N

N

Lightweight key management solutions for
heterogeneous IoT
Mohamed Ali Kandi

» To cite this version:

Mohamed Ali Kandi. Lightweight key management solutions for heterogeneous IoT. Cryptography and
Security [cs.CR]. Université de Technologie de Compiégne, 2020. English. NNT: 2020COMP2575 .
tel-03214800

HAL Id: tel-03214800
https://theses.hal.science/tel-03214800

Submitted on 2 May 2021

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-03214800
https://hal.archives-ouvertes.fr

= UtC

Universit_é‘ de Technologie
Compiegne

Par Mohamed Ali KANDI

Lightweight key management solutions for
heterogeneous loT

These presentée
pour I'obtention du grade
de Docteur de 'UTC

© ©
=]

10T

¥
Oy

Soutenue le 14 décembre 2020

Spécialité : Informatique et Sciences et Technologies de
I'Information et des Systémes : Unité de recherche Heudyasic
(UMR-7253) D2575

™ .
gé%&%ﬁg, Erg\ﬁ’:;tiéédgegzchnologle heUdiasyg

These présentée pour 'obtention du grade de Docteur
UNIVERSITE DE TECHNOLOGIE DE COMPIEGNE

Spécialité : Informatique et Sciences et Technologies de I'Information et des Systemes

Lightweight Key Management Solutions for

Heterogeneous IoT

14/12/2020
Par Mohamed Ali KANDI
Composition du jury:
Abdelamadjid BOUABDALLAH Professeur des universités, Directeur de These
Université de Technologie de
Compiegne
Karima BOUDAOUD Maitre de conférences, Uni- Examinatrice

versité de Nice

Bernard COUSIN Professeur des universités, Rapporteur

Université de Rennes

Romain LABORDE Maitre de conférences HDR, Rapporteur
Université de Toulouse

Hicham LAKHLEF Maitre de conférences, Uni- Co-Directeur de These
versité de Technologie de
Compiegne

Dritan NACE Professeur des universités, Examinateur

Université de Technologie de

Compiegne

List of Publications

Journal article

e Mohamed Ali Kandi, Hicham Lakhlef, Abdelmadjid Bouabdallah, and
Yacine Challal. “A Versatile Key Management Protocol for Secure Group and
Device-to-Device Communication in the Internet of Things”. In: Journal of
Network and Computer Applications 150 (2020).

International conferences

e Mohamed Ali Kandi, Hicham Lakhlef, Abdelmadjid Bouabdallah, and
Yacine Challal. “An Efficient Multi-Group Key Management Protocol for
Internet of Things”. In: 26th IEEE International Conference on Software,

Telecommunications and Computer Networks (SoftCOM). Split, Croatia, Sep.
2018.

e Mohamed Ali Kandi, Hicham Lakhlef, Abdelmadjid Bouabdallah, and
Yacine Challal. “An Efficient Multi-Group Key Management Protocol for Het-

erogeneous [oT Devices”. In: IEEE Wireless Communications and Networking
Conference (WCNC). Marrakech, Moroco, Avr. 2019.

e Mohamed Ali Kandi, Hicham Lakhlef, Abdelmadjid Bouabdallah, and
Yacine Challal. “A Key Management Protocol for Secure Device-to-Device

Communication in the Internet of Things”. In: IEEE Global Communications
Conference (Globecom). Waikoloa, USA, Dec. 2019.

International workshop

e Mohamed Ali Kandi, Djamel Eddine Kouicem, Hicham Lakhlef, Abdelmad-
jid Bouabdallah, and Yacine Challal. “A Blockchain-based Key Management
Protocol for Secure Device-to-Device Communication in the IoT”. In: proceed-
ings of the 19th IEEE International Conference on Trust, Security and Privacy
in Computing and Communications (TrustCom)/ International Workshop on
Cyberspace Security (IWCSS). Guangzhou, China, Dec. 2020.

111

iv

Submitted article

e Mohamed Ali Kandi, Djamel Eddine Kouicem, Messaoud Doudou, Hicham
Lakhlef, Abdelmadjid Bouabdallah, and Yacine Challal. “A Decentralized
Blockchain-based Key Management Protocol for Heterogeneous and Dynamic
[oT Devices”. In: IEEE Transactions on Dependable and Secure Computing.

Submitted.

Abstract

The Internet of Things (IoT) is an emerging technology that has the potential to improve
our daily lives in a number of ways. It consists of extending connectivity beyond standard
devices (such as computers, tablets and smartphones) to all everyday objects. The IoT
devices, also called smart objects, can collect data from their surroundings, collaborate to
process them and then act on their environment. This increases their functionalities and
allow them to offer various services for the benefit of society. However, many challenges are
slowing down the development of the IoT. Securing communication between its devices is

one of the hardest issue that prevents this technology from revealing its full potential.

Cryptography provides a set of mechanisms to secure data. For their proper function-
ing, these mechanisms require secret parameters called keys. The Key Management is a
branch of cryptography that encompasses all operations involving the handling of these
keys: generation, storage, distribution and replacement. Lightweight cryptography con-
sists of extending the conventional mechanisms (including the Key Management) to the
resource-limited devices. To be efficient in the IoT, the new mechanisms must offer a good
compromise between security, performance and resource requirements. Lightweight Key

Management is the essence of secure communication in the IoT and the core of our work.

In this thesis, we propose a novel lightweight Key Management protocol to secure commu-
nication between the heterogeneous and dynamic IoT devices. To design our solution, we
consider three modes of communication: device-to-device, group and multi-group commu-
nication. While most of the related works focus only on one of these modes of communi-
cation, our solution efficiently secures all three of them. It also automatically balances the
loads between the heterogeneous devices according to their capabilities. We then prove
that this makes our protocol more suitable for the IoT as it is efficient and highly scal-
able. Furthermore, we propose a decentralization of our protocol based on the blockchain
technology and smart contracts. We show that, by empowering multiple participants to
manage the cryptographic keys, decentralization solves trust issues, lowers risk of system
failure and improves security. We finally implement our solution on resource-constrained
[oT motes that are based on the Contiki operating system. The objective is to experimen-

tally evaluate the performance of our solution and to complete our theoretical analyses.

A%

vi

Keywords: Internet of things, Security, Lightweight cryptography, Key Management,
Blockchain.

Résumeé

L’Internet des objets (IdO) est une technologie émergente ayant le potentiel d’améliorer
notre quotidien de différentes fagons. Elle consiste a étendre la connectivité au-dela des
appareils standards (tels que les ordinateurs, les tablettes et les smartphones) a tous les
objets du quotidien. Ces appareils, également appelés objets intelligents, peuvent alors
collecter des données de leur entourage, collaborer pour les traiter puis agir sur leur
environnement. Cela augmente leurs fonctionnalités et leur permet d’offrir divers services
au profit de la société. Cela dit, de nombreux défis ralentissent le développement de I'ldO.
La sécurisation des communications entre ces appareils est I'un des problemes les plus

difficiles qui empéche cette technologie de révéler tout son potentiel.

La cryptographie fournit un ensemble de mécanismes permettant de sécuriser les données.
Pour leur bon fonctionnement, ces derniers ont besoin de parametres secrets appelés clés.
La gestion des clés est une branche de la cryptographie qui englobe toutes les opérations
impliquant la manipulation de ces clés: génération, stockage, distribution et remplacement.
Par ailleurs, la cryptographie légere consiste a étendre les mécanismes conventionnels
(la gestion des clés comprise) aux appareils & ressources limitées. Afin d’étre efficaces
dans I'ldO, les nouveaux mécanismes doivent offrir un bon compromis entre sécurité,
performance et consommation de ressources. La gestion légere des clés est donc ’essence

de la communication sécurisée dans I'IdO et le coeur de notre travail.

Dans cette these, nous proposons un nouveau protocole léger de gestion des clés pour
sécuriser la communication entre les appareils hétérogenes et dynamiques de I'ldO. Pour
concevoir notre solution, nous considérons trois modes de communication: d’appareil a
appareil, de groupe et de multi-groupes. Alors que la plupart des travaux connexes se
concentrent uniquement sur I'un de ces modes de communication, notre solution sécurise
efficacement les trois. Aussi, elle équilibre automatiquement les charges entre les appareils
hétérogenes en fonction de leurs capacités. Nous prouvons alors que cela rend notre proto-
cole plus adapté a I'ldO étant donné qu’il est efficace et hautement évolutif. De plus, nous
proposons une décentralisation de notre protocole basée sur la technologie blockchain et

les contrats intelligents. Ainsi, nous montrons qu’en permettant a plusieurs participants

Vil

viii

de gérer les clés cryptographiques, la décentralisation résout les problemes de confiance,
réduit le risque de défaillance du systeme et améliore la sécurité. Nous implémentons enfin
notre solution sur des platformes [oT a ressources limitées qui sont basées sur le systeme
d’exploitation Contiki. L’objectif est d’évaluer expérimentalement les performances de

notre solution et de compléter nos analyses théoriques.

Mots Clés : Internet des Objets, Sécurité, Cryptographie légere, Gestion des clés,
Blockchain.

Contents

List of Publications

Abstract

Résumé

Contents

List of figures

List of tables

List of algorithms

1 Introduction

1.1 Motivations

1.2 Research topic

1.3 Our contributions

1.4 Organization

2 (General context

2.1 Introduction

2.2 Fundamentals of the Internet of Things

2.2.1 10T ar

of the manuscript

chitecture

1X

iii

vii

1x

xviil

xxi

xXx1ii

X Contents

2.2.2 ToT features 8
2.2.3 ToT applications 10
224 Top IoT challenges 11

2.3 Fundamentals of Network Security 12
2.3.1 Network security objectives 12
2.3.2 Network security attacks 13
2.3.3 Network security and cryptography 14
2.3.3.1 Ciphers 14

2.3.3.2 Hash functions oo 15

2.3.3.3 Key derivation functions 16

2.4 Blockchaino 17
2.4.1 Blockchain structure oo oL 17
2.4.2 Blockchain architectureo 18
2.4.3 Blockchain features oo 19
2.4.4 Blockchain consensus o oL 20
2.4.5 Smart contracts Lo 21

2.5 Conclusion 22
3 Key Management in the IoT: Classification and Challenges 23
3.1 Imtroduction 24
3.2 Fundamentals of Key Management 25
3.2.1 Generationo 25

3.2.2 Storage 26
3.2.3 Distribution 26

3.2.4 Replacement 26

Contents xi

3.3 Key Management and IoT 0L 27
3.3.1 Lightweight cryptography 27
3.3.2 10T requirements for the Key Management 28

3.4 Key Management classification., 30
3.4.1 Classification criteria L. 30
3.4.1.1 Key cryptography oo 30

3.4.1.2 Keytype 31

3.4.1.3 Distribution method 32

3.4.14 Load balancing oL 33

3.4.2 Proposed classificationo 34

3.5 Key Management challenges in the IoT 37
3.6 Our contributionso 38
3.6.1 Notations 39
3.6.2 Application and threat model 40

3.7 Conclusion L 41

4 Dynamic Key Management for Secure Device-to-Device Communica-

tion

4.1

4.2

4.3

43
Introductiono 44
Related Works 45
4.2.1 Deterministic schemes L. 45
4.2.2 Pure probabilistic schemeso 45
4.2.3 Deployment knowledge based schemes 46
Our solution A7

4.3.1 Classification of cryptographic keys 48

xii Contents

4.3.2 Hash functions 49
4.3.2.1 Zero-level approach 49

4.3.2.2 One-level approach 49

4.3.2.3 Two-level approach 50

4.3.3 Set management Lo 52
4.3.3.1 Assignment Algorithm 52

4.3.3.2 Reorder Algorithm 53

4.3.4 Node management 54
4.3.4.1 Node joiningo 54

4342 Nodeleaving oL 55

4.4 Security analysis L 57
4.4.1 Theoretical analysis L oo 57
4.41.1 Zero-level approach o7

4.4.1.2 One-level approach 58

4.4.1.3 Two-level approach 59

4.4.2 Comparison 60

4.5 Performance evaluationo 61
4.5.1 Theoretical analysis oL 61
4.5.1.1 Overheads on the Key Manager 61

4.5.1.2 Overheads on thenodes 62

4.5.2 Comparison 62
4.5.2.1 Scalability o 63

4.5.2.2 Connectivity 63

4523 MObility . . . o o 64

Contents xiii

4.5.2.4 Efficiency 64

4.5.2.,5 Flexibility 65

4.6 Conclusion 65
5 Heterogeneous Key Management for Secure Group Communication 67
5.1 Introduction Lo 68
5.2 Related Workso 69
5.2.1 Tree based schemes 69
5.2.2 Combinatorial optimization based schemes 70
5.2.3 Batch rekeying based schemes oL 70

5.3 Oursolution L 71
5.3.1 Classification of cryptographic keys 72
5.3.2 Subgroup Management 73
5.3.2.1 Capability Evaluation Function 74

5.3.2.2 Heterogeneous subgrouping 74

5.3.2.3 Assignment Algorithm, ... 76

5.3.2.4 Reorder Algorithm, .. 79

5.3.3 Node management 80

5.4 Security analysiso 81
5.4.1 Backward secrecy 81
5.4.2 Forward secrecyo 81
5.4.3 Collusion resistance 82

5.5 Performance evaluation 0oL 82
5.5.1 Theoretical analysis 0L 82

5.5.1.1 Overheads on the Key Manager 82

xiv Contents

5.5.1.2 Overheadsonnodes 83
5.5.2 Simulation 84
5.5.3 Comparison 86
5.5.3.1 Efficiency and scalability 87
5.5.3.2 Heterogeneity oL 88
5.6 Conclusion 89

6 Blockchain-Based Decentralized Key Management for secure Multi-

group Communication 91
6.1 Introduction 92
6.2 Related Works o 93
6.2.1 Multi-Group Key Management schemes 93
6.2.2 Blockchain solutions 93

6.3 Oursolution 94
6.3.1 Layer 1: Key Management 95
6.3.1.1 Group and service management 95

6.3.1.2 Classification of cryptographic keys 96

6.3.1.3 Node Management 97

6.3.1.4 Subgroup management 97

6.3.2 Layer 2: Blockchain Management 98
6.3.2.1 Transaction management upon network change 99

6.3.2.2 Consensus Algorithm 100

6.3.2.3 Blockchain interest 0oL 101

6.4 Security analysis 103

6.4.1 Independence of services Lo 103

Contents XV
6.4.2 Resilience against node capture 104
6.4.2.1 Theoretical analysis 104
6.4.2.2 Comparison 105
6.4.3 Resilience against BP capture 105
6.4.3.1 Theoretical analysis 105
6.4.3.2 Comparison 106
6.5 Performance evaluation 107
6.5.1 Overheads on the Key Manager 107
6.5.2 Overheadsonmnodes. 108
6.6 Conclusion 109
7 Experimentation 111
7.1 Introduction L 112
7.2 Software environment Lo 113
7.3 Operating system: Contiki L 114
7.3.1 Processes 114
7.3.2 Events 114
7.3.3 Network Stacko 115
7.3.4 PowerTrace 115
7.3.5 Cooja 116
7.4 Material resourceo 116
7.5 Experimental platform 0o 119
7.5.1 Key Manager 119
7.5.2 Nodes 119

7.5.3 Intermediate motes 120

xvi Contents

7.6 Experimental resultso oo 121
7.6.1 Response time of BPs 121

7.6.2 Storage overhead onnodes 123

7.6.3 Execution time onnodes L. 124

7.6.4 Energy consumption by nodes 125

7.7 Conclusion 127

8 Conclusion and future works 129

Bibliography 133

List of figures

2.1

2.2

2.3

24

2.5

2.6

2.7

2.8

2.9

2.10

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

[oT architecture. 7
[oT features. 8
[oT communication technologies. 9
Top IoT challenges. 11
Network security objectives. Lo 12
Network security attacks. Lo 13
Cryptographic hash functions. 16
Blockchain. oo 17
Client-server vs peer-to-peer networks. 18
Normal contract vs smart contract. L. 21
Key generation.o 25
Lightweight Key Management. 27
[oT communication modes. o 28
Classification criteria.o 30
Key cryptography. 31
Key Type. o o o 32
Distribution method. oL 33
Load balancing. 33
[oT network (Key Manager and nodes). 39

XVvil

3.10

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

411

0.1

5.2

2.3

0.4

2.5

2.6

2.7

2.8

5.9

5.10

5.11

5.12

Threat model and countermeasures 40

Key Management approaches for secure device-to-device communication. . . 46
Our device-to-device Key Management. 47
Example of node distribution in a network N. 48
One-level approach. 50
Two-level approach. 51
Node joining and leaving. 56
An example of communications a node can decrypt. 57
An example of communications the node 3 cannot decrypt. 59
Variation of the percentage of compromised links. 60
Variation of nodes’ storage overhead according ton. 63
Variation of the average path length according to the size of the key ring. . . 64
Tree based schemes. 69
Key Management approaches for secure group communication. 70
Example of a group partitioning.o 71
Our group Key Management. 72
Example of a group partitioned into three subgroups. 76
Example of a subgroup splitting. 78
Effect of the number of nodes on the valueof p. 85
Effect of the maximum capability of nodes on the valueof p. 85
Effect of the percentage of merging on the valueof p. 86
Effect of the subgrouping type on the valueof p. 86
Efficiency and scalability.o o 87

Heterogeneity. 88

6.1

6.2

6.3

6.4

6.5

6.6

6.7

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.10

Architecture of our solution. 94

Network partitioning. 96
Example of a blockchain transaction. 98
Decentralized rekeying upon a network change using a blockchain. 100
Rejoin exchange. L 102
Resilience against node capture. 105
Resilience against BP capture. 106
Structure of a Contiki process. 114
Rime stack overview. o 115
Network components. 119
Key Manager. e 119
Network partitioning. 120
Experimental platform.o 120
Effect of r on response time. 121
Effect of nst on response time. 122
Effect of ¢p on response time. 122
Comparison of our consensus algorithm with Tendermint. 123

List of tables

2.1

3.1

3.2

3.3

3.4

4.1

5.1

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

Types of blockchain architecture. 19
[0T requirements for the Key Management. 29
Classification notations 34
Classification of existing solutions 36
Summary of notations.o 39
Classification of cryptographic keys. 48
Example of keys held by nodes. oo 72
[oT mote specifications. 118
Storage overhead on nodes (Keys stored in the RAM). 123
Storage overhead on nodes (Keys stored in the flash). 124
Execution time on nodes (Keys stored in the RAM).. 125
Execution time on nodes (Keys stored in the flash). 125
Energy consumption by nodes (Keys stored in the RAM). 125
Energy consumption by nodes (Keys stored in the flash). 126
Battery life. 126

xx1

List of algorithms

1 Homogeneous Assignment Algorithm 53
2 Homogeneous Reorder Algorithm 54
3 Heterogeneous Assignment Algorithm 7
4 Heterogeneous Reorder Algorithm 80
5 Consensus Algorithm 100

xxiii

Chapter 1 __

Introduction

We are about to wake up to a new world. A world where, not only computers, but
everything will be contacted to the Internet. From our clothing and appliances to our
vehicles and buildings. A world where everyday objects will be so smart that they will
be able to automatically interact with their environment and communicate with each
other. They will be able to collect data from their surrounding, collaborate to process
them and then act on their environment. This increases their functionalities and allow
them to offer various services for the benefit of society, which until then were not able to
provide. Known as the Internet of Things (or the IoT), this emerging technology promises
to improve our daily lives in a number of ways. Smart homes, for example, involve using
smart devices to ensure comfort, convenience and energy efficiency to the homeowners.
Autonomous vehicles are able to automatically exchange data to maintain traffic flow
and avoid crashes. However, many challenges are slowing down the development of the
Internet of Things. Securing communication between its devices is one of the hardest issue

that prevents this technology from revealing its full potential.

1.1 Motivations

Network security consists of designing mechanisms to protect the data in motion from
malicious attacks. In fact, securing communication is an old issue that existed long
before the Internet of Things. It is as old as the computer networks themselves. Since
then, there have always been people who target computer information systems, with or
without malicious intent. Security becomes more and more complex as the motivations and
capabilities of threat actors continue to evolve. The Internet of Things, despite its many
benefits, has only made this task even more challenging. Today, securing communication
is the primary concern of the Internet of Things developers and one of the main challenges
that are slowing down the expansion of the technology [51]. This is mostly due to the three

following reasons:

2 CHAPTER 1. INTRODUCTION

Increasing number of devices: The number of devices connected to the Internet
is constantly increasing since its appearance. If all everyday objects will also be
connected, this number will explode in the years to come. According to the Cisco
Annual Internet Report [35], around 30 billion devices will be connected to the
Internet by 2023 (up from 18.4 billion in 2018). This growing number of connected
objects will necessarily generate a huge amount of data, which makes their protection

much more challenging.

Wireless and mobile devices: Nowadays, mobile devices are evolving at lightning
speed. This is largely due to the Internet of Things, since its very nature favors
mobile to desktop devices. According to the Cisco Annual Internet Report [35], nearly
45% of the devices that will be connected to the Internet by 2023 will be mobile (up
from 30% in 2018). On the one hand, these mobile devices necessarily require wireless
communication. On the other, they must be physically small and thereby have limited
energy supply. The problem is that securing communication becomes more difficult

when it is wireless, especially if the energy resources are limited.

Heterogeneous devices: In addition to energy resources, the storage and computing
capabilities are very varied in the Internet of things. They can also be very limited
for some of its objects. Indeed, the Internet of Things devices include sophisticated
servers, computers, smartphones as well as resource-constrained sensors. Balancing
the level of security and performance between this variety of devices is very

challenging.

1.2 Research topic

Cryptography is one of the strongest tool used to ensure security services. It includes a
set of algorithms and mechanisms that are used to secure sensitive and classified data.
Encryption, for example, can be applied to a block of data (plaintext) to convert it into
a secret code (ciphertext) that hides the true meaning of the information. Cryptographic
keys are the secret parameters that make the algorithms secure data. Like a physical
key, a cryptographic one guarantees that only the entities owning it can open the door
that protect the data. In encryption, for example, only people who know the right key
should be able to retrieve the plaintext from a ciphertex. Therefore, for cryptography to
be effective, it is important that the system that manages these keys is well designed. The
Key Management is a branch of cryptography that encompasses all operations involving

the handling of cryptographic keys: generation, storage, distribution and replacement [16].

