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Long résumé

Au chapitre 3, nous introduisons tout d'abord l'équation de réseau largement utilisée en optique. Lorsqu'une onde plane monochromatique frappe l'interface périodique, des ordres de diffraction se produisent. L'équation de réseau décrit exactement où vont ces ordres de diffraction. En d'autres termes, l'équation de réseau détermine la direction de propagation de l'ordre de diffraction. Bien que l'équation de réseau soit expliquée du point de vue de la théorie des rayons, elle est également valable pour la théorie des ondes. Plus précisément, l'équation de réseau est applicable pour étudier la propagation des ondes sismiques en présence de l'interface rugueuse périodique, que l'incidence soit une onde sphérique polychromatique provenant d'une source ponctuelle ou une onde plane polychromatique, ce qui a été vérifié par nos résultats numériques. Ceci est attribué à la propriété de superposition d'ondes de différentes fréquences et à la décomposabilité d'une onde sphérique en ondes planes.

Pour une identification plus facile, la bande passante de l'onde incidente est la plus étroite possible, ce qui peut éviter le mélange d'ordres de diffraction différents. Dans les tests numériques utilisant la méthode des éléments spectraux, nous choisissons la source de rafale en raison de sa bande passante étroite. Tout d'abord, nous étudions le cas le plus simple où une incidence d'onde plane est considérée. L'onde plane est construite en excitant simultanément de nombreuses sources ponctuelles sur une droite. Dans ce cas, l'angle d'incidence est fixe, nous pouvons donc facilement calculer l'angle de l'ordre de diffraction dans la bande passante en fonction de l'équation du réseau. Grâce à la simulation numérique de l'interface rugueuse périodique avec des formes sinusoïdales, nous pouvons observer différents ordres de diffraction dus à la périodicité de l'interface en plus de la réflexion spéculaire, et leurs directions sont tout à fait cohérentes avec les calculs théoriques, ce qui confirme la validité de l'équation de réseau pour l'onde sismique. Notez que l'onde plane polychromatique explique le phénomène selon lequel l'ordre de diffraction apparaît légèrement incurvé. Pour un ordre de diffraction donné, une incidence d'onde plane polychromatique génère une somme d'ondes planes monochromatiques diffusées dans différentes directions (une fréquence correspond à une direction), se présentant finalement comme des événements courbes.

Ensuite, nous procédons aux tests avec une source ponctuelle. Pour mieux reconnaître et suivre l'ordre de diffraction, nous discutons du modèle « demi-plat-demi-rugueux ». Un tel modèle ne produit que la réflexion spéculaire mais aucun ordre de diffraction à partir des angles incidents négatifs. Ainsi, il évite les interférences dans les ordres de diffraction de l'angle incident positif, ce qui nous aide grandement à identifier les ordres de diffraction. Ce modèle spécial peut servir d'étape intermédiaire entre une incidence d'onde plane et une incidence de source ponctuelle, ce qui rend possible l'analyse des ordres de diffraction dans le cas d'une source ponctuelle. Les résultats montrent que les ordres de diffraction deviennent plus incurvés, qui sont conjointement causés par plusieurs fréquences et plusieurs angles d'incidence. En effet, pour un ordre de diffraction donné, une onde plane monochromatique à angles incidents multiples génère une somme d'ondes planes diffusées dans différentes directions (un angle incident correspond à une direction). C'est-à-dire que les multiples angles incidents ont le même effet que les multiples fréquences, ce qui rend les ordres de diffraction incurvés. Dans le cas d'une source ponctuelle, les fréquences multiples et les angles viii Long résumé incidents multiples déterminent ensemble l'apparence de l'ordre de diffraction. Donc, l'ordre de diffraction sous une incidence de source ponctuelle est plus courbe que sous une incidence d'onde plane. Cependant, avec l'aide de la relation entre l'angle incident et l'angle de diffraction, nous pouvons toujours identifier chaque ordre de diffraction dans l'instantané du champ d'onde.

Grâce à l'analyse de le shot gather dans le domaine temporel, nous trouvons qu'un ordre de diffraction se chevauche toujours en partie avec un autre, il n'est donc pas possible de séparer différents ordres de diffraction dans le domaine temporel. De même, nous ne pouvons pas caractériser l'ordre de diffraction en termes de spectres d'amplitude, car il n'y a pas de relation correspondante entre le contenu fréquentiel et l'ordre de diffraction. En outre, peu d'informations utiles peuvent être trouvées pour distinguer différents ordres de diffraction dans le spectrogramme obtenu à partir de la transformée de Fourier à court terme, mais nous pouvons observer une modulation de fréquence linéaire qui est la signature de l'interface rugueuse périodique (c.-à-d., réseau de diffraction). En un mot, nous ne pouvons pas identifier et séparer efficacement chaque ordre de diffraction dans le domaine temporel, dans le domaine fréquentiel ou dans le domaine temps-fréquence. Cependant, dans le domaine fréquence-nombre d'onde, différents ordres de diffraction se situent dans différentes zones, et en vertu de la relation entre le nombre d'onde horizontal et l'angle d'incidence, nous pouvons déterminer chaque ordre de diffraction dans le domaine fréquence-nombre d'onde. Par conséquent, les ordres de diffraction peuvent être séparés dans le domaine fréquence-nombre d'onde. De plus, nous constatons que la distance entre la ligne de récepteur et l'interface périodique influence la gamme du nombre d'onde horizontal qui peut être enregistré.

Puisque les angles d'incidence négatifs existent toujours pour une source ponctuelle, nous testons finalement le modèle avec une interface rugueuse périodique complète. Dans ce cas, le champ d'onde sismique devient plus complexe, car les ordres de diffraction dus aux angles incidents négatifs interfèrent complètement avec ceux dus aux angles incidents positifs. Cependant, nous pouvons toujours reconnaître approximativement chaque ordre de diffraction sur l'instantané en fonction de la relation entre l'angle d'incidence et l'ordre de diffraction. Pour les lignes de récepteur se localisant au même endroit mais ayant des décalages différents, selon la relation entre l'angle d'incidence et le nombre d'onde horizontal, on découvre que la gamme du nombre d'onde horizontal qui peut être enregistré est également affectée par le décalage de la ligne de récepteur, qui, conjointement avec la distance entre la ligne de récepteur et l'interface périodique, sont appelés collectivement la configuration de ligne de récepteur. À partir de le shot gather dans le domaine fréquence-nombre d'onde, nous trouvons que la correspondance biunivoque entre la zone individuelle et l'ordre de diffraction est violée, tandis que cette correspondance biunivoque satisfait les résultats du modèle « demi-plat-demi-rugueux ». Ceci est principalement dû à la différence de décalage de la ligne de récepteur.

Les tests numériques confirment le fait que la propagation des ondes sismiques en présence de l'interface rugueuse périodique suit également l'équation du réseau. En conséquence, toutes les variables dans l'expression de l'équation de réseau influencent également la gamme du nombre d'onde horizontal. Plus précisément, la gamme du nombre d'onde horizontal dépend de la fréquence, de la ix Long résumé vitesse dans le milieu et de la période spatiale de l'interface rugueuse, en plus de la configuration de la ligne de récepteur. Grâce à l'analyse de sensibilité à ces paramètres, nous constatons que la fréquence, la période de l'interface rugueuse et le décalage de la ligne de récepteur ont une corrélation positive avec la gamme du nombre d'onde horizontal, alors que la vitesse de l'onde dans le milieu a une corrélation négative avec la gamme du nombre d'onde horizontal. En comparant avec le taux de changement de la gamme de nombre d'onde horizontal associée à un ordre de diffraction donné, la sensibilité de la gamme de nombre d'onde horizontal à l'un de ces paramètres de haut en bas est la fréquence, la vitesse et le décalage de la ligne du récepteur. Par ailleurs, l'intersection de la gamme de nombre d'onde horizontal entre deux ordres adjacents augmente avec la fréquence, la période de l'interface rugueuse, ou le décalage de la ligne de récepteur, alors qu'elle diminue avec la vitesse. Ceci est très utile pour nous indiquer de choisir les paramètres appropriés pour mettre en oeuvre la séparation des ordres de diffraction dans le domaine fréquence-nombre d'onde.

Si nous voulons implémenter la séparation des ordres de diffraction dans le domaine fréquencenombre d'onde, les paramètres affectant la gamme du nombre d'onde horizontal doivent être soigneusement donnés, de sorte que la gamme du nombre d'onde horizontal n'ait aucune intersection pour deux ordres de diffraction. Pour atteindre cet objectif, nous ajustons généralement un paramètre tout en gardant les autres inchangés, ce qui serait plus réalisable. D'un point de vue pratique, seuls la fréquence de la source et le décalage de la ligne de récepteur peuvent être contrôlés. Compte tenu de la taille des structures souterraines et de la résolution de l'onde sismique, il est rare de modifier la bande passante et la fréquence centrale de la source. En conséquence, nous ajustons uniquement le décalage du récepteur pour répondre à la condition qu'il n'y a pas d'intersection pour différents ordres de diffraction dans le domaine fréquence-nombre d'onde. Les résultats de séparation vérifient que les filtres dans le domaine fréquence-nombre d'onde sont efficaces malgré très peu de couplages entre différents ordres de diffraction.

Actuellement, la méthode pour séparer les ordres de diffraction dans le domaine fréquence-nombre d'onde n'est valable que pour le modèle avec une seule interface. Concernant le modèle à interfaces multiples, il n'est cependant pas vraiment efficace. Par exemple, pour un modèle simple à deux interfaces où la supérieure est périodique et la inférieure est plate, le champ d'onde deviendrait beaucoup plus compliqué, car la ligne de récepteur enregistre non seulement les ordres de diffraction réfléchis par l'interface supérieure mais aussi les ordres de diffraction transmises via l'interface supérieure. De plus, pour un ordre de diffraction donné, l'angle de l'ordre de diffraction transmis est toujours inférieur à celui de l'ordre de diffraction réfléchi, et donc l'ordre de diffraction transmis est toujours masqué par l'ordre de diffraction réfléchi dans le domaine fréquence-nombre d'onde. En conséquence, il n'est pas possible de séparer les ordres de diffraction transmis des ordres de diffraction réfléchis dans le domaine fréquence-nombre d'onde. Si la distance entre deux interfaces est suffisamment grande pour pouvoir séparer d'abord deux types d'ordres de diffraction dans le domaine temporel, différents ordres de diffraction réfléchis (ou transmis) peuvent être séparés dans le domaine fréquence-nombre d'onde. Une autre limitation est que la gamme du nombre d'onde horizontal associé à un ordre de diffraction donné est influencée par de nombreux paramètres comme x Long résumé mentionné ci-dessus. Par conséquent, avant de séparer différents ordres de diffraction dans le domaine fréquence-nombre d'onde, nous devons dessiner soigneusement ces paramètres de telle sorte qu'il n'y ait pas d'intersection dans le nombre d'onde horizontal pour différents ordres de diffraction.

Au chapitre 4, nous avons étudié la propagation des ondes sismiques en présence d'une interface rugueuse aléatoire décrite par des propriétés statistiques. Ceci est accompli en faisant varier respectivement la hauteur RMS et la longueur de corrélation de l'interface rugueuse, ce qui nous permet d'examiner les effets des paramètres contrôlant la forme de l'interface rugueuse sur la propagation des ondes sismiques. Il ressort clairement de l'analyse que ces paramètres influencent évidemment les caractéristiques des champs d'ondes diffractés générés par une interface rugueuse: la hauteur RMS et la longueur de corrélation de l'interface rugueuse sont directement liées à l'apparence et à la taille des champs d'ondes diffractés.

Nous avons d'abord généré l'interface rugueuse aléatoire en utilisant le spectre Gaussien filtré. Pour mettre en oeuvre ceci, une distribution Gaussienne avec une moyenne nulle et une variance unitaire est utilisée. L'amplitude de l'interface rugueuse peut être caractérisée par la hauteur RMS σ également appelée rugosité d'interface. Pour produire une rugosité d'interface souhaitée, seul le facteur de normalisation C doit être ajusté. Dans le même temps, nous avons discuté des effets des paramètres du spectre Gaussien filtré sur la forme des interfaces rugueuses obtenues. Nous avons trouvé que le nombre d'ondes central k c est la période moyenne de l'interface rugueuse, et un nombre d'onde central plus grand produit l'interface rugueuse avec une période spatiale plus petite. Il est également à noter que la longueur de corrélation de l'interface rugueuse aléatoire contrôle la longueur d'onde spatiale minimale le long de la distribution d'interface, et une plus grande longueur de corrélation, correspondant à un spectre plus étroit (c'est-à-dire, un contenu en nombre d'onde spatial moins élevé), donne lieu à un taux de changement inférieur de la hauteur de l'interface rugueuse et une distance plus égale entre la crête et le creux.

Pour les effets de l'amplitude d'une interface rugueuse (rugosité RMS pour le cas de l'interface rugueuse aléatoire), elle est examinée par les tests avec différentes rugosités, indiquant que l'interface rugueuse (périodiquement ou aléatoirement) avec une amplitude plus grande généralement donne les ondes diffractées les plus fortes et les plus dispersées. Cela peut être attribuable au fait que les champs d'ondes diffractés sont simplement la convolution des champs d'ondes incidents avec la fonction d'interface rugueuse (ou le produit des champs d'ondes incidents et de la fonction d'interface rugueuse dans le domaine de Fourier). Dans ce cas, plus d'énergie des ondes incidentes serait transférée aux ondes diffractées qui se manifestent finalement sous une forme plus dispersive.

Pour l'effet de la longueur de corrélation de l'interface rugueuse (la période pour le cas de l'interface rugueuse périodique), on peut voir que lorsque la longueur de corrélation augmente, les champs d'ondes diffractés en termes de fronts d'onde ou de shot gather deviennent plus cohérents et moins se chevauchent, tandis qu'en termes de spectres, l'énergie diffractée devient moins dispersée avec le nombre d'onde horizontal. Ce phénomène peut également s'expliquer par le processus de convolution entre le champ d'onde incident et la fonction d'interface grossière contenant des nombres d'ondes moins élevés. Il est impressionnant que lorsque la longueur de corrélation devient très grande xi Long résumé par rapport à la longueur d'onde incidente (comme 150m dans le test), les caractéristiques des champs d'ondes diffractés ont tendance à se rapprocher des champs d'ondes diffractés dans le cas de l'interface rugueuse périodique. En effet, une grande longueur de corrélation donne un spectre Gaussien étroit, qui serait proche du spectre de la fonction sinus. De plus, la longueur de corrélation a moins d'effet sur l'énergie des champs d'onde diffractés, mais ce n'est pas le cas pour le paramètre de rugosité d'interface.

Un point que nous devons garder à l'esprit est que par rapport au cas d'une interface plate, la rugosité de l'interface donne une gamme de spectre plus large, bien que le spectre correspondant se disperse. En recourant au fonctionnement d'ensemble moyen qui peut atténuer le caractère aléatoire causé par l'utilisation de l'interface statistiquement rugueuse, nous avons observé que l'énergie diffractée relativement importante est toujours distribuée dans la gamme de nombre d'onde horizontal correspondant à l'interface plate. Dans la future étude, nous pourrons utiliser la méthode d'analyse stochastique pour explorer davantage le champ d'onde diffracté, puisque les champs d'onde diffractés sont en fait décrits comme une distribution aléatoire en raison du processus de convolution entre l'interface rugueuse aléatoire et l'onde sismique incidente.

Au chapitre 5, nous avons étudié les effets des caractéristiques d'une interface rugueuse sur FWI. L'influence de la rugosité σ et de la longueur de corrélation l ont été analysées, respectivement. Concernant FWI, nous avons utilisé le package open-source DENISE qui implémente un algorithme FWI acoustique ou élastique isotrope 2D dans le domaine temporel basé sur la méthode des différences finies. Pour l'inversion, nous avons adopté l'algorithme d'optimisation L-BFGS pour réduire les besoins en mémoire et la méthode d'interpolation parabolique pour assurer une longueur de pas optimale. Pour atténuer le problème du cycle-skipping dans la mesure du possible, nous avons utilisé un modèle lisse comme modèle de départ obtenu en appliquant un filtre Gaussien au vrai modèle, et une stratégie hiérarchique multi-échelles qui inclut progressivement des fréquences de bas en haut. Notez que nous avons uniquement mis à jour le modèle de vitesse de l'onde P.

Tout d'abord, nous avons étudié l'influence de la rugosité de l'interface supérieure du modèle à trois couches. On voit que la hauteur de l'interface rugueuse fluctue plus fortement à mesure que la rugosité augmente. Lorsque la rugosité augmente jusqu'à la taille de la longueur d'onde dominante (15 m), le bruit aléatoire domine et les événements de réflexion ne peuvent plus être vus sur le shot gather. A partir de l'inversion, les rugosités inférieures à 10m ont peu d'effets sur les résultats d'inversion, qui sont aussi bons que ceux donnés dans le modèle plat. Non seulement les deux interfaces sont bien reconstruites et correctement positionnées, mais les vitesses récupérées dans les couches sont également cohérentes avec les valeurs exactes. Dans le cas d'une rugosité de 10m, la rugosité commence à influencer FWI car nous pouvons voir une petite surestimation de profondeur pour l'interface plate. Lorsque la rugosité atteint 30m, la rugosité joue un rôle important dans FWI affectant l'évaluation des profondeurs des deux interfaces et la récupération de vitesse de la couche médiane. Une raison possible de ce phénomène est l'utilisation des données sismiques avec une durée d'enregistrement courte de telle sorte qu'une grande partie du bruit aléatoire causé par la rugosité (en particulier pour une grande rugosité) ne peut pas être prise en compte par FWI. Bien que xii Long résumé l'énergie du bruit aléatoire soit faible par rapport aux réflexions primaires, cela peut être l'information nécessaire pour bien récupérer l'interface sous-jacente. Globalement, la diffusion de phase augmente avec la rugosité, et lorsque la rugosité est supérieure à la longueur d'onde dominante, elle a un effet significatif sur le FWI, notamment pour l'estimation de la profondeur de l'interface sous-jacente.

De même, l'étude des effets de la longueur de corrélation a été réalisée en utilisant différentes longueurs de corrélation pour l'interface supérieure. De toute évidence, le taux de changement de la hauteur d'interface diminue avec la longueur de corrélation, indiquant que l'interface rugueuse contient moins de rugosités à courte longueur d'onde. De manière correspondante, le bruit aléatoire dû à la diffusion de phase est réduit, mais ce changement est moins prononcé que celui causé par la rugosité. En d'autres termes, les effets de la longueur de corrélation sur les données sismiques sont beaucoup plus faibles que celui de la rugosité. Généralement, pour différentes longueurs de corrélation, FWI montre une bonne performance, et les résidus de données montrent de petites différences, ce qui démontre que la longueur de corrélation a des effets plus faibles sur FWI que la rugosité. Bien qu'il y ait une très faible surestimation de profondeur pour l'interface ci-dessous plate, une telle surestimation est presque la même pour différentes longueurs de corrélation et le cas plat, indiquant que ce phénomène n'est pas principalement causé par la longueur de corrélation mais par la présence d'une rugosité de 10m. Il est à noter que les vitesses à une profondeur d'environ 0,7 km (dans la couche médiane) ne parviennent pas à être récupérées de la valeur de départ à sa valeur exacte pour les petites longueurs de corrélation (<50m). En effet, lorsque l'interface contient de nombreuses rugosités de petite longueur d'onde, FWI se concentrera principalement sur la mise à jour du contenu en nombre d'ondes élevé de l'interface rugueuse. En bref, en comparant les effets de la rugosité et de la longueur de corrélation, on peut en déduire que la rugosité d'interface a un effet principal sur les résultats d'inversion.

Au chapitre 6, nous présenterons d'abord brièvement quelques connaissances électromagnétiques de base liées à la méthode d'extinction sélective. Ensuite, nous passons en revue la théorie de la méthode d'extinction sélective en électromagnétique. Ensuite, la mise en oeuvre des premiers tests de la méthode d'extinction sélective dans l'onde sismique est illustrée par un modèle simple à trois couches. Nous effectuons les tests numériques pour des modèles avec deux rugosités différentes et décrivons quantitativement les effets de l'interface rugueuse en fonction des propriétés statistiques des données restantes.

Par analogie, nous appliquons la méthode d'extinction sélective en électromagnétique aux données sismiques en sismologie d'exploration. Bien que les données sismiques générées par l'interface rugueuse soient supprimées après l'extinction, les données restantes contiennent toujours les informations de l'interface rugueuse, qui ont été incluses dans les coefficients de la combinaison linéaire de x et z composants des données restantes. Par conséquent, sur la base des données restantes après l'extinction, nous pouvons déduire indirectement les effets de la rugosité sur les données sismiques de manière quantitative. Des tests numériques ont montré que la méthode est faisable pour les données sismiques. Plus important encore, l'écart type des données restantes peut être appliqué pour évaluer l'impact de la rugosité d'interface sur les données sismiques de la structure ou de la couche cible. En 

Introduction

Due to geological processes and crustal movements, the Earth contains many rough interfaces. However, the presence of a rough interface can strongly affect seismic wave propagation, mainly producing changes in the amplitude, phase (i.e., traveltime), scattering angle, frequency content, and even wave-type conversion of the scattered wave in the elastic case. It is clear that the seismic imaging or inversion methods are mostly related to the forward modeling of the wavefield. Therefore, the quality of seismic imaging or inversion is also greatly influenced by the rough interface. Although the effects of the rough interface can often be identified in the seismic data, the interaction of the rough interface with the seismic wave remains to be better understood. Many theories and approaches have been developed to discuss the phenomena and effects caused by rough interfaces in the subsurface. However, it is still quite challenging to model the seismic wave propagation and reconstruct the subsurface in a proper way. The thesis will address these issues in the context of seismic exploration, mainly concerned with the effects of parameters controlling the shape of the rough interface on seismic wave propagation and full-waveform inversion.

1.1 Literature review

Wave propagation and scattering from the rough interface

The heterogeneities, widely existing within the Earth, have been recognized by the seismic evidence at all scales and types of seismic data. According to the distribution form, the heterogeneity can be classified into interface heterogeneity and volume heterogeneity. The interface heterogeneity is characterized by the irregularities of randomly varying sizes at an interface between two elastic media. This type of heterogeneity typically includes geometrical heterogeneity due to the interface roughness, such as the surface of basalt [START_REF] Martini | Application of pre-stack wave equation datuming to remove interface scattering in sub-basalt imaging[END_REF][START_REF] Makinde | Numerical modelling of interface scattering of seismic wavefield from a random rough interface in an acoustic medium: comparison between 2D and 3D cases[END_REF], and physical heterogeneity due to the spatial distribution of irregular geological contacts between two media, such as cracks filled with gas or liquid [START_REF] Favretto-Cristini | PP amplitude bias caused by interface scattering: are diffracted waves guilty?[END_REF]. Whereas the volume heterogeneity is represented by the elastic property fluctuations in a random fashion in the medium, such as the internal flow structure of the basalt [START_REF] Martini | Interface scattering versus body scattering in subbasalt imaging and application of prestack wave equation datuming[END_REF] and the carbonate-bearing fractures and
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pores filled with low-velocity hydrocarbons [START_REF] Jarchow | Large-explosive source, wide-recording aperture, seismic profiling on the Columbia Plateau[END_REF]. The two categories of heterogeneity are responsible for the interface scattering [START_REF] Makinde | Numerical modelling of interface scattering of seismic wavefield from a random rough interface in an acoustic medium: comparison between 2D and 3D cases[END_REF][START_REF] Favretto-Cristini | PP amplitude bias caused by interface scattering: are diffracted waves guilty?[END_REF][START_REF] Martini | Interface scattering versus body scattering in subbasalt imaging and application of prestack wave equation datuming[END_REF][START_REF] Schultz | Enhanced backscattering of seismic waves from a highly irregular, random interface: P-SV case[END_REF][START_REF] Schultz | Reflections from a randomly grooved interface: ultrasonic modelling and finite-difference calculation[END_REF][START_REF] Park | The effect of stochastic rough interfaces on coupled-mode elastic waves[END_REF] and volume scattering [START_REF] Martini | Interface scattering versus body scattering in subbasalt imaging and application of prestack wave equation datuming[END_REF][START_REF] Gibson | Modeling and processing of scattered waves in seismic reflection surveys[END_REF][START_REF] Coates | A comparison of single scattering and finite difference synthetic seismograms in realizations of 2-D elastic random media[END_REF], respectively. Both types of scattering are important because they cause significant changes in traveltime, amplitude, waveshape, and the frequency content of the reflected waves [START_REF] Makinde | Numerical modelling of interface scattering of seismic wavefield from a random rough interface in an acoustic medium: comparison between 2D and 3D cases[END_REF][START_REF] Favretto-Cristini | PP amplitude bias caused by interface scattering: are diffracted waves guilty?[END_REF][START_REF] Schultz | Enhanced backscattering of seismic waves from a highly irregular, random interface: P-SV case[END_REF][START_REF] Gibson | Modeling and processing of scattered waves in seismic reflection surveys[END_REF][START_REF] Coates | A comparison of single scattering and finite difference synthetic seismograms in realizations of 2-D elastic random media[END_REF][START_REF] Berry | Diffractal echoes[END_REF][START_REF] Mccloskey | Evidence for chaotic behaviour in seismic wave scattering[END_REF][START_REF] Clouser | Effect of sinusoidal interfaces on teleseismic P-wave receiver functions[END_REF][START_REF] Tang | A note on scattering by a stack of rough interfaces[END_REF], and generate incoherent coda whose interference with reflections results in a complex reflected wavefield [START_REF] Schultz | Enhanced backscattering of seismic waves from a highly irregular, random interface: P-SV case[END_REF][START_REF] Coates | A comparison of single scattering and finite difference synthetic seismograms in realizations of 2-D elastic random media[END_REF][START_REF] Dougherty | Seismic energy partitioning and scattering in laterally heterogeneous ocean crust[END_REF][START_REF] Frankel | A review of numerical experiments on seismic wave scattering[END_REF][START_REF] Levander | The crust as a heterogeneous "optical" medium, or "crocodiles in the mist[END_REF][START_REF] Hurich | Statistical description of seismic reflection wavefields: a step towards quantitative interpretation of deep seismic reflection profiles[END_REF]. Usually, scattering is the combined result of interface and volume heterogeneities [START_REF] Coffin | Large igneous provinces: crustal structure, dimensions, and external consequences[END_REF][START_REF] Bean | Sub-basalt seismic imaging using optical-to-acoustic model building and wave equation datuming processing[END_REF]. However, the present work concentrates only on the interface scattering from geometrical heterogeneities, particularly on its effects on seismic wave propagation and imaging. Broadly speaking, scattering and diffraction are synonymous, but the former often refers to the wave interaction with small heterogeneities. Depending upon the relationship between the incident wavelength and the scale of heterogeneity, the amount and spread of the scattered wave will be different [START_REF] Ogilvy | Theory of wave scattering from random rough surfaces[END_REF]. If the scatterer is very large compared to the incident wavelength, the scattered waves can be understood as reflected and refracted waves at the boundary, which becomes a more straightforward case to develop the theory of wave propagation. Alternatively, if the obstacle size is of the same order as the incident wavelength, a complex wave propagation results in several coherent and incoherent events, mainly due to diffraction and its interference with reflection. If the size of the scatterer is very small compared to the wavelength of the incident wave, the waves will spread out in all directions. If there are many such small scatterers, then the scattered wave will interfere with each other, finally resulting in many coherent and incoherent wavetrains [START_REF] Tolstoy | Wave propagation. Earth and Planetary Science Series[END_REF]. Specifically, this is also true for the case of interface heterogeneity where the scattering behavior is determined by the scale of interface roughness with respect to the incident wavelength since the interface roughness is not an intrinsic property of an interface [START_REF] Ogilvy | Theory of wave scattering from random rough surfaces[END_REF].

Quantitatively, the Rayleigh criterion [START_REF] Ishimaru | Wave Propagation and Scattering in Random Media[END_REF] defines the threshold below which the interface is generally considered smooth: σ < λ /8 cos θ , where σ is the Root-Mean-Square (RMS) height of rough interface, λ is the incident wavelength, and θ is the incident angle relative to the normal to the mean interface of the rough interface. In the context of seismic exploration, considering the seismic P-wave velocity in the shallow subsurface (< 5 km) generally ranging between 1500 and 5000 m/s with frequency bandwidth mainly between 10 and 60 Hz, if a plane wave with normal incidence is used, then the interface with an RMS height less than a value between 3 and 60 m are considered smooth according to the Rayleigh criterion. Consequently, most interfaces between two elastic media are seismically treated to be "smooth" [START_REF] Makinde | Numerical modelling of interface scattering of seismic wavefield from a random rough interface in an acoustic medium: comparison between 2D and 3D cases[END_REF]. Nevertheless, many natural occurrences are exceptions to this limit. The surfaces of the basalt layer, for example, often contain roughness comparable to the order of the seismic wavelength, resulting in significant interface scattering that is the most detrimental to the sub-basalt imaging [START_REF] Martini | Interface scattering versus body scattering in subbasalt imaging and application of prestack wave equation datuming[END_REF]. Therefore, the effects of interface scattering must be taken into consideration when rough interfaces are present [START_REF] Makinde | Numerical modelling of interface scattering of seismic wavefield from a random rough interface in an acoustic medium: comparison between 2D and 3D cases[END_REF].

Actually, the reflection of the seismic wave from a plane interface is well defined. It depends on the angle of incidence, the impedance contrast, and even the wavelength of the incident wave in the case of such as appearing the inhomogeneous wave at the interface or being the anelastic media on both sides of the interface [START_REF] Aki | Quantitative seismology[END_REF]. However, when the interface becomes rough (i.e., interface RMS height 1.1 Literature review no longer satisfies the Rayleigh criterion), due to the spatial convolution of the incident wavefield with the random function describing the rough interface [START_REF] Makinde | Numerical modelling of interface scattering of seismic wavefield from a random rough interface in an acoustic medium: comparison between 2D and 3D cases[END_REF], the incident wave is typically scattered in various directions, finally generating a complex reflection wavefield that cannot be described by the simple law of seismic ray. To attempt to understand and explain the interface scattering, some studies had been conducted.

At the early stage, the rough interface is investigated based mostly on the periodic rough surfaces, such as sinusoids or saw-tooth profiles. Even though it does not really exist, the periodic surface is a useful prototype for studying the reflection of random rough surfaces. The diffraction or scattering by a periodic surface has been studied extensively in optics [START_REF] Toigo | Optical properties of rough surfaces: general theory and the small roughness limit[END_REF][START_REF] Chuang | Scattering of waves from periodic surfaces[END_REF], acoustics [START_REF] Uretsky | Reflection of a plane sound wave from a sinusodial surface[END_REF][START_REF] Waterman | Scattering by periodic surfaces[END_REF][START_REF] Lam | A boundary integral formulation for the prediction of acoustic scattering from periodic structures[END_REF], and even materials science [START_REF] Masel | Atomic scattering from a sinusoidal hard wall: comparison of approximate methods with exact quantum results[END_REF] because of its broad applications, ranging from the stress-free periodic boundary [START_REF] Fokkema | Elastodynamic diffraction by a periodic rough surface (stress-free boundary)[END_REF][START_REF] Mccammon | Application of a new theoretical treatment to an old problem; sinusoidal pressure release boundary scattering[END_REF], two solids interface [START_REF] Fokkema | Reflection and transmission of elastic waves by the spatially periodic interface between two solids (theory of the integral-equation method)[END_REF] to the solid/fluid interface [START_REF] Fokkema | Reflection and transmission of acoustic waves by the periodic interface between a solid and a fluid[END_REF][START_REF] Chuang | Acoustic wave scattering from a fluid/solid periodic rough surface[END_REF]. Rayleigh [START_REF] Rayleigh | On the dynamical theory of gratings[END_REF][START_REF] Rayleigh | The theory of sound[END_REF] first examined this question from the point of view of a boundary-value problem, allowing a plane wave to impinge on a surface with sinusoidal height variation. He recognized that the exactly sinusoidal corrugations provide a simple model of a reflection grating. Later, plenty of disputes over the validity of Rayleigh's assumption were raised [START_REF] Lippmann | Note on the theory of gratings[END_REF][START_REF] Uretsky | The scattering of plane waves from periodic surfaces[END_REF][START_REF] Millar | On the Rayleigh assumption in scattering by a periodic surface[END_REF]. The issue of whether the Rayleigh hypothesis is valid has been discussed extensively in the literature, which finally concluded that it has a narrow region of validity [START_REF] Hill | Limits of convergence of the Rayleigh method for surface scattering[END_REF][START_REF] Van Den Berg | The Rayleigh hypothesis in the theory of reflection by a grating[END_REF][START_REF] Wirgin | Reflection from a corrugated surface[END_REF]. Next, Holford [START_REF] Holford | Scattering of sound waves at a periodic, pressure-release surface: An exact solution[END_REF] developed an exact solution to a variant of the Helmholtz integral equation for the scattering from a pressure-release periodic surface. However, in seismology, few investigations on the periodic surface have been carried out. Based on the Rayleigh method, Asano [START_REF] Asano | Reflection and refraction of elastic waves at a corrugated interface[END_REF] studied the reflection from an interface with periodic corrugations using a quasi-vertically incident plane P wave. Paul and Campillo [START_REF] Paul | Diffraction and conversion of elastic waves at a corrugated interface[END_REF] investigated the effects of periodic boundary whose size is of the order of incident wavelength on the elastic wave reflections. Clouser and Langston [START_REF] Clouser | Effect of sinusoidal interfaces on teleseismic P-wave receiver functions[END_REF] discussed the effect of sinusoidal interfaces on teleseismic P-wave receiver functions with the help of the extended boundary condition method. They indicated that the sinusoidal Moho and the free surface are responsible for the amplification or de-amplification of seismic waves and for the generation of coda waves. Sun et al. [START_REF] Sun | Numerical simulation of 2-D seismic wave propagation in the presence of a topographic fluid-solid interface at the sea bottom by the curvilinear grid finite-difference method[END_REF] proposed the finite-difference method combined with the scheme of curvilinear grids to simulate seismic wave propagation across a 2D rough sea bottom, and tested both the sinusoidal fluid-solid interface and the realistic sea bottom models.

Subsequently, the randomly rough interface started to be studied, and different theories related to the scattering from randomly rough interfaces appeared, especially in the field of electromagnetic waves. Reviews of the classical asymptotic methods are summarized in a number of books, such as Rayleigh theory [START_REF] Rayleigh | On the dynamical theory of gratings[END_REF], perturbation theory [START_REF] Bass | Wave scattering from statistically rough surfaces[END_REF], and Kirchhoff theory [START_REF] Beckmann | The scattering of electromagnetic waves from rough surfaces[END_REF]. DeSanto and Brown [START_REF] Desanto | Analytical techniques for multiple scattering from rough surfaces[END_REF] reviewed the methods suitable for studying multiple scattering. Also, a review of the theory and literature can be found in the book written by Ogilvy [START_REF] Ogilvy | Theory of wave scattering from random rough surfaces[END_REF]. The research on theories of seismic wave scattering is extensive. Still, it is beyond the scope of our study to survey them adequately. Equally, studies on the rough interface scattering are also available in the ocean acoustics literature. Scattering from a rough sea bottom or ocean surface affects the performance of any system using the acoustic energy in the ocean for either communication or oceanographic measurement. There is both experimental and theoretical evidence that the rough surface scattering plays a significant role in Chapter 1 Introduction the generation of the ambient noise field in the ocean and the microseismic noise field in the ocean bottom [START_REF] Schreiner | Coherence lengths of seafloor noise: Effect of ocean bottom structure[END_REF][START_REF] Liu | Effect of a rough seabed on the spectral composition of deep ocean infrasonic ambient noise[END_REF].

In exploration and earthquake seismology, the scattering of seismic waves from rough interfaces has become a subject of wide interest, as it explains the propagation and the interaction of the seismic wave with randomly rough interfaces. Although most research on the seismic wave scattering is confined to the volume scattering from the material property fluctuations or discrete point-like scatterers, there are still some attempts devoted to investigating the scattering phenomenon caused by the randomly rough interface. Hill and Levander [START_REF] Hill | Resonances of low-velocity layers with lateral variations[END_REF] used the finite-difference method to simulate SH-wave propagation in a medium with irregular buried interfaces and explained that energy trapped within a low-velocity layer bounded by corrugated interfaces could contribute largely to the coda of the signal. Schultz and Toksöz [START_REF] Schultz | Reflections from a randomly grooved interface: ultrasonic modelling and finite-difference calculation[END_REF] showed the characteristics of interface scattering as a function of azimuth along the interface using the ultrasonic laboratory modeling. Park and Odom [START_REF] Park | The effect of stochastic rough interfaces on coupled-mode elastic waves[END_REF] used the first-order perturbation theory to study the intensity of the scattered elastic field due to the stochastic rough interface. Favretto-Cristini and de Bazelaire [START_REF] Favretto-Cristini | PP amplitude bias caused by interface scattering: are diffracted waves guilty?[END_REF] analyzed the effects of the amplitude scattering caused by the distribution of a series of gas-filled cracks at the interface (i.e., physical interface heterogeneity) on the amplitude of the reflected signals. They indicated that such interface scattering has a non-negligible contribution to the final amplitude of the reflected events. Therefore, it should be critically considered in processing the real data in the presence of physical interface heterogeneities, especially when using the methods involving the amplitude information, such as the amplitude-versus-offset (AVO) technique.

Furthermore, numerous investigations have shown that the scattering from the rough interface is a fundamental source of noise in seismic data. For instance, Geyer [START_REF] Geyer | Secondary sources of seismic noise[END_REF] described an extensive noise study of several continental areas. In his tests, much of the recorded noise is associated with the scattering of surface waves caused by the topography and the near-surface irregularities such as faults. Larner et al. [START_REF] Larner | Coherent noise in marine seismic data[END_REF] identified the out-of-plane scattering from the irregularities near the seafloor as the source of linear patterns of noise observed on the stacked marine data. Tsai [START_REF] Tsai | An analysis leading to the reduction of scattered noise on deep marine seismic records[END_REF] showed that energy scattered from a rough basaltic layer appears as noise that disrupts the deep reflections in a marine survey. Levander and Hill [START_REF] Levander | P-SV resonances in irregular low-velocity surface layers[END_REF] found that small-scale roughnesses at the boundary of a low-velocity surface layer can yield evident noise by scattering upcoming reflections into the modes of the layer. Makinde et al. [START_REF] Makinde | Numerical modelling of interface scattering of seismic wavefield from a random rough interface in an acoustic medium: comparison between 2D and 3D cases[END_REF] demonstrated that when a rough interface appears, part of incident seismic energy is converted into scattered energy in the form of random noise, which is generally delayed in time compared to the reflected energy.

Not only have a variety of phenomena about the rough interface scattering been investigated, but also the effects of the rough interface on seismic wave propagation and imaging started to be discussed in the published literature. Levander and Hill [START_REF] Levander | P-SV resonances in irregular low-velocity surface layers[END_REF] found that lateral heterogeneity in the surface region can strongly alter the character of arriving seismic signals by causing a resonant coupling to the surface modes of the medium. Raynaud [START_REF] Raynaud | Diffraction modelling of 3-D lower-crustal reflectors[END_REF] observed that the distribution of small scale variations in crustal elastic parameters could cause significant scattering effects on deeper reflectors. Paul and Campillo [START_REF] Paul | Diffraction and conversion of elastic waves at a corrugated interface[END_REF] investigated the effect of small-scale irregularities (with respect to the incident 1.1 Literature review wavelength) on the elastic wave reflections using the boundary integral equation method. They concluded that reflected P waves are weakly affected by the presence of irregularities. In contrast, the P-to-S conversions are modified markedly, especially for the post-critically scattered S waves. Gibson and Levander [START_REF] Gibson | Modeling and processing of scattered waves in seismic reflection surveys[END_REF] studied the effects of heterogeneity on the reliability of seismic images and examined different scattering mechanisms based on the finite-difference synthetic seismograms. They found that different types of scattered noise that always degrade the reflection data have a significant influence on the appearance of the final processed section. Prange and Toksöz [START_REF] Prange | Perturbation approximation of 3-D seismic scattering[END_REF] adopted the perturbation approximation to calculate 3D seismic scattering from a rough interface, and found that when the scattering angle exceeds the critical angle of the P wave, scattered wave amplitudes tend to increase, which is consistent with the results of Paul and Campillo [START_REF] Paul | Diffraction and conversion of elastic waves at a corrugated interface[END_REF]. Purnell et al. [START_REF] Purnell | Effects of interface roughness on wave propagation[END_REF] surveyed the effects of the rough interface on the reflected and transmitted wavefield in a 3D elastic physical model containing a high-velocity layer with rough interfaces. They discovered that the unconverted P-wave arrivals are relatively unaffected by the roughness, while the waves converted at the rough interface are strongly affected. Meanwhile, they indicated that the transmission through a rough interface has fewer damages to the imaging than the reflection at a rough interface.

