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Gabriele PUPPIS Professeur Assistant University of Udine Co-Directeur
Paul GASTIN Professeur ENS Paris-Saclay Rapporteur
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Titre : Sur les problèmes de décision concernant les
transducteurs de mots avec la sémantique d’origine

Résumé : La sémantique d’origine pour les transducteurs de mots a
été introduite par Bojańczyk en 2014 afin d’obtenir une caractérisation
indépendante de la machine pour les fonctions mot à mot définies par les
transducteurs. Notre objectif principal était d’étudier certains problèmes de
décision classiques pour les transducteurs dans la sémantique d’origine, tels
que le problème d’inclusion et d’équivalence. Nous avons montré que ces
problèmes deviennent décidables dans la sémantique d’origine, même si la
version classique est indécidable.

Motivé par l’observation que la sémantique d’origine est plus fine que
la sémantique classique, nous avons défini les resynchroniseurs comme un
moyen de décrire les distorsions d’origine et d’étudier les problèmes ci-dessus
de manière relaxée. Nous avons étendu le modèle des resynchroniseurs ra-
tionnels, introduit par Filiot et al. pour les transducteurs unidirectionnels,
aux resynchroniseurs réguliers, qui fonctionnent pour des classes de trans-
ducteurs plus grandes.

Nous avons étudié les deux variantes du problème d’inclusion relative
à une resynchronisation, qui demande si un transducteur est contenu dans
un autre jusqu’à une distorsion spécifiée par un resynchroniseur. Nous
avons montré que le problème peut être résolu lorsque le resynchroniseur
fait partie de l’entrée. Lorsque le resynchroniseur n’est pas spécifié dans
l’entrée, nous avons cherché à synthétiser un tel resynchroniseur, chaque
fois que cela était possible. Nous appelons cela le problème de synthèse
pour les resynchroniseurs et nous montrons qu’il est indécidable en
général. Nous avons identifié quelques cas restreints où le problème devient
décidable. Nous avons également étudié le problème de resynchronisabilité
unidirectionnelle, qui demande si un transducteur bidirectionnel donné
est resynchronisable dans un transducteur unidirectionnel, et nous avons
montré que ce problème est également décidable.
Mots-clés : Transducteurs de mots, La sémantique d’origine, Resynchro-
niseurs, Équivalence, Inclusion, Synthèse



Title: On decision problems on word transducers with origin
semantics

Abstract: The origin semantics for word transducers was introduced by
Bojańczyk in 2014 in order to obtain a machine-independent characteriza-
tion for word-to-word functions defined by transducers. Our primary goal
was to study some classical decision problems for transducers in the ori-
gin semantics, such as the containment and the equivalence problem. We
showed that these problems become decidable in the origin semantics, even
though the classical version is undecidable.

Motivated by the observation that the origin semantics is more fine-
grained than classical semantics, we defined resynchronizers as a way to
describe distortions of origins, and to study the above problems in a more
relaxed way. We extended the model of rational resynchronizers, introduced
by Filiot et al. for one-way transducers, to regular resynchronizers, which
work for larger classes of transducers.

We studied the two variants of the containment up to resynchronizer
problem, which asks if a transducer is contained in another up to a
distortion specified by a resynchronizer. We showed that the problem is
decidable when the resynchronizer is given as part of the input. When the
resynchronizer is not specified in the input, we aimed to synthesize such a
resynchronizer, whenever possible. We call this the synthesis problem for
resynchronizers and show that it is undecidable in general. We identified
some restricted cases when the problem becomes decidable. We also
studied the one-way resynchronizability problem, which asks whether a
given two-way transducer is resynchronizable in a one-way transducer, and
showed that this problem is decidable as well.
Keywords: String transducers, Origin semantics, Resynchronizers, Equiv-
alence, Containment, Synthesis
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Résumé de la thèse

De langages aux transducteurs

Les automates constituent l’un des modèles de calcul les plus étudiés en
informatique. Un automate lit une lettre en entrée, met à jour son état en
utilisant une relation de transition et passe à la lecture de la lettre en entrée
suivante. Lorsqu’il atteint la fin de l’entrée, l’automate accepte ou rejette le
mot, selon que l’état actuel est acceptant ou non. Le langage reconnu par
l’automate est l’ensemble de tous les mots acceptés. La classe des langages
reconnus par les automates est appelée classe des langages rationnels et
bénéficie de différentes caractérisations. Par exemple, les langages rationnels
peuvent être définis par la logique monadique du second ordre, par des
expressions rationnelles, par des congruences finies, etc. Même l’ajout de
diverses caractéristiques aux automates, comme le non-déterminisme ou le
mouvement bidirectionnel de la tête de lecture, ne change pas l’expressivité.

Les transducteurs sur les mots ont été étudiés en informatique très tôt,
en même temps que les automates, en les considérant comme des auto-
mates à bandes multiples [RS59, Sch61]. Cependant, les travaux initiaux
présentaient une vision statique des transducteurs comme lisant des mots
sur plusieurs bandes d’entrée et définissant une relation k-aire. Une vision
dynamique des transducteurs, dans laquelle ils transforment entrée en sortie
a été présentée par Elgot et Mezei [EM65]. Dans cette vision dynamique, un
transducteur traite un mot d’entrée en lisant une lettre à la fois et produit la
sortie en écrivant sur une bande de sortie. Ainsi, les transducteurs peuvent
être considérés comme une généralisation des machines de Moore et Mealy.

Un transducteur de mots définit une transformation des mots, appelée
transduction. Les transductions fonctionnelles, où chaque mot d’entrée
est mis en correspondance avec au plus un mot de sortie, ont été très
bien étudiées. Un transducteur déterministe définit toujours une transduc-
tion fonctionnelle. Contrairement au cas des automates, l’ajout de non-
déterminisme augmente strictement l’expressivité des transducteurs, car un
transducteur non-déterministe peut définir des relations, au lieu des fonc-
tions. Le fait de permettre un mouvement bidirectionnel de la tête de lecture
rend également les transducteurs plus puissants. Par exemple, en utilisant le
mouvement bidirectionnel, un transducteur peut copier une entrée deux fois,
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ce qui n’est pas possible sans le mouvement bidirectionnel. Par conséquent,
il est particulièrement important d’identifier des classes robustes de trans-
ductions, avec différentes caractérisations équivalentes.

Les transductions définies par des transducteurs unidirectionnels sont
définissables par des expressions rationnelles sur un produit de monöıdes li-
bres, et sont donc appelées relations rationnelles. Cela donne aussi naturelle-
ment lieu aux fonctions rationnelles, qui sont des fonctions définissables par
des transducteurs unidirectionnels. Cette classe a reçu beaucoup d’attention
dans les premiers travaux sur les transducteurs [Sch75, Cho78].

Une classe plus intéressante de transductions contient les fonctions
définies par des transducteurs bidirectionnels, qui a reçu un regain d’intérêt
ces dernières années. Une caractérisation logique équivalente de cette classe
de fonctions a été donnée dans [EH01] en utilisant la logique monadique du
second ordre (MSO) [Cou97]. Plus récemment, un autre modèle des trans-
ducteurs unidirectionnels équipé d’un nombre fini des registres a été intro-
duit et on a montré qu’il caractérise la même classe de fonctions [AC11].
L’équivalence logique-machine pour les transductions [AC10, EH01] est une
réminiscence des caractérisations de Büchi-Elgot-Traktenbrot pour les au-
tomates. Pour cette raison, les fonctions définies par des transducteurs de
mots bidirectionnels sont appelées fonctions régulières. Des travaux plus
récents ont fourni des formalismes bases sur les expressions régulières, ap-
pelés expressions combinatoires régulières [AFR14, Gas19], et sur les fonc-
tions de listes régulières [BDK18]. Pour une étude sur les propriétés logiques
et algébriques des transductions de mots, voir [FR16]. Le survey ’enquête
récent [MP19b] est centré sur les problèmes de décision pour les fonctions
de mots réguliers et le finiment valués.

La semantique d’origine

Une sémantique alternative pour les transducteurs, appelée sémantique
d’origine, a été introduite dans [Boj14] afin d’obtenir des transducteurs bidi-
rectionnels fonctionnels canoniques. Dans la sémantique d’origine, la sortie
est étiquetée avec les positions de l’entrée, appelées origines, qui décrivent
où chaque lettre de sortie a été produite. La plupart des transformations
d’objets issus d’applications s’accompagnent souvent d’une notion d’origine.
Par exemple, dans le cas des transductions de mots, le sous-mot ab de
w = aab peut apparâıtre soit en choisissant le premier a du sous-mot ou
le deuxième a. Même si ces choix correspondent à des positions différents
dans w, ils pouvent produire le même sous-mot ab. La sémantique d’origine
fait la distinction entre ces deux cas.

Dans cette thèse, nous nous intéressons à l’étude du problème
d’équivalence et d’inclusion pour les transducteurs dans la sémantique
d’origine. L’équivalence sous la sémantique d’origine exige que les trans-
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ducteurs ne produisent pas seulement les mêmes sorties pour chaque entrée,
mais aussi avec les mêmes origines. Selon la sémantique de l’origine, deux
transducteurs peuvent être non équivalents même s’ils calculent la même re-
lation dans la sémantique classique. Par conséquent, la sémantique d’origine
est plus “stricte” que la sémantique classique pour les transducteurs.

Récemment, des problèmes de décision dans la sémantique d’origine ont
été considérés par Filiot et al. [FJLW16]. En particulier, il y a été de montré
que l’équivalence avec d’origine pour les transducteurs unidirectionnels est
PSpace-compléte. Ceci est en contraste avec la sémantique classique, où
l’équivalence est indécidable [FR68, Gri68]. De plus, la complexité PSpace
est le meilleur résultat que l’on puisse espérer, puisque l’équivalence des
automates est déjà PSpace-difficile [Koz77].

Resynchronisateurs Dans la sémantique d’origine, deux transducteurs
sont équivalents s’ils produisent la même sortie d’une manière synchronisée.
Une notion de resynchronisation a été introduite pour les transducteurs
unidirectionnels [FJLW16] comme moyen de comparer des transducteurs
ayant des origines similaires, mais pas identiques. Cela généralise la notion
d’équivalence d’origine et permet d’étudier des problèmes de décision dans
la sémantique d’origine d’une manière plus générale.

Contributions et structure de la thèse. Dans le chapitre 1, nous fixons
d’abord les notations et les définitions utilisées plus loin dans la thèse.

Dans le chapitre 2, nous étudions la décidabilité de l’équivalence d’origine
pour les transducteurs bidirectionnels et à registres. Pour les transduc-
teurs bidirectionnels, nous montrons que le problème l’équivalence avec
origine est PSpace-compléte, et qu’il a donc la même complexité que
l’équivalence d’automates. Pour les transducteurs à registres, nous four-
nissons un algorithme ExpSpace pour décider l’équivalence avec origine,
qui peut être amélioré en PSpace dans le cas déterministe. Nous identi-
fions également une sous-classe expressivement équivalente de transducteurs
à registres déterministes, pour lesquels le problème d’équivalence avec orig-
ine est en PTime. Pour les transducteurs à registres avec des updates copy-
ful, nous montrons la décidabilité de l’équivalence d’origine en fournissant
un algorithme de propagation en arrière.

Dans le chapitre 3, nous généralisons la notion de resynchronisation en
introduisant des resynchronisateurs réguliers. Ces resynchronisateurs fonc-
tionnent aussi pour les transducteurs bidirectionnels. Ceux-ci sont définis
à l’aide de formules logiques monadiques du second ordre et sont inspirés
par les transductions de graphes de Courcelle [Cou97]. L’idée derrière ce
modèle de resynchronisateur est d’utiliser une formule logique move avec
deux variables libres correspondant aux origines source et cible, interprétées
sur le mot d’entrée. Ceci définit un changement d’origine de la source à
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la cible pour chaque position de sortie. Nous étudions l’équivalence par
rapport d’une resynchronisation comme une généralisation du problème de
l’équivalence d’origine et montrons que le problème est décidable. Nous com-
parons également l’expressivité des resynchronisateurs rationnels et réguliers
restreints aux transducteurs unidirectionnels.

Dans le chapitre 4, nous étudions le problème de synthèse des resyn-
chronisateurs. Ce problème demande si deux transducteurs classiquement
équivalents peuvent être rendus équivalents du point de vue de l’origine
en déformant les origines à l’aide d’un resynchronisateur. Si c’est le cas,
alors l’objectif est de synthétiser un tel resynchronisateur. Nous étudions
ce problème à la fois pour les resynchronisateurs rationnels introduits par
Filiot et al. et pour les resynchronisateurs réguliers que nous avons in-
troduits. Pour les deux classes de resynchronisateurs, le problème est
indécidable. Pour les resynchronisateurs rationnels, nous donnons un moyen
de synthétiser un resynchronisateur lorsque les transducteurs donnés sont
fonctionnels, ou même finiment valués. Pour les resynchronisateurs réguliers,
nous donnons un algorithme pour décider et, si possible, synthétiser un
resynchronisateur lorsque les transducteurs d’entrée sont non ambigus.

Enfin, nous étudions une variante du problème de définissabilité unidi-
rectionnel dans la sémantique d’origine, dans le chapitre 5 . Le problème de
définissabilité unidirectionnel dans la sémantique de l’origine s’avère trivial
et est caractérisé par transducteurs qui préserve l’ordre. Une variante plus
intéressante de ce problème est le problème de resynchronisabilité unidi-
rectionnelle. Il s’agit de savoir si un transducteur bidirectionnel donné peut
être resynchronisé pour devenir équivalent à un transducteur unidirectionnel
quelconque. Nous fournissons une propriété basée sur le graphe des paires
d’entrée-sortie pour classifier quand c’est le cas. Nous prouvons également
une caractérisation équivalente sur le transducteur, ce qui donne un algo-
rithme PSpace pour décider de la resynchronisabilité unidirectionnelle.

Chaque chapitre s’achève par une section de conclusions qui résume les
résultats, mentionne les problèmes ouverts connexes et les orientations pour
les travaux futurs.
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Introduction

From languages to transductions

Finite-state automata are one of the most well studied model of compu-
tation that processes input words over a finite alphabet using a finite set of
states. An automaton reads a letter of the input, updates its state using a
transition relation and moves on to read the next letter of the input to the
right. Upon reaching the end of the input, the automaton either accepts
or rejects the word, based on whether the current state is accepting or re-
jecting. The language of an automaton is the set of all words accepted by
it. The class of languages recognized by finite-state automata is called the
class of regular languages and enjoys various different characterizations. For
example, regular languages can be defined by monadic second-order logic,
rational expressions, finite congruences, etc. Even adding various features,
such as non-determinism or two-way movement of the reading head, does
not change the expressiveness of finite-state automata.

Finite-state transducers over words were studied in computer science
very early, at the same time as finite-state automata, being viewed as multi-
tape automata [RS59, Sch61]. However, these works presented a static view
of transducers as reading words from multiple input tapes and defining a
k-ary relation. A dynamic view of transducers, where they transform in-
put into output, was presented by Elgot and Mezei [EM65]. This view is
motivated by the fact that computers typically process streams of data and
transform them between different formats. This view also motivates various
applications, for example in natural language processing. In this dynamic
view, a finite-state transducer can be seen as processing an input word by
reading a letter at a time and producing the output by writing on a output
tape, while accessing a finite set of states. Thus, transducers can be seen as
a generalization of Moore and Mealy machines.

A word transducer defines a transformation of words, which are called
transductions. Functional transductions, where every input word is mapped
to at most one output word, have been very well studied. A deterministic
transducer always defines a functional transduction. However, unlike the
case of automata, adding non-determinism strictly increases the expressive-
ness of transducers as a non-deterministic transducer can define relations,
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instead of functions. Allowing two-way movement of the reading head also
makes transducers more powerful. For example, using two-way movement, a
transducer can copy an input twice, which is not possible without the two-
way movement. Therefore, it is particularly important to identify robust
classes of transductions, with different equivalent characterizations.

Transductions defined by one-way transducers are definable by rational
expressions over a product of free monoids, and therefore are called rational
relations. This also naturally gives rise to rational functions, which are
functions definable by a one-way transducer. This class has received a lot
of attention in the early works on transducers [Sch75, Cho78].

A more interesting class of transductions are functions defined by two-
way transducers, which has received renewed interest in recent years.
An equivalent logical characterization of this class of functions was given
in [EH01] as transformations definable in monadic second-order logic
(MSO) [Cou97]. More recently, streaming string transducers [AC10] were
introduced and shown to characterize the same class of functions. Stream-
ing string transducers are deterministic one-way finite-state machines that
process the input in a left-to-right pass and use registers to compute
the output. This model was motivated by verification of streaming algo-
rithms [AC11], where the input is provided piece-wise and processed using
registers. Streaming string transducers are in contrast with two-way trans-
ducers, where the entire output needs to be stored in the memory. The logic-
machine equivalence for transductions [AC10, EH01] is reminiscent of Büchi-
Elgot-Traktenbrot characterizations of finite-state automata. For this rea-
son, functions defined by two-way word transducers are called regular func-
tions. More recently, there have been works providing regular expression-like
formalisms, called regular combinator expressions [AFR14, Gas19], and reg-
ular list functions [BDK18]. For a survey on logical and algebraic properties
of word transductions, see [FR16]. The recent survey [MP19b] is centered
on decision problems for regular word functions.

Non-determinism is a very natural and desirable feature for many finite-
state machines. However, for transducers, non-determinism introduces many
challenges, in particular decision problems are often intractable. As men-
tioned, identifying a robust class of transductions is also difficult. MSO-
transductions can be extended with non-determinism giving rise to NMSO-
transductions. However, the equivalence between two-way transducers and
MSO-transductions does not extend to their non-deterministic counter-
parts [EH01]. Still, NMSO-transductions and non-deterministic streaming
string transducers are expressively equivalent [AD11].
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Decision problems

Definability problems. Owing to the fact that the various models of
transducers studied have different expressiveness, definability problems arise.
For two classes of transducers C1 and C2, such that C1 ⊂ C2, the definability
problem asks given a transducer T ∈ C2, whether there exists a transducer
T ′ ∈ C1 defining the same transduction as T .

One instance of this is the one-way definability problem, which asks if
a given two-way transducer is equivalent to some one-way transducer. This
problem is of interest because it corresponds to a streaming setting, where
the input can be processed one letter at a time, instead of having to store the
entire input, and the output is produced on the fly. The one-way definability
problem is undecidable in general [BGMP18], but becomes decidable when
restricted to functional transducers [FGRS13, BGMP18].

Another interesting instance is the FO-definability problem, which asks
whether a given transduction is equivalent to some FO-definable transduc-
tion. Once again, it is important to restrict our attention to functional trans-
ductions as FO-definable transductions are by definition functional. On the
side of automata, first-order definability coincides with aperiodicity of the
transition monoid of the automata. For transducers, a similar (but non-
effective) result characterizing FO-definable transductions was obtained for
functional two-way transducers [CD15] and deterministic streaming string
transducers [FKT14] by defining aperiodic transition monoids. However,
the above characterizations are not effective and the problem of checking
whether a transduction is FO-definable or not remains open. The problem
was solved for deterministic one-way transducers [Cho03] and was recently
shown to be decidable for functional non-deterministic one-way transducers
(using an intermediate model called bimachines) [FGL16]. In both these
cases, the key idea is to build a canonical device defining the transduction.

