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Abstract 

The present manuscript explores an optical phenomenon that hasn’t been extensively 
studied: light interreflections. It happens on every non-flat surface and more precisely, in 
their concavities either big or small, and affects their colored appearance. This effect 
comes from the fact that every illuminated point in a concavity will then re-illuminate the 
other points, after reflection of the light. This process of mutual illumination can 
indefinitely happen if the surface is scattering. It is now established that accounting for 
many successive reflections in the case of matte and light surfaces is crucial, at the risk of 
creating high discrepancies when simulating the colored appearance otherwise. 
Thankfully, proposals of models allowing for the rigorous and exhaustive description of 
these multiple reflections with equations have been published, and their more recent 
versions offer an almost analytical resolution. On the downside, these models are only 
valid for perfectly matte surfaces, i.e. Lambertian, which corresponds to a very limited 
part of real structured surfaces.  

Beyond the possible approaches to deal with this subject, we selected physical 
modeling based on optical equations, despite its limitation to ideal structured surfaces. 
The chosen topology is a periodically ridged surface, with infinitely long V-cavities, 
identical and parallel. The material is opaque, each cavity reflects light independently of 
the others, which allows for the study of one ridge to be enough to describe the whole 
surface behavior. The panels of the cavity can have different optical properties, each being 
the object of a dedicated chapter: 

 Strongly scattering surfaces and perfectly matte, called Lambertian surfaces. The 
model allows for the simulation of the perceived radiance and the color as a function of 
the dihedral angle of the V-cavity, the spectral absorbance of the material, the lighting 
geometry (frontal, oblique or diffuse), and the observation direction. The model 
rigorously accounts for the fact that some parts of the cavity are not necessarily visible 
nor receive light, which depends on both the point of view and the lighting configuration. 
It can quantify the color difference obtained when structuring two materials being 
metamers when flat.   

 Mirror-like surfaces, such as metallic ones. Our model fully embraces the starting point 
of an ideal surface: in a precise photometric approach, it can describe all the trajectories 
of light rays entering the V-cavity without any trade-off on the shadowing and masking 
modeling. We study the evolution of the surface color under a perfectly diffuse lighting, as 
a function of the cavities dihedral angle, of the spectral optical index of the materials and 
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of the observation direction. We put the emphasis on the evolution of the light 
polarization through the multiple reflections, given it is unpolarized when entering the 
structure. Experimental measures on metallic V-cavities allowed us to confirm the validity 
of the model, despite the difficulties encountered during the set-up.  

 Scattering surfaces possessing a smooth interface with air also called “interface 
Lambertian surface”. The model is limited to a single case study of lighting and 
observation geometry, yielding no shadowing nor masking. It is similar to a combination 
of the two previous models, considering the light goes through an interface each time it 
enters or exits the material, and can undergo multiple reflections in the process. These 
reflections can happen in the air (specular reflections between the panels interfaces) or 
on the side of the material (scattering between the interface and the matter itself).  

Numerous figures are gathered in a portfolio and allow for the visualization of the 
effects we want to highlight.  

Because it is based on ideal structures, the models do not permit the precise 
prediction of the change in color induced by a complex change of the topology. 
Nevertheless, they form a useful toolbox to get an idea of the different parameters 
influencing color, which evolution to expect and to what extent their influence is 
significative in order to explain the physical reasons behind these changes. The described 
evolutions can be generalized to more complex structures than the one we effectively 
studied. 
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Résumé 

Le présent mémoire explore un phénomène optique relativement peu étudié, qui se 
produit sur les surfaces non-planes, plus précisément dans leurs concavités petites ou 
grandes, et qui affecte de manière sensible leur apparence colorée : les interréflexions 
lumineuses. Ce phénomène provient du fait que chaque point éclairé dans une concavité 
de la surface rééclaire à son tour, après avoir réfléchi la lumière, les autres points de la 
cavité. Ce processus d'éclairage mutuel des différents points de la cavité peut se produire 
indéfiniment si la surface est diffusante, et il est maintenant établi qu'il est crucial de 
prendre en compte un très grand nombre de réflexions successives dans le cas les surfaces 
mattes et claires, sans quoi l'erreur commise dans la simulation de leur apparence colorée 
peut s'avérer très grande. Heureusement, des modèles permettant de décrire ces 
réflexions multiples par des équations de manière rigoureuse et exhaustive ont été 
proposés dans le passé, et leurs dernières versions offrent une résolution quasi-
analytique. Malheureusement, ces modèles ne sont valables que lors que les surfaces sont 
parfaitement mattes, c'est-à-dire lambertiennes, ce qui ne correspond qu'à une frange 
limitée des surfaces texturées de la vie quotidienne.  

Parmi les multiples méthodes possibles pour aborder ce sujet, nous avons privilégié 
la modélisation physique basée sur les équations optiques, malgré sa limitation à 
structures simples et idéales. Le type de structure choisi est une surface striée périodique, 
formée de cavités en V infiniment longues, identiques et parallèles. La matière est opaque, 
chaque cavité réfléchi la lumière indépendamment des autres, de sorte que l'étude de la 
réflexion lumineuse par une cavité suffit pour décrire la réflexion lumineuse par toute la 
surface striée. Les panneaux latéraux de ces cavités peuvent présenter des propriétés 
optiques diverses. Trois types ont été étudiés, chacun faisant l'objet d'un chapitre dédié :  

  Les surfaces très diffusantes et parfaitement mattes, dites lambertiennes. Le modèle 
permet de simulations la luminance perçue, ou la couleur, en fonction de divers 
paramètres tels que l'angle dièdre de la cavité en V, l'absorbance (spectrale) de la matière, 
les conditions d'éclairage (collimaté frontal, collimaté oblique, ou parfaitement diffus) ou 
l'angle d'observation. Le modèle permet de prendre en compte rigoureusement le fait que 
certaines parties de la cavité peuvent ne pas être éclairées selon l'angle d'éclairage, ou ne 
pas être vues selon l'angle d'observation. Il permet aussi de quantifier l'écart de couleur 
qu'on obtient en texturant une surface fait de deux matériaux lorsque ceux-ci sont 
métamères s'ils forment des surfaces planes.   

 Les surfaces à panneaux parfaitement spéculaires, notamment métalliques.  Notre 
modèle tire tout l'avantage de partir d'une surface idéale : il peut décrire de manière 
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photométriquement rigoureuse la trajectoire des tous les rayons entrant dans la cavité et 
donc traiter sans approximation les phénomènes d'ombrage et de masquage. Nous 
cherchons à voir l'évolution de la couleur de la surface sous un éclairage parfaitement 
diffus en fonction de l'angle dièdre des cavités, de l'indice spectral du matériau, ou de 
l'angle d'observation. Nous étudions particulièrement la manière dont la polarisation de 
la lumière, non polarisée lorsqu'elle entre dans la cavité, évolue au cours des réflexions 
successives. Des mesures expérimentales portant sur des cavités métalliques ont permis 
de confirmer la validité du modèle, malgré leur difficulté de mise en œuvre.  

 Les surfaces diffusantes ayant une interface lisse avec l'air, dites "surfaces 
lambertiennes interfacées". Le modèle correspondant se limite à une seule configuration 
d'éclairage et d'observation, où les problèmes d'ombrage et de masquage ne se posent 
pas. Il s'apparente à une combinaison des deux modèles mentionnés ci-dessus, prenant 
en compte le fait que la lumière franchit une interface chaque fois qu'elle entre ou sort de 
la matière, et qu'elle peut subir des réflexions multiples aussi bien côté air (des réflexions 
spéculaires entre les interfaces planes des deux panneaux de la cavité) que côté matière 
(des réflexions diffuses entre l'interface et a matière elle-même).  

De nombreuses figures rassemblées dans un portfolio permettent de visualiser les 
effets que nous souhaitions mettre en valeur. 

Parce que basés sur des surfaces idéales, les modèles ne permettent pas encore de 
prédire précisément les changements de couleur induits par un changement trop 
complexe de topologie de surface. Néanmoins, ils forment une boite à outil très utile pour 
se faire une idée des paramètres influant sur la couleur, a quelle évolution de couleur 
s'attendre, dans quelle mesure leur influence est significative, et de savoir expliquer les 
raisons physiques de ces évolutions.  Les évolutions décrites peuvent, elles, se généraliser 
à des structures surfaces plus complexes que celles que nous effectivement étudiées.  
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Chapter 1.  
 
Introduction  

The sensations produced by the human visual system during its perception process 
of objects result from an interpretation of the light signal captured by the eyes: the light 
signal issued from the object itself, and the one issued from its surrounding. The 
interpretation is based on an empirical understanding, acquired unconsciously during 
life, of the strong correlation between the object's appearance and the light-matter 
interaction that is at the origin of the light signal captured. More conscious is the 
correlation between appearance and material: the work of artists and craftsmen is mostly 
based on the experience of this correlation. But the crucial role played by light in it 
remains mostly confidential, accessible to a few scientific experts, and its study is quite 
young – barely more than a century – in comparison to Art History, which coincides with 
Human History.  

The light-matter interaction which underlies the appearance of objects is a 
combination, often too complex to be comprehensively described at the thinnest scale, of 
optical phenomena such as absorption, reflection, refraction, scattering, diffraction, 
interferences, etc. Selective absorption according to wavelength of light is probably the 
best-known optical phenomenon for its correlation with color, one of the main visual 
attributes for objects. It is also known that light scattering into the material also plays a 
role on the color rendering of the object, as well as on its translucency, another visual 
attribute, whereas light scattering by the object's surface rather influences the gloss. Light 
scattering by materials and surfaces is still an active subject of research today, aiming at 
predicting as precisely as possible object appearances for a wide range of materials, 
structures and lighting conditions. Citing only research works carried out in France 
recently in this domain, the PhD dissertation by Colette Turbil [1] has tackled the problem 
of accurately modelling the diffusion of light by rough surfaces, using real samples and 
comparing different approaches based on physical and geometrical optics to predict their 
appearance. She showed that the widely used microfacet models fall short of faithfully 
predicting their visual aspect. The work by Simon Desage [2] in computer vision 
highlights the importance of visual patterns and characteristic visual criteria for the 
recognition of objects, combining a classic pattern identification with the visual sensation. 
Marine Page [3] worked extensively in the field of relief printing, modulating the 
roughness of a surface by printing translucent varnish micro-pillars as a way of 
controlling the glossy or matte appearance of printed samples, and were applied cultural 
heritage preservation. The research conducted by Theo Phan Van Song [4] used a four-
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flux approach to better predict the appearance of stack of multiple inks layers by modeling 
the numerous light-ink interactions. All these works have in common the scattering of 
light by thin microstructures of the material, and its role in the appearance of the various 
surfaces that we can encounter every day, working as a link between their topology and 
their visual aspect. 

Much less studied in the scientific literature is the strong influence that the shape of 
the object may have on its appearance, not only because of the specific cues it offers to the 
perceptual process of the human visual system, but also because the object's shape allows 
for specific light paths that a flat object made of the same material would not allow. This 
influence of shape on appearance is illustrated through a couple of art pieces of tableware 
shown in Figure 1. The variable thickness of glass in the vase by Lalique produces 
different green shades, due to the different light path lengths across the material, as well 
as dark areas because of the absence of light refracted by the object towards the observer 
in these areas. The interior of the goblet in sterling silver by Chris Knight, coated with a 
thin layer of gold (parcel-gild technique), exhibits a color gradient due to the mutual 
reflections of the different parcels of the surface: the deeper points of the goblet look 
brighter that the ones near the external edge.  The influence of the shape of an object on 
its appearance will be main subject of the present work, by considering opaque materials. 
In particular, we are interested in see to which extent the shape of the object has an impact 
on its spectral reflectance, thereby on its color (independently of perceptual 
considerations). For example, the optical mechanisms explaining the color gradient 
observed in the metallic goblet will be addressed, whereas the color variation observed 
on the glass vase are out of our scope, the material being transparent.   

     

Figure 1 - Example of objects in which the macroscopic shape have a strong influence 
on appearance. a) Vase "Champs-Elysée" by Lalique, 1951. b) Pitcher and goblet by 

Chris Knight, 1993, under two points of view. 

If the appearance of art objects such as the ones previously shown is fully mastered 
and controlled by the know-how of the craftsmen, it is not the case of object generated by 
automated processes like 3D printing systems. Instead of a try-error or experience-based 



Introduction 

21 

work of the matter until the expected appearance is reached, the automated system 
converts the digital file – visible only through a more or less realistic preview on a 
computer screen – thanks to a digital driver of the machine. The obtained appearance is 
consistent with the expected one only if all optical phenomena underlying it have been 
anticipated, i.e., if the driver relies on an appropriate optical model. 3D printing has 
therefore a crucial need in terms of management of color and other appearance attributes. 
It is necessary to quantify these attributes, to model their correlation with the optical 
signal received by an observer, being either a sensor or the human eye, and to better 
predict this optical signal according to the material considered, its geometrical 
configuration, and the lighting used. Since 3D printing mainly uses colored polymers with 
smooth surface (at least at the microscopic scale, i.e., at the scale of one ink drop or 
thread), our final goal was to be able to address the case of opaque materials with a 
refractive index close to 1.5 and a flat interface with air.  

To apprehend these points, two approaches are possible. The first approach is the 
empirical one. It consists in the production of a large number of samples while varying 
multiple manufacturing parameters, then the measurement of their optical responses 
with appropriate tools, an interpolating of the collected data, and finally the derivation of 
a law linking the surface structure parameters to their optical response. The second 
approach is the theoretical one. It relies on a model describing the optical response of the 
material according to the manufacturing parameters, by starting with simple 
configurations (lighting, material, object shape…) and extending the model in order to 
cope with more and more complex configurations until the response of the considered 
object in its surrounding can be comprehensively described.   

The empirical approach has the advantage of being physically based with absolute 
correctness, provided the measurements are representative of what an observer can see 
in another context. Gathering measurements and data ensure the robustness of the 
process linking the samples to the desired appearance and gives a roadmap of how to 
obtain a certain type of visual aspect by modulating a set of parameters. The main 
drawback to this method is that it can require many samples in order to accurately 
quantify the extent of the different parameters influence. Another drawback is that the 
deduced law for appearance prediction is not necessarily transposable to different 
materials in different scenes.  One example is commonly used in printing, where in order 
to calibrate the offset printers and be sure to print the exact same colors on every sample, 
a large set of color patches is printed, the patches are measure one by one, and a look up 
table containing all printable colors is created by interpolation of the measured colors. 
This can be really time consuming and is often device dependent.  

The theoretical approach has the advantage of trying to find a general model allowing 
the prediction of a material appearance in any case. It can even allow to find an analytical 
formulation for the optical response of an object surface, and then be easily programmed 
to simulate the desired result. The main drawback is that this approach often considers 
ideal cases that are not often met in the real life.  
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In this work, we decided to adopt the theoretical approach, being aware that this 
orientation is opposed to the one mainly used today, i.e., the empirical approach based on 
neural networks which is often so efficient but so greedy in measured data. We are 
convinced that understanding deeply the optical phenomena underlying the appearance 
of structured materials have some interest today and can be useful in the long term, at 
least by focusing people's attention on visual effects that are rarely addressed and 
probably not often anticipated in object's design renderers. It is also of interest of 
understanding how the optical response of the object varies according to the optical 
properties of materials (e.g., absorbance), the nature of the material (metal, diffusing 
matter…), the shape of the surface, and the lighting.  

  The problematic is therefore to determine the influence of the surface 
structure of a material onto its optical response and the color sensation produced, 
with a comprehensive consideration of the lighting and observation geometry. 

The chosen surface structure for this study is restricted to one particular shape: V-
shaped ridges, infinitely long, with planar sides. An illustration of such a surface is visible 
in Figure 2. This structure enables to study optical effects such as anisotropy, shadowing 
and masking, and of course light interreflections.  

 

 

Figure 2 - Structured surface with parallel, periodical, and identical V-shaped ridges of 
dihedral angle α. 

1.1 Why V-cavities?  

We justify the choice of this structure by the fact that the optical phenomena which 
occur in it, especially the light interreflections, are also present in more complex 
structures that we will not discuss in the manuscript, such as massive materials with 
rough surfaces, woven fabrics, etc. It is certain that the interreflections play a role, 
probably an important one, in the way these complex surfaces reflect light, and in their 
color appearance in various observation and light scenarios. By studying the 
interreflection phenomenon in the specific case of V-ridged surfaces, we do not claim 
addressing all surface structures, but at least we think that the influence of the different 
structural (dihedral angle of the cavity), optical (absorbance, refractive index of the 
material), or environmental (geometry of lighting and observation) parameters should be 
rather similar.  
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This type of surface also has an interest since it is derived from the usual way of 
simulating a rough surface. The microfacet model approach developed first by Torrance 
& Sparrow [5], and then mostly by Cook & Torrance [6], is used in computer graphics and 
considers a surface made of small planar facets acting as mirrors. Their orientation 
follows a random distribution producing the studied optical response of the surface at the 
macroscopic scale. The facets are facing each other, creating concavities and reliefs, for 
example V-cavities (symmetrical or not) and often have the same elevation. Colette Turbil 
[1] showed that the microfacet model is far from the reality of rough surfaces, and that 
the simulated optical response is not coherent with what measurements show. 
Nevertheless, this approach is still widely in use today, and is therefore justified for our 
case study.  

This choice is also motivated by the simplicity of the V-cavities geometry, which 
facilitates the development of a thorough optical model as a solid base for the precise 
study of phenomena such as light interreflections and shadowing. It is also a model being 
independent of the scale, whether the V-ridged sample is made with a folded paper sheet, 
a metallic roof, or a ridged surface at the microscopic scale. This consideration is valid if 
the scale is not below the µm, under which wave optics phenomena such as diffraction 
would become significant, whereas the present work relies on geometrical optics.  

The whole work presented in this manuscript relies on the assumption of opaque 
materials. Thus, no light can transit from one V-cavity to a neighboring one. Corollary, we 
can focus the study on one V-cavity only and assume that every other V-cavity being 
identical to the one considered has the same optical response. The overall behavior of the 
surface is therefore an average made on all the parallel and periodical ridges.  

For less periodical and less perfect structures, the optical phenomena would mostly 
the same, with only a change in their respective contribution to the light scattering 
operated by the whole surface. We will not discuss these cases because of a lack of time, 
but the mechanisms that will be presented later have the credit of constituting a strong 
case study for optical effects happening in every kind of structured surface.  

1.2 Optical phenomena at play: light interreflections 

Light interreflections is a phenomenon happening everywhere a concavity in a surface 
is illuminated. They enhance the perceived lightness and tend to saturate the initial color 
when the light is collimated and directional, even more so if it is frontal, or on the contrary 
tend to darken the overall aspect when the light source is diffuse. Both cases are 
respectively illustrated in Figure 3 and Figure 4. 

This phenomenon has gained a lot of attention in computer graphics in order to 
improve the rendering quality of scenes where various objects exchange light between 
each other (typically a colored object close to a white wall) [7, 8, 9]. It has also been 
studied in the domain of computer vision, in order to remove this effect from images of an 



Chapter 1 

24 

object in order to retrieve the object's 3D shape (shape-from-shading methods) [10-15] 
or its spectral reflectance as well as the illuminant spectral power distribution [16, 17].  

 

Figure 3 - Cavity made of two diffusive and planar adjacent panels, under a frontal 
collimated lighting. 

 

Figure 4 - V-cavity with an angle of 45° between the two panels made of a gray 
Lambertian material, illuminated by perfectly diffused light in an integrating sphere. 

In most previous studies, interreflections are modeled by considering only two or 
three reflections of the light, especially for computation efficiency when working with ray 
tracing. Recent work by Rada Deeb [18] showed that in the case of Lambertian surfaces 
with high reflectance, at least in a given part of the visible spectrum, it is necessary to take 
into account all successive reflections until infinity in order to obtain an accurate 
prediction of the radiances displayed by the object. This is a problem that a discrete 
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version of the interreflection equation, or radiosity equation by Koenderink [19] can 
tackle. This was the starting point of our work.  

 The main question resulting from this observation is to know to which extent 
interreflections, which increase the perceived radiance in the concavities of the surface, 
compensates shadowing, which decreases the irradiance, according to the shape of the 
surface, its reflectance, the illumination and observation geometries.  

1.3 What kind of material? 

Historically, Lambertian surfaces are a well-used starting point when it comes to 
model matte rough diffusive surfaces [20]. Therefore, assuming a Lambertian surface in 
order to build an interreflection model is an approach that we used for the prediction and 
analysis of a material’s appearance. The prediction model relies on the radiosity equation 
also called the interreflection equation [19], which stands only for Lambertian surfaces. 
It is therefore natural to start our study with this kind of surface, even though it is rarely 
met in the everyday life. Some very matte papers, like colored paper sheets produced by 
Munsell, can be assumed Lambertian surfaces except at grazing angles. The surfaces 
shown in Figures 3 and 4 have these properties. At a different scale, powdery snow can 
also be assumed Lambertian.  

 

Figure 5 - 2.5D printed sample with white ink, under frontal lighting, forming a 45° V-
shaped ridged surface pattern. The sample is 1 × 1 cm, 2.4 mm heigth with a 2 mm 

period. 
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However, as aforementioned, the type of materials that we want to address with our 
work is typically the one that can be found in 2.5D printing, i.e., samples produced with 
stacks of solidified inks creating a relief. When the relief is mainly created by white ink 
before application of the colored inks, the surface is rather opaque and enters the scope 
of our study. Figure 5 shows a V-ridged surface printed in relief with white ink only. 

Even though the white ink is strongly scattering, the surface cannot be considered as 
Lambertian because of the air-ink interface and the Fresnel reflections and transmissions 
that it provokes. Therefore, before addressing the case of such "interfaced Lambertian" 
surfaces, we focused our attention to the light interreflections occurring in a cavity where 
only the air-matter interface is involved, namely into cavity whose panels are mirrors. 
This intermediate case of mirror cavities is particularly interesting on an optical point of 
view: as far as we could see, no previous work described comprehensively the different 
successive reflections taking place into the cavity according to the orientation and 
position of the incident ray. The evolution of the polarization state of the ray along its path 
within of the cavity was also an open question, to which we decided to answer. In the 
specific case where the material is a colored metal, such as gold or copper, and to a lower 
extent silver, the study is also interesting on a colorimetric point of view: we can clearly 
see an evolution of the color of the surface according to the depth of the cavities, or their 
dihedral angle. A deeper structure yields a more saturated color than the one displayed 
by a flat mirror – a phenomenon that we can easily observe in the goblet shown in Fig. 1-
1.  The model that we will present later in this manuscript is far different from the 
radiosity model applicable to Lambertian surfaces, but as this latter model, it relies on 
analytical equations.  

Coming back to the interfaced Lambertian surfaces that are the final target of our 
study, the approach that we adopted is an extension of the radiosity model in order to 
take into account the Fresnel reflections and transmissions of light at the interfaces. Like 
in the radiosity model, we describe the light transfers between every pair of parcels of the 
cavity, these parcels being located at the surface of the strongly scattering material, just 
beneath the interface. We incorporate into the model the different specular reflections 
that can occur in the cavity (i.e., in air), before the light enters the material and after it 
exits it, as well as the multiple internal reflections taking place within the material 
between the material itself and its interface, whose importance has been put into evidence 
for a long time in the context of flat surfaces [21-24]. The model for interfaced Lambertian 
materials can therefore be a combination of the models for Lambertian cavities and 
mirror-like cavities. Even though its complexity is substantially increased in comparison 
to the radiosity model for Lambertian surfaces, we still have an analytical model. For lack 
of time, we could address only one special illumination and observation geometry for one 
colored material, but this already enables drawing some comparison between the 
reflectances and colors of Lambertian and interfaced-Lambertian V-ridged surfaces.  

All the models that will be presented are used to produce simulations obtained thanks 
to MATLAB© programming. 
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1.4 Structure of the manuscript 

Chapter 2 will go over the basis concept useful to build our study. Chapter 3 will 
present the first model for Lambertian materials that are ridged with infinitely long V-
cavities. Chapter 4 will continue the presentation with another light interreflection model, 
this time for V-cavities with mirror like panels. Finally, the Chapter 5 will tackle the 
purpose of this work and will try to finish the answer to the proposed problematic by 
developing a model of Lambertian V-cavities with their interface with air, before we draw 
our conclusions in Chapter 6.  
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Chapter 2.  
 
Preliminary reminder in optics 
and colorimetry 

The work presented in this manuscript is mostly based on two sciences: 
radiometry and color science. Radiometry helps to quantify the amount of light 
transferring from the light source to the observer after interaction with objects. 
The geometric and energetic notions are reminded here, as well as the quantities 
relative to surfaces and the properties of certain types of ideal surfaces. In order 
to investigate the predictions of the material appearance by the models we offer 
to present after, we need to visualize the results under different aspects. One of 
them is the influence of the structured surface on the perceived color. Therefore, 
after the sections on radiometric quantities, a paragraph will introduce a few 
notions of color science. 

2.1 Elements of radiometry 

Radiometry is the science of measuring radiations. It consists in the analysis of 
radiation emissions by sources, and their detection, reflection and transmission through 
various entities such as material surfaces, optical systems, etc.  It is different from the field 
of classical optics because it is focused on the measurement of energy without considering 
the type of material encountered. Therefore, we prefer to think in terms of absolute 
power, and express the quantities studied in energy units. But one fact remains adamant: 
it is important to precisely know the properties of the light to perform accurate 
measurements, even if in most cases, radiometry considers incoherent radiations 
included in the scope of geometrical optics. 

In color reproduction, and more specifically in the case of this work focused on the 
prediction of materials appearance, the most interesting part of the electromagnetic 
spectrum is comprised between the wavelengths 380 nm and 780 nm. This domain 
corresponds to the visible light for the human eye, and the science that studies it is called 
photometry. In this field, the radiant power at each wavelength is weighted by a visual 
sensitivity function modeling the human eye sensitivity. As a result, the measured 
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quantities are expressed in luminous units such as lumen, candela (one of the seven base 
units of the International System of Units), and lux.  

The interest of radiometry for material appearance resides in the possibility of 
modeling and measuring the amount of light being in interaction with an object of interest. 
Thanks to radiometric quantities, the description of the light distribution in space can be 
done, from a light source, through or reflected on an object, and ending on a detector.  The 
properties of an object such as reflection or transmission can be derived from ratios of 
these quantities. In the following sections a presentation of the radiometric quantities 
useful to our work on material appearance is made.  

When describing the trajectory of the light, from its source to an observer through an 
object of interest, we can start by defining two points P1 and P2 in space, through which a 
ray of light passes. The model of the light ray is acceptable to assess all the light passing 
through the two points but isn’t enough anymore when it comes to the description of the 
spatial repartition of the light in space. So instead, considering a small area around each 
point, and therefore considering a small number of directions, is more convenient.  

2.1.1 Geometrical concepts 

Solid angle 

The first concept used in radiometry to describe the spatial repartition of a light beam 
is called a solid angle, and its unit is the steradian (sr). It is defined for a point from which 
a set of directions are exiting towards a surface.  

 

Figure 6 - Differential solid angle in the direction  θ,φ .
 

To formalize this concept, a common practice is to specify an infinitesimal solid angle 
Ωd  thanks to a given point 1P  on an infinitesimal surface dS   pointing towards a direction 
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specified by its spherical coordinates. The polar and azimuth angles  θ,φ  are defined 
within the coordinate system taking its origin in 1P  . On Figure 6 it is shown that the small 
set of directions on the described configurations intercepts an area 2 sinθ θ φx d d  on the 
sphere of radius x . The infinitesimal solid angle is therefore: 

 2Ω sinθ θ φd d d   (2.1) 

Geometrical extent 

In this paragraph, we describe this time a light beam propagating from one elemental 
surface to another. The geometry of such a light pencil is called the geometrical extent. We 
consider the light propagating between two small surface elements 1dS  and 2dS  to which 
belong the two points 1P  and 2P  . As shown on Figure 7, if we assume the distance x 
between the two areas to be finished, we can assume that the rays received by 2dS  come 
from the point 1P  , and reciprocally for the rays going from 2P  to the elementary surface 

1dS . 

 

 

Figure 7 - Geometrical extent between two elementary areas dS1 and dS2. 

From this consideration we deduct that the solid angle 1Ωd  defined by the point 1P  
and the elementary area 2dS  intersects an area 2dA , which is tangent in 2P   to the sphere 
of radius x centered in 1P . 2dA  is called the apparent surface. Since the considered surfaces 
are infinitesimal, the apparent surface and the surface on the sphere coincide. Therefore: 

 2 2 2
1 2 2

cosθ
Ω

dA dS
d

x x
    (2.2) 

The elementary geometrical extent 2d G  of the light pencil, presented in Figure 7, is: 
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   2
1 1 2 2 1 1 2 22

1
Ω Ω cosθ cosθd G dA d dA d dS dS

x
     (2.3) 

2.1.2 Radiometric quantities 

Using the previously defined geometrical concepts, we will now present the 
definitions of some radiometric quantities.  

In radiometry, the flux, or radiant flux, is the energy radiated per unit of time. It is 
expressed in watts (W) and will be denoted F  throughout this manuscript.  

The Irradiance E  is the density of flux per unit of area, which is incident on a given 
point belonging to a specific area. It is expressed in W.m-2, and if we consider a flux dF  
relatively to a surface dS , the corresponding irradiance is: 

 
dF

E
dS

   (2.4) 

When light is emitted from the surface instead, the concept equivalent to irradiance 
is the exitance, usually denoted M. 

