
HAL Id: tel-03214800
https://theses.hal.science/tel-03214800

Submitted on 2 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lightweight key management solutions for
heterogeneous IoT

Mohamed Ali Kandi

To cite this version:
Mohamed Ali Kandi. Lightweight key management solutions for heterogeneous IoT. Cryptography and
Security [cs.CR]. Université de Technologie de Compiègne, 2020. English. �NNT : 2020COMP2575�.
�tel-03214800�

https://theses.hal.science/tel-03214800
https://hal.archives-ouvertes.fr

Par Mohamed Ali KANDI

Thèse présentée
pour l’obtention du grade
de Docteur de l’UTC

Lightweight key management solutions for
heterogeneous IoT

Soutenue le 14 décembre 2020
Spécialité : Informatique et Sciences et Technologies de
l’Information et des Systèmes : Unité de recherche Heudyasic
(UMR-7253) D2575

Thèse présentée pour l’obtention du grade de Docteur

UNIVERSITÉ DE TECHNOLOGIE DE COMPIÈGNE

Spécialité : Informatique et Sciences et Technologies de l’Information et des Systèmes

Lightweight Key Management Solutions for

Heterogeneous IoT

14/12/2020

Par Mohamed Ali KANDI

Composition du jury:

Abdelamadjid BOUABDALLAH Professeur des universités,

Université de Technologie de

Compiègne

Directeur de Thèse

Karima BOUDAOUD Mâıtre de conférences, Uni-

versité de Nice

Examinatrice

Bernard COUSIN Professeur des universités,

Université de Rennes

Rapporteur

Romain LABORDE Mâıtre de conférences HDR,

Université de Toulouse

Rapporteur

Hicham LAKHLEF Mâıtre de conférences, Uni-

versité de Technologie de

Compiègne

Co-Directeur de Thèse

Dritan NACE Professeur des universités,

Université de Technologie de

Compiègne

Examinateur

List of Publications

Journal article

• Mohamed Ali Kandi, Hicham Lakhlef, Abdelmadjid Bouabdallah, and

Yacine Challal. “A Versatile Key Management Protocol for Secure Group and

Device-to-Device Communication in the Internet of Things”. In: Journal of

Network and Computer Applications 150 (2020).

International conferences

• Mohamed Ali Kandi, Hicham Lakhlef, Abdelmadjid Bouabdallah, and

Yacine Challal. “An Efficient Multi-Group Key Management Protocol for

Internet of Things”. In: 26th IEEE International Conference on Software,

Telecommunications and Computer Networks (SoftCOM). Split, Croatia, Sep.

2018.

• Mohamed Ali Kandi, Hicham Lakhlef, Abdelmadjid Bouabdallah, and

Yacine Challal. “An Efficient Multi-Group Key Management Protocol for Het-

erogeneous IoT Devices”. In: IEEE Wireless Communications and Networking

Conference (WCNC). Marrakech, Moroco, Avr. 2019.

• Mohamed Ali Kandi, Hicham Lakhlef, Abdelmadjid Bouabdallah, and

Yacine Challal. “A Key Management Protocol for Secure Device-to-Device

Communication in the Internet of Things”. In: IEEE Global Communications

Conference (Globecom). Waikoloa, USA, Dec. 2019.

International workshop

• Mohamed Ali Kandi, Djamel Eddine Kouicem, Hicham Lakhlef, Abdelmad-

jid Bouabdallah, and Yacine Challal. “A Blockchain-based Key Management

Protocol for Secure Device-to-Device Communication in the IoT”. In: proceed-

ings of the 19th IEEE International Conference on Trust, Security and Privacy

in Computing and Communications (TrustCom)/ International Workshop on

Cyberspace Security (IWCSS). Guangzhou, China, Dec. 2020.

iii

iv

Submitted article

• Mohamed Ali Kandi, Djamel Eddine Kouicem, Messaoud Doudou, Hicham

Lakhlef, Abdelmadjid Bouabdallah, and Yacine Challal. “A Decentralized

Blockchain-based Key Management Protocol for Heterogeneous and Dynamic

IoT Devices”. In: IEEE Transactions on Dependable and Secure Computing.

Submitted.

Abstract

The Internet of Things (IoT) is an emerging technology that has the potential to improve

our daily lives in a number of ways. It consists of extending connectivity beyond standard

devices (such as computers, tablets and smartphones) to all everyday objects. The IoT

devices, also called smart objects, can collect data from their surroundings, collaborate to

process them and then act on their environment. This increases their functionalities and

allow them to offer various services for the benefit of society. However, many challenges are

slowing down the development of the IoT. Securing communication between its devices is

one of the hardest issue that prevents this technology from revealing its full potential.

Cryptography provides a set of mechanisms to secure data. For their proper function-

ing, these mechanisms require secret parameters called keys. The Key Management is a

branch of cryptography that encompasses all operations involving the handling of these

keys: generation, storage, distribution and replacement. Lightweight cryptography con-

sists of extending the conventional mechanisms (including the Key Management) to the

resource-limited devices. To be efficient in the IoT, the new mechanisms must offer a good

compromise between security, performance and resource requirements. Lightweight Key

Management is the essence of secure communication in the IoT and the core of our work.

In this thesis, we propose a novel lightweight Key Management protocol to secure commu-

nication between the heterogeneous and dynamic IoT devices. To design our solution, we

consider three modes of communication: device-to-device, group and multi-group commu-

nication. While most of the related works focus only on one of these modes of communi-

cation, our solution efficiently secures all three of them. It also automatically balances the

loads between the heterogeneous devices according to their capabilities. We then prove

that this makes our protocol more suitable for the IoT as it is efficient and highly scal-

able. Furthermore, we propose a decentralization of our protocol based on the blockchain

technology and smart contracts. We show that, by empowering multiple participants to

manage the cryptographic keys, decentralization solves trust issues, lowers risk of system

failure and improves security. We finally implement our solution on resource-constrained

IoT motes that are based on the Contiki operating system. The objective is to experimen-

tally evaluate the performance of our solution and to complete our theoretical analyses.

v

vi

Keywords: Internet of things, Security, Lightweight cryptography, Key Management,

Blockchain.

Résumé

L’Internet des objets (IdO) est une technologie émergente ayant le potentiel d’améliorer

notre quotidien de différentes façons. Elle consiste à étendre la connectivité au-delà des

appareils standards (tels que les ordinateurs, les tablettes et les smartphones) à tous les

objets du quotidien. Ces appareils, également appelés objets intelligents, peuvent alors

collecter des données de leur entourage, collaborer pour les traiter puis agir sur leur

environnement. Cela augmente leurs fonctionnalités et leur permet d’offrir divers services

au profit de la société. Cela dit, de nombreux défis ralentissent le développement de l’IdO.

La sécurisation des communications entre ces appareils est l’un des problèmes les plus

difficiles qui empêche cette technologie de révéler tout son potentiel.

La cryptographie fournit un ensemble de mécanismes permettant de sécuriser les données.

Pour leur bon fonctionnement, ces derniers ont besoin de paramètres secrets appelés clés.

La gestion des clés est une branche de la cryptographie qui englobe toutes les opérations

impliquant la manipulation de ces clés: génération, stockage, distribution et remplacement.

Par ailleurs, la cryptographie légère consiste à étendre les mécanismes conventionnels

(la gestion des clés comprise) aux appareils à ressources limitées. Afin d’être efficaces

dans l’IdO, les nouveaux mécanismes doivent offrir un bon compromis entre sécurité,

performance et consommation de ressources. La gestion légère des clés est donc l’essence

de la communication sécurisée dans l’IdO et le cœur de notre travail.

Dans cette thèse, nous proposons un nouveau protocole léger de gestion des clés pour

sécuriser la communication entre les appareils hétérogènes et dynamiques de l’IdO. Pour

concevoir notre solution, nous considérons trois modes de communication: d’appareil à

appareil, de groupe et de multi-groupes. Alors que la plupart des travaux connexes se

concentrent uniquement sur l’un de ces modes de communication, notre solution sécurise

efficacement les trois. Aussi, elle équilibre automatiquement les charges entre les appareils

hétérogènes en fonction de leurs capacités. Nous prouvons alors que cela rend notre proto-

cole plus adapté à l’IdO étant donné qu’il est efficace et hautement évolutif. De plus, nous

proposons une décentralisation de notre protocole basée sur la technologie blockchain et

les contrats intelligents. Ainsi, nous montrons qu’en permettant à plusieurs participants

vii

viii

de gérer les clés cryptographiques, la décentralisation résout les problèmes de confiance,

réduit le risque de défaillance du système et améliore la sécurité. Nous implémentons enfin

notre solution sur des platformes IoT à ressources limitées qui sont basées sur le système

d’exploitation Contiki. L’objectif est d’évaluer expérimentalement les performances de

notre solution et de compléter nos analyses théoriques.

Mots Clés : Internet des Objets, Sécurité, Cryptographie légère, Gestion des clés,

Blockchain.

Contents

List of Publications iii

Abstract v

Résumé vii

Contents ix

List of figures xvii

List of tables xxi

List of algorithms xxiii

1 Introduction 1

1.1 Motivations . 1

1.2 Research topic . 2

1.3 Our contributions . 3

1.4 Organization of the manuscript . 4

2 General context 5

2.1 Introduction . 6

2.2 Fundamentals of the Internet of Things . 7

2.2.1 IoT architecture . 7

ix

x Contents

2.2.2 IoT features . 8

2.2.3 IoT applications . 10

2.2.4 Top IoT challenges . 11

2.3 Fundamentals of Network Security . 12

2.3.1 Network security objectives . 12

2.3.2 Network security attacks . 13

2.3.3 Network security and cryptography 14

2.3.3.1 Ciphers . 14

2.3.3.2 Hash functions . 15

2.3.3.3 Key derivation functions 16

2.4 Blockchain . 17

2.4.1 Blockchain structure . 17

2.4.2 Blockchain architecture . 18

2.4.3 Blockchain features . 19

2.4.4 Blockchain consensus . 20

2.4.5 Smart contracts . 21

2.5 Conclusion . 22

3 Key Management in the IoT: Classification and Challenges 23

3.1 Introduction . 24

3.2 Fundamentals of Key Management . 25

3.2.1 Generation . 25

3.2.2 Storage . 26

3.2.3 Distribution . 26

3.2.4 Replacement . 26

Contents xi

3.3 Key Management and IoT . 27

3.3.1 Lightweight cryptography . 27

3.3.2 IoT requirements for the Key Management 28

3.4 Key Management classification . 30

3.4.1 Classification criteria . 30

3.4.1.1 Key cryptography . 30

3.4.1.2 Key type . 31

3.4.1.3 Distribution method . 32

3.4.1.4 Load balancing . 33

3.4.2 Proposed classification . 34

3.5 Key Management challenges in the IoT . 37

3.6 Our contributions . 38

3.6.1 Notations . 39

3.6.2 Application and threat model . 40

3.7 Conclusion . 41

4 Dynamic Key Management for Secure Device-to-Device Communica-

tion 43

4.1 Introduction . 44

4.2 Related Works . 45

4.2.1 Deterministic schemes . 45

4.2.2 Pure probabilistic schemes . 45

4.2.3 Deployment knowledge based schemes 46

4.3 Our solution . 47

4.3.1 Classification of cryptographic keys 48

xii Contents

4.3.2 Hash functions . 49

4.3.2.1 Zero-level approach . 49

4.3.2.2 One-level approach . 49

4.3.2.3 Two-level approach . 50

4.3.3 Set management . 52

4.3.3.1 Assignment Algorithm . 52

4.3.3.2 Reorder Algorithm . 53

4.3.4 Node management . 54

4.3.4.1 Node joining . 54

4.3.4.2 Node leaving . 55

4.4 Security analysis . 57

4.4.1 Theoretical analysis . 57

4.4.1.1 Zero-level approach . 57

4.4.1.2 One-level approach . 58

4.4.1.3 Two-level approach . 59

4.4.2 Comparison . 60

4.5 Performance evaluation . 61

4.5.1 Theoretical analysis . 61

4.5.1.1 Overheads on the Key Manager 61

4.5.1.2 Overheads on the nodes 62

4.5.2 Comparison . 62

4.5.2.1 Scalability . 63

4.5.2.2 Connectivity . 63

4.5.2.3 Mobility . 64

Contents xiii

4.5.2.4 Efficiency . 64

4.5.2.5 Flexibility . 65

4.6 Conclusion . 65

5 Heterogeneous Key Management for Secure Group Communication 67

5.1 Introduction . 68

5.2 Related Works . 69

5.2.1 Tree based schemes . 69

5.2.2 Combinatorial optimization based schemes 70

5.2.3 Batch rekeying based schemes . 70

5.3 Our solution . 71

5.3.1 Classification of cryptographic keys 72

5.3.2 Subgroup Management . 73

5.3.2.1 Capability Evaluation Function 74

5.3.2.2 Heterogeneous subgrouping 74

5.3.2.3 Assignment Algorithm . 76

5.3.2.4 Reorder Algorithm . 79

5.3.3 Node management . 80

5.4 Security analysis . 81

5.4.1 Backward secrecy . 81

5.4.2 Forward secrecy . 81

5.4.3 Collusion resistance . 82

5.5 Performance evaluation . 82

5.5.1 Theoretical analysis . 82

5.5.1.1 Overheads on the Key Manager 82

xiv Contents

5.5.1.2 Overheads on nodes . 83

5.5.2 Simulation . 84

5.5.3 Comparison . 86

5.5.3.1 Efficiency and scalability 87

5.5.3.2 Heterogeneity . 88

5.6 Conclusion . 89

6 Blockchain-Based Decentralized Key Management for secure Multi-

group Communication 91

6.1 Introduction . 92

6.2 Related Works . 93

6.2.1 Multi-Group Key Management schemes 93

6.2.2 Blockchain solutions . 93

6.3 Our solution . 94

6.3.1 Layer 1: Key Management . 95

6.3.1.1 Group and service management 95

6.3.1.2 Classification of cryptographic keys 96

6.3.1.3 Node Management . 97

6.3.1.4 Subgroup management . 97

6.3.2 Layer 2: Blockchain Management 98

6.3.2.1 Transaction management upon network change 99

6.3.2.2 Consensus Algorithm . 100

6.3.2.3 Blockchain interest . 101

6.4 Security analysis . 103

6.4.1 Independence of services . 103

Contents xv

6.4.2 Resilience against node capture . 104

6.4.2.1 Theoretical analysis . 104

6.4.2.2 Comparison . 105

6.4.3 Resilience against BP capture . 105

6.4.3.1 Theoretical analysis . 105

6.4.3.2 Comparison . 106

6.5 Performance evaluation . 107

6.5.1 Overheads on the Key Manager . 107

6.5.2 Overheads on nodes . 108

6.6 Conclusion . 109

7 Experimentation 111

7.1 Introduction . 112

7.2 Software environment . 113

7.3 Operating system: Contiki . 114

7.3.1 Processes . 114

7.3.2 Events . 114

7.3.3 Network Stack . 115

7.3.4 PowerTrace . 115

7.3.5 Cooja . 116

7.4 Material resource . 116

7.5 Experimental platform . 119

7.5.1 Key Manager . 119

7.5.2 Nodes . 119

7.5.3 Intermediate motes . 120

xvi Contents

7.6 Experimental results . 121

7.6.1 Response time of BPs . 121

7.6.2 Storage overhead on nodes . 123

7.6.3 Execution time on nodes . 124

7.6.4 Energy consumption by nodes . 125

7.7 Conclusion . 127

8 Conclusion and future works 129

Bibliography 133

List of figures

2.1 IoT architecture. 7

2.2 IoT features. 8

2.3 IoT communication technologies. 9

2.4 Top IoT challenges. 11

2.5 Network security objectives. 12

2.6 Network security attacks. 13

2.7 Cryptographic hash functions. 16

2.8 Blockchain. 17

2.9 Client-server vs peer-to-peer networks. 18

2.10 Normal contract vs smart contract. 21

3.1 Key generation. 25

3.2 Lightweight Key Management. 27

3.3 IoT communication modes. 28

3.4 Classification criteria. 30

3.5 Key cryptography. 31

3.6 Key Type. 32

3.7 Distribution method. 33

3.8 Load balancing. 33

3.9 IoT network (Key Manager and nodes). 39

xvii

3.10 Threat model and countermeasures . 40

4.1 Key Management approaches for secure device-to-device communication. . . 46

4.2 Our device-to-device Key Management. 47

4.3 Example of node distribution in a network N 48

4.4 One-level approach. 50

4.5 Two-level approach. 51

4.6 Node joining and leaving. 56

4.7 An example of communications a node can decrypt. 57

4.8 An example of communications the node 3 cannot decrypt. 59

4.9 Variation of the percentage of compromised links. 60

4.10 Variation of nodes’ storage overhead according to n. 63

4.11 Variation of the average path length according to the size of the key ring. . . 64

5.1 Tree based schemes. 69

5.2 Key Management approaches for secure group communication. 70

5.3 Example of a group partitioning. 71

5.4 Our group Key Management. 72

5.5 Example of a group partitioned into three subgroups. 76

5.6 Example of a subgroup splitting. 78

5.7 Effect of the number of nodes on the value of p. 85

5.8 Effect of the maximum capability of nodes on the value of p. 85

5.9 Effect of the percentage of merging on the value of p. 86

5.10 Effect of the subgrouping type on the value of p. 86

5.11 Efficiency and scalability. 87

5.12 Heterogeneity. 88

6.1 Architecture of our solution. 94

6.2 Network partitioning. 96

6.3 Example of a blockchain transaction. 98

6.4 Decentralized rekeying upon a network change using a blockchain. 100

6.5 Rejoin exchange. 102

6.6 Resilience against node capture. 105

6.7 Resilience against BP capture. 106

7.1 Structure of a Contiki process. 114

7.2 Rime stack overview. 115

7.3 Network components. 119

7.4 Key Manager. 119

7.5 Network partitioning. 120

7.6 Experimental platform. 120

7.7 Effect of r on response time. 121

7.8 Effect of nst on response time. 122

7.9 Effect of cp on response time. 122

7.10 Comparison of our consensus algorithm with Tendermint. 123

List of tables

2.1 Types of blockchain architecture. 19

3.1 IoT requirements for the Key Management. 29

3.2 Classification notations . 34

3.3 Classification of existing solutions . 36

3.4 Summary of notations. 39

4.1 Classification of cryptographic keys. 48

5.1 Example of keys held by nodes. 72

7.1 IoT mote specifications. 118

7.2 Storage overhead on nodes (Keys stored in the RAM). 123

7.3 Storage overhead on nodes (Keys stored in the flash). 124

7.4 Execution time on nodes (Keys stored in the RAM). 125

7.5 Execution time on nodes (Keys stored in the flash). 125

7.6 Energy consumption by nodes (Keys stored in the RAM). 125

7.7 Energy consumption by nodes (Keys stored in the flash). 126

7.8 Battery life. 126

xxi

List of algorithms

1 Homogeneous Assignment Algorithm . 53

2 Homogeneous Reorder Algorithm . 54

3 Heterogeneous Assignment Algorithm . 77

4 Heterogeneous Reorder Algorithm . 80

5 Consensus Algorithm . 100

xxiii

Chapter 1

Introduction

We are about to wake up to a new world. A world where, not only computers, but

everything will be contacted to the Internet. From our clothing and appliances to our

vehicles and buildings. A world where everyday objects will be so smart that they will

be able to automatically interact with their environment and communicate with each

other. They will be able to collect data from their surrounding, collaborate to process

them and then act on their environment. This increases their functionalities and allow

them to offer various services for the benefit of society, which until then were not able to

provide. Known as the Internet of Things (or the IoT), this emerging technology promises

to improve our daily lives in a number of ways. Smart homes, for example, involve using

smart devices to ensure comfort, convenience and energy efficiency to the homeowners.

Autonomous vehicles are able to automatically exchange data to maintain traffic flow

and avoid crashes. However, many challenges are slowing down the development of the

Internet of Things. Securing communication between its devices is one of the hardest issue

that prevents this technology from revealing its full potential.

1.1 Motivations

Network security consists of designing mechanisms to protect the data in motion from

malicious attacks. In fact, securing communication is an old issue that existed long

before the Internet of Things. It is as old as the computer networks themselves. Since

then, there have always been people who target computer information systems, with or

without malicious intent. Security becomes more and more complex as the motivations and

capabilities of threat actors continue to evolve. The Internet of Things, despite its many

benefits, has only made this task even more challenging. Today, securing communication

is the primary concern of the Internet of Things developers and one of the main challenges

that are slowing down the expansion of the technology [51]. This is mostly due to the three

following reasons:

1

2 CHAPTER 1. INTRODUCTION

Increasing number of devices: The number of devices connected to the Internet

is constantly increasing since its appearance. If all everyday objects will also be

connected, this number will explode in the years to come. According to the Cisco

Annual Internet Report [35], around 30 billion devices will be connected to the

Internet by 2023 (up from 18 .4 billion in 2018). This growing number of connected

objects will necessarily generate a huge amount of data, which makes their protection

much more challenging.

Wireless and mobile devices: Nowadays, mobile devices are evolving at lightning

speed. This is largely due to the Internet of Things, since its very nature favors

mobile to desktop devices. According to the Cisco Annual Internet Report [35], nearly

45 % of the devices that will be connected to the Internet by 2023 will be mobile (up

from 30 % in 2018). On the one hand, these mobile devices necessarily require wireless

communication. On the other, they must be physically small and thereby have limited

energy supply. The problem is that securing communication becomes more difficult

when it is wireless, especially if the energy resources are limited.

Heterogeneous devices: In addition to energy resources, the storage and computing

capabilities are very varied in the Internet of things. They can also be very limited

for some of its objects. Indeed, the Internet of Things devices include sophisticated

servers, computers, smartphones as well as resource-constrained sensors. Balancing

the level of security and performance between this variety of devices is very

challenging.

1.2 Research topic

Cryptography is one of the strongest tool used to ensure security services. It includes a

set of algorithms and mechanisms that are used to secure sensitive and classified data.

Encryption, for example, can be applied to a block of data (plaintext) to convert it into

a secret code (ciphertext) that hides the true meaning of the information. Cryptographic

keys are the secret parameters that make the algorithms secure data. Like a physical

key, a cryptographic one guarantees that only the entities owning it can open the door

that protect the data. In encryption, for example, only people who know the right key

should be able to retrieve the plaintext from a ciphertex. Therefore, for cryptography to

be effective, it is important that the system that manages these keys is well designed. The

Key Management is a branch of cryptography that encompasses all operations involving

the handling of cryptographic keys: generation, storage, distribution and replacement [16].

1.3. OUR CONTRIBUTIONS 3

The problem with cryptography, in general, is that it requires a significant amount of

resources to be effective. Its algorithms can hardly be implemented in the constrained

devices of the Internet of Things. Recently, a new concept, called lightweight cryptography,

has appeared. It consists of expanding cryptographic mechanisms to the resource-limited

devices, by designing new lightweight algorithms. These new mechanisms should be able

to provide a good compromise between security, performance and resource requirements

(hardware cost) [18]. The international standardization of lightweight cryptography is

currently underway [96]. For lightweight cryptography to be efficient, it is essential that

the Key Management can also operate over resource-limited devices. Lightweight Key

Management is therefore the essence of secure communication in the Internet of Things

and the core of our work.

1.3 Our contributions

In this thesis, we propose a novel lightweight Key Management protocol to secure

communication between the heterogeneous and dynamic devices of the Internet of Things.

To achieve this, we start by identifying the expectations of the Internet of Things from

the Key Management. On this basis, we classify the related works according to different

criteria. The objective is to clearly present the remaining challenges and to propose new

solutions to overcome them. We then show that our protocol is more suitable for the

Internet of Things than the existing ones. We also implement it on resource constrained

IoT motes that are based on the Contiki operating system. The aim is to experimentally

evaluate the performance of our protocol and to complete the theoretical analyses.

To design our solution, we consider three modes of communication: device-to-device, group

and multi-group communication. In device-to-device communication, a device communi-

cates with a specific other device. In group communication, a device communicates with a

set of other devices. It can be its direct neighbors or all the network members participating

in the same service. As a device can participate in several services at the same time, it may

need to communicate only with those participating in a particular service. This is referred

to as multi-group communication. While most of the related works only focus on one of

these communication modes, our solution secures all three of them. It then considers the

needs of each of them and best meets its requirements. To achieve this, we proceed in

stages and propose several major contributions. These contributions are summarized in

the following points:

4 CHAPTER 1. INTRODUCTION

Dynamic Key Management for secure device-to-device communication: We

introduce a Key Management protocol for secure device-to-device communication in

dynamic networks. Compared to the existing schemes, our solution provides a good

compromise between the Internet of Things requirements: resilience, connectivity,

mobility, flexibility, efficiency and scalability. To achieve this balance, the network

members are uniformly distributed into logical sets. A device shares then a distinct

pairwise key with each member of its set and a unique pairwise set key with the

members of each of the other sets.

Heterogeneous Key Management for secure group communication: We enhance

our protocol so that it also secures group communication in heterogeneous networks.

Our new solution ensures the forward and backward secrecy and resists to collusion

attacks. Also, by balancing the loads between the heterogeneous devices according

to their capabilities, our solution becomes more efficient and highly scalable.

Blockchain-based decentralized Key Management for multi-group communica-

tion: We complete our solution so that it deals with the multi-group communication.

We make sure that it guarantees the secure coexistence of several services in a single

network. We also propose a decentralization of our protocol based on the blockchain

technology and smart contracts. Thus, the system continues to operate when an entity

fails and the compromise of a participant does not jeopardize the whole network.

1.4 Organization of the manuscript

The remainder of the manuscript is organized as follows. In chapter 2, we present the

general context of our work: the Internet of Things, network security and the blockchain

technology. In chapter 3, we detail the Key Management and emphasis its importance in

network security. We also propose a classification of the existing solutions and identify the

challenges they face in the Internet of Things. In chapter 4, we introduce a dynamic Key

Management protocol for secure device-to-device communication in the Internet of things.

In chapter 5, we present a heterogeneous Key Management protocol for secure group

communication in the Internet of Things. In chapter 6, we introduce a blockchain-based

decentralized Key Management protocol for multi-group communication in the Internet

of Things. In chapter 7, we propose an implementation of our solution considering the

Contiki operating system and resource constrained IoT platforms. Finally, we conclude

our work, in chapter 8, and present the main future work directions and open issues.

Chapter 2

General context

In this chapter, we present the general context of our work and define the main concepts

necessary to understand the rest of the manuscript. The first notion we introduce is the

Internet of Things (IoT). This is a network made up of a large number of everyday objects,

which are able to automatically communicate to computer systems, people and each other.

The aim is to provide various services for the benefit of society. One of the main challenges

that are slowing down the development of the IoT is how to secure communication between

its devices. This leads us to the second concept related to our work, which is network

security. Network security consists of designing a set of mechanisms to protect the network

against existing and emerging threats. Some security protocols require a third party to

function properly. This causes several problems, namely the dependence of a single point

of failure and the need to trust a central entity. The blockchain, which is the last concept

we introduce in this chapter, is a solution to these issues. It is a decentralized and secure

storage technology. Based on smart contracts, the blockchain can be used to securely

replicate an application on several entities.

5

6 CHAPTER 2. GENERAL CONTEXT

2.1 Introduction

The number of devices connected to Internet is constantly increasing since its appearance.

Now that this number far exceeds that of people in the world, we are no longer talking

about Internet but about Internet of Things (IoT). The IoT devices, commonly called

smart objects, are everyday objects that are able to automatically communicate to

computer systems, people and each other. To achieve this, many software and hardware

technologies are emerging. The IoT gives rise to revolutionary applications such as health

care, environment monitoring, smart homes and smart cities. The aim is to provide various

services for the benefit of society. One of the main challenges facing the development of

the IoT is how to secure communication between this huge number of smart objects [51].

Network security consists of designing a set of policies and mechanisms to protect the

network against existing and emerging threats. Although it is a fairly old discipline, it

remains an open issue and the subject of numerous research. It gets even more complex

over time since the motivations and capacities of threat actors continue to evolve. Despite

its benefits, the IoT has exacerbated this problem even more. This is due to the wireless

nature of communications, the limited resources of its devices and many other reasons

[141]. Some security protocols require a third party for proper functioning. This creates

several problems, namely the dependence of a single point of failure and the need to trust

a central entity. The blockchain, which is a decentralized and secure storage technology,

is a solution to these issues.

The term blockchain first appeared in Nakamoto’s Bitcoin paper describing a new

decentralized cryptocurrency [93]. The technology started then to be used in various

applications. The blockchain is composed of a chain of blocks, each storing a cryptographic

hash of the previous one. To guarantee that each network member records the same

transactions in the same order, consensus algorithms are used. They define a set of rules

to achieve overall system reliability in the presence of a number of faulty participants.

The blockchain technology also allows the implementation of smart contracts. These are

computer programs that are defined beforehand and stored in the blockchain. They can be

run, automatically and in a decentralized way, by the blockchain participants to execute

the settlement of a contract between organizations, people or objects.

The remainder of this chapter is organized as follows. Section 2.2 presents the fundamen-

tals of the Internet of Things. Section 2.3 introduces the fundamentals of network security.

Section 2.4 presents the blockchain technology and smart contracts. Section 2.5 concludes

the chapter.

2.2. FUNDAMENTALS OF THE INTERNET OF THINGS 7

2.2 Fundamentals of the Internet of Things

The Internet of Things (IoT) is an emerging technology that promises to make our daily

lives more comfortable in many ways. It aims to extend connectivity beyond standard

devices (such as computers, tablets and smartphones) to all everyday objects. These

devices, commonly known as smart objects, can then automatically collect data from their

environment, store it, process it and even exchange it with each other. This enhances their

functionalities and makes them able to offer new services to society, which until then were

not able to provide.

2.2.1 IoT architecture

The common IoT architecture is composed of three layers: devices, gateways and cloud

(Figure 2.1).

Figure 2.1 – IoT architecture.

Devices: The IoT devices, or smart objects, are everyday devices improved to increase

their functionality (See section 2.2). A smart object involves an exchange between

the physical and the digital words [72]. Let us take as example an alarm clock. If it

is not smart, we can only set it to a specific time and it will alert us when the time

comes. If the alarm clock is smart then it will be able to interact with its environment

and communicate to other smart objects. It can, for example, communicate to the

lighting so it gradually brightens our room in the morning. It can also communicate

to the coffee maker and the heating, so that our place is warm and our coffee is ready

and hot for us when we wake up. The IoT devices have the particularity of being

heterogeneous (They are based on different technologies) and usually suffer from a

lack of resources. For these reasons, IoT gateways are required [149].

8 CHAPTER 2. GENERAL CONTEXT

Gateways: The IoT gateways are more powerful equipment than the IoT devices. They

are mainly used as intermediate between other components. They can be used to

translate communication between the heterogeneous devices if they need to exchange

their data. They can also be used to store and process the data that the IoT devices

can not handle for lack of capacity (whether in terms of storage or calculation).

Finally, the IoT gateways can act as a middle layer between devices and cloud to

protect the system from malicious attacks and unauthorized access [149].

Cloud: The IoT cloud is a sophisticated high performance network of servers optimized

to perform high speed data processing and deliver accurate analyses. They are mainly

used instead of gateways for two reasons: efficiency and remote access. The number

of IoT devices being constantly increasing, the gateways may not be enough to

efficiently manage the huge amount of data collected by all these devices. The IoT

cloud offers then tools to collect, process, manage and store massive data in real time.

Furthermore, the final user may need data collected by devices located far away. The

IoT cloud can solve this problem by allowing remote access to the data collected by

the devices [106].

2.2.2 IoT features

There are mainly four features that distinguish a smart object (IoT device) from a normal

object: interaction with the environment (sensing and actuation), data management

(processing and storage), communication and identification [72] (Figure 2.2).

Figure 2.2 – IoT features.

2.2. FUNDAMENTALS OF THE INTERNET OF THINGS 9

Interaction with the environment: To be able to interact with its environment, i.e.

collect data from it and act on it, a smart object must be equipped with sensors and

actuators [52]. A sensor is an electronic device whose purpose is to detect events or

changes in its environment. It is able to convert a physical, biological or chemical

parameter (e.g. velocity, GPS coordinates, temperature, humidity, etc...) into an

electrical signal that can be stored and processed by the device. On the opposite,

an actuator transforms an electric signal into a physical parameter. Sensors and

actuators act then as a bridge between the physical and the digital words.

