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Abstract 
The Southern westerly winds (SWW) play an important role in regulating Southern Ocean 

carbon budget by enhancing the absorbance of atmospheric CO2 or resurfacing deep ocean 

carbon. Changes in SWW intensity are thought to determine whether Southern Ocean acts as a 

net CO2 sink or source, thereby affecting atmospheric CO2 concentration and then global 

climate. SWW also affect Southern Hemisphere (SH) dust trajectory and mercury 

biogeochemical cycling, which in turn can be used to trace SWW dynamics. Less is known 

about the past SWW variabilities and historical mercury cycle. The aim of this PhD study is to 

improve our understanding of the SWW trend and mercury deposition in the Holocene at 

remote SH sites by using geochemical and isotopic proxies in peat archives. We investigated 

Amsterdam Island (AMS) peat record coupled with three other peatlands in the SH mid 

latitudes as long-term archives of atmospheric dust and/or mercury deposition. At the northern 

edge of SWW and free from anthropogenic disturbance, AMS is a key site to study SWW 

dynamics. We find that during the Holocene, dust and mercury deposition at AMS oscillated 

on millennial time scales. Mercury isotope signatures, which are sensitive to rainfall inputs, 

indicate that high dust, high mercury events correspond to low rainfall. We suggest that these 

events were caused by a poleward shift of the SWW at AMS. The peat mercury records also 

inform on recent, human perturbation of the natural mercury cycle in the SH. We find however 

that the 4-fold anthropogenic mercury enrichment we observe in the SH since 1450AD, is 

smaller than the 16-fold enrichment in the northern hemisphere. These scientific contributions 

should help improve global climate models and international environmental policy under the 

Minamata convention on mercury.  
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Résumé 
Les vents de sud-ouest (VSO) de l'hémisphère sud (HS) régularisent les cycles 

biogéochimiques du carbone de l'océan Austral en augmentant l'absorption du CO2 

atmosphérique ou en faisant remonter les éléments nutritifs et le carbone des profondeurs de 

l'océan. Les changements d'intensité des VSO déterminent si l'océan Austral agit comme un 

puits ou une source nette de CO2, affectant ainsi la concentration de CO2 atmosphérique et donc 

le climat. Les VSO régularisent également la trajectoire des poussières dans l’HS et le cycle 

biogéochimique du mercure, ces deux paramètres pouvant donc être utilisés en retour pour 

suivre la dynamique des VSO. Or, les variabilités des VSO passées et sur le cycle historique 

du mercure sont mal connus. L'objectif de cette étude doctorale est d'améliorer la 

compréhension de la dynamique des VSO et du Hg atmosphérique d’abord dans un contexte 

de variabilité climatique naturelle puis sur une période affectée par le changement global en 

HS. Nous avons étudié l'enregistrement de la tourbe de l'île d'Amsterdam (AMS) ainsi que de 

trois autres tourbières situéesaux latitudes moyennes de l'SH, comme archives à long terme de 

la poussière atmosphérique et/ou du dépôt de mercure. A la limite nord des VSO et libre de 

perturbation anthropique, AMS est un site clé pour l'étude de la dynamique des VSO. Nous 

avons révélé qu’au cours de l'holocène, les dépôts de poussières et de Hg à AMS ont oscillé 

sur des échelles de temps millénaires. Les signatures isotopiques du Hg, sensibles aux 

précipitations, indiquent que des épisodes de fortes concentrations de poussières et de Hg 

correspondent à de faibles précipitations. Nous suggérons que ces événements ont été causés 

par un transfert polaire du VSO à AMS. Les dépôts de Hg reconstruits montrent également que 

le quadruplement du Hg anthropique observé dans l’HS depuis 1450 reste inférieur à 

l'enrichissement dans l'hémisphère nord, multiplié par 16 pendant la même période. Ces 

contributions scientifiques permettront d’améliorer les modèles climatiques et la politique 

environnementale internationale dans le cadre de la convention de Minamata sur le Hg.
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Extended abstract 
The Southern westerly winds (SWW) are one of the main Southern Hemisphere (SH) 

climatic features, which regulate the Southern ocean carbon sink, mercury (Hg) 

biogeochemical cycles and dust trajectories from Southern South America, Southern Africa 

and Australia. Changes in SWW intensity are thought to determine whether Southern Ocean 

acts as a sink or source of CO2, therefore affecting atmospheric CO2 concentration and then 

global climate. Less is known about the long-term SWW variabilities, which hampers a 

thoroughful assessment on the relationship between SWW dynamics and atmospheric CO2. 

Atmospheric dust deposition to mid-latitude SH records information of SWW dynamics. 

Atmospheric Hg mainly exists as gaseous elemental Hg (Hg0, >95%), which has a long 

atmospheric lifetime (months), allowing its hemispheric dispersion before deposition to the 

Earth’s surface, including remote areas. Hg has seven stable isotopes that fractionate both mass 

dependently (MDF) and mass independently (MIF) during source mixing and Hg 

transformation. Hg even-isotope MIF (reported as Δ200Hg) is conservative in the Earth’s 

surface environment, with distinct signatures in different Hg deposition end-members (rainfall 

HgII and gaseous Hg0). This gives an insight to investigate the SH mid-latitude Hg rainfall HgII 

deposition and subsequently the principal climate driver, SWW. Hg is a toxic element. The 

extent of anthropogenic Hg enrichment in the SH relative to the natural background period 

(<1450AD, before large-scale Spanish mining) remains unclear.  

This PhD research focuses on the SWW variabilities in the Holocene and historical Hg 

deposition by studying the time-series variations of two atmospheric proxies, dust and Hg, both 

of which can derive from natural and anthropogenic emissions. Natural peat deposits can be 

used as archives of past atmospheric dust and Hg deposition. Peat bogs are exclusively fed by 

atmospheric input and therefore ideal atmospheric recorders. We principally use a peat bog 

profile from Amsterdam Island (AMS) as a main historical archive, coupled with three other 

bogs from the Falkland Islands (Islas Malvinas), and Tierra del Fuego (Argentina). AMS, 

located at the northern edge of SWW, is sensitive to the change in wind intensity. 

In this thesis, Chapter 1 estabilishes a robust chronology for the AMS peat core and shows 

distal dust input to AMS peatland. Chapter 2 quantifies the amount of dust input to AMS peat 

from different potential sources and shows oscillated SWW at the northern edge of the wind 

belts in the Holocene. Chapter 3 attemps to develop a new SWW proxy by using mercury 
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isotopes. Chapter 4 focuses on historical mercury deposition, which highlights that atmospheric 

background Hg levels in the NH and SH are different. 

AMS recent peat chronology is established by the 210Pb Constant Rate of Supply (CRS) 

model, which is validated by peaks of artificial radionuclides (137Cs and 241Am) that are related 

to nuclear weapon tests. The AMS 210Pb flux results coupled with an updated global 210Pb data 

compilation show that an important quantity of continental dust is deposited over this island 

(Chapter 1). Using REE and Nd isotope mass balance calculations, we find Southern South 

America as a dominant atmospheric dust contributor (~45%) to AMS over the past 6.6 kyr. 

Local AMS dust sources contribute 40%, while Southern Africa contributes the remaining 15% 

(Chapter 2). Two mineral dust flux minima occur during 6.2-4.9 cal. kyr BP and 3.9-2.7 cal. 

kyr BP, interpreted as periods with equatorward-shifted and/or strengthened SWW at its 

northern edge. These interpretations are based on higher wind speeds leading to removal of 

distal dust on the way to AMS, by turbulence and enhanced wet deposition. We find that AMS 

peat Δ200Hg, a proxy for rainfall Hg, covaries with low dust and low Hg deposition and is in 

agreement with the dust-based SWW variability (Chapter 3). Our results, therefore, give the 

first insight to use Hg isotopes as a climatic rainfall paleoproxy.  

Recent peat layers show larger, 1.0‰, Δ199Hg variability from mid-19th to mid-20th 

centuries that could reflect changes in the isotopic composition of the SH atmospheric Hg pool 

in response to growing industrial emissions and/or changes in Hg photochemistry (Chapter 3). 

Our study also shows a doubling of the Southern African dust contribution to AMS in the last 

100 years relative to the long past (Chapter 2). This recent shift in dust provenance is not 

accompanied by enhanced dust deposition at AMS. We therefore suggest that land degradation, 

agriculture and dryer climate conditions in Southern Africa have led to enhanced dust 

mobilization in the last 100 years.  

Four SH peat Hg profiles have contributed to the under-represented SH Hg dataset, 

showing a x3 increase in atmospheric Hg deposition since pre-industrial times (1450-1880AD). 

After reviewing 18 other SH sediment and 3 peat core, and updating the NH historical Hg peat 

and sediment database, we find that the all-time Hg increase (from pre-1450AD to 20th century) 

is x16 in the NH and x4 in the SH (Chapter 4). We attribute this difference to a combination of 

lower anthropogenic Hg emissions in the SH, and higher marine SH Hg emissions, supported 

by x2 higher natural background Hg accumulation in the SH peat. Our findings suggest that 

background Hg levels in both hemispheres are different and should be taken into account in 

international Hg assessment reports and environmental policy objectives.
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Résumé étendu 

Les vents du Sud-Ouest (VSO) sont l'une des principales caractéristiques climatiques de 

L’hémisphère Sud (HS). Ils régulent le puits de carbone de l'océan Austral, les précipitations 

et les trajectoires de poussières des latitudes moyennes du Sud de l'Amérique du Sud, de 

l'Afrique australe et de l'Australie. Les dépôts de poussières atmosphériques sur les continents 

et les îles de l’HS incorporent à leur tour des informations sur la dynamique des VSO. Le 

mercure atmosphérique existe principalement sous forme de Hg élémentaire gazeux (Hg0,> 

95%), d’une durée de vie suffisamment longue (6-12 mois) dans l’atmosphère pour permettre 

sa dispersion hémisphérique avant son dépôt à la surface terrestre, y compris dans des régions 

éloignées. L'ampleur de l'enrichissement anthropique en Hg dans l’HS par rapport à la période 

naturelle de référence reste incertaine (<1450AD, avant l'extraction minière à grande échelle 

en Espagne). Le Hg est caractérisé par sept isotopes stables dont les masses fractionnent de 

façon dépendante (MDF) et indépendante (MIF) lors des transformations du Hg. Le MIF du 

Hg à isotopes pairs (rapporté par Δ200Hg), qui résulte de réactions photochimiques en haute 

atmosphère, présente des signatures distinctes selon le mode de dépôt (précipitations HgII et 

Hg0 gazeux). Les dépôts de tourbe peuvent être utilisés comme archives des dépôts de 

poussières atmosphériques et du mercure (Hg) au cours de l’Holocène. 

 

Cette thèse de doctorat porte sur les variations de deux variables atmosphériques au cours 

de l’Holocène et dans l’Hemisphéère Sud: les poussières et le Hg, pouvant toutes deux provenir 

d'émissions naturelles et anthropiques. Les tourbières sont exclusivement alimentées par les 

apports atmosphériques et sont donc des enregistreurs atmosphériques idéaux. Nous avons 

principalement étudié un profil de tourbière bien daté de 6.6 kyr de l'île d'Amsterdam (AMS, 

Océan Indien, extrémité nord-ouest de VSO), ainsi que de trois tourbières des îles Malouines 

et de Terre de Feu (Argentine). 

 

Nos résultats de 210Pb à AMS, associés à une compilation de données 210Pb globale 

actualisée, montrent qu'une quantité importante de poussières continentales se dépose sur cette 

île (Chapter 1). En utilisant les calculs du bilan de masse à partir des données des terres rares 

(REE) et des isotopes du Nd, nous trouvons que l’Amérique du Sud contribue pour environ 45% 

à ces dépôts de poussière atmosphérique sur l’AMS au cours des derniers 6,6 kyr (Chapter 2). 

La contribution de l’Afrique Australe s’élève à 15%, tandis que les sources de poussières 
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locales d’AMS représentent 40%. Deux périodes de flux minimal de poussières minérales sont 

enregistrées entre 6.2 et 4.9 kyr BP et 3.9-2.7 cal. kyr BP, et interprétées comme des périodes 

de mouvement équatorial et/ou de renforcement des VSO à leur limite nord. Ces interprétations 

sont basées sur des vitesses de vent plus élevées conduisant à l’élimination de la poussière 

distale sur son trajet menant à AMS, par turbulence et augmentation du dépôt humide. Nous 

constatons que le Δ200Hg (témoin de dépôt humides du Hg) enregistré à dans la tourbe de AMS 

correspond à un faible dépôt de poussières et de Hg (Chapter 3). Ceci est en accord avec la 

variabilité des VSO basée sur les poussières. Nos résultats offrent donc un premier aperçu de 

l’utilisation des isotopes du Hg en tant que paléoproxy des précipitations climatiques. Notre 

étude montre un doublement de la contribution de la poussière d’Afrique Australe à AMS au 

cours des 100 dernières années. Cette augmentation récente ne s'accompagne pas d'un 

accroissement du dépôt de poussière global. Nous suggérons donc que la dégradation des sols, 

l'agriculture et les conditions climatiques plus sèches en Afrique Australe ont conduit à une 

augmentation de la taille des zones sources mobilité accrue de la poussière. 

 

Les profils de Hg des quatre tourbières de cette étude contribuent à la base de données 

globale du mercure en apportant un nombre conséquent de nouvelles données pour l’HS.  Nos 

données montrent un triplement des dépôts atmosphériques de Hg depuis l’ère préindustrielle 

(1450-1880AD). Après avoir examiné 18 sondages sédimentaires et 5 de tourbe de l’HS, et mis 

à jour la base de données historique de l’HN, nous pouvons montrer que l'augmentation absolue 

du Hg (d'avant 1450AD au 20ème siècle) est d’un facteur 16 dans l’HN et 4 dans l’HS (Chapter 

4). Nous attribuons cette différence à une combinaison d'émissions anthropiques de Hg plus 

faibles dans le SH, et d'émissions marines de Hg plus élevées dans le SH, soutenues par une 

accumulation de Hg de fond naturel x2 plus élevée dans la tourbe du SH. Nos conclusions 

suggèrent que les niveaux atmosphériques de Hg dans les deux hémisphères sont différents et 

doivent être pris en compte dans les rapports internationaux d'évaluation du Hg et la politique 

environnementale internationale en appuie de la Conventions de Minamata sur le Hg.
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General introduction 

1. Southern Hemisphere atmospheric circulations  

More than ¼ of the CO2 released from anthropogenic activities is absorbed by the global oceans, 

which substanstially slows down the rate of climate change (Sabine et al., 2004). The capacity 

of oceans to absorb CO2 depends on the main processes of sequestration of carbon at the ocean 

surface (e.g., diffusion and biological carbon pump) and the subsequent transport from surface 

to the deep ocean and sediments. Conversely, oceans can also emit CO2 to the atmosphere from 

deep ocean by the processes, such as, upwelling and outgassing. The balance between these 

two sets of processes determines whether oceans act as a net source or sink of CO2. The 

Southern Hemisphere (SH) consists of 81% ocean areas, marking the importance of ocean 

circulation on SH biogeochemistry, ecology and climate. Ocean currents, which convey ocean 

carbon, are principally driven by atmospheric circulations (Munk and Palmen, 1951). 

Atmospheric circulations are key control factors of SH climate in the past (Menviel et al., 2018; 

Saunders et al., 2018), the present (Ogawa and Spengler, 2019) and the future (Swart and Fyfe, 

2012; Bell et al., 2019).  

One of the main SH atmospheric circulation features is the easterly winds within its 

corresponding Hadley cell (0-30°S, Hadley, 1735), which controls the spatial distribution of 

both the tropical rainfall and atmospheric meridional heat transport (Donohoe et al., 2013). The 

tropical rainfall maximum area, named intertropical convergence zone (ITCZ, Figure 1), lies 

in the near-equatorial trough and constitutes the ascending branch of the Hadley circulation 

(Waliser and Gautier, 1993). The ITCZ is formed by the encounter of maritime moist-hot air 

and continental dry-hot air, leading to high convection, cloudiness and precipitation within the 

trade wind zone. The ITCZ plays an important role in regulating the atmospheric energy 

balance by releasing heat during convection and via the planetary albedo by increasing cloud 

formation (Waliser and Gautier, 1993). The migration and structure of the ITCZ depend on the 

seasons and the interhemispheric thermal gradient (Donohoe et al., 2013). ITCZ dynamics can 

affect the shifts in the eddy-driven westerlies and subsequently the global warming in the 

context of anthropogenic climate change (Ceppi et al., 2013). 
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Figure 1. Positions of 

Intertropical Convergence Zone 

(ITCZ) and Southern Westerly 

Winds (SWW) (Toggweiler, 

2009). 

Another important SH climate features is the southern westerly winds (SWW), which 

prevail between 30 and 60°S with its core belt at ca. 50 - 55°S (Saunders et al., 2018, Figure 

2). The position and intensity of SWW vary seasonally due to changes in the sea surface 

temperature. During the austral winter, SWW shift equatorward and expand, while during the 

austral summer, SWW move poleward and contract. The SWW dynamics regulate Southern 

Ocean carbon sink, SH mid-latitude climate, and Southern African, Australian and Southern 

American aeolian dust trajectories. The displacement of SWW affects the volume of 

precipitation in SH mid-latitude (e.g., Central Chile, Jenny et al., 2003). SWW are the main 

driving force of the Antarctica Circumpolar Current - the world’s largest current flowing from 

the west to the east, connecting the Atlantic, Indian and Pacific oceans. SWW can transport the 

surface waters to the northern side of the wind belt, leading to upwelling to the south of the 

wind stress maximum (resurfacing waters from 2-3 km deep) and downwelling to the north 

(Rintoul, 2010). SWW can also carry dust over long distance from continental sources to 

remote sites (e.g., Antarctic, Gili et al., 2017).  

The Southern Ocean south of 30°S, accounts for approximately 43% of the global oceanic 

uptake of anthropogenic CO2 over the historical period (Frölicher et al., 2013). By resurfacing 

more deep ocean carbon or enhancing more CO2 sequestration at the ocean surface, changes in 

the SWW intensity through time are thought to determine whether the Southern Ocean acts as 

a net source, or sink, of CO2 (Menviel et al., 2018; Landschützer et al., 2015; Hodgson and 

Sime, 2010; Toggweiler and Russell, 2008; Thompson and Solomon, 2006; Hodgson, personal 

communication). This affects atmospheric CO2 concentration and then global climate. 

Some models and observations have suggested that the capacity of Southern Ocean to 

absorb CO2 has weakened under the scenario of increased atmospheric CO2 and strengthened 
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SWW (Le Quéré et al., 2007; Saunders et al., 2018). In this scenario, SWW enhance ocean 

mixing drawing deep waters with high concentrations of dissolved inorganic carbon to the 

surface, limiting its capacity to obsorb atmospheric CO2 (Hodgson and Sime, 2010). This 

means that Southern Ocean may no longer function as a net sink of CO2. As a result, there 

might be a higher level of stabilization of atmospheric CO2 (Le Quéré et al., 2007), which will 

enhance global warming. In contast, observations coupled with biogeochemistry models have 

indicated a strengthened Southern Ocean CO2 sinks since 2002 resulting from an increased 

zonal asymmetry in SH atmospheric circulation (Landschützer et al., 2015). Similarly, a model 

study suggests that poleward-intensified SWW have strengthened the Southern Ocean carbon 

sink (Russell et al., 2006). Poleward-intensified SWW are suggested to reduce oceanic 

stratification and allow Southern Ocean to remove anthropogenic CO2 from the atmosphere 

(Russell et al., 2006). 

Paleoclimate science offers a unique opportunity to investigate the SWW dynamics by 

providing long-term reconstructions of changes in their strength and position. The 

reconstructions can be achieved by investigating the wind proxies within different natural 

archives (ice, sediment and peat) in different SH regions. Numerous archive-based studies have 

attempted to reconstruct past SWW variability in three different sectors (northern edge with 

~35-45°S, core section at ~50-55°S and southern edge below-55°S). The wind variabilities at 

the northern edge, the core belt and the southern edge of the SWW can be dependent or 

independent from one another, which highlights the complexity of the SWW dynamics (e.g., 

Lamy et al., 2001; 2010; Moreno et al., 2010; Lindvall et al., 2011; Van der Putten et al., 2012; 

Voigt et al., 2015; Saunders et al., 2018). Even though at similar latitude but different longitude, 

SWW may be recorded with distinct behaviors. For example, during 3-1 cal. kyr BP, Moreno 

et al., (2010) suggests a poleward-shifted SWW based on pollen signatures from lake sediment 

at 41°S in Southern Chile, while Voigt et al., (2015) indicates an equatorward-shifted SWW 

derived from oxygen isotope composition in marine sediment at 38°S in Western South 

Atlantic. So far, most field studies related to the past SWW dynamics have been conducted in 

Southern South America (e.g., Lamy et al., 2010; Xia et al., 2018), Southern Africa (e.g., 

Humphries et al., 2017; Chase et al., 2017) and Australia (e.g., Shulmeister et al., 2004; Marx 

et al., 2011). By comparison, less attention has been given to SWW records from oceanic 

islands (e.g., Amsterdam Island, Diego Ramirez Island, Macquarie Island, Saunders et al., 

2018), which have minimal continental complex orographic effects and regional climatic 

effects (e.g., monsoon climate in Australia), and able to directly record SWW variations.  
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Figure 2. Southern Westerly Winds (SWW) and wind speeds. White diamond is the location 

of Amsterdam Island (AMS), which is the main study site of this PhD. The core SWW belt is 

between 50-55°S. Arrows show wind direction. (Modified from Saunders et al., 2018) 

2. Amsterdam Island peat as an archive of Southern Westerly Winds dynamics 

Amsterdam Island (AMS, 55 km2), is located at the northern edge of SWW and halfway 

between Southern African continent and Australia (Figure 2). This island is sensitive to the 

changes in the SWW and free from anthropogenic influence. It is an ideal site to study the past 

SWW variabilities. Ombrotophic peatlands, archives of atmospheric deposition, are 

widespread in AMS. Details on AMS see the description on “study site” in Chapter 1, 2 and 3. 

2.1 Peatlands as archives of atmospheric deposition 

A peatland is an ecosystem characterized by organic soils from the accumulation of 

decomposed plant materials. The organic matter is produced and deposited at a greater rate 

than it is decomposed, which leads to the formation of peat. Peat net mass accumulation (g m-

2 yr-1) is the balance between annual net primary production and annual decomposition, 

regardless of geographic location (Wieder and Lang, 1983). Peat mass is added at the surface 

and the material will decay after death. The decomposition processes, which cause the collapse 

of the peat, mainly occur in aerobic conditions (Clymo, 1984) and above the water table. This 

part of the peat column is referred as the acrotelm (Ingram, 1978). Below the water table, 

conditions are anaerobic with low oxygen diffusion in water (Clymo, 1984) and this part of the 
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profile is referred as the catotelm (Ingram, 1978). In this section, the decay rate of most 

materials by anaerobic microflora is much lower than that in aerobic conditions.  

Peatlands are estimated to occupy 3.5 million km2, covering 3% of the Earth’s land surface 

(Gorham, 1991; Lappalainen et al., 1996, Figure 3). More than 85% of the peatlands are 

distributed in the Northern Hemisphere, under cold temperate climates and high humidity, 

covering Europe, Russia and North America. Only a small proportion of peatlands (<10%) 

exists in Southern America, Southern Africa, Australia, New Zealand and small oceanic islands 

in the Southern Hemisphere (e.g., Amsterdam Island, The Falkland Islands (Islas Malvinas)).  

 

Figure 3.  Global Peat Ressources. (Redrawn after Lappalainen 1996). 

Peatlands are sensitive to changes in the local hydrological regime and mineral inputs 

under both climate change and basin geomorphology alternation (e.g., Charman et al., 2009; 

Mitsch and Gosselink, 2015). Peat cores as environmental archives have the advantages of: 1/ 

being easy to access due to its worldwide-spread status, especially in the mid-latitudes; 2/ 

covering Holocene or beyond and 3/ well preserving climatic/atmospheric signals (e.g., 

macrofossils and chemical elements). Peat cores can be used to reconstruct paleoclimate 

variability under investigations on multi proxies from biological aspect (e.g., pollen, 

macrofossils, diatoms and testate amoebae) or from geochemical and isotopic perspectives (e.g., 

minerogenic input and gas uptake). 
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Ombrotrophic Peatland, one type of peatlands, exclusively receive nutrients, water and 

pollutants/chemicals from the atmosphere. They are unique to atmospheric deposition study 

and have been proven to be reliable archives for particle deposition (e.g., dust, Shotyk et al., 

2001; De Vleeschouwer et al.,2014; Kylander et al., 2018) and gas deposition (e.g., Hg0, Enrico 

et al., 2016; 2017).  

2.2 Reconstructions of peat chronology 

Absolute age constraint plays a fundamental role in reconstructing past climate variability in 

the environmental archives. Methods by radiocarbon dating (conventional 14C and post-bomb 

14C) and 210Pb are widely used in peat studies. Radiocarbon (14C) dating method was discovered 

by W.F. Libby, (1949) 70 years ago, which is one of the most reliable dating approaches for 

the whole Holocene. 14C is the only radioactive form of three natural carbon isotopes (12C, 13C 

and 14C), with a half-life of 5730 ± 40 years (Godwin, 1962). 14C constitutes of a tiny amount 

of total carbon, e.g., ~1.2 * 10-10% in the troposphere (Olsson, 1968). 14C is continuously 

produced in the lower stratosphere and upper troposphere by the interaction of the secondary 

neutron flux from cosmic ray with atmospheric 14N (Hua, 2009; Gäggeler, 1995). Once 

produced, 14C is oxidized to 14CO2 and subsequently diffuses throughout the Earth Surface. 

Terrestrial living organisms can take up CO2 from the atmosphere, with 14C/C ratio similar to 

that in the atmosphere. Once the organisms die, they stop exchanging the 14CO2 with 

atmosphere. Then 14CO2 decays gradually to 14N. Based on the remaining 14C content and the 

decay rate, one can calculate the time (14C age) when the organism died. Peat is mainly formed 

by organic matters, rich in C content (Charman, 2002). Macrofossils (e.g., Sphagnum, moss) 

from the peat are generally selected for 14C dating.  

210Pb, a natural radioactive isotope of lead, is a decay product of 222Rn. The decay 

processes occur in both atmosphere and the soil. The 210Pb faction of atmospheric origin is 

called “unsupported 210Pb”, which is used to reconstruct the recent age by Constant Rate Supply 

(CRS) and Constant Initial Concentration (CIC). CRS model assumes a constant rate of 210Pb 

supply irrespective of any variations which may have occurred in the sedimentation rate, while 

CIC model assumes a constant initial 210Pb concentration regardless of any changes in the 

sedimentation rate (Appleby and Oldfield, 1978). There are many cases that can lead to 

invalidity in both CRS and CIC models, such as, mixing of the surficial sediment by physical 

and biological processes (Appleby, 2001), and Pb mobility during the post-depositional stage. 

In this case, some independent dating proxies are needed to validate the CRS or CIC models. 

A widely application of chronomarkers are 137Cs and 241Am, which are mainly produced during 
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the nuclear test from 1950s to 1960s with peaking at 1963, and during Chernobyl accident at 

1983. Ombrotrophic peatlands receive 210Pb fallout by atmospheric deposition. If CIC model 

is applicable, the unsupported 210Pb concentration in the peat colume must show a monotonic 

decline with depth (Appleby and Oldfiled, 1983). Considering the organic decay characteristic 

of peat, the CIC model may be inappropriate for dating peat accumulations (Appleby and 

Oldfield, 1992; Appleby et al., 1997). Numerous researches have successfully applied CRS 

models to the peat archives with validation by chronomarkers (e.g., 137Cs and 241Am, Olid et 

al., 2013) and/or comparison to post-bomb age (e.g., Davis et al., 2018). 

Post-bomb 14C is different from the conventional 14C, with the former of anthropogenic 

origin and the latter from natural source. Post-bomb calibration curves can be applied to the 

age reconstruction over the last 70 years (Hua et al., 2013). The tropospheric bomb 14C start to 

rise in the mid-1950s with peaking in the 1960s due to the influences of aboveground nuclear 

explosions. At mid to high latitudes, the value of peaked bomb 14C at 1963-1964 almost doubles 

its pre-bomb level (e.g., Levin et al., 1985). The post-bomb era lasts up to very recent time with 

a decreasing trend of atmospheric 14C since 1964 (Hua et al., 2013). The decreased atmospheric 

14C signature results from the cease of the nuclear detonations and exchange between 

hemispheres. The bomb 14C from nuclear test in the atmosphere will die out at ca. 2030 AD 

and cannot serve any longer as an age indicator for the periods after 2030.  

Age-depth model can be generated with a sequence of 14C dates and/or calibrated calendar 

ages based on 210Pb or post bomb using classical age modelling (Clam, Blaauw, 2010) or 

Bayesian methods (Bacon, Blaauw and Christen, 2011). Clam can generate age-depth model 

in the forms of linear interpolation, linear/polynomial regression and smoothed/cubic splines 

with calibrated 14C dates (Blauuw, 2010). However, the outliers in the sequence of 14C dates 

can bias the age model leading to some unrealistic changes in the accumulation rate (Blaauw 

and Christen, 2005). Bacon is applied to Bayesian statistics and characterized by the assumed 

constant piecewise accumulation rate. This Bayesian method can be programed with prior 

knowledge, which allows the researchers adjust the model based on the core conditions. 

However, the simplified piecewise constant accumulation rate may smooth from a lesser to a 

greater extent some abrupt change in the deposits. For this case, some additional chronomarkers 

are needed to better reconstruct the age model, such as, tephra (Vandergoes et al., 2013). Both 

of Clam and Bacon methods have been widely applied to the global peat study (e.g., Martinez-

Cortizas et al., 1999; Marx et al., 2009; Piotrowska et al., 2011; Van der Putten et al., 2015). 

The choice of methods should be site specific. 

https://www.sciencedirect.com/science/article/pii/S0168583X09011732#!
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3. Wind proxies based on the transport and provenance of dust 

There are three main groups of wind proxies that used in archive-based studies: 1/ dust 

provenance and flux (e.g., Vanneste et al., 2015; 2016); 2/ sea salt aerosol flux (directly through 

geochemical measurements, and indirectly through diatoms and testate amoebae, e.g., Saunders 

et al., 2018; Whittle et al., 2018); and 3/ rainfall indicators (inferred from macrofossil, pollen, 

lake levels, magnetic susceptibility, and isotopes, e.g., Van der Putten et al., 2015; Jenny et al., 

2003; Lindvall et al., 2011). Below are the introdutions on dust and its potential as wind proxies. 

3.1 Atmospheric dust distribution and transport in the Southern Hemisphere 

Atmospheric Dust is one type of primary aerosol, while sea salt is another type (Raynaud et al., 

2003; Kohfeld and Tegen, 2007). Primary aerosol originates from the dispersal of fine materials 

from the continental areas (so called dust) and ocean surface (so called sea salt). To be specific, 

dust is defined as small particles mostly generated by wind from solid materials in the 

continental regions. Secondary aerosols result from chemical reactions and condensation of 

atmospheric gases and vapors, e.g., sulfate aerosol droplets formed by oxidation of gaseous 

dimethylsulfide emitted from marine biogenic activity (Raynaud et al., 2003). 

Dust emission and deposition are sporadic phenomena, especially in areas close to the 

main dust sources (Jickells and Spokes, 2001). There are four main dust source areas on Earth 

(Bryant et al., 2007; Engelstaedter and Washington, 2007; Prospero et al., 2002; Vickery et al., 

2013; Li et al., 2008): (1) Sahara, Arabian and Gobi deserts in the Northern Hemisphere (NH); 

(2) Kalahari desert in Southern Africa (SAF); (3) Patagonian desert in Southern South America 

(SSA), and (4) the Great Artesian basin desert in Australia (AUS, Figure 4). Desert dust 

emissions from most dust sources have doubled over the 20th century due to anthropogenic 

activities (Mahowald et al., 2010). The current global dust emission is modelled as 2323 Tg yr-

1, with approximately 90% from the NH. AUS shares half of the remaining 10% global dust 

emission with 120 ± 8.4 Tg yr-1. SSA plays a second important role in the SH annual dust 

emission with 50 ± 3.0 Tg yr-1, while SAF contributes 34 ± 2.1 Tg yr-1 (Li et al., 2008). These 

three SH continents (SSA, SAF and AUS) partially fall in the SWW.  SWW can affect the SH 

dust emissions and depositions by regulating the wind speed and humidity. 
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Figure 4. Global distribution of averaged annual dust emission from 1979 to 1998 (kg m-

2 yr-1). The four main dust sources NH, SSA, SAF and AUS represent Northern Hemisphere, 

Southern South America. Southern Africa and Australia, respectively. Dark blue dashed arrows 

represent the main dust trajectories. (Modified from Li et al., 2008) 

Atmospheric dust generally goes through three steps in one full cycle: emission, transport 

and deposition (e.g., Bergametti and Forêt, 2014). Dust generation is a highly complex process 

that is controlled by multiple environmental factors (e.g., wind, dryness and sparsely-covered 

vegetation in the soil surface, Mahowald et al., 2005). Dust can be lifted into the atmosphere 

when high winds pass over the erodible surfaces. When air currents drive the particles along 

the surface, these particles collide with other solids on the ground, breaking them into smaller 

pieces, which may easily become airborne and be entrained into the atmosphere (e.g., Van 

Loon and Duffy, 2017). Wet soil surface and vegetation can stabilize soil dust and limit its 

mobilization by consuming a proportion of the wind momentum (Mahowald et al., 2005). Thus, 

an increase in the non-erodible factors can lower the dust availability. Disturbance of the soil 

surface by anthropogenic activities (e.g., deforestation, agriculture) can facilitate the dust 

generation, by producing substantial amounts of relatively large particles (tens to hundreds μm 

diameter) on the soil surface. These large partciles can be “gripped” and transported by the 

wind (Mahowald et al., 2005). The extra-small particles (i.e., <0.4μm) are not available to wind 

erosion individually, probably due to agglomeration and adhesive binding with other soil 

particles (Tegen and Fung, 1994).  
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When being uplifted into the atmosphere, dust can be transported by prevailing winds over 

hundreds or even thousands of kilometers to remote locations. Saharan dust is carried over long 

distances and deposits over Europe (Le Roux et al., 2012; Conceição et al., 2018; Gobbi et al., 

2019) and the Caribbean Sea (Groß et al., 2016; Velasco-Merino et al., 2018). Dust from the 

Gobi desert is transported over the Eastern Pacific Ocean (Tan et al., 2017; Dong et al., 2018). 

Patagonian dust is transported over thousands of kilometers reaching the west coast of South 

Africa and Australia (Johnson et al., 2011), the Southern Ocean (Neff and Betler, 2015) and 

East and West Antarctica (Gili et al., 2016; Delmonte et al., 2017). Australian dust is exported 

to New Zealand (Brahney et al., 2019) and Antarctica (Sudarchikova et al., 2015; Winton et 

al., 2016). 

The loading of atmospheric mineral dust is controlled by dust sources (e.g., aridity, 

vegetation cover and geology) and climate (e.g., wind strength and airmass circulation) 

(Harrison et al., 2001; Marx et al., 2018; De Deckker, 2019). For example, higher surface wind 

speeds can uplift greater amounts of dust. Increased aridity has the potential to expand source 

areas and decreased atmospheric water content can reduce the washout of sub-micron aeolian 

dust (Mahowald et al., 2005). The current human-climate interaction (e.g., global warming), 

can alter dust mobilization by changing the local vegetation cover (Guan et al., 2016; Brahney 

et al., 2019), and the size of water bodies (Prospero et al., 2002). To study environmental and 

climatic variability, geochemical dust signatures can be used as wind proxies by assessing dust 

flux and origins. 

3.2 Identification of dust origins 

Reconstructions of dust deposition rates and provenances allow us to identify the changes in 

the source areas and transport pathway associated with climate variability and/or anthropogenic 

influence (Marx et al., 2018; De Vleeschouwer et al., 2014; Prospero et al., 2002; De Deckker, 

2019). Proxies used for source fingerprint range from physical properties (e.g., grain size), to 

chemical signatures (e.g., rare earth elements), and to isotope compositions (e.g., Neodymium 

(Nd), Strontium (Sr), Lead (Pb)). Regardless of its nature (physical, chemical and isotopic 

signatures), dust serving as a tracer should have three characteristics, 1/ representative for a 

geographical region; 2/ distinctive for that region respect to other areas; 3/ conservative from 

the source to the sink (Delmonte, 2003). 

Different origins of minerals may have different size distributions, which can enable us to 

distinguish the dust sources in the deposited archives (Stuut et al., 2002; Weltje and Prins, 2007; 

https://www.sciencedirect.com/science/article/pii/S0038092X17310526#!
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Gaiero et al., 2013). For example, different dust events have specific fingerprints of particle 

mode (e.g., a median mode of 12-14 μm, Gaiero et al., 2013). Mineral particles over 20 μm are 

generally assumed to originate from local/regional areas, because they can rarely be transported 

over long distances (e.g., several thousands of km) (Lancaster, 2013), except some rare cases 

(>70μm Saharan dust travelling over 1000km, Betzer et al., 1988). Note that grain size 

distribution method should be carefully applied to natural archives. For example, in peat studies, 

a pre-treatment procedure of 550°C for the grain-size analysis, may induce the formation of 

larger-size salt, which can subsequently bias the results. Conservative chemical elements are 

less prone to be altered during weathering, transport and the preparation procedures for analysis, 

which can then well preserve the source information. The conservative properties of the 

chemical elements coupled with well-developed analytical methods allow us to reconstruct dust 

flux and identify source origins. The chemical-ratio approaches (e.g., Aluminum/Titanium, 

Lanthanum/Ytterbium) have been broadly applied to climate-related dust studies in ice cores 

(e.g., Thompson et al., 2002; Bohleber et al., 2018), sediment (e.g., Bertrand et al., 2014; 

Frugone-Álvarez et al., 2017; Saunders et al., 2018) and peat (e.g., Shotyk et al., 2001; Marx 

et al., 2014; Von Scheffer et al., 2019). Since the conservative chemical elements do not always 

have distinct signatures among different sources, it may be not sufficient to only apply chemical 

approaches to source identification. 

Isotope applications have opened a promising avenue to investigate dust provenance. 

Isotopic signatures of Nd, Sr and Pb are conservative and may have a distinct geological 

distribution. For example, 143Nd/144Nd signature (denoted as ɛNd, DePaolo and Wasserburg, 

1976) has a range of -15 to 2 in Australia (Revel-Rolland et al., 2006; De Deckker, 2019), of -

25 to -8 in Southern Africa (Grousset et al., 1992; Delmonte et al., 2004; Wegner et al., 2012; 

Hahn et al., 2016), and of -10 to -3 in Puna-Altiplano Plateau, -6 to 0 in Central Argentina, and 

of-1 to 5 in Patagonia from Southern South America (Gili et al., 2017). Since targeted isotopes 

may be less abundant in samples and easily be interfered by other element/isotopes during 

analysis, isotopic approaches require careful chemical separation from the matrix and highly 

sensitive mass spectrometry. No dust tracer can be universally applied to every study. Each 

work should choose the optimum approaches to investigate the dust origin based on the archive 

itself, lab environment and budgets.   

Combining isotope and element geochemistry are effective in identifying the dust sources 

and subsequently accessing the environmental changes (Kohfeld and Tegen, 2007; Cheng et 

al., 2018), provided that some conditions are satisfied (e.g., selecting the optimum tracers and 

file:///C:/PAPER%20BY%20LI/AMS%20dust/Draft%20sent%20to%20Francois%202018-8/AMS%20mineral%20paper-2018-8.docx%23_ENREF_54
file:///C:/PAPER%20BY%20LI/AMS%20dust/Draft%20sent%20to%20Francois%202018-8/AMS%20mineral%20paper-2018-8.docx%23_ENREF_7
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easily accessing the the signatures of relevant tracers from the potential source areas).  

Investigation on dust sources using isotope and elment geochemistry identifies Southern South 

America (Patagonia and Puna-Altipalno Plateau) as the most important dust source supply to 

Antarctica (Delmonte et al., 2004; Gili et al., 2017), and to the Atlantic sector of the Southern 

Ocean during glacial periods (Noble et al., 2012). It is found the supply of continental-sourced 

detritus to the Southern Ocean during the last glacial period (Noble et al., 2012; Franzese et al., 

2006), and an enhanced influence of local Antarctic dust to a peripheral area of the East 

Antarctic ice sheet during interglacial periods (Baccolo et al., 2018). Isotope and element 

geochemistry have also been applied to identify the past SWW dynamics in Southern South 

America (Vanneste et al., 2015; 2016), Southern Africa (Humphries et al., 2017), Australia 

(Marx et al., 2011) and Macquarie Island (Saunders et al., 2018).  

4. Wind proxies based on precipitations using mercury stable isotopes 

This section will broadly introduce mercury, its isotopes and its potential as a rainfall proxy. 

4.1 Global biogeochemical mercury cycle 

The word mercury (Hg) is originally derived from Latin ‘Hydraryrum’ with the meaning of 

‘liquid silver’. Compared to silver, Hg, however, can be toxic at low doses in the organic form, 

methyl-Hg (see section 5, UNEP-GMA, 2018). Hg is the only element which exists in the liquid 

form at room temperature (melting point, -38.9°C), with a low enthalpy of vaporization 

(ΔHvap= 59.15 kJ/mol). More than 95% of atmospheric Hg exists as gaseous elemental Hg 

(Hg0), while smaller proportions exist as gaseous oxidized Hg (HgII) and particle-bound Hg 

(PHg) (Shia et al., 1999; Saiz-Lopez et al., 2018). Atmospheric Hg species can transform from 

one to another under certain conditions. For example, the presence of halogens under sunlight 

can oxidize emitted-Hg0 into HgII, which finally deposits over the ocean surface in the form of 

HgII and/or PHg (Vandal et al., 1993; Fu et al., 2016a; Saiz-Lopez et al., 2018). Conversely, 

HgII can be reduced back to Hg0 by photochemical reactions (Bergquist and Blum, 2007), biotic 

(Kritee et al., 2007; Demers et al., 2018) and abiotic conditions (Zheng et al., 2018). The 

speciation of Hg affects its lifespan at the atmosphere, with residence time ranging from days 

for PHg, to weeks for HgII, and to months for globally-distributed Hg0 (Horowitz et al., 2017; 

Saiz-Lopez et al., 2018). The long residence time of Hg0 in the troposphere allows it to travel 

over long distances and deposit to remote areas including Arctic (Korosi et al., 2018), Southern 

Ocean areas (Angot et al., 2014) and Antarctic (Zaferani et al., 2018). 
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Hg0 is emitted naturally by outgassing of the Earth’s crust and mantle (e.g., volcanism) as 

primary release, and by re-emission of geogenically-sourced Hg from soil, vegetation and 

water bodies (e.g., ocean, Amos et al., 2015). In addition to natural release, Hg0 has been 

substantially liberated from geological deposits by human industrial activities, such as mining, 

refining and energy production (Pirrone et al., 2010; Streets et al., 2017). When entering the 

aquatic and/or terrestrial environment, Hg from these two sources will have the same fate for 

the subsequent life cycle. 

Atmospheric Hg deposition over Earth’s surface occurs by vegetation Hg0 uptake (dry 

deposition, Jiskra et al., 2018), HgII wet and dry deposition (Sprovieri et al., 2017), and Hg0 

gas exchange with aqueous water bodies including the Oceans. A growing amount of evidences 

have highlighted the role of vegetation as Hg0 pump (Obrist et al., 2017; Jiskra et al., 2018; 

Olson et al., 2019). Vegetation cover constitutes 80% of Earth’s continental surface (Schulze, 

1982) and provides substantial leaf surface area for pollutant exchange (Bush and McInerey, 

2015). Previous observational studies have shown that leaf interior is the dominant pathway of 

Hg accumulation under plant growth period (Rutter et al., 2011). Foliar Hg accumulation rate 

may be species-dependent (Pokharel and Obrist, 2011; Rutter et al., 2011; Teixeira et al., 2018; 

Pérez-Rodríguez et al., 2018; Olson et al., 2019). Non-vascular vegetation (e.g., peat) 

accumulates x3 to x6 times more Hg than vascular vegetation (Olson et al., 2019). Hg 

sequestration by vegetation is controlled by primary productivity, which is related to climate 

variability (e.g., temperature, humidity, Gallego-Sala et al., 2018; Wang et al., 2017). Gallego-

Sala et al., (2018) suggests longer and warmer growing seasons under global warming will lead 

to enhanced primary productivity at mid to high latitudes in the future. Increased rainfall can 

also promote water-limited plant primary productivity (Wang et al., 2017). The influence of 

climate on plant Hg sequestration can lead to a question: Is it possible to use deposited Hg (e.g., 

vegetation uptake of Hg0 and input of rainfall HgII) as a proxy to reconstruct the prevailing 

climate? 

4.2 Hg isotope signatures in the environment  

Mercury has 7 stable isotopes with a relative mass range of 4% with approximate abundances 

of: 196Hg (0.16%), 198Hg (10%), 199Hg (17%), 200Hg (23%), 201Hg (13%), 202Hg (30%), 204Hg 

(6.8%) (Blum and Bergquist, 2007). Hg isotope geochemistry studies have been abundantly 

conducted since the appearance of high-precision analytical equipment (i.e., Multicollector 

inductively coupled plasma mass spectrometry). Since Hg stable isotopes have a volatile form 

(Hg0), redox-active properties and a tendency to form covalent bonds, they can undergo 
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isotopic fractionation (Bergquist and Blum, 2007). Nearly all incomplete, physico-chemical 

Hg transformations are accompanied by mass-dependent isotope fractionation (MDF, 

presented by δ202Hg (‰), see equation 1, XXX represents for the mass of isotope). MDF is the 

fractionation of isotopes in proportion to the relative difference in the masses. In addition to 

MDF, Hg isotopes can also undergo mass-independent fractionation (MIF). MIF is the 

fractionation of isotopes nonlinear to their mass differences. Odd-MIF for odd mass number 

Hg isotopes is presented by Δ199Hg or Δ201Hg, while even-MIF for even mass number Hg 

isotopes is presented by Δ200Hg or Δ204Hg (Blum and Berquist, 2007; Young et al., 2002, See 

equations 2-5). 

δXXX Hg = {[(XXXHg/198Hg)sample/(
XXXHg/198Hg)SRM3133]-1} X 1000   (Eq. 1) 

Δ199Hg = δ199Hg – (δ202Hg X 0.2520)                                                  (Eq. 2) 

Δ200Hg = δ200Hg – (δ202Hg X 0.5024)                                                  (Eq. 3) 

Δ201Hg = δ201Hg – (δ202Hg X 0.7520)                                                  (Eq. 4) 

Δ204Hg = δ204Hg – (δ202Hg X 1.493)                                                    (Eq. 5) 

Hg isotope signatures can be used to better constrain on source, transport and 

transformations of Hg in the environment (e.g., Demers et al., 2018; Sonke, 2011). Two 

mechanisms relevant to Hg MIF are the magnetic isotope effect (MIE) and the nuclear volume 

effect (NVE). MIE primarily occurs during photochemical radical pair reactions. Odd-mass 

isotopes can have high MIF due to its magnetic spin, which can enhance triplet to singlet and 

singlet to triplet intersystem crossing (Blum, 2012). NVE occurs because nuclear volume and 

nuclear charge radius do not scale linearly with the number of neutrons. NVE in Hg 

transformation has not been fully understood. Only a few studies have observed NVE under 

laboratory environments (Estrade et al., 2009; Zheng and Hintelmann, 2010). Hg isotope mass 

independent fractionation caused by NVE (< ~0.5 ‰) is found to be smaller than by MIE (> 

1‰) (Blum et al., 2014). Hg MIF leads to significant enrichments or depletions of odd mass 

number Hg isotopes relative to the even ones in environmental Hg pools. Different pathways 

of Hg transformation can result in different Hg MDF and MIF signatures in the products and 

reactants. Hg isotopic fractionation can therefore be applied to trace the transformation 

processes and/or sources. Bergquist and Blum, (2007) found that natural sunlight can lead to 

photochemical reduction of aqueous Hg species in the presence of organic matter, with a slope 

of 1.15 ± 0.07 (1σ) in the Δ199Hg/δ202Hg line of produced Hg0 and residual HgII, whereas a 

slope of 2.43 ± 0.10 (1σ) in the Δ199Hg/δ202Hg line of produced Hg0 and residual 

methylmercury under photochemical degradation of methylmercury. After a compilation of Hg 
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isotope study up to 2014, Blum et al., (2014) found different reactions of producing Hg0 from 

HgII/ methylmercury lead to different Δ199Hg/δ202Hg signatures, with slopes ranging from -3.5 

during photochemical reduction from snow (Sherman et al., 2010), to -0.8 during Xenon lamp 

reduction with thiol ligands (Zheng and Hintelmann, 2010), to 0.1 during equilibrium 

evaporation, to 1.2 during aqueous photochemical reduction and to 2.4 during aqueous 

photochemical demethylation. No odd MIF is found during microbial 

methylation/reduction/demethylation and Thiol-ligand binding/iron oxide in the absence of 

sunlight sorption (Kritee et al., 2007; 2009; Rodríguez-González et al., 2009). 

The development of Hg isotope tools has enabled us to quantify the Hg depositions from 

different sources. During a long period (> 30 yrs), wet deposition was thought to be dominate 

Hg deposition over terrestrial environment and great efforts have been given in studying Hg 

flux in rainfall (e.g., Sorensen et al., 1994;  Bullock et al., 2002; Lindberg et al., 2007; Selin et 

al., 2008; Prestbo and Gay, 2009; Huang et al., 2012; Sprovieri et al., 2017). Relative to wet 

deposition, Hg dry deposition (e.g., plant uptake of Hg0) is difficult to measure, leading to 

unclear contributions of Hg dry deposition to the Earth’s surface. Demers et al., (2013) was the 

first to apply Hg isotopic values (Δ199Hg and δ202Hg) from different sources (foliage, 

underlying mineral soil and rainfall) to reconstruct the Hg sources in forest floor. The authors 

found that only ~16% of input is from rainfall, which is against the dominant role of Hg wet 

deposition. The authors attribute the lower Hg wet deposition to a greater throughfall input, 

assuming that the isotopically unconstrained throughfall has similar Hg isotopic signatures as 

foliage. Similarly, some other studies also suggest a dominant Hg dry deposition to the boreal 

forest floor, rather than HgII precipitation, by Hg isotope MIF and/or MDF mixing calculation 

(Jiskra et al., 2015; Zheng et al., 2016; Wang et al., 2017). These studies have broadly 

distinguished the contributions of Hg dry and wet deposition, even though their approach of 

using Δ199Hg and/or δ202Hg is not free from bias. MDF (δ202Hg) can fractionate during the 

source mixing (e.g., preferential of light isotope uptake by plant) and Hg transformation, while 

MIF (Δ199Hg) can occur under photochemical reduction. Overall, δ202Hg and Δ199Hg might 

have given unprecise output in source mass balance calculation. 