Equivalence problem. The equivalence problem for transducers asks
whether two given transducers define the same transduction. For finite-state
automata, the equivalence problem, asking whether two given automata de-
fine the same language, is decidable. Given two automata A1 and A2, equiv-
alence boils down to checking emptiness of [[A1]]∩ [[Ac2]], where Ac2 represents
the complement of A2. Note that in case of automata, the computation of
A1 and A2 is synchronized. However, this is not the case, even for one-
way transducers as T1 and T2 can read the input in a synchronized manner,
but produce outputs at a different rate. In fact, the equivalence problem
turns out to be undecidable, even for one-way non-deterministic transduc-
ers [FR68, Gri68]. The equivalence test is one of the most widely used
operation on automata, so that it becomes a natural question to look for
classes of transducers for which equivalence is decidable. Again, the class of
functional transducers is well behaved in this respect, with equivalence for
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functional one-way transducers, two-way transducers and streaming string
transducers being decidable [Sch75, CK87, AD11]. For deterministic stream-
ing string transducers, the problem is decidable even in the unrestricted
copyful case [FR17, BDSW17]. In fact, the frontier of decidability goes be-
yond functional transducers. The equivalence problem is in fact decidable
a more general class, called the finite-valued transducers. The decidability
for one-way and two-way transducers is due to [CK86], whereas the one
for streaming string transducers is due to [MP19a]. Another class of trans-
ductions with a decidable equivalence problem is the class of deterministic
rational relations (DRat). These relations are defined by transducers that
have the property that a transition either reads a single input letter or out-
puts a single output letter. Determinism in this case implies that fixing the
choice of input letter or output letter uniquely determines the next state.
The equivalence problem for DRat was shown to be decidable [Bir73], even
in PTime [FG82].

Origin semantics for transducers

An alternative semantics for transducers, called origin semantics, was
introduced in [Boj14] in order to obtain canonical functional two-way trans-
ducers. In the origin semantics, the output is tagged with positions of the
input, called origins, that describe where each output letter was produced.
Most transformations of objects arising from applications often come with an
associated notion of origin. As an example, consider the problem of sorting
an array given as an input. The output produced will be a sorted array and
each element of the output corresponds to a particular element of the input.
As another example from word transductions, the subword ab of w = aab
can arise either by choosing the first a in the subword or the second a. Even
though these choices correspond to different choices of positions w, they still
yield the same subword ab. The origin semantics distinguishes between the
two cases by making the choice visible using the origin information. Most
models of transducers we considered have a natural notion of origins as well.

As noted by Bojańczyk while introducing origin semantics, origin infor-
mation has been used to visualize program execution and even construct
deubggers. In this context, a program can be seen as a syntax tree, and
the origin information can be used to identify positions of errors [vDKT93].
More recently, one-counter automata with observability semantics was intro-
duced [Bol16], which outputs the value of the counter after every transition.
The observability semantics allows to recover decidability of some problems
such as universality or inclusion problem and also obtain nice closure prop-
erties. This semantics is very similar to the origin semantics because the
output stores information about the execution.

Equivalence under the origin semantics requires for the transducers to
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not only produce the same outputs on every input, but also with the same
origins. According to the origin semantics, two transducers may be non-
equivalent even when they compute the same relation in the classical seman-
tics. For example, the identity function can be implemented by a transducer
by copying a letter at a time, or by copying blocks of two letters at a time.
Even though they define the same transformation, these transducers will be
inequivalent in the origin semantics. Therefore, the origin semantics is more
”strict” than the classical semantics for transducers with respect to equiva-
lence. Recently, decision problems in the origin semantics were considered
by Filiot et al. [FJLW16]. In particular, they showed the origin equivalence
for one-way transducers to be PSpace-complete. This is in contrast with
the classical semantics, where equivalence is undecidable. Moreover, the
complexity PSpace is the best one can hope for, since equivalence of NFA
is already PSpace-complete [Koz77].

Contributions. We extend the decidability of origin-equivalence from
one-way transducers to more expressive two-way transducers and stream-
ing string transducers. For two-way transducers, we show that the origin-
equivalence problem is PSpace-complete, therefore it has the same complex-
ity as equivalence of NFA. For streaming string transducers, we provide an
ExpSpace algorithm to decide origin-equivalence, which can be improved to
PSpace in the deterministic case. Note that the classical equivalence prob-
lem is decidable in PSpace for both deterministic and functional streaming
string transducers [AD11]. Therefore, for this case, the origin semantics
does not yield better complexity bounds.

We also identify an expressively equivalent subclass of deterministic
streaming string transducers, that only uses separated updates, i.e, whenever
two registers are combined into the same register, they are separated by a
non-empty output. For this subclass we show that the origin-equivalence is
in PTime. For streaming string transducers with copyful updates, we show
decidability of origin-equivalence by providing a backward propagation al-
gorithm.

We also show that the origin-equivalence problem for transducers with
unary output alphabet is as hard as the general case. This contrasts with
the classical semantics, where restricting to unary output alphabet can give
better complexity for the equivalence problem. For example, the classi-
cal equivalence problem for deterministic streaming string transducers is
in PSpace, but restricting to unary output alphabet gives a PTime algo-
rithm [ADD+13].
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Resynchronizers.

It can be argued that comparing two transducers in the origin semantics
is rather restrictive, because it requires that the same output is generated
at precisely the same place. A natural approach to allow some ’distortion’
of the origin information when comparing two transducers was proposed
in [FJLW16]. Rational resynchronizers allow to compare one-way trans-
ducers (hence, the name ’rational’) under origin distortions that are gen-
erated with finite control. A rational resynchronizer is simply a one-way
transducer that processes an interleaved input-output string, called syn-
chronized word, producing another synchronized word with the same input
and output projection. After introducing resynchronizers, it was shown that
origin-containment up to distortion specified by a rational resynchronizer is
decidable for one-way transducers. This gives a way to relax the notion of
equivalence under the origin semantics.

Contributions. The synchronized word representation of input-output
pairs capturing origin information does not generalize from one-way to two-
way transducers (or streaming string transducers). Therefore, we introduce
a new model of resynchronizers, called regular resynchronizers. These are
defined using MSO-formulas and are inspired by MSO-definable graph trans-
formations of Courcelle [Cou97]. The key idea behind this resynchronizer
model is to use an MSO formula move with two free variables y, z, which
are interpreted as input positions i and j respectively, that defines change of
origin of an output position from i to j. In this way, a regular resynchronizer
defines a distortion of origins based on logical formula. We show that given
a two-way transducer, and a regular resynchronizer, the set of distorted
synchronized pairs can be realized by another two-way transducer. This re-
duces the containment up to distortion specified by a regular resynchronizer
to origin-containment, which is decidable.

We also study the synthesis problem for resynchronizers. This prob-
lem asks whether two classically equivalent transducers can be made origin
equivalent by distorting origins using a resynchronizer. If so, the objective is
to synthesize such a resynchronizer. We study this problem for both rational
resynchronizers introduced by Filiot et al. and also for regular resynchro-
nizers that we have introduced. For both classes of resynchronizers, the
problem is undecidable. For rational resynchronizer, we give a way to syn-
thesize a resynchronizer when the given transducers are functional, or even
finite-valued. It was already shown that a special type of resynchronizers,
called bounded-delay resynchronizers, suffices [FJLW16]. However, we im-
prove on the size of resynchronizer synthesized when the transducers given
are functional. For regular resynchronizers, we give an algorithm to decide
and if possible, synthesize a resynchronizer when the input transducers are
unambiguous.
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We also study a variant of the one-way definability problem in the origin-
semantics. The one-way definability problem in the origin semantics turns
out to be trivial and is characterized by order-preserving transducers. The
variant of this problem is the one-way resynchronizability problem. This asks
whether a given two-way transducer can be resynchronized to become equiv-
alent to some one-way transducer. We provide a graph-based property of
input-output pairs to classify when this is the case. We also prove an equiv-
alent characterization on the transducer, which gives a PSpace algorithm
for deciding one-way resynchronizability.

Structure of the Thesis

We begin by fixing the notations and definitions used subsequently in
the thesis in Chapter 1.

In Chapter 2, we investigate the origin-equivalence problem for different
classes of transducers. We begin by recalling the decidability result for one-
way transducers given by [FJLW16]. In Section 2.1, we show that the origin-
equivalence problem for unary output alphabet is as hard as the general case.
In Section 2.2, we show that origin-equivalence for two-way transducers is
PSpace-complete. This section is based on parts of the paper [BMPP18].
Finally, in Section 2.3, origin-equivalence problem is studied for various
classes of streaming string transducers.

In Chapter 3, we begin by defining resynchronizations as a means to relax
the notion of origin-equivalence. The model of rational resynchronizers from
[FJLW16] is defined in Section 3.2 and several of its important properties are
defined, such as the notion of bounded delay, lag, etc. We also recall some
of the important results regarding rational resynchronizers in this section.
In Section 3.3, the model of regular resynchronizers is introduced and the
interesting subclass of bounded regular resynchronizer is introduced. This
section presents several results from [BMPP18], and [KM20]. In Section 3.4,
the models of rational and resynchronizers are compared and we show that
rational resynchronizers are a subclass of regular resynchronizer. However,
we show that for a subclass of transducers, called real-time transducers,
the two formalisms are in fact equally expressive. This section is based on
parts of the paper [BKM+19]. This chapter also serves as an introduction
to models of resynchronizers, which are used in Chapters 4 and 5.

In Chapter 4, the synthesis problem for resynchronizers is studied. In
Section 4.1, the synthesis problem is shown to be undecidable for both ra-
tional resynchronizers and bounded regular resynchronizers. The proof we
present has been adapted from [KM20]. In Section 4.2, first we show that
given functional (or even finite-valued) transducers, the synthesis problem
for rational resynchronizers is decidable. Then we show that the synthesis
problem for bounded, regular resynchronizer is decidable when the trans-
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ducers given as part of the input are unambiguous. These results are from
the paper [BKM+19].

In Chapter 5, we study a variant of the one-way definability problem,
called the one-way resynchronizability problem, which asks whether a given
two-way transducer can be resynchronized to an classically equivalent one-
way transducer. In Section 5.1, we recall the results for the one-way defin-
ability problem in the classical semantics [BGMP18] as well as the origin
semantics [Boj14]. In the origin semantics, one-way definability was shown
to be equivalent to order-preserving transductions. In Section 5.2, we give
various technical definitions such as cross-width and inversions, which are
used in Section 5.3, to characterize one-way resynchronizability in the sim-
pler case of bounded-visit transducers. Section 5.4 deals with the general
case to complete the proof. This chapter is based on the paper [BKMP21].

Each Chapter finishes with a conclusions section which summarizes the
results, mentions related open problems, and directions for future work.
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Chapter 1

Preliminaries

In this chapter, we introduce the definitions and notations used in the
thesis. First we introduce automata and regular languages. We then extend
automata to transducers to define transformations of words. We also de-
fine some decision problems for transducers and some known results in this
direction. Finally, we define the origin semantics for transducers and the
origin-equivalence problem which is studied in this thesis.

1.1 Words and Languages

Words. An alphabet Σ is a finite set of symbols, which are called letters. A
word w over an alphabet Σ is a finite sequence of letters from Σ. We denote
the set of natural numbers {1, 2, . . .} by N. We denote by [i, j], where i ≤ j,
an interval {i, i+ 1, . . . , j}. Formally, a word is a map w : [1, n] → Σ. The
set [1, n] is called the domain of w, denoted by dom(w). The length of such
a word w is n, denoted by |w|. Every i ∈ dom(w) is called a position of w,
and w(i) is called the i-th letter of w. We usually represent a word w as the
sequence w(1)w(2) . . . w(n). The empty word, denoted by ε is the unique
mapping from the empty set to Σ and has length 0.

We denote by w([i, j]) the infix between the i-th and j-th position of w,
i.e, w(i)w(i + 1) . . . w(j). A word w′ is called a factor of w, if there exists
i ≤ j ∈ dom(w), such that w′ = w([i, j]). A factor w′ of w is called a prefix,
denoted by w′ v w, if i = 1. Similarly, w′ is called a suffix of w if j = |w|. A
word w′ is called a subword of w if there exists positions i1 < i2 < · · · < ik
in dom(w) such that w′ = w(i1)w(i2) . . . w(ik).

For Ω ⊆ Σ and w ∈ Σ∗, we write wΩ to denote the projection of the word
w to Ω, namely the subword of w consisting of all positions of w labeled by
letters from Ω.

Cuts. A cut in a word is a border between two consecutive positions of
the word or the border at the beginning or end of the word. A word w of
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length n has cuts 0, 1, . . . , n, where 0 is the cut at the beginning of the word,
n is the cut at the end of the word, and the cut i is in between the i-th and
i + 1-th positions. As an example, over the alphabet Σ = {a, b}, the word
w = aba has 3 positions and 4 cuts. The third letter w(3) = a is between
the cuts 2 and 3.

Languages. The set of all finite words over Σ is denoted by Σ∗, whereas
Σ+ denotes the set of non-empty words over Σ. A language L over an
alphabet Σ is a subset of the set of all words Σ∗. For example, the set of all
words of length at most 7 is a language.

1.2 Automata

1.2.1 One-way automata

A non-deterministic one-way finite-state automaton is a tuple A =
(Q,Σ, I, F,∆), where Q is a finite set of states, Σ is an alphabet, I ⊆ Q is
the set of initial states, F ⊆ Q is the set of final states, and ∆ ⊆ Q×Σ×Q
is the transition relation. We write NFA as a shorthand for finite-state
automaton.

Intuitively, an NFA is a finite state machine with a reading head which
reads a word, referred to as the input to the NFA, in a left-to-right scan
and either accepts or rejects the input word. A configuration of an NFA
A on a word w is a pair (q, i), where q is a state and i is a cut, indicating
that the current state of the NFA is q and the reading head is at cut i. The
initial configuration is of the form (q, 0), where q ∈ I. From a configuration
(q, i − 1), where q ∈ Q, and 1 ≤ i ≤ |w|, the NFA can read the letter w(i)
and execute a transition (q, a, q′) ∈ ∆ such that w(i) = a. Upon taking such
a transition, the NFA moves to the new configuration (q′, i).

A run of A over a word w of length n is a sequence of configurations
ρ = (q0, 0) −a1−→ (q1, 1) −a2−→ . . . −an−→ (qn, n), such that there exists transitions
ti = (qi−1, ai, qi) ∈ ∆, where ai = w(i) and q0 ∈ I. In other words, the
configuration (qi, i) is reachable from (qi−1, i− 1) by the transition ti on the
letter w(i). A run is called an accepting run if qn ∈ F . The language of an
automaton A, denoted by [[A]], is the set of all words w ∈ Σ∗, such that A
has an accepting run on w. Two NFA A and A′ are said to be equivalent
if [[A]] = [[A′]]. The class of languages accepted by NFA are called regular
languages.

Example 1.2.1. The following NFA A accepts words over the alphabet Σ =
{a, b} which have ”a” as the last letter. The state q1 is the only initial state,
depicted by the incoming arrow and the state q2 is the final state, depicted
by the outgoing arrow. The NFA takes the transition from q1 to q2 on the
last letter, which must be an a.
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A q1 q2

a, b

a

Figure 1.1 – An NFA for words with last letter a

The adjective non-deterministic in NFA is used to indicate that it is
possible to have a non-deterministic choice among transitions on the same
letter. In other words, from a configuration (q1, i) in the above example,
both the transition (q1, a, q1) and (q1, a, q2) can be executed. The adjective
one-way signifies that the input is read in a left-to-right scan.

Deterministic finite-state automata. An NFA is called deterministic
finite-state automaton (denoted by DFA), if there is at most one initial state
qI in I, and for all q ∈ Q and a ∈ Σ, there exists at most one q′ ∈ Q, such
that (q, a, q′) ∈ ∆. Note that the second condition is equivalent to saying
the transition relation is a partial function from Q× Σ to Q.

Even though DFA are defined as a restriction of NFA, DFA are in fact
expressively equivalent to NFA. In fact, every NFA can be determinized, i.e,
an equivalent DFA can be constructed, by using the subset construction,
due to [RS59]. In other words, adding non-determinism does not add any
expressive power to finite-state automata.

1.2.2 Two-way automata

A generalization of NFA is obtained by allowing the reading head to
move in both left and right directions. Two-way non-deterministic finite-
state automata (2NFA) are finite-state automata but enhanced with both
left and right movement on the input. To define a 2NFA, we assume a word
has two special delimiter symbols {`a} called the left and right endmarkers
disjoint from Σ, which occur only as the first and last letter in the word
respectively. Thus, we only consider words w of length n ≥ 2, such that the
first letter w(1) is ` and the last letter w(n) is a. All the other positions
1 < i < n have letters w(i) from Σ.

Formally, a 2NFA is a tuple A = (Q,Σ, I, F,∆), where Q = Q≺ ∪ Q�
is the set of states partitioned into left-reading states Q≺ and right-reading
states Q�, Σ is a finite alphabet with endmarkers {`,a}, I ⊆ Q� is the set
of initial states, and F ⊆ Q is the set of final states. and ∆ ⊆ Q × Σ × Q
is the transition relation. As in the case of NFA, a configuration of a 2NFA
A on a word w of length n is a pair (q, i), where q ∈ Q and 1 ≤ i ≤ n − 1
is a cut of w, representing the position of the reading head. Note that we
assume the input head never moves to the left of `, i.e, the cut 0, or to the
right of a, i.e, the cut n.
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The partitioning of states into left and right-moving states is useful to
specify which letter to read from the state. From a configuration (q, i), the
2NFA reads w(i) if q is a left-reading state, i.e, q ∈ Q≺, or w(i+ 1) if q is a
right-reading state, i.e, q ∈ Q�.

A transition (q, a, q′) ∈ ∆ connects configurations (q, i) and (q′, i′), de-
noted by (q, i) −a−→ (q′, i′) if one of the following holds:

— q ∈ Q�, q′ ∈ Q�, a = w(i+ 1), and i′ = i+ 1,
— q ∈ Q�, q′ ∈ Q≺, a = w(i+ 1), and i′ = i,
— q ∈ Q≺, q′ ∈ Q�, a = w(i), and i′ = i,
— q ∈ Q≺, q′ ∈ Q≺, a = w(i), and i′ = i− 1.
A run of A on w is a sequence ρ = (q0, i0) −a1−→ (q1, i1) −a2−→ · · · −am−−→

(qm, im) of configurations connected by transitions satisfying the above con-
ditions. Furthermore, we require (q0, i0) to be an initial configuration. A
run is accepting if it ends in a final configuration, i.e, qm ∈ F and im = n−1.

The language of A, denoted by [[A]], is the set of words {w | w ∈
Σ∗, and A has an accepting run on `w a}. It is known that class of lan-
guage accepted by 2NFA coincides with the class of regular languages. In
particular, for every 2NFA, there exists effectively an equivalent NFA that
accepts the same language [RS59, She59].

Deterministic two-way automata. Similar to the one-way case, we call
a 2NFA A deterministic, if A has at most one initial state and for every
state q ∈ Q and letter a ∈ Σ, there is at most one transition of the form
(q, a, q′) ∈ ∆. We write 2DFA as a shorthand for deterministic two-way
automata.

Note that 2DFA is both an extension of DFA and a restriction of 2NFA.
Since both DFA and 2NFA define the class of regular languages, 2DFA is
expressively equivalent to NFA (equivalently DFA, 2NFA). Therefore, we
have the expressively equivalent models of NFA, DFA, 2NFA, and 2DFA, all
defining the class of regular languages.

Size of an automaton. We now define the size of an automaton (NFA or
2NFA). Given an automaton A = {Q,Σ, I, F,∆}, the size of A, is defined
as the size of the individual components. Usually, we fix the input alphabet
Σ. In this case the size of the transition relation ∆, and the set of initial
and final states are polynomially bounded by |Q|. Therefore, we say size of
an automata to denote |Q|.

Expressiveness of classes of automata. Figure 1.2 sums up the classes
of automata we defined and the comparisons between the expressiveness of
different classes. For example, the arrow between DFA and 2DFA denotes
that 2DFA is a generalization of DFA by allowing two-way movement of the
reading head.
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NFA DFA

2DFA2NFA

non-determinism

two-waytwo-way

subset construction [RS59]

non-determinism

crossing sequence

[RS59, She59]

Figure 1.2 – Comparisons between classes of automata

The dashed arrows represent non-trivial inclusions. The construction
from a 2NFA to an equivalent NFA is based on crossing sequences [RS59,
She59], whereas the subset construction [RS59] gives an equivalent DFA
for every NFA. Both these constructions result in NFA (respectively DFA)
that can have size exponential in the size of the original 2NFA (respectively
NFA). From a 2NFA, one can apply the two constructions to obtain an
equivalent DFA, with a doubly exponential blowup. However, a construction
of Vardi [Var89] (not depicted in Figure 1.2), allows a direct construction of
DFA from a 2NFA with a single exponential blow-up.

