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A. The context and problematics

The IT sector has a very high contribution on the increase of the overall energy
consumption. Hence a CO2 emissions increase. Many methods to reduce consump-
tion in other industries or services results in more IT and telecommunications (the
”Green by IT” approach [CIG17] ) and therefore in an increase of consumption in
IT domains. Green by IT concept aims to reduce the economic, ecological and
social footprint of the company’s activities (a product or a service) through digital
technologies. Several themes can be explored: smart grids, mobility and smart trans-
portation, environmental and urban monitoring, dematerialization, remote work and
video-conferencing, intelligent buildings and eco-design software.

In the processing and the networking domain, energy optimization is mainly
based on an adaptation of the architecture and the resources employed according to
the traffic flows to be transported (or processed) and the promised quality of service
QoS. We therefore seek to adapt resources to demand, which results in a dynamic
dimensioning adapted to the load. This is by nature different from the worst-case
dimensioning commonly used. In terms of technology, this requires network equip-
ment to have ”sleep”, ”deep sleep”, or ”hibernate” modes (the terminology varies
among suppliers), but all of these modes are associated with the same concept:
putting the equipment in sleep mode to reduce its energy consumption. The deci-
sion for switching modes is not trivial, for instance putting down or in sleep mode
a device for a very short period of time could be not efficient due to the restarting
or awakening power for an eventual use. For a relevant performance/energy trade-
off, it is important to use energy consumption formulas obtained from the network
resource utilization and devices.

The methods we used in this document are based on the queueing network the-
ory, Markov chain analysis and stochastic comparison theory. We first determine
the queueing system (or Markovian process) to analyze, and then we investigate the
analytical solution for the steady-state distribution (if it exists). A semi-closed solu-
tion is suggested in Chapter 3 and product-form solutions are proposed in Chapter
6, 8, and 9. According to the nature of the system, we also perform a numerical reso-
lution using: the GTH algorithm, one of the algorithms implemented in the XBorne
tool in Chapter 2), is a very precise direct method that does not benefit from the
chain structure, the Power (Block-Power), the Gauss-Seidel (Block-Gauss-Seidel)
which are classical iterative algorithms. Block-resolution versions are efficient if the
Markov chain exhibits a block structure. The resolution of multiple blocks and their
coupling works efficiently and faster than the resolution of a large block. In that
way, we have proposed a new resolution algorithm for the ”Near Completely De-
composable (NCD)” Markov chains. This algorithm is derived from Robertazzi’s
algorithm which assumes a specific behaviour of the Markov chain (more details in
Chapter 4). After obtaining the steady-state distribution probability of the system,
we can derive various performance measures we call ’rewards’. The main advantage
of the product form solution of a network of queues is that the rewards can be
obtained separately for each queue, which facilitate the calculations. Also we can
conduct an optimization of the rewards based on a cost function that combines sev-
eral measures. We were particularly interested in efficient analytical solutions and
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fast numerical algorithms in order to conduct an optimization of the rewards for
large scale systems. Some of the rewards we have derived are: the mean number of
jobs, the mean response time, the emptiness probability of the system, the lost rate
of jobs (for example, if the queue is finite), the probability of servers switching state
(for example, from ”IDLE” to ”AWAKE” state), the mean power (and IDLE power)
consumption of the system, the energy per job consumption. The mean power and
energy consumption are derived from an energetic equation that should consider
all the states of the system. This equation varies from one model to another, and
depends on the components and features of the system.

In the application level, we have addressed several issues:

• At processing level;

– The Dynamic Voltage and Frequency Scaling (DVFS) in a processor’s
cores, The processor adapts its core’s speed to the current workload. In
order to optimize the resource utilization.

– The migration of tasks between physical servers in a cloud center. The
Over-loaded servers share a part of their workload with less-loaded servers
in order to minimize overall energy consumption and performance.

• At networking level;

– The dimensionning of an optical network by studying the resident time
of packets which is the sum of the gathering time of packets in optical
containers, the insertion time of containers in the optical network, and
the transport time of packets in the network.

– The assignment of energy packets in a sensor network (as LoRa network),
where each sensor gets energy packets from photo-voltaic solar panels and
the energy flow is stored in sensor’s battery.

B. The organization of the document
The document is composed of 5 parts (see Fig. 1). In each part, with the exception
of the introduction and perspectives, we present the state of the art of the incoming
works. In next, we give a brief review of chapters.

In the first part, a general introduction is made which covers all the chapters.
In the second part, we have brought together all the studies that have involved the
numerical analysis of Markov chains, in particular, a numerical resolution for steady-
state distribution. Whether using a classical resolution algorithm, or by proposing
a new resolution algorithm:

• Chapter 1 (state of the art): We point out some power management techniques,
and optical network technologies.

• Chapter 2 : We present the last version of XBorne a software tool for the
probabilistic modeling with Markov chains. The numerical analysis of Markov
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chains always deals with a trade-off between complexity and accuracy. There-
fore we need tools to compare the approaches, the codes and some well-defined
examples to use as a test-bed

• Chapter 3 : We proposed a comparative numerical study for a DVFS processor.
In particular, for the AMD Opteron processor. Using a global cost function, we
derive the performance and power consumption per task for different processor
configurations. In that way, we show how to determine the best configuration
for a given set of input parameters.

• Chapter 4 : Here, we collaborated on the NGREEN project that aims to
design and validate a versatile network architecture with a scalable capacity,
low cost and low energy consumption. In this work, we studied two parts of
the network. The first one, is the mechanism used to fill the optical container
with the electronic packets (i.e. Internet Protocol (IP) or Ethernet) and the
second one is the insertion node where the flows of optical containers are
queued before being emitted on the ring.

In part III, we present an analytical analysis for the energy consumption in a
cloud/data center

• Chapter 5 (state of the art) : In this chapter we recall some load balancing of
tasks strategies. Also, we have listed many power equations related to physical
servers consumption.

• Chapter 6 : In this work, we study how to optimally minimize the power
consumption using an exact analysis of the queueing network with customers
migration. We use the multi-server Jackson network to represent the behavior
of the cloud center.

In part IV, we conduct an analytical study on Energy Packet Networks (EPNs)
and G-Networks (also called Gelenbe-Networks).

• Chapter 7 (state of the art) : We discuss the previous models of the Energy
Packet Networks (EPNs) and G-networks and their resolution techniques.

• Chapter 8 : In this work, we give the proof of the product form of the steady-
state distribution of an EPN model we propose. We focus on performance
evaluation and energy losses rate. We also show how to optimize a sensor
network with a solar panels harvesting capacity. This illustrates one of the
main advantages of EPNs models. Based on its closed form solution, it is
possible to conduct an optimization of the systems utilities (rewards).

• Chapter 9 : Here, we present a proof of the product form of the steady-state
distribution of a G-network model. The proposed model is about the aging
and rejuvenation of servers. The aging of servers is triggered by a internal or
external catastrophe signal.

Finally in Part V, we examine the perspectives to further improve of our works.
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Figure 1: Chapters overview
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networking and processing systems
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1.1 Power and energy consumption strategies
Table 1.1 presents multiple surveys on energy and power consumption in different
areas of Information and communications technology (ICT): computing, storage,
data management, network, infrastructure. These surveys are mainly derived from
[DWF16], we have added new ones especially for data centres.

Technologies, methods or approaches which are used to minimize the power/energy
consumption of ICT equipment are known as Power Management Techniques [Bel+11].
In the following we will present several methods, that are widely cited in the litera-
ture ([Bel+11; OAL14; Zak18]):

1.1.1 SPM, DPM and DVFS
The energy consumption of a device (servers, disks, routers ...) is the power con-
sumption needed for the device to operate for a period of time. So in order to
minimize the energy, either the device needs less power to operate, or simply switch
it off when it is not in use. However, a switched off device is unavailable to perform
any task and might take considerable time to become available. Therefore, hard-
ware designers implement other capabilities to devices such as Dynamic Voltage
and Frequency Scaling (DVFS) so that energy can be minimized if the device is not
in use [OAL14]. Static Power Management (SPM) are techniques where system’s
behavior does not change. SPM makes the hardware suitable for Dynamic Power
Management (DPM) if the hardware has a certain capability such as DVFS, then
DPM techniques make it possible to use that hardware capability. DPM includes
methods for run-time adaptation of the system behaviour according to resource de-
mand. DPM relates to application level resource management techniques, which is
considered more energy efficient than SPM both in single server and large systems
[Bel+11].

1.1.2 Virtualization
Virtualization means to create a virtual version of a device or resource, such as a
server, storage device, network or even an operating system where the framework
divides the resource into one or more execution environments. In terms of cloud
computing and data-centers, virtualisation is considered as the most promising ap-
proach to save energy, which increases resource utilization. For different types of
workload scheduled on a virtualized and physical (non-virtualized) servers, the study
in [LA12] suggests that a virtualized server (running two VMs) can save up to 51.7%
more energy as compared to two physical servers (non-virtualized) treating the same
type of workload.

1.1.3 Scheduling – VM allocation/placement
A virtualized host can accommodate several vms and it is possible that a number
of hosts could run the VM with variations in energy use due to resource hetero-
geneity – it may take more, or less, energy to run the same VM’s work on different
hosts. A cluster scheduler is responsible to allocate hosts for VMs inside a cluster or
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Year Contributors Area of focus
2005 Venkatachalam et al.

[VF05]
Power consumption of micropro-
cessor systems

2011 Beloglazov et al.
[Bel+11]

Energy-efficient design of data
centers and cloud computing sys-
tems

2011 Wang et al. [Wan+11] Energy-saving techniques for data
management

2012 Reda et al. [RN12] Power modeling and characteriza-
tion for processors

2012 Sekhar et al. [SJD12] Servers consolidation with Vir-
tual Machine (VM) live migration

2013 Ge et al. [GSW13] Energy efficiency of data centers
and content delivery networks

2013 Bostoen et al.
[BMB13]

Power reduction techniques for
data-center storage systems

2014 Orgerie et al. [OAL14] Energy efficiency of computing
and network resources

2014 Mittal [SMi14] Energy efficiency in embedded
computing systems

2014 Mittal et al. [SV14] GPU energy efficiency
2014 Hammadi et al.

[HM14a], Bilal et al.
[al14; BKZ13]

Data center networks and their
energy efficiency

2014 Ebrahimi et al.
[EJF14]

Data center cooling technology

2014 Rahman et al.
[RLK14], Mittal
[Mit14]

Data center power management

2014 Gu et al. [GHJ14] VM power metering
2014 Kong et al. [KL14] Renewable energy usage and/or

carbon emission in data centers
2015 Mastelic et al.

[Mas+15]
Energy efficiency in ICT technol-
ogy

2016 Shuja et al. [al16] Data center energy efficiency
2018 Zakarya [Zak18] Different approaches to make

data-centers greener

Table 1.1: Comparison of related surveys .

data-center [Ver+15]. Therefore, to reduce the energy consumption and guarantee
the desired level of performance, it is essential to allocate energy and performance
efficient resources. There are many of scheduling and VM placement (optimal,

24



heuristics and approximate) algorithms available in the literature [Bel+11; Ver+15;
TNR11; VAN08; BKB07].

1.1.4 Consolidation
Virtualization allows gathering several virtual machines into a single physical server
using a technique called VM consolidation. VM consolidation can provide signif-
icant benefits to cloud computing by facilitating better use of the available data
center resources [Abd+14]. It can be performed either statically or dynamically. In
static VM consolidation, the Virtual Machine Monitor (VMM) allocates the physical
resources to the VMs based on peak load demand. This leads to resource wastage
because the workloads are not always at peak. In case of dynamic VM consolidation,
the VMM adapts the VM capacities according to the current workload demands (re-
sizing). This helps in utilizing the data centers resources efficiently. In [Rei+12]
the authors suggest that in Google’s cluster, hosts are not highly utilized, and some
power might be saved through consolidation. Studies [Rei+15; Cou14] also suggest
that approximately 30% of the running servers in US datacenters are idle and the
others are under-utilized, making it possible to save energy and money by using VM
consolidation to reduce the number of hosts in use.

1.1.5 Thresholds strategies
Stochastic methods and queuing theory together provide a valuable approach to
answer important questions about data centre systems, in particular performance
and power/energy consumption. In [Mit11] Mitrani proposed a dynamic operating
policy where a subset of the available servers is designated as ’reserve’. The state
of the reserves is controlled by two thresholds: they are powered up when the num-
ber of jobs in the system becomes sufficiently high, and are powered down when
that number becomes sufficiently low. For analytic study, Mitrani uses generating
functions to solve system’s balance equations. Then he expressed losses (R) and
server’s energy consumption (S) in a single function C = c1R+ c2S. Using heuristics
this function is minimized and optimal values of thresholds are derived. In chapter
2 we studied two variations of this model using XBorne tool (a software tool for
the probabilistic modeling with Markov chains). Authors In [MD15] used only one
threshold. It could be seen as an particular case of Mitrani’s model when the two
thresholds are equal. But the queue has only one server and many server’s state
are considered (LOW, SETUP, BUSY, IDLE, OFF). Other well-known threshold
strategy is the hysteresis queueing system [LG99; Sho+15; Tou+]. This k servers
model uses k−1 thresholds to power on (F1,F2, . . . ,Fk−1) or power off (R1,R2, . . . ,Rk−1)
the servers. For instance, when a customer arrives to an empty system, it is served
by a single server. Whenever the number of customers exceeds a forward threshold
Fi , a server is added to the system. Whenever the number of customer falls be-
low a reverse threshold Ri , a server is removed from the system. Using stochastic
complement many variation of this model (as (1) homogeneous servers with Poisson
arrivals, (2) homogeneous servers with bulk (Poisson) arrivals and (3) heterogeneous
servers with Poisson arrivals ) is studied in [LG99]. Also in [Tou+] authors propose
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effective optimization methods (heuristics and Markov chain aggregation) for the
search for threshold values that minimize an overall cost function that considers
performances and resource use. These thresholds strategies could be very efficient if
the powering on/off of servers is instantaneous (which is not often verified in server’s
data center).

Many communication networks and computer systems use load balancing to im-
prove performance and resource utilization. The ability to efficiently divide service
requests among system resources can have a significant effect on performance and
energy consumption. Static [SM91; Sou+12] load balancing mainly based on the
information about the average of the system work load. It does not take the ac-
tual current system status into account. In [AD85] static load balancing algorithms
aim at finding optimal customer routing to optimize the throughput and other per-
formance indices under certain constraints. Dynamic or adaptive load balancing
policies are the most efficient ones. The system reacts dynamically to the network
state and traffic is directed to routes with less load or extra load, depending on a
cost function. Dynamic load balancing algorithms are usually classified into two
families: receiver-initiated and sender-initiated [DEJ86]. In the first case, an over-
loaded node decides to send some of its job to another node that receives them and
tries to process or reallocate them elsewhere. In the latter case, it is the receiver that
decides when it can poll another node to import some of its jobs. In [DEJ86] also in
[RDJ90] for heterogeneous systems, authors compare sender- and receiver-initiated
strategies and conclude that, under heavy load, receiver-initiated algorithms give
lower expected response time than sender-initiated one. Also In [ASJ17], authors
address the problem of dynamic load balancing for networks with open topology
where an arbitrary number of nodes implement a receiver-initiated dynamic load
balancing algorithm. The algorithm’s point is to compute the polling rates among
the network stations that ensure both the network to be in product-form and that
the sets of specified stations have their load balanced.

Regarding the literature on product-form analysis (see e.g. [SJH13; SA13; GM15;
Gar+16] ) for some works in the field, Load Balancing (LB) networks present im-
portant particularities. Compared to the literature on signals in G−networks and
similar models ([XMM99; Gel93a; Gel93b; Gel93d; FV95; AB12]), LB networks
have the property that the network population is preserved by node interactions. In
Chapter 6, we present a study based on the load balancing between physical servers,
in order to reduce energy consumption of the system.

1.2 Optical networks
In order to respond to the continued growth in data traffic, new technologies and
network structures must be implemented. For example, with the evolution of com-
munication materials, electrical cables have been replaced by optical fibres, which
has made it possible to increase the bandwidth of communication channels from
Kbit/s to Tbit/, thanks to new multiplexing technologies such as Wavelength Divi-
sion Multiplexing (WDM). In optical networks The two leading multiplexing tech-
nologies are: Optical Time Division Multiplexing (OTDM) and WDM .
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1.2.1 OTDM and WDM Multiplexing technologies
In OTDM, lower bit rate optical streams are assigned to different time slots on
the multiplexed channel [TEK88]. In other words, it’s practical to combine a set
of low-bit-rate streams, each with a fixed and pre-defined bit rate, into a single
high-speed bit stream that can be transmitted over a single channel. In contrast
to WDM, OTDM only uses one wavelength. WDM technology is very similar to
can allow multiple non-overlapping wavelength channels to transmit in the same
optical fibre link. Each of these channels can operate at a different data rate.
Essentially, the bandwidth capacity of the optical fibre is multiplied by the number of
wavelengths multiplexed onto it. Each wavelength being an independent channel can
transmit data at a different rate [Don12]. This parallelism mechanism increases the
bandwidth, consequently reduces the optical fibre cable cost and use of equipment.

1.2.2 Optical Switching methods
An optical switch is a multi-port network bridge which connects multiple optic fibers
to each other and controls data packets routing between inputs and outputs. Some
optical switches convert light to electrical data before forwarding it and converting it
into a light signal again. The main objectives of optical switching are (a) increasing
bandwidth (b) reducing protocol issues and density of the network. For that purpose,
in below we present briefly the three main optical switching techniques:

• Optical Circuit Switching (OCS), was the first optical switching technique used
in optical networks. In OCS the network is configured to establish a circuit,
from an entry to an exit node, by adjusting the optical cross connect circuits in
the core routers in a manner that the data signal, in an optical form, can travel
in an all-optical manner from the entry to the exit node. Ideally, the packets
that enter the network should be transported from the ingress to the egress
point in an all-optical form. The technology needed to process the headers
of the packets using only optics is not yet available, and thus, the packets
need to be converted to electrical form so that current electronic integrated
circuits can interpret the header and make the convenient routing decisions
[11b]. This approach suffers from all the disadvantages of circuit switching
i.e. the circuits require time to set up and to destroy, and while the circuit
is established, the resources will not be efficiently used to the unpredictable
nature of network traffic.

• Optical Packet Switching (OPS), in OPS the payload is switched optically.
OPS can be faster, and also cheaper to purchase and maintain than traditional
switching [SZC09]. OPS hardware could lower power requirements, dissipate
less heat and take less space compared to electronic equipment [31]. We can
expect OPS to eventually replace traditional electronic switching, because
optical network equipment is cheaper to maintain, more reliable and consume
less energy [Ram06] then their electronic counterparts.

• Optical Burst Switching (OBS) is used in core networks, and viewed as a
feasible compromise between the existing Optical Circuit Switching OCS and
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the yet not viable Optical Packet Switching OPS [11a]. In OBS, the packets
are aggregated in the entry node, for a very short period of time. This allows
that packets that have the same constraints (the same destination, the same
quality of service requirements...) are sent together as a burst of data. When
the burst arrives at the exit node, it is disassembled and gathered packets are
routed to their destination.
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2.1 Introduction
We present the last version (2016) of XBorne a software tool for the probabilistic
modeling with Markov chains. The tool which has been developed initially as a test-
bed for the algorithmic stochastic comparisons of stochastic matrices and Markov
chains, is now a general purpose framework which can be used for the Markovian
modelling in education and research.

The numerical analysis of Markov chains always deals with a trade-off between
complexity and accuracy. Therefore we need tools to compare the approaches, the
codes and some well-defined examples to use as a test-bed. After many years of
development of exact or bounding algorithms for stochastic matrices, we have gath-
ered the most efficient into XBorne, our numerical analysis tool [Fou+03]. Typically
using XBorne, one can easily build models with tens of millions of states. Note that
solving any questions with this size of models is a challenging issue. XBorne was
developed with the following key ideas:

1. Build one software tool dedicated to only one function and let the tools com-
municate with file sharing

2. If another tool already exists for free and is sufficiently efficient, use it and
write the export tool (only create tools you cannot find easily).

3. Allow to recompile the code to include new models.

4. Separate the data and the description of the data.

As a consequence, we have chosen to avoid the creation of a new modelling language.
The models are written in C and included as a set of 4 functions to be compiled by
the model generator. This aspect of the tool will be emphasized in section 2 with
the presentation of an example (a queue with hysteresis). The tool decomposition
approach will also be illustrated in the study.

XBorne is now a part of the French project MARMOTE which aims to build a
set of tools for the analysis of Markovian models. It is based on PSI3 to perform
perfect simulation (i.e. Coupling from the past) of monotone systems and their
generalizations [Bus+10], MarmoteCore to provide an object interface to Markov
objects and associated methods, and XBorne that we will present in this study. The
aim of XBorne (and the other tools developed in the MARMOTE project) is not
to replace older modeling tools but to be included into a larger framework where
we can share tools and models developed in well-specified frameworks which can be
translated into one another. XBorne will be freely available upon request.

The technical part of this work is as follows: in section 2.2, we present how we
can build a new model. We show in section 2.3 how it can be solved and we present
some numerical results. In section 2.4, we consider the quasi-lumpability technique.
We modify the Tarjan and Paige approach used for the detection of macro-states
for aggregation or bi-simulation [VF10] to relax the assumption on the creation of
macro states and accommodate a quasi-lumpable partition of the state space. In
section 2.5 we show how to build, solve and extract some rewards in a Birth-death
process . Section 2.6 is devoted to the study of performance and power consumption
in a threshold queuing system using XBorne.
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2.2 Building a model with XBorne
XBorne can be used to generate a sparse matrix representation of a Discrete Time
Markov Chain (DTMC) from a high level description provided in C. Continuous-time
models can be considered after uniformization (see the example in the following).
Like many other tools, the formalism used by XBorne is based on the description
of the states and the transitions. All the information concerning the states and the
transitions are provided by the modeler using 2 files (1 for the constants and one for
the code, respectively denoted as ”const.h” and ”fun.c”). States belong to a hyper-
rectangle the dimension of which is given by the constant NEt. The bounds of the
hyper-rectangle must be given by function ”InitEtendue()”. The states belong to
the hyper-rectangle and they are found by a Breadth-First Search (BFS) visit from
an initial state given by the modeler through function ”EtatInitial()”.

The transitions are given in a similar manner. The constant ”NbEvtsPossibles”
is the number of events which provoke a transition. The idea is that an event is
a mapping applied to a state (not necessarily a one to one mapping). Each event
has a probability given by function ”Probabilite()” and its value may depend on
the state description. The mapping realized by an event is described by function
”Equation()”. To conclude, it is sufficient to describe 4 functions in C and some
definitions and recompile the model generator to obtain a new code which builds
the transition probability matrix.

#define NEt 2 #define NbEvtsPossibles 4
#define AlwaysOn 10 #define BufferSize 20
#define OnAndOff 5 #define UPandDOWN 0
#define WARMING 1 #define ALL_UP 2
#define UP 10 #define DOWN 5

We now present an example for the various definitions and functions which are
written in the files ”const.h” and ”fun.c” to describe the model developed by Mitrani
in [Mit11] to study the tradeoff between power consumption and quality of service in
a data-center. It is a model of a M/M/(a+b) queue with hysteresis and impatience.
We have slightly changed the assumptions as follows: the queue is finite with size
”BufferSize”. The arrivals still follow a Poisson process with rate ”Lambda”. The
services are exponential with rate ”Mu”. Initially only ”AlwaysOn” servers are
available. Once the number of customers in the queue is larger than ”UP”, another
set (with size OnAndOff) of servers is switched on. The switching time has an
exponential duration with rate ”Nu”. If the number of customers becomes smaller
than ”DOWN”, this set of servers is switched off. This action is immediate. As
NEt=2, a state is a two dimension vector. The first dimension is the number of
customers and the second dimension encodes the state of the servers. The initial
state is an empty queue with the extra block of servers which is not activated.

void InitEtendue()
{

Min[0] = 0; Max[0] = BufferSize; Min[1] = UPandDOWN; Max[1] = ALL_UP;
}
void EtatInitial(E)
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int *E;
{

E[0] = 0; E[1] = UPandDOWN;
}
double Probabilite(int indexevt, int *E) {

double p1, Delta;
int nbServer, inserv;
nbServer = AlwaysOn;
if (E[1]==ALL_UP) {nbServer += OnAndOff;}
inserv = min(E[0], nbServer);
Delta = Lambda + Nu + Mu*(AlwaysOn + OnAndOff);
switch (indexevt) {

case ARRIVAL: p1 = Lambda/Delta; break;
case SERVICE: p1 = (inserv)*Mu/Delta; break;
case SWITCHINGON: p1 = Nu/Delta; break;
case LOOP: p1 = Mu*(AlwaysOn + OnAndOff - inserv)/Delta; break;

}
return(p1);

}

The model is in continuous time. Thus we build an uniformized version of the
model adding a new event to generate the loops in the transition graph which are
created during the uniformization. After this process we have 4 events: ARRIVAL,
SERVICE, SWITCHINGON, LOOP. In all the functions, E and F are states. The
generation tool creates 3 files: one contains the transition matrix in sparse row
format, the second gives information on the number of states and transitions and
the third one stores the encoding of the states. Indeed the states are found during
the BFS visit of the graph and they are ordered by this visit algorithm. Thus, we
have to store in a file the mapping between the state number given by the algorithm
and the state description needed by the modeler and some algorithms.

void Equation(int *E, int indexevt, int *F, int *R)
{

F[0] = E[0]; F[1] = E[1];
switch (indexevt) {

case ARRIVAL: if (E[0]<BufferSize) {F[0]++;}
if ((E[0]>=UP) && (E[1]==UPandDOWN)) {F[1]=WARMING;}
break;

case SERVICE: if (E[0]>0) {F[0]--;}
if ((F[0]==DOWN) && (E[1]>UpandDOWN)) {F[1]=UPandDOWN;}
break;

case SWITCHINGON: if (E[1]==WARMING) {F[1]=ALL_UP;}
break;

case LOOP: break;
}

}

Once the steady-state distribution is obtained with some numerical algorithms,
the marginal distributions and some rewards are computed using the description
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of the states obtained by the generation method and comes codes provided (and
compiled) by the modeler to specify the rewards (see in the left part of Fig. 2.1 the
marginal distribution for the queue size).
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Figure 2.1: Mitrani’s model. Steady-state for the queue size (the first figure in above).
Sample path of the state of the servers (the second figure in above).

2.3 Numerical Resolution
In XBorne, we have developed some well-known numerical algorithms to compute
the steady-state distribution (Grassmann, Taksar and Heymann (GTH) for small
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matrices), Over-Relaxation (SOR) and Gauss Seidel for large sparse matrices but
we have chosen to export the matrices into MatrixMarket format to use state of the
art solvers which are now available on the web. But we also provide new algorithms
for the stochastic bounds or the element-wise bound of the matrices, the stochastic
bound or the entry-wise bounds of the steady-state distribution. These bounds are
based on the algorithmic stochastic comparison of Discrete Time Markov Chain
(see [FP02] for a survey) where stochastic comparison relations are mitigated with
structural constraints on the bounding chains. More precisely, the following methods
are available:

• Lumpability: to enforce the bounding matrix to be ordinary lumpable. Thus,
we can aggregate the chain [FLQ04].

• Pattern based: to enforce the bounding matrix to follow a pattern which
provides an ad-hoc numerical algorithm (think at a upper Hessenberg matrix
for instance) [BF05].

• Censored Markov chain: only the useful part of the chain is censored and
we provide bounds based on this partial representation of the chain [DPY06;
BDF12].

Other techniques for entry-wise bounds of the steady state distribution have also
been derived and implemented [BF11]. They allow in some particular cases to deal
with infinite state space (otherwise not considered in XBorne).

More recently, we have developed a new low rank decomposition for a stochastic
matrix [BFB14]. This decomposition is adapted to stochastic matrices because it
provides an approximation which is still a stochastic matrix while singular value
decomposition gives a low rank matrix which is not stochastic anymore. Our low
rank decomposition allows to compute the steady-state distribution and the tran-
sient distribution with a lower complexity which takes into account the matrix rank.
For instance, for a matrix of rank k and size N, the computation of the steady-state
distribution requires O(Nk2) operations. We also have derived algorithms to provide
stochastic bounds with a given rank for any stochastic matrix (see [BFB14]).

Note that the integration with other tools we mention previously is not limited
to numerical algorithms provided by statistical package like R. We also use their
graphic capabilities and the layout algorithms. We illustrate these two aspects in
Fig. 2.2. In the left part we have drawn the layout of the Markov chain associated
with Mitrani’s model for a small buffer size (i.e. 20). We have developed a tool
which reads the Markov chains description and write it as a labelled directed graph
in ”tgf” format. With this graph description, we use the graph editors available
on the web to obtain a layout of the chain and to visualize the states and their
transitions. On the right part of the figure, we have depicted a heat diagram for
the mean power consumption associated to Mitrani’s model for all the values of the
thresholds U and D.
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Figure 2.2: Mitrani’s model. Directed graph of the chain (left). Mean power consumption
(right).

2.4 Quasi-Lumpability
Quasi-Lumpability testing has been recently added into XBorne to analyze very
large matrices. The numerical algorithms which have been developed are also used
to analyze stochastic matrices which are not completely specified. It is well-known
now that Tarjan’s algorithm can be used to obtain the coarsest partition of the state
space of a Markov chain which is ordinary lumpable and which is consistent with an
initial partition provided by the modeler. Lumpable matrix can be aggregated to
obtain a smaller matrix, easier to analyze. Logarithmic reduction in size are often
reported in the literature. We define quasi-lumpability of partition A1, A2, . . . , Ak with
threshold ϵ of stochastic matrix M as follows: for all macro-states Ai and A j we have

max
l1,l 2∈Ai

| ∑
k∈A j

M(l1,k)− ∑
k∈A j

M(l2,k)| = E(i , j ) ≤ ϵ. (2.1)

When ϵ = 0 we obtain the definition of ordinary lumpability. We have modified
Tarjan’s algorithm to obtain a partition which is quasi-lumpable given an initial
partition and a maximum threshold ϵ. The output of the algorithm is the coarsest
partition consistent with the initial partition and the real threshold needed in the
algorithm (which can be smaller than ϵ). Note that the algorithm always returns a
partition. However the partition may be useless as it may have a large number of
nodes. The next step is to lump matrix M according to the partition found by the
modified Tarjan’s algorithm. If the real threshold needed is equal to 0, the matrix
is lumpable and the aggregated matrix is stochastic. It is solved with classical
methods.

If the threshold needed is positive, we obtain two aggregated matrices Up and
Lo: one where the transition probability between macro states Ai and A j is equal to
maxl∈Ai

∑
k∈A j

M(l ,k) and one where it is equal to minl∈Ai

∑
k∈A j

M(l ,k). Up is super-
stochastic while Lo is sub-stochastic. These two bounding matrices also appear when
the Markov chains are not completely specified and transitions are associated with
intervals of probability. We have implemented Courtois and Semal algorithm [CS85]
to obtain entry-wise bounds on the steady-state distribution of all matrices between
Up and Lo. We are still conducting new research to improve this algorithm.
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2.5 Birth-death process
Birth-death processes have been used in many applications including ecology, pop-
ulation genetics, epidemiology, and queuing theory. Here we are interested in birth-
death processes that generate the same state transition rate after a given state (such
as a M/M/C queue). For example, to study the average response time of a data
processing server, birth transitions will represent the arrival of tasks and death tran-
sitions represent the processing of tasks. For this type of system, the resolution of
the steady-state is half numerical (from state 0 to the given state) and half analyti-
cal (for all states after the given state). The steady-state algorithm we use (C code)
requires three description files and generates two output files. The input files are

• ”Model.Rank” this file must contain two integers R1 and R2 separated by a
blank space or a line break. R1 represents the state at which all arrivals rate
transitions occur at the same rate, R1 must be a positive integer (R1 ≥ 0).
Also, R2 is the triggering rate of the service transitions, R2 must be a non-zero
positive integer (R2 > 0).

• ”Model.Lambda” file must contain R1+1 numbers that represents arrival rate
at each state in {0, . . . ,R1}.

• ”Model.Mu” must include service rate at each state in {1, . . . ,R2}.

The generated files are ”Model.pi” that contains the steady-state distribution, and
”Model.rewards” that will contain the mean number of tasks in the server and the
mean response time.
For example, the three files representing a M/M/4 queue:

"MM4.Rank" "MM4.Lambd a" "MM4.Mu"
0 5 2
4 4

6
8

The sequence of service rates in file ”MM4.Mu” reports that in state 1 the service rate
is 2 tasks per unit of time, in state 2 the service rate is 4, in state 3 the service rate
is 6, and for all state x ≥ 4 the service rate is 8. ”MM4.Lambda” claims that arrival
rate of tasks is the same (5 tasks per unit of time) for all the states. The results
obtained from this will automatically be stored in ”MM4.pi” and ”MM4.rewards”.
Also note that ”Model.pi” and ”Model.rewards” will not be generated if the birth-
death system considered is not stable (i.e. the last transition in ”MM4.Lambda” file
is strictly lower than the last transition in ”MM4.Mu” file). In the next chapter, we
study some variations of the M/M/C queue in order to investigate the performance,
and the power and energy consumption of the so-called ”Opteron processor”. The
Opteron processor uses six configurations for it’s cores speed. We have performed
the C code of this section to compare the different configurations (more details in
Chapter 3).
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2.6 A numerical example in XBorne

To study performance and power consumption, we looked at Mitrani’s model [Mit11]
(as briefly presented in the last section). Mitrani offers a multi-server threshold
model with an analytical form that combines performance and mean power con-
sumption in a single function. This model is based on thresholds, i. e. if the num-
ber of customers exceeds the threshold ”UP” then reserve servers will be switched
on and conversely after a ”DOWN” threshold the reserve servers will be switched
off. Note that the servers switching-on time is not instantaneous but follows an
exponential distribution. We were interested in studying the power consumption
and then the performance of the system (separately) according to different server’s
activating time distributions. More specifically, does the variation of activation time
distribution (while keeping the same average rate) influence the performance/power
consumption of the system.

2.6.1 Presentation of Mitrani’s model

Mitrani’s model (Fig. 2.3) is presented as follows: Arrivals are ”Poissonian”, switch-
ing on servers and service times are ”Exponential”, the queue is infinite, the servers
are homogeneous, a server can be either ”OFF” or on ”WARMING” or ”ON”
(resp. ”UPandDOWN”, ”WARMING” and ”ALL_UP” in the ”C” code in section
2.2) , the queue contains ”N” servers of which ”n” are always running and N-n ”re-
serve servers” which turn on and off according to the threshold policy. The reserve
servers are set to ”UPandDOWN” if the number of customers is below a threshold
”DOWN” and vice versa, they are set to ”WARMING” if the number of customers
is above a threshold ”UP ”. The servers stop instantly and can be shut down even
if they are in the WARMING state, a customer cannot wait indefinitely, at the end
of a deadline the customer leaves the queue without being served (abandonment of
a customer), the deadline of a customer follows the exponential distribution. The
Continuous-Time Markov Chain (CTMC) that describes this model is (X, Y) where
X is the number of customers with X ∈[0, +∞] and Y is the state of the reserve
servers with Y ∈ {0 (UPandDOWN), 1 (WARMING), 2 (ALL_UP) }.

λ

U D Common servers
State : ON

Reserve servers
State : OFF/WARMING/ON

Figure 2.3: Mitrani’s queuing system
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2.6.2 Variation of server’s activating time distribution
In this model, we consider that the queue is finite in order to make Mitrani’s model
more realistic. Thus we are no longer talking about customer abandonment but
rather customer losses that are caused by the arrival of a customer when the queue
is full. The other changes concern the distribution of servers activating time. We
studied three activation times distributions with the same average rate and dif-
ferent coefficient of variation. The three distributions are: the ”Exponential”
with a coefficient of variation r = 1, the ” Er l ang (k) ” with r = 1

k < 0 when k > 1,
and the ” Hyper-Exponential ” with a coefficient r > 0. For this new model, we
keep the same Markov chain (X,Y) but the description of X and Y has changed.
X the number of customers is finite ( X ∈ [0, BufferSize]) and Y depends on the
number of transitions before activating the reserve block. In ”Erlang(k)” case we
have Y ∈ [0,k].

