Moreover important
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collaborations have been developed over the years at the national and European level,
for example by Olbrand et al. [101], Duclous et al. [34] and Pichard et al. [108] with the
University of Aachen.

3.3.1 Angular moments of the LBTE

The M1 model was first derived by Dubroca and Feugeas [33] for simulations of the
radiation transport in plasmas and then adapted for the relativistic electron transport
by Duclous et al. [34]. In this section, we revise the principal elements of the angular
moments algorithm. The moment method replaces the LBTE by a reduced number of
moment equations of lower dimension. Such an approach allows reducing the number
of degrees of freedom, i.e. the number of variables, while keeping a good accuracy of
calculations. The moments are defined as integrals on the unit sphere in the phase space
of the flux function ψ(~r, E, Ω̂). As those moments depend on fewer variables (~r, E) than
the fluences (~r, E, Ω̂), their computation requires less numerical efforts. The first three
angular moments of the distribution function are:

ψ0(~r, E) =

∫
S2

ψ(~r, E, Ω̂) dΩ̂ ,

~ψ1(~r, E) =

∫
S2

Ω̂ψ(~r, E, Ω̂) dΩ̂ = (ψx1 , ψ
y
1 , ψ

z
1)T ,

~~ψ2(~r, E) =

∫
S2

(Ω̂⊗ Ω̂)ψ(~r, E, Ω̂) dΩ̂ =

ψ
x,x
2 ψx,y2 ψx,z2

ψy,x2 ψy,y2 ψy,z2

ψz,x2 ψz,y2 ψz,z2

 ,
(3.23)

where ψ0 is a scalar, ~ψ1 is a vector and ~~ψ2 is a tensor. These angular moments do not
have just a mathematical meaning. Through an integration over the energy variable,
important physical quantities can be derived:

n(~r) =

∫ +∞

0

1

v
ψ0(~r, E) dE ,

E(~r) =
1

n(~r)

∫ +∞

0

E

v
ψ0(~r, E) dE ,

~F (~r) =

∫ +∞

0

E ~ψ1(~r, E) dE ,

(3.24)

where n(~r) [cm−3] is the particle density (number of particle per unit volume), E(~r) [J] is
the mean energy of the particles and ~F (~r) [J · s−1 · cm−2] is the energy flux of particles.
Finally the deposited dose can be calculated. The dose in radiotherapy is defined as the
total deposited energy by the particles in a unit mass [Gy = J/kg]. With the moments
model the dose rate can be calculated as:

dD(~r)

dt
=

1

ρ(~r)

∫
Eσdepψ0(~r, E)dE (3.25)
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where ρ(~r) is the density of the medium and σdep is the macroscopic energy deposition
cross section defined as the net energy deposited in the medium due to the interactions
of particles with a given energy per unit pathlength [77]. This cross sections have units
of energy per distance.

We define the zero-moment of the of coupled Boltzmann equations (3.21), by inte-
grating the latter over the unit sphere:∫
S2

dΩ̂
[
Ω̂ · ∇ψi(~r, E, Ω̂) + σit(~r, E)ψi(~r, E, Ω̂)

]
=

∫
S2

dΩ̂

∑
p=[i,j]

∫
dE ′

∫
S2

dΩ̂′ σp,is (~r, E ′ → E, Ω̂′ → Ω̂)ψp(~r, E ′, Ω̂)

 .
(3.26)

Generically, the kinetic linear Boltzmann gain term can be written as:

G(ψ)(Ω̂) =

∫
S2

σ(Ω̂′ → Ω̂)ψ(Ω̂′) dΩ̂′, (3.27)

where ~r and E variables are omitted because they can be seen as parameters in this
equation. Recalling the definition of moments, we can calculate the zero-moment of the
gain term as:

G0(ψ)(Ω̂) =

∫
S2

∫
S2

σ(Ω̂′ → Ω̂)ψ(Ω̂′) dΩ̂′dΩ̂

=

∫
S2

∫
S2

σ(Ω̂′ → Ω̂) dΩ̂ψ(Ω̂′) dΩ̂′ = σ0ψ0.

(3.28)

where σi are the i-order moments of scattering cross section. The zero-moment and first
moment of the scattering differential cross section are defined as:

σ0 = 2π

∫ 1

−1

µ0σ(µ) dµ,

σ1 = 2π

∫ 1

−1

µ1σ(µ) dµ.

(3.29)

Substituting the zero-moment of the gain term in Eq. (3.26) we obtain:

∇~ψi1(~r, E) + σit(E)ψi0(~r, E) =
∑
p=[i,j]

∫
σp,i0 (~r, E ′ → E)ψp0(~r, E ′)dE ′. (3.30)

The zero moment equation gives ψ0 as a function of ψ1 which is given by the first moment
equation. In order to obtain the first moment equation we have to integrate (3.21) as:∫
S2

dΩ̂ Ω̂
[
Ω̂ · ∇ψi(~r, E, Ω̂) + σit(~r, E)ψi(~r, E, Ω̂)

]
=

∫
S2

dΩ̂ Ω̂

∑
p=[i,j]

∫
dE ′

∫
S2

dΩ̂′ σp,is (~r, E ′ → E, Ω̂′ → Ω̂)ψp(~r, E ′, Ω̂)

 .
(3.31)
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By using the change of variable Ω̂′′ = RT Ω̂ where the operator of rotation R is such that
Ω̂′R = ~e1, the first-moment of the gain term reads:

G1(ψ)(Ω̂) =

∫
S2

∫
S2

Ω̂σ(Ω̂′ → Ω̂)ψ(Ω̂′) dΩ̂′dΩ̂

=

∫
S2

∫
S2

Ω̂σ(Ω̂′ → Ω̂) dΩ̂ψ(Ω̂′) dΩ̂′

=

∫
S2

R

∫
S2

Ω̂′′ σ(Ω̂′′~e1) dΩ̂′′ ψ(Ω̂′) dΩ̂′

=

∫
S2

R~e1 σ1 ψ(Ω̂′) dΩ̂′

=

∫
S2

Ω̂′ σ1 ψ(Ω̂′) dΩ̂′ = σ1ψ1.

(3.32)

Substituting the first-moment of the gain term in (3.31) we obtain:

∇~~ψi2(~r, E) + σit(E)~ψi1(~r, E) =
∑
p=[i,j]

∫
σp,i1 (~r, E ′ → E)~ψip(~r, E

′)dE ′. (3.33)

In this equation the first moment depends on the second moment. Stopping the devel-
oppement at the first two moments we can build the following system of two equations:∇~ψi1(~r, E) + σit(E)ψi0(~r, E) =

∑
p=[i,j]

∫
σp,i0 (~r, E ′ → E)ψp0(~r, E ′)dE ′ ,

∇~~ψi2(~r, E) + σit(E)~ψi1(~r, E) =
∑

p=[i,j]

∫
σp,i1 (~r, E ′ → E)~ψp1(~r, E ′)dE ′ .

(3.34)

This system is not closed because it has more unknowns than equations. In order to
have a unique solution to the moments problem, the system has to be closed. This
closure consists in adding relations in order to have as many unknowns as equations.
Commonly, this closure consists in expressing ψN+1 as a function of the lower order
moments (ψ0, ..., ψN).

3.3.2 Entropic closure

A closed and isolated system evolves to equilibrium, moving to more probables states,
due to the collisions between particles. The second law of thermodynamics asserts that
the entropy attains its maximum, as the system reaches the state of equilibrium. This law
finds its statistical interpretation in the H-theorem that has been extensively described
in literature [59]. The angular entropy of our system of moments is defined as:

H(ψ) = −
∫
S2

(ψ lnψ − ψ) dΩ̂ (3.35)

The originality of our approach comes from the use of the entropy maximization principle
(Boltzmann’s H-theorem) to close the system of moment equations (3.34) over the angular

variable. The higher moment ~~ψ2 is expressed as a function of ψ0 and ~ψ1. The underlying
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distribution function ψiME that maximizes the entropy under the constraint of the two
first moments definition has the form:

ψiME(~r, E, Ω̂) = a0e
Ω̂·~a1 , (3.36)

where a0 and ~a1 are Lagrange multipliers of the constraints minimisation problem, a0 ≥ 0

is a scalar, and ~a1 ∈ R3 is a vector. This Maxwell-Boltzmann-type distribution provides
relations of a0 and ~a1 to the angular moments as follows [33]:

ψi0 = 4πa0
sinh|~a1|
|~a1|

,

~ψi1 = 4πa0
sinh|~a1|(|~a1|coth|~a1| − 1)

|~a1|2
~a1.

(3.37)

The combination of these two equations leads to the definition of the anisotropy factor:

|α| = |ψ
i
1|
ψi0

=
1− |a1|coth|a1|

|a1|
. (3.38)

By using expression (3.36) one can explicitly relate the second angular moment ψi2 to the
lower moments through the Eddington factor χ according to the following equation:

ψi2 = ψi0

(
1− χ(α)

2
I +

3χ(α)− 1

2

ψi1
|ψi1|
⊗ ψi1
|ψi1|

)
. (3.39)

The Eddington factor is related to the anisotropy factor by the following interpolation
relation:

χ(α) =
1

3
(1 + α2 + α4). (3.40)

The anisotropy factor is bounded in the interval [0, 1]. It means that the Eddington

factor χ assumes values between [
1

3
, 1]. The M1 model is able to treat various regimes

of non-equilibrium, from the mono directional pencil beam case (α = 1), i.e. external
radiotherapy, to the isotropic case (α = 0), i.e. brachytherapy.

3.3.3 Limitations of the M1 model

The moments method provides an approximate LBTE solution with only two angle-
averaged quantities instead of the distribution function. The M1 model is the first member
in the angular moments (M) hierarchy. The main limitation of the M1 is that it accounts
for only one direction of particle propagation for a given energy. This limitation is
not too restrictive in case of a single beam but it may cause problems when multiple
beams propagate in a given domain crossing each others. In this section we explain
mathematically this limitation and describe its effects. Let us consider a simplified LBTE
equation in one spatial dimension:

µ
∂ψ(x,E, µ)

∂x
= σ

(
1

2

∫ +1

−1

ψ(x,E, µ) dµ− ψ(x,E, µ)

)
(3.41)
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beam 1 beam 2

0 1

Figure 3.1: Two opposite beams interaction in a closed domain.

where µ is the cosine of the direction of flight, i.e. the first component of the three-
dimentional vector Ω̂ , and x is the space variable.

We consider the situation schematically drawn in Figure 3.1 where two particle beams
propagate in the domain in opposite directions. We define the two beams with boundary
conditions in the following way:{

ψ(0, µ) = δ{µ=1} if µ ≥ 0

ψ(1, µ) = δ{µ=−1} if µ ≤ 0
(3.42)

where ψ(0, µ) is the flux function of the beam propagating from the left to the right and
ψ(1, µ) is the flux function of the beam propagating in the opposite direction. It is evident
that the general solution of equation (3.41) is given by ψ ≡ 1. Due to the linearity of the
problem, we can apply the superposition principle splitting the problem into two fluxes.
Hence, we can rewrite conditions (3.42) as:

1. {
ψ(0, µ) = δ{µ=1} if µ ≥ 0

ψ(1, µ) = 0 if µ ≤ 0
(3.43)

which gives as solution
ψ(x, µ) = δ{µ=1}, (3.44)

2. {
ψ(0, µ) = 0 if µ ≥ 0

ψ(1, µ) = δ{µ=−1} if µ ≤ 0
(3.45)

which gives as solution
ψ(x, µ) = δ{µ=−1}. (3.46)

Once we compute the sum of solutions (3.44) and (3.46)

ψ(x, µ) = δ{µ=1} + δ{µ=−1}, (3.47)
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we obtain the initial problem with solution ψ ≡ 1. Applying the moment model to the
previous problem we cannot use the superposition principle because of a nonlinear closure
relation. This can be easily shown by computing the moments of solution (3.47):

ψ0 =

∫ 1

−1

ψ(x, µ) dµ = 2,

ψ1 =

∫ 1

−1

µψ(x, µ) dµ

=

∫ 1

−1

µ δ{µ=1} dµ+

∫ 1

−1

µ δ{µ=−1} dµ = 0.

(3.48)

Since the first moment is equal to zero the two opposite fluxes annihilate each other.
Moreover, the moments (3.48) are identical to the moments of an isotropic distribution.
This means that the first moment approximation is not able to treat at the same time
two or more fluxes with exactly the same energy that cross each other in a given domain.

The system of moments equations Eq. (3.34) has been discretized as explained in
Section 3.4 and written as a numerical M1 code. In the following paragraphs we present
two more pathological cases obtained while running the M1 numerical code.
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Figure 3.2: Two orthogonal photon beams injected on the left and on the lower boundary of
a water phantom. (a) the averaging effect of the M1 model is shown in the case
where the two beams are treated simultaneously while it disappears if the two
beams are treated separately as in panel (b).

In order to give another example of this limitation we present the result of simulation
of the dose deposition of two orthogonal photon beams injected from the left and from
the lower boundary in a water phantom. As shown in Figure 3.2(a), when two beams
cross each other an interaction seems to take place and the two entering beams fuse in
a single exiting beam propagating in the mean direction. This is a numerical effect due
to the M1 closure and it occurs every time when two or more fluxes of particles enter
in the same phase volume at different angles. In order to overcome this problem, the
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linearity of the solution of the LBTE have to be used and the two beams have to be
treated independently. In Figure 3.2(b), we show the result obtained by propagating the
two beam separately and adding the deposited doses.
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Figure 3.3: 6 MV photon beam coming from the left in a homogeneous water phantom. In
panels (a) and (b) the 2D maps of the dose distribution calculated without and
with the primary and secondary particles splitting is shown. In panels (c) and
(d) the comparison of the respective depth dose distribution calculated with M1

and the Monte Carlo (MC) code PENELOPE are shown.

This numerical effect can also appear in modeling the propagation of a single pho-
ton beam initialized with a bremsstrahlung spectrum. This comes from the fact that
all the photons are initialized with a given anisotropy. This anisotropy is preserved by
the photons that propagate without interacting with the medium. These photons can
be called ‘primary photons’. On the other hand the photons scattering in the medium
loose their energy and change their anisotropy. These photons can be called ‘secondary
photons’. Considering the primary and secondary photons in the same population, the
flux averaging takes place as explained above. On the contrary if the two populations
are modeled separately the stability and the accuracy of the method are consistently
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improved. In Figure 3.3 a comparison between M1 with and without the particle pop-
ulations splitting and a simulation performed with the Monte Carlo code PENELOPE
is shown. Introduction of the splitting procedure is described in detail in Section 4.4.2.
It allows a succesful use of the M1 model for realistic simulations in external photon
beam radiotherapy without considering the next member of the hierarchy. However, for
brachytherapy applications we need to consider the M2 model due to the issues related
to the volume source initialization.

3.3.4 M2 model

For a better accuracy and flexibility of the entropic model, one can consider the next
member in the hierarchy, the M2 model [108], to get closer to the exact solution. In M2

we introduce a new system of equations where ψ3(~r, E) is function of ψ2(~r, E). The third
angular moment is defined as:

~~~ψ3(~r, E) =

∫
S2

Ω̂⊗ Ω̂⊗ Ω̂ψ(~r, E, Ω̂) dΩ̂ (3.49)

Due to the fact that the equation for ψ0(~r, E) is redundant with the equation for ψ2(~r, E)

(the trace of ψ2(~r, E) is equal to ψ0(~r, E)) the system for the M2 model consists of two
equations as follows:∇

~~ψi2(~r, E) + σit(E)~ψi1(~r, E) =
∑

p=[i,j]

∫
σp,i1 (E ′ → E)~ψp1(~r, E ′)dE ′ ,

∇
~~~ψi3(~r, E) + σit(E)

~~ψi2(~r, E) =
∑

p=[i,j]

∫
σp,i2 (E ′ → E)

~~ψp2(~r, E ′)dE ′ .
(3.50)

where σ2 is the second moment of the scattering differential cross sections.
The closure of the M2 model is different from the closure of the first member of the

hierachy presented in Section 3.3.2. The closure problem for M2 has been developed by
Pichard [108]. The M2 model overcomes the M1 limitations despite to a higher number
of variables and a higher computational effort.

In this work we demonstrate that the M1 model reaches a high level of accuracy in
external beam radiotherapy applications. However, for brachytherapy simulations, the
M2 model is needed.

3.4 Discretization of the kinetic equation

In general, one cannot solve numerically equations (3.21) in a continuous form. For this
reason the LBTE has to be discretized in space, directions and energy. The technique
for discretizing the phase space variables of the complete LBTE is based on the discrete-
ordinates method [44, 45]. In this approach, all particles are split in several energy groups
and the transport equation is written for every energy group and for a finite number of
directions. The set of directions and corresponding weights is commonly referred to as
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a quadrature set of the order N (corresponding to N2 + 2N directions). Space is also
discretized in volume elements raising the number of calculation operations to NΩ×NV ×
NE, where NV is the number of voxels in the three-dimensional domain, NΩ is the number
of directions and NE is the number of energy groups. To ensure the convergence to the
solution, the number of angles has to be sufficiently large, otherwise detrimental numerical
“ray-effect” arises producing oscillations in the solution. Sophisticated computational
techniques are required to mitigate it [44, 45]. However, thanks to the moments method,
we do not need to solve the LBTE equation in its original form but we focus on the system
of coupled equations (3.34). This implies that only discretizations in energy and space
are required. Considering moments ψ0(~r, E) and ~ψ1(~r, E) we have 4 unknowns, thus
the number of calculation operations for a three dimensional case can be estimated as
proportional to 4×NV ×NE, where NV is the number of voxels in the three-dimensional
domain and NE is the number of energy groups. We can compare the computational
efforts, by assuming that for the two methods the spatial and energy discretization are
the same. It is clear that the number of degrees of freedom when adopting the discrete-
ordinates method is consistently higher with respect to the moment method, if the number
of moments studied is lower than NΩ.