Unambiguous automata. An NFA (or 2NFA) A is said to be unam-
biguous, if for every word w, A has at most one accepting run on w. For
example, the NFA in Figure 1.1 is unambiguous, because every word that is
accepted has exactly one accepting run. It is easy to see that every DFA is
also unambiguous.

An NFA (2NFA) is called k-ambiguous, if for every word w, A has at most
k accepting runs. Note that unambiguity corresponds to the special case of
k = 1. An NFA (2NFA) is called finitely ambiguous, if it is k-ambiguous for
some k. The following theorem lists some results on deciding the ambiguity
of an NFA.

Theorem 1.2.2. Given an NFA A, it is decidable in time polynomial in
|A|,

— whether A is k-ambiguous, where k is fixed [SHI85].
— whether A is finitely ambiguous or not [WS91].

6



1.3 Monadic Second-Order Logic on Words

We now present the monadic second-order (MSO) logic over words (see
e.g. [Tho97]).

Signature and logical structure. A signature is a tuple S = (P, ar),
where P is a set of predicates and ar : P → N ∪ {0} is the arity function.
A predicate P ∈ P has arity n if ar(P ) = n. Given an alphabet Σ, we are
interested in the signature SΣ = (P = {≤, (Pa)a∈Σ}, ar), where ≤ has arity
2 and for every a ∈ Σ, Pa has arity 1.

A structure M over the signature S is given by a set called the dom(M)
and an interpretation of every predicate. An interpretation of a predicate
P ∈ P is a subset of dom(M)ar(P ). Predicates with arity 0 are interpreted
as a constant in dom(M).

Words as logical structures. In this setting, we see a word w over the
alphabet Σ as a logical structure over the signature SΣ with domain dom(w)
and the predicates Pa, for a ∈ Σ being interpreted as the set of positions in
dom(w) labeled by a. The predicate ≤ is interpreted as the order on the set
of positions in dom(w).

Syntax of MSO. MSO formulas over the signature SΣ is defined by the
following grammar:

φ ::= φ∧ φ ; ¬φ ; ∃xφ(x) ; ∃Xφ(X) ; x ∈ X ; x1 ≤ x2 ; Pa(x) ; x1 = x2

where, X ranges over a set of monadic second-order variables (often de-
noted by X,Y, Z, etc), and x, x1, x2 range over a set of first-order variables
(denoted by symbols x, y, z, etc). The universal quantification over both
first-order and monadic second-order variables can be defined from negation
and existential quantification. The boolean connective φ ∨ φ can also be
defined as usual, using ∧ and ¬.

Free variables and satisfiability. A free variable in a formula φ is a
variable that is not in the scope of a quantifier. A formula φ with free
variables x1, . . . , xk, X1 . . . Xn, is written as φ(x1, . . . , xk, X1, . . . , Xn).

Given a set of variables X̂ = {x1, . . . , xk, X1, . . . Xn}, we can extend the
signature SΣ of words over Σ to SΣ,X̂ = (P ′, ar), where P ′ = P∪X̂. In other
words, every variable is seen as a predicate. The first-order variables have
arity 0 and monadic second-order variables have arity 1. Therefore, a word
structure (which interprets the ≤ and Pa predicates only) can be expanded
to an interpretation over this expanded signature, where the the first-order
variables are interpreted as positions of the word and the monadic second-
order variables are interpreted as sets of positions of the word. We can define
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when an expanded word structure satisfies the formula φ. In particular, the
base case of x ∈ X, x1 ≤ x2, Pa(x), x1 = x2 are defined naturally, and
satisfiability for the other formulas can be defined by induction.

A word w with positions i1, . . . ik ∈ dom(w) and sets of positions
I1, . . . , In ⊆ dom(w), is said to satisfy φ(x1, . . . , xk, X1, . . . , Xn) if the struc-
ture w expanded with i1, . . . ik as interpretations of x1, . . . xk, and I1, . . . In
as interpretations of X1, . . . , Xn satisfies φ. We usually denote this as
(w, i1, . . . , ik, I1, . . . , In) � φ.

Sentences and languages. An MSO formula is called a sentence if it has
no free-variable. Given an MSO-sentence φ, it defines a language, namely the
words that satisfies the formula φ. This set is denoted by [[φ]]. The languages
defined by MSO-sentences are exactly the class of regular languages [Buc60].
Therefore, this gives an expressive equivalence between MSO logic and the
various classes of automata defined earlier.

1.4 Transductions and Transducers

While automata define language of words, we now look at extensions
that define transformations of words. We fix an input alphabet Σ and an
output alphabet Γ. A transduction is a relation T ⊆ Σ∗ × Γ∗. For a pair
(u, v) ∈ T , we call u the input word, and v the output word. The domain of
a transduction T is the set of input words dom(T ) := {u | ∃v, (u, v) ∈ T }.
Without loss of generality, we assume that Σ and Γ are disjoint. If the
alphabets are not disjoint, one can tag them with Σ or Γ to make them
disjoint. We will often give examples where the input and output alphabet
are not disjoint. We use extensions of automata, called transducers as a
model to study transductions of words.

1.4.1 One-way transducers

A one-way finite-state transducer, denoted by NFT, is an extension of
NFA where the transitions read a letter from an input word as before, but
also produce an output. Formally, an NFT T = (Q,Σ,Γ, I, F,∆), where Q
is a finite set of states, I ⊆ Q is the set of initial states, F ⊆ Q is the
set of final states, Σ and Γ are the input and output alphabet respectively,
and ∆ ⊆ Q × Σ × 2Γ∗ × Q is the transition relation. Moreover, for every
transition (q, a, L, q′) ∈ ∆, we require L to be a regular language over Γ.

On an input word u, run of an NFT T is defined similarly to runs
of NFA on u. A run of T over u is a sequence of configurations ρ =
(q0, 0) −a1|v1−−−→ (q1, 1) −a2|v2−−−→ . . . −an|vn−−−→ (qn, n), such that there exists transi-
tions ti = (qi−1, ai, Li, qi) ∈ ∆, where ai = u(i), vi ∈ Li and q0 ∈ I, qn ∈ F .
Therefore, for the run ρ on u, the output of the run is the word v1v2 . . . vn.
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The transduction defined by T , denoted by [[T ]] is the set of all pairs (u, v)
such that v is the output of some accepting run ρ of T on u. We often write
T instead of [[T ]] to denote the transduction defined by a NFT T , as long as
it is clear from context.

In the literature (for instance [EM65, MP19b, FR16]), ∆ ⊆ Q × Σ ×
Γ∗ ×Q. However, the reading head is allowed to stay in the same position
with transitions that read the empty word ε. This allows to simulate any
output from a regular language L using ε-transitions. Therefore, the two
formalism are equivalent. We introduce regular language outputs in order
to avoid ε-transitions.

Example 1.4.1. In Figure 1.3, the transition (q1, a, c
∗, q2) is a transition

which can output any word from c∗, i.e, cm for any m ≥ 0. Thus the
transducer accepts any input of the form an and outputs cm for every m ≥ 0.

T q1 q2

a | c∗
a | ε

Figure 1.3 – An NFT defining pairs of the form (an, cm)

Real-time transducers. An NFT T is said to be real-time if for every
transition (q, a, L, q′) ∈ ∆, where ∆ is the transition relation of T , L is
finite. The name real-time is motivated by the fact that ε-transitions are not
needed in the more classical representation of transition where the output
is a single word v. Indeed, since L is a finite language, say L = {v1, . . . , vn},
we can replace the transition (q, a, L, q′) by n transitions ti = (q, a, vi, q

′), for
1 ≤ i ≤ n, each outputting a different word in L. When talking about real-
time NFTs, we often write transitions as (q, a, v, q′) instead of (q, a, L, q′)
with L finite.

Example 1.4.2. An example of a real-time NFT is in Figure 1.4, which
produces output a|w| (resp. b|w|)on input wa (resp. wb), where w ∈ Σ∗, for
Σ = {a, b}.

Letter-to-letter transducers. A real-time NFT T is called letter-to-
letter if for every transition (q, a, v, q′) of T , we have |v| = 1. In other
words, each transition reads a single letter of the input and produces a
single letter of the output. The NFT in Figure 1.4 is letter-to-letter.

The class of letter-to-letter NFTs define length-preserving transduc-
tions [EM65]. A transduction T is called length-preserving if for every input-
output pair (u, v) ∈ T , |u| = |v|. While it is easy to see that letter-to-letter
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T q1

q2

q4

q3

q5

a|b

b|b

b|a

a|a

a|b , b|b

b|b

a|a , b|a

a|a

Figure 1.4 – An example of a real-time NFT

NFTs define length-preserving transductions, it was shown in [EM65] that
any length-preserving transduction definable by an NFT can also be defined
by a letter-to-letter NFT.

Deterministic one-way transducers. An NFT T is called determinis-
tic, denoted by DFT, if it is real-time, it has at most one initial state, and
for every state q and letter a ∈ Σ, there are at most one state q′ and one
output word v ∈ Γ∗, such that (q, a, v, q′) ∈ ∆. This means reading a letter
a from a state q fixes the next state q′ and the output produced v.

1.4.2 Two-way transducers

Similar to the case of automata, transducers can also be enhanced by
two-way movement of the reading head. A two-way finite-state transducer
T , denoted by 2NFT, is a tuple T = (Q,Σ,Γ, I, F,∆). The set of states
Q = Q≺ ∪ Q� is partitioned into left-reading states Q≺ and right-reading
states Q�, with set of initial state I ⊆ Q� and set of final states F ⊆ Q.
As with 2NFA, there are special symbols ` and a, called the left and right
endmarkers, respectively, in the alphabet Σ. Moreover, we assume the input
words are of the form `ua. The transition relation ∆ ⊆ Q×Σ× Γ∗ ×Q is
the set of transitions.

Configurations and runs of a 2NFT can be defined similar to an 2NFA,
with the only difference being that a transition (q, a, v, q′) now also produces
an output word v ∈ Γ∗. We denote a transition between configurations as
(q, i) −a|v−−→ (q′, i′). Recall that we have conditions on i, i′ and a depending
on whether q and q′ are left-reading state or right-reading state (see page 5).
A run of T on u is a sequence ρ = (q0, i0) −a1|v1−−−→ (q1, i1) −a2|v2−−−→ · · · −am|vm−−−−→
(qm+1, im+1) of configurations connected by transitions such that (q0, i0) is
an initial configuration, and (qm+1, im+1) is a final configuration. For an
accepting run ρ, the output associated with ρ is any word v1v2 · · · vm ∈ Γ∗.
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Thus, a 2NFT T defines a relation [[T ]] ⊆ Σ∗ × Γ∗ consisting of all the pairs
(u, v) such that v is the output of some successful run ρ of T on u.

Note that unlike the case of NFT, here we define transitions with a single
word as output instead of a regular language. For 2NFT, it does not matter
whether the output in a transition is word v ∈ Γ or a regular language
L ⊆ Γ∗. A 2NFT can simulate ε transitions by using two-way movement of
the reading head and therefore simulate any output from L by producing
one letter from Γ at a time. Therefore, the real-time restriction is equivalent
to the more generalized definition with regular outputs. In this thesis, we
mostly consider transitions as producing a single word. However, in some
cases, we use the generalization with regular outputs in a transition.

Unlike automata, 2NFT are strictly more expressive than NFT.

Example 1.4.3. A 2NFT T can recognise the transformation that maps
a word w to w+, i.e, wm for all m ≥ 0 over the alphabet Σ = {a, b}. This
is shown in Figure 1.5. The 2NFT T copies the word at state q1, which is
a right-reading state, until it reaches the right endmarker a. After reaching
the end, it moves to state q2, which is a left-reading state and comes back
to the left end of the word without outputting anything. Then it can again
copy the word in a left-to-right scan at state q1. This can be done for any
number of times until the run stops at the final state q2.

T q1,→ q2,←

a|a, b|b
a |ε

a|ε,b|ε

` |ε

Figure 1.5 – An example of a 2NFT

Deterministic and unambiguous 2NFTs. Similar to the one-way case,
we call a 2NFT T deterministic, denoted by 2DFT, if it has at most one
initial state and, for every q ∈ Q and a ∈ Σ, there is at most one transition
of the form (q, a, {v}, q′) in T . Note that the 2NFT in Example 1.4.3 is not
deterministic since it can either halt at the end of the word, or go back to
the beginning and copy the word once again.

A 2NFT T is called unambiguous, if for every input u, T has at most one
accepting run on u. If T has regular language outputs, then we also require
the output languages in the transitions occurring in the accepting run to be
singleton sets. Note that this also defines unambiguous NFTs. The second
condition is motivated by the fact that there is an intrinsic non-determinism
with regular output languages in a transition as even after choosing the
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transition, there is a non-deterministic choice among the possible set of
outputs.

Two-way Transducers with common guess. An extension of 2NFT is
obtained by allowing common guess. Intuitively, this means that the input
is marked with a regular coloring. The 2NFT then runs on the colored input
to produce an output. Formally, a 2NFT with common guess is a tuple
(T ′, φ), where T ′ = (Q,Σ × C,Γ, I, F,∆) is a 2NFT with C a finite set of
colors, and φ is an MSO-sentence over the alphabet Σ × C. Intuitively, φ
defines a regular subset of (Σ×C)∗, which are referred to as colored words.
A word u ∈ Σ∗ is said to be colored as û if ûΣ = u. Note that a word u
can be colored in multiple ways by φ. Therefore, the common guess can
introduce additional non-determinism. We denote a 2NFT with common
guess by 2NFTCG .

The transduction defined by a 2NFT with common guess T = (T ′, φ),
denoted by [[T ]], consists of pairs (u, v) such that v is the output of T ′ on
some word û such that ûΣ = u.

Example 1.4.4. We give an example of an 2NFT with common guess that
maps a word w to v∗, for every subword v of w. This can be done by having
the set of colors C = {0, 1}, and φ accepts all words from (Γ × C)∗. The
2NFT then scans the word from left-to-right, copies positions with color 1,
and then again returns to the beginning of the word copying the subword with
color 1 an arbitrary number of times.

Note than 2NFT with common guess is more powerful than 2NFT, as
the Example 1.4.4 cannot be realized by an 2NFT without common guess.

Size of transducers. As was the case with automata, the size of a trans-
ducer refers to the sum of the size of the individual component defining the
transducer. However, unlike the case of automata, the size of the compo-
nents need not be polynomially bounded by |Q|, even for a fixed alphabet,
since the output component in a transition can be arbitrarily large.

For a transducer (NFT or 2NFT) T with transitions having regular out-
put language, the size of T , denoted by |T | is the sum of number of its
states, input symbols, transitions, plus, the sizes of the NFA descriptions of
the regular output languages associated with each transition rule.

Let n be a bound such that for every transition (q, a, q′, L) ∈ ∆, the
NFA representation of L has size at most n. Then the size of the transition
relation is polynomially bounded by n|Q|. Therefore, over a fixed alphabet,
the size of a transducer T is also polynomially bounded by n|Q|.
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1.4.3 Streaming string transducers

Streaming string transducers, introduced in [AC10], denoted as NSST,
are an extension of real-time NFT, enhanced by registers to store and
compute outputs on a run. Formally, an NSST is a tuple T =
(Q,Σ,Γ, R, I, F, out ,∆), where Q is a finite set of states, Σ and Γ are fi-
nite input and output alphabets, R = {r1, . . . , rn} is a finite set of registers,
I ⊆ Q is the set of initial states, and F ⊆ Q is the set of final states.

Before defining the transition relation ∆ and the output function out ,
we define register updates. A register update up is a function from R to
(R ∪ Γ)∗. We denote by U the set of all register updates. The transition
relation ∆ is a subset of Q × Σ × Q × U . The output function out is a
function from F to R∗.

A valuation of the registers is a function val : R → Γ∗. A valuation
of registers can be extended to strings from (R ∪ Γ)∗. For a string α =
u1r1u2 . . . rkuk with ri ∈ R, ui ∈ Γ∗, the valuation val(α) of the string α is
obtained by replacing every register rj occurring in α by val(rj). Therefore,
val can be extended to be a function from (R ∪ Γ)∗ → Γ∗.

A configuration of NSST T on a word u of length n is a triple (q, i, val),
where q ∈ Q is the current state, i is a cut of u, 0 ≤ i ≤ n, denoting the
position of the reading head, and val is the current valuation of registers.
Configuration (q, i − 1, val) is connected to configuration (q′, i, val ′) by the
transition (q, a, q′, up), denoted by (q, i−1, val) −a,up−−→ (q′, i, val ′), if u(i) = a,
and for all registers r, val ′(r) = val(up(r)). A configuration (q, i, val) is said
to be initial if q ∈ I, i = 0, and for all registers r ∈ R, val(r) = ε. A run ρ
of T on a word u is a sequence ρ = (q0, 0, val0) −a1,up1−−−−→ (q1, 1, val1) −a2,up2−−−−→
. . . −an,upn−−−−→ (qn, n, valn) such that (q0, 0) is an initial configuration and the
transition −ai,upi−−−−→ implies that ai = u(i) and val i(r) = val i−1(upi(r)) for
all registers r ∈ R. A run is accepting if it ends in a final configuration,
i.e, qn ∈ F . The output of an accepting run ρ is defined to be the word
valn(out(qn)) ∈ Γ∗. The transduction defined by T , denoted by [[T ]] is the
set of all pairs (u, v) such that v is the output of some accepting run ρ of T
on u.

Copyless restriction. An update up is called copyless if for every register
r,
∑

r′∈R |up(r′){r}| ≤ 1. In other words, the register r occurs at most once in
all the update strings up(r′), for r′ ∈ R. A transition (q, a, q′, up) is copyless
if up is copyless. An output function out is called copyless if for every state
qf ∈ F and every register r ∈ R, out(qf ) has at most 1 occurrence of r.
An NSST T is called copyless if the output function is copyless and every
transition of T is copyless.

An NSST that is not copyless is called copyful. In this thesis, we write
NSST to mean the copyless variant. The adjective copyful is used explic-
itly whenever we talk about the copyful variant. Copyful NSSTs are more
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powerful than NSSTs. For example, a copyful NSST can define the expo-
nentiation relation, which maps a word an to a2n , which cannot be done by
an NSST.

Deterministic and unambiguous NSSTs. An NSST T is called deter-
ministic if it has at most one initial state, and for every q ∈ Q and a ∈ Σ, it
has at most one transition of the form (q, a, q′, up). A deterministic stream-
ing string transducer is denoted by DSST. An NSST T is called unambiguous
if for every input u, T has at most one accepting run on u.

1.5 Classes of Transducers

We have defined various classes of transducers. These classes vary in
their expressive power. We look at the expressive power of the different
classes defined earlier, first in the functional case, and then in general one.

1.5.1 Functional transductions

A transduction T is called functional if for every input u ∈ Σ∗, there
exists at most one v ∈ Γ∗ such that (u, v) ∈ T . Therefore, T is a partial
function from Σ∗ to Γ∗. A transducer (NFT, 2NFT, or NSST) T is called
functional if [[T ]] is a functional transduction. Note that every deterministic
or unambiguous transducer is functional by definition. The functionality
problem asks whether a given transducer is functional or not. For NFT, this
problem was shown to decidable in [Sch75, BH77, GI83]. A PTime algo-
rithm for checking functionality for NFT was provided in [BCPS00]. Using
a logic to express structural properties of NFTs called pattern logic, check-
ing functionality was shown to be decidable in NlogSpace [FMR18]. For
2NFTs, the problem was shown to be decidable in [CK87]. For NSSTs, an
algorithm with PSpace complexity was given in [AD11] to check function-
ality. Below, we summarize the results from [MP19b], which also provides
the exact complexity for 2NFT.

Theorem 1.5.1 (Theorem 3 in [MP19b]). The functionality problem is
— NlogSpace-complete for NFT.
— PSpace-complete for 2NFT.
— in PSpace for NSST.