1.3. OUR CONTRIBUTIONS 3

The problem with cryptography, in general, is that it requires a significant amount of
resources to be effective. Its algorithms can hardly be implemented in the constrained
devices of the Internet of Things. Recently, a new concept, called lightweight cryptography,
has appeared. It consists of expanding cryptographic mechanisms to the resource-limited
devices, by designing new lightweight algorithms. These new mechanisms should be able
to provide a good compromise between security, performance and resource requirements
(hardware cost) [18]. The international standardization of lightweight cryptography is
currently underway [96]. For lightweight cryptography to be efficient, it is essential that
the Key Management can also operate over resource-limited devices. Lightweight Key
Management is therefore the essence of secure communication in the Internet of Things

and the core of our work.

1.3 Owur contributions

In this thesis, we propose a novel lightweight Key Management protocol to secure
communication between the heterogeneous and dynamic devices of the Internet of Things.
To achieve this, we start by identifying the expectations of the Internet of Things from
the Key Management. On this basis, we classify the related works according to different
criteria. The objective is to clearly present the remaining challenges and to propose new
solutions to overcome them. We then show that our protocol is more suitable for the
Internet of Things than the existing ones. We also implement it on resource constrained
IoT motes that are based on the Contiki operating system. The aim is to experimentally

evaluate the performance of our protocol and to complete the theoretical analyses.

To design our solution, we consider three modes of communication: device-to-device, group
and multi-group communication. In device-to-device communication, a device communi-
cates with a specific other device. In group communication, a device communicates with a
set of other devices. It can be its direct neighbors or all the network members participating
in the same service. As a device can participate in several services at the same time, it may
need to communicate only with those participating in a particular service. This is referred
to as multi-group communication. While most of the related works only focus on one of
these communication modes, our solution secures all three of them. It then considers the
needs of each of them and best meets its requirements. To achieve this, we proceed in
stages and propose several major contributions. These contributions are summarized in

the following points:

4 CHAPTER 1. INTRODUCTION

Dynamic Key Management for secure device-to-device communication: We
introduce a Key Management protocol for secure device-to-device communication in
dynamic networks. Compared to the existing schemes, our solution provides a good
compromise between the Internet of Things requirements: resilience, connectivity,
mobility, flexibility, efficiency and scalability. To achieve this balance, the network
members are uniformly distributed into logical sets. A device shares then a distinct
pairwise key with each member of its set and a unique pairwise set key with the

members of each of the other sets.

Heterogeneous Key Management for secure group communication: We enhance
our protocol so that it also secures group communication in heterogeneous networks.
Our new solution ensures the forward and backward secrecy and resists to collusion
attacks. Also, by balancing the loads between the heterogeneous devices according

to their capabilities, our solution becomes more efficient and highly scalable.

Blockchain-based decentralized Key Management for multi-group communica-
tion: We complete our solution so that it deals with the multi-group communication.
We make sure that it guarantees the secure coexistence of several services in a single
network. We also propose a decentralization of our protocol based on the blockchain
technology and smart contracts. Thus, the system continues to operate when an entity

fails and the compromise of a participant does not jeopardize the whole network.

1.4 Organization of the manuscript

The remainder of the manuscript is organized as follows. In chapter 2, we present the
general context of our work: the Internet of Things, network security and the blockchain
technology. In chapter 3, we detail the Key Management and emphasis its importance in
network security. We also propose a classification of the existing solutions and identify the
challenges they face in the Internet of Things. In chapter 4, we introduce a dynamic Key
Management protocol for secure device-to-device communication in the Internet of things.
In chapter 5, we present a heterogeneous Key Management protocol for secure group
communication in the Internet of Things. In chapter 6, we introduce a blockchain-based
decentralized Key Management protocol for multi-group communication in the Internet
of Things. In chapter 7, we propose an implementation of our solution considering the
Contiki operating system and resource constrained IoT platforms. Finally, we conclude

our work, in chapter 8, and present the main future work directions and open issues.

Chapter 2 __

General context

In this chapter, we present the general context of our work and define the main concepts
necessary to understand the rest of the manuscript. The first notion we introduce is the
Internet of Things (IoT). This is a network made up of a large number of everyday objects,
which are able to automatically communicate to computer systems, people and each other.
The aim is to provide various services for the benefit of society. One of the main challenges
that are slowing down the development of the IoT is how to secure communication between
its devices. This leads us to the second concept related to our work, which is network
security. Network security consists of designing a set of mechanisms to protect the network
against existing and emerging threats. Some security protocols require a third party to
function properly. This causes several problems, namely the dependence of a single point
of failure and the need to trust a central entity. The blockchain, which is the last concept
we introduce in this chapter, is a solution to these issues. It is a decentralized and secure
storage technology. Based on smart contracts, the blockchain can be used to securely

replicate an application on several entities.

6 CHAPTER 2. GENERAL CONTEXT

2.1 Introduction

The number of devices connected to Internet is constantly increasing since its appearance.
Now that this number far exceeds that of people in the world, we are no longer talking
about Internet but about Internet of Things (IoT). The IoT devices, commonly called
smart objects, are everyday objects that are able to automatically communicate to
computer systems, people and each other. To achieve this, many software and hardware
technologies are emerging. The IoT gives rise to revolutionary applications such as health
care, environment monitoring, smart homes and smart cities. The aim is to provide various
services for the benefit of society. One of the main challenges facing the development of

the IoT is how to secure communication between this huge number of smart objects [51].

Network security consists of designing a set of policies and mechanisms to protect the
network against existing and emerging threats. Although it is a fairly old discipline, it
remains an open issue and the subject of numerous research. It gets even more complex
over time since the motivations and capacities of threat actors continue to evolve. Despite
its benefits, the IoT has exacerbated this problem even more. This is due to the wireless
nature of communications, the limited resources of its devices and many other reasons
[141]. Some security protocols require a third party for proper functioning. This creates
several problems, namely the dependence of a single point of failure and the need to trust
a central entity. The blockchain, which is a decentralized and secure storage technology,

is a solution to these issues.

The term blockchain first appeared in Nakamoto’s Bitcoin paper describing a new
decentralized cryptocurrency [93]. The technology started then to be used in various
applications. The blockchain is composed of a chain of blocks, each storing a cryptographic
hash of the previous one. To guarantee that each network member records the same
transactions in the same order, consensus algorithms are used. They define a set of rules
to achieve overall system reliability in the presence of a number of faulty participants.
The blockchain technology also allows the implementation of smart contracts. These are
computer programs that are defined beforehand and stored in the blockchain. They can be
run, automatically and in a decentralized way, by the blockchain participants to execute

the settlement of a contract between organizations, people or objects.

The remainder of this chapter is organized as follows. Section 2.2 presents the fundamen-
tals of the Internet of Things. Section 2.3 introduces the fundamentals of network security.
Section 2.4 presents the blockchain technology and smart contracts. Section 2.5 concludes

the chapter.

2.2. FUNDAMENTALS OF THE INTERNET OF THINGS 7

2.2 Fundamentals of the Internet of Things

The Internet of Things (IoT) is an emerging technology that promises to make our daily
lives more comfortable in many ways. It aims to extend connectivity beyond standard
devices (such as computers, tablets and smartphones) to all everyday objects. These
devices, commonly known as smart objects, can then automatically collect data from their
environment, store it, process it and even exchange it with each other. This enhances their
functionalities and makes them able to offer new services to society, which until then were

not able to provide.

2.2.1 10T architecture

The common [oT architecture is composed of three layers: devices, gateways and cloud
(Figure 2.1).

(\) Cloud

-
== Sophisticated equipment for data analytics

/ Network \

Gateways

Powerful equipment for data aggregation

/ Network \

Devices

Constrained equipment for data collection

Y

Figure 2.1 — IoT architecture.

Devices: The [oT devices, or smart objects, are everyday devices improved to increase
their functionality (See section 2.2). A smart object involves an exchange between
the physical and the digital words [72]. Let us take as example an alarm clock. If it
is not smart, we can only set it to a specific time and it will alert us when the time
comes. If the alarm clock is smart then it will be able to interact with its environment
and communicate to other smart objects. It can, for example, communicate to the
lighting so it gradually brightens our room in the morning. It can also communicate
to the coffee maker and the heating, so that our place is warm and our coffee is ready
and hot for us when we wake up. The IoT devices have the particularity of being
heterogeneous (They are based on different technologies) and usually suffer from a

lack of resources. For these reasons, IoT gateways are required [149].

8 CHAPTER 2. GENERAL CONTEXT

Gateways: The [oT gateways are more powerful equipment than the IoT devices. They
are mainly used as intermediate between other components. They can be used to
translate communication between the heterogeneous devices if they need to exchange
their data. They can also be used to store and process the data that the [oT devices
can not handle for lack of capacity (whether in terms of storage or calculation).
Finally, the IoT gateways can act as a middle layer between devices and cloud to

protect the system from malicious attacks and unauthorized access [149].

Cloud: The IoT cloud is a sophisticated high performance network of servers optimized
to perform high speed data processing and deliver accurate analyses. They are mainly
used instead of gateways for two reasons: efficiency and remote access. The number
of ToT devices being constantly increasing, the gateways may not be enough to
efficiently manage the huge amount of data collected by all these devices. The IoT
cloud offers then tools to collect, process, manage and store massive data in real time.
Furthermore, the final user may need data collected by devices located far away. The
[oT cloud can solve this problem by allowing remote access to the data collected by
the devices [106].

2.2.2 10T features

There are mainly four features that distinguish a smart object (IoT device) from a normal
object: interaction with the environment (sensing and actuation), data management

(processing and storage), communication and identification [72] (Figure 2.2).

Sensing & Processing
actuating & storage

Communication Identification

(<T>) (C@j&),‘

Figure 2.2 — IoT features.

2.2. FUNDAMENTALS OF THE INTERNET OF THINGS 9

Interaction with the environment: To be able to interact with its environment, i.e.
collect data from it and act on it, a smart object must be equipped with sensors and
actuators [52]. A sensor is an electronic device whose purpose is to detect events or
changes in its environment. It is able to convert a physical, biological or chemical
parameter (e.g. velocity, GPS coordinates, temperature, humidity, etc...) into an
electrical signal that can be stored and processed by the device. On the opposite,
an actuator transforms an electric signal into a physical parameter. Sensors and

actuators act then as a bridge between the physical and the digital words.

Data management: Although most of calculation and storage are done on gateways and
the cloud, smart objects are usually equipped with microcontrollers and non-volatile
memories for local computing and storage [54]. The aim is to allow them to locally
process the data they can handle and to autonomously make some decisions. This

on-device intelligence will reduce network traffic and thereby energy consumption.

Communication: Smart objects must be able to communicate with each other and
with the rest of IoT components. For this purpose, a number of different wireless
communication technologies have been developed. They can be classified according
to two axes: signal range and energy consumption [116] (Figure 2.3). Although a
high-range communication provides a better connectivity, it is less secure. Indeed, it
is easier to capture the traffic between two communicators. Low energy consumption
technologies are usually more suitable for communications involving the IoT resource-

constrained devices. However, they cannot achieve a high data rate.

High energy consumption

€ Bluetooth @ 4&% SG\\

Low range High range
@ LigBee ' sigfox L§Ra‘"
fOWsz @ NB-IoT LTE-i%

Low energy consumption

Figure 2.3 — IoT communication technologies.

Identification: To communicate, smart objects need to be able to identify one another.
An identifier is like an electronic fingerprint that can take the form of a name, an
address or a code. Several technologies are used to uniquely identify smart objects.
Barcodes, for example, are optical representation of data, while RFID use Radio
Frequency [66]. Therefore, unlike a barcode, an RFID tag does not need to be within

the line of sight of the reader and my operate hundreds of meters from it.

10 CHAPTER 2. GENERAL CONTEXT

2.2.3 IoT applications

The IoT makes possible the development of a huge number of applications, which have
the potential to improve our lives. We can cite as examples: smart homes and cities, smart

vehicles, smart health and smart environment.

Smart homes and cities: Smart objects distributed in houses and cities can make our
lives more comfortable [55]. The room lighting can automatically change according
to time of day. The heating may be adapted to our preferences and to the weather.
Energy can be saved by automatically switching off the electrical equipments when
not needed. Domestic incidents may be avoided with appropriate monitoring and
alarm systems. Smart objects have also the ability to improve our cities. The standby
lightning can switch on only when someone walks by. The air pollution and the CO2

emissions may also be controlled to improve the environment [119].

Smart vehicles: Smart objects can be used by vehicles to sense their environment
and autonomously navigate without human intervention. This will relieve travelers
from driving and reduce accidents due to human errors [6]. Smart vehicles can also
communicate with each other to control traffic, minimize congestion, find parking

spots and avoid crashes.

Smart health: The global population is aging and the number of chronic diseases is
increasing [100]. Basic healthcare will become out of reach to most people in the
future. To resolve this problem, the IoT can be used to move the medical checks
from hospitals to the patients’ home. This will save a lot of time on both sides.
Patients can then be provided with smart objects, which automatically collect health
data (e.g. blood pressure, weight and blood sugar level) and share it with authorized
people. These devices can also automatically alert hospitals in the case of a medical
emergency like heart failure, diabetes, asthma attacks. Old people will be able to live

without fear of not being able to call for help when they are alone.

Smart environment: Smart objects can be used to control and monitor the environment.
They may detect a forest fire as soon as it starts. They then automatically deliver
warning alarms so that firefighters can act before the fire spread. Smart objects
can also be used to track endangered animals. Thus, they may live in their natural
habitat, while being monitored all the time [95]. The IoT devices can also be deployed
in ponds and tanks to monitor different parameters in real-time. The quality of the
water can then be controlled to prevent some diseases that could affect people and

animals.

2.2. FUNDAMENTALS OF THE INTERNET OF THINGS 11

2.2.4 Top IoT challenges

Although some of the IoT applications are currently available in our society, many
challenges are slowing down their development. The main concerns of the IoT developers
are [b1]: data management, energy consumption, heterogeneity and especially security
(Figure 2.4).

01

Security

02

Heterogeneity

03

Energy

04

Data management

Securing communication
between the wireless and
resource constrained loT devices

is a hard issue.

Integrating the different
materials, software and

technologies in a single network

Powering the wireless loT devices
so that they remain operational
for a long period of time is very

difficult.

Managing the huge amount of
data collected by billions of

devices imposes significant

cannot be done easily. challenges.

@% =

Figure 2.4 — Top IoT challenges.

Data Management: In the future, billions of devices will be connected to the Internet.
Managing the huge amount of heterogeneous data they can collect imposes significant

challenges, especially when time, resource, and processing capabilities are limited.

Energy consumption: In most of the [oT applications, devices need to run in complete
autonomy for several months or possibly years. However, these devices are usually
wireless and limited by their small physical size. Consequently, they have restricted
battery energy supply. It is therefore really difficult to power these devices to keep

them operational for a long period of time.

Heterogeneity: Companies develop IoT protocols and materials independently of each
other. This results in many different technologies that usually cannot integrate with
one another. This lack of compatibility becomes a real issue. For example, as presented
in the previous section, the IoT devices can use various communication technologies.
These technologies being spread over different frequency, it is not possible to make

all the IoT devices communicate directly.

Security: The IoT devices are vulnerable to cyber-attacks. Another task for engineers
is then to secure them, especially when they collect sensitive data. However, having
constrained computational resources, it is not possible to install any antivirus software
on the IoT devices and the sophisticated security mechanisms are not efficient on
them. Therefore, there is a need to design alternative security methods that are at

least just as effective as the existing ones, while requiring fewer resources.

12 CHAPTER 2. GENERAL CONTEXT

2.3 Fundamentals of Network Security

Security is the primary concern of the [oT developers and one of the main challenges that
are slowing down the expansion of this technology [51]. Even before the appearance of the
[oT, securing sensitive and classified data was considered as a major issue. It is becoming
more and more complex since the motivations and capabilities of threat actors continue
to evolve. The data to be protected can be either in rest (sitting on storage media) or in
motion (moving across the network). Network security consists of designing mechanisms

to protect the data in motion from attacks and to fulfil a certain number of objectives.

2.3.1 Network security objectives

Network security objectives usually involve three basic concepts, commonly referred to as
the CIA triad [88]: confidentiality, integrity and availability (Figure 2.5).

Confidentiality: Confidentiality means that only the authorized entities must be able to
view sensitive and classified data. Any other party must not be able to understand

these data even if it can access them.

Integrity: Integrity means that only the authorized entities must be able to modify

sensitive and classified data. An unauthorized modification on them must be detected.

Availability: Availability means that the data and system must be accessible to the
authorized entities all the time. It must be available even in case of attempted attack

or equipment failure.

&

| ntegrity

CIA Triad

Confidentiality Avaliablity

Figure 2.5 — Network security objectives.

2.3. FUNDAMENTALS OF NETWORK SECURITY 13

2.3.2 Network security attacks

There are a number of threats that jeopardize the network security. Depending on the
above-mentioned objectives, the network attacks can be classified into three categories

[131]: passive, active and denial of service attacks.

Passive attacks: Passive attacks compromise confidentiality. They are usually based on
eavesdropping as the attacker aims to access the data illegally without altering it
(Figure 2.6a). Packet capturing and port scanning are examples of such attacks. In a
packet capturing attack, the attacker captures the data packets crossing the network.
He will then be able to read sensitive data like passwords or card numbers. In a port
scanning attack, the attacker starts by searching for the TCP or UDP ports that are
open on the target system. After that, he tries to discover the services running on

these ports and the vulnerabilities in the software used.

Active attacks: Active attacks compromise integrity. They are usually considered as
more dangerous attacks since the attacker does not just access the data but also
modifies it (Figure 2.6b). He can then delete its content or inject new one. Man-in-
the-middle attack is an example of such attacks. The attacker puts himself between

two communicators to manipulate the packets exchanged between them.

Denial of service attacks: Denial of service (Dos) attacks aim to prevent a system
from functioning properly and therefore compromise availability (Figure 2.6¢). These
attacks try to overwhelm the system by monopolizing or exhausting its resources.

DoS attacks can be more severe if they are executed in a distributed manner.

A& &
278 272

(a) Passive attacks. (b) Active attacks.
/AQéQ
-]
—

) Dos attacks.

Figure 2.6 — Network security attacks.

14 CHAPTER 2. GENERAL CONTEXT

2.3.3 Network security and cryptography

Cryptography is one of the strongest tool used to provide security services. It is considered
both as an art of secret writing and a science used to protect sensitive and classified data.
In addition to fulfilling two main security objectives (data confidentiality and integrity),
cryptography ensures message authentication and non-repudiation [102]. In other words,
it guarantees the authenticity of the author of a message and provides the proof that the
announced author is the real one. Cryptography relies on two basic components: a key and
an algorithm (or methodology). Keys are secret parameters that are usually known only
by authorised entities. Algorithms are generally known to everyone. They are procedures
that take as input data and keys and produce an output. There are mainly three kinds of

such algorithms: ciphers, hash functions and key derivation functions.

2.3.3.1 Ciphers

Ciphers are mathematical algorithms that can be applied to a block of data (plaintext) to
convert it into a secret code (ciphertext) that hides the true meaning of the information.
Ciphers must be reversible as it must be possible to retrieve the plaintext from the
ciphertext. Encryption is the name given to the operation of using a cipher to generate
the ciphertext, while decryption is used to refer to the reverse operation that consists of
retrieving the plaintext. Ciphers being generally known to everyone, they are based on
secret cryptographic keys to ensure confidentiality. An attacker, who does not have the
appropriate keys, should not be able to retrieve the plaintext from a ciphertext. Ciphers

can be classified into two categories: symmetric and asymmetric.

Symmetric algorithms: Also known as secret key algorithms, they involve the use of the
same key for encryption and decryption. Their effectiveness depends on the secrecy
of the shared keys. As long as the sender and receiver are the only ones to know it,
they can securely exchange messages. Common examples of symmetric algorithms
include the following: DES [85], 3DES [59], AES [33], and Blowfish [117].

Asymmetric algorithms: Also known as public key algorithms, they use different keys
for encryption and decryption. Each network member is associated with a pair of
related keys: a public key which is disseminated widely and a private key known only
by it. The effectiveness of these algorithms depends then on the difficulty of guessing
the private key from the public one. Common examples of asymmetric algorithms
include the following: RSA [107], ElGamal [44] and ECC [20].

2.3. FUNDAMENTALS OF NETWORK SECURITY 15

2.3.3.2 Hash functions

Cryptographic hash functions are mathematical operations that convert a block of data
of arbitrary length to a fixed-size numerical value. This value should appear random and
is called message digest or simply hash value. A cryptographic hash function must satisfy

the following requirements [9]:

It must be efficiently computable, meaning that the calculation of the hash must be

easy and quick;

e It must be collusion resistant, i.e. it must not give the same hash for different input

data;

e It must be a one-way function, in other words it is impossible (at least difficult) to

find the input data from the hash;
e It must be deterministic so that the same input always results in the same hash;

e [t must ensure that a small change to the input modifies the hash so that it appears

uncorrelated with the first one.

Cryptographic hash functions can be used to verify data integrity. The sender may apply
such a function on a message and attach to it the resulting hash. The receiver can then
run the same function on the received message and compare the obtained hash with the
one he received with the message. The three most popular cryptographic hash functions
are MDb5 [108], SHA-1 [43] and SHA-2 [122]. Just like ciphers, these functions are usually
known to everyone. Therefore, they need to be combined with secret cryptographic keys
to be effective. An attacker, who does not know the key used for generating the hash,
should not be able to generate the same hash. There are mainly two methods of using a

cryptographic hash function along with cryptographic keys.

HMAC: Hashed Message Authentication Code (HMAC) protocol consists of combining
a cryptographic hash function along with a shared key to calculate a code that is
attached to the massage sent [74]. The receiver can then use the same key and hash
function on the message and compare the result to the received code (Figure 2.7a).
Thus, in addition to verifying the data integrity, the HMAC makes it possible to
authenticate the sender of the message. Indeed, an attacker, who does not know the
secret key, can not alter the message without being noticed since he cannot recalculate

the correct hash.