3.4.1 Spatial discretization

The spatial domain is discretized using a uniform orthogonal discretization using a cubic
grid. The spatial discretization is performed using the finite volume scheme based on the
HLL (from A. Hartem, P.D. Lax and B. Van Leer [54] ) approximate Riemann solver.
This numerical scheme is commonly used for the moment method equations due to its
capability to preserve the realizability from one energy step to another. Since a systematic
study and improvement of the numerical discretization of the domain are out the scope
of the present thesis, we have used the numerical scheme implemented in the previous
version of the code [20, 108].

Two different grids are used depending on the considered application. For all the
applications in external photon beam radiotherapy a spatial discretization of 0.5× 0.5×
0.5 mm3 is used. In brachytherapy, instead, a finer mesh has to be used. The reason
is that in a deterministic code the accuracy of the calculation is inherently related to
the chosen grid resolution. For example, in order to correctly resolve the boundary of a
brachytherapy source, that in this work has been modeled as a sphere with a diameter
of 2 mm, one needs at least 9 cells. For this reason a voxel of 0.25× 0.25× 0.25 mm3 is
used.

An optimization of the spatial discretization scheme is clearly needed in order to
improve the computational performance in terms of time and memory allocation. To this
end, in the future, a non-uniform mesh refinement can be implemented. This technique
allows a strong reduction of the number of grid cells where the problem exhibits a smooth
behavior and also a strongly localized increase of the number of cells in areas needing
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more accuracy. An example of non-structured mesh with refinement is shown in Figure
3.4 Similar technique can be implemented in the M1 code.

Figure 3.4: An example of non-uniform discretization scheme. This scheme used in Acuros
is based on a discretization of the domain in tetrahedral elements. Image from
Gifford et al. [44] with permission.

3.4.2 Energy discretization

A numerical code based on the entropic model has been developed at the CELIA labo-
ratory during the past years, with the aim of solving LBTE for different applications in
plasma physics and astrophysics. These works were mainly focused on the mathematical
properties of the model with an order of magnitude precision. For these reasons, only the
principal physical cross sections were implemented in the numerical code. In the last few
years, the applications related to particle transport in cold matter and more specifically
to radiotherapy have been approached with this code. The works by Caron [20] and
Duclous [34] were the starting point for medical physics problems but the physical cross
sections were limited to the electron scattering. The Mott formulation for elastic scatter-
ing was implemented while the inelastic scattering was derived from the Møller formula.
Due to the considered energy regime of the electrons the bremsstrahlung process was
neglected. Then, in the work of Pichard [108] a version of the coupled photon-electron
entropic model for radiotherapy was developed for the first time. The main focus of that
work was on a study of the mathematical properties of higher order entropic closure, thus
the implementation of the photon cross sections was limited to the Compton scattering.

The very first purpose of this thesis consisted in improvement of the physical descrip-
tion in order to have a more complete model permitting a few percent accuracy required
for medical applications. Our entropic model is based on the multigroup method for the
cross sections discretization. This method consists in discretization of the particle energy
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domain into energy intervals, that are called groups, as follows:∣∣∣∣
E1

group 1

∣∣∣∣
E2

group 2

∣∣∣∣
E3

· · · · · ·
∣∣∣∣
EG

group G

∣∣∣∣
EG+1

(3.51)

where E1 > E2 > E3 > · · · EG+1, E1 is the maximum energy and EG+1 is the cutoff
energy. The problem is solved numerically by starting from the highest energy group till
to the lowest one. This is motivated by the fact that collision processes lead to reduction
of the particle energy but not to its increase. By convention, the higher group numbers
are associated with lower particle energies.

In the multigroup approximation, all particles in the same energy group are assumed
to interact with each other with the same probability. The multigroup approximation is
sufficiently accurate only if the cross sections do not significantly vary in energy within
a group. Hence, the structure of the energy grid may have an impact on the accuracy
of the simulation. For instance, the photoelectric cross section varies strongly near the
shell binding energy. This behaviour has a greater impact in presence of materials with
a high atomic number such as silver (see Figure 3.5). In order to accurately calculate the
distribution of photoelectrons, the group structure should have a fine resolution in the
proximity of the shell binding energies.
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Figure 3.5: Plot of the photon total cross sections for silver calculated with the Monte Carlo
code PENELOPE [121]. The discretization of the energy variable in proximity of
the binding energies of the atomic shells must be adapted to avoid errors in the
calculation of the cross sections.

Let us now introduce discrete notation in the LBTE formalism. The group particle
flux, ψg(r,Ω), is defined as:

ψg(~r, Ω̂) =

∫ Eg

Eg+1

ψ(~r, E, Ω̂) dE, (3.52)

where ψ(~r, E, Ω̂) is the particle flux. Integrating the LBTE over the g-th group and
taking into account the definition of the group particle flux (3.52), the coupled system of
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mutigroup transport equations reads:

Ω̂ · ∇ψg(~r, Ω̂) + σt,g(~r)ψg(~r, Ω̂) =

G∑
g′=1

∫
S2

dΩ̂′ σs,g′→g

(
~r, Ω̂′ → Ω̂

)
ψg′(~r, Ω̂

′) +Qext(~r, Ω̂).

(3.53)

As shown in Section 3.3.1, the differential scattering cross section can be represented
by a Legendre expansion. Moreover, as shown in Eqs. (3.29), the coefficients of the
differential cross sections at the zero-th and first order of the Legendre expansion the
same as the moments of the differential cross section calculated in the gain term in Eq.
(3.34).

The multigroup-Legendre expansion coefficients for the cross sections describing scat-
tering and production interactions are stored in transfer matrices. For a differential cross
section, the expansion coefficients that are stored in the transfer matrix of Lth-order read:

σg′→g,L =

∫ Eg′

Eg′+1

dE ′
∫ Eg

Eg+1

σL(E ′ → E) dE

Eg′ − Eg′+1

. (3.54)

In the present work, the M1 model, based on a multigroup energy approach, uses the cross
sections calculated with the CEPXS code [77]. This code is valid over the energy range
from 1 keV to 100 MeV and it provides the calculation of the transfer matrices with
a consistent and complete physical model. The detailed description of the multigroup
Legendre expansion coefficients calculation is presented in the CEPXS user manual [77].
Here, for sake of completeness we list all the physical interactions that are taken into
account in our model.

Photon cross sections

1. Compton scattering: the Klein-Nishina [72] cross section is used for Compton
incoherent scattering and electron production;

2. Photoelectric effect: the Biggs-Ligthill [12] cross sections are used for photoelec-
tric absorption. The angular distributions devised by Sauter [123] are used for the
emitted electrons;

3. Pair interaction: The Biggs-Lighthill [12] cross sections are used for the ab-
sorption of photons by pair production. The energy distribution of the charged
secondaries in pair production is obtained from Bethe-Heitler theory [10].

Electron/positron cross sections
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1. Elastic scattering: the cross section of Riley et al. [114] is used at non-relativistic
energies (<256 keV). The Mott cross section with Moliere screening is used at
relativistic energies (>256 keV) [147];

2. Inelastic scattering: the Moller [147] cross section is used for large-energy loss
collisions. For other collisions, the restricted CSD approximation is used;

3. Secondary electron production: the Moller [147] cross section is used to deter-
mine the production of secondary electrons with energies down to the cutoff energy.
Secondaries production and impact ionization are not correlated in CEPXS;

4. Bremsstrahlung photon production: The bremsstrahlung cross section is based
on a formulation involving Born-approximation cross sections described by Koch
and Motz [73]. This cross section is used to describe both bremsstrahlung photon
production and the slowing down of an electron by radiative emission that results
in large-energy losses. For small-energy loss radiative events, the restricted CSD
approximation is used;

5. Impact ionization: The Gryzinski [49] impact ionization cross sections are used
for the K, L1, L2, L3 and M shells.

As described in Section 4.5, in order to optimize the memory allocation and at the
same time to keep a good accuracy in the simulations, the energy variable in the M1 code
is discretized with a non-uniform grid. The energy grids have been calibrated in a way
that the total cross section variation between two adjacent groups is small. Thus, we
impose an upper threshold on the total cross section gradient between two groups. In
external photon beam simulations, the energy grid for simulations in the energy range
between 10 keV and 7.2 MeV is composed by 21 energy groups while for simulations in
energy range between 10 keV and 18 MeV the energy grid is composed by 39 energy
groups. With the aim of reducing the memory allocation we merged the transport of
positrons and electrons. This was achieved by partial coupling between the photon and
electron grids. This is possible thanks to the following approximations:

• Bremsstrahlung and fluorescence following impact ionization are not taken into
account;

• The energy that would have been transferred to photons produced by charged sec-
ondaries is deposited locally;

• Both particles exiting a pair production are assumed to be electrons.

In this work we apply the entropic model also to low dose rate brachytherapy sim-
ulations. In this regime the particle energy is low (less than 50 keV) and only photon
transport is taken into account. The secondary electrons, due their range smaller than
0.1 mm, are assumed to deposit their energy locally. In brachytherapy applications the
energy variable is discretized with a linear grid composed by 5 energy groups.
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3.5 Beam initialization

Dose calculations for treatment planning in radiotherapy require a model of the particle
beam injected in the patient. In external beam radiotherapy, the source model must
be general enough to cover all common irradiation techniques including the intensity
modulated radiation therapy (IMRT).

Simulation of particle transport with Monte Carlo methods is the most accurate way
to determine the absorbed dose, especially in regions where tissue interfaces and het-
erogeneities play an important role [71, 113]. Monte Carlo simulations have become a
common method for modeling linear accelerators, starting from the early days of their
application to medical physics problems, such as external beam radiotherapy. The first
simplified models for transport of particles produced with accelerators were reported
from the late 1970s till the 1990s [25, 98, 99, 105, 117]. Usually the Monte Carlo particle
transport is divided into three different parts: a source part, a beam modifier part and a
patient part. The first part deals with the patient-independent components of the linear
accelerator which is presented in Figure 3.6. After being accelerated, the primary electron
beam emerges from the waveguide with a narrow energy, angular and spatial distribution.
This electron beam is directed on a high-Z metal target where the bremsstrahlung pho-
tons are created. The bremsstrahung photons are then collimated initially by a primary
collimator and the photon fluence is differentially attenuated by the flattening filter to
produce a flat dose distribution at the patient surface. The second part handles all the
beam modifications between the accelerator and the patient. These are obtained with
the use of devices such as jaws, multi-leaf collimators, wedges, blocks etc. Finally, the
beam entering the patient is initialized in the phase-space by using the output generated
in the first two steps.

One of the difficulties related to the clinical implementation of Monte Carlo dose
calculations is the characterisation of the radiation source. A possible strategy consists
in performing full Monte Carlo simulations. In the external beam radiotherapy it consists
in simulating the transport through the full accelerator head, while for brachytherapy it
consists in the simulation of the source encapsulation. These simulations generate a the
phase-space output that consists in a very large file, where the state variables of particles
traversing the phase-space scoring plane are recorded. Typically, each line represents a
particle and the following quantities are reported: type of particle, energy of the particle,
position of the particle in space, direction of flight of the particle in terms of director
cosine, the particle statistical weight and other complementary information. This phase-
space data provide accurate particle distributions in the phase-space plane and thus can
be used directly as source model.

The direct use of a phase-space file in Monte Carlo simulations for treatment planning
presents some limitations. One limitation concerns mostly the external beam radiother-
apy and is related to the lack of flexibility in adjusting the data for accelerators with
slightly different outputs. The second limitation is the introduction of a systematic error
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Figure 3.6: Diagram of an Elekta SL series accelerator. As it can be noticed in this diagram,
the particle beam exiting from the accelerator head interacts with different com-
ponets of the structure. Scattered secondary particles are created in the end of
the accelerator head, where the beam is shaped with the use of diaphragms and
of the multileaf collimator. Image from Mayles et al. [86] with permission.

due to the limited size of the phase-space file, which results in a finite variance of the
calculated dose. In order to overcome such limitations, two different approaches can be
adopted: the first one is analytical characterization of the beam [36, 62], whereas the sec-
ond one consists in creating a histogram-based source model, based on the phase-space
data [37, 80, 124].

The M1 model is a mesoscopic model, where the kinetic description that characterizes
the Monte Carlo method is partially lost. In this sense, the beam initialization describing
the beam injected in the domain have to be calculated in a different way with respect to
the phase-space data. Specifically, for the M1 model we have to define the anisotropy of
each particle species. As mentioned before, the M1 model has to be solved at the discrete
level. This means that the anisotropy has to be calculated in each boundary voxel for
each energy group.

The aim of this section is to develop a direct method to calculate the beam initializa-
tion starting from a phase-space file. This method guarantees that the M1 and the Monte
Carlo simulations have the same initial conditions, thus they can be considered as equiv-
alent. Specifically, no matter the method chosen for the Monte Carlo initialization, the
equivalent M1 initialization can be found. In the present work, we adopt simple boundary
conditions and we do not take into account accelerator models. In the next section, a
method that translates the phase-space data into the M1 initialization is presented in the
most general case.
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3.5.1 Phase-space initialization

As introduced in Section 3.2.2, the particle flux is defined as:

ψ = v(E)f(x, y, z, E, Ω̂), (3.55)

where the direction vector is defined as follows:

Ω̂ = [cosθ, cosφ sinθ, sinφ sinθ]T . (3.56)

Let us define a volume element of the phase space as

Vi,j,k,l = [xi, xi + ∆x]× [yj, yj + ∆y]× [zk, zk + ∆z]× [El, El + ∆E]. (3.57)

The 0-th moment can be written as follows:

ψ0,i,j,k,l =
1

∆x∆y∆z∆E

∫ xi+∆x

xi

∫ yj+∆y

yj

∫ zk+∆z

zk

∫ El+∆E

El∫
S2

v(E)f(x, y, z, E, Ω̂) dx dy dz dE dΩ̂,

(3.58)

where the sum of all particles present in volume (3.57) is

f =
N∑
p=1

wp χ[xi,xi+∆x]χ[yj ,yj+∆y]χ[zk,zk+∆z]χ[El,El+∆E]δ(Ω̂− Ω̂m). (3.59)

Here wp is the weight of particle p, χ is an indicator function in the considered interval
and δ is the Kroenecker function that selects the direction Ω̂m. After substituting (3.59)
in (3.58), we obtain:

ψ0,i,j,k,l =
1

Vi,j,k,l

N∑
p=1

wp

∫
Vi,j,k,l

v(El)χ[xi,xi+∆x]χ[yj ,yj+∆y]χ[zk,zk+∆z]χ[El,El+∆E] dx dy dz dE∫
S2

δ(Ω̂− Ω̂m) dΩ̂,

(3.60)

where∫
Vi,j,k,l

χ[xi,xi+∆x]χ[yj ,yj+∆y]χ[zk,zk+∆z]χ[El,El+∆E]

{
= 1 if (xi, yj, zk, El) ∈ Vi,j,k,l
= 0 elsewhere

(3.61)
and, by definition: ∫

S2

δ(Ω̂− Ω̂m)dΩ̂ = 1. (3.62)

In this way, the numerical approximation of the 0-th moment in a given differential volume
of the phase space reads as follows:

ψ0,i,j,k,l =
1

Vi,j,k,l

∑
wpv(El). (3.63)
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In an analogous way, one can obtain the following numerical approximation of the first
moment:

~ψ1,i,j,k,l =
1

Vi,j,k,l

N∑
p=1

wp

∫
Vi,j,k,l

v(El)χ[xi,xi+∆x]χ[yj ,yj+∆y]χ[zk,zk+∆z]χ[El,El+∆E] dx dy dz dE

∫
S2

Ω̂δ(Ω̂− Ω̂m) dΩ̂ =
1

Vi,j,k,l

N∑
p=1

wpΩ̂mv(El).

(3.64)

Recalling the definition of anisotropy (3.38) and using the results obtained for (3.63) and
(3.64), we can now calculate the anisotropy factor for each direction in each boundary
voxel as follows:

αxi,j,k,l =
ψx1,i,j,k,l
ψ0,i,j,k,l

,

αyi,j,k,l =
ψy1,i,j,k,l
ψ0,i,j,k,l

,

αzi,j,k,l =
ψz1,i,j,k,l
ψ0,i,j,k,l

.

(3.65)

The anisotropy factor α is the norm of this vector. Several works have been dedicated to
modeling of the architecture of clinical accelerators. This modeling is done with Monte
Carlo algorithms, such as PENELOPE [121], Geant4 [1] and EGSnrc [68], and it pro-
vides the phase-space at a given plane at the exit of the accelerator as an output. A
large number of phase spaces calculated for photon linac, electron linac or Co-60 source
of different companies are available at the International Atomic Energy Agency web-
site (www-nds.iaea.org/phsp). In Figure 3.7, an example of application of the described
method to a real phase-space is shown. Here we have taken the phase-space data gener-
ated and validated for a Varian Clinac 600C [18].

The anisotropy distributions in this case can be fitted with simple polynomial sur-
faces. With this method we can avoid to recalculate at every simulation the anisotropy
distributions with a considerable gain in term of computational effort. Moreover only
storage of the fitting parameters is needed.

3.5.2 Simplified numerical initialization

For a preliminary validation of the M1 code, we have performed several simulations taking
into account square beams of different dimensions with a homogeneous distribution of
particles and Gaussian energy spectra.

With a Monte Carlo code such as PENELOPE, it is possible to define the numerical
sources by specifing some parameters such as the energy spectrum, the shape and the
position of the beam, the direction of emission of the particles and the rotation of the
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Figure 3.7: Anisotropy distribution calculated for a Varian Clinac 600C. The phase space
data file has been discretized following the method described in Section 3.5.1. In
panel (a) the particles distribution ψ0 inside the beam is represented. In panel
(b) the anisotropy distribution αx parallel the propagation axis of the beam is
represented. In panels (c) and (d) are represented the anisotropy distributions in
the transversal directions of the beam, αy and αz respectively.

beam with respect to the direction of propagation. It is possible to define the direction
of emission of the particles isotropic within a cone. This latter is defined as the part of a
sphere limited by polar and azimuthal angle intervals, [θ0, θ1] and [φ0, φ1], respectively.
The polar interval [θ0, θ1] given in degrees satisfies the following constraints: θ0 ≤ θ1 and
θ0, θ1 ∈ [0◦, 180◦]. The azimuthal interval, instead, respects the following constraints:
φ0 ∈ [0, 360) and ∆φ ∈ [0, 360].