For completeness we present here the idea behind checking functionality
as given in [MP19b]. One guesses an input word and two accepting runs of
the transducer on it, and then guesses either that the length of the output
of the two runs are different, or there exists an output position where the
output of the two runs are different. Both these conditions can be checked
by an NFA equipped with a counter which can be incremented or decre-
mented in the transitions. Therefore, the problem of checking functionality
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reduces to emptiness of a one-counter automaton (denoted by OCA), which
is decidable. For NFT, the OCA is of size polynomial in the size of the
NFT. For 2NFT, the OCA uses crossing sequences to check the required
properties, which can be of exponential size. This gives the upper bound
of NlogSpace and PSpace respectively. For NSSTs, the size of the OCA
is exponential as we need to record the set of registers which appear to the
left of the position witnessing non-equivalence in the final output.

The lower bounds are obtained by reducing emptiness of intersection of
NFA (2NFA), which is NlogSpace-hard (PSpace-hard [Koz77]). For NFA
(2NFA) Ai, i ∈ {1, 2}, we can define NFT (2NFT) Ti which outputs i on
input u if and only if u ∈ [[Ai]]. Therefore, the intersection [[A1]] ∩ [[A2]] is
non-empty if and only if the T1 ∪ T2 is non-functional.

Expressiveness. For functional transductions, Figure 1.6 summarizes the
expressive powers of the different classes of transductions. The class of
functions defined by DFTs are called sequential functions [Eil74]. It is easy
to see that sequential functions are contained in the class of functions defined
by NFTs, called the rational functions [Sch75]. An interesting result is
that functional NFTs are expressively equivalent to unambiguous NFTs (not
shown in the figure) [Sch75].

It follows from definition that rational functions are definable by NSST
(or 2NFT), since every NFT is also a NSST (or 2NFT). The examples shown
in the Figure are examples that cannot be captured by the smaller class.
The function wa 7→ aw can be realized by an NFT but not a DFT, and
w 7→ rev(w), where rev(w) = w(n) . . . w(1), |w| = n, can be realized by a
2NFT, but not an NFT.

The expressive equivalence between 2NFT and 2DFT was shown in
[EH01] through MSO-definable string transductions in the spirit of graph
transformation, originally defined by Courcelle [Cou94]. An MSO string-
transduction, introduced in [EH01], defines a word over Γ by interpreting
the ≤ order and (Pa)a∈Γ predicates over the set dom(u)k for a fixed k, where
u ∈ Σ∗ is the input word. The equivalence between 2DFT and DSST (and
also with MSO-transductions) was shown in [AC10]. Finally, for functional
transductions, the class of functions defined by NSST and DSST were shown
to be equal in [AD11]. Motivated by the various different equivalent char-
acterizations, including the equivalence between logical MSO-transductions
and machine based NSST (or 2NFT), the class of functions defined by NSST
(or 2NFT) are called regular functions [EH01].

1.5.2 Expressiveness for non-deterministic transducers

In the non-functional case, the picture regarding the expressiveness of
different classes of transducers is a bit complicated. We are interested in
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DFTNFT
wa 7→ aw

NSST =2NFT =2DFT =DSST
w 7→ rev(w)

Figure 1.6 – Functional transducers

NFTRTNFT

NSST2NFT

2NFTCG

Figure 1.7 – Non-deterministic transducers

the following classes of transducers: real-time NFTs, NFTs, 2NFTs, 2NFTs
with common-guess, NSSTs. These classes are depicted in Figure 1.7.

In Figure 1.7, NFTRT denotes real-time NFT having the linear-output
property, i.e, there exists a bound k, such that for every (u, v) ∈ [[T ]] on
every input u, |v| ≤ k|u|. Note that NSST have the linear-output property
as well. On the other hand, the classes of transducers on the left side of the
figure can produce arbitrarily long output on an input.

The containment of real-time NFT in NFT and NSST follow by def-
inition. The main difference from the functional case is that NSST and
2NFT are now incomparable. For example, the relation w 7→ w∗ can be
realized by a 2NFT but not by a NSST. On the other hand the transduc-
tion w 7→ v2, where v is a subword of w, can be realized by an NSST that
non-deterministically chooses a subword v and copies the letters of v into 2
different registers. A 2NFT cannot realize this transduction since it has to
come back to store the guessed subword v, which is not possible.

However, by adding the feature of common guess, a 2NFT with common
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guess, denoted by 2NFTCG in the figure, can color a subword v of w, and
the 2NFT can make 2 passes on w and copy the colored positions, realizing
w 7→ v2. In fact, with common guess, the transduction w 7→ v∗, where v is a
subword of w can be realized by a 2NFTCG . This idea can be generalized to
use the common guess feature to guess a run of an NSST and then use the
passes of the 2NFT over the colored input to simulate the output produced
by a NSST. This shows that 2NFT with common guess are strictly more
powerful than NSST and 2NFT.

Other models. The class of NSST was shown to be expressively equiv-
alent to the non-deterministic MSO-transductions in [AD11]. NMSO-
transductions on words, introduced in [EH01] are MSO-transduction ex-
tended with a common-guess feature, i.e, the input structure is non-
deterministically colored using a MSO formula and then an MSO-
transduction is applied.

In [AD11], other models, such as ε-NSSTs were introduced, which are
NSSTs with transitions reading the empty input ε. This removes the restric-
tion of output-boundedness. However, this turns out to be incomparable to
both 2NFT and 2NFT with common-guess. A comparison between the dif-
ferent models can also be found in [BDGP17].

1.6 Decision Problems for Transducers

In this section, we describe some well-studied decision problems for trans-
ducers. We start with the containment and equivalence problems, which
compare the transductions realized by two transducers.

1.6.1 Equivalence and containment problems

Given two transducers T1, T2, we say T1 is contained in T2, denoted
by T1 ⊆ T2, if [[T1]] ⊆ [[T2]]. We say T1 and T2 are equivalent, denoted by
T1 = T2, if [[T1]] = [[T2]]. This gives rise to the following decision problems
for a class of transducers C (NFT, 2NFT, NSST, etc):

Problem 1.6.1. Containment Problem: Given two transducers T1 and
T2 from C, is T1 ⊆ T2?

Problem 1.6.2. Equivalence Problem: Given two transducers T1 and T2

in C, is T1 = T2?

It is easy to see that the equivalence problem reduces to the containment
problem. In general, the containment problem was shown to be undecidable
for NFTs in [FR68]. This was strengthened in [Gri68] to show that equiva-
lence and containment are undecidable for real-time NFTs. In [Iba78], this
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was further strengthened to the case of NFTs with unary output alphabet.
For completeness we show this proof below.

Theorem 1.6.3. [FR68, Gri68, Iba78] The containment and equivalence
problem for real-time NFT is undecidable, even for unary output alphabet.

Proof. We present the proof of undecidability due to Ibarra [Iba78] adapting
it to the real-time assumption.

The proof reduces the Post Correspondence Problem which asks, given
two word morphisms f, g : Σ∗ → Γ∗, if there exist a non-empty word w ∈ Σ+,
such that f(w) = g(w). Let k be a constant such that |f(a)| < k and
|g(a) < k for all letters a ∈ Σ. We assume Σ ∩ Γ = ∅.

Consider the relation R to be the set of all pairs of the form (wu, an),
where w ∈ Σ∗, u ∈ Γ∗, and u = f(w) = g(w) and n = |u|. Clearly, we
have n = |u| < k|w|. Intuitively, the set R encodes the solutions of the PCP
instance.

Let R′ be the relation consisting of pairs (wu, an), where w ∈ Σ∗, u ∈ Γ∗,
and n < k|w|. This can be realized by a real-time NFT T ′ that outputs at
most k letters a while reading a letter of w.

Let Rc = R′ \ R consists of all pairs (wu, an) from Σ+Γ∗ × {a}∗ such
that, either u 6= f(w), or u 6= g(w), or n 6= |u|. We show that Rc can be
recognized by a real-time NFT T . The NFT T can check that the input
is from Σ+Γ∗. On an input from this set, it non-deterministically guesses
whether n = |u|, n < |u| or n > |u|, and does the following:

— If n > |u|, then the T can output an while processing the input
as follows. It non-deterministically produces n − |u| many a’s while
reading the w part of the input and then produces a single a on
reading each letter from u. This can be done in a real-time manner
since n < k|w|.

— If n < |u|, then T outputs an on the last n positions of u in a real-time
fashion.

— If n = |u|, then either f(w) 6= u or g(w) 6= u. Without loss of
generality, let us assume, f(w) 6= u. Then we can factorize the
input as w1bw2u1u2, such that w = w1bw2, u = u1u2, and |f(w1)| =
|u1| but u2 does not begin with f(b). The transducer guesses this
factorization and generates a|f(w1)| while processing w1 and a|u2| while
processing u2.

The real-time NFTs T and T ′ are equivalent if and only if the PCP
instance has no solutions. Also, we have T ⊆ T ′ if and only if T and T ′ are
equivalent. Therefore, the PCP reduces to the equivalence (containment)
problem for real-time NFTs with unary output alphabet.

The above proof can be modified to have T ′ define the universal relation
Σ∗ × Γ∗. In this case, T has to be modified to allow to output an for any n
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in the case n 6= |u|. This shows that the universality problem is undecidable
for NFTs.

Corollary 1.6.3.1. The universality problem for NFTs in undecidable.

Decidable subclasses. While the equivalence problem is undecidable in
general, there are many classes of transducers that have decidable equiva-
lence problem. In particular, the deterministic subclasses enjoy decidable
equivalence. One of the earliest result in this regard is due to Moore [Moo56].
The equivalence problem for DFTs was shown to be decidable by Blattner
and Head [BH79]. For 2DFTs, Gurari [Gur82] proved the equivalence prob-
lem to be decidable and PSPACE-complete by a reduction to emptiness
problem for reversal-bounded counter machines.

The equivalence problem for DSST was shown to be decidable in PSpace
by Alur and Deshmukh [AD11]. In fact, they reduce the equivalence problem
to checking functionality, which is in PSpace (as mentioned in Theorem
1.5.1). Given two NSSTs T1 and T2, T1 = T2 if and only if T1∪T2 is functional
and dom([[T1]]) = dom([[T2]]). This also shows that the equivalence problem
is decidable for functional NSSTs. For NSSTs, a matching lower bound
can be obtained by reduction from equivalence of NFA, which is PSpace-
hard. The exact complexity for the case of DSSTs still remains open. In
[FR17, BDSW17], equivalence was shown to be decidable for copyful DSSTs
as well. Over unary output alphabet, the equivalence problem for copyful
DSSTs was shown to be decidable in PTime [ADD+13].

Functionality of NFTs was shown to be decidable by [Sch75](see The-
orem 1.5.1), which already gives decidability of the equivalence problem.
Independently, the equivalence (and functionality) problem was shown to
be decidable in [BH77]. Recall that checking functionality is NlogSpace-
complete. However, checking whether dom([[T1]]) = dom([[T2]]) is in PSpace
which dominates the complexity. However, for unambiguous NFT, the prob-
lem is in PTime, as the equivalence of domain reduces to equivalence of
unambiguous NFTs, which is in PTime [SHI85].

For functional 2NFTs, equivalence was shown to be decidable in [CK87].
Though no complexity result is mentioned in this work, the complexity of
equivalence problem for functional 2NFTs is PSpace-complete. The lower
bound comes as usual from the emptiness of intersection of 2NFA (similar
to Theorem 1.5.1). Checking functionality of T1 ∪ T2 is in PSpace and
the equivalence of domains can be checked in PSpace as well, due to a
construction by Vardi [Var89].

The following theorem summarizes the complexity of the equivalence
problem for different classes of functional transducers.

Theorem 1.6.4. The equivalence problem for functional

1. DFTs is NlogSpace-complete.
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2. NFTs is PSpace-complete.

3. unambiguous NFTs is in PTime.

4. 2NFTs,2DFTs, and NSSTs is PSpace-complete.

5. DSST is in PSpace.

6. copyful DSSTs is decidable.

7. copyful DSSTs with unary output alphabet is in PTime.

Finite-valued transducers. The frontier of decidability however lies be-
yond the class of functional transducers. A transducer (NFT,2NFT or
NSST) T is called k-valued, if for every input u, T has at most k differ-
ent outputs on u. The special case of k = 1 corresponds to the functional
case. A transducer is called finite-valued if it is k-valued for some k.

For k-valued NFTs, the equivalence problem was shown to be decidable
by Culik and Karhumäki [CK86]. The following stronger result gives an
alternative proof of this result.

Theorem 1.6.5. [Web96, SdS10] A k-valued NFT can be decomposed into
union of k unambiguous NFTs of exponential size.

The decomposition according to a fixed order yields the property that
NFTs T1 and T2 are equivalent if and only if the k unambiguous NFTs for T1

and T2 obtained by the above theorem are pairwise equivalent. Therefore,
checking equivalence of T1 and T2 reduces to checking equivalence of unam-
biguous NFTs of exponential size. This gives an upper bound of ExpTime.

The original proof due to Culik and Karhumäki uses Ehrenfeucht’s con-
jecture to show the existence of a finite test set Fn such that two NFT with
at most n states are equivalent iff they agree upon the set Fn. The Ehren-
feucht’s conjecture, now a theorem, was proved independently by Albert
and Lawrence and by Guba [AL85, Gub86]. We will see an application of
this theorem in Chapter 2. This proof also works for finite-valued 2NFTs.
However, a decomposition result as in the case of NFT is not known.

For finitely-valued NSSTs, the equivalence problem was shown to be de-
cidable in [MP19a]. In this case, a decomposition result as in the case of
NFT would prove the expressive equivalence between finite-valued NSSTs
and finite-valued 2NFTs. This is because for every k-valued 2NFT, there
exists an equivalent k-valued NSST. The NSST guesses a run of the 2NFT
and simulates the output. Guessing the run is possible because for finitely-
valued 2NFT, we can assume the crossing sequences to be of bounded size.
A decomposition result for NSSTs would allow to build, given an NSST T ,
k NSSTs T1 . . . Tk, such that [[T ]] = [[

⋃k
i=1 Ti]]. Since each of these Ti is a

functional NSST, there exists equivalent 2NFTs, and therefore T is equiva-
lent to the union of these functional 2NFTs. Therefore, the decomposition
of a k-valued NSST remains an interesting open problem.
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Theorem 1.6.6. The equivalence problem for k-valued

1. NFT is in ExpTime (where k is fixed) [Web96].

2. 2NFT and NSST is decidable [CK86, MP19a].

1.6.2 One-way definability

A relation R ⊆ Σ∗ × Γ∗ is said to be one-way definable if R = [[T ]] for
some NFT T . The one-way definability problem is defined as follows.

Problem 1.6.7 (One-way Definability). Given a 2NFT T , is it equiv-
alent to some NFT T ′?

This problem is undecidable in general due to the fact that the universal
relation is one-way definable. This means that the universality problem,
which is undecidable, reduces to one-way definability problem.

Restricted to functional 2NFTs, the one-way definability problem was
shown to be decidable [FGRS13], even in 2-ExpSpace [BGMP18].

1.7 Origin Semantics

In this section, we present the origin semantics for transducers. Origin
semantics for transducers was introduced in [Boj14] with the motivation
to study machine-independent characterization for various classes of (deter-
ministic) transducers. In the origin semantics, the output is tagged with
information about the position of the input where it was produced. The for-
mal definition of origin information depends on the model of transducer. We
start by defining origin transductions and then define the origin semantics
for transducers in the classes NFT, 2NFT, and NSST.

Data words. A word over an infinite alphabet is defined similarly to words
over finite alphabet with the difference that the letters now come from the
infinite alphabet. We consider words over alphabets of the form Γ×N, where
Γ is a finite alphabet, and N is the infinite set of natural numbers 1, 2, . . . .
Words over such alphabets are called data words. For a position i in a data
word w ∈ (Γ×N)∗ labeled by (a, n), n is called the data value at position i
and a is called the label at position i. For a word v ∈ Γ∗ and a data value
i ∈ N, the data word (v(1), i)(v(2), i) . . . v(|v|, i) is denoted by v ⊗ i.

Origin transductions. A synchronized pair over an input alphabet Σ
and output alphabet Γ is a pair (u, v), where u ∈ Σ∗ and v ∈ (Γ × N)∗,
such that the data values appearing in v are from the set [1, |u|]. An origin
transduction over input alphabet Σ and output alphabet Γ is a set of syn-
chronized pairs over Σ and Γ, i.e, To ⊆ Σ∗ × (Γ × N)∗. For a synchronized
pair (u, v) ∈ To the word u is called the input and the data word v is called
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the output. The data value at position i of v is called the origin of position
i, written as orig(v(i)) and the letter from Γ at position i is denoted by
v(i)Γ.

Alternatively, the synchronized pair (u, v) can also be represented by
origin graphs, which are graphs with vertices V = dom(u) ] dom(v) for the
input and output positions labeled by letters from Σ and Γ respectively.
The graph consists of successor edges for the input and output positions.
This defines the input and output words in the graph. The other type of
edge in the graph are the origin edges, defined from the set dom(v) to the
set dom(u). For some position x ∈ dom(v), if orig(v(x)) = i, then there
is an origin edge (x, i). The origin graph representation was introduced
in [BDGP17], and is equivalent to the synchronized word representation
defined earlier. While talking about origin transductions, we mostly reason
on the synchronized word representation, unless mentioned otherwise.

One-way transducers. For an NFT, the origin of a certain output posi-
tion is the last input position read before producing that output. Formally,
given a run ρ = (q0, 0) −a1|v1−−−→ (q1, 1) −a2|v2−−−→ · · · −an|vn−−−→ (qn, n) of an NFT T
on an input u = a1 · · · an, the output of ρ in the origin semantics will be
a data word v = v′1v

′
2 . . . v

′
n, where v′i = vi ⊗ i. Recall that vi ⊗ i denotes

the data word where each position has the data value i and the projection
to Γ equals vi. An NFT T defines the origin transduction [[T ]]o = {(u, v) |
v is the output of a run ρ of T on u in the origin semantics.}

A synchronized pair (u, v) is called order-preserving if for every positions
x < x′ ∈ dom(v), we have orig(v(x)) ≤ orig(v(x′)). An origin transduction
To is called order-preserving if every synchronized pair (u, v) ∈ To is order-
preserving. An origin transduction defined by an NFT is order-preserving
by definition.

An important feature of order-preserving synchronized pairs is that they
can also be represented as an interleaving of the input and output word,
called the synchronized word. The output v of an order-preserving synchro-
nized pair (u, v) can be written v = (v1 ⊗ 1)(v2 ⊗ 2) . . . (vk ⊗ k), where
k = |u| and vi ∈ Γ∗ is the (possibly empty) factor of v with data value
i projected to Γ. Assuming the input and output alphabets Σ and Γ are
disjoint, the synchronized word representation of such a pair (u, v) is the
word w = u(1)v1u(2)v2 . . . u(k)vk, where vi are the words obtained in the
factorization defined earlier.

For an NFT T and synchronized pair (u, v) ∈ [[T ]]o, we say T generates
(u, v). Equivalently, if w is the synchronized word representation of (u, v),
we say T generates w. The synchronization language of an NFT T is the set
of all synchronized words generated by the transducer, denoted by Sync(T ).
The synchronization language was first defined in [Niv68] and shown to be
a regular language. It is clear that the synchronization language captures

22



the origin semantics of an NFT.

Theorem 1.7.1. [Niv68] The synchronization language Sync(T ) of an NFT
T is regular.

The above theorem immediately follows from the observation that ev-
ery transition (q, a, L, q′) of T can be replaced by a transition (q, aL, q′) to
obtain an NFA with transitions having regular languages, describing the
synchronization language, which shows Sync(T ) is regular.

Two-way transducers. The origin semantics for 2NFTs is defined in
a way similar to NFTs. The output associated with a successful run
ρ = (q0, i0) −a1|v1−−−→ (q1, i1) −a2|v2−−−→ (q2, i2) · · · −am|vm−−−−→ (qm, im) in the origin
semantics is the data word v = v′1v

′
2 . . . v

′
m, where v′j =

vj ⊗ (ij + 1) if qj ∈ Q�
vj ⊗ (ij) if qj ∈ Q≺

Note that the origin of vj corresponds to the input position read by the
j-th transition. As with NFTs, a 2NFT T defines the origin transduction
[[T ]]o consisting of all synchronized pair (u, v) such that T has a run on u
producing output v in the origin semantics.