Apart from changes in the observables such as amplitude, phase, and traveltime, the interface scattering always has essential effects on the reflections from the underlying reflectors. Martini and Bean [START_REF] Martini | Interface scattering versus body scattering in subbasalt imaging and application of prestack wave equation datuming[END_REF][START_REF] Martini | Application of pre-stack wave equation datuming to remove interface scattering in sub-basalt imaging[END_REF] (also Bean and Martini [START_REF] Bean | Sub-basalt seismic imaging using optical-to-acoustic model building and wave equation datuming processing[END_REF]) studied the effect of the basalt on wave propagation and imaging and explored the reasons for the poor sub-basalt imaging. They indicated that both volume scattering and interface scattering create a large number of scatterings that completely obscure the reflections from the underlying target reflector. More importantly, the interface scattering dominates over the volume scattering in the sub-basalt imaging problem. To mitigate the effect of the interface scattering, they adopted the prestack wave-equation datuming technique. Makinde et al. [START_REF] Makinde | Numerical modelling of interface scattering of seismic wavefield from a random rough interface in an acoustic medium: comparison between 2D and 3D cases[END_REF] explained that the modification of wavefront in the presence of a rough interface is the direct result of the spatial convolution of the incident wavefield with the random rough interface. Such modification increases with the roughness. This interface scattering, which manifests itself as strong random noise in the recorded data, may completely mask the reflections from underlying reflectors. One important point he pointed out is that to achieve the equivalent interface scattering effect, the roughness in the 2D case is at least about three times that in the 3D case, which provides a useful instruction in choosing the roughness when the interface scattering is surveyed in the 2D case.

Since the interface scattering can influence underlying reflections, the imaging for deeper targets may become unreliable and even misleading if the rough interface present in the overburden is not considered. For example, researchers try to interpret the discontinuous reflection character of the lower reflectors, where numerous small event segments are often just detectable above the background noise. One might interpret these small segments to represent the response of a discontinuous reflector. Alternatively, the reflector may be essentially continuous, but the seismic image is disrupted by noise or by propagation through the rough overburden [START_REF] Gibson | Modeling and processing of scattered waves in seismic reflection surveys[END_REF]. Therefore, much attention should be paid to the presence of rough interfaces during seismic imaging or inversion; otherwise, the results could be wrongly attributed to the lateral lithological variation or fluid change.
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Numerical modeling methods

By modeling seismic wave propagation, we can better understand the characteristics of the recorded seismic data, which helps the interpretation of the final image. In the course of the past decades, a large number of numerical methods to solve the seismic wave equation have been developed. Each method comes with advantages and disadvantages that need to be weighed carefully according to a specific application at hand. Here, I will briefly introduce several most often used methods for simulating seismic wave propagation, including the finite-difference method, the pseudo-spectral method, the finite-element method, and the spectral-element method (SEM). These numerical methods are referred to as the full-wave equation-based methods, because their implementations are all based on solving the exact full-wave equation rather than the approximated one such as ray-based assumption or one-way wave propagation.

Numerical modeling methods generally can be divided broadly into two categories: "strong" and "weak". Strong methods are based on the wave equations in a differential form, subject to boundary conditions, such as the finite-difference method and the pseudo-spectral method. In contrast, weak methods adopt an integral form of the wave equations that implicitly contain the natural boundary conditions and provide ways to control the accuracy of the solution, such as the finite-element method and the spectral-element method. Note that the most significant distinction between different approaches concerns the spatial discretization, that is, the transformation of the exact spatial derivatives in the wave equations into an algebraic system [START_REF] Fichtner | Full seismic waveform modelling and inversion[END_REF].

Finite-difference method: This method is used extensively in scientific research as it provides an excellent solution to the problem of wave propagation with convenient and effective implementation. The first-order spatial and temporal derivatives are approximately implemented by taking the difference between adjacent grid points. Early application in seismology can be found by Alterman and Karal [START_REF] Alterman | Propagation of elastic waves in layered media by finite difference methods[END_REF] and Kelly et al. [START_REF] Kelly | Synthetic seismograms: A finitedifference approach[END_REF]. In particular, the most widely adopted finite-difference method to solve the wave equation (at least in exploration seismology) is the staggered finite-difference method first introduced by Virieux [START_REF] Virieux | P-SV wave propagation in heterogeneous media: Velocity-stress finitedifference method[END_REF], which significantly reduces the numerical dispersion. The popularity of the finite-difference method is primarily attributable to its relatively low computational costs and high accuracy, particularly when considering the simulation of the propagation of body waves. However, it lacks sufficient accuracy for some applications, such as the presence of the surface topography, rough interface or discontinuities within the model, because regular grids are generally employed in the finite-difference method. In this case, the spurious scattering wavefield will be present, which is well known as the "stairstep" effect. Pseudo-spectral method: In order to obtain the highest possible degree of accuracy to approximate the spatial-derivative operator, the pseudo-spectral method is proposed. This method computes spatial derivatives in the Fourier domain [START_REF] Kosloff | Forward modeling by a Fourier method[END_REF], which gives high accuracy in space without numerical dispersion. Unfortunately, it is difficult and expensive to implement the free surface and the absorbing boundaries to suppress the spurious reflections from the sides and the bottom of the model. In addition, because of using the global basis functions (i.e., the harmonic basis: sines and cosines; or 1.1 Literature review the polynomial basis: Chebyshev or Legendre) to expand the velocity-stress wavefield, the pseudospectral method can only deal with the comparatively smooth model, and thus the numerical noise will arise in the presence of sharp discontinuities, such as major interfaces or fault [START_REF] Komatitsch | The spectral-element method in seismology[END_REF]. Furthermore, the pseudo-spectral method has difficulty in parallel computing as the global memory access is required during its implementation.

Finite-element method: The computational domain is decomposed into disjoint sub-domains, called the elements. Within each element, the dynamic fields are approximated by low-order polynomials, and the continuity between elements is imposed explicitly. The finite-element method can naturally circumvent the problem that the strong methods show great inaccuracies in the presence of the topography or rough interfaces. It adopts the structure-conforming grids such that spatial sampling can vary with the local complexity of the medium. Therefore, it works well for irregular geometries or topography. Although it is prevalent in science and engineering, its applications in seismology are rare [START_REF] Lysmer | A finite element method for seismology[END_REF][START_REF] Marfurt | Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations[END_REF]. There are two reasons: one is its relatively large numerical dispersion due to using low-order polynomials to expand the functions within each element, and the other is the expensive computational cost caused by iteratively solving the large non-diagonal mass matrix. Spectral-element method: It combines the accuracy of the pseudo-spectral method with the flexibility of the finite-element method. The wavefield is represented by the high-degree interpolations (typically Lagrange or Chebyshev polynomials) within each element. Integrals are computed based on the Gauss-Lobatto-Legendre quadrature, which leads to a simple and explicit time scheme that lends itself very well to calculations on parallel computers. The spectral-element method is first developed in fluid dynamics [START_REF] Patera | A spectral element method for fluid dynamics: laminar flow in a channel expansion[END_REF]. After more than a decade, it is introduced into the seismology [START_REF] Priolo | Numerical simulation of interface waves by high-order spectral modeling techniques[END_REF][START_REF] Faccioli | 2D and 3D elastic wave propagation by a pseudo-spectral domain decomposition method[END_REF]. Since then, Komatitsch et al. have made great contributions to the spectral-element method [START_REF] Komatitsch | The spectral-element method in seismology[END_REF][START_REF] Komatitsch | The spectral element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures[END_REF] and develop the open-source packages, i.e., SPECFEM2D and SPECFEM3D, which are available at https://geodynamics.org/cig/software/. The spectral-element method, like the finite-element method, naturally accommodates boundary conditions in the presence of the irregular surface topography or the rough subsurface interface by allowing finite elements to follow local boundary undulations, thereby avoiding the "stairstep" effect arising in the finite-difference method. Besides, it is easy and feasible to include the complete anisotropy in the spectral-element method, while this is a big challenge for the finite-difference method. The main difficulty may be the cost of the large simulation, especially for 3D problems. However, the current computing power can alleviate this problem to some extent. Consequently, the spectral-element method would be a better choice to investigate the problem related to rough interfaces.

Seismic imaging methods

Equally, we will display several typical seismic imaging methods. They mainly include the depth migration methods that are classic imaging techniques to obtain the picture of the interior of the Earth, and the full-waveform inversion (FWI) that has been a frontier technology in the exploration geophysics in recent years.
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Prestack depth migration is the most magic step among the seismic processing because it transforms the recorded seismic data into an image. The image is considered to be an accurate structural description of the Earth [START_REF] Etgen | An overview of depth imaging in exploration geophysics[END_REF]. The depth migration method always fails to delineate the subsurface velocity, especially for the surveys where the seismic reflection data are more challenging, though many investigators have done plenty of work to attain this goal. One main reason for this is that migration operators are generally not real inversion operators, but technically, they are only adjoint operators. To directly retrieve the subsurface velocity, the FWI method comes into the sights of geophysicists [START_REF] Tarantola | Inversion of seismic reflection data in the acoustic approximation[END_REF]. It has been widely studied for now, because it can provide a high-resolution description of the subsurface velocity.

The migration methods can be roughly divided into ray-based methods and wave equation-based methods. In fact, the ray-based migrations are based on the wave equation as well, but we follow the convention in the geophysics that the term of wave-equation migration is only referred to be the non-ray-based method. Further, each category contains several individual methods. Specifically, the ray-based migration method mainly includes Kirchhoff migration and beam migration. The wave equation-based migration method mostly comprises two types. One type is the one-way waveequation migration whose typical representatives are split-step Fourier migration (SSF), Fourier finite-difference migration (FFD), and generalized-screen migration. The other is the two-way wave-equation migration that is often synonymous with reverse time migration (RTM).

Ray-based migration: Kirchhoff migration is the first ray-based method to be used. It uses the integral formulation to approximate the solution to the wave equation. Such a solution intuitively gives the physical explanation of how each single trace data contributes to the final image. Although it shows great flexibility because it can select the desired imaging region and the input data with specific incidence angles in its applications, Kirchhoff migration always cannot effectively address complex areas. This is because Kirchhoff operator based on single arrivals, which is often defined as the earliest arrival or the most energetic arrival with regards to ray-tube spreading, cannot adequately describe the complete wavefield in complex areas, such as the frequent discontinuities or the rough interface.

One-way wave-equation migration: One-way wave-equation migration applies the wavefield extrapolator, a one-way approximation to the full two-way wave equation, to the receiver and the source wavefields, respectively. Then, the imaging condition is employed such that the receiver and the source wavefields are combined to produce the image at a specific location. Even though many techniques have been proposed to improve the performances of the one-way migration, there remain many difficulties in handling the strong lateral velocity variations, such as the region around salt flanks where the numerical instability or propagation errors will produce. The fundamental reason for this is that the singularity of the square root operator of the one-way wave equation inevitably exists when waves propagate at 90°. This explains why all one-way extrapolators always fail to propagate waves beyond 90° [START_REF] Hale | Imaging salt with turning seismic waves[END_REF].

Reverse time migration: It directly solves the two-way wave-equation. For the prestack RTM, the receiver wavefield at the surface propagates into the subsurface using the full-wave equation with time

1.1 Literature review running backward. Meanwhile, the source wavefield propagates forward in time. Finally, the image can be obtained by applying the imaging condition for these two wavefields. RTM is first applied in seismology by Baysal et al. [START_REF] Baysal | Reverse time migration[END_REF]. Since then, RTM has been widely used because it has neither the high-frequency assumption used in the ray-based migrations nor the limited ability shown in the one-way wave-equation migrations to deal with strong lateral velocity variations. Theoretically, RTM is fully capable of handling any complex area. Since it can describe seismic wave propagating in all possible directions, including reflections, refractions, diffractions, multiples, and evanescent waves, RTM can image the subsurface dip with an angle up to 90°. Efficiency still seems to be a barrier for RTM, but nowadays, computational advances have largely alleviated this problem. Full-waveform inversion: "Full waveform" indicates the exploitation of physically reasonable information on the seismograms as much as possible. FWI uses both the amplitude and phase information of the recorded waveforms to iteratively retrieve the elastic properties of the subsurface, including the wave velocity, the anisotropic parameters and the density [START_REF] Tarantola | Inversion of seismic reflection data in the acoustic approximation[END_REF]. Compared to seismic migration methods that actually utilize the adjoint operator instead of the inverse operator [START_REF] Claerbout | Earth soundings analysis: Processing versus inversion[END_REF], FWI, which recasts the imaging process as inverse operators to the seismic data, can quantitatively recover accurate models. Also, FWI is built on the full-wave equation, thereby allowing an accurate wavefield simulation during the inversion, including the gradient wavefield. Therefore, FWI is becoming one of the most promising imaging methods in exploration seismology [START_REF] Virieux | An overview of full-waveform inversion in exploration geophysics[END_REF]. However, the drawbacks of FWI are noteworthy as well. The first one is its expensive computational cost, especially for the 3D wavefield application, because iteratively solving the wave equation is required until the inversion ends. The second one is that FWI is very likely to converge towards the local minima rather than the global minimum. This is mainly due to the high nonlinearity between the observed and the synthetic data and the application of the local optimization. When FWI gets trapped into a local minimum, the recovered model can be quite different from the true model, or even worse than the starting model. In this case, the synthetic data manifests itself as a cycle-skipping effect. That is, the synthetic data deviates more than half a cycle from the observed data. In this thesis, we use the open-source package DENISE-Black-Edition [START_REF] Köhn | Time domain 2D elastic full waveform tomography[END_REF] that implements a 2D time-domain FWI and is available at https://github.com/daniel-koehn/DENISE-Black-Edition. In this package, the hierarchical multiscale strategy can be applied to ensure that FWI can converge towards the global minimum as far as possible.

Selective extinction method in electromagnetics

The selective extinction technique allows for measuring the scattering from the specified layers of a multilayer component by extinguishing the scattered light from the other layer interfaces. Amra [START_REF] Amra | Light scattering from multilayer optics I: Tools of investigation[END_REF] pointed out that the light scattering from a single surface was theoretically zero in the azimuthal plane of π/4 if a circularly polarized illumination is used. This discovery provides the possibility that the scattering can be eliminated in some direction. Amra et al. [START_REF] Amra | Elimination of polarized light scattered by surface roughness or bulk heterogeneity[END_REF] went further in this investigation.

To obtain an annulment condition in each direction of the space, they proposed the idea of the

Chapter 1 Introduction

selective extinction method thanks to the fact that the angle-resolved scattering can be fully polarized. Meanwhile, they applied the method to eliminate the polarized scattering arising from the surface roughness or bulk heterogeneity in the case of low-level scattering where the microstructure does not need to be considered. Therefore, it is possible to probe bulks after the elimination of the surface scattering or to probe surfaces after the removal of the bulk scattering. This procedure is based on the polarized interferences and requires both a controllable analyzer and a retardation phase device. It is worth noting that when using a monochromatic polarized illumination, the angle-resolved scattering can be eliminated in each specific scattering direction. Later, Amra and Deumié [START_REF] Amra | Z-probing of optical multilayers: theory[END_REF] presented a technique that uses the specular beams to directly probe the thickness of a multilayer film, and it has a subwavelength resolution in the vertical direction. The highlight of this technique is the selective imaging at specific interfaces or bulks within multilayers. Thus, a primary application is to eliminate any single term or subset in the multilayer reflection or transmission series. Next, Georges et al. [START_REF] Georges | Selective probing and imaging in random media based on the elimination of polarized scattering[END_REF] experimentally verified the validity of the selective extinction procedure. Compared with theoretical results, they demonstrated that a specific scattering source (i.e., either the surface scattering or the bulk scattering) could be selectively eliminated in optical components or scattering liquids. They indicated that the procedure is also applicable for random objects and can be further used to distinguish several objects. As an extension of the work by Amra and Deumié [START_REF] Amra | Z-probing of optical multilayers: theory[END_REF], Amra et al. [START_REF] Amra | Efficiency of polarimetric z probing in optical multilayers[END_REF] investigated the efficiency of the selective extinction method for the polarimetric probing in the z direction within optical multilayers. Its efficiency is related to the differences in the polarization behaviors of all sub-stacks, which was confirmed by the numerical calculations. Based on the previous work, Georges et al. [START_REF] Georges | Optical component interface scatter characterization by selective polarization extinction[END_REF] continued to analyze the sensitivity of the extinction condition to the experimental parameters and the optical thickness of the layer. They found that for a given interface, the scattered intensity obtained from the selective extinction method can be used to characterize the interface roughness of the optical component.

Objectives of the thesis

A principal objective of this thesis is to investigate the effects of the rough interface in the subsurface on seismic wave modeling and imaging. Many theories and approaches have been documented to formulate solutions to seismic wave scattering problems caused by the rough interface. Still, they are either not adequately accurate to describe wave propagation in complex media, such as the ray theory and perturbation theory, or not quite suitable for addressing the rough interface, such as the finitedifference method that often exists the "stairstep" scattering due to the regular meshing scheme. To overcome these drawbacks, we employ a spectral-element method based on the open-source package SPECFEM2D [START_REF] Komatitsch | The spectral-element method in seismology[END_REF][START_REF] Komatitsch | The spectral element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures[END_REF] to study the rough interface. The current literature contains many qualitative descriptions for the interface scattering, but no examples of quantitative explanation for the effect of parameters related to the rough interface are found, except for Makinde et al. [START_REF] Makinde | Numerical modelling of interface scattering of seismic wavefield from a random rough interface in an acoustic medium: comparison between 2D and 3D cases[END_REF] who compared the phase scattering in terms of interface RMS height for 2D and 3D cases. Our research, however, not only discusses the effects of all parameters controlling the rough interface shape (including the 1.3 Outline of the thesis RMS height and the correlation length) on seismic wave propagation, but also analyzes their effects on full-waveform inversion [START_REF] Tarantola | Inversion of seismic reflection data in the acoustic approximation[END_REF][START_REF] Köhn | Time domain 2D elastic full waveform tomography[END_REF].

Although the grating equation for the periodic interface has been widely used in optics, it is as yet undiscussed in the context of seismic waves. With respect to the generation of random rough interface, a Gaussian spectral method that had only been used in ocean acoustics is adopted because of a higher consistency with the rough interface in nature. An important application of this research on the periodic interface is the separation of diffraction orders in the shot gather.

A further objective of this thesis is to adapt the selective extinction method in electromagnetics to deal with the seismic data, such that the rough interface can be characterized and even seismic imaging can be better performed in the presence of rough interfaces.

Outline of the thesis

In the context of seismic exploration, we first use SEM to investigate the interface scattering in the presence of periodically and randomly rough interface, respectively, including the analysis for the effects of parameters related to the interface shape, the verification of the grating equation from the perspective of seismic waves, and the application of the separation of diffraction orders.Then we explore the effect of the interface scattering on FWI, especially on the reconstruction of the underlying interface. At last, we combine the electromagnetic selective extinction method with the seismic data so as to better image the subsurface in the presence of rough interfaces.

The thesis has the following chapters: Chapter 2 describes the basic theory about the seismic wave propagation, including acoustic and elastic wave equations. Three principles related to seismic ray are presented, including Huygens' principle, Fermat's principle, and Snell's law. In the following, different wave phenomena at a horizontal interface are illustrated. Lastly, we briefly introduce main formulas related to the spectralelement method and the staggered finite-difference method, which actually corresponds to the basis of SPECFEM2D and DENISE packages, respectively.

Chapter 3 focuses primarily on the effects of a sinusoidal rough interface on seismic wave propagation in the acoustic medium by using SPECFEM2D. We first use the quasi-plane-wave incidence to verify the phenomena that different diffraction orders discretely distribute at the different diffraction angles. Before explaining the seismic wavefield in the case of a point source, we examine the "half-flat-half-rough model". Such a model can avoid diffractions arising from negative incidences, and thus wavefield features would be more observable. After that, we understand the wavefield features from a full periodic rough interface. Next, we carry out the sensitivity analysis of the horizontal wavenumber range to different parameters, including frequency, velocity, receiver line offset, and interface period. Finally, we develop an application to separate different diffraction orders in the frequency-wavenumber domain.

Chapter 4 mainly investigates the effects of a random rough interface on seismic wave propagation in the acoustic medium by also using SPECFEM2D. We first introduce how to generate the random Chapter 1 Introduction rough interface with the help of the filtered Gaussian spectrum, and check the influence of parameters in the filtered Gaussian spectrum on controlling the shape of the interface. Next, we discuss the effects of parameters, including the correlation length and the RMS height of the rough interface, on the seismic wavefield in the frequency-wavenumber domain.

Chapter 5 investigates the effects of the rough interface on seismic imaging by using a fullwaveform inversion. The study focuses mainly on a 2D acoustic medium, and DENISE package is used to perform the related tests. We begin with a detailed description of the theory of the acoustic FWI, which is helpful to understand its strengths and limitations. Then we discuss the reasons for the cycle-skipping effect and provide feasible measures to mitigate its influences on the inversion. Lastly, we investigate the effects of the parameters controlling the shape of the rough interface (i.e., the interface roughness and the correlation length) on FWI results, in terms of inverted model, misfit curve, and data residuals.

Chapter 6 describes the application of the selective extinction method in electromagnetics to the seismic data in the presence of a rough interface. We first briefly introduce some basic electromagnetic knowledge involved in the selective extinction method. Then, we show the theory of the selective extinction method. Finally, the application of selective extinction method to the seismic data is illustrated by one simple three-layer acoustic model. We investigate two cases where different roughnesses are used, and describe the characteristics of rough interface using the statistical properties of the remaining data after the extinction.

Chapter 7 concludes the thesis with a summary of research outcomes and provides future possible research directions.

Chapter 2

Basic theory on seismic wave

Introduction

Seismic waves have been a subject of extensive research in the field of geophysical exploration. In essence, seismic waves are energy disturbances that propagate through a material medium, locally generating oscillations about the rest location without altering it permanently. Since the medium properties determine the behavior of seismic wave propagation, the seismic wave after interacting with the medium must carry the information of medium properties. Thus the medium properties can be derived from the observed seismic data by seismic processing methods. It is analogous to the human sight, whereby light (electromagnetic waves) provides images (information) about the world. For example, the interior structure of the Earth, in layered spherical shells, was discovered by analyzing the strong energy of natural seismic waves generated by earthquakes [START_REF] Shearer | Introduction to seismology[END_REF].

In the following, we first derive seismic wave equations, including elastic and acoustic wave equations, and then present the basic principles of rays and wave phenomena at a horizontal interface. Finally, we introduce two common numerical methods to solve the wave equation: spectral-element method and finite-difference method, followed by a brief comparison between seismic and electromagnetic waves. The spectral-element method naturally accommodates boundary conditions and arbitrary interface geometries by allowing finite elements to conform to local boundary undulations, which ensures no numerical artifacts affecting the real seismic waves. Therefore, the spectral-element method is suitable for investigating seismic wave propagation in the presence of a rough interface. Concerning the effects of the rough interface on the inversion, we prefer to use FWI based on the finite-difference method rather than on the spectral-element method, since it is not feasible for FWI to generate a different meshing in each iteration when using the spectral-element method .

Seismic wave propagation in the medium

The mathematical model employed in this work is an isotropic elastic medium. The elastic medium indicates that the medium recovers its exact original shape after deformation, without energy loss. The Chapter 2 Basic theory on seismic wave isotropic medium means that its physical properties do not change with the direction. Although many regions in the subsurface are observed to be anisotropic, that is, elastic properties vary with direction, the isotropic assumption has proven to be a reasonable first-order approximation for much of the Earth's interior, and plays an important role in helping to understand seismic wave propagation [START_REF] Shearer | Introduction to seismology[END_REF].

In this chapter, we shall work with a Cartesian coordinate system such that any point in space is represented by the vector x = (x, y, z), and accordingly all tensors here are Cartesian tensors. The term displacement, as a function of space and time u = u(x,t), denotes the vector distance of a particle at time t from the position x that it occupies at some reference time t 0 (often taken as t 0 = 0). For brevity, we adopt the notation [START_REF] Aki | Quantitative seismology[END_REF]: overdots are used to indicate time derivatives (i.e., u = ∂ u/∂t, ü = ∂ 2 u/∂t 2 ), and a comma between subscripts is used for spatial derivatives (i.e., u i, j = ∂ u i /∂ x j ).

Elastic wave equation 2.2.1.1 Governing equations

The propagation of seismic waves within the model follows the governing equation [START_REF] Aki | Quantitative seismology[END_REF][START_REF] Kennett | The seismic wavefield (volume 1): Introduction and theoretical development[END_REF]:

ρ(x) ü(x,t) -∇ • σ σ σ (x,t) = f(x,t), x ∈ G ⊂ R 3 , t ∈ [t 0 ,t 1 ] ⊂ R, (2.1) 
which relates the displacement field u in the subsurface G ⊂ R 3 to its mass density ρ, the stress tensor σ σ σ and an external force density f. The nabla symbol ∇ is a vector differential operator in the vector calculus, i.e., ∇ = (∂ x ∂ y ∂ z ). The equation (2.1) is the linearized version of Newton's Second Law that balances the momentum of particle displacement ρ(x) ü(x,t), forces resulting from internal stresses ∇ • σ σ σ (x,t) and external forces f(x,t) that represent the sources of seismic wave motion.

At the surface ∂ G of the Earth, the traction at the surface is zero, i.e.,

σ σ σ • n| x∈∂ G = 0, (2.2) 
where n is the unit normal on ∂ G. The equation (2.2) is the free surface boundary condition. Furthermore, when the external force f starts to act, both particle displacement field u and particle velocity field v = u are required to satisfy the initial condition of being equal to zero prior to t = t 0 :

u| t≤t 0 = v| t≤t 0 = 0. (2.3)
To obtain a complete set of equations, the stress tensor σ σ σ must be related to the displacement field u. For this, we assume that σ σ σ depends linearly on the history of the strain tensor ε ε ε := 1 2 (∇u + ∇u T ), where the symbol := is the definition and the superscript ( ) T donates the matrix transpose. Therefore, the stress-strain or constitutive relation [START_REF] Aki | Quantitative seismology[END_REF] can be written as:

σ σ σ (x,t) = t t=t 0 Ċ(x,t -t ′ ) : ε ε ε(x,t ′ ) dt ′ , (2.4) 
where the colon : denotes a contraction over two adjacent indices, defining as A : B = ∑ n j=1 ∑ n i=1 A i j B i j , A, B ∈ R n×n . The equation (2.4) actually defines a linear visco-elastic rheology, and the elastic tensor C i jkl is a 4th-order tensor with 81 (3 4 ) components [START_REF] Aki | Quantitative seismology[END_REF]. The product between a 4th-order tensor and a 2D matrix, for example, can be expressed as

(C : B) kl = ∑ n j=1 ∑ n i=1 C i jkl B i j , C ∈ R n×n×n×n , B ∈ R n×n .
Since the current stress cannot depend on future strain, the elastic tensor C would be causal:

C(t)| t<t 0 = 0.
(2.5)

The symmetry of strain tensor ε ε ε, the conservation of angular momentum and the relation of elastic tensor C to the internal energy [START_REF] Aki | Quantitative seismology[END_REF] require that the components of C hold the symmetry relations:

C i jkl = C kli j = C jikl , (2.6) 
such that the elastic tensor C reduces to 21 independent components [START_REF] Shearer | Introduction to seismology[END_REF]. According to the relationship between strain tensor ε ε ε and displacement u, the equation (2.4) can be rewritten as:

σ σ σ (x,t) = ∞ -∞ Ċ(x,t -t ′ ) : ∇u(x,t ′ ) dt ′ . (2.7) 
The number of non-zero independent elastic tensor components, also referred to as elastic parameters or elastic moduli, determines the anisotropic properties of the medium. Since we only consider the isotropic media in this thesis, the elastic tensor components become the linear combinations of only two elastic moduli: the Lamé coefficients λ and µ, which can be expressed as [START_REF] Aki | Quantitative seismology[END_REF]:

C i jkl = λ δ i j δ kl + µδ ik δ jl + µδ il δ jk , (2.8) 
where δ i j donates the Kronecker delta symbol: δ i j = 0 for i ̸ = j and δ i j = 1 for i = j. The parameter µ, termed shear modulus, relates strain to the shear stresses. Since λ has no intuitive physical meaning, it is commonly replaced by the bulk modulus κ = λ + 2 3 µ that relates strain to the scalar pressure according to p =: -κ∇ • u.

For the non-dissipative medium, there is no energy loss or attenuation as the medium deforms. Mathematically, the Lamé coefficients would only be the function of x, i.e., λ (x) and µ(x), such that the time dependence of C takes the form of a unit step or Heaviside function H(t):

C(x,t) = C(x)H(t).
(2.9)

Accordingly, the constitutive relation (2.7) takes the form as:

σ σ σ (x,t) = C(x) : ∇u(x,t). (2.10)
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Formulations of the elastic wave equation

Based on the equations (2.1) and (2.10), we can obtain different but fully equivalent elastic wave equations with regard to different physical fields (e.g., displacement or velocity). Together with the initial and boundary conditions, the corresponding field then can be uniquely determined. By combining the equations (2.1) with (2.10), we can obtain the displacement-stress formulation of the elastic wave equation:

ρ(x) ü(x,t) -∇ • σ σ σ (x,t) = f(x,t) σ σ σ (x,t) -C(x) : ∇u(x,t) = 0 . (2.11)
Alternatively, if the equation (2.10) is directly substituted into the equation (2.1), the displacementstress formulation can be compactly given as:

ρ(x) ü(x,t) -∇ • [C(x) : ∇u(x,t)] = f(x,t).
(2.12)

Similarly, by simply differentiating equation (2.10) with respect to time and then substituting v for u, we can obtain the velocity-stress formulation:

ρ(x)v(x,t) -∇ • σ σ σ (x,t) = f(x,t) σ σ σ (x,t) -C(x) : ∇v(x,t) = 0 , (2.13) 
where the wave equation is written as a first-order system in time and space. Which formulation should be used depends on whether it can be feasible for the numerical implementation in the studied medium. Often, it is preferable to employ the velocity-stress formulation (2.13) in the seismic wave modeling, mainly because it can avoid the derivative of the Lamé coefficients with respect to the spatial coordinate when the medium is heterogeneous.

In particular, we now consider the isotropic 2D P-SV problem, and assume non-zero particle displacements only located in the x-z plane, where x denotes the horizontal distance and z is the depth. In this case, each component of the strain tensor ε ε ε can be described as:

ε i j = 1 2 ∂ u i ∂ x j + ∂ u j ∂ x i , (2.14) 
where i = x, z and j = x, z.

From the displacement-stress formulation (2.11), we know ü = üx üz and ∇u = u x,x u x,z u z,x u z,z .

Based on the relationship between elastic tensor and Lamé coefficients (2.8), we can calculate the elastic tensor C i jkl as shown in Table 2.1. Consequently, we can calculate stress tensor σ σ σ (x,t) = C :

∇u(x,t) = (λ + 2µ)u x,x + λ u z,z µ(u x,z + u z,z ) µ(u x,z + u z,x ) λ u x,x + (λ + 2µ)u z,z
. With the help of Kronecker delta symbol δ i j and the definition of strain component given in the equation (2.14), we can obtain the simplified
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expression relating the stress tensor to the strain tensor for the isotropic medium:

σ i j = λ θ + 2µε i j = λ (ε xx + ε zz )δ i j + 2µε i j , (2.15) 
which is also known as Hooke's Law. The quantity θ = ε xx + ε zz , termed the dilatation, characterizes the volume change for 3D case and the surface change for 2D case.

Table 2.1: The component of elastic tensor C for 2D isotropic medium.

k l 1 2 i j 1 2 i j 1 2 1 λ + 2µ 0 1 0 µ 1 2 0 λ 2 µ 0 i j 1 2 i j 1 2 1 0 µ 1 λ 0 2 2 µ 0 2 0 λ + 2µ
The displacement-stress formulation (2.11) can be expressed by a hyperbolic system of first-order equation as:

                                 ρ ∂ 2 u x ∂t 2 = ∂ σ xx ∂ x + ∂ σ xz ∂ z + f x ρ ∂ 2 u z ∂t 2 = ∂ σ xz ∂ x + ∂ σ zz ∂ z + f z σ xx = (λ + 2µ) ∂ u x ∂ x + λ ∂ u z ∂ z σ zz = λ ∂ u x ∂ x + (λ + 2µ) ∂ u z ∂ z σ xz = µ ∂ u x ∂ z + ∂ u z ∂ x . (2.16)
The solutions of this equation system provide the predicted ground motion at a specific location with some distance from the source, and are commonly called synthetic seismograms. If the summation convention is adopted for the repeated subscripts (i.e.,

a i b i = a 1 b 1 + a 2 b 2 = a • b), the displacement- stress equation (2.16
) simply leads to:

ρ üi = σ i j, j + f i σ i j = λ u k,k δ i j + µ(u i, j + u j,i ) , (2.17) 
where i, j = x, z and k = x, z.

If the medium is homogeneous, the Lamé coefficients will be constant, leading to

∇ • [C(x) : ∇u(x,t)] = (λ + 2µ)u x,xx + µu x,zz + (λ + µ)u x,xz (λ + 2µ)u z,zz + µu z,xx + (λ + µ)u x,xz . Combin-
Chapter 2 Basic theory on seismic wave ing with ü, ∇u and ∇ • [C(x) : ∇u(x,t)], the displacement-stress formulation (2.12) reduces to:

       ρ ∂ 2 u x ∂t 2 = (λ + 2µ) ∂ 2 u x ∂ x 2 + µ ∂ 2 u x ∂ z 2 + (λ + µ) ∂ 2 u z ∂ x∂ z + f x ρ ∂ 2 u z ∂t 2 = (λ + 2µ) ∂ 2 u z ∂ z 2 + µ ∂ 2 u z ∂ x 2 + (λ + µ) ∂ 2 u x ∂ x∂ z + f z , (2.18) 
where (u x , u z ) is the particle displacement vector. The equation (2.18), usually called the isotropic homogeneous wave equation, can completely produce two components of the displacement field (equivalently velocity or acceleration field) over time in a 2D isotropic homogeneous medium.

Similarly, the equation (2.18) can be rewritten in a compact form as:

ρ üi = λ u j,i j + µu i, j j + µu j,i j , (2.19) 
where i, j = x, z .

Equally, from the velocity-stress formulation (2.13), we know v = ( vx vz ), σ σ σ = σxx σxz σzx σzz ,

∇v = v x,x v x,z v z,x v z,z , ∇ • σ σ σ = ∂ x ∂ z σ xx σ xz σ zx σ zz = ∂ x σ xx + ∂ z σ zx ∂ x σ xz + ∂ z σ zz , and can cal- culate C(x) : ∇v(x,t) = (λ + 2µ)v x,x + λ v z,z µ(v x,z + v z,x ) µ(v x,z + v z,x ) λ v x,x + (λ + 2µ)v z,z
based on the elastic tensor component C i jkl given in Table 2.1. Finally, the velocity-stress formulation (2.13) can be expressed by the following system of partial differential equations [START_REF] Virieux | P-SV wave propagation in heterogeneous media: Velocity-stress finitedifference method[END_REF][START_REF] Levander | Fourth-order finite-difference P-SV seismograms[END_REF]:

                                 ρ ∂ v x ∂t = ∂ σ xx ∂ x + ∂ σ xz ∂ z + f x ρ ∂ v z ∂t = ∂ σ xz ∂ x + ∂ σ zz ∂ z + f z ∂ σ xx ∂t = (λ + 2µ) ∂ v x ∂ x + λ ∂ v z ∂ z ∂ σ zz ∂t = λ ∂ v x ∂ x + (λ + 2µ) ∂ v z ∂ z ∂ σ xz ∂t = µ ∂ v x ∂ z + ∂ v z ∂ x , (2.20) 
where (v x , v z ) is the particle velocity vector, σ xx , σ zz and σ xz stand for stress tensor components, and ( f x , f z ) denotes the directed body force vector.

In the compact form, the equation (2.20) can be rewritten as:

ρ vi = σ i j, j + f i σi j = λ v k,k δ i j + µ(v i, j + v j,i ) . (2.21)
where i, j = x, z and k = x, z.

Basic principles of seismic rays

Acoustic wave equation

The wave equation simplifies significantly in the fluid regions, where the shear modulus µ becomes zero, leading to κ = λ . Consequently, inserting µ = 0 into the isotropic constitutive relation (2.10), we obtain:

σ i j = κδ i j ∇ • u = -pδ i j , (2.22) 
where we introduce the scalar pressure defined by p := -κ∇ • u. With the help of the equation (2.22),

we can obtain

∇ • σ σ σ = ∂ x ∂ z -p 0 0 -p = -∂ x p ∂ z p = -∇p
, and thus the momentum balance law (2.1) reduces to:

ρ ü + ∇p = f. (2.23)
Dividing the equation (2.23) by the density ρ and taking the divergence gives:

∇ • ü + ∇ • ρ -1 ∇p = ∇ • ρ -1 f . (2.24)
Using the definition of the pressure p, we can eliminate the displacement field u from the equation 2.24 such that:

κ -1 p -∇ • ρ -1 ∇p = -∇ • ρ -1 f . (2.25) 
When the density ρ varies much more slowly than the pressure field p and the source f, we can simplify the equation (2.25) to a scalar partial differential equation, also known as the acoustic wave equation:

1 v 2 ac ∂ 2 p ∂t 2 -∇ 2 p = -∇ • f, (2.26) 
where the acoustic wave speed is v ac := κ/ρ = λ /ρ. It follows from the equation (2.26) that wave motion in fluid media can be fully described by the single scalar field (i.e., pressure p), and depends only on the source term and the spatial distribution of the acoustic wave speed.

Basic principles of seismic rays

Here we will introduce three principles of seismic wave propagation. They are important and useful for deriving the arrival times and energies of waves that encounter obstructions: Huygens' principle, Fermat's principle and Snell's law. These principles and law, used first in classical optics, provide a geometric explanation of wave propagation [START_REF] Ikelle | Introduction to petroleum seismology[END_REF].

Huygens' principle

Before introducing Huygens' principle, a clarification of the notion of wavefronts and rays is necessary.

The wavefront is a surface over which the phase of the traveling wave disturbance is the same [START_REF] Sheriff | Encyclopedic dictionary of applied geophysics[END_REF], i.e., equiphase surface. A snapshot of wave propagation at a specific time represents a wavefront. Rays are defined as lines normal to the wavefront (i.e., the rays point in the direction of propagation). Figure 2.1 illustrates the definitions of these two terms in a homogeneous and in a slightly heterogeneous acoustic medium, respectively. It can be seen that rays are straight lines in a homogeneous medium, while taking arbitrary forms in a heterogeneous medium. Huygens' principle states that all points on a wavefront can be considered as point sources for the generation of secondary wavelets. After a time t 0 , the new position of the wavefront is the surface envelope tangent to these wavelets. If this principle is applied to the wavefront at time t 0 , the wavefront at time t 0 + ∆t can be constructed, as shown in Figure 2.1. Note that, for the sake of simplicity, only the wavefront of P-waves is displayed in this example. Figure 2.1(a) illustrates the wavefronts in a medium with constant P-wave velocity while Figure 2.1(b) in a medium with varying velocity.

Fermat's principle

Fermat's principle, also known as the principle of stationary time, allows predicting the ray path of seismic wave propagation within a medium. It states that the wave path between any two fixed points is the one along which the travel time is the minimum of all possible paths. For example, the ray which follows a minimal time path (i.e., the path that will allow the wavefront to move from A to B in the shortest amount of time), as described in Figure 2.2, is a minimum of all possible paths. Because a constant velocity is assumed in this example, it is clear that the ray must follow a straight line, such that the travel time is minimum.