In these preliminary simulations, we consider square sources where the emission di-
rection of homogeneously distributed particles is sampled within a cone of a given aper-
ture. The base of the cone, perpendicular to the propagation direction, can be seen
as a particular case of a spherical trapezoid with θ0 = 0, θ1 equal to the cone angu-
lar semi-aperture (angle between the cone axis and its generatrix) and ∆φ = 360◦. A
semi-aperture θ1 = 180◦ defines a fully isotropic emission. Let consider as an exam-
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ple a homogeneous square beam, where each particle is isotropically emitted in a cone
with the axis parallel to the propagation direction (µ0 = cos(θ0) = 1) and with a given
semi-aperture µ1 = cos(θ1) with respect to the propagation axis.

We can then define the particle flux as the product of two functions as:

ψ(E, µ) = f(E)C(µ) (3.66)

where f(E) is the distribution function in energy and C(µ) is the angular distribution
function. We define the characteristic function as:

C(µ)

{
= 1 if µ ∈ [µ1, 1],

= 0 elsewhere.
(3.67)

Recalling the definition of zeroth and first moments (3.23) and the definitition of the
direction vector (3.56) we obtain:

ψ0 =

∫
S2

w f(E)C(µ) dΩ̂ = w f(E)

∫ 2π

0

dφ

∫ 1

µ1

dµ = 2π w f(E) (1− µ1),

~ψ1 =

∫
S2

Ω̂w f(E)C(µ) dΩ̂

= w f(E)

∫ 2π

0

 1

cos(φ)

sin(φ)

 dφ · ∫ 1

µ1

 µ√
1− µ2√
1− µ2

 dµ

=
1

2
w f(E)

 φ

sin(φ)

−cos(φ)


2π

0

·

 µ2

µ
√

1− µ2 + arcsin(µ)

µ
√

1− µ2 + arcsin(µ)


1

µ1

=
1

4
α f(E)

2π

0

0

 ·
 1− µ2

1

π/2− (µ1

√
1− µ2

1 + arcsin(µ1))

π/2− (µ1

√
1− µ2

1 + arcsin(µ1))

 ,
where w is the particle weight. This formulation is obtained assuming that the beam
propagates in x direction. By using the definition of anisotropy (3.38), we get:

αx =
ψx1
ψ0

=
1 + µ1

2
,

αy =
ψy1,
ψ0

= 0,

αz =
ψz1
ψ0

= 0.

(3.68)

In order to have a proof that the proposed projection method is correct, we record
the phase space of a square beam of 10 × 10 cm2 with a Gaussian energy spectrum and
an isotropic emission in a cone with a semi-aperture of 5◦. Following the definition of
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the anisotropy factor along the axis given in (3.68), for this specific case we find the
following values: αx = 0.9981 and αy = αz = 0. For this result, we show in Fig. 3.8 a
comparison between the method of anisotropy calculation presented in Section 3.5.1 and
the analytical calculation presented above. The two methods are equivalent and the only
difference is due to the statistical variation of the Monte Carlo simulation.
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Figure 3.8: (a) The flux function ψ0 of the beam. (b) anisotropy distribution αx parallel the
propagation axis of the beam is represented. (c) and (d) anisotropy distributions
in the transverse directions of the beam, αy and αz respectively. The analytical
solution is plotted in orange while the result obtained with the discretization of a
phase space data file is plotted in blue. The two methods of beam initialization
are equivalent.
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3.6 Validation method for the numerical comparison

In this section we propose the methodology used for comparison of the dose distributions
calculated with the moments method and the referent Monte Carlo code PENELOPE.

3.6.1 Isodose maps and dose profiles

The dose distributions calculated with our model and the Monte Carlo code are compared
in multiple ways. The dose distributions are normalized to the maximum value in water
for external beam simulations, while in brachytherapy calculations the dose distributions
are nomalized at 0.5 cm from the center of the source.

The degree of agreement in measured by overlaying the isodose contours from the
two simulations for selected dose levels. Although the overlay provides information along
the isodose contour only, this method is useful for visually evaluating the compared dose
distributions and identifying localized dose differences in the regions where hot or cold
spots occur. The discrepancies between two isodose maps can be strong in regions where
the dose gradient is small but this has a small impact on the overall accuracy of the
calculation. As example of the methods of comparison described above we refer to the
case presented in Section 5.4. In this test case a photon beam of 18 MV propagates in a
water domain with a half lung insert placed betewen 5 and 15 cm. In Figure 3.9 the two
dimensional isodose maps are compared.
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Figure 3.9: Example of comparison between two dimensional isodose maps at z = 0 in the
xy plane. A discrepancy between the 75% isodoses (in green) is observed on the
central axis of the beam between 8 and 10 cm in depth.

The superposition of isodose contours shows a local disagreement in the lung region,
at 8-10 cm depth. A more quantitative comparison of dose profiles can be acquired along
a line passing through the area of the disagreement. Typically the dose profiles cuts are
taken at the center of the beam along the propagation axis, called the depth dose profile,
and perpendicularly to the propagation axis at different depths in order to evaluate the
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beam straggling. With reference to the test shown in Figure 3.9, an example of the use
of the cuts diagnostics is shown in Figure 3.10.
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Figure 3.10: Examples of dose profiles: (a) depth dose distribution along the central axis,
(b) transverse dose profiles at the center of the beam (z = 0) taken at depths of
3.2, 10 and 17 cm. The depth dose profile shows that the discrepancy between
the two calculations is present in all the lung region. On the other hand, the
lateral dose profile taken at 10 cm depth shows that the discrepancy is limited
along the interface between water and lung.

3.6.2 Dose difference and percentage dose difference

The preceding two methods provide a qualitative two dimensional or one-dimensional
evaluation. For the quantitative evaluation we introduce the dose difference diagnostic
that measures the discrepancy between the two calculated distributions.

For the external beam simulations we introduce the dose difference between the two
distributions. It is calculated for each pair of voxels i as:

∆Di,%abs
=

(
DM1,i

DM1,max

− DMC,i

DMC,max

)
× 100%. (3.69)

In Figure 3.11 we show the difference between the two dose distributions calculated
for the test case presented in Figure 3.9.

For brachytherapy simulations we introduce the percentage dose difference diagnostic.
This definition accounts for the fact that in brachytherapy simulations the dose has
maximum at the center of the volume source and decreases rapidly (approximately as
1/r2) outside the source. It means that the in the region of interest the absolute dose
values are very small and a more precise diagnostic is needed. The percentage dose
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difference is calculated for each pair of points of both distributions according to:

∆Di,%rel
=

(
DM1,i

DMC,i

− 1

)
× 100%. (3.70)
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Figure 3.11: Spatial distribution of the dose difference between the Monte Carlo and M1

simulations. This diagnostic is useful for quick quantitative visualization of the
degree of discrepancy, its shape and its extension.

The main advantage of this diagnostics is that, the image offers a quick quantita-
tive evaluation. The dose difference image can be used for further quantitative analysis
in terms of the average dose difference / percentage dose difference distribution. This
provides additional information regarding the average dose difference / percentage dose
difference and the standard deviation of a dose difference / percentage dose difference
distribution. These two quantities are defined as:

∆D =
1

N

N∑
i=1

∆Di,

σ(∆D) =

√∑N
i=1(∆Di −∆D)2

N
.

(3.71)

where N is the number of voxels in the domain. The same formulation is valid for ∆D%.
Considering the dose difference distribution shown in Figure 3.11, the calculated mean
dose difference is 0.42%± 0.42%.

3.6.3 Gamma index

The gamma index was first introduced by Low and Dempsey [79] as a metric that combines
features of both dose difference and distance-to-agreement, while performing robustly in
the regions where those are prone to failure. Conceptually, the gamma index is very
similar to dose difference and distance-to-agreement, but combines them into a metric
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resembling a distance. In this way both dose difference and distance-to-agreement are
taken into account for every point compared.

The gamma index can be explained as follows: we want to estimate the degree of
agreement of two dose distributions Da(~r) and Db(~r). For sake of simplicity we consider
the dose distributions as two dimensional and we focus on the dose at a given pointDa(~ra).
The degree of accuracy can be estimated in principle with two different criteria. The first
criterion is the dose difference between the two distributions Da and Db evaluated at a
given point ~ra. The passing parameter ∆DD is introduced and the agreement criterion is
defined as follows: if the distributions satisfies the condition |Db(~ra) − Da(~ra)| ≤ ∆DD,
the dose difference test is passed at the point ~ra. The second criterion is the distance-to-
agreement between the referent dose value Da(~ra) and Db(~rb). The distance to agreement
criterion, ∆DTA , is represented by a disk in the spatial domain with a radius equal to
∆DTA. If the difference between the distribution Db(~rb), for ~rb being within the disk,
and Da(~ra) falls within the acceptance criterion, the DTA test passes at that point.
Combining the two criteria we obtain a global acceptance criterium. This γ-index has
the form:

γ(~ra) =

√
|~r − ~ra|2

∆2
DTA

+
|Db(~r)−Da(~ra)|2

∆2
DD

. (3.72)

If γ(~ra) ≤ 1 the test is passed otherwise it is failed. In Figure 3.12 we show the result
of the γ-index calculated with ∆DTA = 1mm and ∆DD = 1%. In this example the test
failed to pass in the zone of the water-lang interface between the depth of 5 to 15 cm.
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Figure 3.12: γ-index map showing the results of the 1%/1mm criterion. The test failed the
region of water-lung interface between 5 and 15 cm.

3.7 Conclusion

In this chapter the linear Boltzmann transport equation and the M1 model have been pre-
sented. This model is based on a reduced number of equations for the angular moments,
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allowing to reduce the number of degrees of freedom with respect to standard models.
Some intrisic limitations of the model have been evidenced and the adopted solutions to
improve the results have been proposed. Moreover, we have introduced the discretization
methods for the energy and the spatial variables. The methodology of the validation
process is defined with respect to the Monte Carlo code which is considered as a refer-
ence in order to optimize the code and obtain accurate solutions. The entire validation
process is presented in the following chapters for both external beam radiotherapy and
brachytherapy.
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Chapter 4

Setup for external photon beam
simulations

4.1 Introduction

In this chapter we present the validation of the M1 model described above. The validation
is made comparing our algorithm with the Monte Carlo PENELOPE-2014 code [121]. In
this chapter all the test cases are run in a homogeneous phantom in order to reduce the
complexity of the analysis.

Firstly we consider a photon beam with a Gaussian energy spectrum centered at 6
MeV. This choice allows to test the accuracy of the model in a standard energy regime
for the external beam radiotherapy. Moreover, in this preliminary step we analyse the
impact of the anisotropy initialization on the solution of the Boltzmann equation. In the
end we demonstrate that for simulating a realistic beam divergence one needs to choose
an appropriate anisotropy distribution.

Once the model is validated for a Gaussian spectrum we introduce a more realis-
tic energy initialization corresponding to a bremsstrahlung spectrum. In this case the
needed accuracy of the M1 method can be achieved by introducing a split between the
primary and secondary particles. The primary and secondary particles need to be treated
separately otherwise numerical issues can appear.

As a results of test cases presented in this chapter we optimize the physical parameters
of the code. Firstly we demonstrate that a solution of a fully-coupled problem, i.e. all
transported particles can produce secondary particles of the other species taken into
account, is not necessary. The solution of the M1 equation with a partially-coupled
physics allows to save memory allocation and computational time without affecting the
precision of the model. As a last step we introduce a non-uniform energy grid that is
crucial to optimize the M1 algorithm.
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Chapter 4. Setup for external photon beam simulations

4.2 Protocol of comparison

In order to validate the M1 model for the external photon beam radiotherapy applications,
we conduct a comparison of all test cases with the Monte Carlo code PENELOPE-2014
[121]. In the present section we describe the protocol of comparison for the two methods,
by analyzing the parameters that control the precision of the simulations. These param-
eters include the model to describe the entering beam, the calculation geometry and the
discretization parameters.

4.2.1 Source model

We begin by describing the model of the source used for the first validation step. A source
of particle is described here by two parameters: the energy spectrum and the direction
of propagation.

4.2.1.1 Energy spectrum

In order to test the accuracy of the M1 model in the standard energy regime of the
external beam radiotherapy, a photon beam with Gaussian spectrum (Full Width at Half
Maximum = 10% of the mean energy E0) centred at E0 = 6 MeV is considered, see Figure
4.1. Although this spectrum represents the mean energy of the clinical bremsstrahlung
spectrum with nominal energy of 18 MeV, this initialisation is not representative of a real
phase-space of the beam exiting the linear accelerator. However, this academic case is a
convenient starting point to test the accuracy in reproducing the Compton scattering that
is the most probable photon interaction in the radiotherapy energy regime (see Section
2.3.2).

0 1 2 3 4 5 6 7 8
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0.000

0.002

0.004

0.006

0.008

dN
/d

E

Spectrum 6 MeV

Figure 4.1: Photon beam initialisation with a Gaussian spectrum centered at 6 MeV with
FWHM of 0.6 MeV.

As a second step, the more realistic 6 MV and 18 MV photon beam spectra shown in
Figures 4.2(a) and 4.2(b) are used in adequation with standards of current accelerators.
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These spectra are obtained by the analysis of two different phase-space files available
on the International Atomic Energy Agency website (www-nds.iaea.org/phsp). More
specifically, to obtain the 6 MV spectrum we use the phase-space generated for the
Varian Clinac 600C [18] while for the 18 MV spectrum the phase-space generated for the
Elekta Precise is used [133]. The contaminant electrons and positrons are not taken into
account, thus the spectrum represents a photon beam distribution only.
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Figure 4.2: Realistic initialisation using bremsstrahlung spectra: (a) spectrum of the Varian
Clinac 600C at the nominal energy of 6 MeV and (b) spectrum of the Elekta
Precise at the nominal energy of 18 MeV.

4.2.1.2 Direction initialization

In this preliminary validation of the M1 code, we perform several simplified simulations
taking into account square beams of different dimensions with a homogeneous particles
distribution. In order to not increase the number of parameters in the initialization, we
consider photon beams that propagate only along one direction. Such a beam is easy
to initialize because only the anisotropy parameter along the propagation axis has to
be defined while the intensity of the beam is assumed to be constant. As explained in
Section 3.5.2, this means that in every point of the beam the particles are emitted within
a given cone aperture with respect to the propagation axis and isotropically with respect
to the azimuthal angle. Since the realizability domain of the M1 model is defined as

A =

{
ψ = [ψ0, ψ1]T : ∃ ψ̄ ≥ 0 |ψ0 =

∫
S2

ψ̄ dΩ , ψ1 =

∫
S2

Ω ψ̄ dΩ

}
=

{
ψ

ψ0

≥ 0 , ||ψ1|| < ψ0

}
,

(4.1)

it implies that the anisotropy α = ||ψ1

ψ0
|| < 1. The initialization of the beam without an

angular spread represents a singularity in the M1 model. For this reason, two different
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values of the cone aperture are chosen: the first corresponds to a very small aperture
with respect to the propagation axis of 0.05◦, the second value is 5◦. A sketch of these
initializations is presented in Figure 4.3(a).
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Figure 4.3: Direction initializations used for the external photon beam validation: (a) initial-
ization of the beam with only one anisotropy and (b) initialization of a realistic
beam.

Such a direction initialization is useful in order to test the accuracy of the model in a
simplified configuration with a few parameters. However such beam does not correspond
to reality where the beam is generated in interaction of a narrow electron beam with a
high-Z metal target placed at a certain distance from the patient surface. Such a beam, in
a first approximation, can be considered as generated by a point source at a given distance
from the phantom surface. In this work we set a source-to-surface distance (SSD) of 100
cm. In this way the particles entering the phantom do not have the same direction and
a geometrical aperture of the beam has to be defined. In Figure 4.3(b) a scheme of this
initialization is given.

4.2.2 Calculation geometry

In the present chapter, the homogeneous water phantom sketched in Figure ?? is used.
This configuration simplifies the analysis of the discrepancies between the reference Monte
Carlo code and the M1 model. The calculation domain is defined by a 6 × 6 × 20 cm3

phantom.

For this first setup simulations we only consider cases with water. Heterogeneous test
cases with several materials are presented in the next chapter.
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4.2.3 Numerical parameters of simulations

In this section the parameters used in the M1 and Monte Carlo simulations are presented.
These parameters concern the spatial discretization of the domain, the energy range and
its discretization used in M1 and the cut-off energy imposed in the PENELOPE code.

4.2.3.1 M1 parameters

As introduced in Chapter 3, the M1 model requires discretization in both space and en-
ergy. In all simulations proposed in this Chapter a uniform orthogonal spatial discretiza-
tion is adopted with a cubic mesh of 0.5 × 0.5 × 0.5 mm3. The spatial discretization
may evolve in the future with introduction of the adaptive mesh refinement technique
that optimize the number of meshes in the regions of interest. Moreover higher order
numerical schemes may be introduced in the code in order to allow the convergence to
the solution on a larger mesh grid.

Regarding the energy variable, different discretizations are employed. We first consider
the cases with the initial energy spectrum of 6 MeV. For those presented in Sections 4.3,
4.4.1 , 4.4.2 and 4.5.1 a uniform discretization with 100 groups is used. In Section 4.5.2 we
adopt two different non-uniform optimized grids for photons and electrons. This method
reduces the number of energy groups to 21 for both types of particles. In all these cases
the energy range is set between 10 keV and 7.2 MeV. For the simulation with an energy
of 18 MeV presented in Section 4.5.1 a uniform discretization with 300 groups is used,
whereas in the case presented in Section 4.5.2 the number of energy groups is reduced to
39 for both types of particles. In all 18 MeV cases the energy range is set between 10 keV
and 18.5 MeV.