2.6.3 Variation of customers inter-arrival distribution
In this model, we are investigating the variation in customers inter-arrival time
distribution. We studied the Poisson distribution and the Poisson distribution under
a 2-states modulating chain (i.e. Switched Bernouilli Batch Process (SBBP)), while
keeping the same average. the modulating chain has 2 states, i.e. if the chain is in
state 0 (resp. state 1) then we expect an arrival of customers of Poisson type with
a low intensity rate (resp. or high intensity rate). this model requires additional
information which is the phase or state of the modulating chain. The Markov chain
describing the system is (X,Y,Z) where X is the number of customers in the queue
( X ∈ [0, BufferSize]), Y is the state of the reserve servers which depends on the
servers activation distribution and Z is the state of the modulating chain (Z ∈ {0, 1
}).

2.6.4 Numerical results
In all the experiments below, we consider 10 servers always UP and 5 reserve servers
and a queue capacity of 50 customers. For each server, the service rate is one cus-
tomer per time unit and the activating rate is 0.2. The arrivals rate is 9 customers
per time unit. An active switched on server consumes one Watt, an idle server con-
sumes 0.6 Watts, the switching on of a server consumes 1.5 Watts, and the switching
off does not consumes power. Note that, we are studying different distributions for
the arrivals of customers and the activating time of servers, but the mean rates
remains the same.

Below (Figures 2.4, 2.5 and 2.6) we present some numerical results on the mean
power consumed and the loss rate of customers for each type of activation dis-
tribution. We keep the same arrival distribution, Poisson, for all three figures.
The x-axis represents the UP threshold and y-axis the Down threshold. It should
be remembered that the UP and DOWN thresholds play a crucial role in perfor-
mance. It is these two parameters that regulate the activation/deactivation of the
reserve servers whatever the variation of the Mitrani model studied. It is by turn-
ing OFF or ON the servers that the system consumes less or more. The power
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consumption equation we considered takes into account the power consumed by an
active powered server PON, idle server PIDL = PON ∗0.6 and the power required for
the activation PWARMING = PON + PON

2 and POFF = 0. The point is to minimize the
losses as well as the power consumption of the system, it is clear that there is a
compromise and that we should find the right equilibrium between these two per-
formance indicators. The ”UP” and ”DOWN” thresholds must comply with the
Bu f f er Si ze > UP ≥ DOWN >0 condition. The graphs below illustrate the power
consumption/performance trade-off. It can be seen that when the power consumed
is low (the purple area in Fig. 2.4-a) the average probability of customers loss in-
creases (the green to yellow and light brown areas in Fig. 2.4-b). So the equilibrium
area is the blue area in both figures in Fig. 2.4. Therefore, for an ecological and
efficient use of the system, in the case of Erlang distribution, the value of the UP and
DOWN thresholds should be chosen at the intersection of the intervals delimited by
the two blue zones so around DOWN = 10 and UP = 20. The blank field in figures
is the case where DOWN > UP, which is not allowed since the activation threshold
must always be greater than (or equal to) the deactivation threshold.

Concerning the variation of the ignition distribution (Erlang(3) Fig. 2.4, Ex-
ponential Fig. 2.5, and HyperExponential(2) Fig. 2.6) it has been observed that
Erlang’s distribution provides better results in both power and performance in con-
trast to HyperExponential. This is particularly important in cases of thresholds
that trigger server behavior change. For example, if one takes a high enough DOWN
threshold, the servers will be practically all the time off and therefore the activation
process that one wants to study is not present enough. Therefore, the more the ac-
tivation time distribution is varying (high coefficient of variation), the less efficient
the system is, and so the more steady the time distribution is, the better the system
behaves.

In order to compare the power consumption for each activation time distribution,
one should observe figures 2.4-a, 2.5-a and 2.6-a. Also comparing system losses
means comparing 2.4-b, 2.5-b and 2.6-b. The losses are expressed in log10 since
we are comparing very small probabilities, and the power consumption in units of
Watts.

In Fig. 2.7 we represents the results for an SBBP arriving time distribution with
an Erlang(3) distribution for the ignition of servers. We observe the same behavior
for the trade-off between power consumption and losses rate. Also, comparing this
figure with Fig. 2.4 which considers Poissonian arrivals and also Erlang activating
servers. We conclude that the Poissonian configuration for the arrivals behaves
better than the SBBP one for both rewards.

We deduce from these numerical results that the system performs better with less
power consumption when considering low coefficient of variation for the distribution
of inter-arrivals and servers activation time.
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Figure 2.4: Poissonian arrivals and Erlang servers activation: Mean power consumption
(a) vs Loss probability (in log10) (b)
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Figure 2.5: Poissonian arrivals and Exponential servers activation: Mean power consump-
tion (a) vs Loss probability (in log10) (b)
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Figure 2.6: Poissonian arrivals and Hyper-Exponential servers activation: Mean power
consumption (a) vs Loss probability (in log10) (b)
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Chapter 3

Dynamic Voltage and Frequency
Scaling (DVFS) processor
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3.1 Introduction
The AMD Opteron processor [Inc05] has a well-deserved reputation for high perfor-
mance and low power consumption. Its industry-leading dynamic power manage-
ment solution, AMD PowerNow technology, first became available in June 2000. In
fact, AMD was the first company to introduce dynamic voltage and frequency scal-
ing (DVFS) support capability in x86-based processors. This technology, which has
been continually refined, delivers performance on demand and greatly reduces power
consumption when full CPU performance is not needed. In its latest, most advanced
form, AMD PowerNow technology with OPM (Optimized Power Management) al-
lows the processor to run at multiple frequencies and voltages without changing the
memory/front-side bus speed, under industry-standard ACPI (Advanced Configu-
ration and Power Interface) program control. The multiple frequencies and voltages
of processors are called ”Pstates” (see Fig. 3.1). ACPI was originally developed
for power management on notebook computers, but in its latest iteration, it has
become an operating system-independent power management scheme with inherent
multiprocessor support that can tailor each processor’s power consumption level to
its workload when the platform supports multiple Pstates. The highest Pstate runs
the processor at full clock speed and full voltage. But during off-peak conditions,
the clock can drop all the way back to a 1GHz “idle,” saving as much as 75 percent
of the full-speed power (See the original paper [Inc05] for more details).
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Figure 3.1: Pstates Support in AMD Opteron Processor [Inc05].

Fig. 3.1 represents the frequency (in GHz) that corresponds to the number of
processor’s instruction per time unit ’t’. This table is obtained from AMD paper
[Inc05]. We notice that the power consumption increases with the frequency of an
Opteron processor in a non-linear approach. The Pstates power is a super-linearly
function of the frequency.
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Here, we suppose that Opteron processor’s Pstates only depends on the tasks
it performs. so the higher the workload, the higher the processor’s speed. We also
assume that:

• Task scheduling discipline is FCFS (First Come, First Served).

• External arrivals of tasks follow independent Poisson process with rate λ.

• Service rates are distributed according to exponential distributions,

• Tasks arriving into a processor may require ’a’ instructions (with a > 0). So the
service rate (i.e. the number of tasks executed per time unit by a processor’s
core), is f (Pst atei )

a where ’f’ is the frequency.

• The service rate will depends on the model considered. In Model 1 the service
rate is fixed to the frequency of the Pstate considered, while in Model 2 and
Model 3 the service rate changes and depends on the current workload in
processors.

The aim of this work is to evaluate the response time and energy per job con-
sumed in three distinct processor configurations. In the first configuration, which
we call Model 1, a single Pstate is used. In Model 2, we consider two Opteron
Pstates. We have proposed a closed form for steady-state distribution and we de-
rived a cost function that uses both performance and energy consumption. We also
show, through an algorithm we suggest, the best combination of Pstates and thresh-
olds that minimizes the cost function. In the last section we investigate the case of
an Opteron processor that uses all Pstates. Note that all steady-state distributions
in this chapter are obtained using the birth-death resolution in Section 2.5.

3.2 Model 1: A multi-core processor with one
Pstate

In this section, we consider that an Opteron processor has only one Pstate ’i’. Thus,
a classical M/M/C queue can represent this model. The servers speed rate µi > 0 is
fixed and only depends on the chosen Pstate ’i’. We denote such a system Si . We will
study the performance and power consumption in each Pstate separately. Steady-
state distribution and rewards as mean response time, mean number of tasks in the
system are well known in the literature. Here, we show how to calculate, analytically,
the mean power consumption and energy per job/task in the system.

We first recall some definitions about the ’st’ comparison between probability
vectors and CTMCs processes. In the following, we will use it to compare the mean
number of jobs and the mean response time between different systems.

Definition 3.2.1 (Comparison of probability vectors [Sto83])
Let p and q be two probability vectors of size M (each entry is a positive real such
that the sum of entries is equal to 1), then

p≤st q i f f
M∑

j=k
p[j] ≤

M∑
j=k

q[j] , ∀k ∈ {1,2, . . . ,M}. (3.1)
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Definition 3.2.2 (Comparison of CTMCs [Sto83])
Let {Xt

1, t ≥ 0} and {Xt
2, t ≥ 0} be the two CTMCs, then

{Xt
1, t ≥ 0} ≤st {Xt

2, t ≥ 0},

iff
X0

1 ≤st X0
2 ⇒ ∀ t > 0 , Xt

1 ≤st Xt
2. (3.2)

Lemma 3.2.1 (Comparison of steady-state distributions [Sto83])
Let {Xt

1, t ≥ 0} and {Xt
2, t ≥ 0} be two CTMCs. Hence, if the steady-state distribution

Π1 (r esp. Π2) exists, then
{Xt

1, t ≥ 0} ≤st {Xt
2, t ≥ 0} ⇒ Π1 ≤st Π2.

Theorem 3.2.1 (Comparison of birth-death processes [Sto83])
Stoyan theorem states that: considering two homogeneous birth-death processes
{Xt

1, t ≥ 0} and {Xt
2, t ≥ 0} with Poisson arrivals rate λ

(S1)
x and λ

(S2)
x , and Expo-

nential service rates µ
(S1)
x and µ

(S2)
x . Note that arrivals rate and service rate depends

on the state x. If
∀ st ate x ≥ 0 µ

(S1)
x ≥µ

(S2)
x and λ

(S1)
x ≤ λ

(S2)
x ,

then
{Xt

1, t ≥ 0} ≤st {Xt
2, t ≥ 0}.

3.2.1 Mean number of jobs and response time
Let (x) be the number of jobs in the system. Under the classical assumptions
we mention in Section 3.1, {Xt

i , t ≥ 0} is the CTMC that describes the system Si .
If the system is stable, then the steady-state distribution exists. Let Πi be this
distribution, and E[Xi ] (resp. Ti ) be the mean number of jobs (resp. the mean
response time). So

E[Xi ] =
∞∑

x=0
xΠi (x) and Ti = E[Xi ]

λ
(Li t t le ′s l aw). (3.3)

Corollary 3.2.1 We consider N = 6 stable systems (corresponding to the sixth
Pstates in Fig. 3.1). Each system denoted by Si represent a multi-core Opteron
processor with the Pstate ’i’. Let µ1,µ2, . . . ,µ6 be processor’s speed (i.e. service
rate of cores in each system). Let ∀ t ≥ 0 {Xt

1}, {Xt
2}, . . . , {Xt

6} be the Markov chain,
and Π1,Π2, . . . ,Π6 the steady-state distribution for each stable multi-core Opteron
processor, then

µ1 ≤µ2, . . . ,≤µ6 ⇒ Π6 ≤st Π5, . . . ,≤st Π1. (3.4)

Proof. The proof is directly derived from Theorem 3.2.1 and Lemma 3.2.1.
In our systems we have the same arrivals rate λ in every system S1,S2, . . . ,S6 and

it does not depend on the state of the system. Then for all the states ’x’, λ
(S1)
x =

λ
(S2)
x =, . . . ,= λ

(S6)
x = λ. Also from the assumption, we have for all state x, µ

(S1)
x ≤

µ
(S2)
x ≤, . . . ,≤ µ

(S6)
x as a consequence of µ

(Si )
x = µi , then all conditions are satisfied to

apply the theorem cited above, therefore we get ∀ t ≥ 0, {Xt
6} ≤st {Xt

5} ≤st , . . . ,≤st {Xt
1}.

Finally, since the systems are stable, then from Lemma 3.2.1 we conclude that
Π6 ≤st Π5, . . . ,≤st Π1.
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Property 3.2.1 Let E[X1],E[X2], . . . ,E[X6] (resp. T1,T2, . . . ,T6) be the mean number
of jobs (resp. the mean response time) for stable multi-core Opteron processors
S1,S2, . . . ,S6 that uses one Pstate, then

Π6 ≤st Π5, . . . ,≤st Π1 ⇒


E[X1] ≥ E[X2], . . . ,≥ E[X6]

T1 ≥ T2, . . . ,≥ T6.
(3.5)

Proof. The systems are supposed to be stable, therefore the steady-state distribution
exists. Let f (x) = x : N→N be an increasing function, then

Π6 ≤st Π5, . . . ,≤st Π1 ⇒ ∑
x≥0

xΠ1(x) ≥ ∑
x≥0

xΠ2(x) ≥, . . . ,≥ ∑
x≥0

xΠ6(x),

and using Equation (3.3) , we get

Π6 ≤st Π5, . . . ,≤st Π1 ⇒ E[X1] ≥ E[X2], . . . ,≥ E[X6].

Mean response time is obtained using Little’s law for the jobs in the system (see
Equation (3.3)). Since the systems receive the same traffic rate λ then we only
have to divide the mean number of jobs E[Xi ] by λ to get the mean response time.
Therefore

Π6 ≤st Π5, . . . ,≤st Π1 ⇒ T1 ≥ T2, . . . ,≥ T6.

Corollary 3.2.2 The result of this proposition is the conjunction of Corollary 3.2.1
and Corollary 3.2.1. Under stability condition of systems, we state that a higher
speed of the Opteron processors (so higher Pstates) implies a less mean number of
jobs and response time.
If

µ1 ≤µ2, . . . ,≤µ6,

then 
E[X1] ≥ E[X2], . . . ,≥ E[X6]

T1 ≥ T2, . . . ,≥ T6.
(3.6)

No proof is needed since Equation (3.6) is the result of the conjunction of Equation
(3.4) and Equation (3.5).

3.2.2 Power and energy consumption
Let p1, ..., p6 be the power consumption corresponding to the systems S1, ...,S6 (see
Fig. 3.1). A server (i.e. core) in the idle state provides a power gain of 75%. Let
pi (r esp. pi ,Id ) for i ∈ {1, . . . ,6} be the Opteron Pstate power (resp. Pstate idle power)
used by a core in a system Si , then

pi ,Id = αpi , (3.7)

precisely α= 0.25 in AMD features.
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Lemma 3.2.2 The mean power consumption of a stable mono Pstate system PWi

is the sum the mean power of the servers in activity PW(a)
i and the idle power PW(Id)

i :

PWi = PW(a)
i +PW(Id)

i . (3.8)

Which can be expressed as :

PWi = pi ,Id C+ (pi −pi ,Id )λ

µi
. (3.9)

Proof. Let (x) be the number of jobs in system Si , and Πi (x) be the steady-state
distribution of the stable Markov chain {Xt

i , t ≥ 0}, then
PW(a)

i =∑∞
x=0Πi (x)

[
pi ∗mi n{x,C}

]
,

PW(Id)
i =∑∞

x=0Πi (x)

[
(C−mi n{x,C})∗pi ,Id

]
.

(3.10)

∑∞
x=0Πi (x)

[
mi n(x,C)

]
represents the mean number of servers in activity of the sys-

tem Si . The mean number of jobs in service corresponds to the mean number of
servers in activity since a job is served by one server at each time. We will use
Little’s law for servers in activity, which states that the mean number of jobs in
service is the mean service time 1

µi
(since servers are homogeneous) times the mean

arrivals rate λ. Then we have ∑∞
x=0Πi (x)

[
mi n(x,C)

]
= λ

µi
. After simplifications,

Equation (3.10) becomes: 
PW(a)

i = λpi
µi

PW(Id)
i =

(
C− λ

µi

)
pi ,Id

(3.11)

By summing PW(a)
i and PW(Id)

i we get the expression of the mean power consumption
denoted in Equation (3.9). The proof is complete.
Notice that the model we study here is a stable a M/M/C queue, and by definition the
stability condition of the system is λ< Cµi so (C− λ

µi
) > 0 then PW(Id)

i > 0, therefore
PWi > 0.

Lemma 3.2.3 Let E(Job)
i be the energy consumption per job in a stable system Si .

then

E(Job)
i = PWi

λ
. (3.12)

Proof. The energy consumption of a device is the power consumed on a period of
time. Therefore we expressed the energy consumption of a stable Opteron system as
the mean power consumption PWi times the mean resident time of a task Ti . Let
Engi be this energy

Engi = PWi ∗Ti .

Engi is the energy consumption of the system when considering all jobs. Hence, in
order to obtain the energy consumption per one job,
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E(Job)
i = Engi

E[Xi ]
.

Using Little’s law for the mean number of jobs in a steady-state system (E[Xi ] = λTi ),
then by substitution we get Equation (3.12), the proof is complete.

Lemma 3.2.4 Let E(Job)
i (resp. E(Job)

j ) be the energy consumption per job of a stable
system Si (resp. S j ). Also let PWi (resp. PW j ) be the corresponding mean power
consumption. In below, we present a sufficient and necessary condition for the
comparison of the mean power and the energy per job consumption:

pi

p j
≤ µi g (µ j )

µ j g (µi )
⇐⇒


PWi ≤ PW j

E(Job)
i ≤ E(Job)

j

(3.13)

where
g (µi ) = αµi C+ (1−α)λ. (3.14)

Proof. From equation (3.9) we have

PWi = pi ,Id C+ (pi −pi ,Id )λ

µi
,

and using pi ,Id = αpi we get

PWi =
(
αµi C+ (1−α)λ

µi

)
pi .

then

E(Job)
i ≤ E(Job)

j ⇔ PWi ≤ PW j ⇔ pi

p j
≤ (αµ j C+ (1−α)λ)µi

(αµi C+ (1−α)λ)µ j
(3.15)

and using Equation (3.14) the proof is complete.

Lemma 3.2.5 In this lemma we present a sufficient condition for the comparison
of the mean power and the energy per job consumption in two stable systems Si and
S j (with i ≤ j):

µi ≤µ j and
pi

p j
≤ µi

µ j
=⇒


PWi ≤ PW j

E(Job)
i ≤ E(Job)

j .
(3.16)

Proof. Equation (3.13) in Lemma 3.2.4 presents a sufficient and necessary condi-
tion. Therefore:

pi

p j
≤ αµiµ j C+ (1−α)λµi

αµiµ j C+ (1−α)λµ j
⇒


PWi ≤ PW j

E(Job)
i ≤ E(Job)

j .
(3.17)
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Hence, We only have to verify that

µi

µ j
≤ αµiµ j C+ (1−α)λµi

αµiµ j C+ (1−α)λµ j
. (3.18)

Equation (3.18) can be expressed as

αµ2
i µ j C+ (1−α)λµiµ j ≤ αµiµ

2
j C+ (1−α)λµiµ j .

After simplification of terms we obtain

µi ≤µ j ,

which is the assumption stated in the presentation of this lemma. Hence, from
Equation (3.17) and (3.18) we obtain Equation (3.16), and the proof is complete.

3.2.3 Numerical comparison of the six Opteron Pstates
We consider here six systems S1, . . . ,S6, each system has C = 20 cores. The speed
of the servers (i.e. cores) depends on the Pstate performed. Also, here we suppose
that each task requires one core’s instruction a = 1, therefore µi = fi .

3.2.3.1 Performance, power and Energy per job

In Fig. 3.2 we observe that, (a) by increasing the task’s arrivals load, the system
fills up more and the waiting time in the queue increases. (b) In stable cases of
each system, Pstate6 (contrary to Pstate1) presents the best results in terms of
performance i.e. mean number of tasks and waiting time in the network, but requires
the highest power consumption (see Fig. 3.3). In the left figure in Fig. 3.3 we observe
that Idle power decreases by increasing the load in the system, but active power will
increase (since the servers will be activated as depicted in the right figure). These
numerical results are clearly matching with our analytical results (Corollary 3.2.2,
Lemma 3.2.4 and Lemma 3.2.5). The left figure of Fig. 3.4 represents the energy
per job consumption when increasing the traffic. This consumption clearly decreases
with an increase in the load (see Lemma 3.2.3).

3.2.3.2 The appropriate Pstate in performance and energy trade-off

In the right figure, we presented the mean waiting time as a function of the mean
power consumption. This figure give us various information: as the minimal and the
maximal power consumption requirement if using any Pstate and the corresponding
delay. Also for a given delay (resp. power consumption value) we can derive the
Pstate that consumes the least power consumption (resp. delay) as the goal is to
minimize both of performance and mean power (resp. energy per job) consumption.

3.2.3.3 Condition verification for power and energy comparison

In Table 3.1, we show a verification of the condition cited in Lemma 3.2.5. This
condition is based on the Pstates configurations of an Opteron processor (see Fig.
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3.1). Note that in Lemma 3.2.5, we only need the core’s speed and core’s power con-
sumption to make a comparison of the mean power consumption and the energy per
job consumption between two single-Pstate Opteron processors. This comparison is
sufficient and not necessary, which means that when µi ≤µ j and pi

p j
≤ µi

µ j
is verified,

then Pstate ’i’ consumes less mean power and energy per job consumption than the
system with Pstate ’j’. Otherwise, we don’t dispose of much information to compare
the two systems. In that case, we can use Lemma 3.2.4, which, additionally, includes
traffic arrivals rate and other parameters.

For the verified cases in Table 3.1, Lemma 3.2.5 ensures that PWi ≤ PW j and
E( j ob)

i ≤ E( j ob)
j . Otherwise, we use Lemma 3.2.4. This Lemma considers λ the arrivals

rate (which is supposed to be the same in both systems). The non-verified cases for
Lemma 3.2.5 are the couple of Pstates i = 1, j = 2 and i = 5, j = 6. For i = 1, j = 2,
Lemma 3.2.4 ensures PW1 ≤ PW2 (and E( j ob)

1 ≤ E( j ob)
2 ) for all values of λ that makes

both systems stable. But for the case of i = 5 and j = 6 the behavior of the mean
power and energy per job changes with the value of λ. Hence, when applying Lemma
3.2.4 with λ≤ 34 we obtain PW5 ≤ PW6 (and E(Job)

5 ≤ E(Job)
6 ). Also, when λ> 34 then

PW6 < PW5. That explains the crossover behavior between the red and the green
curve in the right figure of Fig. 3.3.
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Figure 3.2: Mean number of jobs (left) and mean response time (right).
Parameters: C = 20 servers, server’s rate (i.e. core’s speed) in each Pstate is depicted in
Fig. 3.1.
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Figure 3.3: Idle power consumption (left) and total power consumption (right). Parame-
ters are the same as in Fig. 3.2.
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Figure 3.4: Energy per job consumption (left) and response time as a function of mean
power consumption. Parameters are the same as in Fig. 3.2.
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Pstate ’i’ Pstate ’j’ pi
p j

≤ µi
µ j

1 1 Verified
1 2 Not verified
1 3 Verified
1 4 Verified
1 5 Verified
1 6 Verified
2 2 Verified
2 3 Verified
2 4 Verified
2 5 Verified
2 6 Verified
3 3 Verified
3 4 Verified
3 5 Verified
3 6 Verified
4 4 Verified
4 5 Verified
4 6 Verified
5 5 Verified
5 6 Not verified
6 6 Verified

Table 3.1: The examination of the condition of Lemma 3.2.5 for all pairs of Pstates (i,j)
where µi ≤µ j . Note that µi and pi are obtained from the AMD table in Fig. 3.1.
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3.3 Model 2: A multi-core processor with N = 2
Pstates

In this model we consider a birth-death process with two Pstates ’i’ and ’j’ (N = 2).
We suppose that Pstate ’j’ consumes more power than Pstate ’i’ i.e. Pstate ’j’
executes instructions faster than Pstate ’i’ (see Fig. 3.1). Servers speed rate depends
on the number of tasks in the system. It means that if the number of tasks is below
a certain threshold ’th’, then servers (cores) speed corresponds to µi otherwise, it is
supposed that the queue is well loaded therefore servers speed rate are fixed to µ j .
We denote such a system S(i , j , th) and we suppose the i ≤ j . Stability condition of
this model, that verifies the existence of a steady-state distribution, is λ< Cµ j .

3.3.1 Closed form for the steady-state distribution
The processor contains C cores. Therefore mi n{C, x} task are in service and (x −
mi n{C, x})+ are queued. Under the classical assumptions we mention in Section 3.1,
{Xt

i , j ,th , t ≥ 0} is a Markov chain, and the transitions are as follows :

(x) → (x +1) with rate λ,
(x) → (max{0, x −1}), with rate mi n{x,C}·µ(x).

and service rate µ(x) is expressed as :

µ(x) =


µi = fi

a
i f (x ≤ th),

µ j = f j

a
i f (x > th).

(3.19)

fi is the frequency (GHz) given in Fig. 3.1.

Theorem 3.3.1 The transition diagram of this Markov chain is a birth-death pro-
cess. Then, under stability condition (i.e. λ < Cµ j ), we can derive Πi , j ,th(x) the
steady-state probability of the two Pstates Opteron processor S(i , j , th).
Let

Ψ(x) =
x∏

k=1
mi n{k,C}µ(k),

and
R = max{C, th}, (3.20)

then

Πi , j ,th(x) =


λx

Ψ(x)Πi , j ,th(0) ∀ 0 < x ≤ R,

λx
[

(Cµ j )x−RΨ(R)
]−1

Πi , j ,th(0) ∀ x > R,

(3.21)

where

Πi , j ,th(0) =
[

1+ λR+1

(Cµ j −λ)Ψ(R)
+

R∑
x=1

λx

Ψ(x)

]−1

. (3.22)
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Proof. The Markov chain we consider is a birth-death process. We also set ’R’
(Equation (3.20)) the threshold at which the system maintains it’s service rate (which
is Cµ j ). This simplifies the calculation of the steady state distribution. Hence, we
have divided the calculation of Πi , j ,th(x) into two parts. States from 1 to ’R’ and
states from ’R’ to +∞. From classical equations in a birth-death process, we deduce
that:

Πi , j ,th(x) =


λ

mi n{x,C}µ(x)
Πi , j ,th(x −1) ∀ 0 < x ≤ R,

(
λ

Cµ j

)x−R
Πi , j ,th(R) ∀ x > R.

(3.23)

After simple substitutions in Equation (3.23) (i.e. to write Πi , j ,th(x) as a function
of Πi , j ,th(0) for all x ∈ [1,+∞[), we get Equation (3.21). Finally, as the system is
supposed to be stable, then Equation (3.22) is obtained after the normalization of
probabilities ( ∑+∞

x=0Πi , j ,th(x) = 1).

3.3.2 Mean number of jobs and response time
Here we seek to compare the mean number of jobs and mean response time between
two stable systems S(i , j , th1) with i ≤ j and S(k, l , th2) with k ≤ l . Note that, to
calculate the mean number of jobs E[Xi , j ,th] and mean response time Ti , j ,th, we use
the same approach as in Equation (3.3).

Corollary 3.3.1 We consider the two stable systems described above, then for any
thresholds th1 and th2, we have:

j ≤ k ⇒


E[Xk,l ,th2] ≤ E[Xi , j ,th1]

Tk,l ,th2 ≤ Ti , j ,th1.
(3.24)

Proof. Let {Xt
i , j ,th1, t ≥ 0} (resp. {Xt

k,l ,th2, t ≥ 0}) the Markov chain of the stable
system S(i , j , th1) (resp. S(k, l , th2)). Also, let Πi , j ,th1 and Πk,l ,th2 be the steady-state
distributions of both systems. Let λ

S(i , j ,th1)
x , λS(k,l ,th2)

x (resp. µ
S(i , j ,th1)
x , µS(k,l ,th2)

x )
be the arrivals rate (resp. service rate) generated at the state ’x’ in the system
S(i , j , th1) and S(k, l , th2).

• We first derive the ’st’ comparison between the two systems. The arrivals rate
λ is supposed the same. Then for all the states ’x’, λ

S(i , j ,th1)
x = λS(k,l ,th2)

x = λ.
Also, we have j ≤ k from the assumption, and i ≤ j and k ≤ l from the definition
of systems, then i ≤ j ≤ k ≤ l . It means that, for any values of ’th1’ and ’th2’,
services rates in S(k, l , th2) are always greater than the ones in S(i , j , th1), so
µS(k,l ,th2)

x ≥µ
S(i , j ,th1)
x . From Theorem 3.2.1 we deduce that

{Xt
k,l ,th2, t ≥ 0} ≤st {Xt

i , j ,th1, t ≥ 0}.

• Both systems are supposed stable, then using Lemma 3.2.1, we have

{Xt
k,l ,th2, t ≥ 0} ≤st {Xt

i , j ,th1, t ≥ 0} ⇒Πk,l ,th2 ≤st Πi , j ,th1.
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• Finally, the same approach of property 3.2.1 is used to get

Πk,l ,th2 ≤st Πi , j ,th1 ⇒


E[Xk,l ,th2] ≤ E[Xi , j ,th1]

Tk,l ,th2 ≤ Ti , j ,th1.

By combining the three last equations we obtain Equation (3.24), that concludes the
proof.

Corollary 3.3.2 In this corollary, we use another assumption, that concerns two
stable systems using the same Pstates and different thresholds S(i , j , th1) and S(i , j , th2).
We have:

th1 ≤ th2 ⇒


E[Xi , j ,th1] ≤ E[Xi , j ,th2]

Ti , j ,th1 ≤ Ti , j ,th2.
(3.25)

Proof. The approach of the proof is similar to the one in Corollary 3.3.1.

• Arrivals rate λ is identical in both systems, then for all the states ’x’, λS(i , j ,th1)
x =

λS(k,l ,th2)
x = λ. Also, we have from the assumption of the corollary that th1 ≤

th2. It means that Opteron system S(i , j , th1) will activate the higher Pstate
’j’ earlier than system S(i , j , th2). And as shown in Fig. 3.1, server’s (core’s)
speed is an increasing function of the Pstates. Hence, for all states ’x’,
µ

S(i , j ,th1)
x ≥µ

S(i , j ,th2)
x . From Theorem 3.2.1 we deduce that

{Xt
i , j ,th1, t ≥ 0} ≤st {Xt

i , j ,th2, t ≥ 0}.

• Using Lemma 3.2.1, and Property 3.2.1 for two Pstates systems. We obtain
Equation (3.25), and the proof is complete.

3.3.3 Power and energy consumption
Let pi (resp. p j ) be the power consumption corresponding to Pstate i (resp. Pstate
j) (see Fig. 3.1), with i ≤ j . The power consumed by the processor depends on the
speed of its cores, which is a function of the number of tasks assigned to it. Let
(x) be the number of tasks in the processor, then the power consumed by each core,
when hosting x tasks, is : {

pi i f (x ≤ th),
p j i f (x > th).

(3.26)

Lemma 3.3.1 Let (x), with x ∈ [0,+∞[, be the number of jobs in the system.
{Xt

i , j ,th , t ≥ 0} is an CTMC that under stability condition (mentioned in the de-
scription section of this model) admits a steady-state distribution Πi , j ,th(x). Let
PWi , j ,th be the mean power consumption of the system S(i , j , th), then

PWi , j ,th = pi (1−α)
[

pi
∑th

x=0 mi n(x,C)Πi , j ,th(x)+p j
∑+∞

x=th+1 mi n(x,C)Πi , j ,th(x)
]

+αC
[

p j + (pi −p j )
∑th

x=0Πi , j ,th(x)
]

.

(3.27)

55



Proof. Let PW(a)
i , j ,th (resp. PW(Id)

i , j ,th) be the mean power consumption of the servers
in activity state (resp. Idle state). Hence, as in Lemma 3.2.2, we have

PWi , j ,th = PW(a)
i , j ,th +PW(Id)

i , j ,th , (3.28)

where
PW(a)

i , j ,th = pi
∑th

x=0 mi n(x,C)Πi , j ,th(x)+p j
∑+∞

x=th+1 mi n(x,C)Πi , j ,th(x),

PW(Id)
i , j ,th = pi ,Id

∑th
x=0(C−mi n(x,C))Πi , j ,th(x)+p j ,Id

∑+∞
x=th+1(C−mi n(x,C))Πi , j ,th(x).

(3.29)
After simple simplifications using Equation (3.7) in Equation (3.29). Also by the

substitution of PW(a)
i , j ,th and PW(Id)

i , j ,th. Then Equation (3.28) is expressed as Equation
(3.27) and the proof is complete.

Notice that Lemma 3.2.3 for energy consumption per job still hold for this model.
Let E(Job)

i , j ,th be this energy, therefore

E(Job)
i , j ,th = PWi , j ,th

λ
. (3.30)

.

3.3.4 Optimization of energy consumption and response time
• From Corollary 3.3.2, we conclude that when comparing two stable systems

S(i , j , th1) and S(i , j , th2) with th1 ≤ th2 then Ti , j ,th1 ≤ Ti , j ,th2. Therefore, the
mean response time (and mean number of jobs) is an increasing function of
the threshold. Hence, to minimize the mean response time in a two-Pstates
system, th = 1 is the optimal threshold to use.

• The ’st’ comparison does not hold for the mean power consumption (resp.
energy per job) function. The function is not monotone. In Fig. 3.5 we show
the evolution of the mean power consumption with the increase of thresholds.
In that example we consider λ= 30, C = 20 servers, i = 5, j = 6, and µi = 2.4,
µ j = 2.6 (see Fig. 3.1). Note that, specially in that example the mean power
function behaves as a convex function. This behavior is not always true.

• So in order to optimize the mean power consumption (resp. energy consump-
tion), we shall consider an exhaustive algorithm looking for the best threshold.

In the following, we suggest merging the mean response time Ti , j ,th and the
energy per job consumption E( j ob)

i , j ,th in a single function to minimize. Let c1 (resp.
c2) be the cost of the mean response time (resp. energy per job consumption). Let
Ω be the total cost to minimize. Ω is normalized through costs c1 and c2.

Ω= Ti , j ,th ∗ c1+E( j ob)
i , j ,th ∗ c2 (3.31)
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Figure 3.5: The mean power consumption as a function of the threshold.

To analyze Equation (3.31), we propose the algorithm below. This algorithm,
under stability constraint, generates the best threshold (in the range [1, . . . ,THMAX])
to use for each couple of Pstates (i,j). Given the input parameters: number of servers
C, services rate (inspired from Fig. 3.1), an upper bound THMAX for the thresholds,
arrival rate of tasks λ, and the rewards costs c1 and c2.
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Algorithm 1: Purchasing the best threshold for each two-pstates Opteron
system

Input : Number of servers C, arrivals rate λ, rewards cost c1, c2, and a
value of THMAX.

Output: Threshold that minimizes cost function Ω for each couple of
Pstates (i , j ).