Streaming string transducers. The origin semantics for NSSTs is
slightly more complicated to define. Intuitively, the origin of an output
position is the input position read by the transition that first added the
output into some register. To define this formally, we change the definition
of a valuation. An valuation val in the origin semantics is a function from
registers to (Γ ∪ N)∗. A configuration of the NSST in the origin semantics
has a valuation with origins instead of the classical valuation.

Consider a run ρ = (q0, 0, val0) −a1;up1−−−−→ (q1, 1, val1) −a2;up2−−−−→ · · · −an;upn−−−−→
(qn, n, valn) on an input u. As in the classical semantics, this implies that
for every 1 ≤ i ≤ n, ai = u(i) and (qi−1, ai, qi, upi) ∈ ∆. The valuations
are defined inductively with val0(r) = ε for every register r and val i(r) =
val i−1(up(r)⊗ i), where up(r)⊗ i is the word over (R× (Γ×{i}))∗ obtained
by replacing every letter g from Γ by (g, i). Therefore, the letters from Γ
that are freshly added to registers by upi are tagged with their origin as i.
The output of ρ in the origin semantics will be v = valn(out(qn)). As with
2NFT and NFT, the origin transduction [[T ]]o realized by an NSST T is the
set of synchronized pairs (u, v) such that v is the output of some run of T
on u in the origin semantics.

Origin-containment and origin-equivalence problems. Let T1 and
T2 be two transducers from a class C (NFT, 2NFT, NSST). We say T1 is
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origin-contained in T2, denoted by T1 ⊆o T2, if [[T1]]o ⊆ [[T2]]o. We say T1

and T2 are origin-equivalent, denoted by T1 =o T2, if T1 ⊆o T2 and T2 ⊆o T1,
i.e, [[T1]]o = [[T2]]o.

Therefore, we define containment and equivalence problems in the origin
semantics.

Problem 1.7.2. Origin Containment: Given two transducers T1 and T2

in C, is T1 ⊆o T2?

Problem 1.7.3. Origin Equivalence: Given two transducers T1 and T2

in C, is T1 =o T2?

We will focus on these two problems throughout the thesis. When the
semantics of a transducer (classical or origin) is clear from the context, we
often write T instead of [[T ]] (or [[T ]]o).

An immediate observation is that the origin-containment (and origin-
equivalence) is more strict than classical containment (equivalence). For
example, the NSSTs in Figure 1.8 that define the reverse and identity over
an unary alphabet define the function an 7→ an in the classical semantics
and therefore are equivalent. However, in the origin semantics, the input an

is mapped to (a, 1) . . . (a, n) by Tid, whereas Trev maps an to (a, n) . . . (a, 1).

Tid q

a; r := ar

Trev p

a; r := ra

Figure 1.8 – NSSTs that are origin-inequivalent

All the results regarding expressiveness presented in Section 1.5 hold even
in the origin semantics. Even MSO-definable transductions have a natural
definition of origin and the constructions used in [EH01] or in [AD11] to
show equivalence of various classes of transducers, preserve the origins in
the respective models (such as NSSTs or 2NFTs) [Boj14].
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Chapter 2

The Origin-Equivalence
Problem

In this chapter, we study the equivalence and the containment problems
for transducers under the origin semantics. Two transducers may be non-
equivalent in the origin semantics even if they compute the same relation in
the classical semantics. This can happen as the transducers may generate
the output with different origins. Consider the reverse and the identity
transductions applied to words over unary alphabet {a}. For a word u =
an, the output in the classical semantics for both reverse and identity is
the same word an. However, in the origin semantics, the outputs will be
(a, 1)(a, 2) . . . (a, n) in the identity transduction and (a, n)(a, n− 1) . . . (a, 1)
in the reverse transduction. Therefore, origin-equivalence is a refinement of
classical equivalence.

The main results in this chapter show decidability of origin-equivalence
for the transducer classes NFT, 2NFT, and NSST. These results contrast
with the equivalence problem in classical semantics, which is undecidable for
NFT [FR68, Gri68], even with unary output alphabet [Iba78]. The origin-
equivalence problem was first considered for NFT [FJLW16]:

Theorem 2.0.1 ([FJLW16]). The origin-equivalence problem for NFT is
PSpace-complete.

The above result is obtained by reducing the problem to equivalence of
NFA which accept the synchronization languages of the given NFT, which
captures the input, and the output with the origin information (see page
22). The NFA obtained is polynomial with respect to the size of the given
NFT. Since, checking equivalence of NFA is PSpace-complete, we obtain
the same complexity for origin-equivalence of NFT.

In this chapter, we first show that the origin-equivalence problem for
transducers with unary output alphabet is polynomially equivalent to the
general case. This is different from classical equivalence, where restricting to
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unary output alphabet often helps reducing the complexity. For example,
equivalence of DSSTs with unary output alphabet is solvable in PTime
whereas in general it is in PSpace (mentioned in Theorem 1.6.4).

We then consider the origin-equivalence problem for 2NFTs and NSSTs.
Finally, we investigate the decidability and the complexity of the origin-
equivalence problem for various classes of DSSTs.

2.1 Unary output alphabet

Two transducers are classically inequivalent if there is some input on
which the outputs of the two transducers are different. When restricted
to unary output alphabet, different outputs means different lengths of out-
put. The equivalence problem in general is undecidable even for unary
output alphabet [Iba78] for NFT. However, for decidable subclasses, re-
stricting to unary output alphabet sometimes yields a better complexity.
For example, the classical equivalence problem for DSST is known to be in
PSpace [AC11]. However, the equivalence problem for DSST with unary
output alphabet can be solved in PTime [ADD+13].

In the origin semantics, two transducers can be inequivalent because of
two reasons. Either, there exists an input on which the transducers produce
different output; or there exists an input on which the same output has dif-
ferent origins. In case of an unary output alphabet, the difference can either
be in the length of the outputs, or in the origins. We show below that one
can encode a bigger output alphabet into a unary one using origins in such
a way that the blowup in the size of the transducers is only polynomial.
Using this construction, we obtain that the origin-equivalence of transduc-
ers (2NFT or NSST) is polynomially equivalent to the case of transducers
restricted to unary output alphabet.

Theorem 2.1.1. Origin-equivalence of NSST (2NFT) can be reduced in
polynomial time to origin-equivalence of NSST (2NFT) with unary alphabet.

We present the proof for NSST. A similar proof works in case of 2NFT
as well.

The unary transformation. We show that an output alphabet Γ =
{g1, g2, . . . , gm} can be encoded using the origins and an unary output al-
phabet by expanding the input word.

Given an origin transduction T ⊆ Σ∗ × (Γ × N)∗, we define a function
unary which maps injectively every synchronized pair (u, v) ∈ Σ∗× (Γ×N)∗

to a synchronized pair (u′, v′), where u′ ∈ (Σ ] Γ)∗ and v′ ∈ N∗. The new
input word u′ is obtained by substituting every letter a of u by ga, where
g = g1g2 . . . gm. For example, for input u = aba over Σ = {a, b} and output
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alphabet Γ = {c, d}, the new input u′ is cdacdbcda. Each factor ga of the
input for some letter a in Σ is called a letter-block of u′.

The new output v′ is defined as follows. The length of v′ is equal to the
length of the original output v. For every position x ∈ dom(v), such that
orig(v(x)) = i and v(x)Γ = gj ∈ Γ, orig(v′(x)) = (|Γ| + 1)(i − 1) + j. In
other words, the origin in v′ corresponds to the gj in the i-th letter-block of
u′. The following Proposition follows from definition.

Proposition 2.1.2. The function unary : Σ∗ × (Γ × N)∗ → (Σ ∪ Γ) ×
N)∗ is injective. Therefore, two origin-transductions R and R′ are origin-
equivalent, if and only if, unary(R) and unary(R′) are origin-equivalent.

We now show how the transformation unary is implemented by an NSST.

Lemma 2.1.3. Given an origin transduction R defined by an NSST T ,
an NSST unary(T ) can be constructed, defining the origin transduction
unary(R). The size of unary(T ) is polynomial in the size of T .

Proof. Let T = (Q,Σ,Γ, R, I, F, out ,∆) be an NSST such that Γ =
{g1, g2, · · · , gm}. For a register update up and a letter gi ∈ Γ, the number
of occurrences of gi in up is defined to be

∑
r∈R |up(r){gi}|, where up(r){gi}

denotes the update string up(r) projected to {gi}. Let K be a number such
that for every transition (q, a, q′, up) of T and every gi ∈ Γ, there are at
most K occurrences of a gi in the right-hand side of the update up. Here,
the occurrences of a letter gi can be in the right-hand side of the update for
different registers

Let (u, v) be a synchronized pair of T . Recall that the input to unary(T )
should replace every letter a of u by a letter-block ga, where a ∈ Σ and
g = g1g2 . . . gm. Let unary(T ) = (Q′,Σ′,Γ′, R′, I ′, F ′, out ′,∆′) be an NSST
uch that set of states Q′ of unary(T ) is Q ] (Q× [1,m]). The states of the
form (q, i) ∈ Q′ are said to be in the i-th layer. Therefore, the state space
Q′ is divided into m layers and one copy of the original set of states Q. The
set of initial and final states I ′ = I and F ′ = F are the same as that of T .
The new input alphabet is Σ′ = Σ ] Γ and the output alphabet Γ′ is the
unary alphabet {#}. The set of registers R′ of unary(T ) is R ] R̂, where
R̂ = {rji | 1 ≤ j ≤ m and 1 ≤ i ≤ K}, where m = |Γ| and K is the constant
defined above. Therefore, there are mK new registers.

The set of transitions ∆′ of unary(T ) are grouped into three types. The
first two types of transitions are used to check the validity of the letter-
blocks. First, there are transitions starting from the states Q to the first
layer of the states. These transitions are of the form (q, g1, (q, 1), up1), where
up1 copies the letter # into all registers in r1

i , for 1 ≤ i ≤ K. The second
type of transitions are the ones between the (j−1)-th and j-th layers. These
are of the form ((q, j − 1), gj , (q, j), upj) for 1 < j ≤ m, where upj keeps

the values of all register the same except for the registers rji , for 1 ≤ i ≤ K,
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which are updated as upj(rji ) = #. Thus, these transitions check that the
letter-blocks are of the correct form, and copy the output letter # into K
different registers, each with origin at gj in the letter-block.

The last type of transitions go from the last layer back to the copy of Q
and simulate the original transitions of ∆. For every (q, a, q′, up) ∈ ∆, there
exists a transition in ∆′ of the form ((q,m), a, q′, up′), where up′(r) for a
register r ∈ R is obtained by replacing all occurrences of the output letter
gj ∈ Γ in the right-hand side of up(r) by a register from the set rji . This can
be done in a copyless manner since each output letter gj occurs at most K
times on the right-hand-side. The final output update out ′(qf ) is the same
out(qf ) as T .

Note that the constants m and K are both polynomial in |T |. Therefore,
the size of unary(T ) is polynomial in size of T since it consists of m+1 copies
of states and mK additional registers.

Theorem 2.1.1 follows from Lemma 2.1.3 and Proposition 2.1.2 for NSST.
To prove Theorem 2.1.1 for 2NFT, we need to show how unary(T ) can be
implemented by a 2NFT. We present the idea without giving the formal
details.

Two-way transducers. In case of NSST, a single transition is simulated
by transitions on the corresponding letter-blocks. For a 2NFT T , the 2NFT
unary(T ) will have to move inside a letter-block to simulate a single tran-
sition of T . For example, let Σ = {a, b} and Γ = {c, d}. To simulate a
transition (q, a, cdc, q′) of T , the 2NFT unary(T ) will have to move to the
position marked by c, followed by d, followed by c in the corresponding
letter-block cda. This is illustrated in Figure 2.1.

Depending on the reading direction of q and q′, the sequence of tran-
sitions will begin and end at left or right border of the letter-block. In
the example in Figure 2.1, assuming q, q′ are both right-reading states, the
transition starts from the left border and ends in the right border. Using
the two-way movement of the reading head, it is possible to move to the c
and d back and forth within the letter-block. In general, this may introduce
intermediate state K|Q||Γ|, where K is the length of the largest word v that
occurs as output in a transition (q, a, v, q′). Therefore, the size of unary(T )
is polynomial in the size of T .

One-way transducers. For an NFT T , although the origin transduction
unary(T ) defined above need not be definable by a NFT, we can build a
NFT which takes as input words from the synchronization language and
outputs a symbol from an unary alphabet after reading every letter. Since,
the sychronization language already encodes the origin transduction, this
transformation also retains the origin information. Therefore, the case of
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Figure 2.1 – Simulating a transition (q, a, cdc, q′) using unary output alpha-
bet

unary output alphabet is polynomially equivalent to the general case for
NFT with respect to the origin-equivalence.

2.2 Origin-equivalence for Two-way Transducers

We show that the origin-equivalence problem for 2NFT can be solved in
PSpace, i.e, the same complexity as equivalence of NFA, which also provides
a lower bound of PSpace-hardness. Note that this result is shown for the
non-deterministic transducer model, which shows that the origin seman-
tics simplifies significantly the equivalence problem, since the equivalence
problem is undecidable in the classical semantics.

Theorem 2.2.1. Origin-containment and origin-equivalence of 2NFT is
PSpace-complete.

Before getting into the formal details, we first give a brief overview of
the proof. We first consider the origin-containment problem for busy trans-
ducers, which produce non-empty output in every transition. In this simpler
case, we characterize equivalent runs using a notion of shape, that formalizes
how the input head moves during the run. Two runs are origin-equivalent
if and only if they have the same shape and same output at every transi-
tion, and show that equivalence can be reduced to checking emptiness of
an NFA. The key observation for this reduction is that sub-runs of a trans-
ducer between an infix of the input can be abstracted by a pair of states
and equivalence between these sub-runs can be checked by checking some
local properties of the sub-runs. For the general case, when the transducers
are not necessarily busy, we first do a normalization and then reduce the
problem to the busy case.

For technical reasons, we will assume that 2NFT have regular outputs,
i.e, their transitions are of the form (q, a, L, q′) where the output is taken
from a regular language L ⊆ Γ∗. Such a transition can output any word from
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the language L. This does not add any expressive power as such a transition
can be simulated by a sequence of transitions with a single output (see page
11).

The output language L of a transition is represented by an NFA. Recall
that the size |T | of the 2NFT T counts the number of its states, transitions,
and the sizes of the NFA descriptions of the regular output languages associ-
ated with each transition rule. For the complexity analysis, we will need to
construct NFA and 2NFTs on-the-fly. Often, the states and transitions can
be enumerated using polynomial sized working space, even though the NFA
or 2NFT could be exponential for some fixed parameter n. We introduce
the concept of PSpace-constructibility to formalize this.

PSPACE-constructibility. Given a parameter n ∈ N, we say that an
NFA or a 2NFT has PSpace-constructible transitions w.r.t. n if its transi-
tion relation can be enumerated by an algorithm that uses working space
polynomial in n. For 2NFTs, this implies that every transition has at most
polynomial size in n. In particular, if a 2NFT has PSpace-constructible
transitions with respect to n, the size of the NFA representing output lan-
guage is also polynomial in n.

We break the proof of Theorem 2.2.1 into two cases. We will first show
how to decide origin-equivalence of 2NFT in PSpace assuming that every
transition of the 2NFT produce non-empty outputs. We call any such 2NFT
busy. Then we show that the general problem of origin-equivalence of 2NFTs
can be reduced to origin-equivalence of busy 2NFT.

Origin-equivalence of Busy 2NFT.

In a busy 2NFT, every transition produces non-empty output. Therefore,
the sequence of origins of output positions determines the movement of the
input head. As a consequence, runs of two busy 2NFTs can be origin-
equivalent if they visit the input positions in the same sequence and have
the same outputs transition-wise.

We introduce now the notions of transition shape and witness procedure
that are used in the proof.

Let T1, T2 be two busy 2NFTs, with Ti = (Qi,Σ,Γi,∆i, Ii, Fi) for i = 1, 2.
Recall that the set of states Q1 (and resp. Q2) are assumed to be partitioned
into left-reading and right-reading states Q1,≺ ∪ Q1,� (Q2,≺ ∪ Q2,� resp.).
We say that two transitions t1 ∈ ∆1 and t2 ∈ ∆2 on the same letter, with
ti = (qi, a, q

′
i, Li), have the same shape if q1 ∈ Q1,≺ ⇔ q2 ∈ Q2,≺, and

q′1 ∈ Q1,≺ ⇔ q′2 ∈ Q2,≺.

Witness Procedures. A witness procedure W is a non-deterministic pro-
cedure that does the following. Given a transition t1 = (q1, a, q

′
1, L1) of T1,
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the procedure W returns a set X ⊆ ∆2 of transitions of T2 satisfying the
following property: for some word v ∈ L1, we have

X =
{
t2 = (p2, a2, q2, L2) ∈ ∆2 : v ∈ L2, and t2 has same shape as t1

}
.

Intuitively, W fixes a choice of output v for the transition t1 and returns
all transitions of T2 with the same shape as t1 that output v. Note that W
is non-deterministic: it can return several sets based on the choice of v. The
witness procedure is used to deal with the intrinsic non-determinism from
regular output languages. Indeed, if T1 and T2 had a single output word for
each transition, then W would return only one set on t1 ∈ ∆1, that is, the
set of transitions of T2 with the same shape and the same output as t1.

Compatibility of runs. Given a run ρ1 = t1 . . . tm of T1 of length m and
a sequence ξ = X1, . . . , Xm of subsets of ∆2, called witness sequence, we
write ξ ∈ W(ρ1) whenever Xi ∈ W(ti) for all 1 ≤ i ≤ m. We say that a run
ρ2 = t′1 . . . t

′
m of T2 is ξ-compatible if t′i ∈ Xi for all 1 ≤ i ≤ m.

Intuitively, a witness sequence is a sequence of sets of transitions of T2

returned by the witness procedure W. A ξ-compatible run for a witness
sequence will therefore be origin-equivalent to ρ1.

Proposition 2.2.2. Given two busy 2NFTs T1, T2 and a witness procedure
W, T1 ⊆o T2 if and only if for every successful run ρ1 of T1, and for every
witness sequence ξ ∈ W(ρ1), there is a successful run ρ2 of T2 which is
ξ-compatible.

Proof. We first assume that T1 ⊆o T2. Consider a successful run ρ1 =
t1 . . . tm of T1 on input u, with each transition tk of the form (qk, ik) −

bk|Lk−−−→
(qk+1, ik+1). Choose any witness sequence ξ = X1, . . . , Xm inW(ρ1). Recall
that each Xk corresponds to a choice of an output vk ∈ Lk. So v = (v1 ⊗
j1) · · · (vm ⊗ jm) is an output (tagged with origins) produced by ρ1, where
each jk is either ik or ik − 1 depending on whether qk is right-reading or
left-reading. (Recall that (v` ⊗ j`) denotes the output v` with all positions
having origin j`, see page 23) Since T1 ⊆o T2, there must be a successful run
ρ2 = t′1 . . . t

′
m of T2 on the same input u that enables the same v as output.

In other words, for this ρ2 = t′1, . . . , t
′
m, we have t′k ∈ Xk, since the output

language of t′k contains vk. This shows that ρ2 is ξ-compatible.
For the converse implication, let ρ1 = t1 . . . tm be a successful run of T1

on u, with Lk output language of tk, for all 1 ≤ k ≤ m, and consider a
possible output v = (v1, j1) · · · (vm, jm) produced by ρ1. We want to show
that v can also be produced by a successful run of T2 on the same input u.
According to the description of the witness procedure W, for each k there
is a set Xk ∈ W(tk) containing precisely the transitions t′ of T2 that can
output vk and that have the same shape as tk. Let ξ = X1, . . . , Xm. By
the hypothesis of the claim, there is a successful run ρ2 = t′1 . . . t

′
m of T2
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that is ξ-compatible. This means that the transitions in ρ2 have the same
shapes as those in ρ1 and in particular, they read the same input letters
and can produce the same outputs v1, . . . , vm, tagged with the same origins
j1, . . . , jm. Thus, ρ2 is over the same input u and enables the same output
v = (v1, j1) · · · (vm, jm) as ρ1.