Data management: Although most of calculation and storage are done on gateways and

the cloud, smart objects are usually equipped with microcontrollers and non-volatile

memories for local computing and storage [54]. The aim is to allow them to locally

process the data they can handle and to autonomously make some decisions. This

on-device intelligence will reduce network traffic and thereby energy consumption.

Communication: Smart objects must be able to communicate with each other and

with the rest of IoT components. For this purpose, a number of different wireless

communication technologies have been developed. They can be classified according

to two axes: signal range and energy consumption [116] (Figure 2.3). Although a

high-range communication provides a better connectivity, it is less secure. Indeed, it

is easier to capture the traffic between two communicators. Low energy consumption

technologies are usually more suitable for communications involving the IoT resource-

constrained devices. However, they cannot achieve a high data rate.

Figure 2.3 – IoT communication technologies.

Identification: To communicate, smart objects need to be able to identify one another.

An identifier is like an electronic fingerprint that can take the form of a name, an

address or a code. Several technologies are used to uniquely identify smart objects.

Barcodes, for example, are optical representation of data, while RFID use Radio

Frequency [66]. Therefore, unlike a barcode, an RFID tag does not need to be within

the line of sight of the reader and my operate hundreds of meters from it.

10 CHAPTER 2. GENERAL CONTEXT

2.2.3 IoT applications

The IoT makes possible the development of a huge number of applications, which have

the potential to improve our lives. We can cite as examples: smart homes and cities, smart

vehicles, smart health and smart environment.

Smart homes and cities: Smart objects distributed in houses and cities can make our

lives more comfortable [55]. The room lighting can automatically change according

to time of day. The heating may be adapted to our preferences and to the weather.

Energy can be saved by automatically switching off the electrical equipments when

not needed. Domestic incidents may be avoided with appropriate monitoring and

alarm systems. Smart objects have also the ability to improve our cities. The standby

lightning can switch on only when someone walks by. The air pollution and the CO2

emissions may also be controlled to improve the environment [119].

Smart vehicles: Smart objects can be used by vehicles to sense their environment

and autonomously navigate without human intervention. This will relieve travelers

from driving and reduce accidents due to human errors [6]. Smart vehicles can also

communicate with each other to control traffic, minimize congestion, find parking

spots and avoid crashes.

Smart health: The global population is aging and the number of chronic diseases is

increasing [100]. Basic healthcare will become out of reach to most people in the

future. To resolve this problem, the IoT can be used to move the medical checks

from hospitals to the patients’ home. This will save a lot of time on both sides.

Patients can then be provided with smart objects, which automatically collect health

data (e.g. blood pressure, weight and blood sugar level) and share it with authorized

people. These devices can also automatically alert hospitals in the case of a medical

emergency like heart failure, diabetes, asthma attacks. Old people will be able to live

without fear of not being able to call for help when they are alone.

Smart environment: Smart objects can be used to control and monitor the environment.

They may detect a forest fire as soon as it starts. They then automatically deliver

warning alarms so that firefighters can act before the fire spread. Smart objects

can also be used to track endangered animals. Thus, they may live in their natural

habitat, while being monitored all the time [95]. The IoT devices can also be deployed

in ponds and tanks to monitor different parameters in real-time. The quality of the

water can then be controlled to prevent some diseases that could affect people and

animals.

2.2. FUNDAMENTALS OF THE INTERNET OF THINGS 11

2.2.4 Top IoT challenges

Although some of the IoT applications are currently available in our society, many

challenges are slowing down their development. The main concerns of the IoT developers

are [51]: data management, energy consumption, heterogeneity and especially security

(Figure 2.4).

Figure 2.4 – Top IoT challenges.

Data Management: In the future, billions of devices will be connected to the Internet.

Managing the huge amount of heterogeneous data they can collect imposes significant

challenges, especially when time, resource, and processing capabilities are limited.

Energy consumption: In most of the IoT applications, devices need to run in complete

autonomy for several months or possibly years. However, these devices are usually

wireless and limited by their small physical size. Consequently, they have restricted

battery energy supply. It is therefore really difficult to power these devices to keep

them operational for a long period of time.

Heterogeneity: Companies develop IoT protocols and materials independently of each

other. This results in many different technologies that usually cannot integrate with

one another. This lack of compatibility becomes a real issue. For example, as presented

in the previous section, the IoT devices can use various communication technologies.

These technologies being spread over different frequency, it is not possible to make

all the IoT devices communicate directly.

Security: The IoT devices are vulnerable to cyber-attacks. Another task for engineers

is then to secure them, especially when they collect sensitive data. However, having

constrained computational resources, it is not possible to install any antivirus software

on the IoT devices and the sophisticated security mechanisms are not efficient on

them. Therefore, there is a need to design alternative security methods that are at

least just as effective as the existing ones, while requiring fewer resources.

12 CHAPTER 2. GENERAL CONTEXT

2.3 Fundamentals of Network Security

Security is the primary concern of the IoT developers and one of the main challenges that

are slowing down the expansion of this technology [51]. Even before the appearance of the

IoT, securing sensitive and classified data was considered as a major issue. It is becoming

more and more complex since the motivations and capabilities of threat actors continue

to evolve. The data to be protected can be either in rest (sitting on storage media) or in

motion (moving across the network). Network security consists of designing mechanisms

to protect the data in motion from attacks and to fulfil a certain number of objectives.

2.3.1 Network security objectives

Network security objectives usually involve three basic concepts, commonly referred to as

the CIA triad [88]: confidentiality, integrity and availability (Figure 2.5).

Confidentiality: Confidentiality means that only the authorized entities must be able to

view sensitive and classified data. Any other party must not be able to understand

these data even if it can access them.

Integrity: Integrity means that only the authorized entities must be able to modify

sensitive and classified data. An unauthorized modification on them must be detected.

Availability: Availability means that the data and system must be accessible to the

authorized entities all the time. It must be available even in case of attempted attack

or equipment failure.

Figure 2.5 – Network security objectives.

2.3. FUNDAMENTALS OF NETWORK SECURITY 13

2.3.2 Network security attacks

There are a number of threats that jeopardize the network security. Depending on the

above-mentioned objectives, the network attacks can be classified into three categories

[131]: passive, active and denial of service attacks.

Passive attacks: Passive attacks compromise confidentiality. They are usually based on

eavesdropping as the attacker aims to access the data illegally without altering it

(Figure 2.6a). Packet capturing and port scanning are examples of such attacks. In a

packet capturing attack, the attacker captures the data packets crossing the network.

He will then be able to read sensitive data like passwords or card numbers. In a port

scanning attack, the attacker starts by searching for the TCP or UDP ports that are

open on the target system. After that, he tries to discover the services running on

these ports and the vulnerabilities in the software used.

Active attacks: Active attacks compromise integrity. They are usually considered as

more dangerous attacks since the attacker does not just access the data but also

modifies it (Figure 2.6b). He can then delete its content or inject new one. Man-in-

the-middle attack is an example of such attacks. The attacker puts himself between

two communicators to manipulate the packets exchanged between them.

Denial of service attacks: Denial of service (Dos) attacks aim to prevent a system

from functioning properly and therefore compromise availability (Figure 2.6c). These

attacks try to overwhelm the system by monopolizing or exhausting its resources.

DoS attacks can be more severe if they are executed in a distributed manner.

(a) Passive attacks. (b) Active attacks.

(c) Dos attacks.

Figure 2.6 – Network security attacks.

14 CHAPTER 2. GENERAL CONTEXT

2.3.3 Network security and cryptography

Cryptography is one of the strongest tool used to provide security services. It is considered

both as an art of secret writing and a science used to protect sensitive and classified data.

In addition to fulfilling two main security objectives (data confidentiality and integrity),

cryptography ensures message authentication and non-repudiation [102]. In other words,

it guarantees the authenticity of the author of a message and provides the proof that the

announced author is the real one. Cryptography relies on two basic components: a key and

an algorithm (or methodology). Keys are secret parameters that are usually known only

by authorised entities. Algorithms are generally known to everyone. They are procedures

that take as input data and keys and produce an output. There are mainly three kinds of

such algorithms: ciphers, hash functions and key derivation functions.

2.3.3.1 Ciphers

Ciphers are mathematical algorithms that can be applied to a block of data (plaintext) to

convert it into a secret code (ciphertext) that hides the true meaning of the information.

Ciphers must be reversible as it must be possible to retrieve the plaintext from the

ciphertext. Encryption is the name given to the operation of using a cipher to generate

the ciphertext, while decryption is used to refer to the reverse operation that consists of

retrieving the plaintext. Ciphers being generally known to everyone, they are based on

secret cryptographic keys to ensure confidentiality. An attacker, who does not have the

appropriate keys, should not be able to retrieve the plaintext from a ciphertext. Ciphers

can be classified into two categories: symmetric and asymmetric.

Symmetric algorithms: Also known as secret key algorithms, they involve the use of the

same key for encryption and decryption. Their effectiveness depends on the secrecy

of the shared keys. As long as the sender and receiver are the only ones to know it,

they can securely exchange messages. Common examples of symmetric algorithms

include the following: DES [85], 3DES [59], AES [33], and Blowfish [117].

Asymmetric algorithms: Also known as public key algorithms, they use different keys

for encryption and decryption. Each network member is associated with a pair of

related keys: a public key which is disseminated widely and a private key known only

by it. The effectiveness of these algorithms depends then on the difficulty of guessing

the private key from the public one. Common examples of asymmetric algorithms

include the following: RSA [107], ElGamal [44] and ECC [20].

2.3. FUNDAMENTALS OF NETWORK SECURITY 15

2.3.3.2 Hash functions

Cryptographic hash functions are mathematical operations that convert a block of data

of arbitrary length to a fixed-size numerical value. This value should appear random and

is called message digest or simply hash value. A cryptographic hash function must satisfy

the following requirements [9]:

• It must be efficiently computable, meaning that the calculation of the hash must be

easy and quick;

• It must be collusion resistant, i.e. it must not give the same hash for different input

data;

• It must be a one-way function, in other words it is impossible (at least difficult) to

find the input data from the hash;

• It must be deterministic so that the same input always results in the same hash;

• It must ensure that a small change to the input modifies the hash so that it appears

uncorrelated with the first one.

Cryptographic hash functions can be used to verify data integrity. The sender may apply

such a function on a message and attach to it the resulting hash. The receiver can then

run the same function on the received message and compare the obtained hash with the

one he received with the message. The three most popular cryptographic hash functions

are MD5 [108], SHA-1 [43] and SHA-2 [122]. Just like ciphers, these functions are usually

known to everyone. Therefore, they need to be combined with secret cryptographic keys

to be effective. An attacker, who does not know the key used for generating the hash,

should not be able to generate the same hash. There are mainly two methods of using a

cryptographic hash function along with cryptographic keys.

HMAC: Hashed Message Authentication Code (HMAC) protocol consists of combining

a cryptographic hash function along with a shared key to calculate a code that is

attached to the massage sent [74]. The receiver can then use the same key and hash

function on the message and compare the result to the received code (Figure 2.7a).

Thus, in addition to verifying the data integrity, the HMAC makes it possible to

authenticate the sender of the message. Indeed, an attacker, who does not know the

secret key, can not alter the message without being noticed since he cannot recalculate

the correct hash.

16 CHAPTER 2. GENERAL CONTEXT

Digital signature: While HMAC protocol uses symmetric keys along with a cryp-

tographic hash function to generate an authentic code, digital signature uses

asymmetric encryption [73]. The author of a message signs his message by hashing

it and then using his private key to encrypt the obtained result. The receiver can

decrypt the signature using the public key of the sender, calculate the hash of the

received message and compare the two results (Figure 2.7b). If there is a match,

the receiver will be able to ensure the data integrity, authenticate the sender of the

message and be sure of its identity (non-repudiation). Indeed, being the only one to

know his private key, no one else can generate the same digital signature.

(a) HMAC. (b) Digital signature.

Figure 2.7 – Cryptographic hash functions.

2.3.3.3 Key derivation functions

Key derivation is a process by which a cryptographic key is derived from a password, a

shared secret or an other key [16]. Key derivation functions must be deterministic so that

the same input data always results in the same key. They are mainly used in the following

three cases:

• They can be used when key expires to update them.

• They can be used when two or more participants collaborate to generate a shared

key from several shared secrets.

• Passwords being usually weak, key derivation functions can be applied to them to

generate longer and more random keys.

2.4. BLOCKCHAIN 17

2.4 Blockchain

Given their complementary features, more and more applications that combines the

IoT and the blockchain are emerging. The blockchain is a decentralized and secure

storage technology. It is often confused with Bitcoin and cryptocurrencies in general.

The term blockchain indeed first appeared in Nakamoto’s Bitcoin paper describing a new

decentralized cryptocurrency [93]. However, due to its many interesting characteristics,

this technology is used today in various applications. We can cite as examples: food

traceability, identity management and delivery of diplomas and certificates.

2.4.1 Blockchain structure

The term blockchain derives from the fact that it is composed of a chain of blocks, each

storing a set of transactions and the cryptographic hash of the previous block [17] (Figure

2.8).

Transaction: It is the storage unit of the blockchain. The data stored in it depends on the

application for which the blockchain is used. In Bitcoin, for example, a transaction

contains data about the sender, the receiver and the amount of coins transferred.

Block: It is a data structure containing a set of transactions, their cryptographic hash

and the hash of the previous block. Note that the first block does not store the hash

of the previous one since there is none. In Bitcoin, for example, this is called the

Genesis Block and is the first block ever created by Nakamoto himself.

Chain: It is a sequence of blocks in a specific order. The key behind blockchain’s security

is the fact that its blocks are linked by their hashes. Any change in a block requires

modifying the hash of all the following ones in the chain, in other words, overwriting

all its content.

Figure 2.8 – Blockchain.

18 CHAPTER 2. GENERAL CONTEXT

2.4.2 Blockchain architecture

Today, many applications use a client-server network (Figure 2.9a). This architecture

is centralized since all data is stored in a single machine (the server) to facilitate its

management. In a blockchain decentralized architecture, on the other hand, everyone

stores and participates in the data management. The system is therefore controlled

by every member of a peer-to-peer network [77] (Figure 2.9b). A blockchain perfectly

illustrates the notion of democratized system. Since these collaborative parties do not

necessarily trust each other, the blockchain technology offers mechanisms allowing them

to reach common consensus. Thanks to that, the data cannot be altered without the

agreement of the whole network, or at least most of them. The blockchain architectures

can be classified into three categories [115]: public, consortium and private (Table 2.1).

(a) Client-Server. (b) Peer-to-Peer.

Figure 2.9 – Client-server vs peer-to-peer networks.

Public blockchain: In a public architecture, the blockchain is accessible and its data can

be managed by anyone who wants to join. A large number of participants offers better

immutability as it is not possible to modify the data after they have been stored in

the blockchain. However, the data management requires a lot of resources. We can

cite as examples of public blockchain: Bitcoin [93], Ethereum [139] and Litecoin [50].

Consortium blockchain: In a consortium architecture, the blockchain is accessible and

its data can be managed only by authorized users from several organizations. With

less participants, it becomes less difficult to alter the data. However, the blockchain

management is more efficient. We can cite as examples of consortium blockchain:

Quorum [10], Hyperledger [24] and Corda [22].

Private blockchain: In a private architecture, the blockchain is accessible and its data

can be managed only by authorized users from a specific organization. With a limited

number of participants, this architecture is the least secure, but the most efficient.

We can cite as examples of private blockchain: Ripple [7], Tendermint [76] and

Hyperledger [24].

2.4. BLOCKCHAIN 19

Property Public blockchain Consortium blockchain Private blockchain

Read permission Public Public or restricted Public or restricted
Write permission Public Restricted Restricted
Efficiency Low Medium High
Immutability High Medium Low

Example Bitcoin Hyperledger Tendermint

Table 2.1 – Types of blockchain architecture.

2.4.3 Blockchain features

Regardless of the architecture adopted, the number of blockchain applications is constantly

increasing. The prime reason behind this is that the blockchain is coming with myriads

of features making it useful in various fields. We can cite as examples [84, 134]:

decentralization, immutability, traceability, anonymity, transparency and security.

Decentralization: It consists of distributing computation and storage over multiple

entities. This solves the single point of failure problem and makes it difficult for

anyone to compromise the system.

Immutability: It means that the data stored in the blockchain are permanent and

unalterable. They cannot be neither modified nor deleted. This brings more trust

between parties and more data integrity.

Traceability: It is possible to track the origin of each transaction in the blockchain. This

helps to prevent from tampering with the records and to quickly identify the source

of a problem when it occurs.

Anonymity: If some users wish to hide their identity, the blockchain technology allows

the use of generated addresses to keep their anonymity. They can then participate in

the blockchain management without giving any personally identifying information.

Transparency: The blockchain content is viewable to everyone and its transactions are

identically recorded in multiple locations. This is why the blockchain is considered

hacking-resistant.

Security: The blockchain uses cryptography to ensure the confidentiality of the exchanged

messages. It is more precisely based on digital signatures so that its participants can

verify the integrity and authenticity of the transactions.

20 CHAPTER 2. GENERAL CONTEXT

2.4.4 Blockchain consensus

The blockchain is a distributed database managed by several participants. A copy of its

content is therefore stored in the memory of each of them. Before actually adding a new

block to the blockchain, all (or at least the majority) of these participants must agree on

it. They accomplish this agreement through consensus algorithms. These are mechanisms

based on a set of rules to guarantee that each participant record the same blocks in the

same order. The existing consensus algorithms can be classified into two categories [17]:

leader-based mechanisms and byzantine fault tolerance-based algorithms.

Leader-based mechanisms: In this class of algorithms, the participants compete to elect

the leader that will validate the next block. Proof of work (PoW) [93], as an example

of such mechanisms, is mainly used in cryptocurrencies such as Bitcoin. Before adding

a new block to the blockchain, each of its participants tries to solve a complex

cryptographic puzzle. This process is referred to as mining and the individuals that

participate in it as miners. The miners compete with each other to solve the puzzle

and the first one to do it is reworded with cryptocurrency. Once the puzzle is solved

by a miner, it becomes the leader and forges the next block. All the other participants

check then if the solution is correct and add the block to their copy of the blockchain.

The verification must be an easy operation compared to the resolution. Solving the

puzzle requires a lot of calculation and thereby wastes a huge amount of energy. Proof

of Stake (PoS) [132] is an other leader-based mechanism, which is more energy-

efficient. Indeed, the leader (also called validator) is chosen according to different

criteria, without having to solve difficult problems. In cryptocurrencies, for example,

the leader can be chosen according to its economic stake. Thus, a participant has a

probability of being elected proportional to the amount of coins it possesses.

Byzantine fault tolerance-based algorithms: These algorithms are mainly based on

communication. Using the Practical Byzantine Fault Tolerance Algorithm (PBFT)

[25], for example, a participant (called proposer) is first elected in a round-robin

fashion. The proposer broadcasts its block to all other participants, which becomes

then validators. Each validator checks the received block, broadcasts a response

(which can be positive or negative) and waits for the responses of the others. When

a validator receives a number of positive responses above a certain threshold (two

thirds of the number of participants in general), it broadcasts a commit and waits for

the responses of the others. When a validator receives a number of commits above

the threshold, it adds the block to the blockchain.

2.4. BLOCKCHAIN 21

2.4.5 Smart contracts

Smart contracts are one of the most promising types of blockchain use. Concretely, they are

autonomous and irrevocable computer programs usually stored in a blockchain. They can

be automatically run by its participants to execute the settlement of a contract between

organizations, people or objects [34]. Smart contracts are self-verifiable, self-executable

and tamper proof. Although the idea of smart contracts was introduced in 1994, by

Nick Szabo, it has not been put into practice until the appearance of the blockchain. It

is precisely this technology that has eliminated the need for a trusted third-party. The

advantages of smarts contracts can be summarized in the following:

• Being stored in a blockchain, smart contracts take advantage of all its features to

secure an agreement between two parties. We have indeed the guarantee that the

terms of the contract cannot be modified.

• Unlike traditional contracts, automating the execution of smart contracts eliminates

the risk of violation of its terms.

• Smart contracts reduce the intermediate costs: the preparation, the monitoring and

the signing of a contract by notaries and lawyers.

Smart contracts are used, for example, in cryptocurrency to automatically exchange coins

between users based on predefined conditions and without third-party involvement. They

can also be used for travel insurance to automatically compensate passengers when their

flights are late or cancelled. This operation is carried out without the need to fill out any

form by clients or to process requests by companies. The sale of personal items is an other

example of smart contracts use. The ownership of the item is automatically transferred

to the buyer when the monetary is received by the seller. This can be done without the

need of a third-party and without risk of fraud (Figure2.10).

(a) Normal contract. (b) Smart contract.

Figure 2.10 – Normal contract vs smart contract.

22 CHAPTER 2. GENERAL CONTEXT

2.5 Conclusion

The purpose of this chapter was to present the general context of our work. We started

by introducing the concept of the IoT, its architecture, features and applications. We also

stated that the main challenge that is slowing down the development of this emerging

technology is security. We then recalled the fundamentals of network security and the

cryptographic mechanisms that are used to achieve its goals. We finally presented the

blockchain and smart contracts, which are other emerging technologies that are closely

linked to the two other concepts.

An important point to consider is that most of the cryptographic mechanisms, that we

covered in this chapter, require keys for their proper functioning. The key to security is

therefore the cryptographic keys. For this reason, the next chapter is entirely devoted to

the concept of Key Management for secure communication between the IoT devices.

Chapter 3

Key Management in the IoT:

Classification and Challenges

In this chapter, we present the objective of our research and the related works. We start

by defining the notion of Key Management and its importance in network security. The

role of such a system can be summarized in the generation, storage, distribution and

revocation of cryptographic keys. Next, we present different criteria that can be used to

classify the existing solutions. These criteria are related to the encryption technique used,

the type of key, the distribution method and the load balancing. We then present some

of the existing Key Management protocols and classify them according to the previously

mentioned criteria. We also discuss each of this categories by citing its advantages and

disadvantages. The aim is to identify the challenges that the related works encounter.

Finally, we summarize our contributions to overcome these challenges.

23

24 CHAPTER 3. KEY MANAGEMENT IN THE IOT: CLASSIFICATION AND CHALLENGES

3.1 Introduction

Cryptographic keys are secret parameters that are combined with cryptographic algo-

rithms to secure communication. They are used to encrypt data, generate HMAC codes,

sign messages and even derive other keys. Thus, only the entities that know the key

must be able to reproduce or reverse the operation for which it was used, i.e. retrieve the

plaintext from a ciphertext, verify the HMAC code, check the digital signature or generate

the same key. Since the effectiveness of cryptographic algorithms depends on keys, it is

important that the system that manages these keys is well designed. The main role of a

Key Management system is therefore to establish secure links between the members of a

network by providing them with cryptographic keys [146].

The Key Management system is first responsible of generating keys. It also stores them,

and sometimes archives them, when necessary. It is in charge of distributing keys on the

appropriate network members as well. Finally, it updates the keys when new members

join the network and replace them when they get compromised. Although different

Key Management protocols were proposed, each of them presents its own limitations

and weaknesses. More importantly, our literature revue shows that none of the existing

solutions meets all the IoT requirements in terms of security and performance. This leads

us to present lightweight cryptography, which aims to use less resources than conventional

cryptography in terms of storage, computing, communication and energy. The goal is to

provide security solutions that can operate over resource-limited devices [23].

To properly categorize the existing solutions and to determine the problems they

encounter, we classify them according to several criteria: the encryption technique used,

the type of key, the distribution method and the load balancing. The combination of these

different parameters gives rise to a number of protocol classes. We discuss the advantages

and disadvantages of each of them. This classification helped us to achieve a comprehensive

view of the exiting Key Management protocols. We were then able to clearly identify the

challenges that these solutions face in the IoT. The Key Management being the purpose

of our work, we propose novel contributions to overcome these challenges. Unlike most of

the existing protocols, our solution is more IoT oriented and better meet its needs.

The remainder of this chapter is organized as follows. Section 3.2 presents the funda-

mentals of the Key Management. Section 3.3 introduces the IoT requirements for the

Key Management. Section 3.4 presents a classification of the existing Key management

solutions. Section 3.5 introduces the Key Management challenges in the IoT. Section 3.6

presents our contributions. Section 3.7 concludes the chapter.

3.2. FUNDAMENTALS OF KEY MANAGEMENT 25

3.2 Fundamentals of Key Management

The proper management of keys is essential to guarantee the effectiveness of cryptography.

Indeed, if an adversary manages to discover the keys, he will be able to thwart all

the cryptographic mechanisms. The Key Management is therefore the essence of secure

communication and the core of our work. It includes all the operations involving the

handling of cryptographic keys: generation, storage, distribution and replacement [16].

3.2.1 Generation

Keys can be generated by their owner(s) or by a trusted third authority. This is mainly

done in three different ways: random generation, key derivation and key agreement [12].

Note that some Key Management protocols have specific methods for generating keys.

Random generation: Keys can be generated using a pseudo-random bit generator

(RNG). This is a device or an algorithm that outputs numbers with properties close

to that of sequences of random numbers (Figure 3.1a) [12].

Key derivation: Keys can be derived from a password or another key using a key

derivation function (KDF). Passwords being usually weak, key derivation functions

can be applied to them to generate longer and more random keys. Moreover, an

expired or compromised key can be combined with an available one to drive a new

key (Figure 3.1b) [14].

Key agreement: Keys can be generated with agreement between participants using

a key agreement protocol (KAP) such as Diffie-helman[38]. The aim is to obtain

the key by merging secret information from several entities (Figure 3.1c) [13]. The

combination of these information can be done by concatenating or exclusive-oring

them for example.

(a) Random generation. (b) Key derivation. (c) Key agreement.

Figure 3.1 – Key generation.

26 CHAPTER 3. KEY MANAGEMENT IN THE IOT: CLASSIFICATION AND CHALLENGES

3.2.2 Storage

The time span during which a key is authorized for use is called cryptoperiod [14]. During

this phase, the key must be available to the appropriate devices. Keys can be stored within

devices if they are being actively used. They may also be stored in more secure external

storage mediums and be recalled when needed. In some cases, keys can even be archived

at the end of their cryptoperiod, so that they can be recovered later [16]. Archived keys

are usually encrypted to ensure their confidentiality.

3.2.3 Distribution

Distribution consists of moving a key from an entity that either owns or generates it

to another that is intended to use it [12]. When secret key distribution is required, the

keys must be transported manually or using secure channels. Manual transporting means

physically moving a device or document containing the key. A secure channel is a path that

uses cryptography to ensure confidentiality and integrity [14]. The distribution of public

keys does not have to be secured, but should ensure to the receiver that the claimed owner

is the actual owner. A trusted entity is usually required to vouch for the identity of users.

3.2.4 Replacement

Keys need to be replaced in two cases: expiration and revocation [14]. A key expires when

its cryptoperiod is over. If a key gets compromised before the end of its cryptoperiod, it

will be revoked and will no longer be operational. Key replacement can be done in two

different ways: rekeying and key update.

Rekeying: The new key is independent of the old one [13]. As long as an adversary

does not have access to the new key, he will not be able to calculate it even if he

knows the old one. This method is more secure and well suited in case the old key is

compromised. It requires nevertheless the distribution of the new key.

Key update: The new key is derived from the old one in a non-reversible way [16]. This

method is more efficient as all entities that share the key can update it independently

of each other. However, an adversary who knows the old key can calculate the new

one. Thus, key update is usually used when a key expired. This method can still be

applied on compromised keys, if it combines them with some secret parameters.

3.3. KEY MANAGEMENT AND IOT 27

3.3 Key Management and IoT

Conventional cryptographic mechanisms, in general, and conventional Key Management,

in particular, are effective in traditional Internet. Desktop and server environments have

indeed enough resources in terms of storage, computing, communication and energy.

However, these mechanisms cannot or can hardly be implemented in the IoT resource-

constrained devices. Even when this implementation is possible, it is not efficient and

does not scale well. New lightweight solutions, including Key Management, are therefore

required to overcome many of the problems of conventional cryptography [23].

3.3.1 Lightweight cryptography

The purpose of lightweight cryptography is to expand cryptographic mechanisms to

resource-limited devices. It consists then of proposing new lightweight solutions or

adapting the existing ones so that they become suitable for implementation on these

devices. To achieve this, these solutions must provide the best compromise between

security, performance and resource requirements (hardware cost) [18]. Figure 3.2 illustrates

an example of the difficulty of satisfying these three contradictory criteria.

Figure 3.2 – Lightweight Key Management.

Lightweight cryptography is a relatively young scientific sub-filed of cryptography whose

international standardization is currently underway. The international standard ISO/IEC

29192 (Lightweight Cryptography) was established at ISO/IEC JTC 1/SC 27. The

U.S. National Institute of Standards and Technology (NIST) launched the Lightweight

Cryptography Project in 2013 and announced a public call for applications of lightweight

cryptographies in 2017 [96].

28 CHAPTER 3. KEY MANAGEMENT IN THE IOT: CLASSIFICATION AND CHALLENGES

3.3.2 IoT requirements for the Key Management

Although lightweight Key Management protocols have been proposed, most of them

are intended for homogeneous and static wireless sensor networks. They rarely consider

the heterogeneous and dynamic nature of the IoT and none of them meets all its

requirements. Thus, we classify the IoT expectations for the Key Management according

to the communication mode. The IoT devices may indeed communicate in three different

ways: device-to-device, group and multi-group communication (Figure 3.3). Each of these

communication modes has different requirements for the Key Management (Table 3.1).

(a) Device-to-device. (b) Group. (c) Multi-group.

Figure 3.3 – IoT communication modes.

Device-to-device communication: A device sends/receives unicast messages to/from

another specific device (Figure 3.3a) [101]. An example of device-to-device communi-

cation (also called node-to-node or pairwise communication) is the Vehicle-to-Vehicle

communication. It is a technology that allows two specific vehicles to exchange

information about their speed and position. Thus, they can avoid crashes, ease traffic

congestion and improve the environment [28]. The device-to-device communication

requires that the Key Management provides good resilience, connectivity, mobility,

flexibility, efficiency and scalability (See Table 3.1).

Group communication: A device sends/receives broadcast messages to/from the

members of the group to which it belongs (Figure 3.3b) [129]. This device must

have previously joined the group legally. It can also voluntarily leave it afterwords or

be evicted if it gets compromised. The group members usually participate in the same

service and thereby have a common interest. An example of group communication

is the Vehicle-to-Everything communication. It consists of allowing a vehicle to

communicate with all the nearby devices (cars, bicycles, public lighting...etc.). The

aim is to make the vehicle sense its environment and therefore take the right decision

[28]. The group communication requires that the Key Management ensures backward

and forward secrecy, collusion resistance, efficiency and scalability (See Table 3.1).

3.3. KEY MANAGEMENT AND IOT 29

Multi-group communication: A device sends/receives multicast messages only to/from

the members of one of the groups to which it belongs (Figure 3.3c) [62]. Unlike group

communication, where a device is supposed to belong to a single group, this mode

considers the possibility that devices can participate in multiple services at the same

time. An example of multi-group communication is smart ambulances [113]. They can

participate at the same time in the intelligent transportation and healthcare systems.

The multi-group communication requires that the Key Management guarantees

independence of services, efficiency and scalability (See Table 3.1).

Communication mode Requirement Description

Device-to-device

Resilience The capturing of a device must have a
minimal impact on the network security

Connectivity The probability of sharing keys between
neighboring devices must be maximum.
Otherwise, they must relay on interme-
diate devices to establish secure paths

Mobility Moving devices must share keys with
their new neighbours

Flexibility Devices must be able to securely join or
leave the network at any time

Group

Backward secrecy New devices must not have access to the
old keys. Thus, when a device joins the
network, the keys must be replaced

Forward secrecy Old members must not have access to
the future keys. Thus, when a device
leaves the network, the keys must be
replaced

Collusion resistance Unauthorized devices must not have ac-
cess to the keys if they cooperate

Multi-group Independence of services The compromise of a service must have
no effect on the others

All three modes
Efficiency Since most of the IoT device suffer from

a lack of resources, the use of these
resources by the Key Management must
be minimal

Scalability Given the tremendous number of IoT
devices, increasing the network size
must not degrade the Key Management
performance

Table 3.1 – IoT requirements for the Key Management.