Basic principles of seismic rays

A B t 0 t 1 t 2 Figure 2
.2: Several possible paths connect point A to point B. By definition, the raypath is normal to the wavefronts. In this case, the straight line between A and B is the optimal raypath. Fermat's principle also permits the selection of a raypath along which traveltime is the least of all possible paths (t 0 = 250ms, t 1 = 500ms, t 2 = 750ms). Reproduced from Ikelle and Amundsen (2018) [START_REF] Ikelle | Introduction to petroleum seismology[END_REF].

Snell's law

Now consider the model consisting of two infinitely homogeneous and isotropic elastic media separated by a horizontal surface. This model is also known as "two-half-space model" in which each homogeneous medium represents a half-space (see Figure 2.3). 
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Assume that an explosive source generates a P wave which propagates in the upper half-space. When the wave reaches the interface between the two half-spaces, it is partitioned into two reflected waves (P and S waves) in the upper half-space and two transmitted waves (P and S waves) in the lower half-space, as illustrated in Figure 2.3. The raypaths of these waves are shown in Figure 2.4, and all waves actually follow the relationships:

sin θ P i v P1 = sin θ P r v P1 = sin θ P t v P2 = sin θ S r v S1 = sin θ S t v S2 = p, (2.27) 
which determines the relationship between the angles of reflection θ r , of transmission θ t and of incidence θ i . This relationship is referred to as Snell's law, also called Descartes' law, which has been proven as a consequence of Huygens' principle or Fermat's principle [START_REF] Ikelle | Introduction to petroleum seismology[END_REF]. The parameter p is known as horizontal slowness or ray parameter.

Figure 2.4: Snell's law between two elastic homogeneous half-spaces for an incident P wave. The superscript P and S donate P wave and S wave, respectively; the subscript i, r and t represent incident wave, reflected wave and transmitted wave, respectively.

Wave phenomena at a horizontal interface

When seismic wave encounters an interface separating two media with different elastic properties, part of the wave energy returns backward as a reflection, and part of the energy continues forward with a change of direction, as a transmission. In certain case, the seismic energy is totally reflected without any energy being transmitted, as a refraction. For illustration, we still use the two-half-space model but with acoustic media instead of elastic media, that is, there is no S wave in both half-spaces.

Reflected and transmitted waves

For an interface between two acoustic half-spaces, seismic wave will be reflected in the upper halfspace and transmitted in the lower half-space, as shown in We can find that if the acoustic velocity in the lower half-space v P2 is less than that in the upper half-space v P1 , the ray of transmitted waves bends toward the normal (i.e., θ P t < θ P i ), as shown in Figure 2.6(a), whereas it bends away from the normal (i.e., θ P t > θ P i ) if v P2 is greater than v P1 , as shown in Chapter 2 Basic theory on seismic wave

Refracted wave

In the case of v P2 > v P1 , as shown ins Figure 2.6, when incident angle increases to some value, sin θ P t could be equal to or even exceed 1 according to the Snell's law (2.27), such that a new wave is produced in the upper half-space, known as head wave or refracted wave. Refracted wave is an important wave phenomenon in the seismic exploration, and it can be used to investigate the near-surface structure [START_REF] Shearer | Introduction to seismology[END_REF].

When the transmitted angle θ P t reaches 90°, based on the Snell's law (2.27), we can calculate the critical incident angle θ P ic :

sin θ p ic v P1 = sin 90 • v P2 ⇒ θ p ic = arcsin v P1 v P2 .
(2.28)

2.4.2.1 Case of θ P i = θ P ic
When incident angle θ P i is equal to critical angle θ P ic , the transmitted angle θ P t is 90°. This means that the transmitted wave propagates along the interface with velocity v P2 in the lower half-space, and such transmitted wave is called the critically transmitted wave (see Figure 2.7). Since there are no relative motions between the two media in the light of the continuity condition, the upper medium must motion in phase with lower medium, resulting in a plane wave propagating in the upper medium whose apparent velocity along the interface v a is the same as velocity of critically transmitted wave v P2 . This new wave is the head wave. It can be seen from Figure 2.7 that the head wave is a plane wave, and its propagation angle θ P h relative to the normal is equal to critical incident angle θ P ic (since we know its true velocity and apparent velocity along the interface are v P1 and v a = v P2 , respectively, its propagation angle can be derived from 2.4 Wave phenomena at a horizontal interface 2.4.2.2 Case of θ P i > θ P ic When incident angle θ P i is larger than critical angle θ P ic , the transmitted angle θ P t will become a complex, leading to sin θ P t > 1. Accordingly, an inhomogeneous plane P wave (also known as evanescent wave [START_REF] Aki | Quantitative seismology[END_REF]) generates. This inhomogeneous wave, whose amplitude decays exponentially with depth, travels along interface in the lower medium with velocity of v P1 / sin θ P i which is the same as the horizontal velocities of incident and reflected waves according to the Snell's law. In other words, the wavefronts of incident and reflected waves at the interface always coincide with the inhomogeneous wave at the interface (see Figure 2.8). In the presence of inhomogeneous plane wave (sin θ P t > 1), we can obtain v P1 / sin θ P i < v P2 according to Snell's law, namely the horizontal velocities of incident, reflected and inhomogeneous waves v P1 / sin θ P i are less than the velocity of transmitted wave v P2 . Therefore, from Figure 2.8, it can be seen that the wavefronts of both incident and reflected waves move slower than that of transmitted wave along the interface, and this deviation will increase with time. Due to the continuity of particle motion in elastic media, there must be a new motion in the top medium connecting the separated wavefronts. This new motion is exactly the head wave. We can find that one end of the wavefront of head wave connects to the transmitted wave, and the other end is tangent to the wavefront of reflected wave, as shown in Figure 2.8.

v a = v P2 = v P1 sin θ P h ⇒ θ P h = arcsin v P1 v P2 = θ P ic ).
In the case of v P2 < v P1 , there never exists a critical angle, and therefore no head wave would produce, as demonstrated in Figure 2.9. 

Spectral-element method

The spectral-element method (SEM), based on the weak form of the wave equation, is a particular case of the finite-element method. It possesses spectral accuracy and is suitable for addressing interface problems, because boundary conditions and arbitrary interface geometries are naturally taken into account. Originally, SEM was developed in fluid dynamics [START_REF] Patera | A spectral element method for fluid dynamics: laminar flow in a channel expansion[END_REF], and was first applied to the elastic wave equation in a seismological context by Komatitsch and Vilotte [START_REF] Komatitsch | The spectral element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures[END_REF] and Seriani et al. [START_REF] Seriani | Modelling waves in anisotropic media by a spectral element method[END_REF]. Numerical solutions with high accuracy have been obtained in a large number of studies [START_REF] Seriani | 3-D large-scale wave propagation modeling by spectral element method on Cray T3E multiprocessor[END_REF][START_REF] Fichtner | Simulation and inversion of seismic wave propagation on continental scales based on a spectral-element method[END_REF][START_REF] Komatitsch | Simulations of ground motion in the Los Angeles basin based upon the spectral-element method[END_REF], and some applications [START_REF] Komatitsch | Wave propagation near a fluid-solid interface: A spectral-element approach[END_REF][START_REF] Komatitsch | Spectral-element simulations of global seismic wave propagation-I. Validation[END_REF][START_REF] Chaljub | Solving elastodynamics in a fluid-solid heterogeneous sphere: a parallel spectral element approximation on non-conforming grids[END_REF] also have been conducted. In addition, the excellent reviews on SEM can be referred to papers by Komatitsch et al. [START_REF] Komatitsch | The spectral-element method in seismology[END_REF] and Chaljub et al. [START_REF] Chaljub | Spectral-element analysis in seismology[END_REF].

In SEM, the computational domain is subdivided into disjoint (i.e., non-overlapping) subdomains, and these subdomains, called elements, can be adapted to irregular boundaries or geometries. Within each element the wavefield are approximated by polynomials of high-order spectral, and neighboring elements are connected by continuity constraints. In such case, the elastic wave equation reduces to a space-discrete system for the polynomial coefficients. At first, SEM adopts the Chebyshev polynomials as basis functions [START_REF] Priolo | Numerical simulation of interface waves by high-order spectral modeling techniques[END_REF][START_REF] Seriani | 3-D large-scale wave propagation modeling by spectral element method on Cray T3E multiprocessor[END_REF], while now the Lagrange polynomials collocated at the Gauss-Lobatto-Legendre (GLL) points are widely used [START_REF] Komatitsch | The spectral element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures[END_REF][START_REF] Fichtner | Simulation and inversion of seismic wave propagation on continental scales based on a spectral-element method[END_REF], mainly because the obtained diagonal mass matrix is readily inverted from the numerical point of view.

In the following, we will display some basic concepts of SEM with an example in 1D case. We start with the development of weak form of wave equations, and then give a description for the Galerkin method used to solve the weak form of wave equations.

2.5 Spectral-element method 2.5.1 Weak solution of wave equation 1D wave equation [START_REF] Shearer | Introduction to seismology[END_REF] can be expressed as:

ρ(x) ü(x,t) -∂ x [µ(x)∂ x u(x,t)] = f (x,t), (2.29) 
where the spatial variable x ∈ G = [0, L] and time t ∈ [0, T ].

The displacement field u in the equation (2.29) meets the Neumann boundary conditions:

∂ x u(x,t)| x=0 = ∂ x u(x,t)| x=L = 0, (2.30)
and the the initial conditions:

u| t=0 = u| t=0 = 0. (2.31)
The wave equation (2.29) together with the boundary and initial conditions (2.30) and (2.31) is referred to as the strong form of the wave equation. To derive the weak or variational form, an arbitrary, time-independent test function w : G → R is multiplied on both sides of the equation (2.29), and integrating over space gives:

G ρ(x)w ü(x,t) dx - G w∂ x (µ∂ x u) dx = G w f dx.
(2.32)

Calculating the second term on the left-hand side of equation (2.32) with the help of integration by parts as well as boundary condition (2.30), we obtain:

G ρ(x)w ü(x,t) dx + G µ∂ x w∂ x u dx = G w f dx, (2.33)
which is called the weak form of the wave equation [START_REF] Komatitsch | The spectral-element method in seismology[END_REF].

For solving this weak form of the wave equation, it is necessary to find a wavefield u that satisfies the equation (2.33) for any suitable test function w and the following initial conditions:

G ρwu t=0 dx = G ρw u t=0 dx = 0.
(2.34)

The weak form of the wave equation shows an obvious advantage from a numerical point of view compared to finite-difference method. The finite-difference method generally handles the free surface in an explicitly way, making the accurate implementation of the free surface troublesome. However, the weak form of the wave equation implicitly satisfies the boundary condition (2.30) that corresponds to the free surface in the 3D case, without the need to explicitly implement the free surface [START_REF] Komatitsch | The spectral element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures[END_REF].

Spatial discretization and the Galerkin method

When the mass density ρ and the elastic parameter µ are spatially variable, the analytical solution to both strong and weak forms of wave equation are no longer attainable. In the Galerkin method, the Chapter 2 Basic theory on seismic wave solution u(x,t) of wave equation can be approximated by a finite superposition of n basis functions ψ i (i = 1, . . . , n) that only depend on the space [START_REF] Komatitsch | The spectral-element method in seismology[END_REF]. The approximate solution ū(x,t) can be expressed as:

u(x,t) ≈ ū(x,t) = n ∑ i=1 u i (t)ψ i (x), (2.35) 
where u i (t) is the time-dependent expansion coefficient. As a result, the approximate weak form can be formulated as:

G ρ(x)ψ i ü dx + G µ∂ x ψ i ∂ x ū dx = G ψ i f dx, (2.36) 
for all basis functions ψ i , with i = 1, . . . , n. To obtain the solution ū of the approximate weak form (2.36), the initial conditions also needs to be met: 

G ρψ i ū t=0 dx = G ρψ i u t=0 dx = 0. ( 2 
∑ i=1 üi (t) G ρ(x)ψ j (x)ψ i (x) dx + n ∑ i=1 u i (t) G µ(x)∂ x ψ j (x)∂ x ψ i (x) dx = G ψ j (x) f (x,t) dx, (2.38) 
for all j = 1, . . . , n. The algebra-differential equation (2.38) can be compactly expressed in the matrix form as:

M • ü(t) + K • u(t) = f(t), (2.39) 
with the mass matrix:

M ji = G ρ(x)ψ j (x)ψ i (x) dx, (2.40) 
the stiffness matrix:

K ji = G µ(x)∂ x ψ j (x)∂ x ψ i (x) dx, (2.41) 
and the source term:

f j (t) = G ψ j (x) f (x,t) dx. (2.42)
The vector u in the equation (2.39) actually comprises the expansion coefficients u i , and should be distinguished from the vectorial displacement field in the elastic wave equation. The transformation of the differential equation (2.29) and the approximate solution (2.35) into the algebra-differential equation (2.39) is termed the Galerkin projection [START_REF] Fichtner | Simulation and inversion of seismic wave propagation on continental scales based on a spectral-element method[END_REF]. Note that the free surface boundary condition (2.30) is naturally incorporated into the stiffness matrix (2.41) without any additional work. However, this is not the case for the finite-difference method.

Spectral-element method

Next, we decompose the domain G into n e non-overlapping elements G e [START_REF] Komatitsch | The spectral-element method in seismology[END_REF], such that the equation (2.38) can be rewritten as:

n ∑ i=1 üi (t) n e ∑ e=1 G e ρ(x)ψ j (x)ψ i (x) dx + n ∑ i=1 u i (t) n e ∑ e=1 G e µ(x)∂ x ψ j (x)∂ x ψ i (x) dx = n e ∑ e=1 G e ψ j (x) f (x,t) dx. (2.43)
It can be seen from the equation (2.43) that each expansion coefficient u i depends upon the integrals over all elements, which makes its implementation less practical. To avoid this problem, local basis functions [START_REF] Komatitsch | The spectral-element method in seismology[END_REF] that are supported by only one element are employed. In this case, the discrete equations can be solved for each element individually. Defining N + 1 basis functions ψ e i (i = 1, . . . , N + 1) on each element G e , the displacement field within the element G e then can be approximated by:

ū(x,t)| x∈G e = N+1 ∑ i=1 u e i (t)ψ e i (x), (2.44) 
and according to the equation (2.38), the weak formulation for each element becomes:

N+1 ∑ i=1 üe i (t) G e ρ(x)ψ e j (x)ψ e i (x) dx + N+1 ∑ i=1 u e i (t) G e µ(x)∂ x ψ e j (x)∂ x ψ e i (x) dx = G e ψ e j (x) f (x,t)dx.
(2.45)

In the form of matrix notation the equation (2.45) can be compactly rewritten as:

M e • üe (t) + K e • u e (t) = f e (t), e = 1, . . . , n e , (2.46) 
where u e , M e and K e stand for the local coefficient vector, local mass matrix and local stiffness matrix, respectively. Since the basis functions are locally supported by one element, the continuity of discrete displacement ū at the boundaries between adjacent elements requires to be explicitly imposed. In order to sample the wavelengths as uniformly as possible, the size of the elements is generally chosen in proportion to the S-wave velocity µ/ρ. The integrals in the equation (2.45) can be treated in the same way when each element G e is mapped onto the standard or reference interval [-1, 1] via an element-specific transformation F e [START_REF] Chaljub | Spectral-element analysis in seismology[END_REF]: 

F e : [-1, 1] → G e , x = F e (ξ ), ξ = ξ (x) = F -1 e (x)
N+1 ∑ i=1 üe i (t) 1 -1 ρ[x(ξ )]ψ e j [x(ξ )]ψ e i [x(ξ )] dx dξ dξ + N+1 ∑ i=1 u e i (t) 1 -1 µ[x(ξ )]∂ ξ ψ e j [x(ξ )]∂ ξ ψ e i [x(ξ )] dx dξ 2 dx dξ dξ = 1 -1 ψ e j [x(ξ )] f [x(ξ ),t] dx dξ dξ .
(2.48)

With regard to the basis functions ψ i , we adopt N + 1 Lagrange polynomials of degree N with GLL collocation points such that:

ψ e i [x(ξ )] = ℓ (N) i (ξ ), ξ ∈ [-1, 1]. (2.49)
For brevity, we omit the superscript (N) in ℓ (N)

i . Substituting ℓ i (ξ ) for ψ e i [x(ξ )], the equation (2.48) gives:

N+1 ∑ i=1 üe i (t) 1 -1 ρ ′ (ξ )ℓ j (ξ )ℓ i (ξ ) dx dξ dξ + N+1 ∑ i=1 u e i (t) 1 -1 µ ′ (ξ ) l j (ξ ) li (ξ ) dξ dx 2 dx dξ dξ = 1 -1 ℓ j (ξ ) f ′ (ξ ,t) dx dξ dξ , (2.50) 
where l represents the derivative of ℓ with respect to ξ . The transformed density ρ ′ , the elastic modulus µ ′ and external force f ′ are separately defined as:

ρ ′ (ξ ) := ρ[x(ξ )], µ ′ (ξ ) := µ[x(ξ )], f ′ (ξ ) := f [x(ξ )]. (2.51) 
By applying GLL quadrature rule [START_REF] Komatitsch | The spectral-element method in seismology[END_REF], the equation (2.50) can be further approximated as:

N+1 ∑ i,k=1 üe i (t)w k ρ ′ (ξ )ℓ j (ξ )ℓ i (ξ ) dx dξ ξ =ξ k + N+1 ∑ i,k=1 u e i (t)w k µ ′ (ξ ) l j (ξ ) li (ξ ) dξ dx 2 dx dξ ξ =ξ k = N+1 ∑ k=1 w k ℓ j (ξ ) f ′ (ξ ,t) dx dξ ξ =ξ k , (2.52) 
where ξ k and w k denote the GLL points and their corresponding integration weights, respectively. With the help of the cardinal interpolation property of the Lagrange polynomials, ℓ i (ξ k ) = δ ik [START_REF] Fichtner | Simulation and inversion of seismic wave propagation on continental scales based on a spectral-element method[END_REF], the equation (2.52) can be simplified as :

N+1 ∑ i=1 M e ji üe i (t) + N+1 ∑ i=1 K e ji u e i (t) = f e j (t), e = 1, . . . , n e , (2.53) 

Finite-difference method

with

M e ji = w j ρ ′ (ξ ) dx dξ δ i j ξ =ξ j , K e ji = N+1 ∑ k=1 w k µ ′ (ξ ) l j (ξ ) li (ξ ) dξ dx 2 dx dξ ξ =ξ k , f e j (t) = w j f ′ (ξ ,t) dx dξ ξ =ξ j .
(2.54)

Due to the diagonality of the local mass matrix M e , which is the largest advantage of SEM, the inverse of M e ji is mathematically simple and computationally inexpensive, and accordingly the explicit time scheme for the second-order time derivative üi can be readily obtained [START_REF] Komatitsch | The spectral-element method in seismology[END_REF].

The solution of linear system (2.53) is the local displacement ū for one element. Considering the continuity of ū across the element boundaries, the global system of equations requires to be used to obtain the global displacement vector u global . To achieve this, the local mass and stiffness matrices, M e and K e , are first assembled into their global versions, M global and K global , then the entries of local matrices at the coincident node points are summed. Finally a global system of equation [START_REF] Komatitsch | The spectral-element method in seismology[END_REF] gives:

M global • u global (t) + K global • u global (t) = f global (t).
(2.55)

Note that the stiffness matrix does not have to be explicitly built, because only the matrix-vector products are needed in the actual computations [START_REF] Chaljub | Spectral-element analysis in seismology[END_REF].

Finite-difference method

In addition to spectral-element method, another popular method for the numerical simulation of seismic wave propagation is the finite-difference method [START_REF] Virieux | P-SV wave propagation in heterogeneous media: Velocity-stress finitedifference method[END_REF][START_REF] Levander | Fourth-order finite-difference P-SV seismograms[END_REF][START_REF] Operto | 3D finite-difference frequency-domain modeling of visco-acoustic wave propagation using a massively parallel direct solver: A feasibility study[END_REF], largely due to its comparatively low computational costs and high accuracy especially when modeling the propagation of body wave. It is based on the approximation of spatial derivatives at a grid point by the wavefield evaluated at a finite number of neighboring grid points, and the approximation of time derivatives by the iterative time-stepping scheme. In the finite-difference and spectral-element methods, the most frequently used time-stepping schemes include second-order finite-difference scheme [START_REF] Levander | Fourth-order finite-difference P-SV seismograms[END_REF][START_REF] Komatitsch | Introduction to the spectral element method for threedimensional seismic wave propagation[END_REF], second-order Newmark scheme [START_REF] Marfurt | Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations[END_REF][START_REF] Komatitsch | The spectral element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures[END_REF] and higher-order scheme such as Runge-Kutta sheme [START_REF] Berland | Low-dissipation and low-dispersion fourth-order Runge-Kutta algorithm[END_REF].

In the following, we will first give the numerical implementation of 2D isotropic elastic wave equation (2.20) by using the finite-difference method, and then discuss the accuracy of finite-difference operator.

Discretization of the wave equation

To obtain the numerical solution of wave equation, the equation (2.20) has to be discretized in time and space on a grid. For this, the horizontal and vertical particle velocity v x and v z , the normal stresses Chapter 2 Basic theory on seismic wave and shear stress σ xx , σ zz and σ xz , the Lamé coefficients λ and µ and the density ρ are calculated and defined at discrete Cartesian coordinates x = i dh, z = j dh and at discrete times t = n dt, where dh denotes the spatial distance between two adjacent grid points and dt is the difference between two successive time steps. Consequently, every grid point is located in the Then the partial derivatives are replaced by the finite-difference operators. Two types of operators can be distinguished, forward and backward operators D + and D -, respectively. Considering the 1D function f (x), for example, its derivative with respect to x can be approximated by the two operators below [START_REF] Köhn | Time domain 2D elastic full waveform tomography[END_REF]:

interval i ∈ [1, Nx] ⊂ N, j ∈ [1, Nz] ⊂ N and n ∈ [1, Nt] ⊂ N,
D + x f (i) = f (i + 1) -f (i) dx , D - x f (i) = f (i) -f (i -1) dx .
(2.56)

Figure 2.10: Discretization of the medium on a standard staggered grid in Cartesian coordinates.

The square grid has an area of dh 2 . The corners are at the grid points (i, j), (i + 1, j), (i, j + 1) and (i + 1, j + 1). The horizontal velocity is defined at (i + 1/2, j), vertical velocity at (i, j + 1/2), normal stresses at (i, j) and shear stress at the half indices (i + 1/2, j + 1/2). The velocity components are defined on the time levels n -1/2 and n + 1/2, whereas the stress components are defined on the time levels n and n + 1. The spatial update of velocity components uses the stress components, while the spatial update of stress components uses the velocity components.

To calculate the spatial derivatives of the wavefield variables at the correct positions, the variables are not placed on the same grid points, but staggered by half of the spatial grid point distance [START_REF] Virieux | P-SV wave propagation in heterogeneous media: Velocity-stress finitedifference method[END_REF][START_REF] Levander | Fourth-order finite-difference P-SV seismograms[END_REF]. Figure 2.10 shows the distribution of the material parameters and wavefield variables on the spatial grid. To guarantee the stability of the Standard-Staggered-Grid (SSG) code, the Lamé parameter µ 2.6 Finite-difference method and the density ρ have to be averaged harmonically and arithmetically [START_REF] Moczo | 3D heterogeneous staggered-grid finite-difference modeling of seismic motion with volume harmonic and arithmetic averaging of elastic moduli and densities[END_REF], respectively:

j+1/2 i+1/2 µ xz = 1 4 ( j i µ) -1 + ( j i+1 µ) -1 + ( j+1 i+1 µ) -1 + ( j+1 i µ) -1 -1 , j i+1/2 ρ x = 1 2 ( j i ρ + j i+1 ρ), j+1/2 i ρ z = 1 2 ( j i ρ + j+1 i ρ).
(2.57)

According to the way of spatial discretization shown in Figure 2.10, the spatial update for the stress uses its adjacent velocities up, down, left and right, and vice versa. As a consequence, the finite-difference equations in the explicit scheme for the velocity-stress wave equation (2.20) can be rewritten as:

j i+1/2 v n+1/2 x = j i+1/2 v n-1/2 x + 1 j i+1/2 ρ x dt dh j i+1 σ n xx -j i σ n xx + 1 j i+1/2 ρ x dt dh j+1/2 i+1/2 σ n xz - j-1/2 i+1/2 σ n xz , j+1/2 i v n+1/2 z = j+1/2 i v n-1/2 z + 1 j+1/2 i ρ z dt dh j+1/2 i+1/2 σ n xz - j-1/2 i-1/2 σ n xz + 1 j+1/2 i ρ z dt dh j+1 i σ n zz -j i σ n zz , j i σ n+1 xx = j i σ n xx + j i λ + 2 j i µ dt dh j i+1/2 v n+1/2 x - j i-1/2 v n+1/2 x + j i λ dt dh j+1/2 i v n+1/2 z - j-1/2 i v n+1/2 z , j i σ n+1 zz = j i σ n zz + j i λ + 2 j i µ dt dh j+1/2 i v n+1/2 z - j-1/2 i v n+1/2 z + j i λ dt dh j i+1/2 v n+1/2 x - j i-1/2 v n+1/2 x , j+1/2 i+1/2 σ n+1 xz = j+1/2 i+1/2 σ n xz + j+1/2 i+1/2 µ xz dt dh j+1/2 i+1/2 v n+1/2 x - j i+1/2 v n+1/2 x + j+1/2 i+1/2 µ xz dt dh j+1/2 i+1 v n+1/2 z - j+1/2 i v n+1/2 z .
(2.58)

Chapter 2 Basic theory on seismic wave

If we adopt the forward and backward finite-difference operators defined in the equation (2.56), the finite-difference equations (2.58) can be compactly expressed as:

D + t j i+1/2 v n-1/2 x = 1 j i+1/2 ρ x D + x j i σ n xx + 1 j i+1/2 ρ x D - z j+1/2 i+1/2 σ n xz , D + t j+1/2 i v n-1/2 z = 1 j+1/2 i ρ z D - x j+1/2 i+1/2 σ n xz + 1 j+1/2 i ρ z D + z j i σ n zz , D + t j i σ n xx = j i λ + 2 j i µ D - x j i+1/2 v n+1/2 x + j i λ D - z j+1/2 i v n+1/2 z , D + t j i σ n zz = j i λ + 2 j i µ D - z j+1/2 i v n+1/2 z + j i λ D - x j i+1/2 v n+1/2 x , D + t j+1/2 i+1/2 σ n xz = j+1/2 i+1/2 µ xz D + z j i+1/2 v n+1/2 x + j+1/2 i+1/2 µ xz D + x j+1/2 i v n+1/2 z .
(2.59)

Accuracy of finite-difference operators

In the last subsection, the partial derivatives are simply replaced by finite-difference operators. Now we introduce a more systematic approach [START_REF] Köhn | Time domain 2D elastic full waveform tomography[END_REF], in which the first derivative of a variable f at a grid point i is estimated by a Taylor series expansion:

(2k -1) ∂ f ∂ x i = 1 dh ( f i+(k-1/2) -f i-(k-1/2) ) + 1 dh N ∑ l=2 (k -1 2 )dh 2l-1 (2l -1)! ∂ (2l-1) f ∂ x (2l-1) i + O(dh 2N ).
(2.60)

For an operator with length of 2N, N equations are added with a weight β k :

N ∑ k=1 β k (2k -1) ∂ f ∂ x i = 1 dh N ∑ k=1 β k ( f i+(k-1/2) -f i-(k-1/2) ) + 1 dh N ∑ k=1 N ∑ l=2 β k (k -1 2 )dh 2l-1 (2l -1)! ∂ (2l-1) f ∂ x (2l-1) i + O(dh 2N ).
(2.61)

The case of N = 1 corresponds to the finite-difference operator derived in the equation (2.58), which has a length of 2N = 2, and the Taylor series is truncated after the first term O(dh 2 ). Therefore this operator is called 2nd order finite-difference operator which represents the truncation error of the Taylor series but not the order of the approximated derivative. To better understand equation (2.61), we illustrate the 4th order finite-difference operator. This operator has the length of 2N = 4, and thus

Seismic wave versus electromagnetic wave

the sums in equation (2.61) gives:

(β 1 + 3β 2 ) ∂ f ∂ x i = 1 dh β 1 ( f i+1/2 -f i-1/2 ) + β 2 ( f i+3/2 -f i-3/2 ) + dh 3 dh β 1 1 8 • 3! + β 2 27 8 • 3! ∂ 3 f ∂ x 3 i .
(2.62)

The weights β k can be calculated by the following approach: the factor in front of the partial derivative on the left-hand side of equation (2.62) should equal 1, i.e.,

β 1 + 3β 2 = 1, (2.63) 
and the coefficients in front of

∂ 3 f ∂ x 3 i
on the right-hand side of equation (2.62) should vanish, i.e.,

β 1 + 27β 2 = 0. (2.64)
Therefore, the weights β k can be estimated by solving the following matrix equation:

1 3 1 27 • β 1 β 2 = 1 0 , (2.65) 
and we obtain the coefficients β 1 = 9/8 and β 2 = -1/24. Finally, the 4th order forward and backward operators can be separately represented by:

∂ f ∂ x i+1/2 = 1 dh [β 1 ( f i+1 -f i ) + β 2 ( f i+2 -f i-1 )] ∂ f ∂ x i-1/2 = 1 dh [β 1 ( f i -f i-1 ) + β 2 ( f i+1 -f i-2 )].
(2.66)

The coefficients β k in the finite-difference operator are called Taylor coefficients. The accuracy of higher order finite-difference operators can be improved by seeking coefficients β k that approximate the first derivative in a certain frequency range [START_REF] Holberg | Computational aspects of the choice of operator and sampling interval for numerical differentiation in large-scale simulation of wave phenomena[END_REF]. These numerically optimized coefficients are called Holberg coefficients.

Seismic wave versus electromagnetic wave

Since one goal of the thesis is to try to employ the electromagnetic method to handle the seismic data in the presence of rough interfaces, we here would make a short comparison between the seismic and the electromagnetic waves, and list their main differences and similarities in Table 2.2. This would be helpful for us to better understand the link between them.

Table 2.2: The comparisons between seismic wave and electromagnetic wave in the non-dissipative medium.

Seismic wave Electromagnetic wave

Wave equation

ρ(x) ü(x,t) -∇ • σ σ σ (x,t) = f(x,t) σ σ σ (x,t) -C(x) : ∇u(x,t) = 0 ∇ × E(x,t) + Ḃ(x,t) = 0 ∇ × H(x,t) -Ḋ(x,t) = J(x,t) ∇ • B(x,t) = 0 ∇ • D(x,t) = ϱ(x,t) Constitutive relation σ σ σ (x,t) = C(x) : ε ε ε(x,t)
Relation between stress and strain 

D(x,t) = ϵ ϵ ϵ(x) • E(x,t) B(x,t) = µ µ µ(x) • H(x,

Wave type longitudinal & transverse transverse

Wave type conversion happen at interface never happen

Conclusion

In this chapter, the mathematical equations of motion, including elastic wave and acoustic wave are presented, which are the underlying theory of the seismic wave modeling and inversion. As the geometrical optics, the ray-based seismic wave follows the fundamental theorems of rays: Huygens' principle, Fermat's principle, and Snell's law. Three principles are important and useful in deriving the arrival time and energy of waves that have encountered obstructions, and provide a geometric explanation of seismic wave propagation. Based on this, different seismic wave phenomena at a horizontal interface such as reflection, transmission, and refraction are illustrated. Next, the basic formulas of the spectral-element method and staggered finite-difference method are outlined, which are related to the implementation of SPECFEM2D and DENISE packages, respectively. Lastly, we give the main links between the seismic and the electromagnetic waves in terms of wave equations, propagation medium, wave spectrum, wave type, and so forth.

Chapter 3

Wave propagation in the presence of periodic rough surface

Introduction

To investigate the effect of the rough interface on the seismic wave propagation, we will resort to the numerical simulation tool. Regarding the numerical simulation method, we adopt a spectral-element method based on the open-source package SPECFEM2D because of its ability to accommodate local boundary undulations. In this chapter, we will focus on the periodic rough interface in the acoustic medium. Although such kind of interface generally does not exist in reality from the perspective of seismic exploration, it can not only provide the insights into the effects of rough interfaces, but also is very likely to convey some helpful and important hints to investigate the general case where the random rough interface is present, and to understand the corresponding results.

The periodic system has been widely studied in science and technology. In optics, diffraction gratings are the most famous examples of periodic media. At a macroscopic level, the structure is periodic on the scale of light wavelength, which would lead to many interesting and important phenomena related to light propagation, scattering and diffraction. Since their invention over two centuries ago, the diffraction gratings are known to the feature that the incident plane wave is redirected into privileged directions called diffraction orders (or spectral orders) instead of being scattered over the entire space. This property is a direct consequence of the periodicity and turns out to depend on the wavelength for a given grating, making it extensively used in spectroscopy.

In this chapter, we will adopt a sinusoidal interface similar to the diffraction gratings in optics. Consequently, the theory and method used for the diffraction gratings can be directly employed to study how the seismic wave behaves after the interaction with a periodic interface. In other words, the experience acquired in diffraction gratings in optics can be of great help in studying seismic wave interaction with a periodic interface. In the following, we will first introduce the grating theory with the so-called grating equation. Then we will perform some numerical tests to observe the related phenomena. Next, we will conduct the sensitivity analysis of the recorded horizontal wavenumber Chapter 3 Wave propagation in the presence of periodic rough surface range to different parameters, and show an application to separate the wavefield of the different diffraction orders in the frequency-wavenumber domain. Finally, we give some conclusions and discussions.

Basic theory of diffraction gratings

The most important property of diffraction gratings to produce a set of discrete diffraction orders has been documented by Rittenhause for the first time in 1786 due to the observation made by Francis Hopkinson through a silk handkerchief [START_REF] Hopkinson | An optical problem, proposed by Mr. Hopkinson, and solved by Mr. Rittenhouse[END_REF]. The appearance of diffraction orders rather than the specularly reflected beams was studied experimentally by Young in 1802 with his discovery of the sine rule [START_REF] Young | II. The Bakerian Lecture. On the theory of light and colours[END_REF]. For demonstration, the sinusoidal-shaped periodic surface is schematically shown in Figure 3.1. When a monochromatic plane wave impinges on such periodic rough surface, as illustrated in Figure 3.1, it will produce very strong diffractions in certain directions in addition to the specular reflection (i.e., the 0th-order diffraction) by virtue of the mutual reinforcement of wavelet emitting from successive periods of the interface [START_REF] Fokkema | Elastodynamic diffraction by a periodic rough surface (stress-free boundary)[END_REF][START_REF] Rayleigh | The theory of sound[END_REF][START_REF] Uretsky | The scattering of plane waves from periodic surfaces[END_REF]. These discrete directions are called the characteristic directions, and the diffractions associated with these characteristic directions are referred to as the diffraction orders [START_REF] Favretto-Cristini | PP amplitude bias caused by interface scattering: are diffracted waves guilty?[END_REF]. If the interface lies in the xy-plane and the periodicity is along the x-axis (see Figure 3.1), and the incidence lies in the xz-plane, the angles of the propagation (relative to the normal of the mean plane of the grating) satisfy the so-called diffraction grating equation [START_REF] Chuang | Scattering of waves from periodic surfaces[END_REF][START_REF] Waterman | Scattering by periodic surfaces[END_REF][START_REF] Mccammon | Application of a new theoretical treatment to an old problem; sinusoidal pressure release boundary scattering[END_REF][START_REF] Uretsky | The scattering of plane waves from periodic surfaces[END_REF]:

sin θ n = sin i + n λ d n = 0, ±1, ±2, . . . , (3.1) 
where i is the incident angle, θ n denotes the angle of the nth-order diffraction, λ is the wavelength of the monochromatic plane wave, and λ = c/ f , c is the wave velocity in the medium, f is the frequency, and d is the period of the rough interface. Note that the sign of diffraction order is defined by the
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direction with respect to the 0th order. If the diffraction locates in a clockwise sense with respect to 0th order, the diffraction order is positive, otherwise, the diffraction order is negative.

To understand why the light goes into different directions when reflected by a grating device and why these directions follow the grating equation (3.1), it is necessary to analyze the difference between a flat and corrugated reflection surface from the point of view of light striking the surface. For a flat surface, the Snell-Descartes law states that the incidence and reflection require the preservation of the horizontal component of the light wavevector k along the flat surface:

k x = k sin i = 2π λ sin i, (3.2) 
due to the invariance of the medium properties along the interface. When the surface is periodic in the x direction with a period of d, the properties are no longer invariant in x direction, but periodical. In the k-space, the periodicity is expressed in terms of the grating number K defined in a similar manner as the wavenumber k:

K = 2π d . (3.3) 
In this case, the x-component of the wavenumber of the reflected wave, unlike the equation (3.2), can take several possible values for different integer n:

k x,n = 2π λ sin i + n 2π d . (3.4)
This equation, actually identical with the equation (3.1), is the grating equation, and determines the discrete directions of the diffraction orders. As long as the wavelength is constant, the wavenumber is preserved, and for only a limited number of n the vertical wavenumber component k z of the diffraction orders along z axis will be real. For n beyond that set, k z becomes imaginary and the corresponding diffraction orders are evanescent when propagating away from the grating surface:

k z,n = k 2 -k 2
x,n real: propagating orders,

k z,n = i k 2 x,n -k 2 imaginary: evanescent orders. (3.5)
Although the grating equation describes the propagation direction of the diffraction order for a monochromatic plane wave incidence, it is not merely limited to the ray theory. According to the superposition property of waves of different frequencies and the decomposability of a spherical wave into plane waves, the grating equation would be equally applicable to study the seismic wave emitted by a point source.
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Model and geometry configurations

In order to observe the discrete spatial distribution of the diffraction orders, we first use as an incident wave a quasi plane wave generated by an array of several point sources situated on a straight and excited simultaneously. To avoid the side effect arising from point sources at both ends of the source line, we impose a Hamming window on this source line (see Figure 3.2). After the successful identification of the different diffraction orders in the case of the plane wave, we investigate the case where only one burst source is used. In this case, the source will excite plane waves in different directions, that is, different incident angles will appear. The burst source, used either in the source array or as a single point source, has a central frequency f 0 of 100Hz and a bandwidth of 30Hz (see Figure 3.3). From its amplitude spectrum, we can know that it is a narrow-bandwidth signal with a minimum frequency f min and a maximum frequency f max about 85Hz and 115Hz, respectively. From the grating equation (3.1), we can know that the polychromatic incident wave produces different directions for different frequencies for a given order n, which is very likely to be overlapped by other orders. In order to avoid the mixture of different orders, the bandwidth of the incident wave should be as narrow as possible. Therefore, this narrow-bandwidth source will be of great help to identify diffraction orders in the following simulations.

Here we mainly focus on the study of an acoustic medium with a periodic interface at the bottom. The velocity of this medium is 1500m/s, leading to a wavelength at the central frequency of λ 0 = 15m. The horizontal and vertical sizes of this model are 3000m and 1605m, respectively. The bottom is a sine-shaped periodic rough surface of which the amplitude is 0.5λ 0 = 7.5m and the period is set as d = √ 2λ 0 ≈ 21.2m. Note that the bottom periodic surface is a pressure-release boundary, and other sides of the model are the perfectly matched layer (PML) absorbing boundaries. PMLs are absorbing layers that are added at the periphery of the numerical model, which have a zero reflection coefficient for all angles of incidence and all frequencies before discretization (hence the name perfectly matched) [START_REF] Komatitsch | An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation[END_REF]. In the case of numerical simulations with a point source, the burst source is placed at (1500m, 105m). Three horizontal receiver lines are deployed at z = 480m, 855m and 1230m, respectively (see green lines in Figure 3.4). Each receiver line contains 551 receivers evenly distributed between the offset from -1100m to 1100m.

Before using the model with a full rough interface (see Figure 3.4) in the case of a point source, we first adopt the model with an interface at the bottom half flat and half rough, called the "half-flathalf-rough" model (see Figure 3.5). The reason why we choose this kind of model is that it can avoid the wavefields that produce from both sides of interface interfering with each other, otherwise, the wavefields would overlap with each other such that it is difficult to analyze the wavefield features. Obviously, the half-flat and half-rough parts of the bottom interface correspond to negative and positive incident angles, respectively. Consequently, the negative incident angles in this special model can only produce the 0th order diffraction (i.e., the specular reflection), whereas the positive incident angles can induce different diffraction orders according to the grating equation (3.1). That is, there are no interferences from negative incident angles with diffraction orders from positive incident angles.