1 for (i , j ) with 1 ≤ i ≤ j ≤ 6 do
2 if λ< Cµ j then // The system is stable
3 initiate ’th∗’;
4 for th ← 1 to THMAX do
5 1) Calculate the steady-state distribution (Equation (3.21) and

(3.22)) for the system S(i , j , th) ;
6 2) Derive the mean response time Ti , j ,th (Equation (3.3)) and

energy per job consumption E( j ob)
i , j ,th (Equation (3.30));

7 3) Calculate the cost function Equation (3.31) ;
8 4) Update ’th∗’ if the current cost function is lower than the cost

function for the previous iteration.
9 end

10 Print ”The best threshold for the couple of Pstates (i,j) is ’th∗’ ;
11 else
12 Print ”The system is not stable for the couple of Pstates (i,j)”;
13 end
14 end
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3.3.5 Numerical results
In Fig. 3.6 and Fig. 3.7 we investigate the influence of cost values c1 and c2 on
pstates (i,j) and their optimal thresholds. We considered the following parameters:
arrivals rate λ= 20, number of servers C = 20, and the maximal threshold to purchase
is THMAX = 100. Services rate are inspired from Fig. 3.1 with a = 1 (see Equation
(3.19)). We present here two experiments:

• In the first experiment (Fig, 3.6), we consider higher costs c1 for the response
time and lower costs c2 for the energy per job. In particular, c1 = 200 and
c2 = 1 in the left heat-map of Fig. 3.6, we also took c1 = 500 and c2 = 1 in the
right heat-map.

• In the second experiment (Fig. 3.7) we focus on the energy per job consump-
tion, by adopting higher costs c2 for the energy and lower costs c1 for the
response time. In the left heat-map of Fig. 3.7 we take c1 = 1 and c2 = 10,
and in the right one c1 = 1 and c2 = 50.

Note that, the following results are derived from Algorithm 1. In both figures below,
white areas are due to the relation i ≤ j which is an assumption of a two-Pstates
(i,j) system. Colored square areas are the values of the objective function (Equation
(3.31)). Blue integer in colored areas is the value of the optimal threshold we
obtained (in the range [1, . . . ,THMAX]) that minimizes the objective function for the
corresponding couple of Pstates (i,j). Case of i = j the threshold has no meaning
since the system remains in the same Pstate, that explains the ’-’ entry in the figures.

3.3.5.1 Performance optimization

By promoting the mean response time costs. We observe in Fig. 3.6, that to optimize
cost function:

• We should consider higher Pstates for the Pstate j, in particular j = 6. The
system opts for high Pstates to reduce the response time component in the cost
function. The best couple of Pstates to use is in the green column (i ∈ {1, . . . ,6}
, j = 6).

• The blue integer in each colored square area,is the optimal threshold, it’s a
very small value. It shows that the Opteron processor switches quickly its
cores to the higher Pstate ’j’ , i.e. after having 1,2,3,4, or 5 jobs in the system
depicted in the left heat-map, or after having 1 job in the system as shown in
the right heat-map.

• The impact of Pstate ’i’ is not relevant (in contrast to Pstate ’j’). Small
thresholds here are usually exceeded. That explains the almost similar color
in each column.

• When increasing c1 cost, to the value of 500, and still taking c2 = 1. We
observe that the best threshold for all configurations is th = 1. Energy per
job cost is irrelevant with regard to the response time’s cost. Therefore, the
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system behaves as there is no optimization for the energy per job. In that
case, we have proved (as a consequence of Corollary 3.3.2) that response time
function increases with the threshold.

3.3.5.2 Energy per job optimization

For the case of the enhancement of energy per job cost’s. We observe in Fig. 3.6,
that:

• The energy per job consumption increases with the value of Pstate ’i’. There-
fore, the best couples of Pstates minimizing the objective function are in the
green range (i = 1, j ∈ {2, . . . ,6}). The system opts for low Pstates, in order to
reduce the energy consumption.

• In contrast to the response time results, the optimal thresholds (blue integers
in the colored squares) for the energy per job, achieves the highest levels (up
to th = THMAX = 100). Notice that the aim is to minimize the energy per job,
then it is consistent that the system switches ’lately’ to the higher Pstate ’j’
which consumes more. The system remains mostly all the time in Pstate ’i’.
That explains the unnoticed modifications of cost function when changing the
Pstate ’j’.
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Figure 3.6: Objective function: c1 = 200, c2 = 1 (left) and c1 = 500, c2 = 1 (Right).
For instance, in the left heatmap, the optimal threshold for the entry i = 2, j = 3 is th = 2
with a total cost of Ω = 140.6. In the right heatmap, for the same entry, the optimal
threshold is th = 1 with a total cost of Ω= 290.4.
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Figure 3.7: Objective function: c1 = 1, c2 = 10 (left) and c1 = 1, c2 = 50 (Right).
For instance, in left heatmap for the entry i = 1, j = 4. The optimal threshold is th = 84
with a total cost function of Ω= 324.2, while in the right heatmap th = 100 and Ω= 1610.1

3.4 Model 3: A multi-core processor with all Pstates
In this section, we also represent the Opteron processor by a birth-death process.
We consider all (N = 6) Pstates of the Opteron processor. Servers rates (i.e. cores
speed) depends on the number of tasks in the queue. Let Γ = [th1, th2, . . . , th5] be
the vector of the triggering thresholds (see Equation (3.33)). The existence of the
steady-state distribution in this model is subject to the condition λ < Cµ6. We
suppose that all the systems we study are stable. We denote SΓ such a system.

We first recall the ’el’ comparison between vectors of thresholds.

Definition 3.4.1 Let Γ1 and Γ2 be integer vectors of size M, then

Γ1 ≤el Γ2 ⇒ Γ1( j ) ≤ Γ2( j ) ∀ j ∈ {1, . . . ,M}. (3.32)

3.4.1 Closed form for the steady-state distribution

The processors contains C cores. Therefore mi n(C, x) tasks are in service, and
(x−mi n{C, x})+ are queued. Under the classical assumptions we mention in Section
3.1, {Xt

Γ, t ≥ 0} is a Markov chain, and the transitions are as follows :

(x) → (x +1) with rate λ,
(x) → (max{0, x −1}), with rate mi n{x,C}·µ(x).
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and service rate µ(x) is expressed as :

µ(x) =



µ1 = f1
a

i f (x ≤ th1),

µ2 = f2
a

i f (th1 < x ≤ th2),

µ3 = f3
a

i f (th2 < x ≤ th3),

.

.

µ6 = f6
a

i f (x > th5).

(3.33)

fi is the frequency (GHz) given in Fig. 3.1.

Theorem 3.4.1 The Markov chain is a birth-death process. Then, under stability
condition (i.e. λ< Cµ6) we can derive ΠΓ(x) the steady-state probability.
Let

Ψ(x) =
x∏

k=1
mi n{k,C}µ(k),

and
R = max{C, th5}, (3.34)

then

ΠΓ(x) =


λx

Ψ(x)ΠΓ(0) ∀ 0 < x ≤ R,

λx
[
Ψ(R)(Cµ6)x−R

]−1
ΠΓ(0) ∀ x > R.

(3.35)

where

ΠΓ(0) =
[

1+ λR+1

(Cµ6 −λ)Ψ(R)
+

R∑
x=1

λx

Ψ(x)

]−1

. (3.36)

Proof. In Equation (3.37), we present the classical birth-death equations for the
steady-state distribution of that model.

ΠΓ(x) =


λ

mi n{x,C}µ(x)
ΠΓ(x −1) ∀ 0 < x ≤ th5,

(
λ

Cµ6

)x−th5
ΠΓ(th5) ∀ x > th5.

(3.37)

The rest of the proof is similar to the one used in Theorem 3.3.1 for N = 2 Pstates.

3.4.2 Mean number of jobs and response time
Note that all Pstates are used and the system adapts the speed of its servers ac-
cording to the number of pending jobs in the queue.
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Corollary 3.4.1 This corollary is the extension of Corollary 3.3.2 to N = 6 Pstates.
The same approach is used. Let {Xt

Γ1, t ≥ 0} (resp. {Xt
Γ2, t ≥ 0}) be the Markov chain

of the stable system SΓ1(r esp. SΓ2) with the thresholds vector Γ1 (resp. Γ2). Let
E[XΓ1], E[XΓ2] (resp. TΓ1,TΓ2) be the mean number of tasks (resp. mean response
time) in system SΓ1 resp. SΓ2. Therefore

Γ1 ≤el Γ2 ⇒


E[XΓ1] ≤ E[XΓ2]

TΓ1 ≤ TΓ2

(3.38)

Proof. Let µ(SΓ1)
x = mi n{x,C}µ(x) (the same for µ

(SΓ2)
x ) be the services rate transition

generated at state x in system SΓ1 (resp. SΓ2) then

Γ1 ≤el Γ2 ⇒ µ
(SΓ1)
x ≥µ

(SΓ2)
x ∀ st ate x,

also forall x, we have λ
(S1)
x = λ

(S2)
x = λ . From Theorem 3.2.1 we have

{Xt
Γ1, t ≥ 0} ≤st {Xt

Γ2, t ≥ 0}.

Using Lemma 3.2.1 for two stable systems, we get ΠΓ1
6 ≤st Π

Γ2
6 , therefore we conclude

from Property 3.2.1 that E[XΓ1] ≤ E[XΓ2] and TΓ1 ≤ TΓ2.

3.4.3 Power and energy consumption
Let p1, ..., p6 be the power consumption corresponding to Pstates 1, . . . ,6 (see Ta-
ble3.1). Cores speed depends on the number of tasks affected to the Opteron pro-
cessor. Let (x) be the number of tasks in the processor, then the power consumed
by each core when hosting x tasks in the system is :

p1 i f (x ≤ th1),
p2 i f (th1 < x ≤ th2),
p3 i f (th2 < x ≤ th3),
.
.
p6 i f (th5 < x).

(3.39)

As in previous models. Let pi (r esp. pi ,Id ) for i ∈ {1, . . . ,6} be the Opteron Pstate
power (resp. Pstate idle power) used by a core in Pstate ’i’ so pi ,Id = αpi .

Lemma 3.4.1 Let PWΓ be the total power consumption of a stable Opteron system.
For the simplicity of the power consumption equation, we fix th0 =−1 and th6 =∞
(effective thresholds are th1, th2, . . . th5). Let PW(a)

Γ (resp. PW(Id)
Γ ) be the mean

power consumption of the servers in activity states (resp. Idle states). Let x ∈ [0,+∞[
be the number of jobs in the system. {Xt

Γ, t ≥ 0} is an CTMC and, under stability
constraint, admits a steady-state distribution ΠΓ(x). Then, similarly to Lemma 3.2.2
we have :

PWΓ = PW(a)
Γ +PW(Id)

Γ , (3.40)
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where 
PW(a)

Γ =∑5
s=0

[∑ths+1
x=ths+1ΠΓ(x)

(
mi n(x,C)ps+1

)]
,

PW(Id)
Γ =∑5

s=0

[∑ths+1
x=ths+1ΠΓ(x)

(
C−mi n(x,C)

)
ps+1,Id

]
.

(3.41)

then

PWΓ =
5∑

s=0

[ ths+1∑
x=ths+1

ΠΓ(x)

(
Cps+1,Id +

(
ps+1 −ps+1,Id

)
mi n(x,C)

)]
. (3.42)

Notice that Lemma 3.2.3 for energy consumption per job still hold for this model.
Let E(Job)

Γ be this energy, then
E(Job)
Γ = PWΓ

λ
. (3.43)

.
In next section, we do not proceed to develop Algorithm 1 for the case of N = 6

Pstates.The number of systems to analyze can be up to 4∗106 (with THMAX = 100).
Note that in each system, we derive the steady-state distribution and the rewards
(mean response time and energy per job). The steady state’s calculation is, however,
very fast with a complexity of O(R) (see Equation (3.34)). Hence, for numerical
results in all Pstates Opteron system, we will show how the rewards evolves with
thresholds vectors.

3.4.4 Numerical results
In the following, we present results of an Opteron processor with C = 20 cores. This
Opteron processor uses all the Pstates N = 6 (as stated in the description section of
this model). We decided to compare the results for two systems. The first system
uses Γ1 = {3,6,12,24,48} as a distribution of thresholds. In that system thresholds
range is growing exponentially, while in the second system, we consider a regular
thresholds range Γ2 = {10,20,30,40,50}.

In Fig. 3.8 we observe that, for all values of λ where the system is stable
(λ < Cµ6), mean number of jobs and response time is lower in the system with Γ1
thresholds. This result is justified in Corollary 3.4.1. In Fig. 3.9 it is noted that the
mean power consumption and energy per job consumption is lower in the system
with Γ2 thresholds. This result can be seen as a consequence of the results in Fig.
3.8. Here Γ1 ≤el Γ2, then it is apparent that the system with Γ1 thresholds, would
consume more power (and energy per job), since high Pstates are quickly reached.
However, we can’t yet, offer an analytical proof for this result.
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4.1 Introduction
The fifth generation of mobile networks technology represents wireless communica-
tion systems related with the enormous growth of data traffic, due to the number
of connected devices and the popularity of some applications as video streaming,
augmented and virtual reality, cloud gaming, smart homes, connected cars, and re-
mote control of machines [GK15]. These applications have strict constraints such as
ultra-low latency, ultra-high bandwidth, to ensure the delivery of real-time services.
These requirements can be met by efficiently integrating heterogeneous wireless and
optical network segments and massive computing and storage services, delivered by
means of cloud computing.

The Cloud Radio Access Network (CRAN) has been recently proposed [Ase+16].
Because of the stringent requirements (latency in the order of tens of milliseconds) of
the several interfaces needed in C-RAN and the maturity and evolution of different
optical network technologies, optical networks have been proposed to support inter-
faces between Remote Radio Head (RRH) and Base-Band Unit (BBU) (front-haul
network), among BBUs and between BBUs and their peering point in the mobile
core network (back-haul network).

The NGREEN network takes advantages of several improvements of optical tech-
nology [D C17; Chi17a; Chi17b; WC17]. First, for metro networks, it is now possible
to synchronize entire networks up to nanoseconds. This enables architectures based
on Optical Slot Switching (OSS) where packets circulate on specific time slots. Sec-
ond, the use of WDM (Wavelength Division Multiplexing) packets allows some kind
of optical parallelism. The introduction of parallelism in the optical processing has
been considered as a powerful approach to reduce cost and energy consumption for
optical systems.

The NGREEN project aims to design and validate a versatile network archi-
tecture with a scalable capacity, low cost and low energy consumption. For the
performance point of view, we expect low latency and high utilization of the optical
capacity. In OSS networks, the delay is due to the optical container construction
and its insertion into the optical ring. Once the container has been emitted, it is
never converted to electronic nor queued until its arrival to destination. The trans-
portation time is only related to the distance (i.e. the length of the optical link)
between source and destination.

In this work, we study two parts of the network. The first one, is the mechanism
used to fill the optical container with the electronic packets (i.e. Internet Proto-
col (IP) or Ethernet) and the second one is the insertion node where the flows of
optical containers are queued before being emitted on the ring. Here, we evaluate
mathematically both mechanisms and the results from the filling process are used as
an input parameter for the analysis of the insertion. Thus we do not need to make
the typical assumption about Poisson arrivals of optical containers to the insertion
node. The discrete distribution for the inter-arrivals of container is obtained through
numerical analysis of the Markov chain and we found that it is quite different from
a Poisson process.

The aggregation of several data units into optical container must have a deadline
to avoid that some information wait too long during this first step. Adding a deadline
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which is triggered when the container begins to fill will help to keep the delay shorter.
However it makes the container filling incomplete because the Protocol Data Unit
(PDU) moves to the insertion node when the deadline occurs. This movement
can also be triggered if the filling is larger than a threshold. Thus we have two
mechanisms to study the trade-off between latency and energy consumption. Indeed,
the energy needed is the same irrespective of the number of Service Data Units
(SDUs) carried by the PDU, the optical container has a fixed size and padding is
added after the filling to complete the PDU. Thus a shorter deadline and a smaller
threshold make the container less energy efficient and reduce the delay. For the
insertion of the PDU into the ring we analyze both the opportunistic and reservation
mode, in order to compare the delays. In [Gra+18], two mathematical models have
been proposed to compare these two insertion modes, by considering Poisson arrivals
for the PDU. In our work, we compute the distribution of inter-arrival time of the
PDUs obtained from the filling process, in order to evaluate delays for the different
insertion modes. We compute both insertion delays and end to end delays from
SDU arrival to its depart from the optical ring.

This work is organized as follows. First, in section 4.2, we present the model of
a container filling with stationary batch arrivals of service data units which arrive
according to a stationary batch process. We derive a Discrete Time Markov Chain
(DTMC in the following) to represent the remaining time and the number of service
data units still present in the container. We prove that this chain satisfies a property
already studied by Robertazzi in [Rob89]. All the directed cycles of the DTMC go
through a single state. This property allows to compute the steady-state distribution
very efficiently. We obtain the distribution of the PDU size when it is inserted on the
ring and the distribution of the delay to fill a container and the delay between the
release of two successive containers. Through these models we get the distribution
of the delay between two successive arrivals of container at the insertion point on
the optical ring which are used in Section 4.4 to perform extensive simulations of
the ring. In section 4.3 we extend the model to a non stationary batch of arrivals. In
section 4.5 We compare distributions of delays for both opportunistic and reservation
insertion mode, and we study the trade off between energy efficiency and delays. At
the end, we finish with some remarks.

4.2 Model for optical container filling
We first model the filling process (Fig. 4.1) to obtain the distribution of the number
of bytes (aggregated in chunks) in an optical container (also denoted as PDU) and
the distribution of time between two successive releases of PDU. We fill a container
by aggregating various SDUs like Ethernet frames or Transmission Control Proto-
col (TCP) packets. We release a container either due to a deadline or a minimal
occupancy.

4.2.1 Markov Chain model
We consider a discrete time model the time unit of which is the WDM slot duration.
We assume that the arrivals follow a stationary batch process (we will change this
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Figure 4.1: Container filling and insertion.

assumption in the next section), called A. We also assume independence between
the successive batches of arrivals. The optical container size is 12500 bytes for the
NGreen architecture [Chi17a; WC17] and the container size is associated with a slot
equal to 10µs.

The arrivals may represent SDU or chunks with a constant number of bytes de-
pending of the granularity needed by the model. For the example below, we assume
that all the SDU (also equal to a chunk in this example) have the same size equal to
1500 bytes like an Ethernet MTU. Thus, the PDU can contain at most 8 chunks and
we can depict the chain (see for instance Fig. 4.2). This assumption is only needed
here for the sake of readability of the figure. Let An be the number of chunks which
arrives at time n, An=st A. The support of A is an upper bounded subspace of N.
We only assume that 0 ≤ An ≤ MaxAr r i val . This value (i.e. MaxArrival) depends
on the number of incoming lines connected to the station.

We design a discrete time Markov chain with two components: the occupancy of
the container and the clock. The timer is initially equal to 0 and it jumps to 1 when
the first SDU arrives in the buffer. It is then increased during each time unit until
the buffer is released. Let Hn be the value of the timer and let Xn be the number of
chunks in the buffer at time n. The system evolves based of the following events at
time n:

• a batch of An chunks arrives and they are added into the buffer (i.e. An may
be 0),

• the timer is increased if the number of Data Units in the container is positive,

• if the timer is equal to the deadline, or if the buffer is sufficiently filled, the
buffer is released into an optical container to be inserted on the ring. Then,
we begin the filling again.

Assume that chunks have a size equal to Y. Let Z be the size of the PDU. Let J be
Z/Y be the number of chunks which can be included into the container. Let C be
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the deadline and Thr be the utilization ratio of the buffer which triggers the release
of the container. 

Xn+1 = mi n(Xn +An , J)
IF Xn+1 > 0 Hn+1 = mi n(Hn +1,C)
I f (Hn+1 = C) Cont ai ner Read y
I f (Xn+1 ≥ Thr ∗ J) Cont ai ner Read y

Once the ”Container Ready” event occurs, we make the following transitions at the
next step : Xn = 0 and Hn = 0.

Clearly, due to the independence and stationary assumption, (Xn ,Hn) is a finite
discrete time Markov chain the state space of which is included into [0, J]×[0,C]. An
example of such a chain for small parameters C and J and three possible batches of
arrivals with size 0, 1 and 3 is displayed in Fig. 4.2. The Markov chain is built with
the XBorne tool [Fou+16].
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Figure 4.2: ToyModel: The Markov chain for J= 8, C= 8, and arrivals of 0, 1 or 3 SDU
per slot.
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4.2.2 Numerical Analysis
The numerical analysis of the chain takes into account its structural properties.

Property 4.2.1 Assume that E[An] > 0 (positive arrival) and that J∗Thr+MaxAr r i val ≤
J (no loss), the chain has the following properties:

• All the nodes in [0, J]× [0,C] are not reachable. Let S be the set of reachable
states reachable from state (0,0).

• The chain consists in many directed trees rooted at (0,0) with back edges from
the tree leaves returning to (0,0).

• Therefore the matrix of the Markov chain (say P) can be decomposed into an
upper diagonal matrix plus a matrix whose first column is positive and all the
other entries are equal to 0.

Proof. To prove the first point, we just mention that state (0,2) is not reachable
from state (0,0) because the clock jumps out of state 0 only with the first arrival. Let
us now consider the graph of the Markov chain. Let b be a node of S . Assume that
b 6= (0,0). By definition there is an oriented path from 0 to b in S . During all the
transitions out of b, the component Hn increases when Xn > 0 and the component Xn

does not decrease. Therefore, after some transitions, the components Hn is equal to
C or the component Xn is larger than J∗Thr . The next transition leads to state (0,0).
Therefore there is also a path from b to (0,0). Thus, for every state b in S , state
(0,0) is in at least one cycle going through b. Clearly, during all transitions (except
the loop in state (0,0)), component Hn always increases. Therefore all the directed
cycles of the chain are going through state (0,0). The last point follows directly from
the property on the cycles.

Property 4.2.2 If Thr ≤ J+1−MaxAr r i val
J , no SDU are lost. The PDU is released

before it is sufficiently filled.

Indeed, this assumption implies that J∗Thr −1+MaxAr r i val ≤ J, and J∗Thr −1 is
the largest buffer occupancy which does not trigger the emission of the container.

The first property allows that one can use a very efficient algorithm proposed by
Robertazzi [Rob89] to compute the steady-state distribution (say π()).

Such an algorithm has a complexity which is linear in the number of non zero
entries in matrix of the Markov chain while the Gaussian elimination for a full
matrix has a complexity cubic in the number of states. Thus, solving the steady-
state distribution only requires few seconds.

Once the steady-state distribution is obtained (typical results are represented in
Fig. 4.3 as a heatmap to illustrate the bivariate nature of the chain), one can derive
the distribution of the timer when the container is released. We have two conditions
to release a container: the buffer occupancy Xn is larger than J∗Thr or the clock Hn is
equal to C. Let S 1 be the set of states which satisfy one of these constraints. We first
compute the probability of S 1 Pr (S 1) = ∑

(X,H)∈S 1π(X,H). Then, the distribution
of the clock at a release instant are obtained after conditioning.

PrH(t ) = 1

Pr (S 1)

∑
(X,H)∈S 1

Pr (X,H)1H=t
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Parametres: J=8, A(n)={0,1,3}, J*0.75 = 6 and C = 8
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Figure 4.3: ToyModel: Distribution of the steady-state probability for (X,H) for the simple
model. Non reachable states are depicted in white.
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Figure 4.4: ToyModel: Distribution of the container size (in chunks of 1500 bytes) at
release time.
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Algorithm 2: Computation of the steady-state distribution: Robertazzi’s
algorithm

Input : Matrix P.
Output: Steady-state distribution π(x, y).
Step 1) Initialize π(0,0) = 1.
Step 2) Compute all the values of π(x, y) along the trees using the global
balance Equation (in a tree, a node has only one predecessor, therefore
solving the balance Equation is trivial).
Step 3) When the probability for all the leaves have been obtained,
compute the sum of the probability S.

Step 4) Normalize: divide each probability by S to obtain a sum equal to
1.0.

Let D be this distribution of time needed for filling a PDU. Note that it has a
bounded support: the upper bound is C while the lower bound is bJ∗Thr /MaxAr r i valc.

One can also compute the distribution of the buffer size when the PDU is re-
leased.

PrX(x) = 1

Pr (S 1)

∑
(X,H)∈S 1

Pr (X,H)1X=x

See Fig. 4.4 for this distribution for the model depicted in Fig. 4.2.
Once we have obtained the distribution of the timer at a release instant, we have

to add the time period when the buffer is empty. As the arrivals are independent
and stationary, the duration of time between the release of the container and the
arrival of the SDU has a geometric distribution with rate (1−Pr (An = 0)) and its
support is N. Let E be this distribution of the empty period. The time between two
successive releases of a container is the sum of the empty period and the duration
to fill a container (i.e. D) As the arrivals are independent, the distribution of the
timer at release time and the distribution of the empty period for the buffer are
also independent. Therefore the distribution of time between successive releases of
a container is the convolution of D and E . We compute a truncation of F =D⊗E .
Note that we must truncate the distribution because the support of E is not upper
bounded. This distribution F can be used an input parameter of the simulation of
NGREEN optical ring.

In Fig. 4.4, Fig. 4.5 and Fig. 4.6, we have depicted typical results for these
distributions. These results were obtained for arrivals of Ethernet Maximum Trans-
mission Units (MTUs) with full size. Therefore, the container size is 8. We have
consider a deadline equal to 8 and the threshold ratio for occupancy is 75% leading
to an integer threshold equal to 6. We have assumed that the batch of arrivals may
contain between 0, 1 or 3 SDU with respective probability: 0.5, 0.4, and 0.1. Thus
the expected number of SDU per time slot is 0.7.
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Figure 4.5: ToyModel: Distribution of the Timer at release time.
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Figure 4.6: ToyModel: Distribution of inter-PDU release time.
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4.2.3 A more realistic example with Ethernet and TCP SDUs
We model the arrivals of several types of SDU (short SDU of 50 bytes like TCP
acknowledgments, and larger SDU of 1500 bytes like Ethernet frames). We also
consider some others SDUs which will describe in the following. As the gcd of 50
and 1500 is 50 we describe the buffer occupancy by chunks of 50 bytes. TCP acks
consist in one chunk while a Ethernet MTU is modeled by 30 chunks. The buffer
occupancy varies from 0 to J = 250 chunks. To keep this representation of the buffer,
we assume that the sizes of the other SDUs are also a multiple of 50 bytes.

4.2.3.1 Model 1

In that model we consider three possible batches : 1 for the TCP packets, 30 for the
Ethernet frames, and 0 for no arrivals. Their respective probabilities are assumed
to be 0.4, 0.2 and 0.4.

1 13 27 41 55 69 83 97 113 131 149 167 185 203

x : Number of SDUs in PDU
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Figure 4.7: Model1: Distribution of the PDU size at release time (in chunks of 50 bytes)

Thus the average number of bytes arriving per slot is 320 (i.e. 6.4 chunks of
50 bytes). We first chose a deadline equal to 40 and a threshold ratio equal to
75% leading to an integer threshold equal to 190. We obtain a Markov chain with
5200 states and roughly 15000 transitions, the steady-state distribution of which is
obtained after 0.01s of computation time. The PDU contains an average payload
of 971 bytes (i.e. 194.37 chunks of 50 bytes obtained from the expectation of the
distribution depicted in Fig. 4.7). The average time to fill a container is 29.7 slots
(see the distribution in Fig. 4.8), and the average inter-arrival time 31.3 slots (see
the distribution depicted in Fig. 4.9).

We now study the effect of the deadline and the threshold ratio. In Fig. 4.10, we
present the mean time to fill a container for various threshold ratios (0.60,0.70,0.80,0.90).

76



0 3 6 9 13 17 21 25 29 33 37 41 45 49 53 57 61

t

Pr
H

(t)

0.
00

0.
05

0.
10

0.
15

0.
20

probability
Timer deadline

Figure 4.8: Model1: Distribution of the Timer at release time.
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Figure 4.9: Model1: Distribution of inter-PDU release time.

77



The analysis shows that the deadline is useful when it is small. After a boundary
value depicted by small dots in Fig. 4.10, the deadline has a weaker impact on the
time needed to fill the containers. They are mostly released because they have the
minimal size required. Obviously, the mean time to fill a container increases with
the threshold ratio.
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Figure 4.10: Model1: Distribution of the Timer at release time VS deadline, for different
threshold ratios

We will use this model for the insertion of PDUs by the stations in the optical
ring (see Section 4.4).

4.2.3.2 Model 2

In this model we consider five possible batches : 1 for the TCP packets, 30 for the
Ethernet frames, 4 and 9 chunks for various SDUs and 0 for no arrivals. Their
respective probabilities are 0.2, 0.15, 0.2, 0.1 and 0.35.

Thus, the average number of bytes arriving per slot is 320 (i.e. 6.4 chunks
of 50 bytes). The threshold ratio and the deadline are the same as in the last
model. Clearly this model will generate a bigger Markov chain since there is more
batches of arrivals. We obtain a Markov chain with 7670 states and more than
33500 transitions, the steady-state distribution of which is obtained after 0.03s of
computation time. Clearly our approach is extremely efficient.

The container contains an average payload of 980.5 bytes (i.e. 196.1 chunks of
50 bytes for the expectation of the distribution depicted in Fig. 4.11). The average
time to fill a container is 30.1 slots (see the distribution in Fig. 4.12). and the
average inter-arrival time of containers is 31.6 slots (the distribution is depicted in
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Figure 4.11: Model2: Distribution of the PDU size at release time (in chunks of 50 bytes).
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Figure 4.12: Model2: Distribution of the Timer at release time.
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Figure 4.13: Model2: Distribution of inter-PDU release time.

Fig. 4.13). We will use this model in the next section where we generalize the
resolution to wider non stationary arrivals.
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4.3 Generalization to non stationary arrivals
We now assume that the arrival process is not stationary. More precisely we consider
a Switched Bernoulli Batch Process (SBBP): the size of the batch is modulated by
an auxiliary discrete time finite Markov chain [HTS91]. Let {Φn} be the modulating
Markov chain, N be its number of states, M its transition matrix and ψ its transition
function [Duf97]. When this chain is in state k, the batch of arrivals is distributed
following distribution B{k}. The arrivals are still independent but the distribution
depends on phase Φn at time n. Clearly, using the same notation as in previous
section, (Φn ,Xn ,Hn) is a DTMC whose transition is described by:

Φn =ψ(U,Φn−1)
Xn+1 = mi n(Xn +An , J) wi th An=st B{Φn−1}

IF Xn+1 > 0 Hn+1 = mi n(Hn +1,C)
I f (Hn+1 = C) Cont ai ner Read y
I f (Xn+1 ≥ Thr ∗ J) Cont ai ner Read y

where U is uniform random. Again, once the ”Container Ready” event occurs, we
make the following transitions at the next step : Xn = 0 and Hn = 0 but the value of
Φ does not change.

Due to these assumptions we can reorder the Markov chain of the model to
exhibit a block structure:

P =


P11 P12 . . . P1N

P21 P22 . . . P2N
... ... ... . . .

PN1 PN2 . . . PNN

 , (4.1)

where block Pi ,i describes the transitions when modulating chain Φ remains in state
i while Pi , j models the transitions when modulating chain Φ moves from state i to
state j . Matrix Pi , j has size ni ×n j . We have for all value i and j of Φ, and all value
k and l of (X,H):

Pi , j [k, l ] = M[i , j ]Qi [k, l ], (4.2)

where Qi [k, l ] describes the transition from state k = (Xn−1,Hn−1) to l = (Xn ,Hn)
when the phase is i at the beginning of the transition. Thus the Markov chain can
be described as a generalized tensor product and some algorithms take advantage
of this block decomposition [FPS98; GDF01; Ben+04].

Remember that the NGreen container size is associated with a slot equal to 10µs.
Thus, if the evolution of the phase is much slower, we also have that (i.e M(i , j ) <<
M(i , i ), for all i 6= j ) and the Markov chain is Near Completely Decomposable (NCD).

Definition 4.3.1 P is NCD if P is decomposed as in Equation (4.1) such that for
all i 6= j , ||Pi , j ||∞ << 1.

Proposition 4.3.1 If M(i , j ) << M(i , i ), for all i 6= j , the DTMC (Φn ,Xn ,Hn) is
NCD.
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This is a simple consequence of the multiplicative form in Equation (4.2).
There exist many algorithms which takes into account the block structure or the

NCD property to compute the steady-state distribution [Ste95] after a decomposi-
tional analysis and the coupling of the sub-problems. Elimination algorithms are
rather inefficient due to the complexity and the spectral properties of NCD matrices
forbid to use iterative algorithms like Gauss Seidel or the Power method. We first
use a decompositional method (more precisely Iterative Aggregation/Disaggregation
algorithm) because our matrix exhibits a block structure decomposition: Koury,
McAllister and Stewart (KMS). More precisely we begin with the KMS-BGS ver-
sion described in [Ste95] (see also Algorithm 3) where a Block Gauss Seidel (BGS) is
performed at each iteration (Step 6) in Algorithm 3. The steady-state distribution
π is decomposed into sub-vectors πi . Sub-vector πi has size ni and n =∑N

i=1 ni is the
size of the Markov chain of the model. All vectors in the following are row vectors.
e is a row vector whose entries are all equal to 1 and eT is the transpose of e.

Algorithm 3: Computation of the steady-state distribution: KMS-BGS
algorithm

Input : Matrix P.
Output: Steady-state distribution π(x, y).
Step 1) Choose an initial probability distribution π(0)

i for each sub-problem
i , typically, the uniform distribution: π(0)[m] = 1/n for all m. Decompose
π(0) into sub-vectors π(0)

i .
Step 2) Compute the conditional probabilities at iteration k knowing that
we are in subset i :

ϕ(k)
i = π(k)

i

||π(k)
i ||1

.

Step 3) Compute coupling matrix A(k): A(k)[i , j ] =ϕ(k)
i Pi , j eT.

Step 4) Compute the dominant eigenvector of matrix A(k): ψ(k) =ψ(k)A(k),
and ψ(k)eT = 1.

Step 5) Obtain a new approximation of the solution based on the
decomposition and the law of total probability:

z(k) = (ψ(k)[1]ϕ(k)
1 ,ψ(k)[2]ϕ(k)

2 , . . . ,ψ(k)[N]ϕ(k)
N ).

Step 6) Perform an iteration of block Gauss Seidel to find a better
iteration for π(k+1)

i

π(k+1)
i (Id −Pi ,i ) = ∑

j<i
π(k+1)

j P j ,i +
∑
j>i

z(k)
j P j ,i .

Step 7) Conduct a test for convergence between π(k)
i and π(k−1)

i . If the
accuracy is sufficient, then build solution π from sub-vectors π(k)

i .
Otherwise set k = k +1 and go to step 2).

Unfortunately, Step 6) requires to compute exactly (or to give an approximation)
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of (Id −Pi ,i )−1 to perform the block Gauss Seidel iteration. Even if this matrix has
to be computed once for all the iterations of the algorithm, it needs a large amount
of time. As Pi ,i is transient, (Id−Pi ,i )−1 is the fundamental matrix associated to Pi ,i .
The computation of the fundamental matrix is known to be numerically unstable
and we use an elimination algorithm proposed by Sheskin [She95] due to its stability.
Such an algorithm is also time consuming and we also use a version of KMS where
the block Gauss Seidel iteration is replaced by an iteration of the Power method.
This version (called KMS-Pwr) is known to need a larger number of iterations but
an iteration of the Power method does not require to compute (Id −Pi ,i )−1 and is
therefore much faster. In KMS-Pwr algorithm, Step 6) is replaced by

π(k+1)
i =∑

j
z(k)

j P j ,i .

Computing the steady-state distribution is really time consuming as it can be seen
in Table 3.1 for KMS-BGS while the numbers of iterations increase with KMS-Pwr.
Thus we develop a new algorithm which combines the mains ideas of KMS algorithm
(decomposition and coupling) and Robertazzi method (simple elimination due to the
graph structure). In this new algorithm (called KMS+R) we replace Step 6) of KMS
algorithm and we obtain a much more efficient method as it is based on the cycles
of the graph.

4.3.1 Replacement of Step 6) in our algorithm
As we state the complexity of this new algorithm, we need some notation and some
assumptions about the storage of matrix P.

• Matrix P is stored by column.

• Matrix P is decomposed into blocks called Pi , j for i = 1..N, and j = 1..N. Di-
agonal block i (i.e. Pi ,i ) contains ni nodes and mi non zero elements.

• Furthermore n =∑
i ni . Let m the number of non zero transitions in P.

• πk
i represents the value of sub-vector π for subset i at iteration k. It is a vector

of size ni .