16 CHAPTER 2. GENERAL CONTEXT

Digital signature: While HMAC protocol uses symmetric keys along with a cryp-
tographic hash function to generate an authentic code, digital signature uses
asymmetric encryption [73]. The author of a message signs his message by hashing
it and then using his private key to encrypt the obtained result. The receiver can
decrypt the signature using the public key of the sender, calculate the hash of the
received message and compare the two results (Figure 2.7b). If there is a match,
the receiver will be able to ensure the data integrity, authenticate the sender of the
message and be sure of its identity (non-repudiation). Indeed, being the only one to

know his private key, no one else can generate the same digital signature.

&

|

? Hash
Function

No. Failed

authentication

Hash Secret Secret Hash . Haip
asl as| unction
Function —<® >=— Function

key key

1 Hash value
%)
% ac

Failed
authentication

-1

Yes

d

Successful
authentication
Private Public

O. — Decryption
key key T
@ Digital

A Signature

Encryption
HMAC

Digital
Successful authentication Signature

(a) HMAC. (b) Digital signature.

%
m#TD«é%
é

Figure 2.7 — Cryptographic hash functions.

2.3.3.3 Key derivation functions

Key derivation is a process by which a cryptographic key is derived from a password, a
shared secret or an other key [16]. Key derivation functions must be deterministic so that
the same input data always results in the same key. They are mainly used in the following

three cases:

e They can be used when key expires to update them.

e They can be used when two or more participants collaborate to generate a shared

key from several shared secrets.

e Passwords being usually weak, key derivation functions can be applied to them to

generate longer and more random keys.

2.4. BLOCKCHAIN 17

2.4 Blockchain

Given their complementary features, more and more applications that combines the
[oT and the blockchain are emerging. The blockchain is a decentralized and secure
storage technology. It is often confused with Bitcoin and cryptocurrencies in general.
The term blockchain indeed first appeared in Nakamoto’s Bitcoin paper describing a new
decentralized cryptocurrency [93]. However, due to its many interesting characteristics,
this technology is used today in various applications. We can cite as examples: food

traceability, identity management and delivery of diplomas and certificates.

2.4.1 Blockchain structure

The term blockchain derives from the fact that it is composed of a chain of blocks, each
storing a set of transactions and the cryptographic hash of the previous block [17] (Figure
2.8).

Transaction: It is the storage unit of the blockchain. The data stored in it depends on the
application for which the blockchain is used. In Bitcoin, for example, a transaction

contains data about the sender, the receiver and the amount of coins transferred.

Block: It is a data structure containing a set of transactions, their cryptographic hash
and the hash of the previous block. Note that the first block does not store the hash
of the previous one since there is none. In Bitcoin, for example, this is called the

Genesis Block and is the first block ever created by Nakamoto himself.

Chain: It is a sequence of blocks in a specific order. The key behind blockchain’s security
is the fact that its blocks are linked by their hashes. Any change in a block requires
modifying the hash of all the following ones in the chain, in other words, overwriting

all its content.

Block 1 Block 2 Block 3 Block N
Hash 1 Hash 2 Hash N-1
List of transactions List of transactions List of transactions . List of transactions
Hash 1 Hash 2 Hash 3 Hash N

Figure 2.8 — Blockchain.

18 CHAPTER 2. GENERAL CONTEXT

2.4.2 Blockchain architecture

Today, many applications use a client-server network (Figure 2.9a). This architecture
is centralized since all data is stored in a single machine (the server) to facilitate its
management. In a blockchain decentralized architecture, on the other hand, everyone
stores and participates in the data management. The system is therefore controlled
by every member of a peer-to-peer network [77] (Figure 2.9b). A blockchain perfectly
illustrates the notion of democratized system. Since these collaborative parties do not
necessarily trust each other, the blockchain technology offers mechanisms allowing them
to reach common consensus. Thanks to that, the data cannot be altered without the
agreement of the whole network, or at least most of them. The blockchain architectures
can be classified into three categories [115]: public, consortium and private (Table 2.1).

<

T

.
-

[]]
(a) Client-Server. (b) Peer-to-Peer.

Figure 2.9 — Client-server vs peer-to-peer networks.

Public blockchain: In a public architecture, the blockchain is accessible and its data can
be managed by anyone who wants to join. A large number of participants offers better
immutability as it is not possible to modify the data after they have been stored in
the blockchain. However, the data management requires a lot of resources. We can
cite as examples of public blockchain: Bitcoin [93], Ethereum [139] and Litecoin [50].

Consortium blockchain: In a consortium architecture, the blockchain is accessible and
its data can be managed only by authorized users from several organizations. With
less participants, it becomes less difficult to alter the data. However, the blockchain
management is more efficient. We can cite as examples of consortium blockchain:
Quorum [10], Hyperledger [24] and Corda [22].

Private blockchain: In a private architecture, the blockchain is accessible and its data
can be managed only by authorized users from a specific organization. With a limited
number of participants, this architecture is the least secure, but the most efficient.
We can cite as examples of private blockchain: Ripple [7], Tendermint [76] and
Hyperledger [24].

2.4. BLOCKCHAIN 19

H Property \ Public blockchain \ Consortium blockchain \ Private blockchain H
Read permission Public Public or restricted Public or restricted
Write permission Public Restricted Restricted
Efficiency Low Medium High
Immutability High Medium Low

H Example \ Bitcoin \ Hyperledger \ Tendermint H

Table 2.1 — Types of blockchain architecture.

2.4.3 Blockchain features

Regardless of the architecture adopted, the number of blockchain applications is constantly
increasing. The prime reason behind this is that the blockchain is coming with myriads
of features making it useful in various fields. We can cite as examples [84, 134]:

decentralization, immutability, traceability, anonymity, transparency and security.

Decentralization: It consists of distributing computation and storage over multiple
entities. This solves the single point of failure problem and makes it difficult for

anyone to compromise the system.

Immutability: It means that the data stored in the blockchain are permanent and
unalterable. They cannot be neither modified nor deleted. This brings more trust

between parties and more data integrity.

Traceability: It is possible to track the origin of each transaction in the blockchain. This
helps to prevent from tampering with the records and to quickly identify the source

of a problem when it occurs.

Anonymity: If some users wish to hide their identity, the blockchain technology allows
the use of generated addresses to keep their anonymity. They can then participate in

the blockchain management without giving any personally identifying information.

Transparency: The blockchain content is viewable to everyone and its transactions are
identically recorded in multiple locations. This is why the blockchain is considered

hacking-resistant.

Security: The blockchain uses cryptography to ensure the confidentiality of the exchanged
messages. It is more precisely based on digital signatures so that its participants can

verify the integrity and authenticity of the transactions.

20 CHAPTER 2. GENERAL CONTEXT

2.4.4 Blockchain consensus

The blockchain is a distributed database managed by several participants. A copy of its
content is therefore stored in the memory of each of them. Before actually adding a new
block to the blockchain, all (or at least the majority) of these participants must agree on
it. They accomplish this agreement through consensus algorithms. These are mechanisms
based on a set of rules to guarantee that each participant record the same blocks in the
same order. The existing consensus algorithms can be classified into two categories [17]:

leader-based mechanisms and byzantine fault tolerance-based algorithms.

Leader-based mechanisms: In this class of algorithms, the participants compete to elect
the leader that will validate the next block. Proof of work (PoW) [93], as an example
of such mechanisms, is mainly used in cryptocurrencies such as Bitcoin. Before adding
a new block to the blockchain, each of its participants tries to solve a complex
cryptographic puzzle. This process is referred to as mining and the individuals that
participate in it as miners. The miners compete with each other to solve the puzzle
and the first one to do it is reworded with cryptocurrency. Once the puzzle is solved
by a miner, it becomes the leader and forges the next block. All the other participants
check then if the solution is correct and add the block to their copy of the blockchain.
The verification must be an easy operation compared to the resolution. Solving the
puzzle requires a lot of calculation and thereby wastes a huge amount of energy. Proof
of Stake (PoS) [132] is an other leader-based mechanism, which is more energy-
efficient. Indeed, the leader (also called validator) is chosen according to different
criteria, without having to solve difficult problems. In cryptocurrencies, for example,
the leader can be chosen according to its economic stake. Thus, a participant has a

probability of being elected proportional to the amount of coins it possesses.

Byzantine fault tolerance-based algorithms: These algorithms are mainly based on
communication. Using the Practical Byzantine Fault Tolerance Algorithm (PBFT)
[25], for example, a participant (called proposer) is first elected in a round-robin
fashion. The proposer broadcasts its block to all other participants, which becomes
then validators. Each validator checks the received block, broadcasts a response
(which can be positive or negative) and waits for the responses of the others. When
a validator receives a number of positive responses above a certain threshold (two
thirds of the number of participants in general), it broadcasts a commit and waits for
the responses of the others. When a validator receives a number of commits above
the threshold, it adds the block to the blockchain.

2.4. BLOCKCHAIN 21

2.4.5 Smart contracts

Smart contracts are one of the most promising types of blockchain use. Concretely, they are
autonomous and irrevocable computer programs usually stored in a blockchain. They can
be automatically run by its participants to execute the settlement of a contract between
organizations, people or objects [34]. Smart contracts are self-verifiable, self-executable
and tamper proof. Although the idea of smart contracts was introduced in 1994, by
Nick Szabo, it has not been put into practice until the appearance of the blockchain. It
is precisely this technology that has eliminated the need for a trusted third-party. The

advantages of smarts contracts can be summarized in the following:

e Being stored in a blockchain, smart contracts take advantage of all its features to
secure an agreement between two parties. We have indeed the guarantee that the

terms of the contract cannot be modified.

e Unlike traditional contracts, automating the execution of smart contracts eliminates

the risk of violation of its terms.

e Smart contracts reduce the intermediate costs: the preparation, the monitoring and

the signing of a contract by notaries and lawyers.

Smart contracts are used, for example, in cryptocurrency to automatically exchange coins
between users based on predefined conditions and without third-party involvement. They
can also be used for travel insurance to automatically compensate passengers when their
flights are late or cancelled. This operation is carried out without the need to fill out any
form by clients or to process requests by companies. The sale of personal items is an other
example of smart contracts use. The ownership of the item is automatically transferred

to the buyer when the monetary is received by the seller. This can be done without the

UH

need of a third-party and without risk of fraud (Figure2.10).

’_1!) c!a

o.
|
3l

, Seller Buyer Seller
(T
Lawyer, Notaries, insurance Blockchain participants
(a) Normal contract. (b) Smart contract.

Figure 2.10 — Normal contract vs smart contract.

22 CHAPTER 2. GENERAL CONTEXT

2.5 Conclusion

The purpose of this chapter was to present the general context of our work. We started
by introducing the concept of the IoT, its architecture, features and applications. We also
stated that the main challenge that is slowing down the development of this emerging
technology is security. We then recalled the fundamentals of network security and the
cryptographic mechanisms that are used to achieve its goals. We finally presented the
blockchain and smart contracts, which are other emerging technologies that are closely

linked to the two other concepts.

An important point to consider is that most of the cryptographic mechanisms, that we
covered in this chapter, require keys for their proper functioning. The key to security is
therefore the cryptographic keys. For this reason, the next chapter is entirely devoted to

the concept of Key Management for secure communication between the IoT devices.

Chapter 8 __

Key Management in the IoT:
Classification and Challenges

In this chapter, we present the objective of our research and the related works. We start
by defining the notion of Key Management and its importance in network security. The
role of such a system can be summarized in the generation, storage, distribution and
revocation of cryptographic keys. Next, we present different criteria that can be used to
classify the existing solutions. These criteria are related to the encryption technique used,
the type of key, the distribution method and the load balancing. We then present some
of the existing Key Management protocols and classify them according to the previously
mentioned criteria. We also discuss each of this categories by citing its advantages and
disadvantages. The aim is to identify the challenges that the related works encounter.

Finally, we summarize our contributions to overcome these challenges.

23

24 CHAPTER 3. KEY MANAGEMENT IN THE IOT: CLASSIFICATION AND CHALLENGES

3.1 Introduction

Cryptographic keys are secret parameters that are combined with cryptographic algo-
rithms to secure communication. They are used to encrypt data, generate HMAC codes,
sign messages and even derive other keys. Thus, only the entities that know the key
must be able to reproduce or reverse the operation for which it was used, i.e. retrieve the
plaintext from a ciphertext, verify the HMAC code, check the digital signature or generate
the same key. Since the effectiveness of cryptographic algorithms depends on keys, it is
important that the system that manages these keys is well designed. The main role of a
Key Management system is therefore to establish secure links between the members of a

network by providing them with cryptographic keys [146].

The Key Management system is first responsible of generating keys. It also stores them,
and sometimes archives them, when necessary. It is in charge of distributing keys on the
appropriate network members as well. Finally, it updates the keys when new members
join the network and replace them when they get compromised. Although different
Key Management protocols were proposed, each of them presents its own limitations
and weaknesses. More importantly, our literature revue shows that none of the existing
solutions meets all the [oT requirements in terms of security and performance. This leads
us to present lightweight cryptography, which aims to use less resources than conventional
cryptography in terms of storage, computing, communication and energy. The goal is to

provide security solutions that can operate over resource-limited devices [23].

To properly categorize the existing solutions and to determine the problems they
encounter, we classify them according to several criteria: the encryption technique used,
the type of key, the distribution method and the load balancing. The combination of these
different parameters gives rise to a number of protocol classes. We discuss the advantages
and disadvantages of each of them. This classification helped us to achieve a comprehensive
view of the exiting Key Management protocols. We were then able to clearly identify the
challenges that these solutions face in the IoT. The Key Management being the purpose
of our work, we propose novel contributions to overcome these challenges. Unlike most of

the existing protocols, our solution is more [oT oriented and better meet its needs.

The remainder of this chapter is organized as follows. Section 3.2 presents the funda-
mentals of the Key Management. Section 3.3 introduces the IoT requirements for the
Key Management. Section 3.4 presents a classification of the existing Key management
solutions. Section 3.5 introduces the Key Management challenges in the IoT. Section 3.6

presents our contributions. Section 3.7 concludes the chapter.

3.2. FUNDAMENTALS OF KEY MANAGEMENT 25

3.2 Fundamentals of Key Management

The proper management of keys is essential to guarantee the effectiveness of cryptography.
Indeed, if an adversary manages to discover the keys, he will be able to thwart all
the cryptographic mechanisms. The Key Management is therefore the essence of secure
communication and the core of our work. It includes all the operations involving the

handling of cryptographic keys: generation, storage, distribution and replacement [16].

3.2.1 Generation

Keys can be generated by their owner(s) or by a trusted third authority. This is mainly
done in three different ways: random generation, key derivation and key agreement [12].

Note that some Key Management protocols have specific methods for generating keys.

Random generation: Keys can be generated using a pseudo-random bit generator
(RNG). This is a device or an algorithm that outputs numbers with properties close

to that of sequences of random numbers (Figure 3.1a) [12].

Key derivation: Keys can be derived from a password or another key using a key
derivation function (KDF). Passwords being usually weak, key derivation functions
can be applied to them to generate longer and more random keys. Moreover, an
expired or compromised key can be combined with an available one to drive a new
key (Figure 3.1b) [14].

Key agreement: Keys can be generated with agreement between participants using
a key agreement protocol (KAP) such as Diffie-helman[38]. The aim is to obtain
the key by merging secret information from several entities (Figure 3.1¢) [13]. The
combination of these information can be done by concatenating or exclusive-oring

them for example.

RNG KDF Derived Key KAP Shared Key
'” » = ﬂ
73 = ao 23 =0 &3 = T
==] ==
10101010 01110101 01110101 01110101
(a) Random generation. (b) Key derivation. (¢) Key agreement.

Figure 3.1 — Key generation.

26 CHAPTER 3. KEY MANAGEMENT IN THE IOT: CLASSIFICATION AND CHALLENGES

3.2.2 Storage

The time span during which a key is authorized for use is called cryptoperiod [14]. During
this phase, the key must be available to the appropriate devices. Keys can be stored within
devices if they are being actively used. They may also be stored in more secure external
storage mediums and be recalled when needed. In some cases, keys can even be archived
at the end of their cryptoperiod, so that they can be recovered later [16]. Archived keys

are usually encrypted to ensure their confidentiality.

3.2.3 Distribution

Distribution consists of moving a key from an entity that either owns or generates it
to another that is intended to use it [12]. When secret key distribution is required, the
keys must be transported manually or using secure channels. Manual transporting means
physically moving a device or document containing the key. A secure channel is a path that
uses cryptography to ensure confidentiality and integrity [14]. The distribution of public
keys does not have to be secured, but should ensure to the receiver that the claimed owner

is the actual owner. A trusted entity is usually required to vouch for the identity of users.

3.2.4 Replacement

Keys need to be replaced in two cases: expiration and revocation [14]. A key expires when
its cryptoperiod is over. If a key gets compromised before the end of its cryptoperiod, it
will be revoked and will no longer be operational. Key replacement can be done in two

different ways: rekeying and key update.

Rekeying: The new key is independent of the old one [13]. As long as an adversary
does not have access to the new key, he will not be able to calculate it even if he
knows the old one. This method is more secure and well suited in case the old key is

compromised. It requires nevertheless the distribution of the new key.

Key update: The new key is derived from the old one in a non-reversible way [16]. This
method is more efficient as all entities that share the key can update it independently
of each other. However, an adversary who knows the old key can calculate the new
one. Thus, key update is usually used when a key expired. This method can still be

applied on compromised keys, if it combines them with some secret parameters.

3.3. KEY MANAGEMENT AND IOT 27

3.3 Key Management and IoT

Conventional cryptographic mechanisms, in general, and conventional Key Management,
in particular, are effective in traditional Internet. Desktop and server environments have
indeed enough resources in terms of storage, computing, communication and energy.
However, these mechanisms cannot or can hardly be implemented in the IoT resource-
constrained devices. Even when this implementation is possible, it is not efficient and
does not scale well. New lightweight solutions, including Key Management, are therefore

required to overcome many of the problems of conventional cryptography [23].

3.3.1 Lightweight cryptography

The purpose of lightweight cryptography is to expand cryptographic mechanisms to
resource-limited devices. It consists then of proposing new lightweight solutions or
adapting the existing ones so that they become suitable for implementation on these
devices. To achieve this, these solutions must provide the best compromise between
security, performance and resource requirements (hardware cost) [18]. Figure 3.2 illustrates

an example of the difficulty of satisfying these three contradictory criteria.

Key generation

Performance
Serial Parallel

Figure 3.2 — Lightweight Key Management.

Lightweight cryptography is a relatively young scientific sub-filed of cryptography whose
international standardization is currently underway. The international standard ISO/IEC
29192 (Lightweight Cryptography) was established at ISO/IEC JTC 1/SC 27. The
U.S. National Institute of Standards and Technology (NIST) launched the Lightweight
Cryptography Project in 2013 and announced a public call for applications of lightweight
cryptographies in 2017 [96].

28 CHAPTER 3. KEY MANAGEMENT IN THE IOT: CLASSIFICATION AND CHALLENGES

3.3.2 IoT requirements for the Key Management

Although lightweight Key Management protocols have been proposed, most of them
are intended for homogeneous and static wireless sensor networks. They rarely consider
the heterogenecous and dynamic nature of the IoT and none of them meets all its
requirements. Thus, we classify the IoT expectations for the Key Management according
to the communication mode. The [oT devices may indeed communicate in three different
ways: device-to-device, group and multi-group communication (Figure 3.3). Each of these

communication modes has different requirements for the Key Management (Table 3.1).

(a) Device-to-device. (b) Group. (¢) Multi-group.

Figure 3.3 — IoT communication modes.

Device-to-device communication: A device sends/receives unicast messages to/from
another specific device (Figure 3.3a) [101]. An example of device-to-device communi-
cation (also called node-to-node or pairwise communication) is the Vehicle-to-Vehicle
communication. It is a technology that allows two specific vehicles to exchange
information about their speed and position. Thus, they can avoid crashes, ease traffic
congestion and improve the environment [28]. The device-to-device communication
requires that the Key Management provides good resilience, connectivity, mobility,
flexibility, efficiency and scalability (See Table 3.1).

Group communication: A device sends/receives broadcast messages to/from the
members of the group to which it belongs (Figure 3.3b) [129]. This device must
have previously joined the group legally. It can also voluntarily leave it afterwords or
be evicted if it gets compromised. The group members usually participate in the same
service and thereby have a common interest. An example of group communication
is the Vehicle-to-Everything communication. It consists of allowing a vehicle to
communicate with all the nearby devices (cars, bicycles, public lighting...etc.). The
aim is to make the vehicle sense its environment and therefore take the right decision
[28]. The group communication requires that the Key Management ensures backward

and forward secrecy, collusion resistance, efficiency and scalability (See Table 3.1).

3.3. KEY MANAGEMENT AND IOT 29

Multi-group communication: A device sends/receives multicast messages only to/from
the members of one of the groups to which it belongs (Figure 3.3c) [62]. Unlike group
communication, where a device is supposed to belong to a single group, this mode
considers the possibility that devices can participate in multiple services at the same
time. An example of multi-group communication is smart ambulances [113]. They can
participate at the same time in the intelligent transportation and healthcare systems.
The multi-group communication requires that the Key Management guarantees

independence of services, efficiency and scalability (See Table 3.1).

Communication mode | Requirement Description

Resilience The capturing of a device must have a
minimal impact on the network security

Device-to-device Connectivity The probability of sharing keys between

neighboring devices must be maximum.
Otherwise, they must relay on interme-
diate devices to establish secure paths

Mobility Moving devices must share keys with
their new neighbours

Flexibility Devices must be able to securely join or
leave the network at any time

Backward secrecy New devices must not have access to the
Group old keys. Thus, when a device joins the
network, the keys must be replaced

Forward secrecy Old members must not have access to
the future keys. Thus, when a device
leaves the network, the keys must be
replaced

Collusion resistance Unauthorized devices must not have ac-
cess to the keys if they cooperate

Multi-group Independence of services | The compromise of a service must have
no effect on the others

Efficiency Since most of the IoT device suffer from
a lack of resources, the use of these
resources by the Key Management must
be minimal

All three modes

Scalability Given the tremendous number of IoT
devices, increasing the network size
must not degrade the Key Management
performance

Table 3.1 — [oT requirements for the Key Management.