To perform numerical simulations, we use the open-source package SPECFEM2D based on the SEM [START_REF] Komatitsch | The spectral element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures[END_REF][START_REF] Cristini | Some illustrative examples of the use of a spectralelement method in ocean acoustics[END_REF]. Since it can easily handle the complex geometries, such as rough topographies, dipping or curved interfaces, and even distorted meshes, SEM would be a better choice for our 

Numerical simulations with an incident plane wave

In order to observe the spatially discrete distribution of the diffraction orders, we first use the multifrequency plane wave described in Figure 3.2, and we choose an incident angle with respect to the vertical axis as 30 • . Using the grating equation (3.1), we are able to theoretically calculate the angles of diffraction orders for each frequency within bandwidth from 85 to 115Hz, which are listed in Table 3.1. It is clear from this table that there should be only -1st and -2nd diffraction orders in addition to specular reflection for such a periodic interface and incident plane wave. Specifically, for the -1st diffraction order, the diffraction angle range defined by θ n ( f max )θ n ( f min ) is about 13 • (from -19.4 • to -6.6 • ), while it is about 43 • for the -2nd diffraction order (from -90 • to -46.9 • ). In other words, the angle of the -2nd diffraction order would show a larger span than that of the -1st diffraction order.

Furthermore, Figure 3.7 plots the relationship between the incident angle i and the angle of diffraction order θ n within the bandwidth, based on the equation (3.1). It can be easily seen that when the incident angle is just 30 • (denoted by the dashed black line), the 0th, -1st and -2nd diffraction Chapter 3 Wave propagation in the presence of periodic rough surface orders appear. Intuitively, we find that the range of diffraction angle increases with the diffraction order: the higher the order of the diffraction is, the larger the range of diffraction angle will be. Table 3.1: The relationship between diffraction order and their diffraction angle. To verify the above theoretical predictions, we perform the numerical simulations and obtain the related wavefield snapshots so that we can observe how each diffraction order behaves with time.

n n n sinθ θ θ n n n ( ( ( f f f ) ) ) ∼ ∼ ∼ sinθ θ θ n n n ( ( ( f f f 0 0 0 ) ) ) θ θ θ n n n ( ( ( f f f ) ) ) ∼ ∼ ∼ θ θ θ n n n ( ( ( f f f 0 0 0 ) ) ) -1 [-0.
Here we display two wavefield snapshots at 1.02s and 1.32s, respectively (see Figure 3.8). From the snapshots, we can not only observe the 0th, -1st, and -2nd diffraction orders, but also intuitively see the phenomenon that the distribution range of the -2nd diffraction order is much larger than that of the -1st diffraction order, which is consistent with the theoretical calculations shown in Table 3.1 and Figure 3.7. Furthermore, it can be seen that the events of the -2nd diffraction order are curved with a greater curvature, which is attributed to the fact that the incident plane wave contains multiple frequencies (from 85 to 115Hz). For a given diffraction order (except for the 0th order), a multi-frequency plane wave incidence generates a sum of monochromatic plane waves scattered in different directions, finally presenting the curved events. Since the angles of the -2nd diffraction After the investigation of the reflection of an incident plane wave by a periodic interface, we now turn to the case where only one burst source, i.e., point source, is used. In this case, we first perform the simulations for the "half-flat-half-rough" model as displayed in Figure 3.5. Such a model can Chapter 3 Wave propagation in the presence of periodic rough surface avoid the diffraction orders from negative incident angles interfering with the diffraction orders from positive incident angles, thereby making the identification of diffraction orders easier.

Figure 3.9 is one snapshot obtained from this model. It can be found that the wavefield becomes a little more complicated compared to that in the case of the plane-wave incidence (see Figure 3.8). This is because there are many different incident angles rather than a single one when using a point source, and the incident angle varies with the position of the half-rough interface. According to the curves shown in Figure 3.7, we can find that there should appear +1st, 0th, -1st and -2nd diffraction orders for the positive incident angles. It is worth noting that there is no -3rd diffraction order because the maximum incident angle for the used model is just up to 45 • . From the numerical results, we indeed observe these diffraction orders as indicated by annotations in Figure 3.9, and their shapes are quite different from those in the case of an incident plane wave, because of the existence of multiple incident angles. In Figure 3.7, it can be seen that for a single frequency, different incident angles yield different diffraction angles for a given diffraction order, and a sum of the diffraction order with different angles due to different incident angles would also result in curved events. Based on the analysis given in Section 3.4, we therefore can know that the effect of multiple incident angles on the appearance of the diffraction order is similar to that of multiple frequencies. For a point source, multiple frequencies and multiple incidence angles jointly contribute to the final appearance of the diffraction orders which can be observed in Figure 3.9. Note that the umbrella-shaped events near the left end of the receiver line (see Figure 3.9) is the edge diffraction, producing at the termination of the flat interface due to the discontinuity between flat interface and rough interface. This edge diffraction in the wavefield snapshot should appear as a circular wavefront centered by the discontinuous point between two interfaces, but only a small part of edge diffraction After successfully identifying different diffraction orders in the numerical results, we then start to analyze the wavefield in terms of single trace and shot gather. Figure 3.10 shows the shot gather recorded by the receiver line 3 as indicated by the green line in Figure 3.9. It is easy to determine each diffraction order based on their rough propagation directions. At the same time, we find that both -1st order and +1st order closely follow the 0th order (i.e., the specular reflection), and the -1st diffraction order almost overlaps the +1st diffraction order. It is therefore difficult to separate different diffraction orders for the shot gather in the time-space domain.

Spectrogram analysis

In order to view the details of the wavefield, we extract three single traces on the receiver line 3 indicated by the green triangles in Figure 3.5, which are the 276th, 414th and 551st trace of the shot gather, respectively, and analyze them in the frequency domain and time-frequency domain, respectively.

Trace 276 Figure 3.11 is the 276th trace record. In addition to the direct wave, we can observe two wave packets: the first one contains 0th and -1st diffraction orders (about 1.26s-1.52s), and the second one contains only -2nd diffraction order (about 1.52s-2.26s). At the same time, we find that there is no +1st diffraction order because it has traveled away from this receiver and propagates towards the right of the model, which can be demonstrated by the snapshot in Figure 3.9. Meanwhile, we transform the direct wave and diffraction orders into the frequency domain, respectively (as shown in Figure 3.12). We find that the amplitude spectrum of the diffraction orders has almost the same central frequency as that of the direct wave, except that it shows a strong undulation due to the mixture of several diffraction orders. Furthermore, the amplitude spectra of two different wave packets are also plotted in Figure 3.13. It can be seen that each wave packet has almost the same spectrum, except their magnitudes. Beyond this, we cannot find much useful information to exploit in the amplitude spectrum. Note that the spectrum of the first wave packet shows an evident fluctuation, which is caused by the combination of 0th and -1st diffraction orders. It seems that there is no corresponding relation between frequency content and diffraction order in terms of the amplitude spectrum. However, in order to further find the unique characteristics associated with each diffraction order, we examine how the instantaneous frequency of a single trace record changes with time using the time-frequency analysis. Here we perform the short-time Fourier transform (STFT) for the single trace record data, and plot the corresponding spectrogram as shown in Figure 3.14. The spectrogram of the first wave packet shows two separate parts along the frequency axis. Since the first wave packet contains the 0th and -1st diffraction orders (see Figure 3.11), one may expect them to correspond to the two parts in the spectrogram. This however is not correct.

According to the spectrum of first wave packet shown in Figure 3.13(a), there is a small peak at the frequency higher than 100Hz, which actually corresponds to the upper part of the two parts in the spectrogram. The small peak in the spectrum of the first packet results from the superposition of the 0th and -1st diffraction orders. Accordingly, two parts in the spectrogram do not correspond to the single 0th order or single -1st order. Therefore, we cannot simply distinguish or identify different diffraction orders using a spectrogram.

It is worth noting that the time-frequency analysis of the second wave packet exhibits a line that is not flat on the spectrogram (see Figure 3.14). This suggests that there is a linear frequency modulation for the -2nd diffraction order. Such a strong dispersion for the -2nd diffraction order is also clearly seen on the time signal. This is the signature of the diffraction grating because there is no reason to have a frequency modulation with the reflection from a flat interface (i.e., specular reflection). 

F-K analysis

Now that the diffraction orders cannot be identified in the time domain, in the frequency domain or in the time-frequency domain, we have to find other ways to investigate diffraction orders. Considering the grating equation (3.4) that actually describes the relationship of horizontal wavenumber between diffraction orders and incident wave, different diffraction orders for a given frequency may have different horizontal wavenumbers. Therefore, we naturally want to see what are the features of the diffraction order in the frequency-wavenumber domain. To achieve this, we perform the F-K analysis for all the traces in the shot gather rather than only one trace, based on the 2D Fourier transform. For easy analysis, we here mainly focus on the investigation of the right half of the shot gather that only corresponds to the positive offsets from 0m to 1100m. In the following, we will carry out the F-K analysis for three receiver lines as displayed in Figure 3.4, respectively.

Receiver line 3 For the shot gather in the receiver line 3 (see Figure 3.10), Figure 3.23 gives the results of the direct wave and diffraction waves in the frequency-wavenumber domain using only the right 276 traces of the shot gather. We find that different diffraction orders almost locate at different areas in the frequency-wavenumber domain, and we can roughly identify -2nd, -1st, 0th, and +1st diffraction orders in sequence from left to right in Figure 3. 23(b). This identification can be theoretically verified by the relation between the incident angle and the horizontal wavenumber. To obtain the relation, if the wavenumber is defined as the number of wavelengths per unit distance, the grating equation (3.4) can be rewritten as:

k x,n = f c sin i + n d (n = 0, ±1, ±2, . . . ), - f max c ≤ k x,n ≤ f max c , (3.6) 
where k x,n is the horizontal wavenumber of the nth-order diffraction, and is defined as k x,n = sin θ /λ = f sin θ /c. For the burst source used here, the maximum frequency f max in the calculation is set f max = 115Hz, so we can obtain the range of horizontal wavenumber is -0.077 ≤ k x,n ≤ 0.077.

According to equation (3.6), we plot the relationship between horizontal wavenumber of nth diffraction order k x,n and incident angle i as shown in Figure 3.24. Due to model size and source location, the maximum incident angle is 45 • . As a result, the incident angles ranging only from 0 • to 45 • are exhibited. From Figure 3.24, we can easily determine the range of horizontal wavenumber for each diffraction order. Note that the results shown in Figure 3.24 are under the assumption that there is no limitation on the length of the receiver line. In other words, it is assumed that the receiver line can record all the diffraction angles shown in Figure 3.7.

However, the length of the receiver line cannot be infinite, and thus all the diffractions angles shown in Figure 3.7 or all the horizontal wavenumbers shown in Figure 3.24 cannot always be recorded. As a result, it is necessary to calculate the range of incident angle in which the diffraction order can be recorded by the receiver line. Thanks to the grating equation (3.1) and some trigonometries, and incident angles for the right half of the receiver line 3. It can be observed that the horizontal wavenumber range of each diffraction order has no intersections if considering the source bandwidth from 85Hz to 115Hz. Based on the horizontal wavenumber range of each diffraction order shown in Figure 3.25, we therefore can justify the identification for each diffraction order in the frequencywavenumber domain shown in Figure 3.23. However, we may have noticed that there still exist few intersections between two adjacent diffraction orders in the frequency-wavenumber domain in Figure 3.23. This is caused by the existence of frequency contents beyond the main frequency range between 85Hz and 115Hz. Since the amplitudes of these frequency contents are much smaller than that of the central frequency, as shown in Figure 3.3, their influences can be basically neglected. Comparing Figures 3.26, 3.28 and 3.25, it is clear that the distance between the receiver line and the periodic interface obviously affects the range of horizontal wavenumber for each diffraction order. Specifically, the larger this distance is, the smaller the range of horizontal wavenumber for each diffraction order will be, supposing that different receiver lines have the same length and the maximum offsets. In short, the range of horizontal wavenumber decreases with the distance between the receiver line and the periodic interface. This because the larger this distance is, the smaller the maximum diffraction angle that can be recorded will be for a given diffraction order. Likewise, for a given receiver line, the smaller the offset is, the smaller the range of horizontal wavenumber will be. Therefore, an increase in the distance between the receiver line and the periodic interface and a decrease in the offset of the receiver line have a similar effect on the range of horizontal wavenumber. Collectively, these two parameters are here called the receiver line configuration. Since the case of an incident plane wave has shown that seismic wave in the presence of periodic interface follows the grating equation, the range of horizontal wavenumber also depends on the bandwidth and the central frequency of the source, the velocity in the medium, and the spatial period of the rough interface, apart from the receiver line configuration.

On the other hand, from Figures 3.23 some insights into the separation of different diffraction orders. However, we need to carefully specify the parameters mentioned above that have effects on the range of horizontal wavenumber, such that the range of horizontal wavenumber for different diffraction orders has no intersection. To achieve this, we generally adjust one parameter while keeping others unchanged, which would be more realizable.

Case of a full periodic rough interface

One point we should keep in mind is that the previous model used is the one with a half-flat-half-rough interface, which actually ignores the diffraction orders generating from the negative incident angles and thus makes wavefield less complex to analyze. However, for a point source, the negative incident angles inevitably exist. Therefore, we need to take into consideration the negative incident angles.

For this, we will investigate a model with a full periodic rough interface as displayed in Figure 3.4. Now we turn to the simulation for the model with a full periodic rough interface using one single burst source. In this case, the wavefield would become more complicated compared to the model with a half-flat-half-rough interface, because when the negative incident angles are present, the diffraction orders from the negative incident angles interfere with those from the positive incident angles. However, after the study for the model with a half-flat-half-rough interface, which gives us a clear direction to identify and determine the diffraction orders, it is relatively easy for us to analyze the wavefield from the model with a full periodic rough interface. Note that, due to the symmetry of the point source, the diffraction orders generating from the left half and the right half of the rough interface are the same but have the opposite signs, according to the sign definition of the diffraction order.

Since no much useful information can be utilized to identify different diffraction orders in the frequency domain or in the time-frequency domain, from the results of the model with a half-flat-halfrough interface, we no longer show seismic data in the frequency domain and in the time-frequency domain. However, we will still conduct the spectrogram analysis for the single trace data, since it may demonstrate the signature of the periodic rough interface in the form of a frequency modulation. We already know that for a given diffraction order, the receiver line 1 has the smallest horizontal wavenumber range among the three receiver lines, so the intersection (if any) of the horizontal wavenumber between two adjacent diffraction orders is the smallest. In this case, the diffraction orders would be more likely to be distinguished in the frequency-wavenumber domain. Therefore, we will only analyze the seismic wave in the receiver line 1. In the following, we first show the wavefield snapshot, and the shot gather in the time-space domain. Then, for brevity, we perform the spectrogram analysis for only one single trace. Finally, we present the result of the F-K analysis.

Seismic wavefield

Firstly, based on the grating equation (3.1), we again show in Figure 3.30 the relationship between diffraction angle θ n and incident angle i within the bandwidth, which is similar to that shown in Figure 3.7 except that both negative and positive incident angles here are considered. Due to the model size and the related source-receiver configuration, the maximum and minimum incident angles are +45 • and -45 • , separately. It is clear from Figure 3.30 that there are -2nd, -1st, 0th, +1st and +2nd diffraction orders. Compared with the results in Figure 3.7 where only the positive incident angles are considered, +2nd diffraction order appears, and the range of diffraction angles for -1st, 0th and +1st orders evidently become much larger. Both phenomena are attributed to the incidences with negative angles.

Then, Figure 3.31 gives the snapshot at 1.8s. Equally, we can observe the above-mentioned diffraction orders as annotated in the snapshot. Compared with the snapshot in Figure 3.9, the introduction of the left-half rough interface associated with the negative incident angles is responsible for the diffraction orders generating on the left of the source in Figure 3.31. Meanwhile, we can see that the -1st and +1st diffraction orders closely follow the 0th diffraction order (i.e., the specular reflection), and the -1st and +1st diffraction orders are nearly totally overlapped with each other, which makes their separations in the time-space domain quite difficult. Furthermore, the diffraction orders arising from the negative and positive incident angles respectively propagate in opposite directions, and mix together at some time, which makes the entire wavefield more complex. The 3.5 Numerical simulations with a point source +2nd and -2nd diffraction orders, for example, interfere with each other in the middle of the model as shown in Figure 3.31. This can be verified by the curves plotted in Figure 3.30. The angles of the +2nd order from the negative incident angles are all positive, while the angles of the -2nd order from the positive incident angles are all negative, so they move in opposite directions. A similar phenomenon also happens to the +1st and -1st diffraction orders. Besides, Figure 3.32 displays the shot gather recorded by the receiver line 1 in the time-space domain. We are able to identify diffraction orders with the help of Figure 3.33 which theoretically calculates the relationship between first-arrival time of diffraction orders and the incident angles for the seismic data in the receiver line 1. From Figure 3.33, we can know that the -1st and +1st orders are completely overlapped in time, and the same case is for the -2nd and +2nd diffraction orders.

Chapter 3 Wave propagation in the presence of periodic rough surface However, they overlap only at some times because of their opposite propagation directions, like the -2nd and +2nd orders in Figure 3.32, which are exactly in accordance with the result of the snapshot shown in Figure 3.31. Based on the previous analysis for the half-flat-half-rough model, we know that the overlap between different diffraction orders in the shot gather is mainly caused by two factors: one is the periodicity of the rough interface which produces diffraction orders with different angles (i.e., directions), and the other one is the symmetry of the source which simultaneously imposes both positive and negative incident angles on the periodic rough interface. 

Spectrogram analysis

Here, for brevity, we present the results of spectrogram analysis for only the 414th trace in the receiver line 1. Figure 3.34 shows this trace record in the time domain. It can be seen that there are two wave packets, in addition to the direct wave at 0.5s. The first one includes the 0th, +1st and -1st diffraction orders (about 1.78s-2.1s), and the second one comprises the +2nd and -2nd diffraction orders (about 2.25s-3.05s). Note that there is a strong dispersion for the second wave packet. After the STFT for this trace, we can obtain the spectrogram as shown in Figure 3.35. Similar to the spectrogram analysis in the last section, it is obvious to find that the frequency of the second wave packet changes with the time, appearing as a slant time-frequency spectrum. Also, this is a linear frequency modulation due to the periodic rough interface. 

F-K analysis

As explained before, not all diffraction angles shown in Figure 3.30 can be recorded due to the limited length of the receiver line. Consequently, we can calculate the true range of diffraction angles for each diffraction order limited by the offset of the receiver line. After that, we can correctly plot the relationship between the incident angle and the horizontal wavenumber for the seismic data recorded by the receiver line 1. Figure 3.36 plots such a relationship for the receiver line 1 of which the offset ranges from 0m to 1100m. Comparing Figure 3.36 with Figure 3.26, the +2nd diffraction order appears in the region of negative incident angle, and the horizontal wavenumber of the +1st diffraction order extends to the negative incident angles. All of these are due to the interaction of the introduced negative incident angles with the periodic rough interface. However, the ranges of horizontal wavenumber for 0th, -1st and -2nd diffraction orders remain invariable, which indicates that this receiver line can only record these three orders generated by the positive incident angles. Therefore, the larger the range of the incident angle is, the more the number of diffraction orders may be recorded. However, it is worth noting that for a given model size and receiver line, the range of incident angles is fixed, and thus the range of horizontal wavenumber that can be recorded is also fixed.

Figure 3.36: The relationship between incident angle and horizontal wavenumber for the receiver line 1 ranging from 0m to 1100m. Figure 3.37 shows the relationship for the receiver line 1 of which the offset ranges from -1100m to 1100m. It intuitively describes the range of horizontal wavenumber for each diffraction order that can be recorded by this receiver line. Compared with Figure 3.36, the range of horizontal wavenumber for each diffraction order obviously becomes larger. The only difference between the two cases is the offset of the receiver line, so this verifies that the offset of the receiver line influences the range of horizontal wavenumber that can be recorded, and the larger the offset is, the larger the 3.5 Numerical simulations with a point source range of horizontal wavenumber is. At the same time, we can precisely determine the range of horizontal wavenumber within frequency bandwidth from 85Hz to 115Hz for each diffraction order as k x,+2 ∈ [0.04, 0.064], k x,+1 ∈ [0.0013, 0.051], k x,0 ∈ [-0.03, 0.03], k x,-1 ∈ [-0.051, -0.0013], and k x,-2 ∈ [-0.064, -0.04]. From these theoretical results, we find that the range of horizontal wavenumber for arbitrary two adjacent diffraction orders always overlaps partly, such as the -2nd and -1st diffraction orders. We, therefore, can infer that different diffraction orders would definitely mix together in the frequency-wavenumber domain. 

Sensitivity analysis of the variation of the horizontal wavenumber range associated to a given diffraction order

Since the grating equation is valid for the seismic wave, which has been proved by the numerical results, the sensitivity of the horizontal wavenumber range to a parameter can be directly discussed in terms of the grating equation rather than numerical simulations. In the following, based on the grating equation, we will investigate the sensitivity of the horizontal wavenumber range to parameters including the receiver line configuration, the frequency of the source, the velocity in the medium, and the spatial period of the rough interface, respectively. Note that the increase of the offset of the receiver line and the decrease of the distance between the receiver line and periodic interface have the same effect on the range of horizontal wavenumber, so, for brevity, we will only discuss the offset of receiver line in the receiver line configuration. In order to investigate the sensitivity to the frequency of the source, it is sufficient to select only one frequency within the bandwidth.

Sensitivity analysis of the variation of the horizontal wavenumber range associated to a given diffraction order

For the sensitivity analysis, in the first place, it is necessary to give a reference value for each parameter to be discussed. Then we need to change the parameter to be slightly smaller or larger than the reference value and observe how the range of horizontal wavenumber changes with such a small variation. Note that here we set this small variation to be 10% of the reference value. The reference value for the each parameter is the value that has been used in the previous numerical tests. The frequency is 115Hz, the wave velocity in the medium is 1500m/s, the period of the periodic interface is 21.2m, and the offset of the receiver line 1 ranges from -1100m to 1100m. It is worth mentioning that when performing the sensitivity analysis to one parameter, the other parameters are kept unchanged and set as the reference values.

Figures 3.39-3.42 show the effect of the variation of frequency, velocity, spatial period and offset of the receiver line on the horizontal wavenumber range, respectively. In each figure, the thicker solid lines represent the range of horizontal wavenumber when the parameter takes the reference value, the normal solid lines correspond to the range of horizontal wavenumber when the parameter takes the value 10% larger than the reference value, and the dotted lines indicate the range of horizontal wavenumber when the parameter takes the value 10% smaller than the reference value. Different colors denote different diffraction orders which are indicated by the x-axis labels. 3.39 shows that the larger the frequency is, the larger the horizontal wavenumber range is, and the more the intersection between two adjacent diffraction orders is (also see Table 3.2). Figure 3.40 demonstrates that the larger the velocity is, the smaller the horizontal wavenumber range is, and the less the intersection between two adjacent diffraction orders is (also see Table 3.2). From Figure 3.41, it is clear that the larger the spatial period of the interface is, the larger the horizontal wavenumber range is, and the more the intersection between two adjacent diffraction orders is (also see Table 3.2). It is worth noting that the rate of change of the horizontal wavenumber range evidently varies with different diffraction orders. Specifically, the larger the diffraction order (absolute value) is, the larger the rate of change of the horizontal wavenumber range is. For the 0th diffraction order, the horizontal wavenumber range remains unchanged with the variation of the period, while for the +2nd (or -2nd) diffraction order, the horizontal wavenumber range changes significantly with the small variation of the period. Comparing Figure 3.42 with Figure 3.39, it can be seen that the offset of the receiver line and the frequency have a similar way to affect the horizontal wavenumber range. However, the sensitivity of the horizontal wavenumber range to the frequency is slightly higher than the offset of the receiver line, because, for a given diffraction order, the variation of the horizontal wavenumber range with the frequency is larger than with the offset of the receiver line, which is more pronounced for higher diffraction orders, such as the +2nd diffraction order. In short, on the one hand, in terms of the variation of the horizontal wavenumber range, the frequency, the period of the rough interface and the offset of the receiver line have a positive correlation with the horizontal wavenumber range, whereas the wave velocity in the medium has a negative correlation with the horizontal wavenumber range. We should keep one point in mind that the horizontal wavenumber range of the 0th diffraction order never changes with the period of the interface. On the other hand, in terms of the rate of change of the horizontal wavenumber range (i.e., sensitivity), comparing Figures 3.39-3.42, it can be seen that the horizontal wavenumber range has the highest sensitivity to the frequency, followed by the velocity, and the lowest is the offset of the receiver line. Note that we do not compare the period of the rough interface, because the horizontal wavenumber range shows different sensitivity for different diffraction orders. Specifically, the sensitivity of the horizontal wavenumber range to the period increases with the diffraction order. Particularly, the 0th diffraction order has no sensitivity to the period. Table 3.2 lists the size of the intersection of the horizontal wavenumber between two adjacent diffraction orders for different parameters. We can quantitatively find that the size of the intersection increases with the frequency, the period of the rough interface, or the offset of the receiver line, while it decreases with the velocity. This can provide us with guidelines to choose parameters, so that the intersection between two adjacent diffraction orders can be avoided. In this case, the separation of diffraction orders would be possible in the frequency-wavenumber domain. Through calculating the rate of change of the intersection size (i.e., the difference of the intersection size) for a given parameter (e.g., for the parameter f , the difference of the intersection between the +2nd and +1st orders having 0.02018 -0.01132 = 0.00886 and 0.01132 -0.00239 = 0.00893), we discover that among the four parameters, the intersection size changes the fastest with the frequency and the slowest with the offset of the receiver line. Besides, we can see that the intersection size between the +2nd and +1st orders always differs from that between the +1st and 0th orders. 

Separation of different diffraction orders

When the interface becomes rough, the specular reflections are often contaminated [START_REF] Martini | Application of pre-stack wave equation datuming to remove interface scattering in sub-basalt imaging[END_REF][START_REF] Paul | Diffraction and conversion of elastic waves at a corrugated interface[END_REF][START_REF] Purnell | Effects of interface roughness on wave propagation[END_REF] by many distorting and incoherent events. If such contaminated seismic data is directly inputted into the migration algorithms, especially for those based on the reflected data, the imaging results would be blurred with degraded image quality. Hence, we may need to separate diffractions from the data and deal with them separately, so that we can make full use of the information of diffractions that can highlight the structural details for interpretation [START_REF] Khaidukov | Diffraction imaging by focusing-defocusing: An outlook on seismic superresolution[END_REF][START_REF] Moser | Diffraction imaging in depth[END_REF]. The idea of diffraction separation is not new and its essential basis is to find a domain where the diffracted and the reflected waves are well separated from each other [START_REF] Nemeth | Separation of signal and coherent noise by migration filtering[END_REF].

Based on the sensitivity analysis, we have known that the range of the horizontal wavenumber associated with a given diffraction order is closely related to the frequency, the velocity in the medium, the spatial period of the rough interface, and the receiver line configuration. Consequently, if we carefully select these parameters, we may realize the separation of different diffraction orders through designing filters in the frequency-wavenumber domain, as long as the condition that the horizontal wavenumbers of different diffraction orders have no intersection is fulfilled. To achieve this goal, we adopt the strategy that only one parameter is adjustable while the others are kept constant. Here, we only change the offset of the receiver line 1 whose position is indicated by the green line in Figure 3.31, and keep the other parameters unaltered as those given in Section 3.3. For an offset of the receiver line 1, we can calculate the range of the horizontal wavenumber for each diffraction order,
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and compare them for different diffraction orders. In this way, we can find the maximum offset below which the range of the horizontal wavenumber almost has no intersection for any two diffraction orders within the bandwidth between 85Hz and 115Hz. Finally, we determine the maximum offset for the receiver line 1 as 400m. and k x,-2 ∈ [-0.057, -0.046]. Equally, we plot the relationship between the horizontal wavenumber and the incident angle as shown in Figure 3.43. It can be intuitively seen that the horizontal wavenumber of each diffraction order that can be recorded by such a receiver line has no intersection within the bandwidth between 85Hz and 115Hz.

After the theoretical calculations, the offset of the receiver line 1 is determined such that diffraction orders can be effectively separated in the frequency-wavenumber domain. To verify this, we conduct the simulation which is the same as that in Figure 3.31 but with the offset of 400m rather than 1100m for the receiver line 1. Figure 3.44 shows the shot gather recorded by such a receiver line. From the zoomed part, we find that the -1st and +1st diffraction orders overlap with each other, so do the -2nd and +2nd diffraction orders. In addition, the -1st and +1st diffraction orders closely follow the 0th diffraction order. As a result, it is not possible to separate different diffraction orders in the time domain. Figure 3.45 is the shot gather transformed into the frequency-wavenumber domain. It is clear that different diffraction orders almost locate in separate areas, and each area corresponds to the -2nd, -1st, 0th, +1st, and +2nd diffraction order in sequence from left to right. Although there are few intersections between different diffraction orders, their amplitudes are very low as indicated by the purple in the color-bar in Figure 3.45. These low-valued intersections are actually caused by the low-amplitude frequency contents beyond the main bandwidth between 85Hz and 115Hz. Consequently, the effects of these intersections on the separation quality are so small that they can be neglected. -1st order 1st order -2nd order 0th order 2nd order Figure 3.45: The shot gather of the receiver line 1 ranging from -400m to 400m in the frequencywavenumber domain (after removing the direct wave).

Separation of different diffraction orders

Since different diffraction orders distribute in different parts in the frequency-wavenumber domain, we can design different filters to separate each diffraction order. After filtering in the frequencywavenumber domain, we need to transform each diffraction order back into the time-space domain. Finally, we obtain the separated results as displayed in Figure 3.46. Comparing Figure 3.46(a) with (c) and (d), we find that there are partial overlaps between the 0th, -1st and +1st diffraction orders in time, which suggests that both the -1st and +1st diffraction orders interfere with the specular reflection. Note that there remain a few events of the specular reflection at both ends of the -1st and +1st diffraction orders as indicated by the ellipses in Figure 3.46(c) and (d). In fact, these residuals are introduced by those low-amplitude frequency contents beyond the main bandwidth from 85Hz to 115Hz. However, Figures 3.46(e) and (f) provide impressive results. The -2nd and +2nd diffraction orders are not only successfully separated from the other diffraction orders without any residuals, but also well separated from each other. Therefore, the separation method implemented in the frequency-wavenumber domain is effective for this model configuration. 

Conclusion

Conclusion

We firstly introduce the grating equation widely used in optics. When a monochromatic plane wave impinges on the periodic interface, there will produce diffraction orders. The grating equation exactly describes where these diffraction orders go. In other words, the grating equation determines the propagation direction of the diffraction order. Although the grating equation is explained from the perspective of the ray theory, it is also valid for the wave theory. Specifically, the grating equation is applicable to investigate the seismic wave propagation in the presence of the periodic rough interface, whether the incidence is a polychromatic spherical wave from a point source or a polychromatic plane wave, which has been verified by our numerical results. This is attributed to the superposition property of waves of different frequencies and the decomposability of a spherical wave into plane waves.

For easier identification, the bandwidth of the incident wave is as narrow as possible, which may avoid the mixture of different diffraction orders. In the numerical tests using the spectral-element method, we choose the burst source because of its narrow bandwidth. First, we investigate the simplest case where a plane wave incidence is considered. The plane wave is constructed by simultaneously exciting many point sources on a straight. In this case, the incident angle is fixed, so we can easily calculate the angle of the diffraction order within the bandwidth according to the grating equation. Through the numerical simulation of the periodic rough interface with sinusoidal shapes, we can observe different diffraction orders due to the periodicity of the interface in addition to the specular reflection, and their directions are completely consistent with the theoretical calculations, which confirms the validity of the grating equation for the seismic wave. Note that the polychromatic plane wave accounts for the phenomenon that the diffraction order appears slightly curved. For a given diffraction order, a polychromatic plane wave incidence generates a sum of monochromatic plane waves scattered in different directions (one frequency corresponds to one direction), finally showing up as curved events.

Then, we proceed to the tests with a point source. To better recognize and track the diffraction order, we discuss the "half-flat-half-rough" model. Such a model produces only the specular reflection but no diffraction orders from the negative incident angles. Thus it avoids the interference in the diffraction orders from the positive incident angle, which greatly helps us identify diffraction orders. This special model can serve as an intermediate step between a plane wave incidence and a point source incidence, which makes the analysis of diffraction orders in the case of a point source feasible. Results show that the diffraction orders become more curved, which are jointly caused by multiple frequencies and multiple incident angles. In fact, for a given diffraction order, a monochromatic plane wave with multiple incident angles generates a sum of plane waves scattered in different directions (one incident angle corresponds to one direction). That is to say, the multiple incident angles have the same effect as the multiple frequencies, making the diffraction orders curved. In the case of a point source, the multiple frequencies and multiple incident angles together determine the appearance of the diffraction order. Thus, the diffraction order under a point-source incidence is more curved than that under a plane wave incidence. However, with the help of the relationship between the incident angle and the diffraction angle, we still can identify each diffraction order in the snapshot.

Through the analysis of the shot record in the time domain, we find that one diffraction order always overlaps partly with another, so it is not possible to separate different diffraction orders in the time domain. Equally, we cannot characterize the diffraction order in terms of amplitude spectra, because there is no corresponding relation between the frequency content and the diffraction order. Further, little helpful information can be found to distinguish different diffraction orders in the spectrogram obtained from the short-time Fourier transform, but we can observe a linear frequency modulation that is the signature of the periodic rough interface (i.e., diffraction grating). In a word, we cannot effectively identify and separate each diffraction order in the time domain, in the frequency domain or in the time-frequency domain. However, in the frequency-wavenumber domain, different diffraction orders locate in different areas, and by virtue of the relationship between the horizontal wavenumber and the incident angle, we can determine each diffraction order in the frequency-wavenumber domain. Consequently, diffraction orders may be separated in the frequencywavenumber domain. Furthermore, we find that the distance between the receiver line and the periodic interface influences the range of the horizontal wavenumber that can be recorded.

Since the negative incident angles always exist for a point source, we finally test the model with a full periodic rough interface. In this case, seismic wavefield becomes more complex, because diffraction orders due to the negative incident angles completely interfere with those due to the positive incident angles. However, we still can roughly recognize each diffraction order on the snapshot based on the relationship between the incident angle and the diffraction order. For the receiver lines locating at the same location but having different offsets, according to the relationship between the incident angle and the horizontal wavenumber, we discover that the range of the horizontal wavenumber that can be recorded is also affected by the offset of receiver line, which together with the distance between the receiver line and the periodic interface are collectively called the receiver line configuration. From the shot record in the frequency-wavenumber domain, we find that the one-to-one correspondence between the individual area and the diffraction order is violated, while this one-to-one correspondence satisfies in the results of the half-flat-half-rough model. This is primarily due to the difference in the offset of the receiver line.

The numerical tests confirm the fact that the seismic wave propagation in the presence of the periodic rough interface also follows the grating equation. Accordingly, all variables in the expression of the grating equation also influence the range of the horizontal wavenumber. Specifically, the range of the horizontal wavenumber depends on the frequency, the velocity in the medium, and the spatial period of the rough interface, in addition to the receiver line configuration. Through the sensitivity analysis to these parameters, we find that the frequency, the period of the rough interface and the offset of the receiver line have a positive correlation with the range of the horizontal wavenumber, whereas the wave velocity in the medium has a negative correlation with the range of the horizontal wavenumber. By comparing with the rate of change of the horizontal wavenumber range associated with a given diffraction order, the sensitivity of the horizontal wavenumber range to one of these
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parameters from high to low is the frequency, the velocity, and the offset of receiver line. Besides, the intersection of the horizontal wavenumber range between two adjacent orders increases with the frequency, the period of the rough interface, or the offset of the receiver line, while it decreases with the velocity. This is quite helpful for instructing us to choose appropriate parameters to implement the separation of diffraction orders in the frequency-wavenumber domain.

If we want to implement the separation of diffraction orders in the frequency-wavenumber domain, the parameters affecting the range of the horizontal wavenumber require to be carefully given, such that the range of the horizontal wavenumber has no intersection for any two diffraction orders. To achieve this goal, we generally adjust one parameter while keeping the others unchanged, which would be more realizable. From a practical perspective, only the frequency of the source and the offset of the receiver line can be controlled. Considering the size of the subsurface structures and the resolution of the seismic wave, it is rare to modify the bandwidth and central frequency of the source. As a result, we only adjust the offset of the receiver to meet the condition that there is no intersection for different diffraction orders in the frequency-wavenumber domain. The separation results verify that the filters in the frequency-wavenumber domain are effective in spite of very few couplings between different diffraction orders.

Currently, the method to separate diffraction orders in the frequency-wavenumber domain is only valid for the model with a single interface. Concerning the model with multiple interfaces, it is however not really effective. For example, for a simple model with two interfaces where the upper one is periodic and the lower one is flat, the wavefield would become much more complicated, because the receiver line not only records the diffraction orders reflected by the upper interface but also the diffraction orders transmitted through the upper interface. Moreover, for a given diffraction order, the angle of the transmitted diffraction order is always less than that of the reflected diffraction order, and thus the transmitted diffraction order is always masked by the reflected diffraction order in the frequency-wavenumber domain. As a result, it is not feasible to separate the transmitted diffraction orders from the reflected diffraction orders in the frequency-wavenumber domain. If the distance between two interfaces is large enough to be able to firstly separate two kinds of diffraction orders in the time domain, different reflected (or transmitted) diffraction orders may be separated in the frequency-wavenumber domain. Another limitation is that the range of the horizontal wavenumber associated with a given diffraction order is influenced by many parameters as mentioned above. Consequently, before separating different diffraction orders in the frequency-wavenumber domain, we need to carefully design these parameters such that there is no intersection in the horizontal wavenumber for different diffraction orders.

Chapter 4

Wave propagation in the presence of random rough interface

Introduction

In the previous chapter, we have figured out how seismic waves propagate in the presence of a periodic rough interface that follows the grating equation. Although the periodic interface does not exist in reality for seismic exploration, it offers us significant insights into the real case where the subsurface structures or interfaces always appear as random shapes, caused by all kinds of geological processes and crustal movements. In this chapter, we will focus on the investigation of the effects of a random rough interface on seismic wave propagation. Based on the study of periodic rough interfaces that gives us a possible way to handle the seismic data, we can readily carry out the work on random rough interfaces.

Like the previous chapter, we use a spectral-element method based on the open-source package SPECFEM2D to perform the related numerical simulations for acoustic models. In the following, we will first introduce how to generate the random rough interface by using the spectrum method. Then, we construct the model containing the random rough interface and perform the numerical simulations for this kind of model. In this part, for better comparison, we also display some results related to the periodic interface. Finally, we give some conclusions and discussions.

Generation of random rough interface

Before performing simulations for the model with a random rough interface, we have to generate it. To achieve this goal, the spectrum method is generally used to produce a random height field. There are two main spectrum methods. One is the Gaussian roughness spectrum [START_REF] Thorsos | The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum[END_REF][START_REF] Thorsos | Modeling of subcritical penetration into sediments due to interface roughness[END_REF], and the other is the power law spectrum [START_REF] Thorsos | Modeling of subcritical penetration into sediments due to interface roughness[END_REF][START_REF] Jackson | High-frequency seafloor acoustics[END_REF]. Each type of spectrum method can contain many different spectra when different designs are adopted. Typically, the von Karman spectrum [START_REF] Pinson | Spherical wave reflection in layered media with rough interfaces: Three-dimensional modeling[END_REF][START_REF] Pinson | Spherical wave scattering from rough surfaces and array processing: Application to sound-speed profile measurement uncertainty analysis[END_REF] is one of the power law spectra and the filtered Gaussian spectrum [START_REF] Maguer | Mechanisms for subcritical penetration into a sandy bottom: Experimental and modeling results[END_REF][START_REF] Pouliquen | Penetration of acoustic waves into rippled sandy seafloors[END_REF][START_REF] Aleshin | Modeling of acoustic penetration into sandy sediments: Physical and geometrical aspects[END_REF] is one of the Gaussian Chapter 4 Wave propagation in the presence of random rough interface roughness spectra. We choose the filtered Gaussian spectrum to generate random height field instead of the von Karman spectrum, because the filtered Gaussian spectrum not only falls off at high spatial wavenumbers more rapidly than the von Karman spectrum, which is more typical of rough interface found in nature [START_REF] Thorsos | The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum[END_REF], but also excludes the very low spatial wavenumber contents, namely the very large-scale features, more or less flat [START_REF] Pouliquen | Penetration of acoustic waves into rippled sandy seafloors[END_REF], which is more consistent with the actual situation.