• Diagonal block Pi ,i has the following structure (see previous results): Pi ,i =
Ci +Ui , where:

– Ci is a matrix whose first column is positive and all the other entries are
equal to 0.

– Ui is a strictly upper diagonal matrix.
– Pi ,i [1,1] = 0.

Instead of computing matrices (I−Pi ,i )−1 for each index i , we solve the following
system of linear equations, at each iteration k and for each index i , taking into
account the properties of the matrices.

π(k+1)
i (Id −Pi ,i ) = ∑

j<i
π(k+1)

j P j ,i +
∑
j>i

z(k)
j P j ,i .
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Note that the right part can be computed before solving the linear system. Let
b(k)

i be the right hand side. The Equation becomes: π(k)
i = π(k)

i Pi ,i +b(k)
i . Using the

decomposition, we get:
π(k)

i =π(k)
i (Ci +Ui )+b(k)

i (4.3)
Taking into account the structure, we get for p = 2 to ni

π(k)
i [p] = ∑

q<p
π(k)

i [q]Ui [q, p]+b(k)
i [p]

and
π(k)

i [1] =∑
q
π(k)

i [q]Ci [q,1]+b(k)
i [1]

We prove in the following lemma a constructive formula for π(k)
i [q] for all index

i and node q.

Lemma 4.3.1 For all q > 1 and i in 1..b, we have:

π(k)
i [q] = αi [q]π(k)

i [1]+β(k)
i [q] (4.4)

where αi [q] and βi [q] are defined by the following induction:

αi [q] = ∑
p<q

αi [p]Pi ,i [p, q], (4.5)

with the following initializations: αi [2] = Pi ,i [1,2], and αi [1] = 1. Moreover

β(k)
i [q] = b(k)

i [q]+ ∑
p<q

β(k)
i [p]Pi ,i [p, q], (4.6)

with β(k)
i [2] = b(k)

i [2], and β(k)
i [1] = 0. Furthermore, we have

π(k)
i [1](1− ∑

p>1
αi [p]Pi ,i [p,1]) = b(k)

i [1]+ ∑
p>1

β(k)
i [p]Pi ,i [p,1] (4.7)

Note that vector αi does not change with iteration number k unlike vector β(k)
i . Thus

it can be computed once.

Proof: First, we prove the induction.

1. For p = 2, from Equation (4.3), we clearly have: π(k)
i [2] =π(k)

i [1]Pi [1,2]+b(k)
i [2],

because node 1 if the only predecessor of node 2. We clearly get the values for
αi [2] and βi [2].

2. For an arbitrary p > 2, assume the induction holds until p −1. We have:

π(k)
i [p] = ∑

q<p
π(k)

i [q]Pi ,i [q, p]+b(k)
i [p].

Using the induction for π(k)
i [q] with q < p, we get:

π(k)
i [p] = ∑

q<p
(αi [q]π(k)

i [1]+β(k)
i [q])Pi ,i [q, p]+b(k)

i [p],

from which one can readily obtained the induction.
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Finally, we compute π(k)
i [1] using Equation (4.3):

πk
i [1] = b(k)

i [1]+ ∑
p>1

β(k)
i [p]Pi ,i [p,1]+ ∑

p>1
αi [p]Pi ,i [p,1])

This concludes the proof and we can now derive the algorithm (called KMS+R as it
mixed the KMS approach of block structured matrices with Robertazzi algorithm).

Algorithm 4: Replacement of step 6) for KMS+R algorithm
Input : KMS+R algorithm.
Output: Steady-state distribution π(x, y).
Step 6.1) Compute the terms of the right hand side to obtain bk

i .
Step 6.2) Using Equations 4.5 and 4.6, we get the values of αi [p] and
β(k)

i [p] for p > 1.
Step 6.3) Using Equation (4.7), we get the value of π(k)

i [1].
Step 6.4) We obtain π(k)

i [p] for all p > 1 using the last two steps and the
induction.

Let turn to the complexity of this approach for replacing Step 6). The compu-
tation of bk

i requires at most m products and m additions to obtain the values of
bk

i for all i (it is a block Gauss Seidel iteration) during Step 6.1). At Step 6.2) the
loop iterates on p from 2 to ni and iteration p has a complexity equal to two times
the number of non zero elements in column p of matrix Pi ,i . Step 6.3) requires mul-
tiplication by the first column of Pi ,i (twice). Finally for Step 6.4) we only need ni

multiplications and ni additions. Steps 6.2 and 6.3 requires o(mi ) operations while
Step 6.4) needs o(ni ). This is much more efficient that our version of KMS-BGS
which computes the fundamental matrix of an arbitrary transient Markov chain (i.e.
(I−Pi ,i )−1) [She95] which has a complexity in o(n3

i ). Note however that we only need
to compute (I−Pi ,i )−1 once.

4.3.2 Algorithm Comparison
We now compare the time needed to solve the model using a standard numerical
algorithm with a cubic complexity (GTH proposed by Grassmann, Taksar and Hey-
mann ) which does not take into account the structure of the matrix, and with two
versions of the algorithm for block structured chains Markov chains (including NCD
chains). GTH is a very accurate direct method. A detailed presentation of this
algorithm can be found in [Ste95].

KMS-BGS, KMS-Pwr and KMS+R algorithms are iterative. To stop the process
we use the same condition as Stewart [Ste95] (i.e. ‖π−πP‖2 ≤ ϵ with a precision ϵ

equal to 10−15). We check the algorithms for NCD and non NCD matrices associated
with the same model for the buffer and various modulating Markov chains for the
phase of the arrivals. We assume without loss of generality that the modulating
Markov chain has only two phases. We check our algorithm for NCD and non NCD
matrices.
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4.3.2.1 NCD matrix

We have assumed the following matrix for modulation of the arrival:

M =
(

0.9 0.1
0.001 0.999

)
(4.8)

Clearly, such a matrix makes the Markov chain of the model near completely de-
composable. The batches of arrival have the same support (with size equal to 4)
but different probabilities for the two phases (see Table 4.1).

Batch size 0 1 2 3
Probability Phase 1 0.1 0.15 0.25 0.50
Probability Phase 2 0.5 0.25 0.15 0.1

Table 4.1: Parameters for the batch distribution.

We present in the following table a comparison of the execution time of the four
algorithms. The computations have been performed on a multicore PC with 8 Xeon
processors at 2.4 GHz with 12Go RAM. We report the results in Table 4.2. The
computations are performed 30 times to obtain the 95% confidence intervals for the
computation times. We only report the CPU usage and we do not take into account
the IO. The numbers of iterations needed by the KMS-BGS and KMS+R algorithms
are extremely low (4 to 6 iterations on most of the examples we solved) when the
matrix is NCD, as already reported in [Ste95]. KMS-Pwr is less efficient for this
criterion.

Size 1000 1500
KMS+R [0.018, 0.020]s 5 [0.019, 0.022] s 5

KMS-Pwr [0.056 , 0.062]s 18 [0.076 , 0.079]s 18
KMS-BGS [20.21, 20.58]s 5 [62.96, 63.90]s 5

GTH [4.07, 4.39]s [13.41, 13.78]s
Size 2000 5500

KMS+R [0.039, 0.057]s 5 [0.15, 0.16]s 6
KMS-Pwr [0.12, 0.15]s 17 [0.37 , 0.38]s 16
KMS-BGS [154.68, 155.25]s 5 [2956.70, 2965.16]s 6

GTH [33.34, 33.72]s [629,67, 632.32]s

Table 4.2: Computation time in seconds and number of iterations for NCD chains.
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4.3.2.2 General modulating matrix

We now consider two modulating matrices which make the matrix non NCD.

M1 =
(

0.8 0.2
0.1 0.9

)
, M2 =

(
0.7 0.3
0.4 0.6

)
Our approach is again very fast as it could be seen in Table 4.3 and Table 4.4. The
numbers of iterations increase for general matrices compared to NCD matrices.

Size 1000 1500
KMS+R [0.049, 0.054]s 18 [0.082, 0.091]s 21

KMS-Pwr [0.074 , 0.081]s 32 [0.190 , 0.194]s 36
KMS-BGS [20.24, 20.62]s 18 [63.00, 63.99]s 21

GTH [4.04,4.35]s [13.31,13.74]s
Size 2000 5500

KMS+R [0.23, 0.29]s 25 [0.89, 0.91]s 41
KMS-Pwr [0.29 , 0.30]s 41 [1.38 , 1.41]s 64
KMS-BGS [155.11, 155.75]s 25 [2975.93, 2985.47]s 41

GTH [33.42, 33.84]s [630.99, 634.26]s

Table 4.3: Computation time in seconds and number of iterations for modulating matrix
M1.

1000 1500
KMS+R [0.23, 0.25]s 66 [0.50, 0.51]s 88

KMS-Pwr [0.36 , 0.39]s 92 [0.71 , 0.73]s 118
KMS-BGS [20.48, 20.84]s 66 [64.12, 65.20]s 88

GTH [4.12, 4.47]s [13.73, 13.99]s
2000 5500

KMS+R [0.82, 0.94]s 113 [5.54, 5.57]s 252
KMS-Pwr [1.13 , 1.14]s 145 [6.86 , 6.92 ]s 305
KMS-BGS [157.16, 157.77]s 113 [2998.26, 3011.79]s 252

GTH [33.37, 33.75] s [633.92, 638.27]s

Table 4.4: Computation time in seconds and number of iterations for modulating matrix
M2.

The usual version of KMS-BGS is not efficient because the problem is not bal-
anced: we consider a problem with two large blocks. Our implementation of KMS-
BGS begins with the computation of the blocks (I−Pi ,i )−1, a task which is very time
consuming for our problem. The numerical results show that the time needed by
the KMS-BGS algorithm slowly increase with the number of iterations. This is due
to this constant time needed to compute the fundamental matrices associated with
the diagonal blocks.
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The KMS+R and KMS-Pwr algorithm have a different timing behavior. When
the matrix size is constant, the times increases almost linearly with the number
of iterations. This is consistent with the complexity of the problem. However
our algorithm (KMS+R) requires less iterations and less computation times until
convergence.

4.3.3 Example
We now consider an application to a more realistic traffic. We still assume two phases
for the modulating Markov chain. During phase 1 the traffic is the same than the
one we consider in section 4.2.3.2 while during phase 2 we assume heavier batches
of arrivals. More precisely we keep the same support for the batch distribution but
now the probability distribution is (0.15,0.1,0.2,0.3,0.25). We still assume that the
buffer size is 250 chunks of 50 bytes. We consider a deadline equal to 40 and the
same threshold as in section 2.3. Note that due to the more frequent arrival of large
batches, the average size of the batches is 11.1 chunks. The modulating chain is
NCD and equal to

(
0.999 0.001
0.001 0.999

)
.

The chain has 15340 states and 135160 transitions. The steady state distribution
is computed by KMS+R using 4 iterations and 0.37s. We observe from the distri-
bution that the average size of the container is 10093 bytes (i.e. 201.86 chunks) and
the mean inter arrival time of the containers at the insertion node is 19.18 time slots.
The average time to fill a container is 18.009 slots. The distributions are depicted
in Fig. 4.14 and Fig. 4.15. Due to the heavy arrivals in phase 2 the containers are
much more filled.
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Figure 4.14: ModelSBBP: Distribution of the PDU size at release time (chunks of 50
bytes).
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Figure 4.15: ModelSBBP: Distribution of the Timer at release time.

4.4 Modeling the container insertion on the opti-
cal ring

We first explain some constraints due to the technology we used to design the
NGREEN network. First, the network is an optical ring where optical contain-
ers are inserted by stations. The ring network is synchronized and divided into time
slots. The communication mode is the so-called Broadcast and Select. Under this
mode, the optical container may contain SDU destined to various stations. All the
stations copy the container to be converted to electronic packets. The only sta-
tion which can free the slot on the ring from the container is the sending station.
Therefore a container moving on the ring makes one turn and is copied by all the
stations.

The third important feature already mentioned in the introduction is the use of
WDM packets. The NGREEN network is built on slots: 1-µs long in the time domain
and covering 10 WDM channels in the spectral domain. The optical container has
10µs long time duration (i.e. 12500 bytes, for an emission at 10 Gbs). The container
is filled by aggregating different service data units and the optical container is spread
over the 10 wavelengths. Thus, the WDM packet has a duration which is 10 times
smaller than the optical container previously filled (this is illustrated in Fig. 4.16).

The slot assignment to containers may be opportunistic or based on a reservation
[Gra+18]. Next, we analyze these two insertion modes and give numerical results of
the delays. The container once it has been released by the filling mechanism waits
for an empty slot on the ring. It must also wait 10 slots after the last insertion on
the ring. This is a consequence of the conversion of a 10µs PDU into a WDM packet

89



Figure 4.16: The optical conversion at the insertion at a NGREEN node (from [D C17]).

of 1µs. Remember that the slot is freed by the node which has used it for emission,
after one turn of the ring. A container can be immediately inserted at its arrival if
the conditions of insertions are respected. We consider two scenarios which differ
by the kind of the insertion mode of the PDU into the ring : opportunistic or slot
reservation. We first begin with the opportunistic insertion mode, by a simulation
on the ring to find the number of stations which makes the network stable with
distribution of PDU inter-arrival time given in Fig.4.9. The results are depicted in
Fig. 4.17.
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Figure 4.17: Average ring occupancy versus number of stations.

We also check with the number of containers waiting for insertion. Clearly, the
system is stable up to 30 stations. In the following we will study a network with 22
stations (when the load on the ring is low) and a network with 28 stations which
provide a high load to the ring.
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4.4.1 Scenario A : latency with opportunistic insertion mode
We build a discrete time simulation engine to study the insertion delay for a container
to enter the optical ring. As we model an Optical Slot Switching system, a simulator
based on discrete time is easier to build and to use than a continuous event engine.
The main loop of the simulator proceeds as described in Algorithm 5.

Algorithm 5: Discrete time simulator
Input : The number of stations, and the inter-arrival distribution of

containers.
Output: Statistics on the ring occupancy, and insertion time distribution.

1 Initiate the simulation time t ← 0;
2 while !(simulator stop condition) do
3 //−−− Make the ring turn a slot −−−
4 Increase the global clock t ← t +1;
5 for all the stations do
6 1) Free the slot in front of the station if it was occupied by the

station for a container;
7 2) If the slot is empty and if ∆= 0, and if there is a container waiting

for insertion, then: put the container on the ring, remove the PDU
for the queue, perform some statistics on the insertion delay, and
let ∆= 10;

8 3) If an arrival of a fresh PDU occurs, then compute the next arrival
instant using an inverse transform method based on the discrete
distribution obtained in section 4.2;

9 4) Perform some statistics on the queue occupancy ;
10 5) Let ∆=∆−1;
11 end
12 end
13 Derive some statistics as the mean insertion delay for all stations, and the

ring occupancy.

We assume that all the nodes receive the same traffic which obeys the same
model studied in section 4.2.3.1. We suppose initially that 22 insertion nodes are
connected to the ring. The distribution of the time between two arrivals of container
is given by the distribution depicted in Fig. 4.9.

In Fig. 4.18, we show the distribution of the insertion time in slots for the first
station. The number of containers waiting for insertion is extremely small: during
the simulation we observe between 0 and 1 containers waiting. Note that due to
the scheduling used in the simulation a container may be inserted immediately at
its arrival. The probability to observe 2 containers waiting is less that 10−4 with
a confidence interval of 95%. Thus a very small buffer will be sufficient in the line
card. The utilisation of the ring is depicted in Fig. 4.20. After a small transient
period, the ring occupancy has small oscillations around 105 used slots (remember
that the ring contains 150 optical slots). We remove the first part of the sample path
(typically for time smaller than 1000 slots) to avoid the transient phenomenon. The
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simulations are long enough to reach steady-state. We propose now to increase the
number of insertion nodes to 28, and we see in Fig. 4.19, the probability distribution
reachs higher insertion delays due to a higher load, typically around 135 used slots
among 150. For this case, the number of containers waiting is up to 6 and the
probability to observe 6 containers waiting is about 10−2.

0 1 2 3 4 5 6 7 8 9 10 12 14 16

Insertion Delay

P
ro

ba
bi

lit
y

0.
0

0.
1

0.
2

0.
3

0.
4

Figure 4.18: I : Distribution of the insertion time (in slots) for the first station of 22
stations.

We now compute E 2E the distribution of the end to end delay. Remember
that the duration to fill a PDU is D. As the arrivals of SDU are supposed to be
independent, the arrival instants of optical containers are independent. Therefore
the distribution of end to end delay for a PDU is the convolution of D, I (the
insertion delay) and T (the transportation delay on the ring). Transportation delay
is upper bounded by the size of the ring as we do not make any assumption on the
spatial distribution on insertion stations along the ring. See Fig. 4.21 and Fig. 4.22
for E 2E distribution in case of 22 (resp. 28) stations in the ting..

E 2E =D⊗I ⊗T
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Figure 4.19: I : Distribution of the insertion time (in slots) for the first station of 28
stations.
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Figure 4.20: Ring occupancy versus simulation time.
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Figure 4.21: E2E: distribution of the end to end delay, case of 22 stations.
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Figure 4.22: E2E: distribution of the end to end delay, case of 28 stations.
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Next, we propose to analyze another insertion mode, allowing a greater stability
when the number of insertion nodes increases.

4.4.2 Scenario B : guarantee latency with slot reservation
insertion mode

We model the slot reservation mode. A station can only use the slots that are
periodically reserved for it. We assume that a slot is reserved every D slots on the
ring. The arrivals are independent and the inter-arrivals of containers follow the
random process, the distribution of which was computed in Section II-C.

We consider a discrete time model, the time unit of which is the WDM slot
duration. The model is based on two clocks: H1 to model the arrival of a reserved
slot on the ring and H2 to model the inter-arrival of an optical container. Both
clocks are synchronized. However clock H1 makes a deterministic jump of length
D after the arrival of the reserved slot while clock H2 makes a random jump after
an arrival of a container. The length of the jump is a random variable distribution
of which is given by the steady-state distribution computed in Section 4.2.3.1 (Fig.
4.9).

We also take into account the fact that an arriving container may be inserted
immediately if the reserved slot is available. This is modeled by the scheduling
used in the dynamics of the clock (i.e. H2 first). We assume that the arrival of a
container or a slot on the ring are modeled by the transition of the clocks out of 0.
The model also contains the population of container waiting for insertion. Let X be
this random variable. We assume that the buffer size is B. Clearly (H1,H2,X)n is
a Discrete Time Markov Chain. More precisely the dynamics are the following at
each time slot.

• First, if Clock H2 is positive, then it is decreased, otherwise as it is equal to 0,
it jumps to state K−1 while component X is increased if it is not equal to B.
If an arrival occurs while the buffer size is reached, the incoming customer is
lost. This probability will be computed in the following. K is the inter-arrival
delay. It is distributed as F .

• Second, if Clock H1 is positive, then it is decreased, otherwise it is equal to
0 and it jumps to state D−1. During the same transition, component X is
decreased by 1 if is not 0.

The model is generated using XBorne and it is solved numerically using a standard
numerical technique (i.e. Sparse version of the Grassman, Taksar and Heyman
Algorithm [Wil94]). As the matrix is very sparse, the computations only require
a few seconds for a matrix of size 8500. Once we have obtained the steady state
probability (say Pr (H1,H2,X)), one can numerically compute the following quantity:

• The loss probability for a container :

PLoss =
∑

i
Pr (i ,0,B) (4.9)
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• The buffer population :

E[X] =∑
i

∑
j

X Pr (i , j ,X) (4.10)

• The distribution of the insertion time for an arriving container: when a con-
tainer arrives at state ( j ,0,Y) (with Y < B, otherwise it is lost), it has to wait
(Y ∗D+ j ) time units. Note that we must consider in the distribution the
conditional probabilities knowing that a new container arrives :

Pr ( j ,0,Y)∑
i
∑

X<B Pr (i ,0,X)
(4.11)

The Markov chains are solved for the same traffic assumptions we already use for
the simulation. Furthermore the parameter D is supposed to be equal to the number
of stations to share equally the bandwidth among the stations. The buffer size is
supposed to be small. We consider a buffer which can contain up to 4 containers.
The numerical analysis show that this buffer is sufficient to avoid losses (see Tables
in Fig. 4.23).

#Stations 22 28

Losses 10−17 10−8

Optical containers 0 1 2 3 4

22 Stations 0.65 0.34 10−3 10−7 10−12

28 Stations 0.46 0.50 0.03 10−4 10−5

Figure 4.23: Loss probability & Distribution of the optical containers in the buffer

In the case of the slot reservation insertion mode, we can see in Fig.4.24 (resp.
Fig. 4.25 ), the distribution of the insertion delays of the first station for 22 (resp.
28) nodes. If we compare with the opportunistic insertion mode in Fig. 4.18 and Fig.
4.19, we can remark that insertion delays are smaller in the opportunistic insertion
mode, for 22 nodes, and higher for 28 nodes. In fact, for 28 stations, the number
of containers waiting in the node is up to 6 in the opportunistic insertion mode,
against up to 4 in the slot reservation mode. So the slot reservation insertion mode
is really interesting when the number of nodes increases.
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Figure 4.24: I : Distribution of the insertion time (in slots) for the first station of 22
stations.
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Figure 4.25: I : Distribution of the insertion time (in slots) for the first station of 28
stations.
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4.5 Energy efficiency and latency analysis
We consider a scenario with 10 stations, with the opportunistic insertion mode into
the ring, and we try to analyze both end to end delays, and energy efficiency. In
the NGREEN project, the energy consumed with respect to the different equipment
crossed is 0.8 nJoule/bit. For the transmission of an optical packet of 12500 bytes
we need 12500∗8∗0.8 nJoules, so the energy efficiency represents the ratio between
80 µJoules and the payload of the PDU which depends on the filling. We give the
energy efficiency as

Cont ai ner Capaci t y ∗8∗0.8∗10−9 (Joules)

Cont ai ner occupanc y (bi t )
= 80∗10−6 (Joules)

Cont ai ner occupanc y (bi t )
.

In Fig. 4.26, we have represented energy efficiency for different filling ratios and
deadlines. Obviously, the larger the thresholds and the deadlines, the larger the
occupancy of the container, then the smaller (and better) the energy efficiency. We
have also represented in Fig. 4.27, the end to end delays according to the deadlines
and the thresholds ratios, in order to analyze the impact of the traffic aggregation
on the end to end performances. So we can see that the higher threshold ratio (0.90)
gives the higher end to end delay due to the high delays to fill the PDU (as shown in
Fig.4.10), but the lowest and the best energy efficiency. These results are obtained
for the opportunistic insertion mode, and allow to provide the thresholds and the
deadlines which guarantee both energy efficiency and end to end delays. In the case
of the slot reservation insertion mode, the energy efficiency will be the same as it
depends essentially on the parameters of the filling process (threshold and deadline).
The insertion delays will be higher as the number of stations is small.
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Figure 4.26: Energy efficiency versus deadline.
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Figure 4.27: End to end delays versus deadline.

Remark
The optical container filling model considered in this work is much wider. The model
supports any filling system subject to a global clock. For instance, the charging of
a battery with energy packets.
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Part III

Analytic analysis of power
consumption in a cloud center
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Half of the power consumption of a data center is due solely to the cooling of
computer devices, particularly servers. The need to reduce the energy consumed
by servers is constantly increasing. Servers consume 60% of their maximum energy
by being inactive. Turning on an off server consumes even more energy. Most
companies are reluctant to shut down inactive servers because the cost of powering
them up is very high, typically 200sec, while at most one task is processed in 1
second ([Kri10] and [DeC07]). So before making the right decision, studies must be
done to obtain an estimate of costs, energy, losses and other performance indicators.

In 2015, in France, digital technology consumed approximately 56 TWh of elec-
tricity out of a total of 476 TWh, i.e. about 12% of the country’s electricity con-
sumption. According to [dec] calculations, since electricity accounts for approxi-
mately 25% of final energy consumption in France, digital technology now accounts
for approximately 3% of the country’s final energy consumption. Details are in Fig.
5.1.

Figure 5.1: Statistics of electricity consumption in France, 2015 (Source: [dec]).

In order to reduce high operating costs, as well as CO2 emissions, one of the
greatest future challenges is the improvement of energy efficiency in data centers.
In [A+17], the authors analyze using traces some shutdown policies in order to
study their impact on energy saving. Shutdown policies are often combined with
consolidation algorithms that gather the load on a few servers to favor the shutdown
of the others. The resources (servers, Virtual Machines (VMs)) can be in one of
the following states: OFF, ON, and the ON state is divided into two sub-states:
Idle or Run. The power consumption for OFF state is low (sometimes considered
zero), but in the Idle state as the resource is powered On, then the consumption
could reach half of its maximum consumption when it is in activity. In the Run
state, the consumption increases with the resource utilization. Moreover, energy
consumption for turning ON, and turning OFF is not negligible and has to be taken
into account for the shutdown policies. So turning OFF resources could be energy
saving only if the idle periods are long enough to make the transitions ON/OFF
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and OFF/ON. Migration of tasks or VMs can also be used in order to balance the
load between overused servers to unused servers [LA10]. This helps to preserve the
nodes from overheating and to prevent overused nodes to have technical problems
prematurely. It is linked to the principle that it is better to have a working node
than a turned ON node which is doing nothing. Several papers have addressed
the problem of load balancing in distributed networks to avoid server overload, and
to improve the response time [ASJ17; JJ06; MN91]. Another approach, is to use
consolidation [A13] in order to overload some servers and to shut down others. It
could be efficient for long shut down periods. In [A+15] this approach is used with
PIKA simulation framework aiming at reducing the brown energy consumption (i.e.
from non-renewable energy sources), and improving the usage of renewable energy
for small mono-site data centers. Simulators as ”CloudSim, SimGrid, ns-2 and ns-3,
ecofen (for wired networks) [AC+17] ...” have been widely used in the last decade to
evaluate cloud performance and energy consumption. Virtualization in cloud data
centers allows one to create several VMs on a physical server, and therefore, reduce
the amount of hardware in use and improve the utilization of resources. Many
studies as consolidation algorithms, load balancing algorithms, power saving under
performance/power budget/CO2 emission constraints are discussed in [A13][A+15].

5.1 Load balancing of tasks
Load balancing technique consists on Balancing the workload among different servers,
in order to (i) achieve some equilibrium load between servers so that no servers are
in Idle state, this solution clearly increases the performance and could be energy
efficient depending on the energetic equation considered. (ii) Another concern of
the load balancing is the consolidation, it could be efficient to gather the workload
into a single physical server in order to shutdown the sending load servers for a long
period. In [KR13] authors presents an energy conscious, power aware load balanc-
ing strategy based on adaptive migration of VMs. This strategy will be applied to
virtual machines on cloud, considering higher and lower thresholds for migration of
VMs on the servers also they consider RAM and Bandwidth for better performance
and load balancing. Load balancing is very common in queueing theory [ASJ17;
JJ06].

Many communication networks and computer systems use load balancing to im-
prove performance and resource utilization. The ability to efficiently divide service
requests among system resources can have a significant effect on performance and
energy consumption. Static [SM91; Sou+12] load balancing mainly based on the
information about the average of the system work load. It does not take the ac-
tual current system status into account. In [AD85] static load balancing algorithms
aim at finding optimal customer routing to optimize the throughput and other per-
formance indices under certain constraints. Dynamic or adaptive load balancing
policies are the most efficient ones. The system reacts dynamically to the network
state and traffic is directed to routes with less load or extra load, depending on a
cost function. Dynamic load balancing algorithms are usually classified into two
families: receiver-initiated and sender-initiated [DEJ86]. In the first case, an over-
loaded node decides to send some of its job to another node that receives them and
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tries to process or reallocate them elsewhere. In the latter case, it is the receiver that
decides when it can poll another node to import some of its jobs. In [DEJ86] also in
[RDJ90] for heterogeneous systems, authors compare sender- and receiver-initiated
strategies and conclude that, under heavy load, receiver-initiated algorithms give
lower expected response time than sender-initiated one. Also In [ASJ17], authors
address the problem of dynamic load balancing for networks with open topology
where an arbitrary number of nodes implement a receiver-initiated dynamic load
balancing algorithm. The algorithm’s point is to compute the polling rates among
the network stations that ensure both the network to be in product-form and that
the sets of specified stations have their load balanced.

Regarding the literature on product-form analysis (see e.g. [SJH13; SA13; GM15;
Gar+16] ) for some works in the field, LB networks present important particularities.
Compared to the literature on signals in G−networks and similar models ([XMM99;
Gel93a; Gel93b; Gel93d; FV95; AB12]), LB networks have the property that the
network population is preserved by node interactions. In Chapter 6, we present
a study based on the load balancing between physical servers, in order to reduce
energy consumption of the system.

5.2 Server’s power consumption
The power consumption of a server depends on the server’s components. It is well
known that a server has a basic or static consumption (consumed even when the
server is in an idle state), and a dynamic consumption. Dynamic power consumption
is the power needed by a server to execute a task. Static and dynamic consumption
depends on the configuration of the server, for instance, for a physical server the
power consumption will depend on the number of VMs hosted, the number of cores
in an single VMs, cores speed, cores/VMs states considered, and the VMs migration
cost if this technique is considered. The power consumption of a server is generally
related to its workload. When the server is not virtualized and the applications
it runs are known, the term server load has a meaning relative to the applications
present. For example, the load of a web server can be defined as the number of
requests it receives per second. While the literature does not provide a general
model of servers consumption, it does, however, provide different approaches some
of them are presented in Table 5.1.
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Works Characteristics.
[Gao+13; BAB12; Bas+11] Linear power model.
[BBA10; Lim+11] Non linear power model based on mathemat-

ical integration.
[GNS11; MD15] Non linear model based on queueing theory.
[WTB10; Inc05] Non linear model based on the CPU utiliza-

tion
[G14] Quadratic power model.
[Zha+13] Cubic polynomial power model

Table 5.1: Server’s power modeling.
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Analysis of power consumption in
cloud/data center with tasks
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6.1 Introduction
In this study, we use the load balancing as a resource management, in order to
see the impact on the power consumption. We use Jackson multi-server network
to model the servers of the data center. Queueing theory and Mean Field analysis
have already been used for performance analysis of clouds. Models include M/M/C
queues to study the minimum of resources required for the performance [G+16] or
the reliability of the cloud [B+09]. Infrastructure as a service (IAAS) clouds have
been modeled by M/G/m/m+k queues in [X+16]. Mean Field approximation have
been proposed for the asymptotic analysis of large scale load balancing network with
general distribution [RLK15]. Dealing with general arrivals and services processes,
one can also use a diffusion approximation ([W04],[T+09]). Such an approach was
published recently to build a model which explicitly represent energy and data in
sensor networks with energy harvesting [HE16].

In this work, we study how to optimaly minimize the mean power consumption
using an exact analysis of the queueing network with customer migration. We use
the multi-server Jackson network to represent the behavior of the data center. Each
physical server is represented by a multi-server station, and the VM (Virtual ma-
chines) are the servers of the stations. The routing between the stations represents
the task migrations. The exact distribution provided by Jakson model allows to
compute the optimal migration rate. An extension of this work consists in using the
new product form result published by Gelenbe and his colleagues ([EE15],[EE16]).
This model explicitly represents the energy needed by data transfer and computa-
tion.

The chapter is organized as follows: next, we give the power consumption equa-
tions computed in a data center, then in section 6.3 we derive the mathematical
formula of the mean power consumption and we give the upper bound of the mi-
gration power which reduces the global power consumption. We give the migration
rate which minimizes the mean power consumption. In section 6.4, we show with a
numerical example how to choose the parameters (power migration, migration rates)
in order to minimize the power consumption.

6.2 Power consumption model
In a data center, the power consumption can be divided into static and dynamic
parts. The static parts are the base costs of running the data center when being idle
and the dynamic costs depend on the current usage [MAA16]. For the data center
with n servers, we denote si the power consumption of server i , for i = 1, . . . ,n. Each
server hosts a set of (VMs) Virtual Machines that perform tasks, and m represents
the number of VMs hosted by a server.

Let Pwrtot al be the total power consumed in the data center, and Pwr (si ) the
power consumed by a physical server. From [G14] we have:

Pwrtot al =
n∑

i=1
Pwr (si ).

The power consumed by a server is the sum of static power (δ) when the server
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is powered ON (and idle) and the dynamic part (β and α) depends on the CPU
resource utilization of the VMs hosted in the server when they are performing tasks.
As the CPU is one of the highest power consumers on a node, in many studies this
is the most considered (compared to the RAM or disk). In [G14], the consumption
of a server is defined as a polynomial function of degree two of the CPU load of this
server. It is therefore an extension of the linear model, which is a polynomial of
degree one.

Pwr (si ) = δ+CPU(si )∗β+CPU2(si )∗α, (6.1)

We consider that CPU(si ) is the CPU utilization ratio of the server i , which is
divided between each VM of the server:

CPU(si ) =
m∑

j=1
CPU(vm j ),

where CPU(vm j ) is the CPU ratio allocated to the vm j . We suppose that all the
virtual machines are homogeneous in terms of CPU utilization [X+16; R+13]. That
means that the physical resources allocated to each VM are of the same capacity
and type. We consider a single-task policy, each job or task is served by one virtual
machine, so the mean number of activated VMs corresponds to the mean number
of tasks in service. As the virtual machines are homogeneous, then CPU(vm j ) =
CPU(vm), for all j. And if E(ns,i ) is the mean number of tasks in service (or activated
VMs), then:

CPU(si ) = E(ns,i )∗CPU(vm).

As an example, if we consider a data center with 2 physical servers, then Equation
(6.1) gives, for i ∈ {1,2}:

Pwr (si ) = δ+E(ns,i )∗CPU(vm)∗β+ (E(ns,i )∗CPU(vm))2 ∗α.

The consumption of a physical server is upper bounded by δ+β+α : let’s m be the
number of VMs in a physical server, CPU(vm) = 1

m since the VMs are all homo-
geneous and receive the same utilisation ratio as mentioned above. As E(ns,i ) ≤ m
then we deduce that δ+β+α is an upper bound of Pwr (si ).

We note that in this section, we have not considered migrations of tasks and
therefore power consumption due to migrations, but it will be added in the following.
Next, we compute analytically the power consumption in a data center using multi-
server Jackson network with task migrations for load balancing.

6.3 Jackson network model for task migrations
We consider a data center system with two physical servers. We suppose now that
the system performs migrations from overloaded to unloaded server in order to avoid
to shutdown the unloaded servers. We model the system with a Jackson network.
Each station represents a physical server, where tasks are either waiting in the
queue, or in activity (in service or in migration). This limitation to system with
two servers is due to the optimization process detailed in section 6.3.3. Of course
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the queueing model can accommodate larger systems. In section 6.4 we extend the
study to models with N > 2 physical servers.

A task can migrate from one station to another one. We assume that for each
station i (i = 1, 2), the external arrivals of tasks follow independent Poisson processes
with rate λi . We also assume that the services and the migration durations are
independent and distributed according to exponential distributions with rate µi

(i = 1, 2) and γi , j (i , j = 1, 2, and i 6= j ) for the task migration from station i to
station j .

We suppose that each physical server is associated to m logical servers (VMs)
as in [G+16]. If the number of tasks is larger than m, then they wait in the queue,
and only m among them are in service or involved in a migration. We also assume
that the queueing capacity is infinite. No task can be rejected at its arrival.

The logical service rate in a queue could be a real service or a migration. As both
activities are independent and exponentially distributed, their parallel composition
can be seen as an exponential duration with rate µi +γi , j (i , j = 1, 2 and j 6= i). After
this logical service, a task can leave the system (being stopped) or stochastically
route to the other queue (migrate). This is typically a race condition between two
events as in a stochastic Petri net. The probabilities of these events are given in
Lemma 6.3.1.