4.3 The potential of Hg stable isotopes as rainfall proxies 

MIF of even Hg isotopes (reported as Δ200Hg and Δ204Hg) is thought to be conservative at the 

Earth’s surface. Even MIF isn’t observed in anthropogenic Hg sources, but it is present in 

precipitation (Gratz et al., 2010; Chen et al., 2012; Demers et al., 2013; Enrico et al., 2016; 

Obrist et al., 2017) and in ambient atmospheric Hg0 (Enrico et al., 2016). In general, Hg0 is 
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characterized by negative Δ200Hg (-0.06 ± 0.02‰, 1σ, n=71) and positive Δ204Hg (0.07 ± 

0.05‰, 1σ, n=32) (Enrico et al., 2016; Gratz et al., 2010; Demers et al., 2013; Obrist et al., 

2017; Sherman et al., 2010; Fu et al., 2016a; 2016b). Different from Hg0, rainfall HgII is 

characterized by positive Δ200Hg (0.19 ± 0.13‰, 1σ, n=77) and negative Δ204Hg (-0.16 ± 

0.17‰, 1σ, n=17) (Enrico et al., 2016; Gratz et al., 2010; Chen et al., 2012; Demers et al., 2013; 

Obrist et al., 2017). Observations of Δ200Hg anomalies in rainfall from Canada is explained by 

upper airmass origin, which undergoes photo-oxidation at the tropopause (Chen et al., 2012). 

Distinct Δ200Hg signatures between Hg0 and rainfall enable us to identify different Hg 

deposition pathways. 

Atmospheric mercury deposition to ombrotrophic peatlands mainly occurs in two ways: 

peat vegetation uptake of Hg0 and rainfall HgII input. A recent study has successfully applied 

Δ200Hg to quantify the contribution of Hg0 uptake and rainfall Hg input to ombrotrophic 

peatlands in the NH, and shows that rainfall HgII input contributes approximately 20% of total 

Hg deposition to the peat surface in the modern time (Enrico et al., 2016). Rainfall in SH mid-

latitudes is regulated by SWW (Jenny et al., 2003). Changes in SWW intensity can shift the 

rainfall volume and subsequent rainfall HgII input in the areas that are sensitive to SWW 

variations. Hg even isotopes can be used as powerful tools in quantifying the SWW-related 

rainfall HgII deposition and hence, SWW dynamics. This requires Hg isotopic compositions 

from historical archives and sources (Hg0 and rainfall) at local or regional scales.  

5. Investigation on anthropogenic Hg deposition and background atmospheric Hg levels 

Over the past centuries, Hg has been abundantly transferred to the Earth’s surface from 

geological deposits due to human activities, which has greatly increased the modern 

atmospheric Hg level (Lindberg et al., 2007; Amos et al., 2015; Streets et al., 2017; Enrico et 

al., 2017). A cumulative total of 1540 (1060-2800) Gg (gigagrams, 109 grams) of Hg is 

estimated to have been released into the environment by human activities by 2010, of which 

73% was released since industrialization (Street et al., 2017). The anthropogenic Hg deposition 

to the environment can potentially elevate the environmental concentration of methyl-Hg 

(Sunderland et al, 2018).  

Methyl-Hg is a toxin of high concern that can bio-magnify in the food chain. Methyl-Hg 

can affect human health (e.g., neurotoxicity to fetus and children; cardiovascular problems in 

adults, Roman et al., 2011). Methyl-Hg is produced from inorganic Hg mainly through 

microbial activities in aquatic ecosystems (UNEP-GMA, 2018). Methyl-Hg in top predators 
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(e.g., shark and tuna) is over a million times higher than in the surrounding oceanic water 

(Lavoie et al., 2013). The consumption of highly methyl-Hg-contaminated products has caused 

severe poisoning events (e.g., Minamata disease in Japan, Rice problems in Iraq, Harada, 1995; 

Bakir et al., 1973). Human is exposed to methylmercury mainly by seafood consumption and 

rice uptake from Hg mining areas (Feng et al., 2007; Zhao et al., 2019). The UNEP Minamata 

Convention, ratified by 130 countries in 2019, aims at lowering Hg release to the global 

environment. Over the next decades environmental monitoring of air water and biota will show 

the effectiveness of the Minamata Convention. Setting global clean up targets requires the 

knowledge about the levels of anthropogenically-emitted Hg and natural background 

atmospheric Hg. Unlike anthropogenic sources, Hg emission from natural origins cannot be 

reduced or controlled (Lindberg et al., 2007).  

Hg deposition to the environment has been investigated by direct instrumental 

measurement (e.g., Brosset, 1981; Iverfeldt, 1991; Sprovieri et al., 2017), and indirect 

measurements, such as, using historical/environmental archives (e.g., lake sediment and peat 

cores, Enrico et al., 2016; Biester et al., 2018). Numerous lake sediment cores from remote 

sites have demonstrated an approximately x3 increase in Hg deposition since pre-industrial 

times (e.g., Engstrom et al., 1997; Fitzgerald et al., 2005; Drevnick et al., 2010; Kang et al., 

2016; Kurz et al., 2019; Pérez-Rodríguez et al., 2019). A growing number of peat core studies 

have been used to investigate historical trends in Hg deposition (e.g., Norton et al., 1997; Benoit 

et al., 1998; Martinez-Cortizas et al., 1999; Biester et al., 2002; Shotyk et al., 2003; 2005; 

Bindler, 2003; Bindler et al., 2004; Steinnes and Sjøbakk, 2005; Givelet et al., 2004; Farmers 

et al., 2009; Coggins et al., 2006). One decade ago, peat was suggested to be a less reliable 

historical Hg recorder relative to lake sediment by Biester et al. who reported that pre-industrial 

HgAR enrichment recorded in sediment and peat disagree by more than a factor 10 (Biester et 

al., 2007). These authors assumed that 210Pb mobility in peat column had led to inaccurate age 

reconstructions and subsequent unreliable Hg accumulation rate. Recently, Amos et al. (2015) 

has reviewed the published peat studies and found a similar x3 Hg enrichment since pre-

industrial period (1760-1880AD), by correcting a reference time inconsistency for peat and 

sediment archives in Biester et al., (2007). Since then, peat has regained the confidence to be 

used as historical Hg recorder (Li et al., 2016; Enrico et al., 2016; 2017; Guédron et al., 2018; 

Pérez-Rodríguez et al., 2018a; Gao et al., 2019).  

Amos et al., (2015) also found that reconstructed Hg deposition has increased before pre-

industrial times (1760AD-1880AD), which shows an approximate x5 enrichment from the 
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natural background (pre-1550AD). That is, there is an overall x20 enrichment from pre-

1550AD to 20th century. These Hg enrichments are mainly obtained based on the Hg records 

from the NH. Historical Hg deposition in the SH, however, have received much less scrutiny. 

Terrestrial vegetation has been proven to be a global Hg0 pump, which contributes to 

seasonal changes in Hg0 in the NH in the past two decades (Jiskra et al., 2018; Obrist et al., 

2017). SH with less vegetation cover doesn’t display Hg0 seasonality (Jiskra et al., 2018). SH 

present-day Hg0 concentration is 1.0-1.3 ng m-3, which is lower than that in the NH (1.5-1.7 ng 

m-3) (Slemr et al., 1981; Sprovieri et al., 2016). Some studies suggest that SH atmospheric Hg 

mainly originates from SH oceanic emission and local/regional input, rather than NH transport 

(Sprovieri et al., 2016; Horowitz et al., 2017). Other studies suggest that a proportion of Hg in 

the SH can be transported from the NH by oceanic mixing and convection in the Intertropical 

Convergence Zone (e.g., Slemr et al., 1981; Fitzgerald et al., 1984; Lamborg et al., 2002). Less 

anthropogenic Hg emission from 1850 AD to 2010 AD in the SH (240 Gg) is estimated by 

models compared to NH (890 Gg, Streets et al., 2017). Background Hg0 concentration of 0.27 

ng m-3 (pre-1550AD) in the NH is shown in Enrico et al. (2017), which highlights the impact 

of anthropogenic Hg emission on the NH present-day Hg0 level (1.5-1.7 ng m-3). No studies 

have been conducted on the natural background atmospheric Hg in the SH, which highlights 

the need to investigate the historical Hg level in the SH through 14C-dated long Hg records. 

6. Role of atmospheric dust on Hg deposition   

Mineral dust itself consists of a minor proportion of Hg (56 ppb, Wedepohl, 1995). 

Atmospheric dust particles can be carriers for HgII, leading to the formation of PHg and 

subsequent deposition over Earth’s surface. Enhanced Hg accumulation in coincidence with 

high dust flux are recorded in SH peat and ice cores during Last Glacial Maximum (Vandal et 

al., 1993; Baccolo et al., 2018; De Lacerda et al., 2017; Pérez-Rodriguez et al., 2015; 2018b; 

Jitaru et al., 2009). PHg flux peaks during cold climate are explained by elevated oceanic 

production (Vandal et al., 1993) or enhanced Hg-enriched dust deposition (Jitaru et al., 2009; 

De Lacerda et al., 2017). Jitaru et al., (2009) suggest that a significant correlation between 

deposited dust and Hg during the coldest period results from more oxidized Hg being attached 

to the abundant atmospheric dust particles and then deposits on snowpack. Cold climate 

elevates the production of sea-salt-derived halogens, which can enhance the oxidation of Hg0 

(Jitaru et al., 2009). Recent Arctic Hg study also indicates that dissolved Hg in the winter 

snowpack may originate from natural sources possibly linked to sea spray and atmospheric 

dust (Agnan et al., 2018). Numerous observation and modelling studies have suggested that 
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partitioning of Hg species and subsequent deposition can be influenced by temperature, 

humidity and aerosol loadings (Steffen et al., 2008; 2014; Amos et al., 2012; Song et al., 2015; 

Pérez-Rodríguez et al., 2018b). Aerosol loadings are also subjected to the climate variability.  

In addition to being HgII-carrier, enhanced atmospheric dust input can also increase the 

primary productivity (e.g., peat moss, Mullan-Boudreau et al., 2017), leading to more Hg0 

sequestration to the vegetation pool. Anthropogenic activities have greatly increased 

atmospheric dust loading (Tao et al., 2016; Hooper and Marx, 2018), and Hg deposition 

(UNEP-GMA, 2018), which might accelerate the interaction between atmospheric dust and Hg.  

7. Peat dust and Hg studies in the Southern Hemisphere 

Peat dust and Hg studies have been abundantly performed in the Northern Hemisphere. Only a 

few SH peat dust studies have been conducted in Australia (Marx et al., 2010; 2011; Kylander 

et al., 2007; Muller et al., 2008a; 2008b), New Zealand (Marx et al., 2009), Southern South 

America (Vanneste et al., 2015; 2016) and South Africa (Humpries et al., 2017) (Figure 6). 

Some SH dust records attempt to reconstruct the past SWW dynamics (Marx et al., 2011; 

Vanneste et al., 2015; Humpries et al., 2017), glacial fluctuation (Vanneste et al., 2016), ENSO 

variability (Marx et al., 2009), and ITCZ migration (Muller et al., 2008a). Others focus on the 

development of reliable proxies/methods to fingerprint dust origins (Kylander et al., 2007; 

Muller et al., 2008b), and the influence of recent human activity (Marx et al., 2010). These 

records mentioned above mainly focus on local/regional mineral inputs, while cross-

continental dust deposition related to large-scale air mass circulation (e.g., SWW) draws less 

attention.  

Fewer studies on peat Hg deposition have been conducted in the Southern Hemisphere 

(e.g., Biester et al., 2002; Guédron et al., 2018, Figure 5). No Holocene peat Hg isotope 

research has been reported in the Southern Hemisphere. The biogeochemical cycle of pre-

anthropogenic Hg in the Southern Hemisphere remains unclear. 
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Figure 5. Studies on dust and Hg based on the wetland archives in the Southern 

Hemisphere. Red triangles and red circles represent peat Hg and dust research in this thesis. 

Investigations on wetlands include peat, salt marsh and swamp. Blue triangle, blue and green 

circle represent paleo-studies on wetland Hg, wetland dust and wetland botany, respectively 

(references see the text). Wetland botany is defined when the studies mainly focus on the 

botanical proxies interpretation. 

8. Objectives of this thesis 

The main focuses of this thesis are to investigate the SWW dynamics and hisitorical Hg 

deposition in the Holocene. To the specific, objectives are to: 1/ reconstruct Holocene SWW 

dynamics at its northern edge in Indian Ocean sector using dust geochemistry and isotope 

chemistry; 2/ explore the potential of Hg isotopes to be climatic indicators; and 3/ investigate 

the natural background (pre-1450AD) Hg level in the SH and access to the present-day global 

Hg enrichment. Figure 6 shows the research line of this thesis. 
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Figure 6. Research line of this thesis. SWW represents for Southern Hemisphere Westerly 

Winds. Peat bog refers to ombrotrophic peatland. 
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Method 

Table 1. Brief introduction of the methods used in this PhD. See single chapters for 

further details. 

Items Analytical 

equipement 

/tool 

Location  People involved Number 

of 

samples  

Reference Presented 

in Chapter 

Peat coring Russian corer; 

Wardenaar corer 

Amsterdam Island; 

Falkland Islands 

(Islas Malvinas); 

Harberton and 

Andorra (Tierra del 

Fuego, Argentina) 

EcoLab team and 

collaborators 

6 cores [1, 2, 3]  1, 2, 3, 4 

Peat sub-

samping 

Band saw 

(slicing) 

Ecolab, Toulouse, 

France 

EcoLab BIZ team  

and collaborators 

including C. Li 

700 [3, 4]  1, 2, 3, 4 

Peat acid-

digestion 

Teflon savillex Ecolab, Toulouse, 

France 

C. Li; M. Tavella;  

F. De 

Vleeschouwer; G. 

Le Roux 

150  2 

210Pb, 137Cs 

and 241Am 

preparation 

and 

measurement 

Germanium 

Detector 

(Gamma-ray) 

LAFARA 

underground 

laboratory, 

Ferrières, France 

P. Van Beek; M. 

Souhaut; C. Li; M. 

Tavella;   

15 [5]  1 

14C 

measurements 

on selected 

macrofossil 

samples 

Accelerator 

Mass 

Spectrometry 

Silesian University 

of Technology, 

Poland (GdA 

code); Plateforme 

Nationale, France 

(LMC14 code) 

N. Piotrowska; N. 

Van der Putten; D. 

Mauquoy   

60 [6, 7, 8]  2, 3, 4 

Major 

elements 

Inductively 

Coupled Plasma-

Optical Emission 

Spectrometry  

Ecolab, Toulouse, 

France 

C. Li  D. Baqué; M. 

Tavella;  F. De 

Vleeschouwer; J. 

Sonke 

120 
 

2 

Major and 

trace elements 

Quadruple 

Inductively 

Coupled Mass 

Spectrometry  

Observatoire Midi-

Pyrenees,  

Toulouse, France 

C. Li; M. Tavella;  

F. De 

Vleeschouwer; G. 

Le Roux ; J. Sonke 

160 
 

2 

Nd isotopes Thermal 

Ionization Mass 

Spectrometry  

Observatoire Midi-

Pyrenees,  

Toulouse, France 

C. Li; C. Jeandel; 

M. Benoit; S. 

Mounic ; J. Prunier ;  

F. De Vleeschouwer 

60 
 

2 

Hg 

concentration 

in Solid 

Direct Mercury 

Analyzer  

Observatoire Midi-

Pyrenees,  

Toulouse, France 

C. Li; J. Sonke 500 
 

3, 4 

Hg isotope 

extraction 

Oven  

(Combustion and 

acid trapping) 

Observatoire Midi-

Pyrenees,  

Toulouse, France 

C. Li; J. Sonke; M. 

Enrico 

60 [9]  4 

Hg 

concentration 

in Solution 

Cold vapor 

atomic 

fluorescence 

spectroscopy  

Observatoire Midi-

Pyrenees,  

Toulouse, France 

C. Li; J. Sonke 60 
 

4 

Hg isotope 

analysis 

Multi Collector-

Inductively 

Coupled Mass 

Spectrometry  

Observatoire Midi-

Pyrenees,  

Toulouse, France 

C. Li; J. Sonke; M. 

Enrico 

60   4 
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Table 2. Principal element/isotope information from Certified Standard Materials 

(CRMs) used in this PhD. Informative provisional values are reported in italic and under 

brackets, respectively.  (Mean ± standard deviation; 2σ for Hg isotopes, 1σ otherwise). All 

measured values without CRMs information are in agreement with previously reported values 

(see references). See single chapters for further details.  

Element/ Isotopes Materials 

Numbers 

of analysis 

measured 

values  Certified value 

Lanthanum (La, μg g-1)  SRM 1515 (Apple leave) n=4 20.7±0.8 20 

 SRM 1947 (Peach leave) n=3 8.3±0.4 9 

 NJV 942 (Sphagnum peat) n=4 0.87±0.09 0.84±0.03 (n=8), [ref 10] 

 

NJV 941 (Carex/sedge 

peat) n=8 0.7±0.06  

 WQB-1 (sediment) n=3 46±2 37.9 

 LKSD-3 (sediment) n=4 50±1 (52) 

Cerium (Ce, μg g-1) SRM 1515 n=4 3.0±0.1 3 

 SRM 1947 n=3 9±0.4 10 

 NJV 942 n=4 1.65±0.17  

 NJV 941 n=8 1.49±0.13  

 WQB-1 n=3 96±2 77.6 

 LKSD-3 n=4 99±3 (90) 

Praseodynium (Pr, μg g-1)  SRM 1515 n=4 4.1±0.2 4.10.4 (n=3), [ref 11] 

 SRM 1947 n=3 1.7±0.1 1.6±0.1 (n=7), [ref 11] 

 NJV 942 n=4 0.21±0.02  

 NJV 941 n=8 0.19±0.02  

 WQB-1 n=3 11±0.1  

 LKSD-3 n=4 12±0.04  

Neodynium (Nd, μg g-1) SRM 1515 n=4 15.5±0.6 17 

 SRM 1947 n=3 6.2±0.3 7 

 NJV 942 n=4 0.72±0.08  

 NJV 941 n=8 0.69±0.06  

 WQB-1 n=3 40±0.3  

 LKSD-3 n=4 45±0.5 (44) 

Samarium (Sm, μg g-1) SRM 1515 n=4 2.8±0.1 3 

 SRM 1947 n=3 0.99±0.06 1 

 NJV 942 n=4 0.13±0.01  

 NJV 941 n=8 0.13±0.01  

 WQB-1 n=3 7.5±0.05  

 LKSD-3 n=4 7.9±0.1 (8) 

Europium (Eu, μg g-1) SRM 1515 n=4 0.25±0.01 0.2 

 SRM 1947 n=3 0.19±0.01 0.17 

 NJV 942 n=4 0.03±0.002  

 NJV 941 n=8 0.03±0.002  

 WQB-1 n=3 1.6±0.03  

 LKSD-3 n=4 1.5±0.01 (1.5) 

Gadolinium (Gd, μg g-1) SRM 1515 n=4 2.94±0.09 3 

 SRM 1947 n=3 0.97±0.05 1 

 NJV 942 n=4 0.12±0.01  

 NJV 941 n=8 0.13±0.01  

 WQB-1 n=3 7±0.2  

 LKSD-3 n=4 7±0.1  

Element/ Isotopes Materials 

Numbers 

of analysis 

measured 

values  Certified value 

Terbium (Tb, μg g-1) SRM 1515 n=4 0.37±0.02 0.4 

 SRM 1947 n=3 0.11±0.007 0.1 
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 NJV 942 n=4 0.02±0.002  

 NJV 941 n=8 0.02±0.002  

 WQB-1 n=3 0.95±0.02  

 LKSD-3 n=4 0.9±0.01 (1) 

Dysprosium (Dy, μg g-1) SRM 1515 n=4 1.78±0.08 1.800.2 (n=3), [ref 11] 

 SRM 1947 n=3 0.52±0.03 0.510.02 (n=7), [ref 11] 

 NJV 942 n=4 0.09±0.009  

 NJV 941 n=8 0.11±0.01  

 WQB-1 n=3 5.6±0.1  

 LKSD-3 n=4 5.1±0.04 (4.9) 

Holium (Ho, μg g-1) SRM 1515 n=4 0.27±0.01 0.280.03 (n=3), [ref 11] 

 SRM 1947 n=3 0.08±0.004 0.080.01 (n=7), [ref 11] 

 NJV 942 n=4 0.02±0.002  

 NJV 941 n=8 0.02±0.002  

 WQB-1 n=3 1.01±0  

 LKSD-3 n=4 0.93±0.008  

Erbium (Er, μg g-1)  SRM 1515 n=4 0.57±0.02 0.550.04 (n=3), [ref 11] 

 SRM 1947 n=3 0.21±0.01 0.200.01 (n=7), [ref 11] 

 NJV 942 n=4 0.05±0.006  

 NJV 941 n=8 0.07±0.006  

 WQB-1 n=3 3±0.2  

 LKSD-3 n=4 2.7±0.05  

Thulium (Tm, μg g-1) SRM 1515 n=4 0.05±0.002 0.050.01 (n=3), [ref 11] 

 SRM 1947 n=3 0.02±0.0004 0.020.0 (n=7), [ref 11] 

 NJV 942 n=4 0.01±0.0005  

 NJV 941 n=8 0.01±0.001  

 WQB-1 n=3 0.42±0.02  

 LKSD-3 n=4 0.38±0.01  

Ytterbium (Yb, μg g-1)  SRM 1515 n=4 0.19±0.01 0.3 

 SRM 1947 n=3 0.12±0.004 0.2 

 NJV 942 n=4 0.05±0.005  

 NJV 941 n=8 0.06±0.006  

 WQB-1 n=3 2.8±0.1  

 LKSD-3 n=4 2.5±0.03 (2.7) 

Lutetium (Lu, μg g-1)  SRM 1515 n=4 0.02±0.001 0.020.0 (n=3), [ref 11] 

 SRM 1947 n=3 0.02±0.0001 0.020.0 (n=7), [ref 11] 

 NJV 942 n=4 0.007±0.0006  

 NJV 941 n=8 0.01±0.001  

 WQB-1 n=3 0.41±0.02  

 LKSD-3 n=4 0.38±0.005 (0.4) 

143Nd/144Nd  Rennes n=22 

0.511956± 

0.000006 0.511973 

  La Jolla n=9 

0.511844± 

0.000012 0.511858 

Hg concentration (ng g-1) IPE 176 (Reed) n=143 35.1±6.3 37.9±2.9 

 NIST 1632d (Coal) n=9 91.3±7.0 92.8±3.3 

  BCR 482 (Lichen) n=5 481.3±8.7 480±20 

δ202Hg ETH-Fluka n=19 -1.43±0.15 

-1.43±0.13 (2σ, n=80) 

[refs 12, 13, 14, 15, 16, 19] 

 UM-Almaden n=7 -0.52±0.13 

-0.56±0.12 (2σ, n=133) 

 [refs 12, 17, 18, 20] 

Element/ Isotopes Materials 

Numbers 

of analysis 

measured 

values  Certified value 

δ202Hg BCR-482  n=9 -1.53±0.09 

-1.59±0.23 (2σ, n=10) 

[refs 19, 20] 

 NIST 1632d  n=4 -1.86±0.15 

-1.74±0.18 (2σ, n=46) 

 [refs 12, 21, 22, 23, 24] 

Δ199Hg ETH-Fluka n=19 0.05±0.13 

0.08±0.05 (2σ, n=80)  

[refs 12, 13, 14, 15, 16, 19] 
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 UM-Almaden n=7 -0.03±0.09 

-0.03±0.06 (2σ, n=133) 

[refs 12, 17, 18, 20] 

 BCR-482  n=9 -0.69±0.08 

-0.62±0.06 (2σ, n=10) 

[refs 19, 20] 

 NIST 1632d  n=4 -0.03±0.06 

-0.04±0.18 (2σ, n=46) 

[refs 12, 21, 22, 23, 24] 

Δ200Hg ETH-Fluka n=19 -0.01±0.10 

0.02±0.10(2σ, n=80)  

[refs 12, 13, 14, 15, 16, 19] 

 UM-Almaden n=7 0±0.09 

0.01±0.06 (2σ, n=133) [refs 

12, 17, 18, 20] 

 BCR-482  n=9 0.08±0.10 

-0.06±0.08 (2σ, n=10) 

[refs 19, 20] 

 NIST 1632d  n=4 0.01±0.05 

0.03±0.07 (2σ, n=46) 

[refs 12, 21, 22, 23, 24] 

Δ201Hg ETH-Fluka n=19 0.01±0.11 

0.02±0.10(2σ, n=42)  

[refs 12, 13, 14, 15, 16, 19] 

 UM-Almaden n=7 -0.07±0.06 

-0.04±0.06 (2σ, n=124) 

[refs 12, 17, 18, 20] 

 BCR-482  n=9 -0.67±0.09 

-0.64±0.08 (2σ, n=10) 

[refs 19, 20] 

 NIST 1632d  n=4 -0.02±0.04 

-0.03±0.08 (2σ, n=34) 

[refs 12, 21, 22, 23, 24] 

Δ204Hg ETH-Fluka n=21 0.01±0.25 

-0.01±0.10(2σ, n=42)  

[refs 12, 13, 14, 15, 16, 19] 

 UM-Almaden n=7 -0.03±0.19 

-0.01±0.09 (2σ, n=111) 

[refs 12, 17, 18, 20] 

 BCR-482  n=9 -0.10±0.19 

-0.07±0.18 (2σ, n=10) 

[refs 19, 20] 

  NIST 1632d  n=4 0.08±0.08 

-0.03±0.12 (2σ, n=26) 

[refs 12, 21, 22, 23, 24] 
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Objectifs et résumé 

Le plomb 210 (210Pb, T1/2 = 22.3 ans) est un radionucléide naturel provenant de la 

désintégration du 222Rn sous forme gazeuse (T1/2 = 3.8 jours). Le 222Rn s’échappe des surfaces 

continentales terrestres, pénètre dans l’atmosphère et se désintègre en 210Pb, qui se fixe à son 

tour rapidement sur les aérosols submicroniques. Le 210Pb se diffuse sur toute la surface de la 

Terre et peut se déposer par dépôt sec ou humide. En raison de leurs demi-vies relativement 

courte, le 222Rn et le 210Pb ont été utilisés comme traceurs pour déterminer l’origine des masses 

d’air, comprendre le temps de résidence des aérosols et générer des modèles climat-aérosol 

globaux. Le 210Pb peut être utilisé pour construire des chronologies d'accumulation 

sédimentaires au cours des 150 dernières années. Les inventaires de 210Pb sont également 

utilisés dans les études sur l'érosion des sols lorsque ces inventaires calculés pour les sédiments 

lacustres sont utilisés pour estimer les facteurs de focalisation du dépôt de polluants dans les 

lacs. Pour accéder à ces fonctions, l'étape préliminaire consiste à fournir une base de données 

globale des inventaires de 210Pb. Cependant, il existe peu de données dans l'hémisphère sud, en 

particulier dans le sud de l'océan Indien. 

 

Dans ce chapitre, nous présentons des données sur les radionucléides (210Pb, 137Cs et 241Am) 

et reconstruisons la chronologie d’une tourbière de l'île d'Amsterdam (AMS) située dans le sud 

de l'océan Indien. AMS est située à mi-chemin de l'Afrique australe et de l'Australie, exempte 

de perturbations anthropiques. La tourbière est exclusivement alimentée par les apports 

atmosphériques et constitue donc un bon enregistreur des dépôts atmosphériques. 

 

Les radionucléides de la tourbe ont été mesurés à l'aide d'un spectromètre gamma 

souterrain, à bruit de fond ultra-bas. Nous avons comparé les données avec une base de données 

de dépôt 210Pb mise à jour. Nous avons trouvé un 210Pb flux de 98 ± 6 Bq m-2 an-1 à AMS, en 

accord avec les données de Madagascar et de l'Afrique du Sud. Un flux élevé de 210Pb observé 

à un endroit aussi éloigné peut résulter de l'activité accrue du 222Rn et des précipitations 

fréquentes sur AMS. L’activité 222Rn accrue peut elle-même être expliquée par les masses d’air 

continental traversant des zones continentales (par exemple l’Afrique australe et / ou 

Madagascar). Le flux de 210Pb à AMS est supérieur aux valeurs provenant de latitudes 

similaires dans les régions côtières argentines et chiliennes, qui sont dominées par les vents 

marins d’ouest à faible activité 222Rn. Nos données contribuent à la couverture de données 210Pb 

sous-représentées dans les latitudes moyennes de l'hémisphère sud. 
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Nous appliquons le modèle taux d’apport constant (« Constant Rate of Supply – CRS ») à 

l'inventaire 210Pb pour générer l'âge de tourbe récent. Étant donné que le 210Pb peut être mobile 

dans la colonne de tourbe, la chronologie construite par 210Pb seul peut se révéler imprécise. 

Le 137Cs et l’241Am sont des radionucléides artificiels principalement dérivés de retombées des 

essais de bombes nucléaires aériennes dans les années 60. Nous avons constaté que les pics de 

137Cs et de 241Am dans la colonne de tourbe correspondent à la période 1960-1981 dérivée du 

modèle CRS. Nous concluons donc que le modèle d’accumulation de tourbe de 210Pb CRS est 

validé par des chronomarqueurs indépendants, 137Cs et 241Am. Les radionucléides artificiels 

trouvés dans une île éloignée constituent également un signal anthropocène. Le sondage de 

tourbe présenté ici couvre une période d'environ 157 ans, ce qui indique un taux d'accumulation 

de la tourbe d'environ 0.75 mm an-1. 
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Abstract  

  

Over the past 50 years, 210Pb, 137Cs and 241Am have been abundantly used in reconstructing 

recent sediment and peat chronologies. The study of global aerosol-climate interaction is also 

partially depending on our understanding of 222Rn-210Pb cycling, as radionuclides are useful 

aerosol tracers. However, in comparison with the Northern Hemisphere, few data are available 

for these radionuclides in the Southern Hemisphere, especially in the South Indian Ocean. A 

peat core was collected in an ombrotrophic peatland from the remote Amsterdam Island (AMS) 

and was analyzed for 210Pb, 137Cs and 241Am radionuclides using an underground ultra-low 

background gamma spectrometer. The 210Pb Constant Rate of Supply (CRS) model of peat 

accumulations is validated by peaks of artificial radionuclides (137Cs and 241Am) that are related 

to nuclear weapon tests. We compared the AMS 210Pb data with an updated 210Pb deposition 

database. The 210Pb flux of 98 ± 6 Bq·m-2·y-1 derived from the AMS core agrees with data from 

Madagascar and South Africa. The elevated flux observed at such a remote location may result 

from the enhanced 222Rn activity and frequent rainfall in AMS. This enhanced 222Rn activity 

itself may be explained by continental air masses passing over southern Africa and/or 

Madagascar. The 210Pb flux at AMS is higher than those derived from cores collected in coastal 

areas in Argentina and Chile, which are areas dominated by marine westerly winds with low 

222Rn activities. We report a 137Cs inventory at AMS of 144 ± 13 Bq·m-2 (corrected to 1969). 

Our data thus contribute to the under-represented data coverage in the mid-latitudes of the 

Southern Hemisphere. 

 

Keywords: radionuclides, 210Pb, 137Cs, 241Am, peat, Southern Indian Ocean 

Highlights:  

 First peat record of artificial radionuclides (137Cs and 241Am) in the Southern Indian 

Ocean. 

 Updated world 210Pb database with 47 new entries from the recent literature. 

 210Pb inventory found in the peat core from Amsterdam Island is similar to those from 

South Africa and Madagascar. 

One abstract + main text (3087 words) + 4 figures + supplementary information 
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1. Introduction 

Lead-210 (210Pb, T½=22.3 years) dating is the most common method employed to estimate 

short-term (from years to decades) chronologies in peat, estuarine, fluvial, and lacustrine 

environments (Le Roux and Marshall, 2011; Robbins and Edgington, 1975; Benoit and Rozan, 

2001; Humphires et al., 2010). 210Pb originates from the decay of gaseous 222Rn, which escapes 

from the Earth’s continental crust to the atmosphere (Graustein and Turekian, 1990). 210Pb 

adsorbs strongly to the surface of aerosols in the 0.1 ~ 0.5 μm diameter size range as soon as it 

is produced in the air (Knuth et al., 1983). 210Pb-bearing aerosols are distributed globally by 

general atmospheric circulation and can be deposited on the Earth’s surface mainly by 

precipitation, but also by dry fallout as well as convective updrafts (Knuth et al., 1983; 

Baskaran, 2011). The 210Pb deposited from the atmosphere is called “unsupported 210Pb” or 

“excess 210Pb” (denoted 210Pbex), which should be distinguished from the 210Pb produced inside 

the matrix (e.g. lake sediment) and which is, named “supported 210Pb” (Guevara et al., 2003).  

The Constant Rate of Supply (CRS) model based on 210Pbex flux, which could be validated 

by nuclear fallout studies (e.g. 137Cs, 241Am), is by now widely used (e.g. Appleby et al., 2001; 

2008). Another radionuclide that is widely used to derive ages is 137Cs. With a half-life of 30.2 

years, 137Cs is considered as one of the important radionuclides among those from nuclear 

emissions (e.g. atmospheric nuclear weapon tests in the 1950s-1970s with the peak in 1963 in 

the Northern Hemisphere and the fallout from the Chernobyl accident in 1986), with respect to 

being a persistent tracer and an indicator of single-event chronology (Aoyama et al., 2006; 

Rodway-Dyer and Walling, 2010). In contrast, 241Am - another artificial radionuclide - is 

strictly related to nuclear bomb testing in remote areas. 

Up to now, most studies about the inventory of sediment radionuclides and 

radiochronology have been conducted in the Northern Hemisphere. Limited work has been 

carried out in the Southern Hemisphere, especially in the Indian Ocean. The scarcity of studies 

conducted in the Southern Hemisphere is partly due to the lower fallout of 210Pb and 137Cs, 

fewer continental surfaces and fewer man-made radionuclide emissions and fallout, which 

generally result in lower activities bordering on analytical detection limits (Owens and Walling, 

1996; Bonotto and de Lima, 2006). In the Southern Hemisphere nuclear weapons fallout is 

about three times lower than that in the Northern Hemisphere. Consequently, the 137Cs fallout 

peak is usually more difficult to identify in cores due to the relatively high measurement 

uncertainties associated with the low 137Cs concentrations (Hancock et al., 2011). Southern 

Hemisphere investigations on 210Pb and 137Cs have been confined primarily to large land 

file:///C:/Users/sonke/AppData/articles%20and%20thesis/articles/methods/Baskaran%202011.pdf
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masses, such as South America (Sanders et al., 2006; Guevara et al., 2003; Cisternas et al., 

2001), Australia and  New Zealand (Pfitzner et al., 2004; Hancock et al., 2011), South Africa 

and Madagascar (Humphries et al., 2010; Kading et al., 2009; Iva-novitch and Harmon, 1992; 

Rabesiranana et al., 2016) .  

No studies on terrestrial sediment radionuclides and radiochronology exist for the 

Southern Indian Ocean, although the area is an important part of the global atmospheric and 

oceanic circulation patterns. Amsterdam Island (AMS, 37°S) is located just north of the 

Subtropical Front (at approximately 40°S, Orsi et al., 1995), where cool, low-salinity subpolar 

water submerges beneath warm, saline subtropical water (Prell et al., 1979). The island is 

located at the northern edge of both the Southern Westerly wind belt and the Antarctic 

Circumpolar Current.  

The main objectives of this study were to investigate (1) to what extent observations in the 

Southern Indian Ocean could define Southern Hemisphere mid-latitude 210Pb, 137Cs and 241Am 

background conditions for the last 100 years and (2) how 210Pb levels are comparable between 

different matrices (e.g. wetland, sediment, glacier and atmospheric deposition) at different 

latitudes of the world, which could allow us to draw a new global sketch of 210Pb flux. 

In this paper, for the very first time the inventories and fluxes of 210Pb and 137Cs together 

with a 210Pb-based peat accumulation rate for AMS are reported. This island is located in 

Southern Indian Ocean at 37°S and at 3400 km from the nearest land mass. The atmospheric 

conditions at this location offer the possibility to potentially define 210Pb background 

concentrations, in a place with minimal perturbation from anthropogenic influences (Gaudichet 

et al., 1989; Angot et al., 2014). AMS is therefore an ideal site to investigate the background 

levels of 210Pb, 137Cs and 241Am in the Southern Hemisphere, as well as to detect long-range 

transport of anthropogenic radionuclides.  

2. Materials and methods  

2.1. Study area 

AMS (37°50'S, 77°32'E) is a small volcanic island with a surface of 55 km2 and a maximum 

elevation of 881 m above sea level (a.s.l.). The center of the island is formed by a volcanic 

caldera in which an ombrotrophic peatland develops. The island is located at the northern edge 

of the westerly wind belt in the South Indian Ocean at a minimum distance of 3400 km and 

5000 km upwind from the nearest land masses, respectively, Madagascar and South Africa. 

The climate in AMS is mild oceanic, with frequent clouds (Angot et al., 2014). The annual 

file:///C:/Users/sonke/AppData/articles%20and%20thesis/articles/methods/Baskaran%202011.pdf
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precipitation is 1124 mm·y-1 based on 40-year annual average data from 1951 to 1990 (Meteo 

France data reported in Miller et al., 1992). The weather station is located at 29 m above sea 

level. However, although no record exists, the cloud accumulation at the top of the island makes 

the precipitation level much higher in the caldera than that recorded at the weather station. The 

orographic effect (Roe, 2005; Le Roux et al., 2008) would enhance precipitation and therefore, 

210Pb-bearing aerosols scavenging. Relatively higher volume of rainfall above 600 m a.s.l. also 

favors moss growth and peat accumulation in the caldera of AMS. The annual temperature is 

13.8 °C at the weather station, while the average annual humidity is 80% with little seasonal 

variations. Located in the middle of the Indian Ocean, AMS is also at the crossroads of African, 

Australian and Southern American dust trajectories (Li et al., 2008; Lamy et al., 2014). 

 

Figure 1. Sampling site in Amsterdam Island.  

2.2. Core sampling and subsampling 

One 5m-long peat sequence (AMS14-PB01A, 37°50.742´S, 77°32.898´E) was collected from 

the center of a raised bog at 738 m a.s.l. in December 2014 using a stainless steel Russian D-

corer of 10 cm internal diameter and 50 cm length (Belokopytov and Beresnevich, 1955; De 

Vleeschouwer et al., 2014; Vanneste et al., 2016) (Fig. 1). A second (AMS14-PB01B, 4.15 m 

length) and a third core (AMS14-PB01C, top 1 m length) at the same site were collected and 
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stored as archives. All cores were photographed, described and wrapped in plastic film and 

PVC tubes before being shipped by boat to France in +4°C fridges. Cores were frozen and 

subsequently sliced at roughly 1-cm resolution using a clean sub-sampling procedure described 

in De Vleeschouwer et al., (2010). After being cleaned with MilliQ water and the edges 

removed (Givelet et al., 2004), the subsamples were dried using an ALPHA 1-4 LD plus freeze-

dryer. Prior to freeze-drying, the dimensions of each subsample were measured using a vernier 

caliper in order to i) obtain the volume for calculating the dry bulk density and ii) to estimate 

the cut loss between each slice by comparing the cumulative slices thickness and the total 

length of the core. In this paper, we focus on last 100-150 years of peat accumulation 

representing the top 12 cm of the master core.  

2.3. Radiometric measurements  

Fifteen freeze-dried sample aliquots (approximately 0.3 g) were analyzed at the LAFARA 

underground laboratory located in Ferrières in the French Pyrénées (Van Beek et al., 2013). 

Prior to analysis, samples were sealed to prevent any 222Rn loss and stored for a period of 3 

weeks to ensure radioactive equilibrium between 226Ra, 214Pb and 214Bi. The 210Pb, 226Ra, 137Cs 

and 241Am activities were determined using a well-type germanium detector that was protected 

from cosmic rays by 85 m of rock, thus yielding a very low background (Van Beek et al., 2013). 

The 210Pb, 137Cs and 241Am were measured using the gamma lines at 46.5 keV, 661.7 keV and 

59.5 keV, respectively. The 226Ra was determined using the 295 keV, 351.9 keV and 609.3 

keV gamma emissions of its decay chain descendants (214Pb and 214Bi). Because of the very 

low activities present in the peat samples and because the volume of material to be analyzed 

was small, each sample was analyzed for at least four days. We used RGU1, RGTH1 and 

IAEA-375 standards provided by IAEA to calibrate the detector.  

Excess 210Pb activities are calculated by correcting the total 210Pb for the 210Pb supported 

by 226Ra. Since the 226Ra activities were below the detection limit in the core, the 210Pbex 

activities are equivalent to the total 210Pb activities (supplementary Table S1). In the following, 

we report 210Pbex activities. The detection limits achieved in this study (considering the low 

amount of material that was analyzed) were 20 Bq.kg-1 for 210Pb, 0.4 Bq.kg-1 for 137Cs and 0.6 

Bq.kg-1 for 241Am. 

 

2.4. Calculating decays, fluxes and inventories 

Atmospheric 210Pb fluxes Φ (Bq·m-2·yr-1) were calculated using: 
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Φ= λ· I210Pb                                                                                                                                 (1) 

where λ is the 210Pb decay constant (0.03114 yr-1, λ=ln2/T1/2) and I is the 210Pbex inventory 

(Bq·m-2) in peat calculated from (Appleby, 1997): 

I=∑ ρ(x) ∙ C(x)i=∞
i=0 ∙ dx                                                                    (2) 

where ρ(x) (g·cm-3) is the dry bulk density, dx is the soil thickness (cm) and C(x) is the excess 

210Pb activity (Bq·kg-1). (Sanchez-Cabeza et al., 2007) The 137Cs inventory was also calculated 

using equation (2). 

The formula for calculating 137Cs cumulative decay corrected fallout at year 1969 (maximum 

fallout, according to Aoyama et al., 2006) is shown below, 

CD1969 = ∑ Dτe−λ(1969−τ)1969
τ                                                            (3) 

 CD1969 : cumulative decay corrected fallout at year 1969 (Bq·m-2);  λ: radioactive decay    

constant of 137Cs (0.023 yr-1, λ=ln2/T1/2);  Dτ: annual deposition of 137Cs at year τ (Bq·m-2). 

3. Results and discussion 

3.1. Downcore distribution of 210Pb, 137Cs and 241Am activities 

Given that ombrotrophic peatlands are only depending on precipitation for their water balance, 

210Pb flux is assumed to be exclusively of atmospheric origin at AMS. This is confirmed by the 

absence of supported 210Pb because no 226Ra was detected. Except for the first sample that 

contained living Sphagnum moss, the 210Pbex activities decrease with increasing depth down to 

approximately 12 cm. (Fig. 2 and supplementary Table S1). As shown in Fig. 2, the activities 

of 137Cs and 241Am displayed peaks at the same depth (4.4- 5.8 cm), with values of 22 ± 2 

Bq·kg-1 and 7 ± 1 Bq·kg-1, respectively, indicating that these peaks can be related to nuclear 

bomb testing (Spalding et al., 2005).  

The total 210Pbex inventory was 3160 ± 200 Bq·m-2 with a corresponding 210Pbex flux of 98 

± 6 Bq·m-2·y-1. According to equation (3), the corrected value for 137Cs inventory on AMS in 

1969 was 144 ± 13 Bq·m-2, which is two times lower than the modeled average inventory of 

580 Bq·m-2 (range from 150 to 1430 Bq·m-2) at 35°S (Aoyama et al., 2006), but higher than 

the activity reported at 45°S in the same paper. Our observed 137Cs inventory for AMS is thus 

close to the lower limit of these estimates at 35°S. 241Am activity is relatively high showing 

potentially the immobility of this radioelement in the peat column compared to cesium. Despite 

this, the activity inventory ratio 137Cs/241Pu1969 = 1.2, derived from 137Cs and 241Am activities 
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respectively, is on the same order of magnitude that what can be found in Antarctica and sub-

Antarctica islands.  (Pourchet et al., 2003; Roos et al., 1994) 

 

Figure 2. Vertical profiles of 210Pbex, 137Cs and 241Am activities in the peat core collected 

in Amsterdam Island. 

3.2. 210Pb chronology  

Well-dated peat profiles are valuable archives of past environmental changes. The Constant 

Rate of Supply (CRS) model (Appleby et al., 1997; Binford, 1990) was applied to 210Pb 

inventories calculated from the 210Pbex data to generate ages. The peat core presented here spans 

a period of about 157 years, indicating a peat accumulation rate of about 0.75 mm·yr-1. 

Oldfield (1995) suggested that 210Pb measurements alone cannot result in an accurate 

chronology of peat accumulation. However, when constrained by 241Am and 137Cs activity 

profiles in the upper part of a sequence, 210Pb can provide good chronologies of peat 

accumulation. The 210Pbex dates from the peat profile in AMS calculated using the CRS model 

were independently validated by 137Cs and 241Am that displayed highest activities between 

1960 and 1981 (Fig. 3), corresponding to the period of nuclear weapon tests (i.e. in the 1960s). 

Moreover the detection of 241Am excludes the possibility that 137Cs post-depositional mobility 

processes would have shifted the 137Cs activity maximum (Schettler et al., 2006-Part B). 
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Figure 3. 210Pbex inferred chronology based on CRS model.  

3.3. 210Pb flux in AMS compared with global 210Pb depositional flux 

We updated the database from Turekian et al., (1977) and Preiss, (1997) by compiling 47 new 

entries from the last 20 years. Global estimates of 210Pb flux from the literature, integrated over 

30°-latitudinal belts within different matrices, are shown in Fig. 4 and supplementary Table S2. 

Only terrestrial data, i.e. from wetlands (peatlands, salt marshes and swamps), sediments (lakes, 

estuarine and soil profiles), glaciers (ice core and firn) as well as atmospheric deposition (snow, 

precipitation plus dry fallout) are included. 

Globally, the 210Pb flux measured in wetland sequences show smaller uncertainties 

compared to fluxes measured from atmospheric deposition and sediment sequences (Fig. 4). 

The dominant 210Pb input to wetlands is through the atmosphere in contrast to lake basins and 

the data are integrated over several years (1-cm layer represents a period of more than 10 years). 

The relatively larger uncertainty observed in atmospheric deposition could be explained by 

short-term measurements (i.e. annual) that can enhance different tropospheric contributions. 

Many factors (e.g., adjoining drainage areas) could alter the 210Pb flux in sediment sequences. 

In general, the 210Pb flux is lower at high latitudes (>60° latitude) (Fig. 4), especially when 

measured in glaciers and atmospheric deposition, where the low density of land masses results 

in lower 222Rn emissions. According to the existing data, the 210Pb fluxes measured in 
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sediments are higher than those measured in the other three categories in the Northern 

Hemisphere, while in the Southern Hemisphere the values detected in wetlands are the highest 

(except between 60 ~ 90°S where no measurement exists). The 210Pb fluxes from atmospheric 

deposition are similar to those from wetlands in the Northern Hemisphere (Fig. 4). Wetlands 

are found to be the appropriate archives for a good estimation of atmospheric flux, due to the 

absence of in-wash of sediments, and the low energy budget (absence of streams)(Preiss et al., 

1996). However in the Southern Hemisphere, 210Pb flux from wetlands and atmospheric 

deposition are not similar, which might be partially due to the scarcity of data (only 7 for 

wetlands) resulting in a non-representative dataset. Compared to the Northern Hemisphere, 

fewer data are available for the Southern Hemisphere, and thus more effort should be made in 

the future to fill this gap.  

 

Figure 4. Global atmospheric depositional fluxes of 210Pb among different matrices at 

different latitude. (Data assembled from supplementary Table S2) 

In the peat core from AMS, the 210Pb flux was 98 ± 6 Bq·m-2·y-1, which is higher than 

most values reported at around 40°S. For example, Baskaran (2011) found an average 210Pb 

flux of 61 ± 2 Bq·m-2·y-1 between 30 ~ 40°S and 42 Bq·m-2·y-1 between 40 ~ 50°S based on 
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terrestrial or marine settings. Guelle et al. (1998) used three kinds of wet-scavenging schemes 

to simulate the 210Pb distribution and found a flux of 28 ~ 34 Bq·m-2·y-1 between 30 and 60°S. 

The 210Pb atmospheric deposition in Tasmania is 41.5 Bq·m-2·y-1 (42.5°S, 147.5°E) (Preiss, 

1997). Rosen et al. (1957) found a much lower value (1.24 Bq·m-2·y-1) in Wellington (41°17’S), 

New Zealand based on the calculation of the 222Rn flux. The estimated unsupported 210Pb fluxes 

values from the global model made by Turekian et al. (1977) and El-Daoushy (1988) were ≤ 

74 (in terrestrial settings) and 58.4 Bq·m-2·y-1, respectively. Unsupported 210Pb flux from lake 

sediments in Northern Patagonia (from 40°30’S to 41°10’S) showed very low values, ranging 

between 4 and 48 Bq·m-2·y-1 (Guevara et al., 2003). The average 210Pb flux from lake sediment 

in central Chile (36°51' S, 73°05' W) was 23.6 Bq·m-2·y-1 (Cisternas et al., 2001). However, 

when compared with a soil profile from Madagascar, we find almost the same value (95.8 

Bq·m-2·y-1, Rabesiranana et al., 2016) as in AMS. Our value is also quite similar to other values 

obtained from swamps or salt marshes found in South Africa (139 ± 37 Bq·m-2·y-1, n=4, 

Humphires et al., 2010 ; Kading et al., 2009 ; Ivanovitch and Harmon, 1992). The 210Pb flux in 

AMS is lower than some measurements conducted in wetlands between 30 and 60°N, e.g., 

Romania (between 133 ~ 277 Bq·m-2·y-1, Begy et al., 2016), China (254 and 421 Bq·m-2·y-1, 

Bao et al., 2010).  

Depositional flux of 210Pb at any given site depends on the local 222Rn emanation rates and 

the relative proportion of maritime and continental air masses along with the differences in the 

amount and frequency of precipitation (Baskaran, 2011). The highly variable 210Pb depositional 

fluxes give insight to the sources and sinks of aerosols. The study sites in Argentina and Chile 

(Cisternas et al., 2001; Guevara et al., 2003), showing much lower 210Pb fluxes, are located at 

the coast near the Pacific Ocean, and are influenced by westerly winds bringing oceanic air 

masses. The contribution of sea salt for 210Pb from oceanic 222Rn is negligible. Global 222Rn 

flux from continents is estimated to be around 1300-1800 Bq·m-2·d-1, which is around 2 orders 

of magnitude higher than that from the oceans (Samuelsson et al., 1986; Nazaroff, 1992). The 

210Pb flux at AMS is relatively high (discussed above). Despite the remoteness of the island, 

Angot et al. (2014) found that air masses passing over the southern African continent and/or 

Madagascar could enhance 222Rn activity in AMS based on the study of back trajectory. 