For the 2D model problem, only the 1D filtered Gaussian spectrum is needed to obtain the random height field, and it can be expressed as the following general form:

Φ(k) =      C 2 exp - l 2 (2πk -2πk c ) 2 2 +C 2 exp - l 2 (2πk + 2πk c ) 2 2 if |k| ≥ k hp 0 if |k| < k hp , (4.1) 
where l is the correlation length that measures the width of the spectrum; k is the spatial wavenumber defined by the inverse of the wavelength, i.e., k = 1/λ ; k c is called the central spatial wavenumber because the filtered Gaussian spectrum Φ(k) is centered at k = k c , and the inverse of the central spatial wavenumber is referred to as the average wavelength of the random rough interface, i.e., λ c = 1/k c . The spatial wavenumber k hp is the low cut-off spatial wavenumber of the high-pass filter, below which the very low spatial wavenumber contents, i.e., very large-scale features, will be removed. C is a normalizing factor such that

+∞ -∞ Φ(k) dk = σ 2 , (4.2) 
where σ is the root-mean-square (RMS) roughness of the random rough interface [START_REF] Ogilvy | Theory of wave scattering from random rough surfaces[END_REF][START_REF] Bass | Wave scattering from statistically rough surfaces[END_REF]. At this point, the random rough interface can be generated based on the filtered Gaussian spectrum (4.1) together with the Fourier synthesis method [START_REF] Barnsley | The science of fractal images[END_REF]. In detail, for each random interface realization, a stochastic interface height spectrum is firstly generated from the filtered Gaussian spectrum, and then this height spectrum is converted to an amplitude field in the spatial domain using the inverse Fourier transform. Each random height field can be produced with the expected first and second moments: the first moment is known as the mean of the random height field and it is generally expected to be zero; the second moment is recognized as the variance of the random height field and corresponds to the RMS height since the mean of height field is zero.

First of all, the stochastic interface height spectrum H(k) can be obtained through the multiplication of the filtered Gaussian spectrum by a complex random factor:

H(k) = Φ(k) [r 1 (k) + i r 2 (k)] , (4.3) 
where i is the imaginary unit which is defined by i = √ -1; r 1 (k) and r 2 (k) are the independent random numbers obeying Gaussian distribution with zero-valued average and 1-valued variance.

Generation of random rough interface

Then, each stochastic interface height spectrum produces a unique random height field h(x) with the help of the inverse Fourier transform on H(k):

h(x) = +∞ -∞ H(k) exp(-i 2πkx)dk. (4.4)
In the course of the realization, the RMS of the height field h(x) can be controlled by adjusting the constant C in the filtered Gaussian spectrum (4.1). Therefore, the random height field with the specified RMS roughness can be readily produced by using the filtered Gaussian spectrum. Note that, to obtain the real-valued random height field, the stochastic interface height spectrum H(k) is constructed in a Hermitian-symmetric way, i.e., the negative wavenumber terms are just the complex conjugates of the corresponding positive wavenumber terms. Consequently, the equation (4.3) should satisfy the requirements that the filtered Gaussian spectrum Φ(k) is even symmetry, i.e., Φ(k) = Φ(-k), the real part r 1 (k) is even symmetry, i.e., r 1 (k) = r 1 (-k), and the imaginary part r 2 (k) is odd symmetry, i.e., r 2 (k) = -r 2 (-k).

For the numerical implementation, it is necessary to express the process of the random height realization in the discrete form. Suppose that the length of the rough interface is L with M points spacing ∆x (L = M∆x). According to the equation (4.4), the random rough interface at points x m = m∆x (m = 1, 2, . . . , M) with the desired properties can be computed through the discrete Fourier transform:

h(x m ) = M/2-1 ∑ j=-M/2 H(k j ) exp (-i k j x m ) , (4.5) 
where for j ≥ 0,

H(k j ) =    Φ(k j ) [N(0, 1) + i N(0, 1)] / √ 2 j ̸ = 0 and M/2 N(0, 1) j = 0 or M/2 , (4.6) 
and for j < 0,

H(k j ) = H(k -j ) * , (4.7) 
where * indicates the complex conjugate.

In the equation (4.6), k j = 1 j/L and each time N(0, 1) appears, it denotes an independent sample taken from a zero mean, unit variance Gaussian distribution. In practice, in order to remove the side effect of the interface on the randomness of the height field, the longer realizations of length L ′ with M ′ points are first generated and a subset of length L with M points is extracted [START_REF] Thorsos | The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum[END_REF].

To better take advantage of the filtered Gaussian spectrum to produce the random interface, we test the effects of different parameters in the filtered Gaussian spectrum on the resulted height field. Here, we set k hp as 0.005m -1 , namely the large-scale structures whose wavelength are larger than 200m are removed, and we choose the RMS roughness σ of the produced random height field to be 15m.

Firstly, we examine how the averaged wavenumber k c influences the random height field. For this, we keep the correlation length l fixed as 10m, and choose three different values of the k c , i.e., 0.1m -1 , 0.04m -1 and 0.01m -1 , respectively. Figure 4.1 gives the filter Gaussian spectra using these three averaged wavenumbers k c , and we find that the central wavenumber k c , which is associated with the averaged period of the height field, corresponds to the maximum of the spectrum. From Figure 4.2, we know that the smaller the central wavenumber is, the more smoothly the height changes. Due to the reciprocal relationship between the central wavenumber and the averaged spatial period of the random height, a smaller central wavenumber gives a larger averaged spatial period, thus corresponding to a smoother random interface.

Subsequently, we investigate how the correlation length l changes the final random height field. In this case, we make the averaged spatial wavenumber constant, i.e., k c = 0.01m -1 , and give three different values for the correlation length l, i.e., 5m, 15m and 30m, respectively. According to the spectra shown in Figure 4.3, the correlation length l controls the width of the spectrum, and the width of the spectrum decreases with the correlation length l. In the extreme case, the spectrum will be close to the spectrum of the sine function when the width of the spectrum becomes zero. It is clear from the obtained random height field shown in Figure 4.4 that the rate of change of interface height with distance along the interface [START_REF] Ogilvy | Theory of wave scattering from random rough surfaces[END_REF] decreases with the correlation length. In fact, the correlation length l determines the maximum spatial frequency, or the lowest spatial wavelength of the rough interface distribution [START_REF] Makinde | Numerical modelling of interface scattering of seismic wavefield from a random rough interface in an acoustic medium: comparison between 2D and 3D cases[END_REF].

Model and geometry configurations

Since the random rough interface has been obtained, we can perform numerical simulations for the model with a random rough interface. Before that, we need to first introduce the model configuration and source-receiver geometry adopted in this chapter. The model configuration is almost the same as the one used in the previous chapter as shown in Figure 3.4, except that we place at the bottom of the model a random rough interface rather than the periodic rough interface. We still use the acoustic medium within which the seismic wave velocity is 1500m/s. The model size is horizontally 3km and vertically 1.605km. The burst source with bandwidth 30Hz, as displayed in Figure 3.3, is deployed at (1500m, 105m) and its central frequency is 100Hz. Three receiver lines are installed at z = 480m, 855m, and 1230m, respectively, as indicated by the green lines in Figure 4.5, and each receiver line contains 551 receivers which are evenly distributed along the offset ranging from -1100m to 1100m. Besides, only the bottom boundary of the model is the pressure-release boundary condition, while the other boundaries are PML boundaries.

Many numerical methods had been employed to simulate the wave propagation in the presence of rough interface [START_REF] Makinde | Numerical modelling of interface scattering of seismic wavefield from a random rough interface in an acoustic medium: comparison between 2D and 3D cases[END_REF][START_REF] Sun | Numerical simulation of 2-D seismic wave propagation in the presence of a topographic fluid-solid interface at the sea bottom by the curvilinear grid finite-difference method[END_REF][START_REF] Komatitsch | Wave propagation near a fluid-solid interface: A spectral-element approach[END_REF][START_REF] Alpera | A BEM approach to validate a model for predicting sound propagation over non-flat terrain[END_REF][START_REF] Robertsson | Modelling of scattering of seismic waves from a corrugated rough sea surface: a comparison of three methods[END_REF][START_REF] Walia | Modelling rough interfaces on seismic reflection profiles -The application of fractal concepts[END_REF], but here we still adopt spectral-element method based on the open-source SPECFEM2D [START_REF] Komatitsch | Wave propagation near a fluid-solid interface: A spectral-element approach[END_REF]. This choice largely comes from two reasons: first, the spectral-element method can naturally conform the rough interface and take the free surface into consideration; secondly, it can successfully avoid the "stairstep" scattering noise arising from the regular meshes around the rough interface, ensuring the focus on the effects of the rough interface without interferences from the numerical artifacts. For better visualization, the mesh in the entire model shown in Figure 4.6 is coarser than the one used in the numerical simulations, but the zoomed part shows the truly used mesh. It can be seen that the mesh conforms well to the shape of the random interface. Equally, we choose nine control nodes for each quadrilateral element in the SPECFEM2D, which may accurately describe the curved shapes of major discontinuities in the model, and thus the spectral-element method based on these meshes can effectively simulate the seismic wave propagation in the presence of the random rough interface.

Analysis of the influence of the height of a periodic rough interface

As we discussed in Section 4.2, a periodic rough interface can be regarded as a limiting case of a random rough interface when the correlation length is very large. In the previous chapter, we did not consider the effect of the height of the sinusoidal interface, because it actually makes no difference to the directions of the diffraction orders according to the expression of the grating equation, and accordingly has no effect on the range of the horizontal wavenumber for a given diffraction order. However, we expect that it should change the energy of the diffraction orders. To compare the effect of the height of a rough interface (i.e., amplitude of the periodic rough interface, σ of the random rough interface), we will first exhibit the results for the sinusoidal-shaped interface with two different amplitudes, i.e., a = 0.5 λ 0 = 7.5m and a = λ 0 = 15m, respectively. Note that the other parameters remain the same as those used in the previous chapter, including the spatial period of the sinusoidal-shaped interface which still is d = 21m. On one hand, this can verify our assumption for the effect of the height of the periodic interface on the energy of the diffraction orders, on the other Similarly, the same procedures are also applied to the shot gathers of the receiver line 2 and 3, and the corresponding results are shown in Figures 4.12-4.17.

Comparing the frequency-wavenumber spectra from the receiver line 1 to 3, we find that the energy of direct waves decreases (see Figures 4.9 From the receiver line 1 to 3, the propagation distance for the direct wave increases, so the energy decreases. On the contrary, for the diffracted waves, the propagation distance from the receiver line 1 to 3 decreases, thus energy in the receiver line 3 is the largest. Specifically, this can be easily observed in the frequency-wavenumber spectrum profile extracted at 100Hz (see Figures 4.10,4.13,and 4.16). Meanwhile, we find from the receiver line 1 to 3 that the horizontal wavenumber range for the direct wave gradually increases, while for the diffracted waves gradually decreases. As mentioned in the previous chapter, this is mainly due to the configuration between the source and the receiver line. In other words, the horizontal wavenumber range is associated with the maximum received angle of the receiver line, and the larger the maximum receiving angle is, the larger the horizontal wavenumber range will be.

In addition, for the frequency-wavenumber spectra of diffracted waves, it seems to show three major different parts (for example in Figure 4.9(b)), however, as analyzed in the previous chapter, each part does not correspond to different diffraction orders but is the combined results of different diffraction orders (from left to right: -2nd and -1st orders; -1st, 0th and +1st orders; +1st and +2nd orders). Specifically, in the frequency-wavenumber spectrum profile extracted at 100Hz (see Figures 4.10,4.13,and 4.16), there appear two energy gaps around -0.4m -1 and +0.4m -1 . We can approximately estimate the gap range from the receiver line 1 to 3 as (0.022, 0.05), (0.025, 0.05) and (0.03, 0.05), corresponding to the gap width of 0.028, 0, 025 and 0.02, respectively. That is to say, the gap width increases with the distance between the receiver line and the interface. As discussed in the previous chapter, the distribution of the diffraction order in the frequency-wavenumber spectra depends on its horizontal wavenumber range that is related to many factors such as source frequency bandwidth and receiver line configuration. For the three shot gathers, however, the diffraction order distribution is only determined by the distance between receiver line and interface, because the only difference in the three shot gathers is the position of the receiver line. Also, according to the sensitivity analysis in the previous chapter, we have known that as the distance between receiver line and interface (the receiver line offset) increases (decreases), the intersection size between +2nd and +1st orders reduces, and accordingly, the gap width will increase. In the same way, the shot gather is transformed into the frequency-wavenumber spectra as shown in Figure 4.20. Correspondingly, the frequency-wavenumber spectrum profile extracted at a frequency of 100Hz plotting in the linear and logarithmic scales are displayed in Figures 4. [START_REF] Ogilvy | Theory of wave scattering from random rough surfaces[END_REF] 
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Compared with the frequency-wavenumber spectrum in the case of a = 7.5m (see Figure 4.12(b)), the spectrum in the case of a = 15m (see Figure 4.20(b)) becomes more dispersed especially for horizontal wavenumber within the range of (-0.03m -1 , 0.03m -1 ), which can also be clearly observed in the spectrum profiles extracted at 100Hz by comparing ). Furthermore, according to the color-bars of the spectrum, the amplitude of diffracted waves in the case of a = 15m is obviously larger than that in the case of a = 7.5m, which can also be verified by the spectrum profiles extracted at 100Hz (see Figures 4.13(b) and 4.21(b)). As a result, the larger the amplitude of the sinusoidal interface is, the stronger the energy of the diffracted waves will be, and the more dispersed the spatial distribution of the diffracted waves will be.

Influence of the random rough interface characteristics on the reflected wavefield

Now we focus on the study of the random rough interface. All random interfaces are produced with the same averaged wavelength λ c = 21m, which is equal to the period of the sinusoidal-shaped interface. This choice is helpful to compare the results of random interface with those for a periodic interface, especially for the case of the large correlation length l where the filtered Gaussian spectrum will be close to the spectrum of the sinusoidal function, such that the generated random interface quite resembles to the sinusoidal-shaped interface. Consequently, the seismic wave generated by the random interface should be comparable with that generated by the sinusoidal interface, which may help us reveal the effects of the random interface.

In the light of the process of the random interface generation, we can know that when the averaged wavelength λ c equals to 21m, the central wavenumber gives k c = 1/λ c = 0.047m -1 . In this case, we choose the low cut-off spatial wavenumber of the high-pass filter in the filtered Gaussian spectrum is k hp = 0.001m -1 , which means that the structures for which the scale is larger than 1000m will be removed. Concerning the correlation length l and RMS roughness σ , we will choose different values to investigate their effects on the seismic wave propagation. For the correlation length tests, we keep the RMS roughness to be σ = 5.3m, and choose three different correlation lengths, i.e., l = 20m, 60m, and 150m, respectively. Whereas for the RMS roughness tests, we keep the correlation length to be l = 150m, and change only the RMS roughness of the random interface, i.e., σ = 2.1m, 5.3m, and 10.6m, respectively.

σ = 5.3m, l = 20m

Compared with the results from the periodic rough interface, the reflections from the random rough interface are scattered in various directions, causing the diffracted wavefield to interfere with each other. From the wavefield snapshot shown in Figure 4.23, it can be seen that the wavefronts become dispersive and overlap with each other like a "weave structure", and thus the features of diffraction orders present in the case of the periodic rough interface are no longer shown here. From the shot 4.5 Influence of the random rough interface characteristics on the reflected wavefield gather shown in Figure 4.24, it can be seen that part of the incident energy is transformed into random noise, generally in the form of delayed energy after the reflection. Compared with the results of the periodic interface, the diffracted events also become discontinued and incoherent. The resulting complex wavefields actually are the result of the spatial convolution of the incident wavefield with the random function describing the rough interface [START_REF] Makinde | Numerical modelling of interface scattering of seismic wavefield from a random rough interface in an acoustic medium: comparison between 2D and 3D cases[END_REF]. As far as the frequency-wavenumber spectrum is concerned, the energy of the diffracted wavefield no longer gives several predominant parts but is randomly distributed instead (see 
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With the correlation length l increasing (20m, 60m and 150m), from the snapshots shown in Figures 4.23, 4.28, and 4.33, we find that the wavefronts gradually become smoother and more coherent, and the diffracted events in the shot gathers (see Figures 4.24,4.29,and 4.34) gradually become more continuous and distinguishable. From the frequency-wavenumber spectra (see Figures 4.25,4.30,and 4.35), the energy of diffracted wavefields becomes less dispersed, and gradually appears some gathered energy masses. In a more detailed way, the phenomenon can be clearly observed by comparing the spectrum profiles extracted at a frequency of 100Hz (see Figures 4.26 4.8(b) and 4.12), the behaviors of the seismic wave propagation with large correlation length l (such as l = 150m) show many resemblances to that in the presence of the periodic rough interface. This can be easily explained by the realization of the random rough interface by the filtered Gaussian spectrum: the width of the Gaussian spectrum decreases with the correlation length l, and thus the Gaussian spectrum with larger correlation length will be more close to the spectrum of a sine function. Accordingly, the obtained random height fields in the spatial domain become more equidistant between the crest and trough (see Figure 4.4), showing some similarities in shapes with the sinusoidal periodic interface.

On the whole, as the correlation length increases, the characteristics of the diffracted wavefields tend to approach the diffracted wavefields in the case of the periodic rough interface, that is, the similarities between the diffracted wavefields in two cases become higher. Note that the correlation length does not has the evident effect on the amplitudes (or energy) of the diffracted wavefields, which can be demonstrated by the comparisons with the color-bars next to either the shot gathers or the frequency-wavenumber spectra. However, this is not true when changing the RMS height of rough interface, which has been indicated in the case of the periodic rough interface in the previous section. In the following, we will check the effects of RMS height σ on the diffracted wavefields. 
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Comparing the results of using different RMS heights (i.e., σ = 2.1m, 5.3m, and 10.6m) but keep the correlation length unchanged as 150m, we can find that, as the RMS height σ increases, the diffracted wavefields become more dominant and their distributions become more dispersed, which can be observed from both the snapshots (see Figures 4.38,4.33,and 4.43) and the shot gathers (see Figures 4.39,4.34,and 4.44). Moreover, the amplitudes (or energy) of the diffracted wavefields become observably increased, which can be inferred from the color-bars given next to both the shot gathers (see Figures 4.39,4.34,and 4.44) and the frequency-wavenumber spectra (see Figures 4.40,4.35,and 4.45). Also, the spectrum profiles extracted at 100Hz show that the amplitudes of the diffracted wavefields change more sharply with the horizontal wavenumber (see Figures 4.41,4.36,and 4.46;or Figures 4.42,4.37,and 4.47). In summary, as the RMS height increases, more energy of the incident wave would be converted into the diffracted waves, and the energy of diffracted waves would be distributed in a more dispersed way (see Figures 4.40,4.35,and 4.45), which is consistent with the conclusion drawn in the case of a periodic rough interface.

One point we should keep in mind is the horizontal wavenumber range of the diffracted wavefields. If the interface is perfectly smooth, according to the Snell's Law, the maximum receiving angle on the receiver line 2 is theoretically 26.1 • , which corresponds to a maximum horizontal wavenumber of 0.03m -1 at a frequency of 100Hz. However, from above results it is clear that when the interface becomes rough, whether it is periodic or random, the maximum horizontal wavenumber of the diffracted wavefields at 100Hz is close to the value of 0.067m -1 that nearly corresponds to the receiving angle of 90 • (see the related spectrum profiles extracted at 100Hz). In other words, due to the interface roughness, significant diffracted energy appears at the larger receiving angles (about between 26 • and 90 • for the used model), which will never happen for a flat interface. Consequently, the interface roughness contributes to a broader spectrum compared to the case of a flat interface.

Average response of an ensemble of realizations

Since the random interface is generated in a statistical way with random numbers obeying the standard Gaussian distribution, it is generally expected that the height variation of a single generated interface will show some randomness, and correspondingly the recorded seismic data is likely to show randomness as well. In order to alleviate such effect, we adopt the strategy where 10 random interface realizations first are produced using the filtered Gaussian spectrum with the same statistical properties, then the simulation is individually performed for each random interface such that 10 seismic data are obtained, and finally we obtain a mean result by averaging over these 10 seismic data, which is referred to as the ensemble-averaged seismic data. Following this procedure, for comparison, we will examine the case of σ = 10.6m and l = 150m.

Comparing the shot gathers shown in Figures 4.44 and 4.48, respectively, they are similar except for their amplitudes size according to the color-bars. After the ensemble average, the amplitudes of the seismic data largely decrease. This mainly results from the destructive interferences during the ensemble averaging operation that cancels each other to some extent. Equally, the reduced 4.6 Average response of an ensemble of realizations amplitude can also be observed on the frequency-wavenumber spectra (see Figures 4.45 and 4.49). Besides, compared with the spectra shown in Figure 4.45, it is clear that the energy of the diffracted wavefields shown in Figure 4.49 become more concentrated between the horizontal wavenumber range of -0.03m -1 and 0.03m -1 . This feature can also be identified in the spectrum profiles extracted at 100Hz (see Figures 4.46 and 4.50). As analyzed before, this range corresponds to the horizontal wavenumber range of wavefields reflected from a flat interface. Therefore, we can infer that even if the interface roughness yields a broader spectrum range than the flat case, the relatively large diffracted energy is still distributed in the horizontal wavenumber range corresponding to the flat interface. 

Conclusion

In this chapter, we investigated the seismic wave propagation in the presence of a random rough interface described by statistical properties. This is accomplished by varying the RMS height and correlation length of the rough interface, respectively, which allows us to examine the effects of the parameters controlling the shape of the rough interface on the seismic wave propagation. It is clear from the above analysis that these parameters obviously influence the characteristics of diffracted wavefields generated by a rough interface: the RMS height and the correlation length of the rough interface are directly related to the appearance and the size of the diffracted wavefields. We first generated the random rough interface by using the filtered Gaussian spectrum. To implement this, a zero mean, unit variance Gaussian distribution is used. The amplitude of the rough

Conclusion

interface can be characterized by the RMS height σ , also known as interface roughness. To produce a desired interface roughness, only the normalizing factor C requires to be adjusted. Meanwhile, we discussed the effects of parameters of the filtered Gaussian spectrum on the shape of the obtained rough interfaces. We found that the central wavenumber k c is the averaged period of the rough interface, and a larger central wavenumber produces the rough interface with a smaller spatial period. It is also noticeable that the correlation length of the random rough interface controls the minimum spatial wavelength along the interface distribution [START_REF] Makinde | Numerical modelling of interface scattering of seismic wavefield from a random rough interface in an acoustic medium: comparison between 2D and 3D cases[END_REF], and a larger correlation length, corresponding to a narrower spectrum (i.e., less high spatial wavenumber contents), results in a lower rate of change in the height of the rough interface and a more equal distance between the crest and trough.

For the effects of the amplitude of a rough interface (RMS roughness for the case of the random rough interface), it is examined by the comparison of tests with different roughnesses, indicating that the rough interface (periodically or randomly) with a larger amplitude generally gives the stronger and more dispersed diffracted waves. This can be attributable to the fact that the diffracted wavefields are simply the convolution of the incident wavefields with the rough interface function (or the product of the incident wavefields and the rough interface function in Fourier domain) [START_REF] Makinde | Numerical modelling of interface scattering of seismic wavefield from a random rough interface in an acoustic medium: comparison between 2D and 3D cases[END_REF]. In this case, more incident wave energy would be transferred to the diffracted waves which finally show themselves with a more dispersive form.

For the effect of the correlation length of the rough interface (the period for the case of the periodic rough interface), it can be seen that as the correlation length increases, the diffracted wavefields in terms of wavefronts or shot gathers become more coherent and less overlapped, while in terms of spectra the diffracted energy become less dispersed with the horizontal wavenumber. This phenomenon can also be explained by the convolution process between the incident wavefield and the rough interface function containing less high wavenumbers. It is impressive that when the correlation length becomes very large relative to the incident wavelength (such as 150m in the test), the characteristics of the diffracted wavefields tend to approach the diffracted wavefields in the case of the periodic rough interface. This is because a large correlation length gives a narrow Gaussian spectrum, which would be close to the spectrum of the sine function. Furthermore, the correlation length has less effect on the energy of the diffracted wavefields, but this is not true for the parameter of the interface roughness.

One point we should keep in mind is that compared to the case of a flat interface, the interface roughness yields a broader spectrum range, although the corresponding spectrum becomes dispersed. By resorting to the average ensemble operation which can mitigate the randomness caused by the use of the statistically rough interface, we observed that the relatively large diffracted energy is still distributed in the horizontal wavenumber range corresponding to the flat interface. In the future study, we may employ the stochastic analysis method to further explore the diffracted wavefield, since the diffracted wavefields are actually described as a random distribution due to the convolution process between the random rough interface and the incident seismic wave.

Chapter 5

Full waveform inversion in the presence of the rough interface

Introduction

After the investigation of the effects of a rough interface on seismic wave propagation, we now turn to explore the influence of rough interface on the seismic imaging or inversion. In the context of the seismic wave, the rough interface always introduces lateral heterogeneity and contains spatial undulations on a small scale. In order to effectively investigate the effects of a rough interface on imaging, it is necessary to use a high resolution method which fully takes into account the signal generated by the rough interface. Classic migration methods for imaging the subsurface, including ray-based methods and wave equation-based methods, consider only part of the measured data, such as first-arrival times or primary reflections, and thus suffer from a limited resolution. In contrast, full-waveform inversion (FWI) considers the entire information content recorded on the seismograms including secondary events such as late-arriving reflections and refractions to reconstruct a multiparameter subsurface model, and can yield higher resolution images in the subwavelength scale. Hence, FWI is able to determine physical properties at improved spatial resolution and to invert the seismic data even in the presence of the rough interface.

FWI, one established velocity model building method, offers previously unobtainable subsurface velocity resolution and imaging quality. It is playing an increasingly significant role and is changing the way we look at seismic processing. In its conventional formulation, it is based on the least-square minimization of the misfit (i.e., L 2 norm) between observed and calculated seismic data by iteratively solving the full-wave equation to retrieve the subsurface physical parameter model. Compared with standard seismic imaging techniques, FWI, based on the comparison of observables extracted from the data, such as arrival times of seismic events in tomography, tries to interpret the whole waveform recorded on the seismograms as far as possible. Given a starting model, such as one obtained from traveltime tomography, FWI can produce the quantitative estimations of subsurface physical properties, such as P-and S-wave velocities, density, attenuation, and anisotropy parameters, and their resolution is expected in the limit of half the shortest propagated wavelength. Generally, using different numerical methods to solve the wave equation, FWI can be implemented in different forms. However, in the context of FWI, the finite-difference and the spectral-element methods are most frequently used in terms of efficiency and accuracy. According to the investigations in the previous chapters, it seems that FWI based on the spectral-element method is more appropriate for the problem related to the rough interface. Since each iteration produces a different updated model, FWI based on the spectral-element method requires different meshing schemes for each iteration. Currently, the generation of interface-conforming meshes still needs an external mesh generator, such as Gmsh [START_REF] Geuzaine | Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities[END_REF], which makes FWI implementation impossible. Although the fixed regular meshes can be employed throughout the iterative process, FWI based on the spectral-element method is no longer better than FWI based on the finite-difference method in terms of accuracy and is less efficient. Considering the regular meshes, the finite-difference method may suffer from the "stairstep" effect in the presence of a rough interface, but such effect can be largely mitigated by discretizing the model with very fine meshes regardless of the increase in computational cost.

Therefore, we give preference to FWI based on the finite-difference method rather than on the spectral-element method. In this chapter, we use the open-source package DENISE [START_REF] Köhn | Time domain 2D elastic full waveform tomography[END_REF] which implements 2D acoustic or isotropic elastic time-domain FWI algorithm. For the acoustic medium, only P wave is considered, while for the elastic medium, P-SV wave is involved. Here we focus on the acoustic medium, that is, only P-wave velocity and density will be considered in FWI. Due to the nonlinearity of seismic data, the well-known cycle-skipping effect appears. To alleviate it, two key factors that are the starting model and the low-frequency content in data should be noted. We address the problem by combining a starting model obtained by the 2D spatial Gaussian filter with the hierarchical multiscale strategy from low to high frequency. In the following, we first briefly introduce the forward problem that is an underlying issue in FWI. Then, we review the main theoretical aspects of FWI based on a least-square local optimization approach. For simplicity, the equations are expressed in compact matrix form, which leads to a clear interpretation of the gradient and the Hessian of the misfit function. Meanwhile, we review different local optimization algorithms to solve the FWI problem. Next, we discuss the cycle-skipping issue in FWI and provide measures to avoid it. Then we give a few words concerning the use of package DENISE, which is followed by the choice of the starting model and the use of the hierarchical multiscale strategy in FWI. In the numerical tests, we examine the effects of parameters controlling the interface shape (roughness and correlation length) on FWI. At last, we give some conclusions and discussions.

Forward problem

To implement FWI, we need to use numerical methods to solve the wave equation, such as the finite-difference and spectral-element methods that have been introduced in Chapter 2. The subsurface properties that we want to quantify are actually hidden in the elastic tensor C in the equation (2.13) or
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expressed by the Lamé coefficients λ and µ in the equation (2.20). In fact, the relationship between the seismic wavefield and the subsurface parameters is nonlinear and can be described in a compact form through the operator G, defined as:

u = G(m), (5.1) 
where u denotes the seismic wavefield. In the acoustic approximation, u generally stands for the pressure, while in the elastic case u generally represents horizontal and vertical components of the particle displacement (velocity or acceleration) for the 2D problem. m is the subsurface parameter model.

FWI as a least-square local optimization

In exploration seismology, the observed seismic data d(x s , x r ; t) excited by a source located at x s will be recorded by receivers at x r in the seismic survey. For a given distribution of the material parameters m, the forward problem (2.20) can be solved by finite difference equation (2.59). This synthetic or calculated seismic data for each time and each source-receiver pair is denoted by d cal (m). It can be compared with the field or observed seismic data represented by d obs . We thus define the misfit vector ∆d = d obs -d cal (m) that is a N × 1 column vector (N is the number of receiver points [START_REF] Pratt | Gauss-Newton and full Newton methods in frequencyspace seismic waveform inversion[END_REF]), and m is the subsurface physical parameter model that is a M × 1 column vector (M is the number of model parameters). For a 2D problem, the model is discretized by regular grids with L = n y × n x node points where n x and n y represent the number of discrete node points in the x and y direction, respectively. For the acoustic forward modeling problem, the P-wave velocity v P and density ρ are separately discretized at each node point, i.e., m = [v P (x, y), ρ(x, y)] = [v P1 , v p2 , . . . , v PL ; ρ 1 , ρ 2 , . . . , ρ L ] T , so the total length of parameter model is M = 2L. The model parameter discretized for the forward modeling problem is termed as the nodal parameter, while the model parameter discretized for the inversion problem is called the inversion parameter. There are various discretization schemes for inversion parameters, but the most commonly used is the point collocation scheme [START_REF] Pratt | Gauss-Newton and full Newton methods in frequencyspace seismic waveform inversion[END_REF] in which the inversion parameter is chosen to be identical with nodal parameters, that is, the relationship between inversion and nodal parameters is a one-to-one mapping. Although the point collocation scheme is a bit wasteful of computing resources in the inverse problem, it is convenient and easy to implement for FWI. In our studies, we would adopt this point collocation scheme for the inversion parameters.

The misfit ∆d can be measured by a vector norm |∆d| p (p = 1, 2, . . . ), which is referred to as the objective function or the misfit function. Here, we focus on the least-square norm, i.e., L 2 norm, because it is easier to manipulate mathematically [START_REF] Tarantola | Inverse problem theory: Methods for data fitting and model parameter estimation[END_REF] and has a special physical meaning representing the residual energy of the misfit data ∆d. If the least-square norm of the misfit ∆d is small enough to reach a certain criterion, the obtained model is the optimum model and generally can well explain the observed data, otherwise, the residual energy is not minimum and thus the obtained model cannot explain the observed data.

Born approximation and linearization of inverse problem

In theory, FWI should be solved by global optimization approaches, such as Monte Carlo, genetic algorithms, or simulating annealing, to reach its global minimum. However, most of FWI methods presented and assessed in the literature are based on the local least-square optimization formulation, due to the huge volume of seismic data. In the implementation of FWI, hundreds of thousands of discrete parameters in 2D, and hundreds of millions of discrete parameters in 3D are involved in the reconstruction, which makes global optimization strategies beyond current and forthcoming computational capabilities (exascale machines). Thus, FWI has to rely on the local optimization scheme where the linearization is needed to seek the global minimum from the starting model.

For brevity, we write the formulations in the compact matrix form. The misfit function defined by least-square norm is given by:

E(m) = 1 2 |∆d| 2 2 = 1 2 ∆d † ∆d, (5.2) 
where the superscript † denotes adjoint operator (i.e., transpose conjugate).

In the time domain, the implicit summation in the equation (5.2) is performed over the number of source-receiver pairs and the number of time samples in the seismograms. In the frequency domain, the summation over frequencies replaces that over time. Note that in the time domain, the misfit vector is real-valued, while in the frequency domain, it is complex-valued.

Since the FWI generally adopts a local optimization scheme, the minimum of the misfit function E(m) is sought in the vicinity of the starting model m 0 . In the framework of the Born approximation, we assume that the updated model m of dimension M can be written as the sum of the starting model m 0 plus a perturbation model ∆m, i.e., m = m 0 + ∆m. In the following, we assume that m is real valued.

We perform a Taylor expansion on the misfit function (5.2) in the vicinity of m 0 and retain the terms up to second order [START_REF] Tarantola | Inverse problem theory: Methods for data fitting and model parameter estimation[END_REF]:

E(m) = E(m 0 + ∆m) = E(m 0 ) + ∆m T ∂ E(m 0 ) ∂ m + 1 2 ∆m T ∂ 2 E(m 0 ) ∂ m 2 ∆m + O(|∆m| 3 ). (5.3) 
Based on the differential relation ∂ m = ∂ (m 0 + ∆m) = ∂ ∆m, the derivative of equation ( 5.3) with respect to the model parameter m gives:

∂ E(m) ∂ m ≈ ∂ E(m 0 ) ∂ m + ∂ 2 E(m 0 ) ∂ m 2 ∆m. (5.4) 
We seek the vector ∆m that will locate the minimum within the quadratic approximation. Consequently, the minimum of the misfit function (5.2), in the vicinity of m 0 , can be reached when the first derivative
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of the misfit function (5.4) vanishes. This gives the perturbation model vector ∆m as:

∆m = - ∂ 2 E(m 0 ) ∂ m 2 -1 ∂ E(m 0 ) ∂ m , (5.5) 
where ∂ E(m 0 )/∂ m represents the steepest-descent (also known as the gradient) direction of the misfit function (5.2), and the second derivative of the misfit function ∂ 2 E(m 0 )/∂ m 2 stands for Hessian matrix. From the equation (5.5), we can know that the perturbation model ∆m is searched in the opposite direction of the gradient of the misfit function at point m 0 , and ∆m can be better estimated if the inverse of the Hessian is used as a preconditioner in the inversion [START_REF] Pratt | Gauss-Newton and full Newton methods in frequencyspace seismic waveform inversion[END_REF]. Note that, the error term O(|∆m| 3 ) in the equation (5.3) is zero when the misfit function is a quadratic function of m , which exactly corresponds to the linear forward problems such as u = G • m. In this case, the perturbation model shown in the equation (5.5) would make the misfit function reach the minimum by just one iteration [START_REF] Virieux | An overview of full-waveform inversion in exploration geophysics[END_REF]. However, the relationship between the seismic data and the model is always nonlinear, so FWI is usually an iterative process before reaching the minimum of the misfit function.

Normal equations and different optimization algorithms

According to the previous subsection, obtaining the perturbation model ∆m requires the gradient direction. In the general case, the derivative of misfit function E(m) (5.2) with respect to the model parameter m can be written as:

∂ E(m) ∂ m l = - 1 2 N ∑ i=1 ∂ d * cal i ∂ m l (d obs i -d cal ) + (d obs i -d cal i ) * ∂ d cal i ∂ m l = - N ∑ i=1 ℜ ( ∂ d cal i ∂ m l ) * (d obs i -d cal i ) , (l = 1, 2, . . . , M), (5.6) 
where the asterisk * in the superscript represents a complex conjugate operation and ℜ indicates the real part of a complex number. In the matrix form, the equation (5.6) becomes:

∇ m E = ∂ E(m) ∂ m = -ℜ ∂ d cal (m) ∂ m † (d obs -d cal (m)) = -ℜ[J † ∆d], (5.7) 
where J is the N × M Fréchet derivative matrix or sensitivity matrix, and its elements are given by:

J i j = ∂ d cal i ∂ m j , i = (1, 2, . . . , N); j = (1, 2, . . . , M). (5.8) 
∇ m E is a column vector of dimension M. When taking m = m 0 in equation (5.7), ∇ m E provides the gradient direction at m 0 , and correspondingly the perturbation model can be searched in the negative gradient direction according to equation (5.5).

Chapter 5 Full waveform inversion in the presence of the rough interface

Differentiation of the gradient expression (5.6) with respect to the model parameters m gives the Hessian matrix as:

H i j = ∂ 2 E(m) ∂ m i ∂ m j = ℜ              ∂ d * cal 1 ∂ m i ∂ d * cal 2 ∂ m i • • • ∂ d * cal N ∂ m i        ∂ d cal 1 ∂ m j ∂ d cal 2 ∂ m j . . . ∂ d cal N ∂ m j        - ∂ 2 d * cal 1 ∂ m i ∂ m j ∂ 2 d * cal 2 ∂ m i ∂ m j • • • ∂ 2 d * cal N ∂ m i ∂ m j       ∆d 1 ∆d 2 . . . ∆d N                    . (5.9) 
Using the definition of the Fréchet derivative matrix in the equation (5.8), we can obtain the Hessian matrix in the form:

H(m) = ∂ 2 E(m) ∂ m 2 = ℜ J † J - ∂ ∂ m 1 J † ∆d ∂ ∂ m 2 J † ∆d • • • ∂ ∂ m M J † ∆d = ℜ J † J - ∂ ∂ m T J † (∆d ∆d • • • ∆d M ) , (5.10) 
where ∂ ∂ m T J † implies a specific meaning for the partial differentiation of a matrix with respect to a row vector. If we define

H a = ℜ J † J and R = ℜ ∂ ∂ m T J † (-∆d • • • -∆d)
, then the Hessian matrix can be rewritten as:

H(m) = H a (m) + R(m), (5.11) 
where H a is the approximate Hessian. Similarly, taking m = m 0 in equation (5.10) gives the Hessian matrix at m 0 as:

H(m 0 ) = ℜ J † 0 J 0 - ∂ ∂ m T J † 0 (∆d 0 ∆d 0 • • • ∆d 0 ) = H a (m 0 ) + R(m 0 ), (5.12) 
which actually defines the curvature of the misfit function at m 0 [START_REF] Virieux | An overview of full-waveform inversion in exploration geophysics[END_REF].

Inserting the gradient shown in equation (5.7) and the Hessian shown in equation (5.12) into the equation (5.5) leads to the perturbation model:

∆m = ℜ J † 0 J 0 - ∂ ∂ m T J † 0 (∆d 0 ∆d 0 • • • ∆d 0 ) -1 ℜ J † 0 ∆d 0 = [H a (m 0 ) + R(m 0 )] -1 ℜ J † 0 ∆d 0 , (5.13) 

FWI as a least-square local optimization

which is generally known as the normal equation. The method to solve the normal equation is commonly referred to as the full Newton method, a local quadratic convergence technique. However, if we only use the approximate Hessian H a to estimate the exact Hessian matrix H, ignoring the second-order term R, the method solving the normal equation (5.13) is referred to as the Gauss-Newton method. For the linear problem (i.e., u = G • m), the second term in the Hessian (i.e., R) is zero because the second-order derivative of the data with respect to the model parameters is always zero.

The gradient method

Alternatively, the inverse of the Hessian in equation (5.13) can be replaced by a positive scalar α, which is known as the gradient or steepest-descent method, and the parameter model update follows:

m (k+1) = m (k) -α (k) ∇ m E (k) , (5.14) 
where k is the iteration number and α is the so-called step length chosen to minimize the misfit function (5.2) in the negative direction of the gradient ∇ m E (k) calculated by equation (5.7). For brevity, we use

∇ m E (k) to represent ∇ m E(m (k)
). The role of the step length can be regarded as a conversion of the units of the gradient vector to model dimensions [START_REF] Pratt | Gauss-Newton and full Newton methods in frequencyspace seismic waveform inversion[END_REF].