30 CHAPTER 3. KEY MANAGEMENT IN THE IOT: CLASSIFICATION AND CHALLENGES

3.4 Key Management classification

After identifying the expectations of the IoT from the Key Management, we now analyze
the existing solutions. To properly characterize these solutions, we start by classifying
them according to different criteria. We then discuss each category and deduce the IoT
requirements it meets and those it does not. The objective is to clearly identify the

remaining challenges and to propose new solutions to overcome them.

3.4.1 Classification criteria

After conducting an extensive literature review, we have retained four essential criteria to
classify the existent Key Management solutions: the key cryptography, the key type, the
distribution method and the load balancing. The first two concern the keys themselves,
while the other two relate to how they are managed. Two levels of classification can

therefore be observed: Key level and Management level (Figure 3.4).

Cryptography

CEE—
Symmetric Same key for encryption and decryption
—

Asymmetric Different keys for encryption and decryption

—
—

Pairwise Different keys for each pair of communicators

——
—

Network wide Same key shared by the network members

—
—

Key
Management

Pre-distribution Keys are distributed before the network deployment

| —
 E———

Distribution
method
Load balancing

Figure 3.4 — Classification criteria.

Post-distribution Keys are distributed after the network deployment

:

Loads are uniformly distributed on the network

Homogeneous
members

—_—

R

Loads are balanced between the network members

Heterogeneous according to their capabilities

3.4.1.1 Key cryptography

Depending on whether the same key is used for encryption and decryption or not, the
Key Management protocols are classified into two categories: symmetric and asymmetric

schemes (Figure 3.5).

3.4. KEY MANAGEMENT CLASSIFICATION 31

Symmetric schemes: These schemes involve the use of the same key for encryption and
decryption (Figure 3.5a). They usually require affordable computing capacity and
reasonable computing time. However, their effectiveness depends on the secrecy of the
symmetric keys. The exchange of these keys generally require an amount of storage
and communication growing with the network size. To sum up, Key Management

protocols based on symmetric cryptography are efficient, but not scalable.

Asymmetric schemes: These schemes use two different keys for encryption and
decryption (Figure 3.5b): a public key which may be disseminated widely and a
private key which is known only to the owner. One is always calculated from the
other so that if the first is used for encryption, the second can be used for decryption.
Using asymmetric cryptography, no secret key exchange is required and a device only
needs to store its own keys. However, the effectiveness of this method depends on
the difficulty of guessing the private key from the public one. It is therefor based on
computing power, which makes it resource intensive. To sum up, Key Management

protocols based on asymmetric cryptography are scalable, but not efficient.

(¢)) (¢+)) (o) (¢+))
8——o 8 gt]
©

! |

- =

Same secret Key Public Key Private Key

(a) Symmetric schemes. (b) Asymmetric schemes.

Figure 3.5 — Key cryptography.

3.4.1.2 Key type

Depending on whether distinct keys are used for each pair of communicators or the same
key is shared by several members, the Key Management protocols are classified into two

categories: pairwise and network wide key schemes (Figure 3.6).

Pairwise schemes: These schemes consist of using distinct keys for each pair of
communicators (Figure 3.6a). They are resilient as capturing a member does not
jeopardize the communication of the others. However, they are not well suitable for

group communication as the same message must be encrypted and sent several times.

32 CHAPTER 3. KEY MANAGEMENT IN THE IOT: CLASSIFICATION AND CHALLENGES

Network wide schemes: These schemes consist of using shared keys that are common to
several network members (Figure 3.6b). They are efficient and scalable as they require
little storage. However, they are not suitable for device-to-device communication as

they lack resilience. Indeed, each device can decrypt the communication of the others.

PalrWIs:e ’ (“)) o2k ((.)) Network
(@) =) () o ()
O£k4 . .
O=r - T
pks ((.)) pks ((.))
(a) pairwise schemes. (b) Network wide schemes.

Figure 3.6 — Key Type.

3.4.1.3 Distribution method

Depending on whether the keys are distributed on the network members before deploy-
ment or after, the Key Management solutions are classified into two categories: pre-

distribution and post-distribution schemes (Figure 3.7).

Pre-distribution schemes: These schemes involve the storage of keys in the devices’
memory before their deployment (Figure 3.7a). The keys usually remain unchanged
for the whole lifetime of the network. It is therefore difficult to add new devices
to the network afterwards or revoke those that get compromised. Key Management
protocols based on pre-distribution lack flexibility. They are not suitable for dynamic

networks, whose members change frequently.

Post-distribution schemes: These schemes dynamically provide keys to the network
members and update them when necessary (Figure 3.7b). To achieve this, a trusted
authority is usually used. This centralized entity becomes nevertheless a single
point of failure and the main target of attacks. If it fails, the entire system will
stop operating and if it is attacked, the whole network will be compromised. Key
Management protocols based on post-distribution pose a risk of unavailability and

have a low level of resilience.

3.4. KEY MANAGEMENT CLASSIFICATION 33

Network ((:.))

Network

() —

(c)

(a) Pre-distribution schemes. (b) Post-distribution schemes.

Figure 3.7 — Distribution method.
3.4.1.4 Load balancing

Depending on whether the loads are uniformly distributed on the network members or
balanced between them according to their capabilities, the Key Management protocols

are classified into two categories: homogeneous and heterogeneous schemes (Figure 3.8).

Homogeneous schemes: These schemes uniformly distribute the loads on the network
members and impose the same costs on all of them (Figure 3.8a). Thus, while a
negligible amount of resource is sufficient for some, others will not have enough. Ho-
mogeneous Key Management protocols lack efficiency and scalability in heterogeneous

networks.

Heterogeneous schemes: These schemes balance the overheads between the network
members according to their capabilities (Figure 3.8b). By using a bit more of the
resources of powerful devices, the constrained devices are more likely to support the
overheads. Network performance is therefore improved and its lifetime increased.
Heterogeneous Key Management protocols are efficient and highly scalable in

heterogeneous networks.

(t+))

()

(a) Homogeneous schemes. (b) Heterogeneous schemes.

Figure 3.8 — Load balancing.

34 CHAPTER 3. KEY MANAGEMENT IN THE IOT: CLASSIFICATION AND CHALLENGES

3.4.2 Proposed classification

To identify the challenges that related works still face in the IoT, we propose a
classification of these protocols. Thus, we use the following notation to refer to a class of
Key Management solutions: E%ICMZ;Z The variable “cry” refers to the key cryptography.
It can take two values “sym” for symmetric protocols and “asy” for the asymmetric ones.
The abbreviation “typ” indicates whether pairwise keys, “pai”, or a network wide key,
“net”, is used. The variable “dis” can be replaced by “pre” for the protocols that are
based on pre-distribution and by “pos” for post-distribution schemes. The abbreviation
“loa” specifies whether the load balancing adopted by the scheme is homogeneous, “hom”,
or heterogeneous, “het”. The notation “hyb” can be used, to replace any of the above-
mentioned notations, when a scheme is based on a hybridization of two categories. Finally,

when we refer to all the values of a given criteria we use the notation “*” (Table 3.2).

For example, the class hy};ICMZZ;” includes all the homogeneous and pre-distribution
Key Management protocols that are based on a hybridization between symmetric and
asymmetric cryptography. These protocols can use either pairwise keys or a network wide

key, but not both at the same time.

Classification criteria | Possible choices Notation
Symmetric symKCM
Key cryptography Asymmetric asyKKM
Symmetric and asymmetric hytKCM
Symmetric or asymmetric M
Pairwise PaiiC M
Key type Network wide net ko M
Pairwise and network wide hyb IC M
Pairwise or network wide KM
Pre-distribution KMpre
Distribution method | Post-distribution KM pos
Pre-distribution and post-distribution | KM,
Pre-distribution or post-distribution KM,
Homogeneous K MPom
Load balancing Heterogeneous KMhet
Homogeneous and heterogeneous KM
Homogeneous or heterogeneous KM*

Table 3.2 — Classification notations

3.4. KEY MANAGEMENT CLASSIFICATION

35

In Table 3.3, we introduce a classification of the existing solutions based on the criteria

and the notations presented above. Note that although 64 classes can be obtained using

our classification, they have not all been used in the literature. We then discuss each of

the existing classes and present its weaknesses.

Category References Discussion

55%16/\/1,’;,?2” [1, 2, 5, 19, 21, | [+] These approaches are efficient for secure device-to-device

26, 27, 32, 39, | communication in static networks, whose members do not

40, 60, 81, 110, | change frequently.

130, 142-145] [—] These approaches neither consider the group and multi-
group communication nor the dynamic and heterogeneous
nature of the IoT.

SZ%ICMZC?QL (3, 8, 49] [+] These approaches are efficient for secure device-to-device
communication in dynamic networks.

SZ%ICMZZZ” [30, 31, 48] [—] These approaches do not consider the group and multi-
group communication and lack scalabilty in heterogeneous
networks containing limited-resource devices.

Sg?,ilCMgfg [83] [+] These approaches are efficient and scalable for secure
device-to-device communication in heterogeneous networks.
[—] These approaches do not consider neither the group and
multi-group communication nor the dynamic nature of the
IoT.

Sz%ICMZth [41] [+] These approaches are efficient and scalable for secure
device-to-device communication in heterogeneous and dy-
namic networks.

[—] These approaches do not consider the group and multi-
group communication.

s;‘fﬁ/CMZgg? [45-47, 80, 120, | [+] These approaches are efficient for secure group and multi-

129, 133, 135, | group communication in dynamic networks.

138, 140]

SZ%/CMZZZ” [148] [—] These approaches do not consider the device-to-device
communication and lack scalabilty in heterogeneous net-
works containing limited-resource devices.

36

CHAPTER 3. KEY MANAGEMENT IN THE IOT: CLASSIFICATION AND CHALLENGES

nethM het

sym post

[79, 124]

[+] These approaches are efficient and scalable for secure
group and multi-group communication in heterogeneous and
dynamic networks.

[—] These approaches do not consider the device-to-device

communication.

hyb hom
SymICMp're

[58]

[+] These approaches are efficient for secure device-to-device,
group and multi-group communication in static networks.
[—] These approaches do not consider the heterogeneous and

dynamic nature of the IoT.

hyb hom
symlCM hyb

(61, 89,
145, 150]

104,

[+] These approaches are efficient for secure device-to-device,
group and multi-group communication in dynamic networks.
[—] These approaches lack scalabilty in heterogeneous net-

works containing limited-resource devices.

i h
paz’CM om

asy post

(20, 82,

118, 121,

137]

103,
136,

[+] These approaches are scalable for secure device-to-device
communication in dynamic networks.

[—] These approaches do not consider neither group and
multi-group communication nor the heterogeneous nature of
the IoT. Also, being based on asymmetric encryption, they

are not suitable for the IoT constrained devices.

pai het

asy

[105]

[+] These approaches are scalable for secure device-to-device
communication in dynamic and heterogeneous networks.

[-] These approaches do not consider group and multi-
group communication. Also, being based on asymmetric
encryption, they are not suitable for the IoT constrained

devices.

pai hom
hybIC./\/l

pre

[111, 127]

[+] These approaches are efficient for secure device-to-device
communication in static networks.

[—] These approaches neither consider the group and multi-
group communication nor the dynamic and heterogeneous

nature of the IoT.

pai het
hyblC./\/l

post

87, 92]

[+] These approaches are efficient for secure device-to-device
communication in heterogeneous and dynamic networks.
[—] These approaches do not consider the group and multi-

group communication.

Table 3.3 — Classification of existing solutions

3.5. KEY MANAGEMENT CHALLENGES IN THE 10T 37

3.5 Key Management challenges in the 1oT

Our literature review and the classification of the exiting solutions allow us to identify
the challenges that are facing the Key Management in the IoT. We summarize these

challenges in the following points:

e Most of the Key Management protocols consider either device-to-device or group and
multi-group communication. As the IoT involves the three modes of communication,
none of these schemes is suitable for it. Indeed, if the same key is used for all device-
to-device communication, every network member will be able to decipher them. If
several keys are used in group communication, the same message will be encrypted
and sent several times. This will require additional calculation and communication
and thereby more energy consumption. Finally, most of the existing schemes suffer
from considerable overheads and are not suitable for the IoT constrained devices.

Implementing different protocols will then be too heavy for them to handle.

e Most of the Key Management protocols proposed to secure device-to-device
communication are based on pre-distribution. They are motivated by the fact that
they do not require a third party to attribute secret keys to the network members.
However, pre-distributed schemes are rigid as it is difficult to add new devices to the
network after the deployment. They are therefore more suitable for static networks,

which is not the case of the IoT.

e Most of the Key Management protocols based on post-distribution relay on a single
entity to mange the keys. This entity becomes a single point of failure and the main
target of attacks. If the central entity fails, the entire system will stop operating.

Moreover, if this entity is attacked, the whole network will be compromised.

e Most of the Key Management protocols use the same parameters to secure all
communications. As the IoT provides various services, communication within a
service will be accessible to all devices even if they did not subscribe to it. Moreover,

the capture of a member will jeopardize all services.

e Most of the Key Management protocols do not consider the heterogeneous nature of
the IoT. They do not balance the loads between devices and impose the same costs
on a powerful computer or a weak sensor. While a negligible part of the former’s
resources is used, those of the latter may not even be enough. Moreover, the few
works, which are intended for heterogeneous networks, divide the devices into two

classes only (powerful and constrained) and do not adapt to the network state.

38 CHAPTER 3. KEY MANAGEMENT IN THE IOT: CLASSIFICATION AND CHALLENGES

3.6 Our contributions

In this thesis, we propose a novel Key Management protocol to secure the communication
between the heterogeneous and dynamic IoT devices. We then show that our solution,
of class ZSZICMZSEH is more suitable for the IoT than the existing solutions. Although
this class best matches the IoT, we have not encountered it in the literature. An
hybridisation of symmetric and asymmetric cryptography allows to take advantages of
each and overcome its disadvantages. Combining pairwise and network wide keys also
offers the possibility of secure the three modes of loT communication. A post-distribution
based solution consider the dynamic nature of the IoT. Finally, the [oT devices having

different capabilities, the Key Management system must be heterogeneous. To design our

solution, we proceed in stages and propose several major contributions:

e In chapter 4, we introduce a symmetric Key Management protocol for secure device-
to-device communication in dynamic networks. Compared to the existing schemes
of the class fZZICMZg;Z, our solution provides a good compromise between the ToT
requirements: resilience, connectivity, mobility, flexibility, efficiency and scalability.
To achieve this balance, the network members are uniformly distributed into logical
sets. A device shares then a distinct pairwise key with each member of its set and

a unique pairwise set key with the members of each of the other sets.

e In chapter 5, we enhance our protocol so that it also secures group communication in

het

post> ensures the forward

heterogeneous networks. Our new solution, of class SZ%)/CM
and backward secrecy and resists to collusion attacks. Furthermore, by balancing the
loads between the heterogeneous devices according to their capabilities, our solution

becomes more efficient and highly scalable.

e In chapter 6, we complete our solution so that it becomes of class ZzZICMzszt In
this final version, we first deal with the multi-group communication. We make
sure that our solution guarantees the secure coexistence of several services in a
single network. We also propose a decentralization of our protocol based on the
blockchain technology and smart contracts. Finally, by combining symmetric and
asymmetric cryptography, our solution securely distributes the Key Management
on multiple entities. Thus, the system continues to operate when an entity fails and

the compromise of a participant does not jeopardize the whole network.

e In chapter 7, we propose an implementation of our solution, considering the
Contiki operating system and resource constrained IoT platforms, to experimentally

complete the theoretical analyses.

3.6. OUR CONTRIBUTIONS 39

3.6.1 Notations

Our solution can be hosted on servers (the cloud) or gateways to manage the keys, which
are used by devices to secure communication. It can be implemented in a centralized or
decentralized way. Thus, regardless of where and how it is implemented, we use the term
Key Manager to refer to the implementation of our protocol on servers/gateways and the

term node to refer to its implementation on devices (Figure 3.9).

Key Manager
side

Figure 3.9 — IoT network (Key Manager and nodes).

The main notations, that are used in multiple sections of the manuscript, are summarized

in Table 3.4.

H Notation | Definition H

U, v, w Examples of nodes

Cu The capability of the node u in number of keys
n The number of nodes in the network
S, T,U | Examples of sets (or subgroups)

My The size of the set S

mes The minimum capability of the set §
D The number of sets in the network
G, 1 Examples of groups

N The network

BP A Blockchain Participant

r The number of BPs in the network
cp The consensus period

ct Maximum temporary transactions
KDF A Key Derivation Function

Table 3.4 — Summary of notations.

40 CHAPTER 3. KEY MANAGEMENT IN THE IOT: CLASSIFICATION AND CHALLENGES

3.6.2 Application and threat model

Our solution can be used to secure communication in any Internet of Things application.
It is indeed well suitable for dynamic and heterogeneous networks containing limited-
resources devices. The motes on which we preformed the experiments are used in
smart grids, smart homes, smart buildings, intelligent lighting systems and other IoT
applications. A concrete example of an application for which the use of our solution
would be interesting is smart cities. They indeed contain a huge number of heterogeneous
devices (servers, computers, smartphones, gateways, sensors. .. etc) spread across the city.
These devices can use the three communication modes of the Internet of Things (device-
to-device, group and multi-group) to provide various services for the benefit of society

(healthcare, intelligent transportation system. .. etc.).

A malicious device can be inside or outside the network [11] and may jeopardize the
security of the three modes of communication (Figure 3.10). An outsider node can store the
messages exchanged between the network nodes (group and multi-group communication)
and decipher them when it joins the network. An evicted member can also pose a threat
to the network, if it is still able to decipher the future communications. If a node or a BP
inside the network is captured, it may try to decrypt the device-to-device communication
of the other nodes. We assume that the blockchain is tamper proof (protected against
P2P attacks such as eclipse or hijacking attacks). An attacker can not alter its content

unless it has a capability that exceeds 51 % of the overall network capacity.

Multi-group
Communication

Device-to-Device
Communication

Compromise of a| | Compromise of a Node Node Compromise of a
L . Threat source
node BP joining leaving node

Resilience Resilience Forward secrecy
. . Backword L Independence
against node against BP and collusion ¢ p X Countermeasure
capture capture secrecy resistance of services

Figure 3.10 — Threat model and countermeasures

3.7. CONCLUSION 41

3.7 Conclusion

The purpose of this chapter was to present the Key Management in the loT. We began by
introducing the concept of Key Management and its important role in network security.
This role includes the generation, storage, distribution and revocation of cryptographic
keys. Next, we defined different criteria (the key cryptography, the key type, the
distribution method and the load balancing) that can be used to classify the related
works. We also presented some of the existing Key Management protocols and classified
them according to the previously mentioned criteria. We discussed each of this categories
by citing its advantages and disadvantages. The aim was to identify the challenges that
the related works encounter. Finally, we summarized our contributions to overcome these

challenges.

In the next chapter, we will present our first contribution. It is a novel symmetric Key

Management protocol for secure device-to-device communication in dynamic networks.

hom

This first step of our solution belongs to the class EZZ,CICMpost.

Chapter 4 ___

Dynamic Key Management for
Secure Device-to-Device

Communication

In this chapter, we propose a novel Key Management protocol for device-to-device
communication in the IoT. Unlike most of the exiting schemes based on symmetric
pairwise keys, our solution consider the dynamic nature of the IoT as it is based on
post-distribution. Furthermore, compared to related works, our protocol provides a good
compromise between the IoT requirements: resilience, connectivity, mobility, flexibility,
efficiency and scalability. Indeed, we prove that our solution is resilient as the capture of
a member compromises a negligible part of a large network. Moreover, we show that our
scheme has a good network connectivity and allows node mobility. It is then efficient as it
does not require additional calculation or communication costs on the network members.
We also demonstrate that our protocol is scalable as storage cost on the network members
does not significantly increase when the network gets larger. We finally show that our

solution is flexible as it supports the dynamic deployment of nodes.

43

44 CHAPTER 4. DYNAMIC KEY MANAGEMENT FOR SECURE DEVICE-TO-DEVICE
COMMUNICATION

4.1 Introduction

In device-to-device communication (also called node-to-node or pairwise communication),
an IoT device sends/receives unicast messages to/from another specific device [101]. An
example of device-to-device communication is the vehicle-to-vehicle communication. It
is a technology that allows two specific vehicles to exchange information about their
speed and position. Thus, they can avoid crashes, ease traffic congestion and improve
the environment [28]. The device-to-device communication in the IoT requires that the
Key Management provides good resilience, connectivity, mobility, flexibility, efficiency and
scalability. Although different protocols have been proposed to secure device-to-device

communication, each of them presents its own limitations and weaknesses.

The existing solutions proposed for traditional Internet and static wireless sensor networks
are not suitable for the IoT. They rarely consider the dynamic nature of its devices
or their limited resources. Based on asymmetric cryptography, the Key Management
protocols used in traditional Internet usually imply intensive computing, which makes
them impractical on the IoT constrained devices [141]. The solutions proposed for static
wireless sensor networks are lighter since most of them use symmetric cryptography.
However, they generally store the keys in the device memories before deployment. This

key pre-distribution makes it difficult to add new nodes afterwards in dynamic networks.

To address these issues, we propose a novel Key Management protocol, for device-to-device
communication in the IoT, belonging to the class EZZICMZ(‘;;? Unlike most of the exiting
schemes based on symmetric pairwise keys, our solution consider the dynamic nature of the
[oT as it is based on post-distribution. Compared to related works, our solution provides
a good compromise between the IoT requirements: resilience, connectivity, mobility,
flexibility, efficiency and scalability. To achieve this balance, the nodes are uniformly
distributed into logical sets. A device shares then a distinct pairwise key with each member
of its set and a unique pairwise set key with the members of each of the other sets. We
prove that our solution is resilient as the capture of a member compromises a negligible
part of a large network. We also show that our scheme has a good connectivity and
mobility. It is then efficient as it does not require additional calculation or communication

costs on nodes. We finally demonstrate that our protocol is scalable as nodes’ storage cost

does not significantly increase when the network gets larger.

The remainder of this chapter is organized as follows. Section 4.2 presents related works.
Section 4.3 introduces our solution. Section 4.4 presents the security analysis. Section 4.5

introduces the performance evaluation. Section 4.6 concludes the chapter.