Continental air masses originating from South Africa and/or Madagascar are enriched in 210Pb 

that is then scavenged to clouds over the Indian Ocean. The regular orographic heavy rainfalls 

in the caldera at the top of AMS promote the deposition of 210Pb from the South Africa and/or 

Madagascar air masses into the peatland, resulting in a 210Pb flux on the island similar to those 

in South Africa and Madagascar. 

file:///C:/TRAVAIL_楚娴/articles%20and%20thesis/articles/methods/Preiss1996.pdf
file:///C:/TRAVAIL_楚娴/articles%20and%20thesis/articles/methods/Preiss1996.pdf
file:///C:/TRAVAIL_楚娴/articles%20and%20thesis/articles/methods/Marco%20Cisternas%202001.docx
file:///C:/TRAVAIL_楚娴/articles%20and%20thesis/articles/methods/Marc%20S.%20Humphries%202010.pdf
file:///C:/TRAVAIL_楚娴/articles%20and%20thesis/articles/methods/Kading%202009.pdf
file:///C:/Users/sonke/AppData/articles%20and%20thesis/articles/methods/Baskaran%202011.pdf
file:///C:/TRAVAIL_楚娴/articles%20and%20thesis/articles/methods/Marco%20Cisternas%202001.docx


Chapter 1. Recent 210Pb, 137Cs and 241Am accumulation in an ombrotrophic peatland from 

Amsterdam Island (Southern Indian Ocean) 

81 
 

4. Conclusion 

For the very first time, radionuclide (210Pb, 137Cs, 241Am) measurements conducted in a peat 

core taken from an ombrotrophic peatland on AMS are presented. The chronology based on 

210Pb using a CRS model is consistent with other chronomarkers (137Cs and 241Am), which 

allows the reconstruction of a peat mass accumulation rate of 0.75 mm·yr-1 for a period of 157 

years. The 210Pb flux of 98 ± 6 Bq·m-2·y-1 measured in the peat core is relatively high compared 

to many observations at around 40°S. This pattern might be explained by the fact that, most 

studies conducted in the mid-latitudes in Southern Hemisphere are located on the west side of 

the continents, close to the coast, and are highly influenced by westerly winds bringing air-

masses with low 222Rn activities. However, the 210Pb flux at AMS is comparable to the ones in 

South Africa and Madagascar. This may be explained by the continental air mass enriched in 

222Rn originating from South Africa and/or Madagascar influencing AMS together with the 

frequent and heavy rainfalls at the top of the island which would enhance deposition. The 137Cs 

inventory was 144 ± 13 Bq·m-2 (corrected to 1969). Since no terrestrial studies were conducted 

in the south Indian Ocean, the data reported here from AMS (210Pb, 137Cs and 241Am) are of 

value for the global database.  
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Supporting information 

Table S1. 210Pbex, 137Cs and 241Am distribution in the peat core collected in Amsterdam 

Island.  

Top 

Depth 

Bottom 

Depth 
Density 

Mass of 

sample 
210Pbex ± σ 137Cs ± σ 241Am ± σ 

 Year 

Interval 

/ cm / cm / g·cm-3 g / Bq·kg-1 / Bq·kg-1 / Bq·kg-1 
 

0 1.5 0.117 0.285 651 ± 34 1.7 ± 0.4 0 2014-2003 

1.5 2.9 0.054 0.291 894 ± 37 0.9 ± 0.2 0 2003-1992 

2.9 4.4 0.077 0.275 735 ± 35 11 ± 1 3 ± 1 1992-1981 

4.4 5.8 0.107 0.286 517 ± 30 22 ± 2 7 ± 1 1981-1960 

5.8 7.3 0.107 0.341 273 ± 20 11 ± 1 4 ± 1 1960-1930 

7.3 8.8 0.128 0.267 57 ± 19 <LD <LD 1930-1900 

8.8 10.3 0.115 0.292 68 ± 17 <LD <LD 1900-1873 

10.3 11.7 0.160 0.271 40 ± 9 <LD <LD 1873-1857 

11.7 12.7 0.138 -  <LDn.m.i <LDn.m.i <LDn.m.i 1857-1848 

12.7 14 0.127 0.300 <LD <LD <LD 1848-1836 

< LD: below the Detection Limit; n.m.i: non-mesurement but with interpolation; The activities of 210Pbex ± σ, 137Cs ± σ 

and 241Am ± σ are shown in Bq·kg-1 of dry material. 

 

Table S2. Global depositional 210Pb flux (Bq m-2 yr-1) within different matrices at 

different latitudes. 

    Wetland   Sediment   Glacier   Atmospheric deposition 

  
N
r  

mean ± σ max min Nr mean ± σ max min Nr mean ± σ max min Nr mean ± σ max min 

60°-90° N 8 44 16 64 15 58 86 61 280 21 19 9 4.5 19.5 4.1 9 59 49 150 5.7 

30°-60° N 
4

2 
140 75 421 23 331 205 301 3350 3.7 4 24    2.6 26.7 21 66 157 100 465 25 

0°-30° N 1 117 * 117 117 58 457 626 3725 12 4 11 11 27 1.5 20 141 90 316.7 24 

0°-30° S 5 110 58 192 40 16 70 43 162 9 1 28 * * * 9 61 20 95 32 

30°-60° S 2 115 9.7 122.1 108.3 11 26 18 60 4 0 * * * * 21 52 24 125 23 

60°-90° S 0 * * * * 6 37 51.4 137 1.2 30 2.9 2.1 8.2 0.7 2 5 4.3 8.0 1.9 

(*: without data. Details please see the data compilation in the supplementary information) 

Data updated from Preiss(thesis), 1997; Turekian et al., 1977; Guevara et al.,  2003; Brenner et al., 1999; Cisternas et al., 

2001; Bao et al., 2010; Rabesiranana et al., 2016; Begy et al., 2016; Farmer et al., 2015; MacKenzie et al., 1998; MacKenzie 

et al., 1997; Humphires et al., 2010; Kading et al., 2009; Alvarez-Iglesias et al., 2007; Appleby, 1997; Humphries and Benitez-

Nelson, 2013; Foster et al., 2007; Baskaran and  Naidu, 1995; Schettler et al., 2006; Holynska et al., 1998; Olid et al., 2010; 

Olid et al., 2013; Olid et al., 2014; Klaminder et al., 2006; Gallagher et al.,  2001; Tylmann et al., 2016; Mabit et al., 2014; 
Benmansour et al., 2013; Blake et al., 2009; O’Farrell et al., 2007; Fukuyama et al., 2008; Gaspar et al., 2013; Kato et al., 

2010; Porto et al., 2006; Porto and Walling, 2012; Porto et al., 2013; Porto et al., 2014; Wakiyama et al., 2010; Walling et 

al., 2003; Yang et al., 2011; Zheng et al., 2007; Fitzgerald et al., 2005; Suzuki et al., 2004; Bindler et al., 2001; Szczuciński 

et al., 2009; Peters et al., 1997; Baeza et al., 1996; Nijampurkar et al., 2002; Beks et al., 1998; García‐Orellana et al., 2006 ) 

 

file:///C:/TRAVAIL_楚娴/articles%20and%20thesis/articles/methods/210Pb%20fluxes%20in%20sediment%20layers%20sampled%20from%20Northern%20Patagonia%20lakes.pdf
file:///C:/TRAVAIL_楚娴/articles%20and%20thesis/articles/methods/John%20G.Framer%202015-GCA.pdf
file:///C:/TRAVAIL_楚娴/articles%20and%20thesis/articles/methods/MacKenzie%201998---Peat.pdf
file:///C:/TRAVAIL_楚娴/articles%20and%20thesis/articles/methods/MacKenzie%201997---Peat.pdf
file:///C:/TRAVAIL_楚娴/articles%20and%20thesis/articles/methods/MacKenzie%201997---Peat.pdf
file:///C:/TRAVAIL_楚娴/articles%20and%20thesis/articles/methods/Marc%20S.%20Humphries%202010.pdf
file:///C:/TRAVAIL_楚娴/articles%20and%20thesis/articles/methods/Kading%202009.pdf
file:///C:/TRAVAIL_楚娴/articles%20and%20thesis/articles/methods/Paula%20Alcarez-Iglesias%202007.pdf
file:///C:/TRAVAIL_楚娴/articles%20and%20thesis/articles/methods/Appleby%201997---peat.pdf
file:///C:/TRAVAIL_楚娴/articles%20and%20thesis/articles/methods/Foster%202007-%20south%20africa.pdf
file:///C:/TRAVAIL_楚娴/articles%20and%20thesis/articles/methods/Baskaran%201995%20-%20Arctic.pdf
file:///C:/TRAVAIL_楚娴/articles%20and%20thesis/articles/methods/schettler%202006-210Pb.pdf
file:///C:/TRAVAIL_楚娴/articles%20and%20thesis/articles/methods/Holynska%201998.pdf


Chapter 1. Recent 210Pb, 137Cs and 241Am accumulation in an ombrotrophic peatland from 

Amsterdam Island (Southern Indian Ocean) 

92 
 

 

Figure S1.  Global atmospheric depositional fluxes of 210Pb among different matrices at 

different latitude belts (10° belt).  

 

 

Figure S2. Location of the discrete data compiled in supplementary Table S3 (Shown in 

Appendix A) and used to make the extrapolated map
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Objectifs et résumé 

Le réchauffement climatique a poussé de nombreux chercheurs à étudier les sources et les puits 

de CO2. L’océan Austral au sud de 30°S représente plus de 40% de l’absorption anthropique 

de CO2. Le rôle de l'océan Austral sur l'absorption, le transport et le stockage du CO2 est 

contrôlé par le vent du sud-ouest (VSO). Des changements dans l'intensité / le déplacement des 

VSO peuvent réguler la remontée / la descente océanique du carbone inorganique dissous entre 

les profondeurs océaniques et la surface de la mer, entraînant un puits de carbone ou un effet 

supplémentaire sur le réchauffement climatique. Les VSO affectent également les trajectoires 

de précipitations et de poussières des latitudes moyennes de l'hémisphère sud. Malgré 

l’importance des VSO, on en sait très peu sur leurs variations à l’échelle millénaire, sur la 

manière dont ils ont influencé le système climatique passé et sur leur interaction avec les 

composants de surface terrestre (e.g., le CO2 et les poussières). Peu d’études ont été menées 

sur la dynamique des VSO holocènes à cette limite nord (30-45°S), position latitudinale de de 

l’Amérique du Sud, de l’Afrique australe et de l’Australie. 

 

Dans ce chapitre, nous présentons un enregistrement VSO à base des poussières 

atmosphériques dérivées d’un sondage de tourbe située sur l’île d’Amsterdam (AMS), au sud 

de l’océan Indien, à la limite nord des VSO. Le flux de poussières minérales a été utilisé pour 

suivre l’origine des poussières atmosphériques, leur transport sur de longues distances et leur 

dépôt ultérieurs. Le profil des poussières atmosphériques de AMS enregistre la dynamique des 

VSO grâce à un effet orographique continental minimal et à des perturbations anthropiques sur 

les dépôts atmosphériques à prédominance des VSO. Les résultats de datation au radiocarbone 

et les données de radionucléides de courte demi-vie (210Pb, 137Cs, 241Am) garantissent une 

chronologie fiable pour ce profil de tourbe de 5 m de long et remontant à 6600 ans. La 

provenance des poussières a été déterminée à partir des signatures d'isotopiques du Nd 

(dénotées εNd) et des terres rares (TR) dans le sondage par rapport à un ensemble de données 

de référence des sources de poussières de l'hémisphère sud (HS). 

 

Nous trouvons un mélange de poussières locales et distales déposées à AMS. Notre modèle 

de mélange combinant  εNd et TR, montre un mélange relativement uniforme d’environ 40% 

de poussière locales, 15% d’Afrique australe et 45% du sud de l'Amérique du Sud tout au long 

du sondage. Cela indique un rôle prédominant de la poussière du sud de l'Amérique du Sud 

dans AMS, ce qui va à l'encontre de l'anticipation selon laquelle l'Afrique australe jouerait le 
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rôle principal dans la contribution de la poussière au sud de l'océan Indien vu sa proximité 

géographique. Les dépôts de poussière en Afrique australe ont toutefois doublé (32%) à partir 

de 1910AD. 

 

Deux périodes de flux minimum de poussières minérales se produisent entre 6.2-4.9 cal. 

kyr BP et 3.9-2.7 cal. kyr BP, interprété comme une période avec VSO décalée et / ou renforcée 

vers l’équateur à sa limite nord. Inversement, périodes de flux de poussière plus élevés entre 

6.6-6.2; 4.9-3.9; et 1.4 cal. kyr BP et au-delà sont interprétés comme VSO décalé et / ou affaibli 

poleward. Ces interprétations sont basées sur des vitesses de vent plus élevées conduisant à 

l’élimination de la poussière distale en chemin vers AMS, par turbulence et augmentation du 

dépôt humide. Les enregistrements VSO de l’Holocène publiés à son extrémité nord (33-41°S), 

de l’Amérique du Sud à l’Afrique du Sud jusqu’à l’Australie, montrent une grande variabilité 

au cours des 6.6 derniers mois. Nous pensons que cela reflète la variabilité climatique complexe 

du VSO dans les différents secteurs longitudinaux du HS. 

 

Le récent changement de provenance de la poussière ne s'accompagne pas d'un dépôt accru 

de poussière à AMS. Nous suggérons donc que la dégradation des sols, l'agriculture et les 

conditions climatiques plus sèches en Afrique australe ont conduit à une mobilisation accrue 

de poussière provenant de cette zone. 
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Abstract: The southern westerly winds (SWW) play a major role in climate variability in 

Southern Hemisphere mid- and high- latitudes, regulating rainfall, ocean circulation, and the 

Southern Ocean carbon sink. Despite their importance, little is known about millennial scale 

changes in the SWW and how they have influenced the climate system in the past and interacted 

with the Earth’s surface elements, such as dust, nutrients and carbon. Here we present a dust 

record from a 6.6 kyr old peat core in Amsterdam Island (AMS) situated at the northern edge 

of the SWW (37°S) in the Southern Indian Ocean. Mineral dust flux was used to track 

atmospheric dust production, long-distance transport and subsequent deposition. Dust 

provenance was determined from rare earth element (REE) and Nd isotopic signatures (εNd) 

in the core, compared with a reference dataset of Southern Hemisphere dust sources. Using a 

multi-proxy mixing model, the εNd and REE ratios show a relatively uniform mixture of ca. 

40% local, 15% Southern African and 45% Southern South American dust sources since 6.6 

cal. kyr BP. However, from 1910 AD onwards, there is a doubling in the contribution from 

Southern Africa (32%). Two mineral dust flux minima occur at 6.2 - 4.9 cal. kyr BP and 3.9 - 

2.7 cal. kyr BP, interpreted as periods with equatorward-shifted and/or strengthened SWW at 

the northern edge of the wind belts. Conversely, periods of higher dust flux at 6.6 - 6.2 cal. kyr 

BP, 4.9 - 3.9 cal. kyr BP, and 1.4 cal. kyr BP onwards are interpreted as poleward-shifted and/or 

weakened SWW. These interpretations are based on the findings that higher (lower) wind 

speeds lead to enhanced (less) removal of distal dust on the way to AMS, by wet deposition 

and turbulence. Published Holocene SWW records at the northern edge of the wind belt (33 - 

41°S) covering South-America, Southern-Africa and Australia, show much variability over the 

last 6.6 kyr. We suggest this reflects complex regional climate variability of the SWW in the 

different SH longitudinal sectors, indicating that SWW are not zonally homogeneous at the 

northern edge of the wind belts. The recent shift in dust provenance is not accompanied by 

enhanced total dust deposition at AMS. We therefore suggest that human impact (e.g., land use 

changes) and drier climate conditions in Southern Africa have led to enhanced dust 

mobilization. 

Keywords: Southern Westerlies; dust sources; peat; Amsterdam Island; anthropogenic 

activities.  
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1. Introduction  

The strength and position of the southern westerly winds (SWW) vary seasonally due to 

changes in the sea surface temperature (Lamy et al., 2010). SWW shift equatorward and expand 

during the austral winter, while they move poleward and contract during the austral summer. 

Latitudinal displacement in annual-mean SWW position can be affected by both external 

factors (e.g., long-term orbital forced insolation changes, Varma et al., 2012, 2011), and 

internal factors (e.g., Southern Annual Mode changes, Gillett and Thompson, 2003). Changes 

in the annual-mean strength and position of SWW play a major role in climate variability of 

SH mid- and high latitudes (e.g., affecting precipitation pattern, Jenny et al., 2003). The SWW 

are also an important driver of ocean circulation, nutrient transport and the global carbon cycle 

(Kohfeld et al., 2013). Around 40% of anthropogenic CO2 emissions are currently taken up by 

the Southern Ocean south of 35°S (Frölicher et al., 2015; Landschützer et al., 2015; Sabine et 

al, 2004). It has been suggested that poleward-shifts and intensification of the SWW can 

enhance upwelling of deep water with high concentrations of dissolved inorganic carbon, 

limiting the capacity of the ocean to absorb carbon at the surface, resulting in additional global 

warming (Denton et al., 2010; Hodgson and Sime, 2010; Lovenduski et al., 2008) . 

 An increase in SWW strength has been observed in recent decades (e.g., Hande et al., 

2012; Marshall et al., 2006; Thompson and Solomon, 2002). Swart and Fyfe (2012) suggest 

that under high CO2 emission scenarios, the SWW could shift up to 1.5° southwards and 

strengthen by up to 10% by the end of the 21st century (relative to the current annual-mean 

SWW position and strength). These changes will have significant environmental and climatic 

implications (Zickfeld et al., 2007).  To understand the influence of SWW on Earth’s climate 

requires a better knowledge of the interactions between SWW dynamics and climate in the past, 

especially in the Holocene (Fletcher and Moreno, 2012).  

Up to now, a range of direct and indirect proxies in different stratigraphic archives (e.g., 

peat and sediment cores) have been used to reconstruct Holocene SWW fluctuations (e.g., 

Lamy et al., 2010; Moreno et al., 2010; Saunders et al., 2018, 2012; Van der Putten et al., 2008). 

However, no consensus has been reached on past intensity and/or latitudinal changes of the 

SWW at the whole wind belts. Some studies argue for a strengthening/equatorward shift of the 

SWW during the mid-Holocene (ca. 7 - 4 cal. kyr BP) relative to the early Holocene (ca. 11 - 

7 cal. kyr BP) based on studies from Southern Africa (Fitchett et al., 2017; Humphries et al., 

2017) , Southern South America (Jenny et al., 2003; Moreno et al., 2010) , Australia and New 

Zealand (Shulmeister, 1999). Other studies suggest a poleward displacement of the SWW 
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during the same period resulting in a decreased westerly influence in Southern Africa (Chase 

et al., 2013), Southern South America (Frugone-Álvarez et al., 2017; Lamy et al., 2010, 2001), 

Australia and New Zealand (Marx et al., 2011). These studies are mainly conducted on the 

continents, which are under the combined influence of SWW and other regional climate and 

orographic factors (e.g., the monsoon system in Australia and the presence of the Andes in 

South America).  

Relatively few paleoclimatic studies (Lindvall et al., 2011; Ljung and Björck, 2007; 

Saunders et al., 2018, 2012; Van der Putten et al., 2012, 2008), have attempted to reconstruct 

Holocene SWW variability from oceanic islands where these factors are largely absent. 

Currently there are no SWW reconstructions at the northern edge of the SWW belt in the 

southern Indian Ocean. We address this by studying the Holocene mineral dust flux and its 

composition in peat profiles in Amsterdam Island (37°S). Mineral dust flux is a function of 

both changes in dust provenance, wind transport and deposition (Vanneste et al., 2015). 

Specifically, dust flux is a function of environmental factors, including aridity and air mass 

circulation over source areas (Marx et al., 2009; Thompson et al., 2002), dust atmospheric 

residence time (Betzer et al., 1988), as well as the strength and trajectories of transporting 

winds (Kohfeld et al., 2013). Changes in dust flux can be seen in the variabilities of 

geochemical and isotopic compositions (e.g., rare earth elements (REE) and Neodymium (Nd)  

isotopes, Vanneste et al., 2016, 2015). Amsterdam Island is remote and nearly free from human 

disturbance, which makes it an ideal location to measure dust flux and provenance, and 

determine past changes in wind dynamics (Gaudichet et al., 1989).  

The specific objectives of this study were to: (1) investigate the dust flux in peat core from 

Amsterdam Island; (2) identify the provenance of the dust by comparing core samples with a 

reference dataset of dust geochemistry and isotopic signatures from the Southern Hemisphere; 

(3) interpret these measurements in terms of past changes in the dynamics of the SWW at their 

northern limit in the Indian ocean, through comparison with other Southern Hemisphere (SH) 

records; and (4) probe the anthropogenic impact on the Southern Hemisphere based on the dust 

variability in Amsterdam Island peat core. This study can also provide an observational dataset 

for climate model parameterizations, especially in terms of the future impact of changes in the 

SWW on continental rainfall and the global carbon cycle. 

2.  Material and Methods 

2.1. Site description 
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Amsterdam Island (AMS, 37°50´S, 77°32´E) is a small (55 km2) isolated volcanic island 

located 4200 km to the east of South Africa and 3200 km to the west of Australia (Fig. 1a, b). 

The island has steep cliffs along its western coast rising to a central caldera at 720 m above sea 

level (a.s.l., Flatberg et al., 2011; Doucet et al., 2003) (Fig. 1c). The highest point is Mont de 

La Dives at 881 m a.s.l.. AMS is currently at the northern edge of the SWW belt, and just north 

of the oceanic subtropical front (Orsi et al., 1995). It has a mild oceanic climate with frequent 

cloud formation at the caldera. Mean annual temperature at the meteorological station (27 m 

a.s.l.) is 14°C and annual precipitation is about 1100 mm (De Vleeschouwer et al., 2014; 

Lebouvier and Frenot, 2007). The wind strength is 7.4 m s-1 on average (Météo France data 

reported in Frenot and Valleix, 1990). However, climate conditions on the central plateau are 

harsher with a mean annual temperature of 7°C and twice as much rainfall (Frenot and Valleix, 

1990). The soil around the central plateau is poorly developed and consists of water-saturated 

sandy loams developed to a maximum depth of 60 cm (Frenot and Valleix, 1990). The wetter 

conditions at higher altitudes of the island (above 500 m a.s.l.) favor moss growth (e.g., 

Sphagnum mosses) and peat accumulation, in particular on the central plateau (Flatberg et al., 

2011). 
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Fig. 1. Sampling sites on Amsterdam Island (AMS) and in the potential dust source areas 

in the Southern Hemisphere. (a) The core of the wind rose represents the location of 

Amsterdam Island. Wind rose data are courtesy of the Institut de Géosciences et de 

l’Environnement in Grenoble, France. The orange arrow represents Southern Westerly winds 

(SWW), whose core currently centers at 50-55°S (Saunder et al., 2018). The grey areas shown 

in Southern South America and Southern Africa, represents days per months (darker = more 

days) with dust activity (modified after Prospero et al., 2002). Red ellipses are soil sampling 

areas at Puna-Altiplano-Plateau, Central Western Argentina and Patagonia in Southern 

America (data from Gili et al., 2017); and dust/soil sampling sites at Sua Pan and Etosha Pan 

in Southern Africa.  (b) Map of AMS. The black rectangle has been enlarged in Fig. c. (c) 

Locations of the peat coring site AMS14-PB01A (red star) and soil sampling sites (numbers 

shown in red) at AMS. 

2.2. Sample collection and preparation 

A 5 m-long peat sequence (AMS14-PB01A, 37°50.742´S, 77°32.898´E, Fig.1c) was collected 

from the center of the caldera peatland at 738 m a.s.l. (Fig. 1; Fig. S1) in December 2014 using 
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a 50 cm long Russian corer with an internal diameter of 10 cm (Belokopytov and Beresnevich 

1955; De Vleeschouwer et al., 2014). Two further cores (AMS14-PB01B, 4.15 m length; 

AMS14-PB01C, top 1 m length) were collected and archived. Cores were photographed, 

described, wrapped in plastic film and PVC tubes, and shipped to France refrigerated at +4 °C. 

Cores were frozen and subsequently sliced at roughly 1-cm resolution using the sub-sampling 

procedure described in De Vleeschouwer et al., (2010) and Givelet et al., (2004).  

To study the chemical and isotopic provenance of dust in the core, we assembled a 

reference dataset consisting of nine top soil samples from this island, representative of local 

dust sources (Fig. 1c), together with samples from the two major SH dust sources (Fig. 1a). 

These were identified from observational and modelling data (Bryant et al., 2007; 

Engelstaedter and Washington, 2007; Prospero et al., 2002; Vickery et al., 2013) and include: 

(1) Botswana and Namibia in Southern Africa; and (2) the Altiplano, Western Argentina and 

Patagonia in Southern South America. Australia is not considered as an important distal dust 

source for AMS because limited air masses originate from Australia according to the 14-day 

Hysplit back trajectory ensembles at AMS (Fig. S2, Text S1) and most Australian dust is 

transported eastward to the Pacific Ocean (Li et al., 2008). Chemical analysis on AMS also 

supports minimal present Australian dust contribution to AMS (Gaudichet et al., 1989). 

Specific reference dust/soil samples in this study were collected from (1) local; (2) Sua Pan 

(Botswana) and (3) Etosha Pan (Namibia) in Southern Africa (Fig. 1a, c). More information on 

Southern African dust/soil and local AMS soil are given in the supplementary information Text 

S2, Table S1 and Table S2, respectively. Dataset of Southern American surface sediments 

(including Puna-Altiplano-Plateau, Central Western Argentina and Patagonia) are from Gili et 

al., (2017). 

2.3. Analyses and methods 

2.3.1. Radiocarbon dating and age model reconstruction  

Twenty peat samples were submitted for radiocarbon dating. Where possible monospecific 

terrestrial plant remains (brown mosses or Sphagnum mosses) were dated, and where there was 

insufficient material, both taxa were combined. Eleven of the radiocarbon samples were pre-

treated and graphitized at the GADAM center (Gliwice, Poland, GdA code) (Piotrowska, 2013) 

and their 14C concentration in graphite measured at the DirectAMS Laboratory (Bothell, WA, 

USA). The NIST Oxalic Acid II standard was used for normalization, and black coal was used 

as a blank. The other nine radiocarbon samples were pre-treated, graphitized and dated at 
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Plateforme Nationale LMC14 (CNRS-CEA Saclay, France, SacA code). Normalization of the 

measurements at LMC14 Laboratory was done with Oxalic Acid 1 standard. Blanks were 

carbonate and charcoal (for details see Delqué-Količ et al., 2013; Moreau et al., 2013).  

The surface of the core was dated with 210Pb using the Constant Rate Supply model 

(Appleby, 2001), together with four post-bomb radiocarbon dates (Goodsite et al., 2001; Hua, 

2009). The 210Pb Constant Rate Supply model has been validated by 137Cs and 241Am 

measurements (See Li et al., 2017 for details). An age-depth model was generated from a 

combination of radiocarbon dating, post-bomb and 210Pb dating with the Bacon package 

version 2.2 updated in 2018 (Blaauw and Christen, 2011) within R software version 3.5 (R 

development Core Team, 2013) using the SHCal13 calibration curve (Hogg et al., 2013). For 

modelling, the core was divided into 101 sections. The prior settings were default 10 year/cm 

for accumulation rate (gamma distribution with shape 1.5), and memory was described by beta 

distribution with mem.strength = 4 and mem.mean = 0.7. The median modelled age was used 

for plotting the data against time. 

2.3.2. Bulk density and ash content  

The density (g m-3) of 377 samples was obtained by measuring the volume of each sample, 

using a Vernier caliper, and weighing it after freeze-drying using an ALPHA 1e4 LD plus 

freeze-dryer. The ash content was determined as the weight difference before and after ashing 

the bulk peat samples in a furnace at 550°C for 5h.  

2.3.3. Major and trace element analyses  

We selected 101 freeze-dried AMS peat samples for elemental analysis based on the bulk 

density results. 100 mg of each selected peat samples was used and 50 mg of each reference 

soil/dust samples was used.  These samples were digested in Teflon vials on a hot plate using 

an HNO3-HF mixture (method modified from Vanneste et al., 2015, see supplementary 

information Table S3 for more details). Subsequently, concentrations of Al, Ti, K and Sr were 

determined by ICP-OES (IRIS Intrepid II) at Ecolab (Toulouse, France). Concentrations of 

trace elements (REE, Ga, Hf, Zr, Th, U, Cs, Rb, Pb), Mg and Ca were measured by quadrupole 

ICP-MS (Agilent Technologies 7500ce) at the Observatoire Midi-Pyrénées (Toulouse, France). 

Synthetic multi-element calibration solutions were used to calibrate the ICP-OES and ICP-

MS instruments. In addition, In-Re was added to both the ICP-MS calibration solutions and 

samples as an internal standard. Several certified reference materials (CRMs) were used for 

quality control: (1) NJV942 (Sphagnum peat, Swedish University of Agricultural Sciences, 
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Sweden); (2)NJV941 (Carex peat, Swedish University of Agricultural Sciences, Sweden); (3) 

SRM1515 (Apple leaves, NIST, US); (4) SRM1547 (Peach leaves, NIST, US); (5) LKSD-3 

(lake sediment, CANMET Mining and Mineral Sciences Laboratories, Canada); and (6) WQB-

1 (lake sediment, National Water Research Institute, USA). For further details on the quality 

control and quality assurance see supplementary information Text S3, Table S4 and Table 

S4bis. 

2.3.4. Neodymium isotope analyses 

43 freeze-dried samples from the AMS peat core, and reference soil samples from AMS (nine 

samples), Sua Pan (three soil and three dust samples), and Etosha Pan (three soil and three dust 

samples), were selected for Nd isotope analysis. The weight of the peat samples (160 mg - 950 

mg) and soil/dust samples (68 mg - 275 mg) required for the analyses was based on their Nd 

concentrations and the sensitivity of the mass spectrometer. Before being digested in a mixture 

of concentrated HNO3 and HF, samples were ashed in a furnace at 550°C for 5h (Vanneste et 

al., 2015). Subsequently, Nd was separated from the matrix within the sample solution using a 

two-column ion exchange technique. The Nd isotope composition of all the samples was 

determined by Thermal Ionization Mass Spectrometry (TRITONTM Plus) at the Observatoire 

Midi-Pyrénées (Toulouse, France). Chemical blanks for Nd isotopic measurements were below 

the detection limit. The Nd standards Rennes (143Nd/144Nd = 0.511973) and La Jolla 

(143Nd/144Nd = 0.511858) were analyzed at every session to monitor instrumental drift. 

Measured values of La Jolla were 0.511844 ± 0.000012 (n=9) and of Rennes were 0.511956 ± 

0.000006 (n=22). The three replicated samples gave consistent 143Nd/144Nd values within the 

error bars.  

 The Nd isotopic signatures, expressed in ɛNd notation are calculated by the equation (1). 

ɛNd =( 
(

143𝑁𝑑
144𝑁𝑑

)Sample

(
143𝑁𝑑
144𝑁𝑑

)𝐶𝐻𝑈𝑅

 - 1 ) x 104                           (Eq.1) 

where CHUR is Chondritic Uniform Reservoir, representing a present day average earth 

value (143Nd/144Nd)CHUR = 0.512638 (Jacobsen and Wasserburg, 1980). ɛNd represents the 

deviation of 143Nd/144Nd in a sample from the value in CHUR. 

2.4. Statistical methods  

A principal component analysis (PCA) was performed on all the elemental data (REE, Mg, Ca, 

Ga, Rb, Zr, Cs, Hf, Th, U, Al, Pb, Ti, K, Sr) using the ‘psych’ package (Revelle, 2019) within 
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R software (R Decelopment Core Team, 2013). Each principal component groups a set of 

elements with similar variations along the peat profile. A varimax rotation is also performed 

for maximizing the variances of the squared loadings in the components in order to facilitate 

the interpretation (Abdi and Williams, 2010; Vanneste et al., 2016). 

Change point analysis was performed with the Change-Point Analyzer 2.0 software 

(Taylor Enterprises Inc., IL, http://www.variation.com) to identify significant shifts in the key 

proxies through the Holocene (e.g., Castino et al., 2016; Killick et al., 2010; Reid et al., 2016) . 

The method (Taylor, 2000a) is based on the mean-shift model under the procedure of a 

combination of time-series cumulative sum charts and bootstrapping to detect change. The 

cumulative sums are the cumulative sums of differences between the values and the average 

(for details on the method see Taylor, 2000a; 2000b). The cumulative sum chart is optimal at 

detecting shifts in the mean (Taylor, 2000a). 10,000 bootstraps were performed and only 

changes with probabilities of >99% were considered.  

2.5 Source end-members mixing calculation 

The potential distal dust sources are discussed at a continental scale (e.g., Southern South 

America and Southern Africa) because our initial mixing model attempts have shown that the 

sources cannot be resolved on a sub-continental scale. Puna-Altiplano-Plateau, Central 

Western Argentina and Patagonia were grouped together as the Southern South American dust 

source end-member. Sua Pan and Etosha Pan were grouped as the Southern African end-

member. The contributions of different source end-members were calculated based on the 

method of ratio-to-ratio relationships in the mixing balance described in Albarède, (1996) as 

equation 2:  

(
𝐶𝑖2

𝐶𝑖1)
𝑚𝑖𝑥

=
∑ 𝐶𝑗

𝑖2𝑓𝑗
𝑛
𝑗=1

𝐶𝑚𝑖𝑥
𝑖1                                                            (Eq. 2) 

Where 𝐶𝑖1  and 𝐶𝑖2  are the REE concentrations or Nd isotopes in a mixture of n 

components j and represents each component (end-member). f is the fraction of component j in 

the mixed dust depositing at AMS. Details on the calculation are reported in Table S5. 

3. Results 

3.1. Core description  

The total length of the core is 500 cm. Between 500 cm and 340 cm depth, a compacted, in 

general relatively well-preserved peat deposit was formed. The peat is laminated, showing a 
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cm-scale alternation between fibrous well preserved Sphagnum-dominated layers and more 

amorphous less well preserved layers. From 340 cm to 20 cm the peat becomes less compacted 

showing different units of more or less well preserved peat, with visible plant macrofossils in 

some parts. The top 20 cm of the core reflects the modern vegetation which consists mainly of 

brown mosses together with some Sphagnum spp. (Fig. S3). 

3.2. Bulk density and ash content  

The density profile of the AMS peat core shows a general decreasing trend with an abrupt drop 

at ~315 cm (Fig. 2a). From 500 cm to 315 cm, the median density is 0.17 g cm-3 (0.08 - 0.26 g 

cm-3) with relatively higher values between 340 cm and 315 cm. From 315 cm upwards, the 

density is lower with a median value of 0.12 g cm-3 (0.05 - 0.16 g cm-3). The ash content in the 

AMS peat core mirrors partly the density profile and shows a general decreasing trend from 

bottom to top (Fig. 2b), varying between 2.63% and 0.34%. The abrupt decrease between 340 

cm and 315 cm present in the density profile is not as prominent in the ash content. 

 

Fig. 2. (a) Density (black line = for 5-point smoothing), (b) ash content and (c) age depth 

model (14C in blue, 210Pb Constant-Rate-Supply model in green) of the AMS peat core. 

For details on the top 50 cm chronology, we refer to Fig. S4 in supplementary information. 
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3.3. Geochronology 

Radiocarbon and calibrated ages are shown in Table 1. The 210Pb, 137Cs and 241Am results are 

published in Li et al., (2017). The 210Pb Constant Rate Supply model is in good agreement with 

post-bomb 14C ages. The age-depth model of the core was based on a combination of 

radiocarbon dating, post-bomb and 210Pb dating (Fig. 2c; Fig. S4). The model shows that the 

peat sequence spans the last 6.6 kyr (Table S6), with a mean accumulation rate of 0.76 mm yr-

1. 

Table 1. Radiocarbon dating results from Amsterdam Island peat sequence. Four samples 

were dated to a post-bomb period (Goodsite et al., 2001; Hua, 2009; Spalding et al., 2005) and 

the results calibrated using SH zone 1-2 calibration curve (Hua et al., 2013) by Calibomb 

software (Stuiver and Reimer, 2003). Other results were calibrated using the SHCal13 

calibration curve (Hogg et al., 2013). Age-depth modelling was performed with  Bacon, R 

routine (Blaauw and Christen, 2011). 

Lab ID Mid-Point 

Depth 

(cm) 

Material 

dated 

pMC* Calibrated age 

(median) 

Selected calibrated 

intervals (years BP) 

 

SacA50049 

2.0 

Chorisondontiu

m/Dicranoloma 

stems + leaves 

107.18 ± 

0.28 
 [-58 ; -53] 

 

SacA50050 3.5 

 Brown moss 

stems 

120.36 ± 

0.30 
 [-37 ; -35] 

 

SacA50051 4.9 

 Brown moss + 

liverworts stems 

146.21 ± 

0.32 
 [-24 ; -22] 

 

SacA50052 6.4 

 Brown moss + 

liverworts stems 

116.81 ± 

0.28 
 [-10 ; -10] 

Lab ID Mid-Point 

Depth 

(cm) 

Material dated 14C age  

(yr BP) 

Calibrated age 

(median) 

Calibrated age 

range with 95.4% 

probability (BP) 

 

SacA50053 7.8 

 Brown moss 

stems 135 ± 30 
8 1 - 16 

 

SacA50054 9.4 

 Brown moss 

stems 115 ± 30 
26 14 - 39 

 

SacA50055 10.8 

Brown moss 

stems + leaves 80 ± 30 
44 27 - 62 
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SacA50056 

12.0 

Brown moss 

stems + 

Chorisondontiu

m/Dicranoloma 

leaves 160 ± 30 

57 33 - 96 

 

SacA50057 13.2 

Brown moss 

stems 70 ± 30 
65 35 - 127 

GdA-4136 24.9 
brown moss 

stems 
275 ± 25 198 150 - 310 

GdA-4558 65.4 

Residue 

(Sphagnum 

dominated) 

595 ± 25 561 510 - 640 

GdA-4560 170.7 
Brown moss 

stems 
2100 ± 25 2028 1920 - 2105 

GdA-4137 174.8 
Brown moss 

stems 
2170 ± 30 2076 2005 - 2145 

GdA-4138 224.4 
Brown moss 

stems 
2430 ± 30 2530 2365 - 2700 

GdA-4139 275.4 
Brown moss 

stems 
2925 ± 30 3092 2930 - 3330 

GdA-4561 340.9 
Brown moss 

stems 

4145 ± 35 

 
4485 4225 - 4645 

GdA-4140 374.4 Sphagnum  4285 ± 30 4850 4700 - 5025 

GdA-4141 424.4 
Sphagnum+ 

brown moss 
4960 ± 30 5630 5500 - 5745 

GdA-4142 474.8 
Sphagnum 

stems 
5515 ± 35 6280 6140 - 6410 

GdA-4143 495.9 
Sphagnum 

stems 
5860 ± 35 6565 6420 - 6700 

*pMC: percent modern carbon 

3.4. Peat REE and Nd isotopic signatures  

The concentration of the entire REE suite varies between 0.18 and 1.26 µg g-1 (Table S7). The 

variations in the down core concentrations of fourteen REE elements (La, Ce, Pr, Nd, Sm, Eu, 

Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) are similar to each other. The Nd concentration profile is 

plotted as an example (Fig. 3a). The ɛNd signature at the bottom of the peat core is -0.8 ± 0.2 

(2σ, n=1). There is a general decreasing trend in ɛNd values between 6.6 - 5.4 cal. ky BP, 

followed by an approximately three-fold increase at 4.4 - 3.9 cal. kyr BP. The lowest ɛNd 
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values occur at 3.3 - 2.7 cal. kyr BP, after which the ɛNd fluctuates with an overall increasing 

trend since 2.7 cal. kyr BP. The Holocene peat ɛNd profile is relatively constant centering at -

2 ± 1.2 (1σ, n=34, Fig. 3b,Table S7), except for the last 100 years showing more distinct 

negative signatures with an average value of -7 ± 1.5 (1σ, n=7).  

 

Fig. 3. Profiles of (a) Nd concentration (μg g-1); (b) Epsilon Neodymium (ɛNd); (c) Eu/Eu*;  

(d) La/YbN; (e) Eu/LaN; and (f) REE–based dust flux (g m-2 yr-1) in AMS peat core. 

Diamonds represent the 14C dated peat layers (20 in total). The blue and white shading are the 

zones determined by change point analysis for AMS dust flux. 

REE ratios can be used for dust provenance-tracing. The Eu anomaly (Eu/Eu*) was 

calculated with the equation Eu/Eu* = [Eu]/(([Sm]+[Gd])/2). The ratios of La/Yb and Eu/La 

have been normalized to Upper Continental Crust (Wedepohl, 1995). Peat average Eu/Eu*, 

La/YbN and Eu/LaN values since the last 6.6 kyr are 1.03 ± 0.10, 0.50 ± 0.07 and 2.01 ± 0.30 

(1σ, n=101), respectively. The signatures of peat Eu/Eu*, La/YbN and Eu/LaN remain relatively 

constant during the last 6.6 kyr (Fig. 3c, d, e), except for the last 100 years, which are 

characterized by an overall decreasing trend in Eu/Eu* and Eu/LaN ratios, and an increasing 

trend in La/YbN ratio.  
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4. Discussion 

4.1. Elemental proxy interpretation 

The results of the PCA are reported in Fig. 4a and Fig. S5. The first component (PC1), explains 

70% of the total variance and consists of the entire REE suite and Ga, U, Th, Hf, Zr, Ti, Al 

(Fig. 4b, c), which are known to be immobile and conservative elements. The second 

component (PC2), accounts for 14% of the total variance and consists of K, Rb, Pb, and Cs 

(Fig. 4d, e). The variability of this component is mainly driven by changes in the top part of 

the core, caused by biological uptake and recycling by the surface moss vegetation (principally 

K, Rb and, to a lesser extent Cs based on Fig. 4a) as well as anthropogenic Pb deposition 

(Damman, 1978; Shotyk, 1997). The third component (PC3), explains 12% of the total variance, 

and includes Sr, Ca and Mg (Fig. 4f, g), which show higher values towards the bottom of the 

core (Shotyk, 1997). 

 

Fig. 4. (a) Relative importance of each principal component (PC) for each chemical 

element; (b-g) PC scores (i.e. transformed variable values for each sample) and their 

respective representative elements. All the representative elements are shown as 

concentration (µg g-1). 

4.2. Dust deposition 
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The REE, also reflected by PC1, represent immobile and conservative elements. Therefore, the 

mineral deposition rate (dust flux, g m2 yr-1) was calculated as equation 3:  

Dust fluxi = 
∑[𝑅𝐸𝐸]𝑖 ×𝑝𝑒𝑎𝑡 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝐴𝑅𝑖 ×𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑖

∑[𝑅𝐸𝐸]𝑈𝐶𝐶
 × 10000   (Eq. 3) 

Where ∑[𝑅𝐸𝐸]𝑖  is the sum of all REE concentrations (µg g-1) in sample i,  

𝑝𝑒𝑎𝑡 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝐴𝑅𝑖  is the peat accumulation rate (cm yr-1), obtained by 

𝑑𝑒𝑝𝑡ℎ 𝑙𝑒𝑛𝑔𝑡ℎ𝑖/𝑎𝑔𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑖), densityi is the density of the sample (g cm-3),  ∑[𝑅𝐸𝐸]𝑈𝐶𝐶 is 

the sum of the REE concentrations in the upper continental crust (Wedepohl, 1995). 

The dust flux profile shown in Fig.3, varies from 0.05 - 0.84 g m2 yr-1 with a median value 

of 0.32 g m2 yr-1 (Fig. 3f). The REE-based AMS dust flux is comparable to the late Holocene 

232Th reconstructed dust flux of 0.5 - 1.0 g m-2 yr-1 over the Western Indian Ocean (Kienast et 

al., 2016). Individual dust flux values are sensitive to spikes in REE concentration, to the 14C 

age model, and to the peat density. The highest dust fluxes are recorded between 4.2 cal. kyr 

BP and 4.8 cal. kyr BP, and are related to maxima in REE concentration and peat accumulation 

rate. We applied a change-point analysis to identify changes in the probability distribution of 

the dust flux. Four change-points with >99% confidence level, were identified: 6.2 cal. kyr BP; 

4.9 cal. kyr BP; 3.9 cal. kyr BP; 2.7 cal. kyr BP and 1.4 cal. kyr BP. We therefore separate the 

dust flux profile into six zones for discussion (see blue and white shading on Fig. 3, and section 

4.4): (1) 6.6 - 6.2 cal. kyr BP; (2) 6.2 - 4.9 cal.kyr BP; (3) 4.9 - 3.9 cal. kyr BP; (4) 3.9 - 2.7 

cal. kyr BP; (5) 2.7 - 1.4 cal. kyr BP; (6) 1.4 cal. kyr BP to the present (2014 AD). 

 The median ash content of 1.3% (n=101) in AMS peat core is low compared to the 2.9% 

recorded in a peat core from Tierra del Fuego in Southern South America (Vanneste et al., 

2016) and 12.9% from a core in the Mfabeni peatland in Southern Africa (Humphries et al., 

2017). The low ash content suggests limited groundwater inputs, even in the deeper 

minerotrophic part of the bog (detailed explanations for trophic status see Supplementary 

Information Text S4 and Fig. S6).  

4.3. Dust provenance 

Studies on atmospheric deposition at AMS, using 222Rn, 210Pb and air mass back trajectories 

suggested some continental inputs to AMS, in particular from Southern Africa (Angot et al., 

2014; Gaudichet et al., 1989; Polian et al., 1986), and Southern South America (Fig. S2). 

Comparison of ɛNd values in the AMS peat sequence with the reference datasets of the 

potential dust source end-members (local, Southern Africa, and Southern South America) show 

that ɛNd values of the peat samples lie between the local and continental dust sources (Fig. 5, 
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Fig. S7). This also suggests that AMS can potentially receive dust from local, Southern African, 

and Southern South American sources. 

The AMS soil samples display slightly higher Eu/Eu* (median 1.24, Fig. 5) and lower 

La/YbN ratios (median 0.27, Fig. 5) compared to the peat samples. The Southern African end-

member (including both Sua Pan and Etosha Pan) has Eu/Eu* ratios that are close to those for 

the AMS peat samples, but show higher La/YbN ratios (median 1.04). In comparison with the 

peat samples, Eu/Eu* ratios are relatively lower and La/YbN ratios are analogous in the 

Southern American end-member (including Puna-Altiplano-Plateau, Central Western 

Argentina and Patagonia, Gili et al., 2017). The average ɛNd value of the AMS soil samples is 

3.9 ± 0.2 (2σ, n = 7, Fig. 5b), much higher than those in the peat samples (ɛNd -9.6 - 0.5). The 

Southern African end-member has a more negative signature of -24 ± 1.7 (1σ, n=11, Fig. 5b). 

Both ɛNd (median 3.84) and Eu/LaN (median 3.52) are higher in the local soils than in the 

Southern African end-member (median ɛNd = -24.72, median Eu/LaN = 1.44). The ɛNd 

signatures in the Southern South American end-member overlap with those in the peat samples, 

while the Eu/LaN ratios are relatively lower in the Southern South American end-member. 
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Fig. 5. Relationships of La/YbN vs Eu/Eu* (a), and Eu/LaN vs ɛNd (b) in AMS peat 

together with its Potential Source Areas (normalized to UCC, Wedepohl, 1995). Peat 

samples are shown as triangles/squares/diamonds, with different shapes representing different 

periods of the last 100 years (number of samples based on Fig. 5a, n = 8), 1.4 - 0.05 cal. kyr 

BP (n = 17), 2.7 - 1.4 cal. kyr BP (n = 21), 3.9 - 2.7 cal. kyr BP (n = 13), 4.9 - 3.9 cal. kyr BP 

(n = 15), 6.2 - 4.9 cal. kyr BP (n = 17), and 6.6 - 6.2 cal. kyr BP (n = 10), respectively. Black-

edge stars: AMS soils; Half-open circles: dust/soil in Sua Pan; Open circles: dust/soil in Etosha 

Pan. Puna-Altiplano-Plateau (PAP, nine data points), Central Western Argentina (CWA, five 

data points) and Patagonia (11 data points) are shown in Elipses (mean data with 95% 

confidence level, Gili et al., 2017); The black lines in (a) and (b) represent the End-member 

mixing lines among AMS soil, Southern Africa (Sua Pan + Etosha Pan) and Southern South 

America (PAP + CWA + Patagonia) (see supplementary information Table S5 for detailed 

calculations, after Albarède, 1996). 
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Using the multi-proxy mixing model (Fig. 5), εNd and REE ratios indicate that the peat 

received approximately 40% of dust from local sources, 15% from Southern Africa and 45% 

from Southern South America. Dust source proportions were relatively constant over the last 

6.6 kyr, except during the last 100 years (Table 2). Since 1910 AD, the model estimates a 

relative decrease in the local dust input (15%), while the relative contribution of Southern South 

Africa doubled (32%), with the Southern South American dust component (53%) showing little 

significant change.  

Table 2. The mean dust contributions of local, Southern African and Southern American 

dust to the AMS peat sampling site during the Holocene (kyr) and last 100 years. Estimates 

are based on a REE proxy mass balance model. Potential African and South American dust 

sources are lumped (see text). Uncertainty range corresponds to 1σ. 

Time interval (kyr) local Southern Africa Southern America 

the last 100 years 15%  (5%-25%) 32% (25%-40%) 53% (40%-65%) 

1.4 -0.05 41%  (35%-50%) 15% (10%-20%) 44% (30%-55%) 

2.7-1.4 44%  (35%-55%) 12% (5%-20%) 44% (30%-55%) 

3.9-2.7 46%  (40%-55%) 15% (10%-20%) 39% (25%-50%) 

4.9-3.9 36%  (30%-40%) 9% (5%-15%) 55% (40%-70%) 

6.2-4.9 35%  (25%-40%) 15% (5%-25%) 50% (35%-70%) 

6.6-6.2 41%  (35%-45%) 9% (5%-15%) 50% (45%-60%) 

 

In addition to an important local dust contribution (40%), likely from weathered basalt 

cliffs adjacent to the AMS peat bog, the mixing model indicates that from 6.6 kyr BP to 1910 

AD, Southern South America is an important contributor of dust (45%; Table 2). The 14-day 

back trajectories show the air masses passing AMS that partially originate from Southern South 

America, covering the Puna-Altiplano-Plateau, Central Western Argentina and Patagonia (Fig. 

S2). This is also supported by modern dust observations. For example, combining 

ground/satellite observations and atmospheric modelling, Gaiero et al., (2013) found that large 

dust storms at the Puna-Altiplano-Plateau (15° and 26°S) can be developed and injected into 

the high-altitude subtropical jet stream of the SWW, which hence can be transported over long 

distances (Gaiero, 2007). Dust from the Central Western Argentinean lowlands (between ∼27° 

and ∼39°S), can also be uplifted by strong vertical air motion and be entrained into the SWW 

(Gili et al., 2017). Once lifted into the troposphere, dust can be transported over thousands of 

kilometers from its source area (Mahowald et al., 2005). Johnson et al., (2011) have shown that 

Patagonian dust travels along the SWW pathways to the Southern Indian Ocean during dust 
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outbreak events in the austral summer, potentially reaching the Southern Indian Ocean in a 

short period of time (days). 

