

Gestion de production sous incertitudes

Mourad Benttaleb

▶ To cite this version:

Mourad Benttaleb. Gestion de production sous incertitudes. Recherche opérationnelle [math.OC]. Université de Technologie de Troyes, 2018. Français. NNT: 2018TROY0028. tel-03215278

HAL Id: tel-03215278 https://theses.hal.science/tel-03215278

Submitted on 3 May 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Thèse de doctorat de l'UTT

Mourad BENTTALEB Gestion de production sous incertitudes

Spécialité:

Optimisation et Sureté des Systèmes

2018TROY0028

Année 2018

THESE

pour l'obtention du grade de

DOCTEUR de l'UNIVERSITE DE TECHNOLOGIE DE TROYES

Spécialité : OPTIMISATION ET SURETE DES SYSTEMES

présentée et soutenue par

Mourad BENTTALEB

le 24 septembre 2018

Gestion de production sous incertitudes

JURY

M. S. DAUZÈRE-PÉRÈS	PROFESSEUR ENSM SAINT-ETIENNE	Président
Mme ML. ESPINOUSE	PROFESSEUR DES UNIVERSITES	Rapporteur
M. F. HNAIEN	MAITRE DE CONFERENCES - HDR	Directeur de thèse
M. B. IUNG	PROFESSEUR DES UNIVERSITES	Examinateur
M. N. REZG	PROFESSEUR DES UNIVERSITES	Rapporteur
M. F. YALAOUI	PROFESSEUR DES UNIVERSITES	Directeur de thèse

α .	1	1 , •		1	
(Zestion	de	production	SULUS	incertifiide	Q
COULDII	uc	production	boub	moduludo	w

Avant-propos

Le travail présenté dans ce mémoire a été effectué dans au laboratoire d'optimisation des systèmes industriels (LOSI) à l'université de technologie de Troyes (UTT).

Je tiens tout d'abord et particulièrement, à remercier mes directeurs de thèse, Farouk Yalaoui et Faicel Haien, pour m'avoir accordé leur confiance et permis d'effectuer cette thèse dans les meilleures conditions. J'exprime ma profonde gratitude pour l'intérêt qu'ils ont porté aux travaux, les conseils éclairés qu'ils m'ont prodigués et leurs encouragements. Mon profond respect pour leur rigueur scientifique et leur disponibilité permanente.

Je ne peux manquer de remercier Madame Marie-Laure Espinouse, Professeur des Universités à l'université Grenoble Alpes et Monsieur Nidhal Rezg, Professeur des Universités à l'Université de Lorraine en leur qualité de rapporteurs de cette thèse. Un grand merci à Monsieur Stéphane Dauzère-Pérès, professeur à l'école des mines de Saint-Étienne et Monsieur Benoit Iung, Professeur des universités à l'université de Lorraine qui ont accepté d'être examinateurs de ma thèse.

J'adresse bien un vif remerciement aux enseignants chercheurs. Particulièrement, je remercie Alice Yalaoui, Yassine Ouazene pour l'expérience d'enseignement que nous avons partagée ensemble.

Enfin, j'adresse un grand salut à tous mes collègues, du LOSI et de l'UTT de manière générale.

Mourad Benttaleb

Gestion de production sous incertitudes					

Résumé

Dans un contexte de production en perpétuelle évolution, l'entreprise est tenue à s'adapter en permanence aux fluctuations des marchés (demandes aléatoires) et aux perturbations internes de ses systèmes (pannes, absentéisme, ...). Face à ces incertitudes, la gestion de production permanente bénéficiant également de la puissance de la technologie informatique est indispensable. L'ordonnancement des ateliers de production est l'un des axes d'optimisation contribuant à l'amélioration de la productivité face aux aléas. Il s'agit dans ce contexte de définir les politiques d'ordonnancement avec la prise en compte de l'indisponibilité des ressources (gestion de la maintenance, de ressources humaines ...). Dans cette thèse, nous nous intéressons plus particulièrement aux problèmes d'ordonnancement d'atelier à chemins multiples (Job shop) à deux machines avec des ressources non disponibles en permanence. Le but de nos travaux est de proposer des méthodes de résolution exactes et approchées pour ce type de problèmes, exploitant autant que possible des propriétés théoriques pour la minimisation du makespan qui revient à maximiser la productivité.

Mots-clés: Recherche opérationnelle, Optimisation combinatoire, Ordonnancement (gestion), Programmation linéaire, Algorithmes d'approximation, Métaheuristiques.

n sous incerti		

Abstract

Production is always in perpetual evolution. Indeed, company needs to adapt its performance to market fluctuations (random demand) and internal perturbations within its systems (breakdowns, absenteeism, etc.). To cope with these uncertainties, permanent production management benefiting from the power of computer technology is fundamental. The scheduling of production is one of optimization's tools contributing to the improvement of productivity under contraints. In this context, the objective is to define scheduling policies, taking into account the unavailability of resources (management of maintenance, human resources, etc.). In this thesis, we are particularly interested in the study of the two-machine job shop scheduling problems with resources not always available. The aim of our work is to propose methods for exact and approximate resolution for this type of problem. These methods exploit as much as possible theoretical properties for the minimization of the total completion time (makespan) which is to maximize the productivity.

Keywords: Operations research, Combinatorial optimization, Production scheduling, Linear Programming, Approximation algorithms, Metaheuristics.

viii	Gestion de production sous incertitudes				
viii					
N 111	viii				

Table des matières

\mathbf{R}	emer	cieme	nts	iii
\mathbf{R}	ésum	ıé		\mathbf{v}
\mathbf{A}	bstra	ıct		vii
Ta	able (des ma	atières	xii
Li	ste d	les figu	ıres	xiv
Li	ste d	les tab	leaux	xvii
1 Généralités sur l'ordonnancement				5
	1.1	Introd	luction	6
	1.2	Ordor	nnancement : Formulation, ateliers, complexité et méthodes de résolution	6
		1.2.1	Formulation d'un problème d'ordonnancement	6
		1.2.2	Notations	9
		1.2.3	Les ateliers	11
		1.2.4	La complexité	13
		1.2.5	Les méthodes de résolution	14
	1.3	Concl	usion	19
2	Pro	blème	s d'ordonnancement avec contraintes de disponibilité : État de	e.

	l'ar	t		21
	2.1	Introd	uction	22
	2.2	Définit	tions	22
	2.3	Problè	emes d'ordonnancement avec contraintes de disponibilité	23
		2.3.1	Problème d'ordonnancement à une seule machine	23
		2.3.2	Problème d'ordonnancement à machines parallèles	30
		2.3.3	Problème d'ordonnancement de type Flow shop	34
		2.3.4	Problème d'ordonnancement de type Job shop	40
		2.3.5	Problème d'ordonnancement de type Open shop	42
	2.4	Conclu	ısion	44
3		-	me d'ordonnancement de type Job shop à deux machines avec s de disponibilité sur une machine	45
	3.1	Introd	uction	47
	3.2	Descri	ption du problème	47
	3.3	Modél	isation mathématique	49
		3.3.1	Formulation 1 : MILP1	49
		3.3.2	Formulation 2 : MILP2	51
	3.4	Propri	étés	52
	3.5	Bornes	s supérieures et inférieures	59
		3.5.1	Bornes supérieures	59
		3.5.2	Bornes inférieures	64
	3.6	Procéd	dure par séparation et évaluation	65
		3.6.1	Initialisation	66
		3.6.2	Branchement et séparation des noeuds	67
		3.6.3	Évaluation des noeuds	67

		3.6.4 Exemple illustratif
	3.7	Résultats expérimentaux
		3.7.1 Description des instances
		3.7.2 Analyse des résultats expérimentaux
	3.8	Conclusion
4		roblème d'ordonnancement de type Job shop à deux machines avec contrainte de disponibilité sur chaque machine
	4.1	Introduction
	4.2	Description du problème
	4.3	Modélisation mathématique : MILP3
	4.4	Propriétés
	4.5	Bornes supérieures et inférieures
		4.5.1 Bornes supérieurs
		4.5.2 Bornes inférieures
	4.6	Procédure par séparation et évaluation
		4.6.1 Le premier schéma de branchement
		4.6.2 Le second schéma de branchement
		4.6.3 Exemple illustratif
	4.7	Modèle de programmation linéaire en nombres entiers mixtes (MILP4) 101
	4.8	Résultats expérimentaux
		4.8.1 Description des paramètres
		4.8.2 Analyse des résultats expérimentaux
	4.9	Conclusion
5		nodes approchées pour le problème d'ordonnancement de type Job à deux machines avec contraintes de disponibilité sur une machine 123

5.1	Introd	luction	125
5.2	Propri	iétés	125
5.3	Heuris	stique Constructive (H_const)	127
5.4	Reche	rche locale itérée (Iterated local search algorithm)	127
	5.4.1	La solution initiale	129
	5.4.2	La recherche locale	129
	5.4.3	La perturbation	129
	5.4.4	Le critère d'acceptation	130
	5.4.5	Le critère d'arrêt	131
5.5	Résult	cats expérimentaux	131
	5.5.1	Génération d'instances	131
	5.5.2	Paramétrage et analyse de sensibilité	131
	5.5.3	Analyse des résultats expérimentaux	136
5.6	Concl	usion	139

Table des figures

3.1	Impact de la période d'indisponibilité à $s_1 = 0$, sur M_1 si $Idle_1^{JK} \neq 0$	53
3.2	Impact de la période d'indisponibilité à $s_1=0,$ sur $M_1,$ si $Idle_1^{JK}=0$	54
3.3	Impact de la période d'indisponibilité à $s_1=0,$ sur M_2	55
3.4	Résolution du problème avec période d'in disponibilité sur chaque machine $s_k=0$	55
3.5	Ordonnancement des tâches l'ordre optimal " S^* " pour $J_2, h_{11} a C_{max}$	56
3.6	Ordonnancent optimal avant la période d'indisponibilité	57
3.7	Ordonnancent optimal après la période d'indisponibilité	57
3.8	Ordonnancement des tâches selon l'ordre optimal " S^* " pour $J_2, h_{12} a C_{max}$	58
3.9	Ordonnancement optimal des tâches après la deuxième période d'indisponibilité	
		58
3.10	Ordonnancement des tâches par l'heuristique H1	60
3.11	Solution obtenue par l'algorithme de Jackson (sans période d'indisponibilité)	69
3.12	Solution trouvée par les heuristiques $H1$ et $H2$	69
3.13	L'arborescence du PSE pour l'exemple présenté	70
3.14	La solution optimale obtenue par la PSE	70
3.15	$\frac{BS-BI}{BI}$ (%) pour chaque instance $(N=15\ ,U\{2,N/4,N/2,3N/4\})$	76
3.16	$\frac{BS-BI}{BI}$ (%) pour chaque instance $(N=20~,U\{2,N/4,N/2,3N/4\})~$	76
4.1	Illustration du contre-exemple	88

4.2	Illustration du cas $J_i = J_{A^{k'}}$	89
4.3	Illustration du cas $J_j = J_{A^k}$	89
4.4	Illustration du cas $J_i = J_{A^k}$	89
4.5	Ordonnancement des tâches selon l'ordre optimal " S^* " pour $J_2, h_{k1} a, d_{t_k, s_{\bar{k}}} C_{max}$	91
4.6	Ordonnancement des tâches selon l'ordre optimal " S^* " avant la période d'indisponibilité sur la machine M_1	91
4.7	Ordonnancement des tâches selon l'ordre optimal " S^* " après la période d'indisponibilité sur la machine M_1	92
4.8	Ordonnancement des tâches par l'heuristique H3	93
4.9	(a) Solution obtenu par l'algorithme de Jackson (sans contraintes de disponibilité), (b) Solution trouvée par les heuristiques $H3$ et $H4$	99
4.10	L'arborescence obtenue par $PSE1$	100
4.11	L'arborescence obtenue par $PSE2$	101
4.12	La solution optimale obtenue	101
5.1	Diagramme des interactions pour Avg	136
5.2	Diagramme des interactions pour $CPU(s)$	136
5.3	Diagramme des interactions pour Dev	137
5.4	Graphe des effets principaux pour Avg	137
5.5	Graphe des effets principaux pour $CPU(s)$	138
5.6	Graphe des effets principaux pour Dev	138

Liste des tableaux

3.1	Notations	48
3.2	Paramètres de l'exemple	69
3.3	Comparaison des modèles MILP1 et MILP2 ($N=\{15,20\},U=2)$	74
3.4	Pour centage des problèmes résolus optimalement par la PSE (%)	74
3.5	Le gap (%) entre la borne supérieure (BS) et la borne inférieure (BI) $(N = \{15, 20\}, U = \{2, N/4, N/2, 3N/4\})$	75
3.6	Comparaison entre PSE and PSE_Agg ($N=\{15,20\},U=2)$	77
3.7	Comparaison entre PSE and PSE_Agg ($N=\{15,20\},U=N/4$)	78
3.8	Comparaison entre PSE and PSE_Agg ($N=\{15,20\},U=N/2$)	79
3.9	Comparaison entre PSE and PSE_Agg ($N=\{15,20\},U=3N/4$)	80
4.1	Temps d'exécution Lee (1999)	88
4.2	Paramètres de l'exemple considéré	99
4.3	Les configurations considérées	104
4.4	Temps d'exécution moyen (en secondes) of PSE1, PSE2 et MILP4 (Instances de Taillard)	107
4.5	Résultats obtenus par MILP3 (instances de Taillard $N=\{15,20,30\},\ P1$, $P2$ et $P3$)	108
4.6	Résultats obtenus par PSE1 (Instances de Taillard $N = \{15, 20, 30\}, P1, P2$ et $P3 \dots \dots$	109

4.7	Résultats obtenus par PSE1 (Instances de Taillard $N = \{15, 20, 30\}, P2, P4$ et $P5 \dots \dots$	110
4.8	Résultats obtenus pa PSE2 (Instances de Taillard $N=\{15,20,30\},\ P1,\ P2$ et $P3$	111
4.9	Résultats obtenus pa PSE1 (Instances de Taillard $N=\{15,20,30\},\ P2,\ P4$ et $P5$	112
4.10	Comparaison des résultats obtenus par PSE1, PSE2 et MILP4 (Instances de Taillard $N=\{15,20,30\},P1)$	113
4.11	Comparaison des résultats obtenus par PSE1, PSE2 et MILP4 (Instances de Taillard $N=\{15,20,30\},P2)$	114
4.12	Comparaison des résultats obtenus par PSE1, PSE2 et MILP4 (Instances de Taillard $N=\{15,20,30\},P3)$	115
4.13	Comparaison des résultats obtenus par PSE1, PSE2 et MILP4 (Instances aléatoires, $P3$)	116
4.14	Comparaison des résultats obtenus par PSE1, PSE2 et PSE_agg (Instances de Taillard $N=\{15,20,30\},P1)$	117
4.15	Comparaison des résultats obtenus par PSE1, PSE2 et PSE_agg (Instances de Taillard $N=\{15,20,30\},P2)$	118
4.16	Comparaison des résultats obtenus par PSE1, PSE2 et PSE_agg (Instances de Taillard $N=\{15,20,30\},P3)$	119
4.17	Comparaison des résultats obtenus par PSE1, PSE2 et PSE_agg (Instances aléatoires , $P3$)	120
5.1	Valeurs des paramètres	133
5.2	Résultats ANOVA pour Avg , Dev et $CPU(s)$, $N=15$	134
5.3	Résultats ANOVA pour Avg , Dev et $CPU(s)$, $N=20$	135
5.4	Résultats ANOVA pour Avg , Dev et $CPU(s)$, $N=30$	135
5.5	Comparaison des différentes méthodes approchées $U=N/4,N=15,20,30)$	140
5.6	Comparaison des différentes méthodes approchées $U=N/2,N=15,20,30)$	141

5.7	Comparaison entre ILS_LT et $PSE_Stop~(U=N/4,N=15,20,30)~\dots~\dots~$	142
5.8	Comparaison entre ILS LT et PSE Ston (II - N/2 N - 15 20 30)	143

Introduction générale

L'entreprise d'aujourd'hui vit dans un environnement caractérisé par un marché de plus en plus concurrentiel et dans le quel le client est de plus en plus averti et exigeant sur la qualité, le coût et le délai. L'entreprise est également obligée de s'adapter en permanence au fluctuation de ses marchés (demandes aléatoires) et aux perturbations internes de ses systèmes (incertitudes, pannes des machines, absentéisme ...). Par ailleurs, le monde actuel est définit par une croissance des nouvelles technologies en perpétuelle évolution. Les décideurs se trouvent donc obligés et motivés d'optimiser en permanence leurs systèmes profitant également de la puissance de la technologie informatique, du progrès scientifique et de l'innovation.

Parmi les axes d'amélioration de la compétitivité des entreprises, nous trouvons l'optimisation des systèmes (industriels, services, chantiers, transport ...). Particulièrement, l'ordonnancement des ateliers de production qui dépend étroitement de l'amélioration des performances de ces systèmes. Il s'agit dans ce contexte de définir la règle d'ordonnancement et d'affectation de tâches aux ressources avec la prise en compte de la disponibilité de ces ressources à travers une politique de gestion de leurs disponibilités (gestion de la maintenance, de ressources humaines ...), dans la perspective de minimiser les coûts et les délais d'exploitation des systèmes de production.

Nos travaux présentés dans cette thèse concernent la résolution du problème d'ordonnancement avec la prise en compte des contraintes de disponibilité des machines. En effet, une majeure partie des travaux dédiés à l'étude des problèmes d'ordonnancement se place dans le contexte où les ressources sont disponibles de façon permanente. En réalité, les différents ressources matérielles et humaines peuvent être indisponibles pour différentes raisons. D'ailleurs, la date de début et la durée d'une indisponibilité peut être imprévisibles dans des cas tels que les pannes machines ou absences non programmée du personnel (non déterministe). Elles sont connues à l'avance ou planifiées dans certains cas notamment les opérations de maintenance préventive ou toute intervention planifiée nécessitant l'arrêt d'une ou plusieurs machines ou lors d'une absence planifiée du personnel telle que les congés.

Nous traitons dans cette thèse le contexte déterministe où l'ordonnancement prends en compte les arrêts des machines planifiés à l'avance pour une meilleurs gestion et exploitation de la disponibilité des machines et aussi une meilleure anticipation et prévention de toute incertitude due aux arrêts imprévisibles pouvant engendrer plus de coûts.

Nous nous intéressons plus particulièrement aux problèmes d'ordonnancement de type Job shop à deux machines avec des ressources non disponibles en permanence. Le but de nos travaux est de proposer des méthodes de résolution pour ce type de problèmes dans la perspective de développer un outil d'aide à la décision visant à maitriser l'incertitude due aux indisponibilités.

Ce type d'atelier existe dans l'industrie et répond éventuellement à un besoin de plusieurs types d'industries. Nous citons à titre d'exemple, l'industrie de fabrication additive (impression 3D) et soustractive impliquant l'utilisation des machines-outils ou d'ateliers d'usinage et de fabrication. Dans ce genre d'industrie, le processus de fabrication pourrait être modélisé comme problème d'ordonnancement de type job shop à deux machines. L'application est également possibles dans le transport, le robotique, la manutention, l'administration et également dans l'ordonnancement des chantiers de travaux publiques et bien d'autres applications.

Dans le chapitre 1, nous situons notre travail dans le cadre de l'ordonnancement des systèmes de production. Nous donnons en premier lieu une vue globale sur l'ordonnancement et sur la complexité des problèmes. Nous présentons ensuite les notations utilisées permettant de caractériser le problème ainsi que le différents types d'ateliers d'ordonnancement. Dans un deuxième temps, nous focalisons notre attention sur la présentation des différentes méthodes d'optimisation exactes et approchées.

Le chapitre 2 présente un état de l'art couvrant les travaux de recherche menés sur les problèmes d'ordonnancement statiques avec contraintes de disponibilité qui considèrent que toutes les données sont connues à l'avance. Nous considérons par ailleurs le contexte déterministe.

Le chapitre 3 est consacré à l'étude de l'ordonnancement de type job shop à deux machines avec contraintes de disponibilité sur une seule machine. En particulier, nous présentons une procédure par séparation et évaluation pour la résolution exacte du problème. Les bornes inférieures et les heuristiques employées sont basées sur des propriétés de dominance que nous avons établies.

Dans le chapitre 4, nous nous intéressons au problème d'ordonnancement de type Job shop à deux machines avec une contrainte de disponibilité sur chaque machine. Des propriétés

d'optimalité et autres traitant les ordonnancements de permutation sont démontrées. Nous proposons ainsi des bornes inférieurs et deux procédures par séparation et évaluation ainsi qu'un modèle mathématique considérant les propriétés démontrées dans ce chapitre.

Le chapitre 5 concerne les méthodes de résolution approchées. Nous développons les heuristiques et une méta-heuristique de recherche locale itérée (Iterated local search) que nous avons construites. Ces approches constituent une alternative aux méthodes exactes pour la résolution du problème d'ordonnancement de type job shop à deux machines avec contraintes de disponibilités sur une machine.

Le rapport se termine par des conclusions ainsi que des perspectives de recherche envisagées.

Chapitre 1

Généralités sur l'ordonnancement

Résumé:

Ce chapitre est consacré à la présentation des notions de base nécessaires à la description du sujet d'étude de cette thèse. Nous introduisons les différents définitions et formulations propres à l'ordonnancement. Également, nous présentons brièvement les types d'ateliers d'ordonnancement et aussi un rappel de la théorie de complexité. Nous finissons le chapitre par une présentation de quelques méthodes de résolution exacte et approchée du problème.

1.1 Introduction

La théorie de l'ordonnancement est une branche de la recherche opérationnelle qui s'intéresse au calcul de dates d'exécution optimales des tâches, après affectation des ressources nécessaires à l'exécution de ces tâches. Un problème d'ordonnancement peut être considéré comme un sous-problème de planification dans lequel il s'agit de décider de l'ordre d'exécution opérationnelle des tâches planifiées.

D'une manière précise, ordonnancer consiste à organiser dans le temps l'exécution des opérations en leur allouant les ressources requises. Il permet de fixer leurs dates de début de réalisation compte tenu des contraintes temporelles et de disponibilité des ressources requises, pour répondre au mieux aux besoins (objectifs, critères).

À la suite de l'étape de planification qui vise à déterminer les différentes opérations à réaliser, les dates correspondantes et les moyens matériels et humains à y affecter. L'ordonnancement se déroule en trois étapes :

- l'affectation qui attribue les ressources nécessaires aux tâches.
- le séquencement qui indique l'ordre de passage des tâches sur les ressources.
- la détermination des date de début et de fin d'exécution des tâches sur les ressources.

1.2 Ordonnancement : Formulation, ateliers, complexité et méthodes de résolution

1.2.1 Formulation d'un problème d'ordonnancement

Un problème d'ordonnancement est composé de façon générale d'un ensemble de tâches soumises à certaines contraintes, et dont l'exécution nécessite des ressources. Résoudre un problème d'ordonnancement, consiste à organiser ces tâches, c'est à dire à déterminer leur dates de démarrage et à leur attribuer des ressources, de telles sorte que les contraintes soient respectées, afin d'optimiser un ou plusieurs critères.

1.2.1.1 Les tâches

Une tâche est un travail (ou job) constitué d'un ensemble d'opérations qui requiert, pour son exécution, un certain nombre d'unités de temps (sa durée) et d'unités de ressources.

Certaines contraintes peuvent associer aux tâches des dates de début au plus tôt r_i ou des dates de fin au plus tard d_i .

On distingue deux types de tâches :

- les tâches préemptives (morcelables) divisibles ou exécutables par morceaux.
- les tâches non-préemptives (indivisibles) exécutables en une seule fois et ne peuvent être interrompues jusqu'à leur fin d'exécution.

1.2.1.2 Les ressources

Une ressource est un moyen technique ou humain permettant la réalisation des tâches et dont la disponibilité est limitée ou non. On distingue deux types de ressources :

- Les ressources renouvelables, qui, après avoir été allouées à une tâche, redeviennent disponibles (machines, personnel, etc).
- Les ressources consommables, qui, après avoir été allouées à une tâche, ne sont plus disponibles pour les tâches restant à exécuter (argent, matières premières, etc).

Qu'elle soit renouvelable ou consommable, la disponibilité d'une ressource peut varier au cours du temps. Par ailleurs, dans le cas des ressources renouvelables, on distingue principalement :

- Les ressources disjonctives qui ne peuvent exécuter qu'une tâche à la fois.
- Les ressources cumulatives qui peuvent être utilisées par plusieurs tâches simultanément mais en nombre limité.

1.2.1.3 Les contraintes

Une contrainte exprime des restrictions sur les valeurs que peuvent prendre les variables liant les tâches aux ressources. Deux types de contraintes peuvent être distinguées : contraintes de ressources et contraintes temporelles.

— Contraintes de ressources : Elles traduisent le fait que les ressources sont disponibles en quantité limitée en l'occurrence, la capacité limitée d'une ressource implique un certain nombre, à ne pas dépasser, de tâches à exécuter sur cette ressource.

Les contraintes relatives aux ressources peuvent être :

- Disjonctives, engendrant une contrainte de réalisation des tâches sur des intervalles de temps pour une même ressource. C'est à dire, une ressource ne peut être utilisée que par une tâche à la fois.
- Cumulatives, impliquant la limitation du nombre de tâches à réaliser en parallèle.
- Contraintes temporelles représentent des restrictions sur les valeurs que peuvent prendre certaines variables temporelles d'ordonnancement.

Ces contraintes peuvent être :

- Contraintes de temps alloué, issues généralement d'impératifs de gestion et relatives aux dates limites des tâches (délais de livraison, disponibilité des approvisionnements) ou à la durée totale d'un projet.
- Contraintes de précédence, une tâche J_i doit précéder la tâche J_j , et plus généralement les contraintes de cohérence technologique, qui décrivent le positionnement relatif de certaines tâches par rapport à d'autres.
- Contraintes de dates au plus tôt, liées à l'indisponibilité de certains facteurs nécessaires pour commencer l'exécution des tâches.

1.2.1.4 Les critères

La résolution de problèmes d'ordonnancement se fait, soit en cherchant à atteindre un optimal par rapport à un ou plusieurs critères, soit en cherchant une solution réalisable vis à vis de contraintes répondant au mieux à ces critère.

L'approche par optimisation cherchera alors, soit à minimiser ou à maximiser un critère correspondant à une amélioration liée au temps, par exemple la minimisation du temps total d'exécution des tâches (min C_{max}) ou encore la minimisation de la somme des durées des retards (min $\sum_{i} T_{i}$). Les critères d'optimisation concernent aussi l'utilisation des ressources ; à titre d'exemple, le nombre de ressources nécessaires pour réaliser un ensemble de tâches, ou leur charge.

Les critères sont classés en critères réguliers et irréguliers. Un critère est régulier, si la valeur à minimiser est une fonction non décroissante des dates de fin des produits. Un critère est non régulier s'il peut augmenter lorsqu'une tâche se termine au plus tôt. En particulier, si une tâche se terminant avant sa date de fin souhaitée implique un coût, alors il n'est pas régulier.

1.2.2 Notations

Nous considérerons les notations suivantes, pour définir les critères les plus utilisés dans un problème d'ordonnancement.

N: nombre de tâches,

m: nombre de machines,

 $J = \{J_1, J_2, ..., J_N\}$: ensemble de tâches à réaliser,

 $M = \{M_1, M_2, ..., M_m\}$: ensemble des machines de l'atelier,

 r_i : date de disponibilité (release date or ready date) de la tâche J_i ,

 d_i : date de fin souhaitée (due date) de J_i ,

 w_i : coefficient de pondération (weight) associé à J_i ,

 C_i : date de fin (completion time) de J_i ,

 $L_i = C_i - d_i$: écart par rapport à la fin souhaitée ou retard algébrique (lateness) de J_i ,

 $E_i = \max(d_i - C_i, 0)$: l'avance (earliness) de la tâche J_i ,

 $T_i = \max(C_i - d_i, 0)$: le retard (tardiness) de la tâche J_i ,

 U_i : indicateur de retard (unit penalty) de la tâche $J_i.\ U_i=1$ si $T_i>0$, $U_i=0$ sinon,

 $O_{ij}: j^{\text{ème}}$ opération de la tâche J_i ,

 t_{ij} : date de début (starting date) de O_{ij} ,

 p_{ij} : durée opératoire (processing time) de O_{ij} ,

 C_{ij} : date de fin (completion date) de O_{ij} ,

Il existe une très grande variété de problèmes d'ordonnancement. Pour leur identification et leur classification nous adoptons la notation proposée par Graham et al. (1979) et par Blazewicz et al. (1983). Cette notation est constituée de trois champs $\alpha |\beta| \gamma$.

Le premier champ α est constitué de deux éléments : $\alpha = \alpha_1 \alpha_2$. Il présente la structure du problème décrit par l'environnement des machines utilisées ou :

— Le paramètre $\alpha_1 \in \{\emptyset, P, Q, R, F, J, O\}$ décrit le type des machines utilisées. Ces paramètres correspondent respectivement aux problèmes d'ordonnancement à une seule machine, à machines parallèles identiques, à machines parallèles uniformes, à machines

- parallèles indépendantes, de type flow shop, de type job shop et de type open shop.
- Le paramètre α_2 indique le nombre de machines utilisées. Lorsqu'il n'est pas précisé, le nombre de machines est quelconque.
- D'autres paramètres peuvent être considérés dans le champ α . Dans un problème d'ordonnancement, h_{rk} représente les k périodes d'indisponibilités sur une machine M_r .

Le deuxième champ β décrit les caractéristiques des tâches et des machines. Il indique si des éléments spécifiques sont à prendre en compte. Nous citons par exemple :

- r_i : chaque tâche J_i possède une date de disponibilité.
- d_i : chaque tâche J_i possède une date échue.
- S_{ij} : le temps de préparation dépendant de la séquence entre les tâches J_i et J_j .
- S_{ri} : le temps de préparation de la machine M_r pour la tâche J_i .
- M_{rk} : la machine M_r possède k périodes d'indisponibilité.
- prmu : l'ordre (ou permutation) selon lequel les tâches passent sur la première machine est maintenu à travers le système. cette machine d'effectuer une autre tâche.
- nwt: no-wait implique que les tâches ne peuvent attendre entre deux machines successives.

Le dernier champ γ indique le critère d'optimisation, il peut être une combinaison de plusieurs critères.

- $C_{max} = \max\{C_i, i = 1, ..., n\}$: date de fin de tous les tâches ou makespan. Il correspond à la date de fin de la dernière opération de l'ordonnancement. Un makespan minimum implique usuellement une haute utilisation des machines (productivité).
- $\sum_i C_i$: somme des dates de fin des opérations. On le réfère aussi comme flow time. Ainsi, la somme pondérée des dates de fin $\sum_i w_i \cdot C_i$ est désignée comme le flow time pondéré. Cela donne une indication sur le coût d'exploitation et d'inventaire induits par l'ordonnancement (minimisation des encours).
- $L_{max} = \max\{L_i, i = 1, ..., n\}$: retard algébrique maximum. Il mesure la pire violation des dates échues.
- $T_{max} = \max\{T_i, i = 1, ..., n\}$: retard maximum.
- $\sum_{i} T_{i}$: somme des retards sur les dates d'achèvement des tâches.

- $-\sum_{i} w_{i} \cdot T_{i}$: somme pondérée des retards.
- $E_{max} = \max\{E_i, i = 1, ..., n\}$: maximum des avances.
- $\sum_i T_i$: nombre de tâches en retard. $\sum_i w_i \cdot T_i$: nombre pondéré des tâches en retard.

1.2.3 Les ateliers

Une classification des problèmes d'ordonnancement dans un atelier peut s'opérer selon le nombre de machines et leur ordre d'utilisation pour fabriquer un produit.

1.2.3.1 Les ateliers à une machine

Le problème d'atelier à une machine consiste à ordonnancer, sur une seule machine, des tâches constituées d'une seule opération. Pour la minimisation du temps d'exécution totale, l'ordonnancement des tâches toutes disponibles à l'instant 0, toute séquence est une solution optimale. En revanche, d'autres critères et la considération de nouvelles contraintes rendent le problème difficile à résoudre.

1.2.3.2 Les ateliers à machines parallèles

Dans ces ateliers, les machines sont regroupées en parallèle. Ces derniers peuvent effectuer la même opération. Ce type d'atelier peut être divisé en trois sous-catégories selon la vitesse d'exécution des machines :

- les ateliers à machines identiques : toute tâche peut s'exécuter sur n'importe quelle machine avec une même durée opératoire,
- les ateliers à machines uniformes : chaque machine possède sa propre vitesse, indépendamment de la durée de la tâche à exécuter,
- les ateliers à machines indépendantes : la vitesse de chaque machine dépend de l'opération à effectuer.

1.2.3.3 Les ateliers de type flow shop

Les ateliers de type flow shop ou à cheminement unique sont les ateliers constitués d'une ligne de production avec plusieurs machines en série. Dans ce type d'ateliers toutes les tâches

sont traitées par les machines dans le même ordre. Dans les ateliers de type flow shop hybride, des machine peuvent exister en plusieurs exemplaires identiques fonctionnant en parallèle.

La résolution du problème d'ordonnancement de type flow shop à deux machines est polynomiale par l'algorithme de Johnson (1954) suivant :

- Diviser l'ensemble des tâches en deux sous-ensembles disjoints, Sub_1 et Sub_2 ; Avec $Sub_1 = \{J_i, p_{i1} \leq p_{i2}\}$ et $Sub_2 = \{J_i, p_{i1} > p_{i2}\}.$
- Ordonnancer les tâches appartenant à Sub_1 dans un ordre croissant des p_{i1} et celles de Sub_2 dans une ordre décroissant des p_{i2} .
- Séquencer les tâches de Sub_1 puis de Sub_2 .

1.2.3.4 Les ateliers de type job shop

Appelés également ateliers à cheminement multiple, ce sont des ateliers où les opérations constituant une tâche sont réalisées selon un ordre déterminé, variant selon le mode opératoire de la tâche à exécuter. Le job shop flexible est une extension du modèle job shop classique; dans lequel une opération peut être traitée sur plusieurs machines alternatives.

La résolution du problème d'ordonnancement de type job shop à deux machines est polynomiale par l'algorithme de Jackson (1956).

L'algorithme commence par une partition des N tâches à ordonnancer sur deux machine (M_1, M_2) en quatre sous-ensembles Set_1 , Set_2 , Set_{12} , Set_{21} . $Set_{kk'}$ est l'ensemble des tâches traitées d'abord sur la machine M_k ensuite sur la machine $M_{k'}$ et Set_k est l'ensemble des tâches traitées uniquement sur la machine M_k avec $k \neq k' \in \{1, 2\}$.

- Séquencer les tâches appartenant à Set_{12} et Set_{21} selon la règle de Johnson. L'ordre des tâches appartenant à Set_1 et Set_2 n'a aucun effet sur la date de fin du traitement sur la machine M_1 et M_2 respectivement, donc tout ordre est accepté.
- Séquencer les sous ensembles des tâches selon l'ordre suivant :
 - On machine M_1 : Séquencer Set_{12} Set_1 Set_{21} .
 - On machine M_2 : Séquencer Set_{21} Set_2 Set_{12} .

1.2.3.5 Les ateliers de type open shop

Ce type d'atelier est moins contraint que celui de type flow shop ou de type job shop. Ainsi, l'ordre des opérations n'est pas fixé a priori; le problème d'ordonnancement consiste, d'une part, à déterminer le cheminement de chaque produit et, d'autre part, à ordonnancer les produits en tenant compte les gammes obtenues, ces deux problèmes pouvant être résolus simultanément.

1.2.4 La complexité

La théorie de la complexité (Cook (1971), Karp (1972), Garey & Johnson (1979)) permet d'analyser les coûts de résolution des problèmes d'optimisation combinatoire, notamment en terme de temps de calcul.

Un problème de décision est un énoncé auquel la réponse peut être uniquement oui ou non. Chaque problème d'optimisation possède un problème de décision correspondant.

Un problème de décision P_1 est dit réductible à un autre problème de décision P_2 (on note P_1 α P_2) s'il existe une fonction polynomiale f qui transforme chaque énoncé de P_1 en un autre énoncé de P_2 de telle manière que la réponse pour P_1 est oui si, et seulement, si la réponse pour P_2 est oui.

Un problème de décision est dit NP s'il existe un algorithme polynomial qui permet de le résoudre. Autrement, la classe des problèmes NP est la classe des problèmes de décision pouvant être résolus par un algorithme polynomial. Parmi la classe des problèmes NP, on distingue d la classe des problèmes polynômiaux (la classe P) et la classe des problèmes NP-Complet.

Un algorithme est dit polynomial (de classe P) si sa complexité temporelle est bornée par un O(p(x)) où p est un polynôme et x est la longueur d'une instance du problème. Un problème de décision est dit polynomial s'il existe un algorithme polynomial qui permet de le résoudre. Il est dit pseudo-polynomial si sa complexité est bornée par un polynôme en fonction de la taille de la plus grande instance du problème.

Un problème NP est dit NP-Complet si tout problème NP est réductible polynomialement en ce problème. De surcroît, un problème Q est NP-Complet s'il est de la classe NP et qu'il existe un problème R connu pour être NP-Complet tel que R α Q.

La classe NP-Complet est aussi la classe des problèmes qui ne sont pas solvables par un algorithme polynomial, sous l'hypothèse P = NP. Cependant, si un problème de NP-Complet est résolu en un temps polynomial, on obtiendrait automatiquement des algorithmes polynômiaux pour tous les problèmes NP-Complet.

Un problème est dit NP-Complet au sens faible s'il est résolu par un algorithme

pseudo-polynomial. Dans le cas contraire, il est dit NP-Complet au sens fort.

Un problème d'optimisation est dit *NP-Difficile* si le problème de décision qui lui correspond est *NP-Complet*. Un problème d'optimisation est effectivement plus difficile que le problème de décision correspondant.

1.2.5 Les méthodes de résolution

Les méthodes de résolution des problèmes d'ordonnancement sont des techniques de l'optimisation combinatoire (programmation mathématique, programmation dynamique, procédure par séparation et évaluation, théorie des graphes ou autres).

Ces méthodes peuvent soit garantir l'optimalité de la solution fournie par des méthodes dites exactes soit par l'utilisation des méthodes approchées (heuristiques, méta-heuristiques), efficaces pour les problèmes d'optimisation *NP-difficiles*.

1.2.5.1 Les méthodes exactes

Généralement, il n'est pas possible de construire un algorithme polynomial résolvant un problème d'optimisation *NP-difficile*. Toutefois, on peut développer des méthodes efficaces pour la résolution. Le but des méthodes exactes est de résoudre, en un temps de calcul le plus court possible, d'une manière optimale le problème à optimiser. Nous citons les méthodes d'optimisation exacte les plus utilisées en ordonnancement.

La programmation linéaire consiste à optimiser un critère ou plusieurs modélisés par une fonction objectif linéaire des variables sous contraintes d'égalité ou d'inégalité elles aussi linéaires. Un modèle de programmation est dit en nombre entiers lorsque les variables de décisions sont entières. Dans le cas où ces dernières sont entières et réelles, le modèle est classé en programmation linéaire mixte en nombre entiers (Mixed integer linear programming). La résolution d'un modèle de programmation linéaire se fait par des solveurs dédiés comme Cplex, Xpress, GAMS, LINGO et autres.

La procédure par séparation et évaluation est utilisée pour résoudre d'une façon exacte des problèmes d'optimisation combinatoire et introduite par Dantzig et al. (1954) pour la résolution de problème de voyageur de commerce. Cette méthode consiste à construire une arborescence dont la racine correspond à l'espace des solutions du problème initial.

Dans le cas d'un problème de minimisation, une borne supérieure (BS) de la valeur de la fonction objectif pour une solution réalisable est avant tout calculé en utilisant une méthode approchée. La méthode se base sur deux étapes conjointes : le branchement ou séparation consiste à diviser un ensemble de solutions en sous-ensembles et l'évaluation qui la solution partiel par les bornes inférieures obtenue du problème.

Le branchement consiste à décomposer un noeud de l'arborescence représentant un ensemble de solutions d'un problème en une partition de sous-ensemble. L'utilisation seule du branchement revient à effectuer une énumération complète de l'espace des solutions. Aussi l'évaluation des noeuds permet d'éliminer les branches qui s'avère qu'elles ne contiennent pas de solutions optimales. Plus précisément, pour chaque noeud une borne inférieure (toujours pour un problème de minimisation) est calculée. Si cette valeur est supérieure ou égale à la solution obtenue par le noeud, ce dernier est éliminée. La borne supérieure est mise à jour à chaque fois qu'une solution réalisable donnant une meilleure valeur pour la fonction objectif est trouvée. Par ailleurs, l'exploration se termine quand tous les noeuds possibles sont visités ou si une solution optimale est trouvée.

Les performances de la méthode dépendent évidemment de la qualité des bornes inférieures et supérieures mais également du schéma d'exploration et de type de branchement. En outre, plusieurs stratégies pour la sélection des sommets à séparer sont utilisées à savoir, l'exploration en profondeur ou en largeur.

La programmation dynamique est basée sur le principe d'optimalité de Bellman (1954): Si C appartient à un chemin minimal (maximal) allant de A à B, alors les sous-chemins de ce chemin allant de A à C et de C à B sont minimaux (maximaux). Ce principe permet de calculer les plus courts (longs) chemins d'un graphe de manière récurrente en connaissant les sous-chemins optimaux des étapes précédentes pour calculer les sous-chemins optimaux de l'étape en cours. Cette technique peut s'étendre à des séquences de tâches dans les problèmes d'ordonnancement. Pour les problèmes NP-difficiles au sens faible, il est souvent possible de construire un algorithme de programmation dynamique pseudo-polynomial, pouvant être utilisé pour des problèmes de dimension raisonnable.

La relaxation lagrangienne est une méthodologie générale qui permet d'obtenir des bornes inférieures de bonne qualité pour certains problèmes d'optimisation combinatoire. L'idée de la technique consiste à supprimer (relaxer) une partie des contraintes (en principe celles qui rendent le problème difficile) en les introduisant dans la fonction objectif sous forme d'une pénalité (combinaison linéaire des contraintes relaxées) si les contraintes relaxées ne sont pas respectées (Fisher (1976)). Les coefficients de cette combinaison sont appelés multiplicateurs de Lagrange, et la nouvelle fonction objectif est appelée le Lagrangien du problème. La résolution du nouveau problème se fait généralement en utilisant la méthode du sous-gradient ou bien la méthode de génération de colonnes.

La génération de colonnes : Dans la pratique, de nombreux problèmes d'optimisation combinatoire sont complexes et de grande taille. Ils possèdent un grand nombre de variables (colonnes). Ceci empêche donc leur résolution par les logiciels, disponibles aujourd'hui, de résolution des programmes linéaires. Pour pouvoir les traiter, la méthode de génération de colonnes est utilisée. L'idée principale consiste à décomposer le modèle (Dantzig & Wolfe (1960)) d'origine en un ou plusieurs sous-problèmes plus faciles à résoudre, l'ensemble étant généralement coordonné par un programme linéaire appelé maître. Le principe de l'algorithme de génération de colonnes consiste à résoudre un problème original (P) avec un sous-ensemble de colonnes (variables) de taille réduite, puis à l'alimenter itérativement avec de nouvelles colonnes susceptibles d'améliorer la solution courante, jusqu'à atteindre l'optimalité.

1.2.5.2 Les méthodes approchées

Même-ci la technologie informatique est en perpétuelle évolution, des problèmes NP-difficile reste couteux en terme de temps de calcul. Par ailleurs, dans plusieurs situations pratiques, la résolution d'un problème d'optimisation combinatoire de taille importante, se heurte à des temps de calcul et des tailles mémoire importants. Compte tenu de ces difficultés, l'optimisation combinatoire s'oriente vers le développement des heuristiques et méta-heuristiques. L'objectif de ces méthodes est d'obtenir une solution proche de l'optimum ou de "bonne qualité" en un temps raisonnable. La performance de telles méthodes est généralement calculée par le rapport entre la valeur de la solution fournie et la valeur de la solution optimale, ceci pour le pire des cas ou dans le cadre d'une moyenne de plusieurs instances. Si la solution optimale est non calculable, il est également possible d'étudier expérimentalement le comportement de la méthode approchée en comparant ses performances soit à celles d'autres méthodes, soit à des bornes inférieures de la solution optimale.

Les méta-heuristiques sont des méthodes de recherche génériques pouvant s'appliquer à des problèmes de nature complètement différentes, dédiées aux problèmes d'optimisation

difficile. Une méta-heuristique est souvent définie comme une procédure exploitant au mieux la structure du problème considéré, dans le but de trouver une solution de qualité raisonnable en un temps de calcul aussi faible que possible.

Elles sont soit basées sur la recherche locale, à titre d'exemple, la recherche tabou, la recherche locale itérée (ILS) ou à base de population telles que les algorithmes génétiques et les algorithmes de colonies de fourmis.

La recherche locale est une procédure de recherche itérative qui, à partir d'une solution initiale, l'améliore progressivement en appliquant une série de modifications (ou mouvements) locales. On définit une structure de voisinage qui consiste à spécifier un voisinage pour chaque solution. En effet, à chaque itération, la recherche obtient une nouvelle solution réalisable légèrement différente de la solution courante qui la remplace si elle est meilleure. La recherche se termine si un optimum local est rencontré. L'inconvénient de cette méthode est que cet optimum local n'est pas toujours de bonne qualité. Pour faire face à cette limitation, des méthodes basées sur recherche locale, plus sophistiquées sont développées afin d'échapper aux minima locaux et améliorer la solution efficacement. Les méthodes les plus connues sont le recuit simulé (Kirkpatrick et al. (1983)), la recherche tabou (Glover (1989), Glover (1990)).

Contrairement aux méthodes de recherche locale qui font intervenir une solution unique, les méthodes à base de population, connues aussi sous l'appellation d'algorithmes évolutionnistes travaillent sur un groupe de solutions admissibles (population) à chacune des étapes du processus de recherche dans le but de guider efficacement la recherche vers de bonnes solutions dans l'espace de recherche. Après avoir généré une population initiale de solutions, une méthode évolutive tente d'améliorer la qualité moyenne de la population courante selon une fonction évaluation dite fitness en ayant recours à des principes d'évolution naturelle; la sélection des meilleurs candidats selon un critère préétabli. Les mutations/croisements seront également réalisés pour générer de nouveaux candidats. Les algorithmes évolutionnistes dont les algorithmes génétiques sont des algorithmes fortement paramétrables : taille de la population, nombre de générations limite, taux de croisement et de mutation, type d'opérateur de sélection, de croisement, de mutation et de remplacement. La méthode la plus connue est l'algorithme génétique (Holland (1975)). Une autre méthode à base de population est l'algorithme de colonies de fourmi introduit initialement par Dorigo & Gambardella (1996) pour la résolution du problème du voyageur de commerce, puis repris pour plusieurs autres domaines d'application.