6.3.1 Analytic results for the queues
The state of station i is xi , which represents the number of tasks waiting or in
activity. The task scheduling discipline is FCFS (First Come First Serve). We
assume that both stations contain m logical servers. Therefore mi n(m, xi ) task
are in service or in a migration activity while (xi −m)+ are queued. Each queue
in isolation can be seen as a M/M/m queue, using Kendall notations. Under the
classical assumptions we mention earlier, Xt = (x1, x2)t is a Markov chain, and the
transitions are as follows:

(x1, x2) → (x1 +1, x2) with rate λ1,
→ (x1, x2 +1}), with rate λ2,
→ (max{0, x1 −1}, x2), with rate mi n{x1,m}·µ,
→ (max{0, x1 −1}, x2 +1), with rate mi n{x1,m} ·γ1,2,
→ (x1, max{0, x2 −1})with rate mi n{x2,m} ·µ,
→ (x1 +1, max{0, x2 −1})with rate mi n{x2,m} ·γ2,1 .

We know that under ergodicity conditions, Jackson networks have a steady-state
distribution Π(x1, x2) =Π1(x1)Π2(x2) which has a product form [Jai92]. Π1(x1) and
Π2(x2) are steady-state distributions of two M/M/m queues the parameters of which
are given by the flow equations between traffic intensities ρ1 and ρ2.
Theorem 6.3.1 Let (x)t be the Markov chain that represents a M/M/m queue. x
is the number of tasks in the station. Let ρ< 1 be the traffic intensity and Π(x) the
steady-state distribution. Then from [Jai92], we have:

Π(x) =


Π(0) (mρ)x

x! , x < m

Π(0)ρ
x mm

m! , x ≥ m

(6.2)
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and

Π(0) =
[

1+ (mρ)m

m!(1−ρ)
+

m−1∑
x=1

(mρ)x

x!

]−1

. (6.3)

It remains to write the flow Equation for our model.

Lemma 6.3.1 In the networks we consider, the fresh arrivals at station i (i =
1, 2) follow Poisson processes with rate λi . The parallel composition of service
and migration results in an activity with an exponential duration with rate µi +γi , j

(i , j = 1, 2 and i 6= j), followed by a departure with probability µi
µi+γi , j

(i , j = 1, 2, i 6= j)
or a migration with probability γi , j

µi+γi , j
(i , j = 1, 2, i 6= j). Using the flow equations

for Jackson networks, we get:

ρ1 =
λ1 +m(µ2+γ2,1)ρ2

γ2,1
(µ2+γ2,1)

m(µ1+γ1,2)
, ρ2 =

λ2 +m(µ1+γ1,2)ρ1
γ1,2

(µ1+γ1,2)

m(µ2+γ2,1)
.

And after simplifications we obtain the flow Equation of the model with migration:

ρ1 =
λ1 +mρ2γ2,1

m(µ1+γ1,2)
and ρ2 =

λ2 +mρ1γ1,2

m(µ2+γ2,1)
. (6.4)

We now define some notations we will use in the following of the study. Consider
a task in a station, it is either served or implied in a migration to another station.
Let P1 (resp. P2) be the probability of service and 1-P1 (resp. 1-P2) the probability
of migration:

P1 = µ1

µ1 +γ1,2
, P2 = µ2

µ2 +γ2,1
. (6.5)

In order to compute power consumption of the system using the relations men-
tioned in the previous section, we need the mean number of tasks in service which
correspond to the mean number of active VMs. Since our system has a product
form solution, the rewards will be calculated separately for each station. Let E(ns,1)
(resp. E(ns,2)) be the mean number of tasks in service in station 1 (resp. station 2).
It is well-known that (see for instance [Jai92] for a proof):

E(ns,1) = mρ1, and E(ns,2) = mρ2. (6.6)

Lemma 6.3.2 The total power is the summation of the power consumed by each
station plus the power Pm needed for the migrations:

PwrJackson = Pwr (s1)+Pwr (s2)+Pm.

Combining the power model (in Equation 6.1), the value of the average queue size
(Equation 6.6) and the probability of serving (resp. migrating) (Equation 6.5), we
obtain for physical server i ∈ {1,2}:

Pwr (si ) = δ+E(ns,i )∗CPU(vm)∗P1 ∗β+ (E(ns,i )∗CPU(vm)∗P1)2α, (6.7)
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while for the power consumed by the migration:

Pm = pmE(ns,1)(1−P1)+pmE(ns,2)(1−P2), (6.8)

where pm is the migration power for a task.
Combining Equations 6.7, and 6.8, we finally obtained after summation:

PwrJackson = 2δ+ [
P1E(ns,1)+P2E(ns,2)

]
CPU(vm)β+ [

E(ns,1)2P2
1 +

E(ns,2)2P2
2)

]
CPU(vm)2α+Pm.

Remember that, CPU(vm) = 1
m since the VMs are supposed homogeneous as already

mentioned in section 2. Then, we get:

PwrJackson = 2δ+ (
ρ1P1 +ρ2P2

)
β+ [

(ρ1P1)2 + (ρ2P2)2
]
α

+ mpmρ1(1−P1)+mpmρ2(1−P2).
(6.9)

Corollary 6.3.1 The system without migration is modeled with migration rates
equal to 0:

γ1,2 = γ2,1 = 0.

Each physical server is an independent M/M/m queue. Let ri be the traffic
intensity of station i (i ∈ {1,2}) in the system without migration, then :

ri = λi

mµi
, (6.10)

And the mean number of tasks in service are E(ns,i ) = mri . Since γ1,2 = γ2,1 = 0,
we get P1 = P2 = 1 (see Equation (6.5)) and the power consumption of this system
without migration is:

PwrMMm = 2δ+ (r1 + r2)β+ [
r 2

1 + r 2
2

]
α. (6.11)

6.3.2 Systems comparison
In this section we compare the power consumption in both models. Clearly if mi-
gration cost is very high, there is no benefit to perform migration.

Assumption 6.3.1 We consider that the two physical servers have different traffic
intensities. More precisely and without loss of generality, we assume a heavy traffic
in station 2 and a low traffic in server 1: r1 < r2 < 1. To minimize the power
consumption, we assume that the migrations only occur from the heavy traffic station
(station 2) to the low traffic one (station 1). Thus, γ1,2 = 0.

Lemma 6.3.3 Under this assumption, we have P1 = 1 and P2 = ρ2
r2

.

Proof. As P1 = µ1
µ1+γ1,2

the assumptions clearly implies that P1 = 1. Furthermore we
have the following relations:

P2 = µ2

µ2 +γ2,1
, r2 = λ2

mµ2
, ρ2 = λ2

m(µ2+γ2,1)
, ρ1 =

λ1 +mρ2γ2,1

m(µ1)
. (6.12)

Clearly P2 = ρ2
r2

holds.
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Lemma 6.3.4 Assume that VMs are homogeneous and the servers are equivalent
(i.e. µ1 =µ2 =µ), then the sum of the mean number of activated VMs in each model
is a constant value.

mρ1 +mρ2 = mr1 +mr2 = mK, wher e K ∈ [0,2]. (6.13)

Proof. By solving the Equation system in Equation (6.4) and using γ1,2 = 0, we
get:

ρ1 =
λ2γ2,1 +λ1(µ+γ2,1)

mµ(µ+γ2,1)
, and ρ2 = λ2

m(µ+γ2,1)
. (6.14)

So:

⇒ ρ1 +ρ2 =
λ2γ2,1 +λ1(µ+γ2,1)+λ2µ

mµ(µ+γ2,1)
= λ2(µ+γ2,1)+λ1(µ+γ2,1)

mµ(µ+γ2,1)
.

⇒ ρ1 +ρ2 =
λ2(µ+γ2,1)+λ1(µ+γ2,1)

mµ(µ+γ2,1)
.

⇒ ρ1 +ρ2 = λ2 +λ1

mµ
= λ1

mµ
+ λ2

mµ
.

⇒ ρ1 +ρ2 = r1 + r2.

Lemma 6.3.5 Assuming that γ2,1 ≥ 0 then the following relations hold:

ρ2 ≤ r2 and ρ1 ≥ r1.

Proof. From Equation (6.10) and (6.14) we have:

ρ1 − r1 =
λ2γ2,1 +λ1(µ+γ2,1)

mµ(µ+γ2,1)
− λ1

mµ
= λ2γ2,1

mµ(µ+γ2,1)
≥ 0,

ρ2 − r2 = λ2

m(µ+γ2,1)
− λ2

mµ
= −λ2γ2,1

mµ(µ+γ2,1)
≤ 0.

Lemma 6.3.6 Under Assumption 6.3.1, if the following relation on the power for
a migration holds,

0 ≤ pm ≤
[

(r2 + r2P2)(2α+αP2
2)−2Kα+P2β

mP2

]
, (6.15)

then
f (ρ1,ρ2)− g (r1,r2) ≤ 0.

This gives an upper bound on the power needed for a migration which reduces the
global power consumption.

Proof. Let f (ρ1,ρ2) (resp. g (r1,r2)) be the power consumption function in the task
migration model (resp. no task migration model). From Equation (6.9) and (6.11)
and Assumption 6.3.1 we obtain:[

g (r1,r2) = 2δ+ (r1 + r2)β+ [
r 2

1 + r 2
2

]
α,

f (ρ1,ρ2) = 2δ+ (
ρ1 +ρ2P2

)
β+ [

ρ2
1 + (ρ2P2)2

]
α+mpmρ2(1−P2).

(6.16)
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Using P2 = ρ2
r2

and r1 + r2 = ρ1 +ρ2 = K (see Lemma (6.3.4)) then:

f (ρ1,ρ2)− g (r1,r2) = P2(ρ2 − r2)β+
(
ρ4

2−r 4
2

r 2
2

)
α

+ (r2 −ρ2)
[
(2K−ρ2 − r2)α+mpmP2

]
.

After factorization:

f (ρ1,ρ2)− g (r1,r2) = (r2 −ρ2)

∗
[

mpmP2 + (2K−ρ2 − r2)α−P2β− (ρ2+r2)(ρ2
2+r 2

2 )α

r 2
2

]
.

Remember that ρ2 ≤ r2 (see Lemma 6.3.5) and after some algebraic manipulations,
the proof is complete.

Remark that the best case is when pm = 0 but it’s not realistic, as migration of
tasks costs power.

6.3.3 Optimization of power consumption
Next, we study the optimal solution of the equation describing power consumption
for the model with tasks migrations (see Equation (6.9)). We know that ρ1 = K−ρ2

(see Lemma (6.3.4) ), P2 = ρ2
r2

and P1 = 1 (see Lemma 6.3.3). Then we can express
Equation (6.9) as a function of one variable ρ2. Let f () be this function:

f (ρ2) = 2δ+ (
K−ρ2 +ρ2P2

)
β+ (

(K−ρ2)2 + (ρ2P2)2)α+mpmρ2(1−P2).

After some algebraic manipulations, we get the expression of f () as a degree 4
polynomial:

f (ρ2) =
(
α

r 2
2

)
ρ4

2 +
(
αr2 −mpm +β

r2

)
ρ2

2 + (mpm −β−2αK)ρ2 +K2α+Kβ+2δ. (6.17)

Let us now study the domain of definition (the possible values of ρ2). The set of
possible values for (ρ1,ρ2) comes from all the constraints we got:

ρ1 ≤ 1,
ρ1 ≥ r1 ≥ 0,
ρ2 ≥ 0,
ρ2 ≤ r2 ≤ 1,
ρ1+ρ2 = K = r1 + r2.

Let S be this set. It is a compact set of R2. Let D be its projection for the second
component. By construction D is a compact of R. Depending of the value of K, D
can be:  [0,K] i f 0 < K < 1,

[0,1] i f K = 1,
[K−1,1] i f K > 1.
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Theorem 6.3.2 As a polynomial function, f is continuous and it takes value from a
compact set D to the real numbers. According to Weierstrass extreme value theorem,
it has a minimal and a maximal values on the compact set. Therefore it exists a
value of ρ2 in the domain of definition which minimizes the power consumption.

Lemma 6.3.7 If the following condition on the parameters of the power function
holds:

mpm −β−αr2 ≤ 6α

r2
((K−1)+)2, (6.18)

then, f is convex on D.

Proof. The first and second derivative of f are:

f ′(ρ2) =
(

4α

r 2
2

)
ρ3

2 +
(

2αr2 −2mpm +2β

r2

)
ρ2 +

(
mpm −β−2αK

)
,

and,

f ′′(ρ2) =
(

12α

r 2
2

)
ρ2

2 +
(

2αr2 −2mpm +2β

r2

)
,

while
f ′′′(ρ2) =

(
24α

r 2
2

)
ρ2.

Function f ′′() is a degree 2 polynomial which is increasing on D as f ′′′() is positive
on R+ and D⊂ R+. To prove that f ′′(ρ2) ≥ 0 on D, we just have to compute f ′′(ρ2)
for the smallest element of D. We have two cases:

• if K ≤ 1, the minimal element of D is 0. We obtain the following condition

mpm −β−αr2 ≤ 0,

which is consistent with our claim, as (K−1)+ = 0 in that condition.

• if K > 1, the minimal element is K−1 and we get:

mpm −β−αr2 ≤ 6α

r2
(K−1)2,

which is equivalent to our claim as (K−1)+ = K−1 when K > 1.

And the proof is complete.

Let us state how we can obtain the optimal solution for the power consumption
by looking at function f ′() and its zero. We look for the value of ρ2 which satisfies
the following equation:

ρ3
2 +

(
(αr2 −mpm +β)r2

2α

)
ρ2 +

(
(mpm −β−2αK)r 2

2

4α

)
= 0 , (6.19)

Let x (resp. y) be the minimal (resp. maximal) value on D: i f (k ≤ 1) then x = 0
and y = K, else x = K - 1 and y = 1.
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• If this Equation has no solution in D then:

ρ2,opt = ρ
′
2 wher e f (ρ

′
2) = mi n( f (x), f (y)).

• Otherwise, Let ρ2, j wi th j ∈ {0,1,2} (at most the three solutions are in D) be
solutions that satisfies ρ2, j ∈D and let define ρ2,t such as:

f (ρ2,t ) = mi n( f (ρ2, j )) ∀ j ∈ {0,1,2},

then:
ρ2,opt = ρ

′
2

where
f (ρ

′
2) = mi n( f (x), f (y), f (ρ2,t )).

Lemma 6.3.8 When K ≤ 1 and f is convex, then the global minimum of the power
function (Equation (6.17)) is unique.

Proof. Using Cardan formula, to solve Equation (6.19), we first compute ∆:

∆=−
[

4

(
(αr2 −mpm +β)r2

2α

)3

+27

(
(mpm −β−2αK)r 2

2

4α

)2]
.

Theorem 6.3.2 assures that f admits at least one global minimum on D. Condition
in Lemma 6.3.7 states that f is convex and that ∆ ≤ 0. f is convex guaranties that
global minimum is not on the reachable bounds of D and ∆< 0 implies that f’ admits
one real solution. We conclude that the unique solution of f ′ is the global minimum
of f.

Now we can deduce γ2,opt the migrations rate that optimizes power consumption.
So we have:

γ2,opt = max
(
0,

λ2

mρ2,opt
−µ

)
wi th ρ2,opt ∈D, (6.20)

is the optimal solution of:

f (γ2,1) = 2δ+
(
K− λ2

m(µ+γ2,1)
+

(
λ2

m(µ+γ2,1)

)2

r−1
2

)
β +((

K− λ2

m(µ+γ2,1)

)2

+
(

λ2

m(µ+γ2,1)

)4

r−2
2

)
α +

mpm

(
λ2

m(µ+γ2,1)
−

(
λ2

m(µ+γ2,1)

)2

r−1
2

)
. (6.21)

Notice that ρ2,opt = 0 could be possible (in theory), since γ2,1 ∈ [0,+∞[.

Corollary 6.3.2 Equation (6.20) shows that if λ2
mρ2,opt

< µ then the migration of
tasks will only increase power consumption of the data center. Therefore the opti-
mal solution is to not perform the migration (γ2,opt = 0) under the current power
parameters. Otherwise, it means that an optimal solution that acutely reduce power
consumption exists and its value is λ2

mρ2,opt
−µ.
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6.3.4 Generalization to larger scale systems
In this section, we study the general case of migrations between servers. Each
server i ∈ [1,N] can serve a task (resp. Migrate the task to a server j ∈ [1,N]) with a
probability Pi (resp. 1−Pi ). Let γi , j be the migration rate from the physical server
i to the physical server j .

Pi = µi

µi +∑N
j=1γi , j

.

First, we notice that Lemma. 6.3.4 still holds for N servers.

Lemma 6.3.9 When VMs are homogeneous, then the sum of the mean number of
activated VMs in each model is a constant value (property of the conservation of the
sum of the workload).

∀ i ∈ [1,N] , µi =µ ⇒ m
N∑

i=1
ρi = m

N∑
i=1

ri = mK (6.22)

Proof. Equation (6.4) for each server i ∈ [1,N] :

∀ i , ρi =
λi +∑N

j=1 mρ jγ j ,i

m(u +∑N
j=1γi , j )

⇒ µmρi +mρi

N∑
j=1

γi , j = λi +
N∑

j=1
mρ jγ j ,i

⇒ ρi = λi

mµ
+

∑N
j=1 mρ jγ j ,i

mµ
−

∑N
j=1 mρiγi , j

mµ

⇒
N∑

i=1
ρi =

N∑
i=1

λi

mµ
+

∑N
i=1

∑N
j=1ρ jγ j ,i −∑N

i=1

∑N
j=1ρiγi , j

µ

⇒
N∑

i=1
ρi =

N∑
i=1

ri

Lemma 6.3.10 Let f (ρ1,ρ2, . . . ,ρN) (resp. g (r1,r2, . . . ,rN)) the energetic function for
the model with task migration (resp. model without migration of tasks). We propose
a sufficient condition on em,i the migration cost of the sending queues :

f (ρ1, . . . ,ρN)− g (r1, . . . ,rN) ≤ 0

⇒
N∑

i=1
(ρi Pi − ri )β+

N∑
i=1

[
(ρi Pi )2 − r 2

i

]
α+m

N∑
i=1

ρi em,i (1−Pi ) ≤ 0

If : ∀i , em,i = pm then:

pm ≤
∑N

i=1(ri −ρi Pi )(β+ riα+ρi Piα)

m
∑N

i=1ρi (1−Pi )
(6.23)
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If the energetic cost per task migrated is the same for all physical servers, then the
condition (Equation (6.23)) must be checked to reduce power consumption in the
data center. Otherwise, in the Equation (6.24) we propose a sufficient condition on
each physical server migration cost :

∀i , em,i ≤ (ri −ρi Pi )(β+ riα+ρi Piα)

mρi (1−Pi )
(6.24)

Next we propose two heuristics that improve data center consumption during
task migrations for N physical servers. The heuristics are based on the optimization
process detailed in section 6.3.

6.3.4.1 Heuristic 1

• We propose an iterative algorithm (Algorithm 6) that reduces power con-
sumption step by step. At each iteration, we optimize the power consumption
between the physical server that consumes the most power and the one that
consumes the least.

• A physical server can be either a transmitter, a receiver or ”not defined yet”
during the algorithm.

• A sending server sends part of its load to a receiving server or to a server
whose status has not yet been defined.

• The algorithm stops if the maximum load of the transmitters is lower than the
minimum load of the receivers, or if the selected couple (Max_Transmitters,
Min_Receivers) has already been processed in the last iterations.

6.3.4.2 Heuristic 2

• In this algorithm (Algorithm 7), at each iteration, the most consuming physical
server distributes part of its load to a group of servers with a minimal load.
This group includes servers whose load is lower than the total average load.

• The load is distributed in order to obtain the average load for each of the
servers in the group (starting with those with low load in the group).

• The transmitter sends the load from the least loaded in the group to the most
loaded.

• A server in the group does not receive tasks if the sender no longer has tasks
to migrate.

• The algorithm stops when all the transmitters performed the migration.
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Algorithm 6: Heuristic 1: Computing the power consumption in a data
center with N > 2 physical servers

Input : pm , γ, β, α and ri ∀i ∈ {1, . . . ,N}.
Output: Pwrtot al and ρi ∀i ∈ {1, . . . ,N}.
Step 1) Initialization : k = 0 , S=; and ∀ i ρi = ri , computing of
Pwri (ρi ,γ,β,α) and St atei = N.
Step 2) Select ρi ,max (resp. ρi ,mi n) the maximum (resp. minimum) servers
consumption which state St atei ∈ {E,N} (resp. St atei ∈ {R,N}).
Step 3) If (Si ,max ,Si ,mi n) ∉S, then perform the optimal migration between
the server Si ,max and Si ,mi n, and put St atei ,max = E, St atei ,mi n = R and
S=S∪ (Si ,max ,Si ,mi n). Otherwise the algorithm stops.
Step 4) After performing the migration, we update ρi ,max , ρi ,mi n,
Pwri ,max , Pwri ,mi n and Pwrtot al e =

∑N
i=1 Pwri (ρi ,γ,β,α).

Step 5) Do ρi ,max = ρi ,maxPi ,max where Pi ,max is the probability of
executing a task in the server Si ,max .
Step 6) Print (ρi , Pwri ) for each server i in {1, . . . ,N}.
Step 7) If the maximal load of the transmitters is less than the minimal
load of the receivers and that this couple (Max_Transmitters,
Min_Receivers)∉S, then k++ and go to step 3). Otherwise, the algorithm
stops.

Algorithm 7: Heuristic 2: Computing the power consumption in a data
center with N > 2 physical servers

Input : pm , γ, β, α, θ and ri ∀i ∈ {1, . . . ,N}.
Output: Pwrtot al and ρi ∀i ∈ {1, . . . ,N}.
Step 1) Initialization : k = 0 and ∀ i ρi = ri , computing of
Pwri (ρi ,γ,β,α) and let Et ati = N.
Step 2) Computation of the average load m =∑N

i=1
ρi
N .

Step 3) Do St atei = E for each server Si with ρi > m +ϵ. Let T be the
number of these servers.
Step 4) Do S=; and select ρi ,max the maximum’s servers consumption
with St atei = E which has not performed the migration yet.
Step 5) Do S=S∪S j for each server S j which ρ j +θ< m and
St ate j ∈ {N,R}.
Step 6) For all S j ∈S, starting with low loaded servers ρ j . If
ρi ,max − (m −ρ j −θ) > 0, then perform the migration of m −ρ j −θ from
Si ,max to S j , which means, put ρi ,max = ρi ,max − (m −ρ j −ϵ) and
ρ j = ρ j +m −ρ j −ϵ.
Step 7) Do St ate j = R for each server S j ∈S receiving tasks.
Step 8) Updating Pwri ,max , Pwr j ∀S j ∈S and Pwrtot al e .
Step 9) Print (ρi , Pwri ) for each server i in {1,…,N}.
Step 10) The algorithm stops if k < T, otherwise k++ and go to step 3).
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Remark 6.3.1 In heuristics 1, for each pair (transmitter, receiver) we optimize the
migration, i.e. if the transmitter is very loaded and the receiver is almost empty, the
transmitter sends part of its load to the receiver. In heuristics 2, we considered that
a transmitter distributes the load to be sent to a group of low receivers and not only
to a single receiver.
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6.4 Numerical results
Let’s consider the following power parameters: δ = 95W, β = 25W, α = 100W so
the maximal power that can be consumed by a physical server without migration
is 220W. These power consumption parameters are inspired from Taurus server
[MAA16] consumption. We use the total power given by Equation (6.11) for the
system without migration, while for the system with migrations we have also to
consider the migration power Em given by Equation (6.8), so it results Equation
(6.9).

6.4.1 A data center with two physical servers
We suppose that m = 20 VMs on each physical server so the CPU ratio of each
VM is CPU(vm) = 1

20 = 0.05. Arrival rate in server1 (resp. server2) is λ1 = 2 (resp.
λ2 = 17), and service rate is µ = 1. So traffic intensity is r2 = 0.85 and r1 = 0.1.
Migration of tasks will only be performed from server2 to server1 (see Assumption
6.3.1 ) so γ1,2 = 0. When γ2,1 = 0, then no migrations are performed in the system
(see Corollary 6.3.1).

Taking pm = 3W and varying γ2,1, we can see in Fig. 6.1 that data center power
consumption (green curve, circle points) is a convex function since numerical param-
eters satisfies condition in Lemma 6.3.7. The behavior of black curve (rectangular
points) and red curve (star points) clearly shows the effect of tasks migrations from
server 2 to server 1, also shown in Fig. 6.2. Migration rate should be cleverly chosen
in order to reduce data center consumption. Let’s analyze optimal case: using Car-
dan formula to solve Equation (6.19) that becomes ρ3

2+0.2125ρ2−0.2799 = 0, we have
∆≤ 0, then we obtain one solution ρ2,opt = 0.5305 in [0 , 0.95] so γ2,opt = 0.553 which
corresponds to an power consumption of 249.20W instead of an power consumption
of 287W in the model without migrations. Then power gain is 13.16%. Notice that,
in Fig. 6.2, the load of expected number of activated VMs in server2 (10.94) is not
equal to the expected number of activated VMs in server1 (8.05), when the total
power consumption is minimized.

In Fig. 6.3, we have calculated optimal power consumption for several value of
pm. We can see that the data center consumption increases with migration cost
until some point (pm = 18) where the migration is no more efficient, then ∀ pm ≥ 18
optimal solution of Equation (6.21) is γ2,opt = 0. The best case, but not realistic, is
when the migration does not cost power then we achieve an power gain of 17.31%
and the worst case is when the power is costly but in that case no migrations are
performed so the power gain is 0% as shown in Fig. 6.3 and Fig. 6.4.
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Figure 6.1: Power consumption under γ2,1 variation
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Figure 6.3: Power consumption in optimal case, under pm variation

122



Figure 6.4: Power gain in optimal case, under pm variation
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6.4.2 A data center with N physical servers
Next we fix the parameters : pm = 1W and ∀ i ∈ [1 . . .N] µi = 1.

6.4.2.1 Experiment 1

We consider a data center with N = 5 physical servers and m = 50 VMs per physical
server. The arrival rates are λ= {49,1,1,1,1} respectively in server S1 . . .S5.

S1 S2 S3 S4 S5 Pw rt ot al e

k = 0 0.98 215.54 0.02 95.54 0.02 95.54 0.02 95.54 0.02 95.54 597.70

k = 1 0.35 128.51 0.40 121.77 0.02 95.54 0.02 95.54 0.02 95.54 536.91

k = 2 0.14 104.87 0.40 121.77 0.15 101.02 0.02 95.54 0.02 95.54 518.75

k = 3 0.079 99.01 0.40 121.77 0.15 101.02 0.05 96.77 0.02 95.54 514.12

k = 4 0.071 97.49 0.40 121.77 0.15 101.02 0.05 96.77 0.024 95.65 512.72

Table 6.1: Experiment1, Heuristic1: Load and power consumption in each server during
iterations ’k’. The power gain = 14.21%.

S1 S2 S3 S4 S5 Pw rt ot al e

k = 0 0.98 215.54 0.02 95.54 0.02 95.54 0.02 95.54 0.02 95.54 597.70

k = 1 0.25 144.05 0.202 104.13 0.202 104.13 0.202 104.13 0.202 104.13 560.57

Table 6.2: Experiment1, Heuristic2, ϵ= 10−2: Load and power consumption in each server
during iterations ’k’. The power gain = 6.2%

The table 6.1 represents the power consumption and load in each server during
heuristic 1. The k = 0 line represents the data center without migration. The mi-
gration process starts from k = 1 and in each line we have the load ρi ∗Pi (the actual
load in a Si server after the optimization process, see Step 5) in Algorithm 8) and
the power consumed by the corresponding server. We can see that the data center’s
power consumption decreases (column Pwrtot al ) until it reaches an power gain of
11.34 %. The table 6.2 represents the actual load ρi in a server after migration (no
optimization process is considered here) and the power consumed. The algorithm
stops after an iteration since there is only one transmitter S1. In the following ex-
ample, we will increase the number of physical servers and transmitter servers to
see the impact on heuristics 2.
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6.4.2.2 Experiment 2

Now, we consider a data center with N = 7 physical servers, we keep m = 50 VMs
per physical server. The arrival rates are λ= {49,49,49,1,1,1,1} respectively in server
S1 . . .S7.

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

S1 0.98 215.54 0.35 128.51 0.35 128.51 0.35 128.51 0.14 104.87 0.14 104.87 0.14 104.87

S2 0.98 215.54 0.98 215.54 0.35 128.51 0.35 128.51 0.35 128.51 0.20 107.46 0.20 107.46

S3 0.98 215.54 0.98 15.54 0.98 215.54 0.35 128.51 0.35 128.51 0.35 128.51 0.23 09.26

S4 0.02 95.54 0.40 121.77 0.40 121.77 0.40 121.77 0.40 121.77 0.40 121.77 0.40 121.77

S5 0.02 95.54 0.02 95.54 0.40 121.77 0.40 121.77 0.40 121.77 0.40 121.77 0.40 121.77

S6 0.02 95.54 0.02 95.54 0.02 95.54 0.40 121.77 0.40 121.77 0.40 121.77 0.40 121.77

S7 0.02 95.5 0.02 95.54 0.02 95.54 0.02 95.54 0.15 101.02 0.24 106.76 0.30 112.10

E 1028.78 967.99 907.20 846.42 828.26 812.95 799.03

Table 6.3: Experiment2, Heuristic1: Load and power consumption in each server during
iterations ’k’. The power gain = 22.33%

k = 0 k = 1 k = 2 k = 3

S1 0.98 215.54 0.39 149.53 0.39 149.53 0.39 149.53

S2 0.98 215.54 0.98 215.54 0.40 150.07 0.40 150.07

S3 0.98 215.54 0.98 215.54 0.98 215.54 0.54 159.77

S4 0.02 95.54 0.02 95.54 0.42 123.29 0.42 123.29

S5 0.02 95.54 0.02 95.54 0.19 103.81 0.42 123.29

S6 0.02 95.54 0.20 104.46 0.20 104.46 0.42 123.29

S7 0.02 95.54 0.42 123.29 0.42 123.29 0.42 123.29

E 1028.78 999.46 970.03 952.57

Table 6.4: Experiment2, Heuristic2, ϵ= 10−2: Load and power consumption in each server
during iterations ’k’. The power gain = 7.4%

We can see in the tables 6.1, 6.2, 6.3 and 6.4 that heuristic 1 gives better results.
The power gain reaches 22.33% in the table 6.3 which could be very significant in a
huge data center. Of course the results depend on the initial load in the servers and
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the power parameters. The power of heuristic1 is that it could admit that some data
are actually migrating (see the optimization process in Section 6.3) and then cost
only the cost of migration which is normally quite lower than the cost of service. In
heuristics 2, the tasks are either in the transmitter server or in the receiver server
and the migration cost is also included in the energetic function.
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Part IV

Analytical analysis of EPN
networks and G-networks
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7.1 Energy packet networks
Energy Packet Networks (EPNs) were recently introduced by Gelenbe and his col-
leagues [Gel11; Gel12; Gel14a; GC15]. They are used to study interactions between
IT devices consuming energy like sensors, cpu, storage systems and networking ele-
ments and the flow of intermittent sources of energy like batteries and solar or wind
based generators.

Energy Packet Networks [EC16] model energy packets (EPs) as discrete units (a
simplified version of the actual continuous flow of energy) of energy, e.g. X Joules
or Watts, which is represented as arriving in “one chunk”. An energy storage unit
(ES) such as a battery is modelled as a queue of EPs that are waiting to be used.
The ES is replenished by a flow of EPs from some external source including an
energy harvesting unit, and it can be depleted both when energy is forwarded to
a consumer, and through losses that represent leakage. The sources of power, the
ESs and the consumers are interconnected by Power Switches, which dynamically
connects the sources of power to the ESs, and the sources of power and ESs to
the consumers. The consumers will request for EPs from either a power switch
or an energy storage, and these requests will typically be intermittent, since they
are a function of the work that these consumers accomplish with the energy. A
typical example of such consumers are ICT systems which intermittently receive
computational work to accomplish, and which in turn require energy to accomplish
this work.

Some EP Networks (EPN in the following) are linked to the theory of G-networks
(more details are in the next section) of queues and signals, which was introduced by
the seminal papers by Gelenbe on networks of queues with positive and negative cus-
tomers [Gel91]. Since then, many networks of queues with various signals (Triggers
for one the first papers [Gel93a] and Adders for a recent one [FG17]) where proved
to have a product form for the steady-state distribution of positive customers in the
queues under some classical assumptions. From the product form of the steady-state
distribution a closed form function can be derived for optimization purposes. In sur-
vey article [Ray19], authors have provided a bibliographic taxonomy on EPNs and
their domain of application. The EPN model was thus proposed to formulate and
optimize the dynamic behavior of energy consumption by the ICT-based infrastruc-
tures as Wireless Sensor Networks (WSNs), wired networks, servers, management
of energy/Renewable energy in clouds/IOTs (more details in Fig. 7.1).
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Figure 7.1: Bibliographic taxonomy of EPNs, [Ray19].
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7.2 The evolution of G-networks
The theory of queues with signals (or G−networks) have received a considerable
attention since the seminal papers on positive and negative customers [Gel91; Gel89]
published by Gelenbe more than 20 years ago. The G−networks are motivated
by neural networks where each queue represents a neuron, and excitation signals
represents the movement of positive customers from a queue to another. Negative
customers represents inhibition signals. In Fig. 7.2 a simple G−network of three
queues is depicted. P(i , j ) (resp. E(i , j )) is the routing probability from a queue i
to a queue j for positive (resp. negative) customers. di is the departure probability
of a customer from a queue i . Let N be number of queues, then for all i ∈ {1 . . .N}:
di +∑N

j=1 P(i , j )+E(i , j ) = 1.

λ1

λ2

λ3

E(1,2)

P(2,1)

d2

P(3,2)E(3,1)

d3

µ1 µ2

µ3

E(2,3)

Figure 7.2: G−network with positive and negative customers

Traditional queueing networks models are used to represent contention among
customers for a set of resources. Customers move from server to server where they
wait for service according to a scheduling discipline. Apart this competition, they
do not interact among themselves.

In a network of queues with signals, signals interact at their arrival into a queue
with the queue or with customers already backlogged. Signals are never queued. At
their arrival, they try to interact immediately. After their trial of interaction, they
disappear irrespective of their failure or success or they can migrate to another queue.
Furthermore, customers are allowed to change into signals at the completion of their
service. This mechanism allows to model complex interaction between customers in
several queues.

Despite this deep modification of the classical queueing network model, G-
networks still preserve the product form property for the steady-state distribution
of some Markovian queueing networks under some technical conditions on the pro-
cesses involved (Poisson arrivals for signals and customers from the outside, expo-
nential service times for customers, Markovian routing of customers and signals,
open topology, independence).

The first type of signal was introduced as negative customers in [Gel91]. A
negative customer deletes a positive customer at its arrival at a non empty queue.
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Positive customers are usual customers which are queued and receive service or are
deleted by negative customers. It must be clear that the results are more complex
than Jackson’s networks. The G-networks flow equations exhibit some uncommon
properties: they are neither linear as in closed queueing networks nor contracting as
in Jackson queueing networks. Therefore the existence of a solution had to be proved
[GS92] by new techniques from the theory of fixed point equation and numerical
algorithms had to be proved to solve the flow equations [Fou91; FQ06]. Many types
of signal have been studied and they all lead to product form solution: triggers which
redirect other customers among the queues [Gel93a], catastrophes which flush all the
customers out of a queue and batches of deletion [Gel93b], resets [GF02]. Extensions
with multiple classes of customers have also been derived [GL98].

G-networks had also motivated many new important results in the theory of
queues. As negative customers lead to customer deletions, the original description
of quasi-reversibility by arrivals and departures does not hold anymore and a new
version had been proposed by Chao and his co-authors in [CMP99]. A different
approach, based on Stochastic Process Algebra, was proposed by Harrison [Har03;
Har04]. The main results (CAT and RCAT theorems and their extensions [BHM10;
Har03; Har04]) give some sufficient conditions for product form stationary distri-
butions. This technique clearly has a different range of applications as it allows to
represent component based models which are much more general and more detailed
than networks of queues.