The mixing model also confirms a small (9 - 15%) but significant proportion of Southern 

African dust through most of the Holocene (Table 2; Fig. 6). The Makgadikgadi Basin in 

Botswana represented by our Sua Pan samples is the principal persistent dust source in 

Southern Africa, with a general maximum dust emission activity in August-October (Prospero 

et al., 2002). The prevailing winds in the area of Sua Pan (Fig. 1a) are tropical Easterlies that 

bring moisture from the Indian Ocean (Bryant et al., 2007). Etosha Pan situated in the semi-

north of Namibia is a second principal Southern African dust source with prevailing 

northeasterly winds (Vickery et al., 2013; Von Holdt et al., 2017). Both Sua Pan and Etosha 

Pan are characterized by a proportion of northwesterly winds (Piketh, 2002; Von Holdt et al., 

2017), confirming that dust from Sua Pan and Etosha pan can be transported eastward into the 

Indian Ocean (Fig. S2). 

 4.2 Lower dust input under equatorward-shifted/strengthened SWW 

The dust provenance mixing model showed that the relative proportion of dust contributions 

from local, Southern African and Southern South American sources remained more or less 

constant over the mid- to late Holocene at AMS. The estimated dust deposition flux (g m-2 yr-

1), however, varied substantially on millennial timescales (Fig. 3a), likely resulting from 

changes in the position and/or intensity of SWW. It is important to realize that a northward 

shift in SWW may result in multiple antagonistic effects on dust: in dust source areas, an 

increase in SWW strength may mobilize more dust. However, stronger SWW are characterized 

by more humid conditions and more rainfall at least at the western to central sectors of the 

regions, leading to denser vegetation and soil dust immobilization. Additionally, in the case of 

the high altitude Puna-Altiplano-Plateau and Sua Pan/Etosha Pan, the dust source areas do not 

directly lie within the SWW belts, but their dust mobilizations can be influenced by SWW (see 

section 4.2). The net effect of stronger SWW on dust emission therefore depends on local 

geography, meteorology and vegetation (Marx et al., 2018). Studies on climate variability in 

AMS dust source areas indicate enhanced dryness (e.g., relative higher dust availability) during 

6.2 - 4.9 cal. kyr BP and 3.9 - 2.7 cal. kyr BP in both Puna-Altiplano-Plateau (Pueyo et al., 

2011) and Southern Africa (Chase et al., 2017; Chevalier and Chase, 2015; Cohen and Tyson, 

1995; Cordova et al., 2017; Nash et al., 2006). Dust mobilization in these source areas should 

therefore have been constant or possibly enhanced during these two periods. 
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During periods of equatorward shifted and/or strengthened SWW potentially enhanced 

dust mobilization will be subjected to more intense removal by rainfall and by turbulence via 

dry deposition during transport (Miller et al., 1993; Moody et al., 1991). Evidence for this is 

based on the relationship between rainfall chemistry and seasonal and inter-annual large-scale 

atmospheric circulation patterns at AMS. Moody et al., (1991) observed minima in rainfall 

anion concentrations (non-sea salt Cl and SO4, from continental origin) during austral winters, 

characterized by stronger winds and enhanced precipitation. Distal dust records such as AMS, 

thousands of kilometers away from dust sources, will overall tend to register decreased distal 

dust deposition during stronger and/or equatorward shifted SWW due to the dominant effect 

of dust removal during transport (Li et al., 2008). Stronger SWW with higher precipitation can 

decrease local dust mobility by increasing local vegetation cover and humidity. We therefore 

suggest that the AMS mineral dust flux minima from 6.2 - 4.9 cal. kyr BP and 3.9 - 2.7 cal. kyr 

BP represent periods of equatorward shifted and/or strengthened SWW at this northern edge 

with higher wind speed and enhanced precipitation over the dust transport trajectories, 

regardless of the potential enhanced dust mobility at the source areas during these two periods. 

Conversely, the three episodes of higher dust inputs (6.6 - 6.2 cal. kyr BP; 4.9- 3.9 cal. kyr BP; 

1.4 cal. kyr BP to present) represent periods of poleward-shifted and/or weakened SWW 

accompanied by overall lower wind speeds and lower precipitation along the air mass 

trajectories from the Southern Africa and Southern South America continents to AMS, together 

with relatively higher local dust availability. The intermediate period from 2.7 - 1.4 cal. kyr BP 

(Fig. 3f), identified by the change-point analysis, is a dust flux transition period characterized 

by gradual poleward displacement of the SWW.  

The timing and strength of the reconstructed environmental changes at AMS from 4.9 to 

3.9 cal. kyr BP suggest these were part of a larger regional drought event, widely observed 

around the Indian Ocean. For example, enhanced dry conditions have been found based on the 

abrupt increased dust deposition in both Kilimanjaro ice cores ( ~4.0 cal. kyr BP, Thompson et 

al., 2002) and in the Gulf of Oman marine sediment record (4.0 ± 0.1 cal. kyr BP, Cullen et al., 

2000), based on the positive sea surface salinity in a Northern Red Sea sediment core (~4.2 cal. 

kyr BP, Arz et al., 2006), and based on the reduced annual rainfall evident in the Arabian sea 

sediment core (~4.2 cal. kyr BP, Staubwasser et al., 2003). This mega-drought has potentially 

led to some of the greatest  societal upheavals in historical times (e.g., Egyptian Old Kingdom 

in the Nile Valley and Akkadian Empire in Mesopotamia, Weiss, 2016). The severe dry 

conditions are explained by changes in the monsoon system and extra–tropical airflow during 

winter (e.g., Cullen et al., 2000; Staubwasser et al., 2003), which was suggested to follow 
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variability in solar activity (Cullen et al., 2000; Neff et al., 2001). Weaker SWW at AMS 

associated with the mega-drought event, suggests a close teleconnection between SWW and 

other climate features (e.g., monsoon system) in Indian Ocean sector around 4 cal. kyr BP. 

We compare the AMS dust deposition record to other SH paleoclimate records from 

different longitudes at the northern edge of SWW (33 - 41°S, Fig. 6). We find that the AMS 

dust flux (Fig. 6d) broadly anti-correlates with magnetic susceptibility in an oceanic 

minerotrophic peat core from Nightingale Island (37oS, Fig. 6e, Lindvall et al., 2011). Magnetic 

susceptibility is a proxy for surface runoff to this peat mire and therefore tracks rainfall in a 

very different manner to our dust deposition proxy in the ombrotrophic AMS peat core (for 

explanations on trophic status see supplementary Text S4). Both AMS and Nightingale cores 

suggest that the SWW moved poleward at 4.9 - 3.9 cal. kyr BP, and equatorward at 6.2 - 4.9 

cal. kyr BP and 3.9 - 2.7 cal. kyr BP. Other published proxy records do not show coherent 

trends with these two SWW proxy records over the past 6.6 kyr. For example, AMS dust flux, 

Nightingale Island magnetic susceptibility and Southern Chile pollen composition (Moreno et 

al., 2010), indicate a poleward shift in SWW from 4.9 to 3.9 cal. kyr BP (Fig. 6a, d, e), where 

other records show no trend (Fig. 6c, g, h), or an equatorward shift in SWW (Fig. 6b, f). 

Subsequently, during 3.9 - 2.7 cal. kyr BP period, the AMS dust flux, Nightingale Island 

magnetic susceptibility (Lindvall et al., 2011), Southern Chilean marine iron (Lamy et al., 

2001), Central Chilean precipitation (Jenny et al., 2003), and South African nitrogen isotope 

records (Chase et al., 2013) (Fig. 6d, e, b, g, h, respectively), suggest an equatorward shift in 

SWW. Conversely the Chilean pollen (Moreno et al., 2010), Western South Atlantic Oxygen 

isotope (Voigt et al., 2015) and Southeast Australian westerly positon records (Marx et al., 

2011) (Fig 6a, c, f), show no change in SWW from 3.9 - 2.7 cal. kyr BP.  We speculate that the 

reasons for the observed variability in SWW proxy records are, 1/ the dependence of SWW 

proxies on complex regional climate factors, and 2/ uncertainty in interpreting these paleo-

records due to dating uncertainties, and resolution and inherent complexity of proxies used. A 

limitation of the AMS peat record is that it does not extend to the late glacial period, where 

stronger trends in climate proxies have been previously detected (e.g., Kuhnt et al., 2015; Lamy 

et al., 2010, see Fig. S8). The variations in SWW in the last 6.6 kyr that we infer from the AMS 

dust record should therefore be regarded as moderate changes, compared to the oscillations in 

SWW that have been associated with glacial/inter-glacial periods (e.g., De Deckker et al., 2012; 

Van der Putten et al., 2015). Essentially, the ensemble of paleo-climate records shown in Fig. 

6, suggests that SWW are not homogeneous across at its northern zone (33 - 41°S) over the last 
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6.6 kyr. More well-dated Holocene records using multiple proxies, and advanced Earth system 

climate models are needed to understand the geographical variability in SWW dynamics. 
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Fig. 6. Proxy records for wind position/strength at the northern SWW margin. (a) Pollen 

index Eucryphia + Caldcluvia/podocarps (ECPI) from lake sediment core at Lago Condorito 

from Southern Chile (Moreno et al., 2010); (b) Iron intensity from marine core GeoB 3313-1 

in Southern Chile (Lamy et al., 2001); (c) Ice volume corrected Globorotalia inflata δ18O 

(δ18Oivc) from marine sediment GeoB13862-1 in Western South Atlantic (Voigt et al., 2015). 

Black line represents for the 5-point smoothing; (d) AMS mineral dust deposition from this 

study; (e) Magnetic susceptibility from a peat core in Nightingale Island, Southern Atlantic 

(Lindvall et al., 2011); (f) Shift in the position of SWW described in Marx et al., (2011); (g) 

Precipitation reconstruction from Lake Aculeo in Central Chile (Jenny et al., 2003); (h) δ15N-

derived humidity from the hyrax middens Seweweekspoort-1-5 in South Africa (Chase et al., 

2013). The blue and white shading are the zones determined by change point analysis for AMS 

dust flux. Crosses indicate 14C dates. 

4.3   Climatic and anthropogenic influences in the last 100 years 

The last 100 years (1910 - 2014 AD) display distinct REE and ɛNd signatures compared to the 

rest of the core (Fig. 5; Fig. S9). This is accompanied by a quantitative increase in dust 

deposition from Southern Africa (Fig. 7). The overall dust flux, however, is not significantly 

different during the last 100 years compared to the 1.4 cal. kyr BP to present and 4.9 - 3.9 cal. 

kyr BP periods, both characterized by relatively high dust flux and poleward position of the 

SWW. We therefore suggest that other factors than the position of the SWW play a role in the 

recent shift in dust provenance from Southern Africa. There is evidence of recent anthropogenic 

disturbances in the Southern part of the African continent. For example, there is a major shift 

from grass-dominated to sedge-dominated vegetation in the Okavango Delta (Northern 

Botswana) due to grazing and fires (Nash et al., 2006). Remote sensing also clearly shows the 

effects of land clearing, agriculture, and land degradation around Etosha Pan in Namibia (Strain 

and Engle, 1996). Land degradation in recent years is also found in South Africa (Hoffman and 

Todd, 2000). These changes to the local landscape enhance soil availability and erosion, 

thereby promoting a relative increase of distal dust availability and subsequent inputs aligned 

along the prevailing winds to AMS. Enhanced South African dust input to AMS during the 

past 100 years may alternatively be caused by an overall drying trend over the South African 

continent as a response to human-climate interaction  IPCC, 2007). A general trend towards 

greater aridity and widespread drought in Southern Africa has indeed been recorded since the 

19th century (e.g., Kelso and Vogel, 2007; Nicholson, 2001; Nicholson et al., 2012; Riedel et 

al., 2012), supporting our findings.  
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 Fig. 7. The mineral dust contributions of local, Southern Africa and Southern South 

America (g m-2 yr-1, 1σ) during different time intervals. 

5. Conclusions 

Understanding Holocene dust cycling and climate change in the Southern Hemisphere is 

hampered by a paucity of high-resolution records in some sectors. We provide the first 

Holocene mineral dust record from an Amsterdam Island peat core in the Southern Indian 

Ocean. Southern South America and Southern Africa have been found to be the main distal 

dust sources to AMS. Since 6.6 cal. kyr BP ago, except for the last 100 years, the dust inputs 

from local, Southern South America and Southern Africa remained relatively constant, with 

the former two as the main dust contributors. We interpret millennial scale shifts in dust 

deposition rates to be caused by shifts in the SWW at AMS. A comparison of inferred SWW 

dynamics at AMS to other Southern Hemisphere SWW proxy records at the northern edge of 

the wind belts shows both similarities and differences, which suggests SWW were not zonally 

homogeneous from mid to late Holocene (Lamy et al., 2019). In the last 100 years, the dust 
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contribution from Southern Africa doubles, possibly as a result of higher dust availability due 

to a drier climate, and over-grazing, agriculture and land degradation by human influences. We 

suggest that anthropogenic activities play an important role in the SH dust cycle during last 

100 years. 
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Supporting information 

 

Fig. S1. Peat coring site at the center of the caldera peatland at Amsterdam Island. Yellow 

cross represents for the peat coring site.  
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Fig. S2. 14-day back trajectories ensemble for the whole year of 1968 (a) and 1982 (b) 

illustrate that a significant number of air masses travelled from Southern South America 

and Southern Africa to Amsterdam Island (black open star).  

Text S1.  Back trajectory calculation 
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Fourteen-day back trajectories in one-whole year (e.g., 1968 and 1982, Fig. S5), were run by 

the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model (Stein et al., 

2015). The meteorological data are accessed via NOAA Air Resource Laboratory 

(ftp://arlftp.arlhq.noaa.gov/archives/reanalysis/). The back trajectories ended at the sampling 

site at a height of 500 m above ground level to represent the air masses within the planetary 

boundary layer reaching the sampling site (De Vleeschouwer et al., 2014). The calculation for 

the duration of each trajectory is set to 14 days with a temporal resolution of 6h (analyses at 

00:00, 06:00, 12:00, 18:00 UTC). It leads to over 1400 trajectories being computed for one 

year. The model then counts the number of trajectories that fall within each grid cell (set 1.0 

degree) covering the Southern Hemisphere. Finally, trajectory frequency (F) is calculated for 

the sum of the number of trajectories (T) that passed through each grid cell (i, j): 

Fi,j = 100 ∑
𝑇𝑖,𝑗,𝑘

𝑘
  

k: the total number of trajectories.  All the trajectories are counted if they occur in the 

source location grid cell.  

Text S2. Continental sample collection and preparation 

Three Etosha Pan atmospheric dust samples were collected downwind of the Pan at a height of 

1.6 m by a BSNE horizontal flux sampler for 14-30 days. Similar dust sampling methods were 

applied to the dust sample collection at Sua Pan, except for one, which was collected at a height 

of 0.25 m. Three soil samples from Sua Pan and three from Etosha Pan were collected from 

loose sediments. Geochemical and isotopic results from Southern South American samples are 

taken from Gili et al., (2017). 

Text S3. Analytical performance of the major and trace elements 

The measured blanks were negligible (<0.2%) for all the elements investigated in the different 

matrices. Recoveries of Al and K by ICP-OES for all the Certified Reference Materials (CRMs) 

were within 80-120% of certified/information values, except Ti which was 78% for NJV942 

and NJV941. The median recoveries of Ga, Hf, Zr, Th, Cs, Rb, Pb, Mg and Ca measured in all 

the CRMs by ICP-MS were all within 85% of the certified/information/provisional values with 

the exception of Th (68%) and U (123%) in SRM 1515, and Pb (79%) in NJV941. Good 

recoveries are reported for REE (> 80%) in all the CRMs, except Eu (123%) in SRM 1515, and 

Yb (62% and 58% for SRM 1515 and SRM 1547, respectively). The REE value provided for 

SRM 1515 and SRM 1547 are however only informative (see Table S4 and Table S4bis). 

ftp://arlftp.arlhq.noaa.gov/archives/reanalysis/
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In order to verify the influence of Ba and Gd oxide interferences on Eu and Yb during ICP-

MS measurements (i.e., interference of 135Ba16O on 151Eu and 158Gd16O on 174Yb), Ba and Gd 

oxides were measured. We found that BaO and GdO represent less than 0.1% and 0.5% of Eu 

and Yb concentrations in samples respectively, which are negligible. We also compared our 

Eu and Yb results of SRM1515 and SRM1547 with results from Vanneste et al. (2016), who 

performed the measurements under similar conditions. The two sets of Eu results are 

comparable (0.25 ± 0.01 vs 0.26 ± 0.01 µg g-1 for SRM1515, 0.19 ± 0.01 vs 0.17 ± 0.01 µg g-

1 for SRM1947). The Yb results between this study and Vanneste et al. (2016) are also similar 

(0.19 ± 0.01 vs 0.19 ± 0.02 µg g-1 for SRM1515, 0.12 ± 0.004 vs 0.12 ± 0.01 µg g-1 for 

SRM1547).  

 

Fig. S3. Photo of the top 50 cm peat section. 
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Fig. S4. Age model of top 50 cm depth (14C in blue, 210Pb Constant-Rate-Supply model in 

green) in the AMS peat core. 

 

Fig. S5. Biplot of the principal component analysis of the major and trace elements. 

Percentage of variance of component 1 and 2 are shown on the axis. 
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Text S4.  Trophic status defined in the AMS peat core 

The profile of PC3 scores (Fig. 4f) roughly follows the ash profile (R2=0.82, P<0.001, two-

sided t-test), with a general decreasing upward trend. The Ca profile (Fig. 4g, Fig. S6), a PC3 

representative element, probably illustrates a mobility from upper section and accumulation at 

the lower part of the core (Shotyk, 1997), and/or a basalt weathering and subsequent Ca 

diffusion upwards to ~4.2 cal. kyr BP (340 cm depth) (Le Roux and shotyk, 2006), and/or a 

lateral input from adjacent areas before ~4.2 cal. kyr BP during its minertrophic stage. 

Minerotrophic conditions are characterized by atmospheric input, surface runoff and 

underground diffusion. Minerotrophic conditions at the AMS peat coring site possibly 

prevailed at depths of 500 cm - 340 cm based on its relatively higher signatures in density (Fig. 

2a), ash content (Fig. 2b) and PC3 signature (before ~4.2 cal. kyr BP, Fig. 4f, g), compared to 

the 315 cm - 0 cm section. Only fed by atmospheric inputs, ombrotrophic conditions are 

distinguished based on its low signatures in density, ash content and PC3 score from 315 - 0 

cm (since ~3.7 cal. kyr BP).  The 340 cm - 315 cm section corresponds to a transitional stage 

(from minerotrophic to ombrotrophic). 

 

Fig. S6. Profile of Ca accumulation rate (μg cm-2 yr-1). 
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Fig. S7. Nd isotopic signatures between AMS peat and its representing PSAs. AMS soil this 

study: data from top soil bulk samples; AMS rock Doucet et al., 2004: data from bulk rock; Southern 

Africa (SAF) this study: data in Sua Pan and Etosha Pan from dust and top soil bulk samples; 

Southern South America (SSA) Gili et al., 2017: data in Puna-Altiplano-Plateau, Central Western 

Argentina and Patagonia from sediment samples. 

Please note that there is no difference in AMS rock and AMS soil in terms of the Nd isotopic 

composition (εNd). 
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Fig. S8. Proxy records for climate variations since last Glacial period. (a) Accumulation 

Rate of siliciclastic material (g cm-2 kyr-1) at Lake Site TM1 (Lamy et al., 2010); (b) Alkenone-

based Sea surface temperature (SST, °C) reconstruction at Marine Site 1233 over the last 25 

kyr (Kaiser et al., 2005); (c) Mineral dust deposition (g m-2 yr-1) from Amsterdam Island 

peatland (this study); (d) Sea surface temperature (SST, °C) record at Marine Site MD01-2378 

(Sarnthein et al., 2011). 
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Fig. S9. Relationships of La/YbN vs Eu/Eu* (a), and Eu/LaN vs ɛNd (b) in AMS peat and 

its representing Potential Source Areas (normalized to UCC, Wedepohl, 1995). Peat 

samples are shown in grey squares. Black stars: AMS soils; Half-open circles: dust/soil in Sua 

Pan; and Open circle: dust/soil in Etosha Pan; Crosses: Deserts of Northwest Australia (sample 

courtesy of Jan Berend Stuut, NIOZ, Netherlands. Australian samples have been processed the 

same way as Southern African soil/dust. Australian data shown here is only for a comparison 

with other sources). Puna-Altiplano-Plateau (PAP, 9 data points), Central Western Argentina 

(CWA, 5 data points) and Patagonia (11 data points) are shown in Elipses (mean data with 95% 

confidence level, Gili et al., 2017); The black lines in (a) and (b) represent the End-member 

mixing lines among AMS soil, Southern Africa (SP+EP) and Southern South America 

(PAP+CWA+Patagonia) (see Table S6 for detailed calculations, after Albarede, 2002). Red 

squares represent the peat samples in the last 120 years. 
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Objectifs et résumé 

Le mercure (Hg) a attiré l'attention de la société humaine en raison de sa haute toxicité et de ses 

rejets anthropiques substantiels dans l'environnement. Diverses approches ont été utilisées pour 

étudier son cycle biogéochimique, telles que la surveillance à long terme et à grande échelle, les 

mesures de spéciation du mercure et les modèles de récepteurs statistiques multivariés. Les 

développements des indicateurs de substitution des isotopes stables du Hg au cours des deux 

dernières décennies ont ouvert une voie prometteuse pour étudier les sources, la transformation 

et le dépôt du Hg atmosphérique provenant d'émissions tant naturelles qu'anthropiques. 

 

Le mercure contient sept isotopes stables (196, 198-202, 204 amu), qui peuvent subir un 

fractionnement dépendant de la masse (MDF) et un fractionnement indépendant de la masse 

(MIF) dans l'environnement lors du mélange à la source et de la transformation du mercure. Le 

MDF (rapporté comme δ202Hg) est un phénomène environnemental courant, impliqué dans les 

réactions physiques, chimiques et biotiques. Les MDF peuvent aider à mieux discerner les 

processus de transformation du mercure et ses dépôts préférentiels sur différentes matrices. Le 

MIF des isotopes impairs du Hg (indiqué sous les noms Δ199Hg et Δ201Hg) se produit 

principalement lors de réactions photochimiques en milieu naturel en raison de l'effet isotopique 

magnétique. Le mécanisme de MIF des isotopes du Hg (même Δ200Hg et Δ204Hg) n’est toujours 

pas complètement compris, même si une anomalie positive des précipitations a conduit à une 

spéculation sur l’oxydation du mercure dans la haute atmosphère. Le Δ200Hg est insensible à la 

modification photochimique dans la zone critique de la Terre. 

 

Une tourbière reçoit du Hg principalement par l'absorption de Hg0 par la végétation et par 

les précipitations. Le Δ200Hg présente des signatures distinctes en Hg0 et dans les précipitations, 

ce qui permet de distinguer les dépôts secs (absorption de Hg0) et les dépôts humides 

(précipitations). Les vents du sud-ouest (VSO) sont l'une des principales caractéristiques du 

l’hémisphère Sud (HS), qui contrôle la pluviosité dans les zones situées à l'intérieur de sa 

ceinture. À son tour, les précipitations reconstituées et les dépôts secs dans la ceinture des VSO 

peuvent refléter la dynamique de ceux-ci. Cependant, depuis la moitié de l’Holocène, la 

communauté scientifique n’a pas de consensus quant à la position et / ou la force des VSO 

reconstitués à partir d’archives de sédiments, de tourbe et de glace via divers paramètres (e.g., 

macrofossiles et apport minérotrophe). Ce manque de consensus est probablement dû à 

l’influence accrue du climat régional ou local dans le contexte d’une variabilité climatique 
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holocène moindre par rapport à l’intervalle glaciaire et interglaciaire, ou à l’absence de variables 

de substitution quantifiées efficaces. Les signatures même uniformes MIF dans Hg0 et les 

précipitations peuvent donner une idée de la quantification des dépôts secs et humides sur les 

tourbières et donc de la dynamique des VSO. 

 

Dans ce chapitre, nous présentons les signatures isotopiques du mercure dans un sondage 

de tourbe de 6.6 kyr de l’île d’Amsterdam, situé à la limite nord des VSO. Les résultats montrent 

que les signatures δ202Hg négatives sont présentes dans tout le profil de la tourbe (-0.66 ± 0.24, 

n = 58), ce qui indique une absorption préférentielle de l’isotope léger du Hg par la végétation. 

Les variations des profils Δ199Hg et Δ200Hg présentent des tendances similaires (avant le 19ème 

siècle, corrélations de Pearson, r = 0.79, p <0.001). Le sondage de tourbe de AMS montre un 

décalage Δ199Hg de -1.3 entre le 19ème et le 20ème siècle, ce qui pourrait refléter des changements 

dans la composition isotopique du stock de mercure atmosphérique dans les latitudes moyennes 

de l’HS, en réponse à une augmentation des émissions industrielles et à une photo-réduction 

accrue. 

 

En comparaison avec les signatures conservatrices de Δ200Hg dans Hg0 et dans les 

précipitations, nous trouvons que les dépôts secs de Hg0 dominent dans l’ensemble du profil de 

tourbe de AMS (> 60%). Les dépôts humides de mercure augmentent au cours des années 

3000BC-4200BC et 700BC-2000BC. Ces deux périodes humides proposées pour le mercure 

s'accordent globalement avec le déplacement de VSO reconstruit par la poussière et orienté vers 

l'équateur à sa limite nord. Il indique que les isotopes stables du mercure peuvent quantifier 

différents processus de dépôt et, par conséquent, la dynamique du VSO. 

 

Cette étude est la première à rapporter les signatures historiques des isotopes du Hg dans 

une tourbière de l’HS et à confirmer que les isotopes du Hg peuvent être utilisés en tant que 

nouveaux substituts paléo-climatiques quantitatifs. Nos résultats aident à mieux comprendre la 

réaction de l’atmosphère actuelle face à l’évolution des émissions de mercure et à améliorer la 

modélisation du cycle biogéochimique mondial du mercure. 
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Abstract: The development of mercury (Hg) stable isotope proxies has provided a powerful 

tool to investigate the sources, transformation and deposition of atmospheric Hg from both 

natural and anthropogenic origin. Limited knowledge is about the impact of past climate on the 

Hg isotope deposition on the terrestrial environment and whether Hg isotopes can be used as 

climatic proxies. Here, we present Hg isotope signatures in a 6.6 kyr old peat core from 

Amsterdam Island, which is located at the Indian Ocean within the northern edge of the Southern 

Hemisphere Westerly Winds (SWW) belt. Results show negative δ202Hg in the whole peat 

profile (-0.66 ± 0.24‰, n=58), indicating a preferential light Hg isotope uptake by vegetation. 

Δ199Hg and Δ200Hg correlate during pre-anthropogenic Hg pollution period (4600BC-1171AD, 

r=0.82, P<0.001), oscillating between Hg0 and rainfall HgII end-members, and co-vary with dust 

deposition. We find that vegetation uptake of Hg0 dominates Hg sequestration in the whole AMS 

peat profile (>60%). HgII wet deposition is enhanced during 3000BC-4200BC and 700BC-

2000BC. These two periods broadly coincide with the equatorward-displacement of the SWW 

belt at its northern edge, inferred from dust proxies. Our findings illustrate the potential of Hg 

stable isotopes to understand paleo-precipitation trends and corresponding SWW dynamics. 

Recent peat layers show larger, 1.0‰, Δ199Hg variability from mid-19th to mid-20th centuries 

that could reflect changes in the isotopic composition of the SH atmospheric Hg pool in response 

to growing industrial emissions and/or changes in Hg photochemistry. 

Keywords: Hg stable isotopes; paleoclimate; peat; Southern westerly winds; precipitation proxy 

 

 



Chapter 3. Holocene Hg isotope variability in a peat core from the northern edge of Southern 

Hemisphere westerly winds 

150 
 

Introduction 

Mercury is an element that emitted to atmosphere mainly in the gaseous elemental form (Hg0, > 

95%, Lindberg and Stratton, 1998). Hg0 can source from natural processes (e.g., volcanic 

eruptions, degassing of the Earth’s crust) and anthropogenic activities (e.g., mining, waste 

incineration). Hg deposition over Earth’s surface occurs by vegetation Hg0 uptake (dry 

deposition, Jiskra et al., 2018), HgII wet and dry deposition (Sprovieri et al., 2017), and Hg0 gas 

exchange with aqueous water bodies including the Oceans.  

Recent developments in determination of Hg stable isotopes have opened new and 

promising avenues to investigate global Hg biogeochemical cycling (Sonke and Blum et al., 

2013). Hg has seven stable isotopes (196, 198-202, 204 amu), which can undergo mass 

dependent fractionation (MDF) and mass independent fractionation (MIF) in the environment 

(Bergquist and Blum, 2007; Blum et al., 2014). MDF (reported as δ202Hg) is a common 

environmental phenomenon, which is involved in physical, chemical and biotic reactions 

(Estrade et al., 2009; Zheng et al., 2018). MDF can help quantify Hg transformations and 

identify atmospheric Hg deposition pathways (e.g., Demers et al., 2013; Enrico et al., 2016). 

MIF of odd Hg isotopes (reported as Δ199Hg and Δ201Hg) occurs primarily during aqueous 

photochemical reactions in the natural environment due to the magnetic isotope effect, while 

both geogenic and anthropogenic Hg exhibit near 0‰ Δ199Hg and Δ201Hg  (Zambardi et al., 

2009; Sun et al., 2016; Xu et al., 2017).  

In the past decade, dozens of studies have applied Hg isotopic tracers to investigate sources 

and processes of Hg from natural background and anthropogenic emission. Present-day 

background Hg0 in air far from anthropogenic emission sources displays moderate positive 

δ202Hg (0.49 ± 0.38‰, 1σ, n=71) and slightly negative Δ199Hg values (-0.18 ± 0.06‰, 1σ, n=71) 

(Enrico et al., 2016; Gratz et al., 2010; Chen et al., 2012; Demers et al., 2013; Obrist et al., 2017; 

Sherman et al., 2010; Fu et al., 2016a; 2016b). Moderate positive δ202Hg can be explained by 

preferential light isotope uptake by foliage (Demers et al., 2013; Enrico et al., 2016; Jiskra et al., 

2018), and/or atmospheric oxidation of Hg0 (Fu et al., 2016b). Anthropogenic emissions drive 

urban air isotopic composition to lower δ202Hg (-0.40 ± 0.54‰, 1σ, n=184) and near-zero Δ199Hg 

values (-0.09 ± 0.11‰, 1σ, n=184) (Gratz et al., 2010; Wang et al., 2015; Yuan et al., 2018; 

Rolison et al., 2012; Demers et al., 2015; Yu et al., 2016; Xu et al., 2017; Fu et al., 2018; 

Yamakawa et al., 2017; 2019). Anthropogenic Hg sources are mainly from coal combustion 

(Muntean et al., 2014; Sun et al., 2016), metallurgy and cement production (Zhang et al., 2015). 
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Even though environmental processes driving MDF and odd MIF still need further 

investigations, Hg isotope signatures can be used to trace sources, transformation and deposition 

of atmospheric Hg (Sonke, 2011; Blum et al., 2014), on both spatial and temporal scales. 

MDF and odd MIF in 210Pb-dated Northern Hemisphere sediments was used to understand 

the history of Hg contamination by local point sources since the 19th century in Lake Michigan, 

US (Yin et al., 2016a), South River, US (Washburn et al., 2018) and in the French Alpine lake 

Luitel (Guedron et al., 2016). Studies in Tibetan lakes have indicated different Hg deposition 

pathways, Hg photo-reduction and the influence of ice cover fluctuation (Yin et al., 2016b). In 

Lost Lake, US, Hg isotopes highlight the influence of photochemical reduction on Hg either in 

rainfall droplets prior to deposition, and/or in lake water column since industrialization (Kurz et 

al., 2019). Historical arctic ice cores show changes in atmospheric Hg isotopic composition over 

19th to 20th centuries and potential influence by anthropogenic emissions (Zdanowicz et al., 

2016). 

Only a few studies so far have used Hg isotopes to investigate long historical natural Hg 

dynamics (pre- 1450AD). By MDF and MIF proxies, Gleason et al., (2017) has found that 

terrestrial, organic carbon-rich Hg dominated Hg input in the Arctic Ocean sediments since the 

Eocene. Sial et al. (2016) has shown a volcanic origin for the Hg in the Cretaceous-Paleogene 

boundary. Enrico et al. (2017) has reconstructed Holocene Hg0 concentrations based on peat Hg 

variability. Cooke et al. (2013) has illustrated the cinnabar (HgS)-dominated pollution in the 

Andes during Inca (pre-1400AD) and Colonial periods (1532-1821AD). Relatively little 

attention has been given to the potential of Hg deposition to reconstruct climate variability. 

Seasonality affects Hg deposition to terrestrial archives by changes in primary productivity, 

snow cover and subsequent Hg sequestration (Obrist et al., 2017; Jiskra et al., 2018). Marine 

dust fertilization can also alter Hg deposition to land ice by changes in oceanic Hg biological 

reduction (Vandal et al., 1993), and halogen-induced Hg0 oxidation (Jitaru et al., 2009). One of 

the main SH climate features is the Southern Hemisphere westerly winds (SWW), which play 

important roles in regulating rainfall, dust trajectories and the southern ocean carbon sink 

(Hodgson and Sime, 2010). The variability of SWW has been studied using various wind proxies 

in sediment and peat archives across the SH (e.g., Moreno et al., 2010; Lamy et al., 2001; 

Saunders et al., 2018). Paleoclimate proxies show important variability of the SWW at different 

geographical locations in the SH (Li et al., submitted; Chapter 2). This variability is probably 

due to regional/ local climate trends, or due to the lack of effective quantitative proxies. 
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MIF of even Hg isotopes (reported as Δ200Hg and Δ204Hg) has the potential to quantify Hg 

wet deposition via rainfall and snowfall (Enrico et al., 2016). Even MIF isn’t observed in 

anthropogenic Hg sources, but it is present in precipitation (Gratz et al., 2010; Chen et al., 2012; 

Demers et al., 2013; Enrico et al., 2016; Obrist et al., 2017) and in ambient atmospheric Hg0 

(Enrico et al., 2016). Currently, the mechanisms leading to even MIF still remain unclear, even 

though some studies speculate it as a result of Hg0 photo-oxidation above the tropopause (Chen 

et al., 2012) or due to nuclear volume effects (Gratz et al., 2010). In general, Hg0 is characterized 

by negative Δ200Hg (-0.06 ± 0.02‰, 1σ, n=71) and positive Δ204Hg (0.07 ± 0.05‰, 1σ, n=32) 

(Enrico et al., 2016; Gratz et al., 2010; Demers et al., 2013; Obrist et al., 2017; Sherman et al., 

2010; Fu et al., 2016a; 2016b). Different from Hg0, rainfall HgII is characterized by positive 

Δ200Hg (0.19 ± 0.13‰, 1σ, n=77) and negative Δ204Hg (-0.16 ± 0.17‰, 1σ, n=17) (Enrico et al., 

2016; Gratz et al., 2010; Chen et al., 2012; Demers et al., 2013; Obrist et al., 2017). The distinct 

even MIF signatures in Hg0 and rainfall have been used to quantify Hg dry and wet deposition 

to peat bogs (Enrico et al., 2016).  

Peat bogs are formed by decomposed vegetation, which exclusively registers atmospheric 

inputs and can therefore register past climate signals (e.g., Saunders et al., 2018). Peat bogs 

sequester Hg mainly by vegetation Hg0 uptake and to a lesser extent by HgII dry deposition and 

by rainfall wet deposition (Enrico et al., 2016). High natural organic matter contents lead to 

anoxic conditions in peat and inhibit Hg reduction to Hg0 (Gu et al., 2011), and can therefore 

well retain the deposited Hg after peat decay and submerged under the water table.  

Amsterdam Island is a remote island, located at the northern edge of SWW, sensitive to the 

displacement of SWW and free from human disturbance. It is an ideal location to study the 

relationship between climate variability and the historical natural Hg deposition. The objectives 

of this study are to: 1) investigate for the first time the SH mid-latitude historical Hg stable 

isotope signatures; 2) estimate the dry and wet deposition based on the Hg isotope composition, 

and then compare the Hg-based environmental change to dust-flux based climate dynamics. 

Methods and materials 

Study site and peat sampling 

Amsterdam Island is an isolated island located at the Southern Indian Ocean with halfway 

between South Africa and Australia. It rose up from the Ocean before 700 kyr BP. This island 

is ca. 9.2 km long and 7.4 km wide, which has an elliptic surface area of 55 km2 (Frenot and 

Valleix, 1990) (Figure 1A). Almost all the coast is characterized by vertical cliffs (Doucet et al., 
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2004). It has a mild oceanic weather with annual temperature of 14°C and annual precipitation 

of 1120 mm. AMS is at the northern margin of SWW, characterized by winds dominantly from 

west and northwest with an average speed of 7.4 m s-1 (Frenot and Valleix, 1990). Air flow from 

continental regions is favored in austral late winter and early spring (Moody et al., 1991). More 

rainfall occurs in austral winter with average 22.6 days per month when SWW shift equatorward, 

while in austral summer rainfall frequency drops to 17.5 days per month when SWW move 

poleward (Moody et al., 1991). Since early works in the 1960s (Berthios et al., 1969), many 

scientific researches have been carried out in this island, investigating from volcano origin 

(Gunn et al., 1975), to CO2 variations (Gaudry et al., 1983), to seasonal variation in precipitation 

composition (Moody et al., 1991), and to radionuclide fallouts (Li et al., 2017). AMS has peat 

deposits, with a large portion located at the Caldeira with a height of 771m. The peat sequences 

are sampled at the Caldeira peatland (Figure 1B), which is dominated by brown moss species 

and Sphagnum. Peat collection and sub-sampling details see methods in Chapter 1 and 2. 

 

 

Figure 1. (A) Location of Amsterdam Island and peat sampling site (red star); (B) 

Enlarged version of peat sampling site (red star) at the central part (caldeira) of this island. 

Hg extraction and purification 

Freeze-dried peat was analyzed for total Hg concentration (THg) by Milestone Direct Mercury 

Analyzer (DMA80). For details of analytical performance on THg see “Methods” section. 

Variable amounts of peat samples were used for extracting Hg for isotope analysis based on peat 

Hg concentration and optimum quantity of Hg required (1ppb, MC-ICP-MS). Peat Hg was 
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extracted using combustion and acid trapping methods (Sun et al., 2013). Briefly, we burnt peat 

samples in a double tube furnace at 1000°C and trapped the released gaseous Hg with a 40 vol.% 

inverse aqua regia solution (2:1 HNO3: HCl). The solution was then determined for Hg 

concentration by cold vapor atomic fluorescence spectroscopy (CV-AFS). The extraction yields 

were in the range 83%-116%. 

Due to the matrix effect on the some of the peat samples on MC-ICP-MS measurements, 

we further purified the Hg in inverse aqua regia solution after oven combustion. The purification 

system consisted of a 250ml glass vessel where we adding 10 ml sample solution, 40 ml 10% 

SnCl2 and 150 ml Milli-Q water, and a 15ml falcon tube with again 40 vol.% inverse aqua regia. 

The sample solution was purged by bubbling Hg free argon (300 mL min-1) for 1h. The 

purification yields were in the range 97%-106% (n=4). 

Hg stable isotope measurements 

Peat Hg stable isotopes were measured in 20% (v/v) inverse aqua regia using cold-vapor multi-

collector inductively coupled mass spectrometry (CV-MC-ICP-MS, Thermo-Finnigan Neptune, 

Midi-Pyrenees Observatory, Toulouse, France). Sample isotopic ratios were corrected for mass 

bias by bracketing using the international standard NIST SRM 3133. Results are reported as δ-

values in per mil (‰) by referencing to NIST SRM 3133, representing to Hg mass dependent 

fractionation (see Eq.1). 

δXXX Hg = {[(XXXHg/198Hg)sample/(
XXXHg/198Hg)SRM3133]-1} X 1000                      (Eq.1) 

MIF is calculated based on the deviations of δ-values from the theoretical MDF (see Eq.2):  

ΔXXXHg = δXXXHg – βX δ202Hg                                                                              (Eq.2) 

Where XXX represents for 199, 200, 201 and 204. Symbol β is 0.252, 0.502, 0.752 and 

1.493 for 199Hg, 200Hg, 201Hg and 204Hg, respectively (Bergquist and Blum, 2007). 

Analytical control of Hg isotope measurements are assessed by analyzing ETH-Fluka, UM-

Almaden and procedural standards (Coal, NIST 1632d, n= 5; Lichen, BCR482, n=5). ETH-

Fluka displayed δ202 and Δ199Hg of -1.43 ± 0.15 (2σ, n=19) and 0.05± 0.13 (2σ, n=19), 

respectively. UM-Almaden showed δ202 and Δ199Hg of -0.52 ± 0.13 (2σ, n=7) and -0.03 ± 0.09 

(2σ, n=7), respectively. Hg isotopic signatures in procedural standards are reported in the 

“Methods” section (for 199Hg, 200Hg, 201Hg and 204Hg). 

Hg enrichment in dust 

We compare the relationship between Hg and dust to those in the continental crust for the 

estimation of peat Hg concentration enrichment on peat REE-based dust concentration (EFHg-



Chapter 3. Holocene Hg isotope variability in a peat core from the northern edge of Southern 

Hemisphere westerly winds 

155 
 

dust, Eq. 3. method similar to Jitaru et al., 2009). CrustHg is 56 ng g-1, and Crustdust is the sum of 

the REE concentrations in the upper continental crust wth 148 µg g-1 (Rudnick and Gao, 2003).  

EFHg-dust = (PeatHg/Peatdust)/(CrustHg/Crustdust)                                                         (Eq.3) 

Hg isotopes mass balance 

Even Hg MIF is suggested to be conservative over the Earth surface. The distinct difference of 

Δ200Hg between Hg0 and rainfall HgII can be used to quantify the source of historical peat Hg. 

Δ200Hg values in both Hg0 and rainfall HgII used in this study are from remote NH mid-latitude 

sites (Enrico et al., 2016; Gratz et al., 2010; Demers et al., 2013; Fu et al., 2016a; 2016b; Chen 

et al., 2012) due to lack of data in the SH.  

ΔXXXHgpeat =α * ΔXXXHgGEM + β * ΔXXXHgrainfall                                                          (Eq. 4) 

α + β =1                                                                                                                          (Eq. 5) 

Results and discussion 

Relationships between HgAR and dust flux in the peat core 

Hg accumulation rates (HgAR) are relatively constant between 4650BC and 1170AD (2.6 ± 1.7 

μg m-2 yr-1, 1σ, n= 82), except two periods with elevated HgAR (2500BC-2000BC and 500BC-

0AD) (Figure 2A). Since 1170AD, HgAR have increased gradually and peaked during 20th 

century (Figure 2A). HgAR are significantly correlated with REE-based dust flux during the 

pre-industrial period (pre-1880AD, Pearson correlation, P < 0.001, r=0.6). Both HgAR and dust 

flux increase significantly during the periods of 3000BC-2000BC (Figure 2A; 2B). The EFHg-

dust ranges from 61 to 721 in the whole core with 136 ± 60 (n=16) for 3000BC-2000BC high-

dust interval. It suggests an insignificant contribution from atmospheric mineral dust to peat Hg. 

The co-variation between HgAR and dust flux may be explained by the influence of ecological 

change and/or climate variability. A recent study has indicated that Hg dry deposition by 

vegetation Hg0uptake dominates peat Hg sequestration (Enrico et al., 2016). Enhanced peat 

growth can accumulate more Hg by Hg0 uptake, similar to CO2. Elevated HgAR can therefore 

result from enhanced peat primary productivity, or from elevated atmospheric Hg0 levels. The 

net peat accumulation rate during 3000BC-2000BC is not significantly different from the 

previous periods (Krustal-Wallis test, P =0.48), which can be explained by a combination of 

synchronous changes in the primary productivity and decomposition rate. While higher primary 

productivity can be achieved by increased dust-transported nutrient input at 3000BC-2000BC, 
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higher decomposition rate may also occur under enhanced peat oxidation at the acrotelm (top 

sequence above the water table, Ingram, 1978; Clymo, 1984) during relatively drier climate 

when SWW shifts polewards (SWW information see Chapter 2). But the changes in primary 

productivity and decomposition alone might not be enough to explain the correlation between 

dust flux and Hg deposition.  

 

Figure 2. Profiles of Hg accumulation rate (μg m-2 yr-1), dust flux (g m-2 yr-1), δ202Hg (‰), 

Δ199Hg (‰) and Δ200Hg (‰) in the AMS peat core. Light green shading spans the interval of 

pre-industrial Hg pollution (1280-1850AD), while orange shading covers the industrial period 

(post-1850AD). 
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 Another possible explanation for the dust vs. HgAR correlation may be elevated Hg0 

concentration and/or enhanced deposition of gaseous oxidized Hg (GOM) during 3000BC-

2000BC. Poleward-shifted SWW during this period can enhance upwelling of deep water with 

high concentrations of dissolved CO2 and Hg0 resulting in Hg0 evasion and therefore higher 

atmospheric Hg0 (Denton et al., 2010; Hodgson and Sime, 2010). Poleward-shifted SWW shows 

an “austral summer-like” climate pattern in the SH. In austral summer, the oceanic region 

located southwest of AMS is highly productive and potentially produces halogen species (Angot 

et al., 2014), which can effectively oxidize Hg0 to GOM. Subsequently, GOM can be scavenged 

by particles and deposit to the peatland. A previous study on historical atmospheric Hg depletion 

over Antarctica, has shown that GOM can be efficiently scavenged by mineral dust and 

subsequently deposit as particulate Hg during glacial periods (Jitaru et al., 2009). A strikingly 

high Hg concentration was also found in an Antarctic ice core during the last glacial maximum 

(Vandal et al., 1993), which corresponds to the high dust flux over the East Antarctic Ice sheet 

during the same period (Baccolo et al., 2018). Note that a proportion of deposited Hg to 

terrestrial environment can be photo-chemically reduced and emitted as Hg0 (Fitzgerald and 

Lamborg, 2003). Briefly, the coherence between HgAR and dust flux may result from a mix of 

factors controlled by SWW dynamics (e.g., halogen, upwelling and dust availability), rather than 

peat bog ecological change only. 

Natural background Hg stable isotope distributions (pre-14th century AD)  

Peat δ202Hg before 1280AD is characterized by negative values (Figure 2C), ranging from -1.12‰ 

to -0.04‰ (average δ202Hg =-0.68 ± 0.26‰, 1σ, n=39). The negative δ202Hg agrees with 

vegetation Hg studies in the NH (negative δ202Hg, e.g., Demers et al., 2013; Jiskra et al., 2015; 

Zheng et al., 2016; Enrico et al., 2016; Yu et al., 2016). It confirms the preferential uptake of 

light Hg isotopes by vegetation, possibly related to diffusion and/or intra-cellular oxidation by 

enzymatic processes (Rutter et al., 2011), regardless of the vegetation species and geological 

substrate (Zheng et al., 2016). Peat δ202Hg shows a general decreasing trend from 4650BC to 

1590BC in a range of -0.21‰ to -1.12‰. Afterwards, δ202Hg increases up to -0.04 ± 0.01‰ (2σ) 

at 730BC. Peat δ202Hg remains relatively constant between 600BC and 1171AD (-0.74 ± 0.15‰, 

1σ, n=17, Figure 2C). 

Profiles of peat Δ199Hg and Δ200Hg show coherent trends from 4600BC to 1171AD (Figure 

2D; 2E), fluctuating at centennial scales (Pearson correlations, r=0.82, P<0.001). Δ199Hg and 

Δ200Hg increase from 4600BC to 3000BC in a range of -0.25‰ to 0.61‰ and -0.08‰ to 0.06‰, 
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respectively. Subsequently, Δ199Hg decreases down to -0.31 ± 0.03‰ and Δ200Hg down to -0.09 

± 0.06‰ around 2125BC. From 1600BC to 150BC, both increase again and peak at 850BC 

(0.44‰ for Δ199Hg, 0.08‰ for Δ200Hg), followed by decreasing trends until 150BC. Between 

24AD and 1170AD, both fluctuate minimally with values of -0.22 ± 0.12‰ (1σ, n=10) for 

Δ199Hg and -0.05 ± 0.02‰ (1σ, n=10) for Δ200Hg. Atmospheric odd-mass Hg isotopes show 

distinct signatures in Hg0 and rainfall HgII, yet are not ideal source tracers due to potential post-

depositional odd-MIF (Sonke, 2011; Demers et al., 2013; Enrico et al., 2016). Even-mass Hg 

isotopes are found to be conservative at the Earth’s surface, free from post-depositional MIF 

(e.g. Jiskra et al., 2017). The positive correlation between peat Δ199Hg and Δ200Hg suggests their 

variations are caused by similar processes, or reflect similar Hg deposition sources, 

predominantly wet or dry deposition. 

Hg isotope signatures during pre-industrial Hg pollution period (1280-1850AD) 

Substantial debate exists on the historical Hg emission sources, such as, the amount of Hg 

emitted to the atmosphere from different sectors (e.g., Silver/gold mining, liquid Hg0 

productions, Sun et al., 2016; Horowitz et al., 2014; Streets 2011; 2017). There is also little 

knowledge about Hg pollution from the pre-industrial period, especially in a hemispheric scale. 

Hg flux during 1280-1850AD period increases 2.7 folds from the natural background period 

(Figure 2A), which can be explained either by enhanced peat primary productivity, or elevated 

atmospheric Hg level due to the Hg pollution. 

No significant difference in δ202Hg, Δ199Hg and Δ200Hg is observed during the pre-industrial 

Hg pollution period (1280-1850AD) relative to these three Hg isotopes from previous natural 

background period. Peat δ202Hg, Δ199Hg and Δ200Hg values from 1280AD to 1850AD are -0.64 

± 0.25‰, -0.03 ± 0.23‰ and -0.02 ± 0.05‰ (1σ, n=10), respectively. Profiles of peat δ202Hg, 

Δ199Hg and Δ200Hg, however, display general increasing trends, which are in agreement with 

Hg isotope signatures of liquid Hg0. Liquid Hg0 production dominates anthropogenic Hg 

emissions to the atmosphere during Spanish large-scale mining (14th-19th century AD, Cooke et 

al., 2013; Streets et al., 2011). Bulk Hg evaporated from Au/Ag amalgam is suggested to 

conserve the Hg isotope composition of liquid Hg0 used for amalgamation (Sun et al., 2016). A 

global compilation of δ202Hg in commercial liquid Hg0 shows a value of -0.38 ± 0.34‰ (1σ, 

n=13, Sun et al., 2016). Anthropogenic Hg emission, including liquid Hg0 production shows no 

odd and even MIF with signatures near-zero for Δ199Hg and Δ200Hg. Anthropogenic Hg 

deposition from the silver/gold mining sector with higher isotopic signatures can be responsible 
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for the increasing peat δ202Hg, Δ199Hg and Δ200Hg values during the pre-industrial Hg pollution 

period. We therefore suggest that elevated HgAR between 1280-1850AD (Figure 2A) results 

from anthropogenic Hg deposition, predominately from silver/gold mining. Note that we cannot 

exclude the contribution of enhanced primary productivity on high peat Hg sequestration, and 

the influence of changes in Hg deposition pathways on the Hg isotope distribution.  