Les heuristiques sont des méthodes empiriques basées sur des règles simplifiées pour optimiser un ou plusieurs critères. Le principe général de ces méthodes est d'intégrer des stratégies de décision pour construire une solution proche de l'optimum, tout en essayant de l'obtenir en un temps de calcul raisonnable.

Ce sont des méthodes souvent utilisées pour avoir rapidement des solutions admissibles (réalisables) de qualité relativement bonne, bien que, en générale leur performance ne puisse être garantie.

- Heuristiques de construction : Ces heuristiques construisent des solutions selon des critères d'optimisation locaux à partir des données initiales. C'est-à-dire Elle déterminent une solution selon une règle de construction donnée. La spécificité de ce genre d'heuristiques est que le choix effectué à chaque itératinos n'est pas remis en cause. Également, un bon choix améliorant une solution partielle ne conduit pas nécessairement à une amélioration au niveau global. Une des méthodes constructives développée pour la recherche d'une séquence de durée minimale sur un atelier de type flow shop à plusieurs machines est l'algorithme NEH (Nawaz et al. (1983)).
- Les règles de priorité : Une méthode basée sur une règle de priorité permet d'obtenir de bons ordonnancements en un temps raisonnable. Nous citons entre autres,
 - La règle(SPT) (Shortest Processing Time) : Séquencer les opérations par ordre croissant des p_i .
 - La règle (WSPT) (Weighted Shortest Processing Time) : Séquencer les opérations par ordre croissant du ratio $\frac{p_i}{w_i}$.
 - La règle (LPT) (Longest Processing Time) : Séquencer les opérations par ordre décroissant des p_i .
 - La règle (EDD) (Earliest Due Date) : Séquencer les opérations par ordre croissant des d_i .

Deux critères caractérisent une heuristique ou un algorithme d'approximation : le temps d'exécution (en temps polynomial), la qualité de la solution obtenue par rapport à la solution optimale. En d'autres termes, même pour la pire instance, une solution de qualité est une solution proche de l'optimum. D'autre part, un algorithme a une garantie de performance s'il peut garantir a priori, indépendamment de la difficulté de l'instance d'entrée, que la solution est de bonne qualité par rapport à l'optimum.

Soit H un algorithme d'approximation pour un problème (nous prenons le cas de minimisation) P, une instance I du problème P. Soit la valeur objective de la solution

générée par l'algorithme d'approximation H est H(I) et la valeur optimale est OPT(I). Pour définir le ratio au pire cas de H en supposant que OPT(I) > 0, nous définissons le ratio mesurant la qualité de la solution approximative de l'instance $I: R(I) = \frac{H(I)}{OPT(I)}$.

On dit que l'algorithme H a une garantie de performance α si pour toute instance I, $R(I) \leq \alpha$. c'est-à-dire que pour toute instance I de P la valeur objective calculée par H est au plus α fois la valeur objective optimale $(H(I) \leq \alpha \cdot OPT(I))$. Autrement, H est appelé $\alpha - approximation$ s'il a une garantie de performance de α dans un temps polynomial, pour toute instance I de P.

Étant donné un algorithme H, on cherche à trouver le α le plus petit qui satisfait cette condition. Ceci donne lieu à la définition du ration au pire cas (RPC) pour l'algorithme H;

$$RPC = \inf\{\alpha \ge 1 | H(I) \le \alpha \cdot OPT(I) \quad \forall I \in P\}.$$

Autrement;

$$RPC = \sup_{I \in P} \frac{H(I)}{OPT(I)}.$$

L'erreur relative ϵ de H pour une instance I du problème P (toujours de minimisation) est définit comme $\epsilon = \frac{H(I) - OPT(I)}{OPT(I)}$

L'erreur au pire cas (EPC) de H est donnée par :

$$EPC = \sup_{I \in P} \frac{H(I) - OPT(I)}{OPT(I)}.$$

1.3 Conclusion

Nous avons présenté dans ce chapitre quelques notions globales concernant les problèmes d'ordonnancement d'ateliers de production. Nous présentons ensuite les notations utilisées permettant de caractériser un problème d'ordonnancement ainsi que le différents types d'ateliers d'ordonnancement. Nous avons également rappelé les principes de la théorie de complexité. Finalement, une brève description des méthodes de résolution exactes et approchées les plus utilisées dans la littérature est présentée.

Le prochain chapitre focalise en particulier sur les problèmes d'ordonnancement avec

contraintes de disponibilité. Nous organisons l'état de l'art selon le type d'atelier et également une classification est faite selon le comportement de la période d'indisponibilité par rapport à l'exécution des tâches.

Chapitre 2

Problèmes d'ordonnancement avec contraintes de disponibilité : État de l'art

Résumé:

Nous dressons dans ce chapitre un étude bibliographique, portant sur les différents travaux dédiés au problème d'ordonnancement avec contraintes de disponibilité dans le contexte déterministe. Des références bibliographiques sont introduites pour décrire la problématique et les classifications et variantes proposées dans la littérature. Nous classifions les travaux selon le type d'atelier d'ordonnancent et également selon le type de contrainte de disponibilité.

2.1 Introduction

Le problème d'ordonnancement classique suppose que les machines sont disponibles pendant l'horizon de planification. Cette hypothèse peut être justifiée dans certaines situations, mais elle ne s'applique pas si des exigences de maintenance, des pannes de machines ou d'autres contraintes de disponibilité sont éventuellement prises en compte pendant des périodes de temps.

Ainsi, deux types de contraintes d'indisponibilité sont possibles. L'une concerne les indisponibilités de ressources aussi bien matérielles qu'humaines, planifiées ou connues à l'avance (contraintes déterministes), pour diverses raisons, à titre d'exemple, des activité de maintenance préventive, de nettoyage ou également absentéisme de personnel. Dans ce cas, les dates et les durées des périodes d'indisponibilité sont connues à l'avance. La machine peut être indisponible pour d'autres raisons imprévisibles telles que une panne de machine, une rupture de stock et bien d'autres raisons (contraintes non-déterministe).

Ce chapitre est consacré à la présentation des principaux résultats de la littérature sur les problèmes d'ordonnancement prenant en compte les contraintes de disponibilité des machines dans le cas déterministe.

2.2 Définitions

Le problème d'ordonnancement du job shop avec les contraintes de disponibilité a été étudié dans différents cas :

Lee (1999) a introduit trois types d'indisponibilité. Une opération Sécable est lorsque son traitement peut être interrompu par une période d'indisponibilité et reprise lorsque la machine est de nouveau disponible. Une opération Non-sécable définit le cas où son traitement doit être repris complètement depuis le début, après l'interruption par la période d'indisponibilité. Enfin, le cas d'une opération semi-sécable ne se terminant pas avant la période d'indisponibilité d'une machine, elle devrait être reprise partiellement aussitôt que la machine qui l'exécute est de nouveau disponible.

Aggoune (2002) définit le problème d'ordonnancement avec contraintes de disponibilité comme étant strictement non-preemptif. Dans ce cas, le traitement d'une opération ne peut être interrompu ni par une autre opération ni par une période d'indisponibilité. Ce cas est différent du cas Non-sécable du fait que lorsque l'opération ne peut être effectuée avant la

période d'indisponibilité, elle doit commencer et se terminer après.

Une autre classification est proposée par Mauguière et al. (2005). Une période d'indisponibilité qui permet d'interrompre une opération et de la reprendre après une période donnée est appelée période franchissable (crossable). Une période d'indisponibilité qui empêche l'interruption de toute opération, même si les opérations sont sécables, est appelée période non-franchissable (non-crossable).

Ma et al. (2010) ont déclaré qu'il existe deux cas d'ordonnancements préemptifs. Le premier cas est lorsqu'une opération interrompue est reprise par une seule machine. Ce cas est connu sous le nom de préemption d'opération. Le deuxième cas est quand l'opération interromue est déplacée vers une autre machine ou reprise plus tard, ceci est connu comme préemption arbitraire. S'il n'y a qu'une seule machine dédiée à chaque opération, les préemptions d'opération et les préemptions arbitraires deviennent équivalentes. donc, pour les problèmes d'ordonnancement à une machine, flow shop et job shop, cette différence n'est pas requise.

Une autre classification est basée sur les données existant. On distingues donc deux types de problèmes; Si des informations complètes sur les données de la tâche avant le commencement de l'ordonnancement sont connues à l'avance, le problème est dit statique (Off-Line). Un problème d'ordonnancement dynamique (On-Line) nécessite l'ordonnancement des tâches en temps réel sans aucune connaissance des données dans le futur.

Nous dresserons un bref état de l'art sur le problème d'ordonnancement avec contraintes de disponibilité et classerons les articles cités selon les cas mentionnés ci-dessus.

2.3 Problèmes d'ordonnancement avec contraintes de disponibilité

2.3.1 Problème d'ordonnancement à une seule machine

2.3.1.1 Cas non-préemptif

Souissi (2005) a étudié le problème $1||\sum w_i C_i|$ avec des périodes d'indisponibilités non-préemptives. Des bornes inférieures et des propriétés mathématiques du problème ont été démontrées. Une modélisation linéaire en nombres entiers, une procédure par séparation

et évaluation et une méthode de programmation dynamique ont également été proposées. Les tests ont montré que la méthode de programmation dynamique est plus efficace que la procédure par séparation et évaluation qui reste meilleure que le programme linéaire en nombres entiers.

Sadfi et al. (2005) ont proposé un algorithme d'approximation, avec une erreur au pire cas de $\frac{3}{17}$, pour résoudre le problème $1||C_{max}$ avec une seule période de maintenance.

Kacem et al. (2008) ont étudié le même problème que Souissi (2005) avec une période d'indisponibilité. Les auteurs ont conçu trois méthodes exactes pour résoudre ce problème : une procédure par séparation et évaluation basée sur des propriétés et bornes inférieures, un modèle de programmation linéaire mixte et une méthode de programmation dynamique. Ces approches résolvent des problèmes de 3000 tâches dans un temps de calcul raisonnable. Les résultats numériques ont montré, en outre, la complémentarité de la méthode de programmation dynamique et de la procédure par séparation et évaluation.

Pour le même problème, Kacem & Chu (2008a) ont proposé une autre procédure par séparation et évaluation, basée sur un ensemble des bornes inférieures et d'heuristiques améliorées. Des tests effectués ont démontré que l'algorithme capable de résoudre des instances de 6000 tâches dans un temps de calcul raisonnable.

Lee & Kim (2012) s'intéressent au problème d'ordonnancement d'une seule machine nécessitant une maintenance périodique avec objectif de minimiser le nombre de tâches en retard. Ils ont présenté une heuristique en deux phases; une solution initiale est obtenue d'abord par une modification de l'algorithme de Moore (Moore (1968)) pour le problème sans maintenance, puis améliorée dans une seconde phase.

Vahedi-Nouri et al. (2013) ont considéré le problème avec l'effet d'apprentissage et plusieurs contraintes de disponibilité minimisant le temps total d'exécution. Une modélisation mathématique et une procédure par séparation et évaluation ont été proposées. En plus de résoudre le problème de manière optimale, comme le problème est *NP-difficile* au sens fort, deux méta-heuristiques basés sur l'algorithme génétique et le recuit simulé ont été développés afin obtenir des solutions de bonne qualité pour les problèmes de grande taille.

Benmansour et al. (2014) ont traité le problème d'ordonnancement d'un ensemble de tâches sur une machine en fonction d'une date d'échéance commune et restrictive. En particulier, ils s'intéressent au problème de la minimisation de la somme pondérée de l'avance et du retard maximal. Ce type de fonction objectif est lié à l'optimisation juste-à-temps où les pénalités, telles que les coûts de stockage et les frais supplémentaires pour les retards de livraison, doivent être évitées. Ils présentent un modèle linéaire en nombres entiers mixtes

pour résoudre le problème à l'optimalité. Bien que ce dernier problème puisse être résolu à l'optimalité pour les petites instances, les auteurs ont montré que le problème se réduit au problème de sac à dos unidimensionnel.

Yin et al. (2016) ont considéré le problème d'ordonnancement de plusieurs tâches indépendantes et simultanément disponibles sur une seule machine ayant une activité de maintenance fixe. L'objectif est de trouver la séquence de la tâche optimale pour minimiser le montant total des tâches en retard. Ils ont développé deux algorithmes de programmation dynamique pseudo-polynomiaux et un schéma d'approximation polynomial pour le problème.

Low et al. (2016) ont abordé le problème dans le but de minimiser le total du retard et d'avance. Deux méthodes exactes ont été proposées pour résoudre le problème : un modèle linéaire en nombres entiers mixtes et une méthode basée sur la programmation dynamique. Les expériences numériques ont montré que la méthode de programmation dynamique est bien meilleure que la programmation linéaire en nombres entiers mixtes et que son avantage augmente avec l'augmentation de la taille des problèmes.

Wan & Yuan (2018) ont étudié l'ordonnancent non-préemptif sur une seule machine avec une période d'indisponibilité de l'opérateur afin de minimiser le temps total d'achèvement pondéré. Les auteurs ont présenté un algorithme de temps pseudo-polynomial et un schéma d'approximation de temps entièrement polynomiale (FPTAS). Shabtay & Zofi (2018) ont étudié le même problème avec les temps de traitement des tâches contrôlables et une période d'indisponibilité de machine fixe pour la minimisation du makespan. Une autre hypothèse concerne le temps de traitement de la tâche qui est une fonction décroissante convexe de la quantité de ressource allouée à son opération de traitement. Ils ont supposé en outre qu'il y avait une restriction budgétaire sur le coût total d'allocation des ressources. Ils ont prouvé que le problème est NP-difficile et ont développé un algorithme d'approximation à facteur constant et un schéma d'approximation de temps entièrement polynomial (FPTAS) pour le résoudre. Le FPTAS est obtenu en dépit du fait qu'ils ne pouvaient pas concevoir un algorithme en temps pseudo-polynomial pour trouver la solution optimale.

2.3.1.2 Cas sécable

Lee (1996) a étudié le problème d'une seule machine pour différents critères et identifié certains problèmes polynomiaux. En particulier, il a montré que le makespan (C_{max}) pour un problème d'une seule machine avec une période de disponibilité sécable $1|rs|C_{max}$, minimisé par toute séquence arbitraire est optimal. De plus, l'auteur a montré que le séquencement des opérations sous la règle SPT permettent de résoudre de manière optimale le problème

 $1|rs|\sum C_i$. De même, les $1|rs|L_{max}$ est résolu à l'optimal par l'algorithme EDD (Earliest Due Date), où les tâches sont séquencées dans l'ordre décroissant de leurs dates d'échéance. Le problème $1|rs|\sum U_i$ est aussi résolu de façon optimale dans un temps O(nlogn)par une modification de la règle de Moore-Hodgson avec n le nombre de tâches considérées.

Le problème $1||\sum w_i C_i$ (sans contraintes de disponibilité des machines) résolu par la règle (WSPT), devient NP-difficile au sens faible même si $w_i = p_i$ pour tout i = 1, ..., n, quand des contraintes de disponibilité sont introduites. En outre, Lee (1996) a fourni un algorithme de programmation dynamique, et plusieurs heuristiques avec l'analyse au pire cas pour résoudre le problème d'une manière approchée.

Kacem & Chu (2008b) ont étudié les $1|rs| \sum w_i C_i$ avec une période d'indisponibilité sur la machine. De nouvelles propriétés concernant la performance au pire cas de l'heuristique WSPT et une approximation plus serrée (tight) de l'erreur au pire cas ont été proposées. La borne au pire cas est égale à 2 dans certaines conditions. Les résultats obtenus complètent ceux de Lee (1996).

Kacem et al. (2015) ont prouvé que le problème de maximisation du nombre pondéré de des tâches en avance sur une seule machine avec des contraintes de non-disponibilité ne peut pas admettre un FPTAS même si toutes les dates d'échéance sont égales et qu'une seule période de non-disponibilité est considérée. Néanmoins, ils ont montré dans ce cas que le problème admet un PTAS pour un nombre constant de périodes d'indisponibilité avec dates d'échéance arbitraires.

Luo et al. (2015) ont étudié le problème d'ordonnancement de l'activité de maintenance variable et de tâches sur une machine unique, où l'activité de maintenance doit débuter avant un délai donné, et sa durée est une fonction positive et non décroissante de sa date de départ. C'est à dire, plus tard l'activité de maintenance commence, plus sa durée est longue. Ils ont montré que les problèmes pour minimiser le makespan, la somme des temps d'achèvement, le retard maximum, et le nombre de tâches tardives sont tous solvables en temps polynomial.

Cui & Lu (2017) ont abordé le problème avec des périodes de maintenance préventive périodiques flexibles, où les dates de disponibilité des tâches sont également prises en compte. Il ont prouvé que le problème peut être résolu en temps polynomial avec la règle "Earliest Release Date".

2.3.1.3 Cas non-sécable

Adiri et al. (1989) ont traité le problème de machine unique avec une contrainte de

disponibilité non-sécable dans laquelle la machine est sujette à des pannes, avec objectif de minimiser le temps séjour en espérance mathématique. Les contextes déterministe et stochastique sur l'indisponibilité ont été considérés. Dans le cas déterministe, ils ont prouvé que le problème est NP-difficile au sens faible. Si la fonction de répartition sur le temps est concave, alors la méthode SPT minimise asymptotiquement le temps de séjour en espérance mathématique. Dans le cas de pannes multiples, la méthode SPT minimise le critère lorsque les dates de panne sont exponentiellement distribuées.

Lee (1996) a montré que le problème $1|nrs|C_{max}$ est NP-difficile au sens faible quand une période d'indisponibilité est considérée. L'auteur a démontré que l'algorithme LPT a une erreur relative serrée égale à 1/3. L'auteur a déjà montré que l'algorithme SPT a une erreur relative au pire cas 2/7 qui est serrée (Lee & Liman (1992)).

Lee (1996) a montré aussi que $1|nrs|L_{max}$, $1|nrs|\sum U_i$ et $1|nrs|\sum_i w_iC_i$ sont NP-difficile au sens faible. Le premier problème est résolu par un algorithme EDD avec une erreur relative égale à p_{max} (temps de traitement de la plus longue tâche). Le second problème est résolu par la règle de Moore - Hodgson avec une erreur relative égale à 1. Pour le troisième problème, l'auteur a montré que le ratio de performance de l'algorithme WSPT peut être arbitrairement élevé, même si $w_i = p_i$ pour tout i = 1, ..., n.

Sadfi (2002) s'est intéressé au même problème que Lee & Liman (1992). Il a développé l'heuristique MSPT (SPT modifiée) avec une garantie de performance de $\frac{19}{17}$. La règle MSPT consiste à améliorer le résultat donné par SPT en inversant une tâche ordonnée avant la période d'indisponibilité avec une autre tâche séquencée après. L'auteur a également développé un algorithme de programmation dynamique de complexité pseudo-polynomiale conduisant à la solution optimale du problème.

Wang & Cheng (2007a) ont fourni un algorithme polynomial pour minimiser l'heure d'arrivée du dernier lot de livraison au centre de distribution en production par lots sur une seule machine. Ils ont d'abord montré que le problème est *NP-difficile*. Puis une heuristique avec une erreur au pire cas de 1/2 est proposée et ils ont montré qu'elle est serrée.

Gawiejnowicz (2007) a développé un algorithme pour minimiser C_{max} résolvant le problème d'une seule machine avec n tâches détériorées et k périodes d'indisponibilité ($1 \le k < n$). L'auteur a prouvé que le problème est NP-difficile s'il n'y a qu'une seule période d'indisponibilité; sinon, il est NP-difficile au sens fort.

Chen (2007) a considéré un problème d'ordonnancement de maintenance périodique sur une machine dans une entreprise textile. L'auteur a développé une heuristique quasi-optimale

et une procédure par séparation et évaluation pour minimiser T_{max} . Chen (2009) a étudié le même problème d'ordonnancement qui minimise le nombre de tâches en retard. Une heuristique basée sur l'algorithme de Moore a été développée pour fournir un ordonnancement approché quasi-optimal. La performance de l'heuristique a été évaluée en comparant sa solution avec la solution optimale obtenue par la procédure par séparation et évaluation. Des propriétés associés au problème ont été implémentés dans l'algorithme.

Yang et al. (2011) ont étudié le problème d'ordonnancent à une machine avec une période d'indisponibilité dédiée à la maintenance pour objectif de minimiser la somme des dates de fin. Des propriétés d'optimalité ont été démontrées. Ils ont montré que l'algorithme (SPT) proposé est optimal dans le cas non-sécable, sous certaines conditions.

Kacem & Paschos (2013) ont traité la minimisation de la somme pondérée des dates de fin sur une seule machine avec un intervalle de d'indisponibilité fixe. L'analyse montre que la règle de temps de traitement pondéré le plus court (WSPT) ne peut pas offrir une approximation différentielle pour le problème considéré dans le cas général. Néanmoins, une légère modification de cette règle fournit une approximation avec un ratio différentiel de $\frac{3-\sqrt{5}}{2}$.

Le problème d'ordonnancement d'une seule machine avec un intervalle de non-disponibilité imprévisible, minimisant le retard maximal est traité par Kacem et al. (2014). Deux modèles possibles ont été proposés. Dans les deux cas, l'heure de début et la durée de l'intervalle de non-disponibilité sont inconnues. Ils ont montré que la règle de Jackson peut donner une 2-approximation serrée pour les deux modèles.

Kacem et al. (2015) ont considéré la maximisation du nombre pondéré de jobs en avance sur une machine avec des contraintes d'indisponibilité. Ils ont démontré que le problème ne peut pas admettre un FPTAS même lorsque toutes les dates d'échéance sont égales avec une seule période d'indisponibilité. Néanmoins, ils ont montré dans ce cas qu'il admet un schéma d'approximation temporelle polynomiale (PTAS) pour un nombre constant de période d'indisponibilité et de dates d'échéance arbitraires.

Hfaiedh et al. (2015) ont proposé un algorithme exact pour résoudre le problème de planification d'une seule machine sous une contrainte d'indisponibilité avec des dates de latence et de disponibilité pour la minimisation du délai de livraison maximum. Le problème étant NP-difficile au sens fort, une procédure par séparation et évaluation a été proposée utilisant l'algorithme de Jackson préemptif avec des contraintes de précédence pour calculer la borne inférieure.

Liu et al. (2016) ont étudié le même problème avec des périodes de maintenance périodique pour la minimisation du nombre de tâche en retard. Le problème a été démontré NP-difficile et une procédure par séparation et évaluation employant des bornes inférieures développées et plusieurs propriétés de dominance.

Zhao & Hsu (2017) ont exploré les problèmes d'ordonnancement avec des tâches en détérioration et des contraintes fixes de disponibilité de la machine. Il a été supposé que les tâches ont des temps de traitement différents avec le même taux de détérioration. L'objectif est de minimiser le temps total d'achèvement. Ils ont présenté un algorithme de programmation dynamique pseudo-polynomial et un schéma d'approximation entièrement polynomiale.

Cui & Lu (2017) ont abordé le problème avec des maintenances préventives périodiques (PM) flexibles, où les dates de disponibilité des tâches sont également prises en compte. Pour le cas non-sécable, les auteurs ont prouvé qu'il est *NP-difficile* au sens fort. Un modèle mathématique de programmation linéaire en nombres entiers mixtes (mixed integer programming) a été fourni. Ensuite, une heuristique *ERD-LPT* a été proposée. Une procédure par séparation et évaluation utilisant des règles de dominance ont été également opposée pour la résolution optimale des problèmes de petite à moyenne taille.

2.3.1.4 Cas sécable/non-sécable

Pour résoudre le problème $1, cr|rs/nrs| maxC_i + q_i$, Mauguière et al. (2003b) ont proposé une procédure par séparation et évaluation. La plupart des instances allant jusqu'à 100 opérations ont été résolues, bien que certaines instances de plus petites tailles sont non résolues.

Mauguière et al. (2003a) ont aussi développé une procédure par séparation et évaluation pour résoudre le problème $1, cr/ncr|r_i, rs/nrs, d_i|\max(C_i+q_i)$. Une autre méthode de résolution a été proposée par Mauguière et al. (2005). Le problème $1|pmtn, r_i, d_i, q_i|\max(C_i+l_i)$ NP-difficile au sens fort a été résolu par un algorithme d'approximation. Comme les problèmes avec rs, cr/nc|rs, nrs, cr|rs/nrs et pmtn sont des cas particuliers du problème avec cr/nc|rs/nrs, le $1, cr/ncr|r_i, rs/nrs$, $d_i|\max(C_i+q_i)$ sont

aussi NP-difficile et résolus approximativement dans un temps raisonnable.

2.3.1.5 Cas semi-sécable

Detienne (2012) a étudié le problème de la minimisation du nombre pondéré de tâches en retard sur une machine soumise à des contraintes de disponibilité. L'auteur a considéré le cas des tâches semi-sécables et a montré que le problème est équivalent à un problème similaire sans contraintes de disponibilité, où les temps de traitement des tâches sont en fonction de leurs dates de début. Un modèle de programmation linéaire mixte est proposé pour la résolution optimale du problème.

2.3.2 Problème d'ordonnancement à machines parallèles

2.3.2.1 Cas non-préemptif

Xu et al. (2008) ont considéré un problème d'ordonnancement de deux machines parallèles où une machine est périodiquement indisponible avec l'objectif de minimiser le makespan. Il a été montré que le ratio au pire cas de la règle LPT classique et de l'algorithme de liste sont de 3/2 et 2 respectivement, pour la version hors ligne et en ligne du problème.

Mellouli et al. (2009) ont considéré le problème $P||\sum C_i$ avec une période de maintenance planifiée sur chaque machine. Trois méthodes exactes (méthode de programmation linéaire en nombres entiers mixtes, une méthode de la programmation dynamique et procédure par séparation et évaluation) et des heuristiques constructives ont été proposées. Les auteurs ont fournit en outre des propriétés de dominance, une borne inférieure et deux schémas de branchement pour la procédure par séparation et évaluation.

Tan et~al.~(2011) ont traité le même problème avec des périodes indisponibles sur chacune des k premières machines, où 1 <= k <= 6. Les auteurs ont montré que l'algorithme classique SPT a un ratio au pire cas égal à $1 + \frac{m-1}{m-k}$ quand k < m. De plus, ils ont prouvé que s'il y a exactement une période indisponible sur chacune des k premières machines, et que les périodes indisponibles ne se chevauchent pas, le pire cas de SPT est au plus de ratio $2 + \frac{k-1}{m-1}$ et aucun algorithme d'approximation de temps polynomial avec un ratio au pire des cas inférieur à $\frac{m}{m-1}$ ne peut exister quand k=m sauf si P=NP.

Dans le cas de deux machines parallèles, Xu & Yang (2013) ont proposé un modèle de programmation mathématique où une machine est indisponible dans un intervalle de temps pour la minimisation du makespan. Les analyses de performance de l'algorithme (LPT) et de l'ordonnancement de liste (LS) sont présentées. Les résultats numériques montrent que l'algorithme LPT est plus efficace que l'algorithme LS et que l'erreur moyenne de

l'algorithme LPT est inférieure à 2% lorsque le nombre d'emplois est supérieur à vingt.

Wang et al. (2014) ont montré que le problème de la minimisation du temps total d'achèvement avec la détérioration des activités de maintenance sur des machines parallèles indépendantes pourrait être résolu de façon optimale par un algorithme de complexité O(nm+3). L'application d'une méthode d'analyse similaire au problème de minimisation de la charge totale permet également d'obtenir les mêmes résultats.

Wang & Cheng (2015) ont développé une heuristique en intégrant la stratégies d'ajustement vers l'arrière et la stratégie two-step look-ahead dans certaines heuristiques existantes pour des problèmes similaires sans la contrainte de disponibilité de la machine. Ils ont montré que l'heuristique proposée a un ratio au pire cas 4/3 et que la borne est serrée.

Dans Costa et al. (2016), le problème d'ordonnancement de machines parallèles identiques avec des changements d'outils périodiques dus à l'usure est traité pour minimiser le temps d'achèvement total. Un modèle de programmation linéaire en nombres entiers mixtes (MILP) a été développé pour la résolution optimale pour les cas de test de petite taille (le problème est *NP-difficile* au sens fort). En outre, une méta-heuristique hybride basée sur des algorithmes génétiques a été spécifiquement conçue pour résoudre les instances de tailles importantes.

2.3.2.2 Cas sécable

Schmidt (1984) a étudié le problème $P_m|prmp, rs|C_{max}$. L'auteur a proposé un algorithme de complexité O(n + mlog(n)) pour un ordonnancement sécable réalisable dans le cas où toutes les machines sont disponibles pendant un nombre arbitraire de périodes. Dans Schmidt (1988), les dates de disponibilité et de fin souhaitée sont prises en compte. Il a été prouvé que le problème est solvable en O(nlog(nm)) étapes. Quand aucune date de disponibilité n'est imposée, la minimisation du plus grand délai peut être obtenue dans un temps proportionnel à O(nmlog(n)).

Lee (1991) s'est intéressé à la minimisation du makespan dans le problème des machines parallèles identiques lorsque ces machines ne sont pas toutes disponibles à l'instant zéro. L'auteur a proposé une heuristique basée sur la règle LPT avec une erreur relative de 1/2, puis une amélioration de cet algorithme avec une erreur égale à 1/3.

Lee (1996) a déclaré que le problème $P_m|rs|C_{max}$ est une extension du problème NP-difficile $P_m||C_{max}$. Deux méthodes d'approximation basées sur la règle LPT ont été développées. L'auteur a également développé un algorithme de programmation dynamique

pour résoudre de façon optimale le problème $P_2|rs|\sum_i w_i C_i$ considéré par Kaspi & Montreuil (1988). Selon ces derniers, l'ordonnancement des tâches avec la règle SPT constituent un ordre optimal pour ce problème si les indisponibilités commencent à l'instant 0.

Lin et al. (1998) ont étudié la maximisation de la plus petite date fin des tâches dans un environnement de m machines parallèles indisponibles à l'instant zéro. Les auteurs ont montré que la règle LPT a une erreur au pire cas égale à $\frac{2m-1}{3m-2}$.

Sheen & Liao (2007) ont envisagé de minimiser le retard maximal pour le problème d'ordonnancement de n tâches sur m machines parallèles identiques sous contraintes de disponibilité de machine et d'éligibilité. Il a été prouvé que la complexité de l'algorithme est $O((n + (2n + 2K))^3 log(UB - LB))$, où K est le nombre total de périodes de disponibilité sur toutes les machines, et des bornes inférieures et supérieures ont été fournies pour la résolution optimale du problème.

Wang & Cheng (2007a) ont proposé une heuristique pour minimiser la date d'arrivée du dernier lot de livraison au centre de distribution, pour le problème de production par lots sur deux machines parallèles, dans le cas où un seule machine subit une période d'indisponibilité. Cette heuristique a une erreur au pire des cas de 2/3.

Le problème de la minimisation de makespan pour l'ordonnancement des machines parallèles avec plusieurs périodes d'indisponibilité planifiées est considéré dans Hashemian et al. (2014). Le problème est d'abord formulé en tant que modèle de programmation linéaire en nombres entiers mixtes et résolu de façon optimale pour des problèmes de taille petite à modérément grande avec des contraintes de disponibilité multiples sur toutes les machines.

Liu & Lu (2016) ont étudié le problème d'ordonnancement qui considère à la fois la production et la livraison avec contraintes de disponibilité de la machine. Deux machines parallèles sont considérées, où une machine n'est pas disponible pendant une période donnée. Un seul véhicule est disponible pour livrer les tâches dans un délai de transport fixe à un centre de distribution. Le véhicule peut charger la plupart des tâches en tant que lot de livraison par trajet en raison de la contrainte de capacité du véhicule. L'objectif est de minimiser le temps de livraison de tous les tâches. Les auteurs ont considéré les cas sécables et non sécables. Pour chaque cas, ils proposent un algorithme d'approximation avec un ratio au pire cas borné à 3/2.

2.3.2.3 Cas non-sécable

Lee & Liman (1993) ont traité le problème à deux machines parallèles pour minimiser

la somme des dates de fin des tâches, en supposant que l'une de ces machines n'est pas disponible en permanence. Les auteurs ont montré que le problème étudié est NP-difficile au sens faible et ont proposé un algorithme de programmation dynamique pseudo-polynomial, et une heuristique basée sur SPT ayant une erreur au pire cas égale à 1/2.

Mosheiov (1994) a étudié le même problème en supposant que chaque machine n'est disponible que pour une période donnée. L'auteur a développé une heuristique et une borne inférieure basées sur SPT. Les deux heuristiques sont asymptotiquement optimaux à mesure que le nombre d'emplois augmente.

Lee (1996) a prouvé que le problème $P_m|nrs|C_{max}$ est NP-difficile. Les performances de deux règles heuristiques SPT et l'ordonnancement de liste SL sont également analysées. Les algorithmes SPT et SL ont respectivement des des ratios au pire cas égaux à $\frac{m+1}{2}$ et m respectivement. L'auteur a également montré que $P_2|nrs|\sum_i w_i C_i$ est NP-difficile. Un algorithme de programmation dynamique a été développé pour résoudre efficacement le problème lorsque $w_i = 1$ avec la première machine disponible en permanence.

Zhao et al. (2011) ont considéré deux problèmes d'ordonnancement de machines parallèles lorsqu'une machine n'est pas disponible dans une période donnée fixe et connue à l'avance pour minimiser le temps total d'achèvement pondéré $(P_2|nrs|\sum_i w_i C_i)$. Comme le problème est connu pour être NP-difficile, ils ont fournit un schéma d'approximation polynomial (FPTAS). L'étude a été généralisée pour le cas de m machines parallèles et un schéma d'approximation polynomial-temps est présenté. L'algorithme peut être étendu à un modèle de machines uniformes.

Tan et al. (2013) ont considéré le même problème que celui de Zhao et al. (2011). Ils ont prouvé que SPT a un ratio serré de 3/2, s'il y a une période de non-disponibilité sur l'une des deux machines. Il a été prouvé également que SPT a un ratio de 2, s'il y a une période indisponible sur chaque machine, et que les périodes indisponibles sur deux machines ne se chevauchent pas, le petit ratio de l'algorithme à temps polynomial sauf si P = NP.

Zhao & Tang (2014) ont considéré le problème d'ordonnancement de machines parallèles avec le temps de traitement de la tâche est une fonction proportionnelle à son heure de début (tâches en détérioration) et chaque machine n'est pas disponible dans une période de temps spécifiée pour minimiser la somme pondérée des temps d'achèvement. Ils ont montré que le cas général du problème n'est pas approximable sauf si P = NP et présenté un algorithme de programmation dynamique pseudo-polynomial. Ils ont présenté également un schéma d'approximation entièrement polynomial lorsque une seule machine est indisponible dans une période de temps spécifiée.

Beaton et al. (2016) ont traité le problème de la minimisation du makespan pour l'ordonnancement de machines parallèles avec des périodes de non disponibilité multiples pour les tâches non sécables, semi-sécables et sécables. Le problème a été formulé mathématiquement sous forme d'un modèle de programmation linéaire en nombres entiers mixtes et résolu de façon optimale de petites instances. Quatre heuristiques différentes ont été appliquées au problème pour la résolution approchée.

Zhao & Hsu (2017) ont examiné la version non-reprise du problème d'ordonnancement des tâches détériorées et des contraintes de disponibilité pour la minimisation le temps total d'achèvement. Ils ont présenté des algorithmes de programmation dynamique pseudo-polynomiaux pour les problèmes à une machine et à machines parallèles. Ils ont prouvé qu'il n'existe pas d'algorithme d'approximation en temps polynomial avec une borne constante au pire cas pour la version de machine parallèle, sauf si P = NP.

2.3.3 Problème d'ordonnancement de type Flow shop

2.3.3.1 Cas non-préemptif

Aggoune (2002) a proposé deux algorithmes pour résoudre le problème d'ordonnancent de type flow shop non préemptif avec contraintes de disponibilité (FSPAC), minimisant le critère du makespan. Le premier est basé sur un algorithme de liste, le second utilise l'approche géométrique (deux-jobs). Ces approches sont couplées à des méta-heuristiques pour améliorer leurs performances. Les résultats des tests ont montré que l'approche géométrique est meilleure que l'algorithme glouton. Le problème est résolu aussi par une procédure par séparation et évaluation basée sur des graphes disjonctifs avec borne inférieure utilisant l'approche géométrique à deux jobs avec des contraintes d'indisponibilité.

Cheng & Liu (2003) ont étudié le problème à deux machines sans attente (no-wait). Trois algorithmes d'approximation de borne 3/2 sont proposés pour les cas où une période d'indisponibilité est imposée sur une seule machine et lorsque les périodes d'indisponibilité sur les deux machines se chevauchent.

Aggoune (2004a) a présenté deux variantes de FSPAC. Dans la première variante, les dates de début des tâches d'indisponibilité sont fixes tandis que dans la seconde sont flexibles sur des fenêtres de temps données. Une approche heuristique basée sur un algorithme génétique et une recherche taboue ont été proposées pour résoudre approximativement le problème de minimisation du makespan.

Aggoune & Portmann (2006) ont traité le même problème. Comme la minimisation du makespan est fortement *NP-difficile*, ils ont proposé une approche heuristique qui est une extension de l'approche géométrique développée pour le problème de l'ordonnancement de deux ateliers. Le but de cette heuristique est de résoudre approximativement le problème qui consiste à planifier les tâches deux par deux en fonction d'une séquence d'entrée, et en utilisant un algorithme polynomial. Les résultats numériques ont montré l'efficacité de l'approche proposée.

Yang et al. (2008) ont considéré un problème à deux machines avec une contrainte de disponibilité minimisant le makespan. Une période de temps constante est nécessaire pour entretenir la machine après avoir effectué au maximum un nombre fixe de tâches. Les auteurs ont proposé une heuristique pour résoudre ce problème. Les résultats ont montré que le pourcentage moyen des erreurs diminue à mesure que le nombre de tâches n augmente. D'où la capacité à résoudre des problèmes de grande taille.

Vahedi-Nouri et al. (2014) ont traité le problème de non-permutation, l'effet d'apprentissage sous contraintes de disponibilité. Les temps de disponibilité des tâches sont considérés. Il est supposé que le temps de traitement réel de chaque tâche sur une machine dépend de la position de cette tâche dans la séquence, et après le traitement d'un nombre spécifié de tâches sur chaque machine, une période d'indisponibilité se produit pour des raisons de maintenance. Selon ces hypothèses, un nouveau modèle de programmation linéaire mixte (MILP) a été proposé pour formuler le problème. Une méthode heuristique et un algorithme de recuit simulé ont été présentés pour la résolution approchée des problèmes de moyenne et de grande taille en raison de la complexité du problème.

Dans Gara-Ali & Espinouse (2015), les auteurs ont étudié le problème avec une période de maintenance avec une durée qui augmente avec le retard de son exécution. Ils ont montré que le problème étudié est *NP-difficile* et ont établi certaines conditions sur l'ordonnancement optimal. Une procédure par séparation et évaluation a été développé pour résoudre le problème de manière optimale.

Wang & Liu (2016) ont étudié un problème de l'ordonnancement intégré de la production et de la maintenance préventive (PM) avec délai de défaillance de chaque machine soumise à une distribution de probabilité Weibull. L'objectif est de trouver la séquence optimale des tâches et les décisions de maintenance optimales de sorte que le makespan soit minimisé. Quatre heuristiques basées sur l'algorithme génétique (GA) sont proposées. Les résultats numériques sur des grandes tailles de problèmes et différentes configurations indiquent les avantages potentiels de la solution d'ordonnancement intégrée et montrent également que

les heuristiques basées sur GA sont efficaces pour le problème étudié.

Lee & Kim (2017) ont traité un problème de type flow shop à deux machines dans lequel la machine nécessite des activités de maintenance préventive à démarrer dans une limite de temps de la tâche cumulée, après la période de maintenance qui la précède. Pour le problème de minimisation de retard total, ils ont développé des propriétés de dominance et des bornes inférieures ainsi qu'une heuristique et suggèrent une procédure par séparation et évaluation dans lequel ces propriétés, des bornes inférieures et l'heuristique sont employées.

Le problème d'ordonnancement des flux de permutation proportionnelle (proportionate permutation flowshop scheduling problem) de n tâches sur m machines, dans lequel les temps de traitement de chaque tâche sur toutes les machines sont identiques a été traité par Cheng et al. (2018). Ils ont considéré les activités de maintenance de durées égales et différentes. L'optimisation vise à minimiser le temps d'achèvement total, l'avance maximum, et leur retard maximum. Deux algorithmes d'optimisation $O(n^2m)$ pour résoudre ces problèmes ont été développés.

2.3.3.2 Cas sécable

Lee (1997) a étudié le problème $F2|rs|C_{max}$. Il a montré que le problème est NP-difficile au sens faible. Il a proposé des algorithmes pseudo-polynomiaux basés sur la programmation dynamique. De plus, l'auteur a développé une heuristique avec une erreur au pire cas de 1/2 (respectivement 1/3) lorsque la période d'indisponibilité se produit sur la première machine (respectivement la seconde). Il a démontré également que l'erreur relative obtenue en appliquant l'algorithme de Johnson est égale à 1 (respectivement 1/2). Ce dernier résout le problème lorsqu'une ou les deux machines sont indisponibles à l'instant 0 comme démontré dans Lee (1999). Il a été démontré également que l'algorithme de Johnson est optimal lorsque les deux périodes d'indisponibilité ayant la même durée commencent au même temps. En outre, le problème est prouvé NP-difficile lorsque les machines ne sont pas disponibles à des dates différentes même si la durée des périodes d'indisponibilité est la même.

Pour le problème avec plusieurs indisponibilités sur chacune des deux machines, Błażewicz et al. (2001) ont analysé deux heuristiques constructives, l'algorithme de Johnson et l'heuristique look-ahead, et une heuristique basée sur le recuit simulé (SA). Ils ont conclu que l'heuristique basée sur ce denier est plus efficace.

Kubiak et al. (2002) ont prouvé que les ordonnancements de permutation sont dominants pour le cas d'un atelier de type flow shop à deux machines $s\acute{e}cable$, avec plusieurs contraintes

de disponibilité sur les deux machines. Ils ont prouvé qu'aucune heuristique polynomiale avec une erreur au pire cas bornée ne peut exister quand au moins deux indisponibilités par machine sont considérées. Ils ont proposé des propriétés pour le problème, prouvé qu'il est *NP-difficile* au sens fort et une procédure par séparation et évaluation basée sur ces propriétés pour élaguer l'arbre de recherche. Les expérimentations numériques ont montré que les performances de l'algorithme de branchement et de liaison sont influencées par le nombre de périodes d'indisponibilité (définies comme des trous) considérées dans une instance.

Breit (2004) a étudié $F_2|rs|C_{max}$ avec une période d'indisponibilité sur la seconde machine. Un ratio au pire cas de 5/4 est proposé améliorant ainsi le résultat de 4/3 donné par Lee (1997).

Breit (2006) a développé un schéma d'approximation en temps polynomial pour résoudre le problème avec une période d'indisponibilité sur la première machine pour minimiser le critère du makespan. Cette approximation a été étendue pour résoudre le problème où la période d'indisponibilité est sur la deuxième machine.

Wang & Cheng (2007b) ont proposé deux heuristiques et ont montré que leurs bornes d'erreur au pire cas ne dépassaient pas 2/3 le problème avec les temps de setup anticipés et une contrainte de disponibilité imposée à une seule machine.

Kubzin et al. (2009) ont proposé un algorithme d'approximation de performance garantie égale à 3/2, pour résoudre le problème avec plusieurs intervalles de non-disponibilité sur la première machine.

2.3.3.3 Cas non-sécable

Cheng & Wang (1999) ont étudié le problème du flow shop à deux machines avec une contrainte de disponibilité imposée à chaque machine avec deux contraintes de disponibilité consécutives. Les auteurs ont fourni une heuristique pour le problème et ont montré qu'il y avait une erreur dans le cas le plus défavorable de 2/3.

Lee (1999) a démontré que la règle de Johnson a une erreur relative égale à 1 lorsque la période d'indisponibilité est imposée sur la première machine ou la deuxième. Une autre heuristique garantie une erreur relative bornée à 1/2 lorsque l'indisponibilité est considérée sur la seconde machine.

Espinouse et al. (1999) ont étudié le problème à deux machines sans attente (no-wait)

avec contraintes de disponibilité pour la minimisation du makespan. Les auteurs ont prouvé que le problème est NP-difficile même lorsque une seule période d'indisponibilité se produit sur l'une des machines, et NP-difficile au sens fort pour un nombre arbitraire de périodes d'indisponibilité. Ils ont également proposé des heuristiques basées sur l'algorithme de Gilmore and Gomory pour résoudre le problème avec une seule indisponibilité sur la première et la deuxième machine avec garantie de performance égale à 2. Espinouse et al. (2001) ont démontré que dans le cas de plusieurs indisponibilités, le problème devient fortement NP-difficile; et il n'y a pas d'heuristique de garantie de performance à moins que P = NP.

Kubzin & Strusevich (2005) ont étudié le même problème avec machines ayant une activité de maintenance d'une longueur définie par une fonction non décroissante, qui dépend de l'heure de début de cette activité (période d'indisponibilité). Un schéma d'approximation polynomiale est proposé pour résoudre le problème.

Kubzin & Strusevich (2006) ont considéré le $F_2||C_{max}$ dans lequel chaque machine a une activité de maintenance, et dont la durée dépend de son heure de début. Les auteurs ont prouvé que le problème est NP-difficile et qu'il est pseudo-polynomial résoluble par programmation dynamique. Ils présentent également un schéma d'approximation entièrement polynomial et un algorithme d'approximation de garantie 3/2.

Allaoui et al. (2006) ont développé un modèle de programmation dynamique amélioré par rapport à celui proposé par Lee et al. (1997) et se sont focalisé sur la performance de la règle de Johnson comme heuristique pour les cas sécable et non-sécable. Ils ont établi certaines conditions dans lesquelles l'optimum est garanti et ont démontré que dans d'autres cas, sa performance est limitée à 2. Rapine (2013) a montré que ces conditions sont erronées, dans le cas sécable et non-sécable. Il a également mentionné que deux preuves et la complexité temporelle de leur approche dynamique ne sont pas correctes.