4.2.3.2 PENELOPE parameters

The dose depositions calculated by the M1 model are compared to the Monte Carlo
simulations performed with the code PENELOPE [121]. This code simulates coupled
electron-photon transport in the energy range from 100 eV to 1 GeV. The numerical
phantoms are created with the ‘pengeom’ package. The absorbed dose distribution are
tallied using a uniform orthogonal grid with 0.5 × 0.5 × 0.5 mm3 voxels. The typical
number of tested particles in the Monte Carlo calculations was 2 × 109, which allowed
us to obtain the deposited dose maps with a statistical uncertainty below 1% in all
voxels. The absorption energy parameters are set to EABS(1,M) = EABS(2,M) =

EABS(3,M) = 0.01MeV for electrons, photons and positrons in all simulations. The
elastic scattering parameters are set to C1(M) = C2(M) = 0.01. The cut-off energy
losses parameters for inelastic collisions and bremsstrahlung emission are set respectively
to WCC(M) = EABS(1,M) and WCR(M) = EABS(2,M).
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4.3 Dose distribution with a Gaussian spectrum

The accuracy of the M1 model by taking into account the most relevant physical phe-
nomena occurring in a radiotherapy treatment is evaluated here. To this end, we use a
Gaussian spectrum centered at 6 MeV as energy initialization. In water, in this energy
regime, photons mostly interact following the Compton scattering.

In this section we also conduct a study on the direction initialization, by analyzing how
the anisotropy initialization impacts the solution of the Boltzmann equation. As a first
step, in Section 4.3.1 we use a small diffusion parameter (i.e. an anisotropy factor near to
the unity) along the propagation axis in order to approximate a monodirectional beam.
Then, in Section 4.3.2 we adopt a constant and larger diffusion parameter (i.e. a smaller
anisotropy factor), observing that this initialization presents an incorrect behaviour due
to the M1 angular approximation. This test clearly shows that this initialization is not
suitable for reproducing a realistic beam. As a last example, in Section 4.3.3 a realistic
anisotropy distribution is employed. This initialization results in a better accuracy of M1

in reproducing the Monte Carlo simulations.

4.3.1 Small diffusion initialization

In order to analyse the M1 model accuracy in reproducing a Monte Carlo simulation in a
standard case, we consider a very simple initialization: a photon beam propagating along
one direction with a very small divergence. As zero divergence represents a singularity for
M1, see Section 4.2.1.2, we initialize an entering flux with a single propagation direction
and a small diffusion parameter of 0.05◦. This corresponds to an anisotropy factor along
the propagation axis αx = 0.99999981. In the discretized computational domain for
the M1 code, this configuration produces an upper/lower shift of the beam of only one
grid cell at the right domain boundary. We call that beam monodirectional (with zero
divergence). In PENELOPE, the equivalent configuration is obtained by initializing an
emitting surface perpendicular to the propagation axis. In this surface the particles are
homogeneously distributed and they are emitted in every point within a cone with a
semi-aperture of 0.05◦ (see Figure 4.3(a)).

The results are shown in Figure 4.4 in Cartesian coordinates with the x-axis in the
beam propagation direction and y-axis along the beam width. In particular, panels 4.4(a)
and 4.4(b) show the depth dose distribution along the central axis y = z = 0 and the
transverse profiles at z = 0 taken at the depths of 2.5, 10.0 and 17.0 cm. The last panel
4.4(c) presents the superposition of the two dimensional (2D) isodose maps at the beam
axis z = 0 in the xy plane. In Figure 4.5 we plot two diagnostics in order to analyse
the discrepancies between the two solutions. Panel 4.5(a) presents the γ-index map with
1%/1 mm criterion. A more strict diagnostic showing the dose differences between the
two calculations is presented in panel 4.5(b).

As shown in Figures 4.4 and 4.5, the M1 model accurately reproduces the Monte
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Figure 4.4: Direction initialisation with a small diffusion parameter. A 6 MeV photon beam
coming from the left in a homogeneous water phantom: (a) depth dose distribu-
tion along the central axis, (b) transverse dose profiles at the center of the beam
(z = 0) taken at depths of 2.5, 10 and 17 cm, (c) 2D isodose map at z = 0 in the
xy plane.

Carlo simulation. A statistical analysis of the dose difference shows that the mean dose
difference between the two simulations is 0.78% ± 0.98%. The γ-index success rate is
100%. In Figure 4.5(b), the major differences can be observed in the build-up region at 1
cm from the entrance plane and on the edges of the beam. Both regions are characterized
by a strong electronic disequilibrium. In order to explain these discrepancies, we resort
to the Compton scattering described in Section 2.3.2 and we plot in Figure 4.6(a) the
Klein-Nishina cross section (2.32) expressed as a function of the incident photon energy
E and its scattering angle.

For a photon energy of 6 MeV, we can see that the most probable emission direction
for the secondary photon has a small angle with respect to the direction of the incident
photon. However, a small number of photons can be emitted perpendicularly to the
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Figure 4.5: Direction initialisation with a small diffusion parameter. A 6 MeV photon beam
coming from the left in an homogeneous water phantom: (a) γ-index map show-
ing the results of the 1%/1mm criterion, (b) spatial distribution of the dose
differences, see Section 3.6.2, between the Monte Carlo and M1 simulations. The
γ-index criterion is satisfied for all the points of the domain. However the differ-
ences between the dose distributions can be of the order of 4% in certain regions
of the domain. The stronger discrepancies can be observed in the build-up region
and on the edges of the beam.
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Figure 4.6: Klein-Nishina cross section: (a) 2D map of the Klein-Nishina cross section as a
function of the incident photon energy E and the angle of the scattered secondary
(b) polar plot of the Klein-Nishina for a 6 MeV and a 0.471 MeV photons.

propagation direction or can be even backscattered. Analysing the Figure 2.12(a), we
observe that the photons emitted perpendicularly have an energy of 0.471 MeV. These
photons in turn, interacting with a higher probability, emit electrons with an energy up
to 0.305 MeV. Figure 4.5(b) shows that the maximum dose difference on the edges of the
beam. The difference is negative, this means that the M1 model underestimates the dose
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4.3. Dose distribution with a Gaussian spectrum

in these regions. If we measure the width of this region, we see that it is comparable to
the range of electron with an energy of 0.3 MeV. Hence, we can conclude that the lack
of energy comes from the fact that these electrons have not been generated. This is due
to the flux annihilation intrinsically performed by the M1 model inside the beam in the
low energy groups. This also explains the dose difference in the build-up region where
M1 averages the backscattered photons with the small-angle scattered ones.

4.3.2 Large diffusion initialization

The test case presented in the previous section has shown that M1 has a good accuracy
in reproducing a Monte Carlo simulation in an highly anisotropic case. Nevertheless,
in clinical applications, particle beams with zero divergence do not exist. Therefore, we
now consider a test case where the photon beam is initialized with an anisotropy factor
calculated with a larger diffusion in order to mimic a divergent beam. With this aim we
employ an anisotropy factor αx = 0.9981, which corresponds to a semi-aperture of the
emission cone of 5◦.

The results are shown in Figures 4.7 and 4.8. The statistical analysis of the dose
difference shows that the mean dose difference between the two simulations is 0.99% ±
0.77%, i. e. the precision of the M1 model in this case is lower than before. In particular,
in panel 4.7(a) we observe a discrepancy between the two simulations in the interval
between 10 and 17 cm. This difference is manifested in the fact that the γ-index with
1%/1 mm criterion is not satisfied in this region (see Figure 4.8(a)) and its global success
rate goes down to 97.77%.

In the dose difference map in panel 4.8(b) we can observe that an overdose artefact
appears. These two shadows start from the left border of the domain at the top and
bottom of the beam. Their profiles follow the solution of the following system of equations:{

y = −0.75 + x · tan 5◦ lower line

y = 0.75− x · tan 5◦ upper line
(4.2)

In Figure 4.8(b) the curves representing Eq. (4.2) are plotted, with the crossing point
located at x ' 8.57 cm. In Figure 4.7(a) the crossing point is indicated by the dashed
line. This structure can be explained as follows: as discussed above, in M1 model an
average on the particle flux has place inside the beam. However, the voxels on the upper
and lower boundaries of the beam are not subject to this kind of averaging. This origins
two flows of photons following the cone aperture that cross each other in the center of
the beam. Once the two flows cross each other, the average takes place and a resulting
flow along the propagation axis is generated as schematically shown in Figure 4.9.

The energy that is lost in this average is deposited locally with two important con-
sequencies: a reduction of the photon flux and the consequent overdose observed at the
beam axis between 10 and 17 cm (Figure 4.7(a)).
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Figure 4.7: Direction initialisation with a large diffusion parameter. Is shown a 6 MeV
photon beam coming from the left in an homogeneous water phantom: (a) depth
dose distribution along the central axis, (b) transverse dose profiles at the center
of the beam (z = 0) taken at depths of 2.5, 10 and 17 cm and (c) 2D isodose map
at z = 0 in the xy plane.

4.3.3 Realistic anisotropy distribution

In the section above, we have shown that the beam initialization with a single value for
the anisotropy factor can lead to a pathological behaviour of the M1 model. To overcome
this problem being more adherent to the reality we adopt an initialization that takes into
account a real anisotropy distribution. The method is explained in Section 3.5.1. We
consider the point source at 100 cm from the phantom surface. Since the beam has a
width of 1.5 cm, it produces an aperture of 0.43◦ at the edges and a zero divergence in
the center.

The results are shown in Figures 4.10 and 4.11. The statistical analysis of the dose
difference shows that in this case the M1 model is more accurate than in the previous
cases with a mean dose difference between the two simulations of 0.55% ± 0.61%. This
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Figure 4.8: Direction initialisation with a large diffusion parameter. A 6 MeV photon beam
coming from the left in an homogeneous water phantom: (a) γ-index map showing
the results of the 1%/1mm criterion, (b) spatial distribution of the dose differ-
ences between the Monte Carlo and M1 simulations. The γ-index fails in a limited
region of the domain between 10 and 17 cm in depth. On the dose difference map
two overdose artefact appears at the top and bottom of the beam at the entrance
and propagate in the first centimiters of the domain. The solutions of the system
(4.2) are plotted in red and yellow lines.
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Figure 4.9: Schematic representation of the averaging process for voxels on the upper and
lower boundaries of the beam. The particle flux exiting the numerical interaction
(in red) has the propagation direction parallel to the beam axis.

improvement in accuracy is due to the fact that in a geometrically divergent beam the
averaging effect of the M1 model is less important, especially in the transverse direction.
For this reason the dose difference at the edges of the beam is smaller than in the first
case while the difference in the build-up region remains almost the same.
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Figure 4.10: Initialisation with a realistic anisotropy distribution. A 6 MeV photon beam
coming from the left in an homogeneous water phantom: (a) depth dose distri-
bution along the central axis, (b) transverse dose profiles at the center of the
beam (z = 0) taken at depths of 2.5, 10 and 17 cm and (c) 2D isodose map at
z = 0 in the xy plane.

4.4 Dose distribution with a bremsstrahlung spectrum

As a next step in validation of the M1 model, we study a more realistic case of a
bremsstrahlung spectrum. To this end, we adopt a 6 MV spectrum for the injected
photons. The direction initialization is the one introduced in Section 4.3.3. In this con-
figuration, we analyse other limitations of the M1 model and we propose some solutions
to improve the precision and to reduce the computational effort.

4.4.1 Dose distribution without secondary particles populations

As a first case, we test the precision of the M1 model considering a 6 MV bremsstrahlung
spectrum. For this spectrum, the Compton scattering remains the most probable inter-
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Figure 4.11: Initialisation with a realistic anisotropy distribution. A 6 MeV photon beam
coming from the left in an homogeneous water phantom: (a) γ-index map show-
ing the results of the 1%/1mm criterion, (b) spatial distribution of the dose
differences between the Monte Carlo and M1 simulations. The γ-index is satis-
fied in every point of the domain. Moreover, the dose differences on the edges
of the beam are strongly reduced. However, the dose difference in the build-up
region remains of the same order of the previous calculations.

action of photons with the ambient medium. Thus, we expect an accuracy comparable
with the one obtained in the test of Section 4.3.3. As above, all the energy groups are
initialized with the method presented Section 3.5.1.

The M1 model does not reproduce the Monte Carlo simulation in this case, as it can
be observed in Figures 4.12 and 4.13. A statistical analysis of the dose difference shows
that the mean dose difference between the two simulations is 5.88%±5.28%. The γ-index
success rate is 29.60%.

This low accuracy is clearly related to the shape of spectrum, due to some limitations
of the M1 model. This mismatch can be related to the fact that M1 does not distinguish
the primary and scattered photons. Specifically, the anisotropy initialization is the same
for all energy groups. Moreover, in a deterministic algorithm, the solution of the Boltz-
mann equation is performed by starting from the energy group with highest energy and
by decreasing of one energy group at every iteration, until the lowest energy group is
reached. As Eq. (3.53) shows, the solution for a given energy group takes into account
all particles that are scattered from the higher energy groups, according to the gain term.
Thus, when considering a single population for primary (more collimated) and secondary
(more scattered) photons, especially in a bremsstrahlung spectrum, M1 averages their
anisotropy. This process produces the very diffusive solution that is shown in Figures
4.12 and 4.13.
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Figure 4.12: 6 MV photon beam coming from the left in an homogeneous water phantom:
(a) depth dose distribution along the central axis, (b) transverse dose profiles
at the center of the beam (z = 0) taken at depths of 1.4, 10 and 17 cm and
(c) 2D isodose map at z = 0 in the xy plane. The dose distributions calculated
with M1 and the Monte Carlo codes strongly differ. The depth and lateral dose
profiles show that the M1 model is consistently more diffusive with respect to
the Monte Carlo simulation. The diffusive behaviour is even more evident in
the isodose map.

4.4.2 Dose distribution with secondary particles populations

In order to improve the results according to the analysis shown in the previous section,
we split the calculation of Equation (3.53) in two consecutive steps by introducing the
population of secondary particles. With this splitting we avoid the angular averaging
between the primary and secondary particles in every energy group performed by the M1

model .
We define ψ[0] the flux of the primaries and ψ[1] the flux of the secondaries. Using the

argument that particles of the same type scattered (n− 1)-times can only act as a source
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Figure 4.13: 6 MV photon beam coming from the left in an homogeneous water phantom:
(a) γ-index map showing the results of the 1%/1mm criterion, (b) spatial distri-
bution of the dose differences between the Monte Carlo and M1 simulations. The
γ-index fails for mostly the point of the domain. The strong diffusive behaviour
of the M1 model has an impact on the dose differences that are consistent for
both inside and outside regions of the photon beam.

for particles that are scattered n-times, we can decompose the LBTE of each particle
into a system of differential equations and one integro-differential equation. Doing so the
coupled LBTE Eqs. (3.21) take the following form:

Ω̂ · ∇ψi[0](~r, ε, Ω̂) + σit(~r, ε)ψ
i
[0](~r, ε, Ω̂) = 0,

Ω̂ · ∇ψi[1](~r, ε, Ω̂) + σit(~r, ε)ψ
i
[1](~r, ε, Ω̂) =

∫
dε′
∫
S2

dΩ̂′ σi,is (ε′ → ε, Ω̂′ → Ω̂)ψi[0](~r, ε
′, Ω̂′)

+

∫
dε′
∫
S2

dΩ̂′ σi,is (ε′ → ε, Ω̂′ → Ω̂)ψi[1](~r, ε
′, Ω̂′)

+

∫
dε′
∫
S2

dΩ̂′ σj,is (ε′ → ε, Ω̂′ → Ω̂)ψj[1](~r, ε
′, Ω̂′).

(4.3)
where in the last equation ψi[1] takes into account all photons that are scattered more
than once and ψj[1] takes into account the contribution to the i-species coming from the
scattering of the other types of particles. In order to better clarify this point, we can take
as an example the interaction of a photon beam. The first homogeneous differential equa-
tion of the system describes the absorption of the injected particles, i.e. the primaries.
On the other hand, the second equation describes the transport of all the scattered par-
ticles. The first integral of the right term takes into account the secondaries produced by
the primary photons. The second integral takes into account all the scattered secondary
photons that are reinjected in the same population ψi[1] and the third equation takes into
account the contribution from the e− /p→ γ scattering.

As shown in Figures 4.14 and 4.15 the M1 model with splitting on primary and sec-
ondary particles reproduces accurately the Monte Carlo simulation. A statistical analysis
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Figure 4.14: 6 MV photon beam coming from the left in an homogeneous water phantom:
(a) depth dose distribution along the central axis, (b) transverse dose profiles at
the center of the beam (z = 0) taken at depths of 1.4, 10 and 17 cm and (c) 2D
isodose map at z = 0 in the xy plane. The secondary particle splitting allows
to obtain a very accurate result with the M1 model.

of the dose difference shows that the mean dose difference between the two simulations
is 0.40%± 0.36%. The γ-index success rate is 100.%.

The splitting method provides a higher accuracy without affecting the stability of
the model because the convergence is reached with the same number of interations. The
number of scattered populations can be extended to 2-times, 3-times...N -times. In our
case the first scattered population is sufficient to reach a desired accuracy. A direct
consequence of this method is the increase of memory allocation needed for the solution
of the Boltzmann equation. Indeed, three more populations, i.e. secondary electrons-
photons-positrons, have to be taken into account.
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Figure 4.15: 6 MV photon beam coming from the left in an homogeneous water phantom:
(a) spatial distribution of the dose differences between the Monte Carlo and M1

simulations and (b) 2D isodose map at z = 0 in the xy plane. The γ-index is
respected for all the voxels in the domain. Despite to all the previous cases, the
dose differences are very small also in the build-up region. Differences of the
order of 4% are reached only in the first millimiters of the domain.

4.5 Optimization of the M1 model

In this section we describe the optimization of the physical parameters of the M1 model.
The deterministic models are very costly in terms of memory occupation. This is due
to the fact that the distribution functions have to be stored for each voxel of the do-
main and for each energy group. This leads to the impossibility to run simulations on
a standard computer. For this reason we have to reduce the memory needed for the
calculation by introducing some simplifications in the model. In this section we propose
two approximations that allow to consistently reduce the computational effort.

The first approximation consists in the introduction of the partial coupling, which
reduces the number of species of the transported particles and consequently the physical
effects taken into account. This approximation does not affect the accuracy of the model
but it produces an important gain in term of memory allocation.

The second approximation consists in the introduction of a non-unifomly optimized
energy discretization. This approximation allows to consistently reduce the number of
energy groups without affecting the precision of the calculation. The simulations of this
section are conducted for both bremsstrahlung spectra at 6 MV and 18 MV.