The radiance L  is the flux per unit of geometric extent it arrives through. It is attached 
to a specific point on a surface and follows a particular direction. Therefore, its unit is 
W.m-2.sr-1 and it can be defined as: 

 
2

2

d F
L

d G
   (2.5) 

From the radiance and its link with the geometrical extent, we can deduce the 
principle of radiance invariance. Indeed, if we consider two elemental surfaces and the 
small light pencil propagating between them, with the assumption of not encountering 
any absorbing or diffusing element, we can be sure that the radiance emitted by one is 
equal to the radiance received by the other. The elemental geometrical extent 2d G  is 
derived from an elemental surface dS  viewed from another surface, with an angle θ  in 
the relation to the surface’s normal, and under the solid angle Ωd . We can say that the 
elemental geometrical extent is 2 cosθ Ωd G dS d . Therefore we can transform Eq. (2.5) as: 

  
2

θ,φ
cosθ Ω
d F

L
dS d

   (2.6) 

The term 2d F dS  corresponds to the elemental irradiance. The relationship between 
this irradiance and the radiance is then: 

    θ,φ θ,φ cosθ ΩdE L d   (2.7) 



Preliminary reminder in optics and colorimetry 

33 

2.1.3 Lambert’s law 

In this manuscript, an extensive use of the concept of diffuse light is made. To describe 
diffuse light in radiometry, the Lambert’s law is of importance. It states that a perfectly 
diffusing surface displays the same radiance in every direction over the hemisphere 
centered in a point belonging to the surface. We then speak about a Lambertian surface or 
Lambertian reflector. Following the idea of Eq. (2.7), the elemental exitance from the 
surface towards a given direction  θ,φ  in a coordinate system defined according to the 
surface normal, is: 

  θ,φ cosθ ΩdM L d   (2.8) 

with the radiance L being a constant in this case. It also means that by summing every 
elemental exitance over the hemisphere, the relationship between the exitance and the 
radiance as a result is: 

 
π 22π

φ 0 θ 0

cosθsinθ θ φ πM L d d L
 

     (2.9) 

2.2 Radiometric concepts for surfaces 

To help characterizing a surface’s optical properties, especially under a diffuse 
illumination, we need to introduce some additional concepts.  

2.2.1 BRDF 

The Bidirectional Reflectance Distribution Function, or BRDF, is according to 
Nicodemus [25] the description of the light reflection process by a surface. It is denoted 

Rf  and links the elemental irradiance idE  coming from each direction  θ ,φi i in relation 
to the surface’s normal, and the reflected radiance rdL  into each direction  θ ,φr r : 

      θ ,φ θ ,φ ;θ ,φ θ ,φr r r R i i r r i i idL f dE   (2.10) 

It is expressed in sr-1 and can also be defined in terms of incident radiance  θ ,φi i iL  :
  

      θ ,φ θ ,φ ;θ ,φ θ ,φ cosθ Ωr r r R i i r r i i i i idL f L d   (2.11) 

One could consider for example a nonabsorbing Lambertian reflector, the total 
exitance rM  is equal to the incident irradiance. Since the reflected radiance is πrM  in 
every direction, the BRDF is therefore equal to 1 π . 
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2.2.2 Reflectance 

Reflectance denotes a ratio of fluxes: it is computed by dividing the reflected flux by 
the incident flux. When these two are relative to the same surface element, reflectance is 
therefore a ratio of exitance to irradiance. This quantity is dimensionless, and wavelength, 
direction, polarization and position dependent. As a general approximation throughout 
this manuscript, we will consider that the materials’ surface we consider are isotropic, 
with reflection properties being independent of position over a characteristic area of a 
few square millimeters. Note that this statement will be valid when considering a flat 
materials surface, and not a structured one, as we will see later. We also consider a natural 
light source in the visible spectral domain, making every radiometric quantity spectral 
and independent of the polarization  

One example of reflectance is for a situation where the light is incident through a cone 
Γi , and reflected following a cone Γr , as seen on Figure 8. In the incident cone, an incident 
radiance  θ ,φi i iL  following the direction  θ ,φi i  creates, according to Eq.(2.7), the 
elemental irradiance    θ ,φ θ ,φ cosθ Ωi i i i i i idE L d .  

 

Figure 8 – Incident light with the radiance  θ ,φi i iL   through a solid angle Γi  being 
reflected into the solid angle Γr . 

The total irradiance coming from the incident set of directions Γi  is: 

 
 

 Γ
θ ,φ Γ

θ ,φ cosθ Ω
i

i i i

i i i i iE L d


    (2.12) 

The link between some incident radiance  θ ,φi i iL  and one reflected radiance 
 θ ,φr r rL is made with the BRDF. According to Eq. (2.11), the corresponding elemental 

exitance is: 

      2 θ ,φ ;θ ,φ θ ,φ ;θ ,φ θ ,φ cosθ Ω cosθ Ωi i r r R i i r r i i i i i r rd M f L d d   (2.13) 
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By summing all the contributions of the incident radiances contained in the cone Γi  , 
we obtain the elemental exitance in the direction  θ ,φr r : 

      
 θ ,φ Γ

Γ ;θ ,φ θ ,φ ;θ ,φ θ ,φ cosθ Ω cosθ Ω
i i i

i r r R i i r r i i i i i r rdM f L d d


    (2.14) 

Then, by accounting for every elemental exitances going through the cone of 
observation Γr , the total exitance is obtained: 

      
  θ ,φ Γ θ ,φ Γ

Γ ;Γ θ ,φ ;θ ,φ θ ,φ cosθ Ω cosθ Ω
r r r i i i

i r R i i r r i i i i i r rM f L d d
 

     (2.15) 

Finally, the ratio defining the reflectance computed by dividing the total exitance by 
the incident irradiance is therefore [25]: 

  
   

  

 
 

θ ,φ Γ θ ,φ Γ

θ ,φ Γ

θ ,φ ;θ ,φ θ ,φ cosθ Ω cosθ Ω

Γ : Γ
θ ,φ cosθ Ω

r r r i i i

i i i

R i i r r i i i i i r r

i r

i i i i i

f L d d

R
L d

 




 


  (2.16) 

Practically, when one wants to perform a reflectance measurement, the CIE 
recommends [26] different geometries of measure, some of them listed in Table 1. 

Table 1 - Selection of geometries recommended by the CIE for reflectance 
measurements 

Geometry designation Illumination Capture 
Diffuse/8°, specular component 
included (di:8°) 

Hemispherical Directional (radiance at 8°) 

Diffuse/8°, specular component 
excluded (de:8°) 

Hemispherical Directional (radiance at 8°) 

Diffuse/diffuse (d:d) Hemispherical Hemispherical 
Alternative diffuse geometry (d:0°) Hemispherical Directional (radiance normal 

to the surface) 
45° annular/normal (45°a:0°) Annular Directional (radiance normal 

to the surface) 
45° directional/normal (45°x:0°) Directional Directional (radiance normal 

to the surface) 

2.2.3 Reflectance factor  

In practice, in order to determine the reflectance of a surface, one needs to measure 
the reflected flux, and the incident flux. Most instruments today contain a detector for the 
first one, but it is usually tedious to know the second one. Instead, the incident flux is 
measured indirectly with the help of a perfect white diffuser able to reflect the light 
uniformly over the hemisphere, without absorption. As a result, the measured flux by the 
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detector is proportional to the incident flux. The ideal case of white standard is a 
Lambertian, nonasborbing and diffusing sample. It has a reflectance equal to 1 and a BRDF 
equal to 1 π  for every pair of incident/observation direction.  

Such a sample does not exist. The best white standards are made of pressed barium 
sulfate or PTFE (known as Algoflon, Halon or Spectralon) and comes with a calibration 
certificate. They are fabricated in order to have a reflectance superior to 0.99 in a 
diffuse/0° geometry over the visible spectrum. Then, the object to analyze and the white 
standard are illuminated and observed with the same geometry. The ratio R̂  of the 
measured flux reflected from the object sampleF   and the measured flux from the white 
reference is called reflectance factor: 

 ˆ sample

reference

F
R

F
   (2.17) 

This quantity is exactly a reflectance only in the case of a perfect Lambertian reflector. 
It can occur that the sample reflect more light towards the detector than the white 
reference does. It is the case for example, when a mirror with a reflectance R is illuminated 
by a directional light with an incident flux iF   at an angle θi  and observed in the specular 
direction. The detector captures the flux  θi iF R F  and the flux πref iF F  from the 
diffuser. In this configuration, the reflectance factor will overpass the unity at every 
wavelength where  θ 1 πiR  . 

2.3 Measurement and representation of a reflectance  

The previous radiometric quantities have been defined without precisely considering 
their dependence to the wavelength. In practice, what is often measured is the spectral 
flux λF , which is the spectral distribution of the radiation defined as flux per unit 
wavelength. Quantities like the spectral irradiance λE  and the spectral radiance λL  are 
similarly defined.  

2.3.1 Spectrophotometer 

The type of device to measure such a flux is called a spectrophotometer. Its sensor 
captures the incident flux in successive spectral bands with a given Δλ  bandwidth. If it is 
small enough, the measured flux is equal to λΔλF , and if it is larger bandwidth comprised 
between 1λ  and 2λ , the measured flux is: 

  

2

1 2

1

λ

λλ ,λ
λ

λF F d    (2.18) 

The spectral sampling varies according to the application targeted. For example, in 
color reproduction, it can be comprised between 0.2 and 10 nanometers. To select narrow 
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bandwidths, the light is decomposed by using a prism or a diffraction grating [27]. The 
position on the bar of photodetectors then determines the measured wavelength.  

For example, to measure a spectral reflectance using a spectrophotometer, one needs 
to compute the ratio of the reflected spectral flux to the incident reflected spectral flux, 
both defined on the same small bandwidth. As mentioned before, this type of device often 
uses a white reference in its calibration process. This is done in order to give a reflectance 
factor as output, both the reference and the sample being illuminated by the same source 
of light and with the same geometrical configuration.  

2.3.2 Integrating sphere 

The reflectance measurement devices contain either a directional or a Lambertian 
white light source, and capture the reflected light in one given direction, several, or over 
the complete hemisphere. To perform this type of measurement, an integrating sphere is 
used. This device takes the form of a spherical cavity coated with a non-absorbing 
diffusing material (typically BaSO4) and possessing a preferably high reflectance [28, 29]. 
Its purpose is to either produce a Lambertian illumination or to collect all the reflected 
light on a sample to analyze, coming from all over the sphere. The source of light used 
generally possesses a spectral distribution with a continuous spectrum, usually a halogen 
lamp, of a Xenon-arc lamp. The reflected flux by the sample is captured by a 
spectrophotometer.  

On Figure 9 are represented two situations, whether we want to produce a 
Lambertian illumination, or to collect the reflected light over the hemisphere.  In the d:0° 
geometry, the integrating sphere has the function of producing a diffuse illumination. The 
reflected light by the sample in then captured at a 0° angle (or an 8° angle) from the 
surface’s normal of the sample. In the case where one wants to exclude the specular 
component, a hole is found in the regular direction with respect to the position of the 
detector. In this configuration, we measure a hemispherical-directional reflectance.  

 

Figure 9 - Integrating spheres being used with a 0°:d geometry (left) and a d:0° 
geometry (right). 
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In the 0°:d geometry, the integrating sphere has the function of collecting all the flux 
reflected by the sample being illuminated directly by a directional beam. This time, it is a 
directional-hemispherical reflectance that is measured. 

2.3.3 Lambert transformation – Reflectance Maps 

As presented, the BRDF is function with many parameters. It depends on the four 
angles describing the direction of incidence and the direction of observation, and on the 
wavelength, the polarization state, the position on the surface… This complexity makes 
impossible to plot a full BRDF on a 2D graphics, and the use of a 3D visualization software 
is preferred. An alternative that we used in this work is planar mapping [30], in order to 
represent for example a hemispherical-directional reflectance map. This kind of map 
describes the response of a surface in terms of reflectance to a Lambertian illumination 
(the “hemispherical” part) and gives the observed reflectance for each direction of 
observation over the hemisphere (“directional” part).  

The mapping used is called the Lambert azimuthal equal-area projection [31]. Its 
convenience resides in its property of conserving the areas: a portion of the hemisphere 
of area A corresponds to a portion of a disk with the same area A. In other words, an 
elemental area on this map is directly proportional to a solid angle. To every direction 
 θ,φ  corresponds a point  ,u v  within a disk of radius 2  whose coordinates are: 

 
 
 

2sin θ 2 cosφ

2sin θ 2 sinφ

u

v

 
 

  (2.19) 

An illustration of this mapping is visible on Figure 10. In practice, this mapping results 
in an image containing as many channels as wavelengths, and each pixel on the image 
corresponds to a given direction  θ,φ , therefore a given solid angle 

 

Figure 10 - When the hemisphere (a) is mapped onto a disk (b) according to the 
Lambert azimuthal equal area projection, any portion of the hemisphere with area A 

(gray solid angle) is mapped into a portion of the disk with same area A (gray square). 
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2.4 Radiometric properties of some special surfaces 

In order to properly model the phenomena contributing to a material surface’s 
appearance, such as the interreflection effect, one must properly consider the type of light 
source to use. We will first consider the photometrical behavior of special case of surfaces. 
We will then precise each case by making the distinction between two lighting geometry, 
a diffuse and a directional one. The first one is simple to model, and one must be careful 
of the angle of incidence onto the surface, leading to an irradiance attenuation following 
a cosine law. The same goes for a diffuse light source, but this time for every direction in 
space, and not always with the same, radiance attached to every one of them. Mixed 
illuminations could also be considered, as natural light is typically a mix between a 
directional source with a given direction of incidence, like sunlight, and a diffuse light 
source, like the blue sky, with light coming from every possible direction. One must then 
model the interaction between the incident light and the reflection and transmission 
properties of the surface encountered. 

In this section, we first define a Lambertian light source, and then go on to develop 
the reflection and transmission properties of a material’s interface with air, through the 
presentation of Fresnel’s coefficients. We extend this presentation to the reflection  

2.4.1 Perfectly matte surfaces: Lambert’s model  

As presented in section 2.1.3, a surface following the Lambert’s law displays a uniform 
radiance independently of the direction of observation and emission. It displays a matte 
finishing due to the uniform scattering occurring when light encounters it. Formally, we 
will say that the scattered radiance by the surface is L=constant, without any dependence 
on the lighting geometry solid angle, whether it is diffuse or directional, and without any 
dependence on the observation solid angle as well.  

This is a convenient way to model an object surface because it allows us to accurately 
describe any incident direction and its path after being reflected, refracted, or diffused by 
the surface, with comprehensive knowledge of the photometric and geometrical 
parameters along the way. 

2.4.2 Reflection and transmission of light by smooth interfaces 

When talking about material appearance under a given illumination type, one must 
consider the influence of a critical parameter: the interface between the media of 
incidence, and the media of the material. The fact that they have a different optical index 
is adamant to predict correctly the appearance of a material. In this work, the media of 
incidence will always be the air, with a refractive index equal to the unity, but the material 
considered will be either a dielectric or a metallic material. The interface is considered 
perfectly flat afterward.  
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Directional light: Fresnel’s formulae 

The fraction of light reflected by the interface between the air and the material is 
called angular reflectance, and is given by Fresnel’s formulae, established by writing the 
equation of passage of an electromagnetic wave through the interface. It is dependent on 
the angle of incidence 1θ  , on the relative refractive index noted 2 1n n n  , with n1 and n2 
being respectively the media of incidence and the media after the interface. As said before, 
in this manuscript 1 1n   . 

 In most cases, the incident light is considered unpolarized and modeled as the sum of 
two linearly polarized lights. The polarization being the orientation of the electric field in 
respect to the plane of incidence, we can consider the cases where the electric field 
oscillates in a parallel and perpendicular way to the incidence plane. These polarizations 
are called “parallel” and “perpendicular”, symbolized by the letters p and s.  

For an incident light pencil coming from the first medium with an angle of incidence 

1θ  , the reflectance for the p-polarized light is 

  
2

1 2
12 1

1 2

cosθ cosθ
θ

cosθ cosθp

n
R

n





  (2.20) 

where  2 1θ arcsin sinθ n  is the angle of refraction into the second medium obtained by 
Snell’s law for refraction. For the s-polarized light, the reflectance is 

  

  
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12 1
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cosθ cosθs

n
R

n
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
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  (2.21) 

They both can be rewritten as functions of the angle of incidence only using the 
expression of 2θ  as 
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  (2.22) 

and 

  
2

2 2
1 1

12 1 2 2
1 1

sin θ cosθ
θ

sin θ cosθ
s

n
R

n

 


 
  (2.23) 

Considering an unpolarized source of light means it contains the same quantity of p- 
and s- polarizations, therefore can be expressed as the mean of both the angular 
reflectances: 
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      12 1 12 1 12 1

1
θ θ θ

2 p sR R R      (2.24) 

It is important to keep in mind that the parallel and perpendicular polarizations are 
reflected in different amount, the only exception being for a normal incidence. In the case 
of a dielectric material, one particular angle called the Brewster angle, is such as the p-
polarized light is not reflected at all. This angle  θ arctanb n  is therefore often used in 
practice to obtain a totally s-polarized light. 

It is important to acknowledge that the angular reflectance is the same, whether light 
comes from the first medium with an angle 1θ , or from the second media with an angle 2θ
, these angles being linked by Snell-Descartes’s law. Independently of the polarization, this 
means that: 

    *12 1 *21 2θ θR R   (2.25) 

with * being either p- or s- polarized light. 

When considering the refracted component, and given that no light is absorbed at the 
interface, one can deduce the angular transmittance: 

    *12 1 *12 1θ 1 θT R    (2.26) 

A direct consequence of Eq. (2.25) is therefore: 

    *12 1 *21 2θ θT T   (2.27) 

This consideration is crucial when working with material appearance. Since the 
incident light coming from the air onto a material’s surface is bound to go through a 
material’s interface, it can be diffused, transmitted, and reflected by the material itself. 
Then it can be transmitted back into the air, thus modifying the properties of the incident 
pencil of light.  

Radiance reflection and transmission 

A direct consequence one can derive from Snell’s laws and Fresnel’s formulae is the 
relationship between the incident, reflected and refracted radiances. The fact is that when 
a pencil of light changes of medium, its geometrical extent is modified as well. On Figure 
11 we see an incident radiance 1L  coming from a medium 1. It is defined by the flux 
element  2

1 1θ ,φd F  coming from the direction  1 1θ ,φ  through the elementary solid 
angle 1 1 1 1Ω sinθ θ φd d d   and illuminating the elementary area dS  : 

 
 2

1 1
1

1 1 1 1

θ ,φ

cosθ sinθ θ φ

d F
L

dS d d
   (2.28) 
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Figure 11 - Interface between two media of indices n1 and n2, with n2>n1, and the 
incident, reflected and refracted radiances. 

The denominator of this fraction stands for the geometrical extent. Since according to 
Snell’s law, the angle of reflection is the same as the angle of incidence, the geometrical 
extent of the reflected light pencil is also the same. The reflected radiance RL   can be 
expressed as: 

  12 1 1θRL R L   (2.29) 

with  12 1θR  being the angular reflectance of the interface between medium 1 and 2.  
Regarding the refracted pencil, the Snell’s law for refraction states that: 

 1 1 2 2sinθ sinθn n   (2.30) 

By differentiating Eq. (2.30), one obtains that: 

 1 1 1 2 2 2cosθ θ cosθ θn d n d   (2.31) 

Since the incident and refracted azimuth angles form a fixed angle of π , an 
infinitesimal variation on one implies the same variation on the other. Therefore from Eq. 
(2.31), one can arrive to 

 2 2
1 1 1 1 1 2 2 2 2 2cosθ sinθ θ φ cosθ sinθ θ φn dS d d n dS d d   (2.32) 
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which is 

 2 2 2 2
1 1 2 2n d G n d G   (2.33) 

This result means that the quantity 2 2
i in d G  remains invariant. It also means that the 

geometrical extent is multiplied by the square ratio of the optical indices when the light 
goes from one medium to another. To summarize, the refracted radiance is: 

  
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2 12 1 1
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θ
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L T L
n

 
  
 

  (2.34) 

This result is a crucial one to keep in mind when talking about modeling material 
appearance when dealing with light encountering the interface of an object of which we 
want to predict the aspect. 

 

Diffuse light: Lambertian reflectance and transmittance 

We analyzed the behavior of light being incident on an interface for one ray of light. 
Now if we consider a diffuse Lambertian source illuminating an interface between two 
media 1 and 2, with n being the relative index, we can deduce directly from the reflectance 
in Eq.(2.16) the bi-hemispherical reflectance, also called Lambertian reflectance, denoted 

12r , and given by: 
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    (2.35) 

where 1θ  is the incidence angle from medium 1 onto the interface, relatively to its normal. 
This reflectance is only a function of the relative index and may be computed discreetly 
with a small sampling. The integral computation of this expression was proposed by 
Duntley [Ref Duntley 37 poly Mathieu] and results in the following expression: 
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  (2.36) 

At the interface, the light flux is reflected all over the hemisphere, but is not 
necessarily Lambertian anymore, because of the angle dependency. The conservation of 
energy at the interface translates to the Lambertian transmittance being: 

 12 121t r    (2.37) 
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Following the same line of reasoning, when the light is incident from the medium 2 
towards the medium 1, the bi-hemispherical reflectance is: 

  
2

π 2

21 21 2 2 2
θ 0

θ sin2θ θr R d


    (2.38) 

It is important to know that  12 1θR  and  21 2θR  are equal, but 12r  and 21r  aren’t, 
because of the possible total reflections happening in medium 2 but not in medium 1. The 
relationship between the two quantities is: 

  21 122

1
1 1r r

n
    
 

  (2.39) 

Eq. (2.39) results in: 

 21 122

1
t t

n
   (2.40)  

2.4.3 Lambertian background with a flat interface 

In this work, most of the materials encountered are strongly scattering, therefore 
resulting in an effort to develop models based on a Lambertian background. We saw that 
this type or surfaces reemits light with the same radiance in every direction over the 
hemisphere. But this hypothesis isn’t true anymore when we consider the surface with its 
interface, especially if the latter is flat, and leads to specular reflections. Nonetheless, 
under the interface, the material is still Lambertian and its behavior is described by 
Lambert’s law with Eq. (2.8).  

To correctly describe the reflectance and transmittance of such a configuration, one 
can use a line of reasoning using upward and downward fluxes, as seen on Figure 12. 

 
Figure 12 - Reflection and transmission processes for diffuse light at the interface 

between air and a Lambertian material 
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In this section, if we denote R the effective reflectance of the Lambertian material layer 
with its interface with air, then R is equal to the ratio of the outgoing flux J0 over the 
incoming flux I0: 

 0

0

J
R

I
   (2.41) 

We can also denote ρ  the reflectance of the Lambertian without its interface, also 
called intrinsic reflectance. It is defined as the ratio of upward and downward fluxes, but 
just at the surface of the material, at a null depth: 
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i
   (2.42) 

When the light hits the interface, a fraction er  is reflected, called the external 
reflectance, whereas a fraction inT  is transmitted into the material. The same phenomenon 
happens for light when it exits the medium : a fraction ir  , called internal reflectance is 
reflected, and a fraction outT  is transmitted into the air. To formalize these two processes, 
one can sum them up with two equations: 
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  (2.43) 

From these equations, the effective reflectance of a Lambertian material layer with an 
interface is derived: 
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  (2.44) 

This formula is known as the Saunderson equation [21] and was developed to offer a 
correction to another model for diffusing layers, the Kubelka-Munk model [32, 33], which 
wasn’t taking into account the influence of the material’s interface with another medium.  

An important precision is that the terms in Eq. (2.44) depend on the illumination and 
observation geometries. For example, if the geometry is hemispherical-directional, with 
an observation at an angle θ  from the normal, then the term er  becomes  12 θ πR  and 

outT  is expressed by   2
12 θ πT n  , with  12 θR  and  12 θT  being the Fresnel angular 

reflectance and transmittance defined in Eqs. (2.24) and (2.26), the factor 21 πn  for outT  
coming from the fact that only a fraction of the incident flux is exiting towards the 
observer, while changing of medium. 
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2.5 Basic notions of colorimetry 

Modeling the appearance of an object is inseparable of correctly modeling its color. 
Color is a physiological sensation resulting from the brain’s interpretation of the signal 
sent by our visual system and is highly subjective. It differs from one person to another. It 
is for this reason that the CIE established a “standard observer” from a series of 
experimentations. It can be seen as an “average person” in terms of human color 
perception. From these experiments, it has been derived that mainly three parameters 
are enough to classify colors: the brightness, the hue and the saturation. It also has been 
observed the human eye uses three different types of cone cell for color perception: short, 
medium, and long, standing for the range of wavelengths they capture. Each one of them 
possesses a specific spectral sensitivity plotted in Figure 13, with overlaps existing.  

 

Figure 13 - Normalized spectral sensitivity of human cone cells in the short (S), 
medium (M) and long (L) wavelengths ranges. [34] 

By weighting any type of light stimulus by the spectral sensitivity of each of these 
cells gives what is called the tristimulus values, effectively describing the perceived color. 
But the accurate knowledge of the eye spectral responsivity is rather recent. 

Since when a stimulus arrives on the fovea of the eye, either two or the three types of 
cell can be activated. It is therefore complicated to model every tristimulus values in a 
physical model. For example, it is impossible to model a value that would be non-zero for 
one type of cell and zero for the other, because of the overlapping of the sensitivity curves. 
Therefore, it first led the CIE in 1931 to produce the RGB color matching functions in 1931, 
for two different standard observers, one with a 2° arc on the fovea (CIE 2° RGB), and later 
the other with a 10° arc (CIE 10° RGB) in 1964. These functions translate the amount of 
red, green, and blue light needed to match with a monochromatic stimulus at any 
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wavelength. Therefore, if a spectral radiance  λL  arrives on the fovea, the modeled RGB 
color is obtained with: 
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  (2.45) 

where r , g  and b  are the CIE 1931 RGB color matching functions.   

One problem remains. These color matching functions can have negative values. It 
especially happens when one tries to match a monochromatic light with a very high 
saturation or chroma by combining the RGB primaries. This why in order to obtain a 
precise color, we mix it with the three primaries and reach an equalization.  

For this reason, the CIE1931 XYZ color space was created. The RGB color matching 
functions were transformed into a set of fictive new ones, the XYZ primaries,  by using 
other color matching functions: x  , y  and z . The transformation has been defined so that 
all the tristimulus values are positive.  
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  (2.46) 

The RGB and XYZ color spaces hold one difficulty: they are not uniform in the 
perception sense of the term, and therefore are complicated to use when one wants to 
represent colors and differences between them in a way that would suit the human color 
perception better. To solve this problem, the CIE suggested a more uniform color space, 
called the CIE 1976 L*a*b* color space, represented in Figure 14. The triplet of L*a*b* 
values can be easily computed from the XYZ tristimulus values. The most used metric in 
this color space to measure distances between colors is the E 2000 color distance, which 
is not a Euclidean distance between the colors due to the non-uniformity of the space, but 
it is preferred to adapt the measure and conserve the color space. 

The CIE 1976 L*a*b* color space is suitable to represent the colors yielded the models 
of this study. Efforts were made to include the chromatic adaption the human brain does 
when confronted with a white reference in the scenery. Therefore, when using this color 
space, one must specify the white reference from which the colors would be compared to. 
For example, to accurately represent the perceived color of a painting in a museum, it is 
important to clarify the white reference coming from the white wall behind, of even the 
light source if it is in the field of view.  
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Figure 14 - 3D representation of the CIE 1976 L*a*b* color space. [35] 

The parameters L*, a*, and b* also aim to represent the behavior of our visual system, 
specialized in the detection of contrasts between luminosity and colors. The extremities 
of the three axes are antagonist colors. L* is the lightness, going from 0 to 100, where 0 is 
the darkest black and 100 is the whitest component of the scenery. The a* axis is the 
green-red component, with green being in the negative direction, and red in the positive 
direction. b* axis stands for the blue-yellow component, with blue in the negative values, 
and yellow in the positive values. As a result, a color with the values a* = b* = 0 is a true 
neutral gray. This color space was designed to be closer to the color perception of the 
human visual system when looking at a surface. 

In the same year, in cylindrical coordinates, the CIE also recommended the CIE 1976 
L*C*h* color space. L* is also the lightness, C* is the chroma, and h* is the hue angle. 

2.6 Conclusions 

We presented all the necessary concepts for the basis of our study. The approach using 
radiometry-based models will enable the analysis of the interreflection phenomenon and 
its influence on a structured material surface appearance, modeled with ideal surfaces as 
the ones presented in this chapter. The radiometric quantities and their properties are at 
the core of the models we now offer to develop in the three following chapters.  
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Chapter 3.  
 
Light interreflections in a 
Lambertian V-cavity 

The different areas of a concave object illuminate each other by a multiple light 
reflection process, called interreflections, depending on the geometries of the 
object and the lighting. For an accurate prediction of the radiance perceived from 
each point of the object by an observer or a camera, an interreflection model is 
necessary, taking into account the optical properties and the shape of the object, 
the orientation(s) of the incident light which can produce shadows, and the 
infinite number of light bounces between the different points of the object. The 
present chapter focuses on the irradiance of two adjacent Lambertian planar 
panels (V-cavity) illuminated by collimated light from any direction of the 
hemisphere, or by diffuse light. According to the reflectance of the material and 
the angle of the cavity, as well as the observation direction of the structure, the 
loss of irradiance near the fold due to the shadowing effect is partly compensated 
by the gain in radiance due to the interreflections. It can lead to significant 
change the lightness and chroma of the structure towards colors given by 
wavelengths that are weakly absorbed at first. The interreflections can also 
cancel the metamerism, as well as change the perception of ridged surfaces with 
two colors. 