Allaoui et al. (2008) ont considéré le cas où l'une des deux machines doit être maintenue une seule fois pendant les premières périodes T de l'ordonnancement. Ils ont présenté quelques propriétés sur l'optimalité et puis ils ont montré que le problème est NP-difficile. Finalement, ils ont cherché les solutions optimales basées sur la règle de Johnson dans certaines conditions. Gara-Ali & Espinouse (2014) ont montré dans un Erratum que le problème de deux ordonnancements de flux machine avec une seule maintenance sur la seconde machine prouvée par Allaoui et al. (2008) (théorème 7) n'est pas NP-difficile et solvable par un algorithme en temps polynomial.

Hadda (2010) a proposé deux algorithmes d'approximation avec un ratio d'erreur au pire cas égale à 2 et 3/2, lorsque le problème a un intervalle d'indisponibilité sur la première

machine.

Ben Chihaoui et al. (2011) considèrent le problème de type flow shop à deux machines avec contraintes de disponibilité de non attente (no-wait) et que les tâches ont des dates de disponibilité différentes pour la minimisation du makespan. Les intervalles de non-disponibilité des machines se chevauchent et sont connus à l'avance. Ils proposent des bornes inférieures et supérieurs. Ces bornes sont utilisées dans une procédure par séparation et évaluation. De plus, la procédure peut être convertie en une heuristique de recherche gloutonne. Cette heuristique est capable de donner une solution quasi-optimale (écart de 1 %).

Hnaien et al. (2015) ont traité le problème de type flow shop à deux machines avec une contrainte de disponibilité sur la première machine. Ils ont établi deux modèles de programmation linéaire en nombres mixtes (MIP) et une procédure par séparation et évaluation employant sur un ensemble de bornes inférieures et supérieures et des propriété d'optimalité de l'algorithme de Johnson. Il a été démontré qu'il y a un impact de la date de début la période d'indisponibilité sur la difficulté de résolution. L'impact de la durée de la période d'indisponibilité sur la performance de la procédure a été également pris en compte.

Cui et al. (2016) ont traité le problème de type flow shop de non permutation. Deux types de contraintes d'indisponibilité sont étudiées. Dans le premier cas, les intervalles de non-disponibilité sont périodiquement fixés et connus à l'avance tandis que le second cas concerne les intervalles flexibles et le temps de la tâche continu des machines ne peut pas dépasser un temps maximum autorisé. Deux modèles de programmation en nombres entiers binaires mixtes sont fournis. Les problèmes de minimisation du makespan pour ce type de problèmes est prouvée NP-difficile au sens fort. Donc, un algorithme génétique hybride incrémenté (HIGA) a été proposé pour résoudre efficacement les problèmes de grande taille.

Les propriétés du problème d'ordonnancement d'un flux sans attente de deux machines, avec un intervalle d'indisponibilité non-sécable, sont étudiées par Li et al. (2017). Cet article traite le problème avec période d'indisponibilité sur la première et deuxième machines respectivement. La complexité des problèmes est prouvée *NP-difficile*. L'algorithme de Gilmore et Gomory (GGA) est appliqué pour minimiser le makespan, et les conditions que cet algorithme assure les solutions optimales sont présentées. Les ratios de performance au pire cas de GGA ne dépasse pas 2.

Labidi et al. (2018) ont considéré le problème d'ordonnancement des tâches soumises à des dates de disponibilité inégales dans un atelier de type flow shop à deux machines avec contraintes de non-attente (no-wait) et de disponibilité sont prises en compte. En premier

lieu, ils ont proposé une nouvelle formulation mathématique pour le problème et en ont déduit des inégalités valides. Deuxièmement, ils ont proposé de nouvelles bornes inférieures basées sur des relaxations à une ou deux machines. Ces bornes inférieures sont intégrées dans une procédure par séparation et évaluation améliorée par des règles d'élimination et de dominance.

2.3.3.4 Cas semi-sécable

Lee (1999) a généralisé les résultats de complexité présentés dans Lee (1997) dans le cas où les opérations sont semi-sécables. L'auteur a montré que la minimisation du makespan est NP-difficile au sens faible lorsque la période d'indisponibilité est sur une des deux machines. Un algorithme de programmation dynamique a été développé lorsque la période d'indisponibilité est imposée sur la première machine, et la preuve que l'algorithme de Johnson a une erreur relative égale à 1 est donnée. Lorsque la période d'indisponibilité se produit sur la deuxième machine, l'algorithme de Johnson a une erreur relative égale à $max\{1/2,\alpha\}$, où α est la partie à retraiter de l'opération semi-réutilisable, interrompu par la période d'indisponibilité. Dans le même article, l'auteur a montré que lorsque les deux machines ont une période d'indisponibilité (qui ne démarre pas à l'instant zéro), le problème est NP-difficile au sens faible, même si les dates de début et de fin des périodes d'indisponibilité ont les mêmes caractéristiques sur les deux machines. Dans ce cas, l'algorithme de Johnson a une erreur relative égale à α . Enfin, si les périodes d'indisponibilité des deux machines commencent à zéro, l'algorithme de Johnson permet de résoudre de façon optimale la minimisation du makespan.

2.3.4 Problème d'ordonnancement de type Job shop

2.3.4.1 Cas non-préemptif

Aggoune (2002) a proposé une procédure par séparation et évaluation pour résoudre le problème de job shop sous contraintes de disponibilité pour la minimisation de makespan. L'approche peut être généralisée à tout critère régulier. Le modèle de graphe disjonctif est utilisé pour représenter les noeuds des arbres. L'auteur a introduit une autre manière pour prendre en compte les périodes de disponibilité des machines, en introduisant des tâches fictives représentant les périodes d'indisponibilité fixes et flexibles. Le calcul les bornes inférieures est basé sur la résolution de sous-problèmes à deux jobs, en tenant compte des contraintes de précédence et de disponibilité ainsi que des dates de latence des opérations.

La complexité des problèmes d'ordonnancement prenant en compte deux tâches à planifier et les contraintes de disponibilité imposées aux machines ont également été traitées (voir aussi Aggoune (2004b)). Un algorithme polynomial appelé "approche géométrique temporisée" est d'abord proposé pour la minimisation du makespan, sous la contrainte de non-préemption. Ensuite, une généralisation au cas préemptif est développée. Ces algorithmes sont des extensions de l'approche géométrique proposée par Akers Jr & Friedman (1955) qui transforme le problème initial en une recherche du plus court chemin, ce qui permet de résoudre le problème classique d'ordonnancement à deux tâches de façon polynomial. Dans Aggoune (2010), un nouvel algorithme polynomial pour la planification de job shops avec deux jobs et des contraintes de disponibilité a été présenté. Ils ont supposé qu'il pouvait y avoir un nombre arbitraire de périodes de non-disponibilité sur chacune des m machines (avec m > 2). L'auteur a présenté une nouvelle représentation qui permet de traiter des temps de traitement modifiés et donc de prendre en compte des contraintes d'indisponibilité de plusieurs sortes.

Azem et al. (2007) ont traité le même problème que Aggoune (2002). Ils ont introduit une flexibilité sur les périodes d'indisponibilité de la machine sur des fenêtres de temps. Deux modèles mathématiques ont été présentés et comparés. Le premier est basé sur le graphe disjonctif et le second est indexé dans le temps. Les résultats ont montré que la méthode disjonctive est meilleure. Une approche de génération de colonnes a été également présentée dans Azem (2010) pour résoudre le problème d'ordonnancement du job shop avec et sans périodes d'indisponibilité fixes ou flexibles. Cette approche n'a pas fournit des résultats meilleurs que ceux de la formulation disjonctive du problème mais elle a fournit de meilleures relaxations linéaires dans un temps de calcul relativement petit.

Zribi et al. (2008) ont traité le problème de type Job shop avec machines de multi-usage (Multi-Purpose) sous contraintes de disponibilité. Une heuristique, basée sur des règles de priorité pour résoudre le problème d'affectation, est proposée et un algorithme de recherche locale est ensuite introduit pour améliorer cette solution d'affectation. Ils ont développé également un algorithme génétique pour résoudre le problème de séquencement. Par ailleurs, une borne inférieure est développée afin d'évaluer la qualité des solutions approchées.

Naderi et al. (2009) ont étudié l'ordonnancement de job shop avec des temps setup dépendant de la séquence et des politiques de maintenance préventive pour minimiser le makespan. Quatre méta-heuristiques basées sur le recuit simulé et les algorithmes génétiques ainsi que des adaptations de deux méta-heuristiques dans la littérature ont été utilisées pour résoudre le problème. La comparaison entre les performances des algorithmes a révélé l'efficacité de l'algorithme génétique hybride avec SPT par rapport aux autres algorithmes.

Mati (2010) traite les périodes d'indisponibilité fixes et non-préemptives dans un atelier de job shop avec n tâches et m machines pour la minimisation du makespan. Une heuristique taboo thresholding utilisant une nouvelle fonction de voisinage approximativement pour résoudre le problème. Fnaiech et al. (2012) ont proposé une méthode Hopfield Neural Network (HNN) utilisée pour résoudre le problème du job shop. L'objectif est de minimiser le makespan.

Guyon et al. (2014) ont proposé deux méthodes exactes pour résoudre un problème d'emploi du temps et d'ordonnancement de type job shop. Le problème est de trouver un emploi du temps à moindre coût, où les opérateurs ont des compétences différentes et travaillent des quarts de travail (shift), de sorte que la production, qui correspond à un atelier de type job shop avec contraintes de disponibilité des ressources. Ils ont introduit deux nouvelles procédures exactes : (1) une approche de décomposition et de génération de coupe et (2) une hybridation d'un processus de génération de coupe avec une stratégie par séparation et évaluation. Ils ont également proposé des coupes initiales améliorant ces méthodes ainsi qu'une approche de programmation en nombres entiers mixtes.

Fnaiech et al. (2015) ont présenté une méthode heuristique NHGA pour résoudre le problème. L'heuristique proposée comprend deux techniques; algorithme génétique modifié (MGA), inspiré de l'algorithme génétique standard. Le second, appelé déplacement heuristique des gènes, permet de réformer d'avantage les meilleurs chromosomes obtenus par la première technique MGA.

2.3.4.2 Cas sécable, sécable/non sécable

Mauguière et al. (2003b) ont proposé une procédure par séparation et évaluation pour le problème $J|rs|C_{max}$. Les résultats numériques montrent que résoudre le problème $J|rs|C_{max}$ est plus difficile que le problème sans périodes d'indisponibilité.

Mauguière et al. (2003a) ont proposé une procédure par séparation et évaluation pour le problème $J, cr|rs/nr(M_i^k)|C_{max}$. L'étude a été étendue à $J, cr/ncr|r_j, rs/nr(M_i^k)|C_{max}$ par Mauguière et al. (2005).

2.3.5 Problème d'ordonnancement de type Open shop

2.3.5.1 Cas non-préemptif

Breit et al. (2003) ont étudié un problème d'ordonnancement de type open shop à deux

machines, dans lequel les machines ne sont pas continuellement disponibles pour l'exécution des tâches. L'objectif est de minimiser le makespan sous la condition de non-préemption des opérations. Ils ont présenté un algorithme d'approximation avec un ratio au pire cas de 4/3 pour le problème avec une seule indisponibilité sur une seule machine. Le problème avec deux indisponibilités sur une des deux machines ne peut pas être approximé en temps polynomial sauf si P = NP.

2.3.5.2 Cas sécable

Lorigeon et al. (2002) ont étudié un problème d'ordonnancement d'un open shop avec opérations sécables sur deux machines avec une contrainte de disponibilité pour la minimisation du makespan comme critère. Comme le problème est *NP-difficile*, ils ont développé un algorithme de programmation dynamique pseudo-polynomiale pour résoudre le problème de façon optimale quand la machine n'est pas disponible à l'instant 0 et une formulation de programmation linéaire mixte, permettant de résoudre des instances allant jusqu'à 500 tâches de manière optimale. Enfin, ils ont prouvé que tout heuristique à une erreur relative au pire cas égale à 1.

Breit et al. (2001) ont étudié le même problème. Ils ont montré que le problème est NP-difficile et ont proposé un algorithme d'approximation avec un ratio au pire cas de 4/3.

Kubzin et al. (2006) ont présenté deux schémas d'approximation en temps polynomial pour le même problème, l'une qui traite le problème avec une indisponibilité sur chaque machine et l'autre pour le problème avec plusieurs indisponibilités sur l'une des machines. Les problèmes avec une structure plus générale des intervalles de non-disponibilité ne sont pas approximables en temps polynomial dans un facteur constant, à moins que P = NP.

2.3.5.3 Cas non-sécable

Kubzin & Strusevich (2006) ont pris en compte les problèmes d'ordonnancement open shop à deux machines dans lesquels chaque machine doit être maintenue exactement une fois pendant l'horizon d'ordonnancement, et la durée de chacun de ces période d'indisponibilité dépend de son heure de début. L'objectif est de minimiser le makespan. Le problème étudié est résolu de manière polynomiale compte tenu des fonctions générales définissant la longueur des intervalles de maintenance.

2.4 Conclusion

Un état de l'art couvrant les problèmes d'ordonnancement de la production sous contraintes de disponibilité de ressources, a été présenté dans ce chapitre.

Bien que les efforts de recherche aient été déployés pour résoudre les problèmes d'ordonnancement des machines en intégrant les contraintes de disponibilité des ressources, ils sont essentiellement concentrés plus sur les problèmes d'une seule machine, de type machines parallèles et flow shop. En revanche, les chercheurs se sont moins focalisés sur les problèmes d'ordonnancement de type job shop et open shop. Nous retenons également de cette étude bibliographique que tous les tâches précédentes couvrant l'ordonnancement de type job shop sous contraintes de disponibilité ne se sont pas focalisé sur les problèmes de job shop à deux machines, pourtant étudiés largement pour la cas du flow shop.

Ainsi, notre étude vise à contribuer à combler ce manque en proposant de traiter dans les chapitres suivants les problèmes du job shop à deux machines sous contraintes de disponibilité.

Chapitre 3

Le problème d'ordonnancement de type Job shop à deux machines avec contraintes de disponibilité sur une machine

Résumé:

Dans ce chapitre, nous traitons le problème d'ordonnancement de type job shop à deux machines avec des contraintes de disponibilité sur une seule machine. Tout d'abord, nous modélisons le problème comme étant un job shop avec contraintes de disponibilité. Ensuite, nous établissons des propriétés concernant le séquencement optimal des tâches avant et après chaque période d'indisponibilité. Nous développons des heuristiques et nous étudions leur comportement au pire cas. Par la suite, nous proposons des bornes supérieures et inférieures ainsi qu'une procédure de séparation et évaluation pour la résolution exacte du problème. Les propriétés théoriques ainsi que les performances des méthodes développées sont discutées.

Publications:

• Benttaleb, Mourad, Faicel Hnaien, and Farouk Yalaoui. 2018. Two-machine job shop problem under availability constraints on one machine: Makespan minimization. Computers & Industrial Engineering 117: 138 - 151.

• Benttaleb, Mourad, Faicel Hnaien, and Farouk Yalaoui. Two-machine job shop problem for makespan minimization under availability constraint. *IFAC-AMEST Biarritz, France 2016. IFAC-PapersOnLine* 49 (28): 132 - 137.

3.1 Introduction

Nous étudions dans ce chapitre le problème d'ordonnancement de type job shop à deux machines avec des contraintes de disponibilité sur une seule machine.

Nous considérons le cas des opérations strictement non-préemptives avec l'objectif de minimiser le makespan. Nous présentons des méthodes permettant la résolution exacte et approchée du problème qui exploitent la règle de Jackson.

La deuxième section de ce chapitre est consacrée à la description du problème. En particulier, nous décrivons la complexité du problème ainsi que sa spécificité par rapport à un job shop à deux machines sans contraintes de disponibilité.

La troisième section est dédiée aux méthodes de résolution. Premièrement, des propriétés étudiant l'optimalité du problème sont proposées. Une règle d'ordonnancement des tâches pour le cas étudié est également présentée. Nous proposons aussi deux modèles linéaires mixtes et finalement une méthode de résolution exacte, à savoir une procédure par séparation et évaluation. Les propriétés démontrées sont employées pour le calcul des bornes inférieures et supérieures et pour la résolution du problème. Finalement, les résultats expérimentaux montrent l'efficacité de l'approche proposée et des méthodes présentées.

3.2 Description du problème

Cette section est consacrée à la description du problème d'ordonnancement de type job shop à deux machines avec plusieurs périodes d'indisponibilité sur une seule machine. Nous mettons l'accent sur la spécificité de ce problème ainsi que sur les hypothèses considérées.

Avant de décrire le problème de manière détaillée, nous introduisons les notations que nous adoptons dans la suite du manuscrit (voir tableau 3.1).

Le problème d'ordonnancement de type job shop à deux machines avec une période d'indisponibilité sur une seule machine, se définit de la manière suivante :

- Un ensemble de N tâches à réaliser sur deux machines M_1 et M_2 .
- La tâche J_i nécessite une seule machine à la fois durant p_{ij} .
- Chaque machine ne peut réaliser qu'une opération à la fois.
- La machine M_1 est indisponible durant U périodes, dont la date et la durée sont fixes et connues à l'avance.

Tableau 3.1 – Notations

Natation	Tableau 3.1 – Notations
Notation	Signification
N	Nombre de tâches à réaliser
U	Nombre de périodes d'indisponibilité
$J = \{J_1, J_2,, J_N\}$	Ensemble des tâches à réaliser
$M = \{M_1, M_2\}$	Ensemble des machines
$I = \{I_1, I_2,, I_{U+1}\}$	Ensemble d'intervalles entre U périodes d'indisponibilité
p_{ik}	Temps d'exécution de la tâche J_i sur la machine M_k
(σ_1^i,σ_2^i)	Ordre d'exécution de la tâche J_i sur les deux machines
s_u	Date de début de la $u^{\text{ème}}$ période d'indisponibilité sur la machine M_k
t_u	Date de fin de la $u^{\text{ème}}$ période d'indisponibilité sur la machine M_k
g_u	Durée de la $u^{\text{ème}}$ période d'indisponibilité sur la machine M_k
C_k^{AJK}	Date de fin sur la machine M_k obtenue par la méthode de Jackson
C_{max}^{JK}	Makespan trouvé par la méthode de Jackson
$Idle_k^{JK}$	Somme des durées d'inactivité de la solution donnée par l'algorithme de Jackson
	sur la machine M_k
$Idle_u$	Période d'inactivité générée par la $u^{\text{ème}}$ période d'indisponibilité
$Set_{kk'}$	Ensemble des tâches passant d'abord sur la machine M_k ensuite sur la machine $M_{k'}$
Set_k	Ensemble des tâches traitées uniquement sur la machine \mathcal{M}_k
$Set_{kk'}^{I_u}$	Ensemble des tâches appartenant à I_u , traitées sur M_k puis sur $M_{k'}$
$Set_k^{I_u}$	Ensemble des tâches appartenant à I_u , traitées uniquement sur la machine ${\cal M}_k$
$J_2 C_{max}$	Job shop à deux machines minimisant le Makespan
$J_2, h_{kU} a C_{max}$	Job shop à deux machines avec U périodes d'indisponibilité sur chaque machine M_k ,
1 1 1 10	minimisant le Makespan
$J_2, h_{1U} a C_{max}$	Job shop à deux machines avec U périodes d'indisponibilité sur la machine M_1 , minimisant le Makespan
$J_2, h_{k1} a C_{max}$	Job shop à deux machines minimisant le Makespan, avec contrainte de disponibilité
2, 32, 1 33	sur chaque machine M_k
$J_2, h_{k1} a, s_k = 0 C_{max}$	Job shop à deux machines minimisant le Makespan, avec contrainte de disponibilité
	sur chaque machine \mathcal{M}_k commençant au début de l'horizon de l'ordonnancement
$J_2, h_{11} a, s_1 = 0 C_{max}$	Job shop à deux machines minimisant le Makespan, avec contrainte de disponibilité
	sur la machine M_1 commençant au début de l'horizon de l'ordonnancement
$F_2, h_{11} a C_{max}$	Flow shop à deux machines minimisant le Makespan, avec contrainte de disponibilité
	sur la machine M_1

- Les opérations sont supposées strictement non-préemptives. C'est à dire, le traitement d'une opération n'est interrompue ni par celui d'une autre, ni par l'indisponibilité.
- L'objectif est de trouver le séquencement des opérations sur les machines qui minimise le makespan.

Sans perte de généralité, nous considérons que la machine M_1 est soumise à U périodes d'indisponibilité tout au long de l'horizon d'ordonnancement. En fait, le $J_2||C_{max}$ est symétrique, le choix de l'indisponibilité sur la machine M_1 ou M_2 est similaire.

Le problème d'ordonnancement de type job shop à deux machines avec contraintes de disponibilité est *NP-difficile*. En effet, Lee (1997) a démontré qu'un problème d'ordonnancement de type flow shop avec opérations sécables, sous contrainte de disponibilité sur l'une des deux machines est *NP-difficile* pour la minimisation du makespan. Par conséquent, l'algorithme de Jackson ne garantit pas l'optimalité du problème. La contribution dans ce chapitre est l'exploitation de l'algorithme de Jackson pour résoudre à l'optimal des instances de grandes taille dans un temps raisonnable.

3.3 Modélisation mathématique

Nous sommes amenés dans cette section à modéliser mathématiquement le problème d'ordonnancement de type job shop à deux machines avec contraintes de disponibilité sue une machine $(J_2, h_{1U}|a|C_{max})$. Nous avons choisi d'entamer cette approche afin d'avoir, d'une part, une idée claire sur la capacité de résolution de certaines tailles du problème et d'autre part, pour avoir un moyen qui permettra de prouver la pertinence de l'approche développée. Dans ce qui suit, nous formulons deux modèles linéaires en nombres entiers mixtes pour le problème de type $J_2, h_{1U}|a|C_{max}$. La formulation du premier modèle (MILP1) est dérivée de celui proposé par Applegate & Cook (1991). Le second modèle (MILP2) est adapté de celui proposé par Azem (2010) qui est une formulation mathématique du graphe disjonctif présenté par Roy & Sussman (1964), résolvant un problème de type job shop avec multiples indisponibilités sur chaque machine.

3.3.1 Formulation 1 : MILP1

L'objectif est de déterminer la date d'achèvement c_{ik} de chaque tâche J_i sur la machine M_k afin de minimiser le makespan. Chaque tâche J_i est traitée pendant p_{ik} unité de temps et l'ordre de traitement sur les deux machines est (σ_1^i, σ_2^i) .

Les variables de décision sont définies comme suit :

$$x_{ijk} = \begin{cases} 1 & \text{Si la tâche } J_i \text{ est séquencée avant } J_j \text{ sur la machine } M_k \\ 0 & \text{Sinon} \end{cases}$$

$$y_{iu} = \begin{cases} 1 & \text{Si la tâche } J_i \text{ est trait\'ee avant la } u^{\text{\`e}me} \text{ p\'eriode d'indisponibilit\'e} \\ & \text{sur la machine } M_1 \\ 0 & \text{Sinon} \end{cases}$$

 c_{ik} : Temps d'achèvement de la tâche J_i sur la machine M_k .

 C_{max} : Makespan.

Fonction objectif:

 $y_{iu} \in \{0, 1\}$

 $Min \quad C_{max}$

Contraintes:

$$c_{ik} \geq p_{ik} \qquad \forall i = 1, ..., N, \ \forall k = 1, 2 \qquad (3.1)$$

$$c_{i\sigma_{2}^{i}} - p_{i\sigma_{2}^{i}} \geq c_{i\sigma_{1}^{i}} \qquad \forall i = 1, ..., N \qquad (3.2)$$

$$c_{ik} - c_{jk} + B \cdot x_{ijk} \geq p_{ik} \qquad \forall i \neq j = 1, ..., N, \quad \forall k = 1, 2 \qquad (3.3)$$

$$c_{jk} - c_{ik} + B \cdot (1 - x_{ijk}) \geq p_{jk} \qquad \forall i \neq j = 1, ..., N, \quad \forall k = 1, 2 \qquad (3.4)$$

$$c_{i1} - B \cdot (1 - y_{iu}) \leq s_{u} \qquad \forall i = 1, ..., N, \quad \forall u = 1, ..., U \qquad (3.5)$$

$$c_{i1} - t_{u} \cdot (1 - y_{iu}) \geq p_{i1} \qquad \forall i = 1, ..., N, \quad \forall u = 1, ..., U \qquad (3.6)$$

$$C_{max} \geq c_{ik} \qquad \forall i = 1, ..., N, \quad \forall k = 1, 2 \qquad (3.7)$$

$$C_{max}, c_{ik} \in \mathbb{N} \qquad \forall i = 1, ..., N, \quad \forall k = 1, 2 \qquad (3.8)$$

$$x_{ijk} \in \{0, 1\} \qquad \forall i, j = 1, ..., N, \quad \forall k = 1, 2 \qquad (3.9)$$

 $\forall i = 1, ..., N, \quad \forall u = 1, ..., U$

(3.10)

Les contraintes (3.1) assurent que la date de fin dépasse la durée du traitement de la tâche J_i sur la machine M_k . Les contraintes (3.2) indiquent que la date de début de la tâche J_i sur $M_{\sigma_2^i}$ n'est pas antérieure à son date de fin sur $M_{\sigma_1^i}$. J_i devrait être exécuté dans l'ordre $\{M_{\sigma_1^i}, M_{\sigma_2^i}\}$. Les contraintes (3.3) et (3.4) garantissent le non chevauchement des opérations des tâches J_i et J_j exécutées sur la même machine M_k , avec B un grand nombre. Les contraintes (3.5) garantissent que la date de fin de l'exécution des tâches avant

la $u^{\text{ème}}$ période d'indisponibilité, sur la machine M_1 , ne dépasse jamais s_u . Les contraintes (3.6) assurent que le date de fin de l'exécution de la tâche J_i sur la machine M_1 est supérieur ou égal à son temps d'exécution plus tu s'il est prévu après la $u^{\text{ème}}$ période d'indisponibilité. Les contraintes (3.7) assurent que le makespan est plus grand ou égale à la date de fin de tout les tâches. Les contraintes (3.8) indiquent que le makespan et la date de fin de chaque tâche sont des nombres entiers. Les contraintes (3.9) et (3.10) fournissent des restrictions binaires pour y_{iu} et x_{ijk} .

3.3.2 Formulation 2: MILP2

Le modèle MILP2 est une adaptation de celui présenté par Azem (2010). Il considère que chaque tâche J_i est composée au plus de deux opérations O_{i1} , O_{i2} . Chaque opération O_{ij} est traitée sur la machine m_{ij} pendant p_{ij} . L'objectif du modèle suivant est de minimiser le makespan en déterminant la date de début s_{ij} de chaque opération O_{ij} .

$$x_{iji'j'} = \begin{cases} 1 & \text{if } O_{ij} \text{ est séquencée avant } O_{i'j'} \\ 0 & \text{Sinon} \end{cases}$$

 $y_{iju} = \begin{cases} 1 & \text{Si } O_{ij} \text{ est trait\'ee avant la } u^{\text{\`eme}} \text{ p\'eriode d'indsiponibilit\'e sur la machine } M_1 \\ 0 & \text{Sinon} \end{cases}$

 s_{ij} : Date de début de l'opération O_{ij} .

 C_{max} : Makespan.

Fonction objectif

 $Min \quad C_{max}$

Contraintes:

$$s_{i(j+1)} \ge p_{ij} + s_{ij}$$
 $\forall i = 1, ..., N, \quad j = 1$ (3.11)

$$s_{i'j'} - s_{ij} + B.(1 - x_{iji'j'}) \ge p_{ij}$$
 $\forall O_{ij} \ne O_{i'j'}, \ \forall m_{ij} = m_{i'j'}$ (3.12)

$$s_{ij} - s_{i'j'} + B.x_{iji'j'} \ge p_{i'j'}$$
 $\forall O_{ij} \ne O_{i'j'}, \ \forall m_{ij} = m_{i'j'}$ (3.13)

$$s_{ij} + B.y_{iju} \ge t_u$$
 $\forall O_{ij}, \ m_{ij} = 1, \ \forall u = 1, ..., U$ (3.14)

$$s_u - s_{ij} + B.(1 - y_{iju}) \ge p_{ij}$$
 $\forall O_{ij}, \ m_{ij} = 1, \ \forall u = 1, ..., U$ (3.15)

$$C_{max} \ge s_{ij} + p_{ij} \qquad \forall i = 1, ..., N \tag{3.16}$$

$$C_{max} \ge 0 \tag{3.17}$$

$$s_{ij} \ge 0$$
 $\forall i = 1, ..., N, \ \forall j = 1, 2$ (3.18)

$$x_{iji'j'} \in \{0,1\}$$
 $\forall O_{ij} \neq O_{i'j'}, \ \forall m_{ij} = m_{i'j'}$ (3.19)

$$y_{iju} \in \{0, 1\}$$
 $\forall O_{ij}, \ m_{ij} = 1, \ \forall u = 1, ..., U$ (3.20)

Les contraintes (3.11) assurent que l'opération O_{ij+1} qui suit O_{ij} ne peut être exécutée qu'après la fin de l'exécution de O_{ij} . Les contraintes (3.12) et (3.13) garantissent le non chevauchement des opérations O_{ij} et $O_{i'j'}$ exécutées sur la même machine. Les contraintes (3.14) et (3.15) assurent que l'opération O_{ij} est traitée soit avant soit après la $u^{\text{ème}}$ période d'indisponibilité sur la machine M_1 . Les contraintes (3.16) indiquent que l'ordonnancement ne se termine qu'après l'exécution de la dernière opération de chaque tâche. Les contraintes de (3.17) à (3.20) fournissent des bornes pour les variables du modèle.

3.4 Propriétés

Comme indiqué précédemment, le problème étudié est *NP-difficile* et l'algorithme de Jackson ne permet pas de le résoudre de façon optimale. Ces résultats qui soulignent la difficulté de notre problème nous amènent à élaborer des méthodes de résolution garantissant l'optimalité. Pour ce faire, nous allons démontrer des propriétés concernant notamment les cas particuliers d'optimalité de l'algorithme de Jackson. Nous fournissons par ailleurs un ordre permettant de séquencer les tâches sur les deux machines de manière optimale.

Propriété 1. Pour J_2 , $h_{11}|a$, $s_1 = 0|C_{max}$, la solution obtenue par l'algorithme de Jackson est optimale.

Démonstration. Nous supposons un ensemble de tâches ordonnancées sur deux machines suivant la règle de Jackson. Nous ajoutons à l'ordonnancement supposé une période d'indisponibilité de durée g_1 , commençant à $s_1 = 0$ au niveau de la machine M_1 . Dans ce cas, l'ensemble Set_{12} sur la machine M_1 commencera à $t_1 = g_1$. Ce décalage peut soit poussé la date de fin soit absorber une durée d'inactivité sur la machine M_1 . Il peut également engendrer une période d'inactivité au niveau de la machine M_2 au cas où l'exécution d'une tâche décalée sur la machine M_1 , empêche son traitement sur la machine M_2 déjà disponible.

Nous allons démontrer que l'algorithme de Jackson reste optimal sur les deux machines quelque soit le cas engendré.

- Sur la machine M_1 :
- Cas (i) : Le séquencement optimal, obtenu par l'algorithme de Jackson contient des durées d'inactivité sur la machine M_1 , alors :

$$C_1^{JK} = \sum_{i \in N} p_{i1} + Idle_1^{JK}$$
(3.21)

- (ia) : $g_1 \leq Idle_1^{JK}$ alors C_1^{AJK} reste optimale. Par conséquent, l'algorithme de Jackson assure une date de fin optimale sur M_1 .
- (ib) : $g_1 > Idle_1^{JK}$ alors C_1^{AJK} este optimale (égale à la borne inférieure (eq. 3.22)) parce que la somme des durées d'inactivité est nulle (Figure 3.1).

$$C_1^{AJK} = \sum_{i \in N} p_{i1} + g_1 \tag{3.22}$$

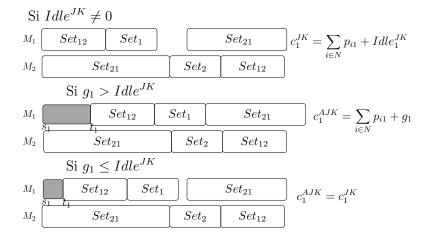


FIGURE 3.1 – Impact de la période d'indisponibilité à $s_1=0$, sur M_1 si $Idle_1^{JK}\neq 0$

Case (ii) : L'ordre selon la règle de Jackson ne contient aucune durée d'inactivité (voir figure 3.2), alors :

$$C_1^{JK} = \sum_{i \in N} p_{i1} \tag{3.23}$$

Alors.

$$C_1^{AJK} = \sum_{i \in N} p_{i1} + g_1 \tag{3.24}$$

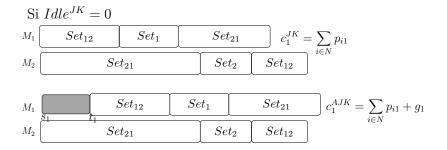


FIGURE 3.2 – Impact de la période d'indisponibilité à $s_1 = 0$, sur M_1 , si $Idle_1^{JK} = 0$

 C_1^{AJK} est optimal car l'ordre des tâches sur la machine M_1 ne contient aucune durée d'inactivité.

Nous concluons que l'ordre de Jackson reste optimal sur la machine M_1 si une indisponibilité commence à $s_1 = 0$.

— Sur la machine M_2 (voir figure 3.3):

Case (i) : Le décalage de Set_{12} ne génère aucun temps d'inactivité sur M_2 , alors C_2^{AJK} reste optimal.

Case (ii) : La nouvelle date du début d'exécution de l'ensemble Set_{12} engendre une durée d'inactivité $(Idle_{Set_{12}}^{JK})$ au niveau de la machine M_2 , alors C_2^{AJK} est régie par le séquencement des tâches appartenant à cet ensemble. Étant donné que l'ordonnancement du Set_{12} est un F_2 , $h_{11}|a$, $s_1 = 0|C_{max}$ et d'après Lee (1997), le séquencement optimal du Set_{12} suit la règle de Johnson. Comme le séquencement des tâches appartenant aux sets Set_{21} et Set_2 est optimal (le séquencement du Set_{21} suit l'ordre de Johnson tandis que celui du Set_2 est arbitraire), alors, l'ordre suivant la règle de Jackson sur la machine M_2 est optimal.

Propriété 2. Si la période d'indisponibilité au niveau de la machine M_2 est située au début de l'horizon d'ordonnancement $(J_2, h_{21}|a, s_1 = 0|C_{max})$, alors la solution obtenue par l'algorithme de Jackson est optimale.

Démonstration. Le problème d'ordonnancement de type job shop à deux machines est symétrique (atelier à deux cheminements inversés). Donc, la démonstration de cette propriété est la même que la précédente. Il suffit d'échanger M_1 et M_2 .

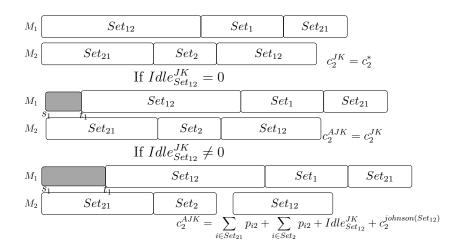


FIGURE 3.3 – Impact de la période d'indisponibilité à $s_1 = 0$, sur M_2

M_1	Set_{12}	Set_1	Set_{21}
$M_2 \begin{bmatrix} s_1 \\ s_2 \end{bmatrix}$	Set_{21} $t_0 = t_2$	Set_2	Set_{12}
02		Υ	
M_1	Set_{12} $t_0 = t_1$	Set_1	Set_{21}
M_2	Set_{21}	Set_2	Set_{12}

FIGURE 3.4 – Résolution du problème avec période d'indisponibilité sur chaque machine $s_k=0$

Propriété 3. Pour $J_2, h_{k1}|a, s_k = 0|C_{max}$, l'algorithme de Jackson fournit une solution optimale.

Démonstration. Il suffit de supposer que la date de début de l'horizon d'ordonnancement est à $\min(t_1, t_2)$ et dans ce cas, la taille de l'indisponibilité sera supposée égale à $\max(t_1 - t_2, t_2 - t_1)$ (voir figure 3.4). Ce décalage permet de rapporter le cas en l'occurrence à un des deux cas précédents (une période d'indisponibilité sur une seule machine).

Propriété 4. Pour le problème d'ordonnancement à deux machines avec une période d'indisponibilité sur une machine $J_2, h_{11}|a|C_{max}$, il existe un ordre optimal garantissant que les tâches avant et après la période d'indisponibilité sont séquencées suivant la règle de Jackson(figure 3.5).

55

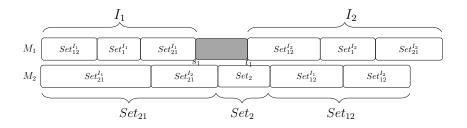


FIGURE 3.5 – Ordonnancement des tâches l'ordre optimal "S*" pour $J_2, h_{11}|a|C_{max}$

Démonstration. Nous démontrons d'abord que l'ordre proposé garantit que les ensembles de tâches à traiter avant et après la période d'indisponibilité sont ordonnés suivant la règle de Jackson.

Le $J_2, h_{11}|a|C_{max}$ est décomposé en deux sous-problèmes d'ordonnancement. La détermination de l'ensemble des tâches pour chaque sous-problème est fondée sur la disponibilité des tâches avant et après la période d'indisponibilité. Nous déterminons ensuite l'ordre de Jackson pour chacun des deux sous-ensembles.

• Le premier sous-problème (Pb(1)) comprends les tâches disponibles avant le début de la période d'indisponibilité s_1 . Sur la machine M_1 , les tâches disponibles sont les tâches achevables avant cette date, à savoir, $Set_{12}^{I_1}$, $Set_{21}^{I_1}$ et $Set_{1}^{I_1}$. Sur la machine M_2 , le sous-ensemble contient les tâches susceptibles d'être exécutés avant la date s_1 , en l'occurrence, les tâches appartenant aux sets $Set_{21} = \{Set_{21}^{I_2} \cup Set_{21}^{I_1}\}$, les tâches exécutables uniquement sur la machine M_2 (Set_2) et également l'ensemble $Set_{12}^{I_1}$ disponible pour être réalisé sur M_2 avant la date s_1 .

Ce sous-problème (Pb_1) est de type job shop à deux machines avec une indisponibilité à la fin de l'horizon de l'ordonnancement sur la machine M_1 . Donc, la règle de Jackson assure une solution optimale pour (Pb_1) (voir figure 3.6) vu que l'indisponibilité est située après la fin d'exécution de la dernière tâche sur la machine M_1 .

L'ordre des tâches appartenant aux sets $Set_{21}^{I_2}$ et Set_2 est arbitraire car ces deux sets ne sont traités que sur la machine M_2 .

• Le deuxième sous-problème (Pb_2) est également un job shop à deux machines avec une indisponibilité au début de chaque machine. Les tâches à ordonnancer dans ce cas, sont les tâches exécutables après t_1 . Nous citons les tâches appartenant aux sets $Set_{12}^{I_2}$, $Set_{21}^{I_2}$ et $Set_{12}^{I_2}$ sur la machine M_1 . Les tâches faisant parti des ensembles $Set_{21}^{I_2}$, Set_2 , $Set_{12}^{I_1}$ et $Set_{12}^{I_2}$ sont les ensembles à réaliser sur la machine M_2 parce qu'ils ne sont pas nécessairement exécutés avant s_1 . Ce sous-problème, définie un job

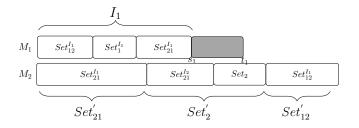


FIGURE 3.6 – Ordonnancent optimal avant la période d'indisponibilité

shop avec indisponibilité située au début de l'horizon d'ordonnancement sur chaque machine. D'après la propriété 3, l'algorithme de Jackson garantit l'optimalité et l'ordonnancement de (Pb_2) et est celui donné par la figure 3.7.

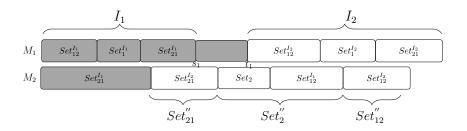


FIGURE 3.7 – Ordonnancent optimal après la période d'indisponibilité

L'optimalité de Jackson avant et après l'indisponibilité est garantie par l'ordre proposé.

Il reste à démontrer qu'il n'existe aucune solution meilleure que celle donnée par cet ordre (figure 3.5).

Nous vérifions que quelque soit l'ordre obtenu par la permutation de deux tâches distinctes, il ne peut que détériorer le makespan. En effet, soient J_i et J_j deux tâches exécutées dans le même sous-ensemble (tâches disponibles avant ou après la période d'indisponibilité). Soit C^{JK} makespan du sous-ensemble obtenu par la règle de Jackson et C^P est celui généré par la permutation de ces deux tâches sur M_1 ou M_2 . Si l'ordre avec permutation fournit un plus petit makespan alors $C^P \leq C^{JK}$, ce qui est impossible parce que comme démontré, la règle de Jackson est optimale. Donc toute permutation de ces deux tâches sur M_1 ou M_2 ne peut qu'accroître le makespan, car la règle de Jackson ne serait plus valide.

Si les deux tâches n'appartiennent pas au même sous-ensemble. L'une est traitée complètement avant l'indisponibilité (tâche appartenant à $Set_{21}^{I_1}$) et l'autre commence après sa fin (tâche appartenant à $Set_{12}^{I_2}$). Toute permutation de ces deux tâches sur la machine

 M_2 génère une solution irréalisable car la contrainte de précédence entre deux opérations du même tâche n'est plus respectée. Ainsi, tout ordre autre que celui proposé ne peut qu'détériorer la solution. Ainsi, l'ordre des ensembles est l'optimal.

Nous généralisons la propriété 4 pour le cas de plusieurs indisponibilités sur une machine. Nous démontrons par récurrence que le propriété reste valide pour le cas de U indisponibilités sur une machine.

Propriété 5. Pour un problème de type job shop à deux machines avec deux périodes d'indisponibilité sur une seule machine $(J_2, h_{12}|a|C_{max})$, il existe un ordre optimal garantissant que les tâches exécutées avant, après et entre les deux périodes d'indisponibilité sont ordonnancés suivant la règle de Jackson.

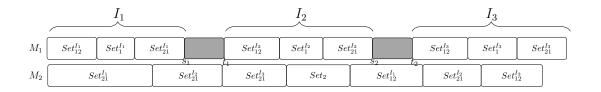


FIGURE 3.8 – Ordonnancement des tâches selon l'ordre optimal " S^* " pour $J_2, h_{12}|a|C_{max}$

Démonstration. Soit s_2 et t_2 la date de début et de fin respectivement de la deuxième période d'indisponibilité et $g_2 = t_2 - s_2$ sa durée. La propriété 4 affirme que l'ordre des deux premiers intervalles I_1 et I_2 est optimal. Si on considère une période d'indisponibilité au début de chaque machine, l'ordre des tâches appartenant à l'intervalle I_3 est optimal si et seulement s'il suit la règle de Jackson. D'autre part, quelle que soit la permutation entre deux tâches, l'ordre généré ne peut que détériorer la solution.

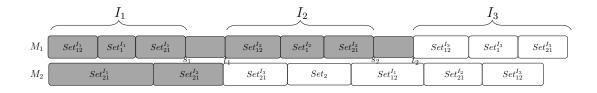


FIGURE 3.9 – Ordonnancement optimal des tâches après la deuxième période d'indisponibilité

Propriété 6. Pour un problème de type job shop à deux machines avec U > 2 périodes d'indisponibilité sur la machine M_1 $(J_2, h_{1U}|a|C_{max})$, il existe un ordre optimal S^* garantissant que les tâches avant, après et entre chaque deux périodes d'indisponibilité consécutives, sont séquencées suivant la règle de Jackson.

Démonstration. Nous démontrons par récurrence que la propriété valide pour le cas de U=1 et U=2 est vrai pour tout U>2.

Sachant que l'ordre est optimal pour le cas de U=1 et U=2. Nous supposons qu'il l'est également pour le problème avec U périodes d'indisponibilité. L'ajout d'une $(U+1)^{\text{ème}}$ indisponibilité génère un ensemble de opérations à exécuter après la fin de la dernière période d'indisponibilité. L'ordre de cet ensemble est optimal si et seulement s'il suit la règle de Jackson. Compte tenu de l'optimalité des intervalles générés par les U premières périodes d'indisponibilité, l'ordonnancement des N tâches sur deux machines avec U+1 indisponibilités sur la machine M_1 est optimal.

3.5 Bornes supérieures et inférieures

3.5.1 Bornes supérieures

La valeur de cette borne est obtenue sur la base des heuristiques. La première consiste à ordonnancer les tâches selon la règle de Jackson, en tenant compte le positionnement des périodes d'indisponibilité et également la non-préemption des opérations. La deuxième heuristique est une amélioration de l'algorithme de Jackson pour le problème étudié.

Heuristique 1: H1

Nous appliquons d'abord l'algorithme de Jackson pour ordonnancer les N tâches. Nous intégrons les U périodes d'indisponibilité en tant qu'opérations fictives et fixes commençant à s_u et se terminant à t_u . Soit J_i la tâche commençant juste avant s_u et se termine après cette date. Le traitement de cette tâche sur la machine M_1 commence à la date t_u (voir figure 3.10). Nous procédons de la même manière pour les autres indisponibilités, compte tenu des nouveaux dates de fin générées par la période d'indisponibilité précédente (Voir algorithme 1).

Algorithme 1 Heuristique 1 : H1

```
1: Entrée:
 2: N tâches sur deux machines
 3: U périodes d'indisponibilité sur la machine M_1
4: Ordonnancer les tâches selon la règle de Jackson
 5: u = 1
6: Pour i = 1 To N Faire
       Tant que u < U + 1 Faire
           Si s_{i1} < s_u and c_{i1} > s_u Alors
 8:
9:
              s_{i1} = t_u
              Actualiser les dates d'achèvement des tâches de I_{u+1}
10:
              u = u + 1
11:
              Si c_{i1} \leq s_u Alors
12:
                  Actualiser les dates d'achèvement des tâches de I_u
13:
                  break
14:
              Fin Si
       Fin Tant que
   Fin pour
15: return C_{max}(H1)
```

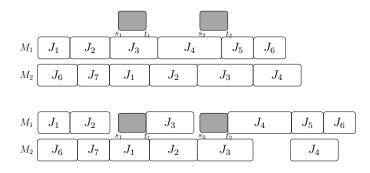


FIGURE 3.10 – Ordonnancement des tâches par l'heuristique H1

Lemme 1.

$$C_{max}(H1) \le C_{max}^{JK} + \sum_{u=1}^{U} g_u + \sum_{u=1}^{U} Idle_u$$
 (3.25)

 $D\acute{e}monstration$. Soit G^{JK} le graphe disjonctif de la séquence obtenue selon la règle de Jackson. La valeur du plus long chemin est C^{JK}_{max} , le makespan de la séquence. Soit J_i la première tâche exécuté après la fin de la $u^{\grave{e}me}$ indisponibilité. Nous considérons que le temps d'exécution de J_A sur la machine M_1 est $p_{i1}+g_u+Idle_u$. Le plus long chemin égal à $C_{max}(H1)$,

ne traverse pas nécessairement toutes les tâches comme J_i . Ainsi, dans tout les cas, la durée du chemin est au pire égale à $\sum_{u=1}^{U} g_u + \sum_{u=1}^{U} Idle_u + C_{max}^{JK}$.