4.5.1 Dose distribution with partial coupling

Equation (3.21) describes the particle cascade in which every transported particle can
produce particles of the other species. In such a cascade, the particle species are fully
coupled to each other. However fully-coupled problems are expensive to run while suf-
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ficiently accurate solutions can be obtained with simpler coupling schemes that entail a
lower computational effort. In the energy regime of the external beam photon radiother-
apy some physical effects make a very small contribution and can be neglected without
loss in the accuracy of the solution.

With this aim we can introduce a notion of partial-coupling. According to Figure
2.14 for the total cross sections, the contribution of bremsstrahlung and pair production
is very small. Correspondingly for the equation for photons the bremsstrahlung effect
and the fluorescence following impact ionization can be neglected. Moreover, the energy
that would have go to the photons produced by charged secondaries is deposited locally.
In addition, due to a small difference in electron and positron cross sections both pair sec-
ondaries can be considered electrons. These approximations are justified from a physical
point of view below.
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Figure 4.16: Total cross sections for electrons (red) and positrons (blue) in water and the
difference between them (dashed black).

As a first step we focus on the assimilation of the positron population with the electron
population. This means that in the case of a pair production reaction, we assume that
instead of an electron and a positron two electrons are created. This approximation does
not induce a considerable error in the dose deposition calculation. This is due to the fact
that the electron and positron cross sections have a negligible difference in the energy
range considered for our applications. As shown in Figure 4.16, only in the energy range
between 0.001 MeV and 0.1 MeV the difference is larger then one percent. For these
energies electrons and positrons in water have a range smaller than 0.5 mm which is a
typical voxel size. This means that the positrons and electrons can be considered in the
same population without introducing a noticible error in the dose deposition calculation.

This hypotesis has one more consequence. Without positrons the annihilation process
is not taken into account. In order to make an estimation on the impact of annihilation
process we conducted a numerical experiment with the PENELOPE code.
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In order to estimate the fraction of the initial photon energy converted in electron
and positron, we set a photon point source with a 6 MV or 18 MV spectrum that injects
a parallel beam of photons in a wire of a very small thickness. In our case the wire is
made of water, it is 20 cm long and its thickness is 10−5 cm. The thickness has been
chosen considering the range of the less energetic elecrons in water, in order to avoid their
re-absorption. Thus, all secondary particles can escape from the wire. This system is
embedded in a spherical vacuum chamber with a perfectly absorbing wall. In this way
we use the chamber as a detector. All the primary photons that do not interact with the
wire are filtered out and not taken into account in the detection.
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Figure 4.17: Spectra of the secondary particles produced by a photon beam of 6 MV: a)
electrons, b) photons, c) positrons. We consider only the secondaries produced
after the first interaction of the primary photon. Simulation perfomed with the
PENELOPE code.
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Figure 4.18: Spectra of the secondary particles produced by a photon beam of 18 MV: a)
electrons, b) photons, c) positrons. We consider only the secondaries produced
after the first interaction of the primary photon. Simulation perfomed with the
PENELOPE code.

In Figures 4.17 and 4.18 the detected spectra of the secondary particles are shown.
These spectra are in units of MeV on the abscissa axis and in 1/MeV/hist on vertical
axis. This unit describe the energy detected per primary photon (history) injected in
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the simulation. Due to the fact that we detect only the secondaries generated by the
first interaction of the primary photons, these spectra represent the energy distribution
of the first generated secondary particles. If we integrate numerically these spectra over
the energy variable we obtain the number secondary particles produced by one primary
photon:

N6MV =

∫ Emax

Emin

dN

dE
dE =


0.684 e−/hist

0.693 γ /hist

0.006 e+/hist

N18MV =

∫ Emax

Emin

dN

dE
dE =


0.532 e−/hist

0.503 γ /hist

0.032 e+/hist

(4.4)

These numbers give us an important information. Positrons represent less than 0.6%

in the first example and about 3% in the second example of the total number of secondary
particles. Neglecting the positron population we neglect also the annihilation process that
has place in the end of the positron propagation. This means that a part of the positron
energy is not converted into the two annihilation photons. Assuming that all the positrons
experience the annihilation process when their energy is equal to their rest energy, the
energy carried by the annihilation photons can be estimated multipling the number of
positrons with the double of the electron energy at rest. With this simple calculation we
obtain that for the 6 MV spectrum, the missed energy is approximately 6 keV, while for
the 18 MV spectrum is approximately 32 keV.

With the previous calculation we estimated the energy carried by the annihilation
photons per history. We can also estimate the total energy that is carried by each type
of secondary particle. For doing that we have to solve:

E6MV =

∫ Emax

Emin

E
dN

dE
dE =


0.528 MeV · e−/hist

0.486 MeV · γ /hist

0.008 MeV · e+/hist

E18MV =

∫ Emax

Emin

E
dN

dE
dE =


1.201 MeV · e−/hist

0.679 MeV · γ /hist

0.118 MeV · e+/hist

(4.5)

Comparing now the energy of the annihilation photons with the total energy of the
secondaries, we conclude that it contains less than 3% of the initial energy and can be
neglected without introducing a strong error in the simulation of dose deposition.

Another approximation in the partial-coupling consists in neglecting bremsstrahlung
photons produced by charged secondaries. As shown in Figure 4.17, this approximation
is completely justified for a 6 MV photon beam, because no charged secondaries are
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Figure 4.19: Dose calculation performed with the LBTE partial coupling. 6 MV photon
beam coming from the left in an homogeneous water phantom: (a) depth dose
distribution along the central axis, (b) transverse dose profiles at the center of
the beam (z = 0) taken at depths of 1.4 cm, 10 cm, 17 cm and (c) 2D isodose
map at z = 0 in the xy plane. The dose distribution is calculated with a higher
accuracy.
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Figure 4.20: Dose calculation performed with the LBTE partial coupling. 6 MV photon
beam coming from the left in an homogeneous water phantom: (a) γ-index map
showing the results of the 1%/1mm criterion and (b) spatial distribution of the
dose differences between the Monte Carlo and M1 simulations. The γ-index is
respected in the whole domain. The map of dose differences shows that the level
of accuracy of the partial coupled solution is comparable with the full coupled
solution.
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Figure 4.21: Dose calculation performed with the LBTE partial coupling. 18 MV photon
beam coming from the left in an homogeneous water phantom: (a) depth dose
distribution along the central axis, (b) transverse dose profiles at the center of
the beam (z = 0) taken at depths of 3.2 cm, 10 cm, 17 cm and (c) 2D isodose
map at z = 0 in the xy plane.
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Figure 4.22: Dose calculation performed with the LBTE partial coupling. 18 MV photon
beam coming from the left in an homogeneous water phantom: (a) γ-index map
showing the results of the 1%/1mm criterion and (b) spatial distribution of
the dose differences between the Monte Carlo and M1 simulations. The partial
coupling approximation do not affect the precision of the M1 simulations even
for high energy photon beam.
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4.6. Conclusion

sufficiently energetic to produce bremsstralhung radiation. For a 18 MV photon beam,
as shown in Figure 4.18, only a small part of the electron and positron population has
sufficient energy to produce bremsstralhung radiation.

As shown in Figures 4.19 and 4.20 for the 6 MV spectrum and in Figures 4.21 and
4.22 for the 18 MV spectrum, these approximations do not affect the accuracy of the
calculation. For the 6 MV spectrum, a statistical analysis of the dose difference shows
that the mean dose difference between the two simulations is 0.41%±0.36%. The γ-index
success rate is 100.%. For the 18 MV spectrum, a statistical analysis of the dose difference
shows that the mean dose difference between the two simulations is 0.66%± 0.63%. The
γ-index success rate is 99.96%. These examples justify the use of simplified cross sections
for acceleration of the dose calculation with M1 code.

4.5.2 Dose distribution with non-uniform energy mesh

In order to push forward the optimization of M1, we investigated the possibility of re-
duction of the number of energy groups, while preserving the same accuracy in dose
calculation. In order to do that, we recall that energy discretization based on the multi-
group approach relies on the hypothesis that the total cross sections, see Figure 2.14,
remain approximately constant within a group. This means that the total cross section
for each particle varies slowly between contigous groups.

Here we propose a non uniform discretization for the energy variable. The energy
grids have been calibrated in a way that the total cross section variation between two
adjacent groups has to be small. Thus, we impose an upper threshold on the total cross
section gradient between two groups. Thanks to this technique we are able to discretize
the energy variable is with 21 energy groups for the 6 MV simulations and with 39 energy
groups for the 18 MV simulations. This reduction of energy groups represents a strong
optimization of the code. For the simulation of the 6 MV spectrum, it allows to reduce
the computational time of a factor 14 and the memory allocation of a factor 3.

The results with this optimized non-uniform energy mesh are presented in Figures
4.23 and 4.24 for 6 MV spectrum and in Figures 4.25 and 4.26 for 18 MV spectrum. We
observe that the accuracy is preserved for both cases. For 6 MV spectrum, a statistical
analysis of the dose difference shows that the mean dose difference between the two
simulations is 0.52%± 0.26%. The γ-index success rate is 100.%. For 18 MV spectrum,
a statistical analysis of the dose difference shows that the mean dose difference between
the two simulations is 0.42%± 0.19%. The γ-index success rate is 99.91%.

4.6 Conclusion

In this chapter the M1 model has been validated and optimized by considering a homo-
geneous phantom. The accuracy of the model has been tested on some specific issues,
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Figure 4.23: Dose calculation performed with non-uniform energy grid. 6 MV photon beam
coming from the left in an homogeneous water phantom: (a) depth dose distri-
bution along the central axis, (b) transverse dose profiles at the center of the
beam (z = 0) taken at depths of 1.4 cm, 10 cm, 17 cm and (c) 2D isodose map
at z = 0 in the xy plane.
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Figure 4.24: Dose calculation performed with non-uniform energy grid. 6 MV photon beam
coming from the left in an homogeneous water phantom: (a) γ-index map show-
ing the results of the 1%/1mm criterion and (b) spatial distribution of the dose
differences between the Monte Carlo and M1 simulations.
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Figure 4.25: Dose calculation performed with non-uniform energy grid. 18 MV photon beam
coming from the left in an homogeneous water phantom: (a) depth dose distri-
bution along the central axis, (b) transverse dose profiles at the center of the
beam (z = 0) taken at depths of 3.2 cm, 10 cm, 17 cm and (c) 2D isodose map
at z = 0 in the xy plane.
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Figure 4.26: Dose calculation performed with non-uniform energy grid. 18 MV photon beam
coming from the left in an homogeneous water phantom: (a) γ-index map show-
ing the results of the 1%/1mm criterion and (b) spatial distribution of the dose
differences between the Monte Carlo and M1 simulations.
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starting from the beam initialization. The analysis has shown that a single anisotropy
initialization is not suitable for the description of a realistic beam. The solution of
this problem is the initialization of an anisotropy distribution that is directly calculated
starting from a Monte Carlo phase-space file. The second important topic is the need of
introducing the secondary particle population in order to accurately solve the propagation
of a realistic photon beam with a bremsstrahlung spectrum. In the end of the chapter
we presented the optimized discretization of the M1 model. With the introduction of the
partial-coupling approximation the model has to be solved for less physical interactions
and type of particles. As a last step we have introduced a non-uniform mesh for the
energy variable. These optimizations have strongly improved the memory allocation and
the calculation time, with a reduction of a factor of ∼ 3 and of ∼ 14 respectively.
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Chapter 5

Validation of the entropic model in
heterogeneous phantoms

5.1 Introduction

In the previous chapter we have validated the M1 model in a homogeneous domain, opti-
mizing the memory allocation and the calculation time by adopting the partial-coupling
approximation and using a non-uniform energy mesh. In this chapter the model is em-
ployed on more complex heterogeneous phantoms. All validation tests are conducted for
both 6 MV and 18 MV spectra.

The first phantom geometry is composed of a heterogeneous layer placed in the center
of the water phantom, in order to cover the entire beam aperture. This phantom is used
to test the accuracy of the model in presence of different materials and simple interfaces.
This model is used to consider such materials as water, aluminium, bone and lung.

Once the model is validated on this simple geometry, we introduce more complex
configurations. One example is inspired by a work by Fogliata et al. [41] and it is
useful to test the accuracy of the M1 model in conditions of a strong lateral electron
disequilibrium.

Two more geometries are used to test M1 in more complicated numerical conditions.
The first one is inspired by a benckmark for fast Monte Carlo codes [118] and presents a
steep density gradient as well as a strong difference in the atomic numbers between two
adjacent layers. The last phantom geometry is the most challenging and realistic, since
it represents an entire thorax.

5.2 Protocol of comparison

We present here a comparison of the results obtained with M1 model and with the Monte
Carlo code PENELOPE. We conduct a study with several test cases, with heterogeneous
materials and different geometries.
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Chapter 5. Validation of the entropic model in heterogeneous phantoms

5.2.1 Source model

We use the source model described in Section 4.5. The M1 model is here validated
with both the 6 MV and 18 MV spectra shown in Figure 4.2. In all the test cases, the
anisotropy distribution is initialized as explained in Section 4.2.1.2.

5.2.2 Calculation geometry

Here we validate the optimized M1 model for external beam radiotherapy by considering
multiple heterogeneous phantom geometries. With this aim, we define more complex
geometries, taking inspiration from other works on the validation of medical codes [128,
41, 118, 19]. The calculation domain is defined by a 6 × 6 × 20 cm2 phantom for the 6
MV spectrum and by a 9× 9× 20 cm2 phantom for the 18 MV spectrum.
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Figure 5.1: Phantoms used for the external photon beam validation: (a) phantom with a
single entire heterogeneous slab, (b) phantom with a single half heterogeneous
slab, (c) phantom with two heterogeneous slabs and (d) phantom with several
heterogeneous slabs.

The first heterogeneity is presented in Figure 5.1(a). It consists of a slab of a material
which is different with respect to water in its chemical composition and density and which
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covers the entire beam aperture. The slab is 10 cm thick and lies in water between 5
cm and 15 cm in depth. This phantom geometry is useful to verify the ability of the
model in accurately solving the transport in different collisional regimes and in handling
a discontinuity in the density profile. This test is analyzed in the case of slab made of
lung, bone and aluminium.

The second heterogeneity is shown in Figure 5.1(b). It consists in a slab of lung that
covers a half of the beam aperture. The slab is 10 cm thick and lies between 5 cm and
15 cm in depth. This phantom allows to verify the accuracy of the M1 model in the
case of a strong lateral electron disequilibrium. In particular, in lung the production rate
of electrons is lower than in water. At the interface this difference causes an electronic
disequilibrium that is difficult to resolve for the models currently used in clinical practice.

The third geometry is presented in Figure 5.1(c). It consists of a slab of water between
0 cm and 3 cm in depth, a slab of aluminium between 3 cm and 5 cm in depth, a slab of
lung between 5 cm and 12 cm in depth and another slab of water between 12 cm and 20
cm. The interest in the study of this test is in the sharp gradient of density and in the
difference of equivalent atomic numbers between aluminium and lung. This phantom has
been proposed at the early stage of the development of optimized Monte Carlo algorithm
as benchmark with the full Monte Carlo codes [118].

The last geometry that we consider is the most challenging one, since it collects all
the difficulties of the previous cases. It is composed of a water phantom where a spinal
is simulated with several bone inserts of 1 cm3 is placed at 2.5 cm in depth and with a
distance of 2 cm from the half lung slab.

Here we focus on several specific materials commonly used in the radiotherapy ap-
plications. The biological materials, water (1.0 g/cm3), lung (0.26 g/cm3) and bone
(1.85 g/cm3) are defined with their proper chemical composition. As an example of non-
biological materials, used for prosthesis implants, aluminium (2.7 g/cm3) is considered.
In Table 5.1 the complete list of these materials with their chemical composition in terms
of fraction by weight of each element and density is reported.

Composition [fraction by weight] Density [g·cm−3]
Water H 0.111898, O 0.888102 1.

Cortical Bone (ICRU-44) H 0.034000, C 0.155000, N 0.042000,
O 0.435000, Na 0.001000, Mg 0.002000,
P 0.103000, S 0.003000, Ca 0.225000 1.85

Lung (ICRU-44) H 0.103000, C 0.105000, N 0.031000,
O 0.749000, Na 0.002000, P 0.002000,
S 0.003000, Cl 0.003000, K 0.002000 0.26

Aluminium Al 1. 2.7

Table 5.1: Table of the materials with their chemical composition and density [141].
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Chapter 5. Validation of the entropic model in heterogeneous phantoms

5.2.3 Numerical parameters of simulations

For the simulations that are analysed in the present chapter, the M1 model is solved by
adopting the same spatial discretization of the domain and the same energy range and
discretization introduced in Section 4.2.3.1. Also the cut-off energy imposed in the Monte
Carlo code is the one discussed in Section 4.2.3.2.

5.3 Dose distribution in presence of a single insert

We begin our analysis by analyzing three different tests for both 6 MV and 18 MV spectra
with the simple heterogeneous geometry shown in Figure 5.1(a). These tests allow us to
verify the capability of the M1 model to treat the transport of particles and the dose
deposition in different collisional regimes. Moreover, they represent a first validation of
the model ability in handling a simple discontinuity in the density profile. We simulate
all the three materials used for heterogeneities, i. e. lung, bone and aluminium.

5.3.1 Lung slab

As a first step in the validation process, we test an heterogeneity composed by lung (for
its chemical compostition and density see Table 5.1). The main interest of this case is
related to the strong density gradients occurring at the interfaces. Moreover, in the lung,
the mean free path of the electrons generated by the photon beam is longer than in water.
For this reason, this case is useful to test precision of the model in handling the transport
of the charged particles in a low density material.

The M1 code is able to accurately calculate the transport of the particles and the
consequent spreading of dose deposition in lung as shown in Figures 5.2(b) and 5.2(c) for
the 6 MV spectrum and in Figures 5.4(b) and 5.4(c) for the 18 MV spectrum. Moreover,
M1 well captures the second build-up that is present after the insert as shown in Figures
5.2(a) and 5.4(a). In 18 MV case M1 model overestimates the dose deposition on the
beam axis in the lung heterogeneity. However an underestimation of the dose is observed
off the primary beam in lung.