3.1 Introduction 

In this chapter, we will consider the case of Lambertian materials displaying a 
periodical surface pattern of V-ridges, as presented in the general introduction. The 
purpose is to consider a perfect theoretical surface to accurately describe the 
interreflections and derive an analytical formulation, to help produce simulations of 
appearance. 

With the interreflection phenomenon, the characteristic gain in lightness and chroma 
is illustrated by Figure 15. The material presented is rather Lambertian and orange, and 
the gradient of luminosity is well visible when the incident light is rather frontal and 
illuminates the whole surface.  
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Figure 15 – Orange 45° V-cavity made of matte orange paper under a frontal lighting.  

However, in the case of oblique lighting, the concavities may be only partly 
illuminated because of shadowing, and partly visible due to masking. Moreover, in case of 
diffuse lighting the shadowing effect diminishes the irradiance of the surface in the 
concavities, and the visual effects consequently lessen.  

 

Figure 16 – Icelandic house during winter under a perfectly diffuse illumination, in a 
very scattering environment. Credits : Dorian Saint-Pierre. 
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The picture in Figure 16 of an Icelandic house during winter shows that under a 
perfectly diffuse lighting, a snowy landscape, therefore a highly scattering one, can appear 
without any light reflections and only display some shadows where concavities are to be 
found, only to darken the overall visual aspect.  

The main question resulting from this observation is to know to which extent 
interreflections can be in competition with shadowing, and how this can alter the 
perception of the surface topology. To answer it, it is assumed that the surface is perfectly 
scattering, i.e., Lambertian. The model is based on the radiosity equation such as the one 
proposed by Koenderink and Van Doorn [19], extended after by Seitz et al. [12] to offer a 
linear matrix transformation of the problem, and more recently by Rada Deeb [18] for 
spectral estimations in computer vision.  

This interreflection model is presented in Section 3.2, in the general case of a 3D-
shaped Lambertian material, then in the special case of a V-cavity of infinite length. We 
then address the question of the illumination geometry and the shadowing model in 
Section 3.4, which finishes the presentation of the model.  The influence of illumination 
geometry is then addressed in Section 3.5.  After this, a part focused on the influence of 
the observation direction is presented in Section 3.6, followed by the influence of the 
shape in section 3.7. Two studies using the interreflection model for V-cavities of infinite 
length made of Lambertian materials are conducted in Sections 3.8 and 3.9, regarding 
respectively metamerism and structured surfaces with two different colors. The section 
3.10 will draw the conclusions of this chapter. 

3.2 General case 

One way of writing the observed radiance from a 3D-shaped Lambertian surface S is 
by taking into account the contribution of the multiple light bounces between each pair of 
points iP   and jP   on the surface. This helps derive a continuous equation known as the 
radiosity equation, or interreflection equation, which expresses the total radiance  iL P   
perceived from every point iP  as the sum of two terms. The first term is the radiance
 1 iL P after one bounce, corresponding to the observed photons issued from the light 

source of irradiance  0 iE P   and reflected once on the surface of reflectance ir   in iP  : 

    1 0π
i

i i

r
L P E P   (3.1) 

The second term is the radiance after multiple bounces, corresponding to the 
observed photons issued from every other point jP  of the surface and reflected one more 
time on the surface in iP . The following reasoning line will establish this second term.  

Each point iP emits the radiance  jL P  in every direction, therefore towards point iP . 
The elemental irradiance received in iP  from jP  is then:  
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    ,i j j jK P P L P dP   (3.2) 

where  ,i jK P P  is a function called geometrical kernel (or interreflection kernel) related 
to the geometrical extent subtended by points Pi and Pj on the surface, defined by Eq.(2.3)
: 
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 ,i jV P P  being a visibility function that gives 1 when both elementary areas idP  and 

jdP  can see each other, and 0 otherwise. In order to better understand how the radiance 
after multiple reflections is constructed, let us consider first every elemental irradiance 
received in iP  after one reflection. They are coming from every point jP , and by summing 
them, the total irradiance after one reflection is obtained: 
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Following the same line of reasoning, taking into consideration a second reflection 
before reaching the point of interest iP  means summing every irradiance contribution 
received in every point jP  that have been reflected once from other points 'jP , therefore 
leading to: 

        
'

2 0 '
'

'2 , ,'
π

j j

j j
i j j

P S P S
i j j j jK P P K P

r r
E P E P P ddP P

 

     (3.5) 

In order to account for three reflections before reaching iP  , incidentally the 
irradiance received is: 

        
" '

'
" '

3 0 " ' "3π
, ,

j j j

j j j
i j j j
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i j j

S
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r r r
E P E dP dP PP d

  

      (3.6) 

Since the material considered here is Lambertian, this process continues until infinity. 
This consideration also means that since the same radiance is being reflected in every 
direction, it is therefore possible to state that the radiance after multiple bounces, which 
incorporates the elemental irradiances in iP  formed by the light coming from all other 
points jP  of the surface S, is therefore 

    ,
π j

i
i j j jP S

r
K P P L P dP

   (3.7) 

and the total radiance  iL P  displayed by point iP  is given by: 
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        0  ,
π j

i
i i i j j jP S

r
L P E P K P P L P dP


 
 

 
  (3.8) 

thus, considering every contribution from the other points. 

The integral equation (3.8) is an inhomogeneous Fredholm equation [36] of the 
second kind and has no analytical solution in the general case. It can be solved numerically 
or, more conveniently, converted into a discrete version thanks to a Neumann series, after 
sampling the surface, thus represented by a collection of n microfacets having same area, 
as proposed by Nayar et al. [10].  

By considering both radiance and reflectance constant over each facet, represented 
by a point Pi and its finished area idP  , the integral equation (3.8) becomes: 

 0( ) ( ) ( )
π

i
i i ij jj i

r
L P E P K L P


      (3.9) 

where 

 
Δ

( , )
j

ij iP P
K K P P dP


    (3.10)  

This allows for transforming the geometrical kernel into a matrix  
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  (3.11) 

which is symmetrical as Kij = Kji for every i and j.  

Since each facet has its proper spectral reflectance, we gather all facet's reflectances 
into an n × n diagonal matrix whose ith entry on the diagonal is the reflectance of facet i: 
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0 0 n

r

r
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 
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  (3.12) 

The incident irradiance 0E  , the radiance L and the radiance after one reflection, 1L , 
can also be defined for a collection of small areas on the surface (e.g. corresponding to a 
tessellation of the surface), and are in this case represented under the form of vectors: 
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  (3.13) 
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where the superscript T denotes the transpose operator.  

We can finally write Eq. (3.9) as: 

  1
π 0L = R E +KL   (3.14) 

where vectors L and E0 stands for the radiance and irradiance in each point of the scene, 
gathered in vectors. The equation (3.14) is equivalently: 

 
1

1 1
π π


  
  0L = I RK RE   (3.15) 

where I is the n × n identity matrix. All terms contained in this general matrix equation 
are wavelength dependent. The equation is therefore written for each wavelength of light. 

Remark: the computation of the terms ijK  defined by equation (3.10) needs an 
important comment. When points iP  and jP  are far from each other, we can assume that 
function ( , )i jK P P  is nearly constant over the integration domain and therefore that 
equation (3.10) can be simplified as  

 ( , )Δij i j jK K P P P   (3.16) 

However, this approximation is not valid for adjacent facets, i.e., when iP  and jP  are 
close to each other. In this case, ijK  must be computed by integration as defined in 
equation (3.10), either analytically when possible, or numerically.  

3.3 Special case of a V-cavity of infinite length 

We now consider the interreflections in a V-cavity drawn by two adjacent planar 
panels forming an angle α, as shown in Figure 17. The two panels will be labelled 1 and 2. 
The common edge of the panels, assumed to be of infinite length, defines the x-axis of the 
3D Cartesian space. The width of both panels is set to unity (it could be equivalently any 
other value: the width has no impact on the interreflection effect in this configuration as 
we will show later). The y- and z-axes belong to the plane orthogonal to the x-axis, the z-
axis being in the bisector plane between the two panels. Hence, each panel forms an angle 
α/2 with the z-axis. Moreover, the position of points in the panels will be described by 
proper bi-dimensional coordinate systems:  ,x y  in panel 1 and  ,x y  in panel 2, where 
the y   and y  axes belong respectively to panel 1 and panel 2 and are perpendicular to 
the x axis. Since the V-cavities considered in this paper have an infinite length according 
to the x-axis, their geometry depends only on angle α.  
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Figure 17 - Geometrical configuration where a point Pi on panel 1 sees a facet of 
infinite length on panel 2. 

The general interreflection equation(3.15), in particular the matrices R and K, can be 
adapted to the V-cavity of infinite length made of a uniform Lambertian material as 
follows.  

Regarding matrix R, since the two panels are uniform and made of the same 
Lambertian material, all facets have the same reflectance r. Hence, matrix R is a diagonal 
matrix where all terms on the diagonal are r, and can therefore be replaced with rI, where 
I is the 2p × 2p unity matrix. Eq. (3.15) can therefore be written as: 

 
1

π π
r r


  
  0L = I K E   (3.17) 

Regarding matrix K, it is built according to a tessellation of the panels into 2p facets 
and has therefore the dimension 2p × 2p. Each of the two panels is decomposed into p 
facets of infinite length (according to the x-axis) and finite width (according to the y' or y" 
axis, accordingly). Since the total width of each panel is unity, the width of each facet is 
1/p. The entries ijK  of matrix K are computed according to Eq.(3.16), where function 

( , )i jK P P  is defined by Eq.(3.3). The visibility function  ,i jV P P  introduced in equation 
(3.3) is 0 for facets belonging to the same panel, and 1 for facets belonging to different 
panels. The geometrical extent  2 ,i jd G P P , also introduced in equation , must take into 
account the fact that we have here facets of infinite length. It has an analytical expression 
that we propose to derive now.  

Let us consider on panel 1 a point iP  of coordinates  ,i ix y  in the (x, y')-coordinate 
system used for panel 1, and a point jP  of coordinates  ,j jx y  in the (x, y'')-coordinate 
system used for panel 2, as featured in Figure 17. We also consider on panel 2 a facet of 
infinite length whose edges are parallel to the x-axis. Its highest edge meets point jP  at 
the ordinate jy  and, since every facet has a width 1/p, its lower edge is at the ordinate 

1 /jy p  . We want to express first the geometrical extent subtended by elemental areas 

idP  and jdP  around points iP  and jP , then the geometrical extent subtended by idP  and 
the whole facet j.  
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In the 3D Cartesian system introduced in Figure 17, the points iP  and jP  have the 
coordinates 
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 
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 (3.18) 

and the normal of idP  and jdP , corresponding to the normals N1 and N2 of panels 1 and 2, 
respectively, are: 
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 

N  (3.19) 

The angles θi and θj formed by the line  i jPP  and the normals N1, respectively N2, 
therefore satisfy the equations:   
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  (3.20) 

and 
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  (3.21) 

where symbol   denotes the dot product between vectors, and Δ denotes the length i jP P : 
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 (3.22) 

After computation, one obtains: 

 
sinα

cosθ
Δ

j
i

y
  and 

sinα
cosθ

Δ
j

j

y
    (3.23) 

The elemental area idP  around iP  can be written i idx dy  and the elemental area jdP  
around jP , j jdx dy .  

Finally, according to Eqs. (2.3), (3.22) and (3.23), the geometrical extent is written: 
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and the interreflection Kernel defined by Eq. (3.16) becomes 
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Regarding the non-zero entries of matrix K, defined by Eq. (3.11) in the case where iP  
and jP  belong to different panels, they are obtained by integrating the interreflection 
Kernel  , , ,i i j jK x y x y  , given by Eq. (3.25), over the facet, i.e., between   and   along 
the x-axis, and between 1 /jy p   and jy  along the y -axis: 
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This double integral has an analytical solution, given by: 

    1
jj ji i pi y yK F F     (3.27) 

with 
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Unsurprisingly, ijK  is independent of ix . This is due to the infinite length of the V-
cavity which generates an invariant interreflections process along the x axis.  

Finally, matrix K in Eq. (3.17) is a 2p × 2p matrix whose entries are 0 for pairs of facets 
belonging to the same panel, and are given by Eq. (3.27) for pairs of facets belonging to 
different panels, knowing that ij jiK K . 

3.4 Illumination Geometries 

In the radiance of Eq. (3.17), the term E0 denotes the direct irradiance of the different 
facets in the V-cavity (without taking into account the interreflections), which depends on 
the geometrical configuration of illumination. In this study, we consider that the lighting 
is spatially uniform (in x and y) and covers the whole V-cavity aperture. Three 
configurations are considered, featured in Figure 18: frontal directional lighting, where 
the incoming light is parallel to the z-axis; oblique directional lighting where the incoming 
light is parallel to a vector e, featured in by a green arrow, forming a polar angle θ in 
respect to the z-axis and an azimuthal angle φ in respect to the (y, z)-plane; and perfectly 
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diffuse lighting, characterized by a radiance uniformly distributed over the hemisphere. 
The aim of this section is to study the influence of the angular distribution of incident light 
on the radiance displayed by the cavity in each point by considering the possible shadows 
that one panel may cast onto the other panel. 

 

Figure 18 Geometry of the V-cavity under the considered lighting configurations 

3.4.1 Light interreflections under a directional illumination 

We first consider a frontal collimated lighting, parallel to the z-axis, i.e.,  0 0 1
T

e
. The horizontal plane (x, y) receives an irradiance denoted as zE . It is the maximum direct 
irradiance that a panel can receive. Under this frontal illumination, since both panels form 
an angle α/2 with the vector e, each one receives an irradiance  sin α 2zE . All entries of 
vector 0E  are therefore identical:  

   sin α 2 1 1
T

zE0E    (3.29) 

Under an oblique illumination, where the collimated light is parallel to the vector  

  sinθsinφ sinθcosφ cosθ
T

e   (3.30) 

the panels receive an irradiance given by 

 z iE e N   (3.31) 

where the symbol   denotes the clamped dot product between the illumination vector 
e and the normal iN  of the panel i  = 1 or 2, given by Eq. (3.19), or equal to 0 when the dot 
product is negative since the surface is not illuminated when the angle between the 
incident light direction and the surface normal exceeds 90°. 

Hence, for an oblique illumination, the entries of vector  0E  are 
    sinθcosφcos α / 2 cosθsin α / 2zE u   with 1u   for the p first entries attached to the 

facets on panel 1, and 1u    for the p last entries attached to the facets on panel 2.  

Moreover, part of a panel may also be not illuminated because of shadowing by the 
other panel. Shadowing can be taken into account into the interreflection equation (3.17) 
by simply setting to 0 the entries of the irradiance vector E0 corresponding to the non-



Light interreflections in a Lambertian V-cavity 

59 

illuminated facets, thanks to a diagonal matrix hS  of size 2p × 2p whose jth entry on the 
diagonal is 1 if the jth facet is illuminated, and 0 otherwise. The interreflection equation 
modified as follows automatically considers the fact that some facets may be not directly 
illuminated by the light source: 

 
1

π π
r r


  
  h 0L = I K S E   (3.32) 

The Boolean values in this diagonal matrix hS  are given by a function  θ,φjS  
depending on the orientation of illumination, computed according to a condition that the 
central point F of each facet j of the V-cavity satisfies or not, and that we propose to 
introduce now.  

First, we can observe that shadowing does not occur if vector e is parallel to the (x, z) 
plane. It occurs only if the vector e  obtained by projection of vector e onto the (y, z) 
plane forms an angle larger than α/2. This projected vector  e  can be defined by its 
coordinates  ,e ey z  in the (y, z) plane: 
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e   (3.33) 

In Figure 19, the projections of panels 1 and 2 onto the (y, z) plane are represented by 
a blue segment OA and a red segment OB, respectively. Vector e , represented by a green 
arrow, is based on the central point F of a facet located on panel 1, at a distance Fy  from 
the fold (point O):  
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  (3.34) 

 

Figure 19 - Geometry of the V-cavity and the illumination vector projected onto the 
plan (y, z) plane. 

The line parallel to vector e  that meets point F intersects line (AB) in a point G whose 
coordinates in the (y, z) plane satisfy both line equations:  
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By solving this system of two equations and using Eq.(3.34), one obtains:  

      1 tanθcosφcos α 2 sin α 2G F Fy y y     (3.36) 

The condition for this point F on panel 1 to be illuminated is that G is between A and 
B, i.e., that  sin α /2Gy  , which yields the condition: 

        1 tanθcosφcos α 2 sin α 2 sin α 2F Fy y      (3.37) 

The Boolean function  θ,φiS  used to determine the values of the first p entries on 
the diagonal of matrix hS  is 1 is the central point F of the ith facet satisfies the inequality 
(3.37), and 0 otherwise.  

Similar reasoning line applies when the point F is on panel 2, except that its 
coordinates in the (y, z) plane are: 
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  (3.38) 

and the inequality of Eq. (3.37) becomes 

        1 tanθcosφcos α 2 sin α 2 sin α 2F Fy y      (3.39) 

The Boolean function  θ,φjS  used to determine the values of the last p entries on the 
diagonal of matrix hS  is 1 if the central point F of the p+jth facet satisfies the inequality 
(3.39), and 0 otherwise.  

3.4.2 Light interreflections under a diffuse illumination 

Another type of lighting geometry is the perfectly diffuse light, also called Lambertian 
illumination (see Figure 5.c). Under this lighting, a horizontal plan would receive same 
radiance L0 from every direction of the hemisphere, forming on the (x, y) plane a total 
irradiance Ez related to L0 by: 

  
2π π/2

0 0φ 0 θ 0
cosθsinθ θ φ πzE L d d L

 
     (3.40) 

In the case of the V-cavity, because of the shadowing effect, the panels are not 
homogeneously illuminated: the points near the edges are more illuminated than the ones 
near the fold. The irradiance 0, jE  on each facet j of the V-cavity can be computed thanks 
to the Boolean function introduced previously:   
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  
2π π/2

0, 0φ 0 θ 0
θ,φ cosθsinθ θ φj jE L S d d

 
     (3.41) 

The entries of the vector 0E  are computed according to this Eq. (3.41), and the 
interreflection equation (3.17) can be used to predict the radiance observed from the 
facets of the cavity. 

Figure 20 shows the irradiance distribution on panel 1 along the y'-axis, for various 
cavities characterized by different angles α between the panels, all illuminated by a 
Lambertian lighting that produces an irradiance unity  1zE   on a horizontal flat surface 
(α = 180°). Similar distribution would be observed on panel 2 along the y"-axis. As α 
decreases, the irradiance is decreased by a factor  sin α / 2  in every position y' [see Eq. 
(3.29)], and is even more decreased as y' tends to zero due to the shadowing effect.   

 

Figure 20 - Direct irradiance on panel 1 along the y’ axis, from 0 (fold) to 1 (external 
edge), for a panel of V-cavities characterized by different angles α under a Lambertian 

illumination producing an irradiance Ez = 1 on the horizontal plane. 

Now that the overview of the model for Lambertian V-cavities has been done, we will 
go on to present the simulations results. The three following sections will discuss three 
parameters: the lighting geometry, the observation geometry and the shape of the V-
cavity.  

3.5 Influence of the lighting geometry 

In this section we will illustrate how the lighting geometry can impact the appearance 
of a grooved surface. Using the model presented earlier, simulation results will 
extensively show how such a surface structure impacts the reflected radiance displayed, 
as well as its color. Three cases of lighting geometry are used: a frontal directional one, 
with a direction of incidence being    θ,φ 0 ,0   , a directional oblique one being 
   θ,φ 45 ,0    , and a diffuse one, accounting for every direction of incidence over the 
hemisphere. These three types of illumination are presented on Figure 21. A sample of a 
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single V-cavity was fabricated. The length of the cavity along its folding axis is sufficiently 
long to be considered infinite compared to its width. The dihedral angle is 45° and made 
with orange matte paper and white matte paper. The cavity is presented alongside flat 
areas of the material for comparison purposes. 

 

 

Figure 21 - Structure of paper sample presenting two flat, horizontal areas and a 45°-
cavity, made of white and orange matte 120 g/m² paper. b) Color pictures of this 

sample (non-calibrated color) under different illumination geometries (see details in 
Figure ) and observe under a frontal point of view.. 

A detailed version of the sample is presented in Figure PF3-1 on the left page. The first 
configuration (top picture) is a frontal collimated light (    θ,φ 0 ,0    direction of 
incidence within the coordinate system defined earlier). The cavity displays a radiance 
gradient along its sides, with a stronger radiance at the fold, due to the interreflections of 
the light. The increased radiance near the fold gives an impression like luminescence, 
while edges are darker and less saturated. In the second case (middle picture), a 
directional lighting with a θ 45   zenith angle, the interreflections are still present but 
are hidden by the shadowing effect. As a result, only the directly illuminated part displays 
a strong radiance, and the contribution of the interreflections is visible on the other side 
of the cavity, with a weaker radiance gradient. Notice that this gradient has a maximum 
roughly around the middle of the shadowed panel, corresponding the maximum 
amplitude of the interreflections. The last lighting geometry (bottom picture) is a diffuse 
one, with light coming from all the directions over the hemisphere. The shadows prevail 
over the interreflections, resulting in the opposite appearance of the frontal illumination: 
the fold is darker than the edges.  

Aside from these pictures of the real cavity, simulations are shown on Figure PF3-1 
on the right page. They correspond to the same cavity shape, and the same three 
illumination geometries. As data entries for these simulations, we consider a reflectance 



Light interreflections in a Lambertian V-cavity 

63 

corresponding to a magenta material consisting of a stack of five sheets of non-fluorescent 
white paper, of density 80 g/m² with matte finishing, the last sheet being printed in inkjet 
with a magenta ink. The stack of sheets is used here to simulate an opaque white 
Lambertian material, opaque enough to simulate an infinite number of layers. In fact, the 
reflectance of this opaque stack was measured and used with the magenta color to 
purposefully have a configuration where the fabricated spectral radiance of the samples 
used is nearing 1 in the visible spectrum above 600nm. Therefore, displaying a stronger 
interreflection phenomenon when illuminated in a collimated fashion is possible.  

For these simulations, we remind the interreflection model for Lambertian materials: 
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π π
r r


  
  h 0L = I K S E   (3.42) 

 We used an incident irradiance with a value of πzE   when it is illuminating a flat 
surface made of the same material and parallel to the horizontal plan  ,x y . When 
considering the frontal collimated lighting, the light beam is propagating parallelly to the 
z-axis. If a perfectly white, Lambertian and flat surface was illuminated by this irradiance, 
the observed radiance would be π 1zL E  . The same irradiance value is used for the 
diffuse illumination. Therefore, the components of the vector 0E  from the model equation 
(3.42) are computed  with consideration of the obliqueness of the cavity’s panels. In fact, 
the irradiance effectively hitting the panels represents 39% of the initial value, in the case 
of 45° V-cavity under a frontal collimated lighting, because its value is  sin α 2zE . 

The geometry of the V-cavity itself, represented by the matrix K  in Eq.(3.42) was 
computed using the analytical model for a V-cavity of infinite length presented in Eqs. 
(3.26), (3.27) and (3.28). A cavity was generated using 64 microfacets in total (32 per 
panel), with the form of narrow bands of infinite length along the x-axis. The chosen scale 
is 2.5 mm of width for a microfacet, giving a total 80 mm height for a panel. This is purely 
for an informative purpose, because as mentioned earlier, the interreflection 
phenomenon takes place at any scale with the condition of having a structure size 
significantly larger than the wavelength. The number of microfacet is sufficiently high to 
properly observe the different events in the V-cavity without under sampling them.  

Finally, the reflectance r is the spectrum of the flat magenta material, measured with 
a spectrophotometer X-Rite Color i7 using a Xenon lamp and an integrating sphere.  

An important point of interest to keep in mind is the appearance of the grooved 
surface as whole, seen from a distance, without the perception of the details. Therefore, 
the average perceived radiance of one V-cavity is computed from the results of the 
interreflection model. As such, the average is computed on all the spectral radiances from 
each visible microfacets. In the current section, the observation direction at 0° is such as 
every microfacet is visible. But as we will see in the following section, it is not always the 
case.  
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The corresponding spectra displayed by all facets across the cavity are represented 
on the right side of the right page, with a solid line standing for a spectrum on the edge of 
the cavity  1y  , a dashed line representing a facet at the fold of the cavity  0y  , 
a dashed magenta line symbolizing the reflectance of the flat surface made with the same 
material, and a solid red line representing the average reflectance displayed by the cavity 
seen from afar, following the frontal direction. 

On the left side of the right page are represented the color gradient of the cavity. These 
gradients are computed using colorimetric functions programmed on MATLAB. From the 
set of spectra, a conversion is made to the CIE 1931 XYZ color space using a D65 standard 
illuminant. Then from the XYZ primaries, a conversion to the CIE 1976 L*a*b* color space 
is done using a perfect unit white reference. Finally, to display the gradients, a conversion 
from the L*a*b* to the sRGB color space is done using a D65 illuminant. 

On the top figure, under a frontal lighting, the structure displays a radiance gradient 
on its sides, with a brighter fold and darker edges, with a sensation of luminescence. This 
translates to the spectra observed on the graphics on the right. The highest spectrum, 
represented by a dashed line is from the fold, and the spectrum drawn in a solid line is 
from the edge. The interreflections are such as the mean reflectance on the cavity 
observed under the frontal direction is even higher than the flat surface’s reflectance for 
the weakly absorbed wavelength range. On the contrary, the wavelengths that are already 
greatly absorbed result in an even weaker spectral radiance, mainly due to the 
obliqueness of the cavity’s panels and interreflections being weak. As a result, the whole 
cavity appears to be darker but with a more saturated color, similarly to the picture of the 
orange sample under a frontal lighting.  

For the oblique directional lighting at 45° (middle figure), we observe the same 
behavior as the picture presented before. The right side doesn’t receive any light, the fold 
is darker due to the shadowing effect, but we can see a radiance gradient resulting from 
the interreflections with the illuminated part of the left side. On average, the cavity seen 
from afar will appear darker. A more detailed view of what the cavity is reflecting is 
presented on Figure 22. 

The normalized and frontal irradiance represented by a green curve is illuminating 
the cavity in an oblique way, and the reflected radiance by the cavity is represented by the 
orange curve, and by the gray level gradient underneath the curve plot. We can observe 
that the right panel and the fold are completely shadowed, but we can also quantify the 
contribution of the interreflections happening with the illuminated left panel.  
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 Figure 22 - Simulated spectral radiance (orange) perceived from the two panels of a 
V-cavity of angle α = 45° and reflectance r = 1, illuminated by oblique collimated 

normalized irradiance (green) coming from the direction (θ, φ) = (45°, 0°). A slice of 
the cavity perpendicular to the x-axis, is shown in gray level below the graph.  

Finally, under a diffuse illumination (Figure PF3-1, bottom), the shadowing effect is 
predominant. Therefore, as seen on both the picture and the simulated gradient, the 
radiance gradient is weaker near the fold and brighter at the edge. The spectra graphics 
shows that under a diffuse illuminant, the structured surface is always darker than the 
flat surface. The loss in radiance is mostly due to the obliqueness of the panels for the 
edges, and mainly to both the obliqueness and the shadows near the fold. Interreflections 
are still happening but in a more discreet amount.  

3.5.1 Mixing a frontal collimated lighting with a diffuse one 

Natural light is often a mix of both a directional light source, for example sunlight, and 
a diffuse light source, like the blue sky. It can be entirely composed of diffuse light, like 
during a very cloudy day, but never entirely of direct sunlight. A simple way to model this 
kind of natural light source is to simply compute a linear combination between a frontal 
and a diffuse light source, with multiplication factor b between them that varies between 
0 and 1: 

   1 . .total frontal diffuseE b E b E     (3.43) 

To further the study on the lighting geometry influence, simulations were performed 
in the case of a monochromatic material, one with a spectral reflectance of 1, being a 
perfectly white diffuser, and another with a spectral reflectance of 0.8, a gray material. 
Both materials are used to form a 45° dihedral angle of cavity, and they are put under a 
hybrid illumination. Using Eq. (3.43), we vary the proportion of frontal collimated  and 
diffuse light, with 0.2 steps of the b factor.  
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Figure 23 - Variation of the perceived radiance along the y'-axis on panel 1 in a V-cavity with 
angle α = 45° and reflectance a) r = 1 or b) r = 0.8, for various illumination geometries obtained 
by mixing a fraction b of perfectly diffuse light and a fraction (1 – b) of frontal collimated light. 

When illuminated by perfectly diffuse light, the perfectly non-absorbing cavity (Figure 
23a) displays a constant radiance equal to unity over the whole panel: it looks similar as 
a flat, horizontal surface made of the same material, which also displays a uniform 
radiance equal to unity. As soon as the illumination geometry contains a fraction of 
collimated light, the areas near the fold display a higher radiance and thus look brighter 
than the horizontal flat surface; in opposition, the areas near the external edge are darker 
than the horizontal flat surface. At a position on the panel around y' = 0.6, the radiance 
unity is displayed independently of the illumination geometry. For the material with 
reflectance r = 0.8, which is slightly absorbing, all points of the panel display a lower 
radiance than a horizontal flat surface of the same material, which would display a 
radiance 0.8. The areas near the fold are brighter than the ones near the external edge 
when the proportion of collimated light is high (low b values) but they look darker when 
the proportion of collimated light is low (high b values). As for the non-absorbing material, 
there is a position on the panel, around y' = 0.55, where the displayed radiance is 
independent on the illumination geometry. 