Propriété 7. Pour $J_2, h_{1U}|a|C_{max}$:

$$\frac{C_{max}(H1)}{C^*} \le 1 + \frac{\sum_{u=1}^{U} g_u + \sum_{u=1}^{U} Idle_u}{\sum_{i=1}^{N} p_{i1} + \sum_{u=1}^{U} g_u}$$
(3.26)

 $D\acute{e}monstration.$ C_{max}^{JK} est le makespan du problème étudié sans contrainte de disponibilité, obtenu par l'algorithme de Jackson. Donc, il est évident que le makespan optimal de $J_2, h_{1U}|a|C_{max}$ est supérieur à C_{max}^{JK} .

$$C_{max}^{JK} \le C^* \tag{3.27}$$

D'après le lemme 1,

$$\frac{C_{max}(H1) - C^*}{C^*} \le \frac{C_{max}^{JK} + \sum_{u \in U} g_u + \sum_{u \in U} Idle_u - C^*}{C^*}$$
(3.28)

$$\leq \frac{C_{max}^{JK} + \sum_{u=1}^{U} g_u + \sum_{u=1}^{U} Idle_u - C_{max}^{JK}}{C^*}$$
 (3.29)

$$\leq \frac{C_{max}^{JK} + \sum_{u=1}^{U} g_u + \sum_{u=1}^{U} Idle_u - C_{max}^{JK}}{\sum_{i=1}^{N} p_{i1} + \sum_{u=1}^{U} g_u}$$
(3.30)

Par conséquent,

$$\frac{C_{max}(H1)}{C^*} \le 1 + \frac{\sum_{u=1}^{U} g_u + \sum_{u=1}^{U} Idle_u}{\sum_{i=1}^{N} p_{i1} + \sum_{u=1}^{U} g_u}$$
(3.31)

Theorem 3.1. Pour le problème J_2 , $h_{1U}|a|C_{max}$, le ratio d'approximation par la règle de Jackson est égal à 2 dans le pire cas.

Démonstration. Nous considérons A et B tels que $A = \frac{\sum_{u=1}^{U} Idle_u}{\sum_{u=1}^{U} g_u}$ e $B = \frac{\sum_{i=1}^{N} p_{i1}}{\sum_{u=1}^{U} g_u}$.

Nous avons,

$$\frac{C_{max}(H1) - C^*}{C^*} \le \frac{1+A}{1+B} \tag{3.32}$$

D'autre part,
$$\sum_{u=1}^{U} Idle_u \leq \sum_{i=1}^{N} p_{i1}$$
, donc $A \leq B$. Alors,

$$\frac{C_{max}(H1) - C^*}{C^*} \le \frac{1+A}{1+B} \le 1 \tag{3.33}$$

Par conséquent, le ratio d'approximation par la règle de Jackson $(\frac{C_{max}(H1)}{C^*})$ au pire cas est 2.

Propriété 8. Si $C_{max}(H1) = \sum_{i=1}^{N} p_{i2}$, alors le makespan obtenu par H1 est optimal.

Démonstration. $C_{max}(H1) = \sum_{i=1}^{N} p_{i2}$, donc, $\sum_{i=1}^{N} p_{i2} > C_1(H1)$. Alors,

$$\sum_{i=1}^{N} p_{i1} + \sum_{u=1}^{U} g_u \le C_1(H1) \le \sum_{i=1}^{N} p_{i2}$$

La borne inférieure de $J_2, h_{1U}|a|C_{max}$ est :

$$BI = \max(\sum_{i=1}^{N} p_{i2}, \sum_{i=1}^{N} p_{i1} + \sum_{u=1}^{U} g_u)$$

donc, $BI = \sum_{i=1}^{N} p_{i2}$. Par conséquent le makespan fourni par H1 est optimal.

Heuristique 2 : Jackson modifié (H2)

Nous introduisons quelques modifications à l'algorithme classique de Jackson afin d'améliorer sa précision par rapport aux périodes d'indisponibilité fixées. Nous regroupons les tâches dans des ensembles Set_{12} , Set_{21} , Set_{1} et Set_{2} .

— Les tâches appartenant aux ensembles Set_1 , Set_2 seront séquencées selon la règle LPT. Lee (1996) a montré que la règle LPT a une erreur dans le pire cas de $\frac{C_{LPT} - C^*}{C^*} \leq \frac{1}{3}$ pour le problème d'ordonnancement à une machine avec une seule contrainte de disponibilité et opérations non-sécables. Alors que pour des périodes d'indisponibilité multiples, Ji et al. (2007) ont prouvé que le ratio au pire cas de la règle LPT est égal $\frac{C_{LPT}}{C^*} \leq 2$ et ont montré qu'il n'y a pas d'algorithme d'approximation polynomiale au pire cas moins de 2 sauf si P = NP.

- Pour les tâches appartenant aux ensembles Set_{12} , Set_{21} :
 - Séquencer les tâches de $Sub_1 = \{J_i, p_{i1} \leq p_{i2}\}$ dans l'ordre croissant de p_{i1} . En cas d'égalité de p_{i1} , séquencer dans l'ordre décroissant de p_{i2} . En cas de toute autre égalité, séquencer arbitrairement.
 - Séquencer les tâches de $Sub_2 = \{J_i, p_{i1} > p_{i2}\}$ dans l'ordre décroissant de p_{i2} . En cas d'égalité de p_{i2} , séquencer dans l'ordre décroissant de p_{i1} . En cas de toute autre égalité, séquencer arbitrairement.

Nous introduisons les périodes d'indisponibilité en tenant en compte la non-préemption des opérations, comme décrit pour l'heuristique H1 (voir l'algorithme 2).

```
Algorithme 2 Heuristique 2 : Jackson modifié H2
```

```
1: Entrée:
 2: N tâches sur deux machines
 3: U périodes d'indisponibilité sur la machine M_1
 4: Ordonnancer les tâches selon la règle de Jackson modifiée
 5: u = 1
 6: Pour i = 1 To N Faire
 7:
       Tant que u < U + 1 Faire
 8:
           Si s_{i1} < s_u and c_{i1} > s_u Alors
9:
              s_{i1} = t_u
10:
              Actualiser les dates d'achèvement des tâches de I_{u+1}
              u = u + 1
11:
              Si c_{i1} \leq s_u Alors
12:
                  Actualiser les dates d'achèvement des tâches de I_u
13:
14:
                  break
              Fin Si
           Fin Si
       Fin Tant que
   Fin pour
15: return C_{max}(H1)
```

La complexité des algorithmes heuristiques présentés est de O(nlogn).

Soient $C_{max}(H1)$ et $C_{max}(H2)$ le makespan obtenu par H1 et H2 respectivement.

$$BS = min(C_{max}(H1), C_{max}(H2))$$
 (3.34)

3.5.2 Bornes inférieures

La première borne inférieure BI_1 représente le cas où toutes les opérations sont exécutées sans aucun temps d'inactivité. Dans ce cas, nous avons :

$$BI_1 = \sum_{i=1}^{N} p_{i1} + \sum_{u=1}^{U} g_u \tag{3.35}$$

S'il n'y a aucun temps d'inactivité sur la machine M_2 :

$$BI_2 = \sum_{i=1}^{N} p_{i2} \tag{3.36}$$

 BI_3 est égale à la date d'achèvement de la dernière opération des tâches ordonnancées selon la règle de Jackson.

$$BI_3 = C_{max}^{JK} (3.37)$$

Nous calculons quatre bornes inférieures en se basant sur l'ordre proposé par la propriété 6.

Theorem 3.2. Soit les bornes inférieures suivantes :

$$BI_4 = t_U + \sum_{i \in Set_{12}^{I_U+1} \cup Set_{21}^{I_U+1} \cup Set_{1}^{I_U+1}} p_{i1}$$
(3.38)

$$BI_5 = \sum_{i \in \bigcup_{i=1}^{U} Set_{21}^{I_j}} p_{i2} + \min_{i \in Set_{21}^{I_{U+1}}} p_{i2} + \sum_{i \in Set_{21}^{I_{U+1}}} p_{i1}$$
(3.39)

$$BI_6 = \max\left(\sum_{i \in Set_{21} \cup Set_2} p_{i2}, \min_{i \in Set_{12}^{I_1}} p_{i1}\right) + \sum_{i \in \cup_{i=1}^{U+1} Set_{12}^{I_i}} p_{i2}$$
(3.40)

$$BI_{7} = \max_{u \in \{1,2,\dots,U\}} \left(\max\left(\sum_{i \in Set_{21} \cup Set_{2}} p_{i2} + \sum_{i \in \cup_{j=1}^{u} Set_{12}^{I_{j}}} p_{i2}, t_{u} + \min_{i \in Set_{12}^{I_{u+1}}} p_{i1} \right) + \sum_{i \in \cup_{j=u}^{u} Set_{12}^{I_{j+1}}} p_{i2} \right) (3.41)$$

Démonstration.

- L'exécution de l'ensemble des tâches considérées après la période d'indisponibilité ne se termine pas plus tôt que la somme de tout leurs périodes d'exécution. Après t_U , la machine M_1 finit au plus tôt à BI_4 si la somme des temps d'inactivité est égale à zéro.
- L'ordonnancement de l'ensemble $Set_{21}^{I_{U+1}}$ est un problème de type flow shop $F_2||C_{max}$. Il finit au plus tôt à $\min_{i \in Set_{21}^{I_{U+1}}} p_{i2} + \sum_{i \in Set_{21}^{I_{U+1}}} p_{i1}$. Comme l'exécution de $\bigcup_{j=1}^{U} Set_{21}^{I_j}$ finit à

$$\sum_{i \in \cup_{j=u}^{U} Set_{21}^{I_{j}}} p_{i2}, \text{ alors } : C_{max} \ge \sum_{i \in \cup_{j=u}^{U} Set_{21}^{I_{j}}} p_{i2} + \min_{i \in Set_{21}^{I_{U+1}}} p_{i2} + \sum_{i \in Set_{21}^{I_{U+1}}} p_{i1}.$$

- L'ordonnancement de l'ensemble $Set_{12}^{I_1}$ est un problème de type flow shop $F_2||C_{max}$. Cet ensemble est exécuté sur la machine M_1 puis M_2 . Son exécution sur la machine M_2 commence à $\min_{i \in Set_{12}^{I_1}} p_{i1}$ si la machine n'est pas en activité, sinon, à $\sum_{i \in Set_{21} \cup Set_2} p_{i2}$. La borne inférieure dans ce cas est BI_6 .
- Le $(u+1)^{\text{tème}}$ ensemble commence nécessairement après t_u . Donc, son exécution sur la machine M_2 commence à $t_u + \min_{i \in Set_{12}^{I_u+1}} p_{i1}$ si M_2 n'est pa en activité. Si ce n'est pas le cas, Son exécution sera à $\sum_{i \in Set_{21} \cup Set_2} p_{i2} + \sum_{i \in \cup_{i=1}^u Set_{12}^{I_i}} p_{i2}$.

Par conséquent, la borne inférieure BI est égale à la valeur maximale des bornes inférieures présentées ci-dessus.

$$BI = \max(BI_1, BI_2, BI_3, BI_4, BI_5, BI_6, BI_7)$$
 (3.42)

3.6 Procédure par séparation et évaluation

Nous avons proposé dans la section précédente des propriétés sur l'optimalité de l'ordonnancement de type J_2 , $h_{1U}|a|C_{max}$. Nous avons démontré que l'ordonnancement des ensembles des tâches avant et après chaque période d'indisponibilité suivent la règle de Jackson. Nous avons démontré également qu'il existe un ordre optimal pour la résolution d'un J_2 , $h_{1U}|a|C_{max}$ garantissant cette condition. Cet ordre constitue une règle d'ordonnancement des tâches et nous amène à trouver une approche permettant de résoudre le problème de manière exacte. Cela signifie que l'objectif de l'algorithme à proposer est de définir les ensembles de tâches à exécuter avant, après et entre chaque deux périodes d'indisponibilité, puis de séquencer les ensembles suivant l'ordre optimal présenté la propriété 6.

Nous avons également proposé des bornes supérieures et inférieures du problème que nous allons employer dans une procédure par séparation et évaluation. Finalement, nous présentons et analysons les résultats expérimentaux menés sur des instances connues dans la littérature (Taillard (1993)).

Dans cette section, nous décrivons de manière détaillée la procédure par séparation et évaluation (PSE). Elle consiste à construire une arborescence ou chaque noeud r correspond à une solution partielle du problème J_2 , $h_{1U}|a|C_{max}$. Cette solution suit l'ordre développé dans la propriété 6. Elle garantit également que les tâches avant, après et entre chaque deux périodes d'indisponibilité suivent l'ordre de Jackson.

Un noeud de l'arborescence est caractérisé par les éléments suivants :

- Un niveau k représentant le nombre de tâches ordonnancées
- Une solution partielle, contenant un ordonnancement partiel des tâches traitées.
- Borne inférieure BI.

Auparavant, Aggoune (2002) proposait une procédure de séparation et évaluation (PSE_Agg) traitant le problème de type job shop pour la minimisation du makespan avec plusieurs contraintes de disponibilité sur chaque machine. Le graphe disjonctif est utilisé pour modéliser la solution dans chaque noeud de l'arbre. Par ailleurs, l'auteur a introduit une autre façon de prendre en compte les périodes de disponibilité des machines, en considérant des opérations fictives représentant les périodes d'indisponibilité. Le calcul des bornes inférieures est basé sur la résolution de sous-problèmes avec deux tâches, en tenant compte des contraintes de précédence et de disponibilité ainsi que des dates de latence des opérations. La sélection immédiate proposée par Carlier & Pinson (1989) pour le job shop sans contrainte de disponibilité, oriente directement certains arcs disjonctifs. Des sélections immédiates liées à l'activité de maintenance sont également ajoutées pour orienter les arcs reliant les opérations aux opérations fictives. En effet, en plus des bornes inférieures employées dans l'évaluation, la performance de PSE_Agg est due à l'utilisation de la sélection immédiate impliquant des opérations fictives dues à l'indisponibilité.

La procédure du *PSE* que nous suggérons est détaillée ci-après.

3.6.1 Initialisation

L'initialisation de la procédure avec une bonne solution permet d'accélérer la recherche en éliminant tous les noeuds moins bons que la solution initiale. Au départ, aucune tâche n'est encore traitée. A ce niveau, la procédure nécessite une bonne borne supérieure et un ordre selon lequel les tâches seront traitées un par un. En effet, Nous déterminons la borne supérieure BS avant le commencement du branchement. Par ailleurs, cette initialisation fournit un ordre initial (ordre de Jackson obtenu par les heuristiques H1 et H2) qui sera l'ordre d'affectation des tâches lors de la procédure de branchement.

3.6.2 Branchement et séparation des noeuds

Nous adoptons une règle de branchement dans laquelle un noeud r au niveau k de l'arbre de recherche, correspondant à un ordonnancement partielle des k premières tâches. Le schéma de branchement consiste à choisir une nouvelle tâche non ordonnancée J_{k+1} et à décider de l'affecter dans les intervalles I_u . De ce fait, le noeud r possède U+1 successeurs (U+1) nouveaux solutions partiels) qui correspondent à U+1 noeuds de branchement possibles. Cette affectation doit être effectuée de sorte que les ensembles de tâches (Set) soient ordonnancés selon l'ordre " S^* " démontré optimal (propriété 6). Une séquence complète est obtenue si toutes les tâches sont affectées. La stratégie d'exploration employée dans l'algorithme est une exploration en profondeur.

L'algorithme conserve la valeur du meilleur makespan trouvé s'il est inférieur à celui de la solution courante. Autrement, elle sera supprimée. Finalement, le branchement se termine lorsque tout les noeuds ont été visités ou une séquence complète avec un makespan égal à une borne inférieure est trouvée.

3.6.3 Évaluation des noeuds

L'évaluation d'une solution partielle consiste à calculer la valeur de sa borne inférieure, en l'occurrence le maximum des bornes inférieures BI_5 , BI_6 , BI_7 et BI_8 . Pendant l'évaluation, l'algorithme maintient la valeur de la meilleure solution trouvée. Lorsque la borne inférieure d'une solution partielle évaluée a une valeur supérieure ou égale à celle de la solution encours, il serait inutile d'explorer le noeud correspondant et ainsi tout ses successeurs seront éliminés.

Une autre évaluation existe et concerne le respect de la date de début la disponibilité de la machine. Une solution est exclue si $C_1^{AJK}(u) > s_u$. Le temps d'achèvement des tâches avant la $u^{\text{ème}}$ période de disponibilité ne peut pas dépasser sa date de début s_u . Une solution qui transgresse cette condition au niveau de la machine M_1 n'est pas faisable.

Algorithme 3 Algorithme de séparation et évaluation

Données:

- -N tâches à traiter sur deux machines
- U Contraintes de disponibilité sur la machine M_1

Initialisation:

- Déterminer la borne supérieure BS
- Calculer la borne inférieure générale BI
- Déterminer l'ordre d'affectation des tâches (Ordre de la solution initiale)

Évaluation:

- Calculer la borne inférieure BI
- Si $BI \geq Best_Solution$ alors arrêter exploration
- Si $C_1^{AJK}(u) \geq s_u$ alors arrêter exploration

Séparation:

— Sélectionner le noeud à séparer

Si tout les noeuds sont des feuilles alors

$$-C_{max}^* = Best_Solution$$

- sequence* = sequence
- Sélectionner la tâche à affecter

Si tout les tâches sont affectées (un noeud est une feuille), alors

— Si
$$C_{max} < Best_Solution$$
 alors $Best_Solution = C_{max}$

— Si
$$Best_Solution = BI$$
 alors arrêter

$$-C_{max}^* = Best_Solution$$

$$--$$
 sequence* = sequence

— Effectuer la séparation et aller à l'étape **Évaluation**

Résultat:

- Makespan optimal : C_{max}^*
- Séquence optimale : sequence*

Tableau 3.2 – Paramètres de l'exemple

Jobs	1	2	3	4
Machine M_1	3	1	3	1
Machine M_2	2	3	1	3

3.6.4 Exemple illustratif

Nous illustrons par un exemple la procédure PSE proposée. Nous considérons deux machines exécutant quatre tâches. Les temps d'exécution des tâches sont présentées dans le tableau 3.2. Ces quatre tâches sont décomposées en deux ensembles $Set_{12} = \{3,4\}$ et $Set_{21} = \{1,2\}$. Concernant les périodes d'indisponibilité, la date de début de la première période est supposée à $s_1 = 3$ et sa fin à $t_1 = 5$, tandis que la seconde commence à $s_2 = 9$ et se termine à $t_2 = 11$.

Les figures 3.11 et 3.12 présentent la solution du problème d'ordonnancement sans et avec période d'indisponibilité respectivement. Le makespan obtenu par l'algorithme de Jackson est égal à $C_{max}=9$.

$$BI = max(BI1, BI2, BI3) = max(8 + 2 + 2, 9, 9) = max(12, 9, 9) = 12$$

La borne supérieure est la meilleure solution obtenue par les deux heuristiques H1, H2 (voir figure 3.12).

$$BS = min(C_{max}(H1), C_{max}(H2)) = min(15, 15) = 15$$

$$M_1 \boxed{4} \boxed{3} \boxed{1} \boxed{2}$$

$$M_2 \boxed{1} \boxed{2} \boxed{4} \boxed{3}$$

FIGURE 3.11 – Solution obtenue par l'algorithme de Jackson (sans période d'indisponibilité)

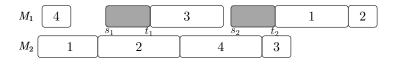


FIGURE 3.12 – Solution trouvée par les heuristiques H1 et H2

Tout d'abord, nous obtenons la borne supérieure BS et l'ordre d'affectation des tâches pour le branchement. Dans cet exemple, l'ordre d'affectation des tâches est [4,3,1,2] et

BS est égal à 15. Dans chaque étape de branchement, trois noeuds sont possible à explorer, avant (B) ou après (A) ou entre les deux périodes d'indisponibilité (M), on calcule alors pour chaque noeud la borne inférieure correspondante, en considérant l'exploration en profondeur.

La figure 3.13 montre l'arborescence générée pour résoudre le problème, où (X) désigne un noeud éliminé. Le noeud correspondant à la solution partielle {4 Avant, 3 Avant} est exclu parce que la date d'achèvement de ces deux opérations est supérieur à la date de début de la première période d'indisponibilité. Le noeud suivant est la solution partielle {4 Avant, 3 Milieu }, etc. La date d'achèvement {4 Avant, 3 Après} est égale à la borne supérieure, il serait inutile de continuer l'exploration de ce noeud. La solution optimale est celle illustrée par la figure 3.14.

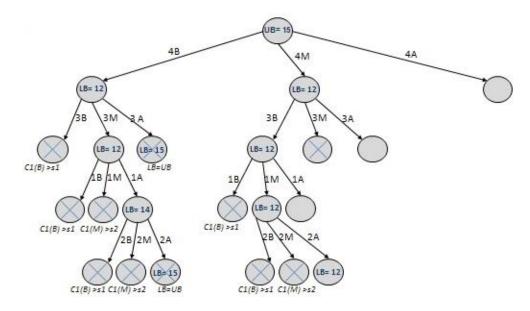


FIGURE 3.13 – L'arborescence du PSE pour l'exemple présenté

M_1 $\Big[$	3		4	1	$\boxed{ \qquad \qquad } 2$
M_2 $\Big[$	1	$\begin{bmatrix} s_1 & t_1 \\ 2 & \end{bmatrix}$	3	4	t_2

Figure 3.14 – La solution optimale obtenue par la PSE

3.7 Résultats expérimentaux

Nous fournissons des résultats numériques afin d'évaluer les performances des méthodes de résolution proposées. Les deux modèles MILP1 et MILP2 ont été résolus par le solveur IBM - Cplex interfacé avec C++ tandis que l'algorithme PSE proposé a été implémenté

sur C++. Les tests ont été exécutés sur un PC de fréquence 2.6 GHz Intel(R) Core (TM) i5-4210M CPU et 8.00 GB.

3.7.1 Description des instances

Afin d'évaluer l'efficacité des approches proposées de manière appropriée, nous effectuons nos tests sur certains benchmarks de la littérature. Nous comparons la PSE proposée à celle développée par Aggoune (2002).

Nous utilisons les instances (15 tâches / 15 machines, 20 tâches / 15 machines) Taillard (1993) pour le problème de type job shop. Pour chaque instance, nous avons pris seulement les deux premières valeurs de chaque tâche, correspondant à leurs durées sur les deux premières machines.

Nous ajoutons les paramètres concernant la période d'indisponibilité à fixer sur la machine M_1 . La durée de la $u^{\text{ème}}$ période d'indisponibilité est supposée égale à la moyenne des temps de traitement des opérations sur la machine $M_1: g_u = t_u - s_u = \frac{\sum_{i=1}^N p_{i1}}{N}$.

Nous générons des instances prenant en compte l'emplacement de la $u^{\text{ème}}$ période d'indisponibilité au milieu de l'horizon d'ordonnancement disponible. La date de début de cette période est définie en fonction du nombre total de périodes d'indisponibilité prises en compte sur la machine $M_1: g_u = t_u - s_u = \frac{\sum_{i=1}^N p_{i1}}{N}$.

Les positions des périodes d'indisponibilité sont choisies pour que la distance entre chaque deux périodes soit maximale. Le nombre de combinaisons des tâches possibles dans chaque sous-ensemble est donc maximal.

Les tests sont terminés lorsque l'optimum est trouvé ou lorsque le temps limite d'exécution de 3600 secondes a été atteint.

3.7.2 Analyse des résultats expérimentaux

Nous testons d'abord nos méthodes pour le problème avec deux périodes d'indisponibilité fixées sur la machine M_1 . D'après les résultats expérimentaux affichés dans le tableau 3.3, les modèles MILP1 et MILP2 ne peuvent résoudre de façon optimale aucune des instances lorsque la limite d'exécution est de 3600 secondes. Le temps requis pour trouver la meilleure solution est nettement plus important que le temps d'exécution limité. Cela est dû principalement à l'absence de borne inférieure de haute performance qui ferait

que la résolution converge rapidement vers la solution optimale. D'autant plus que les ordonnancements de permutation ne sont pas pris en compte dans la méthode de résolution.

Le tableau 3.4 illustre le pourcentage des instances résolues par la PSE proposée. Cette dernière est capable de résoudre de manière optimale 63 sur 80 instances.

Dans la suite, nous visons à déduire l'impact des paramètres N et U sur la performance de notre méthode en termes de complexité et de temps de calcul.

Le tableau 3.5 montre que les heuristiques fournissent une borne supérieure BS $min(C_{max}(H1), C_{max}(H2))$ de bonne qualité. Le gap égal à $\frac{BS - BI}{BI}$ permet d'illustrer ce résultat pour chaque cas traité. Comme indiqué dans la section 5, cet écart est dù à $\sum_{i=1}^{c} Idle_{u}$ par rapport à $\sum_{i=1}^{N} p_{i1}$ ainsi qu'à la taille de l'instance N. Ainsi, les instances présentant les écarts les plus importants sont celles considérant un nombre d'indisponibilités égal à $U = \{N/4, N/2\}$. Les heuristiques proposées se détériorent considérablement et c'est lorsque le nombre de temps d'inactivité générés augmente proportionnellement avec le nombre d'indisponibilités (voir les figures 3.15 et 3.16). Dans les autres cas, lorsque $U\,=\,3N/4,$ l'écart $(Gap = \frac{C_{max} - BI}{BI})$ diminue par rapport au cas de $U = \{N/4, N/2\}$ parce que lorsqu'un grand nombre de périodes d'indisponibilité est considéré, la durée des intervalles entre ces indisponibilités diminue. En conséquence, le problème devient un job shop de deux machines avec un petit nombre d'indisponibilités ayant de longues durées, d'où le petit écart de la solution initiale. De plus, ces instances sont plus faciles à résoudre, comme on le verra après. Un cas extrême doit être mentionné, quand $BS = \sum_{i \in N} p_{i2}$, donc BS est égal à BI (voir les valeurs BS en gras). Donc, la résolution des instances ayant BS = BI (valeur en gras) par l'algorithme de Jackson est optimale.

Si la solution optimale ne peut pas être trouvée par la méthode exacte, la performance de la solution est indiquée par l'écart avec la borne inférieure $\frac{C_{max} - BI}{BI}$ (lorsqu'une solution optimale peut être trouvée, il n'est pas nécessaire de calculer cet écart et il est indiqué par le symbole (–)).

Pour le même problème et concernant la comparaison entre les procédures PSE et PSE Agg, les résultats présentés dans les tableaux 3.6, 3.7, 3.8 et 3.9 indiquent que ce dernier n'est capable de résoudre aucune instance de taille $N = \{15, 20\}$. D'autre part, dans certains cas, la valeur BS_{Agg} est meilleure que la valeur BS proposée, spécialement lorsque $U = \{N/2, N/4\}$. Nous avons donc choisi de lancer notre algorithme PSE avec la valeur $BS = min(C_{max}(H1), C_{max}(H2), BS_{Agg})$.

Ainsi, la PSE résout optimalement toutes les instances de taille 15 tâches, quelque soit le nombre d'indisponibilités considérées. Pour les instances de 20 tâches, la PSE résout de façon optimale toutes les instances considérant U = N/2, 3N/4 périodes d'indisponibilité et 30% d'instances avec U = N/2. Pour U = N/4, les solutions obtenues pour 8 sur les 10 instances ont un écart inférieur à 1\% (voir tableau 3.7). Nous remarquons également que les instances considérant U = 3N/4 sont plus faciles à résoudre que celle avec U = N/4, N/2. Intuitivement, plus la taille du problème (N, U) est grande, plus le temps de calcul est long vu le temps nécessaire pour tester tout les cas possibles. Néanmoins, le temps de calcul est moins important pour les problèmes considérant U = 3N/4. Ceci s'explique par le fait que plus le nombre de U est grand, plus le nombre d'intervalles avec de petites longueurs est grand, ce qui engendre moins de combinaisons. D'où la résolution facile du problème. Les tableaux 3.6 et 3.7 montrent que les solutions optimales sont égales à BI. Cela signifie que tout les temps d'inactivité générés par les périodes d'indisponibilité sont comblées ou que la date de fin de toutes les tâches est celle donnée par la machine M_2 . La limite de PSE_Agg est due principalement au nombre de tâches et de périodes d'indisponibilité sur une seule machine. En effet, en plus des limites inférieures employées pour l'évaluation, la performance de PSE_Agg est due à l'utilisation de la sélection immédiate impliquant des opérations de maintenance. Aggoune (2002) indique que PSE Agg sont dédiés aux problèmes d'ordonnancement avec plusieurs indisponibilités sur chaque machine. Par ailleurs, les ordonnancement de permutation ne sont pas pris en compte par Aggoune (2002) dans la résolution. Donc, le nombre de combinaisons augmentera ainsi que les branches qui ne peuvent être rejetées ni par des bornes inférieures à cause du nombre de tâches à exécuter ni par la sélection immédiate. D'où le temps de calcul considérable.

Tableau 3.3 – Comparaison des modèles MILP1 et MILP2 ($N=\{15,20\},\,U=2)$

N		MI	<i>LP</i> 1		MI	LP2
	C_{max}	CPU(s)	$Gap_Cplex(\%)$	C_{max}	CPU(s)	$Gap_Cplex(\%)$
	902	3600	39.14	902	3600	28.64
	774	3600	9.56	774	3600	15.23
	884	3600	11.65	884	3600	18.39
	852	3600	12.31	852	3600	24.77
1 5	918	3600	14.49	918	3600	20.54
15	929	3600	12.59	929	3600	25.64
	1024	3600	13.96	1024	3600	16.84
	914	3600	10.83	914	3600	14.99
	1048	3600	18.22	1048	3600	27.64
	756	3600	6.75	756	3600	19.35
	1118	3600	$40,\!55$	1118	3600	39.74
	1037	3600	38.94	1037	3600	48.25
	1115	3600	41.21	1115	3600	37.46
	1140	3600	42.74	1140	3600	53.21
20	953	3600	43.23	953	3600	44.85
20	1173	3600	30.34	1173	3600	36.98
	1222	3600	47.38	1222	3600	51.05
	1167	3600	39.07	1167	3600	42.84
	1138	3600	45.69	1138	3600	47.67
	1262	3600	53.80	1262	3600	51.42

Tableau 3.4 – Pourcentage des problèmes résolus optimalement par la PSE (%)

N			U	
	2	N/4	N/2	3N/4
15	100	100	100	100
20	100	0	30	100

Tableau 3.5 – Le gap (%) entre la borne supérieure (BS) et la borne inférieure (BI) $(N = \{15, 20\}, U = \{2, N/4, N/2, 3N/4\})$

	BI B		774 88								756 85			1115 119					1167 118		1262 130
2	BS	32	882	10	22	15	83	66	88	28	855	1205	06	96	96	7.1	14	90	1186	25	9081
	$\frac{BS - BI}{BI}$	0.00	13.95	6.33	0.00	10.57	16.58	7.32	8.10	10.50	13.10	7.78	5.11	7.26	4.91	12.38	3.50	5.56	1.63	7.64	3.49
	BI	905	819	936	852	972	983	1084	296	1109	800	1268	1178	1265	1293	1082	1332	1387	1326	1291	1433
N/4	BS	902	939	1005	895	1082	1064	1263	1182	1235	911	1458	1334	1425	1433	1215	1485	1595	1534	1462	1650
4	$\frac{BS - BI}{BI}$	0.00	14.65	7.37	5.05	11.32	8.24	16.51	22.23	11.36	13.38	14.98	13.24	12.65	10.83	12.29	11.49	15.00	15.69	13.25	15.14
	BI	938	666	1144	1003	1188	1199	1324	1179	1353	926	1518	1413	1515	1548	1297	1597	1662	1591	1546	1718
N/2	BS	1163	1277	1463	1250	1499	1488	1643	1497	1740	1195	1862	1734	1921	1940	1656	2020	2117	1970	1969	2164
2	$\frac{BS - BI}{BI}$	23.99	27.83	27.88	24.63	26.18	24.10	24.09	26.97	28.60	22.44	22.66	22.72	26.80	25.32	27.68	26.49	27.38	23.82	27.36	25.96
	BI	1106	1179	1352	1183	1404	1415	1564	1391	1597	1152	1768	1648	1765	1803	1512	1862	1937	1856	1801	2003
3N/4	BS	1225	1306	1496	1324	1571	1577	1742	1571	1778	1283	1965	1823	1987	2004	1680	2073	2149	2056	1999	2233
4	$\frac{BS - BI}{BI}$	10.76	10.77	10.65	11.92	11.89	11.45	11.38	12.94	11.33	11.37	11.14	10.62	12.58	11.15	11.11	11.33	10.94	10.78	10.99	11.48

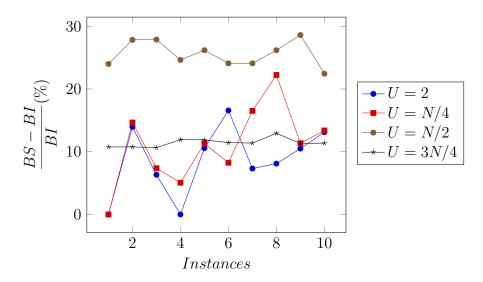


Figure 3.15 – $\frac{BS-BI}{BI}$ (%) pour chaque instance $(N=15~,\,U\{2,N/4,N/2,3N/4\})$

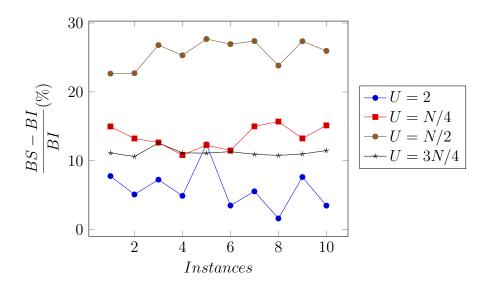


Figure 3.16 – $\frac{BS-BI}{BI}$ (%) pour chaque instance $(N=20~,\,U\{2,N/4,N/2,3N/4\})$

Tableau 3.6 – Comparaison entre PSE and PSE_Agg $(N = \{15, 20\}, U = 2)$ 1.21 PSEBI7.54 \geq

Tab	leau 3	5.7 -	- (Con	ıpa	rais	on	ent	re I	PSE	an	d P	SE	A	Agg	(N	=	$\{15$	5, 20	}, l	<i>y</i> =	N_{p}	(4)
	CPU(s)		I	7.91	417.75	4.47	44.42	10.03	18.62	69.12	149.80	4.18		3600	3600	3600	3600	3600	3600	3600	3600	3600	3600
	Nodes		I	18759	945882	10106	107632	27270	45084	169657	327186	7799		3939217	4007921	3982506	3723160	3987455	3987289	3973789	3646643	3992631	3643213
PSE	Gap(%)		I	I	I	I	I	I	I	I	I	I		0.16	0.17	0.55	4.80	0.09	0.23	0.36	1.06	0.08	0.07
	C_{max}	600	308	819	937	852	972	983	1085	296	1109	800		1270	1180	1272	1355	1083	1335	1392	1340	1292	1434
	BS	600	302	878	1005	895	1048	1046	1198	1065	1209	888		1408	1284	1373	1416	1215	1485	1472	1426	1379	1532
	BI	600	308	819	936	852	972	983	1084	296	1109	800		1268	1178	1265	1293	1082	1332	1387	1326	1291	1433
	CPU(s)	0036	0000	3600	3600	3600	3600	3600	3600	3600	3600	3600		3600	3600	3600	3600	3600	3600	3600	3600	3600	3600
	Nodes	7 7 7 7	1710040	1765973	1741528	1753516	1755977	1754528	1751277	1759000	1754450	1756304		856807	853722	836605	838350	846524	824444	795888	839852	842527	818634
PSE_{Agg}	Gap(%)	и 9	0.00	2.69	11.86	20.31	68.9	2.34	96.6	11.00	9.03	11.00		11.04	9.00	5.61	9.51	9.61	14.64	6.13	4.90	6.82	6.91
I	C_{max}	690	305	841	1047	1025	1039	1006	1192	1065	1209	888		1408	1284	1336	1416	1186	1527	1472	1391	1379	1532
	BS_{Agg}	630	208	878	1080	1025	1048	1046	1198	1065	1209	888		1408	1284	1373	1416	1236	1527	1472	1426	1379	1532
	BI_{Agg}	600	302	819	936	852	972	983	1084	296	1109	800		1268	1178	1265	1293	1082	1332	1387	1326	1291	1433
\geq							<u>, , , , , , , , , , , , , , , , , , , </u>	L.J.										Oc	707				

Tab	leau 3	6.8 – 0	Con	npa	rais	on	ent	re I	PSE	an	d P	SE	\A	Agg	(N	_	{15	5, 20)}, (<i>y</i> =	$= N_{i}$	/2)
	CPU(s)	554.17	249.23	213.11	319.78	4.89	183.04	2.98	3.71	15.93	183.36		3600	3600	2426.86	3140.95	3600	3600	3600	3600	3600	83.66
	Nodes	523760	213057	198807	308714	3275	167103	1771	3427	15631	173175		1719625	1709996	1116639	1462950	1499409	1597563	1553095	1617751	1657225	40305
PSE	Gap(%)	l	I	I	I	I	Ι	Ι	Ι	I	I		11.66	11.39	I	I	12.26	13.40	9.98	15.90	14.88	I
	C_{max}	1029	1095	1285	1079	1311	1363	1545	1372	1591	1074		1695	1574	1711	1676	1456	1811	1828	1844	1776	2003
	BS	1131	1131	1376	1212	1471	1424	1564	1400	1593	1125		1779	1585	1777	1771	1461	1898	1901	1890	1853	2052
	BI	938	666	1144	1003	1188	1199	1324	1179	1353	926		1518	1413	1515	1548	1297	1597	1662	1591	1546	1718
	CPU(s)	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600		3600	3600	3600	3600	3600	3600	3600	3600	3600	3600
	Nodes	1658289	1693178	1703227	1560010	1632221	1649979	1655118	1656087	1658559	1673164		822250	794376	817816	816427	809811	805067	802743	799090	990008	803729
PSE_{Agg}	Gap(%)	20.58	12.91	20.28	16.75	23.82	18.77	18.13	17.56	17.74	15.27		17.19	12.17	17.29	14.08	12.64	18.85	14.38	18.79	19.86	19.44
	C_{max}	1131	1128	1376	1171	1471	1424	1564	1386	1593	1125		1779	1585	1777	1766	1461	1898	1901	1890	1853	2052
	BS_{Agg}	1131	1131	1376	1212	1471	1424	1564	1400	1593	1125		1779	1585	1777	1771	1461	1898	1901	1890	1853	2052
	BI_{Agg}	938	666	1144	1003	1188	1199	1324	1179	1353	926		1518	1413	1515	1548	1297	1597	1662	1591	1546	1718
N						<u>, , , , , , , , , , , , , , , , , , , </u>	r.										Oc	70				

Tabl	leau 3	.9 – (Com	ıpar	aisc	on e	entr	e P	SE	and	d P	SE	_A	gg	(N	= -	$\{15$, 20	$\}, U$	$\mathcal{I} =$	3N	7/4)
	CPU(s)	13.50	1.36	1.77	3.57	2.17	3.22	1.14	1.75	2.05	4.90		3.57	3.01	12.32	1.05	28.74	1.12	3.58	72.13	11.16	1.37
	Nodes	7823	335	517	1910	290	929	37	290	325	2467		1082	937	4580	20	9221	283	984	22216	3058	29
PSE	Gap(%)	I	I	I	I	I	I	I	I	I	I		Ι	I	I	I	I	I	I	I	I	I
	C_{max}	1199	1284	1484	1300	1524	1555	1727	1526	1778	1249		1940	1792	1939	2003	1663	2042	2129	2032	1954	2209
	BS	1225	1295	1496	1324	1571	1577	1731	1571	1778	1283		1962	1823	1976	2004	1664	2073	2136	2042	1999	2233
	BI	1106	1179	1352	1183	1404	1415	1564	1391	1597	1152		1768	1648	1765	1803	1512	1862	1937	1856	1801	2003
	CPU(s)	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600		3600	3600	3600	3600	3600	3600	3600	3600	3600	3600
	Nodes	1508379	1608920	1612978	1548505	1668449	1678737	1677040	1678920	1671451	1680518		819499	824657	819651	814038	816550	820162	815972	818665	815864	816250
PSE_{Agg}	Gap(%)	13.65	9.48	16.27	28.83	14.10	11.45	10.68	10.71	11.40	15.80		10.18	13.17	11.95	16.69	10.05	14.55	10.27	10.02	11.55	12.03
I	C_{max}	1257	1295	1572	1524	1602	1577	1731	1540	1779	1334		1948	1865	1976	2104	1664	2133	2136	2042	2009	2244
	BS_{Agg}	1257	1295	1572	1524	1602	1577	1731	1581	1780	1346		1962	1888	1976	2104	1664	2133	2136	2042	2009	2244
	BI_{Agg}	1106	1179	1352	1183	1404	1415	1564	1391	1597	1152		1768	1648	1765	1803	1512	1862	1937	1856	1801	2003
Z						<u>, , , , , , , , , , , , , , , , , , , </u>	CI										O.	707				

3.8 Conclusion

Nous avons présenté dans ce chapitre deux modèles mathématiques en nombre entiers mixtes et une procédure par séparation et évaluation (PSE) permettant de résoudre de manière exacte le problème d'ordonnancement du job shop à deux machines sous contraintes de disponibilité sur une machine.

Nous avons proposé de tenir en compte les propriétés d'optimalité de l'algorithme de Jackson dans la résolution par la procédure PSE. Également, une nouvelle règle d'ordonnancement a été présentée et son optimalité est également démontrée. Pour cela, des propriétés concernant principalement la prise en compte de l'indisponibilité dans l'application de l'algorithme de Jackson ont été prouvées. Cela nous a amené également à proposer des bornes inférieures et supérieures, basées sur cet algorithme.

Les résultats expérimentaux menées sur des instances adaptées de la littérature (instances de Taillard (1993)) prouvent l'efficacité de la procédure PSE mise en oeuvre. Cependant, la méthode exacte s'avère limitée pour la résolution des instances de grande taille et contenant un grand nombre de périodes d'indisponibilité. La résolution approchée est envisageable dans ce cas, pour l'obtention des solutions de bonne qualité dans un temps raisonnable.

L'indisponibilité des deux machines durant la même horizon d'ordonnancement est aussi un cas industriel réel. Le chapitre suivant sera consacré au problème d'ordonnancement de type job shop à deux machines avec une contrainte de disponibilité sur chaque machine.

α .	1	1		• 1
(Lestion	de	production	SOLIC	incertitudes
COULDIE	uc	production	boub	mcci mudco

Chapitre 4

Le problème d'ordonnancement de type Job shop à deux machines avec une contrainte de disponibilité sur chaque machine

Résumé:

Ce chapitre est consacré à l'étude du problème d'ordonnancement de type job shop à deux machines avec une contrainte de disponibilité sur chaque machine. Après une modélisation mathématique classique du problème, nous démontrons des propriétés théoriques sur la dominance des ordonnancements de permutation pour le cas étudié et aussi des propriétés sur l'optimalité de l'ordre de Jackson. Nous développons des bornes supérieurs par des heuristiques. Une étude au pire cas est faite pour l'heuristique basée sur la règle de Jackson. Nous présentons par la suite deux procédures par séparation et évaluation ainsi qu'un modèle mathématique tenant en compte les propriétés établies. Une étude comparative basée sur des instances issues de la littérature et d'autres aléatoires est présentée et discutée.

Publications:

• Benttaleb, Mourad, Faicel Hnaien, and Farouk Yalaoui. Minimizing the makespan in the two-machine job shop problem under availability constraints. *International Journal*

of Production Research. Taylor & Francis, 2018.

4.1 Introduction

Nous avons étudié dans le chapitre précédent le problème d'ordonnancement de type job shop à deux machine avec la prise en compte des contraintes de disponibilité sur une machine. Des propriétés de dominance concernant l'optimalité de l'algorithme de Jackson ont été démontrées. Une procédure par séparation et d'évaluation a été présenté pour la minimisation du makespan dans le cas d'opération strictement *non-préemptive*.

Ce chapitre est consacré à l'étude du problème d'ordonnancement de type job shop à deux machines avec une contrainte de disponibilité sur chaque machine. Pour plusieurs raisons industrielles telles la maintenance préventive, chaque machine peut avoir besoin d'un arrêt ou plusieurs planifiés au cours de l'horizon de production.

La date de début et la durée de chacune des deux indisponibilités sont connues à l'avance et les opérations à exécuter sur chaque machine sont strictement *non-préemptives*. Les applications industrielles du problème sont nombreuses entre autres, l'industrie de fabrication/usinage et le transport.

Nous décrivons dans la section suivante le problème considéré. La troisième section est dédiée à la modélisation mathématique du problème; un modèle de programmation linéaire en nombres mixtes est présenté. Dans la section 4, des propriétés étudiant la dominance des ordonnancements de permutation et l'optimalité du problème sont proposées. Nous développons dans les sections 5-6-7 respectivement des bornes supérieures et inférieures, deux procédures par séparation et évaluation et finalement une nouvelle formulation mathématique du problème basée sur la règle de Jackson. Les résultats expérimentaux sont finalement présentés pour évaluer l'approche proposée et les méthodes développées.

4.2 Description du problème

Le problème d'ordonnancement de type job shop à deux machines avec une période d'indisponibilité sur chaque machine $(J_2, h_{k1}|a|C_{max})$ se définit de la manière suivante.

- Un ensemble de N tâches à réaliser sur deux machines M_1 et M_2 .
- Une tâche J_i nécessite une seule machine à la fois durant p_{ij} .
- Chaque tâche J_i suit un ordre de traitement (σ_1^i, σ_2^i) à travers les deux machines.
- Chaque machine ne peut réaliser qu'une opération à la fois.

- Une période d'indisponibilité est considérée sur chaque machine. Leurs débuts et durées sont fixes et connus à l'avance.
- Les opérations sont supposées strictement non-préemptives. C'est à dire, le traitement d'une opération n'est interrompue ni par celui d'une autre, ni par l'indisponibilité.
- L'objectif est de trouver le séquencement des tâches sur les machines qui minimise le makespan.