4.2. RELATED WORKS 45

4.2 Related Works

In this chapter, we are interested in device-to-device communication and symmetric

pai
sym

cryptography. we then focus on the class P*ICM:. Solutions belonging to this class can be

classified into: deterministic, pure probabilistic and deployment knowledge based schemes.

4.2.1 Deterministic schemes

Deterministic schemes establish direct secure links between all communicators. The basic
concept [27] consists of using a distinct pairwise key for each pair of devices. Other
approaches were then proposed. Polynomial based protocols [8] use bivariate polynomials
(f(z,y) = me) a;z'y’) instead of pairwise keys. These polynomials are chosen so that
f(z,y) = f(y,z) and in each node i is stored f(i,y). A pair of nodes (i,5) can calculate
the shared key f(4,7). Matrix based schemes [21, 39, 130] store, in each node 4, the i
row vector of a symmetrical matrix and the i** column vector. Two nodes can exchange

their columns and multiply them by their own secret row to get the shared pairwise key.

Deterministic schemes provide a perfect resilience, guarantee a total connectivity coverage
and support node mobility. This is because each pair of nodes share a pairwise key.
However, this imply that every device needs to store as many keys as there are nodes
in the network. Although the work presented in [32] managed to reduce storage by half,
it is still proportional to the network size. Furthermore, the larger is the network, the
more vulnerable the polynomial and matrix based approaches are to compromise. This
is because captured nodes can collaborate to recover the polynomial or the Matrix used
to generate the keys. Deterministic schemes are not scalable and are not suitable for the

[oT. Also, most of them lack flexibility as they are based on pre-distribution (Figure 4.1).

4.2.2 Pure probabilistic schemes

Pure probabilistic schemes are based on randomness to store fewer keys on nodes, without
guaranteeing that each pair of nodes shares a key. The basic concept was introduced in [49].
It consists of generating a large pool of keys and to randomly distribute some of them (a
key ring) to each node. Two neighboring nodes can then communicate only if they share a
common key. Otherwise, they relay on intermediate nodes to establish secure links. Other
protocols [1, 2, 41] were proposed to enhance this method. Using the Q-composite [27]
scheme, nodes can communicate only if they share @) keys. Also, polynomial pool based

schemes [26, 83, 110, 145] use a pool of polynomials instead of keys.

46 CHAPTER 4. DYNAMIC KEY MANAGEMENT FOR SECURE DEVICE-TO-DEVICE
COMMUNICATION

Probabilistic schemes are more scalable than the deterministic ones, since the storage
on nodes is independent of the network size. They are nevertheless less resilient and
efficient. Indeed, keys may be shared by more than two nodes, making them capable
of deciphering each other’s device-to-device communication. Furthermore, intermediate
nodes may be necessary to establish secure links between the communicators that do not
share a common key. This requires additional calculation and communication and thereby
more energy consumption [144]. They also suffer from poor flexibility as most of them
are based on key pre-distribution. Finally, probabilistic schemes do not provide a good
connectivity and do not support node mobility (Figure 4.1). Some works tried to enhance
the connectivity using, for example, the unital design theory [19] or system of equations

[144]. Despite this, as long as they are probabilistic, the connectivity is rarely total.

4.2.3 Deployment knowledge based schemes

These schemes are neither deterministic nor purely probabilistic. They are based on the
physical location of nodes to maximize the connectivity. Thus, to increase the probability
of sharing keys, nodes are distributed into regional zones. Key rings are then assigned to
them so that neighboring nodes share a maximum of keys. Like the other approaches, the
deployment knowledge based schemes can use pairwise keys [30, 31, 40, 60], polynomials
[81] or matrices [142].

Deployment knowledge based schemes are approximately as resilient and scalable as the
pure probabilistic ones. They even provide a better network connectivity. However, they
are not flexible and do not support node mobility. This makes them more suitable for

static networks (Figure 4.1).

Resilience

Flexibility Connectivity
Scalability Mobility
Efficiency
EIDeterminstic [EPure probabilisitc [[1Deployment knowledge

Figure 4.1 — Key Management approaches for secure device-to-device communication.

4.3. OUR SOLUTION 47

4.3 Our solution

Our literature review shows that none of the existing solutions, proposed to secure device-

to-device communication, meets all the IoT requirements. We then propose a novel key

hom
post *

Management protocol [68, 69] belonging to the class ISJZZICM

To improve the scalability of deterministic schemes without loss of efficiency, connectivity
or mobility (unlike probabilistic schemes), our solution uniformly distributes the network
members into logical sets. To each set S is associated a unique ID, sid®, and to each of
its members wu is assigned an ID, nid,, which is unique within S. A node shares then a
distinct pairwise key with every member of its set and a unique pairwise set key with the
members of each of the other sets. The scalability of the protocol is improved as nodes
store fewer keys. It is important to note that these grouping is logical and independent of
the application or the service that the devices are used for. Although nodes belonging to

the same set are considered as cognates, they can be physically far from one another.

Although the members of a set share the same pairwise set key, we prove that our
solution remains resilient against node capture for large network such as the IoT. Unlike
deployment knowledge schemes, our protocol operates well regardless of the physical
position of nodes. Moreover, as keys are dynamically distributed to the network members,

when nodes join or leave the network, our solution is flexible (Figure 4.2).
Resilience
Flexibility

Connectivity

Scalability Mobility

Efficiency

Figure 4.2 — Our device-to-device Key Management.

Since some keys are shared by several nodes, the Key Manager must ensure that they
are known only by the current members. Thus, when a node joins or leaves the network,
these keys are revoked and new ones are distributed to the remaining ones. This rekeying

guarantees the backward and forward secrecy.

48 CHAPTER 4. DYNAMIC KEY MANAGEMENT FOR SECURE DEVICE-TO-DEVICE
COMMUNICATION

4.3.1 Classification of cryptographic keys

The keys managed by our solution can be classified into two types: Data Encryption Keys
(DEKs) and Key Encryption Keys (KEKs). The DEKs are symmetric pairwise keys that
are used by nodes to encrypt the data exchanged between them. The KEKs are used to
secure the communications between the Key Manager and the nodes in order to protect
the DEKs and thereby ensure the backward and forward secrecy. Let us consider a node

u that belongs to a set S. The keys it holds are summarized in Table 4.1.

Key Type Notation | Description

Data Ki v This is a pairwise node key used by u to secure the device-to-device
Encryption communication with v (v € §). A node has as many of these keys
Key (DEK) as there are members in its set

KST This is a pairwise set key used by u to secure the device-to-device

communication with the members of the set T' (T # S). A node
has as many of these keys as there are sets in the network

Key K2 This is a node key used by u to secure the communication with

Encryption the Key Manager. It is known only by u

Key (KEK) | K% This is a set key used to secure the communication with the Key
Manager. It replaces the node key when the same message is sent
to all the set members (for more efficiency). It is known only by
the members of S

Kg This is a refresh key used for key update. It is not stored in the
node memory

Table 4.1 — Classification of cryptographic keys.

Figure 4.3 shows an example of distribution of the nodes of a network N and the

pairwise keys they share. Hereafter, the keys K° and Kfu are the same and can be

u,v

used interchangeably. The same goes for the keys KT and K79,

Nod:e ID

Figure 4.3 — Example of node distribution in a network N.

4.3. OUR SOLUTION 49

4.3.2 Hash functions

Using our protocol, nodes can share pairwise keys to reduce the storage cost. They are
then able to decipher some messages that are not intended for them. To enhance the
resilience of our solution without loss of scalabilty, we use hash functions (known to be

efficiently computable). The aim is to create different keys from a single pairwise key.

4.3.2.1 Zero-level approach

This term is used to refer to the basic approach that does not use hash functions. Although
the other levels are more scalable, this approach is simpler. Therefore, unless otherwise

stated, it is the Zero-level approach that is used in the rest of the manuscript.

4.3.2.2 One-level approach

In this approach, a single hash function (H) is used. Thus, instead of storing the pairwise
set key KT anode u (u € S) stores its (nid, — 1)™ hash, KT (Formula 4.1). Since
our solution is based on a symmetric approach, two nodes that wish to communicate must
share the same key to securely communicate. Using hash functions, nodes belonging to
two distinct sets may have different pairwise set keys. However, one of them can calculate
the key known by the other. This is due to the fact that the keys they hold are calculated

from the same key and using the same hash function.

To have a common communication key, the nodes relay on their /Ds. Thus, knowing the
IDs of each other, the node with the smallest one can use H to calculate the key of the
other. Let us consider that the nodes v and v (v € T') wish to communicate. The first
one stores K57 = HM&=1) (K9 T) and the second knows KT = H™d=1D (KT If we
assume that nid, < nid,, u can calculate the (nid, — nid,)"™ hash of its key and both

nodes will have the same key (Formula 4.2).

KE,T: H(m‘dv—l)(KSvT> (4.2)
_ H((nidw—l)—(nidu—l))(H(m'du—l) (KS’T))

— H(m'dvfm'du) (Kf,T)

50 CHAPTER 4. DYNAMIC KEY MANAGEMENT FOR SECURE DEVICE-TO-DEVICE
COMMUNICATION

To fix ideas, let us consider the example of the Figure 4.3. We assume that the second
node of the first set (u) wishes to communicate with the third node of the second set (v).
The node u knows the key K,* = H(K"?), while v stores K;* = H®)(K'#) (Figure
4.4). To have the same key and therefore be able to communicate, v must calculate the
hash of the key it knows (Formula 4.3).

K= HO(K'?) = H(H(K') = H(K}) (4.3

Since hash functions are irreversible, the One-level approach ensures that nodes cannot
decipher the messages exchanged between the other nodes that have smaller IDs. Although
the resilience is improved, nodes are still able to decrypt the communications of those

having bigger IDs. This has led us to propose the Two-level approach.

Figure 4.4 — One-level approach.

4.3.2.3 Two-level approach

In this second approach, two different hash functions (H and Hy) are used. A pairwise
set key K57 is therefore split into two parts (?S’T and ?S’T), each hashed separately
with one of the two functions. The node u (u € S) stores then the concatenation (noted
by ||) of the (nid, — 1)™ hash (calculated using H) of the left part of the key and the
(MAX — nid,)™ hash (calculated using Hy) of the right part (Formula 4.4). Note that

MAX corresponds to the maximum number of nodes the sets may have.

Kf’T _ H(m'dufl)(?szT)"H;MAX*MCI“)(?S’T) (44)

Like the One-level approach, the hash functions and the IDs can be used by the nodes to
calculate a common key. Knowing the IDs of each other, the node with the smallest one
can apply H on the left part of its key and the other may apply H», on the right part of
its key. They will then have the same pairwise set key.

4.3. OUR SOLUTION 51

Let us consider that the nodes w and v (v € T) wish to communicate. The
first one stores K57 = H(”idu_l)(?s’Tﬂ|HéMAX_nid“)(?(>S7T) and the second knows
K5T = H(md“*l)(?s’T)||HéMAX_nid”)(7(>S’T). If we assume that nid, < nid,, v can use
H to calculate the (nid, — nid,)" hash of the left part of the key it knows and v may use
H, to calculate the (nid, — nid,)™ hash of the right part (Formulas 4.5 and 4.6).

?5,71: H(m‘dv—z)<%s,T) (4.5)
— H(ridy=D)=(nidu= 1)) py (midu=1) (7. TY)
_ H(nidu—m‘du)(?g,T)

?E’T: HQ(MAX—m’(h)(?S,T) (4.6)

_ HQ((MAXfmdu)f(MAXfmdv))(H(MAXfm‘dv)(I_(>S7T))

2
— Hénid/y—nidu) (?5’771)

To fix ideas, let us consider the example of the Figure 4.3. We assume that MAX = 8 and
that the second node of the first set (u) wishes to communicate with the third node of
the second set (v). The node u knows the key K% = H(?IQ)HHQ(?]Q), while v stores
K}7? = H(g)(?I’Q)HI_gl’Q (Figure 4.5). To have the same key and therefore be able to
communicate, v can use H to calculate the hash of the left part of the key it knows and

v may use Hy to calculate the hash of the right part of its key (Formulas 4.7 and 4.8).

K12 g (K12 = HH(K?) = H(KL?) (4.7)
KL= g (K1) = H, 75;72 (4.8)

This second approach is more resilient than the first one since it ensures that nodes cannot
decipher, in addition to the messages exchanged between the members with smaller /Ds,
those exchanged by the nodes with larger IDs. This is because two different hash functions

are used, one in ascending order of IDs and the other in descending order.

Sl 52

1?1,2 I |H2(2) (R’I,Z) ‘1?1,2 | |H§2) (]_(’1,2)

H(R || Hp(RY?) H(K"?)||Hy(K™)

H(Z) (‘Izl,Z)”I_(l,z H(z) (‘1?1,2)”[_{)1,2

Figure 4.5 — Two-level approach.

52 CHAPTER 4. DYNAMIC KEY MANAGEMENT FOR SECURE DEVICE-TO-DEVICE
COMMUNICATION

4.3.3 Set management

The set management consists of distributing nodes on sets while minimizing the number
of keys they store. The aim is to improve the protocol scalability without significant loss
of resilience, efficiency, connectivity or mobility. In the following, we use the notations
n and p to refer to the number of nodes and sets in the network, respectively. We also

denote the number of members of a set S by m?.

A member of S stores one secret key, m® — I pairwise node keys, one set key and p — 1
pairwise set keys. Storage on nodes is therefore proportional to p + m®. The problem

consists then of creating sets and assigning nodes to them so as to satisfy:
VS, min (p + m¥) (4.9)

P
Z mS =n (4.10)
S=1

To have the same number of keys stored on each network member, we opted for a uniform
distribution (i.e. VS, m® = m). By replacing 4.10 in 4.9 and studying the monotony of
the resulting function (f(p) = p +), we can easily show that storage is minimized when
p = m = /n. The set management aims then to uniformly distributes the n nodes of the
network into /n sets of \/n members each (Figure 4.3).

4.3.3.1 Assignment Algorithm

The Assignment Algorithm is run when nodes join the network and assigns them to the
right sets. It takes as input n, the current number of network members, and outputs a set
ID according to the input value. The algorithm manipulates then a list of sets, Is, of size

p. Each of its items contains the ID of a set S, sid®, and its size, m®.

When a node is authorized to join the network, the Assignment Algorithm starts by
searching, in s, a set S containing a number of nodes less than /n. If no set is found, a
new one is created following the steps described in the next paragraph. Next, whether the
set S is newly created or already exists, the algorithm assigns the joining node to it and
updates Ils. The steps of the Assignment Algorithm are described in Algorithm 1. Finally,
the Key Manager renews the network security material, following the steps described in

the node management section (See section 4.3.4).

[U VI

4.3. OUR SOLUTION 53

Set creation: Creating a new set S consists of determining its ID, sid®, its key, K*,
and a pairwise set key for every set T of the network. Each of these pairwise set
keys, KT is encrypted using the key of the set associated to it, KT, and sent to its

members (message CM).

CM : KM — T :< {sid®, K>"} . >(VI' € N, T # S)

Algorithm 1: Homogeneous Assignment Algorithm
Input : n = the number of network members
Search in s a set S such that m® < /n;
if no set is found then
‘ Create a new set S
end
Assign the joining node to S;
Update Is;

4.3.3.2 Reorder Algorithm

The Reorder Algorithm is run, after a node leaving, to reduce the number of sets by
keeping the nodes distribution always uniform. It takes as input the network size, n,
the percentage of merging, pcm, and tries to remove or merge sets when it is possible. To

achieve this, the algorithm manipulates the same list Is used by the Assignment Algorithm.

When a node leaves a set S, the Algorithm starts by checking its new size. If S becomes
empty, it is removed following the steps described below. On the other hand, if the size
of § falls below a certain threshold, the algorithm searches in Is a set T' to merge with S,
following the steps described in the next chapter. The threshold corresponds to the product
of pcm and /n. Note that the actual size of T must be less than the threshold as well.
If it is the case, the two sets are merged. Also, the value of pem must not exceed 50% so
that the size of the resulting set does not exceed /n. Finally, the Key Manager renews the
network security material, following the steps described in the node management section
(See section 4.3.4). The steps of the Reorder Algorithm are described in Algorithm 2.

Set removal: Removing a set S consists of deleting its ID, sid®, its key, K, and all the
pairwise set keys associated to it. The message RM, containing the ID of the set, is
then sent to each remaining set T so that its members can remove the pairwise set

key they share with the nodes of S.

RM : KM — T :<{sid”},, > (VT € N, T #5)

© ® N e ;oA W N e

=
o

54 CHAPTER 4. DYNAMIC KEY MANAGEMENT FOR SECURE DEVICE-TO-DEVICE
COMMUNICATION

Algorithm 2: Homogeneous Reorder Algorithm
Input : n = the number of network members
pem = percentage of merging
if m® = 0 then Remove S ;
else
if m¥ < pcm.y/n then
Find T such as mT < pem.\/n;
if a set T is found then
‘ Merge S and T
end

end
end
Update Is;

4.3.4 Node management

In this section, we present the way in which our solution manages the keys upon a network

change: node joining or leaving (Figure 4.6).

4.3.4.1 Node joining

Let us consider a node u joining the network. The node is first assigned to a set S. The
Key Manager generates then some new keys and updates some of the previously existing
ones. The aim of this update is to ensure the backward secrecy. Indeed, if these keys are
not updated and if the joining node v has stored the messages previously exchanged, it
will be able to decipher some of them. Next, the Key Manager provides some nodes with
the new keys and sends to others the elements allowing them to update some of the keys

they hold. The process of node joining consists of the four following steps.

Key generation: The first step consists of determining the secret key, K7, of the joining
node u. After that, the Key Manager generates a pairwise node key, K . for each

u,v)?

node v of the set S. It also determines the unique node ID, nid,, associated to u.

Key update: The Key Manager starts by randomly generating Kg. Then, using it and a
Key derivation function (KDF'), the Key Manager updates the set key of S and the

pairwise set keys known by its members (Formulas 4.11 and 4.12, respectively).

K%' = KDF(K®||Kg) (4.11)
KT = KDF(K5T||Kg),VT € N (4.12)

4.3. OUR SOLUTION %)

Key distribution: After the key generation and update are completed, the Key Manager
distributes these new keys to the appropriate nodes. Thus, it sends to each node v of
the set S the unicast message JMI encrypted by means of the node secret key, K.
The message contains the ID of the joining node and the pairwise node key, KUS v
associated to it. The Key Manager also broadcasts for each set 7' (including) the
message JM2 encrypted using K7, the current set key of 7. The message contains
the ID of the set S and Kp. Finally, the Key Manager agrees with u on a temporary
secret key (using a key agreement method). This key is then used to securely provide
the joining node with its secret key, the new set key, the pairwise node keys to share
with its cognates and all the new pairwise set keys associated to §. After the key

distribution, the Key Manager discards Kg.

JM1 : KM — v :< {nid,, K} } .s > (Vv € 5)
JM2 : KM — T :< {sid®, Kp} ., > (VI € N)

Key installation: When a member of S, v, receives the messages JM1 and JM2, it first
decrypts them using its secret and set keys. Then, it installs Kf , as the pairwise key
to use for encrypting the communications with the joining node u. The node v also
uses Kp and the KDF to update the set key and all the pairwise set keys it knows
(Formulas 4.11 and 4.12, respectively). After that, v discards Kz. When a node w,
not belonging to S, receives JM2, it first decrypts the message, using the current set
key, and retrieves Kg. Then, using the KDF', it updates the pairwise set key it shares

with the members of S (Formula 4.12). Once done, w discards Kpg.

4.3.4.2 Node leaving

A node u (u € S) can leave the network or be evicted when it get compromised. In both
cases, the keys it knows must be revoked. The Key Manager removes then some of them
and updates some others. The aim of this update is to ensure the forward secrecy. Indeed,
if these keys are not updated, the leaving node will be able to decipher some of the future
communications. Next, the Key Manager provides the network members with the elements
allowing them to remove the keys that should be removed and to update those that must

be updated. The process of node leaving consists of the four following steps.

Key removal: The Key Manager starts by removing the ID of the leaving node, nid,,
and its secret key, K. Next, it deletes all its pairwise keys, Kf , (V€S v#u).

56 CHAPTER 4. DYNAMIC KEY MANAGEMENT FOR SECURE DEVICE-TO-DEVICE
COMMUNICATION

Key update: The Key Manager starts by randomly generating Kr. Then, using it and
the KDF, the Key Manager updates the set key of S, K°, and all the pairwise set
keys known by its members (Formulas 4.11 and 4.12, respectively).

Key distribution: After the key removal and update are completed, the Key Manager
distributes the new keys to the appropriate nodes. Thus, it sends, to each node v
of the set S, the unicast message LM1 encrypted by means of the node key, K.
The message contains the ID of the leaving node and Kg. The Key Manager also
broadcasts, for each set T (T # S), the message LM2 to provide its members with
Kg. The message LM2 is encrypted using K7, the current set key of 7. The message
LM?2 is not sent to the members of § because the leaving node v knows the set
key K®. The refresh key is therefore sent to the other members of S via the unicast

message LM1 instead. Finally, the Key Manager discards Kp.

LM1 : KM — v :< {nid,, Kg}xs > (Vv € S,v # u)
LM2 : KM — T :< {sid®, Kp} ., > (VI € N,T # 5)

Key installation: When a member of S, v, receives LM1, it first decrypts the message,

using its secret key K, and retrieves K. Then, it removes the pairwise key K

u,v?

which was used for encrypting the communications with the leaving member u. The
node v also uses the KDF' to update the set key and all the pairwise set keys it knows
(Formulas 4.11 and 4.12, respectively). Once done, the node v discards Kr. When
a node w, not belonging to the set S, receives LM2, it first decrypts the message,
using the current set key, and retrieves Kg. Then, using it and the KDF', the node
updates the pairwise set key it shares with the members of the set S (Formula 4.12).
Finally, the node w discards Kx.

(t+)) LS (t+))

Joining/leaving node Key Management system Other nodes

Join/leave request
Assignment/Reorder Algorithm
Key generation/removal

Key update

Join/— message
Rekeying message
Key storage/removal

} Key storage/— Key update

Figure 4.6 — Node joining and leaving.