30 CHAPTER 3. KEY MANAGEMENT IN THE IOT: CLASSIFICATION AND CHALLENGES

3.4 Key Management classification

After identifying the expectations of the IoT from the Key Management, we now analyze

the existing solutions. To properly characterize these solutions, we start by classifying

them according to different criteria. We then discuss each category and deduce the IoT

requirements it meets and those it does not. The objective is to clearly identify the

remaining challenges and to propose new solutions to overcome them.

3.4.1 Classification criteria

After conducting an extensive literature review, we have retained four essential criteria to

classify the existent Key Management solutions: the key cryptography, the key type, the

distribution method and the load balancing. The first two concern the keys themselves,

while the other two relate to how they are managed. Two levels of classification can

therefore be observed: Key level and Management level (Figure 3.4).

Figure 3.4 – Classification criteria.

3.4.1.1 Key cryptography

Depending on whether the same key is used for encryption and decryption or not, the

Key Management protocols are classified into two categories: symmetric and asymmetric

schemes (Figure 3.5).

3.4. KEY MANAGEMENT CLASSIFICATION 31

Symmetric schemes: These schemes involve the use of the same key for encryption and

decryption (Figure 3.5a). They usually require affordable computing capacity and

reasonable computing time. However, their effectiveness depends on the secrecy of the

symmetric keys. The exchange of these keys generally require an amount of storage

and communication growing with the network size. To sum up, Key Management

protocols based on symmetric cryptography are efficient, but not scalable.

Asymmetric schemes: These schemes use two different keys for encryption and

decryption (Figure 3.5b): a public key which may be disseminated widely and a

private key which is known only to the owner. One is always calculated from the

other so that if the first is used for encryption, the second can be used for decryption.

Using asymmetric cryptography, no secret key exchange is required and a device only

needs to store its own keys. However, the effectiveness of this method depends on

the difficulty of guessing the private key from the public one. It is therefor based on

computing power, which makes it resource intensive. To sum up, Key Management

protocols based on asymmetric cryptography are scalable, but not efficient.

(a) Symmetric schemes. (b) Asymmetric schemes.

Figure 3.5 – Key cryptography.

3.4.1.2 Key type

Depending on whether distinct keys are used for each pair of communicators or the same

key is shared by several members, the Key Management protocols are classified into two

categories: pairwise and network wide key schemes (Figure 3.6).

Pairwise schemes: These schemes consist of using distinct keys for each pair of

communicators (Figure 3.6a). They are resilient as capturing a member does not

jeopardize the communication of the others. However, they are not well suitable for

group communication as the same message must be encrypted and sent several times.

32 CHAPTER 3. KEY MANAGEMENT IN THE IOT: CLASSIFICATION AND CHALLENGES

Network wide schemes: These schemes consist of using shared keys that are common to

several network members (Figure 3.6b). They are efficient and scalable as they require

little storage. However, they are not suitable for device-to-device communication as

they lack resilience. Indeed, each device can decrypt the communication of the others.

(a) pairwise schemes. (b) Network wide schemes.

Figure 3.6 – Key Type.

3.4.1.3 Distribution method

Depending on whether the keys are distributed on the network members before deploy-

ment or after, the Key Management solutions are classified into two categories: pre-

distribution and post-distribution schemes (Figure 3.7).

Pre-distribution schemes: These schemes involve the storage of keys in the devices’

memory before their deployment (Figure 3.7a). The keys usually remain unchanged

for the whole lifetime of the network. It is therefore difficult to add new devices

to the network afterwards or revoke those that get compromised. Key Management

protocols based on pre-distribution lack flexibility. They are not suitable for dynamic

networks, whose members change frequently.

Post-distribution schemes: These schemes dynamically provide keys to the network

members and update them when necessary (Figure 3.7b). To achieve this, a trusted

authority is usually used. This centralized entity becomes nevertheless a single

point of failure and the main target of attacks. If it fails, the entire system will

stop operating and if it is attacked, the whole network will be compromised. Key

Management protocols based on post-distribution pose a risk of unavailability and

have a low level of resilience.

3.4. KEY MANAGEMENT CLASSIFICATION 33

(a) Pre-distribution schemes. (b) Post-distribution schemes.

Figure 3.7 – Distribution method.

3.4.1.4 Load balancing

Depending on whether the loads are uniformly distributed on the network members or

balanced between them according to their capabilities, the Key Management protocols

are classified into two categories: homogeneous and heterogeneous schemes (Figure 3.8).

Homogeneous schemes: These schemes uniformly distribute the loads on the network

members and impose the same costs on all of them (Figure 3.8a). Thus, while a

negligible amount of resource is sufficient for some, others will not have enough. Ho-

mogeneous Key Management protocols lack efficiency and scalability in heterogeneous

networks.

Heterogeneous schemes: These schemes balance the overheads between the network

members according to their capabilities (Figure 3.8b). By using a bit more of the

resources of powerful devices, the constrained devices are more likely to support the

overheads. Network performance is therefore improved and its lifetime increased.

Heterogeneous Key Management protocols are efficient and highly scalable in

heterogeneous networks.

(a) Homogeneous schemes. (b) Heterogeneous schemes.

Figure 3.8 – Load balancing.

34 CHAPTER 3. KEY MANAGEMENT IN THE IOT: CLASSIFICATION AND CHALLENGES

3.4.2 Proposed classification

To identify the challenges that related works still face in the IoT, we propose a

classification of these protocols. Thus, we use the following notation to refer to a class of

Key Management solutions: typ
cryKM

loa
dis. The variable “cry” refers to the key cryptography.

It can take two values “sym” for symmetric protocols and “asy” for the asymmetric ones.

The abbreviation “typ” indicates whether pairwise keys, “pai”, or a network wide key,

“net”, is used. The variable “dis” can be replaced by “pre” for the protocols that are

based on pre-distribution and by “pos” for post-distribution schemes. The abbreviation

“loa” specifies whether the load balancing adopted by the scheme is homogeneous, “hom”,

or heterogeneous, “het”. The notation “hyb” can be used, to replace any of the above-

mentioned notations, when a scheme is based on a hybridization of two categories. Finally,

when we refer to all the values of a given criteria we use the notation “ ∗ ” (Table 3.2).

For example, the class ∗
hybKMhom

pos includes all the homogeneous and pre-distribution

Key Management protocols that are based on a hybridization between symmetric and

asymmetric cryptography. These protocols can use either pairwise keys or a network wide

key, but not both at the same time.

Classification criteria Possible choices Notation

Key cryptography

Symmetric symKM
Asymmetric asyKM
Symmetric and asymmetric hybKM
Symmetric or asymmetric ∗KM

Key type

Pairwise paiKM
Network wide netKM
Pairwise and network wide hybKM
Pairwise or network wide ∗KM

Distribution method

Pre-distribution KMpre

Post-distribution KMpos

Pre-distribution and post-distribution KMhyb

Pre-distribution or post-distribution KM∗

Load balancing

Homogeneous KMhom

Heterogeneous KMhet

Homogeneous and heterogeneous KMhyb

Homogeneous or heterogeneous KM∗

Table 3.2 – Classification notations

3.4. KEY MANAGEMENT CLASSIFICATION 35

In Table 3.3, we introduce a classification of the existing solutions based on the criteria

and the notations presented above. Note that although 64 classes can be obtained using

our classification, they have not all been used in the literature. We then discuss each of

the existing classes and present its weaknesses.

Category References Discussion

pai
symKMhom

pre [1, 2, 5, 19, 21,

26, 27, 32, 39,

40, 60, 81, 110,

130, 142–145]

[+] These approaches are efficient for secure device-to-device

communication in static networks, whose members do not

change frequently.

[−] These approaches neither consider the group and multi-

group communication nor the dynamic and heterogeneous

nature of the IoT.

pai
symKM

hom
post [3, 8, 49] [+] These approaches are efficient for secure device-to-device

communication in dynamic networks.

pai
symKM

hom
hyb [30, 31, 48] [−] These approaches do not consider the group and multi-

group communication and lack scalabilty in heterogeneous

networks containing limited-resource devices.

pai
symKMhet

pre [83] [+] These approaches are efficient and scalable for secure

device-to-device communication in heterogeneous networks.

[−] These approaches do not consider neither the group and

multi-group communication nor the dynamic nature of the

IoT.

pai
symKM

het
hyb [41] [+] These approaches are efficient and scalable for secure

device-to-device communication in heterogeneous and dy-

namic networks.

[−] These approaches do not consider the group and multi-

group communication.

net
symKMhom

post [45–47, 80, 120,

129, 133, 135,

138, 140]

[+] These approaches are efficient for secure group and multi-

group communication in dynamic networks.

net
symKM

hom
hyb [148] [−] These approaches do not consider the device-to-device

communication and lack scalabilty in heterogeneous net-

works containing limited-resource devices.

36 CHAPTER 3. KEY MANAGEMENT IN THE IOT: CLASSIFICATION AND CHALLENGES

net
symKMhet

post [79, 124] [+] These approaches are efficient and scalable for secure

group and multi-group communication in heterogeneous and

dynamic networks.

[−] These approaches do not consider the device-to-device

communication.

hyb
symKMhom

pre [58] [+] These approaches are efficient for secure device-to-device,

group and multi-group communication in static networks.

[−] These approaches do not consider the heterogeneous and

dynamic nature of the IoT.

hyb
symKM

hom
hyb [61, 89, 104,

145, 150]

[+] These approaches are efficient for secure device-to-device,

group and multi-group communication in dynamic networks.

[−] These approaches lack scalabilty in heterogeneous net-

works containing limited-resource devices.

pai
asyKM

hom
post [29, 82, 103,

118, 121, 136,

137]

[+] These approaches are scalable for secure device-to-device

communication in dynamic networks.

[−] These approaches do not consider neither group and

multi-group communication nor the heterogeneous nature of

the IoT. Also, being based on asymmetric encryption, they

are not suitable for the IoT constrained devices.

pai
asyKM

het
hyb [105] [+] These approaches are scalable for secure device-to-device

communication in dynamic and heterogeneous networks.

[−] These approaches do not consider group and multi-

group communication. Also, being based on asymmetric

encryption, they are not suitable for the IoT constrained

devices.

pai
hybKM

hom
pre [111, 127] [+] These approaches are efficient for secure device-to-device

communication in static networks.

[−] These approaches neither consider the group and multi-

group communication nor the dynamic and heterogeneous

nature of the IoT.

pai
hybKM

het
post [87, 92] [+] These approaches are efficient for secure device-to-device

communication in heterogeneous and dynamic networks.

[−] These approaches do not consider the group and multi-

group communication.

Table 3.3 – Classification of existing solutions

3.5. KEY MANAGEMENT CHALLENGES IN THE IOT 37

3.5 Key Management challenges in the IoT

Our literature review and the classification of the exiting solutions allow us to identify

the challenges that are facing the Key Management in the IoT. We summarize these

challenges in the following points:

• Most of the Key Management protocols consider either device-to-device or group and

multi-group communication. As the IoT involves the three modes of communication,

none of these schemes is suitable for it. Indeed, if the same key is used for all device-

to-device communication, every network member will be able to decipher them. If

several keys are used in group communication, the same message will be encrypted

and sent several times. This will require additional calculation and communication

and thereby more energy consumption. Finally, most of the existing schemes suffer

from considerable overheads and are not suitable for the IoT constrained devices.

Implementing different protocols will then be too heavy for them to handle.

• Most of the Key Management protocols proposed to secure device-to-device

communication are based on pre-distribution. They are motivated by the fact that

they do not require a third party to attribute secret keys to the network members.

However, pre-distributed schemes are rigid as it is difficult to add new devices to the

network after the deployment. They are therefore more suitable for static networks,

which is not the case of the IoT.

• Most of the Key Management protocols based on post-distribution relay on a single

entity to mange the keys. This entity becomes a single point of failure and the main

target of attacks. If the central entity fails, the entire system will stop operating.

Moreover, if this entity is attacked, the whole network will be compromised.

• Most of the Key Management protocols use the same parameters to secure all

communications. As the IoT provides various services, communication within a

service will be accessible to all devices even if they did not subscribe to it. Moreover,

the capture of a member will jeopardize all services.

• Most of the Key Management protocols do not consider the heterogeneous nature of

the IoT. They do not balance the loads between devices and impose the same costs

on a powerful computer or a weak sensor. While a negligible part of the former’s

resources is used, those of the latter may not even be enough. Moreover, the few

works, which are intended for heterogeneous networks, divide the devices into two

classes only (powerful and constrained) and do not adapt to the network state.

38 CHAPTER 3. KEY MANAGEMENT IN THE IOT: CLASSIFICATION AND CHALLENGES

3.6 Our contributions

In this thesis, we propose a novel Key Management protocol to secure the communication

between the heterogeneous and dynamic IoT devices. We then show that our solution,

of class hyb
hybKM

het
post, is more suitable for the IoT than the existing solutions. Although

this class best matches the IoT, we have not encountered it in the literature. An

hybridisation of symmetric and asymmetric cryptography allows to take advantages of

each and overcome its disadvantages. Combining pairwise and network wide keys also

offers the possibility of secure the three modes of IoT communication. A post-distribution

based solution consider the dynamic nature of the IoT. Finally, the IoT devices having

different capabilities, the Key Management system must be heterogeneous. To design our

solution, we proceed in stages and propose several major contributions:

• In chapter 4 , we introduce a symmetric Key Management protocol for secure device-

to-device communication in dynamic networks. Compared to the existing schemes

of the class pair
symKM

hom
post , our solution provides a good compromise between the IoT

requirements: resilience, connectivity, mobility, flexibility, efficiency and scalability.

To achieve this balance, the network members are uniformly distributed into logical

sets. A device shares then a distinct pairwise key with each member of its set and

a unique pairwise set key with the members of each of the other sets.

• In chapter 5 , we enhance our protocol so that it also secures group communication in

heterogeneous networks. Our new solution, of class hyb
symKM

het
post, ensures the forward

and backward secrecy and resists to collusion attacks. Furthermore, by balancing the

loads between the heterogeneous devices according to their capabilities, our solution

becomes more efficient and highly scalable.

• In chapter 6 , we complete our solution so that it becomes of class hyb
hybKM

het
post. In

this final version, we first deal with the multi-group communication. We make

sure that our solution guarantees the secure coexistence of several services in a

single network. We also propose a decentralization of our protocol based on the

blockchain technology and smart contracts. Finally, by combining symmetric and

asymmetric cryptography, our solution securely distributes the Key Management

on multiple entities. Thus, the system continues to operate when an entity fails and

the compromise of a participant does not jeopardize the whole network.

• In chapter 7 , we propose an implementation of our solution, considering the

Contiki operating system and resource constrained IoT platforms, to experimentally

complete the theoretical analyses.

3.6. OUR CONTRIBUTIONS 39

3.6.1 Notations

Our solution can be hosted on servers (the cloud) or gateways to manage the keys, which

are used by devices to secure communication. It can be implemented in a centralized or

decentralized way. Thus, regardless of where and how it is implemented, we use the term

Key Manager to refer to the implementation of our protocol on servers/gateways and the

term node to refer to its implementation on devices (Figure 3.9).

Figure 3.9 – IoT network (Key Manager and nodes).

The main notations, that are used in multiple sections of the manuscript, are summarized

in Table 3.4.

Notation Definition

u, v ,w Examples of nodes

cu The capability of the node u in number of keys

n The number of nodes in the network

S ,T ,U Examples of sets (or subgroups)

ms The size of the set S

mcs The minimum capability of the set S

p The number of sets in the network

G , I Examples of groups

N The network

BP A Blockchain Participant

r The number of BPs in the network

cp The consensus period

ct Maximum temporary transactions

KDF A Key Derivation Function

Table 3.4 – Summary of notations.

40 CHAPTER 3. KEY MANAGEMENT IN THE IOT: CLASSIFICATION AND CHALLENGES

3.6.2 Application and threat model

Our solution can be used to secure communication in any Internet of Things application.

It is indeed well suitable for dynamic and heterogeneous networks containing limited-

resources devices. The motes on which we preformed the experiments are used in

smart grids, smart homes, smart buildings, intelligent lighting systems and other IoT

applications. A concrete example of an application for which the use of our solution

would be interesting is smart cities. They indeed contain a huge number of heterogeneous

devices (servers, computers, smartphones, gateways, sensors. . . etc) spread across the city.

These devices can use the three communication modes of the Internet of Things (device-

to-device, group and multi-group) to provide various services for the benefit of society

(healthcare, intelligent transportation system. . . etc.).

A malicious device can be inside or outside the network [11] and may jeopardize the

security of the three modes of communication (Figure 3.10). An outsider node can store the

messages exchanged between the network nodes (group and multi-group communication)

and decipher them when it joins the network. An evicted member can also pose a threat

to the network, if it is still able to decipher the future communications. If a node or a BP

inside the network is captured, it may try to decrypt the device-to-device communication

of the other nodes. We assume that the blockchain is tamper proof (protected against

P2P attacks such as eclipse or hijacking attacks). An attacker can not alter its content

unless it has a capability that exceeds 51 % of the overall network capacity.

Figure 3.10 – Threat model and countermeasures

3.7. CONCLUSION 41

3.7 Conclusion

The purpose of this chapter was to present the Key Management in the IoT. We began by

introducing the concept of Key Management and its important role in network security.

This role includes the generation, storage, distribution and revocation of cryptographic

keys. Next, we defined different criteria (the key cryptography, the key type, the

distribution method and the load balancing) that can be used to classify the related

works. We also presented some of the existing Key Management protocols and classified

them according to the previously mentioned criteria. We discussed each of this categories

by citing its advantages and disadvantages. The aim was to identify the challenges that

the related works encounter. Finally, we summarized our contributions to overcome these

challenges.

In the next chapter, we will present our first contribution. It is a novel symmetric Key

Management protocol for secure device-to-device communication in dynamic networks.

This first step of our solution belongs to the class pair
symKM

hom
post .

Chapter 4

Dynamic Key Management for

Secure Device-to-Device

Communication

In this chapter, we propose a novel Key Management protocol for device-to-device

communication in the IoT. Unlike most of the exiting schemes based on symmetric

pairwise keys, our solution consider the dynamic nature of the IoT as it is based on

post-distribution. Furthermore, compared to related works, our protocol provides a good

compromise between the IoT requirements: resilience, connectivity, mobility, flexibility,

efficiency and scalability. Indeed, we prove that our solution is resilient as the capture of

a member compromises a negligible part of a large network. Moreover, we show that our

scheme has a good network connectivity and allows node mobility. It is then efficient as it

does not require additional calculation or communication costs on the network members.

We also demonstrate that our protocol is scalable as storage cost on the network members

does not significantly increase when the network gets larger. We finally show that our

solution is flexible as it supports the dynamic deployment of nodes.

43

44 CHAPTER 4. DYNAMIC KEY MANAGEMENT FOR SECURE DEVICE-TO-DEVICE

COMMUNICATION

4.1 Introduction

In device-to-device communication (also called node-to-node or pairwise communication),

an IoT device sends/receives unicast messages to/from another specific device [101]. An

example of device-to-device communication is the vehicle-to-vehicle communication. It

is a technology that allows two specific vehicles to exchange information about their

speed and position. Thus, they can avoid crashes, ease traffic congestion and improve

the environment [28]. The device-to-device communication in the IoT requires that the

Key Management provides good resilience, connectivity, mobility, flexibility, efficiency and

scalability. Although different protocols have been proposed to secure device-to-device

communication, each of them presents its own limitations and weaknesses.

The existing solutions proposed for traditional Internet and static wireless sensor networks

are not suitable for the IoT. They rarely consider the dynamic nature of its devices

or their limited resources. Based on asymmetric cryptography, the Key Management

protocols used in traditional Internet usually imply intensive computing, which makes

them impractical on the IoT constrained devices [141]. The solutions proposed for static

wireless sensor networks are lighter since most of them use symmetric cryptography.

However, they generally store the keys in the device memories before deployment. This

key pre-distribution makes it difficult to add new nodes afterwards in dynamic networks.

To address these issues, we propose a novel Key Management protocol, for device-to-device

communication in the IoT, belonging to the class pair
symKM

hom
post . Unlike most of the exiting

schemes based on symmetric pairwise keys, our solution consider the dynamic nature of the

IoT as it is based on post-distribution. Compared to related works, our solution provides

a good compromise between the IoT requirements: resilience, connectivity, mobility,

flexibility, efficiency and scalability. To achieve this balance, the nodes are uniformly

distributed into logical sets. A device shares then a distinct pairwise key with each member

of its set and a unique pairwise set key with the members of each of the other sets. We

prove that our solution is resilient as the capture of a member compromises a negligible

part of a large network. We also show that our scheme has a good connectivity and

mobility. It is then efficient as it does not require additional calculation or communication

costs on nodes. We finally demonstrate that our protocol is scalable as nodes’ storage cost

does not significantly increase when the network gets larger.

The remainder of this chapter is organized as follows. Section 4.2 presents related works.

Section 4.3 introduces our solution. Section 4.4 presents the security analysis. Section 4.5

introduces the performance evaluation. Section 4.6 concludes the chapter.

4.2. RELATED WORKS 45

4.2 Related Works

In this chapter, we are interested in device-to-device communication and symmetric

cryptography. we then focus on the class pai
symKM∗

∗. Solutions belonging to this class can be

classified into: deterministic, pure probabilistic and deployment knowledge based schemes.

4.2.1 Deterministic schemes

Deterministic schemes establish direct secure links between all communicators. The basic

concept [27] consists of using a distinct pairwise key for each pair of devices. Other

approaches were then proposed. Polynomial based protocols [8] use bivariate polynomials

(f (x , y) =
∑t

(i ,j) aij x
iy j) instead of pairwise keys. These polynomials are chosen so that

f (x , y) = f (y , x) and in each node i is stored f (i , y). A pair of nodes (i , j) can calculate

the shared key f (i , j). Matrix based schemes [21, 39, 130] store, in each node i , the i th

row vector of a symmetrical matrix and the i th column vector. Two nodes can exchange

their columns and multiply them by their own secret row to get the shared pairwise key.

Deterministic schemes provide a perfect resilience, guarantee a total connectivity coverage

and support node mobility. This is because each pair of nodes share a pairwise key.

However, this imply that every device needs to store as many keys as there are nodes

in the network. Although the work presented in [32] managed to reduce storage by half,

it is still proportional to the network size. Furthermore, the larger is the network, the

more vulnerable the polynomial and matrix based approaches are to compromise. This

is because captured nodes can collaborate to recover the polynomial or the Matrix used

to generate the keys. Deterministic schemes are not scalable and are not suitable for the

IoT. Also, most of them lack flexibility as they are based on pre-distribution (Figure 4.1).

4.2.2 Pure probabilistic schemes

Pure probabilistic schemes are based on randomness to store fewer keys on nodes, without

guaranteeing that each pair of nodes shares a key. The basic concept was introduced in [49].

It consists of generating a large pool of keys and to randomly distribute some of them (a

key ring) to each node. Two neighboring nodes can then communicate only if they share a

common key. Otherwise, they relay on intermediate nodes to establish secure links. Other

protocols [1, 2, 41] were proposed to enhance this method. Using the Q-composite [27]

scheme, nodes can communicate only if they share Q keys. Also, polynomial pool based

schemes [26, 83, 110, 145] use a pool of polynomials instead of keys.

46 CHAPTER 4. DYNAMIC KEY MANAGEMENT FOR SECURE DEVICE-TO-DEVICE

COMMUNICATION

Probabilistic schemes are more scalable than the deterministic ones, since the storage

on nodes is independent of the network size. They are nevertheless less resilient and

efficient. Indeed, keys may be shared by more than two nodes, making them capable

of deciphering each other’s device-to-device communication. Furthermore, intermediate

nodes may be necessary to establish secure links between the communicators that do not

share a common key. This requires additional calculation and communication and thereby

more energy consumption [144]. They also suffer from poor flexibility as most of them

are based on key pre-distribution. Finally, probabilistic schemes do not provide a good

connectivity and do not support node mobility (Figure 4.1). Some works tried to enhance

the connectivity using, for example, the unital design theory [19] or system of equations

[144]. Despite this, as long as they are probabilistic, the connectivity is rarely total.

4.2.3 Deployment knowledge based schemes

These schemes are neither deterministic nor purely probabilistic. They are based on the

physical location of nodes to maximize the connectivity. Thus, to increase the probability

of sharing keys, nodes are distributed into regional zones. Key rings are then assigned to

them so that neighboring nodes share a maximum of keys. Like the other approaches, the

deployment knowledge based schemes can use pairwise keys [30, 31, 40, 60], polynomials

[81] or matrices [142].

Deployment knowledge based schemes are approximately as resilient and scalable as the

pure probabilistic ones. They even provide a better network connectivity. However, they

are not flexible and do not support node mobility. This makes them more suitable for

static networks (Figure 4.1).

Figure 4.1 – Key Management approaches for secure device-to-device communication.

4.3. OUR SOLUTION 47

4.3 Our solution

Our literature review shows that none of the existing solutions, proposed to secure device-

to-device communication, meets all the IoT requirements. We then propose a novel key

Management protocol [68, 69] belonging to the class pair
symKM

hom
post .

To improve the scalability of deterministic schemes without loss of efficiency, connectivity

or mobility (unlike probabilistic schemes), our solution uniformly distributes the network

members into logical sets. To each set S is associated a unique ID , sidS , and to each of

its members u is assigned an ID , nidu , which is unique within S . A node shares then a

distinct pairwise key with every member of its set and a unique pairwise set key with the

members of each of the other sets. The scalability of the protocol is improved as nodes

store fewer keys. It is important to note that these grouping is logical and independent of

the application or the service that the devices are used for. Although nodes belonging to

the same set are considered as cognates, they can be physically far from one another.

Although the members of a set share the same pairwise set key, we prove that our

solution remains resilient against node capture for large network such as the IoT. Unlike

deployment knowledge schemes, our protocol operates well regardless of the physical

position of nodes. Moreover, as keys are dynamically distributed to the network members,

when nodes join or leave the network, our solution is flexible (Figure 4.2).

Figure 4.2 – Our device-to-device Key Management.

Since some keys are shared by several nodes, the Key Manager must ensure that they

are known only by the current members. Thus, when a node joins or leaves the network,

these keys are revoked and new ones are distributed to the remaining ones. This rekeying

guarantees the backward and forward secrecy.

48 CHAPTER 4. DYNAMIC KEY MANAGEMENT FOR SECURE DEVICE-TO-DEVICE

COMMUNICATION

4.3.1 Classification of cryptographic keys

The keys managed by our solution can be classified into two types: Data Encryption Keys

(DEKs) and Key Encryption Keys (KEKs). The DEKs are symmetric pairwise keys that

are used by nodes to encrypt the data exchanged between them. The KEKs are used to

secure the communications between the Key Manager and the nodes in order to protect

the DEKs and thereby ensure the backward and forward secrecy. Let us consider a node

u that belongs to a set S . The keys it holds are summarized in Table 4.1.

Key Type Notation Description

Data
Encryption
Key (DEK)

K S
u,v This is a pairwise node key used by u to secure the device-to-device

communication with v (v ∈ S). A node has as many of these keys
as there are members in its set

K S ,T This is a pairwise set key used by u to secure the device-to-device
communication with the members of the set T (T 6= S). A node
has as many of these keys as there are sets in the network

Key
Encryption
Key (KEK)

K S
u This is a node key used by u to secure the communication with

the Key Manager. It is known only by u

K S This is a set key used to secure the communication with the Key
Manager. It replaces the node key when the same message is sent
to all the set members (for more efficiency). It is known only by
the members of S

KR This is a refresh key used for key update. It is not stored in the
node memory

Table 4.1 – Classification of cryptographic keys.

Figure 4.3 shows an example of distribution of the nodes of a network N and the

pairwise keys they share. Hereafter, the keys K S
u,v and K S

v ,u are the same and can be

used interchangeably. The same goes for the keys K S ,T and KT ,S .

Figure 4.3 – Example of node distribution in a network N .

4.3. OUR SOLUTION 49

4.3.2 Hash functions

Using our protocol, nodes can share pairwise keys to reduce the storage cost. They are

then able to decipher some messages that are not intended for them. To enhance the

resilience of our solution without loss of scalabilty, we use hash functions (known to be

efficiently computable). The aim is to create different keys from a single pairwise key.

4.3.2.1 Zero-level approach

This term is used to refer to the basic approach that does not use hash functions. Although

the other levels are more scalable, this approach is simpler. Therefore, unless otherwise

stated, it is the Zero-level approach that is used in the rest of the manuscript.

4.3.2.2 One-level approach

In this approach, a single hash function (H) is used. Thus, instead of storing the pairwise

set key K S ,T , a node u (u ∈ S) stores its (nidu − 1)th hash, K S ,T
u (Formula 4.1). Since

our solution is based on a symmetric approach, two nodes that wish to communicate must

share the same key to securely communicate. Using hash functions, nodes belonging to

two distinct sets may have different pairwise set keys. However, one of them can calculate

the key known by the other. This is due to the fact that the keys they hold are calculated

from the same key and using the same hash function.

K S ,T
u = H (nidu−1)(K S ,T) (4.1)

To have a common communication key, the nodes relay on their IDs . Thus, knowing the

IDs of each other, the node with the smallest one can use H to calculate the key of the

other. Let us consider that the nodes u and v (v ∈ T) wish to communicate. The first

one stores K S ,T
u = H (nidu−1)(K S ,T) and the second knows K S ,T

v = H (nidv−1)(K S ,T). If we

assume that nidu < nidv , u can calculate the (nidv − nidu)th hash of its key and both

nodes will have the same key (Formula 4.2).

K S ,T
v = H (nidv−1)(K S ,T) (4.2)

= H ((nidv−1)−(nidu−1))(H (nidu−1)(K S ,T))

= H (nidv−nidu)(K S ,T
u)

50 CHAPTER 4. DYNAMIC KEY MANAGEMENT FOR SECURE DEVICE-TO-DEVICE

COMMUNICATION

To fix ideas, let us consider the example of the Figure 4.3. We assume that the second

node of the first set (u) wishes to communicate with the third node of the second set (v).

The node u knows the key K 1 ,2
2 = H (K 1 ,2), while v stores K 1 ,2

3 = H (2)(K 1 ,2) (Figure

4.4). To have the same key and therefore be able to communicate, u must calculate the

hash of the key it knows (Formula 4.3).

K 1 ,2
3 = H (2)(K 1 ,2) = H (H (K 1 ,2)) = H (K 1 ,2

2) (4.3)

Since hash functions are irreversible, the One-level approach ensures that nodes cannot

decipher the messages exchanged between the other nodes that have smaller IDs . Although

the resilience is improved, nodes are still able to decrypt the communications of those

having bigger IDs . This has led us to propose the Two-level approach.

Figure 4.4 – One-level approach.

4.3.2.3 Two-level approach

In this second approach, two different hash functions (H and H2) are used. A pairwise

set key K S ,T is therefore split into two parts (
←−
KS,T and

−→
KS,T), each hashed separately

with one of the two functions. The node u (u ∈ S) stores then the concatenation (noted

by ||) of the (nidu − 1)th hash (calculated using H) of the left part of the key and the

(MAX − nidu)th hash (calculated using H2) of the right part (Formula 4.4). Note that

MAX corresponds to the maximum number of nodes the sets may have.

K S ,T
u = H (nidu−1)(

←−
KS ,T)||H (MAX−nidu)

2 (
−→
KS ,T) (4.4)

Like the One-level approach, the hash functions and the IDs can be used by the nodes to

calculate a common key. Knowing the IDs of each other, the node with the smallest one

can apply H on the left part of its key and the other may apply H2 on the right part of

its key. They will then have the same pairwise set key.