4.3 Modélisation mathématique : MILP3

Nous utilisons la modélisation proposée par Applegate & Cook (1991). Les contraintes de disponibilité sont formulées et ajoutées au problème.

$$x_{ijk} = \begin{cases} 1 & \text{Si} \quad J_i \text{ est séquencée avant } J_j \text{ sur } M_k \\ 0 & \text{Sinon} \end{cases}$$

$$y_{ik} = \begin{cases} 1 & \text{Si} \quad J_i \text{ commence avant la période d'indisponibilité sur } M_k \\ 0 & \text{Sinon} \end{cases}$$

 c_{ik} : Date de fin de la tâche J_i sur la machine M_k .

 C_{max} : Makespan.

Fonction objectif

 $Min \quad C_{max}$

Contraintes

$$c_{ik} \ge p_{ik}$$
 $\forall i \in \{1, ..., N\}, \ \forall k \in \{1, 2\}$ (4.1)

$$c_{i\sigma_2^i} - p_{i\sigma_2^i} \ge c_{i\sigma_1^i}$$
 $\forall i \in \{1, ..., N\}$ (4.2)

$$c_{ik} - c_{jk} + B \cdot x_{ijk} \ge p_{ik}$$
 $\forall i \ne j \in \{1, ..., N\}, \ \forall k \in \{1, 2\}$ (4.3)

$$c_{jk} - c_{ik} + B \cdot (1 - x_{ijk}) \ge p_{jk}$$
 $\forall i \ne j \in \{1, ..., N\}, \ \forall k \in \{1, 2\}$ (4.4)

$$c_{ik} - B \cdot (1 - y_{ik}) \le s_k$$
 $\forall i \in \{1, ..., N\}, \ \forall k \in \{1, 2\}$ (4.5)

$$c_{ik} - t_k \cdot (1 - y_{ik}) \ge p_{ik}$$
 $\forall i \in \{1, ..., N\}, \ \forall k \in \{1, 2\}$ (4.6)

$$C_{max} \ge c_{ik}$$
 $\forall i \in \{1, ..., N\}, \ \forall k \in \{1, 2\}$ (4.7)

$$C_{max}, c_{ik}$$
 entier $\forall i \in \{1, ..., N\}, \ \forall k \in \{1, 2\}$ (4.8)

$$x_{ijk} \in \{0, 1\}$$
 $\forall i, j \in \{1, ..., N\}, \ \forall k \in \{1, 2\}$ (4.9)

$$y_{ik} \in \{0, 1\}$$
 $\forall i \in \{1, ..., N\}, \ \forall k \in \{1, 2\}$ (4.10)

Les contraintes (4.1) assurent que la date de fin de la tâche J_i n'est pas antérieure à son temps de traitement sur la machine M_k . Les contraintes (4.2) indiquent que la date de début de la tâche J_i sur $M_{\sigma_2^i}$ n'est pas antérieure à son date de fin sur $M_{\sigma_1^i}$. La tâche J_i devrait être exécutée dans l'ordre $(M_{\sigma_1^i}, M_{\sigma_2^i})$. Les contraintes (4.3) et (4.4) garantissent le non chevauchement des opérations des tâches J_i et J_j exécutées sur la même machine M_k , avec B un grand nombre. Les contraintes (4.5) garantissent que la date de fin de l'exécution des tâches avant la période d'indisponibilité sur la machine M_k ne dépasse jamais s_k . Les contraintes (4.6) assurent que le date de fin d'exécution de la tâche J_i sur la machine M_k est supérieur ou égal à son temps d'exécution plus t_u s'il est prévu après la période d'indisponibilité. Les contraintes (4.7) confirment que le makespan est supérieur ou égal à l'heure d'achèvement de chaque tâche. Les contraintes (4.8) indiquent que le makespan et la date de fin de chaque tâche sont des nombres entiers. Les contraintes (4.9) et (4.10) fournissent des restrictions binaires pour y_{ik} et x_{ijk} .

4.4 Propriétés

Propriété 9. Les ordonnancements de permutation ne sont pas dominants pour le problème $J_2, h_{kU}/a/C_{max}$.

Démonstration. Lee (1999) a prouvé que l'ordonnancement de permutation n'est pas nécessairement dominant pour le problème de type flow shop à des deux avec contraintes de disponibilité sur les deux machines. Il propose un contre-exemple et considère une instance avec 3 tâches J_i (p_{i1}, p_{i2}) , à savoir, J_1 (1, 2k + 1), J_2 (k, 2) et J_3 (k + 1, 1) et deux périodes d'indisponibilité commençant à $s_1 = k+1$, $s_2 = 2k+4$ et se terminant à $t_1 = k+2$, $t_2 = 2k+5$ respectivement (Tableau 4.1). La seule solution optimale est de séquencer $\{J_1, J_2, J_3\}$ sur M_1 et $\{J_1, J_3, J_2\}$ sur M_2 (voir figure 4.1), avec makespan égal à 2k + 7. Toute autre séquence respectant les ordonnancements de permutation fournit un makespan supérieur à 2k + 7.

Tableau 4.1 – Temps d'exécution Lee (1999)

Jobs	1	2	3
Machine M_1	1	k	k+1
Machine M_2	2k+1	2	1

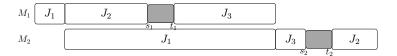


FIGURE 4.1 – Illustration du contre-exemple

Comme le problème de type flow shop est un cas particulier du problème de type job shop, les ordonnancements de permutation ne sont pas dominants pour J_2 , $h_{kU}/a/C_{max}$.

Par la propriété suivante, nous démontrons que les ordonnancements de permutaion reste dominants pour J_2 , $h_{k1}|a|C_{max}$ sous une certaine condition.

Propriété 10. Pour $J_2, h_{k1}|a|C_{max}$, si $\min_{J_i \in J}(p_{i1} + p_{i2}) > \max(s_1 - t_2, s_2 - t_1)$, les ordonnancements de permutation sont dominants.

Démonstration.

Nous supposons qu'il existe une séquence telle que J_i précède immédiatement J_j sur la machine M_k et la suit sur la machine $M_{k'}$. Soient J_{A^k} , $J_{A^{k'}} \in Set_{kk'}$ les premières tâches démarrant après la fin de la période d'indisponibilité sur la machine M_k , $M_{k'}$ respectivement.

Nous discutors trois cas possibles, y compris le cas où un séquencement de deux tâches consécutives (J_i, J_j) est interrompu par une période d'indisponibilité.

Cas (1): Le traitement continu des deux tâches $\{J_i, J_j\}$ est interrompu par la période d'indisponibilité sur la machine $M_{k'}$. Dans ce cas, $J_i = J_{A^{k'}}$ et J_j est traitée avant $s_{k'}$ sur la machine $M_{k'}$. Tenant compte la condition $\min_{J_i \in J} (p_{i1} + p_{i2}) > \max(s_1 - t_2, s_2 - t_1)$, l'exécution des tâches J_i et J_j se termine avant s_k parce que J_i précède J_j sur M_k . Donc, traiter J_j avant J_i sur la machine M_k n'augmentera pas le makespan (voir figure 4.2).

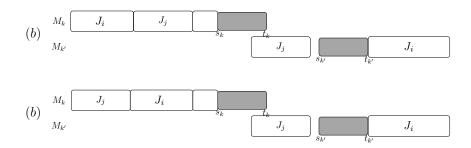


Figure 4.2 – Illustration du cas $J_i = J_{A^{k'}}$

Cas (2): La période d'indisponibilité sur la machine M_k désamorce le traitement continu des deux tâches $\{J_i, J_j\}$. Cela engendre le cas $J_j = J_{A^k}$. J_i et J_j sont traitées après $t_{k'}$. Donc, traiter J_i avant J_j sur la machine $M_{k'}$ n'impactera pas le makespan (voir figure 4.3) étant considéré la condition $\min_{J_i \in J} (p_{i1} + p_{i2}) > \max(s_1 - t_2, s_2 - t_1)$.

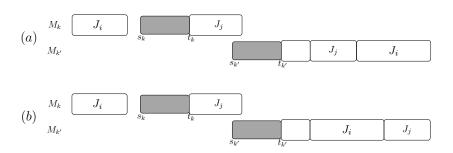


FIGURE 4.3 – Illustration du cas $J_j = J_{A^k}$

Cas (3): Les deux tâches $\{J_i, J_j\}$ sont traitées sur les deux machines sans interruption. $(\{J_{A^k}, J_{A^{k'}}\} \neq \{J_i, J_j\})$. Les tâches J_i et J_j) sont tout les deux exécutées avant ou après la période d'indisponibilité sur chaque machine. Donc traiter J_i juste avant J_j sur les deux machines n'impactera pas le makespan (voir figure 4.4 pour l'illustration).

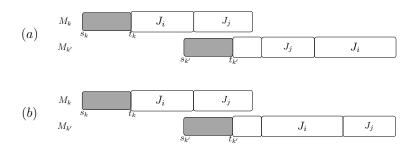


Figure 4.4 – Illustration du cas $J_i = J_{A^k}$

En conclusion, quel que soit le positionnement des deux tâches J_i et J_j , les ordonnancements de permutation sont dominants pour J_2 , $h_{k1}|a|C_{max}$, si $\min_{J_i \in J}(p_{i1}+p_{i2}) > \max(s_1-t_2,s_2-t_1)$.

Nous utiliserons la notation J_2 , $h_{k1}|a$, $d_{t_k,s_{\bar{k}}}|C_{max}$ pour désigner le problème souligné par la propriété précédente. Cette propriété permet de prendre en compte les ordonnancements de permutation. Ainsi, le temps de résolution serait moins important en raison de la simplicité combinatoire relative à l'ordonnancement considérant le même ordre des tâches sur les deux machines. De plus, le cas considéré est également important dans l'industrie et essentiel pour optimiser des cas industriels. Par exemple, certaines activités d'intervention nécessitant l'arrêt des deux machines (Exemple : la maintenance préventive) peuvent être effectuées simultanément sur les deux machines ou consécutivement ou nécessitent une durée minimale entre les deux arrêts pour de nombreuses raisons telles que le déplacement ou le transport des ressources d'intervention. Ainsi, une durée maximale entre les deux indisponibilités peut être tolérée tout en assurant que la condition reste valide qui garantie que les ordonnancements de permutation sont dominants. Les cas où les deux périodes d'indisponibilité commencent au même temps ou lorsqu'elles se suivent immédiatement sont également inclus.

Corollaire 1. Pour J_2 , $h_{k1}|a|C_{max}$, les ordonnancements de permutation sont dominants lorsque les deux périodes d'indisponibilité commencent au même moment ou lorsqu'elles se succèdent immédiatement.

Comme mentionné par Jackson (1956) et démontré pour $F2||C_{max}$ par Johnson (1954), les ordonnancements de permutation sont dominants pour la résolution optimale du problème de type job shop à deux machines sans contraintes de disponibilité $(J_2||C_{max})$. Nous avons démontré par la propriété 10 qu'il existe une condition sous laquelle les ordonnancements de permutation restent dominants pour le problème étudié. Cela nous permettra d'utiliser les propriétés suivantes.

Propriété 11. Pour J_2 , $h_{k1}|a$, $d_{t_k,s_{\bar{k}}}|C_{max}$, il existe un ordre optimal "S*" suivant la règle de Jackson avant et après la période d'indisponibilité sur chaque machine (figure 4.5).

 $D\acute{e}monstration$. Le raisonnement développé concernera la machine M_1 mais reste valide pour celui sur la machine M_2 car le problème est symétrique.

Nous définissons le problème (Pb1) qui considère l'ensemble des tâches à traiter avant la période de disponibilité sur la machine M_1 (voir figure 4.6). Le problème Pb1 est de

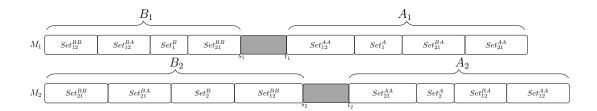


FIGURE 4.5 – Ordonnancement des tâches selon l'ordre optimal " S^* " pour $J_2, h_{k1}|a, d_{t_k, s_{\bar{k}}}|C_{max}$

type $J_2, h_{11}|a|C_{max}$, donc l'ordre optimal est celui fourni par la propriété 2 garantissant par ailleurs que les tâches avant et après l'indisponibilité commencent à s_2 et finissant à t_2 sur la machine M_2 sont séquencées selon la règle de Jackson.

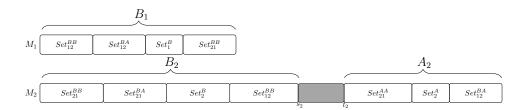


FIGURE 4.6 – Ordonnancement des tâches selon l'ordre optimal " S^* " avant la période d'indisponibilité sur la machine M_1

Concernant les tâches à exécuter après la période d'indisponibilité sur la machine M_1 (voir figure 4.7). Le problème d'ordonnancement de ces tâches (Pb2) est de type $J_2, h_{21}|a, s_1 = 0|C_{max}$. La propriété 2 affirme que les tâches dans chaque intervalle B_2 et A_2 sont ordonnés selon la règle de Jackson. L'ajout d'une période d'indisponibilité sur la machine M_1 à t=0 et finissant à $t=t_1$ n'affectera pas la séquence optimale des ensembles (voir la propriété 1). D'autre part, si nous supposons que l'ordre proposé n'est pas optimal, il existerait donc un ordonnancement optimal assurant un makespan inférieur à celui donné par " S^* ". Néanmoins, l'échange successif de la position des tâches conduira de n'importe quel ordonnancement donné à un au moins aussi bon que celui donné par l'algorithme de Jackson.

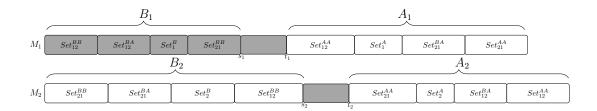


FIGURE 4.7 – Ordonnancement des tâches selon l'ordre optimal " S^* " après la période d'indisponibilité sur la machine M_1

4.5 Bornes supérieures et inférieures

4.5.1 Bornes supérieurs

La valeur de la borne supérieure est obtenue par l'une des deux heuristiques suivante. La première consiste à séquencer les tâches selon la règle de Jackson, en tenant compte les périodes d'indisponibilité et de la *non-préemption* des opérations. La deuxième heuristique est une modification de l'algorithme de Jackson.

Heuristique 1: H3

Nous appliquons la méthode de Jackson pour ordonnancer les N tâches, puis nous intégrons les périodes d'indisponibilité comme une opération fictive et fixe sur chaque machine M_k commençant à s_k et se terminant à t_k . Le traitement de la tâche J_i commençant juste avant s_k et se terminant après cette date sur la machine M_k commencera à la date t_k (voir figure 4.8).

Propriété 12. Pour
$$J_2, h_{k1}|a, d_{t_k, s_{\bar{k}}}|C_{max}, \quad \frac{C_{max}(H3) - C^*}{C^*} \leq \frac{\max_{i \in \{1, 2\}}(g_i + Idle_i)}{C_{max}^{JK}}.$$

Démonstration. Soit C_k^{JK} la date de fin de traitement de la dernière tâche sur la machine M_k obtenue par l'algorithme de Jackson pour $J_2||C_{max}$ et $C_k(H3)$ celle obtenue par l'heuristique H3 sur la machine M_k . Soit J_{Ak} la première tâche traitée après la fin de la période d'indisponibilité sur la machine M_k . Nous considérons que le temps de traitement de J_{Ak} sur la machine M_k est $p_{ik} + g_k + Idle_k$. La date de fin maximale sur chaque machine M_k se termine au plus tard à $C_k^{JK} + g_k + Idle_k$ si le traitement des tâches selon la règle de Jackson,

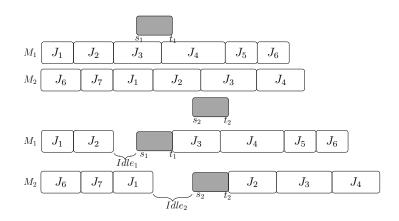


FIGURE 4.8 – Ordonnancement des tâches par l'heuristique H3

sans tenir compte des contraintes de disponibilité, se fait sans aucun temps d'inactivité. Alors,

$$C_k(H3) \le C_k^{JK} + g_k + Idle_k \qquad \forall k \in \{1, 2\}$$

$$(4.11)$$

$$\leq C_k^{JK} + \max_{i \in \{1,2\}} (g_i + Idle_i) \quad \forall k \in \{1,2\}$$
 (4.12)

Le makespan obtenu par l'algorithme H3,

$$C_{max}(H3) \le C_{max}^{JK} + \max_{i \in \{1,2\}} (g_i + Idle_i)$$
 (4.13)

 C_{max}^{JK} est le makespan de l'ordonnancement selon la règle de Jackson sans contraintes de disponibilités. Donc, le makespan optimal (C^*) pour $J_2, h_{k1}|a, d_{t_k, s_{\bar{k}}}|C_{max}$ est supérieure à C_{max}^{JK} . Donc,

$$C_{max}^{JK} \le C^* \tag{4.14}$$

Par conséquent,

$$C_{max}(H3) \le C^* + \max_{i \in \{1,2\}} (g_i + Idle_i)$$
 (4.15)

$$\frac{C_{max}(H3) - C^*}{C^*} \le \frac{\max_{i \in \{1,2\}} (g_i + Idle_i)}{C^*} \tag{4.16}$$

$$\frac{C_{max}(H3) - C^*}{C^*} \le \frac{\max_{i \in \{1,2\}} (g_i + Idle_i)}{C_{max}^{JK}}$$
(4.17)

Heuristique 2 : Jackson modifié (H4)

Nous appliquons les mêmes modifications de l'algorithme de Jackson, décrites au chapitre précédent (section 1.5.1 Heuristique 2)

Soient $C_{max}(H3)$ et $C_{max}(H4)$ les makespan obtenus par H3 et H4 respectivement.

$$BS = min(C_{max}(H3), C_{max}(H4))$$
 (4.18)

4.5.2 Bornes inférieures

Nous présentons les bornes inférieures pour le problème $J_2, h_{k1}|a, d_{t_k, s_{\bar{k}}}|C_{max}$.

 BI_1 représente le cas où toutes les opérations sont traitées consécutivement sans aucun temps d'inactivité.

$$BI_1 = \max(\sum_{i=1}^{N} p_{i1} + g_1, \sum_{i=1}^{N} p_{i2} + g_2)$$
(4.19)

 BI_2 est le makespan des tâches séquencées selon la règle de Jackson sans contraintes de disponibilité.

$$BI_2 = C_{max}^{JK} \tag{4.20}$$

4.6 Procédure par séparation et évaluation

Nous développons dans cette section des procédure par séparation et évaluation pour la résolution exacte du problème. Nous présentons deux schémas de branchement, leurs noeuds correspondant ainsi que la stratégie d'exploration adoptée par chaque procédure.

Le choix du schéma branchement est primordial pour la performance d'une PSE. Cette décision devrait être basée sur un nombre limité d'informations sur le noeud qui pourrait conduire à une solution optimale. De plus, le nombre de noeuds imposés dans chaque niveau

ne donne pas nécessairement une information précise sur la qualité des bornes calculées. Donc, la stratégie d'exploration devrait fournir précisément une valeur significative de bornes dans chaque niveau, de sorte que la convergence vers l'optimalité soit rapide. Ces choix ont donc une influence majeure sur l'efficacité de la procédure.

Les deux schémas de branchement garantissent que les tâches exécutées avant et après chaque période d'indisponibilité sont séquencées selon la règle de Jackson. Ainsi, chaque solution trouvée assure que l'ordre des tâches avant et après la période d'indisponibilité est optimal. Donc, l'objectif de ces schémas est finalement de définir les ensembles de tâches à exécuter avant et après la période d'indisponibilité sur chaque machine, en respectant l'ordre démontré optimal par la propriété 11.

4.6.1 Le premier schéma de branchement

Nous avons prouvé, par la propriété 11, qu'il existe un ordre optimal pour le problème d'ordonnancement $J_2, h_{k1}|a, d_{t_k, s_{\bar{k}}}|C_{max}$. Tous les ensembles définis dans cet ordre pourraient être classés en trois catégories de tâches comme suit,

- $Cat_1 = \{Set_{12}^{BB}, Set_1^{BB}, Set_2^{BB}, Set_{21}^{BB}\}$ contient les tâches traitées entièrement avant le début de toute période d'indisponibilité sur les deux machines.
- $Cat_2 = \{Set_{12}^{BA}, Set_{21}^{BA}\}$ inclut les tâches traitées sur l'une des deux machines avant la période d'indisponibilité correspondante et terminés après celle de la machine suivante.
- $Cat_3 = \{Set_{12}^{AA}, Set_1^{AA}, Set_2^{AA}, Set_{21}^{AA}\}$: concerne des tâches dont le traitement sur chaque machine ne commence qu'après la fin de la période d'indisponibilité.

L'objectif de cette procédure est de définir les ensembles de tâches appartenant à chaque catégorie, planifiés ainsi suivant l'ordre démontré par la propriété 11, respectant la règle de Jackson dans chaque catégorie.

Theorem 4.1. BI_3 , BI_4 , BI_5 et BI_6 sont quatre bornes inférieures pour PSE1:

$$BI_3 = t_1 + \sum_{i \in Set_{12}^{AA} \cup Set_{12}^{A} \cup Set_{21}^{AA} \cup Set_{21}^{AA}} p_{i1}$$

$$(4.21)$$

$$BI_4 = t_2 + \sum_{i \in Set_{21}^{AA} \cup Set_2^A \cup Set_{12}^{BA} \cup Set_{12}^{AA}} p_{i2}$$

$$(4.22)$$

$$BI_5 = t_1 + \min_{i \in Set_{12}^{AA}} p_{i1} + \sum_{i \in Set_{12}^{AA}} p_{i2}$$

$$\tag{4.23}$$

$$BI_6 = t_2 + \min_{i \in Set_{21}^{AA}} p_{i2} + \sum_{i \in Set_{21}^{AA}} p_{i1}$$

$$(4.24)$$

Démonstration.

- Le traitement de l'ensemble des tâches après la période d'indisponibilité se termine au plus tôt à la somme de tout leurs temps d'exécution. Après t_k , la machine M_k finit au plus tôt à BI_3 , BI_4 pour k=1, k=2 respectivement, si la somme des temps d'inactivité est égale à zéro.
- L'ensemble Set_{12}^{AA} est un problème d'ordonnancement de type flow shop $(F_2||C_{max})$. Il se termine au plus tôt à $min_{i \in Set_{12}^{AA}}p_{i1} + \sum_{i \in Set_{12}^{AA}}p_{i2}$. Comme le traitement de Set_{12}^{AA} commence à t_1 , alors : $BI_5 = t_1 + min_{i \in Set_{12}^{AA}}p_{i1} + \sum_{i \in Set_{12}^{AA}}p_{i2}$.
- De même, Set_{21}^{AA} est un flow shop $F_2||C_{max}$ commençant après t_2 . Donc, $BI_6=t_2+\min_{i\in Set_{21}^{AA}}p_{i2}+\sum_{i\in Set_{21}^{AA}}p_{i1}$.

La borne inférieure du problème BI_{PSE1} est égale à la valeur maximale des bornes inférieures présentées ci-dessus.

$$BI_{PSE1} = \max(BI_1, BI_2, BI_3, BI_4, BI_5, BI_6) \tag{4.25}$$

Un noeud de l'arbre est caractérisé par les éléments suivants :

- Un niveau $k \leq N$ représentant le nombre de tâches ordonnancées.
- Une solution partielle correspondant à un ordonnancement partiel des tâches réalisées.
- Une borne inférieure, BI_{PSE1} .

Un noeud r au $k^{\text{ème}}$ niveau de l'arborescence correspond à un ordonnancement partiel des k premiers tâches candidates. La liste de ces tâches est triée selon la règle de Jackson sur la machine M_1 . Le schéma de branchement consiste à choisir une nouvelle tâche non ordonnancée J_{k+1} et à décider de l'affecter à l'une des trois catégories. Par conséquent, le

noeud r a trois noeuds successeurs possibles. Une séquence complète est obtenue si toutes les tâches sont affectées. La stratégie de branchement en profondeur est adoptée. Il consiste à choisir le premier noeud candidat descendant du noeud courant dans l'arbre.

L'évaluation d'une solution partielle consiste à calculer la valeur de sa borne inférieure. Lorsque la borne inférieure d'une valeur de solution partielle est supérieure ou égale à la valeur de la meilleure solution en cours maintenue, il sera inutile de continuer l'exploration du noeud correspondant. Une autre évaluation concerne le respect de la date de début de la période disponibilité de la machine et la non-préemption des opérations. En effet, une solution est exclue si la date de fin des tâches sur chaque machine avant la période d'indisponibilité est supérieure à sa date de début. La procédure se termine lorsque tous les noeuds ont été visités ou une séquence complète avec un makespan égal à la borne inférieure est trouvée.

4.6.2 Le second schéma de branchement

Nous proposons un autre schéma de branchement basé principalement sur la stratégie adoptée pour l'ordonnancement lorsque l'occurrence d'une période d'indisponibilité est limitée à une machine. Au début, l'algorithme de Jackson définit les séquences de tâches sur chaque machine M_1 et M_2 . Ces séquences sont les listes des candidats sur chaque machine. Le but de cette stratégie est de décider pour chaque tâche candidate sa date de traitement avant ou après la période d'indisponibilité sur chaque machine. Ainsi, le schéma de branchement affecte les tâches avant ou après la période d'indisponibilité sur chaque machine suivant l'ordre donné par la liste des candidats.

A chaque noeud r au $k^{\text{ème}}$ niveau de l'arbre de recherche est associée un ordonnancement partiel composé des $k \leq 2N$ premières opérations, réalisées sur les deux machines. Le schéma de branchement consiste à choisir la machine sur laquelle la tâche est exécutée et de décider par la suite son affectation avant ou après l'indisponibilité. En effet, la machine est choisie si le nombre de tâches restant à exécuter est le plus petit. Par conséquent, le noeud r a deux successeurs (deux nouveaux solutions partielles). Cette affectation doit être effectuée de sorte que les tâches soient séquencées suivant l'ordre donné par la propriété 11. Une séquence complète est obtenue si tous les tâches sont affectées. La stratégie d'exploration de l'algorithme est en profondeur comme utilisée par le schéma (PSE1).

Pendant l'évaluation, l'algorithme maintient la valeur de la meilleure solution trouvée. La faisabilité de chacune des solutions partielles est vérifiée et sa borne inférieure est calculée et comparée à la meilleure solution actuelle. S'il peut être établi que la solution partielle

ne peut pas amener à une solution optimale, la branche entière est rejetée. Une solution n'est pas réalisable si la date de fin des tâches avant la période d'indisponibilité sur une des deux machines est supérieure à sa date de début ou si la contrainte de précédence entre les opérations d'une même tâche n'est pas respectée. La procédure se termine lorsque tous les noeuds ont été visités ou que le makespan d'une séquence complète est égal à la borne inférieure du problème.

Theorem 4.2. BI_7 et BI_8 sont deux bornes inférieures pour l'évaluation des noeuds générés par la procédure PSE2.

$$BI_7 = t_1 + \sum_{i \in A1} p_{i1} \tag{4.26}$$

$$BI_8 = t_2 + \sum_{i \in A2} p_{i2} \tag{4.27}$$

Démonstration.

Le traitement de l'ensemble des tâches attribuées après la période d'indisponibilité se termine au plus tôt à la somme de tous leurs temps de traitement. Après t_k , la machine M_k finit au plus tôt à BI_7 , BI_8 pour k=1, k=2 respectivement, si la somme des temps d'inactivité est égale à zéro.

La borne inférieure BI_{PSE2} est égale à,

$$BI_{PSE2} = \max(BI_1, BI_2, BI_7, BI_8)$$
 (4.28)

Un noeud de l'arborescence est caractérisé par les éléments suivants :

- Un niveau $k \leq 2N$ représentant le nombre de tâches séquencées.
- Une solution partielle, d'un ordonnancement partiel des opérations traitées.
- Une borne inférieure BI_{PSE2} .

4.6.3 Exemple illustratif

Nous prenons un exemple pour illustrer nos procédures PSE1 et PSE2. Nous considérons que deux machines sont nécessaires pour traiter quatre tâches. Ces tâches appartiennent à

Tableau 4.2 – Paramètres de l'exemple considéré

Jobs	1	2	3	4
Machine M_1	3	1	3	1
Machine M_2	2	3	2	2

deux ensembles $Set_{12} = \{3,4\}$ et $Set_{21} = \{1,2\}$ (voir Tableau 4.2). La date de début de la première période d'indisponibilité est supposée à $s_1 = 3$ et sa fin à $t_1 = 6$, alors que la seconde commence à $s_2 = 8$ et se termine à $t_2 = 10$.

Le makespan obtenu par l'algorithme de Jackson pour le problème sans contraintes de disponibilité est égal à $C_{max} = 9$. Nous déterminons la valeur de la borne supérieure comme la meilleure solution donnée par les deux heuristiques H3, H4 (voir Figure 4.9).

$$BS = min(H3, H4) = min(13, 13) = 13 (4.29)$$

La borne inférieure du problème est :

$$BI = max(BI_1, BI_2) = max(11, 9) = 11$$
 (4.30)

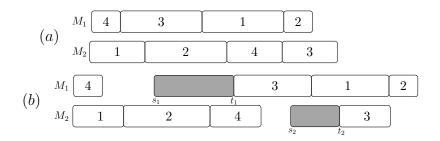


FIGURE 4.9 – (a) Solution obtenu par l'algorithme de Jackson (sans contraintes de disponibilité), (b) Solution trouvée par les heuristiques H3 et H4

Nous obtenons la valeur BS et l'ordre d'affectation des tâches pour le branchement. Dans cet exemple, l'ordre d'affectation des opérations sur les machines M_1 et M_2 est respectivement [4, 3, 1, 2], [1, 2, 4, 3] et BS est égale à 13.

Pour l'algorithme PSE1, chaque branchement génère trois noeuds, appartenant à une des trois catégories; catégorie 1 (Cat1) ou catégorie 2 (Cat2) ou catégorie 3 (Cat3). Nous calculons ensuite pour chaque noeud la borne inférieure correspondante, en considérant l'exploration en profondeur. La figure 4.10 montre l'arbre générée pour résoudre le problème, où (X) désigne un noeud éliminé. Le noeud qui correspond à la solution partielle { 4(Cat1),

3(Cat1) } est éliminée car la date de fin de ces deux tâches est supérieure à la date de début de la période d'indisponibilité sur la machine M_1 . Le noeud suivant est la solution partielle $\{4(Cat1), 3(Cat2)\}$, etc. La date de fin de la solution partielle $\{4(Cat1), 3(Cat2), 1(Cat3)\}$ est supérieur à la solution en cours, donc continuer l'exploration de ce noeud n'est plus nécessaire. La solution optimale avec $C_{max} = 12$ est obtenue par la séquence 4(Cat3), 3(Cat1), 1(Cat2), 2(Cat2)) }.

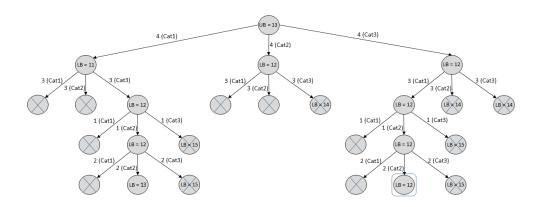


Figure 4.10 – L'arborescence obtenue par PSE1

En ce qui concerne PSE2, deux noeuds possibles sont obtenus, avant la période d'indisponibilité (Bk) ou après (Ak) sur chaque machine M_k , nous calculons pour chaque noeud la borne inférieure correspondante, en considérant l'exploration en profondeur. Dans la figure 4.11, nous illustrons l'arbre générée par PSE2. L'exclusion du noeud correspondant à la solution partielle $\{4(B1), 1(B2), 3(B1)\}$ est du à la date de fin de ces deux tâches, supérieur à la date début de l'indisponibilité période sur la machine M_1 . Le temps d'achèvement de la solution partielle $\{4(B1), 1(A2), 3(A1), 2(A2)\}$ est supérieur à la solution actuelle, donc il n'est pas nécessaire de continuer l'exploration de ce noeud. La solution optimale avec $C_{max} = 12$ est donnée par la séquence $\{4(A1), 1(B2), 3(B1), 2(B2), 1(A1), 4(A2), 2(A1), 3(B2)\}$.

La séquence obtenue par PSE2 est la même que celle trouvée par PSE1 (voir figure 4.12) et son makespan, optimal est $C_{max} = 12$.

Pour illustrer d'avantage l'efficacité des propriétés démontrées, nous appliquons et évaluons la même approche utilisée par un nouveau modèle de programmation linéaire à nombre entier mixte (MILP4).



FIGURE 4.11 – L'arborescence obtenue par PSE2

FIGURE 4.12 – La solution optimale obtenue

4.7 Modèle de programmation linéaire en nombres entiers mixtes (MILP4)

Nous appliquons la même approche par un nouveau modèle de programmation linéaire en nombres entiers mixtes (MILP4). L'objectif est de trouver l'ensemble des tâches à exécuter avant et après chaque période d'indisponibilité sachant la séquence de chaque ensemble de tâches qui suit la règle de Jackson.

La différence majeure entre MILP4 et MILP3 est que dans MILP4, l'ordonnancement des tâches est obtenu par l'algorithme de Jackson qui résout de façon optimale la séquence en temps polynomial. Contrairement à MILP3 qui est une modélisation du problème d'ordonnancement de type job shop avec contraintes de disponibilité où les ordonnancements de permutation ne sont pas pris en comptes. L'approche suivie dans MILP4 contient deux phases : D'abord, l'ordre de Jackson est déterminé. Ensuite, le modèle décide le placement de chaque tâche avant ou après la période d'indisponibilité sur chaque machine, en s'assurant que les tâches sont organisées en fonction de l'ordre démontré par la propriété 11.

$$\gamma_{[i][j][k]} = \begin{cases} 1 & \text{Si } J_{[i]} \text{ et } J_{[j]} \text{ appartiennent au même ensemble } (A_k \text{ ou } B_k) \text{ sur} \\ & \text{la machine } M_k \\ 0 & \text{Sinon} \end{cases}$$

$$y_{[i][k]} = \begin{cases} 1 & \text{Si } J_{[i]} \text{ commence avant la périodes d'indisponibilité sur la machine } M_k \\ 0 & \text{Sinon} \end{cases}$$

 $c_{[i]k}$: la date de fin de la tâche $J_{[i]}$ sur la machine $M_k.$

 C_{max} : Makespan.

Fonction objectif

$Min C_{max}$

Contraintes

$c_{[i]\sigma_2^{[i]}} - p_{[i]\sigma_2^{[i]}} \geq c_{[i]\sigma_1^{[i]}}$	$\forall [i] \in \{1,,N\}$	(4.31)
$c_{[i]k} - B \cdot (1 - y_{[i]k}) \le s_k$	$\forall [i] \in \{1,,N\}, \forall k \in \{1,2\}$	(4.32)
$c_{[i]k} - t_k \cdot (1 - y_{[i]k}) \ge p_{ik}$	$\forall [i] \in \{1,,N\}, \forall k \in \{1,2\}$	(4.33)
$c_{[i]k} \ge p_{[i]k}$	$\forall [i] \in \{1,,N\}, \forall k \in \{1,2\}$	(4.34)
$C_{max} \ge c_{[i]k}$	$\forall [i] \in \{1,,N\}, \ \forall k \in \{1,2\}$	(4.35)
$c_{[j]k} - c_{[i]k} + B.(1 - \gamma_{[i][j]k}) \ge p_{[j]k}$	$\forall [i], [j], \ [j] > [i], \forall k \in \{1,2\}$	(4.36)
$c_{[j]k'} - c_{[i]k'} + B.(1 - y_{[i]k} + y_{[j]k}) \ge p_{[j]k'}$	$\forall [i], [j] \in Set_{12}, \forall k, k^{'} \in \{1, 2\}$	(4.37)
$c_{[j]k'} - c_{[i]k'} + B.(1 - y_{[i]k} + y_{[j]k}) \ge p_{[j]k'}$	$\forall [i], [j] \in Set_{21}, \forall k, k' \in \{1, 2\}$	(4.38)
$1 - y_{[i]k} + y_{[j]k} \ge \gamma_{[i][j]k}$	$\forall [i], [j], \ [j] > [i], \forall k \in \{1,2\}$	(4.39)
$1 - y_{[j]k} + y_{[i]k} \ge \gamma_{[i][j]k}$	$\forall [i], [j], \ [j] > [i], \forall k \in \{1,2\}$	(4.40)
$1 - (y_{[i]k} + y_{[j]k}) \le \gamma_{[i][j]k}$	$\forall [i], [j], \ [j] > [i], \forall k \in \{1,2\}$	(4.41)
$y_{[i]k} + y_{[j]k} - 1 \le \gamma_{[i][j]k}$	$\forall [i], [j], \ [j] > [i], \forall k \in \{1,2\}$	(4.42)
$C_{max} \ge t_k + \sum_{i \in N} (p_{[i]k} \cdot (1 - y_{[i]k}))$	$\forall k \in \{1, 2\}$	(4.43)
$lb1 + B.(1 - y_{[i]1}) \le p_{[i]1}$	$\forall [i] \in Set_{12}$	(4.44)
$C_{max} \ge t_{11} + lb1 + \sum_{i \in set_{12}} (p_{[i]2} \cdot (1 - y_{[i]2}))$		(4.45)
$lb2 + B.(1 - y_{[i]2}) \le p_{[i]2}$	$\forall [i] \in Set_{21}$	(4.46)

$$C_{max} \ge t_{21} + lb2 + \sum_{i \in set_{21}} (p_{[i]1} \cdot (1 - y_{[i]1}))$$
 (4.47)

$$C_{max} \ge BI_1 \tag{4.48}$$

$$C_{max} \ge BI_2 \tag{4.49}$$

$$C_{max}, c_{[i]k} \quad entier \qquad \qquad \forall [i] \in \{1, ..., N\}, \ \forall k \in \{1, 2\}$$
 (4.50)

$$\gamma_{[i][j]k} \in \{0,1\}, \quad y_{[i]k} \in \{0,1\}$$
 $\forall [i], [j] \in \{1,...,N\}, \forall k \in \{1,2\}$ (4.51)

La description des contraintes (4.31-4.35) est détaillée pour la formulation de MILP3. Les contraintes (4.36) assurent que les tâches $(J_{[i]}$ et $J_{[j]})$ sont dans le même sous-ensemble (avant ou après la période d'indisponibilité) sur une machine suivent l'ordre de Jackson. Les contraintes (4.37-4.38) assurent que l'ordre des deux tâches appartenant à Set_{12} ou Set_{21} est le même dans chacune des deux machines. Les contraintes (4.39-4.42) garantissent que (4.36) ne fonctionne qu'avec les tâches du même sous-ensemble. Les contraintes (4.43-4.47) représentent respectivement les bornes inférieures BI_3 , BI_4 , BI_5 et BI_6 , proposées dans la section précédente. Les contraintes (4.48-4.49) assurent que C_{max} est supérieur à la borne inférieure BI_1 et BI_2 . Dans les équations (4.44)-(4.47), deux variables entières artificielles lb_1 et lb_2 sont utilisées pour linéariser $(\min_{i \in Set_{12}^{AA}} p_{i1})$ et $(\min_{i \in Set_{21}^{AA}} p_{i2})$ respectivement. Les contraintes (4.50) indiquent que le makespan et la date de fin d'une tâche J_i sont des nombres entiers. Les contraintes (4.51) sont des restrictions binaires pour $y_{[i]k}$ et $\gamma_{[i][j]}$.

4.8 Résultats expérimentaux

Dans cette section nous présentons les résultats numériques afin d'évaluer les performances des méthodes de résolution proposées. Les deux modèles MILP3 et MILP4 ont été résolus par le solveur IBM - Cplex interfacé avec C++ et l'algorithme PSE proposé a été implémenté sur C++. Les tests ont été exécuté sur un PC de fréquence 2.6GHz Intel(R) Core (TM) i5-4210M CPU et 8.00 GB.

4.8.1 Description des paramètres

Les paramètres concernant la période d'indisponibilité à fixer sur chaque machine sont créés et ajoutés aux données de chaque instance. La durée des périodes d'indisponibilité et leurs dates de début prennent en compte les cinq variantes du problème présentées dans le tableau 4.3.

			0	
P	s_1	g_1	s_2	g_2
P1	$\frac{1}{2} \sum_{i \in N} p_{i1}$	$\frac{\sum_{i=1}^{N} p_{i1}}{N}$	s_1	g_1
P2	$\frac{1}{2} \sum_{i \in N} p_{i1}$	$\frac{\sum_{i=1}^{N} p_{i1}}{N}$	$s_1 + g_1$	g_1
P3	$\frac{1}{2} \sum_{i \in N} p_{i1}$	$\frac{\sum_{i=1}^{N} p_{i1}}{N}$	$s_1 + g_1 + \min_{J_i \in J} (p_{i1} + p_{i2}) - 1$	$\frac{\sum_{i=1}^{N} p_{i1}}{N}$
P4	$\frac{1}{2} \sum_{i \in N} p_{i1}$	$4 * \frac{\sum_{i=1}^{N} p_{i1}}{N}$	$s_1 + g_1$	$\frac{\sum_{i=1}^{N} p_{i1}}{N}$
P5	$\frac{1}{2} \sum_{i \in N} p_{i1}$	$\frac{\sum_{i=1}^{N} p_{i1}}{N}$	$s_1 + g_1$	$4 * \frac{\sum_{i=1}^{N} p_{i1}}{N}$

Tableau 4.3 – Les configurations considérées

- P1 considère que les deux périodes d'indisponibilité commencent et finissent en même temps.
- P2 traite des périodes d'indisponibilité ayant la même durée et planifiées de manière séquentielle sur les deux machines. Sans perte de généralité, nous considérons que la période de disponibilité sur la machine M_2 commence juste après la fin de celle sur M_1 étant donné que le job shop à deux machines est symétrique.
- P3 concerne le cas où les deux périodes d'indisponibilité ne sont traitées ni simultanément ni séquentiellement. En revanche, le temps entre les deux périodes d'indisponibilité est inférieur à $\min_{J_i \in J} (p_{i1} + p_{i2})$.
- P4 concerne le cas de périodes d'indisponibilité traitées séquentiellement à travers les deux machines et ayant des durées différentes $(g_1 = 4 * g_2)$.
- P5 étudie le cas des périodes d'indisponibilité traitées séquentiellement à travers les deux machines et ayant des durées différentes $(g_2 = 4 * g_1)$.

Afin d'évaluer d'avantage les performances des méthodes proposées, des expériences ont été réalisées sur des instances générées aléatoirement. Ce choix est établi car les instances étudiés de la littérature peuvent ne pas évaluer parfaitement la performance des méthodes proposées. Nous générons donc 10 instances au hasard pour chaque valeur de $N = \{15, 20, 30\}$. Le temps d'exécution de chaque opération est sélectionné aléatoirement dans l'ensemble $\{10; 20; ...; 90; 100\}$.

Les tests sont terminés lorsque l'optimum est trouvé ou lorsque la limite du temps de calcul de 3600 secondes est atteinte.

4.8.2 Analyse des résultats expérimentaux

Le tableau 4.5 illustre la performance du modèle du modèle MILP3 appliqué sur les instances de Taillard de taille $N = \{15, 20, 30\}$. Les temps CPU nécessaires pour les résoudre ainsi que les Gap_Cplex sont présentés pour évaluer le modèle. Le tableau présente les résultats pour les trois premières configurations P1, P2 et P3. Comme indiqué, MILP3 n'est capable de résoudre de manière optimale aucune des instances lorsque le temps de calcul est de 3600 secondes. Ceci est dû au nombre de solutions potentielles qui ne sont pas nécessairement des ordonnancements de permutation. En effet, le modèle ne prend pas en compte uniquement les ordonnancements de permutation dans la résolution et ne contient également aucune borne susceptible d'accélérer la résolution. D'où le temps de calcul important pour trouver ou justifier une solution optimale.

Les tableaux 4.6 et 4.7 mettent en exergue les performances de l'algorithme PSE1 résolvant les cinq configurations considérées. La borne inférieure BI, supérieure BS, le makespan C_{max} , le temps de calcul CPU(s), les noeuds atteints en branchement et l'écart $Gap = \frac{C_{max} - BI}{BI}$ (%) sont considérés pour illustrer la performance de l'algorithme. Lorsqu'une solution optimale est trouvée, il n'est pas nécessaire de calculer l'écart mentionné (Gap). Il est donc indiqué par le symbole (-). Nous remarquons que PSE1 est capable de résoudre toutes les instances étudiées, alors que PSE2 n'est pas capable de résoudre 9 des 10 instances de taille 30 comme illustré dans les tableaux 4.8 et 4.9. Pour les instances non résolues par PSE2, l'écart moyen dans les deux cas est égal à 1,60 %. La différence entre PSE1 et PSE2 est due à la stratégie de séparation et d'exploration suivie dans chaque schéma de branchement. Les résultats montrent également que les deux algorithmes ont la même performance quel que soit le problème étudié. Pour le reste de l'étude nous limiterons nos expérimentations aux trois premières configurations P1, P2 et P3.

Les tableaux 4.10, 4.11 et 4.12 comparent les performances de PSE1, PSE2 et MILP4 résolvant les configurations P1, P2 et P3. PSE1 et MILP4 résolvent toutes les instances alors que PSE2 n'est pas capable de résoudre 9 de 10 instances de taille de 30 tâches. La bonne performance de MILP4 comparé à MILP3 est due à l'application de la propriété démontrée 11 impliquant l'optimalité de la règle de Jackson avant et après chaque période d'indisponibilité et en raison des bornes inférieures déduites de la même propriété. Cela a permis à l'ordonnancement des opérations d'être effectué par l'algorithme de Jackson en temps polynomiale, contrairement au modèle MILP3 qui contient des contraintes d'ordonnancement et d'indisponibilité rendant ainsi la résolution plus difficile. D'un autre côté, le modèle MILP4 fonctionne de la même manière que la procédure PSE1. En

effet, comme l'ordre optimal des opérations est déterminé à l'avance (selon la règle de Jackson), la décision consiste à faire le choix optimal des opérations à traiter avant ou après chaque période d'indisponibilité. Le tableau 4.4 affiche le temps de calcul moyen, minimal et maximal pour chaque instance des trois méthodes PSE1, PSE2 et MILP4 pour les trois configurations P1, P2 et P3. Nous remarquons que PSE1 est significativement mieux que PSE2 et légèrement meilleur que MILP4 pour les instances de Taillard de taille $N = \{15, 20, 30\}$.