One illustration for these simulations is the appearance of snow, being typically a very 
scattering and highly reflective medium. Under a very sunny day, with predominantly a 
directional sunlight, it becomes easy to perceive all the snow bumps and the shadows 
gradients for example on a ski trail (Figure 24). But as the simulations show, a very 
reflective and scattering structured surface under a Lambertian illumination tends to 
display the same reflectance as a flat surface made of the same material, meaning the 
structure isn’t perceivable anymore. On Figure 25, we can observe such a case, where the 
snow bumps and the topography are hard to distinguish under what is also called a “flat 
light”. 
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Figure 24 – A ski trail under a directional sunlight. The bumps and the light gradients 
are visible. (credits : http://www.mechanicsofsport.com/snow_weather.html) 

 

Figure 25 – a ski trail under a cloudy sky. The snow bumps are indistinguishable and 
no shadows are casted, rendering difficult the perception of the topography. (credits : 

http://www.mechanicsofsport.com/snow_weather.html) 
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Different variations as the ones displayed in Figure 23 would be obtained with other 
material reflectance values: the displayed radiance strongly decreases as the reflectance 
decreases. The cavity angle α, fixed to 45° this section, also have a strong impact on the 
radiance gradient displayed by the cavity panels, as shown in a following section. A lower 
angle value of cavity strengthens both interreflection and shadowing effects, the first one 
tending to increase the displayed radiance near the fold, and the second one tending to 
decrease it. There is therefore a competition between the two phenomena, being 
generally in favor to the interreflection effect (brighter areas near the fold) under a rather 
frontal lighting, and in favor to the shadowing effect (brighter areas near the external 
edges) under a rather diffuse lighting.  

Following this study on the illumination geometry influence, we will now move on to 
the influence of the observation direction in the following section.  

3.6 Influence of the observation direction 

The observation direction also has a strong influence on the perceived radiance, 
especially at grazing angle where only the areas closest to external edge of one panel are 
visible, the other areas being masked by the other panel. Masking can be treated by 
defining a similar Boolean function as for shadowing with Eq. (3.39).  

Taking the masking effect into account translates to adding a masking matrix aM  to 
the interreflection model for Lambertian surfaces, with components computed thanks to 
the aforementioned condition, this time for the observation direction. In other words, the 
masking matrix is built by following the same process as for the shadowing matrix.  
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r r


  
 a h 0L = M I K S E   (3.44) 

To illustrate this model, we first show on Figure PF3-2 what the observation direction 
implies in terms of visible area of the V-cavity. Using a V-cavity with a 45° angle, made of 
the same magenta material as before, we simulate the spectral radiance and color 
gradient across the structure for a lighting geometry following the  45 ,0  . We want to 
emphasize the fact that this is purely for the sake of illustration. 

On the top part of the figure, we can see that the structure is fully viewed for a zenith 
angle going from -22.5° to 22.5°, corresponding to the half value of the cavity angle. The 
average perceived spectral radiance would therefore be computed on the whole 
structure.  

On the bottom part of the picture, four different points of view are represented, each 
of them perpendicular to the cavity, and a 30°, 45°, 60° and 70° zenith angle. The greater 
the angle of observation is, the smaller visible area of the cavity is. The main difference 
resides in the average spectral radiance displayed by the cavity.  
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When the cavity is fully viewed, the average is done on the whole structure, and since 
it is partially illuminated, the shadowed part will diminish the average. Then, if the 
observation direction shifts towards the illuminated panel, the structure will appear 
lighter and lighter, with an optimum of retro diffusion located at 30° where all the 
illuminated zone is observed, in the case of the 45° V-cavity. When the visible zone is only 
contained in the illuminated area (a zenith angle of 75° for example), the structure will 
appear very luminous to the observer. For the shadowed panel, the average radiance 
consequently appears darker and darker with the zenith angle of observation increasing.  

To further analyze of the observation direction’s influence, simulations were done 
using the same magenta material as before, as well as a cyan patch printed on the same 
opaque and Lambertian material. The cyan color was chosen due to its weaker lightness, 
resulting in weaker interreflections but still with enough saturation to observe a change 
of aspect under the different lighting geometries, in respect with a varying observation 
direction. The observation varies from the direction θ 75    to 75   with a 15° 
increment for the zenith angle. On the following pages are presented the average spectra 
of simulated magenta and cyan V-cavities with a 45° dihedral angle. The lighting 
geometries are a frontal lighting, a directional 45° lighting and a diffuse lighting. On the 
right of the spectra, left page, are represented the evolution of the average luminosity and 
chroma of each cavity, in an L*C* diagram computed in the CIE 1976 L*a*b* color space. 
On the second page, left, are presented the evolution of the average cavity colors in the 
a*b* diagram. On the right of the left page is the evolution of the color distance E2000, 
computed with the L*a*b* coordinates, with the view from the frontal direction as 
reference. The parameters for the incident irradiance as well as for the geometry of the 
cavity are the same as in section 3.5. 

On Figure PF3-3 on the left page for the 45° magenta V-cavity, since the lighting 
geometry is symmetrical, there’s no difference between the positive and negative range 
of the observation point. The L*C* diagram on the right of the left page shows that the 
more the observation is grazing, the more the lightness and chroma diminish, coherently 
so with the gradient observed on the cavity sides in such a configuration. On the right 
page, the a*b* diagram reveals a small change of hue angle, meaning the interreflections 
allied with a changing point of view not only changes the perceived lightness and chroma 
of the structure, but also its hue. The color distance E2000 quantifies the strongest 
difference between the frontal point of the view and the most grazing one up to 5, meaning 
the differences are visible for the human eye. 

Under the oblique 45° illumination, the symmetry doesn’t exist anymore. As seen in 
Figure PF3-2, the change of observation direction impacts the visible area of the cavity, 
and therefore changes the average spectral radiance perceived. We can clearly see the 
lightness increasing with the zenith angle of observation going from 0° to 75°, because of 
the average being computed on more and more lighted microfacets, compared to a lower 
spectral radiance when the cavity is fully viewed. The maximum average is obtained for a 
45° zenith angle of observation, being the same as the lighting direction. Just below is 60° 
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and then 75°, due to the obliqueness between the point of view and the viewed panel 
increasing. On the other side, for the negative zenith angle of observation, we can see a 
decrease of the radiance, except for -45° zenith angle of observation being higher than the 
others, because of the interreflections maximum on the shadowed panel.  The L*C* 
diagram shows a high range of change for the lightness, but a change of chroma as 
important as the change observed for the frontal illumination, meaning that the change of 
directional lighting geometry also changed the evolution of the color saturation as a 
function of the observation. The a*b* diagram also shows a consequent change in the 
perceived hue, yielding a strong gonio-dependence of the color for this kind of anisotropic 
surface structure, especially with an asymmetrical lighting. The color distance E2000 
quantifies the strong dispersion of the perceived colors compared to the frontal point of 
view and takes values as high as 19 for the observation direction coinciding with the 
lighting direction. 

Finally, for Figure PF3-3, the magenta V-cavity under a diffuse illumination shows a 
smoother evolution of the average spectral radiance with the observation direction than 
in the two previous cases. The fact that the shadowing effect is dominating the structure’s 
appearance shows on the corresponding L*C* diagram that the chroma barely changes 
while the lightness increases with the zenith observation angle, the observer getting a 
smaller and smaller visible area being lighter on the edges. The change of hue angle 
represented in the a*b* diagram is rather small and comparable to the change of hue for 
the frontal illumination and leads to the same kind of color distance evolution.   

On Figure PF3-4 the same study was conducted for a 45° cyan V-cavity. As one can 
observe, the tendencies of the curves are very similar to the case of the magenta, with 
little differences.  

Under a frontal collimated lighting the average spectra never overpass the unity 
because of cyan being a darker color to begin with, therefore yielding weaker 
interreflections. The L*C* diagram shows a small change in lightness and chroma, but a 
higher change of hue in the a*b* diagram is visible, overall leading to a rather small 
evolution of the color distance compared to the frontal observation. 

The fact that the interreflections are weaker for a cyan V-cavity shows that the 
observation angle dependence of the perceived radiance and color is even greater due to 
the stronger influence of the shadowing effect when considering a 45° oblique 
illumination. Since the interreflections are weak, they can’t compete with the shadows 
and the cavity will more rapidly evolve from a lighter to a darker appearance. 

Finally, the diffuse lighting geometry shows the same kind of smooth evolution as for 
the magenta structure but with a noticeable difference for the color distance. The E2000 
being a metric more sensitive for the blue colors yields that even with weaker 
interreflections, the human eye would more sensitive to the change of appearance in the 
case of a cyan grooved surface than in the case of a magenta grooved surface.  
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3.7 Influence of the V-cavity’s shape 

The next parameter of the presented interreflection model for Lambertian surfaces 
we offer to analyze is the shape of the V-cavity, more precisely its dihedral angle , fixed 
at a 45° value until now. To investigate the influence of the shape, we now choose an angle 
of cavity taking the following values: 30°, 45°, 60°, 90°, 120°, 150° and the flat surface at 
180°. We also want to analyze the influence of the structure on the color. To do so, a 
selection of different colors has been made. The same opaque material as before, with a 
measured reflectance of a stack of five sheets of non-fluorescent white paper, of density 
80 g/m² with matte finishing constitute the base, with a magenta, a cyan and a yellow 
patch printed on it with an inkjet printer. The reflectances of the respective sample are 
then measured using the spectrophotometer from X-Rite: the model Color i7. In addition 
to these materials, two Munsell patches of reference were selected from the Munsell Book 
of Color from X-rite: an orange patch with a Munsell value of 7 and a chroma of 14, and a 
green patch with a Munsell value of 7 and a chroma of 10. These values were selected to 
obtain a good trade-off between the lightness of the samples and their chroma, but we 
will observe that even with these parameters, the interreflections are quite discreet. 
Finally, we study the stack of paper sheets itself as a white Lambertian material without 
any ink printed on it, as well as a material, represented by the reflectance of a single sheet 
of the same paper, being slightly less reflective. 

The equation model used in this section considers a frontal direction of observation, 
yielding no masking effect: 
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Since no masking is present in this section, all the average spectra are therefore 
computed on the whole structure. 

The irradiance is still spatially uniform and taken such as it yields a unitary radiance 
when illuminating a white Lambertian reference. The lighting geometry is computed for 
two cases: a frontal collimated illumination and a diffuse illumination. The geometrical 
kernel matrix K  is computed according to Eq. (3.26), for each value of cavity’s angle, with 
the same parameters as previously presented.  

On Figure PF3-5, for both types of illumination, a magenta V-cavity has been 
simulated. For each value of dihedral angle, the spectral radiance from each microfacets 
was plotted. The highlighted spectral radiances are the one of the flat surface, represented 
by a magenta dashed line, the average spectral radiance of the whole cavity, represented 
by a solid red line, the spectrum from a microfacet situated on the edge, represented by a 
solid black line, and the one from a microfacet near the fold, with a dashed black line. 
Under each graphics is represented the equivalent color gradient of the cavity, computed 
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with all the spectra from the microfacets, and using the same pipeline of conversion from 
spectrum to sRGB values as presented in Section 3.5. 

On the top part of Figure PF3-5 are plotted the different cavities under a frontal 
collimated lighting. The evolution from the flat surface to a very closed structure with a 
30° angle shows the interreflection phenomenon becoming stronger and stronger. This is 
due to the decreasing distance between the microfacets, reinforcing the contribution of 
the reflected diffuse light across the cavity. We can even observe that some microfacet 
have a spectrum overpassing the unit value when observing the cavity, to the point where 
for an angle of cavity of 45° or lower, the average perceived radiance is also superior to 
the unity, and most importantly superior than the flat surface’s reflectance as well, for 
weakly absorbed wavelengths.  

On the bottom part of Figure PF3-5 are plotted the different cavities under a diffuse 
illumination. The shadowing effect is predominant on the interreflections, leading to an 
overall darker structure with a less saturated colors. We can observe that when the V-
cavity’s angle decreases, the collection of spectra from the microfacets is spreading, due 
to the increasing obliqueness of the panels as well as the closing of the cavity reinforcing 
the shadowing effect. The main thing to retain here is that the spectral radiance displayed 
by such a structure under a diffuse illumination is always lower than the flat surfaces. The 
color gradients also show the color becoming more and darker.  

Following this first analysis, a set of figures on double pages is presented. For each 
pair or pages, the case for one color of material is presented. First comes the magenta, 
then cyan, yellow, orange, green, gray and finally, white. For each of these materials, we 
plot the average spectra displayed by the cavity, for each angles of the cavity. These 
spectra are then converted into CIE 1976 L*a*b* color space coordinates and plotted in 
an L*C* diagram as well as an a*b* diagram, following the same reasoning as in Section 
3.5. The evolution of the E2000 color distance is plotted, with the flat surface marked as 
a reference. Finally, these processes are repeated for two types of lighting geometries 
presented before: the frontal collimated light, and the diffuse one.  

On the first double page is Figure PF3-6 and the case of a magenta V-cavity. The 
interreflection phenomenon is strongly visible under a frontal collimated lighting, as seen 
on the left page, top picture. We can observe that when the dihedral angle increases, the 
part of the spectrum that is weakly absorbed is gaining in lightness, but on the other side, 
the part that are strongly absorbed are lowered. This phenomenon is stretched to the 
point where we can observe a crossing between the different spectral radiances for each 
angle, and we can derive that there is threshold existing above which the interreflection 
effect can induce an increase of lightness, and is the strongest in very closed structures 
because of the small distance separating the Lambertian microfacets. The L*C* diagram 
for the magenta under a frontal lighting shows a consequent drop in lightness with the 
dihedral angle decreasing, and a rather small change in chroma. On the contrary, the a*b* 
diagram on the right page displays a huge change of hue between a flat surface and a 30° 
V-cavity, notifying the strong influence evolution of the interreflections in this case when 
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the cavity’s shape is “closing”. The evolution of the E2000 color distance translates the 
great disparity between the 30° angle of cavity and the flat surface.  

For the diffuse illumination (bottom picture, left page), since the shadowing effect is 
predominant, we observe once again the fact that all the structured surfaces are always 
darker and less saturated than the flat reference. The L*C* diagram shows a decrease in 
lightness but a very small change of chroma. In the same fashion as for the frontal lighting, 
the hue in the a*b* diagram undergoes a great change when going from flat to a very 
closed angle of cavity. In this case the evolution of the color distance is comparable as well.  

On the second double page, Figure PF3-7, are the simulations for a varying dihedral 
angle of the cavity for a cyan structure. This time, the average spectral radiances under a 
frontal lighting on the left page shows that the interreflections phenomenon is weaker, to 
the point where all the structured surfaces display a lower radiance than the flat surface. 
The case of diffuse illumination shows a very similar behavior, but for both type of 
illumination, the change of hue and chroma is still consequent and this is even more 
visible with the evolution of the color distance. The more the concavity of a grooved 
surface is marked, the more the perceived color and radiance is changed, leading to a color 
distance superior to 20 in the case of a 30° angle of cavity, compared to the flat surface.  

The following cases of yellow, green, orange, gray and white mostly follow the same 
trend as magenta and cyan. The main differences lay in whether the colors are   

On Figure PF3-8 is presented the influence of the V-cavity shape for a yellow material. 
In this case, the considered sample is highly reflective. Under a frontal lighting, it leads to 
a very strong interreflection effect taking place in the V-cavity. As seen the on the top left 
graphics on the left page, the observer will get a strong sensation of fluorescence while 
looking at the surface. The interreflections are reinforcing the gain in lightness and the 
color saturation to the point where the structure will seem to emit some lights itself. The 
L*C* diagram on the top right of the left page shows an increasing chroma as a result of 
the interreflections. The a*b* diagram translates the strong interreflections into a 
consequent change of hue. A change that is not as significant as for the cyan material 
because as the corresponding color distance graphics shows, since the human eye is less 
sensitive when it comes to yellow, the difference between the flat surface and the 
structured one is not as great as in the previous cases.  

Under a diffuse illumination, the yellow V-cavity for different angles is still shows a 
strong spectral radiance, but always lower than the equivalent flat surface. It also means 
that for a highly reflective and scattering material like the yellow patch, the shadowing 
effect doesn’t alter the appearance of the structure much, as illustrated with the case of a 
perfectly white structured surface in Section 3.5. 

On Figure PF3-9 is presented the case of a green Munsell patch. Its behavior is similar 
to the one of cyan, being a rather cold color with a low spectral maximum, whether it is 
under a frontal illumination, or a diffuse one, with the difference of an anecdotical change 
of hue.  
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The same type of behavior is observable for the orange Munsell patch, on Figure PF3-
10. This time, the sample being slightly more reflective than the green one, we can observe 
that both under a frontal and a diffuse illumination, there is a decrease in lightness 
alongside a small increase in chroma when the cavity angle is decreasing. For both the 
frontal and diffuse lighting, since the interreflections are not dominant but still happening, 
meaning that the weakly absorbed wavelengths are amplified, and that the wavelengths 
already low are lowered, we can see in both a*b* diagrams that the orange V-cavity 
becomes more red with the aperture becoming smaller (the value are tending towards 
the a* axis).  

For the last two double pages, we studied the case of the Lambertian background 
alone used as a support for the previous colors. Figure PF3-11, under a frontal lighting, 
the single layer paper appears gray, and not reflective enough to display a strong 
interreflection phenomenon. This is also because the paper is not opaque, therefore 
transmitting light, which is not diffused by the material and reflected into the formed V-
cavity. The decrease in lightness observed is then solely explained by the obliqueness of 
the panels compared to the direction of incidence. Since the paper appears gray, the 
influence of the shape is only marked by the evolution of the color distance between the 
different angles, with a more closed structure appearing darker than a less closed one.  

The behavior is similar under a diffuse illumination, even more so because of the 
shadowing effect being dominant in this case, leading to a DE2000 color distance 
spreading further from the flat surface for small angles of cavity such as 45° and 30°.  

On the contrary, on Figure PF3-12, the interreflections are consequently stronger, 
even leading to the spectral radiances for different cavity angles crossing each other, as 
illustrated on the top left picture on the left page. It also leads to the appearance of the 
material deriving a bit towards a yellowish color. This is due first because of the 
interreflections taking place in the stack of paper sheets, and then to the interreflections 
taking place in the V-cavity. They reinforce the sensation by increasing the weakly 
absorbed wavelengths and decreasing the others. As shown on the L*C* diagram for the 
frontal lighting, we can observe a shift of chroma without a decrease of lightness, and 
without a noticeable shift of hue in the a*b* diagram.   

Under a diffuse illumination, the stack of paper layers appears darker than the flat 
surface in average, and with the angle of the V-cavity diminishing, we can observe the 
same shift of chroma accompanied this time by a decrease in lightness due to the 
shadowing.  

To summarize the influence of the shape of the V-grooved surface, we concatenate all 
the a*b* diagrams into one in Figure PF3-13. If it appears clearly that the lighting 
geometry has a strong impact on the spectral radiance and the displayed chroma by the 
V-cavities, compared to the flat surface, it has on the contrary less impact, if an impact at 
all, on the hue evolution with the aperture angle of the structure. For each one of the 
simulated colors, and under both the frontal and diffuse lighting, the 30° V-cavities 
exhibits colors with (a*, b*) values testifying of the hue shift compared to the one of the 
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flat surface. This evolution of the hue is mainly due to the interreflections, because the 
darkening due to the obliqueness and to the shadowing in the case of the diffuse lighting 
would imply a linear variation of the spectral radiance, which is not the case with the 
interreflections.  

Even if the interreflection phenomenon depends on the initial irradiance of the 
cavity’s microfacets, which is not exactly the same whether the lighting is frontal or 
diffuse, the dependence is weak considering that in both cases, the interreflections 
amplify the spectral radiance in the wavelength range where it is the highest (or decrease 
it in the opposite case). Therefore, the more a V-cavity’s aperture is small, the more 
concentrated is the radiance around the weakly absorbed wavelengths, and the color of 
the structure tends to the corresponding wavelength: orange and magenta become more 
red (a* axis), the yellow becomes yellower, the cyan becomes more blue (b* axis), and the 
green almost keeps the same hue.  

As we could observe through the previous simulations, it sometimes happens that the 
mean perceived radiance of a cavity illuminated frontally and viewed frontally overpasses 
the one of the flat surfaces made of the same material, at least at some wavelengths. It was 
visible in Figure PF3-3 for a 45° magenta cavity, as well as in Figure PF3-6 for different 
cavity apertures α. Same observation is made for the yellow and white cavities (Figure 
PF3-8 for the yellow and Figure PF3-12 for the white stack of paper), but it is not the case 
for the other colors (Figure PF3-7 for the cyan, Figure PF3-9 for the green Munsell, Figure 
PF3-10 for the orange Munsell, Figure PF3-11 for the gray single sheet paper). This 
happens when the material reflectance, at these wavelengths, overpasses a certain 
threshold that we denote here as ρx.  

To investigate this issue, we generated a material with a “ramp” reflectance, ranging 
from 0 to 1 on the visible spectrum. This way it allows us to plot the resulting radiance 
after interreflections and find the threshold ρx. This is illustrated by the graph in Figure 
26a the radiance issued from the facets of a 45° cavity (illuminated and viewed frontally), 
the mean radiance, and the radiance perceived from a flat surface are plotted as functions 
of the material reflectance ρ.  

Below the limit value ρx = 0.93, the mean radiance issued from the cavity remains 
below the radiance issued from the flat surface. Beyond that limit, the opposite is 
observed. This threshold ρx depends upon the cavity aperture α, as shown in Figure 26b 
for two reasons:  

 The irradiance of the facets in the cavity (same in all facets as the cavity is illuminated 
frontally here) is proportional to  sin α 2 . This tends to darken the cavity as angle α 
decreases: the flat surface has the highest irradiance, whereas a very closed cavity (e.g., α 
= 30°) has a much lower irradiance. 

 Secondly, the interreflections, are stronger as the cavity aperture decreases. This tends 
to brighten the cavity as angle α decreases.  
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There is therefore a competition between the darkening effect due to the obliquity 
of panels and the brightening due to the interreflections. The two effects depend on α but 
in different ways. This explains the presence of a minimum for ρx in the curve plotted in 
Figure 26b, around 0.93, at α around 40°. This cavity aperture is the most favorable to the 
brightening effect due to the interreflections in front of the darkening effect due to the 
facets obliquity, and the reflectance value from which the interreflections bring a gain in 
mean radiance in comparison to the flat surface is the lowest.   

Notice from Figure 26a that when the reflectance ρ is lower than the limit value ρx, 
the mean radiance is strongly attenuated in comparison to the one of the flat surface. This 
can be interpreted as an increased absorbance by the V-cavity.   

The consequence of this loss or gain in radiance, in terms of color appearance, is 
variable. It depends on whether this concerns a small or large spectral domain. In the case 
of the white cavity, as the material reflectance is higher than the threshold ρx, the spectral 
radiance of the 45° cavity overpasses the one of the flat surfaces on the whole spectrum.  

 

Figure 26 – a) Variation as a function of the material reflectance ρ of the perceived radiance 
issued from a flat surface of this material (dashed purple line), a 45° V-cavity frontally 

illuminated and frontally viewed (mean radiance, red line), and various facets of this cavity: 
facets near the fold (solid black line), facets near the edges (dashed black line), other facets 
elsewhere in the cavity (thin lines). The limit value ρx corresponds to the reflectance beyond 

which the 45° V-cavity is more reflective than a flat surface of same material. b) Variation of the 
limit reflectance ρx value as a function of the cavity aperture α. 

This is translated into a gain of lightness (see Figure PF3-12a and b). But this is not 
true for the yellow cavity (see Figure PF3-8a and b): we observe a gain in radiance beyond 
530 nm and a loss below that wavelength. This is translated into a very small gain in 
lightness, and a strong gain in chroma. In the case of magenta, the gain in radiance beyond 
640 nm (therefore in a spectral domain where the sensitivity of the visual system is rather 
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low) is not enough to compensate the loss in radiance in the rest of the spectrum. This is 
translated into a gain in chroma, but a loss in lightness (Figure PF3-6a and b). For every 
other color, the fact that the radiance of the cavity is lower than the one of the flat surface 
for all wavelengths results systematically in a loss in lightness; and the fact that the lowest 
radiance values are more attenuated than highest ones explains that in some cases we can 
have a slight gain in chroma.  

Obviously, some microfacets in the V-cavity are the closest to the fold, and therefore 
can reemit a stronger spectral radiance under a frontal illumination than the flat surfaces 
do, even if the average spectral radiance doesn’t overpass it. It is important to notice that 
for this to happen, the material reflectance needs to be high enough coherently with the 
aperture of the cavity, to compensate the darkening linked to the obliquity of the panels). 
For more open V-cavities, the limit value of reflectance for this to happen is lower. For an 
almost flat cavity (with a dihedral angle of 179° for example), this limit reflectance is 
around 0.55, which means that for a reflectance lower than this value, no microfacets can 
be brighter than the flat surface. 

3.8 Metamerism and interreflections 

Metamerism is a phenomenon analyzed in colorimetry, where two samples will 
display the same color under the same illuminant, while having two different spectral 
power distributions. The colors that matching are then called metamers for the given 
illuminant. This phenomenon is quite common when considering colors that are close to 
grays, but becomes scarcer with bright and saturated colors, such as the ones we observed 
in this chapter. The classical method to lift the metamerism is then to change the 
illuminant. One could also formulate the hypothesis that two metamers would become 
distinguishable when structured in a V-groove pattern creating shadows and 
interreflections, depending on the lighting used. To verify this, we took two spectral 
distribution powers, extracted from the Munsell Book of Color from X-rite, and the other 
completely fabricated for it to reach metamerism with the first sample, under the equal 
energy illuminant we are considering so far.  

Both the spectra were then used in the model for Lambertian materials to generate a 
45° V-cavity structure, under both frontal and diffuse illumination, with a frontal 
observation. On Figure PF3-14 pp. 26-27 are represented the color gradients of both the 
metamers, flat and formed in a 45° V-cavity, alongside the average spectra computed for 
the whole cavity, and the corresponding CIE 1976 L*a*b* coordinates plotted in the L*C* 
and a*b* diagrams. This analysis is done for a frontal lighting on Figure on the left page, 
and for a diffuse lighting on Figure on the right page.  

Under a frontal illumination (left page) as well as under a diffuse one (right page), we 
first observe the metamerism of the flat material’s surfaces. When folded into a 45° V-
cavity and under both types of illumination, the first material tends to display a more 
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turquoise color, with the interreflections reinforcing the green sensation at the bottom of 
the cavity for the frontal illumination. The second material displays a bluer hue.  

This is also observable Figure PF3-14c, for the frontal lighting. Once the first material 
is made into a 45° V-cavity, the interreflection phenomenon steps in and we can see that 
the mean spectral radiance (dotted purple curve) display a sharper peak around 500 nm, 
meaning the color becomes greener and a bit less blue. On the contrary, the flat surface’s 
radiance of the second material is lower to begin with, meaning the interreflections will 
be less intense when the material is folded. As observed with the dotted green curve, the 
45° V-cavity displays a lower mean radiance, with a peak as wide as the peak of the flat 
surface. This corresponds to a greater blue component in the spectrum, illustrated by the 
bluer gradient.  

Under a diffuse illumination, given the fact that the shadowing effect is predominant 
on the interreflections, the differences between the two folded metamers are slightly less 
pronounced. As seen on the spectra plot, the spectral radiance of material 1 (dotted purple 
curve) has a lower peak than under a frontal illumination, but still narrow, leading to a 
turquoise color as mentioned earlier, but a bit closer to the average color displayed by 
material 2 folded into a 45° V-cavity.  

The disappearance of the metamerism is also observable on the L*C* and a*b* 
diagrams for both illuminations (Figure PF3-14d, on both pages). Under a frontal lighting 
on the left page, the metamers display two colors that are separated by roughly 10 units 
of chroma, and we can see the shift in color on the a*b* diagram, where the folded material 
1 tends towards the negative part of a* axis, so a greener color, whereas the folded 
material 2 color evolved roughly along the line formed the origin of the diagram and the 
color of the flat material, thus meaning an average color staying bluer. The resulting 
DE2000 color distance is 4.7, as opposed to 1.87 when the materials are flat. Under a 
diffuse illumination, on the right page, the diagrams translate the smaller gap between the 
two structured materials with mostly the shadowing effect intervening, and the resulting 
color distance is 4.2. Figure PF3-14b on both pages also shows that the color distance 
doesn’t have a monotonous evolution across the V-cavity. In fact, for the frontal 
illumination, the microfacets located near the fold are showing the highest color distance 
(around 7), due to interreflections being more intense between close surfaces. On Figure 
PF3-14b, right page, the predominant shadowing effect under the diffuse illumination 
shows the highest color distance for the areas that are more shadowed, with still a small 
contribution of the interreflections. Even though the effects are evolving in opposite 
directions between the frontal and the diffuse lighting, the color distance curves are quite 
similar. 

The study presented in this section has the interest of showing the impact on 
metamerism of a structured surface. As an example of use, a widely known problem in 
sectors like brand management and marketing is the color constancy over various types 
of support, such as glass, paper, metal… A brand could succeed in obtaining the same 
apparent color on two types of diffusing background, thus reaching a form of metamerism, 
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and a small structure of surface could then alter it to the point of having two distinct colors 
afterwards. Another example could be found in printed documents security. One could 
easily verify the authenticity of a document by simply folding an apparent official 
document in such a way that interreflections would be generated, under a given light and 
a given angle of folding. The color then displayed would either be the same as the 
referenced color, or slightly different, revealing a document that would’ve been forged 
using a different type of ink.  