The step length can be estimated by a line-search method, in which a linear approximation for the forward problem is used [START_REF] Gauthier | Two-dimensional nonlinear inversion of seismic waveforms: Numerical results[END_REF]. With the help of linear approximation, the second-order Taylor-expansion of the misfit function gives:

E m (k) + (∆m) (k) = E m (k) -α (k) ∇ m E(m (k) ) = E(m (k) ) -α (k) ∇ m E(m (k) ) ∇ m E(m (k) ) + 1 2 α (k) 2 H a (m (k) ) ∇ m E(m (k) ) ∇ m E(m (k) ) , (5.15) 
where we assume the model perturbation in the form of ∆m = -α∇ m E and angle brackets ⟨ | ⟩ denote inner product between two vectors. Note that we replace the second-order derivative of the misfit function in equation (5.15) by the approximate Hessian H a thanks to the linear approximation to forward problem. By vanishing the partial derivative of the misfit function with respect to α, we can obtain:

α (k) = ∇ m E(m (k) ) ∇ m E(m (k) ) J(m (k) )∇ m E(m (k) ) J(m (k) )∇ m E(m (k) ) . (5.16) 
The term J(m (k) )∇ m E(m (k) ) in equation (5.16) is computed conventionally using a first-order-accurate finite-difference approximation of the partial derivative of G, i.e.,

∂ d(m (k) ) ∂ m ∇ m E(m (k) ) = 1 ε G m (k) + ε∇ m E(m (k) ) -G(m (k) ) , (5.17) 
where ε is a small parameter. Therefore, estimation of α requires the solution of an extra forward problem per shot for the perturbed model m (k) + ε∇ m E(m (k) ). The gradient of the misfit function represents the direction in which the misfit function increases most rapidly. Consequently, the misfit function can always decrease in the direction opposite to this direction. The iteration in equation (5.14) is performed until some suitable stopping criterion is satisfied. The gradient however often converges slowly, and even may fail to converge towards the global minimum, because the reliable α is hard to obtain. To overcome this problem, different procedures have been proposed. The conjugate gradient method [START_REF] Mora | Nonlinear two-dimensional elastic inversion of multioffset seismic data[END_REF] can remedy the weakness of the gradient method to some extent, and it does not require any significant additional computations. The gradient method is preconditioned by the diagonal terms of the approximate Hessian H a (i.e., scaling or dividing the gradient by the diagonal terms of H a ), which greatly improves the convergence rates. It is referred to as the preconditioned gradient method. A more accurate step-length computation method is the preconditioned conjugate gradient [START_REF] Köhn | Time domain 2D elastic full waveform tomography[END_REF]. Alternatively, the step length can be optimally estimated by parabolic interpolation [START_REF] Vigh | Developing earth models with full waveform inversion[END_REF] through three points from (α (k) , E(m (k)α (k) ∇ m E(m (k) ))). It involves in evaluating misfit function several times to find two additional values of α such that α

(k) 2 is less than α (k)
3 and E(α

(k) 2 ) is less than both E(α (k) 1
) and E(α

(k)
3 ). Because the first point has been obtained, i.e., (α (k)

1 = 0, E(m (k)
)), at least two extra forward problems per shot are required. Once three valid values are found, the optimum step length will correspond to the minimum of the parabolic fitting (see Figure 5.1).

The conjugate gradient method

Over the last decade, the most popular local optimization algorithm for solving FWI problems is based on the conjugate-gradient method [START_REF] Mora | Nonlinear two-dimensional elastic inversion of multioffset seismic data[END_REF], which can effectively increase convergence speed in 5.3 FWI as a least-square local optimization narrow valleys. It updates model at iteration step k not exactly along the gradient direction ∇ m E (k) but along the conjugate direction p (k) , which is defined as a linear combination of the gradient ∇ m E (k) and the direction p (k-1) :

p (k) = ∇ m E (k) + β (k) p (k-1) , k ≥ 2, (5.18) 
where the scalar β (k) is designed to guarantee that p (k) and p (k-1) are conjugate. Based on the conjugate direction p (k) , the model parameters can be updated through:

m (k+1) = m (k) -α (k) p (k) , (5.19) 
where p (1) = ∇ m E(m (1) ). In other words, the model is updated along the negative gradient direction when the iteration step k = 1.

The scalar weighting factor β (k) can be calculated in different ways [START_REF] Nocedal | Numerical Optimization[END_REF]: (1) Fletcher-Reeves formula:

β (k) FR = ∇ m E (k) ∇ m E (k) ∇ m E (k-1) ∇ m E (k-1) .
(5.20)

(2) Polak-Ribière formula:

β (k) PR = ∇ m E (k) ∇ m E (k) -∇ m E (k-1) ∇ m E (k-1) ∇ m E (k-1)
.

(

(3) Hestenes-Stiefel formula:

β (k) HS = ∇ m E (k) ∇ m E (k) -∇ m E (k-1) p (k-1) ∇ m E (k) -∇ m E (k-1) . (5.22) 
(4) Dai-Yuan formula:

β (k) DY = ∇ m E (k) ∇ m E (k) p (k-1) ∇ m E (k) -∇ m E (k-1) .
(5.23)

Among these different variants of the conjugate-gradient method, the Polak-Ribière formula appears to be more competitive and is generally adopted for FWI. To guarantee that p (k) is always a descent direction, a popular choice is

β (k) = max{β (k)
PR , 0}. Note that the conjugate gradient method does not require any additional computational cost because only the gradient ∇ m E (k) at two subsequent iterations has to be known.

The quasi-Newton method

The inverse of Hessian matrix H -1 is often singular and its explicit calculation in the time domain is quite time-consuming. However, the approximation of the Hessian or its inverse can be explicitly computed by the quasi-Newton methods. The most popular quasi-Newton method is the BFGS algorithm, named for its inventors Broyden, Fletcher, Goldfarb, and Shanno [START_REF] Nocedal | Numerical Optimization[END_REF]. The main idea is to update the approximation of the Hessian or its inverse at iteration k, taking into account the additional knowledge provided by the gradient ∇ m E (k) .

For large-scale problems such as seismic exploration, the cost of computing and storing the approximation of the Hessian matrix is prohibitive. To circumvent this problem, a limited-memory variant of the quasi-Newton BFGS method, known as the L-BFGS algorithm, has been proposed. It allows estimating the product of inverse Hessian and gradient in a recursive manner without explicitly forming the inverse of Hessian matrix. The main idea is to use curvature information from only the most recent iterations to construct the Hessian approximation. Curvature information from earlier iterations, which is less likely to be relevant to the actual behavior of the Hessian at the current iteration, is discarded in the interest of saving storage. Apart from the modest storage requirement, it is fairly robust [START_REF] Nocedal | Numerical Optimization[END_REF]. The L-BFGS algorithm requires an initial approximation of Hessian, which is typically the diagonal terms of an approximate Hessian [START_REF] Brossier | Seismic imaging of complex onshore structures by 2D elastic frequency-domain full-waveform inversion[END_REF].

The Gauss-Newton method

In the expression of Hessian matrix (5.11), the first term H a is straightforward to compute, whereas the second term R is awkward to calculate. For this, researchers tend to avoid the computation of the second term. In this case, we can obtain the Gauss-Newton formula:

m (k+1) = m (k) -H -1 a ∇ m E (k) , (5.24) 
where the approximate Hessian matrix H a is assumed to be the full column rank, namely H a is invertible. Generally this assumption is not the case, because the Hessian matrix is often either illconditioned or singular. To improve and stabilize the Gauss-Newton method for nonlinear problems, some form of regularization will be required.

The full Newton method

Tarantola [START_REF] Tarantola | Inverse problem theory: Methods for data fitting and model parameter estimation[END_REF] had stated that the second term of the Hessian matrix (i.e., R) is small if the residuals are small or the forward equation is quasi-linear. However, the inverse problems are often nonlinear and the sufficiently accurate starting model is not available in most cases. Therefore, it is more reasonable to take into consideration the second term in Hessian, leading to the full Newton formula:

m (k+1) = m (k) -(H a + R) -1 ∇ m E (k) . (5.25) 
Note that the full Newton method differs only from the Gauss-Newton method by the inclusion of the second term R in the Hessian.

FWI as a least-square local optimization

The cycle-skipping effect

FWI seeks the global minimum of the misfit between the observed and the calculated data through a series of locally optimized iterations from a starting model. In the framework of local optimization, the nonconvexity of the misfit function is a critical issue. Depending on the quality of the starting model, local optimization strategy might converge towards a local minimum, which may not be geologically meaningful. Consequently, avoiding converging to a local minimum is a key practical issue in its successful application. In fact, the local minimum problem is essentially caused by the oscillatory nature of the seismic data (i.e., nonlinearity) [START_REF] Warner | Full-waveform inversion of cycle-skipped seismic data by frequency down-shifting[END_REF] and it manifests itself as a cycle-skipping issue in the data. The schematic of cycle-skipping artifacts in FWI. The blue curve is the observed data, and the green curves denote the calculated data with different time shift with respect to the observed data, thus the misfit function between the observed and the calculated signals can be calculated through the equation (5.2), which is represented by the red curve. The peak frequency for Ricker wavelet is 2.5Hz, so the half a cycle is about T /2 ≈ 0.2s.

The cycle-skipping effect occurs when the calculated and the observed data differ by more than half a cycle (i.e., the time shift over half a period), which leads all or part of the data to be misaligned in time and finally makes the inversion recover to a local rather than to the global minimum model [START_REF] Warner | Adaptive waveform inversion: Theory[END_REF]. To better understand the cycle-skipping effect, we give an example for the least-square misfit function between two Ricker signals. Depending on the time shift, the misfit function exhibits a single global minimum and two local minima (see Figure 5.2). Obviously, when the time shift is zero, i.e., the calculated data perfectly match the observed data, the misfit reaches the global minimum. When the time shift is less than T /2 (such as the calculated data 1), FWI still can converge towards its global minimum. However, when the time shift between the calculated and the observed data is greater than T /2 (such as the calculated data 2 or 3), FWI will update the model to a local minimum. This example illustrates that the calculated data needs at least an overlap of half a cycle with the observed data to avoid the cycle skipping; otherwise, FWI may get trapped into a local minimum.

For the large-scale problem, the local optimization scheme is generally used. Nevertheless, the local optimization scheme often causes the cycle-skipping issue because of the limited accuracy of the starting model and the lack of low frequencies in the recorded seismic data. Hence, to prevent the cycle-skipping problem from FWI, both a good starting model and low-frequency content in the field data are required. However, the low frequencies in the field seismic data are always missing [START_REF] Virieux | An overview of full-waveform inversion in exploration geophysics[END_REF]. Therefore, building an accurate starting model is one critical issue for FWI. Generally, the starting model can be obtained using tomographic approaches, such as travel-time tomography.

To cancel the cycle-skipping ambiguity, how accurate the starting model should be? According to the definition of cycle-skipping effect and the demonstration in Figure 5.2, the starting model must be localized in the attraction valley of the global minimum of the misfit function [START_REF] Asnaashari | Regularized seismic full waveform inversion with prior model information[END_REF]. This requires that the erroneous arrivals in the calculated data generated by the starting model should be no larger than half a period, which is referred to as the half-cycle criterion [START_REF] Zuberi | Mitigating cycle skipping in full waveform inversion by using a scaled-Sobolev objective function[END_REF]. This criterion determines the maximum error between the starting and the true model, below which the cycle-skipping effect can be avoided. Therefore, to obtain a more stable and reliable inversion, the starting model should satisfy the half-cycle criterion.

In fact, the half-cycle criterion depends on both the offset and the frequency content of the observed data. For a given error in the starting model, the traveltime error increases with path length, because for the data with the same frequency, far offsets (i.e., wide aperture) may be cycle skipped whereas near offsets are not. This offset dependence of the half-cycle criterion shows a dilemma where far offsets are required to reconstruct the intermediate and large wavelengths of the true model [START_REF] Pratt | Gauss-Newton and full Newton methods in frequencyspace seismic waveform inversion[END_REF], but on the other hand these arrivals are likely to produce the cycle-skipping issue. Similarly, for a given path length, the traveltime error increases with frequency, because for seismic waves with higher frequencies (i.e., shorter wavelength), the same time shift is more likely to be beyond half a cycle such that the cycle-skipping effect occurs. As a result, the lower frequencies can tolerate larger errors in the starting model.

To mitigate the nonlinearity of the inversion, the hierarchical multiscale strategy can be employed in FWI, which progressively introduces more nonlinear components of the data into the inversion process. This workflow can be implemented by frequency windows, offset windows or time windows, and even a combination of these windows. Basically, the hierarchical multiscale approaches are designed following the strategy where the data are decomposed from low to high frequencies [START_REF] Bunks | Multiscale seismic waveform inversion[END_REF], and possibly from short offset/time windows to large offset/time windows [START_REF] Brossier | Seismic imaging of complex onshore structures by 2D elastic frequency-domain full-waveform inversion[END_REF]. Each subset of data is interpreted through FWI, and the resulting model serves as a starting model for the next subset of data. This is based on the fact that the lower-frequency content and/or shorter offset/time windows contain a smaller number of propagating wavelengths, thereby reducing the cycle-skipping ambiguity. The frequency window workflow, which is a pragmatic strategy, consists of successive inversions 5.4 FWI implementation of overlapping frequency groups, and assumes that the data at the lowest available frequency is not cycle-skipped.

It should be noted, though the multiscale strategy can reduce the non-linearity and cycle-skipping issues to a large extent, the error between the starting model and the true model still cannot be too big and must satisfy the half-cycle criterion.

FWI implementation

Description of DENISE FWI package

In order to apply FWI to solve seismic wave inversion problems, we directly use the DENISE package [START_REF] Köhn | Time domain 2D elastic full waveform tomography[END_REF]. It implements the elastic wave modeling, RTM and FWI for P/SV wave in the time domain through the finite-difference method, and is characterized by (1) the easy parallelization using the domain decomposition with MPI, (2) a high accuracy using the higher-order finite-difference operators, (3) and the use of Convolutional-Perfectly-Matched-Layer (CPML) boundary conditions at the sides of the numerical model [START_REF] Komatitsch | An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation[END_REF].

The parameter file defines parameters for the modeling and inversion. For the forward modeling operation, the inputs are the true model files (including velocity and density models), the source file, and the receiver file. For FWI operation, the inputs are the observed data file, the starting model files (including velocity and density models), the workflow file, the source file, and the receiver file. Note that the workflow file contains parameters specifying different windows at different inversion stages. A detailed description can be found in the manual of the package.

Starting model and hierarchical multiscale strategy

In our tests, we use the monoparameter acoustic FWI [START_REF] Virieux | An overview of full-waveform inversion in exploration geophysics[END_REF], that is, FWI only inverts the P-wave velocity. However, the input model includes both the P-wave velocity and the density. To reduce the high memory consumption as far as possible, we adopt the L-BFGS optimization method where the last 20 updates are stored to calculate the inverse of the Hessian. Besides, the parabolic interpolation method (see Figure 5.1) is applied to obtain the optimal step length. Such a line search method can provide a faster convergence speed at the expense of the low additional computational costs. More importantly, it is necessary to consider the cycle-skipping effects due to the nonlinearity of the seismic data. As discussed in Subsection 5.3.3, we can mitigate it in terms of both the starting model and the low frequencies in the seismic data.

Since FWI is generally implemented through local optimization approaches, building an accurate starting model for FWI remains one of the most challenging issues, considering the fact that the very low frequencies are always missing in the framework of controlled-source experiments [START_REF] Virieux | An overview of full-waveform inversion in exploration geophysics[END_REF]. Here, a smooth model which mimics a time-tomography model based on both first arrivals and reflected events, is used as the starting model for FWI. Such a starting model is achieved by applying a spatial 123 Chapter 5 Full waveform inversion in the presence of the rough interface Gaussian filter to the true model:

m start (x, y) = 1 2πL 2 L -L L -L d x ′ d y ′ m true (x -x ′ , y -y ′ ) exp - (x -x ′ ) 2 + (y -y ′ ) 2 2L 2 , (5.26) 
where L defines the size of the Gaussian filter. In the equation (5.26), the Gaussian function actually plays the role of a weighted average factor such that the central element has the heaviest weight (i.e., the highest Gaussian value) and neighboring elements have smaller weights as their distance to the central element increases. In fact, the obtained smooth starting model that only correctly keeps the long-wavelength part of the physical parameters is more or less realistic, because it quite resembles the model computed by ray-based methods such as the travel-time tomography [START_REF] Asnaashari | Regularized seismic full waveform inversion with prior model information[END_REF]. In the following tests, starting models including the P-wave velocity and the density are built by applying the Gaussian filter of 300m × 300m to the true models.

On the other hand, to relieve FWI's dependence on very low frequencies and obtain reliable results, we adopt the hierarchical multiscale strategy, i.e., successive inversions of increasing frequencies. We design six frequency windows that progressively introduce frequencies from low to high, as shown in Table 5.1. It can be seen that we do not take into account the very low frequencies (0-5Hz) in the seismic data although they can greatly prevent cycle-skipping effects especially for an inaccurate starting model. This is because such low frequencies can never be recorded in the real seismic exploration [START_REF] Virieux | An overview of full-waveform inversion in exploration geophysics[END_REF]. It is worth mentioning that we use the full time window (i.e., the entire recording time) in the inversion.

Numerical tests

Model configuration and source-receiver geometry

We consider a three-layer acoustic model that consists of two interfaces as shown in Figure 5.3. The upper interface is a random rough interface generated from the filtered Gaussian spectrum, and its average depth is 0.6km. The lower interface is a horizontal reflector which is located at the depth of 1.0km. The model has a horizontal distance of 1.5km and a depth of 1.3km. We discretize it with a grid of 1500 × 1300 points and a spatial interval of 1m. The model parameters are v P = 1500m/s, ρ = 2000kg/m 3 for the top layer, v P = 2500m/s, ρ = 2400kg/m 3 for the middle layer, and v P = 3500m/s, ρ = 3000kg/m 3 for the bottom layer. 71 shots are evenly deployed at the surface with a spacing of 20m, and the first shot excites at the horizontal distance of 50m. For each shot, 601 receivers are uniformly distributed at the surface with a depth of 1m, and the first receiver is placed at (150m, 1m). A 100Hz Ricker wavelet is used as the source time function. The seismograms are calculated using the staggered-grid finite-difference scheme with eight-order accuracy in space and second-order accuracy in time, as introduced in Chapter 2. Considering the stability condition of the finite-difference code, the time sampling is 0.1ms, and thus there are 25000 time steps for the record duration of 2.5s. Note that the top side of the model is the free surface, and the other sides of the model adopt the PML absorbing boundary conditions to mimic an infinite medium.

v P = 1500m/s, ρ = 2000kg/m 3 v P = 2500m/s, ρ = 2400kg/m 3 v P = 3500m/s, ρ = 3000kg/m 3

Flat model for comparison

For better comparison, we first give the results of the three-layer model with two flat interfaces. The model parameters and configurations are the same as those provided in Subsection 5.5.1. Figure 5.4 shows the true models of the flat three-layer model. Generally, the true models are used to produce the observed data, and to examine the quality of the inversion result. Figure 5.5 shows the starting models of the flat three-layer model used for the inversion.

The final inverted v P model of FWI after 131 iterations is shown in Figure 5.6. It presents an impressive result. Two flat interfaces are correctly positioned, and the three layers basically show homogeneous velocities. From the magnification of the area near the lower interface (see Figure 5.6(b)), it is clear that the lower interface is correctly reconstructed, and its depth shows a good match with the exact value. It is worth mentioning that some oscillations are created near the interfaces to compensate for the density contrasts [START_REF] Chauris | Full waveform inversion[END_REF] as FWI here only updates the P-wave velocity model while keeping the density model unchanged. Note that the interfaces near the side of the model are not well recovered because the source-receiver configuration used cannot record the seismic wave reflected in these areas.

In Figure 5.7, we plot the vertical velocity profile at a distance of x = 0.75km from the true model, starting model, and the inverted model, respectively for a more detailed comparison. It is clear that there is a good agreement for the P-wave velocity between the inverted and the true models. Also, we can observe the oscillations near the interfaces. Specifically, the P-wave velocity is slightly overestimated above and below the interface. In particular, the overestimation below the lower interface is higher than that below the upper interface. This is because the density contrast needed to be compensated at the lower interface is higher than that at the upper interface. On the other hand, such oscillations in the velocity reconstruction suggest that FWI focuses on the update along the interface, which is well recognized as the high-wavenumber imaging components. Meanwhile, the normalized misfit function versus the number of iterations is shown in Figure 5.8. For each inversion stage, the misfit function decreases with the iteration and converges to a considerably low value. This means that most of the data residual energy is eliminated, demonstrating the effectiveness of FWI. Although the misfit function often decreases in the first iterations, the later iterations are still necessary because they play an important role in improving the details (highwavenumber contents) in the model. It is worth noting that the misfit function always raises sharply at the first iteration of each inversion stage. This is mainly due to the different frequency contents of the data used in each inversion stage.

To further illustrate the performance of FWI, we also display the data residuals after inversion in Figure 5.9. Through calculating the traveltime of reflections based on the known model parameters, we can identify each event in the shot gather which has been denoted in Figure 5.9(a). The first two events are primary reflections from two interfaces, respectively, and other annotated events are multiples. Note that two higher-order multiples (we do not annotate them) appear at the bottom of the shot gather and their amplitudes are quite small compared to those of the primary reflections. From the shot gather computed from the final inverted model (Figure 5.9(b)), all events even including the high-order multiples are observed and they are nearly identical to those shown in the observed data (Figure 5.9(a)). The data residuals (Figure 5.9(c)) are very small compared to the observed data, indicating that most of the events are well reconstructed. Therefore, FWI provides a reliable and reasonable inverted model. 

Effects of the roughness

In this section, we will investigate the effects of the interface roughness σ on FWI results. Considering the dominant wavelength of the seismic wave used here, we choose five different roughnesses (σ = 2m, 5m, 10m, 15m, and 30m) for the upper interface in the three-layer model (see Figure 5.3) and keep its correlation length l constant with a value of 15m.

For simplicity, we only exhibit the true model and the starting model of the P-wave velocity v P , and no longer show the density model and its starting model. However, we should keep in mind that the starting model of density is required for the inversion here. After performing FWI with 152 iterations, we obtain the final inverted results shown in Figure 5.11. We can find that three layers are well retrieved, and almost show a homogeneous velocity for each one except for some oscillations near the interface because of the compensation for the density contrasts. Comparing the magnification part in Figures 5.11(b) and (c), it can be seen that the upper interface with a roughness of 2m and the lower flat interface can be well estimated. Similarly, the velocity profile taken at a distance of x = 0.75km (Figure 5.12) demonstrates that velocities are well recovered and the positions of the interfaces are correctly positioned. The normalized misfit function (Figure 5.13) decreases with the iterations for each inversion stage and ends with a relatively small residual energy, which indicates that FWI converges towards the right direction.

Also, we exhibit the data residuals for the first shot gather located at x = 50m. In the presence of the roughness of σ = 2m, some scattered energy appears in the form of random noise delayed after the reflected energy. This effect has also been demonstrated by Makinde et al. [START_REF] Makinde | Numerical modelling of interface scattering of seismic wavefield from a random rough interface in an acoustic medium: comparison between 2D and 3D cases[END_REF] and is referred to as the de-phasing. After FWI, the data residuals are at a very low level, proving that the inverted model yields a good prediction of the observed data. However, in the predicted shot gather, some scattered noise with very low amplitudes appear (as indicated by the gray arrows in Figure 5.14(b)). This is primarily caused by the oscillations of the velocity near the interfaces in the inverted model. 

σ = 5m

In the same way, we test the model with a roughness of σ = 5m. Figure 5.15 gives the true velocity model and the starting model. After 216 iterations of FWI, we obtain the inverted model as shown in Figure 5.16. To observe the inversion result in detail, the velocity profile is extracted at the same position as the previous case (see Figure 5.17). Furthermore, We show the normalized misfit function versus the number of iterations and the data residuals in Figures 5.18 and 5.19, respectively. We can see that FWI converges to a low value of residual energy and the data residuals are likewise reduced to a low level compared to the observed data. Therefore, FWI provides a reasonable result for the case of σ = 5m.

Note that, compared to the observed data in the case of σ = 2m (see Figure 5.14(a)), more incident energy is converted into the random noise, manifesting itself as incoherent events delayed after the reflected energy. In addition, the random noise that follows the multiples (see the gray arrows in Figure 5.19(a)) become serious, because these surface-related multiples (i.e., multiples between the free surface and the rough interface) interact twice with the rough interface. From the true velocity model in Figure 5.25, it is clear to see that the height of the rough interface fluctuates strongly. From the observed data (see Figure 5.29(a)), two primary reflections become incoherent, and the random noise is too strong to observe the events of the multiples. After 211 iterations, FWI yields the inverted model shown in Figure 5.26. The shape of the rough interface is well recovered, and the below flat interface seems to be also resolved. However, based on the magnified view near the flat interface (see Figures 5.26(b) and (c)), the overestimation in the position of the flat interface becomes evident, which is clearly observable in the velocity profile plotted in The convergence curve in terms of data misfit energy is shown in Figure 5.28, and the corresponding data residuals after FWI are shown in Figure 5.29. Although the convergence curve decreases rapidly with each inversion stage, the normalized misfit energy at the last iteration (about 0.2) is significantly larger than that in the previous cases (about 0.1), indicating that more data fails to be explained by FWI. This is also illustrated by the data residuals (Figure 5.29(c)): stronger data residuals remain around the primary reflections compared to the case of the roughness of 10m. This is why the underlying flat interface is not well positioned. From the inverted model shown in Figure 5.31, the shape of the rough interface is effectively rebuilt. Nevertheless, the middle layer does not display the homogeneous velocities, and the flat interface is not horizontal but somewhat down-bent especially for the central part. This is primarily attributed to a large amount of the delayed random noise caused by the overlying interface with a considerable roughness (compared to the dominant wavelength). This is clearly visible on the velocity profile extracted at x = 0.75km (see Figure 5.32). There is an obvious undulation in the velocity of the middle layer, and the depth of the flat interface shows an evident overestimation. Furthermore, we also notice that, in this case, there is a slight deviation for the depth of the rough interface. 

Numerical tests

The normalized misfit function still steadily decreases with the iteration (see Figure 5.33) and ends with a value of about 0.2 at the last iteration, which is similar to that in the case of σ = 15m. However, it takes more iterations, especially for the frequency windows with high frequencies, such as the inversion stage 5. The reason for this is that more high-wavenumber components are contained in the rough interface with the roughness of 30m, and thus FWI requires more iterations to retrieve them. From the data residuals given in Figure 5.34, we can see that more random noise remains in the data residual delayed after the two-way traveltime (TWT) of the primary reflections. This suggests that FWI is not able to well fit such part of the observed data when the interface has a roughness of 30m, thereby yielding the overdetermined depth for the interfaces. The received seismic waves from the flat interface undergoes two interactions (here transmissions) at the rough interface, while the received seismic data from the rough interface experiences only one interaction (here reflection) at the rough interface. As a result, the time delay of the random noise in the former seismic data is much larger than that in the latter one. This is why the error of the depth of the flat interface is obviously greater than that of the overlying rough interface.

Discussion

Using the inversion of models with different roughnesses (i.e., σ = 2m, 5m, 10m, 15m, and 30m) together with the flat case (i.e., σ = 0m), we can make a comparison and analysis of the inversion results.

As the roughness increases, the height of the rough interface gradually fluctuates strongly (see Figures 5.4,5.10,5.15,5.20,5.25,and 5.30). More incident energy is converted into incoherent random noise, and thus the events of the primary reflection and multiples become weaker. Such noise dominates in the shot gather and it is hard to observe the primary reflections and multiples (see the observed data in Figures 5. 9, 5.14, 5.19, 5.24, 5.29, and 5.34). When the roughness is less than 10m, the primary reflections and multiples can still be distinguished, although they become a bit discontinuous. In the case of σ = 10m, the multiples are first completely masked by the random noise (see Figure 5.24) because of the two interactions (here reflections) with the rough interface. When the roughness is larger than 10m, the random noise dominates, and in the case of σ = 30m, we hardly can see the primary reflections and multiples shown in the flat case (see Figure 5.34). Note that the random noise due to the rough interface generally is delayed after the TWT of the primary reflection and multiples, and the larger the roughness is, the longer the delay time of the random noise shows in the shot gather. Such delayed random noise that completely destroys phase relationships (in the flat case) between adjacent traces is called the phase scattering or de-phasing [START_REF] Makinde | Numerical modelling of interface scattering of seismic wavefield from a random rough interface in an acoustic medium: comparison between 2D and 3D cases[END_REF]. The underlying physics for the phase scattering is the spatial convolution of the incident wavefield with the function describing the height distribution of the random rough interface [START_REF] Makinde | Numerical modelling of interface scattering of seismic wavefield from a random rough interface in an acoustic medium: comparison between 2D and 3D cases[END_REF]. The rough interface could induce both phase scattering and amplitude scattering, however, the interface roughness generally results in the phase scattering [START_REF] Makinde | Numerical modelling of interface scattering of seismic wavefield from a random rough interface in an acoustic medium: comparison between 2D and 3D cases[END_REF][START_REF] Favretto-Cristini | PP amplitude bias caused by interface scattering: are diffracted waves guilty?[END_REF]. This is consistent with our results.

When the roughness is less than 10m (see Figures 5.6,5.11,and 5.16), the rough interface can be effectively reproduced, and the flat interface can be correctly positioned. Each layer basically shows uniform velocities, which is in good agreement with the true model. According to the magnified view near the flat interface, we can clearly observe that the flat interface is indeed reconstructed horizontally. These can be further verified by the velocity profile extract at a distance of x = 0.75km (see Figures 5.7,5.12,and 5.17). The depths of the interface are correctly determined, and the velocities are well retrieved except for some oscillations near the interface because of the compensation for the density contrasts. When the roughness is 10m, the rough interface can still be well reconstructed, but there is a slight overestimation for the depth of the flat interface (see Figure 5.21), which can be easily seen on the velocity profile in Figure 5.22. This illustrates that the phase scattering due to the roughness starts to affect the quality of the inverted results. When the roughness increases to 15m and 30m, such an effect becomes more evident (see Figures 5.26 and 5.31), though the shape of the rough interface can be basically restored. In these two cases, the roughness has a significant influence on FWI, because the delayed random noise already dominates in the observed data. This problem can be clearly observed in the velocity profile (see Figures 5.27 and 5.32). Furthermore, in the case of σ = 30m, the recovery of the velocity in the middle layer is not very good, and apart from an obvious overestimation in the depth of the flat interface, there is a small deviation of the depth of the rough interface (see Figure 5.32).

For intuitive comparison, we redraw the velocity profiles extracted from the inverted models in a figure as shown in Figure 5.35. It can be clearly observed that the flat case (i.e., σ = 0m), σ = 2m and 5m nearly have the same depth for the flat interface; in the case of σ = 10m, there is a small overestimation for the depth; however for the case of σ = 15m and 30m, the overestimation becomes remarkable. One reason why FWI does not perform so well at a large roughness may be that the recording time duration of the seismic data is not long enough. As analyzed above, a larger roughness causes random noise with a longer delay. If we use a short recording time duration, much random noise would not be recorded. Consequently, FWI may not effectively reconstruct the below interface when using the incomplete waveform. Alternatively, to quantitatively describe the effects of roughness, we define the depth of the flat interface based on the inverted velocity profiles. It corresponds to the position where the velocity difference between two adjacent grid points in the vertical direction is the largest. Theoretically, the velocity difference at the flat interface is 1000m/s which skips from 2500m/s to 3500m/s. Accordingly, we determine the depth of the flat interface for the velocity profiles shown in Figure 5.35 and list them in Table 5.2. Obviously, the depth error in the case of σ = 30m is much larger than the dominant wavelength (15m) , which may mislead the seismic interpreter and give a wrong interpretation. From the curves of the normalized misfit function versus the iteration, the misfit data energy generally decreases to a relatively low value, indicating the most of the data residual energy is eliminated (see Figures 5.8,5.13,5.18,5.23,5.28,and 5.33). It should be noted, for the roughness less than 15m, the normalized misfit energy at the last iteration is about 0.1, while for the roughness of 15m and 30m, the normalized misfit energy ends with a value of about 0.2, demonstrating that more data fails to match the observed data. However, the decreasing misfit curve with the iteration cannot always reflect that FWI converges to a true solution, because when FWI gets trapped into a local minimum model, the misfit curve also decreases. Therefore, to better evaluate the quality of a inversion result, the data residuals in the form of shot gather are checked as well. When the roughness is less than 15m, the data residuals are mainly near the TWT of the primary reflections and multiples but their amplitudes are quite low compared to those of the observed data (see Figures 5.9,5.14,5.19 and 5.24). This implies that the obtained inverted model gives a good prediction of the observed data. Together with a decrease of misfit function to a relative low level, the results of FWI are reliable and reasonable. However, when the roughness is 15m and 30m, more data residuals remain after the TWT of the primary reflections in the form of random noise (see Figures 5.29 and 5.34). This illustrates that the phase scattering due to such a roughness is so strong that FWI fails to well predict the observed data, and thereby the underlying flat interface is overestimated. This phenomenon is more serious in the case of σ = 30m because both interfaces show a depth overestimation. However, the depth overestimation of the overlying rough interface is small because the seismic waves used to recover the rough interface are mainly reflected waves that interact with the rough interface only one time.

For a given roughness, we plot the non-normalized values of the misfit at the last iteration of each inversion stage (see Figure 5.36). Generally, the misfit energy increases with the interface roughness. Specifically, the misfit curves for the roughnesses of 2m and 5m almost overlap with that of the flat case (i.e., σ = 0m), indicating that these roughnesses have basically no effects on FWI. For the case of 10m, the misfit energy slightly rises, showing that such a roughness starts to affect FWI. In the case of σ = 15m and 30m, the misfit curves are obviously higher than those of roughness less than 15m, especially for the larger inversion stage (such as the stage 6) because of the inclusion of higher frequencies. This illustrates that FWI in the case of roughness larger than 15m has a much worse match with the observed data. In other words, the roughness larger than 15m has a significant effect on FWI results. On the other hand, for a given roughness, the misfit energy usually increases with the inversion stage number. This indicates that when higher frequency contents of the seismic data are introduced into the inversion, FWI is more likely to fail to reconstruct the observed data, which confirms the fact that the high-frequency data is more sensitive to the cycle-skipping effect.

Effects of the correlation length

In this section, we will proceed to examine the effects of the correlation length l of the interface on FWI results. To achieve this, we adopt the three-layer model (see Figure 5.3) whose upper interface has different correlation lengths but the same roughness of 10m. Other parameters and configurations remain unchanged. In the following tests, we choose six different correlation lengths (l = 5m, 10m, 15m, 30m, 50m, and 100m). Note that, the case of l = 15m namely corresponds to the case of σ = 10m in Subsection 5.5.3.

l = 5m

Figure 5.37 shows the P-wave velocity model and its starting model used for the inversion. We can see that the rough interface has a high rate of change of the interface height. This means the rough interface contains many short-wavelength roughnesses that arise from the high-wavenumber contents of the Gaussian spectrum. From the observed data in Figure 5.41(a), it is clear that plenty of random noise is delayed after the TWT of the primary reflections, and the multiples are completely masked by such noise. This indicates that such a rough interface produces a strong phase scattering. After 203 iterations of FWI, we obtain the inverted model shown in Figure 5.38. The rough interface shows a good recovery and the flat interface is also well estimated (compare Figures 5.38(b) and (c)). To observe the inversion result in a more detailed way, we display the velocity profile extracted at a distance of x = 0.75km in Figure 5.39. It can be seen that there is a very small overestimation of the depth of the flat interface, and the retrieval of the velocities of the middle layer is not as good as that of the upper and the lower layers. Furthermore, to evaluate the quality of the inversion result, we provide the normalized misfit curve in Figure 5.40 together with the data residuals in one shot gather shown in Figure 5.41. The misfit energy decreases to a small level, and the quite small value implies that FWI matches well the observed data. Consequently, the inverted model is considered reliable. 

l = 30m

In the same way, we show the corresponding results for a rough interface with a correlation length of 30m. Figure 5.47 shows the P-wave velocity model and its starting model for the inversion. In this case, the height of the interface changes relatively slowly. The random noise due to the phase scattering further reduces in In the case of the correlation length of 50m, the results obtained by FWI are similar to previous results using other correlation lengths. 

Discussion

Using the inversion of models with different correlation lengths (i.e., l = 5m, 10m, 15m, 30m, 50m, and 100m) together with the flat case, we can perform a comparison and analysis of the inversion results.

As the correlation length increases, the rate of change of the interface height reduces (see Figures 5.37, 5.42, 5.20, 5.47, 5.52, and 5.57), because the width of the Gaussian spectrum that is used to generate the rough interface decreases with correlation length l, namely, a larger correlation length corresponds to a narrower wavenumber band that contains less high-wavenumber contents. Accordingly, we can see that the random noise resulting from the phase scattering is usually reduced (see the observed data in Figures 5.41 after the TWT of the reflections clearly becomes weak. For different correlation lengths, primary reflections can be identified even though their events are incoherent. However, this is not true for the multiples because the multiples undergo two reflections from the rough interface. Based on the comparisons of the results for different rough interfaces, we find that the effects of the correlation length on the seismic data (in terms of the random noise) are significantly smaller than the roughness. More precisely, the interface roughness has a major effect on the seismic wave propagation. ). Not only is the rough interface restored very well, but also the underlying flat interface is positioned to its exact depth, except for a very small overestimation that can be observed on the magnified views. Such an overestimation is mainly due to the presence of a roughness of 10m of the interface. From the velocity profiles, the velocities in the upper and lower layers are successfully retrieved (see Figures 5.39,5.44,5.22,5.49,5.54,and 5.59). However, it is worth noting that the velocities at a depth of about 0.7km are not recovered from the starting value (green line) to the exact value (blue line), especially for a correlation length less than 50m that produces a rough interface containing more small-wavelength roughnesses. This can be explained by the fact that FWI focuses on the update of the high-wavenumber contents of the rough interface.

To clearly observe the depth overestimation of the flat interface, we redraw the velocity profiles extracted from the inverted model in a figure as shown in Figure 5.62. We can find that the depth estimation of the flat interface is almost the same as that in the flat model (i.e., σ = 0m). Equally, to quantitatively study the effects of the correlation length, according to the depth definition given in the previous section, we calculate the depth of the flat interface for the velocity profiles shown in Figure 5.62 and list them in Table 5 Concerning the normalized misfit curves, the data misfit energy always decreases with the iteration and finally reduces to a low value relative to its maximum (about 0.1) (see Figures 5.40,5.45,5.23,5.50,5.55,and 5.60). This implies that most of the data misfit energy can be removed after the inversion. Also, the data residuals in the shot gather are examined. We can see that the data residuals mainly remain near the TWT of the primary reflections (see Figures 5.41, 5.46, 5.24, 5.51, 5.56, and 5.61). However, the amplitudes of the residuals are quite low compared to the observed data, which indicates that the inversion result gives a good match with the observed data. Therefore, the data misfit curves and data residuals in the shot gather suggest that for the different correlation lengths, FWI always updates towards the right direction and finally obtains a reasonable result.

Furthermore, using the original misfit values rather than the normalized ones, we plot the data misfit at the last iteration of each inversion stage versus the inversion stage number in Figure 5.63. For a given correlation length, as the inversion stage progresses, the data misfit energy usually increases because higher-frequency data are considered by the inversion. This phenomenon is similar to that in Figure 5.36. Therefore, the data misfit energy increasing with the inversion stage is not related to the interface parameters (roughness or correlation length), but only a feature of the hierarchical multiscale strategy adopted in FWI. However, it is notable that for different correlation lengths, the differences between the data misfit energy are small, and the data misfit curves are mostly concentrated below 3 × 10 -8 . This also demonstrates that the effects of the correlation length on FWI is much smaller than the height of the roughness. 