Les résultats montrent que les bornes inférieures sont toujours atteintes et cela est dû aux temps d'exécutions des tâches proposées par les instances de Taillard et capables d'occuper les temps d'inactivité générés par les périodes d'indisponibilité. Les instances de Taillard ne permettent donc pas une évaluation parfaite de la performance des méthodes proposées. D'où la génération de nouvelles instances afin d'éviter les cas où le makespan optimal est égal à la borne inférieure. Pour ce faire, nous générons aléatoirement des instances dont les temps d'exécutions des tâches sur les deux machines appartient à l'ensemble {10, 20, 30, ..., 100}.

Le tableau 4.13 illustre la performance des méthodes PSE1, PSE2 et MILP4 appliquées sur les instances générées aléatoirement pour la configuration P3. PSE1 est plus rapide que PSE2 en ce qui concerne la résolution des instances de 15 tâches. Pour les instances de taille 20 et 30, PSE1 trouve les mêmes résultats pour les instances résolus à l'optimum par MILP4. Nous notons que les instances résolues optimalement avec un petit nombre de noeuds, correspondent aux instances dont la solution optimale égale à la borne inférieure (BI). Pour les instances générées, le MILP4 fonctionne mieux que les procédures PSE1 et PSE2. Par ailleurs, l'écart est calculé comme $Gap = \frac{C_{max} - \dot{C}_{max}(MILP4)}{C_{max}(MILP4)}$ (%) si $C_{max}(MILP4)$ est optimal, sinon il est calculé en fonction de la limite inférieure $(Gap = \frac{C_{max} - BI}{BI}(\%))$. En plus de l'ordre optimal prouvé dans la propriété 11 et les bornes inférieures insérées, la bonne performance du modèle MILP4, comparé à PSE1 est due aux coupes d'addition (Clique cuts, Cover cuts, Implied bound cuts, Mixed integer rounding cuts,...) intégrées dans le logiciel commercial Cplex. Néanmoins, l'utilisation des solveurs commerciaux n'est pas toujours autorisée par les décideurs d'une entreprise ou d'un atelier de production. D'où l'importance de la procédure par séparation et évaluation qui dépasse également le modèle MILP4 en performance sur les instances de Taillard, plus réaliste (comme mentionné dans Taillard (1993)) que celles générées aléatoirement.

Pour le même problème et concernant la comparaison entre PSE1, PSE2 et PSE_{Agg} , les résultats présentés dans les tableaux 4.14, 4.15 et 4.16 correspondent à la résolution

des instances de Taillard alors que 4.17 représente les résultats obtenus pour les instances générées aléatoirement. Tous les résultats indiquent que PSE1 et PSE2 sont meilleurs que PSE_{Agg} . Ce dernier n'est capable de résoudre aucune instance de taille $N = \{15, 20, 30\}$. La limite de PSE_{Agg} est principalement due au nombre de tâches et de périodes d'indisponibilité par machine (plus de combinaisons). En effet, en plus des bornes inférieures utilisées dans l'évaluation ne pouvant pas éliminer les branches en raison du grand nombre d'opérations, la performance de PSE_{Agg} est également due à l'utilisation de la sélection immédiate impliquant des tâches de maintenance. Aggoune (2002) indique que PSE_{Agg} fonctionne bien avec plusieurs indisponibilités sur chaque machine. Ainsi, plus le nombre d'indisponibilités sur chaque machine est grand, plus PSE_{Agg} élimine les branches dans l'arbre. Une autre raison importante est que l'ordonnancement de permutation n'est pas pris en compte dans la résolution par Aggoune (2002). Par conséquent le nombre de combinaisons augmentera aussi bien que les branches qui ne peuvent être rejetées ni par des bornes inférieures ni par la sélection immédiate.

Tableau 4.4 – Temps d'exécution moyen (en secondes) of PSE1, PSE2 et MILP4 (Instances de Taillard)

P	N		PSE1			PSE2			MILP4	
1	1 v	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max
	15	0.05	0.41	2.66	1.34	48.88	290.92	0.59	0.97	2.12
P1	20	0.02	0.54	3.13	39.25	660.99	3600	1.15	1.76	3.37
	30	0.03	1.21	8.36	927.69	3332.77	3600	1.06	4.75	7.43
	15	0.05	0.48	2.58	2.03	55.22	33.62	0.66	0.93	1.62
P2	20	0.02	0.54	0.95	35.72	5853.97	3600	0.69	1.57	2.63
	30	0.03	2.45	14.04	1298.42	3369.84	3600	1.99	5.09	9.37
	15	0.05	0.42	1.58	0.78	33.07	63.71	0.59	0.82	1.06
P3	20	0.02	0.24	0.50	19.11	439.07	3600	1.42	1.80	2.39
	30	0.03	7.36	39.49	1021.01	439.16	3600	3.32	5.21	10.01

Tableau 4.5 – Résultats obtenus par MILP3 (instances de Taillard $N=\{15,20,30\},\ P1$, P2 et P3)

Ż	10		I	P1		I	P2		H	P3
Ŋ	DI	C_{max}	CPU(s)	$GAP_Cplex(\%)$	C_{max}	CPU(s)	$GAP_Cplex(\%)$	C_{max}	CPU(s)	$GAP_Cplex(\%)$
	944	944	3600	22.56	944	3600	20.02	944	3600	24.64
	729	729	3600	14.27	729	3600	14.27	729	3600	18.51
	832	832	3600	29.09	832	3600	23.19	832	3600	17.55
	897	268	3600	17.95	268	3600	16.61	268	3600	14.81
14	926	926	3600	25.41	926	3600	26.36	926	3600	27.34
1:0	875	875	3600	18.92	875	3600	15.77	875	3600	17.37
	964	964	3600	25.52	964	3600	16.28	964	3600	18.98
	869	869	3600	18.99	869	3600	19.56	869	3600	24.64
	286	286	3600	23.01	286	3600	26.34	286	3600	28.80
	222	222	3600	12.87	222	3600	20.34	222	3600	15.95
	1132	1132	3600	43.46	1132	3600	44.61	1132	3600	46.85
	066	066	3600	32.42	066	3600	35.05	066	3600	36.27
	1065	1065	3600	33.33	1065	3600	35.12	1065	3600	44.41
	1089	1089	3600	52.67	1089	3600	45.50	1089	3600	37.37
Oc	226	226	3600	34.19	226	3600	41.15	226	3600	31.56
07	1170	1170	3600	42.22	1170	3600	37.78	1170	3600	39.25
	1167	1167	3600	40.61	1167	3600	54.76	1167	3600	50.57
	1114	1114	3600	38.90	1114	3600	41.21	1114	3600	36.26
	1103	1103	3600	38.53	1103	3600	40.07	1103	3600	32.33
	1243	1243	3600	35.80	1243	3600	38.94	1243	3600	37.59
	1723	1723	3600	99.92	1723	3600	74.17	1723	3600	76.83
	1699	1699	3600	75.98	1699	3600	75.81	1699	3600	75.84
	1740	1740	3600	74.08	1740	3600	76.04	1740	3600	75.14
	1787	1787	3600	78.51	1787	3600	76.35	1787	3600	76.41
06	1658	1658	3600	74.72	1658	3600	74.76	1658	3600	72.61
00	1780	1780	3600	78.99	1780	3600	78.43	1780	3600	76.18
	1830	1830	3600	78.10	1830	3600	74.60	1830	3600	74.98
	1486	1486	3600	70.45	1486	3600	71.40	1486	3600	73.38
	1642	1642	3600	77.34	1642	3600	76.82	1642	3600	72.58
	1584	1584	3600	74.14	1584	3600	70.99	1584	3600	74.98

Tableau 4.6 – Résultats obtenus par PSE1 (Instances de Taillard $N=\{15,20,30\},\,P1,\,P2$ et P3

	Gap(%)	ı	I	I	I	I	I	I	I	I	I	ı	I	I	I	I	I	I	I	I	I	1	I	I	I	I	I	I	I	I	ı
	Nodes (166	221	857	1297	514	364	328	3448	6442	2713	1480	64	214	154	130	2408	442	167	652	1303	153	87759	473	1184	92	27050	3034	385	42145	129
P3	$\mathcal{C}PU(s)$	0.05	0.05	0.22	0.36	0.15	0.09	0.08	0.90	1.59	0.77	0.55	0.02	0.09	0.04	0.05	0.981	0.14	0.05	0.20	0.41	0.06	39.50	0.22	0.55	0.03	12.30	1.18	0.14	18.58	0.05
	C_{max}	944	729	832	268	926	875	964	698	286	222	1132	066	1065	1089	226	1170	1167	1114	1103	1243	1723	1699	1740	1787	1658	1780	1830	1486	1642	1584
	BS	1003	892	298	905	984	946	1037	902	1004	862	1154	1020	1087	1135	626	1215	1225	1180	1148	1268	1742	1747	1742	1814	1670	1791	1859	1535	1691	1608
	BI	944	729	832	268	926	875	964	698	286	222	1132	066	1065	1089	226	1170	1167	1114	1103	1243	1723	1699	1740	1787	1658	1780	1830	1486	1642	1584
	Gap(%)	1	I	I	I	I	I	I	I	I	I	ı	I	I	I	I	I	I	I	I	I	ı	I	I	I	I	I	I	I	I	1
	Nodes	627	221	883	2162	816	193	334	237	9033	1971	1400	266	89	408	627	2006	487	151	1952	2881	153	388	4143	1169	15126	704	3041	283	30074	125
P2	CPU(s)	0.18	90.0	0.23	0.61	0.24	0.02	0.09	90.0	2.58	0.75	0.64	0.10	0.03	0.12	0.23	0.92	0.23	90.0	0.72	0.95	90.0	0.16	2.04	0.54	90.9	0.31	1.17	0.10	14.04	0.05
	C_{max}	944	729	832	268	926	875	964	698	286	222	1132	066	1065	1089	226	1170	1167	1114	1103	1243	1723	1699	1740	1787	1658	1780	1830	1486	1642	1584
	BS	970	892	298	920	926	946	1037	902	1004	780	1222	1020	1087	1135	1044	1181	1225	1180	1117	1268	1742	1725	1778	1839	1727	1806	1859	1510	1675	1608
	BI	944	729	832	268	926	875	964	698	286	222	1132	066	1065	1089	226	1170	1167	1114	1103	1243	1723	1699	1740	1787	1658	1780	1830	1486	1642	1584
	Gap(%)	ı	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	ı	I	I	I	I	I	I	I	I	I
	Nodes	223	215	895	701	241	1330	296	929	10541	950	8594	563	64	1210	502	1112	467	320	1817	1129	153	2418	26	1856	635	426	3042	566	18600	172
P1	CPU(s)	90.0	0.05	0.22	0.19	90.0	0.32	0.07	0.17	2.66	0.26	3.13	0.18	0.02	0.34	0.19	0.36	0.16	0.10	0.58	0.34	90.0	1.01	0.03	06.0	0.24	0.18	1.18	0.10	8.36	0.07
	C_{max}	944	729	832	268	926	875	964	698	286	222	1132	066	1065	1089	226	1170	1167	1114	1103	1243	1723	1699	1740	1787	1658	1780	1830	1486	1642	1584
	BS	1021	892	298	696	066	946	1037	902	1031	780	1172	1020	1087	1135	1001	1235	1225	1180	1173	1284	1742	1719	1788	1790	1674	1816	1859	1507	1734	1608
	BI	944	729	832	268	926	875	964	698	286	222	1132	066	1065	1089	226	1170	1167	11114	1103	1243	1723	1699	1740	1787	1658	1780	1830	1486	1642	1584
Ż	^ 7					<u> </u>	0.1									ç	04									06	00				

Tableau 4.7 – Résultats obtenus par PSE1 (Instances de Taillard $N=\{15,20,30\},~P2,~P4$ et P5

	Gap(%)	ı	I	I	I	I	I	I	I	I	I	ı	I	I	I	I	I	I	I	I	I	I	ı	I	ı	I	I	I	I	I	ı
	Nodes	627	181	5763	2259	1542	633	7431	717	6515	3207	902	2179	20	4046	3231	7204	246	27471	1804	5996	141	12288	42727	29728	82670	509	1439	61929	80478	1074
P5	CPU(s)	0.18	0.05	1.44	99.0	0.45	0.15	2.29	0.21	2.10	0.99	0.36	0.77	0.01	1.30	1.29	2.60	0.07	9.42	0.67	2.09	0.05	5.69	22.56	15.70	37.96	0.25	0.55	28.31	38.74	0.48
	C_{max}	1070	781	840	1032	1118	875	1074	1028	1169	606	1282	1110	1136	1139	1106	1329	1173	1177	1256	1414	1723	1858	1896	1934	1817	1939	1830	1621	1786	1681
	BS	1096	827	606	1055	1138	946	1123	1032	1183	912	1372	1138	1144	1141	1173	1340	1225	1180	1267	1419	1742	1884	1934	1986	1886	1965	1859	1651	1819	1761
	BI	1070	781	840	1032	1118	875	1074	1028	1169	606	1282	11110	1136	1139	1106	1329	1173	1177	1256	1414	1723	1858	1896	1934	1817	1939	1830	1621	1786	1681
	Gap(%)	1	ı	I	I	I	I	I	I	I	I	ı	I	I	I	I	I	I	I	ı	I	I	ı	ı	ı	I	I	I	I	I	ı
	Nodes	89	221	883	1680	36	193	361	36	6482	62	74035	266	89	408	18301	42	487	151	454	201	153	148	59461	8429	70	1328	3041	267	16150	125
P4	CPU(s)	0.02	0.05	0.23	0.43	0.01	0.05	60.0	0.01	1.62	0.03	23.45	0.08	0.03	0.12	5.50	0.01	0.15	0.05	0.13	90.0	90.0	0.05	23.99	3.72	90.0	0.50	1.18	0.10	6.43	0.05
	C_{max}	944	864	886	897	1026	1037	1144	1020	1170	844	1218	1131	1215	1242	1039	1279	1332	1273	1240	1376	1888	1805	1789	1787	1808	1816	2007	1627	1642	1737
	BS	947	903	1023	986	1042	1108	1217	1064	1187	928	1269	1161	1237	1288	1055	1288	1390	1339	1270	1439	1907	1813	1812	1798	1812	1888	2036	1648	1692	1761
	BI	944	864	886	268	1026	1037	1144	1020	1170	844	1218	1131	1215	1242	1039	1279	1332	1273	1240	1376	1888	1805	1789	1787	1808	1816	2007	1627	1642	1737
	Gap(%)	I	I	I	I	I	I	I	I	I	I	ı	I	I	I	I	I	I	I	I	I	I	ı	I	ı	I	I	I	I	I	ı
	Nodes	627	221	883	2162	816	193	334	237	9033	1971	1400	266	89	408	627	2006	487	151	1952	2881	153	388	4143	1169	15126	704	3041	283	30074	125
P2	CPU(s)	0.18	90.0	0.23	0.61	0.24	0.05	0.09	90.0	2.58	0.75	0.64	0.10	0.03	0.12	0.23	0.92	0.23	90.0	0.72	0.95	90.0	0.16	2.04	0.54	90.9	0.31	1.17	0.10	14.04	0.02
	C_{max}	944	729	832	268	926	875	964	698	286	222	1132	066	1065	1089	226	1170	1167	11114	1103	1243	1723	1699	1740	1787	1658	1780	1830	1486	1642	1584
	BS	026	892	298	920	926	946	1037	902	1004	780	1222	1020	1087	1135	1044	1181	1225	1180	11117	1268	1742	1725	1778	1839	1727	1806	1859	1510	1675	1608
	BI	944	729	832	268	926	875	964	698	286	222	1132	066	1065	1089	226	1170	1167	1114	1103	1243	1723	1699	1740	1787	1658	1780	1830	1486	1642	1584
Ź	۸,					<u>-</u>	CI									Ç	04									06	3				

Tableau 4.8 – Résultats obtenus pa PSE2 (Instances de Taillard $N=\{15,20,30\},\ P1,\ P2$ et P3

	Gap(%)	1	I	I	I	I	I	I	I	I	I	ı	I	I	I	I	I	I	I	I	ı	1.10	2.83	0.11	1.51	0.72	0.62	1.58	3.30	2.98	1
	Nodes	67821	71640	203917	293441	103338	5214	199808	190625	353362	366018	13292983	85066	231910	171990	3539581	527612	464300	202672	2126110	702759	12386792	13008288	12343797	9775274	9812781	10075292	9768468	10400988	12940763	3945625
P3	CPU(s)	12.81	11.11	32.54	53.69	17.02	0.78	32.48	29.21	57.13	63.72	2743.33	19.11	44.51	33.13	740.75	104.18	94.88	40.97	431.28	139.47	3600	3600	3600	3600	3600	3600	3600	3600	3600	1021.01
	C_{max}	944	729	832	268	926	875	964	698	286	277	1132	066	1065	1089	226	1170	1167	1114	1103	1243	1742	1747	1742	1814	1670	1791	1859	1535	1691	1584
	BS	1003	892	298	905	984	946	1037	902	1004	862	1154	1020	1087	1135	626	1215	1225	1180	1148	1268	1742	1747	1742	1814	1670	1791	1859	1535	1691	1608
	BI	944	729	832	897	926	875	964	869	286	222	1132	066	1065	1089	226	1170	1167	1114	1103	1243	1723	1699	1740	1787	1658	1780	1830	1486	1642	1584
	Gap(%)	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	1.10	1.53	2.18	2.91	3.62	1.46	1.58	1.62	2.01	ı
	Nodes	107827	38563	259173	51244	62971	8890	189779	90447	1456064	141109	12547549	187049	133328	251737	12445986	1685732	404393	194088	1460018	645298	9765414	9888178	9273171	9415562	10121782	9868754	9880187	10703254	9780592	3762814
P2	CPU(s)	29.61	6.83	53.89	14.28	16.08	2.06	39.52	20.28	334.63	34.99	3600	54.20	35.72	63.91	3600	468.48	111.17	52.72	384.79	168.75	3600	3600	3600	3600	3600	3600	3600	3600	3600	1298.42
	C_{max}	944	729	832	897	926	875	964	698	286	222	1151	066	1065	1089	626	1170	1167	1114	1103	1243	1742	1725	1778	1839	1718	1806	1859	1510	1675	1584
	BS	026	892	298	920	926	946	1037	905	1004	780	1222	1020	1087	1135	1044	1181	1225	1180	1117	1268	1742	1725	1778	1839	1727	1806	1859	1510	1675	1608
	BI	944	729	832	897	926	875	964	869	286	777	1132	066	1065	1089	977	1170	1167	1114	1103	1243	1723	1699	1740	1787	1658	1780	1830	1486	1642	1584
	Gap(%)	ı	I	I	I	I	I	I	I	I	I	ı	I	I	I	I	I	I	I	I	I	90.0	1.18	2.76	0.17	0.12	2.02	1.58	0.94	5.60	ı
	Nodes	24662	38095	348565	73590	298180	9166	246925	114246	1819804	57410	16910076	342070	210082	250936	10483912	986266	614995	280488	784314	467493	13311509	13154796	12497596	12236847	13189616	13095295	13171671	14043145	13158205	3630638
P1	CPU(s)	4.80	5.69	54.58	13.46	49.40	1.34	40.93	18.08	280.92	9.53	3600	66.55	39.25	47.58	2217.06	201.21	124.04	56.91	163.99	93.37	3600	3600	3600	3600	3600	3600	3600	3600	3600	927.69
	C_{max}	944	729	832	897	926	875	964	698	286	222	1137	066	1065	1089	226	1170	1167	11114	1103	1243	1724	1719	1788	1790	1660	1816	1859	1500	1734	1584
	BS	1021	892	298	696	066	946	1037	905	1031	780	1172	1020	1087	1135	1001	1235	1225	1180	1173	1284	1742	1719	1788	1790	1674	1816	1859	1507	1734	1608
	BI	944	729	832	897	926	875	964	698	286	777	1132	066	1065	1089	226	1170	1167	1114	1103	1243	1723	1699	1740	1787	1658	1780	1830	1486	1642	1584
Ż	Ŋ					<u>14</u>	0.1									OG	07									06	00				

Tableau 4.9 – Résultats obtenus pa PSE1 (Instances de Taillard $N = \{15, 20, 30\}, P2, P4$ et P5

	Gap(%)	ı	I	I	I	I	I	I	I	I	I	ı	I	I	I	I	I	I	I	I	I	0.64	1.40	0.16	1.81	1.38	0.77	0.22	1.42	0.28	I
	Nodes	282545	96208	9874	104724	130295	17665	55463	46021	545507	443879	12955637	769456	447699	123309	12565745	2063925	192010	196174	6364330	949984	9924365	10165734	9314539	9416619	9651687	10406697	10059202	13740250	13118894	5993745
P5	CPU(s)	68.32	18.78	1.61	25.35	29.87	4.09	10.65	9.64	122.76	99.80	3600	190.57	119.04	32.75	3600	579.87	55.47	51.90	1667.79	250.78	3600	3600	3600	3600	3600	3600	3600	3600	3600	1332.33
	C_{max}	1070	781	480	1032	11118	875	1074	1028	1169	606	1289	1110	1136	1139	1108	1329	1173	1177	1256	1414	1734	1884	1899	1969	1842	1954	1834	1644	1791	1681
	BS	1096	827	606	1055	1138	946	1123	1032	1183	912	1372	1138	1144	1141	1173	1340	1225	1180	1267	1419	1742	1884	1934	1986	1886	1965	1859	1651	1819	1761
	BI	1070	781	840	1032	1118	875	1074	1028	1169	606	1282	11110	1136	1139	1106	1329	1173	1177	1256	1414	1723	1858	1896	1934	1817	1939	1830	1621	1786	1681
	Gap(%)	I	I	I	I	I	I	I	I	I	I	ı	I	I	I	I	I	I	I	I	I	1.01	0.44	1.29	0.62	0.22	3.96	1.44	1.29	3.05	I
	Nodes	386651	39405	270106	104856	27065	8890	187626	21137	416325	24552	5041366	185983	133328	251737	1911198	235875	404393	194088	541695	474990	10087266	9919711	9417979	9674579	9758787	9922909	9343585	10621584	10054685	3762853
P4	CPU(s)	77.46	8.05	6104	27.48	5.39	2.12	43.12	3.68	91.88	4.50	1379.77	44.18	31.74	62.71	513.62	59.08	100.57	54.68	139.06	113.48	3600	3600	3600	3600	3600	3600	3600	3600	3600	1332.33
	C_{max}	944	864	886	897	1026	1037	1144	1020	1170	844	1218	1131	1215	1242	1039	1279	1332	1273	1240	1376	1907	1813	1812	1798	1812	1888	2036	1648	1692	1737
	BS	947	903	1023	986	1042	1108	1217	1064	1187	928	1269	1161	1237	1288	1055	1288	1390	1339	1270	1439	1907	1813	1812	1798	1812	1888	2036	1648	1692	1761
	BI	944	864	886	897	1026	1037	1144	1020	1170	844	1218	1131	1215	1242	1039	1279	1332	1273	1240	1376	1888	1805	1789	1787	1808	1816	2007	1627	1642	1737
	Gap(%)	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	1.10	1.53	2.18	2.91	3.62	1.46	1.58	1.62	2.01	I
	Nodes	107827	38563	259173	51244	62971	8890	189779	90447	1456064	141109	12547549	187049	133328	251737	12445986	1685732	404393	194088	1460018	645298	9765414	9888178	9273171	9415562	10121782	9868754	9880187	10703254	9780592	3762814
P2	CPU(s)	29.61	6.83	53.89	14.28	16.08	2.06	39.51	20.28	334.63	34.99	3600	54.20	35.72	63.91	3600	468.48	111.17	52.72	384.79	168.75	3600	3600	3600	3600	3600	3600	3600	3600	3600	1298.42
	C_{max}	944	729	832	897	926	875	964	698	286	222	1151	066	1065	1089	626	1170	1167	1114	1103	1243	1742	1725	1778	1839	1718	1806	1859	1510	1675	1584
	BS	970	892	298	920	926	946	1037	905	1004	780	1222	1020	1087	1135	1044	1181	1225	1180	11117	1268	1742	1725	1778	1839	1727	1806	1859	1510	1675	1608
	BI	944	729	832	897	926	875	964	698	286	222	1132	066	1065	1089	226	1170	1167	1114	1103	1243	1723	1699	1740	1787	1658	1780	1830	1486	1642	1584
×	Ŋ					<u>.</u>	1:0									00	07									00	00				

Tableau 4.10 – Comparaison des résultats obtenus par PSE1, PSE2 et MILP4 (Instances de Taillard $N=\{15,20,30\},\,P1)$

Ż	10	DG		P5	PSE1			Ь	PSE2			MILP4	24
٨٦	DI	DS	C_{max}	CPU(s)	Nodes	Gap(%)	C_{max}	CPU(s)	Nodes	Gap(%)	C_{max}	CPU(s)	Gap_Cplex
	944	1021	944	90.0	223	I	944	4.80	24662	I	944	0.47	0
	729	768	729	0.02	215	I	729	5.69	38095	I	729	0.63	0
	832	298	832	0.22	895	I	832	54.58	348565	I	832	0.45	0
	268	696	268	0.19	701	I	268	13.46	73590	I	897	0.35	0
<u>.</u>	926	066	926	90.0	241	I	926	49.40	298180	I	926	0.87	0
10	875	946	875	0.32	1330	I	875	1.34	9166	I	875	0.40	0
	964	1037	964	0.07	296	I	964	40.93	246925	I	964	0.49	0
	698	902	698	0.17	929	I	698	18.08	114246	I	869	0.61	0
	286	1031	286	2.66	10541	I	286	280.92	1819804	I	286	1.03	0
	222	780	222	0.26	950	I	222	9.53	57410	I	222	0.48	0
	1132	1172	1132	3.13	8594	ı	1137	3600	16910076	I	1132	2.08	0
	066	1020	066	0.18	563	I	066	66.55	342070	I	066	1.09	0
	1065	1087	1065	0.03	64	I	1065	39.25	210082	I	1065	1.40	0
	1089	1135	1089	0.34	1210	I	1089	47.58	250936	I	1089	1.01	0
C	226	1001	226	0.19	505	I	226	2217.06	10483912	I	226	0.95	0
07	1170	1235	1170	0.36	1112	I	1170	201.21	986266	I	1170	2.32	0
	1167	1225	1167	0.16	467	I	1167	124.04	614995	I	1167	2.44	0
	1114	1180	1114	0.10	320	I	1114	56.91	280488	I	1114	2.17	0
	1103	1173	1103	0.58	1817	I	1103	163.99	784314	I	1103	1.81	0
	1243	1284	1243	0.34	1129	I	1243	93.37	467493	I	1243	1.95	0
	1723	1742	1723	90.0	153	I	1724	3600	13311509	90.0	1723	7.70	0
	1699	1719	1699	1.01	2418	I	1719	3600	13154796	1.18	1699	9.46	0
	1740	1788	1740	0.02	26	I	1788	3600	12497596	2.76	1739	6.82	0
	1787	1790	1787	06.0	1856	I	1790	3600	12236847	0.17	1787	3.31	0
C	1658	1674	1658	0.24	635	I	1660	3600	13189616	0.12	1658	7.79	0
00	1780	1816	1780	0.18	426	I	1816	3600	13095295	2.02	1780	3.04	0
	1830	1859	1830	1.18	3042	I	1859	3600	13171671	1.58	1830	5.62	0
	1486	1507	1486	0.10	566	I	1500	3600	14043145	0.94	1486	6.63	0
	1642	1734	1642	8.36	18600	I	1734	3600	13158205	5.60	1642	3.36	0
	1584	1608	1584	0.07	172	I	1584	927.69	3630638	1	1584	5.90	0

Tableau 4.11 – Comparaison des résultats obtenus par PSE1, PSE2 et MILP4 (Instances de Taillard $N=\{15,20,30\},\,P2)$

Ž	10	ğ		P_2	PSE1			Ь	PSE2			MILP4	24
٨٦	DI	DO	C_{max}	CPU(s)	Nodes	Gap(%)	C_{max}	CPU(s)	Nodes	Gap(%)	C_{max}	CPU(s)	Gap_Cplex
	944	970	944	0.18	627	ı	944	29.61	107827	I	944	0.37	0
	729	892	729	90.0	221	I	729	6.83	38563	I	729	0.59	0
	832	298	832	0.23	883	I	832	53.89	259173	I	832	0.51	0
	897	920	268	0.61	2162	I	897	14.28	51244	I	897	0.24	0
r H	926	926	926	0.24	816	I	926	16.08	62971	I	926	08.0	0
CI	875	946	875	0.05	193	I	875	2.06	8890	I	875	0.76	0
	964	1037	964	0.09	334	I	964	39.52	189779	I	964	0.39	0
	698	905	698	90.0	237	I	698	20.28	90447	I	869	0.53	0
	286	1004	286	2.58	9033	I	286	334.63	1456064	I	286	3.64	0
	777	780	222	0.75	1971	I	222	34.99	141109	I	222	0.77	0
	1132	1222	1132	0.64	1400	I	1151	3600	12547549	I	1132	0.82	0
	066	1020	066	0.10	266	I	066	54.20	187049	I	066	1.01	0
	1065	1087	1065	0.03	89	I	1065	35.72	133328	I	1065	1.41	0
	1089	1135	1089	0.12	408	I	1089	63.91	251737	I	1089	0.78	0
06	226	1044	226	0.23	627	I	626	3600	12445986	I	226	1.52	0
07	1170	1181	1170	0.92	2006	I	1170	468.48	1685732	I	1170	1.01	0
	1167	1225	1167	0.23	487	I	1167	111.17	404393	I	1167	1.48	0
	1114	1180	11114	90.0	151	I	1114	52.72	194088	I	1114	0.71	0
	1103	11117	1103	0.72	1952	I	1103	384.79	1460018	I	1103	0.75	0
	1243	1268	1243	0.95	2881	I	1243	168.75	645298	I	1243	1.14	0
	1723	1742	1723	90.0	153	I	1742	3600	9765414	1.10	1723	8.83	0
	1699	1725	1699	0.16	388	I	1725	3600	9888178	1.53	1699	5.25	0
	1740	1778	1740	2.04	4143	I	1778	3600	9273171	2.18	1740	8.47	0
	1787	1839	1787	0.54	1169	I	1839	3600	9415562	2.91	1787	4.41	0
06	1658	1727	1658	90.9	15126	I	1718	3600	10121782	3.62	1658	5.21	0
00	1780	1806	1780	0.31	704	I	1806	3600	9868754	1.46	1780	12.01	0
	1830	1859	1830	1.17	3041	ı	1859	3600	9880187	1.58	1830	06.9	0
	1486	1510	1486	0.10	283	ı	1510	3600	10703254	1.62	1486	7.84	0
	1642	1675	1642	14.04	30074	ı	1675	3600	9780592	2.01	1642	6.03	0
	1584	1608	1584	0.05	125	I	1584	1298.42	3762814	I	1584	3.29	0

Tableau 4.12 – Comparaison des résultats obtenus par PSE1, PSE2 et MILP4 (Instances de Taillard $N=\{15,20,30\},\,P3)$

X	10	DG		P§	PSE1			F	PSE2			MILP4	24
^ 7	DI	DD	C_{max}	CPU(s)	Nodes	Gap(%)	C_{max}	CPU(s)	Nodes	Gap(%)	C_{max}	CPU(s)	Gap_Cplex
	944	1003	944	0.02	166	I	944	12.81	67821	I	944	0.59	0
	729	892	729	0.05	221	I	729	11.11	71640	I	729	99.0	0
	832	298	832	0.22	857	I	832	32.54	203917	I	832	0.76	0
	268	905	268	0.36	1297	I	268	53.69	293441	I	897	99.0	0
14	926	984	926	0.15	514	I	926	17.02	103338	I	926	0.75	0
1:0	875	946	875	0.09	364	I	875	0.78	5214	I	875	1.05	0
	964	1037	964	0.08	328	I	964	32.48	199808	I	964	0.92	0
	698	905	698	06.0	3448	I	698	29.21	190625	I	869	1.01	0
	286	1004	286	1.59	6442	I	286	57.13	353362	I	286	96.0	0
	222	798	222	0.77	2713	I	222	63.72	366018	I	222	0.85	0
	1132	1154	1132	0.55	1480	ı	1132	2743.33	13292983	ı	1132	1.61	0
	066	1020	066	0.03	64	I	066	19.11	99058	I	066	1.56	0
	1065	1087	1065	0.09	214	I	1065	44.51	231910	I	1065	1.73	0
	1089	1135	1089	0.04	154	I	1089	33.13	171990	I	1089	2.11	0
Ö	226	626	226	0.05	130	I	226	740.75	3539581	I	226	1.41	0
07	1170	1215	1170	0.981	2408	I	1170	104.18	527612	I	1170	1.47	0
	1167	1225	1167	0.14	442	I	1167	94.88	464300	I	1167	1.49	0
	1114	1180	1114	0.05	167	I	1114	40.97	202672	I	1114	1.94	0
	1103	1148	1103	0.20	652	I	1103	431.28	2126110	I	1103	2.40	0
	1243	1268	1243	0.41	1303	I	1243	139.47	702759	I	1243	2.29	0
	1723	1742	1723	90.0	153	I	1742	3600	12386792	1.10	1723	3.52	0
	1699	1747	1699	39.50	87759	I	1747	3600	13008288	2.83	1699	3.32	0
	1740	1742	1740	0.22	473	I	1742	3600	12343797	0.11	1740	5.57	0
	1787	1814	1787	0.55	1184	I	1814	3600	9775274	1.51	1787	6.47	0
06	1658	1670	1658	0.03	92	I	1670	3600	9812781	0.72	1658	3.40	0
00	1780	1791	1780	12.30	27050	I	1791	3600	10075292	0.62	1780	5.69	0
	1830	1859	1830	1.18	3034	I	1859	3600	9768468	1.58	1830	4.39	0
	1486	1535	1486	0.14	385	I	1535	3600	10400988	3.30	1486	10.01	0
	1642	1691	1642	18.58	42145	I	1691	3600	12940763	2.98	1642	4.17	0
	1584	1608	1584	0.02	129	I	1584	1021.01	3945625	I	1584	5.60	0

Tableau 4.13 – Comparaison des résultats obtenus par PSE1, PSE2 et MILP4 (Instances aléatoires, P3)

MILP4	s) Gap_Cplex	0	0	0	0	0	0	0	0	0	0	0 1	0	0	0	0	9 0	1 0	0 2	0	1 0	0.47	0.33	0.47	0.39	0.47	00.00	0.00	0.11	0.40	
M	CPU(s)	1.36	0.68	0.22	1.38	1.39	1.84	0.32	1.19	0.21	0.47	15.24	0.46	20.05	28.85	9.18	61.88	25.74	24.77	21.05	32.84	3600	3600	3600	3600	3600	1705.08	2.27	3600	3600	
	C_{max}	1053	857	821	966	913	877	1120	975	096	821	1296	1081	1219	1117	1316	1255	1311	1214	1311	1357	1713	1814	1931	2033	1931	1413	1880	1779	1494	
	Gap(%)	ı	I	I	ı	I	I	I	I	I	I	0.00	I	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.64	0.33	0.47	0.40	0.47	4.13	ı	2.93	3.09	
52	Nodes	8989991	10108864	31182	4040355	8437680	9613372	26871	9474141	2006	27255	13823632	122301	13785815	18132674	18187703	19019267	18951258	18953215	18679289	19097015	13733696	13853968	14658592	15083229	14335396	14038068	7583942	13859207	13946120	
PSE2	CPU(s)	1891.35	2088.08	7.46	875.63	1770.71	2022.17	5.01	1985.19	0.48	6.65	3600	29.69	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	1942.12	3600	3600	
	C_{max}	1053	857	821	966	913	877	1120	975	096	821	1296	1081	1219	1117	1316	1255	1311	1214	1311	1357	1733	1814	1931	2033	1931	1463	1880	1829	1534	
	BS	1083	206	871	1056	958	920	1210	1005	970	831	1306	1091	1279	1117	1366	1305	1351	1214	1311	1407	1733	1814	1971	2093	1941	1463	1950	1829	1534	
	Gap(%)	ı	I	I	I	I	I	I	I	I	I	0.00	I	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.47	0.33	0.47	0.39	0.47	0.00	I	0.11	0.40	
1	Nodes	580784	441332	459	564962	275737	762757	47	554631	25	15	7699181	66	7767143	7884961	8327689	8103980	8096330	8410093	8425768	8388219	6058946	6074555	6211670	6240605	6435738	6692669	83	6120226	6394448	
PSE1	CPU(s)	136.42	102.93	0.11	134.23	65.17	239.76	0.02	193.92	0.01	0.01	3600	0.05	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	0.02	3600	3600	
	C_{max}	1053	857	821	966	913	877	1120	975	096	821	1296	1081	1219	11117	1316	1255	1311	1214	1311	1357	1713	1814	1931	2033	1931	1413	1880	1779	1494	
	BS	1083	206	871	1056	958	920	1210	1005	970	831	1306	1091	1279	11117	1366	1305	1351	1214	1311	1407	1733	1814	1971	2093	1941	1463	1950	1829	1534	
DI	DI	1045	853	821	992	906	874	1120	970	096	821	1291	1081	1218	11113	1312	1249	1302	1207	1302	1354	1705	1808	1922	2025	1922	1405	1880	1777	1488	
X	^ 7					<u> </u>	0.1									00	07									06	00				

Tableau 4.14 – Comparaison des résultats obtenus par PSE1, PSE2 et PSE_agg (Instances de Taillard $N=\{15,20,30\},\,P1)$

	Gap(%)	7.72	5.32	8.77	3.96	5.72	7.41	7.75	4.51	8.01	1.89	3.50	10.41	6.33	8.56	10.04	7.95	9.04	5.19	7.08	5.19	3.42	96.6	7.00	3.04	7.63	3.99	5.43	10.70	3.18	12.24
_agg	Nodes	1305157	1410466	1246227	1269283	1321983	1445192	1369165	1305545	1353701	1226909	594673	604210	608469	607991	616376	619156	758062	786672	781348	785559	272075	267262	270400	266930	264872	245693	245462	262740	255424	253986
PSE_c	CPU(s)	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600
	C_{max}	1023	220	912	934	1014	945	1045	910	1073	792	1173	1083	1137	1191	1066	1271	1283	1175	1187	1311	1784	1787	1871	1843	1795	1854	1935	1604	1696	1705
	BS	1023	775	912	964	1035	945	1062	918	1073	805	1173	1105	1167	1204	1092	1296	1283	1195	1195	1322	1784	1787	1871	1888	1795	1854	1938	1635	1696	1717
	Gap(%)	1	ı	ı	ı	ı	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	90.0	1.18	2.76	0.17	0.12	2.02	1.58	0.94	5.60	I
2	Nodes	24662	38095	348565	73590	298180	9166	246925	114246	1819804	57410	16910076	342070	210082	250936	10483912	986266	614995	280488	784314	467493	13311509	13154796	12497596	12236847	13189616	13095295	13171671	14043145	13158205	3630638
PSE2	CPU(s)	4.80	5.69	54.58	13.46	49.40	1.34	40.93	18.08	280.92	9.53	3600	66.55	39.25	47.58	2217.06	201.21	124.04	56.91	163.99	93.37	3600	3600	3600	3600	3600	3600	3600	3600	3600	927.69
	C_{max}	944	729	832	897	926	875	964	869	286	222	1137	066	1065	1089	226	1170	1167	1114	1103	1243	1724	1719	1788	1790	1660	1816	1859	1500	1734	1584
	BS	1021	892	298	696	066	946	1037	905	1031	780	1172	1020	1087	1135	1001	1235	1225	1180	1173	1284	1742	1719	1788	1790	1674	1816	1859	1507	1734	1608
	Gap(%)	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	ı
	Nodes	223	215	895	701	241	1330	296	929	10541	950	8594	563	64	1210	505	1112	467	320	1817	1129	153	2418	26	1856	635	426	3042	266	18600	172
PSE1	CPU(s)	90.0	90.0	0.24	0.20	0.07	0.33	0.09	0.19	2.70	0.26	3.06	0.17	0.01	0.34	0.18	0.36	0.15	0.11	0.56	0.34	90.0	1.01	0.03	0.87	0.24	0.18	1.15	0.11	9.01	0.07
	C_{max}	944	729	832	897	926	875	964	698	286	222	1132	066	1065	1089	226	1170	1167	1114	1103	1243	1723	1699	1740	1787	1658	1780	1830	1486	1642	1584
	BS	1021	892	298	696	066	946	1037	905	1031	780	1172	1020	1087	1135	1001	1235	1225	1180	1173	1284	1742	1719	1788	1790	1674	1816	1859	1507	1734	1608
DI	DI —	944	729	832	268	926	875	964	698	286	222	1132	066	1065	1089	226	1170	1167	1114	1103	1243	1723	1699	1740	1787	1658	1780	1830	1486	1642	1584
Z	_					<u>14</u>	CT									00	07									06	00				

Tableau 4.15 – Comparaison des résultats obtenus par PSE1, PSE2 et PSE_agg (Instances de Taillard $N=\{15,20,30\},$ P2)

Can(V)	(%) dp (%) dp (%	21	~																											
	5	5.5	7.93	6.02	5.33	8.69	8.51	5.06	68.9	1.42	1.86	8.08	29.9	21.40	6.45	8.21	7.54	6.46	68.9	6.28	3.95	9.65	7.76	2.63	7.84	2.98	5.79	8.88	2.56	11.87
_agg	1504888	1491927	1632812	1709429	1772557	1750153	1767688	1758543	1762596	1767490	859363	868567	863441	859503	864878	864455	862529	865579	862951	864487	297986	295188	298895	295175	297021	295147	296880	280344	279464	277401
PSE_a	3600	3600,01	3600	3600	3600	3600	3600	3600	3600	3600	3600,01	3600,01	3600,01	3600,01	3600,01	3600,01	3600,01	3600,01	3600,01	3600,01	3600,04	3600,04	3600,04	3600,04	3600,04	3600,03	3600,03	3600,05	3600,03	3600,05
٦	Cmax 1008	292	868	951	1007	951	1046	913	1055	788	1153	1070	1136	1322	1040	1266	1255	1186	1179	1321	1791	1863	1875	1834	1788	1833	1936	1618	1684	1772
S		292	906	951	1020	951	1064	913	1076	788	1165	1094	1159	1337	1071	1266	1290	1190	1188	1321	1791	1882	1875	1834	1800	1849	1936	1653	1686	1798
(2010(0))	Gap(70)	ı	ı	ı	I	ı	ı	ı	ı	ı	ı	I	I	I	I	I	ı	ı	I	1	1.10	1.53	2.18	2.91	3.62	1.46	1.58	1.62	2.01	1
2 Nodes	107827	38563	259173	51244	62971	8890	189779	90447	1456064	141109	12547549	187049	133328	251737	12445986	1685732	404393	194088	1460018	645298	9765414	9888178	9273171	9415562	10121782	9868754	9880187	10703254	9780592	3762814
PSE2	$\frac{CFU(s)}{29.61}$	6.83	53.89	14.28	16.08	2.06	39.52	20.28	334.63	34.99	3600	54.20	35.72	63.91	3600	468.48	111.17	52.72	384.79	168.75	3600	3600	3600	3600	3600	3600	3600	3600	3600	1298.42
5	C max 944	729	832	897	926	875	964	698	286	777	1151	066	1065	1089	626	1170	1167	1114	1103	1243	1742	1725	1778	1839	1718	1806	1859	1510	1675	1584
ŭ	970	892	298	920	926	946	1037	902	1004	780	1222	1020	1087	1135	1044	1181	1225	1180	1117	1268	1742	1725	1778	1839	1727	1806	1859	1510	1675	1608
(%) (%)	Gap(70)	ı	ı	ı	I	ı	I	I	I	ı	ı	I	I	I	I	I	ı	ı	I	1	ı	ı	ı	ı	I	ı	ı	I	ı	1
Modee	iv odes 627	221	883	2162	816	193	334	237	9033	1971	1400	266	89	408	627	2006	487	151	1952	2881	153	388	4143	1169	15126	704	3041	283	30074	125
PSE1	0.18	90.0	0.23	0.61	0.24	0.05	0.09	90.0	2.58	0.75	0.64	0.10	0.03	0.12	0.23	0.92	0.23	90.0	0.72	0.95	90.0	0.16	2.04	0.54	90.9	0.31	1.17	0.10	14.04	0.05
۲	C max 944	729	832	897	926	875	964	698	286	222	1132	066	1065	1089	226	1170	1167	1114	1103	1243	1723	1699	1740	1787	1658	1780	1830	1486	1642	1584
S	970	892	298	920	926	946	1037	902	1004	780	1222	1020	1087	1135	1044	1181	1225	1180	1117	1268	1742	1725	1778	1839	1727	1806	1859	1510	1675	1608
BI —	944	729	832	268	926	875	964	698	286	222	1132	066	1065	1089	226	1170	1167	1114	1103	1243	1723	1699	1740	1787	1658	1780	1830	1486	1642	1584
Z					<u>.</u>	CT									ç	04									06	3				

Tableau 4.16 – Comparaison des résultats obtenus par PSE1, PSE2 et PSE_agg (Instances de Taillard $N=\{15,20,30\},\,P3)$