3.9 V-cavity with two different colors 

The last aspect we propose to analyze with the model for Lambertian material is the 
one where the panels of the V-cavity don’t have the same reflectance. Indeed, in the model 
equation:  

 
1

1 1
π π


  
  0L = I RK RE   (3.46) 

we explained that the reflectance matrix R  is a diagonal matrix containing the 
reflectances of every facet taken across the cavity. If we are to consider that the ridged 
surface pattern consists of an alternance of two colors, for example cyan and yellow, the 
reflectance matrix would then be a diagonal matrix with half the diagonal being the 
reflectance of cyan printed on a Lambertian material, and the other half being yellow ink.  

We now offer to study the simulations of two cases. As seen on Figure PF3-15, the first 
case, illustrated on the upper part of the figure, with a, b, c and d, is a V-cavity where the 
colors of the panels alternate between cyan and yellow being printed on a stack of 5 sheets 
of non-fluorescent paper. The second one consists of the same material, with two 
occurrences of cyan followed by two occurrences of yellow, and so on, and is illustrated 
on the bottom part of the figure, graphs e, f, g and h. The dihedral angle of cavity used here 
is 45°. Four lighting geometries are studied: frontal, two directional collimated light 
source with directions of incidence being respectively    θ,φ 45 ,0    and  45 ,0   , 
and diffuse. To complete the analysis, we vary the observation from the direction with a 
zenith angle of –75° to 75°, with a 15°, similarly to what is presented in section 3.6. Each 
observed average spectral radiance are then computed on the visible area of the structure 
(the visible area of the structure can evolve, as illustrated in section 3.6), and plotted. 
Above each spectra plot are represented the frontal view of the structure under the 
specified illumination.  

For the first configuration alternating between cyan and yellow, and under a frontal 
illumination, the average spectral radiance displayed by the structure is represented in 
Figure PF3-15a. The main observation here is that when the V-cavity is fully visible, 
between –22.5° and 22.5°, the average spectral radiance displayed is a mix between the 
cyan and the yellow panels, with a greenish color. The high reflectance of the yellow is 
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attenuated by the interreflections taking place with the cyan having a lower reflectance. 
As soon as masking is intervening, we observe either predominantly cyan or yellow. For 
the same type of lighting, but this time with the second configuration presented on Figure 
portfolio e, we observe the same greenish and rather dark color for every point of view. 
The reflectance being quite low, the interreflections are weak. Since the alternance of 
colors is symmetrical, the direction of observation offers little change in the perceived 
average color.  

For an oblique lighting such as the one presented on Figure PF3-15e, with a 45° zenith 
angle of incidence, the first configuration displays mostly a cyan color, this panel being 
the only one to be illuminated. We can furthermore observe that this color is more 
saturated than under a frontal illumination. The combination of the cyan panel being 
directly illuminated with the interreflections taking place with the yellow panel being 
completely shadowed but possessing a high reflectance, is resulting in a brighter and 
more saturated cyan. The brightness and saturation increase with the observation angle 
being more and more grazing. As soon as the observation direction includes the shadowed 
part, the displayed color is instantly darker and located in the deep greens.  

The same line of reasoning applies if the lighting geometry is switched to a -45° zenith 
angle. This time, it’s the yellow panel being directly illuminated, on Figure PF3-15c, with 
the average spectral radiance rapidly decreasing with the observation direction zenith 
angle including the shadowed cyan part.  

For the second configuration, the ridged surface displays the same green color being 
brighter or darker depending on the observation, since the color pattern is symmetrical.  

Finally, under a diffuse illumination, the first configuration, in Figure PF3-15d, 
displays an average spectral radiance with a brighter color than under a frontal lighting. 
This is mainly due to the shadowing effect being predominant on the interreflection 
phenomenon, leading to less interactions between the two panels. We can observe for 
example that the reflectance of the yellow panel seen from a grazing angle of -75° is higher 
(between 0.6 and 0.7 for the less absorbed wavelengths) than the yellow seen from the 
same angle under a frontal lighting, with a reflectance around 0.4 for the most reflected 
wavelengths.  

This section showed the interest in accurately modeling the interreflection 
phenomenon for structured and scattering materials. The anisotropy of the ridges pattern 
itself already delivers a strong anisotropy in the perceived color and average radiance, 
but it can be reinforced with different colors printed either on one side or the other. The 
interreflections phenomenon can then attenuate both colors and create another color 
sensation from mixing them under a frontal lighting, or it can make one of them appear 
even more saturated because of the diffused light by the other color, under an oblique 
lighting.  

On the contrary, one could create interesting effects using the interreflection 
phenomenon, displaying brighter and saturated colors with a mix of others, and at the 
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same time being able to guarantee the appearance under different types of lighting for 
every point of view, by simply using a color pattern as the one presented in the bottom 
part of Figure PF3-15. An example can be found in the work of Teun Baar et al. [37], with 
lenticular relief printings, where they analyzed the apparition of image ghosts when 
printing two different images on a topography allowing one image or the other to appear 
depending on the observation direction. The light interreflections were not identified as 
a cause of this phenomenon but could very well be at the root of these ghost images.  

3.10 Conclusions 

In this chapter, we analyzed the interreflection effects occurring in concave surfaces 
under various illumination geometries, from a frontal collimated lighting to an oblique 
directional one, to a perfectly diffuse lighting, through the simple case of V-cavities of 
infinite length made of a Lambertian material. Interreflections are known to increase the 
radiance exhibited by the concavities or the corners of the surface, but this stands mainly 
for a frontal collimated illumination. In case of diffuse lighting, shadowing tends to 
decrease the irradiance of the surface in the concavities or corners, and therefore to make 
them darker than would be a flat surface of the same material. The reflectance of the 
material and the dihedral angle of the cavity, as well as the direction of observation, have 
also a strong impact on the competition between the interreflection effect and the 
shadowing effects, which can result in a higher radiance near the fold of the cavity than 
near its external edges, or in the opposite situation. The coincidence of these phenomena 
can also lead to change in the perceived color in terms of saturation and change of hue. 
The latter mostly happens around the wavelengths that are weakly absorbed, and that are 
reinforced by the interreflections also lowering the already absorbed other wavelengths.   

The use of a perfect Lambertian material, which is not physically realistic, shows 
nevertheless that we can generate correct predictions of the overall aspect of a structured 
surface, when compared to pictures taken in real life. It allows us to deeply understand 
the mechanisms of diffuse interreflections and their role in human vision. 



 

 



 

 

Chapter 4.  
 
Light interreflections in a 
specular only V-cavity 

In this chapter, we develop a model of multiple specular reflections in a V-
cavity simply made of two flat interfaces (mirror-like surfaces). The model 
accounts for ray position and orientation and polarization effects occurring 
at each reflection. We study the change in luminance and chroma for a 
selection of materials, including metals. Spectral reflectances were predicted 
for the different materials and various dihedral angles of cavities, under 
diffuse illumination. We also compare this model with two approximated 
variants where the light polarization is treated in a simpler way. In most 
cases, the original model and its approximations predict very similar bi-
hemispherical reflectances, but the hemispherical-directional reflectances 
can vary noticeably in certain observation directions. We finally extend the 
model to randomly ridged surfaces, where the dihedral angle of the V-cavities 
varies randomly. This study might help achieving more physically realistic 
rendering of dielectric or metallic ridged surfaces, for example in computer 
graphics. 

4.1 Introduction 

In the previous chapter we developed a model for ridged surface considered made of 
Lambertian materials. We have shown that the presence of periodical ridges modifies the 
color of the material in comparison to the case where its surface is flat, in different ways 
according to the ridge shape and the illumination conditions. Specifically, the color of the 
ridge surface can be brighter and more saturated than the one of the flat surfaces under 
frontal collimated illumination, but it is darker and less saturated under diffuse 
illumination. More importantly, this model was also developed without considering the 
interface of the material with the air because of their strong scattering properties, 
rendering virtually negligible the influence of a potential specular reflection. But in the 
reality, no materials are perfectly Lambertian. Although a surface can show a very 
scattering and quasi-Lambertian behavior, it still possesses an interface that leads to 
specular reflection at a grazing angle. For a structure surface with a mirror-like behavior, 
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it is visible that a certain number of specular reflections takes place and influence the 
overall aspect of the surface. As illustrated by Figure 27, a building forming a V with only 
windows on its facades generates several reflections impacting the perceived brightness 
and color. This chapter will therefore only focus on a structure made of V-cavity that 
behave in a specular reflection only fashion. 

 

Figure 27 – Building forming a V, with windows generating several specular reflections 
between the two sides. Credits: Gaël Obein 

Recently two studies have addressed the case of non-scattering materials such as 
metals or clear dielectric materials [38, 39]. They consider surfaces with periodical V-
shaped structure like the one used in this manuscript, without the infinite length and 
periodical hypothesis for the first two, and by assuming that the faces of the ridges are 
flat, behaving like mirrors. They use what is called a kaleidoscope model, presented first 
by Zipin [40], where the path of the light in the V-cavity is “unfolded”. It was originally 
designed to describe the heat transfer in metallic V-grooves, and mostly used today by 
Mulford et al. [41] in the field of radiative transfers.  
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In these studies, different, although similar analytical expressions are derived for the 
description of the interreflections, which are in this case a finite number of specular 
reflections depending on the orientation and position of the incident rays in respect to the 
illuminated ridges, as well as the angular aperture α of the ridges and the refractive index 
of the material. The first study by Xie et al., dedicated to computer graphics, presents an 
analytical model of Bi-directional Reflectance Distribution Function (BRDF) for a 
distribution of specular V-grooves, the second study by Lee et al., also dedicated to 
computer graphics, extends the application to anisotropic rough surfaces. The model 
presented in this chapter focuses on the angular radiance perceived from any angle when 
the surface is illuminated by a completely diffuse light. The first two models assume that 
incident light is unpolarized, as it often is, and remain unpolarized during the whole 
multiple reflection model.  

To go further on our study, the chapter presents a proposal to model rigorously the 
polarization of light along the multiple reflection process, in order to see to which extent, 
the approximation made by the previous studies stands according to the considered 
material, metal or dielectric. We then use this rigorous model to analyze further the 
influence of the non-scattering ridged structured on the perceived color of a specular only 
V-grooved surface. Given its building, the model also implicitly considers the shadowing 
effect, on the contrary of what is traditionally done in computer graphics, typically in the 
works of Xie and Lee. Therefore, we also analyze its use in the simulation of a surface with 
a random roughness. Finally, we compare this rigorous model with two approximate 
models where light is assumed to remain unpolarized all along (first approximate model), 
or where the p- and s-polarized components are treated separately (second approximate 
model). Notice that we assume the same hypothesis on the structures scale: the facets are 
large enough, e.g. larger than a few tens of micrometers, to prevent visible effects of 
diffraction, which would be inevitable with such periodically structured facets if they 
were smaller.  

The chapter is organized as follows: we firstly introduce in section 4.2 the 
formalization of multiple light reflections in a V-cavity with specular facets and derive in 
section 4.3 the analytical formulas describing the attenuation of the radiance along its 
path into the cavity, according to the three models. Then, in section 4.4, we sum up the 
radiances in order to obtain hemispherical-directional and bi-hemispherical reflectances. 
Predictions are made with various materials, including a dielectric, a semi-conductor, and 
metals, in order to study the influence of the surface shape (precisely the dihedral angle 
of the cavities) on their respective spectral reflectances and their color. The differences 
between the predictions given by the model and two approximated approaches are 
analyzed for efficiency matters in section 4.5. Section 4.6 deals with an experimental 
verification of the model. We then propose a study where the model presented is used in 
order to simulate surfaces with a random roughness in section4.7. Section 4.8 finally 
draws the conclusions. 



Chapter 4 

86 

4.2 Multiple reflections process in a mirror-like V-cavity 

The schematic view of the V-cavity and its geometry is the same as the one used in 
previous chapters and is reminded in Figure 28. We consider a direction of incidence for 
the light, determined by its spherical coordinates  θ,φ , impacting on of the two panels 
forming a dihedral angle  of a V-cavity of infinite length along the x-axis. The width of the 
panels is normalized to 1. 

 

Figure 28 – 3D geometry of one cavity, and vector e representing the direction of 
illumination. 

Once a light ray enters a cavity, it may undergo one or several successive reflections 
on the facets. After each reflection, the direction of the ray is modified according to Snell’s 
laws. However, in geometrical optics, it is classical to unfold the rays into their virtual 
prolongation, which is aligned with the incident ray, as shown on Figure 29 through the 
example of two rays.  

By using this representation for the cavity, the path of one ray is represented by a 
straight line crossing the successive images of the facets: after a reflection on facet 1, the 
ray reaches the image of facet 2 (which forms an angle α with facet 1), then the image of 
facet 1 (which also forms an angle α with the image of facet 2), and so on. 

The number of reflections within the cavity depends on both orientation and position 
of the ray. This is visible in Figure 29, where the two rays are parallel (thus characterized 
by the same vector e) and strike facet 2 in different positions: one ray (represented in red; 
color version online) undergoes 4 reflections, whereas the other ray (represented in 
orange) undergoes 3 reflections. We remind that the incident irradiance is characterized 
by a unit vector e: 

  sinθsinφ sinθcosφ cosθ
T

e   (4.1) 

The ray light paths in broken straight lines are featured on Figure 29b, in a projection 
onto the (y0z) plane of the 3D scene represented on Figure 29a. In the (yOz) plane, the 
projection of vector e, denoted as  e , is:  
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Figure 29 – a) Representations of two light rays parallel to the unit vector e, striking 
the cavity on facet 2 in different positions. b) 2D representation of the two same light 

rays projected onto the (yOz) vertical plane. The light path can be represented by a 
straight line joining the successive images of the facets. The projection of the real light 
paths in broken straight lines is also represented. Geometry for the calculation of the 

number of reflections, for a same position yP of the ray, and two different orientations.  

  sinθ  cosθ
T  e   (4.2) 

with 

  θ arctan tanθcosφ    (4.3) 

The number of reflections according to the orientation and position of the ray is 
computed according to the following geometrical considerations, in the (yOz) plane. The 
orientation of the ray is denoted by the angle θ  given by Eq. (4.3). Its position is described 
by the point P where the ray meets the line (AB) which joins the extremities of the facets 
in the (yOz) plane, drawn in Figure 30. This point P has the coordinates 

  ,cos α /2PP y . The ray meets the unit circle centered in point  0,0O   in two 
points: first in point  sinβ ,cosβG GG  , then in point  sinβ ,cosβH HH  . Figure 30 shows 
two examples for the same position Py  but two different orientations of the ray. In Figure 
30a, the ray strikes first facet 1, in Figure 30b, it strikes first facet 2. The facet first met is 
determined by the following condition: if the meeting point  ,0QQ y  of the ray and the 
y-axis has a negative abscissa Qy , facet 1 is met first, otherwise, facet 2 is met first. With 
some geometric calculations, we find that abscissa Qy  is given by: 

 
 sin β β

cosβ cosβ
H G

Q
G H

y





 (4.4) 
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Figure 30 – Geometry for the calculation of the number of reflections, for a same 
position yP of the ray, and two different orientations.  

where the angles βG  and βH  are computed as follows.  

Since  

   α
2

sinβ ,  cosβ cosG P Gy  PG   (4.5) 

and e  are collinear, we have: 

  α
2

sinβ sinθ
det 0

cosβ cos cosθ
G P

G

y  
   

 (4.6) 

After some calculations, Eq. (4.6) can be written 

    α
2

sin β θ cosθ cos sinθG Py      (4.7) 

and by noticing that β θ π /2G   , we obtain 

  α
2

β θ arcsin cosθ cos sinθG Py        (4.8) 

Likewise PH  and e  are collinear, and by following similar reasoning as above with 
point H in place of point G, therefore with angle βH  in place of βG , we obtain:  

    α
2

sin β θ cosθ cos sinθH Py      (4.9) 

This time, we can notice that β θ π /2H   , therefore we have: 

  α
2

β θ π arcsin cosθ cos sinθH Py         (4.10)  
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Figure 30 illustrates the fact that the ray strikes first facet 1 when 0Qy  , and strikes 
first facet 2 when 0Qy  . Finally, the number of reflections occurring after the first 
reflection of the first facet met is the number of times angle γ α / 2H   contains α. By 
introducing the angle γH  defined as: 

 
2π β  when 0

γ
β  when 0

H Q
H

H Q

y

y

 
  

 (4.11) 

the total number of reflections is given by: 

 
γ 1

floor 1
α 2

Hm      
  (4.12) 

where the symbol floor […] denotes the integer part of the number in argument. 

4.3 Model for radiance attenuation in a specular V-cavity 

Now that the number of light reflections has been determined, we can express the 
global attenuation undergone by the radiance attached to a given light ray. We then 
present a model which considers that when the light is reflected in a specular fashion 
across the V-cavity, it is accompanied by the evolution of the polarization state after each 
reflection.  

The multiple reflections occurring in the cavity bring to the fore the question of the 
polarization of the light. Even if the light source is incoherent and unpolarized, each 
reflection partially polarizes the light. It is necessary to rigorously develop the calculation 
describing the transformation of the polarization and more precisely of its two 
components s (perpendicular to the incidence plane on the current facet) and p (parallel 
to it). That enables us to better apprehend the influence of the polarization on the final 
reflectance of the surface. 

Let us compute the Fresnel reflection coefficients for both the s and p components of 
light. Remind that at each reflection on a facet, or equivalently, at each intersection of the 
light ray with the images of the V-cavity facets as shown on Figure 30, the incidence plane 
changes.  

At first, the incident wave is represented by its electric field of amplitude 0E . Because 
it varies very rapidly in a random manner, this wave is said to be incoherent and 
unpolarized. It can be represented by the sum of two wave components which are 
temporally decorrelated, vibrating perpendicularly to each other, and of respective 
amplitudes 0pE  and 0sE  [42]. After their reflection on the first facet, we have: 

 1 1 0

1 1 0

p p p

s s s

E r E

E r E





  (4.13) 
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which is more conveniently written in matrix form 

 1 0

1 0

p p

s s

E E

E E

   
   

   
1R   (4.14) 

where 

 1

1

0

0
p

s

r

r
 

  
 

1R   (4.15) 

The wave components of amplitude 1pE  and 1sE  are respectively vibrating parallel 
and perpendicular to the incidence plane 1, and then arrive on facet 2. The incidence plane 
related to facet 2, labeled 2, a dihedral angle with the incidence plane, denoted as 12ψ , 
and will be computed later. 

In this incidence plane 2, the new wave components of amplitude 1pE  and 1sE , whose 
vibration directions are respectively parallel and perpendicular to the new incidence 
plane, can be derived from the previous amplitudes 1pE  and 1sE , and are given by: 

 
1 1 12 1 12

1 1 12 1 12

cosψ sinψ

sinψ cosψ
p p s

s p s

E E E

E E E

  
    

  (4.16) 

If we now use the following rotation matrix: 

   12 12
12

12 12

cosψ sinψ
ψ

sinψ cosψ
 

   
M   (4.17) 

and the diagonal matrix containing the Fresnel reflection coefficients: 

 2
2

2

0

0
p

s

r

r
 

  
 

R   (4.18) 

we can then write: 

    2 1 0
2 12 2 12 1

2 1 0

ψ ψp p p

s s s

E E E

E E E

     
      

     
R M R M R   (4.19) 

Iterating for the m reflections, we obtain: 

       0
1, 3 23 2 12 1

0

ψ ... ψ ψmp p
m m m

ms s

E E

E E

   
   

   
R M R M R M R   (4.20) 

We thus have: 
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0 0

0 0

mp p s

ms p s

E aE bE

E cE dE

 
  

  (4.21) 

where a, b, c, d are the resulting entries of the matrix product in Eq. (4.20). 

By using the fact that the two incident wave components of amplitudes 0pE  and 0sE  
are temporally decorrelated, we can write the flux mpF  and msF  attached to them as: 

 
 

 

2 2 2 2
0 0 0

2 2 2 2
0 0 0

/2

/2

mp p s

ms p s

F a F b F a b F

F c F d F c d F

   

   
  (4.22) 

where 0F  , 0pF  and 0sF  are the fluxes attached to the incident wave and its p and s 
components. 

Finally, the total reflected flux is: 

  2 2 2 2 0

2m mp ms

F
F F F a b c d        (4.23) 

The last missing point in the description of the model is the computation of the 
dihedral angles 12ψ , 23ψ , etc. In the geometrical configuration we considered in Figure 29, 
the direction of propagation of the ray in the whole reflection process is given by vector 
e, Eq.(4.1). It is contained in the incidence plane j (j = 1, …, m) with the normal  j

kN  of the 
facet k = 1, 2. Hence, the normal vector of the incidence plane j, denoted as jS , is collinear 
to  j

ke N  , where symbol   denotes the cross product operator: 

 
 

 

j
k

j j
k





e N

S
e N

  (4.24) 

Since the dihedral angle , 1ψ j j  between the two planes of incidence is also the angle 
between their normal vectors, we have: 

 , 1 1cosψ j j j j  S S   (4.25) 

4.4 Optical and color analysis of periodically grooved 
specular surfaces 

From the reflectance attached to each incident radiance within the cavity, we now 
want to display the global results of the model.  We propose to first derive the directional-
hemispherical reflectance of the structured surface for a directional illumination in each 
direction  θ,φ  and a collection of light over the hemisphere. This reflectance is equal to 
the hemispherical-directional reflectance based on a geometric configuration where the 
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illumination is Lambertian over the hemisphere, and the observer is placed in direction 
 θ,φ , as seen in Figure 31. 

 

Figure 31 – Representation of the direction of observation of the V-shaped ridged 
surface. 

This representation of the spectral reflectance will allow us to present the model 
predictions, in terms of perceived average color. Finally, by integrating the hemispherical-
directional reflectance over the hemisphere, we obtain the bi-hemispherical reflectance 
[25], giving information on the global behavior of the surface in response to a diffuse 
illumination.  

4.4.1 Directional-hemispherical reflectance 

Let us consider that the cavity is illuminated by directional light from a direction 
 θ,φ  over a band joining the two edges of the cavity, of length  2sin α / 2  along the y axis 
and of width Δx along the x axis. We assume that same radiance iL  strikes each point of 
the band, which therefore receives a uniform irradiance 

 cosθΔωi iE L   (4.26) 

where Δω  denotes the small solid angle of illumination. Since the illuminated area is 
 2sin α / 2 Δx , the incident flux on the band is  2sin α / 2 Δi iF xE . On each elementary 

area within the band, centered around the position Py  and of size Δ Pxdy , the elementary 
flux is Δi P idF xdy E . 

The different elementary fluxes are reflected in various directions according to the 
microfacet that each one meets first and the number of reflections. By collecting the whole 
reflected flux, in practice with a measurement device equipped with an integrating 
sphere, the captured flux Fr is given by 

  
 

 sin α 2

sin α 2
Δ θ,φ,

p
r i P Py

F xE R y dy


    (4.27) 
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The directional-hemispherical reflectance of the band associated with this orientation 
of the incident light, and by extension of the whole structured surface made of a 
juxtaposition of identical bands, is therefore: 

  
   

 

 sin α 2

sin α 2

1
θ,φ; θ,φ,

2sin α / 2 p

r
P Py

i

F
R h R y dy

F 
    (4.28) 

4.4.2 Hemispherical-directional reflectance  

According to the reverse path principle, this directional-hemispherical reflectance 
 θ,φ;R h  is also the hemispherical-directional reflectance  ;θ,φR h , corresponding to 

the measurement geometry where the surface is observed from the direction  θ,φ  and 
illuminated by Lambertian light. This geometry is the one that we will consider later in 
our simulations, as it is more consistent with practical observation scenarios, for example 
a grooved surface placed under a forecast sky and visually observed from any direction.  

The picture in Figure 32 shows an example of a V-cavity made of gold with a dihedral 
angle of 45°, placed in an integrating sphere in order to have a Lambertian illumination, 
and observed from a direction  (θ ≈ 30°, φ ≈ 90°). On the top of the picture, near the edge 
of the cavity, we see the different images of each facet by the other one. As the number of 
reflections increase, the color looks darker and more saturated, an effect that will be 
studied in more details in the next sections. We also concretely see what was suggested 
by Figure 29: the number of reflections varies according to the position into the cavity, 
along the y axis. The red rectangle drawn on Figure 32 represents the area where the 
cavity can be considered as a cavity of infinite length, without edge effects. The 
hemispherical-directional reflectance given by Eq. (4.28), and its related color, 
correspond to the average reflectance, respectively average color, captured over this area.  

 

Figure 32 - RGB picture of a V-cavity made of gold with dihedral angle of 45°, placed in 
an integrating sphere and observed from a direction (θ≈30°, φ≈90°). The red rectangle 

features the area where the cavity can be considered as a cavity of infinite length. 
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In this hemispherical-directional geometry, the specular reflections on the facets do 
not modify the geometrical extent of the rays; the radiance rL  perceived in one direction 
 θ,φ  is therefore: 

    θ,φ θ,φr iL R L  (4.29) 

It is possible to display the reflectance given by Eq. (4.28) according to the 
observation direction on a 2D map thanks to the Lambert azimuthal equal area projection, 
presented in section 2.3.3.  

In order to apprehend the change in reflectance and color due to the dihedral angle of 
cavity and/or the viewing angle, we computed the hemispherical-directional reflectance 
by using the model presented in section 4.3, for each wavelength of the light from 380 nm 
to 730 nm in steps of 10 nm, for different materials, and different dihedral angle values: 
180° (flat surface), 150°, 120°, 90°, 60° and 45°. We chose to use the same type of 
irradiance πzE   all over the hemisphere, as in the Chapter 4. Since this irradiance is then 
normalized, the reflectance is equivalent to the radiance. 

The materials are opaque black glass (refractive index assumed to be 1.5), and 
materials whose spectral complex refractive indices have been found in the database 
refractiveindex.info [43]: silicon, a semi-conductor with a behavior similar to a dielectric 
material in the visible range, and pure metals: gold, silver, copper, and aluminum. Silicon 
is an interesting study case; the real part of its refractive index in the visible spectrum is 
very high (around 4) and the imaginary part is low. Since the gap between the two 
polarizations for this material can be high, it is the best example to study the influence of 
the polarization model used on the reflectance of the structured surface. For each 
observation direction (i.e., each point in a map), the spectral reflectance computed is 
converted by following the same pipeline as presented in chapter 4: a first conversion into 
CIE 1931 XYZ tristimulus values by considering a D65 illuminant, then, for a better 
visualization, into CIE1976 L*a*b* color values by considering a perfectly white diffuser 
under the same illuminant as white reference for the chromatic adaptation. We finally 
convert these L*a*b* values into sRGB color values in order to obtain displayable digital 
images. The color maps thus generated are shown in Figure PF4-1. 

In addition to the color maps, we computed maps of the maximum number of 
reflections for each observation direction. In directions where the captured light has 
undergone one reflection, whatever its entrance position in the cavity is, the 
corresponding point of the map is colored in light gray (area labeled 1). Other colors for 
labels 2, 3 and 4 are used when the captured light is subject to have undergone 2, 3 or 4 
reflections, respectively. This is represented on the first line of Figure PF4-1. 

By observing the color maps related to the dielectric material (black glass) in Figure 
PF4-1, we can see that the reflectance is globally very weak, except at grazing incidence 
angles (periphery of the disks) when the cavity dihedral angle is large (reflectance reaches 
1 at these grazing angles in the case of the flat surface, i.e., when α = 180°). This is coherent 
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with the angular variation of the Fresnel reflectance. For other dihedral angles of the 
cavity, the highest reflectance peaks are located near the zones where the azimuthal angle 
φ π 2 , i.e., when the incident light and the x-axis are contained in the same plane of 
incidence. These directions are the one corresponding to the lowest apparent relief, and 
always for grazing angles of observation, but it is quite conceivable that the hypothesis of 
an infinitely long V-cavity made this effect more visible that it would be in a realistic case.  

We can also distinguish some discontinuities in the maps, which correspond to the 
directions at which the number of reflections within the cavity is incremented by one. For 
example, on the map attached to an aperture of 90°, a central area is lighter than the rest 
of the graph: it corresponds to rays undergoing one reflection, whereas in the rest of the 
graphs, rays undergo two reflections. Since the Fresnel reflectance at non-grazing 
incidence angles is low (less than 0.05 under 45° of incidence), radiance trends rapidly 
toward zero as the number of reflections increases.  

For silicon, a semi-conductor with high refractive index but low extinction coefficient 
in the visible spectrum of light, the influence of the surface structure is similar as the one 
observed with black glass but amplified. It looks darker in direction where the number of 
reflections in the cavity is the highest. 

Metals have a higher reflectance that the previous materials due to a higher extinction 
coefficient. The influence of the surface structure, i.e., of the dihedral angle of cavity, is 
consequently lower than for black glass and silicon, but remains comparable.  

For gold, the Fresnel reflectance depends on the wavelength of light, being much 
higher for long wavelengths than for short wavelengths. This is at the origin of the intense 
yellow color displayed in case of small dihedral angles. The color variations concern the 
chroma rather than the lightness. Comparable effects are observed with copper. For 
achromatic metals with high reflectance, the attenuation of light at each reflection is low, 
and the number of reflections has a weak impact on the amount of light that exits the 
cavity: the reflectance is very high in every observation direction. This is especially true 
for silver, whose reflectance, near 1, looks constant over the whole hemisphere. With 
aluminum, an attentive observation of the maps allows us to distinguish the effect of the 
dihedral angle of cavity, which is like the one observed with the other metals.  