Network of positive and negative customers were introduced to model neural
networks where neurons exchange inhibitory and exciting signals [Gel94; GF99]. G-
networks and Random Neural Networks were also used in the design of the learning
process for Cognitive Packet Networks [GLX01] or application of the Random Neural
Networks to quality of service [MRV04] or to model the interaction between energy
and the Data plane in telecom networks [Gel14b; GC16]. Currently there are several
hundred references devoted to the subject and two books [GM10; CMP99] provide
insight into some of the research issues, developments and applications in the area
of networks of queues with customers and signals.

Most of single class G−networks have a product-form [MAR16] which is based
on the product of the marginal geometric distributions of the single queues. In Table
7.1 we present a chronological listing about G−networks. The analytical methods
involved depend on the nature and complexity of the G−network, and the existence
of a product-form for the steady-state distribution are subject to assumptions. A
standard approach consists in guessing the expression of the equilibrium distribu-
tion and verifying that it satisfies the system of global balance equations (GBEs) in
general this method does not require introducing formalism to specify the synchro-
nizations [JF06; HM14b] of the stations of the queueing network. In Chapter 9 we
propose a product form solution for a G−network with processor sharing and catas-
trophes signals, our analytical approach is based on guessing/verifying the GBEs.
Other approaches based on a description formalism of the network are proposed in
the literature: ” RCAT ” Reversed Compound Agent Theorem introduced by Har-
rison [HM14b; Har03] which rely on the verification of some sufficient conditions for
the product-form, ”PEPA ” Performance Evaluation Process Algebra introduced by
Hillston in [Hil94], ” PITs ” Propagation of Instantaneous Transitions for synchro-
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nizations in G−networks [HM14b].

Year Works Characteristics.
1989, 1991 Gelenbe [Gel91; Gel89] First apparition of G−networks, in those

works Gelenbe proposed a product form
solution for networks with positive and
negative customers.

1993 [Gel93c] G−networks with triggered customer
movement.

1993 [Gel93a] G−networks with instantaneous customer
movement.

1993 [Gel93b] G−networks witch batch removal.
1994 [Gel94] G−networks with unifying a model for

queuing networks and neural networks.
1995, 1999 [JLF95; XMM99] G−networks with catastrophe’s signals.
1996, 1998 [FGS96; GL98] G−networks with multiple classes of sig-

nals and positive/negative customers.
2000 [JLF00; JLD00] G−networks with multiple class and it-

erated (resp. list-oriented) probabilistic
deleting mechanism.

2002, 2004, 2007 [EJ02; PG04; Fou07] G−networks with resets.
2006 [JF06] G−networks with synchronized partial

flushing.
2014 [HM14b] G−networks with multi-way (chains of

pairwise [Kel87; Mun72]) synchronisa-
tions.

Table 7.1: Related G−networks models.

Below we recall some definitions related to networks topology. We are using these
definitions in the following chapters in order to reflect the features of the network in
question. By ”node” we refer to: a DP-queue for EPNs (Chapter 8), or a PS queue
when dealing with G-networks (Chapter 9), or .

Definition 7.2.1 Let A be a binary operator which represents a network’s (G-
network or EPN network) connectivity . We note by i A j the existence of a directed
path from node i to node j .

Definition 7.2.2 We use ’0’ to indicate an external source/destination. A network
is open iff each node i verifies i A0 and 0Ai .

Definition 7.2.3 Let P(i , j ) be the routing matrix of usual costumers when dealing
with G-networks, or routing matrix of data packets when dealing with EPNs. Then,
a network with routing matrix P is connected if for all couple of nodes (i , j ), i A j or
j Ai is verified. Hence, we say that P is irreducible.
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Remark 7.2.1 The topology reported in Definition 7.2.3 is not the only topology
for interconnected G-networks, the queues can also be connected through signals.
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Energy Packet Networks with
general service time distribution
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8.1 Introduction
In the literature, product form results were obtained under classical assumptions:
Poisson arrivals of packets (both EP and data), exponential duration for service
and leakage, independence, Markovian routing. Other stochastic processes, like
Interrupted Poisson Process [Fou20], have been considered to model energy packet
generation variation during a day. Here, we extend the results to general service time
distribution. We assume that the service times of the Energy Packets which trigger
the data processing follow a Coxian distribution. Since all non-negative distributions
can be arbitrarily closely approximated by Coxian distributions [Bar76], we can
use them to model EP networks with general service times for both the energy
consumption of energy packets and data packets processing

The technical part of this work is as follows. In section 8.2, we describe the EPN
model. We give the proof of the product form steady-state distribution. We also
study the existence of a solution to the flow equations. In Section 8.3, we focus on
performance evaluation and energy losses rate. Finally, in section 8.4, we show how
to optimize a sensor network with a solar panels harvesting capacity and we present
two methods to distribute the panels among the stations to optimize the average
delay. This illustrates one of the main advantages of EP networks models. Based
on its closed form solution, it is possible to conduct an optimization of the systems
based on some utility function like mean response time or loss rates [GC15; FMB16;
GZ19; GA18].

8.2 Model Description and Markov chain analysis
We consider a distributed system (as a fog [DF19] or a sensor system) consuming
energy provided by intermittent sources. It is represented by an EPN (see Fig.
8.1) which is an open network with N cells, where each of the cells is represented
by one queue that stores DPs (Data Packets) and one battery that stores EPs
(Energy Packets). Both EP and DP queues have an infinite capacity. DPs arrive
to each cell i following a Poisson distribution with parameter λi , and EPs arrive
to cell i following also a Poisson distribution with rate αi > 0. We suppose that
queuing discipline is Processor Sharing, and the service is applied on EP queues
and follows the Cox probability distribution law with K phases (see Fig. 8.2). Each
phase n ∈ {1, . . . ,K} of cell i ∈ {1, . . . ,N} generates a transition with an exponential
distribution with parameter µi ,n > 0. At each phase n there is a probability pi ,n

that the corresponding exponential transition occurred, and a probability 1− pi ,n

that the process ends. Also note that pi ,K = 0 and we suppose that 0 ≤ pi ,n ≤ 1 for
all n ∈ {1, . . . ,K−1}. The process could reach the last phase K that generates the last
transition µi ,k . We consider that there are energy leakages with exponential times
and only occur in the first phase of the Cox process. Let γi > 0 be the leakage rate
of one EP in the battery of cell i .

The service takes place in EP queues, and is described as follows for the cell i
and at each phase n (0 ≤ n < K):

• With rate µi ,n(1−pi ,n) an EP packet is consumed and a data packet is sent;
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• With rate µi ,n pi ,n the EP service continues, to go to the next phase.

Note that the triggered data packet either goes outside (with probability di ) or is
routed to another cell j (1 ≤ j ≤ N) with probability P(i , j ) of a DP. Hence, for all i
(1 ≤ i ≤ N):

di +
N∑

j=1
P(i , j ) = 1. (8.1)

Figure 8.1: An EPN network with three cells.

Figure 8.2: Cox process with K phases.

We consider an EPN where the EPs initiates the transfer. This means that,
upon service in cell i, an EP is sent from the battery to the DP queue of the same
cell. If the DP queue is empty, the energy packet is lost. If no EPs are present in the
battery of a cell then DPs are blocked in the queue until the next external arrival
of an EP. This model represents two important features of the model: first without
energy, the data packets are not served, and second even if there is no data packets
in the server, there is still some energy consumption.

8.2.1 Markov chain analysis
In this section we propose to analyse the system with a Markov chain model. For
each cell i we have the following components:
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• Xi is the number of data packets at the DP queue of cell i ;

• Yi ,n is the number of energy packets in phase n at the battery of cell i .

Let us note by X = (X1, . . . ,XN) and Yn = (Y1,n , . . . ,YN,n). Under the assumptions about
the arrivals and the services, {(X,Y1, . . . ,YK)t , t ≥ 0} is a continuous-time Markov chain
where:

• on X component, transitions are due to (i) external arrivals of DPs, (ii) service
departure of a DP in phase n (n ∈ {1, . . . ,K}) EP, and (iii) transit of DPs after
routing between the cells;

• on Y1 component, transitions are caused by (i) external arrivals of EPs, (ii)
Leakage of an EP, (iii) transformation to phase 2 of an EP after a service, and
(iiii) the triggering (departure/routing) of a DP after a service;

• on Yn for all 2 ≤ n ≤ K−1 components, transitions are due to (i) arrivals of EPs
by transformation from phase n−1, (ii) the transformation of an EP to phase
n+1 after a service, and (iii) the triggering (departure/routing) of a DP after
a service.

• on YK component, transitions are (i) arrivals of EPs by transformation from
phase K−1, and (ii) the triggering of a DP (departure/routing) after a service.

In the next theorem, we prove that the Markov chain {(X,Y1, . . . ,YK)t , t ≥ 0} has a
product form steady-state distribution if the flow equations have a solution which
satisfies the stability constraints. Let us first introduce the flow equations, for all
i ∈ {1, . . . ,N}:

βi ,1 = αi

γi +µi ,1
, βi ,n =

(pi ,n−1µi ,n−1

µi ,n

)
βi ,n−1 (8.2)

which is equivalent to

βi ,1 = αi

γi +µi ,1
, ∀n ∈ {2, . . . ,K} βi ,n = µi ,1βi ,1

µi ,n

n−1∏
r=1

pi ,r .

Also we have

ρi =
λi +∑K

n=1
∑N

j=1(1−p j ,n)µ j ,nρ jβ j ,nP( j , i )∑K
n=1(1−pi ,n)µi ,nβi ,n

. (8.3)

Lemma 8.2.1 Energy packets are cell unique contrary to DP that are routed to
other cells. So the equation flow of EPs in each cell i is

γiβi ,1 +
K∑

n=1
(1−pi ,n)µi ,nβi ,n = αi . (8.4)

Where the l.h.s of the equation represents the total rate for the departure of an EP
from a cell i and the r.h.s stands for the arrivals rate of an EP to cell i .
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Proof. By developing the second term of the l.h.s of Equation (8.4), we have

γiβi ,1 +∑K
n=1(1−pi ,n)µi ,nβi ,n = γiβi ,1 +µi ,1βi ,1

−pi ,1µi ,1βi ,1 +µi ,2βi ,2 −pi ,2µi ,2βi ,2 +·· ·+
µi ,K−1βi ,K−1 −pi ,K−1µi ,K−1βi ,K−1 +µi ,Kβi ,K

−pi ,Kµi ,Kβi ,K.

By substituting using Equation (8.2) and using that pi ,K = 0

γiβi ,1 +∑K
n=1(1−pi ,n)µi ,nβi ,n = βi ,1(γi +µi ,1)

−pi ,1µi ,1βi ,1 +pi ,1µi ,1βi ,1 −pi ,2µi ,2βi ,2 +·· ·+
pi ,K−2µi ,K−2βi ,K−2 −pi ,K−1µi ,K−1βi ,K−1+
pi ,K−1µi ,K−1βi ,K−1.

All r.h.s terms of the last equation are eliminated except the first one, so

γiβi ,1 +∑K
n=1(1−pi ,n)µi ,nβi ,n = βi ,1(γi +µi ,1) = αi .

The proof is complete.

8.2.2 Product form of the EPN network

Theorem 8.2.1 Assume that Markov chain (X,Y1, . . . ,YK)t is ergodic. If the flow
equations (8.2) and (8.3) have a fixed point solution (ρi ,βi ,1, . . . ,βi ,K) such that ρi < 1
and ∑K

n=1βi ,n < 1 , then the steady-state distribution is

π(X,Y1, . . . ,YK) = G
N∏

i=1
(ρi )Xi ||Yi ||!

K∏
n=1

(βi ,n)Yi ,n

Yi ,n !
(8.5)

where ||Yi || =∑K
n=1 Yi ,n. See Lemma 8.2.2 for the value of G.

Proof. The proof of this theorem is based on the analysis of the global balance
equation. First let us introduce some notations. As usual ei will denote a vector
whose components are all 0 except component with index i which is 1. Moreover 1c

be the step function equal to 1 when condition C is true and 0 otherwise. Let us now
write the Chapman-Kolmogorov equation at steady-state:

π(X,Y1, . . . ,YK)

[ N∑
i=1

(
λi +αi +γi

Yi ,1

||Yi ||
1||Yi ||>0 +

K∑
n=1

µi ,n
Yi ,n

||Yi ||
1||Yi ||>0

)]
(8.6)
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=∑N
i=1λiπ(X−ei,Y1, . . . ,YK)1Xi>0 [1]

+∑N
i=1αiπ(X,Y1 −ei,Y2, . . . ,Yk)1Yi ,1>0 [2]

+∑N
i=1γi

Yi ,1+1
||Yi ||+1π(X,Y1 +ei,Y2, . . . ,Yk) [3]

+∑K−1
n=1

∑N
i=1 pi ,nµi ,n

Yi ,n+1
||Yi || π(X,Y1, . . . ,Yn +ei,

Yn+1 −ei, . . . ,YK)1Yi ,n+1>0 [4]

+∑K
n=1

∑N
i=1(1−pi ,n)diµi ,n

Yi ,n+1
||Yi ||+1π(X+ei,Y1, . . . ,

Yn +ei, . . . ,YK) [5]

+∑K
n=1

∑N
i=1

∑N
j=1(1−pi ,n)µi ,nP(i , j )

Yi ,n+1
||Yi ||+1

∗π(X+ei −ej,Y1, . . . ,Yn +ei, . . . ,YK)1X j>0 [6]

+∑K
n=1

∑N
i=1(1−pi ,n)µi ,n

Yi ,n+1
||Yi ||+1π(X,Y1, . . . ,

Yn +ei, . . . ,YK)1Xi=0. [7]

Let’s describe the right-hand side of the balance Equation (8.6). Term [1] (resp.
Term [2]) represents an external arrival of a DP (resp. EP) in the DP (resp. EP)
queue of the cell i . Term [3] represents the leakage of an EP from the battery of cell
i . Term [4] represents the transformation phase of a DP from phase each phase n (
∀ n ∈ {1, . . . ,K−1} ) to phase n+1 after a service in cell i . Term [5] (resp. Term [6])
is the departure (resp. routing transitions from a cell i to a cell j) of a DP after
a service in each phase n, the triggering EP also vanishes. The last term describes
the consumption of an EP while the DP queue is empty.

We divide both sides of Equation (8.6) by π(X,Y1, . . . ,YK) and take into account
the product form of the solution and the simplifications

π(X−ei,Y1,...,YK)
π(X,Y1,...,YK) = 1

ρi
,

π(X,Y1−ei,Y2,...,Yk)
π(X,Y1,...,YK) = 1

βi ,1

Yi ,1
||Yi || ,

π(X,Y1+ei,Y2,...,Yk)
π(X,Y1,...,YK) = βi ,1

||Yi ||+1
1+Yi ,1

,

π(X,Y1,...,Yn+ei,Yn+1−ei,...,YK)
π(X,Y1,...,Yk) = βi ,n

βi ,n+1

(
Yi ,n+1
1+Yi ,n

)
,

π(X+ei,Y1,...,Yn+ei,...,YK)
π(X,Y1,...,YK) = ρiβi ,n

||Yi ||+1
1+Yi ,n

,

π(X+ei−ej,Y1,...,Yn+ei,...,YK)
π(X,Y1,...,YK) = ρiβi ,n

ρ j

||Yi ||+1
1+Yi ,n

,

π(X,Y1,...,Yn+ei,...,YK)
π(X,Y1,...,YK) = βi ,n

||Yi ||+1
1+Yi ,n

.

(8.7)

We obtain:
N∑

i=1

(
λi +αi +γi

Yi ,1

||Yi ||
1||Yi ||>0 +

K∑
n=1

µi ,n
Yi ,n

||Yi ||
1||Yi ||>0

)
(8.8)
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=∑N
i=1

λi
ρi

1Xi>0 [1]

+∑N
i=1

αi
βi ,1

Yi ,1
||Yi ||1||Yi ||>0 [2]

+∑N
i=1γiβi ,1 [3]

+∑K−1
n=1

∑N
i=1

pi ,nµi ,nβi ,n
βi ,n+1

Yi ,n+1
||Yi || 1||Yi ||>0 [4]

+∑K
n=1

∑N
i=1(1−pi ,n)diµi ,nρiβi ,n [5]

+∑K
n=1

∑N
i=1

∑N
j=1

(1−pi ,n )µi ,nρiβi ,n P(i , j )
ρ j

1X j>0 [6]

+∑K
n=1

∑N
i=1(1−pi ,n)µi ,nβi ,n1Xi=0. [7]

In Term [4] of the r.h.s of Equation (8.8), we apply an index change on n. In
Term [7], we substitute 1Xi = 0 with 1−1Xi>0 and we move the negative terms in the
l.h.s. To get: ∑N

i=1

(
λi +αi +

(
γi

Yi ,1
||Yi || +

∑K
n=1µi ,n

Yi ,n
||Yi ||

)
1||Yi ||>0

+∑K
n=1(1−pi ,n)µi ,nβi ,n1Xi > 0

)
= ∑N

i=1
λi
ρi

1Xi>0

+∑N
i=1γiβi ,1 +∑N

i=1
αi
βi ,1

Yi ,1
||Yi ||1||Yi ||>0

+∑K
n=2

∑N
i=1

pi ,n−1µi ,n−1βi ,n−1
βi ,n

Yi ,n
||Yi ||1||Yi ||>0

+∑K
n=1

∑N
i=1(1−pi ,n)diµi ,nρiβi ,n

+∑K
n=1

∑N
i=1(1−pi ,n)µi ,nβi ,n

+∑K
n=1

∑N
i=1

∑N
j=1

(1−pi ,n )µi ,nρiβi ,n P(i , j )
ρ j

1X j>0.

(8.9)

We decompose Equation (8.9) into three equation systems based on the step
functions they expose:

 ∑N
i=1

∑K
n=1(1−pi ,n)µi ,nβi ,n1Xi>0 =∑N

i=1

(
λi
ρi

+∑K
n=1

∑N
j=1(1−pi ,n)µ j ,nP( j , i )

ρ jβ j ,n

ρi

)
1Xi>0

(8.10)

and 

[∑N
i=1γi

(
Yi ,1
||Yi ||

)
+∑N

i=1µi ,1

(
Yi ,1
||Yi ||

)
+∑K

n=2
∑N

i=1µi ,n

(
Yi ,n
||Yi ||

) ]
1||Yi ||>0 =

[∑N
i=1

αi
βi ,1

(
Yi ,1
||Yi ||

)
+∑K

n=2
∑N

i=1
pi ,n−1µi ,n−1βi ,n−1

βi ,n

(
Yi ,n
||Yi ||

) ]
1||Yi ||>0

(8.11)

and [ ∑N
i=1(λi +αi ) =∑K

n=1
∑N

i=1(1−pi ,n)diµi ,nρiβi ,n

+∑K
n=1

∑N
i=1(1−pi ,n)µi ,nβi ,n +∑N

i=1γiβi ,1.
(8.12)

The values of (ρi ,βi ,1, . . . ,βi ,K) we are looking for have to satisfy the three equations
(8.10),(8.11) and (8.12).
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First by the factorisation of ρi in Equation (8.10) we get, for all i

ρi =
λi +∑K

n=1
∑N

j=1(1−p j ,n)µ j ,nρ jβ j ,nP( j , i )∑K
n=1(1−pi ,n)µi ,nβi ,n

. (8.13)

Next we decompose Equation (8.11), into two equations. And we verify that two
equations are satisfied. This decomposition:

∑N
i=1(γi +µi ,1)

(
Yi ,1
||Yi ||

)
1||Yi ||>0 =∑N

i=1
αi
βi ,1

(
Yi ,1
||Yi ||

)
1||Yi ||>0,

and∑K
n=2

∑N
i=1µi ,n

(
Yi ,n
||Yi ||

)
1||Yi ||>0 =∑K

n=2
∑N

i=1
pi ,n−1µi ,n−1βi ,n−1

βi ,n

(
Yi ,n
||Yi ||

)
1||Yi ||>0.

By the elimination of the multiplicative terms on both sides of the equations. We get
in the first equation for all i ∈ {1, . . . ,N}

βi ,1 = αi

γi +µi ,1
, (8.14)

and in the second equation for all i ∈ {1, . . . ,N} and n ∈ {2, . . . ,K}

βi ,n = pi ,n−1µi ,n−1βi ,n−1

µi ,n
. (8.15)

Finally, we only have to check that the values of (ρi ,βi ,1, . . . ,βi ,K) in Equation
(8.13), (8.14) and (8.15) also satisfies Equation (8.12).

For Equation (8.12). We use Lemma 8.2.1 and Equation (8.1) (which states that
∀i di = 1−∑N

j=1 P(i , j )). By moving negative terms to the l.h.s, Equation (8.12) is
reduced to 0 = 0. Therefore, all equations that constitute the global balance equation
at steady-state are satisfied and the proof of the theorem is complete.

Lemma 8.2.2 The normalization constant is equal to

G =
N∏

i=1
Gi . (8.16)

Where
Gi = (1−ρi )(1−

K∑
n=1

βi ,n). (8.17)

Proof. We compute the value of G using that ∑
X,Y1,...,YK π(X,Y1, . . . ,YK) = 1 and

Equation (8.5), we get that

∑
X,Y1,...,YK

G
N∏

i=1
(ρi )Xi ||Yi ||!

K∏
n=1

(βi ,n)Yi ,n

Yi ,n !
= 1

⇒ G
N∏

i=1

∑
Xi ,Yi ,1,...,Yi ,K

(ρi )Xi ||Yi ||!
K∏

n=1

(βi ,n)Yi ,n

Yi ,n !
= 1

⇒ G
N∏

i=1

∑
Xi

(ρi )Xi
∑

Yi ,1,...,Yi ,K

||Yi ||!
K∏

n=1

(βi ,n)Yi ,n

Yi ,n !
= 1.
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From the assumption of the theorem ρi < 1, then the sum on Xi converge

G
N∏

i=1

1

1−ρi

∑
Yi ,1,...,Yi ,K

||Yi ||!
K∏

n=1

(βi ,n)Yi ,n

Yi ,n !
= 1.

We partition the summation on Yi ,1, . . . ,Yi ,K according to it’s norm ||Yi ||

G
N∏

i=1

1

1−ρi

∞∑
m=0

∑
Yi ,1,...,Yi ,K/||Yi ||=m

||Yi ||!
K∏

n=1

(βi ,n)Yi ,n

Yi ,n !
= 1.

Substitute ||Yi || by m in the previous equation. Remember the definition of the
multinomial theorem

∑
Yi ,1,...,Yi ,K/||Yi ||=m

||Yi ||!
K∏

n=1

(βi ,n)Yi ,n

Yi ,n !
=

( K∑
n=1

βi ,n

)m
.

After substitution we obtain:

G
N∏

i=1

1

1−ρi

∞∑
m=0

( K∑
n=1

βi ,n

)m = 1.

As by assumption ∑K
n=1βi ,n < 1, the sum converges and we get

G
N∏

i=1

1

(1−ρi )(1−∑K
n=1βi ,n)

= 1.

⇒ G =
N∏

i=1
(1−ρi )(1−

K∑
n=1

βi ,n).

The proof is complete.

8.2.3 Existence of a fixed point solution
The main result of our work states that a product form of the EPN exists if the
solution of the fixed point problem defined in Equations (8.2) and (8.3) exists. First
of all we remind some properties related to the network.

Proposition 8.2.1 Assume that P is a nonnegative matrix, whose row sums are
bounded by 1. Let Id be the identity matrix, therefore if P is irreducible and sub-
stochastic (i.e at least one row sum is smaller than 1) then (Id −P) is nonsingular.

The proof of this proposition is based on Perron-Frobenius theory. (details are
in [DMM14] Proposition (2.26) ).

Assumption 8.2.1 We consider an open and connected EPN.

Lemma 8.2.3 Let P be the routing matrix of an open connected EPN. Then (Id−P)
is non singular i.e. there exists the inverse matrix (Id −P)−1.
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Proof. An open and connected EPN ensures that (a) it exists at least one cell
i in the network such that di > 0 (a data packet in cell i leaves the system with
probability di ). Therefore, for at least one cell i we have ∑N

j=1 P(i , j ) < 1. That
proves that P is substochastic. (b) The EPN is connected as defined in Definition
7.2.3 then P is irreducible. From Statements (a) and (b) we have that routing matrix
P is substochastic and irreducible, we conclude (using Proposition 8.2.1) that (Id−P)
is nonsingular.

Lemma 8.2.4 For all i and j in {1, . . . ,N} and n in {1, . . . ,K}, we have βi ,n defined
in Equation (8.2) and θ j exists i.e. βi ,n > 0 and θ j > 0. Note that

θ j =
K∑

n=1
(1−p j ,n)µ j ,nβ j ,n . (8.18)

Proof. By definition, we have for all i ∈ {1, . . . ,N} and n ∈ {1, . . . ,K}, µi ,n > 0, αi > 0
and γi > 0, then βi ,n expressed in Equation (8.2) exists and βi ,n > 0.
θ j > 0 since (i) µ j ,n > 0 , (ii) β j ,n > 0 and (iii) we know that at least the last term
(1−p j ,K)µ j ,Kβ j ,K > 0 as p j ,K = 0.

Lemma 8.2.5 Equation (8.3) that represents flow equations of data packets in each
cell i , has a fixed point ρi .

Proof. By substitution using Equation (8.18), then Equation (8.3) becomes ∀ i ∈
{1, . . . ,N}

ρi =
λi +∑N

j=1θ jρ j P( j , i )

θi
, (8.19)

⇒ ρiθi −
N∑

j=1
θ jρ j P( j , i ) = λi . (8.20)

Which represents the flow equations in Jackson networks [CY01].
Let ρ⃗θ = (ρ1θ1, . . . ,ρNθN), λ⃗ = (λ1, . . . ,λN) and Id the identity matrix, then Equation
(8.20) for vectors

ρ⃗θ (Id −P) = λ⃗. (8.21)
Using Lemma 8.2.3, (Id - P) admits an inverse

⇒ ρ⃗θ = λ⃗(Id −P)−1.

This proves the existence of the vector ρθ therefore ρi exists since θi exists as stated
in Lemma 8.2.4. The proof is complete.

8.3 Performance and Energy evaluation
In this section, we compute both energy and performance measures. Since our
system has a product form solution, the measures can be computed as expectations
of rewards separately on each cell. Note that Equation (8.5) can be expressed as

π(X,Y1, . . . ,YK) =
N∏

i=1
π(Xi ,Yi ,1, . . . ,Yi ,K), (8.22)
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and
π(Xi ,Yi ,1, . . . ,Yi ,K) =π(Xi )π(Yi ,1, . . . ,Yi ,K)

where, by the substitution of Gi

π(Xi ) = (1−ρi )(ρi )Xi , π(0) = (1−ρi ) (8.23)

and
π(Yi ,1, . . . ,Yi ,K) = (1−

K∑
n=1

βi ,n)||Yi ||!
K∏

n=1

(βi ,n)Yi ,n

Yi ,n !
. (8.24)

8.3.1 Loss rate of energy packets
For each cell in the EPN, energy packets are lost either when there is no data packets
in the DP queue, or due to battery leaks which occur in phase 1 of the Cox process.

Lemma 8.3.1 Let LossT be the total loss rate of EPs in the network, then:

LossT =
N∑

i=1

∑
||Yi ||>0

π(Yi ,1, . . . ,Yi ,K)
[
π(0)r1(Yi ,1, . . . ,Yi ,K)

+∑
Xi

π(Xi )r2(Yi ,1, . . . ,Yi ,K)
]

. (8.25)

Where r1(Yi ,1, . . . ,Yi ,K) (resp. r2(Yi ,1, . . . ,Yi ,K) ) is described in Equation (8.29) (resp.
Equation (8.32)).

Proof. Let Loss(i ) be the loss rate of EPs in cell i . As the EPN network has a
product-form solution, then :

LossT =
N∑

i=1
Loss(i ). (8.26)

Let Loss(i )
1 (resp. Loss(i )

2 ) be the loss rate of EPs due to emptiness of DP queue
(resp. battery leakage) in cell i , then:

Loss(i ) = Loss(i )
1 +Loss(i )

2 . (8.27)

States that correspond to Loss(i )
1 , in Equation (8.28), are those where, Xi =0 and

at least one EP in the battery is ready to trigger a DP. This explains the sum on
||Yi || >0. Also, for each state, we multiply by the appropriate reward r1(Yi ,1, . . . ,Yi ,K).
The reward in this case, Equation (8.29), represents the rate at which a DP is
triggered in each phase of the Cox process. So

Loss(i )
1 = ∑

Yi ,1,...,Yi ,K/||Yi ||>0
π(0,Yi ,1, . . . ,Yi ,K)r1(Yi ,1, . . . ,Yi ,K), (8.28)

where
r1(Yi ,1, . . . ,Yi ,K) =

K∑
n=1

Yi ,n

||Yi ||
(1−pi ,n)µi ,n . (8.29)
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Using the separation simplifications in Equation (8.22), (8.23) and (8.24), Loss(i )
1

can be expressed as

Loss(i )
1 =π(0)

∑
||Yi ||>0

π(Yi ,1, . . . ,Yi ,K)r1(Yi ,1, . . . ,Yi ,K). (8.30)

For Loss(2)
i , we use the same approach as for Loss(1)

i . This means that we multiply
the steady state probability of the appropriate states by the corresponding rewards
r2(Yi ,1, . . . ,Yi ,K). In this case, we are interested in the rate of EP loss due to battery
leakage that occurs in the first phase of the Cox process with the rate Yi ,1

||Yi ||γi . Note
that we can use either the summation with ||Yi || >0 or Yi ,1 >0, the final result of
Loss(i )

2 remains the same. We use ||Yi || > 0 for simplification purposes. So

Loss(i )
2 = ∑

Xi ,Yi ,1,...,Yi ,K/||Yi ||>0
π(Xi ,Yi ,1, . . . ,Yi ,K)r2(Yi ,1, . . . ,Yi ,K), (8.31)

where
r2(Yi ,1, . . . ,Yi ,K) = Yi ,1

||Yi ||
γi . (8.32)

Also, using the separation simplifications in Equation (8.22), (8.23) and (8.24) then

Loss(i )
2 =∑

Xi

π(Xi )
∑

||Yi ||>0
π(Yi ,1, . . . ,Yi ,K)r2(Yi ,1, . . . ,Yi ,K), (8.33)

Finally, by the substitution of Loss(i )
1 and Loss(i )

2 in Equation (8.27). And using
Equation (8.26), we obtain Equation (8.25) and the proof is complete.

8.3.2 Waiting time and total number of data packets
Lemma 8.3.2 Let E[X] be the total number of data packets in the system, then

E[X] =
N∑

i=1

[ λi +∑N
j=1θ jρ j P( j , i )

θi − (λi +∑N
j=1θ jρ j P( j , i ))

]
. (8.34)

See Equation (8.18) for the value of θi .

Proof. We first calculate E[Xi ] the mean number of data packets in cell i . As the
EPN network has a product form solution, then

E[X] =
N∑

i=1
E[Xi ]. (8.35)

From Equation (8.23) we can deduce that

E[Xi ] = ρi

1−ρi
. (8.36)

Then by substitution of ρi (see Equation (8.3)) and using Equation (8.18), we get

E[Xi ] =
λi +∑N

j=1θ jρ j P( j , i )

θi − (λi +∑N
j=1θ jρ j P( j , i ))

. (8.37)
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Note that E[Xi ] > 0 since from stability conditions (see Theorem 8.2.1), we have for
all i , ρi < 1 then θi > λi +∑N

j=1θ jρ j P( j , i ). Finally, using Equation (8.35) we obtain
Equation (8.34) and the proof is complete.

Lemma 8.3.3 Let E[Ti ] be the mean waiting time of a data packet in cell i , then

E[Ti ] = 1

θi − (λi +∑N
j=1θ jρ j P( j , i ))

. (8.38)

Proof. Let Λi be the overall arrival rate to DP queue of cell i , including both
external arrivals and internal transitions

Λi = λi +
K∑

n=1

N∑
j=1

(1−p j ,n)µ j ,nρ jβ j ,nP( j , i ). (8.39)

Then from Little’s law for data packets in the cell i

E[Ti ] = E[Xi ]

Λi
. (8.40)

By substitution, using Equation (8.36)

E[Ti ] = ρi

Λi (1−ρi )
. (8.41)

Also using Equation (8.3) to substitute ρi , Equation (8.39) to substitute Λi and
Equation (8.18), we obtain after simplifications

E[Ti ] = 1

θi − (λi +∑N
j=1θ jρ j P( j , i ))

.

As for E[Xi ] we have E[Ti ] > 0 since the denominator is a strictly positive value, and
the proof is complete.

Lemma 8.3.4 Let E[T] be the mean waiting time of a data packet in the EPN
network, then

E[T] =
N∑

i=1

[ λi +∑N
j=1θ jρ j P( j , i )

θi − (λi +∑N
j=1θ jρ j P( j , i ))

][ N∑
i=1

λi

]−1
. (8.42)

Proof. Let χ = ∑N
i=1λi be the total arrival rate of data packets incoming from

outside the network. Then from Little’s law

E[T] = E[X]

χ
.

Therefore using Lemma 8.3.2, we obtain Equation (8.42).
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8.4 Solar panel assignment
We are now studying an EPN sensor network that collects information in a backbone
network. Each sensor gets energy packets from photo-voltaic solar panels, energy
flow is stored in sensor’s battery. The aim is to obtain an optimal distribution of ∆
solar panels over the N sensors (∆ and N being a non-zero positive integers). More
precisely, we are looking for an assignment of the solar panels that minimizes the
average end to end delay of data packets in the network. Also we considered the
following constraints: (a) A solar panel could be assigned to only one sensor, but
a sensor receives energy from at least one panel. We consider identical panels (i.e
the panels generates the same rate of energy) (b) Stability constraints as described
in Theorem 8.2.1. The EPs stability condition provides an upper bound on the
number of panels to use, while DPs’ condition of stability gives a lower bound of
the quantity of panels.

Lemma 8.4.1 Let Φi be the number of solar panels affected to a cell i . Then, under
EPs stability conditions of the EPN, for all i ∈ {1, . . . ,N}

Φi <
γi +µi ,1

α

(
1+

K∑
n=2

µi ,1

µi ,n

n−1∏
r=1

pi ,r

)−1
, (8.43)

where α> 0 is the rate of energy packets generated by a solar panel (which is supposed
to be the same since the panels are identical).

Proof. In this lemma we are interested in the stability condition of EPs (i.e. for
all i ∈ {1, . . . ,N}, ∑K

n=1βi ,n < 1).

K∑
n=1

βi ,n < 1 ⇒ βi ,1 +
K∑

n=2
βi ,n < 1.

By substitution using Equation (8.2)

⇒ αi

γi +µi ,1

(
1+

K∑
n=2

µi ,1

µi ,n

n−1∏
r=1

pi ,r

)
< 1. (8.44)

The rate of energy packets coming into a cell’s battery αi is a function of the number
of solar panels assigned to the cell. Then

αi =Φiα. (8.45)

By the substitution of αi in Equation (8.44), we obtain Equation (8.43). The proof
is complete.

8.4.1 Case of a tree EPN topology
Let us now simplify the DPs flow equations due to the tree topology (see Fig. 8.3
and Fig. 8.6).
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Lemma 8.4.2 Let i be an arbitrary node of the tree, A(i ) will denote the set of
nodes in the sub-tree rooted at i (including i). Then, the flow equations of DP
queues (Equation (8.3)) can be simplified as

ρi =
∑

j∈A(i )λ j∑K
n=1(1−pi ,n)µi ,nβi ,n

. (8.46)

Proof. by induction on the node number. We assume that the nodes are numbered
according to a topological ordering of the tree.

• i = 1: node 1 is a leaf because it has no predecessor. Therefore A(1) = {1}. Thus

ρ1 = λ1∑K
n=1(1−p1,n)µ1,nβ1,n

,

and it is also equal to
∑

j∈A(1)λ j∑K
n=1(1−p1,n )µ1,nβ1,n

. Thus the property is established for
i = 1.