	Gap(%)	9.11	4.53	8.53	2.79	5.86	9.91	12.55	92.9	8.81	5.66	3.71	5.25	7.70	17.63	9.93	11.37	10.88	8.80	9.70	7.80	4.06	11.12	8.28	2.57	8.56	5.51	6.17	11.31	5.54	15.21
agg	Nodes	1244398	1276335	1261593	1267116	1274066	1264789	1247856	1272148	1261489	1249863	793523	805176	801685	836212	838822	802694	821475	836478	805472	823476	289672	286086	289505	286439	287434	287439	280987	284763	283084	284012
PSE_a	CPU(s)	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600
	C_{max}	1030	762	903	925	1012	953	1085	926	1074	821	1174	1042	1147	1281	1074	1303	1294	1212	1210	1340	1793	1888	1884	1833	1800	1878	1943	1654	1733	1825
	BS	1073	862	941	952	1042	995	1150	926	1121	863	1209	1085	1196	1386	1104	1333	1350	1246	1249	1370	1823	1937	1914	1863	1842	1924	1973	1725	1735	1859
	Gap(%)	ı	I	I	ı	I	I	I	I	I	I	ı	I	I	I	I	I	I	I	I	I	1.10	2.83	0.11	1.51	0.72	0.62	1.58	3.30	2.98	I
2	Nodes	67821	71640	203917	293441	103338	5214	199808	190625	353362	366018	13292983	99058	231910	171990	3539581	527612	464300	202672	2126110	702759	12386792	13008288	12343797	9775274	9812781	10075292	9768468	10400988	12940763	3945625
PSE2	CPU(s)	12.81	11.11	32.54	53.69	17.02	0.78	32.48	29.21	57.13	63.72	2743.33	19.11	44.51	33.13	740.75	104.18	94.88	40.97	431.28	139.47	3600	3600	3600	3600	3600	3600	3600	3600	3600	1021.01
	C_{max}	944	729	832	897	926	875	964	869	286	222	1132	066	1065	1089	226	1170	1167	1114	1103	1243	1742	1747	1742	1814	1670	1791	1859	1535	1691	1584
	BS	1003	892	298	905	984	946	1037	902	1004	798	1154	1020	1087	1135	626	1215	1225	1180	1148	1268	1742	1747	1742	1814	1670	1791	1859	1535	1691	1608
	Gap(%)	1	I	I	ı	I	I	I	I	I	I	1	I	I	I	I	I	I	I	I	I	ı	I	I	I	I	I	I	ı	ı	Ι
	Nodes	166	221	857	1297	514	364	328	3448	6442	2713	1480	64	214	154	130	2408	442	167	652	1303	153	87759	473	1184	92	27050	3034	385	42145	129
PSE1	CPU(s)	0.05	0.05	0.22	0.36	0.15	0.09	0.08	06.0	1.59	0.77	0.55	0.02	0.09	0.04	0.05	0.981	0.14	0.05	0.20	0.41	90.0	39.50	0.22	0.55	0.03	12.30	1.18	0.14	18.58	0.05
	C_{max}	944	729	832	897	926	875	964	698	286	222	1132	066	1065	1089	226	1170	1167	1114	1103	1243	1723	1699	1740	1787	1658	1780	1830	1486	1642	1584
	BS	1003	892	298	905	984	946	1037	905	1004	862	1154	1020	1087	1135	626	1215	1225	1180	1148	1268	1742	1747	1742	1814	1670	1791	1859	1535	1691	1608
DI	D1	944	729	832	268	926	875	964	698	286	222	1132	066	1065	1089	226	1170	1167	11114	1103	1243	1723	1699	1740	1787	1658	1780	1830	1486	1642	1584
Z	_					<u>14</u>	CT									ç	07									06	00				

Tableau 4.17 – Comparaison des résultats obtenus par PSE1, PSE2 et PSE_agg (Instances aléatoires , P3)

1	Nodes $Gap(\%)$	3600 7.12	3600 13.89	3600 6.21	3600 7.23	3600 9.42	3600 7.30	3600 0.89	3600 2.05	3600 2.08	3600 2.44	3600 3.94	3600 2.04	3600 2.63	3600 3.31	3600 3.95	3600 8 60														
PSE_Agg	CPU(s) I	1665227	1714907	1773167	1767940	1772985	1773913	1771612	1768540	1768189	1772746	858349	857624	865260	857186	863431		862306	862306 860272	862306 860272 863349	862306 860272 863349 863638	862306 860272 863349 863638 864939									
	C_{max}	1128	926	872	1068	666	941	1130	995	086	841	1347	1103	1251	1154	1368		1364	1364 1523	1364 1523 1251	1364 1523 1251 1333	1364 1523 1251 1333 1421	1364 1523 1251 1333 1421 1788	1364 1523 1251 1333 1421 1788 1842	1364 1523 1251 1333 1421 1788 1842 2023	1364 1523 1251 1333 1421 1788 1842 2023	1364 1523 1251 1333 1421 1788 1842 2023 2097	1364 1523 1251 1333 1421 1788 1842 2023 2023 2097 1973	1364 1523 1251 1333 1421 1788 1842 2023 2097 1973 1502	1364 1523 1251 1333 1421 1788 1842 2023 2007 1973 1502 1502	1364 1523 1251 1333 1421 1788 1788 2023 2097 1973 1973 1974 1845
	BS	1128	1004	905	1068	1009	951	1220	1005	1060	921	1347	11113	1311	1224	1378		1384	1384 1593	1384 1593 1291	1384 1593 1291 1373	1384 1593 1291 1373 1421	1384 1593 1291 1373 1421 1788	1384 1593 1291 1373 1421 1788 1982	1384 1593 1291 1373 1421 1788 1982 2033	1384 1593 1291 1373 1421 1788 1982 2033	1384 1593 1291 1373 1421 1788 1982 2033 2097	1384 1593 1291 1373 1421 1788 1982 2033 2097 2013	1384 1593 1291 1373 1421 1788 1982 2097 2013 1532 1532	1384 1593 1291 1373 1421 1788 1982 2033 2097 2013 1532 1532	1384 1593 1291 1373 1421 1788 1982 2093 2097 2013 1532 1845
	Gap(%)	I	I	I	I	ı	I	I	I	I	I	0.00	I	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 1.64 0.33	0.00 0.00 0.00 0.00 0.00 1.64 0.33	0.00 0.00 0.00 0.00 0.00 1.64 0.33	0.00 0.00 0.00 0.00 1.64 0.33 0.47	0.00 0.00 0.00 0.00 1.64 0.33 0.47 0.47	0.00 0.00 0.00 0.00 0.00 1.64 0.33 0.47 4.13	0.00 0.00 0.00 0.00 1.64 0.33 0.47 4.13	0.00 0.00 0.00 0.00 1.64 0.33 0.47 4.13 - 2.93 3.09
2	Nodes	8989991	10108864	31182	4040355	8437680	9613372	26871	9474141	2006	27255	13823632	122301	13785815	18132674	18187703		19019267	19019267 18951258	19019267 18951258 18953215	19019267 18951258 18953215 18679289	19019267 18951258 18953215 18679289 19097015	19019267 18951258 18953215 18679289 19097015	19019267 18951258 18953215 18679289 19097015 13733696	19019267 18951258 18953215 18679289 19097015 13733696 13853968	19019267 18951258 18953215 18679289 19097015 13733696 13853968 14658592 15083229	19019267 18951258 18953215 18679289 19097015 13733696 13853968 14658592 15083229 14335396	19019267 18951258 18953215 18679289 19097015 13733696 13733696 14558592 15083229 14335396 14335396	19019267 18951258 18953215 18679289 19097015 13733696 13853968 14658592 15083229 14335396 14335396 14038068	19019267 18951258 18953215 18679289 19097015 13733696 13853968 14658592 15083229 14335396 14038068 7583942	19019267 18951258 18953215 18073289 19097015 13733696 13733696 14658592 15083229 14335396 14038068 77583942 13859207
PSE2	CPU(s)	1891.35	2088.08	7.46	875.63	1770.71	2022.17	5.01	1985.19	0.48	6.65	3600	29.69	3600	3600	3600		3600	3600	3600 3600 3600	3600 3600 3600	3600 3600 3600 3600	3600 3600 3600 3600	3600 3600 3600 3600 3600 3600	3600 3600 3600 3600 3600 3600	3600 3600 3600 3600 3600 3600 3600	3600 3600 3600 3600 3600 3600 3600 3600	3600 3600 3600 3600 3600 3600 3600 3600	3600 3600 3600 3600 3600 3600 3600 3600	3600 3600 3600 3600 3600 3600 3600 3600	3600 3600 3600 3600 3600 3600 3600 3600
	C_{max}	1053	857	821	966	913	877	1120	975	096	821	1296	1081	1219	1117	1316		1255	1255 1311	1255 1311 1214	1255 1311 1214 1311	1255 1311 1214 1311 1357	1255 1311 1214 1311 1357 1733	1255 1311 1214 1311 1357 1733	1255 1311 1214 1311 1357 1733 1814	1255 1311 1214 1311 1357 1733 1814 1931 2033	1255 1311 1214 1311 1357 1733 1733 1814 1931 2033	1255 1311 1214 1311 1357 1733 1814 1931 1931 1463	1255 1311 1214 1311 1357 1733 1814 1931 2033 1931 1931	1255 1311 1214 1311 1357 1733 1814 1931 1931 1931 1931 1880	1255 1311 1214 1311 1357 1733 1814 1931 1931 1463 1880 1829
	BS	1083	206	871	1056	958	920	1210	1005	026	831	1306	1091	1279	1117	1366		1305	1305	1305 1351 1214	1305 1351 1214 1311	1305 1351 1214 1311 1407	1305 1351 1214 1311 1407 1733	1305 1351 1214 1311 1407 1733	1305 1351 1214 1311 1407 1733 1814	1305 1351 1214 1311 1407 1733 1814 1971 2093	1305 1351 1214 1311 1407 1733 1814 1971 1971	1305 1311 1214 1311 1407 1733 1814 1971 1971 1971	1305 1351 1214 1311 1407 1733 1814 1971 2093 1941 1943	1305 1305 1311 1407 1733 1814 1971 2093 1941 1950 1950	1305 1311 1214 1311 1407 1733 1814 1971 2093 1941 1463 1829 1829
	Gap(%)	1	ı	I	ı	ı	ı	ı	ı	I	ı	0.00	I	0.00	0.00	0.00		0.00	0.00	00.00	0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.47	0.00 0.00 0.00 0.00 0.47 0.33	0.00 0.00 0.00 0.00 0.04 0.33	0.00 0.00 0.00 0.00 0.00 0.47 0.33 0.47	0.00 0.00 0.00 0.00 0.47 0.33 0.47 0.39	0.00 0.00 0.00 0.00 0.47 0.33 0.47	0.00 0.00 0.00 0.00 0.47 0.33 0.47 0.00	0.00 0.00 0.00 0.00 0.47 0.33 0.47 0.39 0.47 0.00
1	Nodes	580784	441332	459	564962	275737	762757	47	554631	25	15	7699181	66	7767143	7884961	8327689		8103980	8103980 8096330	8103980 8096330 8410093	8103980 8096330 8410093 8425768	8103980 8096330 8410093 8425768 8388219	8103980 8096330 8410093 8425768 8388219 6058946	8103980 8096330 8410093 8425768 8388219 6058946	8103980 8096330 8410093 8425768 8388219 6058946 6074555	8103980 8096330 8410093 8425768 8388219 6058946 6074555 6211670 6240605	8103980 8096330 8410093 8425768 8388219 6058946 6074555 6211670 6240605	8103980 8096330 8410093 8425768 8388219 6058946 6074555 6211670 6240605 6435738	8103980 8096330 8410093 8425768 8388219 6074555 6211670 6240605 6435738 6692669	8103980 8096330 8410093 8425768 8388219 6074555 6211670 6240605 6435738 6692669 83	8103980 8096330 8410093 8425768 8388219 6058946 6074555 6211670 6240605 6435738 6692669 83 6120226
PSE1	CPU(s)	136.42	102.93	0.11	134.23	65.17	239.76	0.02	193.92	0.01	0.01	3600	0.05	3600	3600	3600		3600	3600	3600 3600 3600	3600 3600 3600	3600 3600 3600 3600	3600 3600 3600 3600 3600	3600 3600 3600 3600 3600	3600 3600 3600 3600 3600 3600	3600 3600 3600 3600 3600 3600 3600	3600 3600 3600 3600 3600 3600 3600 3600	3600 3600 3600 3600 3600 3600 3600 3600	3600 3600 3600 3600 3600 3600 3600 3600	3600 3600 3600 3600 3600 3600 3600 3600	3600 3600 3600 3600 3600 3600 3600 3600
	C_{max}	1053	857	821	966	913	877	1120	975	096	821	1296	1081	1219	1117	1316		1255									1255 1311 1214 1311 1357 1713 1814 1931 2033	1255 1311 1214 1311 1357 1713 1814 1931 2033 1931	1255 1311 1214 1311 1357 1713 1814 1931 1931 1931 1931	1255 1311 1214 1311 1357 1713 1814 1931 1931 1931 1931 1931 1413	1255 1311 1214 1311 1357 1713 1814 1931 1931 1413 1880 1779
	BS	1083	206	871	1056	958	920	1210	1005	970	831	1306	1091	1279	11117	1366		1305	1305	1305 1351 1214	1305 1351 1214 1311	1305 1351 1214 1311 1407	1305 1351 1214 1311 1407 1733	1305 1351 1214 1311 1407 1733	1305 1351 1214 1311 1407 1733 1814	1305 1351 1214 1311 1407 1733 1814 1971	1305 1351 1214 1311 1407 1733 1814 1971 2003	1305 1351 1214 1311 1407 1733 1814 1971 1971 1971 1971	1305 1351 1214 1311 1407 1733 1814 1971 2093 1941 1463	1305 1351 1214 1311 1407 1733 1814 1971 2093 1941 1963	1305 1351 1214 1407 1407 1733 1814 1971 1941 1941 1950 1829
10	DI	1045	853	821	992	906	874	1120	920	096	821	1291	1081	1218	11113	1312	1	1249	1249 1302	1249 1302 1207	1249 1302 1207 1302	1249 1302 1207 1302 1354	1249 1302 1207 1302 1354	1249 1302 1207 1302 1354 1705	1249 1302 1302 1302 1354 1705 1808	1249 1302 1302 1302 1354 1705 1808 1922	1249 1302 1207 1302 1354 1705 1808 1922 2025	1249 1302 1207 1302 1354 1705 1808 1922 2025 1922	1249 1302 1302 1302 1354 1705 1808 1922 2025 1405 1880	1249 1302 1302 1302 1354 1705 1808 1922 2025 1922 1405 1880	1249 1302 1207 1302 1354 1705 1922 2025 1922 1405 1880 1777
X	^ 7					, F	CI										00	50	20	20	50	50	20	50	50	50	50	30 30	30	30	30 30

4.9 Conclusion

Nous avons étudié un problème d'ordonnancement de type job shop à deux machines avec une période d'indisponibilité sur chaque machine pour minimiser le makespan. Nous avons démontré que les ordonnancements de permutation sont dominants pour les cas étudiés. Ce résultat permet d'appliquer la règle de Jackson dans nos approches de résolution. Nous avons ensuite proposé des propriétés prouvant un ordre optimal des tâches basé sur la règle de Jackson et garantissant l'ordre optimal de chaque ensemble de tâches avant et après chaque période d'indisponibilité. Nous avons présenté deux modèles MILP : le premier est un modèle de job shop classique adapté à notre problème tandis que le second est une application de l'approche présentée. Nous avons également développé deux algorithmes PSE basés sur les propriétés décrites avec des schémas de branchement différents. Des expériences réalisées sur des instances générées aléatoirement et à partir de la littérature indiquent l'efficacité de l'approche proposée par rapport à celle de la littérature. De plus, nous en déduisons que les méthodes PSE1 et MILP4 sont plus efficaces que PSE2. Le chapitre suivant sera consacré aux méthodes de résolution approchées du problème notamment une heuristique de construction et une méta-heuristique.

Chapitre 5

Méthodes approchées pour le problème d'ordonnancement de type Job shop à deux machines avec contraintes de disponibilité sur une machine

Résumé:

Nous développons dans ce chapitre des méthodes pour la résolution approchée du problème d'ordonnancement de type job shop à deux machines avec des contraintes de disponibilité sur une seule machine. Nous avons démontré par l'étude au pire cas de l'heuristique basée sur la règle de Jackson, que plus le nombre d'indisponibilités et l'erreur relative sont proportionnels. Par conséquent, des méthodes approchées tenant en compte les temps d'inactivité générés par chaque période d'indisponibilité sont développées, à savoir, une heuristique de construction et un algorithme de recherche locale itérée avec une liste tabou. Ces deux algorithmes prennent en compte l'optimalité de l'ordre de Jackson avant et après chaque période d'indisponibilité. Les expérimentations basées sur des benchmarks et une comparaison avec des méthodes issues de la littérature et avec la procédure par séparation et évaluation présentée dans le chapitre 3, montrent la qualité des méthodes introduites.

Publications:

- Benttaleb, Mourad, Faicel Hnaien, and Farouk Yalaoui. An iterated local search algorithm tabu based for the two machine scheduling problem under availability constraints. *Computers & operations research*, (En cours de soumission).
- Benttaleb, Mourad, Faicel Hnaien, and Farouk Yalaoui. Heuristic algorithms for two-machine scheduling problem under availability constraints on one machine: makespan minimization. 16th IFAC Symposium on Information Control Problems in Manufacturing 11-13 June, Bergamo, Italy 2018.
- Benttaleb, Mourad, Faicel Hnaien, and Farouk Yalaoui. A constructive heuristic for two
 machine job shop scheduling problem under availability constrains on one machine. 7th
 International Conference on Metaheuristics and Nature Inspired Computing META'18
 Marrakesh, Morocco, 2018.

5.1 Introduction

Nous présentons dans ce chapitre des méthodes approchées pour le problème d'ordonnancement de type job shop à deux machines avec contraintes de disponibilité sur une seule machine.

Parmi les conclusion tirées du chapitre 4, nous rappelons que les méthodes exactes (y compris la procédure par séparation et évaluation) sont limitées concernant la résolution des instances de grandes tailles avec un nombre de périodes d'indisponibilité égal à N/4 et N/2. D'où le besoin de développer de nouveaux algorithmes efficaces pour la résolution approchée du problème.

Nous considérons le cas des opérations strictement *non-préemptives* avec l'objectif de minimiser le makespan. Après un rappel des propriétés démontrées dans le chapitre 4 et dont on aura besoin dans le développement des algorithmes dans les sections suivantes.

La troisième section de ce chapitre est consacrée à une méthode de construction basée sur la règle de Jackson. La quatrième section est dédiée à une méta-heuristique de recherche locale itérée (ILS) avec une liste tabou. Une étude de sensibilité est élaborée pour calibrer les paramètres par la méthode ANOVA.

Les résultats expérimentaux montrent l'efficacité de l'approche proposée et des méthodes présentées par rapport à celles de la littérature.

5.2 Propriétés

Nous rappelons la propriété suivante afin de démontrer les choix suivis dans le développement des méthodes approchées proposées dans ce chapitre.

Rappel propriété 6. Pour un problème de type job shop à deux machines avec $U \geq 2$ périodes d'indisponibilité sur la machine M_1 $(J_2, h_{1U}|a|C_{max})$, il existe un ordre optimal garantissant que les tâches avant, après et entre chaque deux périodes d'indisponibilité consécutives, sont séquencées suivant la règle de Jackson.

Nous rappelons également l'algorithme H1 qui est l'application de la règle de Jackson pour la résolution du problème $J_2, h_{1U}|a|C_{max}$ (voir l'algorithme 4).

Algorithme 4 Heuristique 1 : H1

```
1: Entrée:
 2: N tâches sur deux machines
 3: U périodes d'indisponibilité sur la machine M_1
4: Ordonnancer les tâches selon la règle de Jackson
 5: u = 1
 6: Pour i = 1 To N Faire
       Tant que u < U + 1 Faire
           Si s_{i1} < s_u et c_{i1} > s_u Alors
 8:
 9:
              s_{i1} = t_u
              Actualiser les dates d'achèvement des tâches de I_{u+1}
10:
              u = u + 1
11:
              Si s_{i1} \leq s_u Alors
12:
                  Actualiser les dates d'achèvement des tâches de I_u
13:
                  break
14:
              Fin Si
       Fin Tant que
   Fin Pour
15: return C_{max}(H1)
```

Rappel du Théorème 3.1. Pour le problème J_2 , $h_{1U}|a|C_{max}$, le ratio d'approximation par la règle de Jackson est égal à 2 dans le pire cas.

Rappel propriété 7. Pour $J_2, h_{1U}|a|C_{max}$:

$$\frac{C_{max}(H1)}{C^*} \le 1 + \frac{\sum_{u=1}^{U} g_u + \sum_{u=1}^{U} Idle_u}{\sum_{i=1}^{N} p_{i1} + \sum_{u=1}^{U} g_u}$$
(5.1)

Rappel propriété 8. Si $C_{max}(H1) = \sum_{i=1}^{N} p_{i2}$, alors le makespan obtenu par H1 est optimal.

Nous remarquons selon la propriété 7 que l'erreur augmente proportionnellement avec la somme des temps d'inactivité générés par la non-préemption des tâches avant chaque période d'indisponibilité. Donc, réduire le gap de la solution approchée par rapport à l'optimal équivaut à minimiser la somme des temps d'inactivité. Cela amène à développer des algorithmes pour décider de l'ensemble des tâches à traiter dans chaque intervalle.

Nous proposons dans un premier temps une heuristique de construction (H_const)

minimisant les temps d'inactivité avant chaque période d'indisponibilité et par la suite une recherche locale itérée avec une liste taboue (ILS_LT) .

5.3 Heuristique Constructive (*H_const*)

La procédure de construction utilisée par l'algorithme H_const est également basée sur la règle de Jackson. Il s'agit d'ordonnancer une tâche après l'autre suivant la séquence obtenue par la règle de Jackson. Étant donnée une séquence représentant l'ordre de Jackson, H_const permet de construire l'ordonnancement associé à cette séquence tenant en compte les périodes d'indisponibilité et la non-préemption des opérations.

L'horizon d'ordonnancement contenant U périodes d'indisponibilité, est divisé à U+1 intervalle $I_1, ..., I_{u+1}$. H_const essaie d'ordonnancer les tâches au plus tôt dans ces U+1 intervalles. Donc, étant donné une tâche J_i à ordonnancer, l'algorithme repart à partir du premier intervalle jusqu'à son affectation finale. Ainsi, il détermine l'intervalle dans lequel la tâche en question sera insérée en considérant les (i-1) tâches déjà insérées et en vérifiant la condition $C_1(I_u) \leq S_u \ \forall u \in 1, ..., U+1$ sachant que toute tâche déjà placée l'est de manière définitive. L'ordre globale des tâches ordonnancées est celui démontré par la propriété 6. La procédure se répète en insérant la tâches suivantes selon l'ordre de Jackson. L'algorithme se termine lorsque toutes les tâches sont affectées.

L'algorithme 5 permet de résoudre de manière approchée le problème étudié $J_2, h_{1U}|a|C_{max}$.

5.4 Recherche locale itérée (Iterated local search algorithm)

La recherche locale itérée (Iterated Local Search ou ILS) est une méta-heuristique qui implique l'application itérative d'une heuristique de recherche locale et l'utilisation d'une perturbation comme mécanisme de diversification.

A chaque itération, une nouvelle solution initiale est générée et utilisée par la recherche locale comme nouveau point de départ de la recherche. Cette solution initiale est générée en effectuant de manière aléatoire un certain nombre de modifications appropriées constituant la perturbation, à une solution localement optimale. En effet, au lieu de générer une

Algorithme 5 Heuristique H const

```
1: Input:
 2: N tâches sur deux machines
 3: U périodes d'indisponibilité sur la machine M_1
 4: Ordonnancer les tâches selon la règle de Jackson
 5: Pour i = 1 To N Faire
 6:
       u = 1
       Tant que u < U + 1 Faire
 7:
           Si s_{i1} < s_u et c_{i1} > s_u Alors
 8:
9:
              s_{i1} = t_u
              Actualiser les dates d'achèvement des tâches de I_{n+1}
10:
              u = u + 1
11:
              Si c_{i1} \leq s_u Alors
12:
                  Actualiser les dates d'achèvement des tâches de I_u
13:
                  break
14:
              Fin Si
       Fin Tant que
   Fin Pour
15: return C_{max}(H1)
```

nouvelle solution initiale, le mécanisme de perturbation génère une solution prometteuse en conservant une partie de la structure de la solution optimale localement. Malgré sa simplicité, l'algorithme ILS s'est avéré être une méthode efficace pour résoudre les problèmes d'optimisation combinatoire surtout lorsque son choix est justifié et suffisant.

Comme mentionné, l'objectif est de minimiser les temps d'inactivité généré par la non-préemption des opérations par les contraintes de disponibilité. Des recherches locales peuvent être efficaces pour minimiser ces temps d'inactivité. Hors, dans ce genre de problème combinatoire l'optimum local est inévitable, d'où la nécessité de la perturbation. Ainsi, l'algorithme ILS est nécessaire et suffisant pour résoudre approximativement et efficacement le problème $J_2, h_{1U}|a|C_{max}$.

Nous décrivons en détail l'algorithme en question. L'objectif est de trouver l'ensemble approprié des tâches à exécuter dans chaque intervalle ordonnancées suivant la règle de Jackson afin de minimiser les temps d'inactivité, et ainsi le makespan.

L'algorithme ILS_LT comprend trois composantes principales : la construction de la solution initiale, la procédure de recherche locale et le mécanisme de perturbation.

Dans les sections suivantes, nous décrivons les principales composantes de l'algorithme. En outre, nous discutons des paramètres de l'algorithme dans le but de trouver la meilleure combinaison améliorant sa performance.

5.4.1 La solution initiale

L'algorithme ILS_LT nécessite une solution initiale pour lancer sa recherche. En général, la solution initiale peut être générée au moyen d'une procédure aléatoire ou d'une heuristique gloutonne. Dans cette tâche, la procédure de construction utilisée par l'algorithme ILS_LT est basée sur la règle de Jackson. Précisément, nous implémentons l'algorithme constructif de Jackson décrit dans la section précédente pour obtenir la solution initiale. L'heuristique utilisée fournit une solution initiale de qualité relativement élevée pour démarrer la méta-heuristique par rapport à l'algorithme de Jackson présenté dans le chapitre 4. Nous discutons cette performance dans la section dédiée aux résultats expérimentaux.

5.4.2 La recherche locale

La procédure de recherche locale effectue une descente de la solution initiale (qui peut être la solution initiale ou perturbée) jusqu'à ce qu'elle atteigne un optimum local. La puissance de chaque recherche locale réside dans le voisinage considéré et dans la façon dont il est exploré.

Cette recherche locale alterne entre deux façons de chercher une meilleure solution. Il est basé sur l'échange de deux tâches appartenant à deux intervalles différents (échange dit swap neighberhood) ou le déplacement d'une tâche d'un intervalle à un autre (insertion dit insert neighborhood). L'optimalité locale est atteinte si la solution ne peut plus être améliorée. Un paramètre gérant la décision sur le nombre d'itérations acceptées pour atteindre un optimal local est définit et intitulé MaxOpt. Toute solution irréalisable est écartée ; c'est le cas ou la tâche insérée amène à $C_1^{I_u} > s_u$ pour un I_u quelconque.

5.4.3 La perturbation

La procédure de perturbation est choisie pour éviter le cycle entre un optimum local et son meilleur voisin. À ce stade, l'algorithme génère son mécanisme de perturbation, qui applique intensivement un des deux types de recherche locale sélectionnées, partant de l'optimum

local courant. Cette solution optimale locale perturbée devient un nouveau point de départ pour la prochaine itération de la recherche locale.

Un bon équilibre entre intensification et diversification est essentiel pour la performance de toute méta-heuristique. La procédure de perturbation joue un rôle important dans la recherche de cet équilibre. Toute solution irréalisable est gardée et rendue réalisable en essayant d'insérer la tâche en contrainte dans l'un des intervalles suivant au plus tôt jusqu'à son insertion finale.

Un paramètre gérant le nombre de fois la procédure de perturbation procède une recherche locale est définit et noté MaxPrtb.

Toute séquence déjà visitée est ajoutée à la liste taboue afin de diversifier la zone de recherche et d'accélérer l'obtention d'une meilleure solution. Cette méthode pourrait être utilisée comme perturbation étant donné que l'objectif de la recherche tabou classique est d'assurer une diversification dans chaque itération au moyen d'une liste de tabou.

5.4.4 Le critère d'acceptation

Le critère d'acceptation est également important pour trouver un bon équilibre entre la diversification et l'intensification de la recherche. En conséquence, l'algorithme est capable de dépenser suffisamment de temps de calcul pour encore améliorer la meilleure solution conduisant à plus d'intensification. Si le nombre d'itérations sans amélioration augmente, l'algorithme perd en coût de calcul et n'aboutit plus à une meilleur solution.

L'algorithme peut également passer plus de temps dans l'étape de la diversification afin d'améliorer la solution courante. La perturbation d'une solution optimale localement amène à une nouvelle solution non voisine. Une diversification intense peut être coûteuse en temps de calcul et pouvant faire perdre la qualité de la séquence courante. Donc, ses paramètres Maxoptl et MaxPrtb sont primordiales pour accepter une solution de bonne qualité en un temps le moins possible.

La meilleure solution parmi tous les optima locaux visités est la meilleure solution (Voir l'algorithme 6). Cette solution assure également que tout l'ordonnancement est de permutation et satisfait l'ordre des tâches dans chaque intervalle comme démontré dans la propriété 6.

5.4.5 Le critère d'arrêt

L'exécution de l'algorithme est arrêtée lorsqu'un nombre maximum d'itérations est atteint noté MaxIter, ou lorsque une borne inférieure est atteinte.

5.5 Résultats expérimentaux

Les algorithmes proposés sont codés en C++. Les tests ont été exécutés sur un PC de fréquence 2.6 GHz Intel(R) Core (TM) i5-4210M CPU et 8.00 GB.

5.5.1 Génération d'instances

Nous utilisons les instances de Taillard (1993) pour le problème de type job shop (15 tâches / 15 machines, 20 tâches / 15 machines). Pour chaque instance, nous avons pris seulement les deux premières valeurs de chaque tâche, correspondant à leurs durées sur les deux premières machines.

Nous ajoutons les paramètres concernant la période d'indisponibilité à fixer sur la machine M_1 . La durée de la $u^{\text{ème}}$ période d'indisponibilité est supposée égale à la moyenne des temps de traitement des opérations sur la machine $M_1: g_u = t_u - s_u = \frac{\sum_{i=1}^N p_{i1}}{N}$.

Nous générons des instances prenant en compte l'emplacement de la $u^{\text{ème}}$ période d'indisponibilité au milieu de l'horizon d'ordonnancement disponible. La date de début de cette période est définie en fonction du nombre total de périodes d'indisponibilité prises en compte sur la machine $M_1: g_u = t_u - s_u = \frac{\sum_{i=1}^N p_{i1}}{N}$.

5.5.2 Paramétrage et analyse de sensibilité

L'algorithme ILS LT utilise trois paramètres :

- MaxIter : Ce paramètre définit les itérations maximales de l'algorithme.
- MAxOptl: Ce paramètre est utilisé pour trouver l'optimum local. Si le nombre d'itérations suivantes sans amélioration atteint MAxOptl, l'algorithme maintient la solution courante comme optimum local.
- MAxPrtb : Ce paramètre est utilisé pour limiter le nombre de recherches locales

Algorithme 6 Algorithme ILS_LT

```
1: s^* \leftarrow C_{max}(H1)
 2: Iter \leftarrow 0
 3: Tabu\ list \leftarrow \emptyset
 4: LocalOpt \leftarrow \emptyset
 5: Tant que Iter \leq MaxIter Faire
             Tabu list \leftarrow s^*
 6:
             s \leftarrow Localsearch (s^*)
  7:
             Optl \leftarrow 0
  8:
             Tant que Optl \leq MaxOptl Faire
 9:
                   Si s \notin Tabu \ list \ Alors
10:
                         Si f(s) < f(s^*) Alors
11:
                                s^* \leftarrow s
12:
                               f(s^*) \leftarrow f(s)
13:
                                Optl \leftarrow 0
14:
                         Sinon
15:
                                Optl \leftarrow Optl + 1
16:
                        LocalOpt \leftarrow s^*
Fin Si
                                Si Optl = MaxOptl Alors
17:
18:
             \begin{array}{c} \mathbf{Fin}^{Tabu\ list} \leftarrow \mathbf{s} \\ \mathbf{Fin}\ \mathbf{Si} \\ \mathbf{Fant}\ \mathbf{que} \end{array} 
19:
             Prtb \leftarrow 0
20:
             Tant que Prtb \leq MaxPrtb Faire
21:
                   s^* \leftarrow Localsearch (s^*)
22:
              \begin{array}{c} Prtb \leftarrow Prtb + 1 \\ \textbf{Fin Tant que} \end{array} 
23:
       \begin{array}{c} \mathit{Iter} \leftarrow \mathit{Iter} + 1 \\ \mathbf{Fin} \ \mathbf{Tant} \ \mathbf{que} \end{array} 
25: Tabu\ list \leftarrow \emptyset
26: s^* \leftarrow min(LocalOpt)
27: return s^*
```

Tableau 5.1 -	- Valeurs des paramètres
Paramètre	Valeurs considérées
MaxIter	100, 500, 1000
MaxOpt	2, 4, 6 , 10
MaxPrtb	$N/10 \; , \; N/4 \; , \; N/3 \; , \; N/2$

successives sur une solution dans chaque perturbation. Cela permet de gérer la diversification d'une solution.

Nous effectuons une expérience factorielle complète avec ces trois paramètres. Les niveaux suivants ont été testés : $MaxPrtb \in \{n/10, n/4, n/3, n/2\}$, $MaxOpt \in \{2, 4, 6, 10\}$, $MaxIter \in \{100, 500, 1000\}$. Le tableau 5.1 présente pour chaque paramètre les valeurs considérées. Toutes les combinaisons de valeurs des trois paramètres donnent 48 configurations de l'algorithme ILS_LT pour chaque instance. Pour chaque combinaison de paramètres, nous exécutons l'algorithme 10 fois. Nous déterminons l'écart moyen, le temps de calcul (CPU(s)), la meilleure solution trouvée (Best), la pire solution (Wst), la moyenne des 10 solutions (Avg) et la déviation calculée comme $Dev = \frac{Avg - Best}{Avg}$.

Afin d'évaluer la sensibilité des paramètres sélectionnés, nous avons résolu toutes les instances pour chaque combinaison de paramètres. Cette section présente le résultat des expériences réalisées sur les méthodes développées incluant les ILS_LT sous les différentes combinaisons de paramètres.

Trois séries d'expériences sont effectuées pour examiner l'effet de différents paramètres sur la performance de l'algorithme pour chaque cas de test (instance, combinaison de paramètres). Le premier ensemble d'expériences traite de la performance de l'algorithme en termes de qualité de la solution. Le makespan est celui donné par Avg; tandis que la deuxième étudie la performance de chaque configuration d'algorithme mesurée par $Dev = \frac{Avg - Best}{Avg}$ puisque la solution de chaque instance du paramétrage est toujours non nulle, où Best et Avg sont la meilleure solution trouvée et la moyenne de toutes les solutions des tests lancés respectivement. La troisième étudie la combinaison des paramètres impactant significativement le temps de calcul de l'algorithme.

Les tableaux 5.2, 5.3 et 5.4 montrent le résultat de l'ANOVA des expériences pour les instances de tailles 15, 20 et 30 tâches respectivement. Ils comprennent le F-ratio et P-value pour chaque réponse Avg, Dev et CPU(s) ainsi que leurs interactions.

			- '		. , .		
Source	A	vg	D	ev	CPU(s)		
Source	F-ratio	P-ratio	F-ratio	P-ratio	F-ratio	P-ratio	
A: MaxIter	0.09	0.913	3.23	0.040	2707.90	0.000	
B: MaxOpt	0.00	1.000	0.14	0.935	0.08	0.971	
C: MacPrtb	0.17	0.916	30.21	0.000	81.39	0.000	
A * B	0.00	1.000	0.26	0.956	0.04	1.000	
A * C	0.00	1.000	0.46	0.838	44.52	0.000	
B*C	0.00	1.000	0.34	0.962	0.07	1.000	
A*B*C	0.00	1.000	0.53	0.942	0.12	1.000	

Tableau 5.2 – Résultats ANOVA pour Avg, Dev et CPU(s), N = 15

Selon les résultats de ces tableaux, nous remarquons que le paramètre MaxOpt n'a pas un impact par rapport aux paramètres MAxPrtb et MAxIter. Ce dernier est très significatif en terme de coût de temps de calcul. Nous remarquons également que ces deux paramètres impactent la déviation de l'algorithme.

Nous analyserons également les effets principaux des paramètres ainsi que leurs interactions sur Avg, Dev et CPU(s) pour les instances de tailles 20. L'objectif est de visualiser l'effet de chaque paramètre (figures 5.4, 5.5 et 5.6) ainsi que l'interaction (figures 5.1, 5.2 et 5.3).

En ce qui concerne la qualité de la solution obtenue par la valeur Avg, nous remarquons que plus le nombre d'itérations et la perturbation sont élevés, meilleure est la solution. Les figures 5.4, 5.5 et 5.6 montrent que le paramètre MaxOpt n'a pas un grand impact quand il agit seul, mais sa combinaison avec MaxPrtb conduit à une minimisation du makespan de manière significative comme illustré dans la figure 5.1. Nous concluons à partir de ces figures que les valeurs minimisant le makespan sont $\{500,1000\}$ pour MAxIter et $\{N/3,N/2\}$ pour MAxPrtb respectivement. Cependant, en termes de minimisation de déviation des solutions Dev, le choix des paramètres MAxOpt = 6 et MaxPrtb = N/3 permet de contrôler l'algorithme par rapport à l'écart des solutions comme le montrent les figures 5.3 et 5.6.

Il est clair à partir des figures 5.2 et 5.5 que MaxIter a l'impact le plus significatif sur le temps de calcul. Puisque la performance de l'algorithme selon la valeur Avg de makespan n'est pas significativement différente quand le choix de MaxITer est 500 ou 1000, alors le meilleur choix de MaxITer qui répond le mieux au compromis de la qualité de la solution, le temps de calcul et l'écart de la solution est de MaxIter = 500.

Tableau 5.3 – Résultats ANOVA pour Avg, Dev et CPU(s), N=20

Source	A	vg	D	ev	CPU(s)		
Source	F-ratio	P-ratio	F-ratio	P-ratio	F-ratio	P-ratio	
A: MaxIter	0.11	0.896	10.97	0.000	12963.88	0.000	
B: MaxOpt	0.00	1.000	0.10	0.958	0.38	0.768	
C: MacPrtb	0.01	0.999	3.11	0.026	40.19	0.000	
A * B	0.00	1.000	0.56	0.765	0.36	0.905	
A * C	0.00	1.000	0.71	0.643	21.10	0.000	
B * C	0.00	1.000	0.19	0.995	0.16	0.997	
A * B * C	0.00	1.000	0.37	0.992	0.12	1.000	

Tableau 5.4 – Résultats ANOVA pour Avg, Dev et CPU(s), N=30

Source	A	vg	D	ev	CP	CPU(s)		
	F-ratio	P-ratio	F-ratio	P-ratio	F-ratio	P-ratio		
A: MaxIter	0.03	0.975	2.42	0.091	3417.29	0.000		
B: MaxOpt	0.00	1.000	0.19	0.904	0.78	0.506		
C: MacPrtb	0.00	1.000	0.48	0.695	4.38	0.005		
A*B	0.00	1.000	0.45	0.845	0.91	0.487		
A * C	0.00	1.000	0.55	0.767	2.45	0.024		
B * C	0.00	1.000	0.15	0.998	0.09	1.000		
A*B*C	0.00	1.000	0.30	0.998	0.09	1.000		

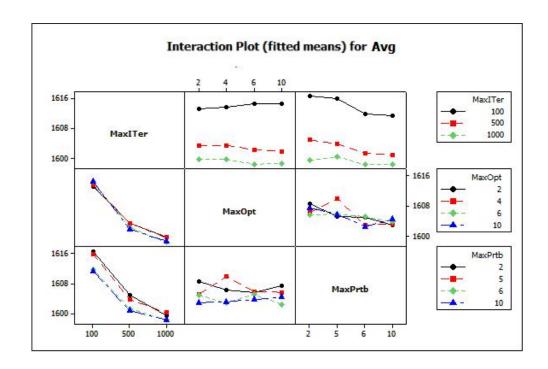


Figure 5.1 – Diagramme des interactions pour Avg

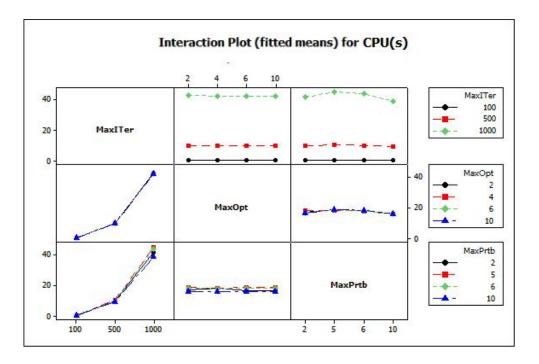


FIGURE 5.2 – Diagramme des interactions pour CPU(s)

5.5.3 Analyse des résultats expérimentaux

Nous comparons les trois algorithmes développés à ceux proposés par Aggoune (2002) pour la résolution approchée du problème de type job shop sous contraintes de disponibilité. Le premier proposé par l'auteur est un algorithme de liste avec une liste taboue nommé AL-

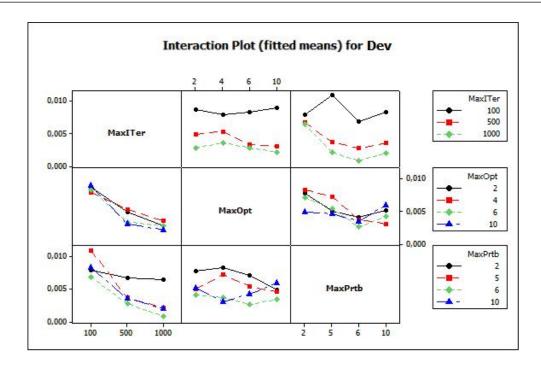


Figure 5.3 – Diagramme des interactions pour *Dev*

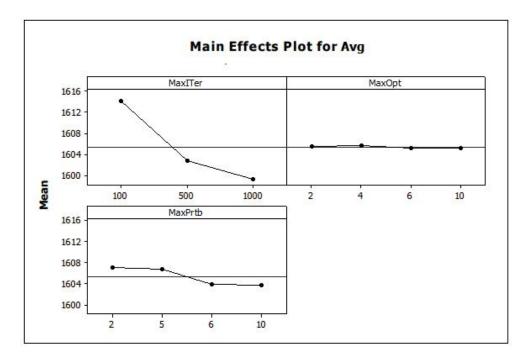


Figure 5.4 – Graphe des effets principaux pour Avq

RT. Il ordonnance les tâches l'un après l'autre selon une séquence de traitement. Le deuxième noté H2-RT permet de résoudre l'ordonnancement au moyen de l'algorithme 2-jobs appliqué aux tâches deux par deux. Nous déterminons le makespan des deux algorithmes AL-RT et H2-RT. Le makespan gardé $C_{max}(H_Agg)$ est égale à $C_{max}(H_Agg) = \min(C_{max}(AL-RT), C_{max}(H2-RT))$. Les tableaux 5.5 et 5.6 résument la performances

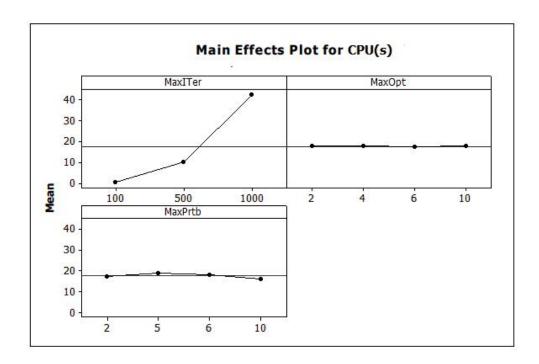


FIGURE 5.5 – Graphe des effets principaux pour CPU(s)

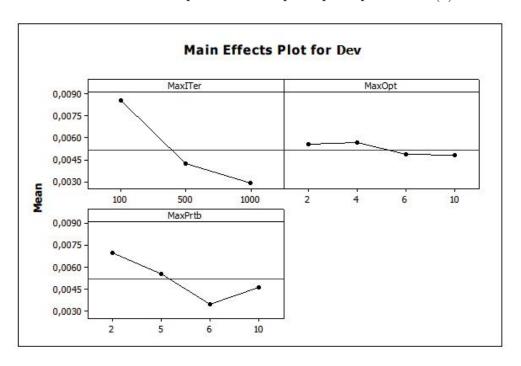


Figure 5.6 – Graphe des effets principaux pour Dev

des différents algorithmes y compris la performance de ceux proposés par Aggoune (2002). Ils affichent la borne inférieure de chaque instance (LB), la meilleure (Best), la pire (Wst) et la moyenne (Avg) et le temps de calcul moyen CPU(s) des 10 exécutions de l'algorithme ILS_LT . Le makespan obtenu par la PSE limitée à 3600s (PSE_Stop) et le gap par rapport à la borne inférieure (Gap(%)) si la solution obtenue n'est pas optimale. Le gap

entre la solution moyenne Avg et la solution obtenue par PSE_Stop est calculé et égal à $\frac{Avg-C_{max}}{Avg}$.

 ILS_LT fonctionne mieux que H_Agg pour 29 des 30 instances lorsque U=N/4 et dans 25 des 30 instances pour le cas U=N/4. L'heuristique H_{cons} a également prouvé son efficacité par rapport à H_Agg dans 29 des 30 instances pour le cas U=N/4 et dans 23 des 30 instances pour le cas U=N/4.

Les tableaux 5.7 et 5.8 concernent la comparaison entre la méthode ILS_LT et la procédure par séparation et évaluation présenté dans le chapitre 3 pour les cas de U=N/4 et U=N/2 respectivement. Lorsque le nombre de périodes de disponibilité est égal à U=N/4, l'algorithme ILS_LT réduit l'écart avec la procédure arrêtée à 3600 seconds (PSE_Stop) à moins de 0.38% pour les instances de taille 15 tâches et trouve la solution optimale pour 4 instances. La première instance est résolue de façon optimale par l'heuristique H1 (règle de Jackson) car la solution obtenue est égale à la borne inférieure (cas où $C_{max} = \sum_{i=1}^{N} p_{i2}$, voir propriété 8). Concernant les instances de 20 tâches, l'algorithme améliore considérablement la qualité de deux instances, le temps de calcul moyen étant 5.55 secondes et dépasse de loin les résultats obtenus par PSE_Stop pour les instances de 30 tâches avec -11.68 % en moyenne par rapport à PSE_Stop (voir tableau 5.7).

Comme le montre le tableau 5.8 pour le cas de U=N/2, ILS_LT garantit des solutions assez proches de l'optimum pour des instances de 15 jobs . L'écart moyen avec le résultat donné par PSE_Stop est égal à 1.3% obtenu en 4.76 secondes et 3 des 10 instances sont résolues de façon optimale. L'écart moyen des solution de ILS_LT par rapport à PSE_Stop est égal à 1.9% obtenu en temps moyen égale 10.21 secondes pour les instances de taille 20 et -5.59% en 27.62 secondes en moyenne pour ceux de 30 tâches.

5.6 Conclusion

Nous avons présenté dans ce chapitre des méthodes approchées pour la résolution du problème d'ordonnancement de type job shop à deux machines avec plusieurs périodes d'indisponibilité sur une machine pour la minimisation du makespan $(J_2, h_{1U}|a|C_{max})$

Les méthodes approchées développées, à savoir une heuristique de construction H_{const} et une méta-heuristique de recherche locale itérée avec liste tabou ILS_LT ont été étudiées et comparées.