Following the same line of reasoning as for the reflectance maps presented in Figure 
PF4-1, two chromatic metals, copper and gold were selected and for each dihedral angle 
of the V-cavity presented earlier, three direction of observation were extracted from the 
reflectance maps: the frontal observation with a zenith angle θ 0   and an azimuth angle 
φ 0  , the oblique and perpendicular to the x-axis direction with θ 45   and φ 0   , 
called “oblique-perpendicular”, and the oblique and parallel to the x-axis direction with 
θ 45   and φ 90   , called “oblique-parallel” hereinafter. These directions are 
illustrated in Figure 31. 

For each observation direction, dihedral angle and metal, the spectral hemispherical-
directional reflectance factor is plotted in the top part of Figure PF4-2, along with the 
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corresponding CIE 1976 L*a*b* coordinates in their respective L*C* diagrams below. The 
graphics display the reflectance factors for each angle of cavity and each direction of 
observation. The frontal observation  0 ,0   is represented by a solid line, the oblique and 
perpendicular direction  45 ,0   by a dashed line, and the oblique and parallel direction 
 45 ,90   by a dotted line.  

On the top left of Figure PF4-2 is the hemispherical-directional reflectance factors for 
the copper. In green is plotted the flat surface, and under a diffuse illumination, all the 
other reflectance factors are lower, and decreasing with the dihedral angle, as observed 
before in the case of Lambertian materials. Depending on the point of view, in the case of 
an angle of cavity of 60° for example, the frontal and the oblique-parallel often coincide 
since both these directions are not subjected to masking. On the other hand, the oblique-
perpendicular observation direction bears some masking, since the zenith angle is at 45°. 
Therefore, similarly to the masking effect and its influence, illustrated in section 3.6, only 
the visible part is used to predict the perceived radiance attached to this reflectance 
factor. Since as illustrated in Figure PF4-1 this area corresponds to a given number of 
specular reflections, in this case, 1 or 2 reflections possible, the angular domain where 3 
reflections can happen in a 60° V-cavity is masked. Another example of the importance of 
masking’s influence is that the 90° V-cavity viewed under the oblique-perpendicular 
direction is even higher than the 120° V-cavity viewed under the same configuration. The 
corresponding curve is not visible because confounded with the fat surfaces. This is 
caused by the fact that the visible area in the 90° V-cavity corresponds to a zone where 
only 1 reflection is happening, because one of the panels is viewed frontally, but up to 2 
reflections are possible in the 120° one.  

This difference is also translated through the L*C* on the bottom left part of Figure 
PF4-2. We can see that the lightness is decreasing along with the cavity angle, similarly to 
the results observed in chapter 4. We can also observe that the chroma is increasing as 
well, since the more closed are the cavities, the more saturated is the perceived color, 
enhanced by the specular interreflections. The strong dependence to the observation 
direction is also visible here. The point representing the 90° V-cavity under an oblique-
perpendicular observation (yellow triangle) is confounded with the flat surface. As 
expected, the lightness and chroma displayed by this configuration is more luminous and 
with a less saturated color than the one for the frontal and the oblique-parallel 
observation (yellow circle and cross). The same thing happens for the other angles, 
depending of the areas intercepted by the observer, conditioning the number of 
reflections observed, and therefore the lightness and color saturation. 

On the right part of Figure PF4-2, the same observations can be done for the case of 
gold. But since gold is a more reflective metal than copper, the decrease in lightness is less 
shown, but still with an important increase of chroma with a decreasing angle of V-cavity.   

These results show the strong importance of an interface between the air and the 
material, and emphasize the fact that the contribution of the specular reflections to the 
interreflection phenomenon could constitute a great part in the overall appearance of a 
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ridged periodical surface, under a diffuse illumination as well as a directional one. They 
also illustrate the importance of considering every reflection possible in a given 
configuration, because doing otherwise could underestimate the difference of change in 
lightness and chroma between two different points of observation, even though the 
anisotropy of the surface would strongly differentiate between them in the first place. 

4.4.3 Bi-hemispherical reflectance  

The bi-hemispherical reflectance corresponds to a measurement geometry where the 
sample is illuminated by Lambertian light, and the reflected light is collected all over the 
hemisphere. It is obtained by integrating over the hemisphere the angular reflectance 
given by Eq. (4.28). It is a general definition for the ratio of the flux reflected into the 
hemisphere to that which is incident over the hemisphere. As such, it characterizes here 
the transfer function of a ridged specular surface in response to a diffuse illumination.  

The irradiance on the structured surface is related to the radiance Li according to the 
equation: 

 
π 2 2π

θ 0 φ 0

cosθsinθ θ φ πi i iE L d d L
 

     (4.30) 

and the flux reflected by a band of area  2sin α / 2 Δx  on the surface is given by Eq. (4.27)
. The exitance is the sum of the reflected radiances expressed by Eq. (4.29): 

  
π 2 2π

θ 0 φ 0

θ ,φ cosθ sinθ θ φ
r r

r r r r r r rM L d d
 

     (4.31) 

Finally, the bi-hemispherical reflectance is given by: 

  
π 2 2π

θ 0 φ 0

1
θ ,φ cosθ sinθ θ φ

π
r r

r r r r r r r
i i

M
R L d d

E L  

      (4.32) 

which yields, according to Eqs. (4.28) and (4.29), 

 
   

 

 π 2 2π sin α 2

θ 0 φ 0 sin α 2

1
θ ,φ , cosθ sinθ θ φ

2πsin α 2 r r p
r r P r r r ry

R R y dy d d
  

      (4.33) 

Using Eq. (4.33) with  θ ,φ ,r rR y  predicted by the rigorous model, we computed the 
spectral bi-hemispherical reflectances for the same dihedral angles of cavity and 
materials as in Fig. 6. The values at one wavelength, 550 nm, are presented in Table 2.  

The spectral bi-hemispherical reflectances obained for chromatic metals such as gold 
and copper, and also for silver, aluminum and silicon are plotted in Figure PF4-3 to PF4-



Chapter 4 

98 

7, pp 36-40 of the portfolio, in the left column of each page. The reflectances are 
represented alongside the  CIE1976 L*a*b* color space L*C* and a*b* diagrams.  

Table 2 - Bi-hemispherical reflectance at 550 nm (in %)  

Material 

Dihedral angle of the V-cavity 

45° 60° 90° 120° 150° 180° 

Black glass 0.9 1.6 3.5 5.5 7.3 8.6 

Silicon 11.0 16.6 26.4 34.0 36.8 37.3 

Gold 66.3 72.9 80.0 83.6 85.1 85.4 

Silver 89.7 92.1 94.4 95.6 96.0 96.1 

Copper 33.9 42.8 54.4 61.2 63.9 64.6 

Aluminum 77.1 82.2 87.4 90.2 91.0 90.9 

 

All these values and spectra confirm the tendencies featured by the color maps shown 
in Figure PF4-1: as the dihedral angle decreases, reflectance also decrease and the surface 
has a darker appearance, because of a higher number of light reflections in the cavity 
which provokes more successive attenuations. This attenuation effect is stronger at 
wavelengths for which the material is less reflective or more absorbing, which explains 
that cavities with a smaller dihedral angle exhibit a more chromatic color, chroma being 
generally correlated with the contrast between highest and smallest reflectance values in 
the visible spectrum of light. This is clearly visible and especially true for chromatic metals 
such as copper and gold, as shown in the picture of Figure 32. In the case of non-chromatic 
metals like silver and aluminum, the changes are more discreet due to their high 
reflectivity. In the case of a dieletric such as silicon, the drop in lightness is significant, due 
to the shadowing effect and polarization components being totally transmitted for some 
geometrical configurations of incidence during the multiple reflections process.  

Although the color of metals becomes more chromatic with the aperture decreasing, 
it is worth noticing that the hue reamains unchanged in the case of gold and copper. For 
the more achromatic metals, we also see very small difference, with the exception of 
silver. Compared to aluminum, silver is a bit yellower, and this difference is accentuated 
by the size of the V-cavity aperture.  

Remind that the fact that the surface looks darker with smaller dihedral angles of 
cavity has to do with shadowing or masking effects, widely used in models for light 
scattering by rough surfaces [44]. In our model, shadowing is implicitly but rigorously 
accounted for, as all possible ray paths are considered from their entrance to their exit of 
the cavity. With facets of reflectance 1, all rays would exit the cavity and the bi-
hemispherical reflectance would be 1. 
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4.5 Approximate models 

We have already presented a model for V-grooved surfaces with a mirror-like 
behavior, with a precise computation of polarization state change throughout the multiple 
specular reflections process. We offer to present two approximated models and compare 
their results, to analyze the possible trade-offs that could be made between accuracy of 
the models and efficiency of the computations.  

4.5.1 First approximate model: light remaining unpolarized 

Let us consider an unpolarized light ray reflected on an interface between a first 
medium, in our case always air, and a second medium. It is coming from the first medium 
with a local incidence angle θi. The reflectance, denoted as  θiR , is the average of the 
squared modules of the Fresnel coefficients for the s (perpendicular) and p (parallel) 
components [23]: 

       2 21
θ θ θ

2i P i S iR r r    (4.34) 

Then, by multiplying the successive Fresnel reflectances  θiR  corresponding to the 
different reflections on facets, we obtain the total reflectance for one path of the light. We 
insist on the fact that the interface of the material does not polarize the light at all. This is 
of course untrue but allows for an approximated formulation of the problem. Note that 
we also ignore the part of the light transmitted into the material (we can consider that it 
is absorbed, as it is the case for metals and dark dielectrics). 

For each reflection, we compute the local incidence angle θi . It can be easily obtained 
through the dot product between vector e, which describes the direction of the ray, and 
the normal of the facet, or image of facet, on which the considered reflection occurs. 

We remind that the facets have the normal vectors N1 and N2 given by 
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The local incident angle for the first reflection depends on whether the ray first meets 
facet 1 or facet 2, therefore on the sign of the parameter Qy  defined by Eq. (4.4): 
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1
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1e N

e N
 (4.36) 

where symbol "  " denotes the dot product. 
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The next reflections, if any, occur on images of facets whose normal vector are 
denoted as  

1
jN  or  

2
jN  if the first reflection occurs on facet 1, respectively on facet 2. 

These normal vectors, for 1j   to the number of reflections m given by Eq. (4.12), are 
given by: 

     
  

1
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j j

j
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and  
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and the local incident angle is given by 
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Finally, the global attenuation of the radiance according to its position Py  between 
 sin α / 2  and  sin α / 2 , and its orientation  θ,φ , is given by the reflectance: 

    

1

θ,φ, θ
m

j
P i

j

R y R


      (4.40) 

Notice that according to the Helmholtz reciprocity principle, a ray following the same 
path within the cavity but in opposite direction would undergo the same attenuation. 
Hence,  θ,φ, PR y  can denote the attenuation for the ray entering or exiting the cavity at 
the angle  θ,φ  through the position Py . 

4.5.2 Second approximate model: separate polarization components 

Regarding the polarization of light along the multiple reflection process within the 
cavity, a second approximate model is built by assuming that the p and s polarized 
components of the incident light (half the total radiance for each one) follow the same 
multiple reflection process. The p-polarized light component remains p-polarized after 
each reflection (therefore vibrating alongside each successive incidence plane), and the s-
polarized light component remains s-polarized (therefore vibrating perpendicularly to 
each successive incidence plane). The model is similar to the first approximate model, 
except that Eq.(4.40) is computed twice, a first time by substituting the Fresnel 
reflectance for unpolarized light,  θ j

iR    , with the one for p-polarized light,  θ j
p iR    , and 
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a second time by substituting   θ j
iR     with the Fresnel reflectance for s-polarized light,  

 θ j
s iR    . Two reflectance components are obtained,   θ,φ,p PR y  and  θ,φ,s PR y , and 

their average forms the total reflectance:. 

      1
θ,φ, θ,φ, θ,φ,

2P p P s PR y R y R y      (4.41) 

4.5.3 Comparison of the models 

In order to see how much the approximate models presented in section deviate from 
the rigorous model, we propose to compare reflectance maps, colors and lightness values 
predicted by the three models, for a selection among the materials and dihedral angles of 
cavity considered in section 4.4 by favoring the ones which exhibit the highest differences. 
In Figure 33, the hemispherical-directional reflectance maps are shown for silicon at a 
dihedral angle of 45°. There is a sensible difference between the three models for 
observation in the direction of the ridge (φ around 90°) at a grazing zenith angle (upper 
part of the hemisphere projection): the non-approximated model predicts a lower 
reflectance in this case.  

 

Figure 33 - Color maps of the hemispherical-directional reflectance thanks to the 
Lambert azimuthal equal area projection, generated for silicon, with a dihedral angle 
of cavity of 45°, by using a) the rigorous model taking into account the polarization of 

light, b) the first approximate model assuming that light remains unpolarized after 
each reflection, and c) the second approximate model where the p- and s-components 

are assumed to be multiply reflected in parallel, independently from each other.  

In Figure 33, the lightness profile of these three maps are compared along the 
horizontal diameter of the maps (observation perpendicular to the ridge, i.e., φ = 0 or π) 
and their vertical diameter (observation parallel to the ridge, i.e., φ = π/2 or 3π/2).  The 
difference between the rigorous model and its two approximate versions is once again 
well visible, except in graph a) where the rigorous and 2nd approximate model are 
equivalent when φ = 0: all multiple reflections occur in the same incidence plane, 
therefore the p-polarized component remains p-polarized and the s-polarized component 
remains s-polarized all along the multiple reflection process. In graph b), however, the 
three models differ dramatically. The fact that the lightness approached 0 near 63° is 
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because light strikes a facet with an incident angle near the Brewster angle while being 
almost totally p-polarized, which can be rendered only by the rigorous model, not the 
approximate ones. Comparable differences are obtained with gold, as well as the other 
materials, although it is less visible (color maps not reproduced here).  

Finally, in Table 3, we compare, using the CIE2000 ΔE metric the color differences 
associated with the bi-hemispherical reflectance predicted by the rigorous and the first 
approximate models for various materials, once again according to the dihedral angle of 
cavity. The color differences are very small for most materials, except at small dihedral 
angles of cavity for silicon, the material for which we have shown that the differences 
between the different models are the more pronounced. For this material, we also 
compare the colors issued from the rigorous and second approximate model, the 
deviations being even higher than the ones observed between the rigorous and first 
approximate model. For the other materials, and other angles for the silicon, the 
colorimetric distance CIE 2000 is low, therefore almost non distinguishable.  

Table 3 - CIE 2000 E values between colors corresponding to spectral 
reflectances predicted by different models 

Materiala 

Dihedral angle of the V-cavity 

45° 60° 90° 120° 150° 180° 

Black Glassa 0.09 0.42 0.27 0.15 0.09 0.00 

Golda 0.09 0.25 0.20 0.12 0.07 0.00 

Coppera 0.10 0.10 0.04 0.45 0.34 0.00 

Silicona 0.61 1.13 1.00 0.27 0.25 0.00 

Siliconb 4.96 4.57 2.47 0.50 0.04 0.00 
a ΔE value computed between the colors corresponding to the spectral reflectances predicted by the rigorous and 1st 
approximate models;  
b ΔE value computed between the colors corresponding to the spectral reflectances predicted by the rigorous and 
2nd approximate models. 

We would like to insist on the necessity to take all reflections of light into account, 
even though it is often assumed, especially in computer graphics, that one or two 
reflections suffice to obtain accurate or physically realistic color rendering of a structured 
surface. Table 4 illustrates the difference between bi-hemispherical reflectances that we 
would obtain by considering only the rays being reflected once within the cavity (the 
other rays being assumed to be blocked by a neighboring facets therefore ignored), or the 
rays being reflected once or twice, or rays reflected up to three times, and finally the rays 
reflected up to four times, for a cavity made of silver at 550 nm (n = 0.1249 + i3.3391), 
silver being a highly reflective material. The reflectance values in the table are significant 
enough to show that it is crucial to account for all reflections, as recent studies in 
computer graphics also noticed, even though they used a model comparable to the one 
that we call here the first approximate model [38, 39]. 
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Figure 34 -  Lightness L* in the CIE1976 L*a*b* color space computed from the spectral 
reflectance of silicon according to the rigorous model and the two approximate ones 

for a dihedral angle of cavity of 45°, as a function of the polar observation angle θ 
when (a) the observation direction is perpendicular to the ridges (φ = 0 or π) and (b) 

when it is parallel to the ridges (φ = π/2 or 3π/2).  These curves correspond to 
Lightness profiles of the (a) horizontal diameter and (b) vertical diameter of the maps 

shown in Fig. 8.   

Table 4 - Bi-hemispherical reflectance (in %) at 550 nm of a V-cavity made of 
silver 

Number of reflections considered 

Dihedral angle of the V-cavity 

45° 60° 90° 

1 13.4 24.3 54.7 

2 39.0 66.7 94.4 

3 71.3 92.1  

4 89.7   
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4.6 Experimental verifications 

After analyzing the various predictions of our presented model for specular materials, 
we built an experimental set-up to measure the accuracy of these predicted reflectances 
and try to see the correspondence with real metallic samples.  

To realize this experiment, three types of samples were used. Particles of copper, gold 
and silver were deposited thanks to an evaporation process onto three pairs of 
microscope slides, one pair per metal. A stand was designed, and 3D printed in order to 
hold the pairs of metallic deposit and precisely form a 45° V-cavity. The most difficult part 
of the set-up was to create a Lambertian source of light. To do so, an integrating sphere 
with a 50 cm diameter coupled with two LEDs white sources were put in place. The light 
source were two commercial white LED lightbulbs with an unknown spectral power 
distribution. Thanks to the diffusion taking place in the integrating sphere, the resulting 
outgoing illumination is supposed to be Lambertian on the surface of the sphere. 
Therefore, the samples are mounted next to the sphere in order to match the edges of the 
V-cavity with the surface of the sphere. Indeed, the model presented earlier in this chapter 
makes the hypothesis of a uniform incident lighting on the plan delimited by the edges of 
the cavity. Finally, to perform the measurement of the hemispherical-directional 
reflectance of the samples, we used a hyperspectral camera from SPECIM. A schematic 
view of the set-up is visible on Figure 35, and picture of the sample take from the point of 
view of the camera is shown in Figure 36.  

This camera is supplied with two high-power light sources as well as a procedure of 
calibration, in order to obtain correctly normalized pictures respectively to the lighting 
used. Instead, the chosen way of extracting reflectance measurement from the 
hyperspectral images is a more controlled one. We used the raw images taken by the 
device from a frontal point of view and selected our own white and black references in 
the image, for example a reflectance from the white wall of the sphere, and a reflectance 
from the dark background, behind the sample. In order to obtain the final measured 
reflectance factor ˆ

measuredR , the computation used is: 

 ˆ sample dark
measured

white dark

R R
R

R R





  (4.42) 

The corresponding hemispherical-directional spectral reflectance factors were then 
plotted in Figure 37, for the three metallic samples. The measured reflectance factor is 
represented by a solid black curve. It is important to note that the direction of observation 
of the camera was roughly tilted by ~15° of zenith angle relatively to the optical axis, and 
by ~15° by turning the stand of the V-cavity. This was done in order to prevent the camera 
of seeing its own reflection, while having the entire V-cavity still visible. Since the images 
taken by the camera are “hyperspectral cubes”, meaning each pixel in the image contains 
a spectrum, we selected a pixel in the V-cavity that was located near the corner, in order 
to have a spectrum containing every reflection of the light possible. 
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Figure 35 – Measurement set-up.    

 

Figure 36 - 45° V-cavity made of two microscope slides with copper deposit, beside a 
hole of the integrating sphere. The image has been captured by the hyperspectral 

camera located behind another hole of the integrating sphere, and transformed into 
color for preview. 
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Figure 37 - Comparison between simulated (red curves) and experimental (black 

curves) spectral hemispherical-directional reflectances, for a 45° V-cavity made of 
copper, gold or silver, viewed from a direction of observation with a θ 15   zenith 

angle and a φ 15   azimuth angle and taken near the fold of the cavity. The 
reflectance of the flat materials are shown in green line. 

The corresponding predicted reflectance, taken from the hemispherical-directional 
reflectance maps shown earlier in section 4.4.2 are plotted in red solid curves. The optical 
indices used for the predictions were taken from refractiveindex.info, except for the silver, 
for which the index was taken from [46]. They were computed for a direction of 
observation using the same approximated angles. The green solid curve is the reflectance 
from the flat material. An offset was added to the measurement curves in order to 
compensate the difference in lightness between the set of data.  

We can observe a good correspondence between the prediction of the model and the 
measured hemispherical-directional spectral reflectances. It also shows that the model 
we developed, implicitly considering the shadowing effect (alongside the small changes 
in polarization state for these three materials) can correctly predict the appearance of 
specular V-shaped ridges and their perceived brightness and color. It is also important to 
note that the part of the black solid curves that are dotted correspond to the wavelengths 
ranges where the measurements are deriving from the expected trend. This is mainly 
because white LEDs have null spectral values below 450 nm and above 700 nm, therefore 
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yielding impossibilities when normalizing the data. But since the surfaces analyzed here 
are real, the experiment presented an interest in its realization despite the difficulties in 
meeting the same configurations in the experiences and the simulations.  

In order to have more precise results, the experimental set-up could be improved by 
using an illumination calibrated especially for the hyperspectral camera we used, as well 
as presenting a good spectral power distribution without any wavelength band being 
weaker than others. The use of a more recent and fully calibrated integrating sphere could 
also ensure a uniform irradiance on all its surface, and especially on the sample. We also 
used a fabricated support for our samples that could be improved with several opto-
mechanical mounts with verniers in order to better control the lighting and observation 
angles. Finally, we considered a 45° V-cavity sample because of its interest in our study, 
but 45° being a divisor of 180°, the camera was bound to see itself in the sample under a 
0°:0° geometry. Using another dihedral angle such as 50° could avoid this effect. 

4.7 Optical and colorimetric analysis of randomly grooved 
specular surfaces 

Previously, we analyzed the interreflections occurring in a structured surface made of 
parallel V-cavities, with flat and mirror-like faces under a Lambertian illumination. The 
proposed model is considering the exact number of light reflections occurring in the 
structures, in order to accurately predict the reflectance according to the observation 
angle. The following section will address the use of our model, this time in the case of 
randomly ridged surfaces. In the first subsection we will present the approach and then 
argue about its interest compared to other conventional and well-known process for 
generating surfaces with random roughness. 

4.7.1 Bi-hemispherical reflectances  

The goal is to use the model for specular only V-cavity to generate surfaces with a 
random one-dimensional roughness, as presented in Figure 38, where on the left we see 
the example of the type of topography we used so far in this manuscript, and on the right, 
an example of parallel ridges with random apertures, simulating a random roughness.  

The type of model we consider in this work deals with a characteristic size of the 
roughness pattern typically larger compared to the wavelength. With these 
considerations, the diffraction phenomenon becomes negligible. Like the work of Cook-
Torrance [6], the V-cavities are distributed according to a probability function, in the 
present case the Beckmann distribution.  
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Figure 38 - Structured surface with parallel, periodical, and identical V-shaped ridges 
of dihedral angle α on the left, and parallel, non-periodical V-shaped ridges of random 

dihedral angle on the right. 

The slope distribution function of Beckmann, denoted D here, is a probability function 
representing the distribution across the surface of the local normal vector. Most 
microfacets models assume that such a distribution of the slopes follows a Gaussian law. 
The function is isotropic, and depends only on the polar angle θh  being the angle between 
the normal of the average surface and the local normal of the microfacet: 
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The local normal vector, or in other words the normal vector of one of the panels of 
the considered V-cavity, is denoted by the differential solid angle Ω sinθ θ φh h h hd d d . The 
parameter m, standard deviation of the local slope, translates the surface "roughness". In 
our simple case of V-cavities of infinite length along the x-axis, the angle θh  can be 
obtained with: 
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To perform the simulations of surfaces with a one-dimensional roughness, we simply 
took the bi-hemispherical spectral reflectances computed earlier, and extrapolated them 
with the MATLAB function interp1, and a cubic interpolation, to generate the reflectances 
for every dihedral angle of V-cavity from 1° to 180°, with a step of 1°. We then pondered 
the generated reflectances by the Beckmann distribution for 5 different roughness: 0.01 
(very smooth surface), 0.5, 0.7, 1 and 2 (extremely rough). The reflectance mR  of the 
resulting surface corresponds to the reflectance of each ridges weighted by its probability 
of being found in the surface.  
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m h h hR D d R d
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with αR  being the reflectance for the V-cavity of dihedral angle α  linked to the angle θh  
by Eq. (4.44). The simulated results are plotted in the Figure PF4-3 to PF4-7, pp. 36-40 of 
the portfolio, in the right column of each page.  
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We can first observe that with m = 0.05, the bi-hemispherical reflectance is identical 
to the one of a flat mirror. Beyond this value, the reflectance diminishes as the roughness 
increases, to a higher extent in the spectral domain where the reflectance of the material 
is weak (short wavelengths for example in the case of copper). With a high m value, the V-
cavities that are the most present are the ones with small apertures. The trajectory of light 
in them count a high number of reflections, each reflection coming with an attenuation of 
the incident radiance. With a very high value of m, the bi-hemispherical reflectance would 
near 0, meaning almost all the light is absorbed by the concavities of the surface. This 
leads to an increase in chroma for chromatic metals such as gold and copper, with a 
dramatic increase of saturation of the color, as illustrated on the L*C* and a*b* diagrams.  

Our model also takes exactly into account the shadowing and masking effects, which 
means that no divergence is to be expected when considering high values of roughness, 
as opposed to other conventional approach like the one we will discuss in the next section.  

4.7.2 Conventional microfacets models for rough surfaces 

The approach we presented reminds the one of Torrance and Sparrow [5], later 
considered by Cook and Torrance [6] in computer graphics. In the same way as we 
developed, they use long V-cavities to compute a shadowing function, and then in a 
microfacet approach, they compute a distribution of these cavities. To illustrate this, one 
could imagine having the same kind of surface as illustrated on the left of Figure 38, 
repeated for each dihedral angle of aperture. Although mathematically correct, this 
consideration unconceivable and physically inaccurate.  

To resolve this issue, the Smith method [44] is preferred in computer graphics for 
around 15 years, as it does not make the V-cavities intervene. The hypothesis is that the 
slopes of the microfacets are entirely decorrelated from each other, even the closest ones. 
It is a strong statement, but more realistic than Torrance and Sparrow hypothesis.  

Until very recently, the microfacet based models would consider only one reflection, 
under the simple scattering condition. Empirical or semi-empirical solution proposals 
were presented. In 2016, Heitz published a correct consideration of light interreflections 
using the Smith approach [45]. In 2018, the same thing was also done, but this time with 
the Torrance and Sparrow approach [38, 39]. But the hypothesis these studies were built 
on remain unchanged.  

This is for this reason we developed a new point of view, corresponding to the type of 
surface structure presented on the right of Figure 38. We consider parallel and semi-
infinite V-cavities, but with an aperture following a distribution law, implicitly taking 
shadowing and masking into account, and being emancipated from the divergence 
problem of the two former approaches when considering surfaces with a high roughness. 
Notice that our distribution law is centered a 180°, but for representation sake, Figure 
38shows a distribution more centered around 90°.  
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4.8 Conclusions 

In this chapter, we analyzed the interreflections occurring in a structured surface 
made of parallel V-cavities, with flat and mirror-like faces under a Lambertian 
illumination. We proposed a model accounting for the exact number of light reflections 
occurring in the structures, in order to accurately predict the reflectance according to the 
observation angle. We showed that the type of material and the dihedral angle of the 
cavity have a strong impact on the predicted reflectance, in particular because of the 
number of light reflections and the successive attenuations undergone by each ray 
according to the Fresnel coefficients. This is especially true for surfaces presenting 
concavities with a small dihedral angle: their color is darker, and in the case of chromatic 
materials such as gold and copper, their chroma strongly increases, even dramatically in 
some observation directions.  

We also proposed to accurately consider the change of incidence plane at each 
reflection of the light, inducing a change in its polarization. Due to consideration of the 
shadowing effect, we offered to simulate a simple surface with random anisotropic 
roughness and showed that it is very similar to more classical approaches found in the 
literature, without showing any divergence in the case of very rough surfaces.  

Then, we compared our model with two approximate versions that are simpler and 
faster to compute, the first one being comparable to the one that has been recently 
introduced in computer graphics [38, 39]. The bi-hemispherical spectral reflectance 
computed with these three models are very close from each other, except for silicon when 
the dihedral angle of cavity is small. However, the hemispherical-directional reflectances 
predicted by the approximate models can deviate considerably from the one predicted by 
the rigorous model at some observation angles, especially those for which it is probable 
that light has become linearly polarized during its path before striking the next facet at an 
angle close to the Brewster angle.  

The experimentation showed a good agreement between predictions and 
measurements, despite a better experimental precision could be achieved. 

As ridged surfaces are rather frequent in manufacturing (e.g. brushed steel objects), 
there is an interest in predicting accurately their appearance, with prototyping renderers 
developed by the computer graphics community. Even though in this manuscript the case 
study is focused on a specific surface topology, the influence of the number of reflections 
and the polarization of light stands for every patterned surface. Several extensions of this 
chapter study would be needed to see to which extent the color variations predicted 
according to the observation angle remains similar, for example when their facets are 
imperfect mirrors (non-flat, slightly scattering…). We can expect that these color 
variations are smaller than the ones drawn in this study but follow similar tendencies. 
Moreover, as scattering tends to decrease the effect of polarization of light, we can expect 
that the difference between the rigorous polarization model and the first approximate one 
where light remains unpolarized would decrease as well.  
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Chapter 5.  
 