4.4. SECURITY ANALYSIS o7

4.4 Security analysis

In this section, we analyze the security of our solution. We then prove that it provides a
good level of resilience. We now assume that the Key Manager itself is secure and that
only the network nodes can be compromised. Furthermore, since some keys are shared
by several nodes, we need to show that our solution fulfills the backward and forward
secrecy. However, to avoid repeating the proofs, we will present them in the next chapter

as it is devoted to group communication.

4.4.1 Theoretical analysis

According to [56], resilience is the measure of the impact of one captured node on the
rest of the network. The issue is then to prove that, using our solution, this impact is

negligible for large networks such as the [oT.

4.4.1.1 Zero-level approach

Without hash functions, a node shares a distinct pairwise key with each of its cognates and
a single pairwise key for each set of the network. It can decrypt, in addition to messages
intended for it, those that are exchanged between its cognates and the other nodes. Figure

4.7 shows , among all possible communication links, those that a node can decrypt.

<-> Communications the node 1 can decrypt
<«—> Communications the node 1 cannot decrypt

Figure 4.7 — An example of communications a node can decrypt.

Lemma 4.1: The number of links a node can decrypt is:

Dy = (vn—1)(n+1) (4.13)

58 CHAPTER 4. DYNAMIC KEY MANAGEMENT FOR SECURE DEVICE-TO-DEVICE
COMMUNICATION

Proof: A node can decrypt the communications linking it to the n — I other network

members as well as those between its \/n — I cognates and the n — y/n other network

members (Dp =n — 1 + (v/n— 1)(n —+/n)).
Lemma 4.2: The number of links in a network of n nodes is:

n(n—1)
2

T = (4.14)

Proof: The total number of links is equal to the number of possible combinations that

can be obtained by taking two nodes from n (T = C?).

Proposition 4.1: The percentage of compromised links due to a node capture is:

2 1
szw—)& as n — 0o (4.15)

(/i + 1)

Proof: From Lemmas 4.1 and 4.2 and the fact that Py = 22, we deduce that

T
_ 2(/A-1)(nt1)
Py = n(n—1))

Proposition 4.2: The capture of the whole network requires the compromise of all the

network nodes.

Proof: Deciphering all the intra-set communications requires the knowledge of all the
pairwise node keys associated to it. This is only possible if all the set members are
captured. Also, deciphering all the inter-set communications requires the knowledge of

all the pairwise set keys. This is only possible if at least a member of each set is captured.

4.4.1.2 One-level approach

Using a hash function ensures that nodes cannot decipher the messages exchanged between
the nodes that have smaller IDs (Figure 4.8a).

Lemma 4.3: The number of links a node u can decrypt is:

D;=(Vn—1)(n+1— (nid, — 1)?) (4.16)

Proof: A node u cannot decrypt the links that connect each of its nid, — I elder cognates
with the nid, — I members, that have smaller IDs, of each of the y/n — I other sets

(Di = Dy — (vt = 1)(nid, — 1)?).

4.4. SECURITY ANALYSIS 59

Proposition 4.3: The new percentage of links a compromised node u can decipher is:

1 — (nid, — 1)?
P, = 2n (ni) — 0, as n — 00 (4.17)

n(v/n+1)

Proof: From Lemmas 4.2 and 4.3 and the fact that P; = 2L, we deduce that

T
_ 2(Vn—1)(nt+1—(nidu—1)°)
Py = n(n—1) :

4.4.1.3 Two-level approach

The Two-level approach makes a member u unable to decrypt, in addition to the messages

exchanged between the nodes with smaller IDs, those exchanged by the members with
larger IDs (Figure 4.8b).

Lemma 4.4: The number of links a node u can decrypt is:

Dy = (vVn—1)(n+1— (nid, — 1)* — (v/n — nid,)?) (4.18)

Proof: A node u cannot decrypt the links that connect each of its \/n — nid, younger
cognates with the v/n — nid, members, that have a larger ID, of each of the \/n — 1 other

sets (Dy = D; — (v/n — 1)(v/n — nid,)?).
Proposition 4.4: The percentage of links a compromised node u can decipher is:

p, _ 2ot 1= (nid, — 1)? = (Vn—nid)?)) 0. as n — o (4.19)

n(v/n+1)

Proof: From Lemmas 4.2 and 4.4 and the fact that P, = D—z?, we deduce that

P, — 2(y/n—1)(n+1—(nidy,—1)°—(v/n—nid,)?)
2 .

n(n—1)

K K = z - -
R @) RIS ()

H(K) H(K) H, ()| |HSY () H, ()| IHS)

H®(K) HA(K) HP (R)|1HS? () H® (6)||1HP (&)
HOK) HP ()11 Hy(K)

H®(K) HP(K)IIK

HOK) HP (R)I1H,(K)

H®(K) HP(K)IIK

(a) One-level approach. (b) Two-level approach.

Figure 4.8 — An example of communications the node 3 cannot decrypt.

60 CHAPTER 4. DYNAMIC KEY MANAGEMENT FOR SECURE DEVICE-TO-DEVICE
COMMUNICATION

4.4.2 Comparison

We start by comparing the resilience of the three approaches we propose (Zero-level,

One-level and Tow-level). After that, we compare our solution to related works.

To compare the resilience of the three approaches, we consider a network of 10000
members, divided into 100 sets of 100 members each. We then compare the variation
of the three percentage Py, P; and P, according to the node ID. The results (Figure
4.9a) show that the use of hash functions reduces the rate of compromised links. If a
Zero-level approach is used, the percentage is maximum and constant regardless of the
node ID. This method is still the best in terms of calculation cost. If a One-level approach
is used, the bigger the ID of the captured node, the smaller the percentage of compromised
links. This method is therefore interesting if we trust the old nodes more than the new
ones (Assuming [Ds are assigned in the order the nodes joined the network). Finally, the

Two-level approach provides the best resilience regardless of the node ID.

Now, we compare our protocol to the deterministic scheme presented in [32]. Providing a
perfect resilience (at the expanse of scalability), none of the other solutions can provide a
better level of resilience. This perfect resilience is achieved by using a distinct pairwise key
for each pair of nodes. Thus, a captured node can only decipher the n — I communications
linking it to the other network members. The percentage of compromised links due to a
node capture is then equal to % =
showed that, using our Zero-level approach, this percentage is equal to Py (Proportional

to \/Lﬁ) Figure 4.9b shows that the value of P, is negligible for large networks such as

2 (Proportional to £). On the other hand, we

the IoT. It is even comparable to the rate provided by the perfectly resilient approaches.
We also showed that the compromise of the whole network requires the capture of all its

members. Our solution offers then a good level of resilience.

0,025

-
e
=)

u
o
o

0,02

0,015
)
- i .
0 e
1 20 40 60 80 100

B
o
o

°

o

=2
w
o
©

can decrypt
ol
o

=)

=
o
=)

Percentage of links a compromised node
The percentage of compromised links

e
=)

10 100 1000 10000 100000 1000000
Node ID Number of nodes (n)
Zero-level m One-level ® Two-level Our solution W Perfect resilience
(a) According to the node ID. (b) According to n.

Figure 4.9 — Variation of the percentage of compromised links.

4.5. PERFORMANCE EVALUATION 61

4.5 Performance evaluation

In this section, we evaluate the performance of our solution. After showing that it offers
a level of resilience comparable to that provided by deterministic schemes, we prove that
it is as scalable as probabilistic schemes (pure probabilistic and deployment-knowledge

based approaches) without significant loss of efficiency, connectivity, mobility or flexibility.

4.5.1 Theoretical analysis

The Key Management can be hosted on the cloud (servers) or implemented on gateways,
which have plentiful of resources. It is then more important to make the costs affordable on
the devices as most of them suffer from a lack of resources. We begin by briefly analyzing

the costs of our solution on the Key Manager before detailing them on devices.

4.5.1.1 Overheads on the Key Manager

We start by analyzing the overheads of our solution on the Key Manager side.
Property 4.1: The communication overhead on the Key Manager is O(y/n).

Proof: Regardless of the rekeying operation performed (such as a node joining S or a
node leaving S), the Key Manager sends a unicast message to each of the y/n members
of S and broadcasts a message for each of the other \/n — I sets, in the worst case. The

Key Manager then sends a total number of messages proportional to /n.
Property 4.2: The calculation overhead on the Key Manager is O(y/n).

Proof: Regardless of the rekeying operation performed (such as a node joining S or a
node leaving 5), the Key Manager updates the keys which are or will be known by the
node in question. The calculation overhead is therefore proportional to the storage cost
on nodes, which will be proven to be of the order of y/n in the next section. Also, the set
management algorithms browse the list of sets in the worst case. They therefore have a

complexity proportional to \/n.
Property 4.3: The storage overheads on the Key Manager is O(n).

Proof: The number of nodes is more important than that of sets. Thus, if we choose not
to store the pairwise node keys (used to secure communication between the nodes) in the
Key Manager’s memory, the largest number of keys to save will be that of the node secret

keys. The Key Manager will then store a number of keys proportional to n.

62 CHAPTER 4. DYNAMIC KEY MANAGEMENT FOR SECURE DEVICE-TO-DEVICE
COMMUNICATION

Discussion: The communication and calculation costs on the Key Manager are O(y/n).
The storage, on the other hand, is O(n). Considering the significant improvement
(presented in the next section) that our solution provides on the node side, the costs on
the Key Manager are very reasonable. Indeed, as the Key Manager has usually plentiful

of resources, we aimed to make the costs more affordable on the nodes.

4.5.1.2 Overheads on the nodes

Now, we study the overheads of our solution on the device side.
Property 4.4: The communication overhead on the nodes is O(1).

Proof: Regardless of the rekeying operation performed (such as a node joining S or a
node leaving), a node receives a constant number of messages. The communication cost

on nodes is therefore independent of the network size.
Property 4.5: The calculation overhead on the nodes is O(y/n).

Proof: Regardless of the rekeying operation performed (such as a node joining S or a
node leaving S), a node updates all the keys it knows, in the worst case. The calculation
cost on the nodes is therefore proportional to the storage, which will be proven to be of

the order of \/n in the next proof.
Property 4.6: The storage overhead on the nodes is O(y/n).

Proof: Using our solution, a node knows a secret key, /n — I pairwise node keys, a set
key and y/n — I pairwise set keys. It then stores in total 2.\/n keys.

Discusston: The communication cost on the nodes is O(1). The calculation and storage
overheads, on the other hand, are O(y/n). Since communication is the operation that

consumes the most energy, our solution is efficient and highly scalable.

4.5.2 Comparison

After showing that our solution provides a good level of resilience, let us prove that
it meets the other IoT requirements: scalability, connectivity, mobility, efficiency and
flexibility. Thus, we compare our solution to the existing Key Management protocols
proposed to secure device-to-device communication. We consider PKS [32] and Kronecker
[130] as deterministic schemes and UKP [19] and Trade [110] as probabilistic approaches.

4.5. PERFORMANCE EVALUATION 63

4.5.2.1 Scalability

Although having a perfect resilience, the storage cost of the pairwise key schemes, in
general, and PKS, in particular, is O(n). Indeed, a node has to store a pairwise key for
each of the other network members. On the other hand, Kronecker and Trade has a storage
proportional to O(y/n). For the other probabilistic schemes (e.g. UKP), it is difficult to
deduce the storage from the network size as it depends on other parameters (pool size,
network connectivity, deployment knowledge...etc). Despite this, the authors in [49] show
that for a probabilistic scheme to establish almost certain connectivity for 10000 nodes,
250 keys out of a pool of 100000 keys have to be stored on the nodes. Our solution has
a storage proportional to O(y/n). Thus, for the same number of nodes and with a total
connectivity coverage, it requires the storage of only 100 keys on the nodes. Figure 4.10
shows that our solution stores fewer keys than the pairwise key schemes and can operate
on larger networks of compromised nodes such as the [oT. It even provides a level of

scalability comparable to Kronecker and Trade.

=
® © N
o O O

5
o

Number of keys stored
N (<))
o o

10 20 30 40 50 60 70 80 90 100
Number of nodes (n)
B Our solution ' Kronecker m Trade M Pairwise Key

o

Figure 4.10 — Variation of nodes’ storage overhead according to n.

4.5.2.2 Connectivity

Although being scalable, the probabilistic schemes, mentioned above, suffer from poor
connectivity. The probability that two neighboring nodes share a common key does not
exceed (.25 in Trade, while in UKP it is approximately lower bounded by 0.632. Using our
solution, each pair of communicators share a pairwise node or a set key and can establish
a direct secure link without relying on intermediate nodes. This is always possible even if

the nodes move. Our solution provides then a good connectivity and mobility.

64 CHAPTER 4. DYNAMIC KEY MANAGEMENT FOR SECURE DEVICE-TO-DEVICE
COMMUNICATION

4.5.2.3 Mobility

Although deployment knowledge schemes [31, 81, 142] provide good connectivity, they are
based on nodes’ location. Our solution operates well regardless of the position of nodes.

It then provides a better mobility, which makes it more suitable for mobile networks such
as the IoT.

4.5.2.4 Efficiency

When connectivity and mobility are low, neighboring nodes may relay on intermediate
nodes to establish secure links. The path length represents the number of intermediate
nodes separating two communicators. The results presented in [49] give an overview about
the average path length between two nodes using a probabilistic scheme. It is important
to note that the longer the path, the more the communication between nodes requires

additional calculation and communication. This reduces the efficiency of the protocol.

Unlike most of the probabilistic schemes (e.g. Trade and UKP), our solution has good
connectivity and mobility. Figure 4.11 shows the large gap between the value of the
path length using a probabilistic scheme and our solution, regardless of the network size.
Furthermore, our solution stores fewer keys on nodes than the pairwise key schemes (e.g.
PKS) (Figure 4.10). The communication and calculation costs are the same as Kroneker,
while they are of the order of O((log(n))?) and O(log(n)), respectively, in Trade. Note
that communication is the operation that consumes the most energy. On top of that, our
solution is based on symmetric cryptography. It is therefore efficient and well suitable for
the IoT devices.

14
£ 12 — ., . . .
B I
o 10
:gs
o 6
1)
C 4
g
I 2
0 = = = = = = I

40 50 60 70 75 100 150

Number of keys stored on a node
-0~ [17] - Our solution

Figure 4.11 — Variation of the average path length according to the size of the key ring.

4.6. CONCLUSION 65

4.5.2.5 Flexibility

Unlike all the above-mentioned schemes based on pre-distribution, our solution supports
the dynamic deployment of nodes. Indeed, we previously showed that nodes can join and
leave the network at any time without jeopardizing its security. Our protocol is then more

flexible and suitable for dynamic networks such as the IoT.

4.6 Conclusion

The purpose of this chapter was to present a novel Key Management protocol for device-
to-device communication in the IoT. Our solution provides a good compromise between
the IoT requirements (resilience, connectivity, efficiency, scalability and flexibility)
compared to the existing device-to-device protocols. This balance is achieved by uniformly
distributing the network members into logical sets. A node shares then a distinct pairwise
key with each member of its set and a unique pairwise set key with the members of
each of the other sets. We proved that the capture of a member compromises a negligible
part of a large network. Our solution is therefore resilient. Next, we showed that it has
a good connectivity and allows node mobility. It is then efficient as it does not require
additional calculation or communication. We also demonstrated that storage on nodes
does not significantly increase when the network gets larger. Thus, our scheme is scalable.
We finally showed that it is flexible.

In the next chapter, we will introduce our second contribution. It is a novel versatile
Key Management protocol for secure device-to-device and group communication in

heterogeneous and dynamic networks. This new solution belongs to the class SZ%]ICMZSQ.

Chapter 5 __

Heterogeneous Key Management

for Secure Group Communication

In this chapter, we propose a novel versatile Key Management protocol for the IoT.
Unlike most of the exiting schemes, our solution secures both device-to-device and group
communication. It also considers the heterogeneous nature of the IoT. Thus, by using
a bit more of the resources of powerful devices, our solution becomes much lighter for
the constrained ones. This significantly improves the network performance and increase
its lifetime. We then show that our solution ensures the forward and backward secrecy.
Indeed, nodes can securely join and leave the network at any time. We also prove that
our protocol resits to collusion attacks, as multiple evicted nodes can not cooperate to
regain access to the network. Finally, we show that, by balancing the loads between the
heterogeneous devices according to their capabilities, our solution is both efficient and

highly scalable.

67

68 CHAPTER 5. HETEROGENEOUS KEY MANAGEMENT FOR SECURE GROUP
COMMUNICATION

5.1 Introduction

In group communication, an IoT device sends/receives broadcast messages to/from the
members of the group to which it belongs [129]. This device must have previously
joined the group legally. It can also voluntarily leave it afterwords or be evicted if it
gets compromised. An example of group communication is the Vehicle-to-Everything
communication. It consists of allowing a vehicle to communicate with all the nearby
devices (e.g. cars, bicycles, public lighting). The aim is to make the vehicle sense
its environment and take the right decision [28]. The group communication requires
that the Key Management ensures backward and forward secrecy, collusion resistance,
efficiency and scalability. Although different protocols have been proposed to secure group

communication, each of them presents its own limitations.

Most of the existing solutions do not consider the heterogeneous nature of the IoT devices
or their limited resources. The Key Management protocols used in traditional Internet
are based on asymmetric cryptography. Therefore, they are usually compute intensive
and note well suited for the IoT constrained devices [141]. The solutions proposed for
wireless sensor networks generally use symmetric cryptography and are lighter. However,
they generally impose the same costs on the powerful devices and the weak ones. Thus,
while a negligible part of the former’s resources is used by the protocol, those of the latter
may not even be enough. This exhausts the resources of the constrained devices, which
can significantly degrade the network performance and shorten its lifetime. It may also
happen that some constrained nodes cannot support the overheads at all, while others

can handle much more.

To address these issues, we enhance our Key Management protocol so it secures, in
addition to device-to-device communication, the group communication. This new solution
belongs to the class SZ%’ICMZSQ. Unlike most of the exiting schemes, our protocol considers
the heterogeneous nature of the IoT. We show that, by balancing the loads between the
heterogeneous devices according to their capabilities, our solution is both efficient and
highly scalable. We also prove that our solution ensures the forward and backward secrecy.
Indeed, nodes can securely join and leave the network at any time. Finally, we show that
our protocol resits to collusion attacks, as multiple evicted nodes can not cooperate to

regain access to the network.

The remainder of this chapter is organized as follows. Section 5.2 presents related works.
Section 5.3 introduces our solution. Section 5.4 presents the security analysis. Section 5.5

introduces the performance evaluation. Section 5.6 concludes the chapter.

5.2. RELATED WORKS 69

5.2 Related Works

The solution we present in this chapter secures both device-to-device and group
communication. However, as the former was detailed in the previous chapter, we focus in
this section on the latter. We then consider the class ' C M. Solutions belonging to this

class are usually based on: tree structures, combinatorial optimization or batch rekeying.

5.2.1 Tree based schemes

The Logical Key Hierarchy (LKH) [135, 138] consists of using a tree structure to reduce
the communication cost during the process of rekeying. The root of the tree corresponds to
the group key, its leaves to the members’ secret keys and the other nodes to intermediate
keys (Figure 5.1). Each member stores the keys forming its branch. When a device joins or
leaves the group, the server replaces only the keys it knows. The rekey message contains
each of the new keys encrypted by its respective children. In the case of a binary tree,
nodes’ storage cost will be proportional to O(logs(n)) and the size of the rekey message
to O(2logs(n)). The One-way Function (OFT) protocol [120] was then proposed. It uses
a one-way function to reduce the size of the rekey message to O(logz(n)). Both CASMA
and GROUPIT protocols aim to deal with the dynamicity of [oT environments. While the
former divides the network into multiple zones each implementing LKH [63], the latter
combines LKH with the Chinese Remainder Theorem [75].

()
00000000

‘Nl]zvz ‘N3 {N4 Ns ‘Nﬁ][m Ng

Figure 5.1 — Tree based schemes.

The Tree based schemes are usually secure as they guarantee the backward and forward
secrecy and are resistant to collusion attacks. They are also reasonably efficient and
provides a good scalability. Nonetheless, these schemes rarely consider the heterogeneous
nature of the IoT (Figure 5.2).

70 CHAPTER 5. HETEROGENEOUS KEY MANAGEMENT FOR SECURE GROUP
COMMUNICATION

5.2.2 Combinatorial optimization based schemes

The Exclusion Basic System (EBS) scheme is based on combinatorial optimization. It
aims to make it possible to choose a compromise between the number of keys stored on
nodes and that of messages exchanged during the rekeying process. The idea was first
introduced in [45]. Other protocols were then proposed to improve the efficiency and the
collusion resistance. The protocols GKIP [47] and SHELL [140], for example, are based
on nodes deployment knowledge to achieve this, while LOCK [46] uses two layers of EBS.

The EBS based schemes ensure the backward and forward secrecy. They are efficient
and scalable. Nevertheless, they are generally vulnerable to collusion attacks and do not

consider the heterogeneous nature of the IoT (Figure 5.2).

5.2.3 Batch rekeying based schemes

Most of the exiting dynamic Key Management schemes are based on individual rekeying,
i.e. they rekey the group after each join or leave request. For more efficiency, the batch
rekeying based schemes [79, 80, 133] were proposed. The main idea is to gather several

requests and to periodically rekey the group. The aim is to reduce the rekeying overheads.

Batch rekeying based schemes are more efficient than those based on individual rekeying.
However, a new node has to wait until the end of the period to actually join the network.
More importantly, as long as the group key has not been replaced yet, a leaving or an
evicted member can still decipher the communications. Forward secrecy is then not totally

guaranteed (Figure 5.2).

Backward secrecy

Heterogeneity Forward secrecy

Scalability Collusion resistance

Efficiency
Wi Tree structure [EBatch rekeyig [TICombinatorial optimization

Figure 5.2 — Key Management approaches for secure group communication.

5.3. OUR SOLUTION 71

5.3 Our solution

Our literature review shows that most of the existing Key Management schemes do not
consider the heterogeneous nature of the [oT. Moreover, they are usually intended either to
device-to-device or group communication, and rarely to both of them. For these reasons we
propose a novel versatile and heterogeneous Key Management protocol [69, 70] belonging
to the class SZ%’ICMZSQ. It is an improvement of our solution (presented in the previous

chapter) that considers the heterogeneous nature of the IoT. It also secures the group

communication, in addition to the device-to-device communication.