 

Figure 3. (A) Ratios of δ202Hg vs Δ199Hg and (B) δ202Hg vs Δ200Hg in AMS peat (squares) 

in comparison with isotopic signatures in Hg0 (denoted as GEM, cyan shadow, mean ± 2σ) 

and rainfall (orange shadow, mean ± 2σ) from remote sites in mid latitudes of Northern 

hemisphere (NH). Red, blue and grey squares represent for periods of the last 100 years, 

1600BC-2800BC and the rest, respectively. NH Hg0 data (n=59) is from Enrico et al., (2016); 
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Gratz et al., (2010); Demers et al., (2013); Fu et al., (2016a); (2016b). NH rainfall data (n=74) 

is from Enrico et al., (2016); Gratz et al., (2010); Chen et al., (2012); Demers et al., (2013). 

Changing Hg sources since the industrialization (post-1850AD) 

Since the industrialization, AMS peat δ202Hg has not shown much variation with an average 

value of -0.59 ± 0.15‰ (1σ, n=9). Peat δ202Hg during industrial era is insignificantly different 

from the natural background period from 4600BC to 1280AD (-0.68‰ ± 0.26‰, 1σ, n=39, 

Kruskal-Wallis test, P=0.10). Peat Δ199Hg profile shows variability from 1850AD onwards 

(Figure 2D). It falls gradually from 0.07± 0.01‰ (2σ) at 1850AD to the lowest values at 1924AD 

(-0.92 ± 0.05‰, 2σ). The decreasing trend of peat Δ199Hg profile from 1850AD to 1924AD can 

be partially explained by global anthropogenic Hg emissions since industrialization, which is 

characterized by mean Δ199Hg of -0.04‰ (probability of 10% (-0.07 ‰) to 90% (-0.01‰), Sun 

et al., 2016). Most of recent peat Δ199Hg fall out of the range of the atmospheric Hg0 mean ± 2σ 

(-0.17 ± 0.13‰), characterized by much more negative values (Figure 2D; Figure 3A), which is 

probably as a result of intra-cellular photoreduction at the bog surface. Photochemical reduction 

leading to negative Δ199Hg signatures in residual peat Hg can occur when peat Hg is coordinated 

to dissolved organic matter thiol functional groups, DOM-S, Zheng and Hintelmann, 2009; Luo 

et al., 2017. Present-day SH anthropogenic Hg emissions are 4.3 ± 1.7 times higher than natural 

primary emissions (volcano source, see chapter 3). Since 1850s, the amount of atmospheric 

aqueous DOM has also been increased due to the increase in fossil fuel combustion (Baken et 

al., 2011; Stubbins et al., 2012). By analogy, recent study on particulate Hg isotopic signatures 

also found photo-reduced low Δ199Hg value in Chinese PM2.5 (e.g., down to -1.1‰, Xu et al., 

2019). AMS peat Δ199Hg since 1850AD shows strong negative correlation with Hg flux (R2 = 

0.53), which in part can be explained by different relative Hg contribution from dry and wet 

deposition. Briefly, we interpret the recent shift in peat Δ199Hg to be as results of both 

atmospheric photochemical process and different source contribution (dry/ wet deposition). 

Peat Δ200Hg shows a decreasing trend from 19th to 20th century (0‰ to -0.05‰) and 

subsequently remains relatively constant until 2001AD, except one lowest value occurring at 

1924AD (-0.16‰ ± 0.03‰) for unclear reason. This Δ200Hg profile suggests a stepwise increase 

in the relative contribution from peat vegetation Hg0 uptake, which further indicates that AMS 

has gradually become drier probably as a result of poleward-shifted and/ or weakened SWW 

since the 19th century. 

Climate implication based on Hg isotope mass balance calculation results 
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We adopt the period divisions for dust flux based on change point analysis to interpret the Hg 

isotope mass balance results, because the one of the main objectives of this study is to compare 

Hg-isotope-derived environmental change to dust-flux-based climate variability. Thus, the 

whole profile is divided into 7 sections for discussions: 4200BC-4650BC; 3000BC-4200BC; 

2000BC-3000BC; 700BC-2000BC; 600AD-700BC; 1900AD-600AD and the last 100 years.  

We use a binary mixing model based on Δ200Hg signatures (Eq. 4; Eq. 5). We find that Hg0 

dry deposition dominates Hg sequestration in AMS peat since mid-Holocene (>60%, Figure 4, 

Table S1). Vegetation Hg0 uptake as dominant Hg pathway to AMS peat is consistent with the 

findings in Pyrenean peat (Enrico et al., 2016) and supports the role of terrestrial vegetation as 

a Hg0 pump (Jiskra et al., 2018). Precise calculation of the Hg contribution from dry/wet 

deposition cannot be accessed due to lack of local/regional Hg0 and rainfall isotope data. We 

therefore only focus on the broad trend of dry/wet deposition variations. Binary mixing model 

results show that the proportion of Hg wet deposition increases significantly during 3000BC- 

4200BC and 700BC-2000BC. These two periods with enhanced Hg wet contribution correspond 

to the low dust flux periods, which are characterized with equatorward-displacement SWW. 

When SWW shifts equatorward, more rainfall occurs at AMS (Moody et al., 1991). Enhanced 

rainfall has the potential to scavenge more Hg and subsequently increase Hg wet deposition to 

AMS peat. Interestingly, total HgAR is lower during these two wet-deposition periods relative 

to dryer periods. Enrico et al. (2017) observed that the artificial draining of a peat bog resulted 

in a strong negative shift in Δ200Hg and increase in HgAR, which they attributed to increased 

PP. By analogy, we suggest that during wet periods, the AMS peat bog becomes water-logged, 

with relatively lower vegetation growth and consequently lower HgAR. Sequences of 4200BC-

4650BC, 2000BC-3000BC, and post-700BC, are characterized by low proportions of Hg wet 

deposition (0-8%, Figure 4). These low Hg wet deposition periods are coeval with the relatively 

high dust flux (Figure 5), and high HgAR which is explained by the poleward-located SWW 

with less rainfall at AMS. In summary, Hg deposition to AMS peat is able to reflect the SWW 

dynamics by using Hg isotopes.  
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Figure 4. Relative contribution of Hg wet (orange bar, numbers) and dry (white bar) 

deposition to AMS peat based on the Hg isotopic composition during different periods. 

Dust flux variations are presented in comparison to Hg isotope-derived deposition. Dust periods 

were identified based on change point analysis (Chapter 2). 
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Figure 5. Correlation between Hg wet deposition (in %) and dust flux (g m-2 yr-1) in AMS 

peat record (P = 0.01). Exponential decay regression is used (red line), with 95% confidence 

level bands shown in black dash lines. 

Conclusions 

Hg deposition from the atmosphere to terrestrial environments is affected by atmospheric 

circulation (e.g., Chen et al., 2012). A change in the deposition pathways (dry/wet) under 

different climatic regimes can alter the Hg isotopic composition at the targeted receptors (e.g., 

Enrico et al., 2016). In this study we find that SWW variability signals can be seen in the Hg 

isotopic distribution in the AMS peat profiles. Deposition pathways based on Hg isotopic 

composition is comparable to the dust-flux-based SWW dynamics. This finding highlights the 

potential of peat Hg stable isotopes to be indicators for environmental change, which may be an 

important contribution to our knowledge on past climate variability. Changes in the peat Hg 

isotopic composition during the past 150 years reflect modifications in the SH atmospheric Hg 

pool in response to growing industrial emissions and/or changes in Hg photochemistry. This 

study is of particular interest due to the current global warming, the need to better understand 

the past and to better constrain future modelling on both Hg cycling and climate. 
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Zdanowicz, C.M., Krümmel, E.M., Poulain, A.J., Yumvihoze, E., Chen, J., Štrok, M., Scheer, 

M. and Hintelmann, H., 2016. Historical variations of mercury stable isotope ratios in Arctic 

glacier firn and ice cores. Global Biogeochemical Cycles, 30(9), pp.1324-1347. 

Zhang, L., Wang, S., Wang, L., Wu, Y., Duan, L., Wu, Q., Wang, F., Yang, M., Yang, H., Hao, 

J. and Liu, X., 2015. Updated emission inventories for speciated atmospheric mercury from 

anthropogenic sources in China. Environmental science & technology, 49(5), pp.3185-3194. 

Zheng, W. and Hintelmann, H., 2009. Mercury isotope fractionation during photoreduction in 

natural water is controlled by its Hg/DOC ratio. Geochimica et Cosmochimica Acta, 73(22), 

pp.6704-6715. 

Zheng, W., Demers, J.D., Lu, X., Bergquist, B.A., Anbar, A.D., Blum, J.D. and Gu, B., 2018. 

Mercury Stable Isotope Fractionation during Abiotic Dark Oxidation in the Presence of 

Thiols and Natural Organic Matter. Environmental science & technology. 

Zheng, W., Obrist, D., Weis, D. and Bergquist, B.A., 2016. Mercury isotope compositions across 

North American forests. Global Biogeochemical Cycles, 30(10), pp.1475-1492. 

 

 



Chapter 3. Holocene Hg isotope variability in a peat core from the northern edge of Southern 

Hemisphere westerly winds 

171 
 

Supporting formation 

 

Table S1 Hg deposition to the AMS peat bog during each period (μg m-2 yr-1, total, dry 

and wet), estimated from the relative contribution of Hg dry/ wet deposition and total 

HgAR. 

Periods Total Hg flux Dry Hg flux  

(mean±2σ) 

Wet Hg flux   

(mean±2σ) 

last 100 yrs 12.0 12 ± 3.4 0 

1900AD-600AD 7.4 6.8 ± 2.1 0.6 ± 0.18 

600AD-700BC 3.9 3.8 ± 0.7 0.1 ± 0.03 

700BC-1600BC 1.4 1.2 ± 0.4 0.3 ± 0.10 

2000BC-3000BC 4.0 3.7 ± 0.8 0.2 ± 0.05 

3000BC-4200BC 1.4 0.9 ± 0.03 0.5 ± 0.02 

4200BC-4650BC 2.7 2.6 ± 0.5 0.03 ± 0.01 
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Objectifs et résumé 

Le mercure (Hg) est un élément naturel et principalement issu du dégazage de la croûte terrestre 

(e.g., volcanisme). Il peut avoir de graves conséquences sur l'environnement lorsqu'il est rejeté 

en grande quantité et / ou transformé en une forme hautement toxique, le méthylmercure. Le 

méthylmercure est une toxine extrêmement préoccupante, qui peut facilement se bio-amplifier 

dans la chaîne alimentaire, entraînant des effets néfastes sur la santé des animaux sauvages (par 

exemple, oiseaux chanteurs) et des humains (neurotoxicité pour le fœtus et les enfants; 

problèmes cardiovasculaires chez l'adulte). Au cours des siècles passés, les activités humaines 

ont fortement modifié le transfert de mercure depuis la surface de la terre vers l’atmosphère 

moderne. Les estimations des émissions de Hg anthropiques depuis 1850 suggèrent qu'un total 

de 1540 Gg aurait été rejeté jusqu'en 2010, dont 470 Gg dans l'atmosphère. Les principaux rejets 

anthropiques de mercure proviennent de l'extraction artisanale et à petite échelle de l'or, de la 

combustion du charbon et de la production de mercure, de soude caustique et de ciment. Plus 

de 95% du mercure atmosphérique existe sous forme de mercure gazeux élémentaire (Hg0), qui 

a un long temps de séjour dans l’atmosphère (plusieurs mois) permettant sa dispersion dans 

l’hémisphère avant son dépôt à la surface de la Terre, y compris dans des régions éloignées. 

 

Les tendances historiques des variations naturelles et anthropiques du mercure peuvent être 

évaluée par les archives naturelles de séquestration du mercure (par exemple, les sédiments, la 

tourbe et la glace). Depuis les premiers travaux sur les carottes de sédiments lacustres dans les 

années 1970, des dizaines de carottes de sédiments éloignées datées au 210Pb ont enregistré une 

augmentation du taux d'accumulation de mercure (HgAR) d’un facteur 3 depuis l'ère 

préindustrielle (1450-1880AD) jusqu'au 20ème siècle. La tourbe reçoit principalement du Hg 

absorbé par les plantes. Un nombre croissant d'études de carottes de tourbe ont été utilisées pour 

étudier les tendances historiques des dépôts de mercure. Il y a dix ans, Biester et al. avaient 

suggéré que la tourbe était un enregistreur historique du mercure moins fiable par rapport aux 

sédiments lacustres. Selon lui, l'enrichissement préindustriel enregistré dans les sédiments et la 

tourbe étaient en désaccord par un facteur de 10. Ces auteurs ont supposé que  la mobilité du 

210Pb dans la colonne de tourbe a conduit à des reconstitutions de l'âge inexactes et à un taux 

d'accumulation de Hg peu fiable. Jusqu'en 2015, Amos et al. a examiné les études de tourbe 

publiées et a trouvé un enrichissement en Hg similaire (x3) depuis la période préindustrielle, en 

corrigeant une incohérence de temps de référence pour les archives de tourbe et de sédiment de 
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Biester et al. La tourbe a donc été suggérée comme une archive fiable pour les dépôts historiques 

de mercure. 

 

Des sédiments et des carottes de tourbe datés au radiocarbone plus longs et plus anciens, 

qui enregistrent les changements dans l'accumulation naturelle du Hg à l'époque précoloniale, 

avant les pratiques minières à grande échelle, indiquent une différence plus importante des 

dépôts de Hg. Les enregistrements millénaires des sédiments et de la tourbe montrent que le 

taux de HgAR a déjà augmenté 5 fois au cours de la transition vers la période précoloniale aux 

environs de 1450AD (Amos et al., 2015). Les facteurs d'enrichissement anthropiques de tous 

les temps (EFalltime, rapport entre le 20ème siècle et le HgAR antérieur à 1450AD), déterminés 

dans les enregistrements de sédiments et de tourbe, vont donc de 16 à 26. Les valeurs obtenues 

pour Hg EFalltime sont principalement basées sur les archives de l'hémisphère Nord (HN) où la 

majorité des émissions anthropiques historiques de mercure ont eu lieu. Seuls trois 

enregistrements de tourbe de l'hémisphère sud (HS) ont été étudiés pour HgAR, mais ils sont 

tous incomplets (absence de chronologie récente ou de profil continu d’HgAR daté au 14C), 

empêchant donc une évaluation complète de l'enrichissement en Hg atmosphérique dans l’HS. 

 

Dans ce chapitre, nous présentons les HgAR dans quatre enregistrements de tourbe bien 

datés : l’île d’Amsterdam, les îles Malouines, ainsi que les tourbières de Andorra et Harberton 

(Terre de Feu, Argentine). Nous passons ensuite en revue tous les HgAR disponibles dans les 

sédiments et les tourbières tourbe de l’HS, comparons les facteurs d'enrichissement en mercure 

dans l’HN et discutons des résultats dans le contexte des émissions volcaniques de mercure 

révisées, des émissions historiques publiées de mercure anthropique et du cycle de mercure 

dans les deux hémisphères. 

 

Nous observons que, contrairement aux enregistrements de l’HN, il n’y a qu’une faible 

augmentation (x1.4) des dépôts de mercure depuis le la période pré-anthropique (<1450AD) 

jusqu’à la période préindustrielle (1450-1880AD) dans l’SH. Nous constatons une 

augmentation d’un facteur 2 ultérieure des dépôts de Hg dans l’HS, de la période préindustrielle 

à la période industrielle du 20ème siècle dans les enregistrements combinés de tourbe et de 

sédiments. L'enrichissement absolu (x4) de Hg dans l’HS est bien inférieur à l'enrichissement 

absolu (x16) de Hg dans l’HN. Nous attribuons cette différence à une combinaison d'émissions 

anthropiques de Hg plus faibles dans le SH, et d'émissions marines de Hg plus élevées dans le 

SH, soutenues par une accumulation de Hg de fond naturel x2 plus élevée dans la tourbe du SH. 
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Dans l'ensemble, nos résultats suggèrent que les niveaux de fond de mercure dans les deux 

hémisphères sont différents et doivent être pris en compte dans les rapports internationaux 

d'évaluation du mercure et les objectifs de la politique environnementale. 
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Abstract: Remote northern (NH) and southern hemisphere (SH) lake sediment and peat records 

of mercury (Hg) deposition show a ×3 to ×5 Hg enrichment since pre-industrial times 

(<1880AD), leading to the common perception that global atmospheric Hg enrichment is 

uniform. Longer radiocarbon-dated NH sediment and peat records document an earlier ×5 

increase in Hg deposition from natural background (<1450AD) to pre-industrial (1450-1880AD) 

periods. Longer SH peat records are scarce however, which we address here by reconstructing 

atmospheric Hg deposition to 4 remote SH peatlands. We observe that contrary to NH records, 

there is only a small ×1.3 increase in SH Hg deposition across the natural background to pre-

industrial periods. We find a subsequent ×2 increase in SH Hg deposition from the pre-industrial 

to the industrial 20th century period in combined peat and sediment records. The ×4 all-time 

SH Hg enrichment observed is far lower than the ×16 all-time enrichment in NH Hg deposition. 

We attribute this difference to a combination of lower anthropogenic Hg emissions in the SH, 

and higher natural atmospheric SH Hg levels, supported by ×2 higher natural background Hg 

accumulation in SH peat. We suggest that the higher SH natural Hg levels reflect the SH land-

ocean distribution, with higher marine SH Hg emissions driven by transport of NH Hg to the 

SH by the Ocean conveyor belt. Our findings also suggest that atmospheric background Hg 

levels in the SH and NH (0.4 and 0.2 ng m-3) are different and should be taken into account for 

environmental policy. 
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Main text:   

Mercury (Hg) is a toxic trace metal that affects wildlife and human health 1–4. Hg is discharged 

into the environment by natural processes, such as volcanism and weathering, and by human 

activities, including mining, coal burning and intentional use 5–7. Elemental Hg0, the dominant 

form of emissions, has a long atmospheric residence time of 6 to 12 months, which allows for 

its intra-hemispheric dispersion before being deposited to the Earth’s surface, including remote 

environments 8. Assessments of the extent of global Hg pollution have relied upon natural 

archives of Hg accumulation (e.g. sediment 9,10, peat 11, ice cores 12), and on estimates of natural 

and anthropogenic Hg emissions 7. Estimates of all-time anthropogenic Hg release suggest that 

a total of 1540 Gg has been released up to 2010, of which 470 Gg has been emitted to the 

atmosphere 7.  

Since early work on lake sediment cores in the 1970s 13, hundreds of remote 210Pb dated 

sediment cores have documented an approximate three- to five-fold increase in Hg 

accumulation rates (HgAR) from pre-industrial (1760-1880 AD) times to the late 20th century 

1,9,10,14–16. For some time, it was believed that sediment records were superior to peat records in 

recording atmospheric HgAR 14. Inferred, higher Hg accumulation in peat records was thought 

to be related to 210Pb mobility, and peat mass loss during remineralization. A recent review 

study 15 indicated that earlier peat vs sediment comparisons 14 used different reference periods 

to calculate Hg enrichment. Using coherent reference periods, dozens of peat archives and a 

small number glacier ice cores of atmospheric deposition also document 3 to 5-fold enrichment 

factors, similar to sediment records, since pre-industrial times (EFpreind) 
1,15. Both sediment and 

peat records have strengths and weaknesses, with 210Pb and Hg mobility during sediment 

diagenesis and peat decomposition being potential factors of bias.  Yet, both archives at remote 

locations record broadly similar Hg accumulation profiles across the past millennium, despite 

differences in archive functioning, and therefore warrant further comparison across Earth’s two 

hemispheres. Regarding archive functioning, lake sediments integrate Hg deposition to a larger 

watershed, Hg storage in soils, followed by Hg run-off and in-lake cycling leading to a longer 

Hg residence-time before deposition to sediments. Peatlands integrate Hg deposition directly 

from the atmosphere 15,17,18, leading to a more direct response of peat archives to atmospheric 

Hg0 levels. This can generally be recognized by the 2-fold drop in HgAR from the 1970s to the 

1990s in peat 15, which is absent in sediment records, and which mirrors the well-documented 

decrease in Hg emissions and observed atmospheric Hg0 levels 7,19,20. A review of Hg stable 
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isotope composition of peat and lake sediments indicates that in both media, 75% of Hg derives 

from vegetation uptake of atmospheric Hg0 17, which further justifies comparing both archives.  

Longer radiocarbon-dated NH sediment and peat cores probe changes in the natural 

background Hg accumulation during pre-colonial times, before large-scale mining practices, 

and indicate a more dramatic difference in Hg deposition. Millennial sediment and peat records 

show that HgAR already increased five-fold during the earlier transition from pre-large-scale 

mining to pre-colonial times around approximately 1450 AD 15. All-time anthropogenic Hg 

enrichment factors (EFalltime, the ratio of 20th century to pre-1450AD HgAR), determined in 

sediment and peat records therefore ranges from 16 to 26 15. The cause for the increase in NH 

Hg enrichment around 1450AD is debated. Hg inventory and modeling studies have argued for 

enhanced Hg emissions from Spanish colonial silver and gold mining 21–23. Other studies argue 

that Hg associated with mining has been immobilized in mining waste, rather than volatilized 

10,24. A study on Hg stable isotopes in peat has recently shown evidence how enhanced 

deforestation during the Middle Ages may have impacted regional atmospheric Hg dynamics 

in Europe with lower vegetation uptake of Hg, and wood burning emissions leading to enhanced 

atmospheric Hg concentrations and deposition 19. What nearly all the above cited studies have 

in common, is that they are situated in the northern hemisphere (NH) where the majority of 

historical anthropogenic Hg emissions have taken place. Lake sediment records of Hg 

accumulation have been studied in the SH and will be reviewed here. Three southern 

hemisphere (SH) peat records have been studied for HgAR 25,26, but are all incomplete (see 

Methods, and Extended Data 2) and preclude a rigorous assessment of SH atmospheric Hg 

enrichment based on both sediment and peat archives. 

In this study we extend the limited number of peat archives studied in the SH, by 

investigating Hg accumulation rates in four radiocarbon and 210Pb and 14C bomb-pulse dated 

SH peat records. We then review all the existing SH sediment and peat HgAR (Extended Data 

2), compare Hg enrichments factors to the NH, and discuss findings in the context of revised 

volcanic Hg emissions, published historical anthropogenic Hg emissions, and Hg cycling in 

both hemispheres. We do not include glacier ice cores in our review, due to the limited number 

of studies available, and we do not consider marine sediment records. Four reference time 

periods, operationally defined for NH natural archives elsewhere 15,16, will be used throughout: 

natural background (pre-1450AD), pre-industrial period (1450-1880 AD), 20th century 

extended HgAR maximum (20Cmax, approximately from 1940-1990; see also Methods), and 

the recent post-1990 modern period. 
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Methods 

The study sites. We investigate 4 cores from remote ombrotrophic peat bogs in the SH mid-

latitudes: Amsterdam Island (AMS, S-Indian Ocean), Falkland Islands (SCB, San Carlos bog, 

Islas Malvinas, S-Atlantic Ocean), Andorra and Harberton (AND, HAR, Tierra del Fuego, 

Argentina) (SI Appendix Table S1; Figure S1; Text S1; Extended Data 1). These four sites are 

situated in the Southern Westerly wind belt, far away from anthropogenic Hg sources, which 

makes them ideal recorders of SH remote atmospheric Hg deposition trends. Details about the 

field campaigns and sampling sites are given in SI Appendix Table S1 and Text S1. After 

collection, all the cores were photographed, described and packed in plastic film and PVC tubes 

and shipped to EcoLab, Toulouse, France. There, the cores were cut and processed following 

published trace metal clean protocols, freeze-dried and stored dry until analysis. 

Chronology. Age model output of the AMS peat core is adopted from 28. In brief, a total of 20 

samples were picked for plant macrofossils and subsequently radiocarbon-dated at the LMC14 

Artemis Laboratory (Saclay, France, SacA code) or GADAM center (Gliwice, Poland, GdA 

code). Recent age control in the AMS peat core is based upon 4 post-bomb radiocarbon dates 

29 together with 210Pb dating using the constant rate of supply model, and 137Cs, 241Am 30. A 

total of 9 samples of plant macrofossils/charcoal from SCB 10 and 13 samples of Sphagnum 

macrofossils from AND and HAR respectively, were radiocarbon dated. These radiocarbon 

samples were pre-treated and graphitized at the GADAM center (Gliwice, Poland, GdA code) 

31. Subsequently, their 14C concentration in graphite was measured at the DirectAMS 

Laboratory (Bothell, WA, USA; 32). The NIST Oxalic Acid II standard was used for 

normalization, and black coal used as a blank. A total of 22 samples from the top 62 cm of the 

SCB peat core were selected for 210Pb measurement by alpha counting to constrain the recent 

age (see Extended Data 1). The recent age control of the AND and HAR peat cores derive from 

5 and 10 post-bomb radiocarbon dates, respectively 29,33. 

Details of radiocarbon dates are summarized in SI Appendix Table S2. Age-depth models 

were generated from a combination of radiocarbon dating, post-bomb and 210Pb dating with the 

Bacon package within R software 34, using the SHCal13 calibration curve for positive 14C ages 

35, while the post-bomb radiocarbon dates were calibrated with SH zone 1-2 curve 36. The prior 

settings and model outputs are presented in SI Appendix Figure S2. The modelled median age 

was used for calculating and plotting HgAR against time (Figure 1). The average age 

uncertainties (1-sigma) derived from the age-depth models range from 1-5 years for the topmost 

part of the cores, up to ca. 100 years around 1000 AD. The investigated peat profiles of AMS, 



Chapter 4. Unequal anthropogenic enrichment of mercury in Earth’s northern and southern 

hemispheres 

182 
 
 

SCB, AND, and HAR cover periods of 6600, 2000, 200 and 800 years, respectively. 

Corresponding mean peat accumulation rates are 0.76, 0.85, 3.6 and 0.91 mm yr-1 respectively.  

Peat Hg accumulation rates (HgAR). HgAR is calculated as the product of Hg concentration 

(ng g-1), peat density (g cm-3) and peat mass accumulation rate (g m-2 yr-1). Peat density was 

determined for each 1 cm slice by measuring its volume using a Vernier caliper and dry peat 

mass after freeze-drying. Peat samples were analyzed for total Hg (THg) concentration on a 

combustion cold vapor atomic absorption spectrometer (CV-AAS, Milestone DMA-80) at the 

University of Toulouse, France. The IPE 176 CRM (Reed / Phragmites communis), NIST 1632d 

(Coal), and BCR 482 (Lichen) were analyzed with mean recoveries ranging from 93-100% (SI 

Appendix Table S3). Replicate/triplicate analyses of THg in peat samples were found to vary 

by less than 6% (1σ). Profiles of peat Hg concentration in AMS, SCB, AND, and HAR are 

shown in SI Appendix Figure S5. Peat mass accumulation rate was determined from the age 

models and dry peat mass. All raw data is summarized in Extended Data 1. 

Literature review, reference time periods and statistics. Based on a literature review we 

retained the remote HgAR records from SH lake sediments and peat records  in Southern South 

America, lake sediments in New Zealand, lake sediments in East Africa, and lake sediments in 

Antarctica (see Extended data 2 for details). We did not retain: a lake sediment core 6 km 

downstream from the Potosi mine (Bolivia) with pronounced local mining influences on HgAR 

38; a lake sediment core in the Patagonian volcanic zone with multiple tephra layers associated 

with high HgAR 39. Two remote Bolivian cores and one Peruvian core also showed evidence 

for the release of Hg due to regional Spanish colonial mining activities 26,40, but were retained 

in Extended Data 2. NH remote sediment and peat records were updated from 15. Extended Data 

2 indicates which records were only partially used, often due to lack of recent 210Pb or 14C bomb 

pulse dates. This applies in particular to three SH peat records, where one lacks a recent 210Pb 

chronology and therefore 20Cmax and pre-industrial HgAR 26, one lacks pre-1988 layers 37, 

and one is nearly complete 25, except for the 1826-1935 period, which we extrapolate (see 

Extended Data 2). 

We use four reference time periods, based on previous studies and which were originally 

operationally derived for NH natural archives 15: natural background (pre-1450AD), pre-

industrial period (1450-1880AD), 20th century extended HgAR maximum (20Cmax, approx. 

1940-1990), and the recent, modern period (post-1990AD). The operational cut-off years, e.g. 

1450, 1880, 1990, are mean values based on the remote NH sediment (n=49) and peat cores 

(n=19) reviewed here. In other words, each archive and each regional context shows variation 
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in the exact timing of gradual or abrupt increases (~1450, ~1880) or decreases (~1990) in HgAR 

(Extended Data 2). Several long SH sediment records probe the effect of climate change on 

variations in HgAR during the Holocene and since the last glacial maximum. Depending on 

watershed type and location these studies document substantial natural variability in HgAR that 

is beyond the scope of this study, but no less important. Therefore, in order to assess to the best 

of our ability the impact of humans on recent, millennial atmospheric Hg enrichment, we 

integrated natural background HgAR between on average -1700BC to 1450AD, but on occasion 

as far back as 10,000BC (Extended Data 2). 

Statistical descriptions are parametric (mean, standard deviation (SD)) for normally 

distributed HgAR and enrichment factors (EF), and non-parametric (median, Q25% and Q75% 

quartiles, interquartile range (IQR)) for non-normally distributed HgAR and EF. Outlier tests 

were performed only on EFs, and observations were excluded (in italics in Extended Data 2) 

when they exceeded 2*SD around the mean, or 1.5*IQR around Q25% and Q75%. All data 

generated or analyzed during this study are included in the SI Appendix. 

Results & Discussion 

HgAR profiles in the four SH peat records show maximum levels during the 20th century (Figure 

1). Natural background (pre-1450 AD) levels in the HAR, SCB and AMS cores show mean 

HgAR of 4.9 ± 3.5 μg m-2 yr-1 (mean, 1σ, n=3, Figure 1). Pre-industrial HgAR in the four cores 

averages 5.9 ± 2.5 μg m-2 yr-1, 20Cmax HgAR is 20 ± 7.9 μg m-2 yr-1, and modern HgAR is 9.7 

± 2.9 μg m-2 yr-1 (means, 1σ, n=4, Figure 1). Whereas absolute HgAR for the different time 

periods vary between cores, the relative HgAR changes within a core are similar and can be 

expressed by enrichment factors, EF. The four SH cores show evidence for 3.1-fold (mean, 

1σ=1.6) enhanced net Hg deposition during the 20Cmax, compared to the pre-industrial period 

(EFpreind, Table 1), which at first sight appears similar to NH natural archives. SH historical 

HgARs have thus far been studied in 18 lake sediment and 3 peat cores (see Methods and 

Extended Data 2 for full list). Figure 2 summarizes HgAR and EF in all published SH sediment 

and peat records, as well as updated NH data for the reference periods of interest (Extended 

Data 2). The temporal evolution of HgAR in peat and sediment cores is similar between the NH 

and SH in a broad sense (Figure 2a, b). HgAR increases stepwise from natural background to 

pre-industrial and then to 20Cmax periods in both sediment and peat archives. Similar to NH 

peat records 15, modern-day (post-1990) HgAR in SH peat decreases by a factor of 2 from 

20Cmax values (SI Appendix Figure S4), in line with declining global anthropogenic Hg 

emissions and deposition from the 1970s to 2000s (Figure S6 19,20). Sediment records in both 
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the NH and SH do not record this decrease (Figure S4), presumably due to the longer residence 

of Hg in lake catchment soils, leading to a slower recovery of Hg levels in soil run-off into lakes. 

 

Figure 1. Profiles of Hg accumulation rates (HgAR) in the peat cores from Amsterdam 

Island (AMS), Falkland Islands (SCB, Islas Malvinas), Andorra and Harberton (AND, 

HAR, Tierra del Fuego). Vertical dashed lines operationally separate the natural background 

(pre-1450AD), pre-industrial (1450-1880AD), the extended 20th century maximum HgAR 

(20Cmax, grey bars) and modern (post-1990AD) reference periods, following reference 15). 
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Table 1. Hg accumulation rate (HgAR) enrichment factor observed in the peat profiles 

from this study. AMS, Amsterdam Island; SCB, the Falkland Islands; AND, HAR, Andorra 

and Harberton, Argentina. ‘Pre-ind’, pre-industrial; ‘20Cmax’, extended 20th century maximum 

HgAR (see Methods); ‘p/b’, pre-industrial/background. 

  
Pre-ind/ 

background (EFp/b) 

20Cmax/Pre-ind 

(EFPreind) 

20Cmax/background 

(EFAlltime) 

AMS 1.6 1.7 2.7 

SCB 0.6 2.5 1.5 

AND  3.0  

HAR 1.4 5.3 7.3 

 

The historical evolution of trends in hemispheric HgARs are shown in EFpreind and EFalltime 

diagrams (Figure 2c, 2d). Pre-industrial to 20Cmax enrichment in HgAR (EFpreind) is higher in 

peat compared to sediment in both NH and SH (Kruskal-Wallis test, NH, P=0.006; SH, P=0.09). 

EFpreind is higher in the NH than in the SH for sediment (3.2 vs 1.8), but not peat (4.6 vs 3.1; 

Kruskal-Wallis test, peat, P=0.15; sediment P=0.0004; Figure 2c, 2d; Figure 3a). We find in 

particular that in long, millennial NH records, HgAR increased 3.9-fold in peat and 4.2-fold in 

sediments across the natural background to pre-industrial periods (EFp/b, Figure 2c, d, Table 2). 

On the contrary, EFp/b in SH millennial records show negligible, mean 1.2-fold enrichment in 

peat, to a small, median 1.4-fold enrichment in sediments across the natural background 

(<1450AD) to pre-industrial periods. Consequently, all-time NH enrichment factors, EFalltime, 

reach 16 in peat and 19 in sediments and are larger than the 6.0-fold and 3.8-fold Hg all-time 

enrichment in SH peat and sediments (Table 2; Figure 3B; Kruskal-Wallis test, P = 0.02 for 

peat, P = 0.1 for sediment). Historical Hg emission inventory and associated box modeling 

studies have suggested that the 4-fold increase in NH HgAR across around 1450AD is related 

to Spanish colonial Hg and silver mining 7,21. This interpretation has been refuted by studies 

arguing that the associated emissions are overestimated 10 and references therein). Estimating 

silver and gold mining Hg emissions hinges on ill-constrained emission factors. SH archives 

show little evidence of Spanish colonial mining impacts in South-America on large scale SH 

atmospheric Hg deposition (Figure 2). Similarly, neither NH peat, nor sediment records show 

evidence of a pronounced late 19th century peak in HgAR, in contrast to large estimated N-

American gold-rush Hg emissions 7. We therefore suggest the 4-fold NH increase in HgAR 

around 1450AD is more likely related to demography driven changes in land-use (e.g. 

deforestation, wood, peat combustion, urbanization etc.), than to direct Spanish colonial mining 
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emissions of Hg to the global pool. In summary, our findings based on combined sediment and 

peat archive HgAR observations, suggest that all-time atmospheric Hg enrichment during the 

20Cmax period (1940-1990) reached 11-fold globally (EFalltime = 4-26, 25%-75% quartiles, 

n=38), 16-fold in the NH (EFalltime = 10-30, 25%-75% quartiles, n=27), and 4-fold in the SH 

(EFalltime = 2-6, 25%-75% quartiles, n=11). Atmospheric Hg levels decreased from the 1970’s 

to the 2000’s by a factor of about 2, a trend that is recorded in the peat archive HgAR (Figure 

S4, S6). Natural background to modern period (1990-2010) Hg enrichment, EFmod/bck, based on 

peat archives, is currently 10-fold globally (±7.7, 1σ, n=18), 12 in the NH (±7.5, 1σ, n=14) and 

3 in the SH (±2.5, 1σ, n=4). 

 

 

Figure 2. Review of published Hg accumulation rates (HgAR) and enrichment factors (EF) 

in NH and SH peat and sediment cores for different reference time periods. HgAR (μg m-

2 yr-1) and EF in peat (A), (C) and sediment (B), (D) profiles during different periods: Natural 

background (pre-1450AD), pre-industrial (1450-1880AD), extended 20th century maximum 

(20Cmax, defined as the broad 20th century HgAR peak, and modern period (post-1990AD). 

EFp/b: EF from natural background to pre-industrial period. EFpreind: EF from pre-industrial to 

20Cmax. EFalltime: EF from natural background to 20Cmax. 
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Table 2. Summary of Hg accumulation rate (HgAR) enrichment factors (EF) in global 

peat and sediment records. ‘Pre-ind’, pre-industrial; ‘20Cmax’, extended 20th century 

maximum HgAR (see Methods); ‘p/b’, pre-industrial/background; ‘modern/back’, 

‘modern/background’; NH, northern hemisphere; SH, southern hemisphere. 

  

Pre-ind 

/background 

 (EFp/b) 

20Cmax/pre-ind 

 (EFPreind) 

20Cmax/background 

(EFalltime) 

Modern/ 

background 

(EFmodern/back) 

Global-sediment 1.6 n=13 2.9 n=101 4.3 n=11 5.0 n=11 

Global-peat 2.5 n=17 4.3 n=30 14.5 n=25 10.3 n=18 

NH-sediment+peat 4.0 n=20 3.3 n=111 16.2 n=27 12.2 n=20 

SH-sediment+peat 1.3 n=10 1.9 n=19 4.3 n=11 3.5 n=9 

NH-sediment 4.2 n=5 3.2 n=86 19.0 n=5 22.5 n=5 

NH-peat 3.9 n=14 4.6 n=25 16.2 n=21 12.3 n=14 

SH-sediment 1.4 n=8 1.8 n=15 3.8 n=7 5.0 n=6 

SH-peat 1.2 n=3 3.1 n=4 6.0 n=4 3.1 n=4 
1the number of records, n, do not always add up due to the 2σ outlier tests applied, for ex. SH sediment, n=8, SH 

peat, n=3, but SH sediment+peat, n=10. See Methods and Extended Data 2 for details on outlier tests. 

In the following sections we will further discuss this sizeable difference in hemispheric 

EFalltime in terms of NH and SH Hg emissions, and in terms of natural background HgAR. The 

all-time NH and SH enrichment factors based on Hg deposition to natural archives can be 

directly compared to independent estimates of NH and SH emission factors, i.e. EFemission, the 

ratio of primary, i.e. first time, total Hg emission flux to natural Hg emission flux (EFemission = 

Fanthro+Fnatural/(Fnatural; Table 3). In doing so, we make the assumption that re-emission of 

previously deposited natural and anthropogenic Hg is proportional to primary emissions. By 

separating NH and SH emission factors we also assume limited hemispheric exchange of 

atmospheric Hg, supported by the short global lifetime of Hg of 5 months in state of the art 

atmospheric Hg models 8. Global anthropogenic Hg emissions to the atmosphere have been 

estimated at 2.4 ± 0.5 Gg yr-1 during the 20Cmax period (1940-1990) 7. Natural Hg emissions 

are the sum of volcanic degassing and crustal degassing from naturally enriched soils. Passive, 

non-eruptive, volcanic degassing is an important direct natural source of Hg to the atmosphere, 

with a previously estimated total flux of 76 ± 30 Mg yr-1 (1σ) based on observed Hg/SO2 ratios 

of 7.8 ± 1.5 × 10-6 and a global passive degassing SO2 flux of 9.7 Tg yr-1 41,42. Recent advances 

in remote sensing of SO2 from 2005-2015 indicate a higher SO2 flux of 23.0 ± 2.3 Tg yr-1 (1σ) 

43, which we use here to revise the global passive volcanic degassing Hg flux to 179 ± 39 Mg 

yr-1 (1σ). Eruptive volcanic SO2 emissions are indicated to be one order of magnitude smaller 
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than passive degassing at 2.6 ± 2.6 Tg yr-1 43. Assuming similar Hg/SO2 ratios, we estimate 

eruptive volcanic Hg emissions at 20 ± 20 Mg yr-1, and total volcanic Hg emissions as the sum 

of eruptive and passive emissions at 200 ± 60 Mg yr-1 (1σ). Global emissions from naturally 

enriched soils can be estimated from reviews of flux chamber and soil Hg studies 44,45 and equal 

135 ± 40 Mg yr-1 (1σ, Table 3). These bottom-up estimates indicate that global anthropogenic 

20Cmax Hg emissions of 2.4 Gg yr-1 have been 7.3 times larger than global natural Hg 

emissions of 0.34 Gg yr-1, and result in a global EFemission of 8.2. Volcanic SO2 emissions are 

similar for the NH and SH (11.8 vs. 11.2 Tg yr-1) 43, leading to NH and SH Hg emission budgets 

of 0.1 Gg yr-1 each. We scale naturally enriched soil emissions with continental surface area, to 

estimate 91 and 44 Mg yr-1 in NH and SH. The 20Cmax 2.4 Gg yr-1 global anthropogenic Hg 

emissions to the atmosphere were released for 80% to the NH and 20% to the SH 7. We therefore 

estimate hemispheric EFemission, for the NH at 11.2 ± 4.6 and for the SH at 4.4 ± 1.5 (1σ). The 

SH EFemission of 4.4 is in good agreement with the natural archive-based SH EFalltime of 4. The 

NH EFemission of 11 however, underestimates the NH EFalltime of 16 by 43%, suggesting that 

either the 2.0 ± 0.5 Gg yr-1 NH anthropogenic Hg emissions to air 7 are underestimated, or that 

the NH natural primary emissions of 91 ± 27 Mg yr-1 are overestimated. There is a final caveat 

in this analysis that deserves a mention: We assume that the ill-constrained, but potentially 

important, submarine volcanic Hg flux 46 is locally or regionally deposited to marine sediments 

before any of it can be emitted to the atmosphere. This assumption is based on evidence for Hg 

scavenging in submarine hydrothermal plumes 47,48. 
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Figure 3. Hg enrichment factors between different reference time periods and peat 

background Hg accumulation rate. Enrichment factors (EF) in Hg accumulation rates for a) 

20th century industrial relative to pre-industrial periods (EFpre-ind, 1450-1880AD). b) 20th 

century industrial relative to natural background periods (EFalltime, pre-1450AD century). 

Circles represent peat cores, and crosses sediment cores. c) Natural background Hg 

accumulation rate (pre-1450AD HgAR) in peat cores as a function of latitude. For details see 

Extended Data 2. 



Chapter 4. Unequal anthropogenic enrichment of mercury in Earth’s northern and southern 

hemispheres 

190 
 
 

Table 3. Summary of natural and anthropogenic Hg emissions to the atmosphere (mean 

± 1σ) 

 NH 1σ SH 1σ 

passive volcanic degassing (this study) Mg y-1 92 20 87 19 

eruptive volcanic degassing (this study) Mg y-1 10 10 10 10 

crustal degassing (44, 45) Mg y-1 91 27 44 13 

anthropogenic 20Cmax emissions (7) Mg y-1  2000 500 480 20 

Mean EFemission 11.2 4.6 4.4 1.5 

Median EFalltime 16.1 10-30 IQR 4.0 2-6 IQR 

 

The important difference in NH and SH EFalltime is not only related to hemispheric 

differences in primary Hg emissions, but also to differences in natural background atmospheric 

Hg levels and HgAR. A notable outcome of the new SH peat records is that the natural SH 

background HgAR of 4.3 μg m-2 yr-1 in the SH mid-latitudes (30-60oS) is x2 higher than the 

NH background HgAR of 1.7 μg m-2 yr-1 in the NH mid-latitudes (Kruskal-Wallis test, P=0.02, 

Figures 2a, 3c, S3). We therefore suggest that the marked NH/SH mid-latitude difference in 

HgAR is driven by ×2.5 higher natural atmospheric Hg levels in the SH, rather than climate 

factors. Climate factors, such as temperature and length of growth season only become visible 

in NH high latitude (>60oN), where HgAR becomes limited by peat bog primary productivity, 

via the vegetation Hg0 pump (18). The observation that the SH natural background HgAR is 

x2.5 higher than the NH background is likely an additional reason why the NH EFalltime of 16 is 

so much larger than the SH EFalltime of 4. Inter-hemispheric trends in atmospheric Hg have been 

previously investigated 49,50. Observed mean atmospheric Hg0 levels across monitoring 

networks for the modern, 1990-2010 period were 1.8 ng m-3 in the NH and 1.2 ng m-3 in the SH 

51,52. Modern-day SH Hg0 levels are therefore higher than what would be expected based on 

estimates of modern NH and SH primary Hg emissions of 1.6 and 0.7 Gg yr-1 (Table 3). A key 

difference between the NH and SH is the land-ocean distribution, with the SH being only 19% 

land covered and the NH 39%. The land-ocean distribution plays an important role in 

atmospheric boundary layer Hg dynamics. A study on atmospheric Hg0 seasonality, which is 

more pronounced in the NH and quasi-absent in the SH, suggested that the vegetation Hg pump, 

i.e. the foliar uptake of Hg0 and sequestration in soils, is an important driver of NH atmospheric 

Hg0 seasonality 18. The SH has a smaller terrestrial vegetation and soil pool, and therefore likely 

has relatively higher atmospheric Hg0 due to a weaker vegetation Hg pump. In addition coupled 

ocean-atmosphere Hg chemistry and transport models find stronger marine Hg0 evasion in the 

SH than in the NH, mainly due to upwelling of Hg rich deep waters in the Southern Ocean 16,53. 
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The model studies suggest that SH atmospheric Hg0 is largely controlled by these SH marine 

Hg0 emissions 8,16. These findings were recently confirmed by long-term observations on Hg0 

seasonality at the Cape Point, South-Africa monitoring station 54. The 2-fold higher SH natural 

background HgAR in peat therefore echoes the higher than expected modern SH atmospheric 

Hg0 levels, and both can potentially be explained by the hemispheric land-ocean distribution. 

We suggest here that the Ocean conveyor belt plays an important role in shuttling NH marine 

Hg to the SH in order to sustain the marine evasion driven, elevated natural atmospheric Hg 

levels in the SH. Such a mechanism is supported by the long estimated deep Ocean Hg lifetime, 

in excess of 1000 yr 16.  

We use peat EFmodern/back for both hemispheres (Table 2) to estimate what natural 

atmospheric Hg0 levels may have been during pre-1450AD times. Dividing modern-day mean 

NH and SH atmospheric Hg0 levels of 1.8 and 1.2 ng m-3 by EFmodern/back yields natural 

background atmospheric Hg levels of 0.2 and 0.4 ng m-3 for the NH and SH. In summary, the 

lower SH enrichment in atmospheric Hg is due to a combination of lower SH anthropogenic Hg 

emissions, and higher SH background Hg levels driven by a lower SH land/ocean ratio which 

limits the terrestrial vegetation Hg pump and sustains higher natural marine Hg emissions. 

Observations and model simulations will need to assess if and when NH Ocean waters, charged 

with multiple centuries of anthropogenic Hg will resurface in the SH. Overall, our findings 

suggest that both background Hg levels and all-time Hg enrichment in the NH and SH are 

different and should be taken into account in environmental policy objectives. 
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Supporting information  

Table S1. Details of the coring sites in this investigation 

Location 

 

 

Site name coordinates 

Elevation 

(m a.s.l) 

Precipitation 

(mm yr-1) Coring date 

Label 

core 

core 

length 

(m) 

Amsterdam  

Island 

Central 

plateau 

37.83°S, 

77.53°E 

738 1124 11/2014 AMS14-

PB01 

5 

Falkland Islands 

(Islas Malvinas) 

San Carlos 

bog 

51.50°S, 

58.82°W 

8 575  2013 SCB13-

PB01C 

1.7 

Valle de Andorra Andorra 54.75°S,  

68.22°W 

198 450-600 02/2012 AND12-

PB01W1 

0.77 

Estancia 

Harberton 

Harberton  54.87°S, 

67.22°W 

26 600 02/2012 HAR12-

PB01W1 

0.92 

 
 

 
Figure S1. Location of Amsterdam Island (AMS), Falkland Islands (SCB, Islas Malvinas), 

Andorra (AND) and Harberton (HAR). 

 

Text S1 Core sites: 

Amsterdam Island (AMS): A 5 m-long peat sequence (AMS14-PB01A) was collected from the 

most elevated area of the peatland at 738 m a.s.l. in December 2014 using a stainless steel 

Russian D-corer of 10 cm internal diameter and 50 cm length. The mean annual temperature at 

the meteorological station (27 m a.s.l.) is 14°C and annual precipitation is about 1100 mm yr-1 
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(1). For details about AMS coring site see (2). The vegetation at the coring site is characterized 

by bryophytes (brown mosses together with liverworts and some Sphagnum species), Blechnum 

penna-marina, Scirpus aucklandicus, Trisetum insularis and scattered stands of Agrostis 

delislei. Based on low resolution plant macrofossil data for the last 1000 years of a peat core 

taken close to the AMS14-PB01A core, with an independent age-depth model, the macrofossil 

record is dominated by higher plant epidermis (c. 70%) until about 400 cal yr BP. For the last 

400 years, bryophytes are dominant (70-80%), mainly composed of brown mosses and 

liverworts, with little occurrence of Sphagnum spp. Ash content is <2wt% throughout the core 

and, together with major element profiles, suggests the site to be ombrotrophic to at least 3.5m 

depth. 

 

The Falkland Islands (SCB, Islas Malvinas): ‘San Carlos bog’ is located on the western side 

of East Falkland Islands (SCB13-PB01C). The native vegetation is treeless and dominated by 

mosses, grasses and dwarf shrubs (3-4). A 1.7 m-long peat sequence was collected from a 

hummock with an upper monolith section (0 - 50 cm) and lower Russian core section (5). The 

surface vegetation of the bog is dominated by Sphagnum magellanicum, Hymenophyllum 

caespitosum, Gaultheria pumila, Oreobulis obtusangulus, Gunnera magellanica and Myrteola 

nummularia. Sphagnum is found to be more than 80% to a depth of 65 cm and followed by 

herbaceous compacted peat to the bottom. The annual precipitation and temperature are 575 

mm yr-1 and 7°C, respectively (data sources from the Falkland Islands Government reported in 

(4). 

Andorra (AND): An ombrotrophic peat monolith (0.72 m length, AND12-PB01W1) was 

collected at Andorra bog using a stainless steel Wardenaar corer (6). The AND peat profile is 

dominated >96% by Sphagnum magellanicum. The annual precipitation and temperature are 

450-600 mm yr-1 and 6°C, respectively (7). 

Harberton (HAR): An ombrotrophic peat monolith (0.73 m length, HAR12-PB01W1) was 

sampled at Harberton Bog by a stainless steel Wardenaar corer (6).  The bog surface is 

dominated >80% by Sphagnum magellanicum with a sparse cover of Marsippospermum 

grandiflorum and Empetrum rubrum (8). The annual precipitation and temperature are around 

600 mm yr-1 and 6°C, respectively (8). 
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Table S2 Accelerator Mass Spectrometry 14C dating of plant macrofossils from all the 

four peat cores. 