Light interreflections in an 
interfaced Lambertian V-cavity  

This chapter comes back to strongly scattering materials, as in Chapter 3, but 
this time by considering that the interface between air and the material is 
smooth. The reflections and refractions of light at the interface modify 
consequently the interreflection model. Nevertheless, this latter can be extended 
in order to take into account these reflections and transmissions, included the 
multiple specular reflections that can occur in air between the flat interfaces, in 
a similar a manner as the phenomenon described in Chapter 4.  To limit the 
complexity of the model, we consider for the simulations a frontal lighting and 
observation, and a V-cavity with a 45° dihedral angle.  We also consider at most 
one possible specular reflection before the light can enter the material, when it 
travels across the V-cavity, and when it exits it. By considering two flat surfaces 
one Lambertian and the other one interfaced-Lambertian, with same reflectance, 
these two surfaces reflect slightly different radiance and display slightly 
different color once transformed into V-cavity or ridged surfaces. But the 
different is modest.  
  

5.1 Introduction 

In Chapter 3 we presented a model considering a Lambertian surface with a ridged 
structure as a way of analyzing light interreflections, shadowing and masking effects, and 
thus the effect of a surface topology on its appearance in terms of lightness and color. 
Although it allowed for a robust understanding of the multiple diffuse light reflections, 
considering a Lambertian material is a restrictive assumption. A corollary question is 
therefore to know if the model for Lambertian material is a satisfying one. In Chapter 4, 
we then analyzed the case of a V-cavity with mirror-like panels, to further study the 
influence of specular reflections, and therefore showed a drastically changing 
contribution to the observed radiance depending on the number of reflections involved.  

Following this line of reasoning, we want to know to which extent the interface 
between a Lambertian and the air would influence the overall appearance of a ridged 
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surface. In the example of sample presented in Figure 39, we can see a structure made by 
2.5D printing, using a stack of white ink layers. The sample being illuminated by a frontal 
light is displaying light interreflections at the bottom of the structure as seen before, but 
if we look at a flat sample of the ink in Figure 40, we can observe that it has also a glossy 
aspect, on top of being scattering, suggesting a strong influence from the interface of the 
material. Indeed, light can be scattered by the material, but also can be reflected by the 
interface without entering the matter, or can be reflected multiple times between the 
Lambertian background and the interface before going out of the material, all these 
different light paths the Lambertian model does not account for.  

 

Figure 39 – 2.5D printed sample with white ink, under frontal lighting, forming a 45° 
V-shaped ridged surface pattern. The sample is 1x1cm, 2.4mm heigth with a 2mm 

period. 

 

Figure 40 – Flat white sample printed with white ink used in 2.5D printing, and 
displaying a glossy aspect 
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The model presented in this chapter is dealing with a V-cavity made of a Lambertian 
material with an interface, such as the work developed by Meneveaux et al. [47] for the 
simulation of a rough surface with Lambertian microfacets and their interface. We 
developed it to quantify the discrepancy with the model presented in Chapter 3. 

The Section 5.2 will draw a general overview of the proposed model, before going into 
the details of its components in Section 5.3, and then comment the simulation results in 
Section 5.4. Section 5.5 will draw the conclusions.  

5.2 Overview of the model 

First, light rays coming from outside can be reflected once or several times on 
interfaces in a specular fashion and exit the cavity without having entered the diffusing 
material. This light forms a "specular" reflection component which has been 
comprehensively presented in Chapter 4 and is added to the "diffuse" reflection 
component issued from the light that has entered the diffusing material at least once. It is 
represented by a vector sL . 

The "diffuse" reflection component can be modeled by an extension of the 
interreflection model described in Chapter 3 for Lambertian surfaces, adapted in order to 
include the (possibly multiple) reflections and refractions at the interface. As in the 
Lambertian interreflection model, we describe radiance transfers between facets on the 
panels of the cavity, the facets being just beneath the interface, acting as Lambertian 
reflectors.  

Therefore, there are several adaptations to perform: 

a) Any incident radiance coming from outside must cross one interface to reach a 
Lambertian facet, with a Fresnel transmittance corresponding to the incidence angle (see 
Figure 41). Moreover, before crossing the interface, the light ray may have undergone one 
or more specular reflections on the panels, and the product of the corresponding Fresnel 
is to be considered. The possibility for a facet to received light rays from a given direction, 
after specular reflections or not, is given by a new shadowing function. This modifies the 
vector inE , which will be denoted as inE .  

b) Once the light reached a Lambertian facet, it is diffused and reflected by the 
Lambertian material (see Figure 42). Then, several internal reflections can take place 
between the material, of reflectance ρ, and the interface. This Lambertian reflectance ir  is 
given by Eq. (2.35). Moreover, the exitance of the facet ,out jE , including all these internal 
reflections and before crossing the interface, is related to its irradiance Ein,j by using the 
Saunderson correction Eq. (2.44): 

 , ,

ρ
1 ρout j in j

i

E E
r




  (5.1) 
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Figure 41 – Incident light ray (red) being transmitted through the interface of the 
Lambertian material (left) and being reflected once before being transmitted (right). 

 

Figure 42 – Light ray (red) being scattered (small red arrows) by the Lambertian 
material of the V-cavity after being transmitted by the interface of the material. 

c) This exitance ,out jE  is Lambertian. In any direction, the radiance striking the 
interface is , / πout jE . When the radiance crosses the interface, the corresponding Fresnel 
transmittance and a factor 21/ n  corresponding to the change of geometrical extent 
between the material and air, are applied. Then, after having possibly undergone several 
specular reflections on the two panels, the radiance can then either exit the cavity or cross 
again an interface and reach another facet (see Figure 43). A masking function  θ,φjM  
determines if the ray exits the cavity. The attenuations applied to the rays exiting the 
cavity (Fresnel transmittance, factor 21/ n , and eventual Fresnel reflectances), as well as 
the masking function, are incorporated into a matrix outM  which extends the masking 
matrix M defined in section 3.6. 
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Figure 43 – Light ray (red) exiting the material, being transmitted through the 
interface and being reflected once before reaching the observe.  

d) Once the light has entered the material, it can be reflected between the panels of 
the cavity. These light rays are scattered by a Lambertian facet, cross the interface (the 
radiance is then decreased by a factor 21/ n  due to a change of solid angle), travel across 
the V-cavity, and encounters the interface again, and then reach the Lambertian material 
once more to produce an irradiance (see Figure 44). A matrix K', extending the matrix K 
of Eq. (3.11), Incorporates the material-to-air and air-to-material Fresnel transmittances, 
the geometrical extent between the pair of facets, and the Fresnel reflectances if specular 
reflections between the panels occur.  

 

Figure 44 – Light ray (red) exiting the material before being reflected once by the 
interface and transmitted back into the material.  

In the following sections, we propose to develop in detail the method to determine the 
vectors inE , and Ls, as well as matrices outM  and K'. The perceived radiances from the 
different facets of a V-cavity made of Lambertian material, with acknowledgment of its 
flat interface with air, are contained into the vector L' given by:  
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     

1
ρ ρ

π 1 ρ π 1 ρs out in
i ir r


        

L =L M I K E  (5.2) 

5.3 Components of the model 

In this section, we detail the different components of Eq. (5.2). We will only consider 
the case of a 45° V-cavity, a frontal lighting and a frontal illumination (0:0 geometry).  

5.3.1 Irradiance of the Lambertian material: vector E'in   

We consider a collimated, frontal lighting, parallel to the z-axis, in the same manner 
as in Chapter 3. This lighting corresponds to a radiance iL . As in Chapter 3, the horizontal 
plane (x, y) receives an irradiance denoted as zE , which is related to  by: 

  ωz i iE L  (5.3) 

where  ωi  denotes the solid angle containing the radiance iL .  

Once a ray (radiance iL ) reaches a panel, with an incident angle of 0θ 67.5i    (see 
Figure 45), it produces, after refraction by the interface, an irradiance  0

iE  on the 
Lambertian material given by 

    0
0 12 0cosθ θi i i zE T E  (5.4) 

 

Figure 45 – Illustration of the path of the light for a frontal lighting and observation, 
and the limit position below which one specular reflection can happen. 

Since the lighting is frontal, all facets receive this irradiance. The vector  0
inE  which 

gathers the facet irradiances is thus defined as: 
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     0 0 1 1

T

in iEE    (5.5) 

The light rays are also partially reflected by the interface and strike the other panel 
with an incident angle 1θ 22.5i   , which produces an irradiance  

      1
1 12 1 12 0cosθ θ θi i i i zE R T E  (5.6) 

The facets illuminated by these rays all receive this irradiance. However, they are 
located below a limit position limy , shown in Figure 45b. Since the panels have a width 
unity, we obtain a triangle shown in Figure 45c between the position of the limit facet j on 
the left panel, limy , the edge of the right panel, 1y  , and the fold, 0y y   . A well-
known property of the triangle is the relation between the sides and the angles. We have, 
in our case: 

 
 

 lim

sin α /2
0.414

sin α α /2
y 


  (5.7) 

Note that, thanks to the symmetry of the configuration, same limit position would be 
found on the right panel.  

 The vector  1
inE  gathering the facet irradiances associated with these rays is defined 

accordingly: 

    1 1

irradiated facets

(0 0 1 1 0 0)T
in iEE      (5.8) 

These rays can also be reflected, for the second time. We could pursue the above 
reasoning line for these rays, but we can consider that their radiance is very low, less than 
0.5% of the original radiance at the considered refractive index, here 1.5 (all reflections 
would have to be taken into account in the case of a metal, as demonstrated in Chapter 4). 
The irradiance vector of the facets on the Lambertian material is therefore given by: 

    0 1
in in in  E E E   (5.9) 

Note that in case of oblique directional lighting, the number of reflections, the incident 
and refraction angles, and a shadowing function should be computed as a function of the 
orientation of the incident radiance.  

5.3.2 Interreflections within the cavity: Matrix K' 

The entries ijK   of matrix K' express the ratios of the irradiance on any point of facet i 
to the radiances issued from the whole facet j (of infinite length and a width of 1/p). It 
comprises the Fresnel transmittances associated with the crossing of the two interfaces, 
as well as the factor 21/ n , angle-independent, expressing the change of geometrical 
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extent of the radiance by transiting from the material where it is emitted and air where it 
propagates. It is also possible that the light paths between the two facets includes one or 
several successive specular reflections at the interfaces of the panels; thus also comprises 
the Fresnel reflectances associated with these specular reflections.  

In absence of specular reflection, a ray transiting from a point Pi and to a point Pj 
follows the straight line between the two points provided that the two points belong to 
different panels, i.e. the visibility function  , 1i jV P P  . The geometrical extent 

 4 , , ,i j i jd G x x y y   is like the one derived in Chapter 3. Moreover, knowing that the light 
path from iP  to jP  crosses two interfaces, we incorporate the corresponding Fresnel 
transmittances  12 θiT  and  12 θ jT  where θi  and θ j , given by Eq. (3.23), are the angles 
between the ray and the normals of the facets. The geometrical kernel between any point 
of facet i and facet j is therefore: 

      
 

2
12 120

22 1/ 2 2 2

θ θ sin α1

2 cosα

j

j

y i j i
ij x y y p

i i i

T T y y dxdy
K

n x x y y y y



   

  


        
   (5.10) 

Let us now consider radiances undergoing one specular reflection. Their bounding 
points Pi and Pj belong to the same panel (say panel 1): a condition given by  1 ,i jV P P , 
which yields 1 if the two points are on the same panel, 0 otherwise. The other panel 
interface (panel 2) behaves as a mirror. The image of panel 1 by reflection of the mirror 
forms a new panel at an angle α with panel 2, and an angle 2α with panel 1. The inter-
reflections that we want to model are between panel 1 and the image of panel 1.  

The image P' of a point     , sin α / 2 , cos α / 2P x y y    on panel 1 is obtained by 
rotation of angle 2α around the x-axis:     , sin 3α /2 , cos 3α / 2P x y y   . The 
geometrical extent between iP  and the image jP  of Pj  is given by Eq. (3.24) with ψ = 2α. 
The radiance associated with this extent undergoes two refractions and one reflection. 
The Fresnel transmittances are  12 0θT  and  12 2θT , where 0θ θi  and θ j  are again given 
by Eq. (3.23) with ψ = 2α. The Fresnel reflectance associated with the specular reflection 
is  12 1θR , where 1θ  satisfies the equation: 

 
 

   
1 2 2 2

2

sinα

2
cosθ

cos 2α

i ji j

i i j i j i jj

PP

P

y y

x x y y y yP

 

   


  

   
N


   (5.11) 

Note that same expression for 1cosθ  is obtained if iP  and Pj are on panel 2. The 
geometrical kernel between any point of facet i and facet j is therefore: 

          

   

2
1 12 0 12 1 12 2

22 1/ 2 2 2

θ θ θ sin 2α1

2 cos 2α

j

j

y i
ij x y y p

i i i

T R T y y dxdy
K

n x x y y y y



   

  


        
   (5.12) 



Chapter 5 

120 

Similar reasoning line can be followed for the rays having undergone 2k   specular 
reflections. Their bounding points iP  and jP  belong to different panels if k is even, and the 
visibility function  ,i jV P P  applies; they belong to the same panel if k is odd, and the 
visibility function  1 ,i jV P P  applies. The geometrical extent is still given by Eq. (3.24) 
with  ψ 1 αk  . The geometrical kernel includes the two Fresnel transmittances 

 12 0θT  and  12 1θ kT  , and k Fresnel reflectances  12 1θR ,…,  12 θ kR  where the angles θn , 
0 1n k   , all satisfy the equation: 

 
   

   2 2 2

sin
cosθ

α sin 1 α

2 cos 1 α

i j

i j

n

j i i j

y n y k n

x x y y y y k

      

      


   

  (5.13) 

The geometrical kernel is 

 
          

    

2
12 0 12 1 121

22 1/ 2 2 2

θ θ θ sin 1 α1

2 cos 1 α

j

j

k
y k n ik n

ij x y y p

i i i

T T R y y k dxdy
K

n x x y y y y k

  
   

  


         

    (5.14) 

Finally, the geometrical kernel (matrix K) accounting for any number of specular 
reflections, from 0 to the maximal number m of reflections give in appendix C, is  

  

0

m k
ij ijk

K K


   (5.15) 

In practice, we can only consider K0 et K1, because in the same way as for Ein, the 
contributions of the rays that underwent two specular reflections or more are very low.  

5.3.3 Exiting rays: Matrix M'out 

The components presented so far enable to express the exitance of the different facets 
of the Lambertian material, through an exitance vector M' given by:  

     

1
ρ ρ

1 ρ π 1 ρ in
i ir r


      

M = I K E  (5.16) 

The next step is the modeling of the transmission of radiances from the Lambertian 
material to the observer, thanks to a matrix outM . After having crossed the interface, the 
rays may directly reach the observer, or undergo one, two… up to four specular reflections 
within the cavity before reaching the observer. For the same reason as for the irradiance 
vector inE , we will consider only one specular reflection, by considering that the 
radiances attached to rays being reflected twice or more are very weak. We consider the 
case where the observer looks at the cavity frontally, and therefore captures only the rays 
emerging from it vertically, along the z axis.  
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Regarding the rays who transit directly from the Lambertian material to the observer, 
their radiance correspond to a fraction 1/π of the exitance at the considered position on 
the Lambertian material, given by the corresponding entry of matrix M' in Eq.(5.16). By 
crossing the interface, the geometrical extent of the radiance is changed due to the 
refraction and a factor 21 / n  is applied, as well as the Fresnel transmittance  12 0θxT  
where 0θ 67.5x    is the angle at which the radiance exits the surface towards the 
observer in our case. The radiance jL  observed from facet j is therefore:  

 
 12 0

2

θ

π
x

j j

T
L M

n
   (5.17) 

where jM   denotes the jth entry of matrix M' attached with this facet j. This factor 
  2

12 0θ πxT n   applies equally for all facets and featured on all entries on the diagonal of 
matrix outM : 

 
 12 0

, , 2

θ

π
x

out j j

T
M

n
   (5.18) 

Other rays can exit the surface of a panel with an angle 1θ 22.5x    from the normal of 
the panel in the vertical (y, z) plane, then reach the other panel with an angle 0θ 67.5x    
on a facet k that will be explicated later, and exit the cavity vertically along the z-axis 
towards the observed. This corresponds precisely to the path featured in Figure 45b, but 
in the opposite direction. Once again, the original radiance of these rays corresponds to a 
fraction 1/π of the exitance at the considered position on the Lambertian material. A 
factor 21 / n , the transmittance  12 1θ xT , and the reflectance  12 0θxR  are applied. Since 
the observer receives this radiance from facet k, the factor .     2

12 1 12 0θ θ πx xT R n . is placed 
on the entry (k, j) of matrix outM : 

 

   12 1 12 0
, , 2

θ θ

π
x x

out k j

T R
M

n
 

 (5.19) 

The facet k that is reached from facet j is given by its distance ky   from the fold 
between the two panels. It depends on the position of facet j on the other panel, given by 
its distance jy   from the fold. Figure 46 shows the geometrical configuration by 
considering that facet j is on the left panel, but same result would be obtained by 
considering it on the right panel, by symmetry of the configuration. The position limy   
associated with the edge of the right panel is the same as computed in Eq. (5.7) We thus 
have, according to the Thales theorem: 

 
lim

j
k

y
y

y


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
 (5.20) 
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We could consider the rays undergoing two or more specular reflections, but their 
contribution would be very low, as said before.  

 

Figure 46 – Schematic view of the limit position in the V-cavity above which a specular 
reflection can happen when the light exits the Lambertian material 

The radiance observed from the different facets is finally given by the vector: 

     

1
ρ ρ

π 1 ρ π 1 ρdiff out in
i ir r


       

L M I K E  (5.21) 

From this radiance, it is possible to compute a reflectance factor, by dividing it with 
the radiance Lref that is observed in the same frontal direction from a perfectly white 
diffuser, of reflectance unity. With an incident radiance iL  contained in a solid angle ω i ,, 
we have: 

  ω
π π
i i z

ref

L E
L    (5.22) 

and the reflectance factor associated with the facet j, from which the observed radiance  

,diff jL  is given by the jth entry of matrix diffL , is: 

  ,

πˆ
ωj diff j

i i

R L
L

  (5.23) 

5.3.4 Vector Ls 

The vector SL  accounts for the light that has been reflected in a specular way in the 
structure, without having crossed any interface, therefore without being diffused and/or 
absorbed by the material. This specular component is achromatic. As we can see in Figure 
45a, in our lighting-observation geometry, there exist some rays incoming frontally that 
can reach the observer located in the same frontal direction. These rays undergo four 
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successive reflections, at the respective incident angles 67.5°, 22.5°, 22.5°, and 67.5°. The 
factor applied to incident radiance iL ,, which applies on all facets in our case (due to the 
symmetry of our configuration), is: 

        5
12 12 12 1267.5 22.5 22.5 67.5 3.3 10sr R R R R        

It is therefore very low. However, this weak component may considerably affect the 
reflectance factors of the cavity facets, according to the solid angle ω i  of the incident 
radiance. Since the specularly reflected radiance is s ir L , the reflectance factor including 
both the diffuse and specular components is given by: 

 ,

π πˆ
ω ωj s diff j

i i i

R r L
L

    (5.24) 

Remind that ,diff jL  is proportional to ωi iL , also denoted as zE , because it is present in 
all terms composing vector inE  [see Eqs.(5.4) and (5.6)]. Hence, this term ωi iL  cancels for 
the diffuse component of the reflectance factor, while the specular component remains 
inversely proportional to the incident solid angle. The specular component may therefore 
be very strong in comparison to the diffuse one if the incident light is very collimated, a 
situation which is true for any interfaced Lambertian material, even flat. In contrast, a 
conical illumination may generate a specular component less pronounced. Simulations 
with interfaces materials must therefore take into account not only the irradiance of the 
surface, but also the exact angular distribution of the light, more precisely its solid angle 
as far as it can be considered as small enough to be considered as frontal illumination. 
This complicates the color rendering simulations. In the following, instead of choosing an 
arbitrary solid angle, which would generate an achromatic specular component on the 
chromatic diffuse component on which our interest is focused, we decided to remove it 
from the simulation.  

5.4 Simulations of V-cavities made with Lambertian material 
with an interface 

We remind that the case we consider is the one of a 45° V-cavity made with a 
Lambertian material. The two panels of the structure possess a smooth and flat interface 
with air. The lighting as well as the observation direction are frontal. We also considered 
three cases for the material interface, with three different optical indices: 

 1.001n  , which is the case we used to verify the model and compare with the results 
given by the model of Chapter 3. Such an index is identical to having no interface at all. 
We did not take exactly 1 because of the discontinuity that would emerge in Fresnel’s 
formulae in such case.  
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 1.33n  , which we used in order to simulate a scattering material that would be 
covered with a varnish containing a water-based binder.  

 1.5n  , which is an appropriate value when considering the interface of ink with air.  

The predictions given by the model are represented in Figure PF5-1 and PF5-2 with 
the example of the magenta spectrum, on both pages.  On the top row of the first figure, 
we plotted the “ramp” spectra for the three optical indices, illustrating the evolution of 
the observed radiances as a function of the reflectance, with the distinction on left page 
for 1.5n   between the case a where we do not account for any specular reflection, and b 
where one specular reflection is accounted for.   The corresponding color gradients are 
also represented below the spectra plots.  

On Figure PF5-2, we have the translation of the spectra plot into CIE 1976 L*C* 
diagrams, with the evolution of the E2000 color distance across the V-cavity between 
the Lambertian only case, and respectively with the two other values of optical index.  

The first immediate observation is that the results are identical when considering an 
optical index of 1, meaning the model is consistent with the version developed in Chapter 
3 as expected, for Lambertian materials without an interface. The other results are a bit 
darker when compared with the Lambertian model and the model with an interface, 
where only one possible specular reflection is considered, meaning the interface is in 
competition with the light interreflections and tends to attenuate them, even more so with 
a higher optical index.  

Since the lighting geometry considered in this case allows up to 4 specular reflections 
of the light before in can enter the material (as seen in Chapter 4), we did not take it into 
account due to the weakness of the purely specular component as said earlier. But it is 
important to know that other configurations with different solid angles, resulting in 
smaller number of reflections, could significantly contribute to the outgoing radiance, and 
therefore tend to increase the lightness and desaturate the color.  

Another observation is the presence of a discontinuity in the spectra plot and in the 
gradient of color displayed by the Lambertian cavity with an interface, similarly to what 
was observed in Chapter 4, in the case of metallic and mirror like samples. This 
discontinuity is located exactly at the position limy   on the panel defined by Eq. (5.7) and 
illustrated in Figure 45b. This is due to the internal specular reflections, mostly to the ones 
happening before the light entering the structuring, and the ones happening after the light 
comes out of the material. Since these specular reflections cannot happened above limy  , 
a difference in the radiance displayed emerges. Consequently, this discontinuity 
disappears when the optical index is 1.  

We can observe nonetheless that the average reflectances are similar, with a small 
noticeable difference in the highly absorbed wavelengths. In the case of the Lambertian 
model, we saw that the spectral components located in wavelength range where light is 
poorly reflected have a decreased lightness due to the interreflection effect. In the case of 
the Lambertian model with interface, we can observe that this attenuation is slightly less 
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pronounced. This is thanks to the presence of the interface and the specular reflections 
contributing to a small increase of the lightness.  

Another difference when accounting for the interface influence is the reflectance 
threshold at which the interreflections can happen. We saw in Chapter 3 that in the case 
of a Lambertian magenta material folded at 45°, it was around 0.93. But we can see on 
Figure PF5-1b and c, this threshold is located higher in both cases: 0.98 for 1.33n   and 
0.97 for 1.5n  . Consequently, we can see that the average radiance is not overpassing 
the reflectance of the flat surface. The interface is interfering with the occurrence of light 
interreflections, and at the same time contribution to a gain of radiance thanks to the 
specular reflections, but not as much as the radiance gain visible with the interreflection 
phenomenon. The added sensation of luminosity visible in Chapter 3 for some samples 
could be also observable for a higher optical index of interface, but it would not be as 
plausible and realistic as a 1.5 value in our case of Lambertian material with an interface. 

Finally, Figure PF5-2 finishes to illustrate the differences. The high color distances 
when comparing the parts of the V-cavity that are only displaying diffuse reflections 
(above limy   ) have an average value of 2.5 in both cases of 1.33n   and 1.5 , due to the 
presence of the interface attenuating the radiance. The distance is smaller when looking 
at the center of the V-cavity, where one specular reflection is considered. We can observe 
that the distance decreases from the case of 1.33 to 1.5, meaning the diffuse component 
decreases but the contribution of the specular one increases, lowering the distance 
between the case with an interface and without.  

5.5 Conclusions 

We presented a model for a surface with V-shaped ridges made of a Lambertian 
material, with a comprehensive computation of the light interactions happening at the 
interface between the air and the material, which was a problem we did not address with 
the model presented in Chapter 3. 

The addition of an interface enables the consideration of more light reflections and 
transmissions happening in a real scattering material with a smooth interface as the one 
showed in the introduction of this chapter, which were ignored in the Lambertian only 
model. We discussed the possible specular reflections happening in the V-cavity before 
the light enters the material, during the multiple reflections process between the two 
panels and after the light exist the material and before reaching the observer. We also 
added the contribution of the multiple reflections happening between the interface and 
the material itself once the light has crossed the former.  

The case studied was a simple one, considering only a frontal lighting and observation 
direction, but it was enough to simulate the appearance of such a structure. We showed 
that for 45° magenta V-cavity, the result is coherent with the predictions of the 
Lambertian model. We also showed that when considering an interface, the possible 
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specular reflections are contributing to the final outgoing radiance, compared to the case 
where only the scattered light is considered. The differences in E2000 color distance are 
quite low but not negligible (>1). This leads to a specific discontinuity in the gradient of 
radiance and color inside the structure, depending on whether a specular reflection can 
happen or not before the light enters the material and after it exits. In the end, we showed 
that the consideration of the interface makes a difference when studying the structure 
influence on the perceived lightness and color, with a slightly brighter aspect and a small 
change in chroma. We also showed that the interface of a scattering material tends to 
attenuate the light interreflections effect, while adding to the radiance with the specular 
reflections. This attenuation is linked to the transmission coefficients of the interface. 

However, this is a first approach to a complex problem in a particular case. To further 
the study, we would have to consider different lighting geometries as well as different 
observation directions, in the same fashion used in the other chapters. In fact, here 4 
specular reflections were possible, rendering the purely specular component negligible. 
In other cases of lighting geometry, either directional or diffuse, between one and four 
specular reflections could happen, as shown in chapter 4, meaning a possibly greater 
contribution coming from an achromatic component.  

Another important thing to address is also the shadowing and masking effects and 
their declinations throughout the multiple reflections process, but that are surely playing 
an important role in the appearance of a Lambertian V-cavity with an interface, and 
possibly increasing the difference with the Lambertian only model.  
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Chapter 6.  
 
Conclusion 

The study of light interreflections generated by a material surface with V-shaped 
ridges led us to several conclusions about the influence of a surface structure on its 
appearance. The simple case of a semi-infinite V-cavity periodical pattern combined with 
a photometric approach allowed for an in-depth study of the various mechanisms at play 
when modelling the appearance of such a surface.   

6.1 Most relevant parameters for interreflections  

We could observe that the interreflection phenomenon itself and its consequences on 
the ridged surface color appearance are very different according to whether the material 
is diffusing and matte, i.e., Lambertian, or specular like metallic mirror panels. The kind 
of reflectors that constitutes the panels of the cavities is definitely a crucial information 
which determines the interreflection process and the model that should be used.    

In the case of Lambertian materials, studied in Chapter 3, the most appropriate model 
is based on the radiosity equation, or interreflections equation. The model is quasi-
analytic, by means of a surface sampling allowing for a convenient matrix formalism, 
appropriate for digital computing. Visually, we can see a color gradient over the cavity 
even though its two panels are homogenous. Since interreflections are stronger in areas 
where parcels of material are the closest with other parcels, their influence is more visible 
at the bottom of the cavity: if the cavity is wholly and homogeneously illuminated (e.g. 
under frontal lighting), the bottom of the cavity is the brightest. This is not true anymore 
when the lighting is oblique or diffuse: the bottom of the cavity may be less or not 
illuminated, and the darkening that this shadowing effect induces cannot be compensated 
by the interreflection phenomenon. Under diffuse lighting, the bottom of the cavities is 
therefore the darkest.  We could analyze the influence of the surface structure on color 
through the analysis of three parameters: the lighting geometry, the observation 
configuration and the shape of the structure itself. In average over the ridged surface, as 
viewed from afar, the light interreflections tend to modify the observed brightness by 
adding a gain in radiance thanks to the interreflection effect, which is striking when the 
material is highly reflective (albedo close to 1) and can lead in some cases to a sensation 
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of additional luminosity, as well as a more saturated color, sometimes to the point where 
the hue itself can shift. This gain in radiance can vanish under oblique or diffuse lighting 
due to the shadowing. Thus, under frontal or nearly frontal illumination where shadowing 
does not occur, a white or light grey ridged surface can be brighter than a flat one made 
of the same material; with red, magenta, or yellow material, which is bright in a certain 
spectral domain and darker in the rest of the spectrum, the ridged surface is brighter than 
the flat surface in the first spectral domain but not in the rest of the spectrum, and its color 
is consequently more chromatic. We could also verify that two metameric flat surfaces, 
having different reflectances but displaying the same color under a certain lighting, are 
not metameric anymore once transformed into structured surfaces. The effect of 
interreflection being non-linear in respect to the reflectance of the material, and this 
reflectance being generally a function of wavelength, the interreflections have different 
impacts in the different spectral wavebands. We could also simulate interesting visual 
effects c when manipulating bi-color structures.  