Using our solution, the network (or the group G) is partitioned into logical subgroups
(or sets). This partitioning is logical and transparent to the application layer. Nodes
belonging to the same subgroup can be physically far from each other. The objective
behind this is rather to reduce the protocol overheads and to efficiently rekey the group
when necessary. We previously showed that the costs of our solution on nodes depend
on the size of their subgroups. Thus, we propose a novel heterogeneous subgrouping.
According to their capabilities, nodes of a heterogeneous network are distributed into
subgroups having different sizes to balance the loads between them (Figure 5.3). The aim
is to reduce the costs on constrained nodes. The network performance is then improved
and its lifetime increased. Moreover, the constrained nodes are more likely to support the

overheads when the network gets larger.

(a) Homogeneous subgrouping. (b) Heterogeneous subgrouping.

Figure 5.3 — Example of a group partitioning.

Furthermore, as the [oT devices may use the device-to-device and group communication,
we enhance our solution so that it considers the two of them. We then show that our
solution ensures the forward and backward secrecy. Indeed, nodes can securely join and
leave the network at any time. We also prove that our protocol resits to collusion attacks,
as multiple evicted nodes cannot cooperate to regain access to the network. Finally, we
show that, by balancing the loads between the heterogeneous devices according to their

capabilities, our solution is both efficient and highly scalable (Figure 5.4).

72 CHAPTER 5. HETEROGENEOUS KEY MANAGEMENT FOR SECURE GROUP
COMMUNICATION

Backward secrecy

Heterogeneity Forward secrecy

Scalability Collusion resistance

Efficiency

Figure 5.4 — Our group Key Management.

5.3.1 Classification of cryptographic keys

The keys managed by our solution can be classified into two types: Data Encryption Keys
(DEKs) and Key Encryption Keys (KEKs). The DEKs are symmetric pairwise keys that
are used by nodes to encrypt the data exchanged between them. They include the pairwise
node keys (used to secure device-to-device communication between the nodes belonging
to the same subgroup), the pairwise subgroup keys (used to secure the device-to-device
communication between the nodes belonging to distinct subgroups) and the network wide
key (or the group key, K¢, that is known by all the group members and used by them to
secure the group communication). On the other hand, the KEKs are used to protect the
DEKs and thereby ensure the backward and forward secrecy. They include the node keys
(used by nodes to secure the communication with the Key Manager) and the subgroup
keys (which replaces the node keys when the same message is sent to all the subgroup
members, for more efficiency). For example, the keys held by the nodes of the Figure 5.3b

are summarized in Table 5.1.

H Subgroup ID ‘ Node ID ‘ Node key ‘ Pairwise node keys | subgroup key | Pairwise subgroup keys ‘ Group Key H

T K| Kk
1 2 Kl Kb, K, K! K12 K13
3 Kj Kj K{,
1 K7 K7, K75, K7,
2 2 Kj K22,1»K22,37K22,4 K2 K21 K23 Ko
3 K3 K7, K7y K3, 7
4 K} K7, K7, K2,
P 1 K Kiy K3 KO K52
2 K3 K3,

Table 5.1 — Example of keys held by nodes.

5.3. OUR SOLUTION 73

5.3.2 Subgroup Management

The subgroup management consists of distributing nodes on subgroups while minimizing
the number of keys they manage. The aim is to improve the protocol efficiency and
scalability in heterogeneous networks. In the following, we use the notations n and p to
refer to the number of nodes and subgroups in the network, respectively. We also denote

the number of members of a subgroup S by m?.

A member of § manages one secret key, m® — I pairwise node keys, one subgroup key,
p — 1 pairwise subgroup keys and one group key. The Key Management overhead on
nodes is therefore proportional to the sum p + m®. Two points come out of this. First,
regardless of the subgroup to which a node belongs, the value of p is the same. Thus,
if it is minimized, the overheads are reduced on any node of the group. Moreover, the
number of keys held by a node depends on the size of its subgroup. Hence, to balance the
loads between the nodes of a heterogeneous network, the most constrained ones must be
assigned to the smallest subgroups, and conversely. Indeed, for a node to manage fewer
keys than a more powerful one, the former must be assigned to a subgroup smaller than

the one to which the latter belongs.

We focus in this section on the management of heterogeneous subgroups, i.e. subgroups
of different sizes, while minimizing their number, p. Note that this does not mean that
we do not allow two subgroups to have the same size. To achieve this, we rely on the fact
that the nodes of S must be able to handle at least p + m® keys. The size of S is chosen
so that p + m® does not exceed the capability of its members or, to put it more simply,
the capability mc® of its weakest node. Indeed, as mc® is the minimum capability that a
member of S can have, if its value is greater than p + m® then all the nodes of S will be
able to handle the costs. The problem is, therefore, to choose the minimum capabilities

of subgroups and to assign them nodes so as to always satisfy:

min p (5.1)
under duress: VS, me® > p+m® (5.2)

On this basis, we propose a heterogeneous subgrouping that takes into account the
capabilities of the nodes during their distribution into subgroups. Before we detail this
subgroup management, we present the Capability Evaluation Function (CEF) used to

evaluate the number of keys a node can manage.

74 CHAPTER 5. HETEROGENEOUS KEY MANAGEMENT FOR SECURE GROUP
COMMUNICATION

5.3.2.1 Capability Evaluation Function

Depending on the application requirements, several parameters can be taken into account
to evaluate the number of keys a node can manage. We choose then three types of
resources: memory, processing and energy. Indeed, nodes and especially the wireless sensor
ones are generally constrained by their limited physical size and so they have limited
battery energy supply. Moreover, they have restricted computational capabilities and their
memories are limited [53]. We do not consider communication because we will show that,

using our solution, its cost is O(71) .

Therefore, the CEF we propose takes as input the following arguments: the storage
capability of a node u (sc,) and the amount of data that it can process per unit time
(adt,) and per unit energy (ade,). Note that the CEF takes into account a percentage
of the node resources only to balance the overhead associated to the Key Management
against other node requirements. The CEF calculates then c¢,, the number of keys that
can be managed by u. To achieve this, the CEF determines the minimum between the
number of keys, of length [, that the node can store (2¢) and the number of keys that it

I
) and per unit energy (24) (Formula 5.3). According to

adt,
l

the network and application requirements, weighting can be given to each parameter.

may calculate per unit time (

.. sc, adt, ade,
ew = Min(==, == =)

(5.3)

5.3.2.2 Heterogeneous subgrouping

The heterogeneous subgrouping management consists of manipulating subgroups of
different sizes while minimizing their number and ensuring that the inequality 5.2 is always
satisfied. To achieve this, a minimum capability mc® is attributed to each subgroup S
when created. To satisfy the inequality 5.2, mc® — p nodes are assigned to S at most
(m® < me® — p). Note that mc® must always be greater than p for m® to be greater than
0. Also, the size of a subgroup varies according to its minimum capability and the value

of p. Thus, the greater the capabilities of its members, the larger its size.

A node u, that can handle ¢, keys, is assigned to S only if mc? is the nearest value less than

57 is the value that follows mcS). Thus, u will manage

S

cu (me® < e, < meS”, while me
p +m? keys, in the worst case. Since the inequality 5.2 is satisfied for S and ¢, > mc
then ¢, > p + m®. In other words, v can surely support the overheads. Moreover, thanks

to this, the loads are well balanced between the nodes according to their capabilities.

5.3. OUR SOLUTION 75

After the assignment, depending on whether § is an existing subgroup or a new one, the

% increases. It can happen that for a subgroup 7' (T may be S or not) the

value of p or m
sum p + m7T exceeds me” and thereby some of its members may not be able to handle all
the keys anymore. In this case, 7T is splitted into two subgroups having the same minimum
capability me”. The size of the resulting subgroups is equal to the half of m? and the
inequality 5.2 is true again for them. However, 7" cannot be splitted if it contains only

one node. It is then removed and its member is revoked.

Considering the inequality 5.2 and the fact that S cannot be empty, any node u should
be able to store at least p + 1 keys (instead of v/n when a homogeneous subgrouping was
used). On the other hand, if u can manage only p + 1 keys then it is the only node of S
and must be revoked when a new subgroup is created. Indeed, if the value of p increases,
u cannot handle all the keys anymore. For simplicity, we assume that « is authorized to
join the group only if it can store at least p keys (i.e. ¢, > p instead of p + 1). Therefore,
smaller is p, the more likely it is that more constrained nodes can join the group. This is
one of the reasons why p should be minimized. For this purpose, depending on the state

of the group, subgroups may be merged to reduce their number.

Regarding the choice of the subgroup minimum capabilities, the difficulty lies in the fact
that subgroups are created and removed as and when required and that the abilities of
nodes are not known a priori. We tried different increasing sequences and found out that
the best results (the loads are well balanced and p is minimized) are obtained when the
sequence grows exponentially. Indeed, if the minimum capabilities are close to each other,
the subgroups will be well balanced but their number will be too large. However, the aim
of the subgrouping is precisely to minimize the number of subgroups and thereby reduce
the nodes’ storage overhead. We then selected two sequences in particular: powers of two
and Fibonacci sequence. Note that other sequences can be used as long as they grow

exponentially.

If powers of two are used, the group is partitioned so that a minimum capability is the

double of the preceding one (Formula 5.4).

2.me(l —1), ifl>0.
me(l) = (5.4)

1, otherwise.

On the other hand, if a Fibonacci sequence is used, a minimum capability is the sum of

the two preceding ones (Formula 5.5). Note that ¢; and ¢ are arbitrary constants.

76 CHAPTER 5. HETEROGENEOUS KEY MANAGEMENT FOR SECURE GROUP
COMMUNICATION

me(l — 1) +me(l —2), if 1> 1.
me(l) = § ¢y, if | =1. (5.5)

cq, otherwise.

The heterogeneous subgrouping is based on two algorithms: the Assignment and Reorder
Algorithms. The Assignment Algorithm is run when nodes join the group and assigns
them to the right subgroups. It creates new ones when it is necessary and may split
others so that the inequality 5.2 remains always satisfied. The Reorder Algorithm is
executed after a node leaving to reduce the number of subgroups. It then removes those
that become empty and merges others to the possible extent. Figure 5.5 shows an example
of a group partitioned using powers of two. Note that the inequality 5.2 is satisfied for all

the subgroups and the value of p is minimal.

capability

Figure 5.5 — Example of a group partitioned into three subgroups.

5.3.2.3 Assignment Algorithm

The Assignment Algorithm is run by the Key Manager when a node is authorized to join
the group. It takes as input c¢,, the number of keys that can be handled by u, and assigns
it to a subgroup according to the input value. To achieve this, the algorithm manipulates
a list of subgroups, Isg, of size p. Each of its items contains the ID of a subgroup S, sid®,

its minimum capability, mc®, and its size, m®.

When a node u is authorized to join the group, the Assignment Algorithm starts by
determining the minimum capability mec, that matches it. It then rounds down ¢, to the
nearest power of two or term of a Fibonacci sequence. Next, it searches in [sg a subgroup

S such as mc®

= mec,. If no subgroup is found (or if the group is empty), a new one is
created (See section 4.3.3.1). After that, the algorithm assigns u to S, updates lsg and

renews the group security material following the steps described in section 5.3.3.

© 0 N OO A W N =

=
o

5.3. OUR SOLUTION 77

Also, the algorithm checks if the inequality 5.2 is still satisfied for all subgroups. It browses
the list Isg and as long as there is a subgroup T for which me? < p +mT, it is splitted
following the steps described in the next paragraph. The size of the resulting subgroups
will then be equal to the half of m? and the inequality 5.2 will be true again for them.
The steps of the Assignment Algorithm are described in Algorithm 3.

Algorithm 3: Heterogeneous Assignment Algorithm

Input : ¢, = capability of the node u
Round down ¢, to the nearest minimum capability mc,;
Find in Isg a subgroup S so that mc® = mey;
if no subgroup is found then

‘ Create a new one S,
end
Assign u to S,
Update Isg;
while 3 T for which me™ < p +m7T do

‘ Split T
end

To fix ideas, let us consider a node u (¢, > 8) which is allowed to join the group G of
the previous example (Figure 5.5). First, the Assignment Algorithm rounds down ¢, to
the nearest minimum capability mc, and then searches in [sg a subgroup S of minimum

S

capacity mc® = mc,. Thus, according to the value of ¢, several cases arise.

o If ¢, < 16, then mec, = 8 and u is assigned to S'. However, the size of the latter
increases and the inequality 5.2 is not true any more for it (mcg1 =8 < p+ mg =

3+6=29). St is splitted (Figure 5.6).

e If 16 < ¢, < 32, then mec, = 16 and u is assigned to S2. In this case, no split is

necessary since the inequality 5.2 is still true for all the subgroups.

o If 32 < ¢, < 64, then mec, = 32 and the node u is assigned to S3. Also, no split is

necessary since the inequality 5.2 is still true for all the subgroups.

o If ¢, > 64, then mc, > 64. As there is no subgroup having a minimum capacity
greater than 64, a new one (S* with mc! = mec,) is created and the node u is
assigned to it. However, by creating a new subgroup, the value of p increases. Thus,
the inequality 5.2 is not true any more for S* (megi =8 < p+mga =4+5=19).
St is splitted.

78

CHAPTER 5. HETEROGENEOUS KEY MANAGEMENT FOR SECURE GROUP

COMMUNICATION

(@) 54

50

Figure 5.6 — Example of a subgroup splitting.

Subgroup splitting: Splitting a subgroup S consists first of creating a new subgroup

T (meT = mc®). The %S last nodes that have joined S are then moved to 7. We
denote by S* the subgroup S after being splitted and by us the first node of S to

join T, i.e. Yu € ST, nid, < nidy and Yv € T, nid, > nidy.

The Key Manager starts by determining sid?. Next, to ensure the forward secrecy, it
randomly generates two refresh keys, Kp, and Kp,. Then, using the KDF', it computes
K% and K7 (Formulas 5.6 and 5.7). After that, all the pairwise keys associated to
two nodes that no longer belong to the same subgroup are removed. Also, for each

subgroup U (including S), a pairwise subgroup key K T+V is created.

K" = KDF(K®||Kpg,) (5.6)
K* = KDF(K?®||Kg,) (5.7)

Furthermore, the algorithm sends the unicast message SM1 to each node u € S
(nid, < nidy). The message is encrypted by means of the node secret key and contains
K, as well as the pairwise subgroup key KT It also sends the unicast message SM2
to each node v € T (nid, > nidy) encrypted using the node secret key. SM2 contains
Kpg, and L,, the list of the new generated pairwise subgroup keys that are associated
to 7. Finally, the unicast message SM3 is sent to each subgroup U (U # S and
U # T). It is encrypted by means of the node secret key and contains the pairwise

subgroup key KT°Y.

SM1 : KM — u :< {uids, Kp,, K>"} K2 >
SM2 : KM — v :< {uids, Kp,, L,} K, >
SM3 : KM — U :< {K"Y} KY >

5.3. OUR SOLUTION 79

5.3.2.4 Reorder Algorithm

The Reorder Algorithm is run, after a node leaving (the node can voluntarily leave the
group or be evicted because it gets compromised), to reduce the number of subgroups
(p). The aim is to decrease the number of keys that the group members has to handle.
Thus, the algorithm takes as input the percentage of merging, pcm, and tries to remove
or merge subgroups when it is possible. To achieve this, the algorithm manipulates the

same list lsg used by the Assignment Algorithm.

When a node leaves a subgroup S, the algorithm checks the number of the remaining
ones. If S becomes empty, it is removed (See section 4.3.3.2). If the size of S falls below
a certain threshold, thr, the algorithm searches in lsg a subgroup 7 to merge with S.
The threshold is the product of the percentage of merging and the maximum size of
S (thr = pem.(me® — p)). Furthermore, T must have the same minimum capability as
S and its current size must also be less than the threshold. If it is the case, the two
subgroups are merged following the steps described in the next paragraph. Finally, the
Key Manager renews the network security material, following the steps described in the
node management section (See section 5.3.3). The steps of the Reorder Algorithm are

described in algorithm 4.

Note that pecm must not exceed 50% so that the size of the resulting subgroup does
not exceed mc® — p. Also, the greater is pcm, the more the subgroups are merged. This
increases the merging’s cost but reduces the value of p. The value of pcm defines then a

compromise between the merging’s overheads and the value of p.

Subgroup merging: Merging S and T consists of three steps. A new subgroup S* is
first created (See section 4.3.3.1). Next, the members of S and T are moved to the
new subgroup. New pairwise keys are then generated for every pair of nodes u, v
(u€ S and v € T) and sent to them (Messages MM1 and MM2). These messages
are encrypted by means of the node keys. They contain the new cognate ID and
the pairwise key associated to it. The message MM2 also includes the list (L,) of
the pairwise subgroup keys related to S. Finally, the two subgroups S and T are

removed.

MM1 - KM — u :< {mdu,Kfz} L >(VueSeT)
’ K

u

MM2 : KM — v :< {mdv,KS* LU} . >(WweTVues)
K’U

u,v

© 0 N O Uk W N =

L e o
B W N = O

80 CHAPTER 5. HETEROGENEOUS KEY MANAGEMENT FOR SECURE GROUP
COMMUNICATION

Algorithm 4: Heterogeneous Reorder Algorithm

Input : pcm = percentage of merging

foreach subgroup S that a node has left do
if m® = 0 then
Remove S;
end
else
thr < pem.(me® — p);
if m® < thr then
Find in Isg a subgroup 7 such as m” < thr and mc” = mc*;
if a subgroup is found then
‘ Merge S and T
end
end
end
end

5.3.3 Node management

The way the keys are managed upon a network change is almost similar to that of
the version intended for device-to-device communication (See section 4.3.4). The main
difference with this new solution is the management of the group key. Thus, when a node
joins or leaves the network, this key must be replaced in the same way as the subgroup
and pairwise subgroup keys. The aim is to ensure the backward and forward secrecy.
Thus, the Key Manager uses the KDF and a randomly generated refresh key to update
the group key (Formula 5.8).

K+

(@) = KDF(Kc)||Kr) (5.8)

So that the group members can update the group key, they must know the refresh key
used by the Key Manager. It is worth repeating that the message JM2 containing the
refresh key is broadcast to each subgroup (See section 4.3.4). When a group member
receives the message, it first decrypts it using its subgroup key. Next, it uses Kr and the
KDF to update the group key (Formula 5.8). After that, the node discards the refresh
key. In the case of a node joining, the Key Manager agrees with v on a temporary secret
key (using a key agreement method). This key is then used to securely provide the joining

node with the group key.

5.4. SECURITY ANALYSIS 81

5.4 Security analysis

In this section, we analyze the security of our solution. We then prove that it guarantees

the backward and forward secrecy. We also show that it resits to collusion attacks.

5.4.1 Backward secrecy

We prove that a joining node cannot access the current group key or any previous
incarnation of it. The same goes for the subgroup and pairwise subgroup keys related

to its subgroup.

Proposition 5.1: Backward secrecy is guaranteed as a joining node never gets knowledge

of the old security material used before it joins the group.

Proof: Let us consider a node u that joins a subgroup S. The Key Manager starts by
updating the keys mentioned above. Then, before u can actually join the group, the Key
Manager rekeys all current members of the network, by means of messages JM1 and JM2.
These messages are encrypted by means of their node and subgroup keys, respectively.
Since none of these keys are known to u, the joining node is excluded from the process of

rekeying.

5.4.2 Forward secrecy

We prove that a leaving node cannot access the new group key or any future incarnation of

it. The same goes for the subgroup and pairwise subgroup keys associated to its subgroup.

Proposition 5.2: Our solution guarantees the forward secrecy since a leaving node does

not have access to the new security material.

Proof: Let us consider a node u that leaves a subgroup S. The Key Manager rekeys the
subgroup members and the rest of the nodes by means of the messages LMI1 and LM2,
respectively. The former is encrypted by means of the node keys and the latter using the
subgroup keys. Since none of these keys are known to u, the leaving node is excluded from

the process of rekeying.

82 CHAPTER 5. HETEROGENEOUS KEY MANAGEMENT FOR SECURE GROUP
COMMUNICATION

5.4.3 Collusion resistance

We prove that our solution is resistant to collusion attacks.

Proposition 5.3: Our solution resists to collusion attacks as multiple evicted nodes

cannot cooperate to regain access to the network.

Proof: When nodes are evicted because they get compromised, the Key Manager rekeys
the group members by means of the messages LM1 and LM2. The former is encrypted
by means of the node keys and the latter using the subgroup keys. Since these keys are
independent of each other and as none of them are known by the evicted nodes, these

nodes cannot collude to decipher the rekeying messages.

5.5 Performance evaluation

In this section, we evaluate the performance of our solution. After showing that it resits to
collusion attacks and that it guarantees the backward and forward secrecy, we prove that,
by balancing the loads between the heterogeneous devices according to their capabilities,

our solution is both efficient and highly scalable.

5.5.1 Theoretical analysis

We begin by briefly analyzing the overheads of our solution on the Key Manager before

detailing them on the network members.

5.5.1.1 Overheads on the Key Manager

We start by analyzing the overheads of our solution on the Key Manager side.

Property 5.1: The communication overhead of an operation related to a subgroup S is

proportional to the sum p + m® on the Key Manager.

Proof: Regardless of the rekeying operation performed (such as a node joining S or a
node leaving 3), the Key Manager sends a unicast message to each of the m® members of
S and broadcasts a message for each of the other p — I subgroups, in the worst case. The

Key Manager then sends a total number of messages proportional to the sum p + m?.

5.5. PERFORMANCE EVALUATION 83

Property 5.2: The calculation overhead of an operation related to a subgroup S is

proportional to the sum p + m® on the Key Manager.

Proof: Regardless of the rekeying operation performed (such as a node joining S or a
node leaving), the Key Manager updates the keys which are or will be known by the
node in question. The calculation overhead on the Key Manager is therefore proportional
to the storage cost on nodes, which will be proven to be of the order of p + m® in the
next Section. Also, the subgroup management algorithms browse the list of subgroups in

the worst case. They therefore have a complexity proportional to p.
Property 5.3: The storage overheads on the Key Manager is proportional to O(n).