Conclusion

In this chapter, we investigated the effects of the characteristics of a rough interface on FWI. The influence of the roughness σ and the correlation length l were analyzed, respectively. Regarding FWI, we used the open-source package DENISE that implements a 2D acoustic or elastic isotropic FWI algorithm in the time domain based on the finite-difference method. For the inversion, we adopted the L-BFGS optimization algorithm to reduce the memory requirement and the parabolic interpolation method to ensure an optimal step length. To mitigate the cycle-skipping issue as far as possible, we employed a smooth model as a starting model obtained by applying a Gaussian filter to the true model, and a hierarchical multiscale strategy which progressively includes frequencies from low to high. Note that we only updated the P-wave velocity model.

First, we investigated the influence of the roughness of the upper interface of the three-layer model. It can be seen that the height of the rough interface fluctuates more strongly as the roughness increases. When the roughness increases to the size of the dominant wavelength (15m), the random

Conclusion

noise dominates and reflection events can no longer be seen on the shot gather. From the inversion, roughnesses less than 10m have little effects on the inversion results, which are as good as that given in the flat model. Not only both interfaces are well reconstructed and correctly positioned, but also the retrieved velocities in the layers are consistent with the exact values. In the case of a roughness of 10m, the roughness starts to influence FWI as we can see a small depth overestimation for the flat interface. When the roughness reaches 30m, the roughness plays an important role in FWI affecting the evaluation of the depths of the two interface and the velocity recovery of the middle layer. One possible reason for this phenomenon is the use of the seismic data with a short recording time duration such that much random noise caused by the roughness (especially for a large roughness) cannot be considered by FWI. Although the energy of random noise is weak compared to the primary reflections, it may be the necessary information to well recover the underlying interface. Overall, the phase scattering increases with the roughness, and when the roughness is greater than the dominant wavelength, it has a significant effect on FWI, especially for the estimation of the depth of the underlying interface.

Similarly, the investigation of the effects of the correlation length was accomplished using different correlation lengths for the upper interface. Obviously, the rate of change of the interface height decreases with the correlation length, indicating that the rough interface contains less shortwavelength roughnesses. Correspondingly, the random noise due to the phase scattering is reduced, but this change is less pronounced than that caused by the roughness. In other words, the effects of the correlation length on the seismic data are much smaller than that of the roughness. Generally, for different correlation lengths, FWI shows a good performance, and the data residuals show small differences, which demonstrated that the correlation length has smaller effects on FWI than the roughness. Although there is a very small depth overestimation for the below flat interface, such an overestimation is nearly the same for different correlation lengths and the flat case, indicating that this phenomenon is not mainly caused by the correlation length but by the presence of a roughness of 10m. It should be noted that the velocities at a depth of about 0.7km (in the middle layer) fail to be recovered from the starting value to its exact value for the small correlation lengths (< 50m). This is because when the interface contains many small-wavelength roughnesses, FWI would mainly focus on the update of the high-wavenumber contents of the rough interface. In short, comparing the effects of the roughness and the correlation length, it can be inferred that the interface roughness has a principal effect on the inversion results.

Chapter 6

Exploring the potential of a selective extinction method from electromagnetism to better imaging

Introduction

After the investigations in the previous chapters, we know that when the subsurface interface exhibits roughness, the phase scattering always occurs, which is manifested as random noise in the seismic data. Such random noise has significant influences on the wavefield features and FWI. In particular, FWI does not show good performance in reconstructing the flat interface below the interface with a large roughness. Therefore, the effects of the rough interface on seismic wave modeling and imaging should be critically considered when interpreting the inversion results in the presence of the rough interface. To achieve this goal, a quantitative description of this effect is preferable. However, it is quite challenging to obtain a quantitative evaluation of the impact of the targeted rough interface because the random noise always interferes with other waves, such as the reflections from other interfaces and the internal multiples. Some similar studies were performed in electromagnetics, in the case of rough surfaces inside a multistack component [START_REF] Amra | Elimination of polarized light scattered by surface roughness or bulk heterogeneity[END_REF][START_REF] Georges | Selective probing and imaging in random media based on the elimination of polarized scattering[END_REF][START_REF] Georges | Optical component interface scatter characterization by selective polarization extinction[END_REF]. It was shown that in the case of a well-chosen configuration, it was possible to selectively eliminate the scatterings from any interface or any combinations while keeping the scatterings from the interfaces to be investigated. This method in electromagnetics is referred to as the selective extinction method [START_REF] Amra | Z-probing of optical multilayers: theory[END_REF][START_REF] Georges | Selective probing and imaging in random media based on the elimination of polarized scattering[END_REF], which has been proved to be a direct and effective way to characterize the rough interface. Therefore, in this chapter, we will apply such an inspired method to the seismic data, and explore its potentialities of characterizing the rough interface in the context of exploration seismology.

In the following, we will first briefly introduce some basic electromagnetic knowledge related to the selective extinction method. Then, we review the theory of the selective extinction method in electromagnetics. Next, the implementation of the first tests of the selective extinction method in the Chapter 6 Exploring the potential of a selective extinction method from electromagnetism to better imaging seismic wave is illustrated by one simple three-layer model. We perform the numerical tests for models with two different roughnesses and quantitatively describe the effects of the rough interface based on the statistical properties of the remaining data. Finally, we draw some preliminary conclusions of this work.

Basic electromagnetic knowledge

Following the common convention in the electromagnetic wave, the electric field E and the magnetic field H verify the Maxwell relations. We usually work with one of the field, E, to those these equations, and the other field, H, can be derived from E. In the case of linear and isotropic media, E and H fields are perpendicular to the propagation direction k, and (k, E, H) forms a direct trihedron [START_REF] Born | Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light[END_REF][START_REF] Guru | Electromagnetic Field Theory Fundamentals[END_REF].

We consider two distinct homogeneous media having a planar interface between them (see Figure 6.1). This interface separates the medium 1 in the region z < 0 from the medium 2 in the region z > 0. With no loss of generality, we can choose unit vector z be the unit-normal of the interface. In this case, we refer to the xz-plane as the plane of incidence which contains the incident wavevector k i and the normal vector z. If the electric field E of the wave is perpendicular to the plane of incidence, then the wave is called a Transverse Electric (TE) wave (see Figure 6.1(a)). In contrast, if the magnetic field H of the wave is perpendicular to the plane of incidence, then the wave is called a Transverse Magnetic (TM) wave (see Figure 6.1(b)). Any polarized wave can be decomposed into TE and TM wave components. Figure 6.1 shows the TE and TM modes, where the directions of the electric and magnetic fields and the propagation direction follow the right-hand rule. Since we only consider the electric field E, TE wave becomes the electric vector denoted by the blue point in Figure 6.1(a), which is normal to the xz-plane, and TM wave becomes the electric vector indicated by the blue arrow in Figure 6.1(b), which is parallel to the xz-plane. The plane constituted by TE and TM waves is perpendicular to the direction of propagation, which is called the polarization plane, as shown in Figure 6.2(a). If we extract the polarization plane as 6.3 Theory of electromagnetic selective extinction method displayed in Figure 6.2(a), it can be seen that the polarization of the electromagnetic wave actually describes the behavior of the endpoint of the electric vector that is a composite result of TE and TM waves. If the trajectory of the composite electric vector (indicated by the green line in Figure 6.2(b)) is collinear, it will be a linear polarization; if the trajectory presents an ellipse, it will become an elliptical polarization, which is the most common situation. Two factors determine the polarization state, including the trajectory shape and the trajectory orientation: the amplitude ratio and the phase shift between TM and TE wave components.

Theory of electromagnetic selective extinction method

A selective extinction method was published in [START_REF] Amra | Elimination of polarized light scattered by surface roughness or bulk heterogeneity[END_REF][START_REF] Amra | Z-probing of optical multilayers: theory[END_REF][START_REF] Georges | Selective probing and imaging in random media based on the elimination of polarized scattering[END_REF][START_REF] Amra | Efficiency of polarimetric z probing in optical multilayers[END_REF]. It aims to implement the cancellation of the polarized light at each spatial direction. In order to achieve the extinction condition, a rotatable analyzer and a tunable retardation plate need to be deployed before the sensors. Figure 6.3 shows the experimental setup. The phase shift η(θ ) introduced by the retarder plate and the analyzer angle ψ(θ ) are adjusted to extinguish some polarized lights scattered by the sample, where θ denotes the spatial direction between the scattered light and the macro normal direction of the sample. Typically, the role of the retardation plate is to tune the elliptically polarized scattered light to be linear by introducing a phase shift η(θ ). Together with a crossed analyzer relative to the linear polarization direction, the scattered light can be eliminated, where ψ(θ ) is the included angle between the axis of the analyzer and the direction of the TE wave. Figure 6.3: The experimental setup for the selective extinction method. At each direction θ , the scattered light passes through a rotatable analyzer and a tunable retardation plate, and then is detected by the sensor. Note that we restrict our studies to the 2D case, namely the xz-plane in Figure 6.3. In this case, the phase shift η(θ ) and the analyzer angle ψ(θ ) are independent on the azimuth. This makes the measurement much more manageable since no cross-polarized light is present [START_REF] Amra | Elimination of polarized light scattered by surface roughness or bulk heterogeneity[END_REF]. Moreover, a 2D configuration is feasible to perform the experimental setup shown in Figure 6.3, because most scatterometers work in the incidence plane corresponding to a zero azimuth.

Elimination of polarized scattering

The amplitude of the electric field scattered by the sample at each direction θ in the 2D space can be expressed as:

A(θ ) = A T E (θ ) + A T M (θ ), (6.1) 
where the subscripts T E and T M represent TE and TM component of the electric field, respectively. It is worth mentioning that the amplitudes A T E and A T M are complex numbers, which actually determine the polarization state of the scattered electric field. After the retardation plate, the scattered light is imposed by an additional phase shift η(θ ) such that the final phase shift between TE and TM wave components becomes mπ (m = 0, ±1, ±2, . . . ). Consequently, the polarization state is tuned to be linear, and the equation (6.1) can be reformulated

Theory of electromagnetic selective extinction method as:

A

′ (θ ) = A ′ T E (θ ) + A ′ T M (θ ) = A T E (θ ) + e iη A T E (θ ). (6.2)
When the analyzer is rotated by an angle of ψ(θ ) with respect to the direction of TE wave, the amplitude of the scattered electric field that has been tuned as a linear polarization by the retardation is projected on the analyzer axis (see Figure 6.4). Finally, the amplitude of the scattered electric field can be re-expressed as an algebraic sum in the complex plane:

f (A, θ ) = cos(ψ)A T E (θ ) + sin(ψ)e iη A T M (θ ), (6.3) 
where i is the imaginary unit. If cos(ψ) ̸ = 0, the equation (6.3) can be simplified as:

f (A, θ ) = cos(ψ) [A T E (θ ) + α(θ )A T M (θ )] , (6.4) 
In the equation (6.4), α is a complex number whose modulus is tan(ψ) and phase is η, and satisfies:

α(θ ) = tan(ψ)e iη . (6.5) 
From the equation (6.5), we can find that α depends on both the phase shift η and the analyzer angle ψ. Experimentally, α can be changeable by adjusting the retardation plate and rotating the analyzer. Hence, we can infer that there must exist η and ψ for a specific spatial direction θ , allowing the equation (6.4) to reduce to zero provided α satisfies:

f (A, θ ) = 0 ⇔ α(θ ) = α extc (θ ) = - A T E (θ ) A T M (θ ) . ( 6 

.6)
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In this case, the intensity of the scattered electric field detected by the sensor is eliminated. Generally, the equation (6.6) is called the extinction condition. Since the value of α can be arbitrarily chosen in the complex plane, there would always exist a solution (η, ψ) to meet the extinction condition, as long as the values of η and ψ for a given direction θ take:

ψ(θ ) = arctan A T E (θ ) A T M (θ ) , η(θ ) = π + angle A T E (θ ) A T M (θ ) . (6.7) 
It can be seen that the equation (6.7) is only related to the complex amplitudes of the scattered fields. However, the scattered fields depend not only on the material and the incident angle, but also on the scattering source (such as the heterogeneous volume or the rough interface). Accordingly, the extinction condition of the scattered field is naturally affected by these factors [START_REF] Amra | Elimination of polarized light scattered by surface roughness or bulk heterogeneity[END_REF][START_REF] Georges | Selective probing and imaging in random media based on the elimination of polarized scattering[END_REF]. On the other hand, the selective extinction method provides the possibility of removing the scattered fields caused by one or more factors, such as the scattering sources, which will be discussed below.

Selective elimination

In the presence of several scattering sources [START_REF] Georges | Optical component interface scatter characterization by selective polarization extinction[END_REF], the scattered fields can be written as the sum of the scattered field A i from the scattering source i and the interaction term A * between different sources:

A(θ ) = ∑ i A i (θ ) + A * (θ ), (6.8) 
where A i is the scattered field of the single scattering source i; A * characterizes the interaction between different scattering sources, which can be defined as the difference between the total scattered field and the sum of the scattered fields of every single source. After the devices of the retardation plate and the analyzer, the equation (6.8) is transformed as:

f (A, θ ) = cos(ψ) (A T E + αA T M ) = cos(ψ) ∑ i A T E,i + A * T E + α ∑ i A T M,i + A * T M = ∑ i cos(ψ) (A T E,i + αA T M,i ) + cos(ψ) (A * T E + αA * T M ) = ∑ i f (A i , θ ) + f (A * , θ ) .
(6.9)

From the equation (6.9), we can easily find that the transformation of the sum of fields is the sum of the transformation of the individual field. This indicates the linearity property of the f transformation. Theoretically, as long as the complex number α is appropriately chosen, the scattered fields from each scattering source or the combination of some sources can be removed. For example, we can select a 6.4 Application to the land seismic data value of α such that all sources are extinguished except the kth source: .10) In order to ensure the feasibility of this method, the extinction conditions must be different for each term in the equation (6.9). In other words, the value of α for different sources or the combination of sources must be unique. Thus, it is necessary to design the proper illuminating conditions (including the incidence angle, the incident wavelength, and the polarization behavior).

α i̸ =k = - ∑ i̸ =k A T E,i + A * T E ∑ i̸ =k A T M,i + A * T M . ( 6 

Application to the land seismic data

Before applying the principles of the electromagnetic selective extinction method to address the land seismic data, we need to compare the electromagnetic and the seismic waves in terms of this electromagnetic method, which will help us better implement it in the seismic wave. 

Relative relation between polarization direction and propagation direction

As displayed in Figure 6.5, there is a noticeable differences in the relative relation between the polarization direction and the propagation direction for two types of waves. For the electromagnetic wave, the direction of propagation is perpendicular to the polarization direction of the electric field. In contrast, for the seismic wave (here, we only consider the acoustic wave case), the direction of propagation is parallel to the polarization direction of the seismic P wave.

Polarization state

The electric field can exhibit different polarization states, such as the linear polarization, circular polarization, or elliptical polarization. However, the seismic P wave always shows a linear polarization in theory.

According to the theory of the selective extinction method, one crucial step is to install a retardation plate in front of the sensor. This device introduces an extra phase shift between TE and TM components, such that the elliptically polarized electric field can be transformed into the linearly polarized one. From the aspect of the seismic P wave, such a transformation is not needed because the P wave is always a linear polarization. Although the real seismic P wave data often appears slightly elliptical polarization due to the presence of noise, the ellipticity is very small. Therefore, for the seismic data free of noise or with very little noise, we can apply the selective extinction method without tuning the x and z components of the P wave to be a perfectly linear polarization. 

Incident wave

The extinction condition (6.7) is derived using a monochromatic plane wave incidence for a given incident angle. In addition, the incident wave needs to be a linearly polarized wave. In terms of the seismic wave, it is usually excited by a point source and is a band-limited signal. As a result, the incident seismic wave contains multiple frequencies and multiple incidences. Since only seismic P wave is considered, the incident wave is linearly polarized. For the multiple frequencies, we can analyze each frequency with the help of the Fourier transform. For the multiple incidences, we can resort to the method similar to the plane-wave decomposition, which can decompose a spherical wave (cylindrical wave in the 2D case) into the plane waves with different incident angles. In this case, we may obtain the extinction condition for each frequency and each incident angle of the seismic wave.

Acquired data at the sensor (or receiver)

In the experimental measurement shown in Figure 6.3, the data recorded by the sensor is a scalar quantity that represents the intensity of the scattered electric field. However, during the derivation of the extinction condition, TE and TM components of the electric vector are required. Since the scattered electric field is detected in the different spatial directions, the recorded electric filed data will depend on the polar angle θ and the azimuthal angle ϕ (only on the polar angle θ in the 2D case). Meanwhile, the incident plane waves with different frequencies (wavelengths) also affect the recorded data. Therefore, the recorded scattered electric field can actually be expressed as a function of A(θ , f ). However, for the land seismic acquisition, the receivers can record the displacement, velocity, or acceleration of the particle in a scalar or vector manner. If the pressure sensors are used, the 6.4 Application to the land seismic data seismic data will be scalar, and if the multicomponent receivers are deployed, the seismic data will be vector. To apply the selective extinction method, we adopt the 2-component displacement data that contains the components of U x and U z . A line of receivers arranged on the surface is called the receiver array, and the receiver located at x records the displacement at different times, i.e., U(x,t) = (U x (x,t), U z (x,t)). Therefore, the recorded seismic data is related to spatial position and time.

By comparison, we can readily know that the seismic data U(x,t) and the scattered electric field A(θ , f ) are recorded in different domains and coordinates. U(x,t) is in the time domain and the Cartesian spatial coordinate, while A(θ , f ) is in the frequency domain and the spherical spatial coordinate. As a consequence, we need first to transform the seismic data into the frequency domain and then convert it to the spherical coordinate, before we apply the selective extinction method to the 2-component seismic data.

I. Transform the seismic data from the time domain into the frequency domain:

We utilize the Fourier transform to transform the seismic data at the receiver n from the time domain into the frequency domain, such that:

U n x (x, f ) = FT [U n x (x,t)] , U n z (x, f ) = FT U n z (x,t) , (6.11) 
where FT represents the forward Fourier transform and it is defined as F( f ) = FT [ f (t)] = +∞ -∞ f (t)e -2π f t dt, f is the frequency.

II. Convert the seismic data from the Cartesian coordinate to the spherical coordinate:

Then, we perform a spatial Fourier transform but replace the wavenumber k with the expression of f sin θ /v P :

B x (θ , f ) = +k ∑ n=-k U n x (x = nd, f ) exp i2πnd f v P sin θ , B z (θ , f ) = +k ∑ n=-k U n z (x = nd, f ) exp i2πnd f v P sin θ , (6.12) 
where v P is the seismic P-wave velocity; θ is the receiving angle (or the reflected angle). This transformation can be regarded as the process of the plane-wave decomposition. As illustrated in Figure 6.6, the receiving angle θ is an angle between the reflected seismic wave and the normal of the surface; d is the interval between two adjacent receivers; n is the index of the receiver in the receiver array ranging from -m to +m.

After these two steps, the seismic data has the same domain and coordinate as the electric field, so we can apply the selective extinction method to the seismic data. Note that the seismic P-wave velocity v P must be known a prior when performing the transformation based on the equation (6.12). In exploration seismology, the subsurface velocity can be achieved by the velocity model building method, such as full-waveform inversion.

Preconditions

For the electromagnetic wave, it is necessary to a prior know the scattering coefficients [START_REF] Amra | Elimination of polarized light scattered by surface roughness or bulk heterogeneity[END_REF]. If the roughness is slight, the scattering coefficients can be represented by a linear relationship between the optical factor (related to the material, incident angle, incident wavelength, scattering angle, and scattering source) and the microstructure of the rough surface (i.e., Fourier transform of the surface profile). Accordingly, the scattered field can be predicted by the first-order electromagnetic theory (i.e., Born perturbation theory). In the case of the low scattering level, the optical factor can be calculated using the first-order vector theory [START_REF] Georges | Optical component interface scatter characterization by selective polarization extinction[END_REF]. If the interface profiles are perfectly correlated, namely nearly identical, the extinction condition can be readily achieved numerically, because it does not depend on the microstructure but only on the optical factor. However, if the microstructure is uncorrelated, the extinction condition will depend on the microstructure and the cross-correlation between layers, and thus the extinction condition is hard to obtain numerically. If the roughness is strong, the scattering coefficients no longer show a linear relationship between the optical factor and the microstructure of the rough surface. In this case, the extinction condition in each scattering direction also depends on the microstructure. From an experimental point of view, the extinction condition in each scattering direction can always be determined by scanning all retarder phase shifts and analyzer angles [START_REF] Amra | Elimination of polarized light scattered by surface roughness or bulk heterogeneity[END_REF].

For the seismic wave, the extinction condition can only be obtained numerically. According to the equation (6.6), the scattered fields from the interface that we expect to remove must be known before applying the selective extinction method. Using the full-wave equation to simulate the seismic wave, the acquired seismic data is the scattered field from all interfaces. Consequently, it is difficult to 6.4 Application to the land seismic data obtain the scattered field from a specific interface, especially for the model with multiple interfaces, even though the interfaces are slightly rough and correlated. To tackle this problem, we adopt a multiple-simulation strategy. The first simulation is for the model only with the interface 1, so the scattered fields are only from the interface 1. The second simulation is for the model where the interface 2 is added below the interface 1, and the recorded scattered fields are from both the interface 1 and 2. Therefore, the scattered fields only from the interface 2 can be deduced by subtracting the scattered fields of the first simulation from the second simulation. Similarly, the scattered field only from the interface 3 can be derived from the second and third simulations, and so on. This strategy requires that the model cannot have too many interfaces. Otherwise, the computational cost will become prohibitive, which is proportional to the number of interfaces.

Remaining data after the extinction

For the electromagnetic wave, the remaining data after the extinction of the electric field from one interface becomes a scalar quantity (actually a complex number) in the frequency domain. As described in the equation (6.3), the remaining data is not an electric vector but a linear combination of TE and TM components of the remaining electric field. The weight of TE and TM components in this linear combination is related to the retarder phase shift and the analyzer angle. In other words, the data after the extinction is a relative value of the remaining electric fields. Experimentally, the data recorded by the sensor is the intensity of the scattered electric field which can be comparable with the remaining data in the calculation. Consequently, the remaining data may be explainable in terms of the recorded electric fields. However, for the 2-component seismic P wave, the data before the extinction is a vector in the time domain, but after the extinction, the data becomes a complex scalar in the frequency domain. The remaining data seems to have less physical significance. Therefore, the remaining data needs to be further explored from the perspective of seismic exploration.

Implementation of one simple example

To illustrate how the selective extinction method is applied to the seismic wave, we will show a simple example where a three-layer model with two rough interfaces (see Figure 6.7) is used. Before calculating the extinction condition (6.6), it is necessary to obtain the individual scattered wavefield from each interface. For this purpose, the distance between the two interfaces should be sufficiently large. This choice can avoid the interaction between two interfaces (i.e., internal multiples) in the recorded data, as long as the appropriate time length of the seismic trace is chosen. It is worth mentioning that there is no need to ensure that the two interfaces are perfectly correlated.

In this simple model, the scattered fields from the interface 1 and 2 (see Figure 6.7(a)) can be expressed as: U(x,t) = U 1 (x,t) + U 2 (x,t) = U 1x (x,t) + U 1z (x,t) + U 2x (x,t) + U 2z (x,t), where U 1 is the scattered fields from the interface 1 and U 2 is the scattered fields from the interface 2.

In order to obtain the individual scattered fields U 1 and U 2 , we perform numerical simulations for the two models in Figure 6.8, respectively. First, only the interface 1 is held in Figure 6.8(a), and thus the scattered fields U 1 can be synthesized. Then, the interface 2 is added into the model in configuration of this flat model is the same as that in Figure 6.9, including illumination and acquisition conditions, except that the interface 1 is replaced by a flat interface. With the help of the equations (6.11) and (6.12), the 2-component seismic data (U x (x,t),U z (x,t)) in Figure 6.11 is transformed into the frequency domain and the spherical coordinate, and finally we obtain the seismic data in the form of (B 1x (θ , f ), B 1z (θ , f )). For reference below, Figure 6.12 illustrates the amplitude ratio and the phase difference between B 1z and B 1x . The two quantities actually determine the extinction condition given in the equation (6.15). Note that the phase of the extinction condition in Figure 6.12(b) takes the absolute value of the angle of (B 1z /B 1x ). In the following, this choice for the phase is adopted unless otherwise specified. Chapter 6 Exploring the potential of a selective extinction method from electromagnetism to better imaging

Case of roughness 1m

When the interface 1 in Figure 6.9 has a roughness of 1m, we can obtain the 2-component seismic data in Figure 6. [START_REF] Frankel | A review of numerical experiments on seismic wave scattering[END_REF]. Compared with the seismic data in Figure 6.10, a large number of scattered waves caused by the roughness can be evidently observed, generally delayed after the reflected energy. Besides, many incoherent events are present after the specular reflection from the interface 2, indicating that the roughness can affect the reflections from the underlying interface. Similarly, the seismic data only from the interface 1 is obtained by using another simulation for the model only containing the interface 1 (see Figure 6.17 

Numerical tests

Based on the seismic data in Figure 6.17, we can calculate the extinction condition according to the equations (6.11), (6.12) and (6.15). Figure 6.18 shows the amplitude and the phase of the extinction condition. Also, Figure 6.19 gives the profiles extracted at a frequency of 100Hz. Compared to Figures 6.12 and 6.13, Figures 6.18 and 6.19 demonstrate that the presence of the roughness in the interface 1 has some influences on the seismic data. Specifically, the amplitude and the phase of the extinction condition obviously become dispersed. It should be noted that not all phase are located near 0 • or 180 • . Instead, many values appear between 0 • and 180 • , which is more clearly indicated by the red arrow in Figure 6. 19(b). This suggests that some seismic data shows an elliptical polarization when the roughness is present, mainly resulting from the interference of the specular reflected and the scattered waves. It is worth mentioning that the critical angle and the maximum receiving angle derived in the flat interface case are no longer applicable to the case of the rough interface, because many scattered waves are generated whose receiving angles are beyond this maximum receiving angle. After applying the extinction condition to the seismic data in Figure 6.16, we obtain the remaining data in Figures 6.20 and 6.21. Compared with the amplitude and the phase of the extinction condition in Figures 6.18 and 6.19, the remaining data after the extinction shows a significant difference. This is because the remaining data does not give the x and z components of the scattered waves from the interface 2, B 2x and B 2z , but a linear combination of B 2x and B 2z , which has been theoretically derived in the equation (6.16). Besides, the maximum receiving angle for the reflection from the interface 2 is about 16 • that is similar to the result in Figure 6.15. This is because the interface 1 with a roughness of 1m has not yet significantly affected the reflected waves from the interface 2. The shadow regions marked in Figure 6.21 approximately denote this range of the receiving angle, which is basically consistent with the main area of the amplitude and the phase in Figure 6. 

Case of roughness 5m

Now we investigate the case where the interface 1 has a roughness of 5m. The procedure is almost the same as the case of the roughness of 1m. First, we obtain the 2-component seismic data in Figure 6.22.

Compared with the seismic data in Figure 6.16, it is clearly visible that as the roughness increases, more incident energy is converted into the scattered waves, and the scattered waves show longer time delays after the primary reflection, so that the scattered wave arising from the interface 1 overlaps the scattered waves from the underlying interface 2. For the reflected waves from the interface 2, the events of the primary reflection become discontinuous and weak, and more incoherent events delayed after its primary reflection are observable, indicating that such a roughness starts to have a significant effect on the seismic data. In addition, another simulation for the model only containing the interface 1 is performed such that the scattered waves from the interface 1 can be individually obtained (see Figure 6.23). Then, we calculate the extinction condition to remove the scattered waves from the interface 1. Figure 6.24 exhibits the amplitude and the phase of the extinction condition. Compared with Figure 6.18, it can be seen that the amplitude and the phase of the extinction condition become more dispersed, especially for the phase with respect to the receiving angle between 20 • and 60 • and between -60 • and -20 • . This confirms that the effects of the roughness on the seismic data become more dominant as the roughness increases. Finally, we apply the selective method to the seismic data in Figure 6.22. The remaining data after the extinction is given in Figures 6. [START_REF] Chuang | Scattering of waves from periodic surfaces[END_REF] It is obvious that both mean and standard deviation of the amplitude increase with the roughness. On the one hand, a larger roughness generates more scatterings with non-specular reflection angles. Accordingly, more seismic waves can be recorded by the receiver array, leading to a larger mean of the amplitude of the remaining data. However, this phenomenon is not evident between the flat interface and the roughness of 1m. On the other hand, the standard deviation shows a positive correlation with the interface roughness. A larger standard deviation indicates a more dispersive amplitude along the receiving angle with respect to its mean, which shows a more intuitive physical meaning. As a consequence, the standard deviation of the amplitude of the remaining data can provide the possibility to characterize the effects of the roughness on the seismic data from the underlying interface.

Conclusion

By analogy, we apply the selective extinction method in electromagnetics into the seismic data in exploration seismology. Although the seismic data generated by the rough interface is removed after the extinction, the remaining data still contains the information of the rough interface, which has been included in the coefficients of the linear combination of x and z components of the remaining data. Therefore, based on the remaining data after the extinction, we can indirectly deduce the effects of the roughness on the seismic data in a quantitative way. Numerical tests have shown that the method is feasible for the seismic data. More importantly, the standard deviation of the remaining data can be applied to evaluate the impact of the interface roughness on the seismic data of the target structure or layer. In electromagnetics, the selective extinction method can be used to characterize the rough interface. Therefore, the selective extinction method is expected to be a potential method to obtain the characteristics of the rough interface in the seismic exploration.

Chapter 7

Conclusions and perspectives

Major outcomes

The primary objective of this thesis was to further understand the interaction of rough interfaces with seismic waves and quantitatively investigate the effects of rough interfaces on seismic wave modeling and imaging in terms of interface roughness and correlation length. We used a spectral-element method to study seismic wave modeling in the case of the periodic or random rough interface, and used FWI to explore seismic wave imaging in the presence of rough interfaces. The main conclusions are as follows:

In the context of a sinusoidal grating, our numerical results illustrated the consequences of the grating equation on seismic wave propagation in the time domain, whether the incidence is a spherical wave from a point source or a plane wave emitted by a source array. Using the frequency content of the emitted signal and the plane wave decomposition of a spherical wave, we successfully explained the appearance of different diffraction orders in the wavefield snapshot. Generally, the higher-order diffraction has a larger range of the diffraction angle. The spectrogram analysis for the single trace data demonstrated the signature of the periodic interface in the form of a linear frequency modulation. Through F-K analysis of the whole shot gather, different diffraction orders can be identified in different areas in the frequency-wavenumber domain as long as the horizontal wavenumber range of different diffraction orders do not intersect. For a given diffraction order, the horizontal wavenumber range depends on the receiver line configuration, the frequency, the velocity in the medium, and the period of the rough interface. A sensitivity analysis to these parameters indicated that the frequency, the period of the rough interface, or the offset of the receiver line have a positive correlation with the range of the horizontal wavenumber, while the wave velocity has a negative relationship with the range of the horizontal wavenumber. The horizontal wavenumber range has the highest sensitivity to the frequency, followed by the velocity. The lowest is the offset of the receiver line. Besides, the intersection of the horizontal wavenumber range between two adjacent orders increases with the frequency, the period of the rough interface, or the offset of the receiver line. In contract, it decreases with the velocity. This is quite helpful for instructing us on how to choose appropriate parameters to have separated diffraction orders in the frequency-wavenumber domain. By carefully selecting the parameters influencing the horizontal wavenumber distribution and designing the filters in the frequency-wavenumber domain, we effectively separated different diffraction orders in a shot gather.

When investigating the effects of a random rough interface on seismic wave propagation, we first generated a random rough interface using a filtered Gaussian spectrum. This spectrum-based method that had been used in ocean acoustics was applied to our studies due to a higher consistency with the rough interfaces that can be found in nature. We noticed that the correlation length of the rough interface controls the minimum spatial wavelength along the interface. A larger correlation length corresponds to a narrower spectrum i.e. a less high spatial-wavenumber content. Thus the obtained interface showed a lower rate of change in the height distribution of the rough interface. Regarding the studies of the effects of the rough interface on seismic wave propagation, they were accomplished by varying the RMS height or the correlation length of the rough interface. For a comprehensive analysis, we investigated both periodic and random rough interfaces. In general, the RMS height and the correlation length obviously influence the appearance and the energy of the diffracted wavefield. From the aspect of the RMS height (the amplitude in the case of the periodic rough interface), a rough interface with a large RMS height yielded stronger and more dispersed diffracted waves. This can be explained by the fact that the diffracted waves result from the convolution of the incident waves with the rough interface associated function. From the aspect of the correlation length (the period in the case of the periodic rough interface), a large correlation length produces more coherent and less dispersed diffracted waves. This can also be attributed to the convolution process between the incident waves and the rough interface associated function that contains less high wavenumbers. Especially, when the correlation length becomes very large relative to the incident wavelength, the characteristics of the diffracted waves are very similar to those in the case of the periodic rough interface, because the spectrum of the rough interface is close to the spectrum of a sine function. Moreover, a rough interface generates seismic data with a broader spectrum in the frequency-wavenumber domain than a flat interface. It is noticeable that the correlation length has less effect on the energy (amplitude) of the diffracted waves, which is not true for the interface roughness.

Regarding the effects of a rough interface on seismic wave imaging, we examined acoustic FWI performances as a function of the roughness and the correlation length of the rough interface. Considering the cycle-skipping effect in FWI, we discussed in depth this key issue because it may often occur when using a local optimization method. The essential reason is the non-linearity of the seismic data. To prevent the cycle-skipping effect from FWI, we adopted a smooth starting model and a hierarchical multiscale strategy based on multiple frequency windows.

In terms of the roughness effect, it was tested using different roughnesses in a three-layer model consisting of a rough interface above a flat interface. As the roughness increases, more incident energy is converted into scattered energy which manifests itself as random noise delayed after the reflected energy in the shot gather. Such a phase scattering phenomenon also confirmed the results of [START_REF] Makinde | Numerical modelling of interface scattering of seismic wavefield from a random rough interface in an acoustic medium: comparison between 2D and 3D cases[END_REF] [START_REF] Makinde | Numerical modelling of interface scattering of seismic wavefield from a random rough interface in an acoustic medium: comparison between 2D and 3D cases[END_REF]. When the roughness increases to the size of the dominant wavelength or greater, the random noise dominates in the seismic data. Correspondingly, the results of FWI are 190 7.2 Future research significantly influenced, especially for the reconstruction of the underlying reflector. In terms of the correlation length effect, it was examined using different correlation lengths for the upper interface. As the correlation length decreases, the rate of change of the interface height increases. Accordingly, the random noise resulting from the phase scattering becomes more present in the seismic data. However, such an effect is much less pronounced than the one caused by the roughness height. The inverted results also demonstrated that the correlation length has much smaller effects than the roughness height, because we obtained satisfactory results for different correlation lengths. It is worth noting that small correlation lengths often result in velocity underestimations within the layer below the rough interface. In a word, among the parameters controlling the rough interface shape, the interface roughness height has a major effect on seismic wave propagation and imaging.

When an interface becomes rough, scattering always appears, especially for a roughness height greater than the dominant wavelength. In this case, conventional imaging methods fail to converge to the correct position. Thus the shapes of the rough interfaces often cannot be reproduced correctly, and thus, the underlying reflectors cannot be imaged or positioned correctly. In contrast, our tests show that FWI can effectively address interface scattering. Although the interface roughness has an important effect on FWI results, especially for the underlying reflectors, the shape of the rough interface and the velocities within the layers can still be well reconstructed. In order to correctly interpret the inversion results, the impact of the rough interface should be critically considered in FWI especially when the roughness height is large compared to the dominant wavelength.

Another objective was to characterize the rough interface and better image the subsurface in the presence of rough interfaces. In a last chapter, we proposed to use the electromagnetic selective extinction method to process seismic data in order to remove the effects due to scattering. In this preliminary study, our numerical tests demonstrated the feasibility of this method for processing seismic data. After applying the selective extinction method, the statistical properties of the remaining data (the mean and standard deviation) can be used as an indication of the rough interface properties, because they typically show an increase with the roughness height. Alternatively, the standard deviation may provide an evaluation of the characteristics of the rough interface, which can help to better consider the effects of rough interface when analyzing the inversion results.

Future research

While the work presented in this thesis considerably improves the understanding of the effects of a rough interface on seismic wave propagation and imaging, addressing the following topics in the near future may even help to deepen this issue:

• Diffraction efficiency: The grating equation determines the angular distribution of the diffraction orders, but says nothing about how much the incident wave power goes into a specific diffraction order. In electromagnetic optics, the diffraction efficiency is defined as the modulus of the ratio of the energy flux through the same surface parallel to the mean plane of the grating between that order and the incident wave. This physical quantity may help us better understand the effect of a periodic rough interface.

• Elastic media: All investigations in this thesis were conducted in acoustic media. However, in the real case, the subsurface is an elastic medium. Furthermore, several researchers have found that the shear wave is more sensitive to the rough interface such that other important phenomena appear [START_REF] Paul | Diffraction and conversion of elastic waves at a corrugated interface[END_REF][START_REF] Prange | Perturbation approximation of 3-D seismic scattering[END_REF][START_REF] Purnell | Effects of interface roughness on wave propagation[END_REF]. Therefore, it would be more realistic to perform investigations with elastic waves.

• Stochastic analysis: Since the interaction between the incident waves and the random rough interface is a stochastic process, the scattered field from a random rough interface is a system that behaves randomly in space and time. A full description of the seismic data would therefore require some statistical quantities, such as probability density functions and field correlation functions [START_REF] Ogilvy | Theory of wave scattering from random rough surfaces[END_REF]. Naturally, it is interesting to adopt the stochastic analysis method to further explore the feature of the seismic data.

• 3D model: From a realistic perspective, the interface scattering is a 3D physical problem, and for a given roughness, the interface scattering response in the 3D situation is much stronger than in the 2D situation [START_REF] Makinde | Numerical modelling of interface scattering of seismic wavefield from a random rough interface in an acoustic medium: comparison between 2D and 3D cases[END_REF]. Our studies in the 2D situation may be inappropriate to describe the propagation of seismic waves in the presence of a rough interface. Further research needs to be carried out in a 3D framework.

• Global optimization: Considering the computational cost, FWI currently adopts the local optimization scheme. In this case, FWI is often likely to get trapped into a local minimum.

If we can implement FWI using a global optimization approach, such as Monte Carlo and simulating annealing, the global minimum would be assured.

• FWI based on SEM: Although the use of very fine regular meshes greatly reduces the stairstep effect in the finite difference method, the interface-conforming meshes are preferable to investigate the issues related to the rough interface. If a different meshing scheme with high quality can be generated for each iteration automatically, FWI based on SEM would be a better choice for our studies.

• Recording time duration: A significant advantage of FWI is to take into consideration the entire information recorded on the seismograms. However, the recording time duration of the seismic data cannot be infinite. It may be a crucial problem when using FWI to investigate the problems related to the rough interface, because the finite recording time duration cannot completely include all random noise resulting from the rough interface. In this case, FWI (actually not a really "Full" Waveform Inversion) may not perform well, especially for large roughness. To mitigate this issue, we can properly increase the recording time duration at the expense of the computational cost. In the future, the influence of the recording time duration needs to be further examined. For the electromagnetic selective extinction method, some preliminary tests have been conducted. To fully evaluate its potentialities to solve the seismic imaging issues related to the rough interface(s), some works need to be further investigated:

• The oscillation problem in the amplitude and phase of the extinction condition is always present, which does not occur in electromagnetics. Physically, our application should be correct, but technically, some points may be overlooked and need to be carefully checked.

• Although the standard deviation of the amplitude of the remaining data can indicate the characteristics of the rough interface, it is still unknown how to connect the standard deviation to the characteristics of the rough interface. If we can establish an evaluation criterion, this would be of great help to interpret the inversion results.

• Currently, only the amplitude information of the remaining data is utilized. The phase information of the remaining data should be further explored, which may be more relevant, considering the phase scattering caused by the rough interface [START_REF] Favretto-Cristini | PP amplitude bias caused by interface scattering: are diffracted waves guilty?[END_REF].