• arbitrary i . Let us now assume that the property is established for all j < i .
Thus we have:

ρ j

K∑
n=1

(1−p j ,n)µ j ,nβ j ,n = ∑
k∈A( j )

λk .

Let Γ−(i ) be the set of predecessor of i . Remember that routing matrix P
encodes the tree topology. Therefore P( j , i ) = 1 if j is a predecessor of i (i.e.
in Γ−(i )) and 0 otherwise. Consider the numerator of the flow equation for
DP in station i :

λi +
∑

j ∈Γ−(i )

K∑
n=1

(1−p j ,n)µ j ,nβ j ,n .

Applying the induction, the numerator becomes:

λi +
∑

j ∈Γ−(i )

∑
k∈A( j )

λk .

Due to the recursive construction of any tree, we get:

λi +
∑

j ∈Γ−(i )

∑
k∈A( j )

λk = ∑
j∈A(i )

λ j .

And the proof is complete.

Lemma 8.4.3 The DPs stability condition is ρi < 1 for all i . Then, in a tree EPN,
We have for all i ∈ {1, . . . ,N}

Φi >
(γi +µi ,1)

αµi ,1

∑
j∈A(i )

λ j . (8.47)
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Proof. From Lemma 8.2.1 we have for all i ∈ {1, . . . ,N}, ∑K
n=1(1− pi ,n)µi ,nβi ,n =

αi −γiβi ,1 and by the substitution of βi ,1 and αi (Equation (8.45)) we obtain

K∑
n=1

(1−pi ,n)µi ,nβi ,n = αΦiµi ,1

γi +µi ,1
. (8.48)

Using Equation (8.48) in Equation (8.46), we get

ρi =
γi +µi ,1

αΦiµi ,1

∑
j∈A(i )

λ j . (8.49)

DPs stability conditions are ∀ i ∈ {1, . . . ,N}, ρi < 1. Hence, by combining Equation
(8.49) and that ρi < 1 we obtain Equation (8.47), and the proof is complete.

8.4.1.1 Optimization problem

Let us now study the domain of definition. The set of possible values for (Φ1, . . . ,ΦN)
comes from all the constraints we got (particularly Lemma 8.4.1, Lemma 8.4.3) :
∀i ∈ {1, . . . ,N}  Φi < γi+µi ,1

α

(
1+∑K

n=2
µi ,1
µi ,n

∏n−1
r=1 pi ,r

)−1
,

Φi > (γi+µi ,1)
αµi ,1

∑
j∈A(i )λ j > 0,∑N

i=1Φi =∆.

Using ρi in Equation (8.49), and the expression of the total mean waiting time
E[X] = ∑N

i=1
ρi

1−ρi
. Then, according to Little’s law, we derive the mean response

time function, which is equal to E[X]∑N
i=1λi

, by substitution we obtain the function to
minimize:

f (Φ1, . . . ,ΦN) =
N∑

i=1

(γi +µi ,1)
∑

j∈A(i )λ j

αΦiµi ,1 − (γi +µi ,1)
∑

j∈A(i )λ j

( N∑
i=1

λi

)−1
. (8.50)

Function in Equation (8.50) can be expressed as f (Φ1, . . . ,ΦN) = ∑N
i=1 f (Φi ). As f

is decreasing in each Φi , then to minimize Equation (8.50) we should increase Φi .
Therefore, the optimal solution is the upper bound (excluded) for each cell i if ∆ is at
least equal to sum of upper bounds (excluded). Otherwise, we suggest an heuristic
(Algorithm 8) and a Gradient descent algorithm (Algorithm 9).

Note that the aim is to propose a distribution of ∆ panels over the N cells. The
heuristic algorithm consists of 3 steps. In step 1) we calculate the bounds of the
solution domain for each cell. In Step 2) we verify that the domain has at least one
solution and that ∆ is at least equal to the sum of the lower bound of cells. Also
if ∆ is equal to or greater than the sum of the upper bound of the cells, then the
solution is the upper bound of the panels in each cell. In step 3) we know that the
solution is between the lower (included) and the upper (excluded) bounds. So we
start with a first solution which corresponds to the lower bound of panels in each
cell (Lemma 8.4.3), then at each iteration we add a panel in the most loaded cell
that has not reached its upper bound. The algorithm stops when we have reached
∆ panels in the network. Note that the algorithm may stop in step 2) due to invalid
parameters or an empty set for the solution.
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In Algorithm 8, we decide to assign the new panel to the most loaded cell,
while in Algorithm 9 (Gradient descent) the new panel is assigned to the cell that
will minimize the most Equation (8.50). Therefore, the main difference between
the heuristic and the Gradient descent is the decision made in step 3.2). Gradient
descent algorithm performs the optimal local decision at each step. We have verified
numerically that it achieves the optimal global distribution of panels. But we do
not have a theoretical proof of this optimality.

Algorithm 8: Heuristic: Panels assignment algorithm
Input : ∆ the number of panels.
Output: An assignment of the ∆ panels.
Step 1) Calculation of lower and upper bound of Φi for each cell i .
(Lemma 8.4.1 and 8.4.3).

Step 2) Verification of bounds:
Step 2.1) If there is a cell whose upper bound of the number of panels is
lower than the lower bound, then print ”No solution for such parameters”,
the algorithm stops. Otherwise go to Step 2.2).
Step 2.2) If ∆ is strictly lower than the sum of all lower bounds, then
print ”∆ is too low”, the algorithm stops. Otherwise go to Step 2.3).
Step 2.3) If ∆ is equal or greater than the sum of all upper bounds, then
the solution is the upper bound (Lemma 8.4.1) of each cell, the algorithm
stops. Otherwise, go to step 3).

Step 3) Constructing progressively the solution:
Step 3.1) We construct a first solution, which corresponds to the lower
bound of each cell.
Step 3.2) We add a panel in the most loaded cell that can receive a panel.
Step 3.3) If we achieved ∆ panels in the network, then the algorithm
stops. Otherwise go to Step 3.2).

Step 4) Return the solution and the corresponding delay.
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Algorithm 9: Gradient descent: Panels assignment algorithm
Input : ∆ the number of panels.
Output: An optimal assignment of the ∆ panels.
Step 1) and Step 2) are the same as in Algorithm 8.

Step 3) Constructing progressively the solution:
Step 3.1) We construct a first solution, which corresponds to the lower
bound of each cell.
Step 3.2) We add a panel in a cell that can receive a panel and that
minimizes the objective function (Equation (8.50)) the most.
Step 3.3) If we achieved ∆ panels in the network, than the algorithm
stops. Otherwise go to Step 3.2).

Step 4) Return the solution and the corresponding delay.
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8.4.1.2 A collecting sensor network of N = 7 cells

We consider a tree EPN topology with N = 7 cells (Fig. 8.3) and K = 4 phases.
Cells 1,2,3 and 4 are leaf cells, 5 and 6 are inter-cellular cells and the root cell is
7. All cells point towards the root. Service time is an Erlang process (i.e. ∀i ∈
{1, . . . ,N} µi ,n =µi and ∀n ∈ {1, . . . ,K−1} pi ,n = 1 and pi ,K = 0). We suppose that only
leaf cells receives DPs from outside the network, arrivals rate of DPs in each cell,
are respectively, {1,2,3,4,0,0,0}. Also, the service rate and leakage rate of EPs in
each cell is ∀ i ,µi = 50 and γi = 5. EPs rate generated by a single solar panel is α= 2
and the number of panels is ∆ = 41. We made sure to consider valid parameters
(21 ≤∆≤ 41) in order to perform step 3) which is the main part of both algorithms.
All parameters and rewards are expressed for a unit of time.

1 432

7

65

Out

λ1 = 1 λ2 = 2 λ3 = 3 λ4 = 4

Figure 8.3: A tree EPN topology of N = 7 cells.

Fig. 8.4 illustrates the evolution of the mean waiting time of a DP in the network
while increasing the number of panels ∆. The mean waiting time was calculated
using the solution proposed by the two algorithms. We first observe that the mean
waiting time decreases with the increase in the number of panels in the network (as
the number of panels is at the denominator of the function to minimize i.e. Equation
(8.50) ). We also notice that the solutions proposed by the two methods are quasi
similar. In particular, for this example we have 22 experiments (from ∆ = 20 to
∆ = 41) of which 16 experiments generate the same solution (solutions details are
in Table 8.1). In the 6 other experiments (∆ = {29,31,32,35,36,39}) the delay of
the heuristic is around 10−3 and 10−4 above the Gradient descent. In Table 8.1
we present the solutions proposed by both algorithms for some values of ∆. In this
table, an entry ’x1&x2’ means that the heuristic answers x1 panels while Gradient
descent proposes x2 while a single number (say ’x’) means that both algorithms
assign the same number of panels x to the corresponding cell.

Fig. 8.5 illustrates the loss rate of EPs (see Equation (8.25)) generated by both
algorithms. We notice that the loss rate increases in most cases by increasing the
number of panels in the network. Also, we observe that the heuristic gives better
results for the energy loss, as the Gradient algorithm only cares about the waiting
time. Therefore, the best configuration of the panels for the waiting time is obviously
not the same for energy losses.
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It is worthy to note that both methods are very fast. We have also verified
numerically that the gradient descent algorithm generates the optimal solution, i.e.
by comparing its solution to an exhaustive algorithm. Since the exhaustive method
is exponential in execution time, then we can perform this exhaustive analysis up
to ∆= 50 panels.

Figure 8.4: Mean waiting time of a DP in a tree EPN of N = 7 cells: Heuristic solution Vs
Gradient descent solution .

Figure 8.5: Loss rate of EPs in a tree EPN of N = 7 cells: Heuristic solution Vs Gradient
descent solution .
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∆ Φ1 Φ2 Φ3 Φ4 Φ5 Φ6 Φ7

20 1 2 2 3 2 4 6
21 1 2 2 3 2 5 6
22 1 2 3 3 2 5 6
23 1 2 3 3 3 5 6
24 1 2 3 3 3 6 6
25 1 2 3 4 3 6 6
26 2 2 3 4 3 6 6
27 2 3 3 4 3 6 6
28 2 3 4 4 3 6 6
29 2 3 4 5 & 4 3 & 4 6 6
30 2 3 4 5 4 6 6
31 2 3 4 6 & 5 4 & 5 6 6
32 2 3 5 6 & 5 4 & 5 6 6
33 2 3 5 6 5 6 6
34 2 4 5 6 5 6 6
35 2 & 3 4 6 & 5 6 5 6 6
36 2 & 3 4 6 6 6 & 5 6 6
37 3 4 6 6 6 6 6
38 3 5 6 6 6 6 6
39 3 & 4 6 & 5 6 6 6 6 6
40 4 6 6 6 6 6 6
41 5 6 6 6 6 6 6

Table 8.1: Distribution of ∆ panels using Heuristic and Gradient descent algorithm, N = 7
cells.

8.4.1.3 A collecting sensor network of N = 20 cells

In this example (Fig. 8.6), we consider a wider tree EPN network (N = 20 cells),
where the graph’s structure is less regular. The service is still an Erlang process with
K = 4 phases. We suppose that not only leaf cells receives data packets from outside
the network. Cells that receive data packets are 1,2,3,4,5,6,7,8,9,10,18. Arrival rate
of DPs, respectively in each cell, are {1, 1, 1, 1, 2, 2, 3, 3, 3, 1, 0, 0, 0, 0, 0, 0, 0,
1, 0, 0}. We suppose that service rate is ∀ i ,µi = 85, also leakage rate of EPs is
∀ i ,γi = 5. EPs rate generated by a single solar panel is α = 2. Notice that using
these parameters the total number of panels to use in this topology should be in
{51,220}. That means when ∆ ≤ 50 then the number of panels to distribute is not
enough therefore both algorithms will stop in Step 2.2). And when ∆≥ 220 therefore
the best solution correspond to the upper bound of Φi in each cell, as stated in Step
2.3) in both algorithms. Hence, for this example we consider ∆= 90 panels.

As in the model with N = 7 cells, we observe in Fig. 8.7 that the mean waiting
time of a DP decreases when increasing the number of panels in the system. As
DPs are triggered using energy parquets, otherwise they wait. Therefore, it is evi-
dent that the mean waiting time of a DP decreases when increasing the sources of
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incoming energy in the network. Also, we observe that Gradient descent algorithm
performs better than the heuristic algorithm. Nevertheless, heuristic gives almost
the same results as the gradient, which is the optimal solution (verified numerically
by comparing it to an exhaustive algorithm).

Fig. 8.8 illustrates the total loss rate of EPs in the network. To note that losses
of EPs are due to battery leakages and emptiness of DP queue. Hence, the more
panels we add, the less DPs are waiting in the queues, then, the more the queues
are empty. Also the mean leakage rates in the system will increase while increasing
the number of panels. That explains the increasing histograms in Fig. 8.8. We
also observe that the Gradient descent is worse than heuristic algorithm, when it
concerns total loss rate of EPs, that result is only an observation, as both algorithms
aims to optimize the waiting time of a DP. Hence, we can deduce that optimizing
the waiting time, will unfortunately, not optimize the total loss rate of EPs. In
Table 8.2 we show the distribution of ∆= {51,60,70,80,90} panels over the network,
using both algorithms.

20

17 1918

10 5 12 13 1416

6 7 8 915 41

2 11

3

λ1 = 1

λ3 = 1

λ2 = 1

λ4 = 1 λ6 = 2 λ7 = 3 λ8 = 3

λ5 = 2

λ9 = 3

λ10 = 1
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Figure 8.6: A tree EPN topology of N = 20 cells.
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Figure 8.7: Mean waiting time of a DP in a tree EPN of N = 20 cells: Heuristic solution
Vs Gradient descent solution .

Figure 8.8: Loss rate of EPs in a tree EPN of N = 20 cells: Heuristic solution Vs Gradient
descent solution .
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∆ 51 60 70 80 90

Φ1 1 1 2 2 2
Φ2 1 1 2 2 2
Φ3 1 1 2 2 2
Φ4 1 1 2 2 2
Φ5 2 2 2 3 3
Φ6 2 2 2 3 3
Φ7 2 3 3 4 5
Φ8 2 3 3 4 4 & 5
Φ9 2 3 3 4 4 & 5
Φ10 2 2 2 3 3
Φ11 1 1 1 & 2 2 2
Φ12 2 2 2 3 3
Φ13 2 3 3 4 4 & 5
Φ14 4 5 6 7 & 6 8 & 7
Φ15 2 2 2 2 & 3 3
Φ16 2 3 3 3 & 4 4 & 5
Φ17 3 4 5 5 7 & 6
Φ18 3 4 5 5 7 & 6
Φ19 5 6 9 & 8 9 & 8 11 & 10
Φ20 11 11 11 11 11

Table 8.2: Distribution of ∆ panels using Heuristic and Gradient descent algorithm, N = 20
cells.

158



8.4.2 A star EPN topology
Low Power Wide Area Network (LPWAN) technologies are characterized by long
range links (several kilometers) and have star network topologies [Van+15]. These
systems do not focus on enabling high data rates per device or on minimizing latency.
Rather, the key metrics concerned are energy efficiency, scalability and wide-area
coverage, which comes with minimum power consumption and maintenance costs
[Son+17]. In LPWAN family, the most widely used technology is Long Rang (LoRa).
This in mainly due to the utilization of unlicensed bands. As a result, the LoRa
networks is easy to deploy over a range of several kilometers [Son+17]. The LoRa
system’s architecture consists of three main components [Van+15]:

• End-Devices: sensors/actuators are devices that are connected via LoRa radio
interface to one or more Lora Gateways;

• Gateways: are concentrators that connect end-devices to the LoRa NetServer;

• NetServer: The network server is the central element of the network’s archi-
tecture. The NetServer controls the whole network (resource management,
admission control, security, etc).

LoRa is a low energy network with a battery which may be used several years.
Adding an energy harvesting possibility will increase her availability. This harvesting
is modelled by an EPN. In the following, we use an EPN network to model a LoRa
sensor network with solar panels in order to study both energy losses of EPs and the
waiting time of a DP. As depicted in Fig. 8.9, we considered a star EPN network of
N = 10 cells. Cells 1,2, . . . ,N−1 are end-devices, while cell N is the LoRa gateway,
also the LoRa NetServer is represented by the ”Out” cell. The main difference with
the first model is the topology. Here we assume that the topology is a star with
symmetric directed edges as the communication between the nodes and the gateway
takes place in both directions (see Fig. 8.9).

8.4.2.1 Optimization problem

Before presenting the optimization problem, we first have to adapt Lemma 8.4.2 and
Lemma 8.4.3 that do not hold for the star topology:

Lemma 8.4.4 Let i be an arbitrary node in a star EPN network. Then, the flow
equations of DP queues (Equation (8.3)) can be simplified as, ∀ i ∈ {1, . . . ,N}

ρi =
C(i )

∑N
j=1λ j

θi (1−∑N
j=1 P(N, j ))

+ λi

θi
1i<N (8.51)

where
C(i ) =

[
P(N, i ) i f i ∈ {1, . . . ,N−1}
1 i f i = N.

(8.52)

Proof. Note that we are considering a star topology with 1,2, . . . ,N cells. The
middle cell is cell N, which transmit data to the NetServer (i.e. dN > 0). Then
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we have ∀i ∈ {1, . . . ,N−1},P(i ,N) = 1 and ∑N
i=1 P(N, i ) < 1 as dN > 0. By using these

typology’s features in the flow Equation (8.3), we obtain:

∀ i ∈ {1, . . . ,N−1}, ρi = λi +ρNθNP(N, i )

θi
(8.53)

and

ρN =
λN +∑K

n=1
∑N

j=1(1−p j ,n)µ j ,nρ jβ j ,nP( j ,N)

θN
. (8.54)

By substitution, using Equation (8.53), Equation (8.54) becomes:

ρNθN

(
1−

N∑
j=1

P(N, j )
)
=

N∑
j=1

λi

⇒ ρN =
∑N

j=1λi

θN(1−∑N
j=1 P(N, j ))

. (8.55)

Finally by substitution of Equation (8.55), Equation (8.53) becomes

∀ i ∈ {1, . . . ,N−1}, ρi =
P(N, i )

∑N
j=1λ j

θi (1−∑N
j=1 P(N, j ))

+ λi

θi
(8.56)

We have defined C(i) in Equation (8.52) in order to express Equation (8.55) and
(8.56) in a single equation for all i ∈ {1, . . . ,N}, which is Equation (8.51). The proof
is complete.

Lemma 8.4.5 The DPs stability condition is ρi < 1 for all i . Then, in a star EPN,
we have for all i ∈ {1, . . . ,N}

Φi >
(γi +µi ,1)

αµi ,1

[ C(i )
∑N

j=1λ j

1−∑N
j=1 P(N, j )

+λi 1i<N

]
. (8.57)

Proof. Recall that ∀ i ∈ {1, . . . ,N}, θi = ∑K
n=1(1− pi ,n)µi ,nβi ,n (see Lemma 8.2.4).

Also from Lemma 8.2.1 we have for all i ∈ {1, . . . ,N}, ∑K
n=1(1−pi ,n)µi ,nβi ,n = αi−γiβi ,1.

Therefore θi = αi −γiβi ,1. By the substitution of βi ,1 and αi (Equation (8.45)), we
obtain

θi =
αΦiµi ,1

γi +µi ,1
. (8.58)

Using Equation (8.58) in Equation (8.51), we get

ρi =
γi +µi ,1

αΦiµi ,1

[ C(i )
∑N

j=1λ j

1−∑N
j=1 P(N, j )

+λi 1i<N

]
. (8.59)

DPs stability conditions are ∀ i ∈ {1, . . . ,N}, ρi < 1. Hence, by combining Equation
(8.59) and that ρi < 1, we obtain Equation (8.57), and the proof is complete.
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The Upper bound of Φi remains the same for any EPN topology (Lemma 8.4.1).
The lower bound of Φi clearly depends on the topology, as the resolution of the
point fix system (Equation (8.3)) can be trivial for some topologies. However, we
can solve the point fix system for any topology using an iterative algorithm or using
the fundamental matrix method which consists on calculating the matrix (I−P)−1

(as stated in the point fix lemma, Lemma 8.2.5).
Remember that, we are aiming to assign ∆ panels over the N cells of the network.

It means that we are looking for the distribution of (Φ1, . . . ,ΦN) that minimize the
mean waiting time of a data packet in the network. Let us now study the domain
of definition for the star EPN topology. The set of possible values for (Φ1, . . . ,ΦN)

comes from the constraints stated in Lemma 8.4.1 and Lemma 8.4.5 : ∀i ∈ {1, . . . ,N}
Φi < γi+µi ,1

α

(
1+∑K

n=2
µi ,1

µi ,n

∏n−1
r=1 pi ,r

)−1
,

Φi > (γi+µi ,1)
αµi ,1

[ C(i )
∑N

j=1λ j

1−∑N
j=1 P(N, j )

+λi 1i<N

]
> 0,∑N

i=1Φi =∆.

We use ρi in Equation (8.59), and the expression of the total mean waiting time
E[X] = ∑N

i=1
ρi

1−ρi
, and Little’s law E[X]∑N

i=1λi
to derive the mean response time function

to minimize: f (Φ1, . . . ,ΦN) =∑N
i=1 f (ϕi ), which is equal to

f (Φ1, . . . ,ΦN) =∑N
i=1(γi +µi ,1)

[ C(i )
∑N

j=1λ j

1−∑N
j=1 P(N, j )

+λi 1i<N

]
(
αΦiµi ,1 − (γi +µi ,1)

[ C(i )
∑N

j=1λ j

1−∑N
j=1 P(N, j )

+λi 1i<N

])−1(∑N
i=1λi

)−1
.

(8.60)

For the resolution of this optimization problem, we still perform the heuristic
algorithm (Algorithm 8) and the Gradient descent algorithm (Algorithm 9). How-
ever, we have to use Lemma 8.4.5 instead of Lemma 8.4.3 in the step 1) of both
algorithms. Other steps remains the same.

8.4.2.2 A star sensor network of N = 10 cells

Next, we consider a star EPN network to model a LoRa network. The system
contains N = 10 cells (Fig. 8.9). The service is still an Erlang process with K = 4
phases. Cells that receive data packets are 1,2,3,4,5,6,7,8,9. Arrival rate of DPs,
respectively in each cell, are {1, 1, 1, 2, 2, 2, 3, 3, 3, 0}. We suppose that service rate
and battery leakage rate of EPs are ∀ i ∈ {1, . . . ,9},µi = 40 and γi = 4. It is assumed
that the service rate in the gateway cell (cell 10) is 1.5 times faster than that in
end-devices, also battery leakage is less frequent (i.e. µ10 = 100 and γ10 = 2). EPs
rate generated by a single solar panel is α= 2. Notice that using these parameters
the total number of panels to use in this topology should be in {26,57}. Hence, we
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suppose that ∆ = 40 panels. The non-zero transition probabilities in the routing
matrix P are ∀i ∈ {1, . . . ,9} P(i ,N) = 1 and P(N, i ) = 0.01.

The trend in the results for the mean waiting time of a DP (Fig. 8.10) and the
total loss rate of EPs (Fig. 8.11) remains the same as in the previous examples. This
means that the mean waiting time decreases and the total loss rate of EPs increases,
while increasing the amount of energy affected to the batteries. Furthermore, the
heuristic and Gradient descent algorithm shows nearly the same distribution for the
panels. Three different distributions (∆= {27,28,29}) out of 15 (see Table 8.3). And
the difference in waiting time in these cases does not exceed 10−4. Note, however,
that the Gradient descent algorithm provides the optimal panel distribution. (i.e. we
have numerically verified the solution of the Gradient descent with an exhaustive
algorithm). The verifications go up to ∆ = 50 since the exhaustive algorithm is
exponential.
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Figure 8.9: A star EPN topology of N = 10 cells.
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Figure 8.10: Mean waiting time of a DP in a star EPN of N = 10 cells: Heuristic solution
Vs Gradient descent solution .

Figure 8.11: Loss rate of EPs in a star EPN of N = 10 cells: Heuristic solution Vs Gradient
descent solution .
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∆ Φ1 Φ2 Φ3 Φ4 Φ5 Φ6 Φ7 Φ8 Φ9 Φ10

26 1 1 1 2 2 2 2 2 2 11
27 1 1 1 2 2 2 2 & 3 2 2 12 & 11
28 1 1 1 2 2 2 3 2 & 3 2 12 & 11
29 1 1 1 2 2 2 3 3 2 & 3 12 & 11
30 1 1 1 2 2 2 3 3 3 12
31 2 1 1 2 2 2 3 3 3 12
32 2 2 1 2 2 2 3 3 3 12
33 2 2 2 2 2 2 3 3 3 12
34 2 2 2 3 2 2 3 3 3 12
35 2 2 2 3 3 2 3 3 3 12
36 2 2 2 3 3 3 3 3 3 12
37 2 2 2 3 3 3 4 3 3 12
38 2 2 2 3 3 3 4 4 3 12
39 2 2 2 3 3 3 4 4 4 12
40 2 2 2 3 3 3 5 4 4 12

Table 8.3: Distribution of ∆ panels using Heuristic and Gradient descent algorithm, N = 10
cells.
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Chapter 9

Processor Sharing G-queues with
inert customers and catastrophes:
a model for server aging and
rejuvenation
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9.1 Introduction

In this study, we consider a G-network with Processor Sharing (PS) queues with
inert customers and signals. Inert customers were introduced by Dao Thi and her
co-authors in [DFT13]. Inert customers are customers which do not use the service
capacity but they stay in the queue until they interact with the signal. More pre-
cisely, in a PS queue, the service is shared among all the customers whatever they
are usual customers or inert customers. But the inert customers do not use the
server and this part of the service capacity is wasted. The signal is a catastrophe or
a disaster: it removes all the customers (both inert or usual). Note that the arrival
rate of signal must be positive to obtain a stationary system. Indeed, the signal is
the only possibility to let the inert customers leave the queue. We depict in Fig. 9.1
a typical sample-path for a queue with both usual and inert customers obtained by
the simulation tool in XBorne [Fou+16]. We will see that the queue is less and less
efficient with aging until it is refreshed by the signal.
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Figure 9.1: Sample-paths for a queue with catastrophes and customers (usual in blue,
inert in red). Parameters: λI = 0.1, λS = 0.01, λU = 1.0, µ= 1.0.

This work is organized as follows. In Section 9.2, we introduce networks with
inert customers and catastrophes signals. We state that the steady-state distribu-
tion has a product form if the chain is ergodic (the proof based on the analysis of
the Kolmogorov equation at steady-state in postpone in Appendix A for the sake
of readability). In Section 9.3, we prove that under some technical assumptions,
the flow equations have a solution. We present in Section 9.4 , a more complex
catastrophe signal which only deletes the inert customers (some of them).
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9.2 Model and product-form steady-state distri-
bution

We consider an open network with N processor sharing queues and two types of
customers: usual customer and inert customers. Furthermore, the queues can receive
signals from the outside or sent by another queue at the completion of service for
an usual customer (see Fig. 9.2).

Both types of customers arrive from the outside at queue i according to Poisson
processes with rate λU

i for usual customers and λI
i for inert ones. Usual customers

receive service at queue i with a exponentially distributed duration with rate µi .
Inert customers have a service rate equal to 0: they do not receive service. However
a part of the service capacity of the server is given to inert customers according to
the PS discipline. Therefore it is wasted.

1

2

Figure 9.2: Two PS-queue with usual customers (white boxes), inert customers (grey
boxes) and catastrophe signals.

At the completion of its service at queue i , an usual customer may join queue
j either as an usual customer (routing matrix P(i , j )), or a signal (routing matrix
C(i , j )) or an inert customer (routing matrix E(i , j )), or it can leave the network
with probability di . Of course we have for all i ,

di +
N∑

j=1
P(i , j )+

N∑
j=1

E(i , j )+
N∑

j=1
C(i , j ) = 1.

We also assume that there is no loop in the routing matrices: for all i

P(i , i ) = 0, E(i , i ) = 0, C(i , i ) = 0.

Signals may also arrive from the outside following Poisson processes of rate λS
i for

queue i . A signal entering queue i deletes all the customers present in the queue
irrespective of their types. A signal is never queued. It disappear immediately after
its arrival. Such a signal has been previously studied in the literature [FKQ95;
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KA00; DK01]. It is a particular case of the batch deletion of customers proposed in
[Gel93b].

Note that the open topology is mandatory because in a closed queuing network
with catastrophes, the customers disappear and all the queues are empty at steady-
state with probability one.

We consider an open network with N queues. The state of queue i is xi =
(xU

i , xI
i ). Under the classical assumptions we have presented, (x)t = (x1, ..., xi , ...xN)t

is a Markov chain.
Let us first introduce some notation. Let:

• ||xi || = xU
i +xI

i .

• eU
i is a vector whose all entries are equal to 0 except entry (i ,U) which is equal

to 1.

• Similarly, eI
i is a vector whose all entries are equal to 0 except entry (i , I) which

is equal to 1.

Theorem 9.2.1 Assume that the Markov chain (x)t = (x1, ..., xi , ...xN)t is ergodic. If
the following flow equations have a solution such that ρU

i +ρI
i < 1 for all i ,

ρU
i =

λU
i +∑

j µ jρ
U
j P( j , i )

µi + (λS
i +

∑
j µ jρ

U
j C( j , i ))Ri

, (9.1)

and

ρI
i =

λI
i +

∑
j µ jρ

U
j E( j , i )

(λS
i +

∑
j µ jρ

U
j C( j , i ))Ri

, (9.2)

where
Ri =

∞∑
k=0

(ρU
i +ρI

i )k = (1−ρU
i +ρI

i )−1, (9.3)

then the steady state distribution has a product form solution:

π(x) =
N∏

i=1
(1−ρU

i −ρI
i )

||xi ||!
xU

i ! xI
i !

(ρU
i )xU

i (ρI
i )xI

i (9.4)

The proof is based on the analysis of the global balance equation. The Kol-
mogorov equation at steady-state is:

π(x)

(∑
i (λU

i +λI
i +λS

i )+∑
i

xU
i µi

||xi || 1||xi ||>0

)
= ∑

i π(x −eU
i )λU

i 1xU
i >0

+ ∑
i π(x −eI

i )λI
i 1xI

i>0

+ ∑
i π(x +eU

i )
(xU

i +1)µi

||xi+eU
i || di

+ ∑
i
∑

j π(x +eU
i −eU

j )
(xU

i +1)µi

||xi+eU
i || P(i , j )1xU

j >0

+ ∑
i
∑

j π(x +eU
i −eI

j )
(xU

i +1)µi

||xi+eU
i || E(i , j )1xI

j>0

+ ∑
i λ

S
i

∑
a≥0

∑
b≥0π(x +eU

i a +eI
i b)1||xi ||=0

+ ∑
i µi

∑
j C(i , j )

∑
a≥0

∑
b≥0π(x +eU

i +eU
j a +eI

j b)1||x j ||=0
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Remark that this equation includes null transitions, on both sides of the equation,
when the queue size is 0. For the sake of readability the proof is postponed to
Appendix A.

These queues exhibit a very interesting behavior which is depicted in Fig. 9.3. As
mentioned earlier, the part of the capacity given by the servers to the inert customers
is lost, thus one can observe a waste of the server power. At state (xU, xI), the lost
part is xI

xU+xI . In Fig. 9.3, we have depicted a sample path of the remaining part of
the service capacity. When xU+xI = 0, we have set this lost part to 0 (or equivalently,
the remaining part is equal to 1). The service capacity evolves with time with a
decreasing trend which is due to the increasing number of inert customers. Clearly,
the remaining service which is equal to xU

xU+xI decreases with the number of inert
customers (i.e. xI). As the number of inert customers increases with time until
the next catastrophe, we obtain a queue where the service capacity decreases with
age until a rejuvenation (i.e. the catastrophe) refreshes the server and its capacity.
The small fluctuations are due to the number of usual customers which increases or
decreases as a result of arrivals and departures. Finally at time 144, a signal occurs
and all the customers are deleted. Another signal arrives at time 217 and also clears
the queue. However these two signals do not have exactly the same effect on the
future of the sample-path.

The signal arriving at time 144 empties the queue. But the next event is an
arrival of an inert customer and the remaining capacity of service jumps to 0 as the
queue only contains one inert customer. When an usual customer arrives, the ca-
pacity jumps at 0.5 as the queue population is now one inert and one usual customer
sharing the capacity.

At time 217, the signal is followed by the arrival of several usual customers (i.e.
exactly 3). Thus the capacity stays at 1 for a short period of time before decreasing
when the first inert customer arrives.

Note that even if these queues exhibit a very unusual behavior, they are still PS
queues with a well-known steady-state distribution. The only difference is described
by the flow equation, not by the distribution. Therefore the usual formulas for PS
queues are still valid and we obtain the average number of usual customers at queue
i by:

E[Ni ] = ρU
i +ρI

i

1−ρU
i −ρI

i

.
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Figure 9.3: Sample-paths for the effective capacity for a queue with catastrophes and both
types of customers. Same parameters as in Fig. 9.1.

9.3 Stability
Clearly Equations 9.1 to 9.3 define a non linear fixed point system. Due to the non
linearity, existence of a fixed point solution is not a trivial question and must be
addressed. Furthermore one may expect that the arrival of catastrophes make the
queueing process stationary.

Theorem 9.3.1 Assume that the chain is ergodic. If λS
i > 0 and λU

i > 0 for all queue
i , then the solution of the fixed point exists and ρU

i +ρI
i < 1 for all i .

Proof. We first prove the existence with Brouwer’s theorem. Let us define operator
F on (R+)2N by its components FU

i and FI
i :

• if FU
i +FI

i < 1

FU
i (F) =

λU
i +∑

j µ j FU
j P( j , i )

µi + (λS
i +

∑
j µ j FU

j C( j , i ))Ri
,

FI
i (F) =

λI
i +

∑
j µ j FU

j E( j , i )

(λS
i +

∑
j µ j FU

j C( j , i ))Ri

and
Ri = (1−FU

i −FI
i )−1

• and FU
i = FI

i = 0 otherwise
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We investigate the fixed points of F. Remark that the system of flow equations and
F define the same system when ρU

i +ρI
i < 1. We now define a new operator, say G,

on (R+)2N by its components:

GU
i (F) =

λU
i +∑

j µ j FU
j P( j , i )

µi
,

and

GI
i (F) =

λI
i +

∑
j µ j FU

j E( j , i )

λS
i

Clearly, F ¹ G. It is sufficient to take into account that µ j > 0, FU
j ≥ 0, C( j , i ) ≥ 0,

and Ri ≥ 0 or Ri ≥ 1 in Equations 9.1 and 9.2.
Furthermore, operator G is non negative, contracting, continuous and (GU

i ) is
associated with a classical Jackson network. Thus, G has a fixed point f̂ .

Now, we define S as a subset of (R+)2N as follows:

S = {q ∈ (R+)2N : 0 ¹ q ¹ f̂ }.

Clearly, S is compact and convex. Since for all j , λU
j > 0, we have f̂ Â 0 and

then interior of S is not empty.
As mentioned earlier, F(q) ¹ G(q). Furthermore G is non-decreasing in S , so for

all q in S we have G(q) ¹ G( f̂ ). Combining these inequalities and the fixed point,
we get:

F(q) ¹ G(q) ¹ G( f̂ ) = f̂

and then F(S ) ⊆S .
S is compact convex and has a non empty interior, F is continuous and F(S ) ⊆

S . F satisfies assumptions of Brouwer’s theorem [GZ81]. Thus, F has a fixed point.
This sufficient condition of existence of fixed point of F is also a sufficient con-

dition for system of Equations 9.1, 9.2 and 9.3 to have a fixed point.
Finally we prove that ρU

i +ρI
i < 1. Clearly, if a fixed point exist with ρU

i +ρI
i > 1

for some i , then FU
i = 0. But FU

i cannot be equal to 0 for a fixed point. Indeed FU
i > 0

as λU
i > 0 for all queue i .