Next, we reduce the origin-equivalence problem of T1 and T2 to the
emptiness problem of an NFA A. In this reduction, the NFA A can be
exponentially larger than T1, T2, but will be PSpace-constructible under
suitable assumptions on T1, T2, and W.

Lemma 2.2.3. Given two busy 2NFTs T1, T2 with input alphabet Σ and
a witness procedure W, one can construct an NFA A that accepts precisely
the words u ∈ Σ∗ for which there exist a successful run ρ1 of T1 on u and
a witness sequence ξ ∈ W(ρ1) such that no ξ-compatible run ρ2 of T2 is
successful.

Moreover, if T1 and T2 have a total number of states n and W uses space
polynomial in n, then A is PSpace-constructible w.r.t. n.

The proof of the lemma is obtained by adapting the techniques of subset
construction and crossing sequences for 2NFA [Var89].

Proof. The goal is to build an NFA A which, on input u, verifies the ex-
istence of a successful run ρ1 = t1, . . . , tm of T1 on u, and of a witness
sequence ξ ∈ W(ρ1), such that there is no successful, ξ-compatible run
ρ2 = t′1, . . . , t

′
m of T2 (the fact that ρ2 is over the same input u as ρ1 follows

from ξ-compatibility). The goal is achieved by processing the input u from
left to right, while guessing sub-runs of the run ρ1 of T1 that are induced
by prefixes of u. At the same time, A uses the procedure W to ‘guess’ the
witness sequence ξ. The sequence ξ is used to track induced pieces of runs of
T2 with the same shape as in ρ1, such that once we choose an output word
for every transition of T1, we are guaranteed to follow all pieces of runs of
T2 that can produce the same output words.

Recall that successful runs start from the cut 1 and end at the cut n−1,
where n is the length of the input |u|. A sub-run ρ′ of a run ρ = ρ1ρ

′ρ2 is a
factor of the run ρ. We say that a sub-run is induced by the prefix u([1, i]) if
the sub-run only reads the letters at the positions {1, . . . , i}. Such a sub-run
is called maximal if the last transition of ρ1 and the first transition of ρ2 are
not on positions {1, . . . , i}. Based on the starting position, we distinguish
between left-to-right and right-to-right maximal sub-runs. A left-to-right
maximal sub-run on prefix u([1, i]) must start from the initial state and end
at the cut i. A right-to-right maximal sub-run starts and ends at from the
cut i.

For a run ρ on u, there is a left-to-right induced sub-run and a num-
ber(possibly 0) of right-to-right induced sub-runs on prefix u([1, i]). The
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Figure 2.2 – The left-to-right and right-to-right sub-runs at position i.

number of right-to-right runs is not bounded. However, we abstract them
by the start and end state in the sub-run. For example, in Figure 2.2,
there are 3 right-to-right sub-runs, but they are abstracted by the state-
pairs (q2, q3) and (q4, q5). In particular, the runs ρq2,q3 and ρ′q2,q3 are both
considered abstracted by the pair (q2, q3). Intuitively, if for the run ρ1 in
Figure 2.2 there is no compatible run of T2, then this also holds for the run
ρ′1 obtained from ρ1 by replacing the sub-run ρ′q2,q3 by ρq2,q3 , since they are
abstracted by the same pair of states.

The NFA A will guess the abstraction of runs of T1 induced by longer
and longer prefixes of the input. At any point, there can be exactly one left-
to-right abstracted runs, and at most |Q|2 right-to-right abstracted runs. At
the end, A expects to see only one left-to-right induced run of T1, that must
be successful.

At the same time, A will also maintain the set of all runs of T2 that
are induced by the consumed prefix and that have been constructed using
transitions provided by W. Concerning these latter runs, A will check that
none of the left-to-right runs of T2 are successful. In fact, as we will see
below, all the guessed runs are abstracted by states or pairs of states, so
as to maintain at each step only a bounded, polynomial-size information.
This will require some care, since, for instance, the same pair of states can
represent many right-to-right runs of T1, with different shapes.

The key observation is that it is sufficient to associate at most one left-
to-right run with each state of T1, and at most one right-to-right run with
each pair of states of T1. This is because if, say, ρ1 has two right-to-right
runs on some prefix, that start and end, respectively, in the same states, then
we can replace one run by the other, and do the same for ρ2. The property
that no ξ-compatible run of T2 is ultimately successful, will be preserved.
This is formalized by the invariant maintained by the NFA A. First, we
formally define the NFA A.

The states of the NFA A are tuples consisting of four different objects
(note that the size of a state is polynomial in the total number n of states
of T1, T2):

— a right-reading state q̂ of T1,
— a set P of pairs of left-reading and right-reading states of T1,
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— a set S of right-reading states of T2,
— a relation R between pairs of states of T1 and pairs of states of T2

such that for all
(
(q1, q

′
1), (q2, q

′
2)
)
∈ R, q1 and q2 are left-reading,

and q′1 and q′2 are right-reading.
The intended meaning of the above objects is explained by the following

invariant. After reading a prefix u([1, i]) of the input, the state (q̂, P, S,R)
reached by A must satisfy the following properties:

1. there is a left-to-right run ρq̂ of T1 induced by u([1, i]) and ending in
q̂, and a witness sequence ξq̂ in W(ρq̂),

2. for each pair (q, q′) ∈ P , there is a right-to-right run ρq,q′ of T1 that
is induced by u([1, i]), starts in q, ends in q′, and a witness sequence
ξq,q′ in W(ρq,q′),

3. if there is a left-to-right run ρ′ of T2 that is induced by u([1, i]) and
is ξq̂-compatible (cf. first item), then S contains the last state of ρ′,

4. for each pair (q, q′) ∈ P , if there is a right-to-right run ρ′ of T2

induced by u([1, i]), ξq,q′-compatible (cf. second item), starting in r
and ending in r′, then ((q, q′), (r, r′)) ∈ R.

The initial states of A are the tuples of the form (q̂, P, S,R), with q̂ ∈ I1,
P = ∅, and S = I2. Similarly, the final states are the tuples (q̂, P, S,R)
such that q̂ ∈ F1, P = ∅, and S ∩ F2 = ∅. Assuming that Properties 1.–
4. are satisfied, this will imply that A accepts some input u iff there exist
a successful run ρ1 of T1 on u and a witness sequence ξ ∈ W(ρ1), but no
successful, ξ-compatible run of T2 on u.

We now give the transitions of A that preserve Properties 1.–4. These
are of the form

(q̂, P, S,R) −a−→ (q̂′, P ′, S′, R′)

and must satisfy a certain number of constraints between the various com-
ponents of the source and target states. We first focus on the constraints
between the first two components, i.e. q̂, P and q̂′, P ′, which guarantee Prop-
erties 1. and 2. For this, we basically apply a variant of the classical crossing-
sequence construction [She59] for simulating a 2NFA by an NFA. In the fol-
lowing we omit output languages in transitions, since they are determined
by the source/target state, and the input letter.

— A first condition requires that q̂ is connected to q̂′ by a sequence of k
leftward transitions on a interleaved by k right-to-right induced runs,
and followed by a single rightward transition on a, as follows (see also
the left hand-side of Figure 2.3):

(q̂, a, q1) ρq1,q2 (q2, a, q3, ) ρq3,q4 . . . ρq2k−1,q2k (q2k, a, q̂
′)

where (q1, q2), (q3, q4), . . . , (q2k−1, q2k) ∈ P .
For brevity, we denote this property by q̂  q1  q2 · · · q2k  q̂′.
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Figure 2.3 – Constraints between q̂ and q̂′, and between P and P ′.

— In a similar way, we require that, for every pair (q, q′) ∈ P , either q
is connected to q′ by a leftward transition on a, or q is connected to
q′ by a leftward transition on a, then a sequence of k > 0 right-to-
right induced runs interleaved by n − 1 rightward transitions on a,
followed by a right-to-left transition on a, or as follows (see the right
hand-side of Figure 2.3):

(q, a, q1) ρq1,q2 (q2, a, q3) ρq3,q4 . . . ρq2k−1,q2k (q2k, a, q
′)

where (q1, q2), (q3, q4), . . . , (q2k−1, q2k) ∈ P .
As before, we write for short q  q1  q2 · · ·  q2k  q′ (to distin-
guish the notations for the former and the latter property, it suffices
to check whether the first state is right-reading or left-reading).

As concerns the constraints between S,R and S′, R′, we first lift the
previous properties and notations to pairs of runs of T1 and T2, thus writing,
for instance,

(
q̂
s

)
 
 
(
q1
s1

)
 
 
(
q2
s2

)
. . .   

( q2k
s2k

)
 
 
(
q̂′

s′

)
. On top of this,

we restrict the runs of T2 to be ξ-compatible with the runs of T1, for the
corresponding witness sequence ξ. Formally, we require the following:

— Assume that s ∈ S and that R contains the pairs(
(q2i−1, q2i), (s2i−1, s2i)

)
, for all 1 ≤ i ≤ k. Let t = (q̂, a, q1),

t′ = (q2k, a, q̂
′), and ti = (q2i−1, a, q2i), for all 2 ≤ i ≤ k, be the

transitions of T1 that are used to connect q̂ to q1, q2k to q̂′, etc.
Using W, choose some witness sets X ∈ W(t), X ′ ∈ W(t′), and
Xi ∈ W(ti), for 2 ≤ i ≤ k. Then s′ ∈ S′ if(

q̂
s

)
 
 
(
q1
s1

)
 
 
(
q2
s2

)
. . .   

( q2k
s2k

)
 
 
(
q̂′

s′

)
for some (s, a, s1) ∈ X, (s2k, a, s

′) ∈ X ′, (q2i−1, a, q2i) ∈ Xi (2 ≤ i ≤
k).

— Assume that (q, q′) ∈ P ′ and R contains the pairs(
(q2i−1, q2i), (s2i−1, s2i)

)
, for all 1 ≤ i ≤ k. As before, let

t, t′, ti be the transitions of T1 that connect q to q1, q2k to q′, q2i to
q2i+1, for all 1 ≤ i ≤ k.
Using W, choose some witness sets X ∈ W(t)), X ′ ∈ W(t′), and
Xi ∈ W(ti), for 1 ≤ i < k. Then

(
(q, q′), (s, s′)

)
∈ R′ if(

q
s

)
 
 
(
q1
s1

)
 
 
(
q2
s2

)
. . .   

( q2k
s2k

)
 
 
(
q′

s′

)
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Figure 2.4 – Normalizing runs.

for some (s, a, s1) ∈ X, (s2k, a, s
′) ∈ X ′, (s2k, a, s2k+1) ∈ Xi (1 ≤ i <

k).
It is routine to check that the above constraints guarantee all the Proper-
ties 1.–4. stated above. To conclude, we observe that the NFA A can be
constructed by an algorithm that uses the PSpace sub-procedures for enu-
merating the transitions of T1, T2 and the non-deterministic PSpace proce-
dure W, plus additional polynomial space for storing (temporarily) the sets
X,X ′, Xi.

Now, we are ready to show decidability of origin-equivalence for busy
2NFT. By Proposition 2.2.2, T1 ⊆o T2 for busy 2NFT T1 and T2 amounts to
checking emptiness of the NFA A from Lemma 2.2.3. The latter problem can
be decided in PSpace w.r.t. n, by using the PSpace-constructibility of A to
enumerate all transitions departing from any given state. As a consequence,
we have the following result.

Corollary 2.2.3.1. Given two busy 2NFT T1, T2 with a total number n of
states, and given a witness procedure that uses space polynomial in n, the
problem of deciding T1 ⊆o T2 is in PSpace w.r.t. n.

From arbitrary transducers to busy transducers

We now consider 2NFT that are not necessarily busy. We modify the
2NFT and make them busy, thus reducing the origin-equivalence problem
to origin-equivalence of busy 2NFT. This is where the notion of PSpace-
constructibility will be exploited.

A naive idea would be to modify the transitions that output the empty
word ε and make them output a special letter #. This however would not
give a correct reduction towards origin-equivalence with busy 2NFT. Indeed,
a 2NFT may produce non-empty outputs, say v1, v2, . . . , with transitions
that occur at the same position, say i, and traversing other positions of the
input in between but producing only ε. This is illustrated in Figure 2.4,
where there are consecutive output positions b and c produced at the same
origin, but the run traverses other positions between producing b and c.
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The above idea is however useful if we first normalize the 2NFT in such
a way that maximal sub-runs generating empty outputs follow the shortest
path in the input. This allows the transducer to visit positions in the input
in the order they occur as origins in the output. For example, in Figure
2.4, the origins of consecutive output positions are 3, 3, 5. The normalized
transducer will move directly from input position 3 to 5 with a sequence of
right moving transitions. Recall we assume in the definition of 2NFT that
there are no stay transitions, i.e, transitions that do not move the reading
head. Therefore, a contiguous block of outputs with the same origin must
be produced in a single transition, such as a transition (q′1, a, bc, q

′
2) in the

example of Figure 2.4. To do this, we need to use 2NFT where the output
of a transition could be a regular language. Paired with the fact that the
same input positions are visited in the order in which they occur as origins,
this will give the following characterization: two arbitrary transducers are
origin-equivalent if and only if their normalized versions, with empty outputs
replaced by #, are also origin-equivalent.

We now describe how the normalization procedure works. Consider a
2NFT T = (Q,Σ,Γ,∆, I, F ). To normalize T we consider runs that start
and end in the same cut of the input, and that produce empty output. We
call such runs lazy U-turns, and are formally defined below.

Given an input word u, a left (resp. right) lazy U-turn at position i of u
is any run of T on u of the form

(q1, i1) −a1|v1−−−→ (q2, i2) −a2|v2−−−→ · · · −am|vm−−−−→ (qm+1, im+1)

with i1 = im+1 = i, ik < i, (resp. ik > i) for all 2 ≤ k ≤ m, a1, . . . , am are
input positions ≤ i (resp. > i) and vk = ε for all 1 ≤ k ≤ m.

The pair (q1, qm+1) of states at the extremities of a left/right lazy U-
turn is called a left/right U-pair (at position i of u). We denote by U ý

i

(resp. Uý
i ) the set of all left (resp. right) U-pairs at position i

Note that we have U ý
i ⊆ Q≺ ×Q� and Uý

i ⊆ Q� ×Q≺. Accordingly,
we define the word u ýover 2Q≺×Q� that has the same length as u and
labels every position i with the set U ý

i of left U-pairs. This u ýis seen
as an annotation of the original input u with the left U-pairs, and can be
computed from T = (Q,Σ,Γ,∆, I, F ).

The set of lazy U -turns can be defined by a recursive rule. A pair of
states (q, q′) ∈ u ý(i), if and only if,

q ∈ Q≺ ∧
(
q, u(i− 1), ε, q′, right

)
∈ ∆

or q ∈ Q≺ ∧ ∃ (q1, q
′
1), . . . , (qk, q

′
k) ∈ u ý(i− 1)

(
q, u(i− 1), ε, q1, left

)
∈ ∆(

q′j , u(i− 1), ε, qj+1, left
)
∈ ∆ ∀1 ≤ j ≤ k(

q′k, u(i− 1), ε, qk, right
)
∈ ∆.
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Figure 2.5 – Lazy U -turns.

This is illustrated in Figure 2.5. The annotation uý with right U -pairs
satisfies a symmetric recursive rule.

The annotated input u⊗u ý⊗uý is the word in (Σ×2Q≺×Q�×2Q�×Q≺)∗

where the i-th letter is (u(i), U ý
i , Uý

i ), i.e, the original input letter anno-
tated with the U -pairs. The above recursive rules allow an NFA to check
the annotations.

Lemma 2.2.4. Given a transducer T , one can compute an NFA U such
that [[U ]] = {u⊗ u ý⊗ uý : u ∈ Σ∗}. Furthermore, the NFA U is PSpace-
constructible w.r.t. the number of states of T .

Proof. The states of the NFA U will be 2Q≺×Q� × 2Q�×Q≺ . Intuitively, the
states will be used to guess the set of lazy left-to-right U -turns and the set
of right-to-left U -turns. Fixing a set of lazy left-to-right U -turns at position
i, the set of lazy left-to-right U -turns at position i+ 1 is determined by the
recursive definition of lazy U -turns.

The states are used to guess the set of lazy left-to-right U -turns at a cut.
Recall that a cut corresponds to the border of two consecutive positions of
a word. For a word u of length n with positions 1 to n, there are n + 1
cuts from 0 to n. The set of lazy U -turns at a cut i is therefore the pair
(u ý
i−1, u

ý
i ), i.e, the set of lazy left-to-right U -turns at position i−1 and lazy

right-to-left U -turns at position i.
The transitions are then used to check validity of these guesses. The

transitions also check that the annotations match with the states in the
correct way, i.e, for a transition (X,Y ) −(a,u ý,uý)−−−−−−−→ (X ′, Y ′), it should be the
case that X = u ýand Y ′ = uý. Furthermore, the sets (X,Y ) and (X ′, Y ′)
must satisfy the conditions of the recursive definition of lazy U -turns (see
Figure 2.5). The conditions for the sets X and X ′ are: a pair of states (q, q′)
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is in X ′ iff

q ∈ Q≺ ∧
(
q, a, ε, q′, right

)
∈ ∆

or q ∈ Q≺ ∧ ∃ (q1, q
′
1), . . . , (qk, q

′
k) ∈ X

(
q, a, ε, q1, left

)
∈ ∆(

q′j , a, ε, qj+1, left
)
∈ ∆ ∀1 ≤ j ≤ k(

q′k, a, ε, qk, right
)
∈ ∆.

The sets of lazy right-to-left U -turns are also checked in the similar rule.
At the first and last cut , there are no possible U -turns, since the tran-

sitions on ` and a do not allow U -turns. Therefore, the set of initial and
final states of U is (∅, ∅).

By definition of U -turns, the NFA U accepts correctly annotated words.
Furthermore, the transitions are constructed by checking polynomially many
transitions of T . Therefore, the NFA U is PSpace-constructible in the
number of states of T .

We extend the 2NFT T to TU which works on the annotated in-
puts. This can be obtained by replacing any transition (q, a, L, q′) by
(q, (a, U ý, Uý), L, q′). Note that the transducer TU does not check if the
annotations is correct. However by Lemma 2.2.4, this can be done by the
automaton U . The number of transitions increases exponentially in TU com-
pared to T as the input alphabet grows exponentially. However, the states
and transitions of TU can be enumerated using space polynomial in the size
of T since each new input letter has size polynomial in the size of T .

The normalization of TU , which produces an origin-equivalent transducer
Norm(TU ) with no lazy U-turns works in two steps. First, using the infor-
mation provided by the annotation of the input, we shortcut all runs of TU
that consist of multiple transitions outputting at the same position and in-
terleaved by lazy U-turns. The resulting transducer is denoted Shortcut(TU ).
After this step, we will eliminate the lazy U -turns, thus obtaining Norm(TU ).

Formally, Shortcut(TU ) has for transitions the tuples of the form(
q, (a, U ý, Uý), L, q′, d

)
, where L is the smallest language that contains

every language of the form L1 ·L2 · · ·Lk for which there are q1, q
′
1, . . . , qk, q

′
k

and d1, . . . , dk, with q = q1, q′k = q′ (and hence dk = d), (qi, a, Li, q
′
i, di) ∈ ∆,

and (q′i, qi+1) ∈ U ý∪ Uý for all i.
Note that there is no transition

(
q, (a, U ý, Uý), L, q′, d

)
when there are

no languages L1, L2, . . . , Lk as above.
The output languages associated with the transitions of Shortcut(TU ) can

be constructed using a classical saturation mechanism. These are regular
languages, and their NFA representations are polynomial-sized w.r.t. the
size of the NFA representations of the output languages of TU . This implies
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that Shortcut(TU ) has PSpace-constructible transitions w.r.t. the number
of its states.