Core 

name 

Lab ID Mid-

Point 

Depth 

(cm) 

material Conventional 
14C Age (yr 

BP, ± 1σ) 

Calibrated 

age (median, 

AD/BC) 

Modelled age 

AD/BC (95.4% 

probability range) 

AMS* SacA50049 2.0 Chorisondontium/Dicranolo

ma stems + leaves 

-557 ± 21 2008 AD 1997-2001 AD  

AMS* SacA50050 3.5 Brown moss stems -1489 ± 20 1987 AD 1985-1987 AD 

AMS* SacA50051 4.9 Brown moss + liverworts 

stems 

-3052 ± 18 1974 AD 1973-1979 AD 

AMS* SacA50052 6.4 Brown moss + liverworts 

stems 

-1248 ± 20 1960 AD 1956-1962 AD 

AMS* SacA50053 7.8 Brown moss stems 135 ± 30 1942 AD 1938-1950 AD 

AMS* SacA50054 9.4 Brown moss stems 115 ± 30 1928 AD 1917-1937 AD 

AMS* SacA50055 10.8 Brown moss stems + leaves 80 ± 30 1912 AD 1895-1923 AD 

AMS* SacA50056 12.0 Brown moss stems + 

Chorisondontium/Dicranolo

ma leaves 

160 ± 30 1893 AD 1854-1917 AD 

AMS* SacA50057 13.2 brown moss stems 70 ± 30 1885 AD 1823-1915 AD 

AMS* GdA-4136 24.9 brown moss stems 275 ± 25 1752 AD 1640-1800 AD 

AMS* GdA-4558 65.4 Residue (Sphagnum 

dominated) 

595 ± 25 1389 AD 1310-1440 AD 

AMS* GdA-4560 170.7 Brown moss stems 2100 ± 25 78 BC 155 BC-30 AD 

AMS* GdA-4137 174.8 brown moss stems 2170 ± 30 126 BC 195-55 BC 

AMS* GdA-4138 224.4 brown moss stems 2430 ± 30 580 BC 750-415 BC 

AMS* GdA-4139 275.4 brown moss stems 2925 ± 30 1142 BC 1380-980 BC 

AMS* GdA-4561 340.9 brown moss stems 4145 ± 35 2535 BC 2965-2275 BC 

AMS* GdA-4140 374.4 Sphagnum 4285 ± 30 2900 BC 3075-2750 BC 

AMS* GdA-4141 424.4 Sphagnum+ brown moss 4960 ± 30 3680 BC 3795-3550 BC 

AMS* GdA-4142 474.8 Sphagnum stems 5515 ± 35 4330 BC 4460-4190 BC 

AMS* GdA-4143 495.9 Sphagnum stems 5860 ± 35 4615 BC 4750-4470 BC 

SCB SUERC-

51676 

76.5 Sphagnum 153 ± 37 1694 AD 

1597-1737 AD 

SCB GdA-3755 

 

99.9 Undefined peat macrofossils 814 ± 41 1256 AD 

1147-1345 AD 

SCB GdA-4744 109.8 Charcoal + Monoctyledons 

undifferentiated (leaf bases) 

1553 ± 25 1009 AD 

876-1152 AD 

SCB GdA-4745 123.7 Monoctyledons 

undifferentiated (leaf bases) 

1261 ± 21 804 AD 

688-896 AD 

SCB GdA-4746 146.3 Monoctyledons 

undifferentiated (leaf bases) 

1661 ± 25 428 AD 

277-532 AD 

SCB GdA-4742 154.3 Charcoal + Monoctyledons 

undifferentiated (leaf bases) 

2882 ± 22 252 AD 

19 BC-396 AD 

SCB GdA-3756 164.3 Undefined peat macrofossils 11582 ±  50 36 AD 376 BC-254 AD 

AND SacA50058 0.6 Sphagnum -594  ±  19 2004 AD 2007-2014 AD 

AND SacA50059 13.1 Sphagnum -1749  ±  19 1983 AD 1985-2000 AD 

AND SacA50060 34.3 Sphagnum -2839  ±  17 1974 AD 1969-1976 AD 

AND SacA50061 41.0 Sphagnum -2695  ±  18 1964 AD 1961-1967 AD 

AND SacA50062 47.6 Sphagnum -67  ±  21 1954 AD 1947-1958 AD 

AND SacA50063 54.6 Sphagnum 120  ±  30 1926 AD 1902-1942 AD 

AND SacA50064 61.9 Sphagnum 140  ±  30 1893 AD 1856-1919 AD 

AND SacA50065 68.8 Sphagnum 160  ±  30 1863 AD 1814-1893 AD 

AND GdA-3032 73.2 Sphagnum 193  ±  23 1843 AD 1787-1876 AD 

AND SacA50066 76.1 Sphagnum 150  ±  30 1831 AD 1769-1865 AD 

HAR SacA42507 0.3 Sphagnum -424  ±  21 2010 AD 2010-2019 AD 

HAR SacA42508 4.7 Sphagnum -606  ±  22 2004 AD 2002-2012 AD 

HAR SacA42509 6.9 Sphagnum -677  ±  21 2002 AD 1999-2008 AD 

HAR SacA42510 9.1 Sphagnum -788  ±  21 1999 AD 1996-2005 AD 

HAR SacA42511 11.3 Sphagnum -838  ±  22 1998 AD 1994-2002 AD 

HAR SacA42512 13.6 Sphagnum -914  ±  21 1996 AD 1991-1999 AD 

HAR SacA44490 15.8 Sphagnum -1092  ±  22 1992 AD 1988-1996 AD 

HAR SacA44491 19.2 Sphagnum -1333  ±  21 1988 AD 1984-1992 AD 

HAR SacA44492 21.3 Sphagnum -1513  ±  20 1985 AD 1981-1989 AD 
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HAR SacA44493 26.6 Sphagnum -2186  ±  21 1979 AD 1974-1982 AD 

HAR SacA44494 31.7 Sphagnum -2715  ±  20 1975 AD 1964-1976 AD 

HAR SacA44495 37.0 Sphagnum -2462  ±  27 1964 AD 1930-1964 AD 

HAR SacA44496 43.5 Sphagnum 214  ±  23 1815 AD 1736-1885 AD 

HAR SacA44497 56.2 Sphagnum 407  ±  25 1608 AD 1518-1631 AD 

HAR SacA44498 90.7 Sphagnum 984  ±  24 1148 AD 1063-1216 AD 

*Data are from ref 28. 



Chapter 4. Unequal anthropogenic enrichment of mercury in Earth’s northern and southern 

hemispheres 

202 
 
 

 



Chapter 4. Unequal anthropogenic enrichment of mercury in Earth’s northern and southern 

hemispheres 

203 
 
 

 



Chapter 4. Unequal anthropogenic enrichment of mercury in Earth’s northern and southern 

hemispheres 

204 
 
 



Chapter 4. Unequal anthropogenic enrichment of mercury in Earth’s northern and southern 

hemispheres 

205 
 
 

 
 

Figure S2. Age models of peat cores from AMS, SCB, AND and HAR using Bacon. 

Calibrated 14C dates show in transparent blue and 210Pb dates show in transparent green. Red 

curve indicates single best-fit model based on the weighted mean age for each depth. Darker 

greys represent more likely calendar ages with 95% confidence intervals shown by grey stippled 

lines. Diagnostic plots in upper left panels confirm appropriate performance of the models. 

Settings for accumulation rate and memory are shown in middle and right upper panels (green 

line–prior, grey shade–posterior distribution), along with thickness and number of sections used 

for modelling. Prior settings for accumulation rates described by gamma distribution with shape 

1.5 and acc.mean 10 or 20 yr/cm, for memory the default beta distribution with parameters 

mem.strength=4 and mem.mean=0.7 was used.   
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Table S3 Summary of Hg measurements in standard reference materials. 

SRM materials Measured value 

(mean  ±  1σ, ng g-1) 

Certified value 

(mean  ±  2σ, ng g-1) 

IPE 176 Reed/Phragmites communis 35.1  ±  6.3 (n=143) 37.9  ±  2.9 

NIST 1632d Coal 91.3  ±  7.0 (n=9) 92.8  ±  3.3 

BCR 482 Lichen 481.3  ±  8.7 (n=5) 480  ±  20 

 

 
 

 

Figure S3. Natural background Hg accumulation rates (μg m-2 yr-1) derived from 

natural peat archives. Details see Extended Data 2. 
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Figure S4. Profiles of HgAR enrichment factor of modern (post-1990) to extended 20th 

century maximum (EFmod/20Cmax) from Northern Hemisphere (NH) and Southern 

Hemisphere (SH) peat and sediment records. Dashed line indicates EF=1. 
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Figure S5. Profiles of Hg concentration (ng g-1) in the peat cores from AMS, SCB, AND 

and HAR. 
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Figure S6. Historical atmospheric Hg monitoring observations and reconstructed Hg levels. 

Figure reproduced from Enrico et al. 2017, ES&T with permission (9). Atmospheric gaseous 

elemental Hg0 (GEM) monitoring data (circles) are from EMEP (10). 
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Conclusions and perspectives 

A Paris Climate Agreement was adopted by 174 states during 2015-2016, aiming to hold “the 

increase in the global average temperature to well below 2°C above pre-industrial levels and 

to pursue efforts to limit the temperature increase to 1.5°C above pre-industrial levels” 

(UNFCCC, 2015). This climate goal represents the level of climate change that multi-

governments would agree to prevent severe environmental consequences, finally leading to a 

sustainable food production and health economic developments (UNFCCC, 1992; Rogelj et al., 

2016). National commitments on Paris climate agreement interact with other global 

environmental objectives, e.g., Minamata convention on mercury (Mulvaney et al., 2020). 

Minamata convention, ratified by 128 signatories in 2019, aims at lowering the release of highly 

toxic Mercury (Hg) to the environment. Minamata Convention attempts to “address Hg thought 

its lifecycle from its mining to its management as waste” (UNEP-MCM, 2018). The Objectives 

of Paris agreement and Minamata convention highlight both the anthropogenic perturbations 

since industrialization and the needs to better understand the pre-industrial environmental 

conditions for making accurate environmental assessments and subsequent proper policy.  

Both past climate variability and current anthropogenic activities have been greatly 

investigated based on multi archives (e.g., sediment, peat and ice core) using numerous proxies 

(e.g., biology, geochemistry and geomorphology). Most of these human-climate-interaction 

studies have been conducted in the Northern Hemisphere (NH) due to predominant global 

anthropogenic emissions (e.g., gas, particles) taken place in boreal areas. Southern Hemisphere 

is, however, received less scrutiny, which precludes a thoughtful understanding of 

anthropogenic impact superimposed on the past environmental changes.  

Southern Ocean south of 30°S, occupying 30% of global surface ocean areas, accounts for 

43% of anthropogenic CO2 uptake (Frolicher et al., 2014), which slows down the climate 

change we experience. Changes in Southern Hemisphere Westerly Wind (SWW) intensity is 

thought to affect whether Southern Ocean acts as a net source or sink of CO2. This influences 

the CO2 in the atmosphere and then global climate. 

This study is designed to partially fill in the information gap of SWW and human impact 

in the SH in the Holocene, which is the main epoch involved with human activities. We focus 

on time-series variations of two representative forms of atmospheric proxies, dust and mercury 

(principally gaseous elemental Hg, Hg0), both of which can derive from natural and 
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anthropogenic emissions. We use SH mid-latitude peat bog as historical recorders, which are 

exclusively fed by atmospheric input and therefore ideal atmospheric recorders. 

1. Peat 210Pb signatures and its function of recent age reconstruction 

Aerosols have significant environmental impact by regulating atmospheric albedo, nutrient 

supply and nuclei formation. 222Rn (T1/2=3.8 d) is an inert gas emitting from continental curst 

and can decay to 210Pb (T1/2=22.3 yrs) in the atmosphere. As soon as 210Pb is produced, it is 

attached rapidly to aerosols, which subsequently can travel over the planet. 222Rn-210Pb cycling 

has been used in global climate-aerosol models. Given the absence of historical 210Pb data in 

the Southern Indian Ocean, Our 210Pb values from an Amsterdam Island (AMS) peat profile has 

provided the first information (Chapter 1). An updated global 210Pb data compilation allows us 

to discern relatively high 210Pb flux at AMS relative to other Southern South American western 

coastal regions. Origins of continental air masses based on 222Rn and high humidity at AMS are 

the processes responsible for high 210Pb deposition at AMS. 210Pb data and its deposition 

processes at AMS can add some values to the global climate-aerosol model projections. 

The time-series recorders need accurate chronology to support the reconstruction of the 

past events at certain periods, especially for the past 150 years under intensive anthropogenic 

emissions of pollutants (e.g., Hg0, dust). 210Pb has been abundantly used in generating the recent 

age models (Appleby, 2001). Previous studies have doubted of the application of peat archives 

as industrial-impact recorder due to the potential of post-deposition of 210Pb during peat 

mineralization, leading to inaccurate age model (e.g., Biester et al., 2007). The 210Pb-based 

Constant Rate of Supply age model for AMS peat has been validated by independent 

chronomarkers, 137Cs and 241Am that related to nuclear weapon test mainly present in 1960s 

(Chapter 1). Coupled with the age constraint with 20 radiocarbon dating results, the whole age 

model profile in AMS core permits reliable reconstructions of climatic and anthropogenic 

signals (Chapter 2, Chapter 3 and Chapter 4). 

2. Atmospheric dust and Hg isotopes: indicators of the Holocene SWW dynamics  

The 210Pb flux at AMS has illustrated the importance of continental aerosols deposited over this 

island. Previous works have suggested African continent and/or Madagascar as main origins of 

continental air mass/ chemical contributions to AMS by the source-sink studies on this island 

(Angot et al., 2014; Sciare et al., 2009; Baboukas et al., 2002; Gros et al., 1998; Miller et al., 

1993; Moody et al., 1991; Balkanski and Jacob, 1990; Gaudichet et al., 1989; Polian et al., 1986; 

Gaudry et al., 1983). Southern South America (SSA) is overlooked as an important atmospheric 
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source to AMS by the studies mentioned above, probably due to long distance between AMS 

and SSA (> 10000 km). Our study has, however, confirmed SSA as a dominant atmospheric 

dust contributor (~45%) to AMS in the past 6600 yrs using chemical and isotopic binary mixing 

mass balance calculations (Chapter 2). Southern Africa (SAF) only consists of 15%, while the 

local source occupies the remaining 40% (Figure 1). Overall, the distal dust source contribution 

to AMS points out a counter-intuitive information that SSA overrides SAF as the predominant 

dust contributor to AMS. It indicates that substantial dust transported from SSA (e.g., Patagonia 

and Puna-Altiplano-plateau) and deposits over Indian Ocean. 

 

Figure 1. Dust contribution to Amsterdam Island (AMS) from potential dust sources 

(Southern South America, SSA; Southern Africa, SAF; Australia, AUS). In the past 6600 

years (except the last 100 yrs), SSA consists of 45% of dust deposited at AMS peat profile, 

while SAF and local contributes 15% and 40%, respectively. 

Distal dust deposited over AMS is mainly transported by SWW, which can in turn modulate 

the dust deposition pathways along the transport and at the targeted areas by changing wind 

speed and humidity. Dust composition is able to record the changes in SWW. Saunders et al., 

(2018) has suggested enhanced local/regional mineral input to lake sediment in Macquarie 

Island as a result of increase SWW intensity. However, dust variations in AMS peat and 

chemicals signal in precipitation in this island (Moody et al., 1991) show an opposite finding, 

arguing that strengthened / equatorward-shifted SWW lower both distal and local dust 

deposition to AMS (Chapter 2). These contradictory results can be explained by strengthened 

SWW, leading to both enhanced removal of distal dust enroute to AMS (Moody et al., 1991), 

and lower local AMS dust mobility under high humidity (Figure 2). We conclude that 

intensified SWW during periods of 6.2-4.9 cal. kyr BP and 3.9-2.7 cal. kyr BP can effectively 
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scavenge the long-range dust to Southern Indian Ocean, leading to enhanced dust deposition 

over the ocean and potentially to some extent increase oceanic primary productivity due to 

generally low atmospheric deposition in Southern Indian Ocean (Heimburger et al., 2013a; 

2013b). SWW influence is, however, site-specific.  

Figure 2. Conceptual diagram of the influences of SWW dynamics on atmospheric dust 

deposition and Southern Ocean carbon source-sink. SWW represent Southern Westerly 

Winds and AMS represents Amsterdam Island. 

Multi methods have been used to investigate Hg biogeochemical cycle in the environment. 

The recent development of Hg isotopes have opened promising avenue to discern Hg source 

mixing and Hg transformation. Hg isotope dynamics have been abundantly investigated in the 

NH and by far, no time-series Hg isotope compositions related to SWW variability have been 

provided in the SH. Due to the conservative signature of Δ200Hg and its distinct values between 

Hg0 and rainfall (e.g., Enrico et al., 2016; Chen et al., 2012), AMS peat Δ200Hg has been used 

to estimate Hg dry and wet deposition in the past 6600 yrs. Peat Hg isotope signatures, which 

are sensitive to rainfall inputs indicate that high dust, high mercury events correspond to less 

rainfall. The Hg-deposition-process-related SWW dynamics (Chapter 3) is in agreement with 

the dust based SWW variability (Chapter 2). We suggest that these events were caused by a 

poleward shift of the SWW at AMS. Our results, therefore, give the first insight to use Hg 

isotopes as SWW proxies. 
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3. Anthropogenic perturbations on atmospheric dust and Hg0  

How to distinguish between human-induced perturbations and ill-defined natural oscillations is 

a crucial question when considering issues like continental landscape degradation. Our study 

has clearly show a double increase in Southern African dust deposition to AMS in the last 100 

years relative to the long past. Multi-evidences from other studies have shown the drier 

conditions with increased dust availability probably due to human-climate interaction (e.g., 

Nicholson et al., 2012; 2001; IPCC, 2007). SWW has shifted poleward in the past seven decades, 

which is in line with the increased dust input at AMS. We are, however, not able to quantify the 

influence between climate and anthropogenic on atmospheric dust deposited at AMS in the last 

100 years. 

Apart from recording the anthropogenic perturbation on atmospheric dust deposition, AMS 

peat has also shown a clear anthropogenic signal of a toxic chemical, Hg0, with an x2 increase 

in its accumulation rate since the pre-industrial period (1450AD-1880AD). Peat, receiving Hg 

mainly by plant uptake of Hg0 (Enrico et al., 2016), has been proven to be reliable Hg recorder 

(Amos et al., 2015). Most of data compilation in Amos et al., (2015) are from the NH and only 

4 out of 88 cores are from the SH. Our four peat Hg profile from the SH have therefore 

contributed to the under-represented dataset. After reviewing 18 other SH cores and updating 

NH historical Hg database, we find that the NH all-time Hg increase (from pre-1450AD to 20th 

century) is x16 and SH is x4 (Figure 3). We attribute this difference to a combination of lower 

anthropogenic Hg emissions in the SH, and higher natural atmospheric SH Hg levels, supported 

by ×2 higher natural background Hg accumulation in SH peat (Chapter 4).  Our findings suggest 

that background Hg levels in both hemispheres are different and should be taken into account 

in international Hg assessment reports and environmental policy objectives. 

Overall, this thesis provides the information of 1/ Holocene SWW dynamics at their 

northern edge indicated by dust proxies (Chapter 1, 2), highlighting that poleward-shifted SWW 

can lead to more dust input coupled with less rainfall at AMS; 2/ the potential of Hg isotopes 

as a climate proxy (Chapter 3); and 3/ the anthropogenic perturbations on dust mobility and 

distinct Hg deposition in two hemispheres (Chapter 2, 4).
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Figure 3. Difference of of all-time Hg increase in both hemispheres (since pre-1450AD). 

4. Perspectives 

4.1 Hg isotope signature in the SH Hg0 and rainfall 

Current investigations on Hg0 and rainfall Δ200Hg signatures are principally from NH. Even 

though it is assumed that Δ200Hg signatures are similar in both hemispheres due to its 

conservative characteristic (Chen et al., 2012; Enrico et al., 2016). However, we should verify 

this hypothesis by investigating the Hg0 and rainfall in the SH, especially from the local site 

where to sample the archive. All-year around Hg0 and rainfall have been collected from AMS 

and shipped back to GET. Rainfall from Ushuaia, Tierra del Fuego, have been collected and 

ready to be transported back. Analysis of these samples will be the next step to unfold the actual 

Hg isotope composition in the SH Hg0 and rainfall. 

4.2 Botany-based climate information is needed to compare with the dust and Hg-based 

SWW dynamics  

Dust compositions can reflect the SWW variations in a broad trend, while Hg isotopes can 

quantify SWW-based dry and wet deposition processes. For better developing Hg isotope 

proxies as climate indicators, one should also compare to classical botany-based environmental 
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change, even though botanical indicators maonly provide qualitative descriptions on climate 

variability. The macrofossil investigations in AMS peat profile will be completed by our 

colleagues. In the end, Hg isotope-based proxies, coupled with other geochemical and botanical 

indicators, enable us to have a solid reconstruction of the climate in the past (Figure 4), which 

is useful for better understanding the present and future climate change. 

4.3 Climate simulations in the Holocene  

SH climate variability during the entire Holocene is far less known than that in the last 150 

years, mainly due to less observational data available. Climate modelling is good method to 

reconstruct the past and predict the future. Coupled Model Intercomparison Project Phase 5 

(CMIP5) is a mature experimental framework for studying the output of coupled atmosphere-

ocean general circulation models. In addition, one can also use other corresponding simulations 

for climatic output comparisons, for example, Atmospheric Model Intercomparison Project 

(AMIP) with prescribed Sea Surface Temperature and interactive continental surfaces. Linking 

the model output to the observationsal data will be allowed to explore the relationship between 

the observation-based quantified reconstructions of SWW strength, the overall structure of wind 

changes, and their mechanisms and drivers. Subsequently, one can improve the climate model 

with the observational data and then evaluate the impact of SWW on the Southern Ocean carbon 

sink in a long term.  

 

Figure 4. Conceptual diagram of dust, botanical and Hg isotopes as climatic proxies in 

peat archive. 
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Appendix A for Chapter 1 (Table S3) 

Table S3 Global 210Pb data compilation  

Source Location latitude 

longtitu

de Type of sample 

210Pb flux ± σ/ Bq 

m-2 y-1 

Peirson et al., 1966† Indochina 1.3 103.8 

Atmospheric 

deposition 142 

Turekian et al., 1989† Nothern Pacific 4 159 

Atmospheric 

deposition 54 

Peirson et al., 1966† Nigeria 6.5 3.3 

Atmospheric 

deposition 285 

Turekian and Cochran, 1981† Nothern Pacific 11.3 162.3 

Atmospheric 

deposition 24 

Joshi et al., 1969 * 
India 11.4 76.7 

Atmospheric 

deposition 87 ± 26.7 

Joshi et al., 1969 * 
India 13 77.5 

Atmospheric 

deposition 82 ± 31.7 

Joshi et al., 1969 * 
India 19 72.9 

Atmospheric 

deposition 250 ± 60 

Turekian et al., 1989† Nothern Pacific 21.3 158 

Atmospheric 

deposition 45 

Joshi et al., 1969 * 
India 21.2 79.1 

Atmospheric 

deposition 102 ± 35 

Joshi et al., 1969 * 
India 22.6 88.4 

Atmospheric 

deposition 102 ± 48.3 

Monaghan et al., 1986† USA 25.8 81.2 

Atmospheric 

deposition 42 

Su et al., 2003 Taiwan 25 121 

Atmospheric 

deposition 316.7 

Su et al., 2003 Taiwan 25 121 

Atmospheric 

deposition 183.3 

Peirson et al., 1966* Bahamas Islands 25 77.3 

Atmospheric 

deposition 97 

Tsunogai et al., 1985† Japan 26.2 127.7 

Atmospheric 

deposition 262 

Tsunogai et al., 1985† Nothern Pacific 27.1 142.2 

Atmospheric 

deposition 166 

Joshi et al., 1969 * 
India 27.2 88.4 

Atmospheric 

deposition >230 ± 126.7 

Turekian et al., 1989† Nothern Pacific 28.2 177.4 

Atmospheric 

deposition 36 

Joshi et al., 1969 * 
India 28.8 77.3 

Atmospheric 

deposition 133 ± 43.3 

Baskaran et al., 1993† USA 29.3 94.8 

Atmospheric 

deposition 171 

Monaghan et al., 1986† USA 30.6 96.4 

Atmospheric 

deposition 93 

Baskaran et al., 1993† USA 30.6 96.4 

Atmospheric 

deposition 176 

Turekian et al., 1983† Atlantic Ocean 32.2 64.7 

Atmospheric 

deposition 115 

Tsunogai et al., 1985† Japan 32.7 129.9 

Atmospheric 

deposition 359 

Tsunogai et al., 1985† Japan 33.1 139.8 

Atmospheric 

deposition 327 

Tsunogai et al., 1985† Japan 33.7 135.4 

Atmospheric 

deposition 202 

Matsunami et al., 1975† Japan 34.7 135.5 

Atmospheric 

deposition 170 

Fuller and Hammond, 1983† USA 34 118.3 

Atmospheric 

deposition 35 
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Fuller and Hammond, 1983† USA  34 (ca.) 118 (ca.) 

Atmospheric 

deposition 25 ± 1.7 

Fuller and Hammond, 1983† USA 34 (ca.) 118 (ca.) 

Atmospheric 

deposition 35 ± 1.7 

Joshi et al., 1969 * 
India 34.1 74.9 

Atmospheric 

deposition 182 ± 48.3 

Tsunogai et al., 1985† Japan 35.4 133.9 

Atmospheric 

deposition 264 

Shinagawa T., 1980 † Japan 35.7 139.5 

Atmospheric 

deposition 222 

Shinagawa T., 1980 † Japan 36.6 136.7 

Atmospheric 

deposition 380 

Gavini et al., 1974* USA 36 94.2 

Atmospheric 

deposition 96 

Olsen et al., 1985† USA 36 84.3 

Atmospheric 

deposition 170 

Fuller and Hammond, 1983† USA 37.5 122.2 

Atmospheric 

deposition 25 

Olsen et al., 1985† USA 37 76.3 

Atmospheric 

deposition 144 

Tsunogai et al., 1985† Japan 38.2 140.9 

Atmospheric 

deposition 196 

CARVALHO F. P., 1990† Portugal 38.8 9.1 

Atmospheric 

deposition 56 

Monaghan et al., 1986† USA 38 122.3 

Atmospheric 

deposition 32 

Tsunogai et al., 1985† Japan 39.7 140.1 

Atmospheric 

deposition 262 

Monaghan et al., 1986† USA 40.8 111.8 

Atmospheric 

deposition 78 

Knuth et al., 1983† USA 40.8 74.7 

Atmospheric 

deposition 182 

Turekian et al., 1983† USA 41.3 72.9 

Atmospheric 

deposition 200 

Benninger L. K., 1976† USA 41.3 72.9 

Atmospheric 

deposition 170 

Monaghan et al., 1986† USA 41.3 72.9 

Atmospheric 

deposition 107 

Fukuda and Tsunogai, 1975† Japan 41.7 140.7 

Atmospheric 

deposition 256 

Tsunogai et al., 1985† Japan 41.7 140.7 

Atmospheric 

deposition 257 

Monaghan et al., 1986† USA 41.8 87.7 

Atmospheric 

deposition 132 

Fukuda and Tsunogai, 1975† Japan 41.9 140.1 

Atmospheric 

deposition 290 

Fukuda and Tsunogai, 1975† Japan 41.9 140.3 

Atmospheric 

deposition 443 

Fukuda and Tsunogai, 1975† Japan 41.9 140.4 

Atmospheric 

deposition 465 

Fukuda and Tsunogai, 1975 * Japan 41.8 140.4 

Atmospheric 

deposition 367 ± 100 

McNeary and Baskaran, 2003 USA 42.4 83.0 

Atmospheric 

deposition 235 

Hussain et al., 1990† France  43.5 4.6 

Atmospheric 

deposition 82 

Heyraud M., 1982† France  43.8 7.4 

Atmospheric 

deposition 110 

Tsunogai et al., 1985† Japan 43.8 143.9 

Atmospheric 

deposition 217 

Thomas A.J., 1988† France  44.8 0.6 

Atmospheric 

deposition 57 

Preiss et al., 1996a† France  45.1 6.1 

Atmospheric 

deposition 113 
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Preiss et al., 1996a† France  45.2 5.7 

Atmospheric 

deposition 115 

Peirson et al., 1966* Canada 45.4 75.7 

Atmospheric 

deposition 147 

Dominik et al., 1987† Italy 45.8 8.6 

Atmospheric 

deposition 224 

Preiss et al., 1996a† France  45.9 6.9 

Atmospheric 

deposition 109 

Talbot and Andren, 1983† USA 46.1 89.7 

Atmospheric 

deposition 259 

Dominik et al., 1987† Switzerland 46 6.5 

Atmospheric 

deposition 152 

Preiss et al., 1996a† France  46 7 

Atmospheric 

deposition 51 

Preiss et al., 1996a† France  46 7 

Atmospheric 

deposition 113 

Preiss et al., 1996a† France  46 7 

Atmospheric 

deposition 56 

Monaghan et al., 1986† USA 47.2 122.5 

Atmospheric 

deposition 58 

Schuler et al., 1991† Switzerland 47.4 8.6 

Atmospheric 

deposition 140 

Peirson et al., 1966* Austria 47.5 13.5 

Atmospheric 

deposition 128 

Nevissi A. E., 1985† USA 47.6 122.3 

Atmospheric 

deposition 73 

Winkler and Rosner, 2010 Germany 48.13 11.58 

Atmospheric 

deposition 180 

Peirson et al., 1966* Austria 48.3 14.3 

Atmospheric 

deposition 114 

Thomas A.J., 1988† France  48.8 2.3 

Atmospheric 

deposition 109 

Göbel et al., 1965† Germany 49.3 7 

Atmospheric 

deposition 104 

Brunskill and Wilkinson, 

1987† Canada 49.7 93.8 

Atmospheric 

deposition 76 

Rulik et al., 1993† Czech Republic 50.1 14.4 

Atmospheric 

deposition 187 

Clifton R. J., 1991† UK 50.4 4.2 

Atmospheric 

deposition 68 

Peirson et al., 1966* UK 51.7 5 

Atmospheric 

deposition 85 

Peirson et al., 1966 * UK 51 5 

Atmospheric 

deposition 85 ± 13.3 

Zuo and Eisma, 1993† Netherland 53.1 4.8 

Atmospheric 

deposition 72 

Beks et al., 1998 Netherlands 53.3 6.6 

Atmospheric 

deposition 73 

Eakins et al., 1984† UK 54.5 3 

Atmospheric 

deposition 147 

Baranov and Vilenskii, 1965* 
Russia 55.8 37.7 

Atmospheric 

deposition 115 ± 10 

Dibb and Jaffrezo, 1993† Greenland 65.2 43.5 

Atmospheric 

deposition 5.7 

Peirson et al., 1966* Norway 67.3 14.3 

Atmospheric 

deposition 118 

Peirson et al., 1966* Norway 69.7 19 

Atmospheric 

deposition 34 

Dibb J. E., 1990b† Greenland 72.2 38.8 

Atmospheric 

deposition 6.6 

Purchet et al., † svalbard 77.2 15.8 

Atmospheric 

deposition 77 

Purchet et al., † svalbard 77.4 15.4 

Atmospheric 

deposition 61 
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Purchet et al., † svalbard 77.7 17.3 

Atmospheric 

deposition 150 

Purchet et al., † svalbard 78.7 13 

Atmospheric 

deposition 47 

Purchet et al., † svalbard 79 13 

Atmospheric 

deposition 30 

Bonnyman and Molina-

Ramo, 1971 * Australia 12.4 130.7 

Atmospheric 

deposition 95 ± 25 

Preiss et al., 1996b† Bolivia 16.4 68.1 

Atmospheric 

deposition 75 

Gregory L.P., 1975 * Fiji 18.1 178.4 

Atmospheric 

deposition 80 ± 16.7 

Bonnyman and Molina-

Ramo, 1971 * Australia 19.2 146.8 

Atmospheric 

deposition 38 ± 11.7 

Bonnyman and Molina-

Ramo, 1971 * Australia 20.4 118.6 

Atmospheric 

deposition 32 ± 10 

Gregory L.P., 1975 * Cook Island 21.3 159.8 

Atmospheric 

deposition 51.7 

Bonnyman and Molina-

Ramo, 1971 * Australia 23.7 133.9 

Atmospheric 

deposition 52 ± 10 

Bonnyman and Molina-

Ramo, 1971 * Australia 27.4 152.9 

Atmospheric 

deposition 62 ± 11.7 

Bonnyman and Molina-

Ramo, 1971 * Australia 27.5 153 

Atmospheric 

deposition 65 ± 8.3 

Bonnyman and Molina-

Ramo, 1971 * Australia 32.0 115.8 

Atmospheric 

deposition 43 ± 11.7  

Bonnyman and Molina-

Ramo, 1971 * Australia 33.1 115.9 

Atmospheric 

deposition 47 ± 18.3 

Bonnyman and Molina-

Ramo, 1971 * Australia 33.9 151.2 

Atmospheric 

deposition 53 ± 15 

Bonnyman and Molina-

Ramo, 1971 * Australia 34.8 150.7 

Atmospheric 

deposition 70 ± 18.3 

Bonnyman and Molina-

Ramo, 1971 * Australia 34.9 138.6 

Atmospheric 

deposition 53 ± 11.7 

Gregory L.P., 1975 * New Zealand 35.1 173.3 

Atmospheric 

deposition 62 ± 16.7 

Bonnyman and Molina-

Ramo, 1971 * Australia 35.2 138.8 

Atmospheric 

deposition 58 ± 13.3 

Gregory L.P., 1975 * New Zealand 36.9 174.8 

Atmospheric 

deposition 50 ± 11.7 

Peirson et al., 1966† Australia 37.7 145 

Atmospheric 

deposition 80 

Bonnyman and Molina-

Ramo, 1971 * Australia 37.8 145 

Atmospheric 

deposition 50 ± 11.7 

Bonnyman and Molina-

Ramo, 1971 * Australia 38.2 146 

Atmospheric 

deposition 67 ± 13.3 

Gregory L.P., 1975 * New Zealand 39.1 174.1 

Atmospheric 

deposition 73 ± 15 

Gregory L.P., 1975 * New Zealand 39.7 176.9 

Atmospheric 

deposition 30 ± 1.7 

Bonnyman and Molina-

Ramo, 1971 * Australia 41.5 147.1 

Atmospheric 

deposition 53 ± 8.3 

Gregory L.P., 1975 * New Zealand 42.5 171.2 

Atmospheric 

deposition 125 ± 11.7 

Bonnyman and Molina-

Ramo, 1971 * Australia 42.9 147.3 

Atmospheric 

deposition 30 ± 3.3 

Peirson et al., 1966† Southern Island 43.6 172.7 

Atmospheric 

deposition 23 

Gregory L.P., 1975 * New Zealand 43.6 172.7 

Atmospheric 

deposition 23 ± 1.7 

Gregory L.P., 1975 * New Zealand 45.9 170.5 

Atmospheric 

deposition 30 ± 8.3 

Gregory L.P., 1975 * New Zealand 46.4 168.4 

Atmospheric 

deposition 35 ± 11.7 
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Peirson et al., 1966* Atlantic Ocean 51.7 58 

Atmospheric 

deposition 32 

Pourchet et al., 1997† Antartica 62.7 60.4 

Atmospheric 

deposition 8 

Peirson et al., 1966* Atlantic Ocean 65 64 

Atmospheric 

deposition 1.9 

Olsen et al., 1985† USA 19.5 75.6 Wetland 117 

Fuller and Hammond, 1983† USA 34 (ca.) 118 (ca.) Wetland 23 

Olsen et al., 1985† USA 36.9 76 Wetland 212 

Olsen et al., 1985† USA 37.1 77.6 Wetland ＞188 

Olsen et al., 1985† USA 37.8 75.5 Wetland 120 

McCaffrey and Thomson, 

1974† USA 41.5 73 Wetland 167 

Armentano and Woodwell, 

1975† USA 41 72.5 Wetland 69 

Armentano and Woodwell, 

1975† USA 41 72.5 Wetland 66 

Mccaffrey and Thomson, 

1980 USA 41.3 72.9 Wetland 178 ± 5 

Olid et al., 2010 Iberian Peninsula 43.5 7.5 Wetland 183 ± 3 

Olid et al., 2010 Iberian Peninsula 43.5 7.6 Wetland 169 ± 3 

Olid et al., 2013 Spain 43.5 7.5 Wetland 155 ± 2 

Olid et al., 2013 Spain 43.5 7.5 Wetland 131 ± 3 

Olid et al., 2013 Spain 43.5 7.5 Wetland 122 ± 3 

Begy et al., 2016 Romania 45.2 22.1 Wetland 277 ± 54 

Pourchet et al., 1989† France  45 6.3 Wetland 110 

Begy et al., 2016 Romania 46.1 25.9 Wetland 172 ± 8 

Begy et al., 2016 Romania 46.3 23.3 Wetland 113 ± 37 

Appleby et al., 1997 Switzerland  46.8 7.2 Wetland 149 ± 4 

Appleby et al., 1997 Switzerland  47.2 7.1 Wetland 121 ± 4 

Appleby et al., 1997 Switzerland  47.2 7.1 Wetland 122 ± 4 

Bao et al., 2010 China 47.4 120.7 Wetland 254 ± 50 

Bao et al., 2010 China 47.4 120.7 Wetland 421 ± 17 

Holynska et al., 1998 Poland 49.5 19.8 Wetland 74 ± 2 

Mitchell et al., 1992† Ireland 53.2 6.3 Wetland 46 

Mitchell et al., 1992† Ireland 53.2 6.3 Wetland 71 

Mitchell et al., 1992† Ireland 53.2 6.3 Wetland 79 

Mitchell et al., 1992† Ireland 54.2 9.5 Wetland 111 

Mitchell et al., 1992† Ireland 54.2 9.5 Wetland 107 

Mitchell et al., 1992† Ireland 54.3 7.7 Wetland 54 

Gallagher et al., 2001 Irland 54 (ca.) 6 (ca.) Wetland 202 ± 9.3 

Gallagher et al., 2001 Irland 54 (ca.) 10 (ca.) Wetland 165 ± 12.5 

Pheiffer Madsen and 

Sørensen, 1979† Denmark 55.5 8.3 Wetland 200 

Pheiffer Madsen and 

Sørensen, 1979† Denmark 55.5 8.3 Wetland 167 

MacKenzie et al., 1998 Scotland 55 4 Wetland 106 

MacKenzie et al., 1998 Scotland 55 4 Wetland 109 

MacKenzie et al., 1997 Scotland 55 3 Wetland 73 
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Pheiffer Madsen and 

Sørensen, 1979† Denmark 55 9 Wetland 123 

MacKenzie et al., 1997 Scotland 56 4 Wetland 110 

EL Daoushy Farid, 1986† Sweden 57 14 Wetland 37 ± 14.8 

EL Daoushy Farid, 1986† Sweden 57 14 Wetland 74 ± 25.9 

MacKenzie et al., 1997 Scotland 57 7 Wetland 153 

Farmer et al., 2015 Scotland 57 3.8 Wetland 273 

El-Daoushy and Tolonen, 

1984† Finland 61.7 25.3 Wetland 44 

EL Daoushy Farid, 1986† Finland 61 27 Wetland 44 ± 7.4 

El-Daoushy and Tolonen, 

1984† Finland 62.1 30.2 Wetland 56 

EL Daoushy Farid, 1986† Finland 62 30 Wetland 56 ± 3.7 

EL Daoushy Farid, 1986† Sweden 64 15 Wetland 44 ± 14.8 

Olid et al., 2014 Sweden 64.2 19.6 Wetland 64 ± 12.8 

EL Daoushy Farid, 1986† Sweden 65 18 Wetland 26 ± 11.1 

EL Daoushy Farid, 1986† Sweden 67 21 Wetland 15 ± 7.4 

Pourchet et al., 1995† Bolivia 16.2 68.3 Wetland 40 

Pourchet et al., 1994† Bolivia 16.2 68.3 Wetland 80 

Pourchet et al., 1994† Bolivia 18 65 Wetland 102 

Humphires et al., 2010 South Africa 27.6 32.4 Wetland 135 ± 46.7 

Humphires et al., 2010 South Africa 27.6 32.4 Wetland 192 ± 46.7 

Kading et al., 2009 South Africa 32.8 18.2 Wetland 122.1 

Ivanovich and Harmon, 1992  South Africa 33  Wetland 108.3 

Windom H. L., 1969*  Mexico 19 97.3 Glacier 6.4 

Windom H. L., 1969*  Mexico 19 98.6 Glacier 1.5 

Bhandari et al., 1983† India 28 88.7 Glacier 27 

Purchet et al., † China 28 102 Glacier 7.5 

Gäggeler et al., 1983† Switzerland 45.9 7.9 Glacier 25 

Gäggeler et al., 1983† Switzerland 45.9 7.9 Glacier 21 

Gäggeler et al., 1983† Switzerland 45.9 7.9 Glacier 22 

Windom H. L., 1969* USA  47.9 123.6 Glacier 26.7 

Monaghan and Holdsworth, 

1990† Canada 60.6 140.5 Glacier 14.5 

Windom H. L., 1969* Canada 60.8 139.5 Glacier 6.5 

Koide and Goldberg, 1977† Greenland 63.5 44.6 Glacier 12 

Nijampurkar and Clausen, 

1990† Greenland 65.2 43.5 Glacier 19.5 

Dibb J. E., 1990† Greenland 65 43.5 Glacier 5.9 

Dibb J. E., 1990a† Greenland 67 42 Glacier 8.3 

Goldberg, E.D., 1963† Greenland 71.1 37.3 Glacier 7.8 

Dibb J. E., 1992† Greenland 72.2 38.8 Glacier 4.1 

Dibb J. E., 1992† Greenland 72.2 38.8 Glacier 6.4 

Dibb J. E., 1990b† Greenland 72.3 38.8 Glacier 6.1 

Dibb J. E., 1990b† Greenland 72.3 38.8 Glacier 5.4 

Dibb J. E., 1992† Greenland 72.3 38.8 Glacier 7.2 

Nijampurkar and Clausen, 

1990† Greenland 74.7 19.3 Glacier 6.4 
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Windom H. L., 1969* Greenland 77 56.0 Glacier 18.33 

Nijampurkar and Clausen, 

1990† Greenland 77.2 61.8 Glacier 10.8 

Dibb J. E., 1990a† Greenland 77 60 Glacier 8.4 

Dibb J. E., 1990a† Greenland 77 60 Glacier 8.8 

Crozaz and Langway, 1966 Greenland 77.2 61.1 Glacier 15.17 

Peters et al., 1997 Canada 80.8 72.9 Glacier 5.1 ± 2.4 

Purchet et al., unpublished 

data† Peru 13.9 70.8 Glacier 28 

Baeza et al., 1996 Antarctica 62.7 60.4 Glacier 1.9 ± 0.4 

Nezami et al., 1964† Antartica 66.7 139.8 Glacier 3.33 

Crozaz G., 1967† Antartica 66.7 139.8 Glacier 3.8 

Sanak J., 1983† Antartica 66.7 140 Glacier 4.77 

Sanak J., 1983† Antartica 66.7 139 Glacier 5 

Lambert et al., 1983† Antartica 67.2 139 Glacier 6.63 

Lambert et al., 1983† Antartica 67.7 139 Glacier 2.69 

Lambert et al., 1983† Antartica 68.3 139 Glacier 4.76 

Lambert et al., 1983† Antartica 69.5 137 Glacier 2.49 

Crozaz et al., 1964† Antartica 70.5 24.3 Glacier 8.2 

Lambert et al., 1983† Antartica 70 136 Glacier 5.23 

Nijampurkar et al., 2002 Antarctica 70.8 11.7 Glacier 4.3 

Sanak J., 1983† Antartica 71.5 133 Glacier 2.17 

Sanak J., 1983† Antartica 73 130 Glacier 1.33 

Sanak J., 1983† Antartica 74.2 95 Glacier 1.16 

Pourchet et al., 1997† Antartica 74.6 124 Glacier 1.07 

Crozaz G., 1967† Antartica 77.8 165 Glacier 6.9 

Suzuki et al., 2004 Antarctic 77.4 39.6 Glacier 0.82 

Crozaz G., 1967† Antartica 80 120 Glacier 5.5 

Windom H. L., 1969* Antarctica  80 120 Glacier 0.83 

Koide et al., 1979† Antartica 82.3 170 Glacier 1.9 

Crozaz G., 1967† Antartica 82.9 18.2 Glacier 1.1 

Picciotto et al., 1968* Antarctica 82.1 55.1 Glacier 1 

Crozaz G., 1967† Antartica 85.2 1.6 Glacier 1.9 

Crozaz G., 1967† Antartica 85.8 8.7 Glacier 1.2 

Crozaz G., 1967† Antartica 86.6 30.6 Glacier 1.4 

Coale and Bruland, 1986† Antartica 90 0 Glacier 0.74 

Picciotto et al., 1964† Antartica 90 0 Glacier 1.8 

Crozaz G., 1967† Antartica 90 0 Glacier 1.89 

Pourchet et al., 1997† Antartica 90 0 Glacier 1.64 

Giresse et al., 1994† Cameroun 3.8 10 Sediment  95 

Preiss et al., 1996b† Cameroun 4.7 93 Sediment 278 

Giresse et al., 1994† Cameroun 4.7 9.3 Sediment  74 

Giresse et al., 1994† Cameroun 4.7 9.3 Sediment  251 

Giresse et al., 1994† Cameroun 5.5 10.5 Sediment  47 

Giresse et al., 1994† Cameroun 5.7 10.5 Sediment  140 
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Giresse et al., 1994† Cameroun 5.7 10.5 Sediment  297 

Giresse et al., 1994† Cameroun 5.7 10.7 Sediment  177 

Giresse et al., 1994† Cameroun 5.8 10.2 Sediment  448 

Giresse et al., 1994† Cameroun 5.8 10.2 Sediment  263 

Giresse et al., 1994† Cameroun 5.8 10.2 Sediment  113 

Giresse et al., 1994† Cameroun 5.8 10.2 Sediment  193 

Giresse et al., 1994† Cameroun 6.2 10.5 Sediment  117 

Giresse et al., 1994† Cameroun 6.3 10 Sediment  67 

Giresse et al., 1994† Cameroun 6.3 10 Sediment  143 

Giresse et al., 1994† Cameroun 6.5 10 Sediment  36 

Giresse et al., 1994† Cameroun 7.2 13.7 Sediment  220 

Giresse et al., 1994† Cameroun 7.3 13.7 Sediment  12 

Giresse et al., 1994† Cameroun 7.3 13.7 Sediment  340 

Giresse et al., 1994† Cameroun 7.5 13.5 Sediment  447 

Brenner M., 1999 Guatemala 15 (ca.) 90 (ca.) Sediment 50 

Brenner M., 1999 Guatemala 15 (ca.) 90 (ca.) Sediment 31 

Páez-Osuna and Mandelli, 

1985† Mexico 17 100.3 Sediment  212 

Brenner M., 1999 Haiti 18 (ca.) 72 (ca.) Sediment 33 

Huh and Su, 2004 Taiwan 21.7 121 Sediment 103 

Huh and Su, 2004 Taiwan 21.9 120.9 Sediment 209 

Ming et al., 1983† China 22.5 113.7 Sediment  3725 

Ming et al., 1983† China 22.5 113.7 Sediment  500 

Ming et al., 1983† China 22.5 113.7 Sediment  300 

Huh and Su, 2004 Taiwan 22.1 120.8 Sediment 277 

Huh and Su, 2004 Taiwan 23.8 120.9 Sediment 283 ± 9 

Huh and Su, 2004 Taiwan 23.9 121 Sediment 206 ± 16 

Huh and Su, 2004 Taiwan 24 121 Sediment 321 

Huh and Su, 2004 Taiwan 24.6 121.4 Sediment 293 ± 12 

Huh and Su, 2004 Taiwan 24.6 121.4 Sediment 177 

Huh and Su, 2004 Taiwan 24.8 121.6 Sediment 262 

Huh and Su, 2004 Taiwan 24.9 121.5 Sediment 364 

Huh and Su, 2004 Taiwan 25 121.6 Sediment 392 

Huh and Su, 2004 Taiwan 25.2 121.6 Sediment 2544 ± 22 

Huh and Su, 2004 Taiwan 25.2 121.6 Sediment 1208 

Huh and Su, 2004 Taiwan 25.3 121.5 Sediment 243 

Huh and Su, 2004 Taiwan 25.3 121.5 Sediment 613 

Huh and Su, 2004 Taiwan 25 121.7 Sediment 1053 

Huh and Su, 2004 Taiwan 25.6 122.1 Sediment 1034 ± 25 

Huh and Su, 2004 Taiwan 25.1 121.3 Sediment 336 

Huh and Su, 2004 Taiwan 25.1 121.6 Sediment 1130 

Huh and Su, 2004 Taiwan 25.1 121.4 Sediment 364 

Huh and Su, 2004 Taiwan 25.2 121.5 Sediment 1059 

Huh and Su, 2004 Taiwan 25.2 121.5 Sediment 554 
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Huh and Su, 2004 Taiwan 25.2 121.6 Sediment 1650 

Preiss et al., 1996a† Nepal 28.2 85.2 Sediment 284 

Binford and Brenner,1986† USA 28 82 Sediment  170 

Schelske et al., 1994 USA  28.1 81.7 Sediment 1167 

Xingfu, W et al., † China 29.4 120.6 Sediment 330 

Xingfu, W et al., † China 29.4 125.6 Sediment  250 

Xingfu, W et al., † China 29.7 125 Sediment  285 

Sanchez-Caberza et al., 2007 Spain 29 46 Sediment 64 ± 5 

Xingfu, W et al., † China 29 121.7 Sediment 355 

Zheng et al., 2007  China 29.6 105.1 Sediment 588.6 

Sanchez-Caberza et al., 2007 Spain 30 45 Sediment 81 ± 1.4 

Xingfu, W et al., † China 31.2 122.4 Sediment  150 

Xingfu, W et al., † China 31.3 123 Sediment  160 

Xingfu, W et al., † China 31.7 126 Sediment  230 

Sanchez-Caberza et al., 2007 Spain 31 46 Sediment 98 ± 3 

Sanchez-Caberza et al., 2007 Spain 31 46 Sediment 93 ± 5 

Sanchez-Caberza et al., 2007 Spain 31 47 Sediment 186 ± 10 

Sanchez-Caberza et al., 2007 Spain 31 47 Sediment 255 ± 8 

Xingfu, W et al., † China 31 122.5 Sediment  1630 

Xingfu, W et al., † China 31 123 Sediment  1120 

Xingfu, W et al., † China 31 123.2 Sediment  230 

Xingfu, W et al., † China 32.3 125.5 Sediment  200 

Xingfu, W et al., † China 32.5 126 Sediment  210 

CARVALHO F.P., 1990† Maderia Island 32.7 17 Sediment 50 

CARVALHO F.P., 1990† Maderia Island 32.7 17 Sediment 72 

CARVALHO F.P., 1990† Maderia Island 32.7 17 Sediment 106 

CARVALHO F.P., 1990† Maderia Island 32.7 17 Sediment 16 

Flower et al., 1988† Morocca 32.8 5.3 Sediment  215 

Turekian and Cochran, 1981† Israel 32.8 35.5 Sediment  30 

Xingfu, W et al., † China 32 124.8 Sediment  140 

Flower et al., 1988† Morocca 33.7 4.8 Sediment  200 

Flower et al., 1988† Morocca 33.8 6.2 Sediment  115 

Wakiyama et al., 2010 Japan 33 132 Sediment 613.6 

Sanchez-Caberza et al., 2007 Spain 33 46 Sediment 156 ± 8 

Benmansour M., 2013 Morocco 33.8 6.7 Sediment 103 ± 31 

Sanchez-Caberza et al., 2007 Spain 34 47 Sediment 205 ± 11 

Fukuyama et al., 2008 Japan 34.4 136.4 Sediment 263.2 

Graustein and Turekian, 

1986† USA 35.1 101.9 Sediment 144 

Kurata and Tsunogai, 1986† Japan 35.1 135.9 Sediment 250 

Graustein and Turekian, 

1986† USA 35.2 87 Sediment 130 

Matsumoto E., 1981† Japan 35.3 136.2 Sediment  140 

Graustein and Turekian, 

1986† USA 35.5 93.1 Sediment 187 

Matsumoto E., 1981† Japan 35.5 135.8 Sediment  580 
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Matsumoto E., 1981† Japan 35.5 133.3 Sediment  650 