Theorem 9.3.2 If λS
i > 0 and λU

i > 0 for all queue i , then the chain is ergodic.

Proof. As the rates are bounded, the chain is uniformizable and we consider the
embedded Markov chain. Remember that N is the number of queues. At any time,
there is a positive probability that the next N events are signals sent to the N queues
and which empty all the queues. Therefore the chain is ergodic.

9.4 Partial rejuvenation
We now assume that the effect of the signal is to delete some of the inert customers
present in the queue. However, it does not delete all of them with probability
1. The probability of deletion is state dependent. It depends on the number of
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inert customers and the number of usual customers. Let the state be (xU, xI), the
probability of a deletion of m customer is given by the following probability:

Pr (m del eti ons g i ven st ate(xU, xI)) = β(xU, xI,m) (9.5)

Of course this is only defined for m ≤ xI and we have: ∑xI

m=0β(xU, xI,m) = 1. We
prove, in the following theorem, that for a well defined distribution β, the steady-
state distribution has a multiplicative form. For the sake of readability, we assume
that matrix C is zero and the signals only arrive from the outside.

Theorem 9.4.1 Assume that for all queue, the effect of the signal on inert cus-
tomers is given by probability:

β(xU, xI +m,m) = xU

xU +xI
(

m∏
k=1

xI +k

xU +xI +k
) = xU

xU +xI

(xI +m)!(xU +xI)!

(xU +xI +m)!xI!
)1||x||>0, (9.6)

and β(0,0,0) = 1. Assume that the Markov chain (x)t = (x1, ..., xi , ...xN)t is ergodic. If
the following flow equations have a solution such that ρU

i +ρI
i < 1 for all i ,

ρU
i =

λU
i +∑

j µ jρ
U
j P( j , i )

µi +λS
i

, (9.7)

and

ρI
i =

λI
i +

∑
j µ jρ

U
j E( j , i )

λS
i

1−ρI
i

, (9.8)

then the steady state distribution has a product form solution:

π(x) =
N∏

i=1
(1−ρU

i −ρI
i )

||xi ||!
xU

i ! xI
i !

(ρU
i )xU

i (ρI
i )xI

i (9.9)

Proof. Once again, the proof is based on the analysis of the Kolmogorov equation
at steady-state:

π(x)

(∑
i (λU

i +λI
i +λS

i )+∑
i

xU
i µi

||xi || 1||xi ||>0

)
= ∑

i π(x −eU
i )λU

i 1xU
i >0

+ ∑
i π(x −eI

i )λI
i 1xI

i>0

+ ∑
i π(x +eU

i )
(xU

i +1)µi

||xi+eU
i || di

+ ∑
i
∑

j π(x +eU
i −eU

j )
(xU

i +1)µi

||xi+eU
i || P(i , j )1xU

j >0

+ ∑
i
∑

j π(x +eU
i −eI

j )
(xU

i +1)µi

||xi+eU
i || E(i , j )1xI

j>0

+ ∑
i λ

S
i

∑
m≥0π(x +eI

i m)β(xU
i , xI

i +m,m)

Once again this equation includes null transitions, on both sides of the equation,
when the queue size is 0. We use the same arguments as in the previous proof of
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product form.

∑
i (λU

i +λI
i +λS

i )+∑
i

xU
i µi

||xi || 1||xi ||>0 = ∑
i λ

U
i

xU
i

ρU
i ||xi ||1||xi ||>0

+ ∑
i λ

I
i

xI
i

ρI
i ||xi ||1||xi ||>0

+ ∑
i ρ

U
i µi di

+ ∑
i
∑

j µiρ
U
i

xU
j

ρU
j ||x j ||P(i , j )1||x j ||>0

+ ∑
i
∑

j µiρ
U
i

xI
j

ρI
j ||x j ||E(i , j )1||x j ||>0

+ ∑
i λ

S
i

∑
m≥0(ρI

i )m (||xi ||+m)!xI
i !

||xi ||! (xI
i+m)!

β(xU
i , xI

i +m,m)

We use the definition of the distribution β. After substitution, we obtain:

∑
i (λU

i +λI
i +λS

i )+∑
i

xU
i µi

||xi || 1||xi ||>0 = ∑
i λ

U
i

xU
i

ρU
i ||xi ||1||xi ||>0

+ ∑
i λ

I
i

xI
i

ρI
i ||xi ||1||xi ||>0

+ ∑
i ρ

U
i µi di

+ ∑
i
∑

j µiρ
U
i

xU
j

ρU
j ||x j ||P(i , j )1||x j ||>0

+ ∑
i
∑

j µiρ
U
i

xI
j

ρI
j ||x j ||E(i , j )1||x j ||>0

+ ∑
i λ

S
i

xU
i

||xi ||
∑

m≥0(ρI
i )m1||xi ||>0

+ ∑
i λ

S
i

∑
m≥0(ρI

i )m1||xi ||=0

As ρI
i < 1, ∑

m≥0(ρI
i )m = (1− ρI

i )−1. We make the same decomposition of λS
i into

λS
i

xU
i

||xi || +λS
i

xI
i

||xi || . Furthermore, xU
i

||xi || = 1− xI
i

||xi || and we move the negative part to the
left hand side.

∑
i (λU

i +λI
i +λS

i )+∑
i

λS
i

1−ρI
i

xI
i

||xi ||1||xi ||>0 +∑
i

xU
i (µi+λS

i )
||xi || 1||xi ||>0 = ∑

i λ
U
i

xU
i

ρU
i ||xi ||1||xi ||>0

+ ∑
i λ

I
i

xI
i

ρI
i ||xi ||1||xi ||>0

+ ∑
i ρ

U
i µi di

+ ∑
i
∑

j µiρ
U
i

xU
j

ρU
j ||x j ||P(i , j )1||x j ||>0

+ ∑
i
∑

j µiρ
U
i

xI
j

ρI
j ||x j ||E(i , j )1||x j ||>0

+ ∑
i λ

S
i

1
1−ρI

i
1||xi ||>0

+ ∑
i λ

S
i

1
1−ρI

i
1||xi ||=0

The last two terms of the r.h.s are gathered and we cancel the term λS
i which is
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present on both sides on the equation.

∑
i (λU

i +λI
i )+∑

i
λS

i

1−ρI
i

xI
i

||xi ||1||xi ||>0 +∑
i

xU
i (µi+λS

i )
||xi || 1||xi ||>0 = ∑

i λ
U
i

xU
i

ρU
i ||xi ||1||xi ||>0

+ ∑
i λ

I
i

xI
i

ρI
i ||xi ||1||xi ||>0

+ ∑
i ρ

U
i µi di

+ ∑
i
∑

j µiρ
U
i

xU
j

ρU
j ||x j ||P(i , j )1||x j ||>0

+ ∑
i
∑

j µiρ
U
i

xI
j

ρI
j ||x j ||E(i , j )1||x j ||>0

+ ∑
i λ

S
i

ρI
i

1−ρI
i

We decompose into three equations:

∑
i

(λU
i +λI

i ) =∑
i
ρU

i µi di +
∑

i
λS

i

ρI
i

1−ρI
i

(9.10)

∑
i

λS
i

1−ρI
i

xI
i

||xi ||
1||xi ||>0 =

∑
i
λI

i

xI
i

ρI
i ||xi ||

1||xi ||>0 +
∑

i

∑
j
µiρ

U
i

xI
j

ρI
j ||x j ||

E(i , j )1||x j ||>0 (9.11)

∑
i

xU
i (µi +λS

i )

||xi ||
1||xi ||>0 =

∑
i
λU

i

xU
i

ρU
i ||xi ||

1||xi ||>0 +
∑

i

∑
j
µiρ

U
i

xU
j

ρU
j ||x j ||

P(i , j )1||x j ||>0 (9.12)

The second and third equations are satisfied due to the definition of ρI
i (Equation

(9.8)) and ρU
i (Equation (9.7)). It remains to prove that the first equation is a global

flow equation between the network and the outside. We consider Equation (9.8) and
we multiply by the denominator:

λS
i

1−ρI
i

ρI
i = λI

i +
∑

j
µ jρ

U
j E( j , i ).

We proceed the same way for Equation (9.7):

µiρ
U
i = λU

i +∑
j
µ jρ

U
j P( j , i ).

We sum for all queue index i and we add the two equalities:

∑
i
µiρ

U
i +∑

i

λS
i

1−ρI
i

ρI
i =

∑
i
λU

i +∑
i

∑
j
µ jρ

U
j P( j , i )+∑

i
λI

i +
∑

i

∑
j
µ jρ

U
j E( j , i ).

Taking into account that for all i , ∑
j P(i , j )+∑

j E(i , j ) = 1−di , as matrix C is zero,
we get: ∑

i
µiρ

U
i di +

∑
i

λS
i

1−ρI
i

ρI
i =

∑
i
λU

i +∑
i
λI

i .

And we find the first flow equation and that concludes the proof.
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Appendix A

Proof of product form solution for
the steady state distribution

We assume that the solution as a product form solution and each queue has distri-
bution at steady-state given by Equation 9.4. After simplification, and exchanging
indices i and j in the last term of the r.h.s., we get:

∑
i (λU

i +λI
i +λS

i )+∑
i

xU
i µi

||xi || 1||xi ||>0 = ∑
i λ

U
i

xU
i

ρU
i ||xi ||1||xi ||>0

+ ∑
i λ

I
i

xI
i

ρI
i ||xi ||1||xi ||>0

+ ∑
i ρ

U
i µi di

+ ∑
i
∑

j µiρ
U
i

xU
j

ρU
j ||x j ||P(i , j )1||x j ||>0

+ ∑
i
∑

j µiρ
U
i

xI
j

ρI
j ||x j ||E(i , j )1||x j ||>0

+ ∑
i λ

S
i

∑
a≥0

∑
b≥0(ρU

i )a(ρI
i )b1||xi ||=0

+ ∑
j µ jρ

U
j

∑
i C( j , i )

∑
a≥0

∑
b≥0

(a+b)!(ρU
i )a (ρI

i )b

a!b! 1||xi ||=0

First let us consider the double summation in the last two terms of the r.h.s:
(a+b)!(ρU

i )a (ρI
i )b

a!b! . It is well-known that, if ρU
i +ρI

i < 1, then:

∑
a≥0

∑
b≥0

(a +b)!(ρU
i )a(ρI

i )b

a!b!
= (1−ρU

i −ρI
i )−1.
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Thus, this double summation is equal to Ri . On the r.h.s, we now write 1||xi ||=0 =
1−1||xi ||>0 and the move the negative terms on the l.h.s. to factorize.

∑
i (λU

i +λI
i +λS

i )+∑
i

xU
i µi

||xi || 1||xi ||>0 +∑
i (λS

i +
∑

j µ jρ
U
j C( j , i ))Ri 1||xi ||>0

= ∑
i λ

U
i

xU
i

ρU
i ||xi ||1||xi ||>0

+ ∑
i λ

I
i

xI
i

ρI
i ||xi ||1||xi ||>0

+ ∑
i ρ

U
i µi di

+ ∑
i
∑

j µiρ
U
i

xU
j

ρU
j ||x j ||P(i , j )1||x j ||>0

+ ∑
i
∑

j µiρ
U
i

xI
j

ρI
j ||x j ||E(i , j )1||x j ||>0

+ ∑
i (λS

i +
∑

j µ jρ
U
j C( j , i ))Ri

Now we decompose Ri into Ri
xU

i
||xi || +Ri

xI
i

||xi || and we substitute in the l.h.s. After
substitution, factorization and exchanging indices i and j in the fifth and sixth
terms of the r.h.s., we get:

∑
i (λU

i +λI
i +λS

i )+∑
i (µi + (λS

i +
∑

j µ jρ
U
j C( j , i ))Ri )

xU
i

||xi ||1||xi ||>0+∑
i (λS

i +
∑

j µ jρ
U
j C( j , i ))Ri

xI
i

||xi ||1||xi ||>0 =

∑
i λ

U
i

xU
i

ρU
i ||xi ||1||xi ||>0

+∑
i λ

I
i

xI
i

ρI
i ||xi ||1||xi ||>0

+∑
i ρ

U
i µi di

+∑
i
∑

j µ jρ
U
j

xU
i

ρU
i ||xi ||P( j , i )1||xi ||>0

+∑
i
∑

j µ jρ
U
j

xI
i

ρI
i ||xi ||E( j , i )1||xi ||>0

+∑
i (λS

i +
∑

j µ jρ
U
j C( j , i ))Ri

which can be decomposed into three parts:∑
i

(λU
i +λI

i +λS
i ) =∑

i
ρU

i µi di +
∑

i
(λS

i +
∑

j
µ jρ

U
j C( j , i ))Ri

∑
i

(µi + (λS
i +

∑
j
µ jρ

U
j C( j , i ))Ri )

xU
i

||xi ||
1||xi ||>0 =

∑
i

(λU
i +∑

j
µ jρ

U
j P( j , i ))

xU
i

ρU
i ||xi ||

1||xi ||>0

and

∑
i

(λS
i +

∑
j
µ jρ

U
j C( j , i ))Ri

xI
i

||xi ||
1||xi ||>0 =

∑
i

(λI
i +

∑
j
µ jρ

U
j E( j , i ))

xI
i

ρI
i ||xi ||

1||xi ||>0

And the last two equations hold because of the flow equations (i.e. Equations 9.1
and 9.2). It remains to prove that the first equation is consistent with Equations
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9.1 and 9.2 and describes the flow between the network and the outside. From these
equations, we obtain:

ρU
i µi +ρU

i Ri (λS
i +

∑
j
µ jρ

U
j C( j , i )) = λU

i +∑
j
µ jρ

U
j P( j , i )

and
(λS

i +
∑

j
µ jρ

U
j C( j , i ))Riρ

I
i = λI

i +
∑

j
µ jρ

U
j E( j , i )

Thus, adding the two equalities:

ρU
i µi + (ρU

i +ρI
i )Ri (λS

i +
∑

j
µ jρ

U
j C( j , i )) = λU

i +λI
i +

∑
j
µ jρ

U
j (P( j , i )+E( j , i ))

But Ri (ρU
i +ρI

i ) = Ri −1. After substitution and summation on i , we get:∑
i
ρU

i µi +
∑

i
(λS

i +
∑

j
µ jρ

U
j C( j , i ))(Ri −1) =∑

i
(λU

i +λI
i )+∑

j
µ jρ

U
j

∑
i

(P( j , i )+E( j , i ))

Moving the negative terms on the r.h.s., we get:∑
i
ρU

i µi+
∑

i
(λS

i +
∑

j
µ jρ

U
j C( j , i ))Ri =

∑
i

(λU
i +λI

i+λS
i )+∑

j
µ jρ

U
j

∑
i

(P( j , i )+E( j , i )+C( j , i ))

Remember that due to the normalization, we have for all i

di +
∑

j
P(i , j )+∑

j
E(i , j )+∑

j
C(i , j ) = 1.

Therefore, after cancellation of terms, we get:∑
i

(λU
i +λI

i +λS
i ) =∑

i
ρU

i µi di +
∑

i
(λS

i +
∑

j
µ jρ

U
j C( j , i ))Ri

This concludes the proof.
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Part V

Conclusion and perspectives
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A. Synthesis
We have considered in this document the problem of the trade-off between power
consumption and performance in IT networks. Motivated by the ”Green by IT”
concept, we have proposed analytical and numerical analysis for several subjects.

• For numerical studies we used the XBorne tool (Chapter 2). The numerical
analysis of Markov chains always deals with a trade-off between complexity and
accuracy. After many years of development of exact or bounding algorithms
for stochastic matrices, we have gathered the most efficient into XBorne. Typ-
ically using XBorne, one can easily build models with tens of millions of states.
Note that solving any questions with this size of models is a challenging issue.

• We first proposed, in Chapter 3, a numerical study for a multi-core DVFS
processor. The processor adapts its speed (i.e. its frequency) to the work-
load. We used birth-death processes to generate closed forms for steady-state
distribution, performance and energy measures (power and energy per job).
We also used stochastic order to compare the performance of different proces-
sor configurations (one Pstate, two Pstates and all Pstates). For the energy
measures in one Pstate configuration, we proposed sufficient conditions for
the systems comparison. In a two Pstates configuration, the stochastic order
for the energy measures does not fit. There is no monotony when changing
the system’s thresholds (monotony remains valid for performance measures
with assumptions on the considered Pstates). Therefore we have proposed an
algorithm that optimizes a cost function derived from both measures. The
comparison of energy measures in all Pstates configuration is more complex
and we intend to use an MDP algorithm in future works.

• In the following work (Chapter 4), we treated the problematic of performance
and energy in networking level. With the deployment of new services related
to the Internet of Things (IoT), a large quantities of data will be generated
and processed in real time. Optical networks will represent the most efficient
solution for high speed transmission in communication networks. NGREEN
solution is based on a ring topology and new advances on optical technology
which allows to design OSS. Thus the routing problem does not exist anymore
and we only have to deal with the access to the ring, by the filling of the
optical container and the insertion mode (opportunistic or slot reservation).
In this work, we developed mathematical models in order to analyze aggre-
gation efficiency and end to end delays taking into account some constraints.
The goal is to propose a trade-off between energy efficiency and delays. We
proposed a discrete-time Markov chain to model the packet aggregation in the
optical container. This model is efficiently solved by a numerical algorithm
based on the structure of the chain. This new numerical technique we devel-
oped and proved combines two previously proposed algorithms. Note that the
KMS-BGS algorithm would have been much faster if we have been able to
decompose the problem into many smaller problems. Nevertheless, the com-
plexity analysis and the numerical results showed that our approach is the best
one (among the ones we check) for the problem we consider and more generally
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for DTMC with a block structure such that the diagonal blocks exhibit some
structural properties for the directed cycles. Note that this property is not
numerically based, it only takes into account the graph. From the resolution
of this Markov chain, we compute the inter-arrival PDUs which are used for
insertion delay analysis in both opportunistic and reservation slot modes. An-
other important contribution of this study is to propose efficient mathematical
methods to decide which values of parameters (thresholds, parameters) and
insertion modes to choose in order to guarantee both energy efficiency and
delays.

• In Chapter 6, we have modelled a data center with a multi-server Jackson
network in order to represent the resources (physical servers, VMs), and task
activities (services and migrations) between the servers. We studied task mi-
grations between overloaded servers to unloaded servers in order to see the
effect on power consumption. Using a closed form solution for the steady-
state probability, we derived analytic formulas for the power consumption. So
we can compute bounds on migration power in order to reduce overall power
consumption, also we gave the migration rate minimizing power consumption
in the case of two servers. We have also extended the work to larger scale data
centers by proposing and comparing two heuristics that significantly reduce
power consumption.

• In Chapter 8, we analyzed mathematically an Energy Packet Network (EPN)
using Markov chains and balance equations. We proved the product form
solution for the stationary probability from which we compute the end to end
delays and energy packet loss rates. We also proved the existence of a solution
for the fixed point problem for any open and connected EPN’s topology. In
order to optimize end to end delays , we proposed and compare an heuristic
and a Gradient descent algorithm for different sensor network architectures.
The algorithms we proposed are designed to optimize the assignment of ∆

solar panels over the sensor network.

• In the last chapter, we presented a new types of G-networks with a new type of
customers. Typically, we represented an age-dependent server, with a service
capacity which decreases with time until a rejuvenation takes place. We hope
that such a theoretical result will help to develop new models for G-networks
in the performability domain. It is possible to extend this result for a more
general partial rejuvenation with a more complex state dependent distribution
of destruction.

B. Perspectives
In this section, we propose further perspectives for some of our works. In Chapter
3 we proposed a comparison study for different configurations of a DVFS processor
with one Pstate. We derived an optimization algorithm with the aim of choosing
the best configuration for a two Pstates model. We can also extend the optimization
study to a model with several Pstates (> 2), by proposing an heuristic that gives the
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best distribution of thresholds that optimize the cost function according to the input
parameters. Another approach is to integrate the reinforcement learning [Wan+18].
This provides a representation of the states in an environment by taking actions
and receiving rewards. One of the features of reinforcement learning is learning the
optimal strategy by exploring unknown environments. From this perspective, three
components are required with careful treatment, namely agents, rewards, and poli-
cies. We can derive a Markovian decision process (MDP) algorithm that optimizes
the cost function and generate the thresholds directly from traces. The advantage
is that this approach will be based on real input parameters, therefore the system
”learns” an optimal policy. However, convergence time may be rather significant.

In Chapter 4 the mathematical model proposed for the filling of an optical con-
tainer can be used for a variety of other applications. Any system that receives data
and subject to a global clock can be considered. For instance the loading of sensor’s
batteries with energy packets in a sensor network.

In Chapter 6 we manage to derive an MDP algorithm for the load balancing prob-
lem between physical servers in order to minimize power consumption/performance.
The state environment would be the number of tasks in each physical server, and
the actions involved are ”migrate” or ”do not migrate” from one physical server
to another. We can also extend the problem by considering that logical servers of
physical servers support the DVFS mechanism which will further complicate the
task migration decision.

We also seek to obtain more accurate and realistic energy models as in [Out+15]
where authors compare some well known cloud simulation tools as CloudSim, Green-
Cloud, SimGrid, and iCanCloud. We can use theses simulators to get realistic power
and energy consumption for our numerical results. In particular, the power consump-
tion related to servers (logical and physical) in several states ”IDLE”, ”AWAKE”,
”SWITCHING ON”, ”SWITCHING OFF”, ”HIBERNATE” ... , also the power
consumption when migrating a single task from a physical server to another. These
records are often difficult to acquire from other sources than simulation.

The development of the fifth-generation 5G cellular network technologies creates
the possibility to deploy enormous sensors in the framework of the IoT and to process
massive data. In Chapter 8 we proposed an analytical study of an energy packet
network (EPN), this model is later used to the analysis of the assignment of solar
panels over a sensor network where each sensor carries a rechargeable battery. We
have supposed that the inter-arrival rate of energy packet that are generated by
solar panels is Poissonian. However, we can extend this work to a more general and
realistic distribution as the amount of energy generated by solar panels depends on
the time of day and the weather. For instance, in [AJ20] authors propose a new
model for stochastic sources of solar energy. This can be the next step of our EPN
analysis study.
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Résumé substantiel

Contexte et problématiques
Le secteur de l’informatique et des télécommunications (IT) contribue très forte-
ment à l’accroissement de la consommation globale d’énergie. Par conséquent, les
émissions de CO2 augmentent. Nombre de méthodes de réduction de la consomma-
tion, dans d’autres industries ou services, se traduisent par une augmentation de la
consommation dans le secteur IT (approche ”Green by IT” [CIG17]). Le concept
”Green by IT” vise à réduire les impacts économiques et écologiques des activités de
production des entreprises (produits ou services), grâce aux technologies numériques.
Divers thèmes peuvent être explorés: les réseaux intelligents (smart grids), la mobil-
ité et les transports intelligents , la surveillance environnementale et urbaine (urban
monitoring), la dématérialisation, le travail à distance et la vidéo-conférence, les
bâtiments intelligents et les logiciels d’éco-conception.

Dans le domaine du traitement (processing) et de la mise en réseau, l’optimisation
énergétique repose principalement sur une adaptation de l’architecture et des moyens
mis en œuvre en fonction des flux de trafic à transporter ou à traiter, ainsi que sur
la qualité de service promise (QoS). On cherche donc à adapter les ressources à
la demande, ce qui se traduit par un dimensionnement dynamique approprié à la
charge. Ce dernier est, par nature, différent du dimensionnement ”dans le pire des
cas” le plus couramment utilisé. Sur le plan technologique, cette démarche implique
que les équipements de réseau disposent de modes ”sommeil”, ”sommeil profond”
ou ”hibernation” (la terminologie varie selon les fournisseurs); tous ces modes sont
associés au même concept: mettre l’équipement en mode ”sommeil”, afin de réduire
sa consommation d’énergie. La décision de passer d’un mode à l’autre n’est pas an-
odine: par exemple, mettre un appareil en mode ”sommeil” pendant une très courte
période pourrait ne pas être efficace, en raison de la consommation de redémarrage
ou de réactivation. Pour un compromis performance/énergie pertinent, il est impor-
tant de faire appel à des formules de consommation d’énergie obtenues à partir de
l’utilisation des ressources du réseau et de ses équipements.

Travaux conduits
Les méthodes utilisées dans cette thèse sont fondées sur la théorie des réseaux de files
d’attente, l’analyse numérique et analytique de chaînes de Markov, et sur la théorie
de la comparaison stochastique. Face aux problématiques traitées, nous détermi-
nons d’abord le réseau de files d’attentes (ou processus markovien) le plus adéquat
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pour modéliser l’interconnectivité des systèmes. Nous proposons ensuite une solu-
tion analytique de la distribution stationnaire (si elle existe), sous forme produit
ou forme ”close”. En exploitant certaines propriétés des graphes markoviens, nous
avons également proposé de nouveaux algorithmes numériques rapides, notamment
en améliorant la complexité temporelle.

Ce document se divise en cinq parties. La première (resp. deuxième) est con-
sacrée à l’introduction générale (resp. conclusion et perspectives). Chacune des
autres parties s’ouvre sur un état des connaissances afférentes aux études qui y sont
présentées. On trouvera ci-dessous un récapitulatif des différents travaux:

• En premier lieu (Chapitre 2), nous avons proposé la dernière version de l’outil
XBorne. L’analyse numérique des chaînes de Markov traite systématiquement
d’un compromis entre complexité et précision. Après de nombreuses années de
développement d’algorithmes exacts ou de bornes pour les matrices stochas-
tiques, nous avons rassemblé les plus efficaces dans XBorne. À l’aide de ce
logiciel, on peut facilement construire des modèles contenant des dizaines de
millions d’états. On notera que la résolution numérique de toute probléma-
tique, avec des modèles de cette taille, représente un vrai défi.

• Au Chapitre 3, nous avons proposé une étude numérique d’un processeur mul-
ticœur (DVFS). Ce dernier adapte sa vitesse (i.e. sa fréquence) à la charge
de travail. Nous avons utilisé des processus de naissance et de mort pour
générer des formes ”closes” pour la distribution stationnaire, ainsi que des
mesures de performance et d’énergie (puissance et énergie par tâche). Nous
avons également employé l’ordre stochastique pour comparer les performances
de différentes configurations de processeurs (un Pstate, deux Pstates, tous les
Pstates). Un Pstate correspond à un palier de vitesse et de consommation.
Les plus hauts Pstates génèrent des vitesses supérieures, mais consomment da-
vantage. Pour les mesures d’énergie dans une configuration à un Pstate, nous
avons proposé des conditions suffisantes sur les paramètres, afin de comparer
les systèmes. Dans une configuration à deux Pstates, l’ordre stochastique pour
les mesures énergétiques ne convient pas. On ne constate pas de monotonie
lorsque l’on modifie les seuils du système; en revanche, la monotonie reste
valable pour les mesures de performance avec des hypothèses sur les Pstates
considérés. Nous avons donc suggéré un algorithme qui optimise une fonction
de coût dérivée des deux mesures. Dans un modèle multi-Pstates (> 2), la com-
paraison des mesures énergétiques est plus complexe: nous avons l’intention
d’utiliser un algorithme MDP pour nos travaux futurs.

• Dans l’étude suivante (Chapitre 4), nous avons abordé la problématique de
la performance et de l’énergie dans un réseau optique. Avec le déploiement
de nouveaux services liés à l’internet des objets (IoT), de grandes quantités
de données seront générées et traitées en temps réel. Les réseaux optiques
représenteront la solution la plus efficace pour la transmission à haut débit
dans les réseaux de communication. La solution NGREEN est basée sur une
topologie en anneau et sur de nouvelles avancées en technologie optique per-
mettant de concevoir des OSS (Optical Slots Switching). Ainsi, le problème
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du routage n’existe plus: il suffit de régler l’accès à l’anneau par le remplis-
sage du conteneur optique et le mode d’insertion (opportuniste ou réservation
de créneau). Dans ce travail, nous avons développé des modèles mathéma-
tiques, afin d’analyser l’agrégation efficace et les délais de bout en bout, en
tenant compte de certaines contraintes. L’objectif est de proposer un com-
promis entre l’efficacité énergétique et les délais. Nous avons proposé une
chaîne de Markov à temps discret, afin de modéliser l’agrégation des paquets
dans le conteneur optique. Ce modèle est résolu efficacement par un algo-
rithme numérique basé sur la structure de la chaîne. Cette nouvelle technique
numérique, que nous avons développée et prouvée, combine deux algorithmes
existants. On notera que l’algorithme KMS-BGS eût été beaucoup plus rapide
si nous avions été capable de décomposer le graphe du système en plusieurs
sous-matrices de petite taille. Néanmoins, l’analyse de la complexité et les
résultats numériques ont montré que notre approche est la meilleure (parmi
celles que nous avons vérifiées) pour le problème que nous considérons et, plus
généralement, pour les DTMC comportant une structure en blocs tels que les
blocs diagonaux présentent certaines propriétés structurelles pour les cycles
dirigés. Vous remarquerez que cette propriété n’est pas numérique et qu’elle
ne prend en compte que le graphe de la chaîne. À partir de la résolution de
cette chaîne de Markov, nous calculons la distribution des inter-arrivées des
PDUs et l’utilisons ensuite pour l’analyse du délai d’insertion dans les créneaux
opportunistes ou avec réservation. Une autre contribution importante de cette
étude est de proposer des méthodes mathématiques pour décider des valeurs
des paramètres (notamment les seuils) et des modes d’insertion à choisir, afin
de garantir à la fois efficacité énergétique et délais.

• Au Chapitre 6, nous avons modélisé un centre de données avec un réseau de
Jackson multi-serveurs, afin de représenter les ressources (serveurs physiques,
VM) et les activités des tâches (services et migrations) entre les serveurs.
Nous avons étudié les migrations de tâches entre des serveurs surchargés et
des serveurs délestés, afin d’analyser l’effet sur la consommation d’énergie. En
utilisant une solution à forme produit de la distribution stationnaire, nous
avons obtenu des formules analytiques pour la consommation d’énergie. Nous
sommes ainsi parvenu à calculer une borne supérieure de la puissance de migra-
tion, afin de réduire la consommation énergétique globale. Nous avons égale-
ment déterminé le taux de migration optimal minimisant la consommation
énergétique, dans le cas de deux serveurs. Nous avons, par ailleurs, étendu
l’étude à des centres de données à plus grande échelle, en proposant et en
comparant deux heuristiques qui réduisent considérablement la consommation
d’énergie.

• Au Chapitre 8, nous avons analysé mathématiquement un réseau de paquets
énergétiques (EPN) en utilisant les chaînes de Markov et les équations de
balance. Nous avons proposé et prouvé la solution sous forme produit de la
probabilité stationnaire, à partir de laquelle nous calculons le délai de bout
en bout et les taux de perte de paquets d’énergie. Nous avons également
démontré l’existence d’une solution pour le problème du point fixe comprenant
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toute topologie ouverte et connectée de l’EPN. Afin d’optimiser les délais de
bout en bout, nous avons proposé et comparé un algorithme heuristique et un
algorithme de descente de gradient, pour différentes architectures de réseaux
de capteurs. Les algorithmes établis sont conçus pour optimiser l’affectation
d’un certain nombre de panneaux solaires dans un réseau de capteurs.

• Dans le dernier chapitre, nous avons présenté un nouveau modèle de G-réseaux
avec un nouveau type de clients. Plus spécialement, nous avons représenté un
serveur dont le taux d’utilisation dépend de l’âge. La capacité de service
diminue avec le temps, jusqu’à ce qu’un rajeunissement ait lieu. Nous es-
pérons que ce résultat théorique aidera à développer de nouveaux modèles
de G-réseaux dans le domaine des performances. Avec une distribution plus
complexe dépendant de l’état de destruction, il serait possible d’étendre ce
résultat à un rajeunissement partiel plus général.
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Titre: Évaluation des performances pour des réseaux IT économes en énergie

Mots clés: Consommation énergétique et performances. Réseaux de files d’attente. Chaînes
de Markov. Forme produit pour la distribution stationnaire. Centre de données.

Résumé: L’économie d’énergie dans les
réseaux de télécommunication poursuit un ob-
jectif majeur: réduire la consommation glob-
ale. La part du domaine IT est déjà très
élevée et tend à augmenter. En effet, de nom-
breuses techniques destinée à réduire la consom-
mation dans d’autres industries ou services se
traduisent par davantage de traitements infor-
matiques et de télécommunications (l’approche
”Green by IT”); en bref, par une augmentation
de la consommation dans les domaines IT. Il est
donc important, d’un point de vue économique,
de parvenir à réduire la consommation énergé-
tique par bit transmis ou calculé (l’approche
”Green by IT”, au coeur de nos travaux). Dans
le domaine des réseaux, l’optimisation énergé-
tique repose essentiellement sur une adaptation
de l’architecture et des ressources employées, en
fonction des flux à transporter et de la qualité
de service promise. En conséquence, on cherche
donc à adapter les ressources à la demande, ce
qui se traduira par un dimensionnement dy-
namique et adapté à la charge. Ce procédé
est, par nature, différent d’un dimensionnement
”au pire cas” que l’on utilise généralement. Sur
le plan technologique, il sera nécessaire que
les équipements de réseaux disposent de modes

”sommeil”, ”sommeil profond” ou ”hibernation”
(terminologie variable selon les fournisseurs) ;
tous ces modes sont associés au même con-
cept: mettre en sommeil l’équipement afin de
réduire sa consommation d’énergie. Pour que
le compromis performance/énergie soit perti-
nent, il parait important d’employer des for-
mules de consommation énergétiques obtenues à
partir de l’utilisation des ressources du réseau.
Les méthodes que nous proposons relèvent de
la théorie des réseaux de files d’attente, de
l’analyse des chaînes de Markov (analytique-
ment, en proposant de nouvelles formes produit
, numériquement, en suggérant de nouveaux al-
gorithmes de résolution), et de la théorie de la
comparaison stochastique. Au niveau des ap-
plications, nous avons abordé diverses problé-
matiques: les mécanismes de DVFS avec un
changement de vitesse des processeurs; la migra-
tion de tâche entre serveurs physiques dans un
centre de données (équilibre de charge, consol-
idation); les réseaux optiques avec un remplis-
sage efficace des conteneurs (optiques); la dis-
tribution d’énergie intermittente dans un réseau
de capteurs (et réseau LORA). À cette fin, nous
proposons un nouveau modèle des réseaux à pa-
quets d’énergie (EPNs).
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Abstract: Energy saving in telecommunica-
tion networks is a major objective to reduce
overall consumption. The IT sector already has
a very high contribution to this increase. In-
deed, many techniques to reduce consumption
in other industries or services results in more
IT and telecommunications (the ”Green by IT”
approach) and therefore in an increase of con-
sumption in IT domains. It is therefore impor-
tant from an economical point of view to reduce
the energy consumption per transmitted or cal-
culated bit (the ”Green by IT” concept). In the
networks domain, energy optimization is mainly
based on an adaptation of the architecture and
the resources employed according to the traffic
flows to be transported and the promised qual-
ity of service. We therefore seek to adapt re-
sources to demand, which results in a dynamic
dimensioning adapted to the load. This is by
nature different from the worst-case dimension-
ing commonly used. In terms of technology, this
requires network equipment to have ”sleep”,

”deep sleep” or ”hibernate” modes (terminol-
ogy varies among suppliers); all these modes are
associated with the same concept: putting the
equipment to sleep to reduce its energy con-
sumption. For the performance/energy trade-
off to be relevant, it seems important to use en-
ergy consumption formulas obtained from the
network resource utilization. The approaches
we propose are based on the theory of queuing
networks, Markov chain analysis (analytically
by proposing new product forms and numeri-
cally by suggesting new resolution algorithms)
and the theory of stochastic comparison. At
the application level we have addressed various
issues: DVFS mechanisms with a change of pro-
cessors speed; task migration between physical
servers in a data center (load balancing, consoli-
dation); optical networks with efficient filling of
optical containers; intermittent power distribu-
tion in a sensor network (and LoRa network),
including a new model of Energy Packet Net-
works (EPNs).
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