Lemma 2.2.5. Let w = u ⊗ u ý⊗ uý be an correctly annotated input.
Every successful run of TU on w is origin-equivalent to some successful run
of Shortcut(TU ) on w without lazy U-turns. Conversely, every successful run
of Shortcut(TU ) on w is origin-equivalent to some successful run of TU on
w.

Proof. Consider an arbitrary run of TU on input w = u⊗ u ý⊗ uý:

ρ = (q1, i1) −b1|v1−−−→ (q2, i2) −b2|v2−−−→ (q3, i3) · · · −bm|vm−−−−→ (qm+1, im+1).

The above run can also be seen as a run of Shortcut(TU ), since for every
transition of TU outputting v there is a similar transition of Shortcut(TU ),
between the same states and outputting the same word v. We prove the
claim by induction on the number of lazy U-turns in ρ. If ρ has no lazy
U-turn, then the claim follows trivially. Now, for the inductive step, sup-
pose that the factor that starts in (qk, ik) and ends in (qh, ih) is a maximal
left lazy U-turn, which thus occurs at position i = ik = ih (the case of
a right lazy U-turn case is symmetric). By definition of U-turn, we know
that qk is left-reading and qh is right-reading, and hence the transitions
that immediately precede and follow the U-turn read the same input let-
ter, i.e. w(i) = bk−1 = bh, and output respectively the words vk−1 and vh.
By construction, Shortcut(TU ) admits a transition t that moves from con-
figuration (qk−1, ik−1) to configuration (qh, ih), reading w(i) and producing
vk−1 · vh as output. We can replace the U-turn of ρ and the surrounding
transitions with the latter transition t, thus obtaining an origin-equivalent
run of Shortcut(TU ) with a smaller number of lazy U-turns. This proves the
inductive step, and thus the first claim of the lemma.

For the second claim, consider an arbitrary run of Shortcut(TU ) on w:

ρ = (q1, i1) −b1|v1−−−→ (q2, i2) −b2|v2−−−→ (q3, i3) · · · −bm|vm−−−−→ (qm+1, im+1).

Consider a transition along ρ, say t : (qk, ik) −
bk|vk−−−→ (qk+1, ik+1). By

construction, there must be a sequence of states r1, r
′
1, . . . , rh, r

′
h and di-

rections d1, . . . , dh, for some h ≥ 2, such that qk = r1, qk+1 = r′h,
dh = d, (rj , a, Lj , r

′
j , dj) ∈ ∆ and (r′j , rj+1) ∈ U ý∪ Uý for all j, and

vk ∈ L1 · L2 · · ·Lh. In particular, TU admits some transitions of the form
(qk, ik) = (r1, j1) −

a|v′1−−→ (r′1, j
′
1), (r2, j2) −

a|v′2−−→ (r′2, j
′
2), . . . , (rh, jh) −

a|v′h−−→
(r′h, j

′
h) = (qk+1, ik+1), with j′2 = j3, . . . , j′h−1 = jh, and vk = v′1 · v′2 · · · v′h.

The latter transitions, interleaved with some U-turns corresponding to the
U-pairs (r′1, r2), . . . , (r′h−1, rh) ∈ U ý∪ Uý, form a valid run ρ′t of TU on w,
which connects (qk, ik) to (qk+1, ik+1) and outputs vk. This means that in
the run ρ we can safely replace the transition t by the run ρ′t. Doing this
simultaneously for all transitions in ρ results in an origin-equivalent run of
TU .
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Lemma 2.2.5 allows to remove all the lazy U -turns without changing the
semantics of the transducer. This is the final step to obtain the normalized
transducer. This is done by simply forbidding the shortest possible lazy
U-turns, namely, the transitions that output ε and that remain on the same
input position. Since every lazy U-turn contains a transition of the previ-
ous form, forbidding this type of transitions results in forbidding arbitrary
lazy U-turns. Formally, we construct from Shortcut(TU ) a new transducer
Norm(TU ) by replacing every transition rule (q, a, L, q′, d) with (q, a, L′, q′, d),
where L′ is either L or L \ {ε}, depending on whether q ∈ Q≺ ⇔ q′ ∈ Q≺ or
not. The following lemma follows by construction of (TU ) and Lemma 2.2.5.

Lemma 2.2.6. TU and Norm(TU ) are origin-equivalent when restricted to
correctly annotated inputs, i.e.: [[TU ]]o ∩R = [[Norm(TU )]]o ∩R, where R =
[[U ]]× (Γ× N)∗.

The final step to reduce the origin-equivalence problem from the general
case to the busy case is to make the transducer Norm(TU ) busy. This is
done by replacing the empty output ε in a transition by a special character
# 6∈ Γ. We call this transducer Busy(TU ). Again, the states of Busy(TU ) are
the same as those of T , and its transitions are PSpace-constructible in the
number of its states.

The proposition below follows immediately from Lemma 2.2.6, and re-
duces origin-containment between T1 and T2 to origin-containment between
Busy(T1,U ) and Busy(T2,U ), but now relativized to correctly annotated in-
puts, where Busy(Ti,U ) denotes the transducer obtained by applying the
Busy construction to Ti.

Proposition 2.2.7. Given two transducers T1 and T2,

T1 ⊆o T2 if and only if Busy(T1,U ) ∩ R ⊆o Busy(T2,U ) ∩ R.

where R = [[U ′]]×(Γ×N)∗ and U ′ is an NFA that recognizes inputs annotated
with left/right U-pairs of both T1 and T2.

It remains to show that, given the transducers T1, T2, there is a PSpace
witness procedure for Busy(T1,U ),Busy(T2,U ):

Proposition 2.2.8. Let T1, T2 be transducers with a total number n of
states, and Busy(Ti,U ) = (Qi, Σ̂,Γ,∆i, Ii, Fi) for i = 1, 2 (the input al-

phabet Σ̂ is the same as for U ′). There is a non-deterministic procedure
W that works in polynomial space in n and returns on a given transition
t1 = (q1, a1, q

′
1, L1, d1) of Busy(T1,U ) any set X ⊆ ∆2 of transitions of

Busy(T2,U ) such that for some v ∈ L1:

X =
{
t2 = (p2, a2, q2, L2, d2) ∈ ∆2 : v ∈ L2, and t2 has same shape as t1

}
.
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Proof. Given transition t1 = (q1, a, q
′
1, L1, d1) of Busy(T1,U ), we first use the

PSpace enumeration procedure of the transitions of Busy(T2,U ) to generate
the set Z of all t2 = (q2, a, q

′
2, L2, d2) ∈ ∆2 with the same shape as t1. Note

that Z has polynomial size, and its representation is polynomial as well. The
procedureW guesses first a subset Z0 of Z. Then it guesses on-the-fly a word
v ∈ L1, and verifies that v belongs to the output language of every t2 ∈ Z0,
and to no output language of any t2 ∈ (Z \Z0). Recall that Busy(T1,U ) and
Busy(T2,U ) have PSpace-constructible transitions w.r.t. n, and thus, by
definition, the output languages are represented by NFA of size polynomial
in n. Basically W checks a condition of the form v ∈

⋂
iDi \

⋃
j D′j , for

polynomially many NFA Di,D′j of size polynomial in n, which can be done
in PSpace. If successful, then W returns the set Z0.

Proof of Theorem 2.2.1. By Proposition 2.2.7, origin-containment for 2NFT
can be reduced to origin-containment for busy 2NFT. Furthermore, the
states and transitions of the busy 2NFT Busy(Ti,U ) can be enumerated in
space polynomial in the size of Ti. The witness procedure for Busy(T1,U ) and
Busy(T2,U ) can also be constructed in PSpace by Proposition 2.2.8. There-
fore, by Corollary 2.2.3.1, origin-containment can be checked in PSpace.

Origin-equivalence can be checked by checking origin-containment in
both directions. This concludes the proof of Theorem 2.2.1.

The lower bound of PSpace-hard can be obtained by a reduction from
the classical equivalence of NFA.

Therefore, the origin-equivalence of 2NFT is PSpace-complete.

2NFT with common guess. Recall that 2NFT with common guess
(T, φ) colours the input positions non-deterministically according to the
MSO-formula φ and runs the transducer T on the coloured word. For-
mally, T = (Q,Σ×C,Γ,∆, I, F ) is a transducer which takes as input words
w ∈ (Σ× C)∗ that satisfy the MSO-formula φ (see page 12).

Theorem 2.2.1 also holds for 2NFT with common guess. The proof works
by changing Lemma 2.2.4, to have U check that the colouring satisfies φ.
Assuming φ is given as an NFA B, the NFA U will be PSpace-constructible
in the size of (T,B). Therefore, the origin-equivalence problem for 2NFT
with common guess is also PSpace-complete when the guess is given as an
NFA.

2.3 Streaming String Transducers

The decidability of origin-equivalence for NSSTs can be obtained by
using the characterization of origin graphs produced by NSSTs, which was
studied in [BDGP17]. It was shown that the set of origin graphs generated
by an NSST is MSO-definable.
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Theorem 2.3.1 ([BDGP17]). The set of origin graphs generated by an
NSST T is MSO-definable.

Recall that the formalism of synchronized pair and origin graphs are
equivalent. Over the logical signature of origin graph, which would consist
of input and output successor and label predicates, and the origin relation,
one can define MSO formulas describing sets of origin graphs.

Therefore, given an NSST T , one can construct an MSO formula φT
describing the set of origin graphs produced by T . It is easy to see that
T1 6⊆o T2 if and only if there exists an origin graph generated by T1 which
satisfies ¬φT2 . Therefore, origin-containment reduces to MSO-satisfiability
problem over origin graphs, which was shown to be decidable in [BDGP17].
This gives a algorithm for deciding equivalence of NSSTs. Decidability
of origin-equivalence was also shown for NMSO tree-to-string transduc-
ers [FMRT15], which are a generalization of NSSTs. However, both of the
above procedures does not provide any result on the complexity of the prob-
lem. We provide in this section a procedure to check containment which
works on NSST directly, so without converting to a MSO formula, and show
that the origin-equivalence problem for NSST is decidable in ExpSpace.
We also obtain a lower bound of PSpace since checking equivalence of the
underlying automaton is PSpace-hard.

Theorem 2.3.2. The origin-equivalence problem for:
— NSST is in ExpSpace and is PSpace-hard;
— DSST is in PSpace and is NlogSpace-hard.

Before giving the proof, we introduce some definitions and notations used
therein. Recall that a run ρ of an NSST T generates a synchronized pair
(u, v).

As a running example, we consider the invert relation which takes as
input a string u and breaks it non-deterministically into a prefix p, a suffix
s and the middle part m, i.e, u = pms and reverses the middle part, i.e,
outputs pmrs. It is a relational transduction since there are multiple outputs
for the same input, based on how the input is split.

Figure 2.6 shows two NSST that implement this relation. The first
transducer T1 uses three register rp, rm and rs to treat the prefix, middle
and the suffix respectively. The second transducer T2, on the other hand,
uses only two registers.

Flow tree of a run. We represent an update to a register r as a tree of
height 1, where the root is labeled by r and the children are labeled either by
a register or an output letter such that the yield of the tree is the right-hand
side of the update. In this way, a transition can be represented as a forest
with each tree representing the update to a register. Note that this may
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T1 qp qm qs

a; rp := rpa

a; rp := rpa

a; rm := arm

a; rm := arm

a; rs := rsa

rprmrs

T2 q′p q′m q′s

a; r1 := r1a

a; r1 := r1a

a; r2 := ar2

a; r1 := r1ar2

a; r1 := r1a

r1

Figure 2.6 – Two NSST defining the invert relation

create multiple copies of the same output letter if it occurs more than once
in the right-hand side of the update.

We can extend this representation to an accepting run ρ of an NSST T ,
where the sequence of register updates is up1, up2, . . . , upn, out reaching
the final state qf and outputting out(qf ). The run ρ is represented by a flow
tree with root labeled by out , representing the final output. The children
of the out node are the registers that appear in the right-hand side of the
update out(qf ). The level of the root out is n + 1 and the children are at
level n. For a node at level j labeled by register r, its children are at level
j − 1 and represent the right-hand side of the update upj(r). Intuitively,
a node at level i labeled by register r corresponds to the content of r after
reading the i-th letter of the input. Figure 2.7 gives an example of the flow
tree for a run.

Input: p m i d s
Level: 0 1 2 3 4 5

States: qp qm qm qm qs qs

Flow Tree: out

rp

rm

rs

rp

rm s

rp

rm

d

rp

rm

i

rp

m

p

Register Patterns:
# rp# rp#rm# rp#rm# rprm# rprmrs

Figure 2.7 – Flow tree of the final output register of T1

We now define register patterns, which are a way to represent the flow
tree of a run in a level-by-level manner. A register pattern is a string over
the registers and a special separator symbol #, i.e, a string over the alphabet
R ∪ {#}, such that there are no consecutive #s. Additionally, no register
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occurs more than once in the pattern, since we assume the NSST to be
copyless.

The register pattern at level i, denoted Pi, is defined as the projection of
the i-th level of the flow tree onto R, where exactly one # is inserted between
two registers r, r′ if there is some output with origin greater or equal to i
between the current contents of r and r′ in the final output. By convention,
a # can also occur at the beginning (or the end) of the pattern, if there is
an output position with origin greater than or equal to i before (after) the
current contents of the register first (last) register in the pattern.

For example, in the pattern at level 3 in Figure 2.7, rp and rm are
separated by # because the d in the output has origin 4 and is in between
the contents of rp and rm.

The notion of updates can be lifted to register patterns in the natural
way. Given a pattern P and a register update up, define up(P ) to be the
string obtained by replacing each register r in P by up(r). Note that up(P )
can contain output letters, registers and separator #. We call a register
pattern P and a register update up to be compatible if

— up(P ) does not have any factor of the form rwr′, where w ∈ Γ+, i.e,
the update does not add any output symbols between two consecutive
registers not separated by #.

— up(r) for any register r that occurs in P is non-empty. This ensures
that in the flow tree, nodes labeled by registers have a parent.

We now, define a function dropΓ which maps a string s from (R∪{#}∪
Γ)∗ to the string obtained by replacing each maximal factor from (Γ∪{#})+

in s by #. It is easy to see that for any register pattern P and update up,
dropΓ(up(P )) will be a register pattern. However, multiple register patterns
P can yield the same pattern after applying the same up followed by dropΓ.

Similarly, we define a function dropR which removes all the maximal
factors from R+ and replaces it by another special separator $. Therefore,
dropR(up(P )) keeps the letters added by the update, keeps the # and re-
places the registers by $. Intuitively, $ corresponds to outputs which are
already stored in registers and # corresponds to outputs yet to be added to
the registers.

Register patterns for a run. The register patterns Pi at level i are
defined inductively from the end of the run. Let up1, up2, . . . , upn, out be
the sequence of register updates for a run, where n is the length of the
input and out is the output update. We define Pn, the register pattern at
level n, to be dropΓ(out(qf )) where qf is the final state reached in the run.
For the level i, the pattern Pi is dropΓ(upi(Pi+1)). We give an example
of a run and the corresponding flow trees and register patterns in Figure
2.7. Note that given a run ρ of an NSST, the register patterns and states
at each level of the run are fixed. The states and register patterns along
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with the transitions encode the run and therefore by extension, the output
with origin information. Furthermore, because of the copyless restriction
of the updates of the NSST, a register occurs at most once in any register
pattern corresponding to a level in a run. Therefore, the patterns are of size
polynomial in the number of registers.

Proof of Theorem 2.3.2. The main idea of the proof is to build an au-
tomaton which uses the register patterns of T1 and T2 to find a witness of
non-inclusion. If the automaton is unable to find a witness, i.e, the language
is empty, then the inclusion holds.

Lemma 2.3.3. Given NSST T1 and T2, there exists an NFA A such that
T1 ⊆o T2 if and only if [[A]] is empty. Furthermore, the number of states and
transitions of A are exponential with respect to the size of T2 and polynomial
in the size of T1. If T2 is deterministic, then A has size polynomial in size
of T1 and T2.

Proof. Let Ti = (Qi,Σ,Γ, Ri, Ii, Fi, out i,∆i) for i = 1, 2. The NFA A needs
to verify the existence of a successful run ρ1 = t1t2 . . . tn of T1 on some word
u, such that there is no origin-equivalent, accepting run of T2 on u.

The NFA A reads the word u from left to right, guesses the register
pattern at each step of ρ1, and tracks all the runs of T2 that have similar
register patterns, where similarity of patterns is defined by having equal
number of occurrences of #. The transitions will maintain the invariant
that register patterns of ρ2 substituted with the current origin-valuation of
the registers are the same as that of ρ1.

Construction of A: The NFA A is the tuple (Q,Σ, I, F,∆) where
— Q = (Q1×P1)× 2Q2×P2 , where Pi is the set of register patterns over

registers Ri, for i = 1, 2.
— I = (I1 × {#})× 2I2×{#} ∪ (I1 × {ε})× 2I2×{ε}.
— F = {((q1, P1), S) | q1 ∈ F1, P1 = out1(q1), and for every (q2, P2) ∈

S, either q2 6∈ F2, or P2 6= out2(q2)}.
The final state checks that the state and register pattern for the first
NSST corresponds to an accepting run of T1 and all the matching
runs of T2 are either not accepting or produce different outputs.

— The set ∆ contains any transition of the form ((q1, P1), S) −a−→
((q′1, P

′
1), S′) if

1. there exists a transition (q1, a, q
′
1, up1) in ∆1 such that up1 and

P ′1 are compatible and P1 = dropΓ(up1(P ′1)).

2. for every (q2, P2) ∈ S, and for every transition (q2, a, q
′
2, up2) ∈

∆2, there exists (q′2, P
′
2) ∈ S′ such that

— up2 and P ′2 are compatible and P2 = dropΓ(up2(P ′2))
— dropR(up1(P ′1)) = dropR(up2(P ′2)) (cf. item 1).
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The first condition on the transition checks that the pair of state and
register pattern of T1 stored in the first and second component of the state of
A extends the run of T1 that is being tracked with a transition t1 of T1. The
second condition checks that the set of pairs of state and register pattern of
T2, S′ contains all possible extensions of pairs (q2, P2) ∈ S by a transition
t2 with update up2 that is compatible with P2. Furthermore, the register
updates of t1 and t2 are similar and append the same output that have with
origins at the current letter a. This maintains the following invariant.

Given a pattern P and a transition t = (q, a, q′, up) ∈ ∆i, we say a
pattern P ′ is reachable from P on t if P = dropΓ(up(P ′)). This can be
extended to define reachable patterns for a run ρ starting from the patterns
#, or ε.

Invariant maintained by runs of A:

Lemma 2.3.4. A run ρ of A reaches state ((q1, P1), S) after reading u([1, i])
if and only if

— there exists a run ρ1 of T1 which reaches the state and register pattern
(q1, P1) after reading the prefix u([1, i]) with some valuation val1, and

— if there exists a run ρ2 on u([1, i]) of T2 reaching state q2 and pattern
P2 with valuation val2, such that val2(P2) = val1(P1), where val1 is
the valuation obtained from ρ1, then (q2, P2) ∈ S.

Proof. This can be proved inductively. This is clearly true at level 0 since
the valuations val1 and val2 are empty and the patterns are either both #
or both ε.

Suppose the NFA A reaches the states ((q1, P1), S) and ((q′1, P
′
1), S′) after

reading the prefix u([1, i]) and u([1, i+1]) respectively. Let ρ1 be a run of T1

that reaches states, register patterns and valuations q1, P1, val1 after reading
u([1, i]). By definition, there exists a transition extending the run reaching
state q′1, pattern P ′1, and some valuation val ′1 after reading u([1, i+ 1]).

Let P ′2 be a register pattern such that ρ2 is a partial run of T2 which
reaches states and valuations q′2, val ′2 after reading u[1, i+1] and val ′1(P ′1) =
val ′2(P ′2). We need to show that (q′2, P

′
2) ∈ S′.

Let the state and valuation reached after reading u([1, i]) in ρ2 be q2, val2.
Let up1 and up2 be the updates corresponding to the (i+ 1)-th transitions
of ρ1 and ρ2.