Proof: The number of nodes is more important than that of subgroups. If we choose
not to store the pairwise node keys (used to secure communication between the nodes) in
the Key Manager’s memory, the largest number of keys to store will be that of the node

secret keys. The Key Manager will then store a number of keys proportional to n.

Discusstion: The communication and calculation costs of an operation related to the
subgroup S are proportional to p + m® on the Key Manager. The storage, on the other
hand, is of the order of O(n). Considering the significant improvement (presented in the
next section) that our solution provides on the node side, the costs on the Key Manager
are reasonable. Also, as the Key Manager has usually plentiful of resources, we aimed to

make the costs more affordable on the nodes, especially the constrained ones.

5.5.1.2 Overheads on nodes

Now, we analyze the overheads of our solution on the node side.
Property 5.4: The communication overhead on the nodes is O(1).

Proof: Regardless of the rekeying operation performed (such as a node joining S or a
node leaving), a node receives a constant number of messages. The communication cost

on nodes is therefore independent of the network size.

Property 5.5: The calculation overhead of an operation related to a subgroup S is

proportional to the sum p + m® on the nodes.

Proof: Regardless of the rekeying operation performed (such as a node joining S or a
node leaving S), a node updates all the keys it knows, in the worst case. The calculation
cost on the nodes is therefore proportional to the storage, which will be proven to be

proportional to the sum p + m* in the next proof.

84 CHAPTER 5. HETEROGENEOUS KEY MANAGEMENT FOR SECURE GROUP
COMMUNICATION

Property 5.6: The storage overhead on a member of a subgroup S is proportional to

the sum p + m?.

Proof: Using our protocol, a node of a subgroup S stores one secret key, m® — 1 pairwise
node keys, one subgroup key, p — I pairwise subgroup keys and a group key. The storage

overhead on the node is therefore proportional to the sum p + m®.

Discussion: The communication cost of our solution on the members of a subgroup S is
O(1), while the calculation and storage overheads are proportional to the sum p + m?.
Thus, to reduce these costs as well as those of the Key Manager, we aimed to minimize
the number of subgroups, p. We then implemented a simulator to analyze the behaviour

of its value according to several parameters.

5.5.2 Simulation

The simulator, we implemented in C, randomly generates node capabilities (based on
a uniform distribution) and runs the Assignment Algorithm to distribute them into
subgroups. It also simulates nodes leaving and runs the Reorder Algorithm. The simulator

takes as inputs the following parameters:

e n : the number of nodes (Default value: 1024000);

e C_MAX : the maximum value that the simulator can generate (Default value:
256000);

e pcm : the percentage of merging (Default value: 0.3%);

e t: the subgrouping type (Default value: powers of two).

The simulator then outputs the number of subgroups, which is represented by the size of
the list Isg. This allows us to analyze the effect of the above-mentioned parameters on the

value of p. Each time we set three parameters to default values and we vary the fourth.

Number of nodes: Starting with the network size, the results of the simulations are
plotted in Figure 5.7. They show that, regardless of the network size, by using our
method of load balancing the number of subgroups is reasonable. Figure 5.7 shows
that even when the size of the network exceeds one million of nodes, the value of p
does not exceed a few dozen. This makes our solution scalable since the constrained

nodes manipulate a reasonable number of keys.

5.5. PERFORMANCE EVALUATION 85

25
20

15

a
10 II |I ||
0

4000 16000 64000 256000 1024000
n

(%]

Figure 5.7 — Effect of the number of nodes on the value of p.

Maximum capability of nodes: Now, we analyze the effect of the maximum capability
that can be generated by the simulator. The results are plotted in Figure 5.8. They
show that the more powerful the nodes are, the smaller the value of p is. This is
because powerful devices are able to manage more keys and can be assigned to larger
subgroups. Note that the larger the subgroups are, the more their number diminishes.
Therefore, since the costs of our solution on the constrained nodes mainly depend
on the number of subgroups, they are more likely to support the overheads if the
network becomes too large. Moreover, even when the maximum capability is small,
the value of p remains reasonable for a network containing over a million nodes. To
sum up, our solution is scalable regardless of the nodes maximum capabilities but it

can become even more if the network contains enough powerful members.

45
40
35
30

25
o
20
15
1 II II

192000 25600 512000 768000 1024000
C_MAX

o U1 ©

Figure 5.8 — Effect of the maximum capability of nodes on the value of p.

Percentage of merging: Now, we study the effect of the percentage of merging. The
results of the simulations are plotted in Figure 5.9. They show that the greater
the percentage of merging is, the smaller the value of p is. Therefore, the merging
operation actually reduces the number of subgroups and makes our solution lighter for
the constrained devices and thereby more scalable. Note that most of the overheads
imposed by the subgroup merging are at the level of the Key Manager and have no

significant influance on the performance of nodes.

86 CHAPTER 5. HETEROGENEOUS KEY MANAGEMENT FOR SECURE GROUP
COMMUNICATION

23
22
o 21
20
19
0 0,1 0,2 0,3 04
pcm

Figure 5.9 — Effect of the percentage of merging on the value of p.

Subgrouping type: Finally, we study the effect of the type of subgrouping. The results
of the simulations are plotted in Figure 5.10. They show that the use of powers of
two gives slightly better results than a Fibonacci sequence. However, they generally

gives approximately the same results for large networks such as the IoT.

30
25
20

ol

4000 16000 64000 256000 1024000
n
m Powers of two M Fibonacci sequence

o Uu1n ©o wun

Figure 5.10 — Effect of the subgrouping type on the value of p.

5.5.3 Comparison

After showing that our solution resists to collusion attacks and guarantees the backward
and forward secrecy, let us prove that it meets the other [oT requirements: efficiency and
scalability. Thus, we compare our solution to the version presented in the previous chapter
(DKM) as well as to the Key Management protocol presented in [129] (GREP) to secure

group communication.

5.5. PERFORMANCE EVALUATION 87

5.5.3.1 Efficiency and scalability

The communication cost of our solution on nodes is O(1) and therefore does not need to
be discussed anymore. On the other hand, the calculation cost on nodes is proportional
to storage. For these reasons, we only need to analyze the storage costs to compare the
efficiency and scalability of our solution to those of the existing schemes. We then take
as example a TmoteSky sensor node and consider keys of 256 bits (using AES-256 for
example). Featuring 48 Kbytes, a TmoteSky can store up to 1536 keys (ignoring the other

node’s memory requirements).

For the node to support the storage cost of our solution, it is enough if it can store at
least p keys. The percentage of storage capability to indicate to the CEF must then be
greater or equal to P, = —2-. On the other hand, using GREP or DKM the storage cost

1536 °
is proportional to O(y/n). The memory rate required to store these y/n keys is therefore
P, = %. We compare the variation of the two values according to n. To achieve this,

we used the default values of the algorithms’ parameters. The results of the simulations

are plotted in Figure 5.11.

It is important to highlight that our solution requires less storage on a TmoteSky than
the other protocols. Indeed, the value of P, is smaller than P,, no matter the group size.
More importantly, if the group contains one million nodes, more than half of the memory
of the TmoteSky will be used to store all the keys using GREP or DKM. On the other
hand, under the conditions of the simulations, less than 2% of its storage capability is
enough if a our solution is used. This is because storage cost is well balanced between the
group members according to their capabilities. Thus, by using a bit more of the resources
of powerful devices, our solution becomes much lighter for the constrained ones. It can

then operate on much larger heterogeneous networks such as the IoT.

70
60
50
40

30
20 I
10
0 . __ ._ I_ —_— —

4000 16000 64000 256000 1024000
Number of nodes (n)
B GREP and MKD (Pr) m Our solution (Po)

Percentage of memory used

Figure 5.11 — Efficiency and scalability.

88 CHAPTER 5. HETEROGENEOUS KEY MANAGEMENT FOR SECURE GROUP
COMMUNICATION

5.5.3.2 Heterogeneity

Unlike most of the existing protocols, our solution balances the loads between the
heterogeneous devices of the network according to their capabilities. To illustrate this
difference, we consider the protocols DKM and GREP, which have storage and calculation
cost proportional to O(y/n). Not that these costs are the same for all the group members,
while they are both proportional to the nodes’ storage capability, using our solution. We
consider then a network of 710000 nodes and analyze the variation of the calculation and
storage cost according to the node’s storage capability (number of keys it can store),
for the three protocols. Note that the percentage of storage capability that we choose to
indicate to the CEF is 10% (i.e. only 10% of the real capability of the node is used). The
results are plotted in Figures 5.12.

400 1200 2000 2800 3600
Node storrage capacity
W Our Solution GREP and DKM

200

Overheads on the node
= =
(9] o (9]
o o o

o

Figure 5.12 — Heterogeneity.

We take as example two nodes u; and uy that can store 200 and 1800 keys, respectively.
For both nodes, 10% of their memory is used by our solution, in the worst case. DKM and
GREP, on the other hand, use 50% of the former and 5% of the latter. As the calculation
overhead on node depends on the storage, these protocols quickly exhausts the resources
of u;, while us, has much more. More importantly, the nodes having a capability lower
than 700 can not even store all the keys, while our solution uses 10% of their memory
only. Thus, although the overheads imposed by DKM and GREP are lower than that of
our solution for powerful devices (capability greater than 1000), they are much greater

for the weak ones.

5.6. CONCLUSION 89

5.6 Conclusion

The purpose of this chapter was to present a novel versatile Key Management protocol
for the IoT. In addition to securing both device-to-device and group communication,
our solution considers the heterogeneous nature of the IoT. It is then lighter for the
constrained devices by using a bit more of the resources of the powerful ones. Thus,
the network performance is significantly improved and its lifetime increased. We showed
that our solution ensures the forward and backward secrecy, as nodes can securely join
and leave the network at any time. We also proved that our protocol resits to collusion
attacks, since multiple evicted nodes can not cooperate to regain access to the network.
We finally showed that our solution is both efficient and highly scalable by balancing the

loads between the heterogeneous devices according to their capabilities.

In the next chapter, we will present our third contribution. It is a novel decentralized

blockchain-based Key Management protocol for secure device-to-device, group and multi-

het

group communication in the IoT. This new solution belongs to the class ZZZICMpost.

Chapter 6 __

Blockchain-Based Decentralized Key
Management for secure Multi-group

Communication

In this chapter, we propose a novel decentralized blockchain-based Key Management
protocol for the IoT. In addition to securing the device-to-device and group commu-
nication, this new solution considers the multi-group communication. It then guarantees
the secure coexistence of several services in a single network. To achieve this, our solution
manages several groups with independent security parameters. To decentralize the Key
Management, we use the blockchain technology and smart contracts. We show that our
solution solves the single point of failure problem, since the system continues to operate
when a Key Management entity fails. We also prove that resilience is improved, as the

compromise of one of these entities does not jeopardize the whole network.

91

92CHAPTER 6. BLOCKCHAIN-BASED DECENTRALIZED KEY MANAGEMENT FOR SECURE
MULTI-GROUP COMMUNICATION

6.1 Introduction

In multi-group communication, a device sends/receives multicast messages only to/from
the members of one of the groups to which it belongs [62]. Unlike group communication, in
which a device is assumed to be part of a single group, this mode considers the possibility
that devices can participate in multiple services at the same time. The IoT is indeed a
network that can be simultaneously shared by different services. Smart ambulances [113]
are an example of technologies for which the multi-group communication is necessary.
They can indeed participate, at the same time, in the intelligent transportation network
and the healthcare system. The multi-group communication requires that the Key

Management guarantees independence of services, efficiency and scalability.

Most of the existing Key Management protocols, especially those designed for group com-
munication, use the same security parameters to secure all the network communications.
Thus, if several services are provided by the network, communications within a service
will be accessible to all the network members even those which did not subscribe to it.
The compromise of a node will then jeopardize all network services. Furthermore, the
existing solutions, based on post-distribution, generally require a third party to manage
the keys. If this entity is centralized, it will become a single point of failure and the main
target of attacks. When it fails, the entire system will stop operating, and if it is attacked,

the whole network will be compromised.

To address these issues, we propose a novel decentralized blockchain-based Key Man-
agement protocol for the IoT. This new solution belongs to the class ZzZlCMZSEt We
then improve our previous protocol so that it secures, in addition to the device-to-device
and group communication, the multi-group communication. It therefore guarantees the
secure coexistence of several services in a single network. To achieve this, our solution
manages several groups with independent security parameters so that the compromise of
a service has no effect on the others. Furthermore, we use the blockchain technology and
smart contracts to decentralize the Key Management. We design a lightweight consensus
algorithm that takes into account the capability of the blockchain participants for block
validation. We show that this solves the single point of failure problem, since the system
continue to operate when an entity fails. We also prove that the resilience of our solution

is improved, as the compromise of an entity does not jeopardize the whole network.

The remainder of this chapter is organized as follows. Section 6.2 presents related works.
Section 6.3 introduces our solution. Section 6.4 presents the security analysis. Section 6.5

introduces the performance evaluation. Section 6.6 concludes the chapter.

6.2. RELATED WORKS 93

6.2 Related Works

In this chapter, we are interested in the device-to-device, group and multi-group
communication. However, as the first two was detailed in the previous chapters, we focus in
this section on the latter. We also discuss the post-distribution Key Management solutions
based on the blockchain technology. We then consider the class "¢ MPO,

6.2.1 Multi-Group Key Management schemes

As far as we know, only few researches considered the possibility of coexistence of several
services in a single network. The authors in [123] and [147] proposed Key Management
schemes for hierarchical group access control. However, the protocol cannot achieve a high
performance when no hierarchy exists among services. The authors in [99] proposed then
a new scheme called the Master Key Encryption Based Key Management. This protocol is
nevertheless based on asymmetric cryptography as it was proposed for traditional Internet.
It is therefore not well suited for networks containing highly constraint devices such as
the ToT.

6.2.2 Blockchain solutions

A blockchain is a decentralized and secure storage technology. It relays on cryptography,
smart contracts and consensus algorithms to securely replicate an application on several

entities. For more details, please refer to section 2.4.

The term blockchain first appeared in Nakamoto’s Bitcoin paper describing a new
decentralized cryptocurrency [93]. The technology started then to be used in various
applications. Recently, researchers began to take interest in using it to decentralize the
Key Management. The authors of [78, 79] proposed a blockchain-based Key Management
system to secure the group communication in intelligent transportation systems. In
[84], a blockchain was used to decentralize the Key Management for hierarchical access
control in the IoT. These works do not consider the device-to-device or the multi-group
communication and use the Proof of Work (PoW) [93] consensus algorithm. Our solution
secures the three modes of IoT communication: device-to-device, group and multi-group
communication. It is also based on a version of Proof of Stake (PoS) [132] that takes into
account the capability of the blockchain participants. More importantly, PoS is known to

be far less energy-intensive than PoW [112].

94CHAPTER 6. BLOCKCHAIN-BASED DECENTRALIZED KEY MANAGEMENT FOR SECURE
MULTI-GROUP COMMUNICATION

6.3 Our solution

Our literature review shows that none of the existing solutions, proposed for secure
multi-group communication or based on the blockchain technology, is well suitable for
the IoT. We then propose a novel Key Management protocol [67, 71] belonging to the

class Z%ICMZEQ Our solution is organized into two layers (Figure 6.1).

The first layer manages the nodes and their cryptographic keys. As the subgroup
management was detailed in the previous chapters, we focus in this section on the group
management. It is about handling multiple groups and assigning nodes to them according
to the services to which they subscribe. The network is then divided into several groups,
each of which is also partitioned into several subgroups (Figure 6.2b). By doing this,
the security parameters of services will be independent so that the compromise of one of
them will have no effect on the others. Moreover, as shown in the previous chapters, the

subgrouping makes the protocol lighter for nodes, especially the constrained ones.

The blockchain layer manages the blockchain and its participants. The aim is to securely
decentralize the Key Management. It then guarantees that the system continues to operate
even if some of its participants fail or are the target of malicious attacks. It also ensures

that the compromise of a participant does not jeopardize the security of the entire network.

NN LN

Layer 2: Blockchain Management
o — o

~ ~~ ~

_______ (uoo)____(ooo)____@_______

Layer 1: Key Management

Figure 6.1 — Architecture of our solution.

Our solution is a hybridization of symmetric and asymmetric cryptography. The aim
is to take advantages of each and overcome its disadvantages. Symmetric encryption
is mainly used in layer 1, while asymmetric encryption is only used in layer 2. Note
that the blockchain is implemented on powerful servers (the cloud) or IoT gateways and
is completely separated from the constrained devices. The goal is to not involve any

additional cost on them, except for those imposed by the first layer.

6.3. OUR SOLUTION 95

6.3.1 Layer 1: Key Management

The first layer manages the nodes. It organizes them into groups (according to the services
in which they participate) and subgroups (according to their capabilities). It also provides

them with the keys and the secret materials that allow them to update these keys.

6.3.1.1 Group and service management

An IoT service is a transaction between two entities: a provider and a consumer. The
former measures the state of the latter or initiates actions which will cause a change to it
[128]. A device may participate (as a provider, a consumer or both) to different services, at
the same time, and subscribe or unsubscribe from services at any time. The [oT can then
be seen as a set of overlapping classes each gathering nodes that collaborate to provide
a service and others that benefit from it (Figure 6.2a). As these classes are overlapping,
a group of the protocol cannot be associated to a service. Indeed, the independence of
the group security parameters will lose its meaning and the compromise of a node can
jeopardize several groups. We propose then the creation of a group for each possible
combination of services. A combination A of k services, of a finite set F' of e services, is a

subset of £ (k < e) elements of F. The number of possible combinations, nc, is equal to:
nc=>Y» Ch=2°—1 (6.1)
k=1

The network N is partitioned into groups. Each group G is associated with an ID, gidq),
which is unique within N. It contains the nodes participating in the services of the
combination A(g)y associated to it. When an actual member subscribes or unsubscribes
from services, it migrates from a group to another according to its new combination of
services. The number of groups can reach nc (Formula 6.1) if there are nodes participating
in every possible combination of services. However, it cannot exceed the number of nodes,

n, as empty groups are not allowed. The maximum number of groups, maz,, is equal to:

maz, = Min(2° — 1,n) (6.2)

The probability that each node belongs to a distinct group is very low or even impossible
in reality. We then assume, in the rest of the chapter, that the n nodes of the network are
uniformly distributed in y/n groups of \/n members each. This is closer to reality, on the

one hand, and simplifies the evaluation of our solution’s overheads, on the other.

96 CHAPTER 6. BLOCKCHAIN-BASED DECENTRALIZED KEY MANAGEMENT FOR SECURE
MULTI-GROUP COMMUNICATION

In Figure 6.2a, two services E(/) and E(®) coexist in a network N. Three combinations
are then possible: A,y = {EW, E®} Ay, = {EW} and Az = {E@}. Each group G
contains the nodes participating in the combination of services A(¢) associated to it. The
group (G contains the nodes participating in both services while those of Gy and Gj
subscribed only to E® and E®)| respectively (Figure 6.2b).

N
E@® E®@

(a) According to services. (b) Achieved by the protocol.

Figure 6.2 — Network partitioning.

6.3.1.2 Classification of cryptographic keys

The keys presented in the previous chapters (See Section 4.3.1) are also used by this new
solution. However, each of them, especially the TEKs, are specific to a single group and
independent from one group to another. There are mainly three new keys holds by a node

that belongs to a group G:

o A service key, K(®), for each service F in which the node participates. This is a
DEK that replaces the group key presented in Section 4.3.1. It is used to secure the

group communication between the service members.

e A pairwise service key, K(q), for each group I containing members that participate
in the same service as those of G (i.e. A(gyN Ay #0). It is a DEK used to secure
the device-to-device communication between the members of the two groups (G and
I).

e A group Key, K. This is a TEK used to secure the communication with the Key
Manager. It replaces the node and subgroup keys when the same message is sent to

all the group members (for more efficiency). It is known only by the members of G.

6.3. OUR SOLUTION 97

6.3.1.3 Node Management

Like the subgroup and pairwise subgroup keys, those mentioned above must be updated
upon a change in the network (a node u joins or leaves a group G). The aim is to guarantee
the backward and forward secrecy. To achieve this, the Key Manager uses the same refresh

key and key derivation function used before (Formulas 6.3, 6.4 and 6.5).

K" = KDF(K™)|| Kg) (6.3)
K 1y = KDF (Kc,nl| Kr) (6.4)
K = KDF (K| Kr) (6.5)

After the key updates is complete, the Key Manager must rekey the nodes. It then sends
the messages JM1 and JM2 to rekey the members of the group G (See Section 4.3.4). It
also muticasts the message RM (the same message whether its a join or leave operation),
encrypted using K(;y to all the members of the group I (A9 N AD £ (). The message
contains the ID of the group G and the refresh key allowing the members of I to update

their pairwise service key K(g,).

RM : KM — I :< {gid(g),KR}Km >.VI € N, such that A% N AD £ ¢

When a member of I receives the message RM, it first decrypts it, using its group key,
and retrieves its contents. The node then uses the KDF and Ky to update the pairwise

service key, K(g 1), it shares with the members of G.

6.3.1.4 Subgroup management

The subgroup management remains almost the same as in the previous chapters. It
consists of distributing nodes on subgroups uniformly (If a homogeneous subgrouping is
used, see section 4.3.3) or according to their capabilities (If a heterogeneous subgrouping
is used, see section 5.3.2). The aim is to improve the protocol efficiency and scalability.
The only difference in this new solution is that the subgroups of each group are managed

independently of each other.

98CHAPTER 6. BLOCKCHAIN-BASED DECENTRALIZED KEY MANAGEMENT FOR SECURE
MULTI-GROUP COMMUNICATION

6.3.2 Layer 2: Blockchain Management

The purpose of this layer is to decentralize the Key Management using the blockchain
technology and smart contracts. Although any type of architecture can be used (since
the secret keys are not stored in the blockchain), a private or a consortium blockchain
remains preferable in an application such as the Key Management. A limited number
of participants also makes the blockchain management more efficient. For more details
about the blockchain architectures, please refer to Section 2.4.2. We introduce into the
network IoT gateways (or BPs for Blockchain Participants) that generate, validate an<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>