4.3. OUR SOLUTION 51

Let us consider that the nodes u and v (v ∈ T) wish to communicate. The

first one stores K S ,T
u = H (nidu−1)(

←−
KS ,T)||H (MAX−nidu)

2 (
−→
KS ,T) and the second knows

K S ,T
v = H (nidv−1)(

←−
KS ,T)||H (MAX−nidv)

2 (
−→
KS ,T). If we assume that nidu < nidv , u can use

H to calculate the (nidv − nidu)th hash of the left part of the key it knows and v may use

H2 to calculate the (nidv − nidu)th hash of the right part (Formulas 4.5 and 4.6).

←−
KS ,T

v = H (nidv−1)(
←−
KS ,T) (4.5)

= H ((nidv−1)−(nidu−1))(H (nidu−1)(
←−
KS ,T))

= H (nidv−nidu)(
←−
KS ,T

u)
−→
KS ,T

u = H
(MAX−nidu)
2 (

−→
KS ,T) (4.6)

= H
((MAX−nidu)−(MAX−nidv))
2 (H

(MAX−nidv)
2 (

−→
KS ,T))

= H
(nidv−nidu)
2 (

−→
KS ,T

v)

To fix ideas, let us consider the example of the Figure 4.3. We assume that MAX = 3 and

that the second node of the first set (u) wishes to communicate with the third node of

the second set (v). The node u knows the key K 1 ,2
2 = H (

←−
K 1 ,2)||H2 (

−→
K 1 ,2), while v stores

K 1 ,2
3 = H (2)(

←−
K 1 ,2)||

−→
K 1 ,2 (Figure 4.5). To have the same key and therefore be able to

communicate, u can use H to calculate the hash of the left part of the key it knows and

v may use H2 to calculate the hash of the right part of its key (Formulas 4.7 and 4.8).

←−
K 1 ,2

3 = H (2)(
←−
K 1 ,2) = H (H (

←−
K 1 ,2)) = H (

←−
K 1 ,2

2) (4.7)
−→
K 1 ,2

2 = H2 (
−→
K 1 ,2) = H2 (

−→
K 1 ,2

3) (4.8)

This second approach is more resilient than the first one since it ensures that nodes cannot

decipher, in addition to the messages exchanged between the members with smaller IDs ,

those exchanged by the nodes with larger IDs . This is because two different hash functions

are used, one in ascending order of IDs and the other in descending order.

Figure 4.5 – Two-level approach.

52 CHAPTER 4. DYNAMIC KEY MANAGEMENT FOR SECURE DEVICE-TO-DEVICE

COMMUNICATION

4.3.3 Set management

The set management consists of distributing nodes on sets while minimizing the number

of keys they store. The aim is to improve the protocol scalability without significant loss

of resilience, efficiency, connectivity or mobility. In the following, we use the notations

n and p to refer to the number of nodes and sets in the network, respectively. We also

denote the number of members of a set S by mS .

A member of S stores one secret key, mS − 1 pairwise node keys, one set key and p − 1

pairwise set keys. Storage on nodes is therefore proportional to p + mS . The problem

consists then of creating sets and assigning nodes to them so as to satisfy:

∀S ,min (p + mS) (4.9)
p∑

S=1

mS = n (4.10)

To have the same number of keys stored on each network member, we opted for a uniform

distribution (i.e. ∀S ,mS = m). By replacing 4.10 in 4.9 and studying the monotony of

the resulting function (f (p) = p + n
p
), we can easily show that storage is minimized when

p = m =
√

n. The set management aims then to uniformly distributes the n nodes of the

network into
√

n sets of
√

n members each (Figure 4.3).

4.3.3.1 Assignment Algorithm

The Assignment Algorithm is run when nodes join the network and assigns them to the

right sets. It takes as input n, the current number of network members, and outputs a set

ID according to the input value. The algorithm manipulates then a list of sets, ls , of size

p. Each of its items contains the ID of a set S , sidS , and its size, mS .

When a node is authorized to join the network, the Assignment Algorithm starts by

searching, in ls , a set S containing a number of nodes less than
√
n. If no set is found, a

new one is created following the steps described in the next paragraph. Next, whether the

set S is newly created or already exists, the algorithm assigns the joining node to it and

updates ls . The steps of the Assignment Algorithm are described in Algorithm 1. Finally,

the Key Manager renews the network security material, following the steps described in

the node management section (See section 4.3.4).

4.3. OUR SOLUTION 53

Set creation: Creating a new set S consists of determining its ID , sidS , its key, K S ,

and a pairwise set key for every set T of the network. Each of these pairwise set

keys, K S ,T , is encrypted using the key of the set associated to it, KT , and sent to its

members (message CM).

CM : KM → T :<
{

sidS ,K S ,T
}
KT >(∀T ∈ N, T 6= S)

Algorithm 1: Homogeneous Assignment Algorithm

Input : n = the number of network members
1 Search in ls a set S such that mS <

√
n;

2 if no set is found then
3 Create a new set S ;
4 end
5 Assign the joining node to S ;
6 Update ls ;

4.3.3.2 Reorder Algorithm

The Reorder Algorithm is run, after a node leaving, to reduce the number of sets by

keeping the nodes distribution always uniform. It takes as input the network size, n,

the percentage of merging, pcm, and tries to remove or merge sets when it is possible. To

achieve this, the algorithm manipulates the same list ls used by the Assignment Algorithm.

When a node leaves a set S , the Algorithm starts by checking its new size. If S becomes

empty, it is removed following the steps described below. On the other hand, if the size

of S falls below a certain threshold, the algorithm searches in ls a set T to merge with S ,

following the steps described in the next chapter. The threshold corresponds to the product

of pcm and
√

n. Note that the actual size of T must be less than the threshold as well.

If it is the case, the two sets are merged. Also, the value of pcm must not exceed 50 % so

that the size of the resulting set does not exceed
√

n. Finally, the Key Manager renews the

network security material, following the steps described in the node management section

(See section 4.3.4). The steps of the Reorder Algorithm are described in Algorithm 2.

Set removal: Removing a set S consists of deleting its ID , sidS , its key, K S , and all the

pairwise set keys associated to it. The message RM , containing the ID of the set, is

then sent to each remaining set T so that its members can remove the pairwise set

key they share with the nodes of S .

RM : KM → T :<
{

sidS
}
KT > (∀T ∈ N ,T 6= S)

54 CHAPTER 4. DYNAMIC KEY MANAGEMENT FOR SECURE DEVICE-TO-DEVICE

COMMUNICATION

Algorithm 2: Homogeneous Reorder Algorithm

Input : n = the number of network members
pcm = percentage of merging

1 if mS = 0 then Remove S ;
2 else
3 if mS < pcm.

√
n then

4 Find T such as mT < pcm.
√

n;
5 if a set T is found then
6 Merge S and T ;
7 end

8 end

9 end
10 Update ls ;

4.3.4 Node management

In this section, we present the way in which our solution manages the keys upon a network

change: node joining or leaving (Figure 4.6).

4.3.4.1 Node joining

Let us consider a node u joining the network. The node is first assigned to a set S . The

Key Manager generates then some new keys and updates some of the previously existing

ones. The aim of this update is to ensure the backward secrecy. Indeed, if these keys are

not updated and if the joining node u has stored the messages previously exchanged, it

will be able to decipher some of them. Next, the Key Manager provides some nodes with

the new keys and sends to others the elements allowing them to update some of the keys

they hold. The process of node joining consists of the four following steps.

Key generation: The first step consists of determining the secret key, K S
u , of the joining

node u. After that, the Key Manager generates a pairwise node key, K S
u,v , for each

node v of the set S . It also determines the unique node ID, nidu , associated to u.

Key update: The Key Manager starts by randomly generating KR. Then, using it and a

Key derivation function (KDF), the Key Manager updates the set key of S and the

pairwise set keys known by its members (Formulas 4.11 and 4.12, respectively).

K S+

= KDF (K S ||KR) (4.11)

K S ,T+

= KDF (K S ,T ||KR),∀T ∈ N (4.12)

4.3. OUR SOLUTION 55

Key distribution: After the key generation and update are completed, the Key Manager

distributes these new keys to the appropriate nodes. Thus, it sends to each node v of

the set S the unicast message JM1 encrypted by means of the node secret key, K S
v .

The message contains the ID of the joining node and the pairwise node key, K S
u,v ,

associated to it. The Key Manager also broadcasts for each set T (including S) the

message JM2 encrypted using KT , the current set key of T . The message contains

the ID of the set S and KR. Finally, the Key Manager agrees with u on a temporary

secret key (using a key agreement method). This key is then used to securely provide

the joining node with its secret key, the new set key, the pairwise node keys to share

with its cognates and all the new pairwise set keys associated to S . After the key

distribution, the Key Manager discards KR.

JM1 : KM → v :<
{

nidu ,K
S
u,v

}
KS

v
> (∀v ∈ S)

JM2 : KM → T :<
{

sidS ,KR

}
KT > (∀T ∈ N)

Key installation: When a member of S , v , receives the messages JM1 and JM2 , it first

decrypts them using its secret and set keys. Then, it installs K S
u,v as the pairwise key

to use for encrypting the communications with the joining node u. The node v also

uses KR and the KDF to update the set key and all the pairwise set keys it knows

(Formulas 4.11 and 4.12, respectively). After that, v discards KR. When a node w ,

not belonging to S , receives JM2 , it first decrypts the message, using the current set

key, and retrieves KR. Then, using the KDF , it updates the pairwise set key it shares

with the members of S (Formula 4.12). Once done, w discards KR.

4.3.4.2 Node leaving

A node u (u ∈ S) can leave the network or be evicted when it get compromised. In both

cases, the keys it knows must be revoked. The Key Manager removes then some of them

and updates some others. The aim of this update is to ensure the forward secrecy. Indeed,

if these keys are not updated, the leaving node will be able to decipher some of the future

communications. Next, the Key Manager provides the network members with the elements

allowing them to remove the keys that should be removed and to update those that must

be updated. The process of node leaving consists of the four following steps.

Key removal: The Key Manager starts by removing the ID of the leaving node, nidu ,

and its secret key, K S
u . Next, it deletes all its pairwise keys, K S

u,v (v ∈ S , v 6= u).

56 CHAPTER 4. DYNAMIC KEY MANAGEMENT FOR SECURE DEVICE-TO-DEVICE

COMMUNICATION

Key update: The Key Manager starts by randomly generating KR. Then, using it and

the KDF , the Key Manager updates the set key of S , K S , and all the pairwise set

keys known by its members (Formulas 4.11 and 4.12, respectively).

Key distribution: After the key removal and update are completed, the Key Manager

distributes the new keys to the appropriate nodes. Thus, it sends, to each node v

of the set S , the unicast message LM1 encrypted by means of the node key, K S
v .

The message contains the ID of the leaving node and KR. The Key Manager also

broadcasts, for each set T (T 6= S), the message LM2 to provide its members with

KR. The message LM2 is encrypted using KT , the current set key of T . The message

LM2 is not sent to the members of S because the leaving node u knows the set

key K S . The refresh key is therefore sent to the other members of S via the unicast

message LM1 instead. Finally, the Key Manager discards KR.

LM1 : KM → v :< {nidu ,KR}KS
v
> (∀v ∈ S, v 6= u)

LM2 : KM → T :<
{

sidS ,KR

}
KT > (∀T ∈ N, T 6= S)

Key installation: When a member of S , v , receives LM1 , it first decrypts the message,

using its secret key K S
v , and retrieves KR. Then, it removes the pairwise key K S

u,v ,

which was used for encrypting the communications with the leaving member u. The

node v also uses the KDF to update the set key and all the pairwise set keys it knows

(Formulas 4.11 and 4.12, respectively). Once done, the node v discards KR. When

a node w , not belonging to the set S , receives LM2 , it first decrypts the message,

using the current set key, and retrieves KR. Then, using it and the KDF , the node

updates the pairwise set key it shares with the members of the set S (Formula 4.12).

Finally, the node w discards KR.

Figure 4.6 – Node joining and leaving.

4.4. SECURITY ANALYSIS 57

4.4 Security analysis

In this section, we analyze the security of our solution. We then prove that it provides a

good level of resilience. We now assume that the Key Manager itself is secure and that

only the network nodes can be compromised. Furthermore, since some keys are shared

by several nodes, we need to show that our solution fulfills the backward and forward

secrecy. However, to avoid repeating the proofs, we will present them in the next chapter

as it is devoted to group communication.

4.4.1 Theoretical analysis

According to [56], resilience is the measure of the impact of one captured node on the

rest of the network. The issue is then to prove that, using our solution, this impact is

negligible for large networks such as the IoT.

4.4.1.1 Zero-level approach

Without hash functions, a node shares a distinct pairwise key with each of its cognates and

a single pairwise key for each set of the network. It can decrypt, in addition to messages

intended for it, those that are exchanged between its cognates and the other nodes. Figure

4.7 shows , among all possible communication links, those that a node can decrypt.

Figure 4.7 – An example of communications a node can decrypt.

Lemma 4.1: The number of links a node can decrypt is:

D0 = (
√

n − 1)(n + 1) (4.13)

58 CHAPTER 4. DYNAMIC KEY MANAGEMENT FOR SECURE DEVICE-TO-DEVICE

COMMUNICATION

Proof: A node can decrypt the communications linking it to the n − 1 other network

members as well as those between its
√

n − 1 cognates and the n −
√

n other network

members (D0 = n − 1 + (
√

n − 1)(n −
√

n)).

Lemma 4.2: The number of links in a network of n nodes is:

T =
n(n − 1)

2
(4.14)

Proof: The total number of links is equal to the number of possible combinations that

can be obtained by taking two nodes from n (T = C 2
n).

Proposition 4.1: The percentage of compromised links due to a node capture is:

P0 =
2 (n + 1)

n(
√

n + 1)
→ 0 , as n →∞ (4.15)

Proof: From Lemmas 4.1 and 4.2 and the fact that P0 = D0

T
, we deduce that

P0 = 2 (
√
n−1)(n+1)
n(n−1) .

Proposition 4.2: The capture of the whole network requires the compromise of all the

network nodes.

Proof: Deciphering all the intra-set communications requires the knowledge of all the

pairwise node keys associated to it. This is only possible if all the set members are

captured. Also, deciphering all the inter-set communications requires the knowledge of

all the pairwise set keys. This is only possible if at least a member of each set is captured.

4.4.1.2 One-level approach

Using a hash function ensures that nodes cannot decipher the messages exchanged between

the nodes that have smaller IDs (Figure 4.8a).

Lemma 4.3: The number of links a node u can decrypt is:

D1 = (
√

n − 1)(n + 1 − (nidu − 1)2) (4.16)

Proof: A node u cannot decrypt the links that connect each of its nidu − 1 elder cognates

with the nidu − 1 members, that have smaller IDs , of each of the
√

n − 1 other sets

(D1 = D0 − (
√

n − 1)(nidu − 1)2).

4.4. SECURITY ANALYSIS 59

Proposition 4.3: The new percentage of links a compromised node u can decipher is:

P1 =
2 (n + 1 − (nidu − 1)2)

n(
√

n + 1)
→ 0 , as n →∞ (4.17)

Proof: From Lemmas 4.2 and 4.3 and the fact that P1 = D1

T
, we deduce that

P1 = 2 (
√
n−1)(n+1−(nidu−1)2)

n(n−1) .

4.4.1.3 Two-level approach

The Two-level approach makes a member u unable to decrypt, in addition to the messages

exchanged between the nodes with smaller IDs , those exchanged by the members with

larger IDs (Figure 4.8b).

Lemma 4.4: The number of links a node u can decrypt is:

D2 = (
√

n − 1)(n + 1 − (nidu − 1)2 − (
√

n − nidu)2) (4.18)

Proof: A node u cannot decrypt the links that connect each of its
√

n − nidu younger

cognates with the
√

n − nidu members, that have a larger ID , of each of the
√

n − 1 other

sets (D2 = D1 − (
√

n − 1)(
√

n − nidu)2).

Proposition 4.4: The percentage of links a compromised node u can decipher is:

P2 =
2 (n + 1 − (nidu − 1)2 − (

√
n − nidu)2))

n(
√

n + 1)
→ 0 , as n →∞ (4.19)

Proof: From Lemmas 4.2 and 4.4 and the fact that P2 = D2

T
, we deduce that

P2 = 2 (
√
n−1)(n+1−(nidu−1)2−(

√
n−nidu)2)

n(n−1) .

(a) One-level approach. (b) Two-level approach.

Figure 4.8 – An example of communications the node 3 cannot decrypt.

60 CHAPTER 4. DYNAMIC KEY MANAGEMENT FOR SECURE DEVICE-TO-DEVICE

COMMUNICATION

4.4.2 Comparison

We start by comparing the resilience of the three approaches we propose (Zero-level,

One-level and Tow-level). After that, we compare our solution to related works.

To compare the resilience of the three approaches, we consider a network of 10000

members, divided into 100 sets of 100 members each. We then compare the variation

of the three percentage P0 , P1 and P2 according to the node ID . The results (Figure

4.9a) show that the use of hash functions reduces the rate of compromised links. If a

Zero-level approach is used, the percentage is maximum and constant regardless of the

node ID . This method is still the best in terms of calculation cost. If a One-level approach

is used, the bigger the ID of the captured node, the smaller the percentage of compromised

links. This method is therefore interesting if we trust the old nodes more than the new

ones (Assuming IDs are assigned in the order the nodes joined the network). Finally, the

Two-level approach provides the best resilience regardless of the node ID .

Now, we compare our protocol to the deterministic scheme presented in [32]. Providing a

perfect resilience (at the expanse of scalability), none of the other solutions can provide a

better level of resilience. This perfect resilience is achieved by using a distinct pairwise key

for each pair of nodes. Thus, a captured node can only decipher the n − 1 communications

linking it to the other network members. The percentage of compromised links due to a

node capture is then equal to 2 (n−1)
n(n−1) = 2

n
(Proportional to 1

n
). On the other hand, we

showed that, using our Zero-level approach, this percentage is equal to P0 (Proportional

to 1√
n

). Figure 4.9b shows that the value of P0 is negligible for large networks such as

the IoT. It is even comparable to the rate provided by the perfectly resilient approaches.

We also showed that the compromise of the whole network requires the capture of all its

members. Our solution offers then a good level of resilience.

(a) According to the node ID . (b) According to n.

Figure 4.9 – Variation of the percentage of compromised links.

4.5. PERFORMANCE EVALUATION 61

4.5 Performance evaluation

In this section, we evaluate the performance of our solution. After showing that it offers

a level of resilience comparable to that provided by deterministic schemes, we prove that

it is as scalable as probabilistic schemes (pure probabilistic and deployment-knowledge

based approaches) without significant loss of efficiency, connectivity, mobility or flexibility.

4.5.1 Theoretical analysis

The Key Management can be hosted on the cloud (servers) or implemented on gateways,

which have plentiful of resources. It is then more important to make the costs affordable on

the devices as most of them suffer from a lack of resources. We begin by briefly analyzing

the costs of our solution on the Key Manager before detailing them on devices.

4.5.1.1 Overheads on the Key Manager

We start by analyzing the overheads of our solution on the Key Manager side.

Property 4.1: The communication overhead on the Key Manager is O(
√

n).

Proof: Regardless of the rekeying operation performed (such as a node joining S or a

node leaving S), the Key Manager sends a unicast message to each of the
√

n members

of S and broadcasts a message for each of the other
√

n − 1 sets, in the worst case. The

Key Manager then sends a total number of messages proportional to
√

n.

Property 4.2: The calculation overhead on the Key Manager is O(
√

n).

Proof: Regardless of the rekeying operation performed (such as a node joining S or a

node leaving S), the Key Manager updates the keys which are or will be known by the

node in question. The calculation overhead is therefore proportional to the storage cost

on nodes, which will be proven to be of the order of
√

n in the next section. Also, the set

management algorithms browse the list of sets in the worst case. They therefore have a

complexity proportional to
√

n.

Property 4.3: The storage overheads on the Key Manager is O(n).

Proof: The number of nodes is more important than that of sets. Thus, if we choose not

to store the pairwise node keys (used to secure communication between the nodes) in the

Key Manager’s memory, the largest number of keys to save will be that of the node secret

keys. The Key Manager will then store a number of keys proportional to n.

62 CHAPTER 4. DYNAMIC KEY MANAGEMENT FOR SECURE DEVICE-TO-DEVICE

COMMUNICATION

Discussion: The communication and calculation costs on the Key Manager are O(
√

n).

The storage, on the other hand, is O(n). Considering the significant improvement

(presented in the next section) that our solution provides on the node side, the costs on

the Key Manager are very reasonable. Indeed, as the Key Manager has usually plentiful

of resources, we aimed to make the costs more affordable on the nodes.

4.5.1.2 Overheads on the nodes

Now, we study the overheads of our solution on the device side.

Property 4.4: The communication overhead on the nodes is O(1).

Proof: Regardless of the rekeying operation performed (such as a node joining S or a

node leaving S), a node receives a constant number of messages. The communication cost

on nodes is therefore independent of the network size.

Property 4.5: The calculation overhead on the nodes is O(
√

n).

Proof: Regardless of the rekeying operation performed (such as a node joining S or a

node leaving S), a node updates all the keys it knows, in the worst case. The calculation

cost on the nodes is therefore proportional to the storage, which will be proven to be of

the order of
√

n in the next proof.

Property 4.6: The storage overhead on the nodes is O(
√

n).

Proof: Using our solution, a node knows a secret key,
√

n − 1 pairwise node keys, a set

key and
√

n − 1 pairwise set keys. It then stores in total 2 .
√

n keys.

Discussion: The communication cost on the nodes is O(1). The calculation and storage

overheads, on the other hand, are O(
√

n). Since communication is the operation that

consumes the most energy, our solution is efficient and highly scalable.

4.5.2 Comparison

After showing that our solution provides a good level of resilience, let us prove that

it meets the other IoT requirements: scalability, connectivity, mobility, efficiency and

flexibility. Thus, we compare our solution to the existing Key Management protocols

proposed to secure device-to-device communication. We consider PKS [32] and Kronecker

[130] as deterministic schemes and UKP [19] and Trade [110] as probabilistic approaches.

4.5. PERFORMANCE EVALUATION 63

4.5.2.1 Scalability

Although having a perfect resilience, the storage cost of the pairwise key schemes, in

general, and PKS, in particular, is O(n). Indeed, a node has to store a pairwise key for

each of the other network members. On the other hand, Kronecker and Trade has a storage

proportional to O(
√

n). For the other probabilistic schemes (e.g. UKP), it is difficult to

deduce the storage from the network size as it depends on other parameters (pool size,

network connectivity, deployment knowledge...etc). Despite this, the authors in [49] show

that for a probabilistic scheme to establish almost certain connectivity for 10000 nodes,

250 keys out of a pool of 100000 keys have to be stored on the nodes. Our solution has

a storage proportional to O(
√

n). Thus, for the same number of nodes and with a total

connectivity coverage, it requires the storage of only 100 keys on the nodes. Figure 4.10

shows that our solution stores fewer keys than the pairwise key schemes and can operate

on larger networks of compromised nodes such as the IoT. It even provides a level of

scalability comparable to Kronecker and Trade.

Figure 4.10 – Variation of nodes’ storage overhead according to n.

4.5.2.2 Connectivity

Although being scalable, the probabilistic schemes, mentioned above, suffer from poor

connectivity. The probability that two neighboring nodes share a common key does not

exceed 0 .25 in Trade, while in UKP it is approximately lower bounded by 0 .632 . Using our

solution, each pair of communicators share a pairwise node or a set key and can establish

a direct secure link without relying on intermediate nodes. This is always possible even if

the nodes move. Our solution provides then a good connectivity and mobility.

64 CHAPTER 4. DYNAMIC KEY MANAGEMENT FOR SECURE DEVICE-TO-DEVICE

COMMUNICATION

4.5.2.3 Mobility

Although deployment knowledge schemes [31, 81, 142] provide good connectivity, they are

based on nodes’ location. Our solution operates well regardless of the position of nodes.

It then provides a better mobility, which makes it more suitable for mobile networks such

as the IoT.

4.5.2.4 Efficiency

When connectivity and mobility are low, neighboring nodes may relay on intermediate

nodes to establish secure links. The path length represents the number of intermediate

nodes separating two communicators. The results presented in [49] give an overview about

the average path length between two nodes using a probabilistic scheme. It is important

to note that the longer the path, the more the communication between nodes requires

additional calculation and communication. This reduces the efficiency of the protocol.

Unlike most of the probabilistic schemes (e.g. Trade and UKP), our solution has good

connectivity and mobility. Figure 4.11 shows the large gap between the value of the

path length using a probabilistic scheme and our solution, regardless of the network size.

Furthermore, our solution stores fewer keys on nodes than the pairwise key schemes (e.g.

PKS) (Figure 4.10). The communication and calculation costs are the same as Kroneker,

while they are of the order of O((log(n))2) and O(log(n)), respectively, in Trade. Note

that communication is the operation that consumes the most energy. On top of that, our

solution is based on symmetric cryptography. It is therefore efficient and well suitable for

the IoT devices.

Figure 4.11 – Variation of the average path length according to the size of the key ring.

4.6. CONCLUSION 65

4.5.2.5 Flexibility

Unlike all the above-mentioned schemes based on pre-distribution, our solution supports

the dynamic deployment of nodes. Indeed, we previously showed that nodes can join and

leave the network at any time without jeopardizing its security. Our protocol is then more

flexible and suitable for dynamic networks such as the IoT.

4.6 Conclusion

The purpose of this chapter was to present a novel Key Management protocol for device-

to-device communication in the IoT. Our solution provides a good compromise between

the IoT requirements (resilience, connectivity, efficiency, scalability and flexibility)

compared to the existing device-to-device protocols. This balance is achieved by uniformly

distributing the network members into logical sets. A node shares then a distinct pairwise

key with each member of its set and a unique pairwise set key with the members of

each of the other sets. We proved that the capture of a member compromises a negligible

part of a large network. Our solution is therefore resilient. Next, we showed that it has

a good connectivity and allows node mobility. It is then efficient as it does not require

additional calculation or communication. We also demonstrated that storage on nodes

does not significantly increase when the network gets larger. Thus, our scheme is scalable.

We finally showed that it is flexible.

In the next chapter, we will introduce our second contribution. It is a novel versatile

Key Management protocol for secure device-to-device and group communication in

heterogeneous and dynamic networks. This new solution belongs to the class hyb
symKM

het
post.

Chapter 5

Heterogeneous Key Management

for Secure Group Communication

In this chapter, we propose a novel versatile Key Management protocol for the IoT.

Unlike most of the exiting schemes, our solution secures both device-to-device and group

communication. It also considers the heterogeneous nature of the IoT. Thus, by using

a bit more of the resources of powerful devices, our solution becomes much lighter for

the constrained ones. This significantly improves the network performance and increase

its lifetime. We then show that our solution ensures the forward and backward secrecy.

Indeed, nodes can securely join and leave the network at any time. We also prove that

our protocol resits to collusion attacks, as multiple evicted nodes can not cooperate to

regain access to the network. Finally, we show that, by balancing the loads between the

heterogeneous devices according to their capabilities, our solution is both efficient and

highly scalable.

67

68 CHAPTER 5. HETEROGENEOUS KEY MANAGEMENT FOR SECURE GROUP

COMMUNICATION

5.1 Introduction

In group communication, an IoT device sends/receives broadcast messages to/from the

members of the group to which it belongs [129]. This device must have previously

joined the group legally. It can also voluntarily leave it afterwords or be evicted if it

gets compromised. An example of group communication is the Vehicle-to-Everything

communication. It consists of allowing a vehicle to communicate with all the nearby

devices (e.g. cars, bicycles, public lighting). The aim is to make the vehicle sense

its environment and take the right decision [28]. The group communication requires

that the Key Management ensures backward and forward secrecy, collusion resistance,

efficiency and scalability. Although different protocols have been proposed to secure group

communication, each of them presents its own limitations.

Most of the existing solutions do not consider the heterogeneous nature of the IoT devices

or their limited resources. The Key Management protocols used in traditional Internet

are based on asymmetric cryptography. Therefore, they are usually compute intensive

and note well suited for the IoT constrained devices [141]. The solutions proposed for

wireless sensor networks generally use symmetric cryptography and are lighter. However,

they generally impose the same costs on the powerful devices and the weak ones. Thus,

while a negligible part of the former’s resources is used by the protocol, those of the latter

may not even be enough. This exhausts the resources of the constrained devices, which

can significantly degrade the network performance and shorten its lifetime. It may also

happen that some constrained nodes cannot support the overheads at all, while others

can handle much more.

To address these issues, we enhance our Key Management protocol so it secures, in

addition to device-to-device communication, the group communication. This new solution

belongs to the class hyb
symKM

het
post. Unlike most of the exiting schemes, our protocol considers

the heterogeneous nature of the IoT. We show that, by balancing the loads between the

heterogeneous devices according to their capabilities, our solution is both efficient and

highly scalable. We also prove that our solution ensures the forward and backward secrecy.

Indeed, nodes can securely join and leave the network at any time. Finally, we show that

our protocol resits to collusion attacks, as multiple evicted nodes can not cooperate to

regain access to the network.

The remainder of this chapter is organized as follows. Section 5.2 presents related works.

Section 5.3 introduces our solution. Section 5.4 presents the security analysis. Section 5.5

introduces the performance evaluation. Section 5.6 concludes the chapter.

5.2. RELATED WORKS 69

5.2 Related Works

The solution we present in this chapter secures both device-to-device and group

communication. However, as the former was detailed in the previous chapter, we focus in

this section on the latter. We then consider the class net
symKM∗

∗. Solutions belonging to this

class are usually based on: tree structures, combinatorial optimization or batch rekeying.

5.2.1 Tree based schemes

The Logical Key Hierarchy (LKH) [135, 138] consists of using a tree structure to reduce

the communication cost during the process of rekeying. The root of the tree corresponds to

the group key, its leaves to the members’ secret keys and the other nodes to intermediate

keys (Figure 5.1). Each member stores the keys forming its branch. When a device joins or

leaves the group, the server replaces only the keys it knows. The rekey message contains

each of the new keys encrypted by its respective children. In the case of a binary tree,

nodes’ storage cost will be proportional to O(log2 (n)) and the size of the rekey message

to O(2log2 (n)). The One-way Function (OFT) protocol [120] was then proposed. It uses

a one-way function to reduce the size of the rekey message to O(log2 (n)). Both CASMA

and GROUPIT protocols aim to deal with the dynamicity of IoT environments. While the

former divides the network into multiple zones each implementing LKH [63], the latter

combines LKH with the Chinese Remainder Theorem [75].

Figure 5.1 – Tree based schemes.

The Tree based schemes are usually secure as they guarantee the backward and forward

secrecy and are resistant to collusion attacks. They are also reasonably efficient and

provides a good scalability. Nonetheless, these schemes rarely consider the heterogeneous

nature of the IoT (Figure 5.2).

70 CHAPTER 5. HETEROGENEOUS KEY MANAGEMENT FOR SECURE GROUP

COMMUNICATION

5.2.2 Combinatorial optimization based schemes

The Exclusion Basic System (EBS) scheme is based on combinatorial optimization. It

aims to make it possible to choose a compromise between the number of keys stored on

nodes and that of messages exchanged during the rekeying process. The idea was first

introduced in [45]. Other protocols were then proposed to improve the efficiency and the

collusion resistance. The protocols GKIP [47] and SHELL [140], for example, are based

on nodes deployment knowledge to achieve this, while LOCK [46] uses two layers of EBS.

The EBS based schemes ensure the backward and forward secrecy. They are efficient

and scalable. Nevertheless, they are generally vulnerable to collusion attacks and do not

consider the heterogeneous nature of the IoT (Figure 5.2).

5.2.3 Batch rekeying based schemes

Most of the exiting dynamic Key Management schemes are based on individual rekeying,

i.e. they rekey the group after each join or leave request. For more efficiency, the batch

rekeying based schemes [79, 80, 133] were proposed. The main idea is to gather several

requests and to periodically rekey the group. The aim is to reduce the rekeying overheads.

Batch rekeying based schemes are more efficient than those based on individual rekeying.

However, a new node has to wait until the end of the period to actually join the network.