The deficit of dose in the heterogeneity shown in Figures 5.2(a) and 5.4(a) is well
known in literature [75, 88, 135]. With decreasing material density, the range and the
lateral spread of the secondary electrons are increased. Moreover, especially for small field
size, a consistent number of secondary electrons travel outside the geometrical limits of
the photon beam. This causes the enlargement of the beam penumbra in the underdense
material as shown in Figures 5.2(c) and 5.4(c). Further, for higher energy beam the
electron disequilibrium is stronger due to the higher energy of the charged secondaries.
This results in a stronger lack of dose on the beam axis. Moreover, the lack of scattering
for primary photons in lung results in a new build-up when radiation penetrates through
the water region after the lung slab.
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Figure 5.2: 6 MV photon beam coming from the left in a water phantom with a lung insert
between 5 cm and 15 cm: (a) depth dose distribution along the central axis, (b)
transverse dose profiles at the center of the beam (z = 0) taken at depths of 1.4,
10 and 17 cm and (c) 2D isodose map at z = 0 in the xy plane. The M1 model
reproduces with high accuracy the dose deposition calculated by the Monte Carlo
simulation. The lack of dose on the beam axis and the enlargement of beam
penumbra due to the spread of electrons in lung is reproduced with precision.
The second build-up in last water layer is accurately resolved.
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Figure 5.3: 6 MV photon beam coming from the left in a water phantom with a lung insert
between 5 cm and 15 cm: (a) γ-index map showing the results of the 1%/1mm

criterion and (b) spatial distribution of the dose differences between the Monte
Carlo and M1 simulations. The γ-test is respected for the 99.98% of the points in
the domain. The dose difference map shows that the maximum of the discrepacies
is reached at the heterogeneity interfaces. The dose differences remain in the range
of 3% in whole domain.
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Figure 5.4: 18 MV photon beam coming from the left in a water phantom with a lung insert
between 5 cm and 15 cm: (a) depth dose distribution along the central axis, (b)
transverse dose profiles at the center of the beam (z = 0) taken at depths of 3.2,
10 and 17 cm and (c) 2D isodose map at z = 0 in the xy plane. M1 keeps a good
accuracy in the calculation of dose deposition as shown in the 2D isodose map.
However, in lung, it slightly overestimates the dose deposition on the beam axis.
At this overdose on beam axis corresponds an underestimation on the lateral dose
deposition in lung.
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Figure 5.5: 18 MV photon beam coming from the left in a water phantom with a lung insert
between 5 cm and 15 cm: (a) γ-index map showing the results of the 1%/1mm

criterion and (b) spatial distribution of the dose differences between the Monte
Carlo and M1 simulations. The γ-test is respected for 98.91% of the points in the
domain. The most important discrepancy appears at the first interface between
lung and water where the dose difference reach 3.7%.
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In case of a 6 MV beam, the 99.98% of the points in the domain respect the γ-index
criterion for 1% − 1 mm (see Figure 5.3(a)), whereas for the 18 MV beam, the γ-index
success rate is 98.91% (see Figure 5.5(a)). For the 6 MV spectrum, a statistical analysis
of the dose difference (see Figure 5.3(b)) shows that the mean dose difference between
the two simulations is 0.34%± 0.30%, whereas for the 18 MV spectrum is 0.41%± 0.36%

(see Figure 5.5(b)).

5.3.2 Bone slab

We now present the second test case, in which the heterogeneity is represented by a
10 cm bone insert. As for the test of the previous section, we have to deal with two
simple interfaces. However, the physical phenomena occurring during the simulation are
different.

In Figures 5.6 - 5.7 and 5.8 - 5.9 the results are shown respectively for the 6 MV
and 18 MV spectra. As shown in Figures 5.6(c) and 5.8(c), the M1 model accurately
simulates the lack of lateral diffusion in the insert. This phenomenon is mainly due to
the higher density of the bone. An interesting behaviour of the dose deposition appears
at the first interface of the heterogeneity. In Figures 5.6(a) and 5.8(a), we can observe a
peak of dose reaching the maximum at the interface. Moreover, for the 18 MV spectrum,
we can observe in Figure 5.8(a) a new build up in the heterogeneity. Let us now explain
in detail these phenomena appearing before and after the interface.

In this case, as in the previous one, the material interface is represented by a strong
difference in the density. Moreover, the two materials are different in their equivalent
atomic number. Since we are dealing with cold matter and since the particles have a
relativistic energy, we can consider the materials as a compound of atoms. We consider a
compound composed by N elements in which the molecules consist of xi atoms of element
Xi, for i=1,..,N. The number of electrons per molecule is ZM =

∑N
i=1 xiZ(Xi) and the

molar mass is AM =
∑N

i=1 xiA(Xi), where Z(Xi) is the atomic number of element Xi and
A(Xi) is its atomic weight. By considering an equivalent single element material with the
same mass density as the actual medium, the atomic number Zeq is given by the following
relation [121]:

Zeq =

∑N
i=1 xiZ(Xi)A(Xi)

AM
. (5.1)

This means that the equivalent atomic number is the mass average of the atomic numbers
of the constituent atoms. Thus we get that Zeq,H2O ' 7.22 and Zeq,Bone ' 10.63. The
difference between equivalent atomic numbers of these two materials is more prominent
with respect to the materials considered in the test case of Section 5.3.1, where Zeq,Lung '
7.14.

In order to explain the behaviour of the dose before the interface it is important to
take into account this difference. Indeed, the difference of the two materials Zeq has an
impact on the cross section of photons. Specifically the photoelectric cross section is a
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Figure 5.6: 6 MV photon beam coming from the left in a water phantom with a bone insert
between 5 cm and 15 cm: (a) depth dose distribution along the central axis, (b)
transverse dose profiles at the center of the beam (z = 0) taken at depths of
1.4, 10 and 17 cm and (c) 2D isodose map at z = 0 in the xy plane. The M1
model reproduces with a high accuracy the dose distribution in the whole domain.
On the depth dose profile we can notice that our model correctly reproduces the
changement of the slope in bone. This is due to the higher absorption coefficient
of bone with respect to water. Moreover the discontinuities at the heterogeneity
interfaces are correctly reproduced.
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Figure 5.7: 6 MV photon beam coming from the left in a water phantom with a bone insert
between 5 cm and 15 cm: (a) γ-index map showing the results of the 1%/1mm

criterion and (b) spatial distribution of the dose differences between the Monte
Carlo and M1 simulations. The γ-test is satisfied in the whole domain. The dose
difference map show a high agreement between the two curves with exception of
the first millimiters where the dose difference reach the 4%.
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Figure 5.8: 18 MV photon beam coming from the left in a water phantom with a bone insert
between 5 cm and 15 cm: (a) depth dose distribution along the central axis, (b)
transverse dose profiles at the center of the beam (z = 0) taken at depths of 3.2,
10 and 17 cm and (c) 2D isodose map at z = 0 in the xy plane. In this case
the M1 model is slightly less diffusive than the Monte Carlo code. In depth dose
profile our model reproduces the second build-up after the first interface in bone
but overestimates the discontinuity at the second interface.
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Figure 5.9: 18 MV photon beam coming from the left in a water phantom with a bone insert
between 5 cm and 15 cm: (a) γ-index map showing the results of the 1%/1mm

criterion and (b) spatial distribution of the dose differences between the Monte
Carlo and M1 simulations.
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Figure 5.10: Plots of the total cross section for photons in water (a) and in bone (b). Data
from the Monte Carlo code PENELOPE with permission.
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function of Z5 (see Equation (2.17)). Comparing the cross sections calculated for the two
materials, see Figures 5.10(a) and 5.10(b), we can observe that the photoelectric effect
becomes significant for higher energies in bone with respect to water. Such an effect is
characterized by a quasi-isotropic emission of photoelectrons. This means that a part
of those photoelectrons that are generated at the bone surface can be backscattered in
water. This is the reason of the peak of dose generated before the interface. The opposite
behaviour is observed at the second interface. Here, a lack of secondary electrons coming
from the water layer causes a depletion of the dose just behind the interface.

Another interesting phenomenon is the build-up that can be observed in Figure 5.8(a).
This effect can be explained as follows. As explained in Chapter 2, the macroscopic cross
section is related to the microscopic cross section through the relation σma = NA ρ

A
σmi. If

we consider the total cross section, this quantity is commonly called ‘attenuation coef-
ficiant’. The attenuation coefficient gives also an information on the production rate of
electrons, due to the fact that all the interactions taken into account produce charged
secondaries. The production rate of electrons in the bone is larger than in water. For
this reason, the condition of equilibrium in the bone is reached only after 1 cm for the 18
MV photon beam, due to the high energy of the produced electrons.

Concerning the results presented in Figures 5.7 and 5.9, in the case of 6 MV beam,
the 100% of the points in the domain respect the γ-index criterion for 1% − 1 mm (see
Figure 5.7(a)), whereas for the 18 MV beam, the γ-index success rate is 99.65% (see
Figure 5.9(a)). For the 6 MV spectrum, a statistical analysis of the dose difference
(see Figure 5.7(b)) shows that the mean dose difference between the two simulations is
0.46% ± 0.32%, whereas for the 18 MV spectrum is 0.63% ± 0.28% (see Figure 5.9(b)).
The M1 model simulate with high accuracy all the physical processes described above for
both spectra. A small overestimation of the dose at the second interface can be observed
for the 18 MV spectrum. The lack of lateral diffusion of secondary electrons in bone
correctly reproduced.

5.3.3 Aluminium slab

We now solve the same test with a non-biological insert, aluminium. The difference of
the equivalent atomic number between the two materials in this geometry, is here even
more pronounced, since Zal = 13. For this reason, this case presents an amplification of
the peaks at the interfaces, a stronger gradient on the dose deposition and smaller lateral
spread of the dose in the aluminium (see Figures 5.11 - 5.12 and 5.13 - 5.14).

In the case of the 6 MV beam, the 100% of the points in the domain respect the γ-index
criterion for 1%− 1 mm (see Figure 5.12(a)), whereas for the 18 MV beam, the γ-index
success rate is 90.92% (see Figure 5.14(a)). For the 6 MV spectrum, a statistical analysis
of the dose difference (see Figure 5.12(b)) shows that the mean dose difference between the
two simulations is 0.41%±0.30%, whereas for the 18 MV spectrum is 0.73%±0.38% (see
Figure 5.14(b)). The 18 MV case fails the γ-test mostly in regions outside the primary
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Figure 5.11: 6 MV photon beam coming from the left in a water phantom with a aluminium
insert between 5 cm and 15 cm: (a) depth dose distribution along the central
axis, (b) transverse dose profiles at the center of the beam (z = 0) taken at
depths of 1.4, 10 and 17 cm and (c) 2D isodose map at z = 0 in the xy plane.
This simulation is characterized by the presence of a strong density gradient and
a higher difference in equivalent atomic number between water and the insert.
The M1 model reproduces with a high precision the dose distribution calculated
with PENELOPE. Only at the first interface an overestimation of dose can be
noticed.
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Figure 5.12: 6 MV photon beam coming from the left in a water phantom with a aluminium
insert between 5 cm and 15 cm: (a) γ-index map showing the results of the
1%/1mm criterion and (b) spatial distribution of the dose differences between
the Monte Carlo and M1 simulations. The γ-test is respected in 100% of the
points in the domain.
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Figure 5.13: 18 MV photon beam coming from the left in a water phantom with a aluminium
insert between 5 cm and 15 cm: (a) depth dose distribution along the central
axis, (b) transverse dose profiles at the center of the beam (z = 0) taken at
depths of 3.2, 10 and 17 cm and (c) 2D isodose map at z = 0 in the xy plane.
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Figure 5.14: 18 MV photon beam coming from the left in a water phantom with a aluminium
insert between 5 cm and 15 cm: (a) γ-index map showing the results of the
1%/1mm criterion and (b) spatial distribution of the dose differences between
the Monte Carlo and M1 simulations. In this case the γ-test is respected only
for 90.92% of the points. It can be noticed that the regions where the test fails
are in the aluminium insert and outside the geometrical aperture of the beam
where the contribution of more diffused secondaries is important. Probably a
better discretization of the energy variable would solve this problem. However
it is worthwhile to notice that for a dosimetric viewpoint, this dose difference in
aluminium would not have an impact on the quality of the treatment.
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beam aperture in aluminium. This discrepancy is mainly due to a lack of precision in
treatment of secondaries for higher atomic number materials. A better discretized energy
domain could improve the result. However, this discrepancy do not have an impact on
the precision outside the heterogeneity.

5.4 Dose distribution in presence of a half width insert

We now analyse a test with a single half width insert of lung. This test demonstrates
the behaviour of the M1 model in presence of an interface along the beam axis. At the
interface the lateral electron disequilibrium is considerable and the model has to handle
along the beam propagation two different physical regimes. In lung the production rate
of secondary electrons is three-times lower than in water. Moreover the mean free path
of electrons in lung is larger than in water. For this reason, the charged particles flux in
voxels near the interface is not compensate and electron disequilibrium is strong.

In the 6 MV case the model accurately reproduces the dose distribution that has been
calculated with PENELOPE as shown in Figures 5.15 and 5.16. However, for the 18 MV
spectrum a non negligible dose difference is present at the interface along the beam axis
as it follows by observing Figures 5.17 and 5.18. In the case of 6 MV beam, the 100% of
the points in the domain respect the γ-index criterion for 1%−1 mm (see Figure 5.16(a)),
whereas for the 18 MV beam, the γ-index success rate is 98.93% (see Figure 5.18(a)). For
6 MV spectrum, a statistical analysis of the dose difference (see Figure 5.16(b)) shows
that the mean dose difference between the two simulations is 0.38%± 0.25%, whereas for
18 MV spectrum is 0.42%± 0.42% (see Figure 5.18(b)).

5.5 Dose distribution in presence of a double hetero-
geneity insert

In this section we present a test case where the two materials with the largest difference
in atomic number and density are adjacent. Even if this case cannot represent a realistic
configuration, it is of interest in order to analyse possible limitations of the M1 model.
These limitations can rise at the interface between aluminium and lung due to the strongly
different physical regimes in these materials. Indeed, aluminium is characterized to be
a diffusive material for the photon population while the electrons have a range between
10−5 cm and 1.5 cm. On the other hand in the lung material, having a lower Zeq, a lower
diffusion of photons occurs and the electrons have a larger range.

For both the 6 MV and 18 MV spectra the treatment of the aluminium/lung interface
shows an overdose with respect to the Monte Carlo simulation. This can be due to
a numerical oscillation that can be reduced with more advanced numerical techniques.
Despite this difference, M1 accurately reproduces the Monte Carlo simulation in the rest
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Figure 5.15: 6 MV photon beam coming from the left in a water phantom with a half lung
insert between 5 cm and 15 cm: (a) depth dose distribution along the central
axis, (b) transverse dose profiles at the center of the beam (z = 0) taken at
depths of 1.4, 10 and 17 cm and (c) 2D isodose map at z = 0 in the xy plane.
The M1 model preserve the accuracy demostrated in case of entire slab. The
depth dose profile shows a high accuracy even along the heterogeneity interface.
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Figure 5.16: 6 MV photon beam coming from the left in a water phantom with a half lung
insert between 5 cm and 15 cm: (a) γ-index map showing the results of the
1%/1mm criterion and (b) spatial distribution of the dose differences between
the Monte Carlo and M1 simulations.
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Figure 5.17: 18 MV photon beam coming from the left in a water phantom with a half lung
insert between 5 cm and 15 cm: (a) depth dose distribution along the central
axis, (b) transverse dose profiles at the center of the beam (z = 0) taken at
depths of 3.2, 10 and 17 cm and (c) 2D isodose map at z = 0 in the xy plane.
In this case the M1 simulation shows a discrepancy in the depth dose profile
along the heterogeneity interface. However, as shown on the lateral profiles, this
discrepancy is limited to the region of the interface and do not affect the rest of
the domain.
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Figure 5.18: 18 MV photon beam coming from the left in a water phantom with a half lung
insert between 5 cm and 15 cm: (a) γ-index map showing the results of the
1%/1mm criterion and (b) spatial distribution of the dose differences between
the Monte Carlo and M1 simulations. The γ-test fails along the interface on
the central axis of the beam where the dose difference is stronger. Probably a
better discretization of the energy variable would increase the precision of the
M1 model.
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Figure 5.19: 6 MV photon beam coming from the left in a water phantom with a double
heterogeneity made of aluminium between 3 cm and 5 cm and lung between 5
cm and 12 cm: (a) depth dose distribution along the central axis, (b) transverse
dose profiles at the center of the beam (z = 0) taken at depths of 1.4, 10 and 17
cm and (c) 2D isodose map at z = 0 in the xy plane. In this case the density
gradient is emphasised at the interface between aluminium and lung inserts.
The M1 model calculates with a good accuracy the dose distribution in all the
domain but demonstrates some difficulties in the resolution of this interface. An
improved numerical scheme would increase the precision on the resolution of
this kind of interface.
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Figure 5.20: 6 MV photon beam coming from the left in a water phantom with a double
heterogeneity made of aluminium between 3 cm and 5 cm and lung between 5
cm and 12 cm: (a) γ-index map showing the results of the 1%/1mm criterion
and (b) spatial distribution of the dose differences between the Monte Carlo and
M1 simulations. The γ-test is satisfied for 99.85% of the points in the domain.
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of the domain, as shown in Figures 5.19 - 5.20 and 5.21 - 5.22. In the case of 6 MV beam,
the 99.85% of the points in the domain respect the γ-index criterion for 1% − 1 mm

(see Figure 5.20(a)), whereas for the 18 MV beam, the γ-index success rate is 99.66%

(see Figure 5.22(a)). For 6 MV spectrum, a statistical analysis of the dose difference
(see Figure 5.20(b)) shows that the mean dose difference between the two simulations is
0.53%± 0.41%, whereas for 18 MV spectrum is 0.46%± 0.56% (see Figure 5.22(b)).
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Figure 5.21: 18 MV photon beam coming from the left in a water phantom with a double
heterogeneity made of aluminium between 3 cm and 5 cm and lung between 5
cm and 12 cm: (a) depth dose distribution along the central axis, (b) transverse
dose profiles at the center of the beam (z = 0) taken at depths of 3.2, 10 and
17 cm and (c) 2D isodose map at z = 0 in the xy plane. The aluminium-
lung interface as in the previous case represents a difficulty for our model. The
difference in the treatment of this interface between the two codes is grater than
before. This fact suggests that the problem could be attributed a bad treatment
of secondary electrons at the interface.
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Figure 5.22: 18 MV photon beam coming from the left in a water phantom with a double
heterogeneity made of aluminium between 3 cm and 5 cm and lung between 5
cm and 12 cm: (a) γ-index map showing the results of the 1%/1mm criterion
and (b) spatial distribution of the dose differences between the Monte Carlo and
M1 simulations. The success rate of γ-test is 99.66%.