Matsumoto E., 1981† Japan 35.5 133 Sediment  160 

Matsumoto E., 1981† Japan 35.5 133 Sediment  250 

Matsumoto E., 1981† Japan 35.5 133 Sediment  360 

Matsumoto E., 1981† Japan 35.5 133 Sediment  310 

Nosaki et al., 1978† USA 35.7 106.3 Sediment 432 

Nosaki et al., 1978† USA 35.7 106.3 Sediment 217 

Kurata and Tsunogai, 1986† Japan 35.7 139.5 Sediment 180 

Matsumoto E., 1975*  Japan 35 132 Sediment 150 

Matsumoto E., 1975*  Japan 35 132 Sediment 300 

Matsumoto E., 1975*  Japan 35 132 Sediment 366.7 

Matsumoto E., 1975 * Japan 35 132 Sediment 250 

Sanchez-Caberza et al., 2007 Spain 35 47 Sediment 76 ± 9 

Sanchez-Caberza et al., 2007 Spain 35 47 Sediment 91 ± 8 

Sanchez-Caberza et al., 2007 Spain 35 47 Sediment 114 ± 7 

Matsumoto E., 1981† Japan 35 136 Sediment  40 

Graustein and Turekian, 

1986† USA 36.4 81.6 Sediment 173 

Graustein and Turekian, 

1986† USA 36.6 97.6 Sediment 156 

Sanchez-Caberza et al., 2007 Spain 36 46 Sediment 58 ± 5 

Sanchez-Caberza et al., 2007 Spain 36 47 Sediment 219 ± 7 

Graustein and Turekian, 

1986† USA 36 79 Sediment 140 

Garcia-Orellana et al., 2006 mediteranean 36.7 15.1 Sediment 56 ± 13 

Garcia-Orellana et al., 2006 mediteranean 36.7 2.2 Sediment 34 ± 3 

Garcia-Orellana et al., 2006 mediteranean 36.9 14.4 Sediment 58 ± 5 

CARVALHO F.P., 1990† Portugal 37.1 7.6 Sediment 31 

CARVALHO F.P., 1990† Portugal 37.3 7.5 Sediment 32 

Graustein and Turekian, 

1986† USA 37.9 86.7 Sediment 163 

Fisenne I. M., 1968*  USA 37 75 Sediment 200 

O’Farrell et al., 2007 USA 37 122 Sediment 47.0 

O’Farrell et al., 2007 USA 37 122 Sediment 59.3 

Porto et al., 2014  Italy 37 14 Sediment 87.2 

Sanchez-Caberza et al., 2007 Spain 37 46 Sediment 32 ± 3 

Sanchez-Caberza et al., 2007 Spain 37 46 Sediment 35 ± 4 

Helz et al., 1985† USA 37 76 Sediment  168 

Brush et al., 1982† USA 38.2 76.8 Sediment  400 

Brush et al., 1982† USA 38.2 76.8 Sediment  470 

Brush et al., 1982† USA 38.3 76.8 Sediment  100 

Brush et al., 1982† USA 38.3 76.9 Sediment  1170 

CARVALHO F.P., 1990† Portugal 38.5 9 Sediment 73 

Brush et al., 1982† USA 38.5 77 Sediment  275 

Brush et al., 1982† USA 38.5 77.3 Sediment  575 

Graustein and Turekian, 

1986† USA 38.8 75.3 Sediment 133 
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CARVALHO F.P., 1990† Portugal 38.8 9.1 Sediment 54 

CARVALHO F.P., 1990† Portugal 38.8 9.1 Sediment 25 

CARVALHO F.P., 1990† Portugal 38.8 9.1 Sediment 46 

Brush et al., 1982† USA 38.8 77 Sediment  1860 

Porto et al., 2012 Italy 38 15 Sediment 222 ± 7 

Graustein and Turekian, 

1986† USA 38 80.3 Sediment 182 

Graustein and Turekian, 

1986† USA 38 81 Sediment 102 

CARVALHO F.P., 1990† Portugal 38 7.9 Sediment 35 

Helz et al., 1985† USA 38 76 Sediment  177 

Brush et al., 1982† USA 38 76.3 Sediment  58 

Monaghan M. C., 1989† USA 39.3 123.8 Sediment 39 

Monaghan M. C., 1989† USA 39.3 123.8 Sediment 53 

Graustein and Turekian, 

1986† USA 39.5 105 Sediment 100 

Moore and Poet, 1976* USA 39 105 Sediment 266.7 

Porto et al., 2013  Italy 39 16 Sediment 339.4 

Helz et al., 1985† USA 39 76 Sediment  345 

Porto et al., 2006  Italy 39.2 17.1 Sediment 164.0 

Garcia-Orellana et al., 2006 mediteranean 39.9 4.3 Sediment 85 ± 9 

Graustein and Turekian, 

1986† USA 40.2 89.1 Sediment 197 

CARVALHO F.P., 1990† Portugal 40.3 7.5 Sediment 58 

CARVALHO F.P., 1990† Portugal 40.3 8.5 Sediment 18 

Monaghan M. C., 1989† USA 40.7 122.3 Sediment 74 

Monaghan M. C., 1989† USA 40.7 122.3 Sediment 69 

CARVALHO F.P., 1990† Portugal 40.7 8.7 Sediment 7 

Monaghan M. C., 1989† USA 40 121 Sediment 102 

Monaghan M. C., 1989† USA 40 121 Sediment 140 

Monaghan M. C., 1989† USA 40 121 Sediment 122 

Monaghan M. C., 1989† USA 40 121 Sediment 153 

Monaghan M. C., 1989† USA 40 121 Sediment 116 

Graustein and Turekian, 

1986† USA 40 82.3 Sediment 166 

Schettler et al., 2006 China 40 (ca.) 130 (ca.) Sediment 517 

Garcia-Orellana et al., 2006 mediteranean 40 3.85 Sediment 82 ± 14 

Garcia-Orellana et al., 2006 mediteranean 40.1 4.1 Sediment 84 ± 11 

Graustein and Turekian, 

1986† USA 41.2 73.7 Sediment 130 

McCall et al., 1984† USA 41.2 81.3 Sediment  2800 

McCaffrey and Thomson, 

1980† USA 41.3 72.8 Sediment 133 

Benninger et al., 1975† USA 41.3 72.9 Sediment 168 

Benninger et al., 1975† USA 41.3 72.9 Sediment 133 

Nosaki et al., 1978† USA 41.3 79.2 Sediment 199 

Nosaki et al., 1978† USA 41.5 78.2 Sediment 149 

McCaffrey, 1977† USA 41.5 73 Sediment  133 
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Kurata and Tsunogai, 1986† Japan 41.7 140.7 Sediment 430 

Graustein and Turekian, 

1986† USA 41.8 91.8 Sediment 162 

Graustein and Turekian, 

1986† USA 41.8 75.9 Sediment 132 

J Kada and M Heit, 1992† USA 41.9 73.9 Sediment 177 

Brugam B. R., 1975*  USA 41 72 Sediment 266.7 

Brugam B. R., 1975*  USA 41 72 Sediment 383.3 

Nosaki et al., 1978† USA 41 77 Sediment 133 

Graustein and Turekian, 

1986† USA 41 85.2 Sediment 125 

Lewis M. Dale, 1977*   USA 41 (ca.) 79 (ca.) Sediment 166.7 

Giresse et al., 1994† Bulgaria 42.1 23.5 Sediment 132 

Giresse et al., 1994† Bulgaria 42.1 23.5 Sediment 75 

Giresse et al., 1994† Bulgaria 42.1 23.5 Sediment 104 

Giresse et al., 1994† Bulgaria 42.1 23.5 Sediment 122 

Purchet et al., † Bulgaria 42.1 23.5 Sediment  286 

Purchet et al., † Bulgaria 42.1 23.5 Sediment  283 

Purchet et al., † Bulgaria 42.1 23.5 Sediment  370 

Purchet et al., † Bulgaria 42.1 23.5 Sediment  301 

Robbins J. A., 1978† 

Albania-Ex-

Yougoslavia 42.2 19.3 Sediment  70 

Benoit and Hemond, 1991† USA 42.5 71.8 Sediment  133 

Benoit and Hemond, 1991† USA 42.5 71.8 Sediment  163 

Graustein and Turekian, 

1986† USA 42.6 72.5 Sediment 126 

DeConinck et al., 1983† France  42.7 3 Sediment  310 

DeConinck et al., 1983† France  42.7 3 Sediment  120 

Graustein and Turekian, 

1986† USA 42.8 100.3 Sediment 142 

Robbins and Endington, 

1974*   USA 42 87 Sediment 66.67 

Robbins and Endington, 

1974*   USA 42 86 Sediment 240 

Robbins and Endington, 

1974*   USA 42 86 Sediment 51.67 

Gaspar et al., 2013  Spain 42 0.5 Sediment 61 ± 2.4 

Garcia-Orellana et al., 2006 mediteranean 42.5 3.1 Sediment 61 ± 6 

Garcia-Orellana et al., 2006 mediteranean 42.7 9.1 Sediment 59 ± 9 

Garcia-Orellana et al., 2006 mediteranean 42.7 9.1 Sediment 62 ± 8 

Garcia-Orellana et al., 2006 mediteranean 42.7 9.1 Sediment 61 ± 7 

Kada and Heit, 1992† USA 43.3 74.9 Sediment  40 

Monna et al., 1997† France  43.4 3.6 Sediment  193 

Monna et al., 1997† France  43.4 3.6 Sediment  133 

Monna et al., 1997† France  43.4 3.6 Sediment  130 

Monna et al., 1997† France  43.4 3.6 Sediment  178 

Kada and Heit, 1992† USA 43.8 74.8 Sediment  62 

Kada and Heit, 1992† USA 43.8 74.9 Sediment  236 

Kada and Heit, 1992† USA 43.9 75 Sediment  448 
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Kada and Heit, 1992† USA 43.9 75 Sediment  74 

Robbins and Endington, 

1974* USA 43 87 Sediment 100 

Robbins and Endington, 

1974*  USA 43 86 Sediment 63.33 

Yang et al., 2011  China 43 125 Sediment 279 ± 11 

Koide et al., 1972† USA 43 89.2 Sediment  53 

Garcia-Orellana et al., 2006 mediteranean 43.2 3.1 Sediment 83 ± 6 

Garcia-Orellana et al., 2006 mediteranean 43.4 6.7 Sediment 121 ± 12 

Olid et al., 2010 Iberian Peninsula 43.5 7.7 Sediment 181 ± 7 

DURHAM and  JOSHI, 

1980a† Canada 43.8 82.3 Sediment 56 

DURHAM and  JOSHI, 

1980a† Canada 43.8 82.1 Sediment 326 

Graustein and Turekian, 

1986† USA 44.2 73.4 Sediment 122 

Kada and Heit, 1992† USA 44.2 74.8 Sediment  217 

Graustein and Turekian, 

1986† USA 44.3 72.9 Sediment 306 

Graustein and Turekian, 

1986† USA 44.4 74 Sediment 382 

Kada and Heit, 1992† USA 44.4 74.7 Sediment  230 

Giresse et al., 1994† France  44.7 6.9 Sediment 163 

Robbins and Endington, 

1974*   USA 44 86 Sediment 118.3 

Graustein and Turekian, 

1986† USA 44 72 Sediment 126 

Graustein and Turekian, 

1986† USA 44 71 Sediment 153 

Davis et al., 1984† USA 44 72 Sediment  128 

Davis et al., 1984† USA 44 71 Sediment  75 

Davis et al., 1984† USA 44 71 Sediment  73 

Davis et al., 1984† USA 44 71 Sediment  47 

Von Damm et al., 1979† USA 44 72 Sediment  583 

DURHAM and  JOSHI, 

1980a† Canada 44.2 83.0 Sediment 115 

Durham and Joshi, 1984† Canada 45.2 67.3 Sediment  195 

Durham and Joshi, 1984† Canada 45.4 81.8 Sediment  242 

Durham and Joshi, 1984† Canada 45.7 78.3 Sediment  37 

Durham and Joshi, 1984† Canada 45.7 81.8 Sediment  78 

Durham and Joshi, 1984† Canada 45.7 82 Sediment  19 

Krishnaswamy et al., 1971* France  45 2 Sediment 216.7 

Robbins and Endington, 

1974* USA 45 86 Sediment 140 

Durham and Joshi, 1984† Canada 45 76.7 Sediment  53 

Durham and Joshi, 1984† Canada 45 76.8 Sediment  18 

Davis et al., 1984† USA 45 69 Sediment  410 

Davis et al., 1984† USA 45 69 Sediment  174 

Davis et al., 1984† USA 45 69 Sediment  154 

Davis et al., 1984† USA 45 69 Sediment  149 

Davis et al., 1984† USA 45 70 Sediment  142 
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Davis et al., 1984† USA 45 70 Sediment  59 

Davis et al., 1984† USA 45 69 Sediment  51 

Davis et al., 1984† USA 45 69 Sediment  120 

Davis et al., 1984† USA 45 69 Sediment  88 

Davis et al., 1984† USA 45 69 Sediment  84 

Pourchet et al., 1989† France  45 6.3 Sediment  110 

Pourchet et al., 1989† France  45 6.3 Sediment  170 

DURHAM and  JOSHI, 

1980a† Canada 45.6 83.4 Sediment 185 

Carpenter et al., 1981† USA 46.4 124 Sediment 108 

Carpenter et al., 1981† USA 46.7 123.9 Sediment 114 

Klump et al., 1989† 

Laurentian Great 

Lakes 46.7 84.8 Sediment  329 

Begy et al., 2016 Romania 46.8 25.8 Sediment 195 ± 12 

Begy et al., 2016 Romania 46.8 25.8 Sediment 100 ± 10 

Begy et al., 2016 Romania 46.8 25.8 Sediment 101 ± 9 

Begy et al., 2016 Romania 46.8 25.8 Sediment 168 ± 8 

Begy et al., 2016 Romania 46.8 25.8 Sediment 81 ± 4 

Carpenter et al., 1981† USA 46.8 124.1 Sediment 50 

Klump et al., 1989† 

Laurentian Great 

Lakes 46.9 86.6 Sediment  70 

Klump et al., 1989† 

Laurentian Great 

Lakes 46.9 84.5 Sediment  178 

Krishnaswamy et al., 1971* Switzerland 46 6 Sediment 71.67 

Koide et al., 1972† USA 46 89.4 Sediment  106 

Viel M., 1983† Switzerland 46 8.5 Sediment  104 

Carpenter et al., 1981† USA 47.1 124.1 Sediment 233 

Klump et al., 1989† 

Laurentian Great 

Lakes 47.1 87.6 Sediment  459 

Klump et al., 1989† 

Laurentian Great 

Lakes 47.2 86.1 Sediment  466 

Von Gunten and Moser, 

1993† Switzerland  47.2 8.7  Sediment 213 ± 22 

Von Gunten and Moser, 

1993† Switzerland  47.2 8.7  Sediment 193 ± 19 

Von Gunten and Moser, 

1993† Switzerland  47.2 8.7  Sediment 227 ± 23 

Von Gunten and Moser, 

1993† Switzerland  47.2 8.7  Sediment 320 ± 32 

Von Gunten and Moser, 

1993† Switzerland  47.2 8.7  Sediment 375 ± 38 

Von Gunten and Moser, 

1993† Switzerland  47.2 8.7  Sediment 400 ± 40 

Von Gunten and Moser, 

1993† Switzerland  47.2 8.7  Sediment 305 ± 31 

Erten et al., 1985† Switzerland  47.2 8.7  Sediment 95 ± 10 

Erten et al., 1985† Switzerland  47.2 8.7  Sediment 85 ± 9 

Carpenter et al., 1981† USA 47.3 124.2 Sediment 127 

Wan et al., 1987† Switzerland  47.3 8.7  Sediment 55 ± 5 

Carpenter et al., 1981† USA 47.4 124.3 Sediment 114 

Klump et al., 1989† 

Laurentian Great 

Lakes 47.4 88.6 Sediment  81 

Hemmerich R., 1980† Germany 47.5 9.5 Sediment 100 
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Klump et al., 1989† 

Laurentian Great 

Lakes 47.5 88.6 Sediment  111 

Dominik et al., 1981† Switzerland 47.5 9.5 Sediment  73 

Dominik et al., 1981† Switzerland 47.5 9.5 Sediment  82 

Dominik et al., 1981† Switzerland 47.5 9.5 Sediment  88 

Dominik et al., 1981† Switzerland 47.5 9.5 Sediment  205 

Dominik et al., 1981† Switzerland 47.5 9.5 Sediment  192 

Dominik et al., 1981† Switzerland 47.5 9.5 Sediment  63 

Dominik et al., 1981† Switzerland 47.5 9.5 Sediment  135 

Von Gunten et al., 1987† Switzerland 47.5 9.5 Sediment  175 

Klump et al., 1989† 

Laurentian Great 

Lakes 47.8 88.5 Sediment  241 

Klump et al., 1989† 

Laurentian Great 

Lakes 47.9 88.2 Sediment  588 

Durham and Joshi, 1984† Canada 47 84.3 Sediment  345 

Durham and Joshi, 1984† Canada 47 84.3 Sediment  229 

Durham and Joshi, 1984† Canada 47 84.3 Sediment  148 

Klump et al., 1989† 

Laurentian Great 

Lakes 47 86.1 Sediment  1125 

Bloesch and Evans, 1982† Switzerland 47 8.3 Sediment  100 

Kato et al., 2010  Mongolia 47.2 108.7 Sediment 196.5 

Kato et al., 2010  Mongolia 47.7 108.5 Sediment 200.1 

Matsumoto and Wong, 1977† Canada 48.5 123.5 Sediment  320 

Smith and Ellis, 1982† Canada 48.7 70.8 Sediment  3350 

Smith and Walton, 1980† Canada 48.7 -70.8 Sediment  425 

Smith and Walton, 1980† Canada 48.7 -70.8 Sediment  550 

Smith and Walton, 1980† Canada 48.7 -70.8 Sediment  360 

Smith and Walton, 1980† Canada 48.7 -70.8 Sediment  340 

Smith and Walton, 1980† Canada 48.7 -70.8 Sediment  340 

Smith and Walton, 1980† Canada 48.7 -70.8 Sediment  305 

Smith and Walton, 1980† Canada 48.7 -70.8 Sediment  155 

Matsumoto and Wong, 1977† Canada 48.7 123.5 Sediment  850 

Durham and Joshi, 1984† Canada 48.8 90.2 Sediment  25 

Durham and Joshi, 1984† Canada 48.8 90.3 Sediment  28 

Durham and Joshi, 1981† 

Laurentian Great 

Lakes 48.8 88.2 Sediment  106 

Schelske et al., 1994 USA  48.5 114.4 Sediment 363.3 

Durham and Joshi, 1980b† Canada 49.8 77.5 Sediment  133 

Dörr and Münnich, 1991 Germany 49 (ca.) 8.7 (ca.) Sediment 90 

Durham and Joshi, 1980b† Canada 49 77 Sediment  18 

Petit D., 1974* Belgium  50 4 Sediment 158.3 

Petit D., 1974* Belgium  50 4 Sediment 130 

Oldfield et al., 1980† Belgium  50 5.3 Sediment  122 

Oldfield et al., 1980† Belgium  50 5.3 Sediment  115 

Oldfield et al., 1980† Belgium  50 5.3 Sediment  122 

Edgington et al., 1991† Russia 51.7 105.2 Sediment  40 

Edgington et al., 1991† Russia 51.8 104.5 Sediment  30 
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Edgington et al., 1991† Russia 52.4 106 Sediment  97 

Edgington et al., 1991† Russia 52.4 106.2 Sediment  34 

Edgington et al., 1991† Russia 52.4 106.1 Sediment  44 

Edgington et al., 1991† Russia 52.9 107.9 Sediment  106 

Appleby and Oldfield. 1983† UK 52 1 Sediment  74 

Appleby and Oldfield. 1983† UK 52 1 Sediment  63 

Appleby and Oldfield. 1983†  UK 52 1 Sediment  63 

Elner and Happey, 1980† UK 52 3.5 Sediment  450 

Elner and Happey, 1980† UK 52 3.5 Sediment  490 

Oldfield and Appleby, 1984† UK 52 3.5 Sediment  67 

Oldfield and Appleby, 1984† UK 52 3.5 Sediment  185 

Edgington et al., 1991† Russia 53.2 107.8 Sediment  134 

Edgington et al., 1991† Russia 53.5 108 Sediment  146 

Edgington et al., 1991† Russia 53.9 108.4 Sediment  159 

Oldfield F., 1978† Ireland 54.3 7.5 Sediment  170 

Appleby et al., 1995† UK 54.4 3 Sediment 115 

Appleby et al., 1995† UK 54.4 3.3 Sediment 175 

Eakins et al., 1984† UK 54.5 3 Sediment 162 

Appleby et al., 1995† UK 54.5 3 Sediment 149 

Oldfield F., 1978† Ireland 54.5 7.2 Sediment  150 

Oldfield F., 1978† Ireland 54.5 7.7 Sediment  240 

Oldfield F., 1978† Ireland 54.5 7.7 Sediment  220 

Battarbee R. W., 1978† Ireland 54.6 6.4 Sediment  118 

Tylmann et al., 2016 Poland 54.1 22 Sediment 432 ± 8 

Dearing et al., 1987† Sweden 55.5 13.3 Sediment  130 

Dearing et al., 1987† Sweden 55.5 13.3 Sediment  133 

Pheiffer Madsen and 

Sørensen, 1979† Denmark 55.5 8.3 Sediment  530 

EL Daoushy Farid, 1986† Sweden 55 13 Sediment 189 ± 22 

Hermanson et al., 1990 Arctic 56.2 79.3 Sediment 36.8 

Hermanson et al., 1990 Arctic 56.2 79.3 Sediment 43.3 

Hermanson et al., 1990 Arctic 56.2 79.3 Sediment 42.7 

Hermanson et al., 1990† Canada 56.2 79.3 Sediment  52 

EL Daoushy Farid, 1986† Sweden 56 15 Sediment 89 ± 7 

EL Daoushy Farid, 1986† Sweden 56 15 Sediment 122 ± 15 

EL Daoushy Farid, 1986† Sweden 57 12 Sediment 3.7 

EL Daoushy Farid, 1986† Scandinava 57 14 Sediment 96 ± 11 

EL Daoushy Farid, 1986† Scandinava 57 14 Sediment 33 ± 3.7 

Farmer et al., 2015 Scotland 57.1 3.8 Sediment 322 

EL Daoushy Farid, 1986† Sweden 58 12 Sediment 59.2 

EL Daoushy Farid, 1986† Sweden 58 12 Sediment 144.3 

EL Daoushy Farid, 1986† Sweden 58 12 Sediment 96.2 

EL Daoushy Farid, 1986† Sweden 58 12 Sediment 222 ± 15 

EL Daoushy Farid, 1986† Sweden 58 12 Sediment 226 ± 11 
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EL Daoushy Farid, 1986† Skagerrak 58 10 Sediment 204 ± 15 

Davis et al., 1984† Norway 58 (ca.) 8.7 (ca.) Sediment  94 

Monaghan and Holdsworth, 

1990† Canada 59.7 135.2 Sediment 20 

EL Daoushy Farid, 1986† Sweden 59 14 Sediment 59 ± 7.4 

EL Daoushy Farid, 1986† Norway 59 9 Sediment 185 ± 15 

EL Daoushy Farid, 1986† Norway 59 9 Sediment 259 ± 22 

EL Daoushy Farid, 1986† Sweden 59 18 Sediment 130 ± 11 

Davis et al., 1984† Norway 59 (ca.) 7.7 (ca.) Sediment  125 

Davis et al., 1984† Norway 59 (ca.) 8.6 (ca.) Sediment  112 

Davis et al., 1984† Norway 59 (ca.) 6.5 (ca.) Sediment  111 

Davis et al., 1984† Norway 59 (ca.) 6.7 (ca.) Sediment  92 

Davis et al., 1984† Norway 

>60 

(ca.)  Sediment  167 

Davis et al., 1984† Norway 

>60 

(ca.)  Sediment  129 

Davis et al., 1984† Norway 

>60 

(ca.)  Sediment  102 

Davis et al., 1984† Norway 

>60 

(ca.)  Sediment  82 

Monaghan and Holdsworth, 

1990† Canada 60.7 134.8 Sediment 38 

Monaghan and Holdsworth, 

1990† Canada 60.7 134.8 Sediment 30 

EL Daoushy Farid, 1986† Sweden 60 14 Sediment 22.2 

Edgington et al., 1991† Russia 60 107.8 Sediment  84 

Davis et al., 1984† Norway 60 (ca.) 6.5 (ca.) Sediment  112 

Appleby et al., 1979† Finland 61.9 25.9 Sediment  233 

EL Daoushy Farid, 1986† Sweden 61 15 Sediment 137 ± 15 

Monaghan and Holdsworth, 

1990† Canada 61 138.3 Sediment 21 

Monaghan and Holdsworth, 

1990† Canada 61 138.3 Sediment 54 

Monaghan and Holdsworth, 

1990† Canada 61 138.3 Sediment 30 

Monaghan and Holdsworth, 

1990† Canada 61 138.3 Sediment 43 

Appleby et al., 1979† Finland 61 25.1 Sediment  280 

Oldfield and Appleby, 1984† Finland 61 (ca.) 

24.9 

(ca.) Sediment  81 

Davis et al., 1984† Norway 61 (ca.) 8.9 (ca.) Sediment  143 

Davis et al., 1984† Norway 61 (ca.) 7.3 (ca.) Sediment  93 

Persson B. R., 1970† Sweden 62.3 12.3 Sediment 63 

Appleby et al., 1979† Finland 62.4 29.1 Sediment  240 

EL Daoushy Farid, 1986† Sweden 62 16 Sediment 78 ± 15 

EL Daoushy Farid, 1986† Sweden 62 15 Sediment 33 ± 3.7 

EL Daoushy Farid, 1986† Sweden 63 15 Sediment 63 ± 7.4 

Davis et al., 1984† Norway 63 (ca.) 8.7 (ca.) Sediment  131 

EL Daoushy Farid, 1986† Sweden 64 16 Sediment 37 ± 3.7 

Klaminder et al., 2006 Sweden 64.2 19.6 Sediment 77.85 

EL Daoushy Farid, 1986† Sweden 65 19 Sediment 96 ± 11 
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Bindler et al., 2001 Greenland 66.494 53.53 Sediment  61 

Bindler et al., 2001 Greenland 66.965 49.802 Sediment  27 

EL Daoushy Farid, 1986† Sweden 66 19 Sediment 59 ± 7.4 

EL Daoushy Farid, 1986† Sweden 66 21 Sediment 44 ± 3.7 

EL Daoushy Farid, 1986† Sweden 67 21 Sediment 74 ± 7.4 

EL Daoushy Farid, 1986† Sweden 68 21 Sediment 30 ± 3.7 

Fitzgerald et al., 2005 Arctic 68.5 149.7 Sediment  78 

Fitzgerald et al., 2005 Arctic 68.5 149.7 Sediment  74 

Fitzgerald et al., 2005 Arctic 68.5 149.7 Sediment  70 

Cornwell et al., 1985 Arctic 68.6 149.6 Sediment 23 ± 8.3 

Fitzgerald et al., 2005 Arctic 68.6 149.8 Sediment  37 

Fitzgerald et al., 2005 Arctic 68.6 149.8 Sediment  33 

Fitzgerald et al., 2005 Arctic 68.6 149.8 Sediment  52 

Fitzgerald et al., 2005 Arctic 68.7 149.7 Sediment  56 

Fitzgerald et al., 2005 Arctic 68.7 149.7 Sediment  67 

Fitzgerald et al., 2005 Arctic 68.7 149.7 Sediment  30 

Fitzgerald et al., 2005 Arctic 68.7 150.0 Sediment  44 

Fitzgerald et al., 2005 Arctic 68.7 150.0 Sediment  30 

Fitzgerald et al., 2005 Arctic 68.7 150.0 Sediment  63 

Fitzgerald et al., 2005 Arctic 68.9 150.3 Sediment  78 

Fitzgerald et al., 2005 Arctic 68.9 150.3 Sediment  56 

Fitzgerald et al., 2005 Arctic 68.9 150.3 Sediment  37 

Weiss and Naidu, 1986 Arctic 70 149 Sediment 216.3 

Kipphut et al., 1978 Arctic 74.7  Sediment 45.5 

Szczuciński et al., 2009 Svalbard 78.53 16.3 Sediment  140 

Szczuciński et al., 2009 Svalbard 78.6 16.5 Sediment  176.7 

Szczuciński et al., 2009 Svalbard 78.6 16.5 Sediment  171.7 

Szczuciński et al., 2009 Svalbard 78.7 16.7 Sediment  213.3 

Szczuciński et al., 2009 Svalbard 78.7 16.5 Sediment  100 

Szczuciński et al., 2009 Svalbard 78.7 16.5 Sediment  95 

Pourchet et al., 1994† Bolivia 16.2 68.9 Sediment  11 

Pourchet et al., 1994† Bolivia 16.2 68.9 Sediment  55 

Pourchet et al., 1994† Bolivia 16.2 68.7 Sediment  73 

Pourchet et al., 1994† Bolivia 16.2 68.7 Sediment  69 

Pourchet et al., 1995† Bolivia 16.2 68.3 Sediment  162 

Pourchet et al., 1995† Bolivia 16.2 68.3 Sediment  147 

Pourchet et al., 1994† Bolivia 16.4 69 Sediment  9 

Pourchet et al., 1994† Bolivia 16.4 69 Sediment  62 

Binford et al., 1991† Bolivia 16.4 68.8 Sediment  47 

Walling et al., 2003  Zambia 16.2 28 Sediment 83 ± 12.5 

Brenner M., 1999 Bolivia 16.3 68.7 Sediment 31.7 

Rabesiranana et al., 2016 Madagascar 18.9 47.8 Sediment 95.8 ± 12.5 

Curran C.M., 1996 Australia 19 146 Sediment 44 ± 38.9 
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Humphires and Benitez-

Nelson, 2013 South Africa 27.3 32.6 Sediment 78 ± 5.2 

Humphires and Benitez-

Nelson, 2013 South Africa 27.3 32.6 Sediment 51 ± 4.4 

Nosaki et al., 1978† South Africa 29.8 31 Sediment 108 

Blake et al., 2009  Australia 34.2 150.5 Sediment 60 ± 5.3 

Cisternas and Araneda, 2001 Chile 36.9  73.1 Sediment 23.6 

Guevara et al., 2003 Argentina 

40.5-(-

41.2) 

71.2-(-

71.8) Sediment 40 ± 1.8 

Guevara et al., 2003 Argentina 

40.5-(-

41.2) 

71.2-(-

71.8) Sediment 24 ± 1.5 

Guevara et al., 2003 Argentina 

40.5-(-

41.2) 

71.2-(-

71.8) Sediment 27 ± 1 

Guevara et al., 2003 Argentina 

40.5-(-

41.2) 

71.2-(-

71.8) Sediment 48 ± 1.3 

Guevara et al., 2003 Argentina 40.6 71.4 Sediment 20.9 ± 0.4 

Guevara et al., 2003 Argentina 41 71.5 Sediment 7.5 ± 0.7 

Guevara et al., 2003 Argentina 41 71.5 Sediment 25.5 ± 1.1 

Guevara et al., 2003 Argentina 41 71.5 Sediment 4.1 ± 1.2 

Guevara et al., 2003 Argentina 41 71.5 Sediment 4 ± 0.6 

Appleby et al., 1995† Antartic regions 60.7 45.6 Sediment  32 

Appleby et al., 1995† Antartic regions 60.7 45.6 Sediment  137 

Appleby et al., 1995† Antartic regions 60.7 45.6 Sediment  40 

Roos et al., 1994† Antartic regions 60 60 Sediment  1.2 

Roos et al., 1994† Antartic regions 60 60 Sediment  8.7 

Roos et al., 1994† Antartic regions 62.6 60.5 Sediment  3.7 

 

"*": Turekian, K. Y.; Nozaki, Y.; Benninger, L. K., Geochemistry of atmospheric radon and 

radon products. Annual Review of Earth and Planetary Sciences 1977, 5, 227. 

"†": From Preiss, N. Etude du 210Pb d'origine atmosphérique dans l'air, la neige, les sols et les 

sédiments: Mesures, inventaires et interprétation à l'échelle globale. 1997 

"ca.": Approximately. No digit-records of Latitude and Longtitude in the paper 

"210Pb flux/ Bq m-2 yr-1" Column: use "=" instead of ">" to make the compilation for Figure S2 

Here are the best data compilation we can do. 
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Appendix B for Chapter 2 (Table S1-S6) 

Table S1. REE concentration (given in μg g-1) and neodymium isotopic signature of 

Southern African soil and dust samples. 

Sample                        

ID 

Sampl

e type 

Samp

ling 

site 

Latitu

de 

(S) 

Longti

tude 

(E) 

L

a 

C

e 

P

r 

N

d 

S

m 

E

u 

G

d 

T

b 

D

y 

H

o 

E

r 

T

m 

Y

b 

L

u 

143Nd/
144Nd 

±2σ 

EP-AS-

ON 

aerosol Etosh

a Pan 

18° 53' 

26.6" 

15° 50' 

35.5" 

1

1.

8 

2

6.

0 

2

.

9 

1

0.

5 

2.

0 

0

.

5 

1

.

9 

0

.

3 

1

.

5 

0

.

3 

0

.

8 

0.

1 

0

.

8 

0

.

1 

0.511

512 

0.00

0006 

EP-AS-

PR 

aerosol Etosh

a Pan 

18° 57' 

41.7" 

15° 52' 

06.3" 

9.

5 

2

1.
5 

2

.
3 

8.

4 

1.

5 

0

.
4 

1

.
5 

0

.
2 

1

.
2 

0

.
2 

0

.
6 

0.

1 

0

.
7 

0

.
1 

0.511

493 

0.00

0007 

EP-AS-

W 

aerosol Etosh

a Pan 

19° 02' 

53.3" 

15° 53' 

41.7" 

7.

0 

1

6.

4 

1

.

7 

6.

1 

1.

1 

0

.

3 

1

.

1 

0

.

2 

0

.

9 

0

.

2 

0

.

5 

0.

1 

0

.

5 

0

.

1 

0.511

440 

0.00

0033 

EP-SS-

ON 

soil Etosh

a Pan 

18° 53' 

26.6" 

15° 50' 

35.5" 

2

3.

7 

4

9.

9 

5

.

7 

2

1.

5 

4.

3 

1

.

2 

4

.

0 

0

.

5 

3

.

1 

0

.

6 

1

.

6 

0.

2 

1

.

3 

0

.

2 

0.511

543 

0.00

0003 

EP-SS-

PR 

soil Etosh

a Pan 

18° 57' 

41.7" 

15° 52' 

06.3" 

1

5.

5 

3

6.

7 

3

.

8 

1

4.

0 

2.

7 

0

.

7 

2

.

6 

0

.

3 

2

.

0 

0

.

4 

1

.

1 

0.

2 

1

.

1 

0

.

2 

0.511

472 

0.00

0009 

EP-SS-

W 

soil Etosh

a Pan 

19° 02' 

53.3" 

15° 53' 

41.7" 

1

9.

4 

4

8.

5 

4

.

8 

1

7.

9 

3.

4 

0

.

9 

3

.

3 

0

.

4 

2

.

6 

0

.

5 

1

.

4 

0.

2 

1

.

4 

0

.

2 

N/A N/A 

SP-AS-

SD157 

aerosol Sua 

Pan 

20° 32' 

54.2'' 

25° 59' 

16.4" 

1

5.
1 

2

5.
5 

3

.
3 

1

1.
9 

2.

0 

0

.
5 

1

.
9 

0

.
2 

1

.
3 

0

.
2 

0

.
6 

0.

1 

0

.
4 

0

.
1 

0.511

308 

0.00

0002 

SP-AS-

SD544 

aerosol Sua 

Pan 

20° 34' 

31.4'' 

25° 57' 

32.4'' 

1

7.

5 

2

8.

0 

3

.

9 

1

3.

8 

2.

3 

0

.

7 

2

.

2 

0

.

3 

1

.

5 

0

.

3 

0

.

7 

0.

1 

0

.

5 

0

.

1 

0.511

331 

0.00

0008 

SP-AS-

SD608 

aerosol Sua 

Pan 

20° 34' 

31.4'' 

25° 57' 

32.4'' 

1

5.

2 

2

4.

0 

3

.

3 

1

1.

8 

2.

1 

0

.

6 

2

.

0 

0

.

2 

1

.

3 

0

.

2 

0

.

6 

0.

1 

0

.

5 

0

.

1 

0.511

341 

0.00

0007 

SP-SS-
sua18 

soil Sua 
Pan 

20° 33' 
15.8'' 

25° 58' 
8.4''  

8.
4 

1
4.

4 

1
.

9 

6.
5 

1.
1 

0
.

4 

1
.

1 

0
.

1 

0
.

7 

0
.

1 

0
.

3 

0.
0 

0
.

3 

0
.

0 

0.511
326 

0.00
0007 

SP-SS-

sua33 

soil Sua 

Pan 

20° 32' 

21.1'' 

25° 57' 

33.1'' 

1

3.

1 

2

2.

0 

2

.

9 

1

0.

2 

1.

7 

0

.

6 

1

.

7 

0

.

2 

1

.

1 

0

.

2 

0

.

5 

0.

1 

0

.

4 

0

.

1 

0.511

312 

0.00

0003 

SP-SS-

sua31 

soil Sua 

Pan 

20° 32' 

52.8'' 

25° 54' 

40.3'' 

6.

8 

1

1.
2 

1

.
5 

5.

3 

0.

9 

0

.
3 

0

.
8 

0

.
1 

0

.
6 

0

.
1 

0

.
3 

0.

0 

0

.
3 

0

.
0 

0.511

371 

0.00

0009 

 

Table S2. REE concentration (given in μg g-1) and neodymium isotopic signature in 

surface sediment from desert of Northwest Australia 

 
Sample                        

ID 

Sampling site Latit

ude 

Longt

itude 

L

a 

C

e 

P

r 

N

d 

S

m 

E

u 

G

d 

T

b 

D

y 

H

o 

E

r 

T

m 

Y

b 

L

u 

143Nd/
144Nd 

±2σ 

Dune 

#07 

desert of 

Northwest 

Australia 

22°39

.476ʹ 

113°4

1.812ʹ 

1.

8 

3.

3 

0

.

4 

1.

8 

0.

4 

0

.

1 

0.

5 

0

.

1 

0

.

5 

0

.

1 

0

.

3 

0.

0 

0

.

3 

0

.

0 

0.5116

93 

0.00

0008 

Lyndon 
R #20 

desert of 
Northwest 

Australia 

23°32
.414ʹ 

113°5
7.797ʹ 

3.
2 

6.
1 

0
.

7 

2.
8 

0.
5 

0
.

2 

0.
6 

0
.

1 

0
.

5 

0
.

1 

0
.

3 

0.
0 

0
.

2 

0
.

0 

0.5118
88 

0.00
0016 

Gascoyn

e R #23 

desert of 

Northwest 

Australia 

24°49

.548ʹ 

113°4

6.295ʹ 

21

.4 

44

.3 

4

.

9 

17

.5 

3.

2 

0

.

7 

3.

2 

0

.

4 

2

.

4 

0

.

5 

1

.

3 

0.

2 

1

.

3 

0

.

2 

0.5116

95 

0.00

0008 

Dune 

#25 

desert of 

Northwest 

Australia 

23°06

.932ʹ 

113°5

0.714ʹ 

14

.2 

26

.9 

3

.

2 

11

.7 

2.

2 

0

.

5 

2.

0 

0

.

3 

1

.

3 

0

.

2 

0

.

8 

0.

1 

0

.

7 

0

.

2 

0.5115

69 

0.00

0008 
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Table S3. Protocol for soil digestion 

 

1. Weight 50 mg sample into the savillex. 

2. Add HNO3 into the savillex and put it in the ultrason for 30 min, then add 0.5ml HF.  Heat 

it for 3 days at 130°C  

3. Evaporate the soluton at 75°C. 

4. Add 2 ml aqua regia (HNO3: HCl = 1:2), put it in the ultrason for 30 min. Heat it for 3 days 

at 130°C. 

5. Evaporate the solutions at 75°C 

6. Add 2 ml 6M HCl and put it in the ultrason for 30 min. Heat it for 1.5 days at 100°C. 

7. Evaporer the solutions à 75°C.  

8. Add 2 ml de 35% HNO3, put it in the ultrason for 30 min. Heat it at 90°C for 2 hours first, 

then continue at 50°C for one day. 

9. Transfer the solution into the falcon tube and add MQ upto12 ml. Here you have the mother 

solution. 

 

Dilution for ICP-MS: 

Take 1 ml of mother solution and add 2% HNO3 upto 10ml (=9 ml 2% HNO3). Add 50 µl of 

In/Re inside the solution. 
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Table S4. Recovery and reproductivity from Certified Reference materials are reported 

(mean ± σ; μg g-1), including SRM1515 (Apple leaves), SRM1547 (Peach leaves), NJV942 

(sphagnum), NJV941(carex), WQB-1 (Great lakes sediment), and LKSD-3 (Canadian 

lake sediment).  Informative provisional values are reported in italic and under brackets, 

respectively. 

Elem

ents 

Instru

ment SRM 1515 (n=4) SRM 1947 (n=3) NJV 942 (n=4) NJV 941 (n=8) WQB-1 (n=3) LKSD-3 (n=4) 

  
measur

ed 

certifi

ed 

measur

ed 

certifi

ed 

measur

ed 

certifi

ed 

measu

red 

certifi

ed 

meas

ured 

certif

ied 

measu

red 

certif

ied 

Al ICP-

OES 283±8.3 286±9 243±5 249±8 868±84 

950±1

00 

844±8

4 

900±7

9     
K ICP-

OES 

12713±4

113 

16100

±200 

22177±

514 

24300

±300 203±18 

170±5

7 

140±1

0 

120±4

5     
Ti ICP-

OES 13.0±0.5  22±6  59±2 75±31 31±3 40±10     
Mg  

ICP-

MS 

2738±10

5 

2710±

80 

4128±2

17 

4320±

80 

1047±11

2 

1100±

110 

717±7

6 

770±8

9     
Ca  

ICP-

MS 

15236±6

03 

15260

±150 

14687±

757 

15600

±200 

1064±12

6 

1200±

110 

7469±

1011 

10200

±510     
Ga  

ICP-

MS 

0.49±0.0

3  

0.33±0.

04  

0.27±0.0

5  

0.16±0

.02      
Rb  

ICP-
MS 9.4±0.4 9 

17.1±0.
86 

19.7±1
.2 

0.72±0.1
2  

0.4±0.
06      

Sr  
ICP-

MS 25±1 25±2 52±2 53±4 17±2  32±3.2      
Zr  

ICP-

MS 

0.17±0.0

2  

0.59±0.

08  1.6±0.3  

1.2±0.

4      
Cs  

ICP-

MS 

0.006±0.

001  

0.07±0.

004  

0.03±0.0

03  

0.02±0

.003      
La  

ICP-
MS 20.7±0.8 20 8.3±0.4 9 

0.87±0.0
9  

0.7±0.
06  46±2 37.9 50±1 (52) 

Ce  
ICP-

MS 3.0±0.1 3 9±0.4 10 

1.65±0.1

7  

1.49±0

.13  96±2 77.6 99±3 (90) 

Pr  
ICP-

MS 4.1±0.2 - 1.7±0.1  

0.21±0.0

2  

0.19±0

.02  

11±0.

1  

12±0.0

4  

Nd  
ICP-

MS 15.5±0.6 17 6.2±0.3 7 

0.72±0.0

8  

0.69±0

.06  

40±0.

3  45±0.5 (44) 

Sm  
ICP-

MS 2.8±0.1 3 

0.99±0.

06 1 

0.13±0.0

1  

0.13±0

.01  

7.5±0.

05  

7.9±0.

1 (8) 

Eu  
ICP-

MS 

0.25±0.0

1 0.2 

0.19±0.

01 0.17 

0.03±0.0

02  

0.03±0

.002  

1.6±0.

03  

1.5±0.

01 (1.5) 

Gd  
ICP-

MS 

2.94±0.0

9 3 

0.97±0.

05 1 

0.12±0.0

1  

0.13±0

.01  7±0.2  7±0.1  

Tb  
ICP-

MS 

0.37±0.0

2 0.4 

0.11±0.

007 0.1 

0.02±0.0

02  

0.02±0

.002  

0.95±

0.02  

0.9±0.

01 (1) 

Dy  
ICP-

MS 

1.78±0.0

8  

0.52±0.

03  

0.09±0.0

09  

0.11±0

.01  

5.6±0.

1  

5.1±0.

04 (4.9) 

Ho  
ICP-

MS 

0.27±0.0

1  

0.08±0.

004  

0.02±0.0

02  

0.02±0

.002  

1.01±

0  

0.93±0

.008  

Er  
ICP-

MS 

0.57±0.0

2  

0.21±0.

01  

0.05±0.0

06  

0.07±0

.006  3±0.2  

2.7±0.

05  

Tm  
ICP-

MS 

0.05±0.0

02  

0.02±0.

0004  

0.01±0.0

005  

0.01±0

.001  

0.42±

0.02  

0.38±0

.01  

Yb  
ICP-

MS 

0.19±0.0

1 0.3 

0.12±0.

004 0.2 

0.05±0.0

05  

0.06±0

.006  

2.8±0.

1  

2.5±0.

03 (2.7) 

Lu  
ICP-

MS 

0.02±0.0

01  

0.02±0.

0001  

0.007±0.

0006  

0.01±0

.001  

0.41±

0.02  

0.38±0

.005 (0.4) 

Hf  
ICP-

MS 

0.027±0.

001  

0.06±0.

02  

0.11±0.0

2  

0.09±0

.03      
Pb 

ICP-
MS 

0.43±0.0
08 

0.47±0
.024 

0.74±0.
01 

0.87±0
.03 

9.16±0.1
3 

10.1±
0.82 

1.85±0
.19 

2.4±0.
29     

Th 
ICP-

MS 

0.021±0.

003 0.03 

0.04±0.

005 0.05 

0.13±0.0

1  

0.11±0

.01      
U 

ICP-

MS 

0.007±0.