More importantly, as long as the group key has not been replaced yet, a leaving or an

evicted member can still decipher the communications. Forward secrecy is then not totally

guaranteed (Figure 5.2).

Figure 5.2 – Key Management approaches for secure group communication.

5.3. OUR SOLUTION 71

5.3 Our solution

Our literature review shows that most of the existing Key Management schemes do not

consider the heterogeneous nature of the IoT. Moreover, they are usually intended either to

device-to-device or group communication, and rarely to both of them. For these reasons we

propose a novel versatile and heterogeneous Key Management protocol [69, 70] belonging

to the class hyb
symKM

het
post. It is an improvement of our solution (presented in the previous

chapter) that considers the heterogeneous nature of the IoT. It also secures the group

communication, in addition to the device-to-device communication.

Using our solution, the network (or the group G) is partitioned into logical subgroups

(or sets). This partitioning is logical and transparent to the application layer. Nodes

belonging to the same subgroup can be physically far from each other. The objective

behind this is rather to reduce the protocol overheads and to efficiently rekey the group

when necessary. We previously showed that the costs of our solution on nodes depend

on the size of their subgroups. Thus, we propose a novel heterogeneous subgrouping.

According to their capabilities, nodes of a heterogeneous network are distributed into

subgroups having different sizes to balance the loads between them (Figure 5.3). The aim

is to reduce the costs on constrained nodes. The network performance is then improved

and its lifetime increased. Moreover, the constrained nodes are more likely to support the

overheads when the network gets larger.

(a) Homogeneous subgrouping. (b) Heterogeneous subgrouping.

Figure 5.3 – Example of a group partitioning.

Furthermore, as the IoT devices may use the device-to-device and group communication,

we enhance our solution so that it considers the two of them. We then show that our

solution ensures the forward and backward secrecy. Indeed, nodes can securely join and

leave the network at any time. We also prove that our protocol resits to collusion attacks,

as multiple evicted nodes cannot cooperate to regain access to the network. Finally, we

show that, by balancing the loads between the heterogeneous devices according to their

capabilities, our solution is both efficient and highly scalable (Figure 5.4).

72 CHAPTER 5. HETEROGENEOUS KEY MANAGEMENT FOR SECURE GROUP

COMMUNICATION

Figure 5.4 – Our group Key Management.

5.3.1 Classification of cryptographic keys

The keys managed by our solution can be classified into two types: Data Encryption Keys

(DEKs) and Key Encryption Keys (KEKs). The DEKs are symmetric pairwise keys that

are used by nodes to encrypt the data exchanged between them. They include the pairwise

node keys (used to secure device-to-device communication between the nodes belonging

to the same subgroup), the pairwise subgroup keys (used to secure the device-to-device

communication between the nodes belonging to distinct subgroups) and the network wide

key (or the group key, K(G), that is known by all the group members and used by them to

secure the group communication). On the other hand, the KEKs are used to protect the

DEKs and thereby ensure the backward and forward secrecy. They include the node keys

(used by nodes to secure the communication with the Key Manager) and the subgroup

keys (which replaces the node keys when the same message is sent to all the subgroup

members, for more efficiency). For example, the keys held by the nodes of the Figure 5.3b

are summarized in Table 5.1.

Subgroup ID Node ID Node key Pairwise node keys subgroup key Pairwise subgroup keys Group Key

1

1 K 1
1 K 1

1 ,2 ,K
1
1 ,3

K 1 K 1 ,2 ,K 1 ,3

K(G)

2 K 1
2 K 1

2 ,1 ,K
1
2 ,3

3 K 1
3 K 1

3 ,1 ,K
1
3 ,2

2

1 K 2
1 K 2

1 ,2 ,K
2
1 ,3 ,K

2
1 ,4

K 2 K 2 ,1 ,K 2 ,3
2 K 2

2 K 2
2 ,1 ,K

2
2 ,3 ,K

2
2 ,4

3 K 2
3 K 2

3 ,1 ,K
2
3 ,2 ,K

2
3 ,4

4 K 2
4 K 2

4 ,1 ,K
2
4 ,2 ,K

2
4 ,3

3
1 K 3

1 K 3
1 ,2 K 3 K 3 ,1 ,K 3 ,2

2 K 3
2 K 3

2 ,1

Table 5.1 – Example of keys held by nodes.

5.3. OUR SOLUTION 73

5.3.2 Subgroup Management

The subgroup management consists of distributing nodes on subgroups while minimizing

the number of keys they manage. The aim is to improve the protocol efficiency and

scalability in heterogeneous networks. In the following, we use the notations n and p to

refer to the number of nodes and subgroups in the network, respectively. We also denote

the number of members of a subgroup S by mS .

A member of S manages one secret key, mS − 1 pairwise node keys, one subgroup key,

p − 1 pairwise subgroup keys and one group key. The Key Management overhead on

nodes is therefore proportional to the sum p + mS . Two points come out of this. First,

regardless of the subgroup to which a node belongs, the value of p is the same. Thus,

if it is minimized, the overheads are reduced on any node of the group. Moreover, the

number of keys held by a node depends on the size of its subgroup. Hence, to balance the

loads between the nodes of a heterogeneous network, the most constrained ones must be

assigned to the smallest subgroups, and conversely. Indeed, for a node to manage fewer

keys than a more powerful one, the former must be assigned to a subgroup smaller than

the one to which the latter belongs.

We focus in this section on the management of heterogeneous subgroups, i.e. subgroups

of different sizes, while minimizing their number, p. Note that this does not mean that

we do not allow two subgroups to have the same size. To achieve this, we rely on the fact

that the nodes of S must be able to handle at least p + mS keys. The size of S is chosen

so that p + mS does not exceed the capability of its members or, to put it more simply,

the capability mcS of its weakest node. Indeed, as mcS is the minimum capability that a

member of S can have, if its value is greater than p + mS then all the nodes of S will be

able to handle the costs. The problem is, therefore, to choose the minimum capabilities

of subgroups and to assign them nodes so as to always satisfy:

min p (5.1)

under duress: ∀S , mcS ≥ p + mS (5.2)

On this basis, we propose a heterogeneous subgrouping that takes into account the

capabilities of the nodes during their distribution into subgroups. Before we detail this

subgroup management, we present the Capability Evaluation Function (CEF) used to

evaluate the number of keys a node can manage.

74 CHAPTER 5. HETEROGENEOUS KEY MANAGEMENT FOR SECURE GROUP

COMMUNICATION

5.3.2.1 Capability Evaluation Function

Depending on the application requirements, several parameters can be taken into account

to evaluate the number of keys a node can manage. We choose then three types of

resources: memory, processing and energy. Indeed, nodes and especially the wireless sensor

ones are generally constrained by their limited physical size and so they have limited

battery energy supply. Moreover, they have restricted computational capabilities and their

memories are limited [53]. We do not consider communication because we will show that,

using our solution, its cost is O(1) .

Therefore, the CEF we propose takes as input the following arguments: the storage

capability of a node u (scu) and the amount of data that it can process per unit time

(adtu) and per unit energy (adeu). Note that the CEF takes into account a percentage

of the node resources only to balance the overhead associated to the Key Management

against other node requirements. The CEF calculates then cu , the number of keys that

can be managed by u. To achieve this, the CEF determines the minimum between the

number of keys, of length l , that the node can store (scu
l

) and the number of keys that it

may calculate per unit time (adtu
l

) and per unit energy (adeu
l

) (Formula 5.3). According to

the network and application requirements, weighting can be given to each parameter.

cu = Min(
scu
l
,

adtu
l
,

adeu
l

) (5.3)

5.3.2.2 Heterogeneous subgrouping

The heterogeneous subgrouping management consists of manipulating subgroups of

different sizes while minimizing their number and ensuring that the inequality 5.2 is always

satisfied. To achieve this, a minimum capability mcS is attributed to each subgroup S

when created. To satisfy the inequality 5.2, mcS − p nodes are assigned to S at most

(mS ≤ mcS − p). Note that mcS must always be greater than p for mS to be greater than

0 . Also, the size of a subgroup varies according to its minimum capability and the value

of p. Thus, the greater the capabilities of its members, the larger its size.

A node u, that can handle cu keys, is assigned to S only if mcS is the nearest value less than

cu (mcS ≤ cu < mcS+
, while mcS+

is the value that follows mcS). Thus, u will manage

p + mS keys, in the worst case. Since the inequality 5.2 is satisfied for S and cu ≥ mcS

then cu ≥ p + mS . In other words, u can surely support the overheads. Moreover, thanks

to this, the loads are well balanced between the nodes according to their capabilities.

5.3. OUR SOLUTION 75

After the assignment, depending on whether S is an existing subgroup or a new one, the

value of p or mS increases. It can happen that for a subgroup T (T may be S or not) the

sum p + mT exceeds mcT and thereby some of its members may not be able to handle all

the keys anymore. In this case, T is splitted into two subgroups having the same minimum

capability mcT . The size of the resulting subgroups is equal to the half of mT and the

inequality 5.2 is true again for them. However, T cannot be splitted if it contains only

one node. It is then removed and its member is revoked.

Considering the inequality 5.2 and the fact that S cannot be empty, any node u should

be able to store at least p + 1 keys (instead of
√

n when a homogeneous subgrouping was

used). On the other hand, if u can manage only p + 1 keys then it is the only node of S

and must be revoked when a new subgroup is created. Indeed, if the value of p increases,

u cannot handle all the keys anymore. For simplicity, we assume that u is authorized to

join the group only if it can store at least p keys (i.e. cu ≥ p instead of p + 1). Therefore,

smaller is p, the more likely it is that more constrained nodes can join the group. This is

one of the reasons why p should be minimized. For this purpose, depending on the state

of the group, subgroups may be merged to reduce their number.

Regarding the choice of the subgroup minimum capabilities, the difficulty lies in the fact

that subgroups are created and removed as and when required and that the abilities of

nodes are not known a priori. We tried different increasing sequences and found out that

the best results (the loads are well balanced and p is minimized) are obtained when the

sequence grows exponentially. Indeed, if the minimum capabilities are close to each other,

the subgroups will be well balanced but their number will be too large. However, the aim

of the subgrouping is precisely to minimize the number of subgroups and thereby reduce

the nodes’ storage overhead. We then selected two sequences in particular: powers of two

and Fibonacci sequence. Note that other sequences can be used as long as they grow

exponentially.

If powers of two are used, the group is partitioned so that a minimum capability is the

double of the preceding one (Formula 5.4).

mc(l) =

 2.mc(l − 1), if l > 0.

1, otherwise.
(5.4)

On the other hand, if a Fibonacci sequence is used, a minimum capability is the sum of

the two preceding ones (Formula 5.5). Note that c1 and c2 are arbitrary constants.

76 CHAPTER 5. HETEROGENEOUS KEY MANAGEMENT FOR SECURE GROUP

COMMUNICATION

mc(l) =


mc(l − 1) +mc(l − 2), if l > 1.

c2, if l = 1.

c1, otherwise.

(5.5)

The heterogeneous subgrouping is based on two algorithms: the Assignment and Reorder

Algorithms. The Assignment Algorithm is run when nodes join the group and assigns

them to the right subgroups. It creates new ones when it is necessary and may split

others so that the inequality 5.2 remains always satisfied. The Reorder Algorithm is

executed after a node leaving to reduce the number of subgroups. It then removes those

that become empty and merges others to the possible extent. Figure 5.5 shows an example

of a group partitioned using powers of two. Note that the inequality 5.2 is satisfied for all

the subgroups and the value of p is minimal.

Figure 5.5 – Example of a group partitioned into three subgroups.

5.3.2.3 Assignment Algorithm

The Assignment Algorithm is run by the Key Manager when a node u is authorized to join

the group. It takes as input cu , the number of keys that can be handled by u, and assigns

it to a subgroup according to the input value. To achieve this, the algorithm manipulates

a list of subgroups, lsg , of size p. Each of its items contains the ID of a subgroup S , sidS ,

its minimum capability, mcS , and its size, mS .

When a node u is authorized to join the group, the Assignment Algorithm starts by

determining the minimum capability mcu that matches it. It then rounds down cu to the

nearest power of two or term of a Fibonacci sequence. Next, it searches in lsg a subgroup

S such as mcS = mcu . If no subgroup is found (or if the group is empty), a new one is

created (See section 4.3.3.1). After that, the algorithm assigns u to S , updates lsg and

renews the group security material following the steps described in section 5.3.3.

5.3. OUR SOLUTION 77

Also, the algorithm checks if the inequality 5.2 is still satisfied for all subgroups. It browses

the list lsg and as long as there is a subgroup T for which mcT < p + mT , it is splitted

following the steps described in the next paragraph. The size of the resulting subgroups

will then be equal to the half of mT and the inequality 5.2 will be true again for them.

The steps of the Assignment Algorithm are described in Algorithm 3.

Algorithm 3: Heterogeneous Assignment Algorithm

Input : cu = capability of the node u
1 Round down cu to the nearest minimum capability mcu ;
2 Find in lsg a subgroup S so that mcS = mcu ;
3 if no subgroup is found then
4 Create a new one S ;
5 end
6 Assign u to S ;
7 Update lsg ;
8 while ∃ T for which mcT < p + mT do
9 Split T ;

10 end

To fix ideas, let us consider a node u (cu ≥ 8) which is allowed to join the group G of

the previous example (Figure 5.5). First, the Assignment Algorithm rounds down cu to

the nearest minimum capability mcu and then searches in lsg a subgroup S of minimum

capacity mcS = mcu. Thus, according to the value of cu several cases arise.

• If cu < 16, then mcu = 8 and u is assigned to S1. However, the size of the latter

increases and the inequality 5.2 is not true any more for it (mcS1 = 8 < p + ms1 =

3 + 6 = 9). S1 is splitted (Figure 5.6).

• If 16 ≤ cu < 32, then mcu = 16 and u is assigned to S2. In this case, no split is

necessary since the inequality 5.2 is still true for all the subgroups.

• If 32 ≤ cu < 64, then mcu = 32 and the node u is assigned to S3. Also, no split is

necessary since the inequality 5.2 is still true for all the subgroups.

• If cu ≥ 64, then mcu ≥ 64. As there is no subgroup having a minimum capacity

greater than 64, a new one (S4 with mc4 = mcu) is created and the node u is

assigned to it. However, by creating a new subgroup, the value of p increases. Thus,

the inequality 5.2 is not true any more for S1 (mcS1 = 8 < p + ms1 = 4 + 5 = 9).

S1 is splitted.

78 CHAPTER 5. HETEROGENEOUS KEY MANAGEMENT FOR SECURE GROUP

COMMUNICATION

Figure 5.6 – Example of a subgroup splitting.

Subgroup splitting: Splitting a subgroup S consists first of creating a new subgroup

T (mcT = mcS). The mS

2
last nodes that have joined S are then moved to T . We

denote by S+ the subgroup S after being splitted and by uf the first node of S to

join T , i.e. ∀u ∈ S+, nidu < nidf and ∀v ∈ T , nidv ≥ nidf .

The Key Manager starts by determining sidT . Next, to ensure the forward secrecy, it

randomly generates two refresh keys, KR1 and KR2 . Then, using the KDF , it computes

K S+
and KT (Formulas 5.6 and 5.7). After that, all the pairwise keys associated to

two nodes that no longer belong to the same subgroup are removed. Also, for each

subgroup U (including S), a pairwise subgroup key K T ,U is created.

K S+

= KDF (K S ||KR1) (5.6)

KT = KDF (K S ||KR2) (5.7)

Furthermore, the algorithm sends the unicast message SM1 to each node u ∈ S+

(nidu < nidf). The message is encrypted by means of the node secret key and contains

KR1 as well as the pairwise subgroup key K S ,T . It also sends the unicast message SM2

to each node v ∈ T (nidv ≥ nidf) encrypted using the node secret key. SM2 contains

KR2 and Lv , the list of the new generated pairwise subgroup keys that are associated

to T . Finally, the unicast message SM3 is sent to each subgroup U (U 6= S and

U 6= T). It is encrypted by means of the node secret key and contains the pairwise

subgroup key KT ,U .

SM1 : KM → u :<
{

uidf ,KR1 ,K
S ,T
}

K S
u >

SM2 : KM → v :< {uidf ,KR2 ,Lv}KT
v >

SM3 : KM → U :<
{

KT ,U
}

KU >

5.3. OUR SOLUTION 79

5.3.2.4 Reorder Algorithm

The Reorder Algorithm is run, after a node leaving (the node can voluntarily leave the

group or be evicted because it gets compromised), to reduce the number of subgroups

(p). The aim is to decrease the number of keys that the group members has to handle.

Thus, the algorithm takes as input the percentage of merging, pcm, and tries to remove

or merge subgroups when it is possible. To achieve this, the algorithm manipulates the

same list lsg used by the Assignment Algorithm.

When a node leaves a subgroup S , the algorithm checks the number of the remaining

ones. If S becomes empty, it is removed (See section 4.3.3.2). If the size of S falls below

a certain threshold, thr , the algorithm searches in lsg a subgroup T to merge with S .

The threshold is the product of the percentage of merging and the maximum size of

S (thr = pcm.(mcS − p)). Furthermore, T must have the same minimum capability as

S and its current size must also be less than the threshold. If it is the case, the two

subgroups are merged following the steps described in the next paragraph. Finally, the

Key Manager renews the network security material, following the steps described in the

node management section (See section 5.3.3). The steps of the Reorder Algorithm are

described in algorithm 4.

Note that pcm must not exceed 50 % so that the size of the resulting subgroup does

not exceed mcS − p. Also, the greater is pcm, the more the subgroups are merged. This

increases the merging’s cost but reduces the value of p. The value of pcm defines then a

compromise between the merging’s overheads and the value of p.

Subgroup merging: Merging S and T consists of three steps. A new subgroup S+ is

first created (See section 4.3.3.1). Next, the members of S and T are moved to the

new subgroup. New pairwise keys are then generated for every pair of nodes u, v

(u ∈ S and v ∈ T) and sent to them (Messages MM1 and MM2). These messages

are encrypted by means of the node keys. They contain the new cognate ID and

the pairwise key associated to it. The message MM2 also includes the list (Lv) of

the pairwise subgroup keys related to S . Finally, the two subgroups S and T are

removed.

MM1 : KM → u :<
{

nidu ,K
S+

u,v

}
KS+

u

>(∀u ∈ S,∀v ∈ T)

MM2 : KM → v :<
{

nidv ,K
S+

u,v ,Lv

}
KS+

v

>(∀v ∈ T,∀u ∈ S)

80 CHAPTER 5. HETEROGENEOUS KEY MANAGEMENT FOR SECURE GROUP

COMMUNICATION

Algorithm 4: Heterogeneous Reorder Algorithm

Input : pcm = percentage of merging
1 foreach subgroup S that a node has left do
2 if mS = 0 then
3 Remove S ;
4 end
5 else
6 thr ← pcm.(mcS − p);
7 if mS < thr then
8 Find in lsg a subgroup T such as mT < thr and mcT = mcS ;
9 if a subgroup is found then

10 Merge S and T ;
11 end

12 end

13 end

14 end

5.3.3 Node management

The way the keys are managed upon a network change is almost similar to that of

the version intended for device-to-device communication (See section 4.3.4). The main

difference with this new solution is the management of the group key. Thus, when a node

joins or leaves the network, this key must be replaced in the same way as the subgroup

and pairwise subgroup keys. The aim is to ensure the backward and forward secrecy.

Thus, the Key Manager uses the KDF and a randomly generated refresh key to update

the group key (Formula 5.8).

K+
(G) = KDF (K(G)||KR) (5.8)

So that the group members can update the group key, they must know the refresh key

used by the Key Manager. It is worth repeating that the message JM2 containing the

refresh key is broadcast to each subgroup (See section 4.3.4). When a group member

receives the message, it first decrypts it using its subgroup key. Next, it uses KR and the

KDF to update the group key (Formula 5.8). After that, the node discards the refresh

key. In the case of a node joining, the Key Manager agrees with u on a temporary secret

key (using a key agreement method). This key is then used to securely provide the joining

node with the group key.

5.4. SECURITY ANALYSIS 81

5.4 Security analysis

In this section, we analyze the security of our solution. We then prove that it guarantees

the backward and forward secrecy. We also show that it resits to collusion attacks.

5.4.1 Backward secrecy

We prove that a joining node cannot access the current group key or any previous

incarnation of it. The same goes for the subgroup and pairwise subgroup keys related

to its subgroup.

Proposition 5.1: Backward secrecy is guaranteed as a joining node never gets knowledge

of the old security material used before it joins the group.

Proof: Let us consider a node u that joins a subgroup S . The Key Manager starts by

updating the keys mentioned above. Then, before u can actually join the group, the Key

Manager rekeys all current members of the network, by means of messages JM1 and JM2 .

These messages are encrypted by means of their node and subgroup keys, respectively.

Since none of these keys are known to u, the joining node is excluded from the process of

rekeying.

5.4.2 Forward secrecy

We prove that a leaving node cannot access the new group key or any future incarnation of

it. The same goes for the subgroup and pairwise subgroup keys associated to its subgroup.

Proposition 5.2: Our solution guarantees the forward secrecy since a leaving node does

not have access to the new security material.

Proof: Let us consider a node u that leaves a subgroup S . The Key Manager rekeys the

subgroup members and the rest of the nodes by means of the messages LM1 and LM2 ,

respectively. The former is encrypted by means of the node keys and the latter using the

subgroup keys. Since none of these keys are known to u, the leaving node is excluded from

the process of rekeying.

82 CHAPTER 5. HETEROGENEOUS KEY MANAGEMENT FOR SECURE GROUP

COMMUNICATION

5.4.3 Collusion resistance

We prove that our solution is resistant to collusion attacks.

Proposition 5.3: Our solution resists to collusion attacks as multiple evicted nodes

cannot cooperate to regain access to the network.

Proof: When nodes are evicted because they get compromised, the Key Manager rekeys

the group members by means of the messages LM1 and LM2 . The former is encrypted

by means of the node keys and the latter using the subgroup keys. Since these keys are

independent of each other and as none of them are known by the evicted nodes, these

nodes cannot collude to decipher the rekeying messages.

5.5 Performance evaluation

In this section, we evaluate the performance of our solution. After showing that it resits to

collusion attacks and that it guarantees the backward and forward secrecy, we prove that,

by balancing the loads between the heterogeneous devices according to their capabilities,

our solution is both efficient and highly scalable.

5.5.1 Theoretical analysis

We begin by briefly analyzing the overheads of our solution on the Key Manager before

detailing them on the network members.

5.5.1.1 Overheads on the Key Manager

We start by analyzing the overheads of our solution on the Key Manager side.

Property 5.1: The communication overhead of an operation related to a subgroup S is

proportional to the sum p + mS on the Key Manager.

Proof: Regardless of the rekeying operation performed (such as a node joining S or a

node leaving S), the Key Manager sends a unicast message to each of the mS members of

S and broadcasts a message for each of the other p − 1 subgroups, in the worst case. The

Key Manager then sends a total number of messages proportional to the sum p + mS .

5.5. PERFORMANCE EVALUATION 83

Property 5.2: The calculation overhead of an operation related to a subgroup S is

proportional to the sum p + mS on the Key Manager.

Proof: Regardless of the rekeying operation performed (such as a node joining S or a

node leaving S), the Key Manager updates the keys which are or will be known by the

node in question. The calculation overhead on the Key Manager is therefore proportional

to the storage cost on nodes, which will be proven to be of the order of p + mS in the

next Section. Also, the subgroup management algorithms browse the list of subgroups in

the worst case. They therefore have a complexity proportional to p.

Property 5.3: The storage overheads on the Key Manager is proportional to O(n).

Proof: The number of nodes is more important than that of subgroups. If we choose

not to store the pairwise node keys (used to secure communication between the nodes) in

the Key Manager’s memory, the largest number of keys to store will be that of the node

secret keys. The Key Manager will then store a number of keys proportional to n.

Discussion: The communication and calculation costs of an operation related to the

subgroup S are proportional to p + mS on the Key Manager. The storage, on the other

hand, is of the order of O(n). Considering the significant improvement (presented in the

next section) that our solution provides on the node side, the costs on the Key Manager

are reasonable. Also, as the Key Manager has usually plentiful of resources, we aimed to

make the costs more affordable on the nodes, especially the constrained ones.

5.5.1.2 Overheads on nodes

Now, we analyze the overheads of our solution on the node side.

Property 5.4: The communication overhead on the nodes is O(1).

Proof: Regardless of the rekeying operation performed (such as a node joining S or a

node leaving S), a node receives a constant number of messages. The communication cost

on nodes is therefore independent of the network size.

Property 5.5: The calculation overhead of an operation related to a subgroup S is

proportional to the sum p + mS on the nodes.

Proof: Regardless of the rekeying operation performed (such as a node joining S or a

node leaving S), a node updates all the keys it knows, in the worst case. The calculation

cost on the nodes is therefore proportional to the storage, which will be proven to be

proportional to the sum p + mS in the next proof.

84 CHAPTER 5. HETEROGENEOUS KEY MANAGEMENT FOR SECURE GROUP

COMMUNICATION

Property 5.6: The storage overhead on a member of a subgroup S is proportional to

the sum p + mS .

Proof: Using our protocol, a node of a subgroup S stores one secret key, mS − 1 pairwise

node keys, one subgroup key, p − 1 pairwise subgroup keys and a group key. The storage

overhead on the node is therefore proportional to the sum p + mS .

Discussion: The communication cost of our solution on the members of a subgroup S is

O(1), while the calculation and storage overheads are proportional to the sum p + mS .

Thus, to reduce these costs as well as those of the Key Manager, we aimed to minimize

the number of subgroups, p. We then implemented a simulator to analyze the behaviour

of its value according to several parameters.

5.5.2 Simulation

The simulator, we implemented in C, randomly generates node capabilities (based on

a uniform distribution) and runs the Assignment Algorithm to distribute them into

subgroups. It also simulates nodes leaving and runs the Reorder Algorithm. The simulator

takes as inputs the following parameters:

• n : the number of nodes (Default value: 1024000);

• C MAX : the maximum value that the simulator can generate (Default value:

256000);

• pcm : the percentage of merging (Default value: 0 .3);

• t : the subgrouping type (Default value: powers of two).

The simulator then outputs the number of subgroups, which is represented by the size of

the list lsg . This allows us to analyze the effect of the above-mentioned parameters on the

value of p. Each time we set three parameters to default values and we vary the fourth.

Number of nodes: Starting with the network size, the results of the simulations are

plotted in Figure 5.7. They show that, regardless of the network size, by using our

method of load balancing the number of subgroups is reasonable. Figure 5.7 shows

that even when the size of the network exceeds one million of nodes, the value of p

does not exceed a few dozen. This makes our solution scalable since the constrained

nodes manipulate a reasonable number of keys.

5.5. PERFORMANCE EVALUATION 85

Figure 5.7 – Effect of the number of nodes on the value of p.

Maximum capability of nodes: Now, we analyze the effect of the maximum capability

that can be generated by the simulator. The results are plotted in Figure 5.8. They

show that the more powerful the nodes are, the smaller the value of p is. This is

because powerful devices are able to manage more keys and can be assigned to larger

subgroups. Note that the larger the subgroups are, the more their number diminishes.

Therefore, since the costs of our solution on the constrained nodes mainly depend

on the number of subgroups, they are more likely to support the overheads if the

network becomes too large. Moreover, even when the maximum capability is small,

the value of p remains reasonable for a network containing over a million nodes. To

sum up, our solution is scalable regardless of the nodes maximum capabilities but it

can become even more if the network contains enough powerful members.

Figure 5.8 – Effect of the maximum capability of nodes on the value of p.

Percentage of merging: Now, we study the effect of the percentage of merging. The

results of the simulations are plotted in Figure 5.9. They show that the greater

the percentage of merging is, the smaller the value of p is. Therefore, the merging

operation actually reduces the number of subgroups and makes our solution lighter for

the constrained devices and thereby more scalable. Note that most of the overheads

imposed by the subgroup merging are at the level of the Key Manager and have no

significant influance on the performance of nodes.

86 CHAPTER 5. HETEROGENEOUS KEY MANAGEMENT FOR SECURE GROUP

COMMUNICATION

Figure 5.9 – Effect of the percentage of merging on the value of p.

Subgrouping type: Finally, we study the effect of the type of subgrouping. The results

of the simulations are plotted in Figure 5.10. They show that the use of powers of

two gives slightly better results than a Fibonacci sequence. However, they generally

gives approximately the same results for large networks such as the IoT.

Figure 5.10 – Effect of the subgrouping type on the value of p.

5.5.3 Comparison

After showing that our solution resists to collusion attacks and guarantees the backward

and forward secrecy, let us prove that it meets the other IoT requirements: efficiency and

scalability. Thus, we compare our solution to the version presented in the previous chapter

(DKM) as well as to the Key Management protocol presented in [129] (GREP) to secure

group communication.

5.5. PERFORMANCE EVALUATION 87

5.5.3.1 Efficiency and scalability

The communication cost of our solution on nodes is O(1) and therefore does not need to

be discussed anymore. On the other hand, the calculation cost on nodes is proportional

to storage. For these reasons, we only need to analyze the storage costs to compare the

efficiency and scalability of our solution to those of the existing schemes. We then take

as example a TmoteSky sensor node and consider keys of 256 bits (using AES-256 for

example). Featuring 48 Kbytes, a TmoteSky can store up to 1536 keys (ignoring the other

node’s memory requirements).

For the node to support the storage cost of our solution, it is enough if it can store at

least p keys. The percentage of storage capability to indicate to the CEF must then be

greater or equal to Po = p
1536

. On the other hand, using GREP or DKM the storage cost

is proportional to O(
√

n). The memory rate required to store these
√

n keys is therefore

Pr =
√
n

1536
. We compare the variation of the two values according to n. To achieve this,

we used the default values of the algorithms’ parameters. The results of the simulations

are plotted in Figure 5.11.

It is important to highlight that our solution requires less storage on a TmoteSky than

the other protocols. Indeed, the value of Po is smaller than Pr , no matter the group size.

More importantly, if the group contains one million nodes, more than half of the memory

of the TmoteSky will be used to store all the keys using GREP or DKM. On the other

hand, under the conditions of the simulations, less than 2 % of its storage capability is

enough if a our solution is used. This is because storage cost is well balanced between the

group members according to their capabilities. Thus, by using a bit more of the resources

of powerful devices, our solution becomes much lighter for the constrained ones. It can

then operate on much larger heterogeneous networks such as the IoT.

Figure 5.11 – Efficiency and scalability.

88 CHAPTER 5. HETEROGENEOUS KEY MANAGEMENT FOR SECURE GROUP

COMMUNICATION

5.5.3.2 Heterogeneity

Unlike most of the existing protocols, our solution balances the loads between the

heterogeneous devices of the network according to their capabilities. To illustrate this

difference, we consider the protocols DKM and GREP, which have storage and calculation

cost proportional to O(
√

n). Not that these costs are the same for all the group members,

while they are both proportional to the nodes’ storage capability, using our solution. We

consider then a network of 10000 nodes and analyze the variation of the calculation and

storage cost according to the node’s storage capability (number of keys it can store),

for the three protocols. Note that the percentage of storage capability that we choose to

indicate to the CEF is 10 % (i.e. only 10 % of the real capability of the node is used). The

results are plotted in Figures 5.12.

Figure 5.12 – Heterogeneity.

We take as example two nodes u1 and u2 that can store 200 and 1800 keys, respectively.

For both nodes, 10% of their memory is used by our solution, in the worst case. DKM and

GREP, on the other hand, use 50% of the former and 5% of the latter. As the calculation

overhead on node depends on the storage, these protocols quickly exhausts the resources

of u1 , while u2 has much more. More importantly, the nodes having a capability lower

than 100 can not even store all the keys, while our solution uses 10% of their memory

only. Thus, although the overheads imposed by DKM and GREP are lower than that of

our solution for powerful devices (capability greater than 1000), they are much greater

for the weak ones.

5.6. CONCLUSION 89

5.6 Conclusion

The purpose of this chapter was to present a novel versatile Key Management protocol

for the IoT. In addition to securing both device-to-device and group communication,

our solution considers the heterogeneous nature of the IoT. It is then lighter for the

constrained devices by using a bit more of the resources of the powerful ones. Thus,

the network performance is significantly improved and its lifetime increased. We showed

that our solution ensures the forward and backward secrecy, as nodes can securely join

and leave the network at any time. We also proved that our protocol resits to collusion

attacks, since multiple evicted nodes can not cooperate to regain access to the network.