5.6 Dose distribution in a complex geometry

The last test we perform consists in a geometry where all the difficulties of the previous
cases are included. Due to the presence of the spinal heterogeneity composed by cubes
smaller than the field size, the model has to handle interfaces that have a complex shape.
As expected, the model reproduces with a good accuracy the dose distribution calculated
with PENELOPE with the same discrepancies analyzed in the previous sections. In the
case of 6 MV beam, the 99.96% of the points in the domain respect the γ-index criterion
for 1% − 1 mm (see Figure 5.24(a)), whereas for the 18 MV beam, the γ-index success
rate is 99.57% (see Figure 5.26(a)). For 6 MV spectrum, a statistical analysis of the
dose difference (see Figure 5.24(b)) shows that the mean dose difference between the two
simulations is 0.51%± 0.32%, whereas for 18 MV spectrum is 0.60%± 0.50% (see Figure
5.26(b)).

5.7 Conclusion

In this chapter the M1 model has been validated in heterogeneous tests. We have shown
that the model is accurate in all the proposed configurations. In all 6 MV beam sim-
ulations the M1 results are in very good agreement with the PENELOPE simulations,
whereas for the 18 MV cases the accuracy can still be improved especially at the inter-
faces with lung. In particular, improvements of the energy variable discretization and
the introduction of more accurate numerical schemes for the spatial discretization could
reduce the highlighted discrepancies . However, all the presented results confirm that M1

129



Chapter 5. Validation of the entropic model in heterogeneous phantoms

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Depth [cm]

0.0

0.2

0.4

0.6

0.8

1.0

Do
se

 [a
.u

.]

M1
MC

(a)

2.50 1.25 0.00 1.25 2.50
Off Axis Distance [cm]

0.0

0.2

0.4

0.6

0.8

1.0

Do
se

 [a
.u

.]

M1
MC

(b)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Depth [cm]

2

1

0

1

2

Of
f A

xi
s D

ist
an

ce
 [c

m
]

0.050

0.050

0.100

0.100

0.250

0.250

0.500

0.750

M1 MCMC

(c)

Figure 5.23: 6 MV photon beam coming from the left in a water phantom with cubic bone
inserts between 2 cm and 3 cm and a half lung insert between 5 cm and 12 cm:
(a) depth dose distribution along the central axis, (b) transverse dose profiles
at the center of the beam (z = 0) taken at depths of 1.4, 10 and 17 cm and (c)
2D isodose map at z = 0 in the xy plane.

model can reach the accuracy of a Monte Carlo code with a reduced number of degree of
freedom. This validation represents a first step towards a possible integration of the M1
model in a clinical Treatment Planning System.
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Figure 5.24: 6 MV photon beam coming from the left in a water phantom with cubic bone
inserts between 2 cm and 3 cm and a half lung insert between 5 cm and 12
cm: (a) γ-index map showing the results of the 1%/1mm criterion and (b)
spatial distribution of the dose differences between the Monte Carlo and M1
simulations.
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Figure 5.25: 18 MV photon beam coming from the left in a water phantom with cubic bone
inserts between 2 cm and 3 cm and a half lung insert between 5 cm and 12 cm:
(a) depth dose distribution along the central axis, (b) transverse dose profiles
at the center of the beam (z = 0) taken at depths of 3.2, 10 and 17 cm and (c)
2D isodose map at z = 0 in the xy plane.
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Figure 5.26: 18 MV photon beam coming from the left in a water phantom with cubic bone
inserts between 2 cm and 3 cm and a half lung insert between 5 cm and 12
cm: (a) γ-index map showing the results of the 1%/1mm criterion and (b)
spatial distribution of the dose differences between the Monte Carlo and M1
simulations.
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Chapter 6

Entropic model for brachytherapy
applications

6.1 Introduction

In this chapter we present a preliminary validation on brachytherapy applications of the
entropic model introduced in Chapter 3. As in the case of external radiotherapy (see
Chapters 4 and 5), the validation is conducted by comparing the results obtained with
our algorithm and with the Monte-Carlo code PENELOPE [121].

The model is here tested on low dose rate brachytherapy applications. This choice
is explained by the fact that in this energy range the photoelectric effect and chemical
composition of the different materials play an important role in the dose deposition.
Thus, the calculations that nowadays are performed in clinical practice neglecting these
parameters following the TG-43 recommendations [115], could be improved with the use
of our model. In order to simplify the calculations, we perform the comparison in a two
dimensional domain, with a Gaussian energy spectrum centered at 0.03 MeV and with
isotropic sources.

As a first step, we use a homogeneous phantom, in order to test the accuracy of our
model in a simple configuration. In this preliminary phase, we demonstrate that our
model does not provide the required accuracy to simulate a dose distribution because a
single preferential direction in the M1 model is not compatible with an isotropic source.
For this reason, we introduce the M2 model that has been mathematically developed by
Teddy Pichard [108] and is capable to account for multiple directions. The M2 model
overcomes the limitations of the M1 model and assures a better accuracy in the dose
calculations.

Once the model is validated in a homogeneous case, we introduce more realistic phan-
toms including heterogeneities. The first phantom geometry is composed by a water
phantom with three inserts of lung, bone and air. This geometry is useful to test the be-
haviour of our model in presence of different materials and chemical compositions. The
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second geometry is a patient-equivalent mathematical phantom for the upper thoracic
esophageal brachytherapy treatment. This geometry has been already used in literature
for the validation of treatment planning systems in 192Ir high dose-rate brachytherapy.

As a last case, we present a realistic calculation made with multiple sources, mimicking
a treatment of prostate brachytherapy. Simulations are conducted taking into account
first the density of different tissues present in the CT scan and then also the chemical
composition of the tissues.

6.2 Protocol of comparison

In order to validate the entropic model, we conduct a comparison with the Monte Carlo
code PENELOPE [121] for all test cases. In the present section, we describe the protocol
of comparison by analyzing the different parameters that are adopted to conduct the
simulations.

6.2.1 Source model

This chapter is a preliminary study on the feasibility in applying the entropic model
to brachytherapy simulations. For this reason, we use a simple model of the source
with respect to real brachytherapy seeds in order to reduce the number of considered
parameters.

Figure 6.1: Geometry of a Nucletron SelectSeed brachytherapy source. In red the cylindrical
silver rod coated with a silver halide layer (AgCl/AgI) and in blue the titanium
encapsulation. Image from CLRP TG-43 Parameter Database for Brachytherapy,
with permission.

The first approximation is performed on the geometry of the source. Instead of using
the realistic source shown in Figure 6.1, the source is represented by a water sphere of 1
mm radius homogeneously filled with a radioactive isotope. This approximation allows to
avoid a precise description of the seed which is extremely demanding for our algorithm.
Indeed, in order to correctly resolve the geometry of all components of the source, a very
fine grid is necessary. With a uniform grid implemented at the moment in our code,
the simulations would require a high memory allocation and a long time. The use of a
spherical geometry of the source seed allows to consider an isotropic photon emission.

The second approximation concerns the spectrum of the emitted photons. In a real
brachytherapy the seed contains a radioisotope emitting photons with a broad characteris-
tic spectrum. We apply our model to a low dose-rate brachytherapy where the iodine-125
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Figure 6.2: Spectrum of photons exiting the Nucletron SelectSeed brachytherapy source. Im-
age from CLRP TG-43 Parameter Database for Brachytherapy, with permission.

(125I) isotope is mostly used. This isotope decays by electron capture in an excited state
of tellurium-125 (125Te), by emitting X-rays at 35 keV, 31 keV, 27.4 keV and 27.2 keV
[63]. The emission spectrum is shown in Figure 6.2, for the Nucletron SelectSeed source
containing 125I. In order to correctly resolve this spectrum one would need a large number
of energy groups. For validation purposes we decided to use a simplified photon spectrum
with a Gaussian distribution (Full Width at Half Maximum = 0.1E0) centred at E0 =
30 keV.

6.2.2 Calculation geometry

As for the external beam applications, we validate the entropic model on multiple phan-
tom geometries. All heterogeneous geometries are tested in two different approximations.
The first test is perfomed by considering the heterogeneities as water for the chemical
composition, but with the appropriate density of the considered material. In the second
test, instead, we also take into account the real chemical composition.

Five different materials are considered in the present chapter: air (0.0012 g·cm−3),
lung (0.26 g·cm−3), adipose (0.95 g·cm−3), water (1. g·cm−3) and bone (1.85 g·cm−3). In
Table 6.1 the complete list of these materials with their chemical composition in terms
of fraction by weight of each element and density is reported.

We start the validation with a homogeneous phantom. This configuration simplifies
the analysis of the discrepancies between the reference Monte Carlo code and the entropic
model. The calculation geometry is defined by a 8× 8 cm2 phantom.

In order to test the model in presence of heterogeneities we consider two different
geometries. The first heterogeneous domain is shown in Figure 6.3(b). It is composed by
a water phantom where three inserts of 1 cm2 made of lung, bone and air are placed at 1
cm from the center of the source. This geometry is also defined by a 8× 8 cm2 phantom.
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Composition [fraction by weight] Density [g·cm−3]
Water H 0.112, O 0.888 1.

Cortical Bone (ICRU-44) H 0.034, C 0.155, N 0.042,
O 0.435, Na 0.001, Mg 0.002,
P 0.103, S 0.003, Ca 0.225 1.85

Lung (ICRU-44) H 0.103, C 0.105, N 0.031,
O 0.749, Na 0.002, P 0.002,
S 0.003, Cl 0.003, K 0.002 0.26

Adipose (ICRU-44) H 0.114, C 0.598, N 0.007,
O 0.278, Na 0.001, S 0.001,

Cl 0.001 0.95
Air H 0.112, O 0.888 0.0012

Table 6.1: Table of the materials with their chemical composition and density [141].

The second geometry is a patient-equivalent mathematical phantom for a upper thoracic
esophageal brachytherapy treatment. This geometry has been used in literature to study
the effect of patient inhomogeneities surrounding the esophagus on the dosimetry planning
of a HDR 192Ir brachytherapy [5, 104]. The sketch of this phantom is shown in Figure
6.3(c). Here the red color represents the lung material, the blue color represents the
esophagus made of air material, the green color represents the bone material, specifically
the rectangle is the sternum and the corona is the spine. Everything that is not colored
is filled by water. This geometry is defined by a 16× 16 cm2 phantom.

6.2.3 Numerical parameters of simulations

In this section the parameters used in both the entropic model and Monte Carlo simula-
tions are presented. These parameters concern the spatial discretization of the domain,
the energy range and its discretization used in M1 and the cut-off energy imposed in the
PENELOPE code.

6.2.3.1 Entropic model parameters

In all simulations proposed in this chapter a uniform orthogonal spatial discretization
is adopted with a square mesh of 0.25 × 0.25 mm2. Such a small grid size is defined
by the necessity to accurately discretize the source. With the future introduction of a
non-uniform mesh, the number of cells may be consistently reduced.

The energy is discretized in 5 energy groups of equal width. The mean free path
of secondary electrons is smaller than the mesh size and their transport is not consid-
ered. The energy lost in interaction of photons with the medium is locally deposited
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without generating a secondary electron. Thanks to this approximation, we reduce the
computational time and the needed memory allocation.
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Figure 6.3: Geometries used for the brachytherapy validation:(a) homogeneous phantom, (b)
heterogeneous phantom with inserts of different materials, (c) patient equivalent
mathematical phantom for a thoracic brachytherapy treatment. The red color
represents lung, green is bone, white is water and blue is air. Black point in the
center indicates the source position.

6.2.3.2 PENELOPE parameters

The absorbed dose distributions in PENELOPE are tallied using a uniform orthogonal
grid with 0.5 × 0.5 × 0.5 mm3 voxels. The two dimensional approximation is reached
using a 30-cm-long cylindrical source. The typical number of tested particles in the
Monte-Carlo calculations is 2 × 109, which allows us to obtain the deposited dose maps
with a statistical uncertainty below the 1% in all voxels. Transport cut-off parameters
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in all simulations are set to EABS(1,M) = EABS(3,M) =∞ for electrons and positrons
and EABS(2,M) = 0.001 MeV for photons.

6.3 Dose distribution in a homogeneous phantom

We begin the analysis of the brachitherapy simulations by calculating the dose distribu-
tion in a homogeneous domain. This case allows to evaluate the accuracy of our model
in taking into account the physical interactions occuring in the low energy regime. More-
over, the dose calculation in a homogeneous domain is one of the principal approximations
that is recommended in the TG-43 report [115].
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Figure 6.4: Dose distribution in a homogeneous phantom: (a) dose profile along x = 0, (b)
dose profile along y = 0, (c) 2D isodose map in the xy plane and (d) spatial
distribution of the dose differences between the Monte Carlo (dashed lines) and
M1 simulations (solid lines).
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In Figure 6.4, we present the comparison between M1 and PENELOPE results. The
dose distributions for the Monte Carlo and M1 results are normalized outside the source
volume, as it is commonly done in the brachytherapy literature [104]. We chose a distance
of 0.5 cm from the center of the source for the normalisation. As can be observed in Figure
6.4(c), the M1 model is more diffusive compared to PENELOPE. The percentage dose
difference shown in Figure 6.4(d) between the two simulations can reach 40% far away
from the source. This difference is not acceptable in practice. However, one should be
aware that such a big difference is calculated in a region where the absolute dose is very
low.

Another important discrepancy between the two simulations can be noticed in Figures
6.4(a) and 6.4(b). These dose profiles are taken at y = 0 and x = 0 and show an overdose
at the center of the source that corresponds to the maximum of the dose distribution. This
difference can be explained by the incapacity of the M1 model in treating the opposite
fluxes of particles, as detailed in 3.3.3. In fact the initialization of an isotropic source
implies that all the source cells produce particle fluxes exiting the edges. Consequently,
at the edges of neighboring cells there are two opposite fluxes, as shown in Figure 6.5
. These fluxes are mutually cancelled. Thus, all the cells that are not on the border
of the source are subject to the annhiliation of the fluxes and consequently to the local
dose deposition of particles. This explains the higher dose deposition in the center of the
source. The statistical analysis of the dose difference shows that the mean percentage
dose difference between the two simulations is 23.36%± 9.92%.

Figure 6.5: Scheme of cells initialization for an isotropic emission of a brachytherapy source.
The cells inside the source are subject to the flux annihilation if treated with the
M1 model.

All these difficulties can be overcome by adopting the M2 model introduced in Section
3.3.4. The M2 model, shows some numerical issues, that need to be resolved before
applying it for the external beam calculation. However, it can be successfully used in
case of isotropic source such as in brachytherapy.
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Figure 6.6: Dose distribution in a homogeneous phantom: (a) dose profile along x = 0, (b)
dose profile along y = 0, (c) 2D isodose map in the xy plane and (d) spatial
distribution of the dose differences between the Monte Carlo and M2 simulations.

As shown in Figure 6.6, the M2 model provides more accurate results compared to the
M1 simulations. The first improvement that can be observed in Figures 6.6(a) and 6.6(b)
consists in the absence of overdose in the source volume. This result is consistent with the
capacity of the M2 model to treat opposite fluxes. Moreover, as shown in Figure 6.6(c), the
M2 simulation is less diffusive compared to M1 and the dose difference between the M2 and
Monte Carlo simulations is less important. The statistical analysis of the percentage dose
distribution shows that the discrepancy between the two simulations is 2.92% ± 1.18%.
For these reasons in all the following tests, the M2 model is adopted. In Figure 6.6(d)
a characheristic pattern in the distribution of the dose difference can be observed. This
is mainly due to the M2 approximation and the Cartesian discretization of the domain.
However, these oscillations remain small if compared to ray-effect shown by Papagiannis
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et al. [104] comparing the Collapsed Cone Convolution method ONCENTRA (Elekta)
with a Monte Carlo simulation.

6.4 Dose distribution in a heterogeneous phantom

In this section we propose a comparison between the M2 model and PENELOPE in
presence of heterogeneities, see Figure 6.3(b). We run our simulations firstly by taking
into account only the density difference in the inserts and by using the water chemical
composition everywhere. As a second step, we introduce the chemical composition of the
different inserts in order to test the accuracy of our entropic model in taking into account
the behaviour of the dose deposition due to the photoelectric effect.
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Figure 6.7: Dose distribution in the heterogeneous phantom while taking into account only
the density of materials: (a) dose profile along y = 0, (b) dose profile along
x = 0, (c) 2D isodose map in the xy plane and (d) spatial distribution of the dose
differences between the Monte Carlo and M2 simulations.
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In Figure 6.7 the comparison between the M2 and Monte Carlo simulations while
taking into account only the density of the inserts is reported. In this case, we test
the accuracy of our model in a realistic situation due to the fact that nowadays the
CT scan of a patient does not include the information on the chemical composition of
the tissues. Analysing the dose profiles in Figures 6.7(a) and 6.7(b), the contribution
of the heterogeneities on the dose distribution for both the underdense and overdense
materials is not very important. A small perturbation on the dose distribution can be
noticed only on the isodose map shown in Figure 6.7(c). Small differences between the M2

and Monte Carlo solutions are present only in the isodoses behind the bone insert. The
percentage dose difference between the two simulations remains small with an accuracy
of 2.49% ± 2.28%. In Figure 6.8 we show the comparison between the dose calculated
while taking into account the density of the inserts and the dose in homogeneous domain.
It can be observed that the two dose distributions do not strongly differ.
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Figure 6.8: Comparison between the dose distribution calculated with the M2 model following
the recommendations of the TG-43 report, i.e. in homogeneous phantom (dashed
lines), and in the heterogeneous phantom taking into account only the density
of materials (solid line). The perturbation due to the density gradients remains
small and the dose do not strongly differ from the TG-43 approximation.