 H_{const} est une heuristique gloutonne fondée sur l'utilisation de la règle de Jackson pour

Tableau 5.5 – Comparaison des différentes méthodes approchées $U=N/4,\,N=15,20,30)$

N I D		H1		H_const		ILS_LT				H_Agg		
N	LB	C_{max}	CPU(s)	C_{max}	CPU(s)	Best	Avg	Wst	Dev	CPU(s)	C_{max}	CPU(s)
	902	902	< 0.001	902	< 0.001	902	902	902	0.00	< 0.001	962	0.002
	819	939	< 0.001	824	< 0.001	820	822.2	824	0.27	3.07	878	0.001
	936	1005	< 0.001	949	0.001	940	942.3	943	0.24	2.31	1080	0.002
	852	895	< 0.001	855	< 0.001	852	852	852	0.00	< 0.001	1025	0.002
1 5	972	1082	< 0.001	988	< 0.001	976	979.8	985	0.39	2.28	1048	0.002
15	983	1064	< 0.001	1024	< 0.001	983	985.6	988	0.26	1.26	1046	0.002
	1084	1263	< 0.001	1102	< 0.001	1085	1086.9	1088	0.18	2.29	1198	0.002
	967	1182	< 0.001	993	< 0.001	972	974.2	979	0.23	2.47	1065	0.002
	1109	1235	< 0.001	1205	< 0.001	1114	1115.1	1117	0.10	2.39	1209	0.001
	800	911	< 0.001	825	< 0.001	801	802.5	804	0.19	2.10	888	0.002
	1268	1458	< 0.001	1358	0.001	1293	1309.6	1318	1.28	5.68	1408	0.003
	1178	1334	< 0.001	1199	0.002	1187	1197.4	1199	0.88	5.28	1284	0.002
	1265	1425	< 0.001	1347	0.002	1273	1287.1	1298	1.11	6.09	1373	0.003
	1293	1433	< 0.001	1319	0.002	1301	1312.8	1319	0.91	6.83	1416	0.002
20	1082	1215	< 0.001	1108	0.002	1094	1098.5	1107	0.41	5.18	1236	0.002
20	1332	1485	< 0.001	1340	0.001	1340	1340	1340	0.00	5.16	1527	0.002
	1387	1595	< 0.001	1452	0.002	1401	1411	1423	0.71	5.21	1472	0.002
	1326	1534	< 0.001	1397	0.001	1340	1354.6	1362	1.09	5.06	1426	0.002
	1291	1462	< 0.001	1368	0.001	1314	1325.7	1335	0.89	5.14	1379	0.003
	1433	1650	< 0.001	1494	0.001	1443	1452.9	1465	0.69	5.87	1532	0.002
	2053	2367	< 0.001	2119	0.004	2089	2099	2106	0.48	12.99	2207	0.005
	1964	2355	< 0.001	1986	0.004	1980	1985.4	1986	0.27	11.94	2064	0.005
	1945	2164	< 0.001	1993	0.003	1989	1992.4	1993	0.17	12.01	1994	0.005
	1828	2234	< 0.001	1849	0.003	1849	1849	1849	0.00	13.15	1890	0.005
30	1967	2152	< 0.001	2031	0.004	1996	2012.4	2021	0.82	12.82	2035	0.005
30	1975	2211	< 0.001	2015	0.003	2004	2013.1	2015	0.45	12.81	2065	0.005
	2184	2454	< 0.001	2249	0.004	2233	2238.5	2244	0.25	14.47	2350	0.005
	1768	2020	< 0.001	1815	0.005	1777	1809.1	1815	1.81	14.81	1795	0.005
	1784	2018	< 0.001	1810	0.002	1810	1810	1810	0.00	15.11	1832	0.004
	1890	2183	< 0.001	1944	0.003	1926	1936.5	1944	0.55	14.71	2055	0.004

Tableau 5.6 – Comparaison des différentes méthodes approchées $U=N/2,\,N=15,20,30)$

		H1		H_const			ILS_LT				H_Agg		
N	LB	C_{max}	CPU(s)	C_{max}	CPU(s)	Best	Avg	Wst	Dev	CPU(s)	C_{max}	CPU(s)	
	938	1163	< 0.001	1083	0.001	1054	1061.3	1076	0.69	4.57	1131	0.002	
	999	1277	< 0.001	1095	0.001	1095	1095	1095	0.00	4.96	1131	0.001	
	1144	1463	< 0.001	1348	0.002	1299	1299.6	1305	0.05	5.55	1376	0.001	
	1003	1250	< 0.001	1139	0.002	1092	1100.6	1105	0.79	5.16	1212	0.002	
1 -	1188	1499	< 0.001	1383	0.002	1344	1359.5	1371	1.15	4.86	1471	0.002	
15	1199	1488	< 0.001	1424	0.002	1363	1376.3	1381	0.98	4.80	1424	0.001	
	1324	1643	< 0.001	1564	0.001	1563	1563.7	1564	0.04	4.08	1564	0.002	
	1179	1497	< 0.001	1447	0.002	1386	1386	1386	0.00	4.20	1400	0.002	
	1353	1740	< 0.001	1665	0.002	1591	1591	1591	0.00	5.05	1591	0.001	
	976	1195	< 0.001	1125	0.001	1078	1088.6	1098	0.98	4.44	1125	0.001	
	1518	1862	< 0.001	1739	0.005	1730	1736	1739	0.35	9.63	1779	0.003	
	1413	1734	< 0.001	1631	0.005	1597	1601.7	1613	0.29	10.78	1585	0.002	
	1515	1921	< 0.001	1777	0.004	1733	1736.4	1742	0.20	10.53	1777	0.003	
	1548	1940	< 0.001	1745	0.005	1745	1745	1745	0.00	11.97	1771	0.002	
20	1297	1656	< 0.001	1505	0.004	1467	1472	1481	0.34	10.56	1461	0.003	
20	1597	2020	< 0.001	1875	0.002	1875	1875	1875	0.00	9.31	1898	0.002	
	1662	2117	< 0.001	1901	0.002	1863	1874.6	1889	0.62	10.93	1901	0.002	
	1591	1970	< 0.001	1890	0.004	1846	1851.2	1859	0.28	9.08	1890	0.002	
	1546	1969	< 0.001	1834	0.003	1783	1786.3	1796	0.19	9.88	1853	0.003	
	1718	2164	< 0.001	2075	0.003	2075	2075	2075	0.00	9.46	2052	0.003	
	2493	3167	< 0.001	2819	0.010	2819	2819	2819	0.00	26.10	2809	0.005	
	2388	3050	< 0.001	2799	0.012	2799	2799	2799	0.00	21.54	2910	0.006	
	2361	2937	< 0.001	2840	0.012	2803	2812.2	2820	0.33	17.97	2840	0.006	
	2220	2817	< 0.001	2586	0.009	2566	2578.7	2586	0.49	27.94	2638	0.006	
30	2391	2975	< 0.001	2690	0.010	2690	2690	2690	0.00	34.26	2665	0.005	
30	2399	3060	< 0.001	2759	0.012	2759	2759	2759	0.00	29.55	2810	0.006	
	2656	3307	< 0.001	2962	0.010	2962	2962	2962	0.00	33.42	3066	0.005	
	2144	2622	< 0.001	2420	0.009	2420	2420	2420	0.00	37.94	2422	0.006	
	2168	2667	< 0.001	2472	0.009	2464	2471.2	2472	0.29	27.95	2472	0.005	
	2298	2932	< 0.001	2754	0.010	2700	2723.9	2736	0.89	19.59	2816	0.005	

Tableau 5.7 – Comparaison entre ILS_LT et $PSE_Stop~(U=N/4,~N=15,20,30)$

N T	LB		ILS	-LT			PSE_Stop		(A
N	LD	Best	Avg	Wst	CPU(s)	C_{max}	Gap(%)	CPU(s)	$(Avg - C_{max})/Avg$ (%)
	902	902	902	902	< 0.001	902	_	_	0.00
	819	820	822.2	824	3.07	819	_	8.10	0.39
	936	940	942.3	943	2.31	937	_	419.22	0.56
	852	852	852	852	< 0.001	852	_	4.77	0.00
15	972	976	979.8	985	2.28	972	_	46.40	0.80
19	983	983	985.6	988	1.26	983	_	12.50	0.26
	1084	1085	1086.9	1088	2.29	1085	_	18.62	0.17
	967	972	974.2	979	2.47	967	_	71.34	0.74
	1109	1114	1115.1	1117	2.39	1109	_	150.32	0.55
	800	801	802.5	804	2.10	800	_	3.70	0.31
	1268	1293	1309.6	1318	5.68	1270	0.16	3600	3.02
	1178	1187	1197.4	1199	5.28	1180	0.17	3600	1.45
	1265	1273	1287.1	1298	6.09	1272	0.55	3600	1.17
	1293	1301	1312.8	1319	6.83	1355	4.58	3600	-3.21
20	1082	1094	1098.5	1107	5.18	1083	0.09	3600	1.41
20	1332	1340	1340	1340	5.16	1335	0.22	3600	0.37
	1387	1401	1411	1423	5.21	1392	0.36	3600	1.35
	1326	1340	1354.6	1362	5.06	1340	1.04	3600	1.08
	1291	1314	1325.7	1335	5.14	1292	0.08	3600	2.54
	1433	1443	1452.9	1465	5.87	1598	10.33	3600	-9.99
	2053	2089	2099	2106	12.99	2365	13.19	3600	-12.67
	1964	1980	1985.4	1986	11.94	2354	16.57	3600	-18.57
	1945	1989	1992.4	1993	12.01	2109	7.78	3600	-5.85
	1828	1849	1849	1849	13.15	2191	16.57	3600	-18.50
30	1967	1996	2012.4	2021	12.82	2152	8.60	3600	-6.94
30	1975	2004	2013.1	2015	12.81	2207	10.51	3600	-9.63
	2184	2233	2238.5	2244	14.47	2435	10.31	3600	-8.78
	1768	1777	1809.1	1815	14.81	2020	12.48	3600	-11.66
	1784	1810	1810	1810	15.11	2018	11.60	3600	-11.49
	1890	1926	1936.5	1944	14.71	2183	13.42	3600	-12.73

Tableau 5.8 – Comparaison entre ILS_LT et $PSE_Stop~(U=N/2,\,N=15,20,30)$

N ID			ILS	$S_{\perp}LT$	-		PSE	1 ((4 (07)
N	LB	Best	Avg	Wst	CPU(s)	C_{max}	Gap(%)	CPU(s)	$-(Avg-C_{max})/Avg$ (%)
	938	1054	1061.3	1076	4.57	1029	_	552.989	3.04
	999	1095	1095	1095	4.96	1095	_	245.57	0.00
	1144	1299	1299.6	1305	5.55	1285		215.01	1.12
	1003	1092	1100.6	1105	5.16	1079	_	321.80	1.96
15	1188	1344	1359.5	1371	4.86	1311	_	3.48	3.57
15	1199	1363	1376.3	1381	4.80	1363	_	181.54	0.97
	1324	1563	1563.7	1564	4.08	1545	_	2.01	1.20
	1179	1386	1386	1386	4.20	1372	_	3.57	1.01
	1353	1591	1591	1591	5.05	1591	_	15.93	0.00
	976	1078	1088.6	1098	4.44	1074	_	181.27	0.34
	1518	1730	1736	1739	9.63	1695	10.44	3600	2.36
	1413	1597	1601.7	1613	10.78	1585	10.85	3600	1.04
	1515	1733	1736.4	1742	10.53	1711	_	2385.38	1.46
	1548	1745	1745	1745	11.97	1676	_	3494.31	3.95
20	1297	1467	1472	1481	10.56	1456	10.92	3600	1.09
20	1597	1875	1875	1875	9.31	1832	12.83	3600	2.29
	1662	1863	1874.6	1889	10.93	1828	9.08	3600	2.49
	1591	1846	1851.2	1859	9.08	1844	13.72	3600	0.39
	1546	1783	1786.3	1796	9.88	1776	12.95	3600	0.58
	1718	2075	2075	2075	9.46	2003	_	89.42	3.47
	2493	2819	2819	2819	26.10	3053	18.34	3600	-8.30
	2388	2799	2799	2799	21.54	2935	18.64	3600	-4.86
	2361	2803	2812.2	2820	17.97	2869	17.71	3600	-2.02
	2220	2566	2578.7	2586	27.94	2730	18.68	3600	-5.87
30	2391	2690	2690	2690	34.26	2923	18.20	3600	-8.66
30	2399	2759	2759	2759	29.55	2936	18.29	3600	-6.42
	2656	2962	2962	2962	33.42	3145	15.55	3600	-6.18
	2144	2420	2420	2420	37.94	2583	17.00	3600	-6.74
	2168	2464	2471.2	2472	27.95	2634	17.69	3600	-6.59
	2298	2700	2723.9	2736	19.59	2733	15.92	3600	-0.33

l'ordonnancement des tâches une par une au plus tôt dans les différents intervalles générés par les contraintes de disponibilité, garantissant ainsi que l'ordre des tâches dans chaque intervalle est selon la règle de Jackson. La méthode ILS_LT emploie également cette règle et se base sur une recherche locale d'insertion et d'échange entre deux tâches appartenant à deux intervalles différents. La perturbation étant un répétition successive de recherche locales est choisi comme étant un processus de diversification pour échapper tout optimum local. De plus, une liste taboue est considéré pour empêcher toute séquence déjà visitée. Nous avons déterminé les paramètres de la méta-heuristique ILS_LT qui assurent le compromis qualité de la solution, la stabilité de l'algorithme (avec moins d'écart entre la solution moyenne et la meilleure trouvées) et le temps de calcul dédié. Ensuite, les différentes méthodes ont été comparées à celles présentées dans la littérature. Une deuxième comparaison avec une méthode exacte stoppée à 3600 secondes est également considérée.

Les résultats expérimentaux illustrent l'efficacité de l'algorithme ILS_LT . Cette méthode est dédiée à la résolution approchée du problème que nous avons démontré non solvable à l'optimum dans un temps de calcul acceptable à savoir le problème avec un nombre de période d'indisponibilité égale à N/2 ou N/4 avec le nombre de tâches $N = \{15, 20, 30\}$.

Conclusion générale

Les travaux de recherches développés dans cette thèse portent sur l'ordonnancement des systèmes de production pour la maximisation de la productivité, face aux aléas et perturbations de ces systèmes.

Le problème traité est l'ordonnancement avec contraintes de disponibilité pour la minimisation de la date de fin du traitement de toutes les tâches (Makespan). Nous avons considéré, en particulier, le problème d'ordonnancement de type job shop à deux machines avec la prise en compte des contraintes de disponibilité dont les dates de début et de fin sont connues à l'avance. Nous avons considéré également tout au long de la thèse que les opérations sont strictement non-preemptives, ce qui signifie qu'une tâche en-cours de traitement ne peut être interrompue ni par l'exécution d'une autre tâche ni par le commencement d'une période d'indisponibilité. Des propriétés théoriques ont été établies et des méthodes exactes et approchées ont été développées ainsi que des études d'approximation au pire cas pour les heuristiques utilisant la règle de Jackson.

Nous avons mené tout d'abord une étude bibliographique portant sur les problèmes d'ordonnancement sous contraintes de disponibilité, après avoir présenté les notions sur l'ordonnancement, les types d'ateliers, la théorie de complexité ainsi que les principales méthodes de résolution de ce problème.

L'étude et la résolution du problème d'ordonnancement de type job shop à deux machines avec contraintes de disponibilité est dédiée d'abord au cas de plusieurs contraintes de disponibilité sur une machine. Nous avons démontré des propriétés théoriques concernant l'optimalité de l'algorithme de Jackson. Une procédure par séparation et évaluation a été développée par la suite pour la résolution exacte du problème. Cette approche tient en compte le faite que le séquencement des tâches avant et après chaque période d'indisponibilité est selon la règle de Jackson qui est optimal. Par conséquent, la procédure consiste à trouver l'ensemble de tâches à traiter dans chaque intervalle sachant le séquencement optimal de ces tâches. Des bornes supérieurs issues des heuristiques ainsi que des inférieures ont été

élaborées. Les résultats obtenus montrent l'efficacité des propriétés démontrées et la méthode exacte développée. Pour les instances de grandes tailles, avec un nombre de tâches et de contraintes de disponibilité élevé, nous avons proposé des méthodes approchées, à savoir, une heuristique constructive et une recherche locale itérée pour obtenir des solutions de bonne qualité en un temps raisonnable pour les instances non résolues à l'optimum.

Le problème d'ordonnancement de type Job shop à deux machines avec contrainte de disponibilité sur chaque machine est également traité. Nous avons développé des propriétés traitant la dominance des ordonnancements de permutation. Un nouvel ordre de tâches en présence des contraintes de disponibilité a été démontré optimal. Il garantit que le séquencement des tâches selon l'ordre de Jackson avant et après la période d'indisponibilité sur chaque machine est optimal. Nous avons proposé de ce fait des procédures par séparation et évaluation et une nouvelle formulation mathématique du problème. Notre contribution dans ce sens est de proposer une méthode de résolution exacte employant au mieux les propriétés démontrées. Les résultats expérimentaux ont prouvé l'efficacité des méthodes présentées.

Il serait intéressant de pouvoir généraliser les approches développées et en particulier les propriétés théoriques pour la résolution non-déterministe et en ligne (on-line) du problème. En effet, il est envisageable de considérer l'ordonnancement robuste pour le cas non-déterministe qui permettra d'anticiper ou réviser l'ordonnancement en tenant en compte les contraintes de disponibilité ni estimées ni connues à l'avance, notamment à cause d'une panne de machine, un retard de livraison, une rupture de stock ou bien pour d'autres raisons. Il faudrait pour cela développer des méthodes d'optimisation basées sur le cas déterministe étudié dans cette thèse. Les propriétés théoriques que nous avons développées peuvent s'appliquer, à savoir l'ordre optimal des tâches avant et après chaque période d'indisponibilité.

Une deuxième perspective serait de tenir en compte la date et la durée de la période d'indisponibilité déterminées en temps réel. Il s'agira d'ordonnancer les tâches sur la base des informations retenues. Par exemple, les informations sur la périodes d'indisponibilité peuvent être obtenues selon une fonction de dégradation ou estimées en se basant sur un historique de données. Dans ce cas, l'ordonnancement d'une tâche immédiat et irrévocable devrait prendre en compte les contraintes de disponibilité sans aucune connaissance de l'ordonnancement des tâches futures. Il s'agira donc de penser à employer les propriétés développées et en particulier, l'ordre optimal des tâches démontré pour ordonnancer ou réordonnancer les tâches disponibles lorsque une indisponibilité se présente.

Bibliographie

- Adiri, Igal, Bruno, John, Frostig, Esther, & Kan, AHG Rinnooy. 1989. Single machine flow-time scheduling with a single breakdown. *Acta Informatica*, **26**(7), 679–696.
- Aggoune, Riad. 2002. Ordonnancement d'ateliers sous contraintes de disponibilité des machines. Ph.D. thesis, Université de Metz.
- Aggoune, Riad. 2004a. Minimizing the makespan for the flow shop scheduling problem with availability constraints. European Journal of Operational Research, 153(3), 534–543.
- Aggoune, Riad. 2004b. Two-Job Shop Scheduling Problems with Availability Constraints. Pages 253–259 of : ICAPS.
- Aggoune, Riad. 2010. An Improved Solution Algorithm for Two-Job Shop Scheduling Problems with Availability Constraints. In: Proceedings of the International MultiConference of Engineers and Computer Scientists, vol. 3.
- Aggoune, Riad, & Portmann, Marie-Claude. 2006. Flow shop scheduling problem with limited machine availability: A heuristic approach. *International Journal of Production Economics*, **99**(1), 4–15.
- Akers Jr, Sheldon B, & Friedman, Joyce. 1955. A non-numerical approach to production scheduling problems. *Journal of the Operations Research Society of America*, **3**(4), 429–442.
- Allaoui, H, Artiba, A, Elmaghraby, SE, & Riane, F. 2006. Scheduling of a two-machine flowshop with availability constraints on the first machine. *International Journal of Production Economics*, **99**(1), 16–27.
- Allaoui, H, Lamouri, S, Artiba, A, & Aghezzaf, E. 2008. Simultaneously scheduling n jobs and the preventive maintenance on the two-machine flow shop to minimize the makespan. *International Journal of Production Economics*, **112**(1), 161–167.

- Applegate, David, & Cook, William. 1991. A computational study of the job-shop scheduling problem. *ORSA Journal on computing*, **3**(2), 149–156.
- Azem, Sadia. 2010. Ordonnancement des systemes flexibles de production sous contraintes de disponibilite des ressources. Ph.D. thesis, Saint-Etienne, EMSE.
- Azem, Sadia, Aggoune, Riad, & Dauzère-Pérès, Stéphane. 2007. Disjunctive and time-indexed formulations for non-preemptive job shop scheduling with resource availability constraints. Pages 787–791 of: Industrial Engineering and Engineering Management, 2007 IEEE International Conference on. IEEE.
- Beaton, Clifford, Diallo, Claver, & Gunn, Eldon. 2016. Makespan minimization for parallel machine scheduling of semi-resumable and non-resumable jobs with multiple availability constraints. *INFOR*: Information Systems and Operational Research, 1–12.
- Bellman, Richard. 1954. The theory of dynamic programming. Bulletin of the American Mathematical Society, **60**(6), 503–515.
- Ben Chihaoui, Faten, Kacem, Imed, Hadj-Alouane, Atidel B, Dridi, Najoua, & Rezg, Nidhal. 2011. No-wait scheduling of a two-machine flow-shop to minimise the makespan under non-availability constraints and different release dates. *International Journal of Production Research*, 49(21), 6273–6286.
- Benmansour, Rachid, Allaoui, Hamid, Artiba, Abdelhakim, & Hanafi, Saïd. 2014. Minimizing the weighted sum of maximum earliness and maximum tardiness costs on a single machine with periodic preventive maintenance. *Computers & Operations Research*, 47, 106–113.
- Blazewicz, Jacek, Lenstra, Jan Karel, & Kan, AHG Rinnooy. 1983. Scheduling subject to resource constraints: classification and complexity. *Discrete applied mathematics*, **5**(1), 11–24.
- Błażewicz, Jacek, Breit, Joachim, Formanowicz, Piotr, Kubiak, Wiesław, & Schmidt, Günter. 2001. Heuristic algorithms for the two-machine flowshop with limited machine availability. *Omega*, **29**(6), 599–608.
- Breit, Joachim. 2004. An improved approximation algorithm for two-machine flow shop scheduling with an availability constraint. *Information Processing Letters*, **90**(6), 273–278.
- Breit, Joachim. 2006. A polynomial-time approximation scheme for the two-machine flow shop scheduling problem with an availability constraint. *Computers & Operations Research*, **33**(8), 2143–2153.

- Breit, Joachim, Schmidt, Günter, & Strusevich, Vitaly A. 2001. Two-machine open shop scheduling with an availability constraint. *Operations Research Letters*, **29**(2), 65–77.
- Breit, Joachim, Schmidt, Günter, & Strusevich, Vitaly A. 2003. Non-preemptive two-machine open shop scheduling with non-availability constraints. *Mathematical Methods of Operations Research*, **57**(2), 217–234.
- Carlier, Jacques, & Pinson, Éric. 1989. An algorithm for solving the job-shop problem. Management science, 35(2), 164–176.
- Chen, Wen-Jinn. 2009. Minimizing number of tardy jobs on a single machine subject to periodic maintenance. *Omega*, **37**(3), 591–599.
- Chen, WJ. 2007. Scheduling of jobs and maintenance in a textile company. *The International Journal of Advanced Manufacturing Technology*, **31**(7-8), 737–742.
- Cheng, Chen-Yang, Ying, Kuo-Ching, Chen, Hsia-Hsiang, & Lin, Jia-Xian. 2018. Optimization algorithms for proportionate flowshop scheduling problems with variable maintenance activities. *Computers & Industrial Engineering*, **117**, 164 170.
- Cheng, TC Edwin, & Liu, Zhaohui. 2003. Approximability of two-machine no-wait flowshop scheduling with availability constraints. *Operations Research Letters*, **31**(4), 319–322.
- Cheng, TC Edwin, & Wang, Guoqing. 1999. Two-machine flowshop scheduling with consecutive availability constraints. *Information Processing Letters*, **71**(2), 49–54.
- Cook, Stephen A. 1971. The complexity of theorem-proving procedures. *Pages 151–158 of : Proceedings of the third annual ACM symposium on Theory of computing.* ACM.
- Costa, Antonio, Cappadonna, Fulvio Antonio, & Fichera, Sergio. 2016. Minimizing the total completion time on a parallel machine system with tool changes. *Computers & Industrial Engineering*, **91**, 290–301.
- Cui, Wei-Wei, & Lu, Zhiqiang. 2017. Minimizing the makespan on a single machine with flexible maintenances and jobs' release dates. *Computers & Operations Research*, **80**, 11–22.
- Cui, Wei-Wei, Lu, Zhiqiang, Zhou, Binghai, Li, Chen, & Han, Xiaole. 2016. A hybrid genetic algorithm for non-permutation flow shop scheduling problems with unavailability constraints. *International Journal of Computer Integrated Manufacturing*, **29**(9), 944–961.

- Dantzig, George B, & Wolfe, Philip. 1960. Decomposition principle for linear programs. Operations research, 8(1), 101–111.
- Dantzig, George Bernard, Fulkerson, Delbert R, & Johnson, Selmer M. 1954. On a linear-programming, combinatorial approach to the traveling-salesman problem. *Operations Research*, 393–410.
- Detienne, Boris. 2012. Minimizing the weighted number of late semi-resumable jobs with deterministic machine availability constraints. *IFAC Proceedings Volumes*, **45**(6), 111–116.
- Dorigo, Marco, & Gambardella, Luca Maria. 1996. A study of some properties of Ant-Q. Pages 656–665 of: International Conference on Parallel Problem Solving from Nature. Springer.
- Espinouse, Marie-Laure, Formanowicz, Piotr, & Penz, Bernard. 1999. Minimizing the makespan in the two-machine no-wait flow-shop with limited machine availability. Computers & Industrial Engineering, 37(1), 497–500.
- Espinouse, Marie-Laure, Formanowicz, Piotr, & Penz, Bernard. 2001. Complexity results and approximation algorithms for the two machine no-wait flow-shop with limited machine availability. *Journal of the Operational Research Society*, **52**(1), 116–121.
- Fisher, Marshall L. 1976. A dual algorithm for the one-machine scheduling problem. Mathematical programming, 11(1), 229–251.
- Fnaiech, N, Fitouri, C, Varnier, C, Fnaiech, F, & Zerhouni, N. 2015. A New Heuristic Method for Solving Joint Job Shop Scheduling of Production and Maintenance. *IFAC-PapersOnLine*, **48**(3), 1802–1808.
- Fnaiech, Nader, Hammami, Hayfa, Yahyaoui, Amel, Varnier, Christophe, Fnaiech, Farhat, & Zerhouni, Noureddine. 2012. New Hopfield Neural Network for joint Job Shop Scheduling of production and maintenance. Pages 5535–5541 of: IECON 2012-38th Annual Conference on IEEE Industrial Electronics Society. IEEE.
- Gara-Ali, Ahmed, & Espinouse, Marie-Laure. 2014. Erratum to :"Simultaneously scheduling n jobs and the preventive maintenance on the two-machine flow shop to minimize the makespan" [Int. J. Prod. Econ. 112 (2008) 161–167]. International Journal of Production Economics, 153, 361–363.
- Gara-Ali, Ahmed, & Espinouse, Marie-Laure. 2015. A two-machine flow-shop scheduling with a deteriorating maintenance activity on the second machine. *Pages 481–488 of :*

- Industrial Engineering and Systems Management (IESM), 2015 International Conference on. IEEE.
- Garey, Michael R, & Johnson, David S. 1979. Computers and intractability: A guide to the theory of NP-completeness. W.H. Freeman and Company.
- Gawiejnowicz, Stanisław. 2007. Scheduling deteriorating jobs subject to job or machine availability constraints. European Journal of Operational Research, 180(1), 472–478.
- Glover, Fred. 1989. Tabu search—part I. ORSA Journal on computing, 1(3), 190–206.
- Glover, Fred. 1990. Tabu search—part II. ORSA Journal on computing, 2(1), 4–32.
- Graham, Ronald L, Lawler, Eugene L, Lenstra, Jan Karel, & Kan, AHG Rinnooy. 1979. Optimization and approximation in deterministic sequencing and scheduling: a survey. Pages 287–326 of: Annals of discrete mathematics, vol. 5. Elsevier.
- Guyon, Olivier, Lemaire, Pierre, Pinson, Eric, & Rivreau, David. 2014. Solving an integrated job-shop problem with human resource constraints. *Annals of Operations Research*, **213**(1), 147–171.
- Hadda, Hatem. 2010. An improved algorithm for the two machine flow shop problem with several availability constraints. 4OR, 8(3), 271-280.
- Hashemian, Navid, Diallo, Claver, & Vizvári, Béla. 2014. Makespan minimization for parallel machines scheduling with multiple availability constraints. *Annals of Operations Research*, **213**(1), 173–186.
- Hfaiedh, Walid, Sadfi, Chérif, Kacem, Imed, & Hadj-Alouane, Atidel. 2015. A branch-and-bound method for the single-machine scheduling problem under a non-availability constraint for maximum delivery time minimization. *Applied Mathematics and Computation*, **252**, 496–502.
- Hnaien, Faicel, Yalaoui, Farouk, & Mhadhbi, Ahmed. 2015. Makespan minimization on a two-machine flowshop with an availability constraint on the first machine. *International Journal of Production Economics*, **164**, 95–104.
- Holland, J. H. 1975. Adaptation in natural and artificial systems. Ph.D. thesis, Ann Arbor, MI: University of Michigan Press.
- Jackson, James R. 1956. An extension of Johnson's results on job IDT scheduling. *Naval Research Logistics Quarterly*, **3**(3), 201–203.

- Ji, Min, He, Yong, & Cheng, TC Edwin. 2007. Single-machine scheduling with periodic maintenance to minimize makespan. Computers & operations research, 34(6), 1764–1770.
- Johnson, Selmer Martin. 1954. Optimal two-and three-stage production schedules with setup times included. *Naval research logistics quarterly*, **1**(1), 61–68.
- Kacem, Imed, & Chu, Chengbin. 2008a. Efficient branch-and-bound algorithm for minimizing the weighted sum of completion times on a single machine with one availability constraint. *International Journal of Production Economics*, **112**(1), 138–150.
- Kacem, Imed, & Chu, Chengbin. 2008b. Minimizing the weighted flow time on a single machine with the resumable availability constraint: worst case of the WSPT heuristic. *International Journal of Computer Integrated Manufacturing*, **21**(4), 388–395.
- Kacem, Imed, & Paschos, Vangelis Th. 2013. Weighted completion time minimization on a single-machine with a fixed non-availability interval: Differential approximability. *Discrete Optimization*, **10**(1), 61–68.
- Kacem, Imed, Chu, Chengbin, & Souissi, Ahmed. 2008. Single-machine scheduling with an availability constraint to minimize the weighted sum of the completion times. *Computers & operations research*, **35**(3), 827–844.
- Kacem, Imed, Nagih, Anass, & Seifaddini, Maryam. 2014. Maximum lateness minimization with positive tails on a single machine with an unexpected non-availability interval. Pages 1–5 of: Computer Applications and Information Systems (WCCAIS), 2014 World Congress on. IEEE.
- Kacem, Imed, Kellerer, Hans, & Lanuel, Yann. 2015. Approximation algorithms for maximizing the weighted number of early jobs on a single machine with non-availability intervals. *Journal of Combinatorial Optimization*, **30**(3), 403–412.
- Karp, Richard M. 1972. Reducibility among combinatorial problems. *Pages 85–103 of : Complexity of computer computations*. Springer.
- Kaspi, M, & Montreuil, B. 1988. On the scheduling of identical parallel processes with arbitrary initial processor available Times. 88–12.
- Kirkpatrick, Scott, Gelatt, C Daniel, & Vecchi, Mario P. 1983. Optimization by simulated annealing. *science*, **220**(4598), 671–680.

- Kubiak, Wiesław, Błażewicz, Jacek, Formanowicz, Piotr, Breit, Joachim, & Schmidt, Günter. 2002. Two-machine flow shops with limited machine availability. *European Journal of Operational Research*, **136**(3), 528–540.
- Kubzin, Mikhail A, & Strusevich, Vitaly A. 2005. Two-machine flow shop no-wait scheduling with machine maintenance. 4OR, 3(4), 303-313.
- Kubzin, Mikhail A, & Strusevich, Vitaly A. 2006. Planning machine maintenance in two-machine shop scheduling. *Operations Research*, **54**(4), 789–800.
- Kubzin, Mikhail A, Strusevich, Vitaly A, Breit, J, & Schmidt, G. 2006. Polynomial-time approximation schemes for two-machine open shop scheduling with nonavailability constraints. *Naval Research Logistics (NRL)*, **53**(1), 16–23.
- Kubzin, Mikhail A, Potts, Chris N, & Strusevich, Vitaly A. 2009. Approximation results for flow shop scheduling problems with machine availability constraints. *Computers & Operations Research*, **36**(2), 379–390.
- Labidi, M., Kooli, A., Ladhari, T., Gharbi, A., & Suryahatmaja, U. S. 2018. A Computational Study of the Two-Machine No-Wait Flow Shop Scheduling Problem Subject to Unequal Release Dates and Non-Availability Constraints. *IEEE Access*, **6**, 16294–16304.
- Lee, Chung-Yee. 1991. Parallel machines scheduling with nonsimultaneous machine available time. Discrete Applied Mathematics, **30**(1), 53–61.
- Lee, Chung-Yee. 1996. Machine scheduling with an availability constraint. *Journal of global optimization*, **9**(3-4), 395–416.
- Lee, Chung-Yee. 1997. Minimizing the makespan in the two-machine flowshop scheduling problem with an availability constraint. *Operations research letters*, **20**(3), 129–139.
- Lee, Chung-Yee. 1999. Two-machine flowshop scheduling with availability constraints. European Journal of Operational Research, 114(2), 420–429.
- Lee, Chung-Yee, & Liman, Surya Danusaputro. 1992. Single machine flow-time scheduling with scheduled maintenance. *Acta Informatica*, **29**(4), 375–382.
- Lee, Chung-Yee, & Liman, Surya Danusaputro. 1993. Capacitated two-parallel machines scheduling to minimize sum of job completion times. *Discrete Applied Mathematics*, **41**(3), 211–222.

- Lee, Chung-Yee, Lei, & Pinedo, Michael. 1997. Current trends in deterministic scheduling. Annals of Operations Research, 70, 1–41.
- Lee, Ju-Yong, & Kim, Yeong-Dae. 2012. Minimizing the number of tardy jobs in a single-machine scheduling problem with periodic maintenance. *Computers & Operations Research*, **39**(9), 2196–2205.
- Lee, Ju-Yong, & Kim, Yeong-Dae. 2017. Minimizing total tardiness in a two-machine flowshop scheduling problem with availability constraint on the first machine. *Computers & Industrial Engineering*, **114**, 22–30.
- Li, Debiao, Chen, Kejia, & Wang, Xiao. 2017. Properties of two-machine no-wait flow-shop scheduling with a non-resumable unavailable interval. *Journal of Industrial and Production Engineering*, **34**(3), 232–238.
- Lin, Guo-Hui, Yao, En-Yu, & He, Yong. 1998. Parallel machine scheduling to maximize the minimum load with nonsimultaneous machine available times. *Operations research letters*, **22**(2), 75–81.
- Liu, Ming, Wang, Shijin, Chu, Chengbin, & Chu, Feng. 2016. An improved exact algorithm for single-machine scheduling to minimise the number of tardy jobs with periodic maintenance. *International Journal of Production Research*, **54**(12), 3591–3602.
- Liu, Peihai, & Lu, Xiwen. 2016. Integrated production and job delivery scheduling with an availability constraint. *International Journal of Production Economics*, **176**, 1–6.
- Lorigeon, T, Billaut, JC, & Bouquard, JL. 2002. A dynamic programming algorithm for scheduling jobs in a two-machine open shop with an availability constraint. *Journal of the Operational Research Society*, **53**(11), 1239–1246.
- Low, Chinyao, Li, Rong-Kwei, & Wu, Guan-He. 2016. Minimizing Total Earliness and Tardiness for Common Due Date Single-Machine Scheduling with an Unavailability Interval. *Mathematical Problems in Engineering*, **2016**.
- Luo, Wenchang, Cheng, TC Edwin, & Ji, Min. 2015. Single-machine scheduling with a variable maintenance activity. Computers & Industrial Engineering, 79, 168–174.
- Ma, Ying, Chu, Chengbin, & Zuo, Chunrong. 2010. A survey of scheduling with deterministic machine availability constraints. *Computers & Industrial Engineering*, **58**(2), 199–211.
- Mati, Yazid. 2010. Minimizing the makespan in the non-preemptive job-shop scheduling with limited machine availability. *Computers & Industrial Engineering*, **59**(4), 537–543.

- Mauguière, P, Bouquard, JL, & Billaut, JC. 2003a. A branch and bound algorithm for a job shop scheduling problem with availability constraints. Pages 147–148 of: Proceedings of the sixth workshop on models and algorithms for planning and scheduling problems, MAPSP'2003.
- Mauguière, P, Billaut, JC, & Bouquard, JL. 2003b. Scheduling resumable and non-resumable operations. Pages 166–167 of: Proceedings of the joint international meeting EURO/INFORMS.
- Mauguière, P, Billaut, J-C, & Bouquard, J-L. 2005. New single machine and job-shop scheduling problems with availability constraints. *Journal of scheduling*, 8(3), 211–231.
- Mellouli, Racem, Sadfi, Cherif, Chu, Chengbin, & Kacem, Imed. 2009. Identical parallel-machine scheduling under availability constraints to minimize the sum of completion times. European Journal of Operational Research, 197(3), 1150–1165.
- Moore, J Michael. 1968. An n job, one machine sequencing algorithm for minimizing the number of late jobs. *Management science*, **15**(1), 102–109.
- Mosheiov, G. 1994. Minimizing the sum of job completion times on capacitated parallel machines. *Mathematical and Computer Modelling*, **20**(6), 91–99.
- Naderi, B, Zandieh, M, & Ghomi, SMT Fatemi. 2009. Scheduling sequence-dependent setup time job shops with preventive maintenance. The International Journal of Advanced Manufacturing Technology, 43(1-2), 170–181.
- Nawaz, Muhammad, Enscore Jr, E Emory, & Ham, Inyong. 1983. A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. *Omega*, **11**(1), 91–95.
- Rapine, Christophe. 2013. Erratum to "Scheduling of a two-machine flowshop with availability constraints on the first machine" [International Journal of Production Economics 99 (2006) 16–27]. International Journal of Production Economics, 142(1), 211–212.
- Roy, S, & Sussman, B. 1964. Les problemès d'ordonnancement avec contraintes disjonctives.
- Sadfi, Chérif. 2002. Problèmes d'ordonnancement avec minimisation des encours. Ph.D. thesis, Grenoble, INPG.
- Sadfi, Cherif, Penz, Bernard, Rapine, Christophe, Błażewicz, Jacek, & Formanowicz, Piotr. 2005. An improved approximation algorithm for the single machine total completion time

- scheduling problem with availability constraints. European journal of operational research, **161**(1), 3–10.
- Schmidt, Günter. 1984. Scheduling on semi-identical processors. Zeitschrift für Operations Research, 28(5), 153–162.
- Schmidt, Günter. 1988. Scheduling independent tasks with deadlines on semi-identical processors. *Journal of the Operational Research Society*, 271–277.
- Shabtay, Dvir, & Zofi, Moshe. 2018. Single machine scheduling with controllable processing times and an unavailability period to minimize the makespan. *International Journal of Production Economics*, **198**, 191 200.
- Sheen, Gwo-Ji, & Liao, Lu-Wen. 2007. Scheduling machine-dependent jobs to minimize lateness on machines with identical speed under availability constraints. *Computers & operations research*, **34**(8), 2266–2278.
- Souissi, Ahmed Sâadeddine. 2005. Ordonnancement avec prise en compte des indisponibilités dépendantes et indépendantes. Ph.D. thesis, Troyes.
- Taillard, Eric. 1993. Benchmarks for basic scheduling problems. European journal of operational research, 64(2), 278–285.
- Tan, Zhiyi, Chen, Yong, & Zhang, An. 2011. Parallel machines scheduling with machine maintenance for minsum criteria. *European Journal of Operational Research*, **212**(2), 287–292.
- Tan, Zhiyi, Chen, Yong, & Zhang, An. 2013. On the exact bounds of SPT for scheduling on parallel machines with availability constraints. *International Journal of Production Economics*, **146**(1), 293–299.
- Vahedi-Nouri, Behdin, Fattahi, Parviz, Rohaninejad, Mohammad, & Tavakkoli-Moghaddam, Reza. 2013. Minimizing the total completion time on a single machine with the learning effect and multiple availability constraints. *Applied Mathematical Modelling*, **37**(5), 3126–3137.
- Vahedi-Nouri, Behdin, Fattahi, Parviz, Tavakkoli-Moghaddam, Reza, & Ramezanian, Reza. 2014. A general flow shop scheduling problem with consideration of position-based learning effect and multiple availability constraints. The International Journal of Advanced Manufacturing Technology, 73(5-8), 601–611.

- Wan, Long, & Yuan, Jinjiang. 2018. Single-machine scheduling with operator non-availability to minimize total weighted completion time. *Information Sciences*, 445-446, 1-5.
- Wang, Li-Yan, Huang, Xue, Ji, Ping, & Feng, En-Min. 2014. Unrelated parallel-machine scheduling with deteriorating maintenance activities to minimize the total completion time. *Optimization letters*, 8(1), 129–134.
- Wang, Shijin, & Liu, Ming. 2016. Two-machine flow shop scheduling integrated with preventive maintenance planning. *International Journal of Systems Science*, **47**(3), 672–690.
- Wang, Xiuli, & Cheng, TC. 2007a. Machine scheduling with an availability constraint and job delivery coordination. *Naval Research Logistics (NRL)*, **54**(1), 11–20.
- Wang, Xiuli, & Cheng, TC Edwin. 2007b. Heuristics for two-machine flowshop scheduling with setup times and an availability constraint. *Computers & operations research*, **34**(1), 152–162.
- Wang, Xiuli, & Cheng, TCE. 2015. A heuristic for scheduling jobs on two identical parallel machines with a machine availability constraint. *International Journal of Production Economics*, **161**, 74–82.
- Xu, Dehua, & Yang, Dar-Li. 2013. Makespan minimization for two parallel machines scheduling with a periodic availability constraint: mathematical programming model, average-case analysis, and anomalies. *Applied Mathematical Modelling*, **37**(14), 7561–7567.
- Xu, Dehua, Sun, Kaibiao, & Li, Hongxing. 2008. Parallel machine scheduling with almost periodic maintenance and non-preemptive jobs to minimize makespan. *Computers & operations research*, **35**(4), 1344–1349.
- Yang, Dar-Li, Hsu, Chou-Jung, & Kuo, Wen-Hung. 2008. A two-machine flowshop scheduling problem with a separated maintenance constraint. *Computers & Operations Research*, **35**(3), 876–883.
- Yang, Shan-lin, Ma, Ying, Xu, Dong-ling, & Yang, Jian-bo. 2011. Minimizing total completion time on a single machine with a flexible maintenance activity. *Computers & Operations Research*, **38**(4), 755–770.
- Yin, Yunqiang, Xu, Jianyou, Cheng, TCE, Wu, Chin-Chia, & Wang, Du-Juan. 2016. Approximation schemes for single-machine scheduling with a fixed maintenance activity to minimize the total amount of late work. *Naval Research Logistics (NRL)*, **63**(2), 172–183.

- Zhao, Chuan-Li, & Hsu, Chou-Jung. 2017. Scheduling deteriorating jobs with machine availability constraints to minimize the total completion time. *Journal of Industrial and Production Engineering*, **34**(5), 323–329.
- Zhao, Chuanli, & Tang, Hengyong. 2014. Parallel machines scheduling with deteriorating jobs and availability constraints. *Japan Journal of Industrial and Applied Mathematics*, **31**(3), 501–512.
- Zhao, Chuanli, Ji, Min, & Tang, Hengyong. 2011. Parallel-machine scheduling with an availability constraint. Computers & Industrial Engineering, 61(3), 778–781.
- Zribi, Nozha, El Kamel, Abdelkader, & Borne, Pierre. 2008. Minimizing the makespan for the MPM job-shop with availability constraints. *International Journal of Production Economics*, **112**(1), 151–160.

Mourad BENTTALEB

Doctorat : Optimisation et Sureté des Systèmes

Année 2018

Gestion de production sous incertitudes

Dans un contexte de production en perpétuelle évolution, l'entreprise est tenue à s'adapter en permanence aux fluctuations des marchés (demandes aléatoires) et aux perturbations internes de ses systèmes (pannes, absentéisme, ...). Face à ces incertitudes, la gestion de production permanente bénéficiant également de la puissance de la technologie informatique est indispensable. L'ordonnancement des ateliers de production est l'un des axes d'optimisation contribuant à l'amélioration de la productivité face aux aléas. Il s'agit dans ce contexte de définir les politiques d'ordonnancement avec la prise en compte de l'indisponibilité des ressources (gestion de la maintenance, de ressources humaines ...). Dans thèse, nous nous intéressons plus particulièrement aux problèmes d'ordonnancement d'atelier à chemins multiples (Job shop) à deux machines avec des ressources non disponibles en permanence. Le but de nos travaux est de proposer des méthodes de résolution exactes et approchées pour ce type de problèmes, exploitant autant que possible des propriétés théoriques pour minimisation du makespan qui revient à maximiser la productivité.

Mots clés : recherche opérationnelle - optimisation combinatoire - ordonnancement (gestion) - programmation linéaire - algorithmes d'approximation - métaheuristiques.

Production Management Under Uncertainties

Production is always in perpetual evolution. Indeed, company needs to adapt its performance to market fluctuations (random requests) and internal perturbations within its systems (breakdowns, absenteeism, etc.). To cope with these uncertainties, permanent production management benefiting from the power of computer technology is fundamental. The scheduling of production is one of optimization's tools contributing to the improvement of productivity in front of hazards. In this context, the objective is to define scheduling policies, taking into account the unavailability of resources (management of maintenance, human resources, etc.). In this thesis, we are particularly interested in the study of the two-machine job shop scheduling problems with resources not always available. The aim of our work is to propose methods for exact and approximate resolution for this type of problem, exploiting as much as possible theoretical properties for the minimization of the total completion time (makespan) which is to maximize the productivity.

Keywords: operations research - combinatorial optimization - production scheduling - linear programming - approximation algorithms - metaheuristics.