We finally showed that our solution is both efficient and highly scalable by balancing the

loads between the heterogeneous devices according to their capabilities.

In the next chapter, we will present our third contribution. It is a novel decentralized

blockchain-based Key Management protocol for secure device-to-device, group and multi-

group communication in the IoT. This new solution belongs to the class hyb
hybKM

het
post.

Chapter 6

Blockchain-Based Decentralized Key

Management for secure Multi-group

Communication

In this chapter, we propose a novel decentralized blockchain-based Key Management

protocol for the IoT. In addition to securing the device-to-device and group commu-

nication, this new solution considers the multi-group communication. It then guarantees

the secure coexistence of several services in a single network. To achieve this, our solution

manages several groups with independent security parameters. To decentralize the Key

Management, we use the blockchain technology and smart contracts. We show that our

solution solves the single point of failure problem, since the system continues to operate

when a Key Management entity fails. We also prove that resilience is improved, as the

compromise of one of these entities does not jeopardize the whole network.

91

92CHAPTER 6. BLOCKCHAIN-BASED DECENTRALIZED KEY MANAGEMENT FOR SECURE

MULTI-GROUP COMMUNICATION

6.1 Introduction

In multi-group communication, a device sends/receives multicast messages only to/from

the members of one of the groups to which it belongs [62]. Unlike group communication, in

which a device is assumed to be part of a single group, this mode considers the possibility

that devices can participate in multiple services at the same time. The IoT is indeed a

network that can be simultaneously shared by different services. Smart ambulances [113]

are an example of technologies for which the multi-group communication is necessary.

They can indeed participate, at the same time, in the intelligent transportation network

and the healthcare system. The multi-group communication requires that the Key

Management guarantees independence of services, efficiency and scalability.

Most of the existing Key Management protocols, especially those designed for group com-

munication, use the same security parameters to secure all the network communications.

Thus, if several services are provided by the network, communications within a service

will be accessible to all the network members even those which did not subscribe to it.

The compromise of a node will then jeopardize all network services. Furthermore, the

existing solutions, based on post-distribution, generally require a third party to manage

the keys. If this entity is centralized, it will become a single point of failure and the main

target of attacks. When it fails, the entire system will stop operating, and if it is attacked,

the whole network will be compromised.

To address these issues, we propose a novel decentralized blockchain-based Key Man-

agement protocol for the IoT. This new solution belongs to the class hyb
hybKM

het
post. We

then improve our previous protocol so that it secures, in addition to the device-to-device

and group communication, the multi-group communication. It therefore guarantees the

secure coexistence of several services in a single network. To achieve this, our solution

manages several groups with independent security parameters so that the compromise of

a service has no effect on the others. Furthermore, we use the blockchain technology and

smart contracts to decentralize the Key Management. We design a lightweight consensus

algorithm that takes into account the capability of the blockchain participants for block

validation. We show that this solves the single point of failure problem, since the system

continue to operate when an entity fails. We also prove that the resilience of our solution

is improved, as the compromise of an entity does not jeopardize the whole network.

The remainder of this chapter is organized as follows. Section 6.2 presents related works.

Section 6.3 introduces our solution. Section 6.4 presents the security analysis. Section 6.5

introduces the performance evaluation. Section 6.6 concludes the chapter.

6.2. RELATED WORKS 93

6.2 Related Works

In this chapter, we are interested in the device-to-device, group and multi-group

communication. However, as the first two was detailed in the previous chapters, we focus in

this section on the latter. We also discuss the post-distribution Key Management solutions

based on the blockchain technology. We then consider the class net
∗KMpost

∗ .

6.2.1 Multi-Group Key Management schemes

As far as we know, only few researches considered the possibility of coexistence of several

services in a single network. The authors in [123] and [147] proposed Key Management

schemes for hierarchical group access control. However, the protocol cannot achieve a high

performance when no hierarchy exists among services. The authors in [99] proposed then

a new scheme called the Master Key Encryption Based Key Management. This protocol is

nevertheless based on asymmetric cryptography as it was proposed for traditional Internet.

It is therefore not well suited for networks containing highly constraint devices such as

the IoT.

6.2.2 Blockchain solutions

A blockchain is a decentralized and secure storage technology. It relays on cryptography,

smart contracts and consensus algorithms to securely replicate an application on several

entities. For more details, please refer to section 2.4.

The term blockchain first appeared in Nakamoto’s Bitcoin paper describing a new

decentralized cryptocurrency [93]. The technology started then to be used in various

applications. Recently, researchers began to take interest in using it to decentralize the

Key Management. The authors of [78, 79] proposed a blockchain-based Key Management

system to secure the group communication in intelligent transportation systems. In

[84], a blockchain was used to decentralize the Key Management for hierarchical access

control in the IoT. These works do not consider the device-to-device or the multi-group

communication and use the Proof of Work (PoW) [93] consensus algorithm. Our solution

secures the three modes of IoT communication: device-to-device, group and multi-group

communication. It is also based on a version of Proof of Stake (PoS) [132] that takes into

account the capability of the blockchain participants. More importantly, PoS is known to

be far less energy-intensive than PoW [112].

94CHAPTER 6. BLOCKCHAIN-BASED DECENTRALIZED KEY MANAGEMENT FOR SECURE

MULTI-GROUP COMMUNICATION

6.3 Our solution

Our literature review shows that none of the existing solutions, proposed for secure

multi-group communication or based on the blockchain technology, is well suitable for

the IoT. We then propose a novel Key Management protocol [67, 71] belonging to the

class hyb
hybKM

het
post. Our solution is organized into two layers (Figure 6.1).

The first layer manages the nodes and their cryptographic keys. As the subgroup

management was detailed in the previous chapters, we focus in this section on the group

management. It is about handling multiple groups and assigning nodes to them according

to the services to which they subscribe. The network is then divided into several groups,

each of which is also partitioned into several subgroups (Figure 6.2b). By doing this,

the security parameters of services will be independent so that the compromise of one of

them will have no effect on the others. Moreover, as shown in the previous chapters, the

subgrouping makes the protocol lighter for nodes, especially the constrained ones.

The blockchain layer manages the blockchain and its participants. The aim is to securely

decentralize the Key Management. It then guarantees that the system continues to operate

even if some of its participants fail or are the target of malicious attacks. It also ensures

that the compromise of a participant does not jeopardize the security of the entire network.

Figure 6.1 – Architecture of our solution.

Our solution is a hybridization of symmetric and asymmetric cryptography. The aim

is to take advantages of each and overcome its disadvantages. Symmetric encryption

is mainly used in layer 1, while asymmetric encryption is only used in layer 2. Note

that the blockchain is implemented on powerful servers (the cloud) or IoT gateways and

is completely separated from the constrained devices. The goal is to not involve any

additional cost on them, except for those imposed by the first layer.

6.3. OUR SOLUTION 95

6.3.1 Layer 1: Key Management

The first layer manages the nodes. It organizes them into groups (according to the services

in which they participate) and subgroups (according to their capabilities). It also provides

them with the keys and the secret materials that allow them to update these keys.

6.3.1.1 Group and service management

An IoT service is a transaction between two entities: a provider and a consumer. The

former measures the state of the latter or initiates actions which will cause a change to it

[128]. A device may participate (as a provider, a consumer or both) to different services, at

the same time, and subscribe or unsubscribe from services at any time. The IoT can then

be seen as a set of overlapping classes each gathering nodes that collaborate to provide

a service and others that benefit from it (Figure 6.2a). As these classes are overlapping,

a group of the protocol cannot be associated to a service. Indeed, the independence of

the group security parameters will lose its meaning and the compromise of a node can

jeopardize several groups. We propose then the creation of a group for each possible

combination of services. A combination A of k services, of a finite set F of e services, is a

subset of k (k < e) elements of F . The number of possible combinations, nc, is equal to:

nc =
e∑

k=1

C k
e = 2 e − 1 (6.1)

The network N is partitioned into groups. Each group G is associated with an ID , gid(G),

which is unique within N . It contains the nodes participating in the services of the

combination A(G) associated to it. When an actual member subscribes or unsubscribes

from services, it migrates from a group to another according to its new combination of

services. The number of groups can reach nc (Formula 6.1) if there are nodes participating

in every possible combination of services. However, it cannot exceed the number of nodes,

n, as empty groups are not allowed. The maximum number of groups, maxg , is equal to:

maxg = Min(2 e − 1 , n) (6.2)

The probability that each node belongs to a distinct group is very low or even impossible

in reality. We then assume, in the rest of the chapter, that the n nodes of the network are

uniformly distributed in
√

n groups of
√

n members each. This is closer to reality, on the

one hand, and simplifies the evaluation of our solution’s overheads, on the other.

96CHAPTER 6. BLOCKCHAIN-BASED DECENTRALIZED KEY MANAGEMENT FOR SECURE

MULTI-GROUP COMMUNICATION

In Figure 6.2a, two services E (1) and E (2) coexist in a network N . Three combinations

are then possible: A(1) = {E (1),E (2)}, A(2) = {E (1)} and A(3) = {E (2)}. Each group G

contains the nodes participating in the combination of services A(G) associated to it. The

group G1 contains the nodes participating in both services while those of G2 and G3

subscribed only to E(1) and E(2), respectively (Figure 6.2b).

(a) According to services. (b) Achieved by the protocol.

Figure 6.2 – Network partitioning.

6.3.1.2 Classification of cryptographic keys

The keys presented in the previous chapters (See Section 4.3.1) are also used by this new

solution. However, each of them, especially the TEKs , are specific to a single group and

independent from one group to another. There are mainly three new keys holds by a node

that belongs to a group G :

• A service key, K (E), for each service E in which the node participates. This is a

DEK that replaces the group key presented in Section 4.3.1. It is used to secure the

group communication between the service members.

• A pairwise service key, K(G,I), for each group I containing members that participate

in the same service as those of G (i.e. A(G) ∩ A(I) 6= ∅). It is a DEK used to secure

the device-to-device communication between the members of the two groups (G and

I).

• A group Key, KG . This is a TEK used to secure the communication with the Key

Manager. It replaces the node and subgroup keys when the same message is sent to

all the group members (for more efficiency). It is known only by the members of G .

6.3. OUR SOLUTION 97

6.3.1.3 Node Management

Like the subgroup and pairwise subgroup keys, those mentioned above must be updated

upon a change in the network (a node u joins or leaves a group G). The aim is to guarantee

the backward and forward secrecy. To achieve this, the Key Manager uses the same refresh

key and key derivation function used before (Formulas 6.3, 6.4 and 6.5).

K (E)+ = KDF (K (E)||KR) (6.3)

K+
(G,I) = KDF (K(G,I)||KR) (6.4)

K+
(G) = KDF (K(G)||KR) (6.5)

After the key updates is complete, the Key Manager must rekey the nodes. It then sends

the messages JM1 and JM2 to rekey the members of the group G (See Section 4.3.4). It

also muticasts the message RM (the same message whether its a join or leave operation),

encrypted using K(I) to all the members of the group I (A(G) ∩ A(I) 6= ∅). The message

contains the ID of the group G and the refresh key allowing the members of I to update

their pairwise service key K(G,I).

RM : KM → I :<
{

gid(G),KR

}
K(I)

>,∀I ∈ N , such that A(G) ∩ A(I) 6= ∅

When a member of I receives the message RM , it first decrypts it, using its group key,

and retrieves its contents. The node then uses the KDF and KR to update the pairwise

service key, K(G,I), it shares with the members of G .

6.3.1.4 Subgroup management

The subgroup management remains almost the same as in the previous chapters. It

consists of distributing nodes on subgroups uniformly (If a homogeneous subgrouping is

used, see section 4.3.3) or according to their capabilities (If a heterogeneous subgrouping

is used, see section 5.3.2). The aim is to improve the protocol efficiency and scalability.

The only difference in this new solution is that the subgroups of each group are managed

independently of each other.

98CHAPTER 6. BLOCKCHAIN-BASED DECENTRALIZED KEY MANAGEMENT FOR SECURE

MULTI-GROUP COMMUNICATION

6.3.2 Layer 2: Blockchain Management

The purpose of this layer is to decentralize the Key Management using the blockchain

technology and smart contracts. Although any type of architecture can be used (since

the secret keys are not stored in the blockchain), a private or a consortium blockchain

remains preferable in an application such as the Key Management. A limited number

of participants also makes the blockchain management more efficient. For more details

about the blockchain architectures, please refer to Section 2.4.2. We introduce into the

network IoT gateways (or BPs for Blockchain Participants) that generate, validate and

store transactions upon a network change. The BPs can also be implemented on servers.

The BPs act as intermediaries between the nodes and the blockchain (Figure 6.1). The

aim is to not involve any additional cost on nodes, except those imposed by Layer 1.

When a node wishes to join the network, it sends a request to a BP . If the transaction

corresponding to this request is validated by the other BPs and is correctly added to

the blockchain, the node is attached to the gateway that initiates the joining process. It

will remain attached to it until the node moves, leaves the network or when the BP fails

or gets compromised (see section 6.3.2.3). Meanwhile, the BP manages (generates, stores

and updates) the keys associated to the node. The BP also sends to the node the rekeying

messages, so that it can update its keys.

A blockchain transaction is the storage unit that corresponds to a specific event, which

is a rekeying operation in our case. Any BP that executes in order the operations stored

in the blockchain should have the same organization of nodes in groups and subgroups.

As shown in Figure 6.3, a transaction contains the following information: the rekeying

operation (join, leave or evict), the node ID, the node capability, the ID of the subgroup

of the node, the ID of the group of the node, the cryptographic hash of the node’s secret

code (see section 6.3.2.3) and the refresh key used to update the keys.

Figure 6.3 – Example of a blockchain transaction.

6.3. OUR SOLUTION 99

6.3.2.1 Transaction management upon network change

When a BP receives a join or leave request, it first uses the layer 1 for the group,

subgroup and node management. The algorithms and operations performed by this layer

(e.g. Assignment and Reorder Algorithms) are transformed into smart contracts. The aim

is to ensure that, for a certain join or leave request, any BP should obtain the same result.

Before distributing the keys, the layer 1 calls the layer 2 to generate, validate and store

a transaction in the blockchain. If the transaction corresponding to the current rekeying

operation is correctly stored in the blockchain, the layer 2 informs the layer 1. The BPs

can then distribute the generated keys on the appropriate nodes after ciphering them

using the KEKs (Figure 6.4).

Transaction generation: When the layer 2 receives the information from the first layer

about a rekeying operation, it starts by generating the corresponding transaction. The

layer 2 then stores it in its memory pool of temporary transactions and broadcasts

it to all the BPs . Note that the communication between the BPs is ciphered using

symmetric encryption. The symmetric keys are securely exchanged using asymmetric

encryption.

Transaction verification: When a BP receives a transaction, it uses the smart contracts

to verify its correctness. In the case of a node joining, the BP reruns the Assignment

Algorithm to confirm that the node was assigned to the right set. It also checks if

the node ID and the hash of the secret code have not already been used for another

network node. On the other hand, if a node leaves the network or is evicted, the BP

checks if the leaving node is actually a network member. It also verifies if there is a

match between the node, subgroup and group IDs as well as the cryptographic hash

of the node’s secret code. If the BP judges that the transaction is correct, it adds it

to its memory pool.

Transaction validation: After a certain period of time (cp) or when the size of the

memory pool reaches a certain threshold (ct), the BPs run a consensus algorithm

(see next section). The aim is to achieve a consensus between them on whether the

content of the memory pool can be included to the blockchain. If all the BPs agree

that a block of transactions can be added to the blockchain and when it is correctly

stored, these transactions become valid. The layer 1 is therefore informed so that it

can distribute the generated keys on the appropriate nodes.

100 CHAPTER 6. BLOCKCHAIN-BASED DECENTRALIZED KEY MANAGEMENT FOR

SECURE MULTI-GROUP COMMUNICATION

Figure 6.4 – Decentralized rekeying upon a network change using a blockchain.

6.3.2.2 Consensus Algorithm

We introduce a lightweight consensus algorithm for transaction validation. This is a proof

of stake version that takes into account the capability of the blockchain participants, i.e.

the BP ’s capability determines its chance to validate the next block. In order not to

favor the more powerful BPs , more parameters are included into the selection process:

confidence and age. The level of confidence is initialized to a certain value, increased over

time and decreased when an incorrect transaction from a BP is detected. The age of a

BP represents the time elapsed between the last time it validated a block and a given

time. This gives chance to the weak BPs to participate in the validation process when

their age is high enough.

Algorithm 5: Consensus Algorithm

1 Generate a random number and broadcast it;
2 Wait for the random numbers of the other BPs ;
3 Combine the received numbers into one value;
4 Use this shared value to elect a validator;
5 if the BP is the validator then
6 Forge the new block;
7 Sign the block;
8 Broadcast the block;

9 else
10 Wait for the block from the validator;
11 Check the block and its transactions;

12 end
13 Store the block in the blockchain;
14 Remove validated transactions from memory pool;
15 Update the validator parameters;

6.3. OUR SOLUTION 101

Our Consensus Algorithm (Algorithm 5) can be executed either periodically (the period

is cp) or when the number of transaction in the memory pool reaches a certain threshold

(ct). For each block, a validator (the BP that forges the block) is randomly elected by

including a weighting according to the capabilities of BPs and the other above-mentioned

parameters (the higher the capability, the confidence and the age of a BP , the higher its

chance to be elected).

To achieve this, all BPs generate random numbers and exchange them with each other.

Each of theme combines all these random values by adding them, for example, or by

applying another mathematical function. The resulting value, being common to all, can

be used by BPs to perform a weighted random draw and thereby elect the same validator.

This validator groups the transactions contained in its memory pool to forge the new block,

signs it then broadcasts it. The other unelected BPs wait for the new block and check

its content once received. All the BPs , including the valdiator, store the block in their

copy of the blockchain and remove the validated transactions from their memory pool.

Finally, they update the validator parameters. They reset its age and modify its level of

confidence depending on whether an error is detected or not.

6.3.2.3 Blockchain interest

In addition to securely distribute the Key Management and ensure consistency between

the different BPs , the use of blockchain offers functionalities that a centralized solution

cannot provide. We present in the following the most important blockchain features,

namely system availability, node mobility and node sleeping.

System availability: When a BP fails or when it is a target of malicious attacks (such

as DoS attacks), the nodes attached to it become orphans. Each of them sends a

rejoin request to an other BP . When a BP receives a rejoin request, it agrees with

the sender on new KEKs so they can securely communicate. After that, the node

sends the hash of its secret code to be able to get authenticated. The BP consults

the blockchain and checks if the hash received corresponds to that of the node ID .

As the node in question is the only one able to generate the hash of its secret code,

the BP concludes that it is really a network node. If it is the case, the node is then

attached to this gateway without having to add new transactions to the blockchain

(Figure 6.5). This makes the rejoin operation more efficient. More importantly, the

failure of a BP does not prevent the system from working.

102 CHAPTER 6. BLOCKCHAIN-BASED DECENTRALIZED KEY MANAGEMENT FOR

SECURE MULTI-GROUP COMMUNICATION

Node mobility: As when a BP fails, a node can use its secret code to get authenticated

with another BP if its actual BP is no longer in range. The node sends a rejoin request

to a BP which is within reach. When the BP receives the rejoin request, it sends to

the node new KEKs to secure their communication. The node sends then the hash

of its secret code to get authenticated. The BP consults the blockchain and checks

if the hash received corresponds to that of the node ID . If it is the case, the node is

attached to this gateway without adding new transactions to the blockchain (Figure

6.5). This makes the mobility operation more efficient. Our protocol is therefore well

suitable for mobile networks.

Node sleeping: To save energy, a node can sleep if it does not have a work in progress.

During sleeping, the node turns off its radio and will not receive the rekeying

messages. Note that these messages contain the refresh keys that allow the network

nodes to update their keys. Thus, the sleeping node will not have the opportunity

to update its keys. However, when it wakes up, it will need the new keys to be able

to securely communicate with the other network nodes. It will then send to its BP

a rekey request containing the last refresh key it received. Since all the refresh keys

are stored in the blockchain, the BP can retrieve and send to the node the refresh

keys it missed. The keys will be updated without having to add new transactions to

the blockchain.

Figure 6.5 – Rejoin exchange.

6.4. SECURITY ANALYSIS 103

6.4 Security analysis

In this section, we analyze the security of our solution. We start by showing that it

guarantees the independence of services. Although resilience was detailed in the chapter on

device-to-device communication (See section 4.4), we analyze it again here for two reasons.

First, before the current chapter, the network was not divided into groups according

to services. Moreover, our solution was centralized. we therefore assumed that the Key

Manager itself is secure and that only the network nodes can be compromised. Thus, in

this section, we evaluate the resilience of our solution against node capture (considering

several groups) and against BP capture (considering that a BP can be compromised).

6.4.1 Independence of services

Using our solution, the security parameters of services are independent of each other.

This is mainly due to the fact that the network is divided into groups and that nodes are

distributed on them according to services in which they participate.

Proposition 6.1: Our solution ensures that the compromise of a service has no effect

on the others.

Proof: All the keys, except the service keys, are specific to a single group and are

independent from one group to another. The nodes belonging to the same group

necessarily participate in the same services. Therefore, the compromise of one of them

does not jeopardize a service in which it does not participate. Regarding the service

keys, let us consider two groups G and I associated to the combinations of services A(G)

and A(I), respectively. When a member of G gets compromised, only the keys related to

the services of A(G) are exposed. If G and I share some services (i.e. A(G) ∩ A(I) 6= ∅),
the keys related to the services to which the members of I participate, but not those

of G (A(G)\A(I)), remain secret. This is because the compromised node does not know

them. Furthermore, if the groups do not share services (A(G) ∩ A(I) = ∅), none of the keys

related to the services of A(I) get compromised. In both cases, only the services in which

the captured node participates are exposed and the others remain secret.

104 CHAPTER 6. BLOCKCHAIN-BASED DECENTRALIZED KEY MANAGEMENT FOR

SECURE MULTI-GROUP COMMUNICATION

6.4.2 Resilience against node capture

Although the heterogeneous algorithms that we presented in the previous chapter can be

applied in this new solution, a homogeneous subgrouping allow us to evaluate resilience

against node capture without a significant lack of generality. The n network nodes are

then distributed into
√
n groups, each in turn divided into 4

√
n subgroups of 4

√
n nodes.

6.4.2.1 Theoretical analysis

A node shares a pairwise key with each member of its subgroup, a pairwise subgroup

key with every subgroup of its group and a pairwise service key with each group (whose

members participate in the same service as the node).

Lemma 6.1: The number of links a node can decrypt is:

D = n − 1 + (
√

n − 1)(n −
√

n) + (4
√
n− 1)(

√
n − 4
√
n) (6.6)

Proof: A node can decrypt the communication linking it to the other n − 1 network

nodes in the worst case (if it participates in all the services). It may also decipher the

messages exchanged between the
√

n − 1 members of its group with the other n −
√

n

network members. Finally, the node is able to decrypt the communication between the
4
√
n− 1 members of its subgroup with the

√
n − 4
√
n other members of the group.

Proposition 6.2: The percentage of compromised links due to a node capture is:

P = 2
n − 1 + (

√
n − 1)(n −

√
n) + (4

√
n− 1)(

√
n − 4
√
n)

n(n − 1)
→ 0 , as n →∞ (6.7)

Proof: From Lemma 6.1 and the fact that the total number of links is equal to

C 2
n = n(n−1)

2
, we deduce this rate.

Proposition 6.3: The capture of the whole network requires the compromise of all the

network nodes.

Proof: From Proposition 4.2, the capture of a single group requires the compromise of

all its members. Moreover, deciphering all the inter-group communications requires the

knowledge of all the pairwise service keys. This is only possible if at least a member of

each group is captured.

6.4. SECURITY ANALYSIS 105

6.4.2.2 Comparison

We compare the level of resilience offered by this new solution with that provided by the

version presented in chapter 4. Figure 6.6 show that the percentage of comprised links due

to a node capture is approximately the same for both solutions. Therefore, the division

of the network into groups has no significant effect on the resilience of our protocol due

to a node capture.

Figure 6.6 – Resilience against node capture.

6.4.3 Resilience against BP capture

In the following, we denote by r the number of BPs in the network. We then assume

that the nodes are uniformly distributed on them (i.e. n
r

nodes are attached to each BP).

This allows us to evaluate the resilience of our solution against BP capture without a

significant lack of generality.

6.4.3.1 Theoretical analysis

We study the rate of compromised links after BP capture.

Proposition 6.4: The percentage of links that a compromised BP can decipher is equal

to:

P =
D

T
=

2nr − n − r

(n − 1)r2
→ 2r − 1

r2
, as n→∞ (6.8)

106 CHAPTER 6. BLOCKCHAIN-BASED DECENTRALIZED KEY MANAGEMENT FOR

SECURE MULTI-GROUP COMMUNICATION

Proof: A BP is responsible for the generation of the keys associated to the nodes attached

to it. Therefore, if it gets compromised, it will be able to decipher the n
2r

(n
r
− 1) links

between them. It will also be able to decipher the communications between its n
r

nodes

and the n − n
r

other members of the network. It can then decrypt a total number of links

equal to D = n
2r

(n
r
− 1) + n

r
(n − n

r
).

Proposition 6.5: The capture of the whole network requires the compromise of all the

BPs .

Proof: From Proposition 6.3, deciphering all the communications requires the knowledge

of all the pairwise keys. This is possible only if all the BPs are captured.

6.4.3.2 Comparison

We previously assumed that the Key Manager itself is secure and that only the network

nodes can be compromised. In this chapter, we propose a decentralization based on the

blockchain as in practice the central entity can be captured. Thanks to the blockchain

features, the Key Management is securely decentralized so that the compromise of a BP

has no effect on the others. Thus, compared to the solutions based on a centralized entity,

which once captured the whole network is compromised, only a part is captured using

our decentralized protocol (Figure 6.7). We showed that the rate of compromised links is

inversely proportional to the number of BPs . In other words, the more we increase the

number of BPs , the more resilient is our solution. In the next chapter, we analyze the

effect of this parameter on the network performance to help the reader to choose the best

compromise between resilience and performance.

Figure 6.7 – Resilience against BP capture.

6.5. PERFORMANCE EVALUATION 107

6.5 Performance evaluation

In this section, we evaluate the performance of our solution. After showing that our

solution ensures the independence of services without significant loss of resilience, we

prove that it remains efficient and highly scalable even with multiple groups. To achieve

this, we focus in the layer 1 only. The blockchain management overheads are evaluated

experimentally in the next chapter.

6.5.1 Overheads on the Key Manager

We start by analyzing the overheads of our solution on the Key Manager side.

Property 6.1: The communication overhead of an operation related to a subgroup S is

proportional to the sum p + mS +
√

n on the Key Manager.

Proof: Regardless of the rekeying operation performed (such as a node joining S or a

node leaving S), the Key Manager sends a unicast message to each of the mS members

of S and broadcasts a message for each of the other p − 1 group subgroups as well as the

other
√

n − 1 groups, in the worst case. The Key Manager then sends a total number of

messages proportional to the sum p + mS +
√

n.

Property 6.2: The calculation overhead of an operation related to a subgroup S is

proportional to the sum p + mS +
√

n on the Key Manager.

Proof: Regardless of the rekeying operation performed (such as a node joining S or a

node leaving S), the Key Manager updates the keys which are or will be known by the

node in question. The calculation overhead is therefore proportional to the storage cost

on nodes, which will be proven to be of the order of p + mS +
√

n in the next Section.

Also, the subgroup management algorithms browse the list of sets in the worst case. They

therefore have a complexity proportional to p.

Property 6.3: The storage overhead on the Key Manager is O(n).

Proof: From Property 4.3 and 5.3, the storage cost on the Key Manager is O(n) when

the network is not divided into groups. Two new types of keys are introduced in this

chapter: service and pairwise service keys. The number of service keys is proportional to
√
n. The number of pairwise service keys is of the order on n as it corresponds to C

[
√
n]

2 .

108 CHAPTER 6. BLOCKCHAIN-BASED DECENTRALIZED KEY MANAGEMENT FOR

SECURE MULTI-GROUP COMMUNICATION

Discussion: The communication and calculation costs of an operation related to the

subgroup S are proportional to the sum p + mS +
√

n on the Key Manager. The storage,

on the other hand, is of the order of n. Considering the significant improvement (presented

in the next section) that our solution provides on the node side, the costs on the Key

Manager are reasonable. Also, as the Key Manager has usually plentiful of resources, we

aimed to make the costs more affordable on the nodes, especially the constrained ones.

6.5.2 Overheads on nodes

Now, we analyze the overheads of our solution on the node side.

Property 6.4: The communication overhead on the nodes is O(1).

Proof: Regardless of the rekeying operation performed (such as a node joining or a node

leaving), a node receives a constant number of messages. The communication cost on

nodes is therefore independent of the network size.

Property 6.5: The calculation overhead of an operation related to a subgroup S is

proportional to the sum p + mS +
√

n on the nodes.

Proof: Regardless of the rekeying operation performed (such as a node joining S or a

node leaving S), a node updates all the keys it knows, in the worst case. The calculation

cost on the nodes is therefore proportional to the storage, which will be proven to be

proportional to the sum p + mS +
√

n in the next proof.

Property 6.6: The storage overhead on a member of a subgroup S is proportional to

the sum p + mS +
√

n.

Proof: Using our protocol, a node of a subgroup S stores one secret key, mS − 1 pairwise

node keys, one subgroup key, p − 1 pairwise subgroup keys, one group key, k service keys

and
√

n pairwise service keys. If we assume that the number of services in which the node

participates (k) is negligible compared to the other parameters, the storage overhead on

the node will be proportional to the sum p + mS +
√

n.

Discussion: The communication cost of our solution on the members of a subgroup

S is O(1), while the calculation and storage overheads are proportional to the sum

p + mS +
√

n. If a homogeneous subgrouping is used (i.e. ∀S , p = mS =
√

n, the cal-

culation and storage costs of our solution will be O(
√

n) on nodes. If a heterogeneous

subgrouping is used, we can take into account an estimate of the value of
√

n in the

calculation of the CEF. The heterogeneous Assignment and Reorder algorithms will then

choose the subgroup sizes so that the constrained devices can handle the overheads.

6.6. CONCLUSION 109

6.6 Conclusion

The purpose of this chapter was to propose a novel decentralized blockchain-based Key

Management protocol for the IoT. This new solution considers the three communication

modes of the IoT: device-to-device, group and multi-group communication. Thus, unlike

the solution presented in the previous chapters, this new one guarantees the secure

coexistence of several services in a single network. To achieve this, it manages several

groups having independent security parameters. Furthermore, this new solution is

decentralized based on the blockchain technology and smart contracts. We then showed

that it solves the single point of failure problem, since the system continues to operate

when an entity fails. We also proved that resilience is improved, as the compromise of an

entity does not jeopardize the whole network.

In the next chapter, we will propose an implementation of our solution considering

the Contiki operating system and resource constrained IoT platforms. The aim is to

experimentally complete the theoretical analyses presented in the current chapter and the

previous ones.

Chapter 7

Experimentation

In this chapter, we propose an implementation of our solution on real IoT platforms

with limited resources. The aim is to experimentally evaluate the performance of our

solution and to complete the theoretical analyses of the previous chapters. We then start

by presenting the software environment used as well as the hardware material in which our

protocol was developed. In both cases, we consider the two components of our solution:

the Key Manager and the nodes. We mainly focus on Contiki, which is an operating

system designed for networked embedded devices. We also introduce the IoT motes on

which we performed the experiments. Finally, we present the results of the tests carried

out and compare them to those obtained by related works. The evaluated parameters

include storage, computing and energy overheads of our protocol.

111

112 CHAPTER 7. EXPERIMENTATION

7.1 Introduction

In this thesis, we propose a novel decentralized blockchain-based Key Management

protocol for secure communication between the heterogeneous and dynamic IoT devices.