We now test the accuracy of our model introducing the real chemical composition
of the inserts in the same geometry. This case is of particular interest for the LDR
brachytherapy, since in this energy range the photoelectric effect, which strongly depends
on the atomic number, is the most probable interaction experienced by a photon propa-
gating in the considered materials. Therefore, we expect to see a considerable effect on
the dose deposition especially for bone.

As shown in Figure 6.9, the dose deposition changes considerably with respect to the
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Figure 6.9: Dose distribution in the heterogeneous phantom taking into account also the
chemical composition: (a) dose profile along y = 0, (b) dose profile along x =

0, (c) 2D isodose map in the xy plane and (d) spatial distribution of the dose
differences between the Monte Carlo and M2 simulations.

previous case. Of particular interest is the impact of the bone heterogeneity: Figure
6.9(b) shows a strong gradient of dose deposition appearing behind the bone interface.
This is due to the fact that the photoelectric effect in bone material and for this energy
range is largely predominant, see Figure 5.10. The percentage dose difference between
the two simulations attains more than 50% in this particular zone, but in average it
remains small with an accuracy of 4.13%±6.72%. In Figure 6.10 is shown the comparison
between dose distributions calculated taking into account the chemical composition and
in homogeneous phantom. Differently from the previous case, a strong difference between
the real dose distribution and the TG-43 approximation can be oberved especially near
the bone insert.
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Figure 6.10: Comparison between the dose distribution calculated with the M2 model follow-
ing the recommendations of the TG-43 report, i.e. in homogeneous phantom
(dashed lines), and in the heterogeneous phantom taking into account also the
chemical composition of materials (solid line). The perturbation induced by the
low density heterogeneities do not vary in an appreciable manner. However, the
chemical composition of bone dramatically changes the dose distribution. This
is due to the fact that the low density inserts atomic number is almost equiv-
alent to the water one, while the difference with the equivalent atomic number
of bone is higher.

6.5 Dose distribution in a patient-equivalent numerical
phantom

As a last test, a more complex geometry is simulated, see Figure 6.3(c). This phantom has
been used as a benchmark for the existing brachytherapy treatment planning dosimetry
algorithms [5, 104]. It consists in a simplified numerical model of a esophageal scan and is
composed by several heterogeneities with different densities, chemical compositions and
shapes. This allows us to test the accuracy of our model in a more challenging situation.
As in the previous section, we run our calculations in the two different approximations.

In Figure 6.11, we show the comparison between the M2 and the Monte Carlo simula-
tions, when accounting only for the difference in the inserts density. As shown in Figure
6.11(c), the M2 model accurately reproduces the dose distribution calculated with PENE-
LOPE. There are two main differences that do not have a great impact on the result: the
first difference is between the isodoses representing the 5% of dose deposition in the lung
to the right and to the left from the source. The difference between the two curves seems
to be large mainly due to the very low gradient of the dose. Indeed, in this region the
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percentage of dose difference is about 20%, which represents in absolute dose 1% of the
dose normalized at 0.5 cm from the center of the source. The second difference that can
be noticed between the two simulations is the treatment of the esophageal interface. In
the Monte Carlo simulation a numerical artefact appears as shown in Figure 6.11(a) at 1
cm. This artefact is due to the presence of a dose diagnostic mesh lying on the interface.
The statistical analysis of the percentage dose distribution shows that the discrepancy
between the two simulations is 23.1%± 13.6%. If we limit the statistical analysis at the
region delimited by the 5% isodose curve the difference is 10.7%± 12.04%.
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Figure 6.11: Dose distribution in a patient-equivalent numerical phantom: (a) dose profile
along y = 0, (b) dose profile along x = 0, (c) 2D isodose map in the xy plane
and (d) spatial distribution of the dose differences between the Monte Carlo and
M2 simulations.

In Figure 6.12, we show the comparison between the M2 and the Monte Carlo sim-
ulations when also accounting for the chemical composition of the different tissues. In
this case, the discrepancy calculated in the entire domain between the M2 model and the
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Chapter 6. Entropic model for brachytherapy applications

Monte Carlo simulation is 30.77% ± 19.66%. If we limit the statistical analysis at the
region delimited by the 5% isodose curve the difference is 14.8%± 16.16%. With respect
to the previous simulation, a higher dose difference appears far from the source especially
inside the spine. Even if the difference is high in percentage, it corresponds to a small
value in absolute dose deposition.
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Figure 6.12: Dose distribution in a patient-equivalent numerical phantom: (a) dose profile
along y = 0, (b) dose profile along x = 0, (c) 2D isodose map in the xy plane
and (d) spatial distribution of the dose differences between the Monte Carlo and
M2 simulations.

6.6 An application to a I-125 prostate brachytherapy

After the validation of the M2 model in numerical phantoms, we propose a simulation
of a realistic prostate LDR brachytherapy. In this section, we analyze the impact on a
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realistic dose calculation of the approximations previously described.
The calculation domain is represented by a CT image of a prostate. This image has

been cut in order to treat only the region of interest and reducing the domain of the
simulation. The conversion of CT Hounsfield units to mass density (g/cm3) is achieved
using a conversion curve defined by the tomograph calibration made at the Bergonié
Hospital. The mass density conversion used in the M2 model is plotted in Figure 6.13(a).
The chemical composition of the different tissues is introduced by using rectangular win-
dows in function of the density as shown in Figure 6.13(b). The source placement is not
intended to be clinically accurate and is used only to investigate the differences of dose
deposition in the different approximations.
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Figure 6.13: Panel (a): CT Hounsfield unit to mass density conversions used in M2 simula-
tions. Panel (b): Mass-density-to-material assignments used in M2. The blue
color represents the air, in red is represented the lung, in yellow is represented
the adipose, in white is represented the water and in green is represented the
bone.

In Figure 6.14, we show the results of the simulations run in the TG-43 approximation,
i.e. in a homogeneous domain composed only by water, and while taking into account
the difference in the tissues densities.

Analysing Figure 6.14(c), it is clear that small differences (in the range of 2%) occur
if we take into account only the density difference of the tissues. Moreover, the dose in
the surrounding pelvic bones seems to be very low. This result is consistent with the
observations presented in the previous sections, where we have observed that the density
of the different materials does not considerably affect the dose deposition.

In Figure 6.15 we compare the results of simulations performed while taking into
account only the density difference of the tissues and while taking into account also the
difference in the chemical composition.

Figure 6.15(c) shows that when the chemical composition is taken into account, the
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Figure 6.14: Dose distribution calculated with the M2 model on a CT scan: (a) dose distri-
bution calculated in the TG-43 approximation, (b) dose distribution calculated
taking into account the density of the tissues, (c) percentage difference of dose
between the two simulations.
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Figure 6.15: Dose distribution calculated with the M2 model on a CT scan: (a) dose distri-
bution calculated taking into account the density of the tissues, (b) dose distri-
bution calculated taking into account the chemical composition of the different
tissues, (c) percentage difference of dose between the two simulations.
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dose distribution radically changes: the pelvic bones can receive more than 70% of the
maximum dose calculated in the homogeneous case and the calcifications in the prostate
can reach the 400%. A lack of dose (up to 20%) appears in pixels where adipose is present.

6.7 Conclusion

In this Chapter, the entropic model has been validated in a 2D geometry for the low
dose rate brachytherapy applications. In the first part of the chapter, several tests on
homogeneous domains have been presented. The source is not correctly resolved and the
flux annihilation takes place inside the source volume. We conclude that the M1 model is
not sufficiently accurate for a reliable dose calculation. In order to overcome this problem,
the same configuration has been tested with the M2 model [108]. The results show a much
better accuracy in the calculation of dose deposition. After this preliminary validation,
the M2 entropic model has been tested on heterogeneous domains, always providing an
acceptable accuracy. We demonstrate that in the low energy range (10 - 50 keV) the
chemical composition plays an important role in the dose distribution. Finally, we tested
a dose calculation on a prostate CT scan. This simulation clearly demonstrates the
impact of the chemical composition of human tissues in a realistic situation. However,
this is encouraging but is still a preliminary test that does not provide the required
clinical accuracy yet. The available in practice CT scan diagnostics does not provide the
information about the chemical composition of the human tissues. The new technologies
as the dual-energy computed tomography are promising to provide the needed information
[91].
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Conclusion and perspectives

Conclusion

This thesis is dedicated to application of entropic models for solution of the linear Boltz-
mann transport equation for radio-therapeutic applications. Our main result consists in
the development of a numerical code to calculate the dose distribution in the tumor with
practically acceptable level of accuracy and within a short computation time.

This thesis is built on several previous works that have been dedicated to that topic.
The thesis by Caron [20] developed an application of the M1 model for the electron trans-
port. Specifically only the Mott and Møller cross sections were taken into account. In the
PhD work by Pichard [108] the moment model has been extended to on the second order
moment equations, i.e. the M2 model. Moreover, the Compton effect has been introduced
in order to model the propagation of a photon beam. In the present work it makes a
further step. The first major improvement consists in the implementation of a complete
description of all relevant physical interactions of electrons, photons and positrons. To
this end the differential cross sections in the collisional operator of the LBTE have been
developed in terms of Legendre polynomials and the soft and catastrophic parts have
been treated separately by using the CEPXS library. This rigorous approach allows a
higher accuracy of the model reducing consistently the number of energy groups used for
the LBTE discretization with respect to the previous works.

The second major improvement consists in splitting the populations in the primary
and the secondary particles as it is presented in Chapter 4. This approach allows to over-
come the average in each energy group between the highly anisotropic primary particles
and more isotropic secondaries. Since the previous works considered only monoenergetic
particle beams, the secondary particles can be treated together with the primaries with-
out loss of accuracy in the results. This is due to the fact that for a monoenergetic initial
spectrum of photons, all secondary particles are produced in lower energy groups and
do not mix with the primaries. However, this improvement is crucial to improve the
accuracy of our model, in more realistic Bremsstrahlung initial spectrum.

The third important improvement is related to the initialization method of the parti-
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cle beam. We developed an initialization technique based on a Monte Carlo phase space
data file, as described in Chapter 3. Due to the mesoscopic nature of the M1 model,
the injected beam is characterized by the anisotropy of each particle species and each
energy group at the boundary of the domain or at the boundary of the source volume in
brachytherapy applications. In the previous works the initial beam direction was speci-
fied by a single anisotropy value. This initialization is suitable for quasi-monodirectional
beams but presents strong inaccuracies in a more realistic case of a divergent beam, as it
has been shown in Chapter 4. The proposed method is general and it can be applied to
both external beam radiotherapy and brachytherapy.

The model has been validated for both external beam radiotherapy and brachyther-
apy. External beam radiotherapy simulations are presented in Chapters 4 and 5 for the
homogeneous domains and heterogeneous domains, respectively. The cross section de-
scription is improved by using a non uniform energy mesh. This technique allows to
reduce the number of energy groups while decreasing the simulation time and preserving
the accuracy of the model in the calculation of dose deposition. For the 6 MV spectrum
only 21 energy groups were needed while for the 18 MV spectrum 39 energy groups were
used. In the tests with a heterogeneous domain with different geometries and for the 6
MV spectrum the model shows an excellent level of accuracy in all considered cases. For
the 18 MV spectrum some discrepancies are observed at interfaces with heterogeneities.
Nevertheless the model demonstrates a practically acceptable level of accuracy in all con-
sidered geometries.

In Chapter 6 the entropic model has been validated for low dose rate brachytherapy
applications. We demonstrate that the model can reach an acceptable level of accuracy
but only with the second order moment equations. The M2 model is needed to overcome
the flux annihilation effect inside the source volume. Partial annihilation of fluxes could
be the origin of the dose discrepancies observed in the M1 model. The M2 model is vali-
dated in presence of heterogeneities. Due to the low energies of the propagating photons
the chemical composition plays an important role in the dose distribution. The entropic
algorithm is capable to reach a good accuracy in all tested cases. A simulation of a real-
istic prostate treatment demonstrates a potential of the moments models for a complete
dose calculation in low dose rate brachytherapy. Further numerical improvements in the
code will allow accelerate the simulations and improve its precision.

In this work we demonstrate that the entropic model can reach a high level of accuracy
with less degrees of freedom with respect to the other deterministic methods. This type
of models could be used in clinical practice as an alternative to the existing algorithms for
the dose calculations in the treatment planning. Due to the reduced number of variables
and after a mathematical optimization this numerical code will be capable to compute
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dose distributions in few seconds with a precision comparable to the general purposes
Monte Carlo codes.

Perspectives of developement

There are several perspectives and future developments which may significantly improve
the performance of the entropic algorithm. Before a possible application in a clinical con-
text, the code needs to be optimized in numerical aspects. In order to reduce the memory
allocation and the computational effort, two strategies may be proposed. Moreover, a
beam initialization that can model a real beam in presence of a multileaf collimator is
needed.

Non-uniform discretization

As already anticipated in the conclusion of Chapter 4, the use of non uniform Cartesian
grids can be a first step to reduce the number of cells for the domain discretization. Specif-
ically, the non uniform discretization techinque consists in adapting the accuracy of the
solution within certain regions of interest. This technique allows a strong reduction of the
grid cells where the problem exhibits smooth behavior and a strongly localized increase
of resolution in areas needing more accuracy. At the moment, due to the uniform dis-
cretization an excessive number of cells is required in order to have an accurate resolution.

In the external beam radiotherapy applications, the number of cells outside the beam
can be reduced preserving the solution accuracy. Taking as example the domain used
for the 18 MV calculations that has dimension of 6 × 6 × 20 cm3 (see Figure ?? ), with
the current discretization of cubic meshes of 0.5× 0.5× 0.5 mm3 we use 5.76× 106 cells.
Keeping the same meshing inside the beam and using a larger meshing of 1 mm3 outside
the beam the number of cells is reduced to 7.65×105 with a gain in the order of 10. This
example is just a rough estimation of the gain that can be obtained by the introduction
of a non-uniform meshing in external radiotherapy applications.

In brachytherapy applications the impact of the non-uniform discretization technique
can be even more important. As explained in Chapter 6 at the moment we are forced
to use a very fine meshing in order to well resolve the small source size. Introduction of
a non-uniform grid will allow for very accurate resolution of the source geometry while
strongly reducing the number of cells in the rest of the domain.

Higher order numerical schemes

Another complementary strategy that can be devised to reduce the number of mesh grids
is introduction of higher order schemes for resolution of the LBTE. In this work the
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entropic model is resolved with numerical schemes of first order, due to their simplicity
and intrinsic stability. In the future, higher order schemes may be implemented for
improving the accuracy of solution of the entropic model and for using of a less refined
grid without any loss of precision. This would reduce the computational effort and a
combination with the non uniform discretization technique could strongly reduce the
calculation time to the order of a few seconds for a typical problem of dose deposition.

Real beam modelling

The beam initialization for both the external beam radiotherapy and brachytherapy ap-
plications proposed in this work needs to be further developed in order to meet the
practical requirements. This method is now applied to the phase space data file gener-
ated with a point source placed at 100 cm from the phantom surface. This initialization
is simple because the anisotropy distribution is the same for all the energies of the beam.
Therefore it does not need to be calculated for all energy groups. On the contrary, in the
case of a real beam exiting from the head of a LINAC once has to take into account the
anisotropy distribution separately for each energy group.

Moreover, a suitable model for a real simulation has to describe with high precision
the photon beam modified by any possible configuration of the multileaf collimator. In
principle any phase space data file can be discretized and translated in anisotropy distri-
bution but this technique in not suitable for a possible implementation in clinical practice.
Alternatives methods that would preserve the accuracy reducing the calculation time for
a real initialization are now under investigation.

Perspectives of applications

Intraoperative radiotherapy

In the present work we focus on application of the entropic model for external photon
beam radiotherapy and brachytherapy. In the future the proposed model can be applied
to other radiotherapy techniques, such as intraoperative radiotherapy (IORT). The main
objective of IORT is to perform radiotherapy during surgery, directly after the removal of
the tumor, with the aim of reducing the probability of recurrence. The Intrabeam (Carl
Zeiss Meditec, Oberkochen, Germany) is a IORT device widely employed in medical
practice, which is using a 50 kV x-ray beam. The M1 model could be used to produce
fast and precise dose calculations during intraoperative radiotherapy.
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Molecular radiotherapy

Another possible application can be the unsealed source radionuclide therapy, or molecu-
lar radiotherapy. In this technique a radionuclide or a radioactively labelled pharmaceu-
tical substance is inoculated to the patient and it is fixed in the tumor cells. This way,
the radiation dose is maximized in the tumour while minimized in the normal tissues.
Apart from iodine-131 (131I), in the molecular radiotherapy the lutetium-177 (177Lu) iso-
tope is mostly used. This isotope decays by β− process to hafnium-177 (177Hf), emitting
electrons with a maximum energy of 498 keV and mainly gamma rays at 113 keV, 208
keV. This radionucleide has two main properties: the electrons have a range of few mm’s
and deposit their energy locally in the tumor, while the emitted photons can be detected
by a single photon emission computed tomography (SPECT). Starting from the SPECT
images of the patient, the entropic model can be used for inverse calculations, with the
aim of calculating the activity of the source and the related deposited dose in the patient.

Hadrontherapy

This model can be also implemented for a hadron radiotherapy with a more complete
physical description taking into account the cross sections for protons, alpha particles
and carbon ions. This approach is currently the object of the thesis of E. Olivier at the
CELIA laboratory. With the full implementation of the proton cross sections for elastic
and inelastic scattering and of the fragmentation cross sections for the heavy ions, the
entropic model will be applicable to dose calculations in hadrontherapy.

Perspectives of economic valorization

This work has been partially supported by the CEA Valorisation group in order to pre-
pare an industrial valorization and to evaluate the potential interest of the market. A
consistent amount of work regarding this perspective has been conducted in collaboration
with the Aquitaine Science Transfer. This public society aims to help the reserch teams
to bring on the market the results of their work.
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