The second kind of structures studied in Chapter 4 is the specular V-cavity, whose 
lateral panels are mirrors. This model is not based on the radiosity equation but on a 
comprehensive description of all possible light paths, with their respective successions of 
reflections and change of polarization. Shadowing, usually so difficult to model in the case 
of randomly rough surfaces because statistical models are needed, is automatically 
accounted for in our model. We could predict the change of color and lightness that can 
be observed visually when the dihedral angle of the cavities decreases due to the number 
of specular reflections happening in the structure. This is particularly striking with 
chromatic metals such as gold and copper. The precise computation of the change of 
polarization state at each reflection showed that it has very little impact on the visual 
aspect of a ridged material, except for the case where the optical index induces a high 
difference between the two polarization components (ex.: silicon). Using an approximated 
polarization model to predict the appearance of such surfaces is satisfying.  

The model that we developed for Interfaced Lambertian materials, presented in 
Chapter 5, is an extension of the radiosity model taking into account the reflections and 
transmissions of light at the interfaces, including the successive specular reflections 
taking place in air before reaching the Lambertian background, or after exiting it, or in the 
path between two material parcels. The multiple internal reflections between the 
diffusing material and its interface are also incorporated, in a similar way as the 
Saunderson model for flat interfaced Lambertian materials. Only one illumination and 
observation configuration has been described, the 0°:0° geometry, which prevent 
shadowing and masking still in need of further development. However, this configuration 
provides a first preview of the color difference between a Lambertian and interfaced 
Lambertian structured surfaces. This difference is noticeable, but rather modest. The 
model has the merit of being more realistic in the prediction of the appearance of 
scattering samples having a smooth interface with air, such as the 2.5D printed samples 
which were at the origin of our investigations.  
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6.2 Experimental verification 

The experimental verification of the models has been started in the case of the 
specular cavities, but this work needs to be pursued. Ensuring that the structures 
correspond as closely as possible to the ideal case considered by the model is not easy, in 
particular for Lambertian materials: we must have a flat sample to get its optical 
properties, verify that it is a perfectly Lambertian reflector included at grazing angles, 
transforming a piece of this sample into a well-shaped V-cavity without waviness. If we 
want to measure the radiance issued from each point of the cavity and verify that the color 
gradients simulated are consistent with the measured ones, we need a spectral camera 
with good solution, and a lighting system being either perfectly collimated or perfectly 
diffuse (by using a large integrating sphere). The production of samples has not been 
possible in the time allowed for this work, but the measuring equipment has been 
gathered. It was used for an experimental verification for specular cavities based on 
mirrors of gold, copper and silver produced by coating techniques in our laboratory. The 
agreement between predictions and measurement was rather good attended the 
experimental precision that we could achieve. The experimental verification of the model 
for interfaced Lambertian materials is still to be done.  

6.3 Further developments 

The study of structured surfaces made of interfaced Lambertian materials could be 
continued in different directions, beyond its extension to oblique and diffuse lightings.  

Firstly, the light component being only reflected in a specular fashion and without 
entering the material has been intentionally ignored because it depends on the solid angle 
of illumination, which can strongly vary according to the context or the instrument. As for 
flat surfaces, this achromatic light component would certainly increase the lightness of 
the color, decrease the chroma, and contribute to the perceived glossiness if the observer 
has the possibility to move around the sample. An interesting continuation of this study 
would be to analyze the respective contributions of this purely specular component to 
gloss and color, according to the large or thin solid angle used for lighting.  

Secondly, it would be possible to consider a layer of transparent color material, e.g. 
colored ink, on top of the diffusing background. The transmittance of the layer could be 
incorporated into the model in addition to the transmittance of the interface. We can say 
that our model for bare materials with interface is equivalent to the Saunderson model 
when the dihedral angle of the cavities is 180° (flat surface), given by Eq. (2.44) and that 
we copy here:  

 
ρ

1 ρe in out
i

R r T T
r

 
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  (5.25) 
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where ρ is the intrinsic reflectance of the lambertian background (without interface), R 
the reflectance factor of the interfaced background, and rs, ri, Tin, and Tout are factors 
related to the reflections and transmission of light by the interface. Notice that the fraction 
in Eq. (5.25) features in the extended interreflection equation (5.2) that we also copy here:  

    

1
ρ ρ

π 1 ρ π 1 ρs out in
i ir r


        
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With a layer of transparent colored material on it, it would become equivalent at this 
flat angle to the Williams-Clapper model [23], or its simplified version proposed by Berns 
[48] given below, by introducing the transmittance t of the colored layer: 
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The extended interreflection equation would be simply modified as follows: 
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  Following the same reasoning line, the colored layer could be a halftone layer, made 
of a many small ink dots distant from each other. Provided that the ink dots are small 
enough to assume that the halftone layer is homogenous at the scale of a cavity panel, the 
model could be extended in a similar way to the Clapper-Yule model [49] for (flat) 
halftone prints, by introducing the surface coverage of the ink layer of transmittance t: 
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The extended interreflection equation would be simply modified as follows: 
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Alternatively, f the ink dots are too large, it is still possible to sample the cavity panels 
into a set of small facets, each one having a certain ink transmittance according to its 
position in the halftone pattern, and use the interfaced version of the radiosity equation. 
The modelling toolbox would thus be appreciably enriched toward the color prediction of 
structured surfaces produced in 2.5 or 3.D printing, despite the difficulties that would 
necessarily arise in the confrontation between our ideal structures, perfectly shaped, and 
real ones. 



 

 

References   

1. Turbil, C., Light Scattering from Complex Rough Surfaces. PhD dissertation. Sorbonne 
Université, 2018.  

2. Desage, S. F., Contraintes et opportunités pour l’automatisation de l’inspection visuelle 
au regard du processus humain. Vision par ordinateur et reconnaissance de formes. PhD 
dissertation. Université Grenoble Alpes, 2015. In French.  

3. Page, M., Création d’objets mats : optimisation d’un procédé d’impression en relief en 
termes d’apparence. PhD dissertation. Conservatoire national des arts et métiers – 
CNAM, 2018. In French. 

4. Phan Van Song, T., Optical models for appearance management of printed materials. 
PhD dissertation. Museum National d'Histoire Naturelle, 2018. 

5. Torrance, KE, Sparrow, EM., "Theory for Off-Specular Reflection from Roughened 
Surfaces," J. Opt. Soc. Am. 57, 1105–1114 (1967). 

6. Cook, RL, Torrance, KE., "A Reflectance Model for Computer Graphics," ACM 
Transactions on Graphics 1, 7–24 (1982) 

7. Byrd, R. H., Hribar, M. E., Nocedal, J. "An interior point algorithm for large-scale 
nonlinear programming," SIAM Journal on Optimization 9, 877 (1999). 

8. Pharr, M., Jakob, W., Humphreys, G., Physically based rendering: From theory to 
implementation, Morgan Kaufmann, 2016. 

9. Jensen, H. W., Realistic image synthesis using photon mapping, Ak Peters Natick, 2001. 

10. Nayar, S. K., Ikeuchi, K., Kanade, T. "Shape from interreflections", International Journal 
of Computer Vision 6, 173 (1991). 

11. Nayar, S. K., Gong, Y. “Colored interreflections and shape recovery,” in Image 
Understanding Workshop, 333–343 (1992). 

12. Seitz, S. M., Matsushita, Y., Kutulakos, K. N. “A theory of inverse light transport,” Tenth 
IEEE International Conference on Computer Vision, ICCV 2005, vol. 2, 1440–1447 
(2005). 

13. Funt, B. V., Drew, M. S., “Color space analysis of mutual illumination,” IEEE 
Transactions on Pattern Analysis and Machine Intelligence 15(12), 1319–1326 (1993).  

14. Liao, M., Huang, X., Yang, R., “Interreflection removal for photometric stereo by using 
spectrum-dependent albedo,” IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR), 689–696, (2011). 

15. Fu, Y., Lam, A., Matsushita, Y., Sato, I., Sato, Y., “Interreflection removal using 
fluorescence,” European Conference on Computer Vision, 203–217 (2014).  



Conclusion 

133 

16. Drew, M. S., Funt, B. V., “Calculating surface reflectance using a single-bounce model 
of mutual reflection,” IEEE Third International Conference on Computer Vision, 394–
399 (1990). 

17. Ho, J., Funt, B. V., Drew, M. S., “Separating a color signal into illumination and surface 
reflectance components: Theory and applications,” IEEE Transactions on Pattern 
Analysis and Machine Intelligence 12, 966–977 (1990). 

18. Deeb, R. Inter-reflections in computer vision: importance, modeling & application in 
spectral estimation. PhD dissertation. Université de Lyon, 2018.  

19. Koenderink, J.J., Van Doorn, A. “Geometrical modes as a general method to treat 
diffuse interreflections in radiometry,” J. Opt. Soc. Am. 73(6), 843–850 (1983). 

20. Oren, M., Nayar, S. K., "Generalization of Lambert's reflectance model," Proceedings of 
the 21st annual conference on Computer graphics and interactive techniques 
(SIGGRAPH '94) 239–246 (1994). 

21. Saunderson, JL., "Calculation of the color pigmented plastics," J. Opt. Soc. Am. A 32, 
727-736 (1942). 

22. Clapper, FR, Yule, JAC., "The Effect of Multiple Internal Reflections on the Densities of 
Halftone Prints on Paper," J. Opt. Soc. Am. 43, 600–603 (1953). 

23. Williams, FC, Clapper, FR., "Multiple Internal Reflections in Photographic Color 
Prints," J. Opt. Soc. Am. 43, 595–597 (1953). 

24. Shore, JD, Spoonhower, JP, "Reflection Density in Photographic Color Prints: 
Generalizations of the Williams-Clapper Transform," J. Im. Sci. Technol. 45, 484–488 
(2001). 

25. Nicomedus, FE, Richmond, JC, Hsia, JJ. Geometrical considerations and nomenclature 
for reflectance. NBS Monograph 160, NBS, p. 52 (1977). 

26. CIE, Colorimetry ; CIE Technical Report, 3rd edition,1998. 

27. Kipphan, H., Handbook of Print Media; Springer Verlag, Berlin, 2001. 

28. Perkampus, H-H., Encyclopedia of Spectroscopy, VCH, New York, 1995. 

29. Völz, HG., Industrial color testing: Fundamentals and techniques; Wiley-VCH, NewYork, 
2nd edition, 2001. 

30. Elias, M, Elias, G., "Radiative transfer in inhomogeneous stratified scattering media 
with use of the auxiliary function method." J. Opt. Soc. Am. A 21, 580-589 (2004). 

31. Snyder, JP., Map Projections – A Working Manual. U. S. Geological Survey Professional 
Paper 1395; U. S. Government Printing Office, Washington, DC, 1987, pp. 182-190.  

32. Kubelka, P, Munk, F., "Ein Beitrag zur Optik der Farbanstriche," Zeitschrift für 
technische Physik 12, 593-601 (1931).  

33. Kubelka, P., "New contributions to the optics of intensely light-scattering material, 
part I." J. Opt. Soc. Am. A 38, 448-457 (1948).  

34. Copyright: Vanessaezekowitz at en.wikipedia / CC BY 3.0-2.5-2.0 
(https://creativecommons.org/licenses/by/3.0-2.5-2.0-1.0) 

35. Copyright: Nilsjohan / CC BY-SA (https://creativecommons.org/licenses/by-sa/4.0) 



Chapter 6 

134 

36. Arfken, G., Weber H., Mathematical Methods for Physicists, Harcourt/Academic Press, 
2000. 

37. Baar, T., Shahpaski, M.,, Ortiz Segovia, M. "Image ghosting reduction in lenticular relief 
prints ", Proc. SPIE 9018, Measuring, Modeling, and Reproducing Material Appearance, 
90180N (2014). 

38. Xie, F., Hanrahan, P. “Multiple scattering from distributions of specular v-grooves,” 
ACM SIGGRAPH Asia 2018 Technical Papers, 276 (2018). 

39. Lee, J.H., Jarabo, A., Jeon, D. S., Gutierrez, D., Kim, M. H. “Practical multiple scattering 
for rough surfaces,” ACM SIGGRAPH Asia 2018 Technical Papers, 275 (2018). 

40. Zipin, R. B. "The apparent thermal radiation properties of an isothermal V-groove 
with specularly reflecting walls." J. Res. NBS C, 70, 275-280 (1966). 

41. Mulford, R. B., Collins, N. S., Farnsworth, M. S., Jones, M. R., & Iverson, B. D., "Total 
hemispherical apparent radiative properties of the infinite V-groove with specular 
reflection," International Journal of Heat and Mass Transfer, 124, 168-176  (2018). 

42. Born, M., Wolf, E., Principle of Optics, 7th expanded ed., Pergamon, 1999, p. 47. 

43. https://refractiveindex.info/ 

44. Smith, B.J. "Geometrical shadowing of a random rough surface," IEEE Transaction on 
Antennas and Propagation, 15, 668–671 (1967). 

45. Heitz, E., Hanika, J., d’Eon, E., Dachsbacher, C., “Multiple-Scattering Microfacet BSDFs 
with the Smith Model,” ACM Trans. Graph. (Proc. SIGGRAPH 2016) 35, 58 (2016). 

46. Wu, Y., Zhang, C., Estakhri, N.M., Zhao, Y., Kim, J., Zhang, M., Liu, X.X., Pribil, G.K., Alù, 
A., Shih, C.K., Li., X., "Intrinsic optical properties and enhanced plasmonic response of 
epitaxial silver," Adv. Mater. 26, 6106-6110 (2014) 

47. Meneveaux, D., Bringier, B., Tauzia, E., Ribardière, M., Simonot, L., "Rendering rough 
opaque materials with interfaced Lambertian microfacets." IEEE transactions on 
visualization and computer graphics, 24, 1368-1380 (2017). 

48. Berns, R. S., "Spectral modeling of a dye diffusion thermal transfer printer," J. Electron. 
Imaging 2, 359–370 (1993). 

49. Clapper, F.R., Yule, J.A.C. "The effect of multiple internal reflections on the densities of 
halftone prints on paper." J. Opt. Soc. Am., 43, 600–603 (1953). 

 
 

   

 

 

In addition to the present manuscript, these works are reported into four publications:  

1. D. Saint-Pierre, P. Chavel, L. Simonot, and M. Hébert, "Angular reflectance model 
for ridged specular surfaces, with comprehensive calculation of inter-reflections 
and polarization," J. Opt. Soc. Am. A 36, C51-C61 (2019). 



Conclusion 

135 

2. D. Saint-Pierre, L. Simonot, M. Hébert, "Reflectance Computation for a Specular 
Only V-Cavity." Computational Color Imaging Workshop CCIW’19 (Chiba, Japan, 25-
27 March 2019  Young Author Best Student Paper Award) Proceedings in: 
Tominaga S., Schettini R., Trémeau A., Horiuchi T. (eds) Computational Color 
Imaging. CCIW 2019. Lecture Notes in Computer Science, vol 11418. Springer, 
Cham  (2019). 

3. D. Saint-Pierre, R. Deeb, D. Muselet, L. Simonot, M. Hébert, "Interréflexions 
lumineuses dans une V-cavité lambertienne" in Quand la matière diffuse la lumière, 
Ed. Lionel Simonot, Presse des Mines (2019). 

4. D. Saint-Pierre, R. Deeb, D. Muselet, L. Simonot, M. Hébert, “Light Interreflections 
and Shadowing Effects in a Lambertian V-Cavity under Diffuse Illumination” IS&T 
Electronic Imaging Symposium, Material Appearance 2018 pp. 166-1–166-10 
(Burlingame, USA, 29 January-2 February 2018). 

  

 

 



 

 
 

 

 

 

 

 

 

 
 
 
 

 
 
 
 

Order number NNT: 2020LYSES041 
 
 

PhD Thesis, UNIVERSITY OF LYON 
Completed at the 

University Jean Monnet 
 
 

Doctoral School N° 488  
Sciences, Ingénierie, Santé 

 
 

Publicly defended on 19/11/2020, by: 
Dorian SAINT-PIERRE 

 
 

PORTFOLIO 
(attachment to the main manuscript) 

 
 

 
  



2 
 

 

  



3 
 

In this portfolio, you will find the figures attached to the manuscript.  

The name of the figures follows the code: 

Figure PF (PortFolio) + Chapter number – Figure number 

 

 The figures attached to Chapter 3 range from PF3-1 to PF3-15 
 The figures attached to Chapter 4 range from PF4-1 to PF5-7 
 The figures attached to Chapter 5 are PF5-1 and PF5-2 

 

 

Dans ce portfolio, vous trouverez les figures attachées au manuscrit principal.  

La dénomination des figures suit le code suivant : 

Figure PF (PortFolio) + Numéro de chapitre – Numéro de figure 

 

 Les figures du chapitre 3 allant de PF3-1 à PF3-15 
 Les figures du chapitre 4 allant de PF4-1 à PF5-7 
 Les figures du chapitre 5 allant : PF5-1 et PF5-2 

 

 

 
  



4 
 

 
Figure PF3-1 (double page) — Illustration of the influence of the illumination geometry, by 
considering frontal illumination (top row), oblique illumination (middle row) and diffuse 
illumination (bottom row). a) Schema corresponding to the illumination geometry. b) Color 
pictures (non-calibrated) of the sample presented in Figure 4 6. c) Simulations of a 45° V-cavity 
made of magenta material. d) Corresponding spectra displayed by all facets across the cavity are  
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represented, with a solid line standing for a spectrum on the edge of the cavity, a dashed line 
representing a facet at the fold of the cavity, a dashed magenta line symbolizing the reflectance of 
the flat surface made with the same material, and a solid red line representing the average 
reflectance displayed by the cavity seen from afar, at an (θ,φ) = (0°,0°) angle (frontal view). 
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Figure PF3-2 — Visible area of a 45° magenta V-cavity, illuminated by a directional light source 
following the  45 ,0   direction, as a function of the zenithal angle of observation. The area 
contained in a blue rectangle stands for a positive angle, and the area in the yellow rectangle 
stands for a negative angle.  
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Figure PF3-3  (double page) — Simulated average spectral radiances and colors displayed under 
different viewing angles by a 45° magenta V-cavity under three types of illumination : frontal, 
oblique and collimated at 45°, and diffuse. The observation direction varies from a zenith angle of -
75° to 75° in steps of 15°, with an azimuth angle of 0°. a) Spectral radiances observed: for each  
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zenithal angle of observation, the average spectral radiance is drawn with a solid line for the 
positive range, a dashed line for the negative one. b) Corresponding CIE1976 L*a*b* colors 
projected on the L*C* plane. c) Same colors projected on the a*b* plane. d) E2000 color distance 
between each color and the one corresponding to the frontal view. 
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Figure PF3-4 (double page) — Simulated average spectral radiances and colors displayed under 
different viewing angles by a 45° cyan V-cavity under three types of illumination : frontal, oblique 
and collimated at 45°, and diffuse. The observation direction varies from a zenith angle of -75° to 
75° in steps of 15°, with an azimuth angle of 0°. a) Spectral radiances observed: for each zenithal  
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angle of observation, the average spectral radiance is drawn with a solid line for the positive range, 
a dashed line for the negative one. b) Corresponding CIE1976 L*a*b* colors projected on the L*C* 
plane. c) Same colors projected on the a*b* plane. d) E2000 color distance between each color 
and the one corresponding to the frontal view. 
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Figure PF3-5 – Simulated spectral radiances displayed by a magenta V-cavity for a dihedral angle 
α of 30°, 45°, 60°, 90°, 120°, 150° and 180°, under a frontal collimated lighting and a diffuse 
lighting. The colored rectangles are a color preview of a band of the cavity in each configuration. 
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Figure PF3-6 (double page) — Simulated average spectral radiances displayed by a magenta V-
cavity with a dihedral angle varying from 30° to 180° in steps of 15°, under a frontal lighting 
 0 ,0   (top row) and a diffuse lighting (bottom row). a) Spectral radiances observed. b) 
Corresponding CIE1976 L*a*b* colors projected on the L*C* plane. c) Same colors projected on the 
a*b* plane. d) E2000 color distance between each color and the one corresponding to the flat 
surface. 
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Figure PF3-7 (double page) — Simulated average spectral radiances displayed by a cyan V-cavity 
with a dihedral angle varying from 30° to 180° in steps of 15°, under a frontal lighting  0 ,0   
(top row) and a diffuse lighting (bottom row). a) Spectral radiances observed. b) Corresponding 
CIE1976 L*a*b* colors projected on the L*C* plane. c) Same colors projected on the a*b* plane. d) 
E2000 color distance between each color and the one corresponding to the flat surface. 
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Figure PF3-8 (double page) — Simulated average spectral radiances displayed by a yellow V-cavity 
with a dihedral angle varying from 30° to 180° in steps of 15°, under a frontal lighting  0 ,0   
(top row) and a diffuse lighting (bottom row). a) Spectral radiances observed. b) Corresponding 
CIE1976 L*a*b* colors projected on the L*C* plane. c) Same colors projected on the a*b* plane. d) 
E2000 color distance between each color and the one corresponding to the flat surface.. 
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Figure PF3-9 (double page) — Simulated average spectral radiances displayed by a Munsell green 
V-cavity with a dihedral angle varying from 30° to 180° in steps of 15°, under a frontal lighting 
 0 ,0   (top row) and a diffuse lighting (bottom row). a) Spectral radiances observed. b) 
Corresponding CIE1976 L*a*b* colors projected on the L*C* plane. c) Same colors projected on the 
a*b* plane. d) E2000 color distance between each color and the one corresponding to the flat 
surface.. 
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Figure PF3-10 (double page) — Simulated average spectral radiances displayed by a Munsell 
orange V-cavity with a dihedral angle varying from 30° to 180° in steps of 15°, under a frontal 
lighting  0 ,0   (top row) and a diffuse lighting (bottom row). a) Spectral radiances observed. b) 
Corresponding CIE1976 L*a*b* colors projected on the L*C* plane. c) Same colors projected on the 
a*b* plane. d) E2000 color distance between each color and the one corresponding to the flat 
surface.. 
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Figure PF3-11 (double page) — Simulated average spectral radiances displayed by a white V-
cavity (1 sheet of paper) with a dihedral angle varying from 30° to 180° in steps of 15°, under a 
frontal lighting  0 ,0   (top row) and a diffuse lighting (bottom row). a) Spectral radiances 
observed. b) Corresponding CIE1976 L*a*b* colors projected on the L*C* plane. c) Same colors 
projected on the a*b* plane. d) E2000 color distance between each color and the one 
corresponding to the flat surface. 
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Figure PF3-12 (double page) — Simulated average spectral radiances displayed by a bright white 
V-cavity (5 sheets of paper) with a dihedral angle varying from 30° to 180° in steps of 15°, under a 
frontal lighting  0 ,0   (top row) and a diffuse lighting (bottom row). a) Spectral radiances 
observed. b) Corresponding CIE1976 L*a*b* colors projected on the L*C* plane. c) Same colors 
projected on the a*b* plane. d) E2000 color distance between each color and the one 
corresponding to the flat surface. 
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Figure PF3-13 — Simulated average CIE1976 L*a*b* colors of all V-cavities previously presented 
for both a frontal collimated lighting and a diffuse lighting; projected on the a*b* plane.  
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Figure PF3-14 (double page) — Simulated average spectral radiances and colors displayed by flat 
surfaces and 45° cavities made of two metameric materials, under frontal lighting (left page) and 
diffuse lighting (right page). a) Color previews of a band of the flat surfaces and the 45°V-cavities, 
their respective average color and DE2000 color distance between the two materials. b) Variation  
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of the DE2000 color distance as a function of the position in the cavity. c) Average spectral 
radiances of the four samples presented in a). d) Corresponding CIE 1976 L*a*b* colors projected 
on the L*C* plane and the a*b* plane. 
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Figure PF3-15 (double page) — Spectral radiances and color previews of structured surfaces with 
45° V-shaped ridges whose sides are tinted with two different colored materials always face each 
other, cyan and yellow, under four types of lighting: frontal (a, e), oblique at (θ, ϕ) = (45°,0°) (b, f) 
and (θ, ϕ) = (-45°,0°) (c, g), and diffuse (d, h). Top row (a, b, c, d): Alternation of cyan and yellow 
panels: the cyan panel is always on the left of the cavity, therefore the yellow panel on the right.  
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Bottom row (e, f, g, h): The cyan panel is alternatively on the left and on the right. In each case, 
the color preview of the structured surface is presented alongside with the average spectral 
radiances displayed in various directions of observation with the zenithal angle θ ranging from -
75° to θ = 75° and the azimuthal angle φ being 0°. The spectral corresponding to negative angles 
are represented with dotted lines, and the ones corresponding to positive angles with a solid line. 
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Figure PF4-1 — Top row: maps of the maximum number of reflections for each observation 
direction. Following rows: Color maps of hemispherical-directional reflectance for various 
materials, obtained with different dihedral angle of cavity, represented with the Lambert 
azimuthal equal area projection. 
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Figure PF4-2 — Top row: Average spectral hemispherical-directional reflectance factors displayed 
by two chromatic metals, copper and gold, for various dihedral angles α of cavities and various 
observation angles (the lighting is diffuse). Bottom row: Corresponding CIE1976 L*a*b* color 
values projected onto the L*C* plane. 
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Figure PF4-3 — Average spectral bi-hemispherical reflectances (top row), and corresponding 
CIE1976 L*a*b* color values projected on the L*C* plane (middle row) and the a*b* plane 
(bottom row) of V-ridged surfaces in copper. Left column: the ridges are parallel and all similar 
(periodical structure), the different simulations rely on different dihedral angles α. Right column: 
the ridges are parallel but their dihedral angle is variable and follows a distribution function, 
parameterized by various roughness values.   
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Figure PF4-4 — Average spectral bi-hemispherical reflectances (top row), and corresponding 
CIE1976 L*a*b* color values projected on the L*C* plane (middle row) and the a*b* plane 
(bottom row) of V-ridged surfaces in gold. Left column: the ridges are parallel and all similar 
(periodical structure), the different simulations rely on different dihedral angles α. Right column: 
the ridges are parallel but their dihedral angle is variable and follows a distribution function, 
parameterized by various roughness values. 



40 
 

 
Figure PF4-5 — Average spectral bi-hemispherical reflectances (top row), and corresponding 
CIE1976 L*a*b* color values projected on the L*C* plane (middle row) and the a*b* plane 
(bottom row) of V-ridged surfaces in silver. Left column: the ridges are parallel and all similar 
(periodical structure), the different simulations rely on different dihedral angles α. Right column: 
the ridges are parallel but their dihedral angle is variable and follows a distribution function, 
parameterized by various roughness values. 
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Figure PF4-6 — Average spectral bi-hemispherical reflectances (top row), and corresponding 
CIE1976 L*a*b* color values projected on the L*C* plane (middle row) and the a*b* plane 
(bottom row) of V-ridged surfaces in aluminum. Left column: the ridges are parallel and all 
similar (periodical structure), the different simulations rely on different dihedral angles α. Right 
column: the ridges are parallel but their dihedral angle is variable and follows a distribution 
function, parameterized by various roughness values. 
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Figure PF4-7 — Average spectral bi-hemispherical reflectances (top row), and corresponding 
CIE1976 L*a*b* color values projected on the L*C* plane (middle row) and the a*b* plane 
(bottom row) of V-ridged surfaces in silicon. Left column: the ridges are parallel and all similar 
(periodical structure), the different simulations rely on different dihedral angles α. Right column: 
the ridges are parallel but their dihedral angle is variable and follows a distribution function, 
parameterized by various roughness values. 
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Figure PF5-1 (double page) — Comparison between spectral radiances exhibited by the facets of a 
45° V-cavity made of an interfaced Lambertian material, under frontal illumination and frontal 
view, simulated according to various parameters. Top row: variation of the radiances has 
functions of the reflectance R of the flat surface. Bottom row: spectral radiances exhibited by a 
magenta material; the colored bands below the graphs are a color preview of a band of cavity. The 
simulations are computed a) for a relative refractive index of the interface n = 1.5, 
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by discarding every specular reflection within the cavity, b) for a relative refractive index of the 
interface n = 1.5, by taking into account the rays specularly reflected once, as allowed by the model, 
c) for a relative refractive index of the interface n = 1.33, with the same model as b), and d) for a 
relative refractive index of the interface n = 1, which corresponds exactly to the (non-interfaced) 
Lambertian surface.  
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FIG PF5-2 — Left column: Projection on the L*C* plane of the CIE1976 L*a*b* colors displayed by 
the facets of an interfaced Lambertian 45° V-cavity made of magenta material when the refractive 
index is either 1 (top, which coincides with a non-interfaced Lambertian cavity), 1.33 (middle), or 
1.5 (bottom). See the corresponding spectral radiances in Figure PF5-1. Right column: DE2000 
color distance between the colors displayed by a facet when n = 1 and n= 1.33 (middle) or 1.5 
(bottom), as a function of the facet position y.  

 