We showed, through theoretical studies, that our solution is well suitable for the IoT

and meets the requirements of its devices. It also secures the three modes of IoT

communication: device-to-device, group and multi-group communication. The purpose

of this last chapter is to experimentally evaluate the performance of our protocol in order

to complete the theoretical analyses presented in the previous chapters.

In the first part of this chapter, we present the software environment we used to implement

our solution on the Key Manager and the node side. This includes the development

environment, the security materials (the ciphers as well as the key derivation and hash

functions) and the blockchain engine. After that, we introduce Contiki, which is a an

operating system designed for networked embedded devices. Contiki provides a lightweight

network stack for low-power wireless networks.

In the second part of the chapter, we present the hardware material on which we developed

our protocol. Once again, we consider the two components of our solution: the Key

Manager and the nodes. We mainly focus on the IoT platforms on which we performed

the tests. We used various motes and most of them have limited resources. Thus, we were

able to analyze the performance of our solution in heterogeneous networks containing

constrained devices.

In the last part of the chapter, we introduce the results of the tests carried out and

compare them to those obtained by related works. For the Key Manager, we evaluate

the response time and compare it to that obtained using an other blockchain engine,

namely Tendermint. For the nodes, we evaluate storage, computing and energy overheads

of our protocol. The execution time and the energy consumption were obtained using the

Powertrace tool.

The remainder of this chapter is organized as follows. Section 7.2 presents the software

environment used to implement our solution. Section 7.3 details the Contiki operating

system. Section 7.4 introduces the hardware material in which our protocol was developed.

Section 7.5 presents our experimental platform. Section 7.6 introduces the results of the

tests we obtained. Section 7.7 concludes the chapter.

7.2. SOFTWARE ENVIRONMENT 113

7.2 Software environment

This first part of this chapter defines the software environment we used to develop

our solution on the Key Manager and the node side. This includes the development

environment, the security materials and the blockchain engine.

Development environment: We mainly worked on two IDEs: Pycharm and

Code::Blocks. PyCharm is an integrated development environment for programming

in Python, while Code::Blocks is for C. We utilized Python 3 to implement the Key

Manager and we used C on the node side.

Security material: We mainly used two ciphers: ECC (Elliptic Curve cryptography) and

AES (Advanced Encryption Standard). ECC is a public key encryption technique

based on elliptic curve theory. It is based on smaller cryptographic keys, compared to

other asymmetric protocols (e.g. RSA), which makes it faster and more efficient [86].

ECC allowed us to efficiently generate digital signatures and to perform key exchange

between the BPs , i.e. on the Key Manager side. AES is the most widely used and most

secure symmetric encryption algorithm available today [65]. We utilized it to secure

the communication between nodes and the BPs . For the communication between

the BPs , the keys have a lengths of 256 bits. Since some of the nodes we used only

support AES-128, the key length of the keys used between them is of 128 bits. This

provides an acceptable level of security according to the NIST [94]. We also used the

CTR DRBG and HKDF for the hey generation and derivation, respectively. Both are

acceptable according to the NIST [15]. Note that HKDF is based on a hash-based

message authentication code (HMAC). We then used SHA-2 as a hash function.

Finally, all the above-mentioned protocols are supported by Python and C.

Blockchain engine: The blockchain layer was also implemented in Python 3. To

evaluate the performance of our Consensus Algorithm, we compared it to an other

blockchain application platform called Tendermint [64]. We mainly choose this

platform for two reasons. First, it is a powerful blockchain engine based on the

PBFT consensus algorithm (See section 2.4.4). Using Tendermint, hashing energy

is not required to enter the next block. Therefore, compared to some of the most

used consensus algorithms (e.g. PoW), PBFT reduces computation and thereby the

energy consumption. Second, the application layer of Tendermint can be written in

any programming language. It was then easy to use our solution (written in Python)

in this environment, changing only the consensus algorithm (from our Consensus

Algorithm to PBFT of Tendermint).

114 CHAPTER 7. EXPERIMENTATION

7.3 Operating system: Contiki

We used Ubuntu to implement the Key Manager and Contiki for the nodes. Contiki is a

lightweight open-source operating system for resource-constrained devices [36]. Although

being designed for networking applications, it can be used for other purposes. The Contiki

applications are based on processes, its kernel is event-driven and its network stacks

implement lightweight protocols. It also provides a simulator, called Cooja, which allows

to simulate nodes that are Contiki compatible. According to the IoT developer survey

conducted by Eclipse in 2019 [51], Contiki is one of the most used device operating systems.

7.3.1 Processes

A process is a function written in C, which usually contains an infinite loop and some

blocking macro calls. During its execution, a process will run until it is blocked waiting

for an event. There are multiple macros for the different blocking possibilities. Figure 7.1

presents the structure of a Contiki process [36]. It is a basic code that repeatedly waits

for an event to occur.

Figure 7.1 – Structure of a Contiki process.

7.3.2 Events

The Contiki kernel is event-driven, i.e. each part of the application is executed as a reaction

to an event. There are mainly three kinds of events in the Contiki operating system:

7.3. OPERATING SYSTEM: CONTIKI 115

Timer events: A timer can be used to generate an event after a given period of time.

The process is blocked, before the timer expires, and it continues its execution after.

Internal events: A process can address events to other processes. This is mainly used

for inter-process communication.

External events: Peripheral devices (such as push-button, a radio chop or a sensor) may

be connected to the microcontroller via Input/Output pins. These external devices

can trigger interruptions to generate events in processes.

7.3.3 Network Stack

Contiki offers three lightweight network stacks: uIP for IPv4 networking, uIPv6 for

IPv6 networking and Rime for low-power wireless networks. We used the Rime stack,

which provides a hierarchical set of protocols. These protocols allow devices to send

unicast or broadcast messages, anonymously or identified, in a single hope or a multi-

hop communication. We mainly use the following modules (Figure 7.2):

Abc: This is the anonymous broadcast module. It broadcasts the packets via the radio

driver and passes the received ones to the upper layer.

Broadcast: This is the identified broadcast module. It adds the sender address to the

packets and passes them to the abc module.

Unicast: This module adds the destination address to the packets and passes them to the

broadcast module. It also checks whether the destination addresses of the received

packets match that of the node address.

Figure 7.2 – Rime stack overview.

7.3.4 PowerTrace

Powertrace is a built-in tool used to analyze the energy consumption of a sensor node.

It reports the resource utilisation of a node and prints the statistics to the console. This

tool is accurate to 94 % of the real energy consumption of a device [42].

116 CHAPTER 7. EXPERIMENTATION

7.3.5 Cooja

Cooja (acronym of COntiki Operating system JAva simulator) is the Contiki network

simulator [4]. It allows to simulate large and small networks of Contiki motes. Offering a

variety of nodes, it is also possible to simulate heterogeneous networks. As the number of

physical devices we possess is limited, we used Cooja to get larger networks.

7.4 Material resource

For our experiments, we used a laptop and IoT motes as hardware resources. The laptop is

an Intel Core i7 with 4GB RAM. The IoT motes are of 5 types (all based on Contiki OS):

Exp5438 [91], MicaZ [90], Openmotes [98], TelosB [125] and Z1 [126]. Given the limited

number of physical motes available to us, some are Cooja motes. Table 7.1 summarizes

the specifications of each of the IoT motes used as well as their number.

Mote Description

Exp5438

Microcontroller:

• Family: MSP430F5438

• RAM: 16 kB

• Flash: 256 kB

• Frequency: 18 MHz

Radio transceiver:

• Frequency band: 2.4 GHz

• Standard compliance: IEEE 802.15.4 compliant

• Transfer Rate: 250 kbps

Applications:

• Energy harvesting

• Automatic metering infrastructure (AMI)

Number: 22 Cooja motes.

7.4. MATERIAL RESOURCE 117

MicaZ

Microcontroller:

• Family: ATMEGA128L

• RAM: 4 kB

• Flash: 128 kB

• Frequency: 16 MHz

Radio transceiver:

• Frequency band: 2.4 to 2.4835 GHz

• Standard compliance: IEEE 802.15.4 compliant

• Transfer Rate: 250 kbps

Applications:

• Indoor Building Monitoring and Security

• Large Scale Sensor Networks

Number: 10 physical motes and 12 Cooja motes.

OpenMote

Microcontroller:

• Family: ARM Cortex-M3

• RAM: 32 kB

• Flash: 512 kB

• Frequency: 32 MHz

Radio transceiver:

• Frequency band: 2.4 GHz

• Standard compliance: IEEE 802.15.4 compliant

• Transfer Rate: 250 kbps

Applications:

• Home and Building Automation

• Intelligent Lighting Systems

Number: 12 physical motes.

118 CHAPTER 7. EXPERIMENTATION

TelosB

Microcontroller:

• Family: MSP430

• RAM: 10 kB

• Flash: 48 kB

• Frequency: 8 MHz

Radio transceiver:

• Frequency band: 2.4 to 2.4835 GHz

• Standard compliance: IEEE 802.15.4 compliant

• Transfer Rate: 250 kbps

Applications:

• Platform for Low Power Research Development

• Wireless Sensor Network Experimentation

Number: 6 physical motes and 16 Cooja motes.

Z1

Microcontroller:

• Family: MSP430F2617

• RAM: 8 kB

• Flash: 92 kB

• Frequency: 16 MHz

Radio transceiver:

• Frequency band: 2.4 GHz

• Standard compliance: IEEE 802.15.4 compliant

• Transfer Rate: 250 kbps

Applications:

• Personal healthcare monitoring

• Environmental monitoring

Number: 22 Cooja motes.

Table 7.1 – IoT mote specifications.

7.5. EXPERIMENTAL PLATFORM 119

7.5 Experimental platform

Our solution consists of three components: the Key Manager (Laptop), the nodes

(IoT motes) and intermediate motes to connect the two. The nodes communicate with

intermediate motes using their radios and the intermediate motes communicates with the

laptop using serial ports (Figure 7.3).

Figure 7.3 – Network components.

7.5.1 Key Manager

The Key Manager is represented by a set of BPs , all implemented on the laptop using

Python. Their number varies between 2 and 16 according to the test performed. Each BP

listens to a different serial port, waiting for node join requests (from physical motes, Cooja

motes or the request simulator). when a BP receives a request, it processes it according

to the steps described in the previous chapters. Note that we implemented a basic version

using no hash function, for the pairwise keys, and considering only one group. Once the

processing is finished, the BP sends the keys via its serial port (Figure 7.4).

Figure 7.4 – Key Manager.

7.5.2 Nodes

As stated in Table 7.1, we used 100 heterogeneous nodes, all within the reach of

intermediate nodes (routing is therefore not necessary). Although some are real and other

are Cooja motes (Figure 7.4), they belong to the same network. After all the nodes joined

the network, we obtained the subgroup distribution shown in Figure 7.5. The subgroups

4 and 5 result from the split of the subgroups 2 and 1 (See section 5.3.2.3), respectively.

120 CHAPTER 7. EXPERIMENTATION

Figure 7.5 – Network partitioning.

Each node executes a process that started by sending a join request to a BP . After

a node joins the network, its process constantly awaits for rekeying messages (external

events). When it receives a message, the process updates the security materials according

to the steps described in the previous chapters. Although Cooja can simulate large

networks, after a certain threshold its performance deteriorate considerably. Therefore,

some requests are simulated to perform the tests in which we need more nodes (between

100 and 1000). These requests are processed by BPs and the resulting messages are sent

to the physical and the Cooja nodes. This allows us to evaluate the performance of our

solution (the processing of requests by the BPs) in larger networks.

7.5.3 Intermediate motes

The intermediate motes are motes that make the link between the manager and the

nodes. We used 5 intermediate motes, one for each type of node (Exp5438, MicaZ,

OpenMote, TelosB and MicaZ). Some of them are physical, while others are Cooja motes.

Physical intermediate motes are directly connected to the usb ports of the laptop. They

communicate with the physical nodes using their radios and with the laptop using serial

ports. Cooja intermediate notes are used to link the Cooja nodes to the Key manager.

Our experimental platform is parented in Figure 7.6.

Figure 7.6 – Experimental platform.

7.6. EXPERIMENTAL RESULTS 121

7.6 Experimental results

Now, we present the results of the tests carried out. For the Key Manager, we consider

the response time. This is the time separating the reception of a request by a BP from the

sending of a response. For the nodes, we consider the storage cost as well as the computing

time and the energy consumption of rekeying operation.

7.6.1 Response time of BPs

We send to the BPs a certain number of requests at the same time and calculate the

response time for the first and the last request. We analyze the effect of three parameters

on the response time: the number of BPs (r), the number of simultaneous requests (nst)

and the consensus period (cp). Each time we set two parameters to default values and

we vary the third. The default values of the three parameters are 4 , 100 and 10 ms ,

respectively. The size of the memory pool (ct) is set to the number of BPs (r). After that,

we compare the results obtained using our Consensus Algorithm (See section 6.3.2.2) to

that of Tendermint.

Number of BPs: The results (Figure 7.7) show that the more the number of BPs

increases, the more the processing time of one request rises. This can be explained

by the fact that there is more communication between BPs . However, if more than

one request are received at the same time, we notice a decrease in the response time

(of the last request) before it starts going up again. This is because several BPs can

process different requests at the same time. However, after a certain threshold (8 BPs

with our means), the time lost due to communications covers the time saved thanks

to parallelism.

Figure 7.7 – Effect of r on response time.

122 CHAPTER 7. EXPERIMENTATION

Number of simultaneous requests: The results (Figure 7.8) show that the more

the system receives simultaneous requests, the more the response time increases,

especially for the last request. Note that with our means, more than 1000 requests

are processed per minute.

Figure 7.8 – Effect of nst on response time.

Consensus period: The best results (Figure 7.9) are obtained when the period to forge

new blocks is neither too short nor too long (10 ms with our means). If it is too

short, there will be a lot of unnecessary message exchanges, while the memory pool

is empty. Conversely, when this period is too long, the processing time of a request

increases.

Figure 7.9 – Effect of cp on response time.

Consensus Algorithm: We finally compare our consensus algorithm to Tendermint.

Note that we have not modified any of the default settings of Tendermint. The other

parameters that are not related to the consensus algorithms (such as the key length,

the assignment algorithm and the material used) are the same in both cases (using

our consensus algorithm and PBFT of Tendermint). The obtained results are plotted

in Figure 7.10. They show that regardless of the number of BPs , the process of one

request is always faster using our solution compared to Tendermint.

7.6. EXPERIMENTAL RESULTS 123

Figure 7.10 – Comparison of our consensus algorithm with Tendermint.

7.6.2 Storage overhead on nodes

We assume that the Key Manager has plentiful of resources and focus on the storage

costs on nodes. The program and the values of the initialized variables are stored in the

flash memory, while the data (including the cryptographic keys) are saved in RAM. The

number of keys stored in nodes varies depending on weather a heterogeneous (proportional

to the node capacities) or a homogeneous subgrouping is used (
√

n). For comparison, we

also consider the case where no subgrouping is used (i.e. nodes hold n keys). The memory

occupation in kilobytes and in percentage is presented in Table 7.2.

Node Flash
RAM

Het Hom None

Exp5438 25000 kB (9.5%) 9234 kB (56.36%) 8962 kB (54.70%) 10226 kB (62.41%)

MicaZ 24500 kB (18.69%) 3980 kB (97.17%) 4076 kB (99.51%) 5340 kB (130.37%)

OpenMote 28047 kB (5.35%) 7498 kB (22.85%) 7217 kB (22.02%) 8481 kB (25.88%)

TelosB 30872 kB (62.81%) 5228 kB (51.05%) 5148 kB (50.27%) 6412 kB (62.62%)

Z1 32290 kB (34.28%) 3490 kB (42.6%) 3410 kB (43.63%) 6474 kB (57.06%)

Table 7.2 – Storage overhead on nodes (Keys stored in the RAM).

The size of the flash memory is larger than that of the RAM for most of the motes used,

especially the MicaZ. As a result, a considerable part of the RAM is used, while there is

more space in the flash memory. We then saved the keys in files so that they are stored in

the flash memory. To achieve this, we used the Coffee File System of Contiki [37]. Coffee

is used with resource-constrained devices equipped with flash memories. The memory

occupation, in this case, is presented in Table 7.3. The results show that memory usage

becomes more balanced between the two types of memories and relives the RAM.

124 CHAPTER 7. EXPERIMENTATION

Node
Flash

RAM
Het Hom None

Exp5438 25592 kB(9.76%) 25320 kB (9.66%) 26584 kB (10.14%) 8642 kB (52.75%)

MicaZ 24900 kB (19%) 24820 kB (18.94%) 26084 kB (19.9%) 3756 kB (91.70%)

OpenMote 28639 kB (5.46%) 28367 kB (5.41%) 29631 kB (5.65%) 6897 kB (21.05%)

TelosB 31096 kB (63.26%) 31192 kB (64.46%) 31096 kB (66.03%) 4828 kB (47.15%)

Z1 32690 kB (34.7%) 32610 kB (34.61%) 33874 kB (35.96%) 3090 kB (37.72%)

Table 7.3 – Storage overhead on nodes (Keys stored in the flash).

By analyzing the results, the occupation of the RAM memory of the MicaZ motes may

seem important. However, it is important to note that just the basic communication

program, which consists of periodically sending and receiving unicast messages (without

the broadcast code or the AES encryption code), occupies 67 % of the RAM. In other

words, a large part of the memory is used by other process (mostly networking process).

The part of the memory occupied by our Key Management protocols remains then

reasonable, especially considering the very limited amount of RAM memory the MicaZ

motes have.

We consider the work presented in [109] as an example for comparison. The network is

composed of 15 TelosB motes only and yet 96 .3 % (against 63 .26 % using our solution)

of their flash memory and 74 .92 % (against 47 .15 % using our solution) of their RAM are

occupied. Therefore, our solution requires less space on both memory types, at least on

TelosB motes.

7.6.3 Execution time on nodes

The evaluation of the computing overhead of our solution concerns two operations a

node may perform: key installation and key update. The key installation corresponds to

the operation by which a new node, which has just join the network, processes the Key

Manager’s messages and stores the keys assigned to it in its memory. The key update is

the operation by which a network node updates its keys upon a network change. For this

operation, we consider both cases where a subgroup is split or not. The execution time

of any of these operations corresponds to the time separating the reception of a message

from a BP and the end of its processing. The execution times on nodes are presented

in Table 7.4. The results were obtained using Powertrace. This tool is not supported on

MicaZ. Therefore, we only present the execution time on the other motes.

7.6. EXPERIMENTAL RESULTS 125

Node Key installation Key update Key update with split

Exp5438 46.02 ms 60.27 ms 137.02 ms

OpenMote 100.89 ms 102.47 ms 209.41 ms

TelosB 73.36 ms 86.73 ms 177.25 ms

Z1 58.01 ms 71.65 ms 163.27 ms

Table 7.4 – Execution time on nodes (Keys stored in the RAM).

The processing times are shorter when keys are stored in RAM because the access to

flash memory, which is slower, is reduced. Despite this, we still present, in Table 7.5, the

execution times when the keys are saved in flash memory. Indeed, although storing keys in

flash memory slows down the protocol, we previously showed that this relieves the RAM

when it is limited.

Node Key installation Key update Key update with split

Exp5438 57.98 ms 69.18 ms 139.34 ms

OpenMote 101.86 ms 103.46 ms 211.46 ms

TelosB 85.41 ms 89.02 ms 177.28 ms

Z1 60.33 ms 76.29 ms 167.23 ms

Table 7.5 – Execution time on nodes (Keys stored in the flash).

7.6.4 Energy consumption by nodes

For energy consummation, we consider the same operations as in the previous section (key

installation and key update with or without subgroup split). The energy consumed by a

node includes calculations and communications. We then used Powertrace to evaluate the

energy consumption of our solution per second. The results are presented in Table 7.6.

Node Key installation Key update Key update with split

Exp5438 2.65 mJ 3.08 mJ 7.5 mJ

OpenMote 4.38 mJ 4.5 mJ 10.01 mJ

TelosB 1.64 mJ 4.08 mJ 8.2 mJ

Z1 3.52 mJ 4.12 mJ 9.45 mJ

Table 7.6 – Energy consumption by nodes (Keys stored in the RAM).

126 CHAPTER 7. EXPERIMENTATION

For the same reasons as for the execution time, we present in Table 7.7 the results of the

energy consumption by nodes when the keys are stored in the flash memory. We notice

that the consumption is slightly higher.

Node Key installation Key update Key update with split

Exp5438 3.2 mJ 3.95 mJ 8.41 mJ

OpenMote 4.38 mJ 4.52 mJ 10.03 mJ

TelosB 2.32 mJ 4.22 mJ 9.83 mJ

Z1 3.7 mJ 4.38 mJ 9.46 mJ

Table 7.7 – Energy consumption by nodes (Keys stored in the flash).

In Table 7.8, we present an estimate of the lifespan of 2xAA batteries using our solution.

The lifespan is calculated, for each type of node, according to the average value of the

quantity of energy it consumes. The results are obtained assuming that the nodes are

constantly receiving rekeying messages.

Node Battery life

Exp5438 101 days

OpenMote 69 days

TelosB 74 days

Z1 76 days

Table 7.8 – Battery life.

Discussion:

Although some authors (such as those of [19, 87, 97]) evaluate the energy consummation

of their Key Management protocols, they are based on theoretical models and cannot be

compared to our experimental results. An example of an energy consumption model can be

found in [57]. In the absence of similar works presenting the results of an implementation

on the same IoT motes we used, we consider the results presented in [114]. The authors of

the document use Powertrace to estimate the energy consumption of TelosB motes when

sending ipv6 packets (while we used the lightweight Rime Stack). Since communication

is the operation that consumes the most energy, these results can be compared to the

energy consumption of our solution, even if they do not consider the overheads related to

the Key Management.

7.7. CONCLUSION 127

7.7 Conclusion

The purpose of this chapter was to validate our theoretical analyses by implementing

our protocol on real IoT platforms. The IoT motes used are based on Contiki, which

is an operating system designed for networked embedded devices. We then started by

presenting the software environment used to implement the Key Manager and the nodes.

Next, we detailed the hardware material in which these two components of our solution

were developed. Finally, we presented the results of the tests carried out. The evaluated

parameters include storage, computing and energy overheads of our protocol.

Chapter 8

Conclusion and future works

The Internet of Things is changing much about the world we live in. It is reshaping the

way we shop, drive, learn and even how we practise sport and have fun. Sensors, chips

and antennas are increasingly embedded in everyday things. This gives them the ability

to collect data from their surrounding and transmit them to other connected objects. The

recorded data are then automatically processed and depending on the results these things

can in turn act on their environment. This may be used, for example, to improve the

production of a factory, give city residents real-time updates on where to park or monitor

our personal health.

Thanks to these smart devices, the Internet of Things is creating a kind of bridge between

the physical and the digital words. A bridge that will allow us to cross new horizons

and discover a new world. However, many challenges are slowing down its development.

There are mainly three reasons behind this. The first one is the increasing number of the

connected devices. This results in a tremendous amount of data. It is therefore often very

difficult and costly to manage them. The second reason is the very nature of the devices of

the Internet of Things. They are indeed mobile, wireless and physically small. Therefore,

they have little storage, low computing power and limited energy supply. Finally, the

heterogeneous nature of these smart objects makes their collaboration too complicated.

One of the most important issues facing the Internet of Things is how to secure

communication between its devices. Although cryptography has proven itself as effective

in the traditional Internet, it is not efficient in the Internet of Things. For the

reasons mentioned above, the cryptography mechanisms can hardly or not at all be

implemented in the Internet of Things. They have been indeed designed for desktop/server

environments and not for limited-resource devices. To tackle this problem, it is necessary

to find lightweight alternative solutions that are more suitable for use in constrained

environments. These new solutions must provide a good compromise between security,

performance and resource requirements (hardware cost). This relatively new area of

research is referred to as lightweight cryptography.

129

130 CHAPTER 8. CONCLUSION AND FUTURE WORKS

In this thesis, we proposed a novel lightweight Key Management protocol for the Internet

of Things. It is important to note that, among all the security issues, the Key Management

is one of the most important and the most challenging. The main role of such a system is to

establish secure links between the communicators. To achieve this, it provides them with

secret cryptographic keys that are used to secure communication. The Key Management

is responsible of the generation, the storage, the distribution and the replacement of these

keys. Being a branch of cryptography, the Key Management solutions for the Internet of

Things must also be lightweight to respond to its needs.

Our solution secures the three communication modes: device-to-device, group and multi-

group communication. We then showed that if fulfils the requirements of each of

them, while most of the related works focus on one of them only. For device-to-device

communication, our solution provides a good level of resilience. It also guarantees a total

connectivity coverage and supports device mobility. Regarding group communication,

our solution ensures the backward and froward secrecy and resists to collusion. It also

guarantees the independence of services for a secure multi-group communication.

Furthermore, unlike most of the existing solutions proposed for the traditional Internet

and static wireless networks, our solution considers the heterogeneous and dynamic nature

of the Internet of Things. It balances the loads between devices according to their

capabilities. We showed that this makes our solution efficient and highly scalable. Our

solution is also flexible as it allows devices to securely join and leave the network at any

time. The cryptographic materials will then be automatically updated and distributed to

the network members.

Our solution is finally decentralized as computation and storage can be distributed over

multiple entities. It is therefore fault-tolerant and does not require the trust of a single

third party for the handling of keys. To reach this goal, we used the blockchain technology

and smart contracts. We then showed that the system will continue to operate even if an

entity fails and that the compromise of an entity will not jeopardize the security of the

whole network.

To conclude, we proposed, in this work, a novel decentralized blockchain-based Key

Management protocol for secure communication between the heterogeneous and dynamic

IoT devices. Through theoretical studies, simulations and an experimentation platform,

we were able to show that our solution is well suitable for the Internet of Things and

responds to the requirements of its devices. The contributions of this thesis are very

encouraging and open up multiple research perspectives.

131

First, lightweight cryptography still being an open issue, we intend to extend the

heterogeneous strategy we propose for the Key Management to other cryptographic

mechanisms. In encryption, for example, better results can be obtained if, in addition

to the Key Management, the ciphers also take into account the capabilities of the devices.

The constrained one will then use little resources for handling the keys and ciphering the

data. Even public cryptography may get closer to lightweight cryptography if it takes

advantage of the heterogeneous nature of the Internet of Things.

Moreover, we intend to design key agreement methods that are more efficient than the

excising ones. This will improve our solution, especially the joining process. Indeed, a key

establishment is necessary to secure the first communication with a device that wishes to

join the network. Besides, the less it consumes resources, the more efficient our solution

becomes.

Finally, many security mechanisms suffer from their dependence of a third party for their

proper functioning. The blockchain technology and smart contract offer an alternative,

which is encouraged by the results of our solution. Given their complementary features,

the blockchain and the Internet of Things should supplement one another to face the

multiple challenges that are slowing down their development. We then plan to dig further

to discover the potential that the combination of the two technologies can offer.

Bibliography

[1] Priyanka Ahlawat and Mayank Dave. “A cost-effective attack matrix based key

management scheme with dominance key set for wireless sensor network security”.

In: International Journal of Communication Systems 31.12 (2018), e3713.

[2] Priyanka Ahlawat and Mayank Dave. “An attack model based highly secure key

management scheme for wireless sensor networks”. In: Procedia Computer Science

125 (2018), pp. 201–207.

[3] Sofiane Aissani, Mawloud Omar, Abdelkamel Tari, and Feriel Bouakkaz. “µKMS:

micro key management system for WSNs”. In: IET Wireless Sensor Systems 8.2

(2018), pp. 87–97.

[4] An Introduction to Cooja. 2019. url: https : / / github . com / contiki - os /

contiki/wiki/An-Introduction-to-Cooja.

[5] HS Annapurna and M Siddappa. “A Technique for Multi-tier Key Distribution for

Securing Group Communication in WSN”. In: Emerging Research in Computing,

Information, Communication and Applications. Springer, 2015, pp. 273–279.

[6] Arafat MA Ansari. Smart vehicle. US Patent 9,711,050. July 2017.

[7] Frederik Armknecht, Ghassan O Karame, Avikarsha Mandal, Franck Youssef, and

Erik Zenner. “Ripple: Overview and outlook”. In: International Conference on

Trust and Trustworthy Computing. Springer. 2015, pp. 163–180.

[8] E. Baburaj et al. “Polynomial and multivariate mapping-based triple-key approach

for secure key distribution in wireless sensor networks”. In: Computers & Electrical

Engineering 59 (2017), pp. 274–290.

[9] Kannan Balasubramanian. “Hash Functions and Their Applications”. In: Algorith-

mic Strategies for Solving Complex Problems in Cryptography. IGI Global, 2018,

pp. 66–77.

[10] Arati Baliga, I Subhod, Pandurang Kamat, and Siddhartha Chatterjee. “Per-

formance evaluation of the quorum blockchain platform”. In: arXiv preprint

arXiv:1809.03421 (2018).

133

https://github.com/contiki-os/contiki/wiki/An-Introduction-to-Cooja
https://github.com/contiki-os/contiki/wiki/An-Introduction-to-Cooja

134 BIBLIOGRAPHY

[11] N. Baracaldo, B. Palanisamy, and J. Joshi. “G-sir: an insider attack resilient geo-

social access control framework”. In: IEEE Transactions on Dependable and Secure

Computing (2017).

[12] Elaine Barker. Recommendation for key management: Part 1: General. National

Institute of Standards and Technology, Technology Administration, 2020.

[13] Elaine Barker and William Barker. Recommendation for Key Management, Part

2: Best Practices for Key Management Organization. Tech. rep. National Institute

of Standards and Technology, 2018.

[14] Elaine Barker and Allen Roginsky. Recommendation for cryptographic key gen-

eration. US Department of Commerce, National Institute of Standards and

Technology, 2019.

[15] Elaine Barker and Allen Roginsky. Transitioning the use of cryptographic algo-

rithms and key lengths. Tech. rep. National Institute of Standards and Technology,

2018.

[16] Elaine Barker, Miles Smid, Dennis Branstad, and Santosh Chokhani. “A framework

for designing cryptographic key management systems”. In: NIST Special Publica-

tion 800.130 (2013), pp. 1–112.

[17] Imran Bashir. Mastering blockchain. Packt Publishing Ltd, 2017.

[18] Lawrence Bassham, Çağdaş Çalık, Kerry McKay, and Meltem Sönmez Turan.

Submission requirements and evaluation criteria for the lightweight cryptography

standardization process. Tech. rep. Technical report, US National Institute of

Standards and Technology, 2018.

[19] Walid Bechkit, Yacine Challal, Abdelmadjid Bouabdallah, and Vahid Tarokh. “A

highly scalable key pre-distribution scheme for wireless sensor networks”. In: IEEE

Transactions on Wireless Communications 12.2 (2013), pp. 948–959.

[20] Simon Blake-Wilson, Nelson Bolyard, Vipul Gupta, Chris Hawk, and Bodo Moeller.

Elliptic curve cryptography (ECC) cipher suites for transport layer security (TLS).

Tech. rep. RFC 4492, May, 2006.

[21] Rolf Blom. “An optimal class of symmetric key generation systems”. In: Workshop

on the Theory and Application of of Cryptographic Techniques. Springer. 1984,

pp. 335–338.

[22] Richard Gendal Brown, James Carlyle, Ian Grigg, and Mike Hearn. “Corda: an

introduction”. In: R3 CEV, August 1 (2016), p. 15.

BIBLIOGRAPHY 135

[23] William J Buchanan, Shancang Li, and Rameez Asif. “Lightweight cryptography

methods”. In: Journal of Cyber Security Technology 1.3-4 (2017), pp. 187–201.

[24] Christian Cachin et al. “Architecture of the hyperledger blockchain fabric”. In:

Workshop on distributed cryptocurrencies and consensus ledgers. Vol. 310. 2016,

p. 4.

[25] Miguel Castro, Barbara Liskov, et al. “Practical Byzantine fault tolerance”. In:

OSDI. Vol. 99. 1999. 1999, pp. 173–186.

[26] Tafadzwa Tapuwa Chakavarika, Shashi Kant Gupta, and Brijesh Kumar Chaurasia.