• After investigating the effects of the characteristics of a rough interface (including the roughness height and the correlation length) on seismic wave modeling and imaging, it is natural to consider how to retrieve the characteristics of the rough interface. For example, an interesting research question if it is possible to obtain a kind of function that can describe the global geometrical properties of the rough interface as much as possible.
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 21 Figure 2.1: Schematic diagram of Huygens' principle. Each point on a wavefront serves as a secondary source. The tangent surface of waves expanding from secondary sources provides the position of the wavefront at a later time. Rays perpendicular to wavefronts can be (a) straight or (b) bent. (a) Wavefronts in a homogeneous medium. (b) Wavefronts in a heterogeneous medium.
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 23 Figure 2.3: Snapshots of wave propagation in a model composed of two homogeneous half-spaces. The properties of the upper half-space are v P = 2000m/s, v S = 900m/s, and ρ = 2000kg/m 3 ; the properties of the lower half-space are v P = 2500m/s, v S = 1350m/s, and ρ = 2600kg/m 3 . The waves are generated by an explosive source. The physical quantity displayed is z component of particle velocity. The symbol i P indicates the incident P wave, r P indicates the reflected P wave, r S indicates the reflected S wave, t P indicates the transmitted P wave, and t S indicates the transmitted S wave. Wavefield snapshot at (a) 250ms and (b) 500ms. Reproduced from Ikelle and Amundsen (2018) [89].
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 25 According to the Snell's 2.4 Wave phenomena at a horizontal interface law (2.27), we can calculate the angles of the reflected wave and the transmitted wave as long as we have known the incident angle. The diagram of the raypaths of these wave are displayed in Figure 2.6.

  Figure 2.6(b).
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 2526 Figure 2.5: Snapshots of wave propagation in a model composed of two homogeneous acoustic halfspaces. The properties of the upper half-space are v P = 1500m/s, ρ = 1000kg/m 3 ; the properties of the lower half-space are v P = 1800m/s, ρ = 2000kg/m 3 . The waves are generated by an explosive source. The physical quantity displayed is pressure. The symbol i indicates the incident wave, r indicates the reflected wave, and t indicates the transmitted wave. Wavefield snapshot at (a) 300ms and (b) 550ms. Reproduced from Ikelle and Amundsen (2018) [89].
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 27 Figure 2.7: A wave hits an interface with the critical angle, producing the head wave.

Figure 2 . 8 :

 28 Figure 2.8: Illustration of head wave. The properties of the upper half-space are v P = 1850m/s, ρ = 2000kg/m 3 ; the properties of the lower half-space are v P = 4500m/s, ρ = 3000kg/m 3 . The waves are generated by an explosive source. The physical quantity displayed is pressure at 320ms. The symbol i indicates the incident wave, r indicates the reflected wave, t indicates the transmitted wave, Inhomo indicates inhomogeneous plane waves and θ ic ≈ 24.3 • . Reproduced from Ikelle and Amundsen (2018) [89].
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 229 Figure 2.9: Illustration of a snapshot in the case of v P2 < v P1 . The properties of the upper halfspace are v P = 4500m/s, ρ = 3000kg/m 3 ; the properties of the lower half-space are v P = 1850m/s, ρ = 2000kg/m 3 . The waves are generated by an explosive source. The physical quantity displayed is pressure at 260ms. The symbol i indicates the incident wave, r indicates the reflected wave and t indicates the transmitted wave.

  where Nx, Nz and Nt are the number of discrete spatial grid points and time steps, respectively.
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 31 Figure 3.1: The schema of reflection from a periodic rough surface.
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 32 Figure 3.2: The sketch of the plane wave generated by an array of burst sources.
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 333 Figure 3.3: The burst source used in the simulation: (a) time function, and (b) its amplitude spectrum in the frequency domain.

3. 4

 4 Figure 3.6: A coarse mesh for visualization. The green meshes denote the PML regions, and the black box represents the region which is zoomed for a better view.
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 37 Figure 3.7: The relationship between incident angle i and diffraction angle θ n .
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 538 Figure 3.8: The wavefield snapshots at (a) 1.02s and (b) 1.32s by using a plane wave with the incidence of 30 • .
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 5 Numerical simulations with a point source 3.5.1 Case of a half-flat-half-rough interface
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 39 Figure 3.9: The wavefield snapshot at t = 1.74s for the half-flat-half-rough model, where the green line stands for receiver line.
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 5 Numerical simulations with a point source shows in this snapshot because other parts are superposed with diffraction orders from the periodic interface.
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 310 Figure 3.10: The shot gather recorded by the receiver line 3 (left) and the zoomed part of the dashed box (right).
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 33 Figure 3.11: (a) The 276th trace of shot gather, (b) the part of direct wave and (c) the part of diffraction waves.
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 312 Figure 3.12: The amplitude spectra for (a) the direct wave related to Figure 3.11(b), and (b) the diffraction waves related to Figure 3.11(c).
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 53133 Figure 3.13: The amplitude spectra for (a) the first wave packet and (b) the second wave packet in the 276th trace record as annotated in Figure 3.11(c).
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 3316 Figure 3.15: (a) The 414th trace of shot gather, (b) the direct wave and (c) the diffraction waves.
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 5317333203213 Figure 3.17: The amplitude spectra for (a) the first wave packet and (b) the second wave packet in the 414th trace record as annotated in Figure 3.15(c).
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 5323 Figure 3.23: The right-end records of the receiver line 3 in the frequency-wavenumber domain: (a) direct wave and (b) diffractions.
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 324 Figure 3.24: The relationship between incident angle and horizontal wavenumber, supposing no limitation on the length of receiver line 3.
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 325 Figure 3.25: The relationship between incident angle and horizontal wavenumber for the right end of the receiver line 3.
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 326327 Figure 3.26: The relationship between incident angle and horizontal wavenumber for the right end of the receiver line 1.
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 328 Figure 3.28: The relationship between incident angle and horizontal wavenumber for the right end of the receiver line 2.

Figure 3 . 29 :

 329 Figure 3.29: The right-end records of the receiver line 2 in the frequency-wavenumber domain: (a) direct wave and (b) diffractions.
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 330 Figure 3.30: The relationship between incident angle and diffraction angle with considering the negative incident angles.
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 331 Figure 3.31: The wavefield snapshot at t = 1.8s for the model with the full periodic rough interface.
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 332 Figure 3.32: The shot gather recorded by the receiver line 1 (left) and the zoomed part of the dashed box (right).

Figure 3 . 33 :

 333 Figure 3.33: The relationship between incident angle and the first-arrival time for the receiver line 1.
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 625 Numerical simulations with a point source 3.5.2.

Figure 3 .Figure 3 .

 33 Figure 3.34: (a) The 414th trace in Figure 3.32, (b) the direct wave and (c) the diffraction waves.

Figure 3 . 37 :Figure 3 . 38 :

 337338 Figure 3.37: The relationship between incident angle and horizontal wavenumber for the receiver line 1 ranging from -1100m to 1100m.

Figure 3 . 39 :

 339 Figure 3.39: The sensitivity of the range of horizontal wavenumber to the frequency.

Figure

  Figure3.39 shows that the larger the frequency is, the larger the horizontal wavenumber range is, and the more the intersection between two adjacent diffraction orders is (also see Table3.2). Figure3.40 demonstrates that the larger the velocity is, the smaller the horizontal wavenumber range is, and the less the intersection between two adjacent diffraction orders is (also see Table3.2). From Figure3.41, it is clear that the larger the spatial period of the interface is, the larger the horizontal wavenumber range is, and the more the intersection between two adjacent diffraction orders is (also see Table3.2). It is worth noting that the rate of change of the horizontal wavenumber range evidently varies with different diffraction orders. Specifically, the larger the diffraction order (absolute value)

Figure 3 . 40 :

 340 Figure 3.40: The sensitivity of the range of horizontal wavenumber to the velocity.

Figure 3 . 41 :

 341 Figure 3.41: The sensitivity of the range of horizontal wavenumber to the period of a rough interface.

3. 6 Figure 3 . 42 :

 6342 Figure 3.42: The sensitivity of the range of horizontal wavenumber to the offset of receiver line 1.

Figure 3 . 43 :

 343 Figure 3.43: The relationship between incident angle and horizontal wavenumber for the receiver line 1 ranging from -400m to 400m.

Figure 3 . 44 :

 344 Figure 3.44: The shot gather recorded by the receiver line 1 ranging from -400m to 400m (left) and the zoomed part of the dashed box (right).

Figure 3 .

 3 Figure 3.46: (a) Only select the 0th diffraction order, (b) select the other diffraction orders, (c) only select the -1st diffraction order, (d) only select

Figure 4 . 1 :Figure 4 . 2 :Figure 4 . 3 :Figure 4 . 4 :

 41424344 Figure 4.1: The filtered Gaussian spectrum for different averaged spatial wavenumbers k c : (a) k c = 0.1m -1 ; (b) k c = 0.04m -1 and (c) k c = 0.01m -1 .

Figure 4 . 5 :

 45 Figure 4.5: The configuration of the source-receiver geometry for the model used.

4. 4 Figure 4 . 7 :

 447 Figure 4.7: The wavefield snapshot at t = 1.8s which is the same as Figure 3.31.

  (a), 4.12(a), and 4.15(a)), while the energy of diffracted waves increases (see Figures 4.9(b), 4.12(b), and 4.15(b)), according to the maximum value of the color-bar. This phenomenon can be attributed to the geometric spreading of the seismic wave, which indicates that the amplitude of the seismic wave decreases with the propagation distance.
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 4849410411412413414415416417 Figure 4.8: Three shot gathers recorded at (a) receiver line 1, (b) receiver line 2, and (c) receiver line 3, respectively.

Figure 4 .

 4 [START_REF] Hurich | Statistical description of seismic reflection wavefields: a step towards quantitative interpretation of deep seismic reflection profiles[END_REF] is the wavefield snapshot at the time of 1.8s, and Figure4.19 is the shot gather recorded at receiver line 2.

Figure 4 . 18 :

 418 Figure 4.18: The wavefield snapshot at t = 1.8s.

Figure 4 . 19 :

 419 Figure 4.19: The shot gather recorded at receiver line 2.

Figure 4 . 20 :Figure 4 . 21 :Figure 4 . 22 :

 420421422 Figure 4.20: The shot gather of the receiver line 2 in the frequency-wavenumber domain: (a) direct wave and (b) diffracted waves. The white dashed line represents the spectrum profile to be extracted at a frequency of 100Hz.

Figure 4 .

 4 13(b) with 4.21(b), or comparing Figure 4.14(b) with 4.22(b)

Figure 4 .

 4 25(b)). Specifically, from the spectrum profile extracted at 100Hz shown inFigures 4.26 

  and 4.27, the spectrum of the diffracted wavefield indeed changes with the horizontal wavenumber randomly, making it difficult to take advantage of such information.

Figure 4 . 23 :

 423 Figure 4.23: The wavefield snapshot at t = 1.8s.

Figure 4 . 24 :Figure 4 . 25 :Figure 4 . 26 :Figure 4 . 27 :

 424425426427 Figure 4.24: The shot gather recorded at receiver line 2.

4. 5

 5 Figures 4.28-4.32 are the related results for the rough interface with σ = 5.3m and l = 60m.

Figure 4 . 28 :

 428 Figure 4.28: The wavefield snapshot at t = 1.8s.

Figure 4 . 29 :Figure 4 . 30 :Figure 4 . 31 :Figure 4 . 32 :

 429430431432 Figure 4.29: The shot gather recorded at receiver line 2.

4. 5

 5 Figures 4.33-4.37 are the related results for the rough interface with σ = 5.3m and l = 150m.

Figure 4 . 33 :

 433 Figure 4.33: The wavefield snapshot at t = 1.8s.

Figure 4 . 34 :Figure 4 . 35 :Figure 4 . 36 :Figure 4 . 37 :

 434435436437 Figure 4.34: The shot gather recorded at receiver line 2.

  and 4.36, or Figures 4.27 and 4.37). Furthermore, compared with the results in the case of the sinusoidal rough interfaces (seeFigures 4.7

  ,

Figures 4. 38

 38 Figures 4.38-4.42 are the related results for the rough interface with σ = 2.1m and l = 150m.

  Figures 4.38-4.42 are the related results for the rough interface with σ = 2.1m and l = 150m.

Figure 4 . 38 :

 438 Figure 4.38: The wavefield snapshot at t = 1.8s.

Figure 4 . 39 :Figure 4 . 40 :Figure 4 . 41 :Figure 4 . 42 :

 439440441442 Figure 4.39: The shot gather recorded at receiver line 2.
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 55 Figures 4.43-4.47 are the related results for the rough interface with σ = 10.6m and l = 150m.

Figure 4 . 43 :

 443 Figure 4.43: The wavefield snapshot at t = 1.8s.

Figure 4 . 44 :Figure 4 . 45 :Figure 4 . 46 :Figure 4 . 47 :

 444445446447 Figure 4.44: The shot gather recorded at receiver line 2.

Figure 4 . 48 :Figure 4 . 49 :Figure 4 . 50 :Figure 4 . 51 :

 448449450451 Figure 4.48: The ensemble averaged shot gather of the receiver line 2.

Figure 5 . 1 :

 51 Figure 5.1: The parabolic interpolation method to find the optimum step length α optimal .The true misfit function (blue line) is approximated by a parabolic fitting values of the objective function (dash red line) for three different step length. Reproduced from Köhn (2011) [79].

  Figure 5.2:The schematic of cycle-skipping artifacts in FWI. The blue curve is the observed data, and the green curves denote the calculated data with different time shift with respect to the observed data, thus the misfit function between the observed and the calculated signals can be calculated through the equation (5.2), which is represented by the red curve. The peak frequency for Ricker wavelet is 2.5Hz, so the half a cycle is about T /2 ≈ 0.2s.

Table 5 . 1 :

 51 The frequency windows used for the different inversion stages in the hierarchical multiscale strategy.

Figure 5 . 3 :

 53 Figure 5.3: Velocity and density for a three-layer model with a random rough interface. The green triangles denote the receivers.

Figure 5 . 4 :Figure 5 . 5 :

 5455 Figure 5.4: True models of the the three-layer model with two flat interfaces: (a) P-wave velocity v P (unit: m/s), and (b) density ρ (unit: kg/m 3 ). In (a), the dashed black line indicates the velocity profile extracted at a distance of x = 0.75km for later comparisons.

Figure 5 . 6 :

 56 Figure 5.6: The final inverted P-wave velocity model after 131 iterations. (a) P-wave velocity v P (unit: m/s), and (b) magnification of the region between distances 0.3 and 1.2km and depths 0.8 and 1.2km represented by the green box in (a). Note that only P-wave velocity model is updated. In (a), the dashed black line indicates the velocity profile extracted at a distance of x = 0.75km for later comparisons, and in (b), the dotted black line stands for the exact position of the lower interface.

Figure 5 . 7 :

 57 Figure 5.7: The velocity profile extracted at a distance of x = 0.75km from the true model (blue line), starting model (green line), and inverted model (red line). The position of the velocity profile is indicated by the dashed lines in Figures 5.5(a), 5.6(a), and 5.7(a), respectively.

Figure 5 . 8 :Figure 5 . 9 :

 5859 Figure 5.8: The normalized misfit function versus iteration number for FWI using hierarchical multiscale strategy in terms of frequency windows. The number annotated in the parentheses represents the number of iterations for each inversion stage.

5. 5

 5 Numerical tests

5. 5 Figure 5 . 10 :

 5510 Figure 5.10 displays the P-wave velocity of the model with a roughness of 2m for the upper interface and its starting model used for the inversion. It can be intuitively seen that the roughness is very small compared to the flat model shown in Figure 5.4.

Figure 5 . 11 :

 511 Figure 5.11: The final inverted P-wave velocity model after 152 iterations. (a) P-wave velocity v P (unit: m/s), (b) magnification of the region between distances 0.3 and 1.2km and depths 0.5 and 1.1km represented by the green box in (a), and (c) magnification of the same region of the true model in Figure 5.10(a). Note that only P-wave velocity model is updated. In (a), the dashed black line indicates the velocity profile extracted at a distance of x = 0.75km for later comparisons.

Figure 5 . 12 :

 512 Figure 5.12: The velocity profile extracted at a distance of x = 0.75km from the true model (blue line), starting model (green line), and inverted model (red line). The position of the velocity profile is indicated by the dashed lines in Figures 5.10and 5.11(a), respectively.

  Figure 5.12: The velocity profile extracted at a distance of x = 0.75km from the true model (blue line), starting model (green line), and inverted model (red line). The position of the velocity profile is indicated by the dashed lines in Figures 5.10and 5.11(a), respectively.

5. 5 Figure 5 . 14 :

 5514 Figure 5.13: The normalized misfit function versus iteration number for FWI using hierarchical multiscale strategy in terms of frequency windows. The number annotated in the parentheses represents the number of iterations for each inversion stage.

Figure 5 . 15 :Figure 5 . 16 :

 515516 Figure 5.15: The three-layer model with a roughness of 5m for the upper interface. (a) The true P-wave velocity model (unit: m/s), and (b) starting model (unit: m/s) used for the inversion. The dashed black lines indicate the velocity profile extracted at a distance of x = 0.75km for later comparisons.

Figure 5 . 17 :

 517 Figure 5.17: The velocity profile extracted at a distance of x = 0.75km from the true model (blue line), starting model (green line), and inverted model (red line). The position of the velocity profile is indicated by the dashed lines in Figures 5.15and 5.16(a), respectively.

  Figure 5.17: The velocity profile extracted at a distance of x = 0.75km from the true model (blue line), starting model (green line), and inverted model (red line). The position of the velocity profile is indicated by the dashed lines in Figures 5.15and 5.16(a), respectively.

Figure 5 . 18 :Figure 5 . 19 :Figure 5 . 20 :

 518519520 Figure 5.18: The normalized misfit function versus iteration number for FWI using hierarchical multiscale strategy in terms of frequency windows. The number annotated in the parentheses represents the number of iterations for each inversion stage.

Figure 5 . 21 :

 521 Figure 5.21: The final inverted P-wave velocity model after 220 iterations. (a) P-wave velocity v P (unit: m/s), (b) magnification of the region between distances 0.3 and 1.2km and depths 0.5 and 1.1km represented by the green box in (a), and (c) magnification of the same region of the true model in Figure 5.20(a). Note that only P-wave velocity model is updated. In (a), the dashed black line indicates the velocity profile extracted at a distance of x = 0.75km for later comparisons, and in (b).

Figure 5 . 22 :

 522 Figure 5.22: The velocity profile extracted at a distance of x = 0.75km from the true model (blue line), starting model (green line), and inverted model (red line). The position of the velocity profile is indicated by the dashed lines in Figures 5.20and 5.21(a), respectively.

  Figure 5.22: The velocity profile extracted at a distance of x = 0.75km from the true model (blue line), starting model (green line), and inverted model (red line). The position of the velocity profile is indicated by the dashed lines in Figures 5.20and 5.21(a), respectively.

Figure 5 . 23 :Figure 5 . 24 :

 523524 Figure 5.23: The normalized misfit function versus iteration number for FWI using hierarchical multiscale strategy in terms of frequency windows. The number annotated in the parentheses represents the number of iterations for each inversion stage.

Figure 5 . 27 .Figure 5 . 25 :Figure 5 . 26 :

 527525526 Figure 5.27. This illustrates that, in this case, the roughness has a dominant effect on the FWI, because the random noise induced shows up significantly compared to the reflected energy (see Figure 5.29(a)).

Figure 5 . 27 :

 527 Figure 5.27: The velocity profile extracted at a distance of x = 0.75km from the true model (blue line), starting model (green line), and inverted model (red line). The position of the velocity profile is indicated by the dashed lines in Figures 5.25and 5.26(a), respectively.

  Figure 5.27: The velocity profile extracted at a distance of x = 0.75km from the true model (blue line), starting model (green line), and inverted model (red line). The position of the velocity profile is indicated by the dashed lines in Figures 5.25and 5.26(a), respectively.

Figure 5 . 28 :Figure 5 . 29 :Figure 5 . 30 :

 528529530 Figure 5.28: The normalized misfit function versus iteration number for FWI using hierarchical multiscale strategy in terms of frequency windows. The number annotated in the parentheses represents the number of iterations for each inversion stage.

Figure 5 . 31 :

 531 Figure 5.31: The final inverted P-wave velocity model after 270 iterations. (a) P-wave velocity v P (unit: m/s), (b) magnification of the region between distances 0.3 and 1.2km and depths 0.5 and 1.1km represented by the green box in (a), and (c) magnification of the same region of the true model in Figure 5.30(a). Note that only P-wave velocity model is updated. In (a), the dashed black line indicates the velocity profile extracted at a distance of x = 0.75km for later comparisons, and in (b).

Figure 5 . 32 :

 532 Figure 5.32: The velocity profile extracted at a distance of x = 0.75km from the true model (blue line), starting model (green line), and inverted model (red line). The position of the velocity profile is indicated by the dashed lines in Figures 5.30and 5.31(a), respectively.

  Figure 5.32: The velocity profile extracted at a distance of x = 0.75km from the true model (blue line), starting model (green line), and inverted model (red line). The position of the velocity profile is indicated by the dashed lines in Figures 5.30and 5.31(a), respectively.

Figure 5 . 33 :Figure 5 . 34 :

 533534 Figure 5.33: The normalized misfit function versus iteration number for FWI using hierarchical multiscale strategy in terms of frequency windows. The number annotated in the parentheses represents the number of iterations for each inversion stage.

Figure 5 . 35 :

 535 Figure 5.35: The velocity profile extracted at a distance of x = 0.75km from the inverted models using different roughnesses. The position of the velocity profile has been indicated by the dashed line in each inverted model.

Figure 5 . 36 :

 536 Figure 5.36: The curves of the misfit function versus the inversion stage for different interface roughnesses.

Figure 5 . 37 :Figure 5 . 38 :

 537538 Figure 5.37: The three-layer model with a correlation length of 5m for the upper interface. (a) True P-wave velocity model (unit: m/s), and (b) its starting model (unit: m/s). The dashed black lines indicate the velocity profile extracted at a distance of x = 0.75km for later comparisons.

Figure 5 . 39 :

 539 Figure 5.39: The velocity profile extracted at a distance of x = 0.75km from the true model (blue line), starting model (green line), and inverted model (red line). The position of the velocity profile is indicated by the dashed lines in Figures 5.37and 5.38(a), respectively.

37

 37 Figure 5.39: The velocity profile extracted at a distance of x = 0.75km from the true model (blue line), starting model (green line), and inverted model (red line). The position of the velocity profile is indicated by the dashed lines in Figures 5.37and 5.38(a), respectively.

  Figure 5.39: The velocity profile extracted at a distance of x = 0.75km from the true model (blue line), starting model (green line), and inverted model (red line). The position of the velocity profile is indicated by the dashed lines in Figures 5.37and 5.38(a), respectively.

Figure 5 . 40 :Figure 5 . 41 :Figure 5 . 42 :

 540541542 Figure 5.40: The normalized misfit function versus iteration number for FWI using hierarchical multiscale strategy in terms of frequency windows. The number annotated in the parentheses represents the number of iterations for each inversion stage.

Figure 5 . 43 :

 543 Figure 5.43: The final inverted P-wave velocity model after 199 iterations. (a) P-wave velocity v P (unit: m/s), (b) magnification of the region between distances 0.3 and 1.2km and depths 0.5 and 1.1km represented by the green box in (a), and (c) magnification of the same region of the true model in Figure 5.42(a). In (a), the dashed black line indicates the velocity profile extracted at a distance of x = 0.75km for later comparisons.

Figure 5 . 44 :

 544 Figure 5.44: The velocity profile extracted at a distance of x = 0.75km from the true model (blue line), starting model (green line), and inverted model (red line). The position of the velocity profile is indicated by the dashed lines in Figures 5.42and 5.43(a), respectively.

  Figure 5.44: The velocity profile extracted at a distance of x = 0.75km from the true model (blue line), starting model (green line), and inverted model (red line). The position of the velocity profile is indicated by the dashed lines in Figures 5.42and 5.43(a), respectively.

Figure 5 . 45 :Figure 5 . 46 :

 545546 Figure 5.45: The normalized misfit function versus iteration number for FWI using hierarchical multiscale strategy in terms of frequency windows. The number annotated in the parentheses represents the number of iterations for each inversion stage.

Figure 5 .Figure 5 . 47 :Figure 5 . 48 :

 5547548 Figure 5.47: The three-layer model with a correlation length of 30m for the upper interface. (a) The true P-wave velocity model (unit: m/s), and (b) its starting model (unit: m/s) for the inversion. The dashed black lines indicate the velocity profile extracted at a distance of x = 0.75km for later comparisons.

Figure 5 . 49 :

 549 Figure 5.49: The velocity profile extracted at a distance of x = 0.75km from the true model (blue line), starting model (green line), and inverted model (red line). The position of the velocity profile is indicated by the dashed lines in Figures 5.42and 5.43(a), respectively.

  Figure 5.49: The velocity profile extracted at a distance of x = 0.75km from the true model (blue line), starting model (green line), and inverted model (red line). The position of the velocity profile is indicated by the dashed lines in Figures 5.42and 5.43(a), respectively.

Figure 5 . 50 :Figure 5 . 51 :

 550551 Figure 5.50: The normalized misfit function versus iteration number for FWI using hierarchical multiscale strategy in terms of frequency windows. The number annotated in the parentheses represents the number of iterations for each inversion stage.

Figure 5 .Figure 5 . 52 :Figure 5 . 53 :

 5552553 Figure 5.52: The three-layer model with a correlation length of 50m for the upper interface. (a) The true P-wave velocity model (unit: m/s), and (b) its starting model for the inversion. The dashed black lines indicate the velocity profile extracted at a distance of x = 0.75km for later comparisons.

Figure 5 . 54 :

 554 Figure 5.54: The velocity profile extracted at a distance of x = 0.75km from the true model (blue line), starting model (green line), and inverted model (red line). The position of the velocity profile is indicated by the dashed lines in Figures 5.52and 5.53(a), respectively.

  Figure 5.54: The velocity profile extracted at a distance of x = 0.75km from the true model (blue line), starting model (green line), and inverted model (red line). The position of the velocity profile is indicated by the dashed lines in Figures 5.52and 5.53(a), respectively.

5. 5 Figure 5 . 56 :

 5556 Figure 5.55: The normalized misfit function versus iteration number for FWI using hierarchical multiscale strategy in terms of frequency windows. The number annotated in the parentheses represents the number of iterations for each inversion stage.

Figure 5 . 57 :Figure 5 . 58 :

 557558 Figure 5.57: The three-layer model with a correlation length of 100m for the upper interface. (a) The true P-wave velocity model (unit: m/s), and (b) its starting model (unit: m/s) for the inversion. The dashed black lines indicate the velocity profile extracted at a distance of x = 0.75km for later comparisons.

Figure 5 . 59 :

 559 Figure 5.59: The velocity profile extracted at a distance of x = 0.75km from the true model (blue line), starting model (green line), and inverted model (red line). The position of the velocity profile is indicated by the dashed lines in Figures 5.57and 5.58(a), respectively.

  Figure 5.59: The velocity profile extracted at a distance of x = 0.75km from the true model (blue line), starting model (green line), and inverted model (red line). The position of the velocity profile is indicated by the dashed lines in Figures 5.57and 5.58(a), respectively.

Figure 5 . 60 :

 560 Figure 5.60: The normalized misfit function versus iteration number for FWI using hierarchical multiscale strategy in terms of frequency windows. The number annotated in the parentheses represents the number of iterations for each inversion stage.

Figure 5 . 61 :

 561 Figure 5.61: The shot gathers computed for the first source located at x = 50m: (a) shot gather of the true model (i.e., observed data), (b) shot gather of the final inverted model, and (c) data residuals between the shot gathers (a) and (b). Note that the three shot gathers are plotted at the same scale.

  For different correlation lengths, FWI always provides a satisfactory inverted result (see Figures 5.38, 5.43, 5.21, 5.48, 5.53, and 5.58

  .

3 .

 3 It is clearly visible that there is almost no difference in the evaluation of the depth of the flat interface for different correlation lengths. This indicates that the 5.5 Numerical tests correlation length of the rough interface has very little effect on the estimation of the depth of the underlying interface.

Figure 5 . 62 :

 562 Figure 5.62: The velocity profile extracted at a distance of x = 0.75km from the inverted models using different correlation lengths. The position of the velocity profile has been indicated by the dashed line in each inverted model.

Figure 5 . 63 :

 563 Figure 5.63: The curves of the misfit function versus the inversion stage for different correlation lengths.

Figure 6 . 1 :

 61 Figure 6.1: (a) TE mode: the electric field is perpendicular to the plane of incidence; (b) TM mode: the magnetic field is perpendicular to the plane of incidence. The point (red or blue) represents the direction of the field along the positive direction of y axis.

Figure 6 . 2 :

 62 Figure 6.2: (a) The polarization plane formed by the TE and TM waves; (b) the front view towards propagation direction: the trajectory of the composite electric field vector.

Figure 6 . 4 :

 64 Figure 6.4: The schematic of the projection of the electric field on the analyzer axis after passing through the retarder.
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 41 Comparisons of electromagnetic and seismic waves 6.4.1.

Figure 6 . 5 :

 65 Figure 6.5: The relative relation between the polarization direction and the propagation direction: (a) electric field; (b) seismic P wave.

Figure 6 . 6 :

 66 Figure 6.6: The sketch map of the model configuration to record the seismic P wave. There are 2m + 1 receivers in the receiver array and the interval between two adjacent receivers is d. Note that the index of receiver in the array starts with -m.

Figure 6 . 7 :

 67 Figure 6.7: (a) The entire scattered seismic wavefield; (b) the extinction of the scattered seismic wavefield from the interface 1.

Figure 6 .Figure 6 . 8 :Figure 6 . 9 :

 66869 Figure 6.8: The substitution models used to obtain: (a) the scattered fields from interface 1, i.e., U 1 ; (b) the entire scattered fields from the interface 1 and 2, i.e., U.

6. 5 . 1 Figure 6 . 10 :

 51610 Figure 6.10: Two-component seismic data obtained from the flat model: (a) x component; (b) z component. The direct waves have been muted.

Figure 6 . 11 :

 611 Figure 6.11: Two-component seismic data obtained from the flat model only containing the interface 1: (a) x component; (b) z component. The direct waves have been muted.

Figure 6 .Figure 6 .Figure 6 .

 666 Figure 6.12: (a) The amplitude and (b) phase of the extinction condition in terms of B 1z and B 1x . The vertical dashed line corresponds to the critical angle (37 • ), and the vertical solid line denotes the maximum receiving angle (53 • ). The amplitude is plotted in a logarithmic scale.

Figure 6 . 16 :Figure 6 . 17 :

 616617 Figure 6.16: Two-component seismic data obtained from the model shown in Figure 6.9 with a roughness of 1m: (a) x component; (b) z component. The direct waves have been muted.

Figure 6 .

 6 Figure 6.18: (a) The amplitude and (b) phase of the extinction condition in terms of B 1z and B 1x . The amplitude is plotted in a logarithmic scale.

Figure 6 .Figure 6 .

 66 Figure 6.19: (a) The amplitude and (b) phase of the extinction condition extracted at a frequency of 100Hz from Figure 6.18. The red line represents the smooth curve calculated by the 1D Gaussian window.

Figure 6 .

 6 Figure 6.21: (a) The amplitude and (b) phase of the remaining data extracted at a frequency of 100Hz. The red line represents the smooth curve calculated by the 1D Gaussian window.

Figure 6 . 22 :Figure 6 . 23 :

 622623 Figure 6.22: Two-component seismic data obtained from the model shown in Figure 6.9 with a roughness of 5m: (a) x component; (b) z component. The direct waves have been muted.

Figure 6 .

 6 Figure 6.24: (a) The amplitude and (b) phase of the extinction condition in terms of B 1z and B 1x . The amplitude is plotted in a logarithmic scale.

Figure 6 .Figure 6 .

 66 Figure 6.25: (a) The amplitude and (b) phase of the extinction condition extracted at a frequency of 100Hz from Figure 6.24. The red line represents the smooth curve calculated by the 1D Gaussian window.

  and 6.27. Compared with Figure6.20, the main amplitudes (red part of color-bar) of the remaining data are dispersively distributed in the frequency-angle domain,6.6 Conclusion
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  , e = 1, . . . , n e .

	Chapter 2 Basic theory on seismic wave
	Combining with the transformation (2.47), the equation (2.45) gives:
	(2.47)

  t)

			Relations between electric and magnetic
			fluxes and electric and magnetic fields
	Source	movement in earth	vibration of charges
	Propagation medium	necessary	not necessary
		solid, liquid or gas	

vacuum Wave spectrum (Hz) 10 ∼ 60 4.5 × 10 14 ∼ 7.5 × 10 14 visible light

Table 3 .

 3 2: The intersection size of horizontal wavenumber between two adjacent diffraction orders for different parameters.

	Parameter Intersection	+2nd & +1st orders	+1st & 0th orders 0th & -1st orders	-1st & -2nd orders
		103.5	0.00239	0.02207	0.02207	0.00239
	f (Hz)	115.0	0.01132	0.02832	0.02832	0.01132
		126.5	0.02018	0.03454	0.03454	0.02018
		1350	0.01494	0.03701	0.03701	0.01494
	c (m/s)	1500	0.01132	0.02832	0.02832	0.01132
		1650	0.00861	0.02186	0.02186	0.00861
		19.0	0.00222	0.02433	0.02433	0.00222
	d (m)	21.2	0.01132	0.02832	0.02832	0.01132
		23.4	0.01853	0.03147	0.03147	0.01853
		990	0.00928	0.0236	0.0236	0.00928
	offset (m)	1100	0.01132	0.02832	0.02832	0.01132
		1210	0.01325	0.03282	0.03282	0.01325

Table 5 .

 5 2: The depth of the flat interface calculated from the velocity profiles shown in Figure5.35. 

	Roughness σ (m)	0	2	5	10	15	30
	Depth of the flat interface (m)	1004	1004	1003	1006	1014	1024

Table 6 .

 6 1: Statistical properties of the amplitude of the remaining data at 100Hz.

	Statistics	Roughness	Flat	1m	5m
		Mean	0.026157	0.028587	0.044541
	Standard deviation	0.031450	0.040087	0.064685
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Chapter 3 Wave propagation in the presence of periodic rough surface purposes. However, before using SPECFEM2D, another open-source package Gmsh [START_REF] Geuzaine | Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities[END_REF] is needed in order to generate meshes for SPECFEM2D. Figure 3.6 shows a result of the meshing of the model. The model is subdivided into quadrilateral elements in the 2D case. From the zoomed view, it can be seen that the meshes match well along with the rough interface. To better conform the rough interface, we adopt the 9 control points to define the geometry of the spectral element (quadrangle for 2D case), because 9 points can describe the curved interface more accurately.

Chapter 4 Wave propagation in the presence of random rough interface hand, this can provide a reference result that can be compared with the effect of RMS roughness σ of the random rough interface.

a = 7.5m

The wavefield snapshot at time 1.8s is displayed in Figure 4.7, and the corresponding shot gathers recorded at three receiver lines are given in Figure 4.8.

Then, we transform the shot gather into the frequency-wavenumber domain (see Figure 4.9). Note that the direct wave and diffracted waves are separately handled. In order to detailedly observe how the frequency-wavenumber spectrum changes with the wavenumber, we extract the frequencywavenumber spectrum at a frequency of 100Hz (as indicated by the white dashed line in Figure 4.9), and show them in a linear scale in Figure 4.10 and in a logarithmic scale in Figure 4.11, respectively. The reason for using a logarithmic scale is that it allows a large range of quantities to be displayed without small values being compressed down into the the bottom of the graph.

According to f transform given in the equation (6.3), we can perform the selective extinction. For example, if the scattered fields from the interface 1 are extinguished, as shown in Figure 6.7(b), the extinction condition will read:

where ψ denotes the angle between the analyzer axis and the z-axis.

After the extinction of the scattered fields from the interface 1, the intensity of the remaining scattered fields reduces to:

where

From the equation (6.16), it is clearly seen that the remaining data is actually a linear combination of the scattered fields from the interface 2, and the related linear coefficients are determined by the scattered fields from the interface 1.

Numerical tests

We will focus on an acoustic model with one rough interface and one flat interface (see Figure 6.9). In this test, we wonder whether it is possible to apply the selective extinction method to quantitatively describe the effects of the rough interface on the seismic data. The model configuration is given in Figure 6.9. The receiver array contains 1601 receivers with a depth of 200m, and the interval between two adjacent receivers is 1m. The time length of the seismogram is 1.4s. The source is deployed in the middle of the receiver array line, and its time function is Ricker wavelet with a dominant frequency of 100Hz. To avoid the artificial reflections from model boundaries, PML absorbing condition is set to all sides of the model. Note that the width of the middle medium can avoid observing the internal multiples between two interfaces for the given recording length. In addition, the critical angle between the top and middle media is about 37 • . The maximum reflection angle of the interface 1 that can be acquired by the receiver line is about 53 • , assuming that the interface 1 is flat.

As in the previous chapters, we use a filtered Gaussian spectrum to produce the random rough interface. Here we conduct tests of two different roughnesses for the interface 1 in Figure 6.9, corresponding to 1m and 5m, respectively. For better comparison, the flat model is first surveyed. The Chapter 6 Exploring the potential of a selective extinction method from electromagnetism to better imaging In this flat model, when the receiving angle is beyond the maximum receiving angle (i.e., 53 • ), the amplitude and phase should not be considered. Although some values are present, such as the phase in Figure 6.12(b), these values have no physical meanings, because the receiver array cannot record the reflections beyond the maximum receiving angle. Moreover, when the incident angle is larger than the critical angle (i.e., 37 • ), the total reflection occurs. When the receiving angle is between 37 • and 53 • , the amplitudes of the two components are approximately equal. Thus, the amplitude of the extinction condition shown in Figure 6.12(a) is around 0 in a logarithmic scale. In contrast, the phase is either about 0 • (black area in Figure 6.12(b)) or about 180 • (white area in Figure 6.12(b)). This is because the total reflected wave is completely linearly polarized.

In order to observe the amplitude and phase of the extinction condition in a more detailed way, we extract from Figure 6.12 a profile at a frequency of 100Hz (see Figure 6.13). The rather large amplitude at a receiving angle of 0 • results from a very low amplitude of the x component. In terms of the smooth line of the amplitude (Figure 6.13(a)), it follows the features of the AVO (Amplitude Versus Offset). Figure 6.13(b) illustrates that the recorded seismic data is almost linearly polarized, except that the seismic data at the very small receiving angles shows a slight elliptical polarization. This may be caused by the absence of the x component at the very small receiving angles. Therefore, even for the seismic P-wave data, the phase shift η introduced by the retarder may be still preferable when we implement the selective extinction method. At this point, we can apply the extinction method to the seismic data in Figure 6.10. The remaining data after the extinction is given in Figures 6.14 and 6.15. Since the remaining data is actually a linear combination of B 2z and B 2x , it must contain the reflection information from the interface 2. From Figure 6.14, it can be seen that the amplitudes mainly lie in the range of the receiving Chapter 6 Exploring the potential of a selective extinction method from electromagnetism to better imaging rather than concentrated in the low receiving angle area in Figure 6.20(a). For the phase, the principal variations at the low receiving angles in Figure 6.20(b) disappear and blend into other parts. All these changes can be attributable to the presence of a comparatively large roughness. In Figure 6.27, the amplitude and the phase variations at a frequency of 100Hz can be clearly observed. For a more significant roughness, plenty of scatterings with the angles different from the reflected angles are expected. This accounts for the phenomenon in Figure 6.27(a) that the amplitudes are distributed more uniformly at all receiving angles than Figure 6.21(a). Concerning the phase in Figure 6.27(b), it is more dispersed at the low receiving angles, compared with Figure 6.21(b), which is mainly due to the presence of a rough interface with high roughness.

Comparison of the remaining data

Comparing the profile of the remaining data at 100Hz in Figures 6.15, 6.21, and 6.27, we find that the amplitude of the remaining data becomes more dispersed with respect to the receiving angles as the roughness increases from 0m (i.e., flat interface) to 5m. When the interface is flat, there is only the specular reflection, so the amplitude is primarily located at low receiving angles due to the limit of the acquisition system. As the roughness rises, many scattered waves with the receiving angles different from the reflected angles in the flat case are present. In other words, due to the interface roughness, significant scattered energy appears at non-specular reflection angles, making the seismic energy scattered across all receiving angles. Regarding the phase, it vibrates more strongly and appears more irregular with respect to the receiving angle as the roughness increases.

In order to quantitatively describe the effects of the roughness on the deeper reflections based on the remaining data, we calculate the mean and the standard deviation of the amplitudes of the remaining data in Figure 6.15, 6.21, and 6.27, and list them in Table 6.1.