0002 0.006 

0.015±

0.004 0.015 

0.05±0.0

05   

0.03±0

.004           
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Table S5: Source mixing-line calculation. AMS represents for Amsterdam Island, while SAF and SSA are Southern Africa and Southern South 

America, respectively. Symbol of f() means percentage. Symbols of φem1 and φem2 represent for the fraction of considered element in end-

member 1 and end-member 2. RMSE is abbreviation of “Root mean square root”. 

f(AMS

) 

f(SAF

) 

f(SSA

) 

φem1Eu

* 

φem2Eu

* 

(Eu/Eu*)m

ix 

φem1Y

b 

φem2Y

b 

(La/YbN)m

ix   

f(AMS

) 

f(SAF

) 

f(SSA

) 

φem1L

a 

φem2L

a 

(Eu/LaN)m

ix 

φem1N

d 

φem2N

d 

(143Nd/144Nd-)m

ix ɛNd 
RMS

E 

5% 95% 0% 0.09 0.91 1.10 0.14 0.86 0.84  5% 95% 0% 0.05 0.95 1.53 0.06 0.94 0.511504 

-

22.13 7.46 

10% 90% 0% 0.18 0.82 1.12 0.26 0.74 0.76  10% 90% 0% 0.09 0.91 1.63 0.13 0.87 0.511593 

-

20.39 6.59 

15% 85% 0% 0.26 0.74 1.13 0.36 0.64 0.70  15% 85% 0% 0.14 0.86 1.73 0.19 0.81 0.511679 
-

18.70 5.75 

20% 80% 0% 0.33 0.67 1.14 0.44 0.56 0.64  20% 80% 0% 0.19 0.81 1.83 0.25 0.75 0.511763 

-

17.06 4.93 

25% 75% 0% 0.40 0.60 1.16 0.52 0.48 0.60  25% 75% 0% 0.24 0.76 1.93 0.30 0.70 0.511845 

-

15.47 4.14 

30% 70% 0% 0.46 0.54 1.17 0.58 0.42 0.55  30% 70% 0% 0.29 0.71 2.02 0.36 0.64 0.511924 

-

13.92 3.37 

35% 65% 0% 0.51 0.49 1.18 0.63 0.37 0.52  35% 65% 0% 0.33 0.67 2.13 0.41 0.59 0.512001 
-

12.42 2.63 

40% 60% 0% 0.57 0.43 1.19 0.68 0.32 0.49  40% 60% 0% 0.38 0.62 2.23 0.47 0.53 0.512076 

-

10.96 1.92 

45% 55% 0% 0.62 0.38 1.20 0.72 0.28 0.46  45% 55% 0% 0.43 0.57 2.33 0.52 0.48 0.512149 -9.54 1.25 

50% 50% 0% 0.66 0.34 1.20 0.76 0.24 0.43  50% 50% 0% 0.48 0.52 2.43 0.57 0.43 0.512220 -8.16 0.68 

55% 45% 0% 0.71 0.29 1.21 0.80 0.20 0.41  55% 45% 0% 0.53 0.47 2.53 0.62 0.38 0.512289 -6.81 0.57 

60% 40% 0% 0.75 0.25 1.22 0.83 0.17 0.39  60% 40% 0% 0.58 0.42 2.64 0.66 0.34 0.512356 -5.50 1.04 

65% 35% 0% 0.78 0.22 1.22 0.86 0.14 0.37  65% 35% 0% 0.63 0.37 2.74 0.71 0.29 0.512422 -4.22 1.62 

70% 30% 0% 0.82 0.18 1.23 0.88 0.12 0.35  70% 30% 0% 0.69 0.31 2.85 0.75 0.25 0.512485 -2.98 2.22 

75% 25% 0% 0.85 0.15 1.24 0.91 0.09 0.34  75% 25% 0% 0.74 0.26 2.95 0.80 0.20 0.512548 -1.76 2.82 

80% 20% 0% 0.89 0.11 1.24 0.93 0.07 0.32  80% 20% 0% 0.79 0.21 3.06 0.84 0.16 0.512608 -0.58 3.41 

85% 15% 0% 0.92 0.08 1.25 0.95 0.05 0.31  85% 15% 0% 0.84 0.16 3.17 0.88 0.12 0.512667 0.57 3.98 

90% 10% 0% 0.95 0.05 1.25 0.97 0.03 0.30  90% 10% 0% 0.89 0.11 3.28 0.92 0.08 0.512725 1.70 4.54 

95% 5% 0% 0.97 0.03 1.26 0.98 0.02 0.29  95% 5% 0% 0.95 0.05 3.39 0.96 0.04 0.512781 2.80 5.09 

5% 90% 5% 0.09 0.83 1.09 0.14 0.77 0.82  5% 90% 5% 0.05 0.88 1.52 0.06 0.86 0.511586 

-

20.52 6.66 

10% 85% 5% 0.17 0.75 1.10 0.25 0.66 0.75  10% 85% 5% 0.09 0.83 1.61 0.12 0.80 0.511671 

-

18.86 5.83 

15% 80% 5% 0.25 0.68 1.12 0.34 0.57 0.69  15% 80% 5% 0.14 0.78 1.71 0.18 0.74 0.511754 

-

17.25 5.03 

20% 75% 5% 0.32 0.61 1.13 0.42 0.50 0.63  20% 75% 5% 0.18 0.74 1.80 0.24 0.68 0.511834 

-

15.68 4.24 

25% 70% 5% 0.38 0.55 1.14 0.49 0.43 0.59  25% 70% 5% 0.23 0.69 1.90 0.29 0.63 0.511912 

-

14.16 3.49 

30% 65% 5% 0.44 0.49 1.15 0.56 0.38 0.55  30% 65% 5% 0.28 0.64 1.99 0.35 0.58 0.511988 

-

12.68 2.75 
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35% 60% 5% 0.50 0.44 1.16 0.61 0.33 0.52  35% 60% 5% 0.32 0.60 2.09 0.40 0.52 0.512062 

-

11.24 2.04 

40% 55% 5% 0.55 0.39 1.17 0.66 0.28 0.48  40% 55% 5% 0.37 0.55 2.19 0.45 0.47 0.512133 -9.84 1.37 

45% 50% 5% 0.60 0.34 1.18 0.70 0.24 0.46  45% 50% 5% 0.42 0.50 2.29 0.50 0.43 0.512203 -8.48 0.76 

50% 45% 5% 0.65 0.30 1.19 0.74 0.21 0.43  50% 45% 5% 0.47 0.45 2.39 0.55 0.38 0.512271 -7.15 0.46 

55% 40% 5% 0.69 0.26 1.20 0.77 0.18 0.41  55% 40% 5% 0.52 0.40 2.49 0.60 0.33 0.512338 -5.86 0.85 

60% 35% 5% 0.73 0.22 1.20 0.80 0.15 0.39  60% 35% 5% 0.57 0.35 2.59 0.64 0.29 0.512402 -4.60 1.42 

65% 30% 5% 0.77 0.18 1.21 0.83 0.12 0.37  65% 30% 5% 0.62 0.30 2.69 0.69 0.24 0.512465 -3.37 2.01 

70% 25% 5% 0.80 0.15 1.22 0.86 0.10 0.35  70% 25% 5% 0.66 0.25 2.79 0.73 0.20 0.512527 -2.17 2.60 

75% 20% 5% 0.84 0.11 1.22 0.88 0.07 0.34  75% 20% 5% 0.71 0.20 2.90 0.78 0.16 0.512587 -1.00 3.18 

80% 15% 5% 0.87 0.08 1.23 0.91 0.05 0.33  80% 15% 5% 0.76 0.15 3.00 0.82 0.12 0.512645 0.14 3.75 

85% 10% 5% 0.90 0.05 1.23 0.93 0.03 0.31  85% 10% 5% 0.82 0.10 3.10 0.86 0.08 0.512702 1.26 4.31 

90% 5% 5% 0.93 0.03 1.24 0.95 0.02 0.30  90% 5% 5% 0.87 0.05 3.21 0.90 0.04 0.512758 2.34 4.85 

95% 0% 5% 0.96 0.00 1.25 0.96 0.00 0.29  95% 0% 5% 0.92 0.00 3.31 0.94 0.00 0.512813 3.41 5.38 

0% 90% 10% 0.00 0.84 1.05 0.00 0.79 0.88  0% 90% 10% 0.00 0.85 1.41 0.00 0.84 0.511580 

-

20.65 6.72 

5% 85% 10% 0.09 0.76 1.07 0.13 0.68 0.80  5% 85% 10% 0.04 0.80 1.50 0.06 0.78 0.511663 

-

19.02 5.91 

10% 80% 10% 0.17 0.68 1.09 0.24 0.59 0.73  10% 80% 10% 0.09 0.76 1.59 0.12 0.73 0.511744 

-

17.43 5.12 

15% 75% 10% 0.24 0.62 1.10 0.33 0.51 0.67  15% 75% 10% 0.13 0.71 1.69 0.18 0.67 0.511823 

-

15.89 4.35 

20% 70% 10% 0.31 0.55 1.11 0.41 0.45 0.63  20% 70% 10% 0.18 0.67 1.78 0.23 0.62 0.511900 
-

14.39 3.60 

25% 65% 10% 0.37 0.49 1.12 0.48 0.39 0.58  25% 65% 10% 0.22 0.62 1.87 0.29 0.57 0.511975 

-

12.94 2.87 

30% 60% 10% 0.43 0.44 1.14 0.54 0.33 0.55  30% 60% 10% 0.27 0.58 1.97 0.34 0.52 0.512048 

-

11.52 2.17 

35% 55% 10% 0.49 0.39 1.15 0.59 0.29 0.51  35% 55% 10% 0.32 0.53 2.06 0.39 0.47 0.512118 

-

10.14 1.50 

40% 50% 10% 0.54 0.34 1.16 0.64 0.25 0.48  40% 50% 10% 0.36 0.48 2.16 0.44 0.42 0.512187 -8.79 0.86 

45% 45% 10% 0.59 0.30 1.17 0.68 0.21 0.46  45% 45% 10% 0.41 0.44 2.25 0.49 0.37 0.512255 -7.48 0.42 

50% 40% 10% 0.63 0.26 1.17 0.72 0.18 0.43  50% 40% 10% 0.45 0.39 2.35 0.53 0.33 0.512320 -6.20 0.67 

55% 35% 10% 0.67 0.22 1.18 0.75 0.15 0.41  55% 35% 10% 0.50 0.34 2.44 0.58 0.28 0.512384 -4.96 1.23 

60% 30% 10% 0.71 0.18 1.19 0.78 0.12 0.39  60% 30% 10% 0.55 0.29 2.54 0.63 0.24 0.512446 -3.74 1.81 

65% 25% 10% 0.75 0.15 1.20 0.81 0.10 0.37  65% 25% 10% 0.60 0.25 2.64 0.67 0.20 0.512507 -2.56 2.40 

70% 20% 10% 0.79 0.11 1.20 0.84 0.07 0.36  70% 20% 10% 0.64 0.20 2.74 0.71 0.16 0.512566 -1.40 2.97 

75% 15% 10% 0.82 0.08 1.21 0.86 0.05 0.34  75% 15% 10% 0.69 0.15 2.84 0.75 0.12 0.512624 -0.27 3.53 

80% 10% 10% 0.85 0.05 1.22 0.88 0.03 0.33  80% 10% 10% 0.74 0.10 2.94 0.80 0.08 0.512681 0.83 4.08 

85% 5% 10% 0.88 0.03 1.22 0.91 0.02 0.31  85% 5% 10% 0.79 0.05 3.04 0.83 0.04 0.512736 1.91 4.62 

90% 0% 10% 0.91 0.00 1.23 0.93 0.00 0.30  90% 0% 10% 0.84 0.00 3.14 0.87 0.00 0.512790 2.96 5.15 

0% 85% 15% 0.00 0.76 1.04 0.00 0.71 0.85  0% 85% 15% 0.00 0.78 1.40 0.00 0.77 0.511655 

-

19.17 5.98 
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5% 80% 15% 0.08 0.69 1.06 0.12 0.61 0.78  5% 80% 15% 0.04 0.74 1.49 0.06 0.71 0.511735 

-

17.61 5.20 

10% 75% 15% 0.16 0.62 1.07 0.23 0.53 0.72  10% 75% 15% 0.09 0.69 1.58 0.12 0.66 0.511813 

-

16.09 4.45 

15% 70% 15% 0.23 0.56 1.08 0.31 0.46 0.66  15% 70% 15% 0.13 0.65 1.67 0.17 0.61 0.511889 

-

14.62 3.71 

20% 65% 15% 0.30 0.50 1.10 0.39 0.40 0.62  20% 65% 15% 0.17 0.60 1.76 0.22 0.56 0.511962 

-

13.18 2.99 

25% 60% 15% 0.36 0.44 1.11 0.46 0.34 0.58  25% 60% 15% 0.22 0.56 1.85 0.28 0.51 0.512034 

-

11.78 2.30 

30% 55% 15% 0.42 0.39 1.12 0.52 0.30 0.54  30% 55% 15% 0.26 0.51 1.94 0.33 0.46 0.512104 
-

10.42 1.63 

35% 50% 15% 0.47 0.34 1.13 0.57 0.25 0.51  35% 50% 15% 0.31 0.47 2.03 0.38 0.41 0.512172 -9.09 0.99 

40% 45% 15% 0.52 0.30 1.14 0.62 0.22 0.48  40% 45% 15% 0.35 0.42 2.12 0.43 0.37 0.512238 -7.80 0.44 

45% 40% 15% 0.57 0.26 1.15 0.66 0.18 0.46  45% 40% 15% 0.40 0.38 2.22 0.47 0.32 0.512303 -6.54 0.50 

50% 35% 15% 0.62 0.22 1.16 0.70 0.15 0.43  50% 35% 15% 0.44 0.33 2.31 0.52 0.28 0.512366 -5.31 1.04 

55% 30% 15% 0.66 0.18 1.17 0.73 0.12 0.41  55% 30% 15% 0.49 0.28 2.40 0.56 0.24 0.512427 -4.11 1.62 

60% 25% 15% 0.70 0.15 1.18 0.76 0.10 0.39  60% 25% 15% 0.53 0.24 2.50 0.61 0.19 0.512488 -2.93 2.20 

65% 20% 15% 0.73 0.12 1.18 0.79 0.08 0.37  65% 20% 15% 0.58 0.19 2.59 0.65 0.15 0.512546 -1.79 2.76 

70% 15% 15% 0.77 0.08 1.19 0.82 0.05 0.36  70% 15% 15% 0.63 0.14 2.69 0.69 0.11 0.512603 -0.67 3.32 

75% 10% 15% 0.80 0.05 1.20 0.84 0.04 0.34  75% 10% 15% 0.67 0.10 2.79 0.73 0.07 0.512659 0.42 3.87 

80% 5% 15% 0.83 0.03 1.20 0.87 0.02 0.33  80% 5% 15% 0.72 0.05 2.88 0.77 0.04 0.512714 1.48 4.40 

0% 80% 20% 0.00 0.70 1.02 0.00 0.63 0.83  0% 80% 20% 0.00 0.71 1.39 0.00 0.70 0.511727 

-

17.78 5.29 

5% 75% 20% 0.08 0.63 1.04 0.12 0.55 0.76  5% 75% 20% 0.04 0.67 1.48 0.06 0.65 0.511803 
-

16.29 4.54 

10% 70% 20% 0.16 0.56 1.06 0.22 0.47 0.70  10% 70% 20% 0.08 0.63 1.56 0.11 0.60 0.511878 

-

14.83 3.82 

15% 65% 20% 0.23 0.50 1.07 0.30 0.41 0.65  15% 65% 20% 0.13 0.59 1.65 0.17 0.55 0.511950 

-

13.42 3.11 

20% 60% 20% 0.29 0.45 1.08 0.38 0.35 0.61  20% 60% 20% 0.17 0.54 1.74 0.22 0.50 0.512021 

-

12.04 2.42 

25% 55% 20% 0.35 0.40 1.10 0.44 0.30 0.57  25% 55% 20% 0.21 0.50 1.82 0.27 0.45 0.512090 
-

10.69 1.75 

30% 50% 20% 0.41 0.35 1.11 0.50 0.26 0.54  30% 50% 20% 0.25 0.45 1.91 0.32 0.41 0.512157 -9.38 1.11 

35% 45% 20% 0.46 0.30 1.12 0.55 0.22 0.51  35% 45% 20% 0.30 0.41 2.00 0.37 0.36 0.512222 -8.11 0.52 

40% 40% 20% 0.51 0.26 1.13 0.60 0.19 0.48  40% 40% 20% 0.34 0.37 2.09 0.41 0.32 0.512286 -6.86 0.35 

45% 35% 20% 0.56 0.22 1.14 0.64 0.16 0.45  45% 35% 20% 0.39 0.32 2.18 0.46 0.27 0.512349 -5.65 0.86 

50% 30% 20% 0.60 0.18 1.15 0.68 0.13 0.43  50% 30% 20% 0.43 0.28 2.27 0.51 0.23 0.512409 -4.46 1.43 

55% 25% 20% 0.64 0.15 1.16 0.71 0.10 0.41  55% 25% 20% 0.47 0.23 2.36 0.55 0.19 0.512469 -3.30 2.00 

60% 20% 20% 0.68 0.12 1.16 0.74 0.08 0.39  60% 20% 20% 0.52 0.19 2.46 0.59 0.15 0.512527 -2.17 2.56 

65% 15% 20% 0.72 0.08 1.17 0.77 0.06 0.38  65% 15% 20% 0.56 0.14 2.55 0.63 0.11 0.512583 -1.07 3.12 

70% 10% 20% 0.75 0.05 1.18 0.80 0.04 0.36  70% 10% 20% 0.61 0.09 2.64 0.68 0.07 0.512639 0.01 3.66 

75% 5% 20% 0.79 0.03 1.19 0.82 0.02 0.35  75% 5% 20% 0.65 0.05 2.74 0.72 0.04 0.512693 1.07 4.18 
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0% 75% 25% 0.00 0.63 1.01 0.00 0.56 0.81  0% 75% 25% 0.00 0.65 1.38 0.00 0.64 0.511794 

-

16.47 4.64 

5% 70% 25% 0.08 0.57 1.03 0.11 0.49 0.75  5% 70% 25% 0.04 0.61 1.46 0.06 0.59 0.511867 

-

15.04 3.92 

10% 65% 25% 0.15 0.51 1.04 0.21 0.42 0.69  10% 65% 25% 0.08 0.57 1.55 0.11 0.54 0.511938 

-

13.65 3.22 

15% 60% 25% 0.22 0.45 1.06 0.29 0.36 0.64  15% 60% 25% 0.12 0.53 1.63 0.16 0.49 0.512008 

-

12.29 2.54 

20% 55% 25% 0.28 0.40 1.07 0.36 0.31 0.60  20% 55% 25% 0.16 0.48 1.72 0.21 0.44 0.512076 

-

10.96 1.88 

25% 50% 25% 0.34 0.35 1.08 0.42 0.27 0.57  25% 50% 25% 0.21 0.44 1.80 0.26 0.40 0.512142 -9.67 1.24 

30% 45% 25% 0.40 0.30 1.10 0.48 0.23 0.53  30% 45% 25% 0.25 0.40 1.89 0.31 0.35 0.512207 -8.41 0.64 

35% 40% 25% 0.45 0.26 1.11 0.53 0.19 0.50  35% 40% 25% 0.29 0.35 1.98 0.36 0.31 0.512270 -7.18 0.25 

40% 35% 25% 0.50 0.22 1.12 0.58 0.16 0.48  40% 35% 25% 0.33 0.31 2.06 0.40 0.27 0.512332 -5.98 0.68 

45% 30% 25% 0.54 0.19 1.13 0.62 0.13 0.45  45% 30% 25% 0.38 0.27 2.15 0.45 0.23 0.512392 -4.80 1.25 

50% 25% 25% 0.59 0.15 1.14 0.66 0.10 0.43  50% 25% 25% 0.42 0.22 2.24 0.49 0.19 0.512450 -3.66 1.81 

55% 20% 25% 0.63 0.12 1.14 0.69 0.08 0.41  55% 20% 25% 0.46 0.18 2.33 0.54 0.15 0.512508 -2.54 2.37 

60% 15% 25% 0.67 0.08 1.15 0.72 0.06 0.39  60% 15% 25% 0.50 0.14 2.42 0.58 0.11 0.512564 -1.45 2.92 

65% 10% 25% 0.70 0.06 1.16 0.75 0.04 0.38  65% 10% 25% 0.55 0.09 2.51 0.62 0.07 0.512619 -0.38 3.45 

70% 5% 25% 0.74 0.03 1.17 0.78 0.02 0.36  70% 5% 25% 0.59 0.05 2.60 0.66 0.04 0.512672 0.67 3.98 

0% 70% 30% 0.00 0.57 1.00 0.00 0.50 0.79  0% 70% 30% 0.00 0.59 1.37 0.00 0.58 0.511857 

-

15.24 4.02 

5% 65% 30% 0.08 0.51 1.02 0.11 0.43 0.73  5% 65% 30% 0.04 0.55 1.45 0.05 0.53 0.511927 

-

13.87 3.33 

10% 60% 30% 0.15 0.45 1.03 0.20 0.37 0.68  10% 60% 30% 0.08 0.51 1.53 0.11 0.48 0.511996 
-

12.53 2.66 

15% 55% 30% 0.21 0.40 1.05 0.28 0.32 0.64  15% 55% 30% 0.12 0.47 1.62 0.16 0.44 0.512063 

-

11.22 2.01 

20% 50% 30% 0.28 0.35 1.06 0.35 0.27 0.60  20% 50% 30% 0.16 0.43 1.70 0.21 0.39 0.512128 -9.94 1.37 

25% 45% 30% 0.33 0.31 1.07 0.41 0.23 0.56  25% 45% 30% 0.20 0.39 1.78 0.25 0.35 0.512192 -8.70 0.76 

30% 40% 30% 0.39 0.26 1.08 0.47 0.19 0.53  30% 40% 30% 0.24 0.34 1.87 0.30 0.31 0.512254 -7.48 0.24 

35% 35% 30% 0.44 0.22 1.09 0.52 0.16 0.50  35% 35% 30% 0.28 0.30 1.95 0.35 0.27 0.512315 -6.29 0.51 

40% 30% 30% 0.49 0.19 1.10 0.56 0.13 0.48  40% 30% 30% 0.32 0.26 2.04 0.39 0.22 0.512375 -5.14 1.07 

45% 25% 30% 0.53 0.15 1.11 0.60 0.10 0.45  45% 25% 30% 0.37 0.22 2.12 0.44 0.19 0.512433 -4.00 1.63 

50% 20% 30% 0.57 0.12 1.12 0.64 0.08 0.43  50% 20% 30% 0.41 0.17 2.21 0.48 0.15 0.512490 -2.90 2.18 

55% 15% 30% 0.61 0.09 1.13 0.67 0.06 0.41  55% 15% 30% 0.45 0.13 2.29 0.52 0.11 0.512545 -1.82 2.73 

60% 10% 30% 0.65 0.06 1.14 0.71 0.04 0.39  60% 10% 30% 0.49 0.09 2.38 0.56 0.07 0.512599 -0.76 3.25 

65% 5% 30% 0.69 0.03 1.15 0.74 0.02 0.38  65% 5% 30% 0.53 0.04 2.47 0.60 0.04 0.512652 0.28 3.77 

0% 65% 35% 0.00 0.51 0.99 0.00 0.44 0.78  0% 65% 35% 0.00 0.54 1.36 0.00 0.52 0.511916 
-

14.08 3.44 

5% 60% 35% 0.07 0.46 1.00 0.10 0.38 0.72  5% 60% 35% 0.04 0.50 1.44 0.05 0.48 0.511984 

-

12.76 2.78 

10% 55% 35% 0.14 0.40 1.02 0.19 0.33 0.67  10% 55% 35% 0.08 0.46 1.52 0.10 0.43 0.512050 

-

11.47 2.13 
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15% 50% 35% 0.21 0.36 1.03 0.27 0.28 0.63  15% 50% 35% 0.12 0.42 1.60 0.15 0.39 0.512115 

-

10.21 1.50 

20% 45% 35% 0.27 0.31 1.05 0.34 0.24 0.59  20% 45% 35% 0.16 0.38 1.68 0.20 0.34 0.512178 -8.98 0.89 

25% 40% 35% 0.33 0.27 1.06 0.40 0.20 0.56  25% 40% 35% 0.20 0.33 1.76 0.25 0.30 0.512239 -7.78 0.32 

30% 35% 35% 0.38 0.23 1.07 0.45 0.16 0.53  30% 35% 35% 0.24 0.29 1.84 0.29 0.26 0.512299 -6.60 0.35 

35% 30% 35% 0.43 0.19 1.08 0.50 0.13 0.50  35% 30% 35% 0.28 0.25 1.93 0.34 0.22 0.512358 -5.46 0.90 

40% 25% 35% 0.48 0.15 1.09 0.55 0.11 0.47  40% 25% 35% 0.32 0.21 2.01 0.38 0.18 0.512416 -4.34 1.46 

45% 20% 35% 0.52 0.12 1.10 0.59 0.08 0.45  45% 20% 35% 0.36 0.17 2.09 0.43 0.14 0.512472 -3.24 2.00 

50% 15% 35% 0.56 0.09 1.11 0.62 0.06 0.43  50% 15% 35% 0.40 0.13 2.18 0.47 0.11 0.512527 -2.17 2.54 

55% 10% 35% 0.60 0.06 1.12 0.66 0.04 0.41  55% 10% 35% 0.44 0.09 2.26 0.51 0.07 0.512580 -1.13 3.06 

60% 5% 35% 0.64 0.03 1.13 0.69 0.02 0.40  60% 5% 35% 0.48 0.04 2.34 0.55 0.03 0.512633 -0.10 3.58 

5% 55% 40% 0.07 0.41 0.99 0.10 0.34 0.71  5% 55% 40% 0.04 0.44 1.43 0.05 0.42 0.512038 

-

11.71 2.25 

10% 50% 40% 0.14 0.36 1.01 0.18 0.29 0.66  10% 50% 40% 0.08 0.41 1.51 0.10 0.38 0.512101 

-

10.47 1.63 

15% 45% 40% 0.20 0.31 1.02 0.26 0.24 0.62  15% 45% 40% 0.11 0.37 1.59 0.15 0.34 0.512164 -9.25 1.03 

20% 40% 40% 0.26 0.27 1.04 0.32 0.20 0.59  20% 40% 40% 0.15 0.33 1.66 0.20 0.30 0.512225 -8.07 0.44 

25% 35% 40% 0.32 0.23 1.05 0.38 0.17 0.55  25% 35% 40% 0.19 0.29 1.74 0.24 0.26 0.512284 -6.91 0.20 

30% 30% 40% 0.37 0.19 1.06 0.44 0.14 0.52  30% 30% 40% 0.23 0.25 1.82 0.29 0.22 0.512342 -5.77 0.74 

35% 25% 40% 0.42 0.15 1.07 0.49 0.11 0.50  35% 25% 40% 0.27 0.21 1.90 0.33 0.18 0.512399 -4.67 1.29 

40% 20% 40% 0.47 0.12 1.08 0.53 0.08 0.47  40% 20% 40% 0.31 0.16 1.98 0.37 0.14 0.512454 -3.58 1.83 

45% 15% 40% 0.51 0.09 1.09 0.57 0.06 0.45  45% 15% 40% 0.35 0.12 2.07 0.42 0.11 0.512509 -2.52 2.36 

50% 10% 40% 0.55 0.06 1.10 0.61 0.04 0.43  50% 10% 40% 0.39 0.08 2.15 0.46 0.07 0.512562 -1.49 2.88 

55% 5% 40% 0.59 0.03 1.11 0.64 0.02 0.41  55% 5% 40% 0.43 0.04 2.23 0.50 0.03 0.512614 -0.47 3.39 

5% 50% 45% 0.07 0.36 0.98 0.09 0.29 0.70  5% 50% 45% 0.04 0.39 1.42 0.05 0.38 0.512089 
-

10.72 1.76 

10% 45% 45% 0.14 0.31 1.00 0.18 0.25 0.65  10% 45% 45% 0.07 0.36 1.50 0.10 0.33 0.512150 -9.52 1.16 

15% 40% 45% 0.20 0.27 1.01 0.25 0.21 0.61  15% 40% 45% 0.11 0.32 1.57 0.14 0.29 0.512210 -8.34 0.57 

20% 35% 45% 0.26 0.23 1.03 0.31 0.17 0.58  20% 35% 45% 0.15 0.28 1.65 0.19 0.25 0.512269 -7.20 0.09 

25% 30% 45% 0.31 0.19 1.04 0.37 0.14 0.55  25% 30% 45% 0.19 0.24 1.73 0.24 0.22 0.512326 -6.08 0.58 

30% 25% 45% 0.36 0.15 1.05 0.43 0.11 0.52  30% 25% 45% 0.22 0.20 1.80 0.28 0.18 0.512383 -4.98 1.12 

35% 20% 45% 0.41 0.12 1.06 0.47 0.08 0.50  35% 20% 45% 0.26 0.16 1.88 0.32 0.14 0.512438 -3.91 1.66 

40% 15% 45% 0.46 0.09 1.07 0.52 0.06 0.47  40% 15% 45% 0.30 0.12 1.96 0.36 0.10 0.512491 -2.86 2.18 

45% 10% 45% 0.50 0.06 1.08 0.56 0.04 0.45  45% 10% 45% 0.34 0.08 2.04 0.41 0.07 0.512544 -1.84 2.70 

50% 5% 45% 0.54 0.03 1.09 0.59 0.02 0.43  50% 5% 45% 0.38 0.04 2.12 0.45 0.03 0.512595 -0.83 3.20 

0% 50% 50% 0.00 0.36 0.96 0.00 0.30 0.73  0% 50% 50% 0.00 0.38 1.34 0.00 0.37 0.512076 

-

10.96 1.88 

5% 45% 50% 0.07 0.32 0.97 0.09 0.25 0.69  5% 45% 50% 0.04 0.35 1.41 0.05 0.33 0.512137 -9.77 1.29 

10% 40% 50% 0.13 0.27 0.99 0.17 0.21 0.65  10% 40% 50% 0.07 0.31 1.48 0.09 0.29 0.512196 -8.62 0.71 

15% 35% 50% 0.19 0.23 1.00 0.24 0.18 0.61  15% 35% 50% 0.11 0.27 1.56 0.14 0.25 0.512254 -7.48 0.15 

20% 30% 50% 0.25 0.19 1.02 0.30 0.14 0.58  20% 30% 50% 0.15 0.23 1.63 0.19 0.21 0.512311 -6.38 0.42 
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25% 25% 50% 0.30 0.15 1.03 0.36 0.11 0.55  25% 25% 50% 0.18 0.19 1.71 0.23 0.17 0.512367 -5.29 0.96 

30% 20% 50% 0.35 0.12 1.04 0.41 0.09 0.52  30% 20% 50% 0.22 0.16 1.79 0.27 0.14 0.512421 -4.23 1.49 

35% 15% 50% 0.40 0.09 1.05 0.46 0.06 0.49  35% 15% 50% 0.26 0.12 1.86 0.31 0.10 0.512474 -3.19 2.01 

40% 10% 50% 0.45 0.06 1.06 0.50 0.04 0.47  40% 10% 50% 0.29 0.08 1.94 0.36 0.07 0.512526 -2.18 2.52 

45% 5% 50% 0.49 0.03 1.07 0.54 0.02 0.45  45% 5% 50% 0.33 0.04 2.02 0.40 0.03 0.512577 -1.18 3.02 

50% 0% 50% 0.53 0.00 1.08 0.58 0.00 0.43  50% 0% 50% 0.37 0.00 2.09 0.44 0.00 0.512627 -0.21 3.51 

5% 40% 55% 0.07 0.27 0.96 0.09 0.22 0.68  5% 40% 55% 0.04 0.30 1.40 0.05 0.29 0.512183 -8.88 0.84 

10% 35% 55% 0.13 0.23 0.98 0.16 0.18 0.64  10% 35% 55% 0.07 0.26 1.47 0.09 0.25 0.512240 -7.76 0.28 

15% 30% 55% 0.19 0.19 0.99 0.23 0.15 0.60  15% 30% 55% 0.11 0.23 1.55 0.14 0.21 0.512296 -6.66 0.27 

20% 25% 55% 0.24 0.16 1.01 0.29 0.12 0.57  20% 25% 55% 0.14 0.19 1.62 0.18 0.17 0.512351 -5.59 0.81 

25% 20% 55% 0.30 0.12 1.02 0.35 0.09 0.54  25% 20% 55% 0.18 0.15 1.69 0.22 0.14 0.512405 -4.54 1.33 

30% 15% 55% 0.35 0.09 1.03 0.40 0.06 0.52  30% 15% 55% 0.21 0.11 1.77 0.27 0.10 0.512458 -3.51 1.85 

35% 10% 55% 0.39 0.06 1.04 0.45 0.04 0.49  35% 10% 55% 0.25 0.08 1.84 0.31 0.07 0.512509 -2.51 2.35 

40% 5% 55% 0.44 0.03 1.05 0.49 0.02 0.47  40% 5% 55% 0.29 0.04 1.92 0.35 0.03 0.512560 -1.52 2.85 

0% 40% 60% 0.00 0.28 0.94 0.00 0.22 0.71  0% 40% 60% 0.00 0.29 1.32 0.00 0.28 0.512170 -9.14 0.97 

5% 35% 60% 0.07 0.23 0.95 0.08 0.18 0.67  5% 35% 60% 0.03 0.26 1.39 0.05 0.24 0.512226 -8.03 0.42 

10% 30% 60% 0.13 0.19 0.97 0.16 0.15 0.63  10% 30% 60% 0.07 0.22 1.46 0.09 0.21 0.512282 -6.94 0.14 

15% 25% 60% 0.18 0.16 0.98 0.23 0.12 0.60  15% 25% 60% 0.10 0.19 1.53 0.13 0.17 0.512336 -5.88 0.66 

20% 20% 60% 0.24 0.12 1.00 0.29 0.09 0.57  20% 20% 60% 0.14 0.15 1.61 0.18 0.13 0.512390 -4.85 1.18 

25% 15% 60% 0.29 0.09 1.01 0.34 0.06 0.54  25% 15% 60% 0.17 0.11 1.68 0.22 0.10 0.512442 -3.83 1.69 

30% 10% 60% 0.34 0.06 1.02 0.39 0.04 0.51  30% 10% 60% 0.21 0.07 1.75 0.26 0.07 0.512493 -2.83 2.19 

35% 5% 60% 0.38 0.03 1.03 0.44 0.02 0.49  35% 5% 60% 0.24 0.04 1.82 0.30 0.03 0.512543 -1.86 2.68 

5% 30% 65% 0.06 0.20 0.95 0.08 0.15 0.66  5% 30% 65% 0.03 0.22 1.38 0.04 0.20 0.512268 -7.22 0.08 

10% 25% 65% 0.12 0.16 0.96 0.15 0.12 0.62  10% 25% 65% 0.07 0.18 1.45 0.09 0.17 0.512322 -6.17 0.52 

15% 20% 65% 0.18 0.12 0.97 0.22 0.09 0.59  15% 20% 65% 0.10 0.14 1.52 0.13 0.13 0.512374 -5.14 1.03 

20% 15% 65% 0.23 0.09 0.99 0.28 0.07 0.56  20% 15% 65% 0.14 0.11 1.59 0.17 0.10 0.512426 -4.13 1.54 

25% 10% 65% 0.28 0.06 1.00 0.33 0.04 0.54  25% 10% 65% 0.17 0.07 1.66 0.21 0.07 0.512477 -3.15 2.03 

30% 5% 65% 0.33 0.03 1.01 0.38 0.02 0.51  30% 5% 65% 0.20 0.04 1.73 0.25 0.03 0.512526 -2.18 2.52 

20% 10% 70% 0.23 0.06 0.98 0.27 0.04 0.56  20% 10% 70% 0.13 0.07 1.58 0.17 0.06 0.512461 -3.45 1.88 

22% 8% 70% 0.25 0.05 0.98 0.29 0.03 0.55  22% 8% 70% 0.15 0.06 1.61 0.18 0.05 0.512481 -3.07 2.07 

24% 6% 70% 0.27 0.03 0.99 0.31 0.02 0.54  24% 6% 70% 0.16 0.04 1.63 0.20 0.04 0.512500 -2.69 2.26 

26% 4% 70% 0.29 0.02 0.99 0.33 0.02 0.53  26% 4% 70% 0.17 0.03 1.66 0.22 0.03 0.512520 -2.31 2.45 

28% 2% 70% 0.31 0.01 1.00 0.35 0.01 0.52  28% 2% 70% 0.19 0.01 1.69 0.23 0.01 0.512539 -1.93 2.64 

30% 0% 70% 0.32 0.00 1.00 0.37 0.00 0.51  30% 0% 70% 0.20 0.00 1.72 0.25 0.00 0.512558 -1.56 2.83 

5% 20% 75% 0.06 0.12 0.93 0.08 0.10 0.65  5% 20% 75% 0.03 0.14 1.37 0.04 0.13 0.512345 -5.71 0.75 

10% 15% 75% 0.12 0.09 0.94 0.14 0.07 0.61  10% 15% 75% 0.06 0.10 1.43 0.08 0.10 0.512396 -4.72 1.24 

15% 10% 75% 0.17 0.06 0.96 0.21 0.04 0.58  15% 10% 75% 0.10 0.07 1.50 0.12 0.06 0.512446 -3.75 1.73 

20% 5% 75% 0.22 0.03 0.97 0.26 0.02 0.55  20% 5% 75% 0.13 0.03 1.57 0.17 0.03 0.512494 -2.80 2.20 

25% 0% 75% 0.27 0.00 0.98 0.31 0.00 0.53  25% 0% 75% 0.16 0.00 1.64 0.20 0.00 0.512542 -1.87 2.67 
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0% 20% 80% 0.00 0.12 0.91 0.00 0.10 0.68  0% 20% 80% 0.00 0.14 1.30 0.00 0.13 0.512331 -5.98 0.62 

10% 10% 80% 0.12 0.06 0.94 0.14 0.04 0.61  10% 10% 80% 0.06 0.07 1.43 0.08 0.06 0.512431 -4.04 1.58 

20% 0% 80% 0.22 0.00 0.96 0.26 0.00 0.55  20% 0% 80% 0.13 0.00 1.56 0.16 0.00 0.512526 -2.18 2.51 

5% 15% 80% 0.06 0.09 0.92 0.07 0.07 0.64  5% 15% 80% 0.03 0.10 1.36 0.04 0.10 0.512382 -5.00 1.10 

15% 5% 80% 0.17 0.03 0.95 0.20 0.02 0.58  15% 5% 80% 0.10 0.03 1.49 0.12 0.03 0.512479 -3.10 2.05 

5% 10% 85% 0.06 0.06 0.91 0.07 0.04 0.63  5% 10% 85% 0.03 0.07 1.35 0.04 0.06 0.512416 -4.33 1.44 

10% 5% 85% 0.11 0.03 0.93 0.14 0.02 0.60  10% 5% 85% 0.06 0.03 1.42 0.08 0.03 0.512464 -3.40 1.90 

15% 0% 85% 0.16 0.00 0.94 0.20 0.00 0.57  15% 0% 85% 0.09 0.00 1.48 0.12 0.00 0.512511 -2.48 2.36 

0% 10% 90% 0.00 0.06 0.89 0.00 0.05 0.66  0% 10% 90% 0.00 0.06 1.28 0.00 0.06 0.512402 -4.61 1.30 

10% 0% 90% 0.11 0.00 0.92 0.13 0.00 0.60  10% 0% 90% 0.06 0.00 1.41 0.08 0.00 0.512496 -2.78 2.21 

5% 5% 90% 0.06 0.03 0.91 0.07 0.02 0.63  5% 5% 90% 0.03 0.03 1.35 0.04 0.03 0.512449 -3.68 1.76 

5% 0% 95% 0.06 0.00 0.90 0.07 0.00 0.62  5% 0% 95% 0.03 0.00 1.34 0.04 0.00 0.512481 -3.07 2.07 

0% 0% 100% 0.00 0.00 0.88 0.00 0.00 0.65  0% 0% 100% 0.00 0.00 1.27 0.00 0.00 0.512466 -3.35 1.93 

 

Table S6. Neodymium isotopic signature of AMS peat samples 

Sample                            ID Mid-Point Depth (cm) 143Nd/144Nd 2σ ɛNd 2σ 

AMS14-PB01A-1 1 0.512191 0.000011 -8.7 -0.2 

AMS14-PB01A-2 2 0.512146 0.000011 -9.6 -0.2 

AMS14-PB01A-3 3 0.512373 0.000073 -5.2 1.4 

AMS14-PB01A-4 5 0.512323 0.000015 -6.1 0.3 

AMS14-PB01A-5 6 0.512295 0.000007 -6.7 -0.1 

AMS14-PB01A-6 8 0.512252 0.000003 -7.5 0.1 

AMS14-PB01A-7 9 0.512301 0.000037 -6.6 0.7 

AMS14-PB01A-8 11 0.511833 0.000428 -4.8 -0.2 

AMS14-PB01A-10 13 0.512664 0.000020 0.5 0.4 

AMS14-PB01A-13 17 0.512522 0.000007 -2.3 -0.1 

AMS14-PB01A-16 21 0.512620 0.000005 -0.4 0.1 

AMS14-PB01A-21 28 0.512410 0.000010 -4.4 0.2 

AMS14-PB01A-30 39 0.512454 0.000015 -3.6 0.3 

AMS14-PB01A-56 73 0.512562 0.000012 -1.5 0.2 

AMS14-PB01A-62 81 0.512571 0.000008 -1.3 0.2 
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AMS14-PB01A-70 92 0.512516 0.000012 -2.4 0.2 

AMS14-PB01A-87 114 0.512614 0.000008 -0.5 0.2 

AMS14-PB01A-93 121 0.512632 0.000021 -0.1 0.4 

AMS14-PB01A-104 136 0.512502 0.000020 -2.7 0.4 

AMS14-PB01A-113 148 0.512578 0.000004 -1.2 0.1 

AMS14-PB01A-129 169 0.512499 0.000003 -2.7 0.1 

AMS14-PB01A-139 183 0.512516 0.000006 -2.4 0.1 

AMS14-PB01A-150 198 0.512579 0.000007 -1.2 0.1 

AMS14-PB01A-165 218 0.512493 0.000039 -2.8 0.8 

AMS14-PB01A-211 278 0.512515 0.000018 -2.4 0.4 

AMS14-PB01A-218 288 0.512545 0.000010 -1.8 -0.2 

AMS14-PB01A-218 294 0.512517 0.000004 -2.4 -0.1 

AMS14-PB01A-238 314 0.512506 0.000012 -2.6 0.2 

AMS14-PB01A-243 321 0.512486 0.000017 -3.0 0.3 

AMS14-PB01A-244 322 0.512506 0.000017 -2.6 0.3 

AMS14-PB01A-249 329 0.512544 0.000012 -1.8 0.2 

AMS14-PB01A-255 337 0.512570 0.000008 -1.3 0.2 

AMS14-PB01A-282 372 0.512514 0.000016 -2.4 0.3 

AMS14-PB01A-283 373 0.512559 0.000009 -1.5 0.2 

AMS14-PB01A-291 384 0.512527 0.000004 -2.2 0.1 

AMS14-PB01A-294 388 0.512410 0.000018 -4.4 0.4 

AMS14-PB01A-314 415 0.512474 0.000013 -3.2 0.3 

AMS14-PB01A-321 424 0.512428 0.000016 -4.1 0.3 

AMS14-PB01A-365 483 0.512509 0.000017 -2.5 0.3 

AMS14-PB01A-369 488 0.512528 0.000009 -2.1 0.2 

AMS14-PB01A-376 497 0.512595 0.000010 -0.8 0.2 
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Appendix C for Chapter 4 (Extended data 1) 

Extended data1. This data file contains Hg concentration (ng g-1) and Hg flux (μg m-2 yr-1) in four peat profiles from Amsterdam Island, 

Falkland Islands (Islas Malvinas), Andorra and Harberton. Peat mass accumulation rate from each core is also presented, which is calculated 

from density (g cm-3) and age interval (cm yr-1). Age interval is obtained based on age model results (yr, see Supplementary Information) and the 

thickness of the layer (cm). 

Amsterdam Island (AMS)  Falkland Islands (SCB, Islas Malvinas) 

Mid-depth 

(cm) 

Age 

(AD/BC) 

Hg 

(ppb) 

peat mass accumulation rate  

(g cm-2 yr-1) 

Hg flux 

(µg m-2 yr-1) 
 Mid-depth 

(cm) 

Age 

(AD/BC) 

Hg 

(ppb) 

peat mass accumulation rate  

(g cm-2 yr-1) 

Hg flux 

(µg m-2 yr-1) 

0.6 2014 30 0.013 3.8  0.5 2012 28 0.023 6.4 

2.0 2001 83 0.006 5.2  2.0 2008 27 0.031 8.5 

3.5 1988 149 0.008 12.5  3.4 2003 24 0.057 13.6 

4.9 1975 189 0.010 

 

19.8 
 

4.8 2001 25 0.053 13.3 

6.4 1960 158 0.009 13.8  6.3 1999 26 0.052 13.4 

7.8 1942 116 0.010 12.1  7.7 1997 27 0.046 12.4 

9.4 1924 128 0.010 12.9  9.3 1995 28 0.040 11.1 

10.8 1906 92 0.017 15.8  10.7 1993 24 0.051 12.3 

13.2 1885 83 0.016 13.0  12.1 1991 28 0.040 11.2 

17.0 1850 72 0.009 6.7  13.6 1988 27 0.036 9.8 

21.0 1805 66 0.013 8.7  15.0 1986 26 0.030 8.0 

22.3 1793 72 0.014 10.2  16.5 1983 31 0.032 10.0 

27.6 1739 63 0.013 8.5  18.0 1979 23 0.036 8.1 

30.3 1712 56 0.014 7.9  19.4 1976 26 0.028 7.4 

34.1 1669 80 0.015 11.7  20.8 1972 18 0.026 4.5 

39.1 1617 66 0.010 6.7  22.3 1968 18 0.029 5.1 

47.0 1543 62 0.016 10.0  23.7 1965 16 0.037 6.0 

64.1 1399 51 0.016 8.2  25.2 1962 26 0.032 8.1 

73.1 1278 64 0.012 7.9  26.6 1959 28 0.026 7.2 

81.0 1171 38 0.007 2.8  28.1 1956 33 0.025 8.3 

83.8 1133 50 0.009 4.7  29.6 1952 32 0.024 7.4 

91.5 1026 36 0.011 3.8  31.1 1948 43 0.018 7.7 

98.3 932 40 0.006 2.5  32.5 1943 41 0.029 11.9 

113.6 711 50 0.008 4.0  33.8 1939 56 0.032 18.0 

121.4 599 46 0.010 4.8  35.3 1934 67 0.026 17.6 

123.7 566 37 0.008 2.8  38.2 1926 54 0.030 16.3 

130.5 467 43 0.009 3.8  41.1 1919 35 0.031 10.9 

135.9 398 39 0.008 3.2  42.5 1916 33 0.053 17.3 

139.9 339 38 0.009 3.5  46.1 1910 44 0.029 12.6 

145.4 256 38 0.009 3.4  47.7 1907 33 0.017 5.6 

148.1 219 43 0.009 3.9  49.2 1902 35 0.013 4.4 

162.4 24 31 0.008 2.4  50.7 1896 43 0.011 4.9 
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169.3 -61 25 0.010 2.5  52.3 1890 38 0.010 3.9 

176.2 -139 39 0.011 4.3  53.8 1882 37 0.008 3.1 

179.1 -166 25 0.015 3.6  55.4 1872 36 0.009 3.3 

180.5 -179 26 0.012 3.2  56.8 1862 44 0.011 4.8 

183.2 -203 36 0.016 5.6  59.6 1842 52 0.013 6.7 

185.9 -225 33 0.011 3.8  62.4 1820 57 0.011 6.0 

188.7 -250 34 0.012 4.0  63.8 1809 36 0.008 2.8 

192.6 -283 52 0.013 6.5  68.2 1773 47 0.009 4.3 

198.0 -331 37 0.009 3.3  69.6 1761 34 0.008 2.7 

213.8 -472 41 0.015 6.2  73.7 1725 69 0.015 10.4 

217.8 -505 29 0.017 5.0  75.2 1713 69 0.010 7.0 

221.8 -536 35 0.015 5.3  76.5 1697 72 0.009 6.8 

228.4 -600 19 0.010 2.0  82.7 1591 83 0.013 10.8 

234.7 -685 19 0.010 1.9  83.8 1569 99 0.009 8.5 

238.7 -728 12 0.009 1.1  85.0 1548 92 0.007 6.3 

244.1 -794 12 0.006 0.7  86.3 1519 84 0.008 6.5 

246.8 -826 8 0.011 0.9  90.0 1446 122 0.007 8.1 

249.5 -857 13 0.007 0.9  92.5 1393 185 0.007 13.8 

263.4 -1006 9 0.008 0.7  95.0 1346 128 0.008 9.9 

268.7 -1069 11 0.011 1.1  98.6 1279 135 0.007 9.0 

272.7 -1112 9 0.006 0.5  
     

277.8 -1182 8 0.007 0.6  
     

286.2 -1329 12 0.006 0.7  
     

287.5 -1359 13 0.004 0.5  
     

294.1 -1502 29 0.006 1.8  
     

295.4 -1529 40 0.006 2.6  
     

298.0 -1593 35 0.005 1.6  
     

314.0 -1953 60 0.008 4.8  
     

316.6 -2011 67 0.009 6.0  
     

320.5 -2095 54 0.007 3.9  
     

321.9 -2125 66 0.011 7.5  
     

327.5 -2247 49 0.007 3.4  
     

328.8 -2277 63 0.010 6.2  
     

337.0 -2457 39 0.008 3.2  
     

340.9 -2535 29 0.010 2.8  
     

344.8 -2600 18 0.005 0.9  
     

348.7 -2649 19 0.016 3.1  
     

364.0 -2801 9 0.010 1.0  
     

366.6 -2827 9 0.016 1.5  
     

369.1 -2853 14 0.020 2.8  
     

371.8 -2878 13 0.017 2.3  
     

373.1 -2889 15 0.020 3.0  
   

 
 

381.2 -2984 9 0.010 0.9  
     

383.9 -3029 8 0.009 0.7  
     

388.2 -3100 18 0.013 2.3  
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392.3 -3170 9 0.007 0.6  
     

395.1 -3218 10 0.012 1.2  
     

412.6 -3504 6 0.006 0.4  
     

415.2 -3548 7 0.009 0.6  
     

421.8 -3647 15 0.014 2.0  
     

424.4 -3685 8 0.011 0.9  
     

427.1 -3718 10 0.007 0.7  
     

429.9 -3757 13 0.010 1.3  
     

431.3 -3779 13 0.013 1.8  
     

433.8 -3810 11 0.012 1.3  
     

437.8 -3860 13 0.013 1.7  
     

439.2 -3877 7 0.010 0.7  
     

447.4 -3982 9 0.012 1.1  
     

464.5 -4203 7 0.013 1.0  
     

467.1 -4235 24 0.015 3.6  
     

469.6 -4267 12 0.015 1.8  
     

477.4 -4363 17 0.017 2.9  
     

482.8 -4432 21 0.016 3.4  
     

486.6 -4483 14 0.012 1.6  
     

487.9 -4502 15 0.014 2.0  
     

491.8 -4554 13 0.012 1.6  
     

495.9 -4613 16 0.012 2.0  
     

497.3 -4630 22 0.013 2.8  
     

499.1 -4650 30 0.008 2.5  
     

 

Harberton (HAR)  Andorra (AND) 

Mid-depth (cm) 
Age 

(AD/BC) 
Hg (ppb) 

peat mass accumulation rate  

(g cm-2 yr-1) 

Hg flux 

(µg m-2 yr-1) 
 Mid-depth (cm) 

Age 

(AD/BC) 
Hg (ppb) 

peat mass accumulation rate  

(g cm-2 yr-1) 

Hg flux 

(µg m-2 yr-1) 

1.3 2013 27 0.050 13.5  1.9 2010 27 0.044 12.0 

2.4 2011 19 0.050 9.7  3.3 2008 19 0.037 7.2 

4.7 2007 18 0.068 12.3  6.2 2004 18 0.041 7.4 

6.9 2004 

 

15 0.076 

 

11.1 
 

9.0 2000 15 0.045 6.5 

9.1 2000 14 0.058 8.0  11.7 1996 14 0.043 6.0 

11.3 1998 14 0.070 9.7  14.6 1992 14 0.067 9.2 

13.6 1995 15 0.077 11.7  17.5 1990 15 0.056 8.5 

15.8 1992 14 0.057 8.2  20.3 1987 14 0.063 9.0 

18.1 1989 18 0.069 12.1  23.2 1984 18 0.070 12.2 

20.3 1987 17 0.077 13.2  26.0 1981 17 0.066 11.2 

22.4 1984 15 0.084 12.2  28.9 1978 15 0.073 10.6 

24.6 1981 12 0.070 8.2  31.6 1976 12 0.064 7.4 

26.6 1979 13 0.069 8.6  34.3 1973 13 0.066 8.3 

27.6 1977 16 0.059 9.3  35.7 1972 16 0.040 6.3 

29.7 1974 14 0.075 10.7  38.4 1968 14 0.047 6.7 
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30.7 1973 17 0.072 12.0  39.7 1966 17 0.050 8.3 

32.8 1969 32 0.055 17.5  42.4 1962 32 0.049 15.6 

33.9 1967 51 0.056 28.4  43.7 1960 51 0.039 20.0 

35.9 1962 74 0.051 37.9  46.4 1955 74 0.041 30.3 

37.0 1959 86 0.023 20.1  47.6 1952 86 0.036 31.2 

39.6 1924 60 0.008 4.8  50.3 1944 60 0.016 9.4 

40.9 1893 68 0.005 3.3  51.7 1937 68 0.015 10.2 

43.5 1815 41 0.006 2.6  54.6 1924 41 0.020 8.3 

44.8 1785 49 0.008 4.0  56.1 1917 49 0.019 9.3 

47.3 1748 27 0.008 2.2  59.0 1903 27 0.019 5.1 

48.5 1728 30 0.007 2.0  60.5 1896 30 0.018 5.5 

51.0 1689 55 0.010 5.3  63.2 1884 55 0.019 10.5 

52.3 1668 56 0.013 7.2  64.6 1878 56 0.018 9.9 

54.9 1626 30 0.010 2.8  67.3 1866 30 0.026 7.8 

57.4 1589 18 0.008 1.5  70.2 1854 18 0.015 2.7 

60.8 1545 35 0.009 3.1  73.2 1841 35 0.019 6.7 

63.2 1510 30 0.013 3.7  76.1 1827 30 0.017 4.9 

65.6 1480 32 0.010 3.3  
     

68.0 1447 20 0.010 2.0  
     

71.8 1397 23 0.017 3.9  
     

74.2 1367 19 0.010 2.0  
     

77.8 1319 17 0.011 2.0  
     

78.9 1303 17 0.009 1.6  
     

81.3 1271 17 0.009 1.5  
     

83.7 1240 22 0.011 2.4  
     

86.1 1208 19 0.014 2.6  
     

88.3 1179 26 0.015 3.8  
     

90.7 1148 18 0.015 2.8  
     

 