“Energy efficient key distribution and management scheme in wireless sensor

networks”. In: Wireless Personal Communications 97.1 (2017), pp. 1059–1070.

[27] Haowen Chan, Adrian Perrig, and Dawn Song. “Random key predistribution

schemes for sensor networks”. In: Symposium on Security and Privacy, 2003.

Proceedings. IEEE. 2003, pp. 197–213.

[28] Che-Yu Chang, Hsu-Chun Yen, and Der-Jiunn Deng. “V2V QoS guaranteed

channel access in IEEE 802.11 p VANETs”. In: IEEE Transactions on Dependable

and Secure Computing 13.1 (2016), pp. 5–17.

[29] Kakali Chatterjee, Asok De, and Daya Gupta. “An improved ID-Based key man-

agement scheme in wireless sensor network”. In: Int. Conf. in Swarm Intelligence.

Springer. 2012, pp. 351–359.

[30] Jaewoo Choi, Jihyun Bang, LeeHyung Kim, Mirim Ahn, and Taekyoung Kwon.

“Location-based key management strong against insider threats in wireless sensor

networks”. In: IEEE Systems Journal 11.2 (2015), pp. 494–502.

[31] Jaewoo Choi, Jihyun Bang, LeeHyung Kim, Mirim Ahn, and Taekyoung Kwon.

“Location-based key management strong against insider threats in wireless sensor

networks”. In: IEEE Systems Journal 11.2 (2017), pp. 494–502.

[32] Taehwan Choi, Hrishikesh B Acharya, and Mohamed G Gouda. “The best keying

protocol for sensor networks”. In: Pervasive and Mobile Computing 9.4 (2013),

pp. 564–571.

[33] Pete Chown. Advanced encryption standard (AES) ciphersuites for transport layer

security (TLS). Tech. rep. RFC 3268, June, 2002.

[34] Konstantinos Christidis and Michael Devetsikiotis. “Blockchains and smart con-

tracts for the internet of things”. In: Ieee Access 4 (2016).

136 BIBLIOGRAPHY

[35] Cisco. Cisco Annual Internet Report (2018–2023) White Paper. 2020. url:

https : / / www . cisco . com / c / en / us / solutions / collateral / executive -

perspectives/annual-internet-report/white-paper-c11-741490.html.

[36] Contiki. 2020. url: https://github.com/contiki-ng/contiki-ng/wiki.

[37] Contiki Coffee File System. 2016. url: https://anrg.usc.edu/contiki/index.

php/Contiki_Coffee_File_System.

[38] Whitfield Diffie and Martin Hellman. “New directions in cryptography”. In: IEEE

transactions on Information Theory 22.6 (1976), pp. 644–654.

[39] Wenliang Du, Jing Deng, Yunghsiang S Han, Pramod K Varshney, Jonathan Katz,

and Aram Khalili. “A pairwise key predistribution scheme for wireless sensor

networks”. In: ACM Transactions on Information and System Security (TISSEC)

8.2 (2005), pp. 228–258.

[40] Wenliang Du, Jing Deng, Yunghsiang Han, Shigang Chen, and Pramod Varshney.

“A key management scheme for wireless sensor networks using deployment

knowledge”. In: IEEE INFOCOM 2004. Vol. 1.

[41] Xiaojiang Du, Yang Xiao, Mohsen Guizani, and Hsiao-Hwa Chen. “An effective

key management scheme for heterogeneous sensor networks”. In: Ad Hoc Networks

5.1 (2007), pp. 24–34.

[42] Adam Dunkels, Joakim Eriksson, Niclas Finne, and Nicolas Tsiftes. Powertrace:

Network-level power profiling for low-power wireless networks. 2011.

[43] Donald Eastlake and Paul Jones. US secure hash algorithm 1 (SHA1). 2001.

[44] Taher ElGamal. “A public key cryptosystem and a signature scheme based on

discrete logarithms”. In: IEEE transactions on information theory 31.4 (1985),

pp. 469–472.

[45] Mohamed Eltoweissy, M Hossain Heydari, Linda Morales, and I Hal Sudborough.

“Combinatorial optimization of group key management”. In: Journal of Network

and Systems Management 12.1 (2004), pp. 33–50.

[46] Mohamed Eltoweissy, Mohammed Moharrum, and Ravi Mukkamala. “Dynamic

key management in sensor networks”. In: IEEE Communications magazine 44.4

(2006), pp. 122–130.

[47] Mohamed Eltoweissy, Ashraf Wadaa, Stephan Olariu, and Larry Wilson. “Group

key management scheme for large-scale sensor networks”. In: Ad Hoc Networks 3.5

(2005), pp. 668–688.

https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://github.com/contiki-ng/contiki-ng/wiki
https://anrg.usc.edu/contiki/index.php/Contiki_Coffee_File_System
https://anrg.usc.edu/contiki/index.php/Contiki_Coffee_File_System

BIBLIOGRAPHY 137

[48] Seyed Hossein Erfani, Hamid HS Javadi, and Amir Masoud Rahmani. “A dynamic

key management scheme for dynamic wireless sensor networks”. In: Security and

Communication Networks 8.6 (2015), pp. 1040–1049.

[49] Laurent Eschenauer and Virgil D Gligor. “A key-management scheme for dis-

tributed sensor networks”. In: 9th ACM conference on Computer and communica-

tions security. ACM. 2002, pp. 41–47.

[50] Toby Gibbs and Suwaree Yordchim. “Thai perception on Litecoin value”. In:

International Journal of Social, Behavioral, Educational, Economic, Business and

Industrial Engineering 8.8 (2014), pp. 2613–5.

[51] Eclipse IoT Working Group and IEEE IoT. IoT Developer Survey Results. 2019.

url: https://iot.eclipse.org/community/resources/iot-surveys/assets/

iot-comm-adoption-survey-2019.pdf.

[52] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu

Palaniswami. “Internet of Things (IoT): A vision, architectural elements, and

future directions”. In: Future generation computer systems 29.7 (2013), pp. 1645–

1660.

[53] V.C. Gungor and G.P. Hancke. “Industrial wireless sensor networks: Challenges,

design principles, and technical approaches”. In: IEEE Transactions on industrial

electronics 56.10 (2009), pp. 4258–4265.

[54] Son N Han and Noel Crespi. “Semantic service provisioning for smart objects:

Integrating IoT applications into the web”. In: Future Generation Computer

Systems 76 (2017), pp. 180–197.

[55] Richard Harper. Inside the smart home. Springer Science & Business Media, 2006.

[56] Xiaobing He, Michael Niedermeier, and Hermann De Meer. “Dynamic key

management in wireless sensor networks: A survey”. In: Journal of Network and

Computer Applications 36.2 (2013), pp. 611–622.

[57] Wendi Rabiner Heinzelman, Anantha Chandrakasan, and Hari Balakrishnan.

“Energy-efficient communication protocol for wireless microsensor networks”. In:

Proceedings of the 33rd annual Hawaii international conference on system sciences.

IEEE. 2000, 10–pp.

[58] ASM Sanwar Hosen, Gi-hwan Cho, et al. “A robust key management scheme based

on node hierarchy for wireless sensor networks”. In: International conference on

computational science and its applications. Springer. 2014, pp. 315–329.

https://iot.eclipse.org/community/resources/iot-surveys/assets/iot-comm-adoption-survey-2019.pdf
https://iot.eclipse.org/community/resources/iot-surveys/assets/iot-comm-adoption-survey-2019.pdf

138 BIBLIOGRAPHY

[59] R Housley. Triple-DES and RC2 key wrapping. Tech. rep. RFC 3217, December,

2001.

[60] Dijiang Huang, Manish Mehta, Deep Medhi, and Lein Harn. “Location-aware key

management scheme for wireless sensor networks”. In: Proceedings of the 2nd ACM

workshop on Security of ad hoc and sensor networks. ACM. 2004, pp. 29–42.

[61] Jyh-Ming Huang, Shun-Bo Yang, and Chan-Ling Dai. “An efficient key manage-

ment scheme for data-centric storage wireless sensor networks”. In: IERI Procedia

4 (2013), pp. 25–31.

[62] Junbeom Hur and Hyunsoo Yoon. “A decentralized multi-group key management

scheme”. In: IEICE transactions on communications 92.2 (2009), pp. 632–635.

[63] Ashraf William Hussein Harb and Omayma A. El-Mohsen. “Context aware group

key management model for internet of things”. In: The Seventeenth International

Conference on Networks 28-34 (2018).

[64] Tendermint Inc. Tendermint. 2020. url: https : / / docs . tendermint . com /

master/.

[65] Md Mahidul Islam, Md Zahid Hasan, and Rifat Ali Shaon. “A Novel Approach for

Client Side Encryption in Cloud Computing”. In: 2019 International Conference

on Electrical, Computer and Communication Engineering (ECCE). IEEE. 2019,

pp. 1–6.

[66] Xiaolin Jia, Quanyuan Feng, Taihua Fan, and Quanshui Lei. “RFID technology and

its applications in Internet of Things (IoT)”. In: 2012 2nd international conference

on consumer electronics, communications and networks (CECNet). IEEE. 2012,

pp. 1282–1285.

[67] Mohamed Ali Kandi, Djamel Eddine Kouicem, Hicham Lakhlef, Abdelmadjid

Bouabdallah, and Yacine Challal. “A Blockchain-based Key Management Protocol

for Secure Device-to-Device Communication in the IoT”. In: proceedings of the 19th

IEEE International Conference on Trust, Security and Privacy in Computing and

Communications (TrustCom)/ International Workshop on Cyberspace Security

(IWCSS). IEEE. 2020.

[68] Mohamed Ali Kandi, Hicham Lakhlef, Abdelmadjid Bouabdallah, and Yacine

Challal. “A Key Management Protocol for Secure Device-to-Device Communica-

tion in the Internet of Things”. In: 2019 IEEE Global Communications Conference

(Globecom2019). Waikoloa, USA, Dec. 2019.

https://docs.tendermint.com/master/
https://docs.tendermint.com/master/

BIBLIOGRAPHY 139

[69] Mohamed Ali Kandi, Hicham Lakhlef, Abdelmadjid Bouabdallah, and Yacine

Challal. “A versatile Key Management protocol for secure Group and Device-

to-Device Communication in the Internet of Things”. In: Journal of Network and

Computer Applications 150 (2020), p. 102480.

[70] Mohamed Ali Kandi, Hicham Lakhlef, Abdelmadjid Bouabdallah, and Yacine

Challal. “An Efficient Multi-Group Key Management Protocol for Heterogeneous

IoT Devices”. In: IEEE Wireless Communications and Networking Conference

(WCNC). 2019.

[71] Mohamed Ali Kandi, Hicham Lakhlef, Abdelmadjid Bouabdallah, and Yacine

Challal. “An Efficient Multi-Group Key Management Protocol for Internet of

Things”. In: 26th International Conference on Software, Telecommunications and

Computer Networks (SoftCOM). IEEE. 2018, pp. 1–6.

[72] Gerd Kortuem, Fahim Kawsar, Vasughi Sundramoorthy, and Daniel Fitton.

“Smart objects as building blocks for the internet of things”. In: IEEE Internet

Computing 14.1 (2009), pp. 44–51.

[73] David W Kravitz. Digital signature algorithm. US Patent 5,231,668. July 1993.

[74] Hugo Krawczyk, Mihir Bellare, and Ran Canetti. HMAC: Keyed-hashing for

message authentication. 1997.

[75] Yi-Hsuan Kung and Hsu-Chun Hsiao. “GroupIt: Lightweight group key manage-

ment for dynamic IoT environments”. In: IEEE Internet of Things Journal 5.6

(2018), pp. 5155–5165.

[76] Jae Kwon. “Tendermint: Consensus without mining”. In: Draft v. 0.6, fall 1.11

(2014).

[77] Tiana Laurence. Blockchain for dummies. John Wiley & Sons, 2019.

[78] Ao Lei, Haitham Cruickshank, Yue Cao, Philip Asuquo, Chibueze P Anyigor Ogah,

and Zhili Sun. “Blockchain-based dynamic key management for heterogeneous

intelligent transportation systems”. In: IEEE Internet of Things Journal 4.6

(2017), pp. 1832–1843.

[79] Ao Lei, Chibueze Ogah, Philip Asuquo, Haitham Cruickshank, and Zhili Sun. “A

secure key management scheme for heterogeneous secure vehicular communication

systems”. In: ZTE Communications 21 (2016), p. 1.

[80] Xiaozhou Steve Li, Yang Richard Yang, Mohamed G Gouda, and Simon S Lam.

“Batch rekeying for secure group communications”. In: group 1 (2001), p. 9.

140 BIBLIOGRAPHY

[81] Donggang Liu and Peng Ning. “Improving key predistribution with deployment

knowledge in static sensor networks”. In: ACM Transactions on Sensor Networks

(TOSN) 1.2 (2005), pp. 204–239.

[82] Z. Liu, X. Huang, Z. Hu, M.K. Khan, H. Seo, and L. Zhou. “On emerging family

of elliptic curves to secure internet of things: ECC comes of age”. In: IEEE

Transactions on Dependable and Secure Computing 14.3 (2017), pp. 237–248.

[83] Kejie Lu, Yi Qian, Mohsen Guizani, and Hsiao-Hwa Chen. “A framework for a

distributed key management scheme in heterogeneous wireless sensor networks”.

In: IEEE transactions on wireless communications 7.2 (2008), pp. 639–647.

[84] Mingxin Ma, Guozhen Shi, and Fenghua Li. “Privacy-Oriented Blockchain-based

Distributed Key Management Architecture for Hierarchical Access Control in the

IoT Scenario”. In: IEEE Access 7 (2019), pp. 34045–34059.

[85] C Madson and N Doraswamy. The ESP DES-CBC cipher algorithm with explicit

IV. Tech. rep. RFC 2405, november, 1998.

[86] Dindayal Mahto and Dilip Kumar Yadav. “RSA and ECC: a comparative analysis”.

In: International journal of applied engineering research 12.19 (2017), pp. 9053–

9061.

[87] Dieynaba Mall, Karim Konaté, and Al-Sakib Khan Pathan. “ECL-EKM: An

enhanced Certificateless Effective Key Management protocol for dynamic WSN”.

In: International Conference on Networking, Systems and Security (NSysS), 2017.

IEEE. 2017, pp. 150–155.

[88] Troy McMillan. CCNA security study guide: exam 210-260. John Wiley & Sons,

2018.

[89] Mohamed-Lamine Messai, Hamida Seba, and Makhlouf Aliouat. “A new hierar-

chical key management scheme for secure clustering in wireless sensor networks”.

In: International conference on wired/wireless internet communication. Springer.

2015, pp. 411–424.

[90] Micaz Wireless Measurement System. url: http://www.openautomation.net/

uploadsproductos/micaz_datasheet.pdf.

[91] MSP430F5438 Experimenter Board. 2013. url: https://www.ti.com/tool/MSP-

EXP430F5438#descriptionArea.

http://www.openautomation.net/uploadsproductos/micaz_datasheet.pdf
http://www.openautomation.net/uploadsproductos/micaz_datasheet.pdf
https://www.ti.com/tool/MSP-EXP430F5438#descriptionArea
https://www.ti.com/tool/MSP-EXP430F5438#descriptionArea

BIBLIOGRAPHY 141

[92] Rajasekhar Mungara, K Venkateswararao, and VenkataSubbaReddy Pallamreddy.

“A routing-driven elliptic curve cryptography based key management scheme

for heterogeneous sensor networks”. In: Int J Comput Technol Appl 2.5 (2011),

pp. 1690–1696.

[93] Satoshi Nakamoto et al. “Bitcoin: A peer-to-peer electronic cash system”. In:

(2008).

[94] Nist. Cryptographic key length recommendation. 2020. url: https : / / www .

keylength.com/en/4/.

[95] Luıs Nóbrega, André Tavares, António Cardoso, and Pedro Gonçalves. “Animal

monitoring based on IoT technologies”. In: 2018 IoT Vertical and Topical Summit

on Agriculture-Tuscany (IOT Tuscany). IEEE. 2018, pp. 1–5.

[96] T Okamura. “Lightweight Cryptography Applicable to Various IoT Devices”. In:

NEC Technical Journal (2017), pp. 67–71.

[97] Mawloud Omar, Imene Belalouache, Samia Amrane, and Bournane Abbache.

“Efficient and energy-aware key management framework for dynamic sensor

networks”. In: Computers Electrical Engineering 72 (2018), pp. 990–1005. issn:

0045-7906. doi: https://doi.org/10.1016/j.compeleceng.2018.03.009. url:

http://www.sciencedirect.com/science/article/pii/S0045790617322802.

[98] OpenMote-cc2538. 2020. url: https://doc.riot- os.org/group__boards_

_openmote-cc2538.html.

[99] M. Park, Y. Park, H. Jeong, and S. Seo. “Secure multiple multicast services in

wireless networks”. In: IEEE Transactions on Mobile Computing (2012).

[100] Se Jin Park, Murali Subramaniyam, Seoung Eun Kim, Seunghee Hong, Joo Hyeong

Lee, Chan Min Jo, and Youngseob Seo. “Development of the elderly healthcare

monitoring system with IoT”. In: Advances in Human Factors and Ergonomics in

Healthcare. Springer, 2017, pp. 309–315.

[101] Mittal K Pedhadiya, Rakesh Kumar Jha, and Hetal G Bhatt. “Device to device

communication: A survey”. In: Journal of Network and Computer Applications 129

(2019), pp. 71–89.

[102] Thomas R Peltier. Information security fundamentals. CRC press, 2013.

[103] Zhongyuan Qin, Xinshuai Zhang, Kerong Feng, Qunfang Zhang, and Jie Huang.

“An efficient identity-based key management scheme for wireless sensor networks

using the bloom filter”. In: Sensors 14.10 (2014), pp. 17937–17951.

https://www.keylength.com/en/4/
https://www.keylength.com/en/4/
https://doi.org/https://doi.org/10.1016/j.compeleceng.2018.03.009
http://www.sciencedirect.com/science/article/pii/S0045790617322802
https://doc.riot-os.org/group__boards__openmote-cc2538.html
https://doc.riot-os.org/group__boards__openmote-cc2538.html

142 BIBLIOGRAPHY

[104] Musfiq Rahman and Srinivas Sampalli. “An efficient pairwise and group key

management protocol for wireless sensor network”. In: Wireless Personal Com-

munications 84.3 (2015), pp. 2035–2053.

[105] Sk Md Mizanur Rahman and Khalil El-Khatib. “Private key agreement and secure

communication for heterogeneous sensor networks”. In: Journal of Parallel and

Distributed Computing 70.8 (2010), pp. 858–870.

[106] Partha Pratim Ray. “A survey of IoT cloud platforms”. In: Future Computing and

Informatics Journal 1.1-2 (2016), pp. 35–46.

[107] Ronald L Rivest, Adi Shamir, and Leonard Adleman. “A method for obtaining

digital signatures and public-key cryptosystems”. In: Communications of the ACM

21.2 (1978), pp. 120–126.

[108] Ronald Rivest and S Dusse. The MD5 message-digest algorithm. 1992.

[109] Kiki Rizki. Efficient Group Key Management for Internet of Things. 2016.

[110] Sushmita Ruj, Amiya Nayak, and Ivan Stojmenovic. “Pairwise and triple key

distribution in wireless sensor networks with applications”. In: IEEE Transactions

on Computers 62.11 (2013), pp. 2224–2237.

[111] Ozgur Koray Sahingoz. “Large scale wireless sensor networks with multi-level

dynamic key management scheme”. In: Journal of Systems Architecture 59.9

(2013), pp. 801–807.

[112] Fahad Saleh. “Blockchain without waste: Proof-of-stake”. In: Available at SSRN

3183935 (2020).

[113] Hooman Samani and Rongbo Zhu. “Robotic automated external defibrillator

ambulance for emergency medical service in smart cities”. In: IEEE Access 4

(2016), pp. 268–283.

[114] Sample Data for powertrace using CM5000 motes. 2015. url: https://github.

com/sonhan/contiki/tree/master/apps/powertrace-sonhan/sample-data.

[115] Lakshmi Siva Sankar, M Sindhu, and M Sethumadhavan. “Survey of consensus

protocols on blockchain applications”. In: 2017 4th International Conference on

Advanced Computing and Communication Systems (ICACCS). IEEE. 2017, pp. 1–

5.

[116] Shadi Al-Sarawi, Mohammed Anbar, Kamal Alieyan, and Mahmood Alzubaidi.

“Internet of Things (IoT) communication protocols”. In: 2017 8th International

conference on information technology (ICIT). IEEE. 2017, pp. 685–690.

https://github.com/sonhan/contiki/tree/master/apps/powertrace-sonhan/sample-data
https://github.com/sonhan/contiki/tree/master/apps/powertrace-sonhan/sample-data

BIBLIOGRAPHY 143

[117] Bruce Schneier. “Description of a new variable-length key, 64-bit block cipher

(Blowfish)”. In: International Workshop on Fast Software Encryption. Springer.

1993, pp. 191–204.

[118] Seung-Hyun Seo, Jongho Won, Salmin Sultana, and Elisa Bertino. “Effective key

management in dynamic wireless sensor networks”. In: IEEE Transactions on

Information Forensics and Security 10.2 (2015), pp. 371–383.

[119] Jalpa Shah and Biswajit Mishra. “IoT enabled environmental monitoring system

for smart cities”. In: 2016 international conference on internet of things and

applications (IOTA). IEEE. 2016, pp. 383–388.

[120] Alan T Sherman and David A McGrew. “Key establishment in large dynamic

groups using one-way function trees”. In: IEEE transactions on Software Engi-

neering 29.5 (2003), pp. 444–458.

[121] S.R. Singh, A.K. Khan, and T.S. Singh. “A New Key Management Scheme for

Wireless Senm Networks using an Elliptic Curve”. In: Indian Journal of Science

and Technology 10.13 (2017).

[122] Secure Hash Standard. “Federal Information Processing Standard (FIPS) 180-2”.

In: National Institute of Science and Technology (2002).

[123] Y. Sun and K.R. Liu. “Hierarchical group access control for secure multicast

communications”. In: IEEE/ACM Transactions on Networking 15.6 (2007),

pp. 1514–1526.

[124] Yan Sun, Wade Trappe, and KJ Ray Liu. “A scalable multicast key management

scheme for heterogeneous wireless networks”. In: IEEE/ACM Transactions on

networking 12.4 (2004), pp. 653–666.

[125] Telosb Mote Platform. url: http : / / www . memsic . com / userfiles / files /

Datasheets/WSN/telosb_datasheet.pdf.

[126] The Z1 mote. 2018. url: https://github.com/Zolertia/Resources/wiki/The-

Z1-mote.

[127] Gnana Kousalya Chella Thevar and G Rohini. “Energy efficient geographical key

management scheme for authentication in mobile wireless sensor networks”. In:

Wireless Networks 23.5 (2017), pp. 1479–1489.

[128] Matthias Thoma, Sonja Meyer, Klaus Sperner, Stefan Meissner, and Torsten

Braun. “On iot-services: Survey, classification and enterprise integration”. In: 2012

IEEE International Conference on Green Computing and Communications. IEEE.

2012, pp. 257–260.

http://www.memsic.com/userfiles/files/Datasheets/WSN/telosb_datasheet.pdf
http://www.memsic.com/userfiles/files/Datasheets/WSN/telosb_datasheet.pdf
https://github.com/Zolertia/Resources/wiki/The-Z1-mote
https://github.com/Zolertia/Resources/wiki/The-Z1-mote

144 BIBLIOGRAPHY

[129] Marco Tiloca and Gianluca Dini. “GREP: A group rekeying protocol based on

member join history”. In: 2016 IEEE Symposium on Computers and Communica-

tion (ISCC). IEEE. 2016, pp. 326–333.

[130] I-Chen Tsai, Chia-Mu Yu, Haruo Yokota, and Sy-Yen Kuo. “Key management

in Internet of Things via Kronecker product”. In: 2017 IEEE 22nd Pacific

Rim International Symposium on Dependable Computing (PRDC). IEEE. 2017,

pp. 118–124.

[131] M Uma and Ganapathi Padmavathi. “A Survey on Various Cyber Attacks and

their Classification.” In: IJ Network Security 15.5 (2013), pp. 390–396.

[132] Pavel Vasin. “Blackcoin’s proof-of-stake protocol v2”. In: URL: https://blackcoin.

co/blackcoin-pos-protocol-v2-whitepaper. pdf 71 (2014).

[133] Luca Veltri, Simone Cirani, Stefano Busanelli, and Gianluigi Ferrari. “A novel

batch-based group key management protocol applied to the internet of things”. In:

Ad Hoc Networks 11.8 (2013), pp. 2724–2737.

[134] Wattana Viriyasitavat and Danupol Hoonsopon. “Blockchain characteristics and

consensus in modern business processes”. In: Journal of Industrial Information

Integration 13 (2019), pp. 32–39.

[135] Debby Wallner, Eric Harder, and Ryan Agee. Key management for multicast:

Issues and architectures. Tech. rep. 1999.

[136] Changsheng Wan. “IBKES: Efficient Identity-Based Key Exchange with Scalability

for Wireless Sensor Networks Using Algebraic Signature.” In: Adhoc & Sensor

Wireless Networks 39 (2017).

[137] Jiuru Wang, Haifeng Wang, Xu An Wang, and Yunpeng Cao. “An Authentication

Key Agreement Scheme for Heterogeneous Sensor Network Based on Improved

Counting Bloom Filter”. In: 10th International Conference on P2P, Parallel, Grid,

Cloud and Internet Computing. IEEE. 2015, pp. 815–820.

[138] Chung Kei Wong, Mohamed Gouda, and Simon S Lam. “Secure group communi-

cations using key graphs”. In: IEEE/ACM transactions on networking 8.1 (2000),

pp. 16–30.

[139] Gavin Wood et al. “Ethereum: A secure decentralised generalised transaction

ledger”. In: Ethereum project yellow paper 151.2014 (2014), pp. 1–32.

[140] Mohamed F Younis, Kajaldeep Ghumman, and Mohamed Eltoweissy. “Location-

aware combinatorial key management scheme for clustered sensor networks”. In:

IEEE transactions on parallel and distributed systems 17.8 (2006), pp. 865–882.

BIBLIOGRAPHY 145

[141] Mohammad Sadegh Yousefpoor and Hamid Barati. “Dynamic key management

algorithms in wireless sensor networks: A survey”. In: Computer Communications

134 (2019), pp. 52–69.

[142] Zhen Yu and Yong Guan. “A robust group-based key management scheme for

wireless sensor networks”. In: IEEE Wireless Communications and Networking

Conference, 2005. Vol. 4. IEEE. 2005, pp. 1915–1920.

[143] Furui Zhan and Nianmin Yao. “A collusion-resistant dynamic key management

scheme for WSNs”. In: Security and Communication Networks 9.18 (2016),

pp. 6351–6364.

[144] Furui Zhan, Nianmin Yao, Zhenguo Gao, and Guozhen Tan. “A novel key

generation method for wireless sensor networks based on system of equations”.

In: Journal of Network and Computer Applications 82 (2017), pp. 114–127.

[145] Jianmin Zhang, Hua Li, and Jian Li. “Key establishment scheme for wireless sensor

networks based on polynomial and random key predistribution scheme”. In: Ad Hoc

Networks 71 (2018), pp. 68–77.

[146] Junqi Zhang and Vijay Varadharajan. “Wireless sensor network key management

survey and taxonomy”. In: Journal of network and computer applications 33.2

(2010), pp. 63–75.

[147] Q. Zhang and Y. Wang. “A centralized key management scheme for hierarchical ac-

cess control”. In: Global Telecommunications Conference, 2004. GLOBECOM’04.

IEEE. Vol. 4. 2004, pp. 2067–2071.

[148] Yiying Zhang, Xiangzhen Li, Jianming Liu, Jucheng Yang, and Baojiang Cui.

“A secure hierarchical key management scheme in wireless sensor network”. In:

international journal of distributed sensor networks 8.9 (2012), p. 547471.

[149] Qian Zhu, Ruicong Wang, Qi Chen, Yan Liu, and Weijun Qin. “Iot gateway:

Bridgingwireless sensor networks into internet of things”. In: 2010 IEEE/IFIP

International Conference on Embedded and Ubiquitous Computing. Ieee. 2010,

pp. 347–352.

[150] Sencun Zhu, Sanjeev Setia, and Sushil Jajodia. “LEAP+ Efficient security

mechanisms for large-scale distributed sensor networks”. In: ACM Transactions

on Sensor Networks (TOSN) 2.4 (2006), pp. 500–528.

	PDT KANDI Mohamed Ali
	Soutenue le 14 décembre 2020

	These STAR KANDI Mohamed
	List of Publications
	Abstract
	Résumé
	Contents
	List of figures
	List of tables
	List of algorithms
	Introduction
	Motivations
	Research topic
	Our contributions
	Organization of the manuscript

	General context
	Introduction
	Fundamentals of the Internet of Things
	IoT architecture
	IoT features
	IoT applications
	Top IoT challenges

	Fundamentals of Network Security
	Network security objectives
	Network security attacks
	Network security and cryptography
	Ciphers
	Hash functions
	Key derivation functions

	Blockchain
	Blockchain structure
	Blockchain architecture
	Blockchain features
	Blockchain consensus
	Smart contracts

	Conclusion

	Key Management in the IoT: Classification and Challenges
	Introduction
	Fundamentals of Key Management
	Generation
	Storage
	Distribution
	Replacement

	Key Management and IoT
	Lightweight cryptography
	IoT requirements for the Key Management

	Key Management classification
	Classification criteria
	Key cryptography
	Key type
	Distribution method
	Load balancing

	Proposed classification

	Key Management challenges in the IoT
	Our contributions
	Notations
	Application and threat model

	Conclusion

	Dynamic Key Management for Secure Device-to-Device Communication
	Introduction
	Related Works
	Deterministic schemes
	Pure probabilistic schemes
	Deployment knowledge based schemes

	Our solution
	Classification of cryptographic keys
	Hash functions
	Zero-level approach
	One-level approach
	Two-level approach

	Set management
	Assignment Algorithm
	Reorder Algorithm

	Node management
	Node joining
	Node leaving

	Security analysis
	Theoretical analysis
	Zero-level approach
	One-level approach
	Two-level approach

	Comparison

	Performance evaluation
	Theoretical analysis
	Overheads on the Key Manager
	Overheads on the nodes

	Comparison
	Scalability
	Connectivity
	Mobility
	Efficiency
	Flexibility

	Conclusion

	Heterogeneous Key Management for Secure Group Communication
	Introduction
	Related Works
	Tree based schemes
	Combinatorial optimization based schemes
	Batch rekeying based schemes

	Our solution
	Classification of cryptographic keys
	Subgroup Management
	Capability Evaluation Function
	Heterogeneous subgrouping
	Assignment Algorithm
	Reorder Algorithm

	Node management

	Security analysis
	Backward secrecy
	Forward secrecy
	Collusion resistance

	Performance evaluation
	Theoretical analysis
	Overheads on the Key Manager
	Overheads on nodes

	Simulation
	Comparison
	Efficiency and scalability
	Heterogeneity

	Conclusion

	Blockchain-Based Decentralized Key Management for secure Multi-group Communication
	Introduction
	Related Works
	Multi-Group Key Management schemes
	Blockchain solutions

	Our solution
	Layer 1: Key Management
	Group and service management
	Classification of cryptographic keys
	Node Management
	Subgroup management

	Layer 2: Blockchain Management
	Transaction management upon network change
	Consensus Algorithm
	Blockchain interest

	Security analysis
	Independence of services
	Resilience against node capture
	Theoretical analysis
	Comparison

	Resilience against BP capture
	Theoretical analysis
	Comparison

	Performance evaluation
	Overheads on the Key Manager
	Overheads on nodes

	Conclusion

	Experimentation
	Introduction
	Software environment
	Operating system: Contiki
	Processes
	Events
	Network Stack
	PowerTrace
	Cooja

	Material resource
	Experimental platform
	Key Manager
	Nodes
	Intermediate motes

	Experimental results
	Response time of BPs
	Storage overhead on nodes
	Execution time on nodes
	Energy consumption by nodes

	Conclusion

	Conclusion and future works
	Bibliography