Since val ′1(P ′1) = val1(up1(P ′1)) and val ′2(P ′2) = val2(up2(P ′2)), this im-
plies val1(P1) = val2(P2), since P1 and P2 are sub-strings of the arguments
above obtained by applying dropΓ which corresponds to positions with origin
i+ 1. Similarly, dropR(up1(P ′1)) = dropR(up2(P ′2)) as they can be obtained
by replacing positions with origin less than i by $ from val1(up1(P ′1)) and
val2(up2(P ′2)) and all the output letters have origin i + 1. Therefore they
are origin equivalent.
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By definition of the transition of A, (q′2, P
′
2) ∈ S′ as there exists a tran-

sition in ∆2, the (i+ 1)-th transition of ρ2 which satisfies the criteria for the
transitions of A, i.e, a transition that is compatible with the pattern P ′1 and
appends the same output. Thus, the invariant is maintained.

Therefore, if two runs ρ1 of T1 and ρ2 of T2 on input u are origin-
equivalent, the patterns which are output by ρ2 will be in the set S and
therefore the NFA A will not accept the word u. If the two runs are not
origin-equivalent, then the set of register patterns for T2 will either become
empty at some stage and A accepts the input u, or have some similar pattern
but do not output that pattern.

The register patterns for an NSST are of polynomial size in the number
of registers of the NSST. Therefore the size of a state of A will be polynomial
in size of T1 and exponential in the size of T2 since we need to store a set
of register patterns, which can be exponential. Therefore, the size of the
transitions of A will also be exponential.

However, if T2 is a DSST, then the size of a state of A will be polynomial
in both the size of T1 and T2, as the set of state and register pattern pair
will be a singleton set and there will be a unique transition from any state
and register pattern for T2.

To check origin-equivalence of two NSSTs, we can check origin-
containment in both directions. Since, the states and transitions of A are
of size exponential in T2, we can build non-deterministically build a run of
A on-the-fly and check for non-emptiness of A in space exponential in T2.
Therefore, the origin-equivalence problem is in ExpSpace.

In case of T2 being a DSST, the size of A is polynomial in size of both
T1 and T2. Therefore, the origin-containment T1 ⊆o T2 can be checked in
PSpace. If both T1 and T2 are DSST, then origin-equivalence can also be
checked in PSpace.

Lower bounds. A lower bound for the origin-equivalence comes from the
PSpace-hardness of equivalence of NFA. If two NSST are origin-equivalent,
their underlying automata must be equivalent. Since checking equivalence of
NFA is PSpace-hard, checking origin-equivalence of NSST is also PSpace-
hard.

For DSST, the underlying automata are DFA. Checking equivalence
of DFA is NlogSpace-hard. Therefore, we obtain a lower bound of
NlogSpace-hard for origin-equivalence of DSST.

This leaves a gap in the complexity of origin-equivalence of NSSTs.

Open Problem 2.3.5. What is the exact complexity of origin-equivalence
of NSSTs (DSSTs)?
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2.3.1 Copyful DSSTs

In Theorem 2.3.2, we saw that the origin-equivalence of DSST is in
PSpace. We now consider the origin-equivalence for copyful DSSTs. Recall
that a copyful DSST is a DSST without the copyless restriction in its up-
dates, i.e, up(r) for a register r can be any string over (R ∪ Γ)∗. Therefore,
the same register can appear multiple times in the right-hand side of an
update.

We give a backward constraint propagation algorithm to solve the origin-
equivalence for copyful DSSTs.

Theorem 2.3.6. The origin-equivalence problem for copyful DSST is de-
cidable.

We present here the algorithm for copyful DSSTs. Let T1 =
(Q1,Σ,Γ, R, I1 = {qinit

1 }, F1, out1,∆1) and T2 = (Q2,Σ,Γ, S, I2 =
{qinit

2 }, F2, out2,∆2) be two copyful DSST with R ∩ S = ∅. Without loss
of generality, we assume they are complete, i.e, for every input word, there
are runs of both T1 and T2 on it. If a DSST is not complete, then it can be
made complete by adding a sink state.

By Theorem 2.1.1 we can assume that Γ is a singleton set, say Γ = {c},
so contents of registers can be viewed as belonging to N∗ instead of (Γ×N)∗,
which corresponds to the origins of the c’s. We define the product graph G
as a labeled multi-graph with set of nodes V = Q1 ×Q2 and edges labeled
by register updates. For each (q1, q2) ∈ V , there is an edge from (q1, q2) to
(q′1, q

′
2) labeled by up1; up2 if there exists a ∈ Σ such that (q1, a, q

′
1, up1) and

(q2, a, q
′
2, up2) are transitions in T1 and T2, respectively. Note that there can

be at most |Σ| many edges between two vertices, one for each letter in Σ.
This is because there is exactly one transition in T1 from a state q1 on an
input letter a and the same for T2, as T1 and T2 are deterministic.

The algorithm labels the vertices of the product graph G with constraints
of the form α = β where α is a word in R∗ and β is a word in S∗. We assume
that the product graph G is trimmed according to accessibility from initial
states, i.e, all vertices that are not reachable from (qinit

1 , qinit
2 ) are removed

from G.
We extend register updates to words of registers. An update for a word

α in R∗ is obtained by applying the update to each occurrence of a register.
Given a word α = r1r2 . . . rn ∈ R∗ and an update up : R → (R ∪ Γ)∗, we
denote by up(α) the string up(r1)up(r2) . . . up(rn).

Let U1 ∈ (R ] Γ)∗ and U2 ∈ (S ] Γ)∗, i.e, potential right-hand
side of updates. We call U1, U2 compatible if their projections on Γ are
equal, which amounts to say that |U1|c = |U2|c as Γ = {c}. Given two
compatible update words U1, U2 as before, we factorize them as follows:
U1 = α0cα1cα2 · · ·αn−1cαn and U2 = β0cβ1cβ2 · · ·βn−1cβn, where αi ∈ R∗
is the factor of U1 that starts just after the i-th c and ends just before the
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(i + 1)-th c, for each 0 ≤ i ≤ n, and same for βi ∈ S∗ from U2. We denote
by C(U1, U2) the set of constraints αi = βi, 0 ≤ i ≤ n (excluding the trivial
constraints ε = ε). For example, the words ccr1c and cs1cs2c are compatible
as both of them have three occurrences of the letter c. The set of constraints
C(ccr1c, cs1cs2c) is {s1 = ε, s2 = r1}.

Consider an edge e of the product graph from node v to node v′, labeled
by the updates up1; up2. Let α = β be a constraint labeling node v′. If
up1(α) and up2(β) are compatible, then, we denote by Eq(α, β, e) the set
of constraints C(up1(α), up2(β))). Otherwise, if up1(α) and up2(β) are not
compatible, then we say that the triple (α, β, e) is an inconsistency.

We are now ready to describe the algorithm to check origin-equivalence
of copyful DSST. The algorithm maintains two sets of constraints Cv and
Ĉv at each node v of the product graph. The constraints in Cv are the
ones that are already propagated, and Ĉv are the constraints that yet to be
propagated.

Initial constraints. The algorithm first adds constraints to the final
nodes of G, i.e, where both components in the product state are final.
For a node v = (q1, q2) ∈ F1 × F2, the algorithm adds the constraints
C(out1(q1), out2(q2)) to the set Ĉv.

Constraint propagation. The algorithm iterates a constraint propaga-
tion step that, given any node v′ = (q′1, q

′
2), propagates the constraints Ĉv′

as follows. The algorithm chooses some α = β in Ĉv′ . For every node v
that has an edge to v′, and such that this edge e is labeled by up1; up2, the
algorithm first checks that up1(α) and up2(β) are compatible. If so, it adds
the constraints Eq(α, β, e) \ (Cv ∪ Ĉv) to the set Ĉv. In fact, to obtain an
algorithm that terminates, only a subset of these constraints will be added.
This is because there may be some newly added constraints that are already
implied by other existing constraints in Ĉv. This will be explained when we
discuss the termination condition of the algorithm.

Thus, the constraints added at v by propagating α = β are added to
the set of unexplored constraints, unless they are already present in the
set of constraints Cv or Ĉv. If up1(α) and up2(β) are not compatible, the
algorithm identifies (α, β, e) as inconsistency and stops.

After propagating α = β to all predecessors of v′, the constraint α = β
is moved from Ĉv′ to Cv′ . This step is iterated until the algorithm either
encounters an inconsistency or reaches a fixpoint.

Example 2.3.7. We give an example of an execution of the algorithm for
origin-equivalence on the copyful DSSTs T1 and T2 as shown in Figure 2.8.

The two DSST are origin-equivalent. For example, on the word aa, they
produce the origin output (c, 1)(c, 1)(c, 1)(c, 1)
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T1 q1 q′1
a; r := cc

a; r := rr

r
T2 q2 q′2

a;

s1, s2 := c

a; s1, s2 := s1s2

s1s2

Figure 2.8 – Two origin-equivalent copyful DSSTs

The initial constraint at the node (q′1, q
′
2) of the product graph will be

(r, s1s2). By propagating the constraint along the self edge, we obtain the
constraints rr = s1s2s1s2. By propagating the constraint n times along the
edge, we will obtain (rn, (s1s2)n). However, notice that if the constraint
(r, s1s2) is satisfied, the constraints (rn, (s1s2)n) are automatically guaran-
teed. In particular, the constraints (rn, (s1s2)n) are redundant. We use this
observation to get a termination guarantee by only adding constraints which
are not implied by the existing ones.

First, we show the correctness of the algorithm. Then, we show how we
can only retain the necessary constraints and get a termination guarantee.

Proof of correctness. Since we are dealing with a unary output alphabet,
we consider valuations to be functions from R and S, resp., to N∗. This is
because a register valuation in the origin semantics is a function from R (or
S) to (Γ × N)∗ and as Γ is unary, we can drop it to make the notations
simpler.

The following simple proposition formalizes the main argument to be
used in the proof.

Proposition 2.3.8. Let α′ = β′ be a constraint. Consider accepting runs of
ρ1 of T1 and ρ2 of T2 on a word u. This gives a unique path in the product
graph G. Let e = ((q1, q2), (q′1, q

′
2)) be the j-th edge in this path, labeled by

updates up1; up2 that are compatible with respect to α′ = β′. Let val i and
val ′i be the valuations reached in the run ρi at state qi and q′i respectively,
for i ∈ {1, 2}. For any constraint α = β ∈ Eq(α′, β′, e), val1(α) = val2(β),
if and only if, val ′1(α′) = val ′2(β′).

Proof. Let up1(α′) = α1cα2c . . . cαk and up2(β′) = β1cβ2 . . . cβk. By defi-
nition of the valuation, val ′1(α′) = val1(α1)jval1(α2) . . . jval1(αk) and simi-
larly for val ′2(β′).

For any constraint αi = βi in Eq(α′, β′, e), i ∈ {1, . . . , k}, val1(αi) and
val2(βi) only use data values < j. If val1(αi) 6= val2(βi), for some i, then
clearly val ′1(α′) and val ′2(β′). Otherwise, if val1(αi) = val2(βi), for all i,
then obviously, we have val ′1(α′) = val ′2(β′).

Using this proposition, we show the correctness of the algorithm. First,
we show that if an inconsistency is detected by the algorithm, then the two
DSST are not origin-equivalent.
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Lemma 2.3.9. If the algorithm detects an inconsistency (α, β, e), where e
is an edge from (q1, q2) to (q′1, q

′
2) labeled by updates up1; up2, then T1 and

T2 are not origin-equivalent.

Proof. Let a be the letter such that there exists transitions (q1, a, q
′
1, up1) in

T1 and (q2, a, q
′
2, up2) in T2. Such a letter exists as otherwise, there would

not be an edge e in the graph.
Since we assumed T1 and T2 are trim, the states q1 and q2 are accessible

from the initial state on some word, say u. This gives a run of T1 and T2 on
the word ua. Let val ′1 and val ′2 be valuations in the runs of T1 and T2 after
reading ua. As (α, β, e) is an inconsistency, this means up1(α) and up2(β)
have different number of cs. This in turn implies that val ′1(α) and val ′2(β)
will have different number of occurrences of |u′|+ 1.

As α = β is a constraint at (q′1, q
′
2), there exists a sequence of edges

e1, e2, . . . , ek, where e1 = ((q′1, q
′
2), v1) and ei = (vi−1, vi) for 1 < i ≤ k and

vk = (f1, f2) is a pair of final state; and a constraint αi = βi for 1 < i ≤ k,
at node vi such that

— αk = out1(f1) and βk = out2(f2),
— αi−1 = βi−1 is a constraint in Eq(αi, βi, ei),
— α = β is a constraint in Eq(α1, β1, e1).
The existence of such a path is guaranteed as the constraint α = β is

propagated to the vertex (q′q, q
′
2) after a finitely many steps in the algorithm.

This path also gives a word u′ where u′(i) is the letter corresponding to the
edge ei.

Since val ′1; val ′2 do not satisfy the constraint α = β, by applying Lemma
2.3.8 iteratively, we get that the final valuations val ′′1 and val ′′2 do not satisfy
out1(f1) = out2(f2). Therefore, the runs of T1 and T2 on uau′ are origin-
inequivalent.

We now prove that if the algorithm does not detect any inconsistency,
then the DSST are indeed origin-equivalent. This will complete the proof of
correctness of the algorithm.

Lemma 2.3.10. If the algorithm does not detect an inconsistency, then T1

and T2 are origin-equivalent.

Proof. Consider the runs of ρ1 of T1 and ρ2 of T2 on a word u. This
gives a unique path π = e1e2 . . . en in the product graph G such that
ei = ((qi−1

1 , qi−1
2 ), (qi1, q

i
2)) are labeled by updates upi1; upi2.

The states (q0
1, q

0
2) are initial states and (qn1 , q

n
2 ) are final states. At

every vertex vi = (qi1, q
i
2) in the path π, we define the set of constraints

Ki inductively from the end. The set of constraints Kn is the set defined
by C(out1(qn1 ), out2(qn2 )). For every node vi−1 = (qi−1

1 , qi−1
2 ), the set of

constraints Ki−1 for 1 ≤ i ≤ n is defined using the set of constraints Ki and
the edge ei. Essentially, Ki−1 is the union of the sets Eq(α, β, ei) such that
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α = β is a constraint in Ki. In other words, the constraints in Ki−1 are
exactly the ones obtained by propagating the constraints from Ki along the
edge ei.

Let val i1 (val i2) be the valuations at state qi1 (qi2) in ρ1 (ρ2 respec-
tively). The initial valuation pair (val0

1, val0
2) satisfy the constraints K0

as the valuations are empty. Suppose, the constraints Ki are satisfied by
the valuation pair (val i1, val i2). Then by Proposition 2.3.8, the valuation
pair (val i+1

1 , val i+1
2 ) satisfies the constraints Ki+1. This is because val i+1

1 (r)
equals the word obtained by replacing every c by i + 1 in val i1(upi+1

1 (r)),
where upi+1

1 is the update in the transition of T1 corresponding to ei+1. This
is implied by Proposition 2.3.8.

Therefore, the final valuations satisfy out1(qn1 ) = out2(qn2 ), which implies
the outputs are origin-equivalent. This proves the lemma.

This concludes the proof that the algorithm is correct if it terminates.
We now prove that the algorithm terminates after a finite number of iteration
steps.

Termination. To ensure termination of the propagation algorithm, it
would be nice if we could derive a uniform bound on the number of con-
straints that could appear at any node in the product graph G. In general,
there is no such bound, since the words α and β can be of any length. There-
fore, there is no immediate termination guarantee. To ensure termination,
we only keep the constraints at a node if they are not implied by the ex-
isting ones. For example, the constraints r1 = s1 and r2 = s2 implies the
constraint r1r2 = s1s2. To achieve this, we define word equation systems.

For a set of variables Ω and an alphabet Σ, a word equation is a pair of
the form (x, y), where x, y ∈ Ω∗. A solution to the equation is a morphism σ :
Ω∗ → Σ∗ such that σ(x) = σ(y). A system of word equations is a (possibly
infinite) collection of word equations. We denote a system of equations as
the tuple (Ω,Σ, C), where C is a set of the equations (x, y) with x, y ∈ Ω∗.

Note that the constraints at a node obtained by the propagation algo-
rithm can be seen as a system of word equations with Σ = N and Ω = R∪S.

Theorem 2.3.11 (Ehrenfeucht’s Conjecture). Given a system of word equa-
tions S = (Ω,Σ, C) over a finite alphabet Σ, there exists a subsystem of
word equations S ′ = (Ω,Σ, C′), where C′ is a finite subset of C such that
σ : Ω∗ → Σ∗ is a solution of S if and only if it is a solution of S ′.

This result, known as the Ehrenfeucht’s conjecture, was proved indepen-
dently by Albert and Lawrence and by Guba [AL85, Gub86]. This theorem
works for finite alphabets. In the constraints obtained in our algorithm
however, the valuations map registers to natural numbers N. Therefore, we
prove an equivalence between solutions of a system of word equations over
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the binary alphabet Σ = {0, 1} and similar systems of word equations over
the infinite alphabet N.

Lemma 2.3.12. Suppose S = (Ω,Σ = {0, 1}, C) and S ′ = (Ω,N, C) are two
systems of word equations with the same set C of symbolic equations. There
is a bijection between the solutions of S and the solutions of S ′.

Proof. Consider the bijection h between N∗ and {0, 1}∗, such that
h(n1n2 . . . nk) to 1n101n20 . . . 01nk . This is clearly a bijection as it is in-
jective and surjective, since {0, 1}∗ = (01∗)∗. Moreover, the encoding is
compatible with concatenation, i.e, h(u.v) = h(u)h(v). Therefore, there is
a bijection between solutions of S and solutions of S ′.

Using this lemma, we now explain how to check for equivalence of systems
of word equations over the binary alphabet Σ = {0, 1}. This would then
suffice to check whether a given constraint over N∗ is redundant or not with
respect to a given system of constraints. To ensure termination, we modify
the propagation step slightly. We add a constraint (α, β) to the set Ĉv, only
if Cv ∪ Ĉv and Cv ∪ Ĉv ∪ {(α, β)} are not equivalent. For example, if the
constraints r1 = s1 and r2 = s2 are in Cv, then we do not add the constraint
r1r2 = s1s2 to Ĉv even if it is obtained by propagating some constraint
to the node v. Equivalence of systems of word equations over Σ∗ can be
checked using Makanin’s algorithm [Lot02].

Note that in the case of (copyless) DSSTs, the strings in the constraints
can only contain a register at most once. Therefore, the size of the con-
straints is bounded by the total number of registers. In particular, the
number of distinct constraints is exponential in the sizes of R and S. This
yields a PSpace algorithm for copyless DSSTs, that is alternative to the one
given in the proof of Theorem 2.3.2. Note that the backward propagation
algorithm cannot be immediately generalized to the non-deterministic case.
For a fixed input u, the constraints are propagated backwards by follow-
ing u in reverse, which gives different constraints at the initial node, based
on the different paths followed. To check for equivalence only one of these
constraints need to be satisfied. The problem does not occur in the deter-
ministic case, since there is at most one path from the final node to initial
node that follows the word u in reverse. Therefore, the equivalence problem
remains open for copyful NSSTs.

2.3.2 An expressively equivalent subclass of DSST

We saw that the origin-equivalence problem for DSST is in PSpace.
In fact, this upper bound is the same as for classical equivalence of DSST
[AD11].

Restricted to unary output alphabet however, the classical-equivalence
problem for DSST can be solved in PTime, even for copyful DSST
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[ADD+13]. The algorithm in the latter paper uses Karr’s algorithm [MOS04]
for computing invariants of affine programs. For origin-equivalence, Theo-
rem 2.1.1 shows that the restriction to unary output alphabet does not make
the equivalence problem easier, at least with our provided bounds. In partic-
ular, the best upper bound for origin-equivalence of DSST with unary output
alphabet is still PSpace, which is worse than that of classical-equivalence.

Although the exact complexity of origin-equivalence remains open for
both unrestricted DSST and DSST with unary output alphabet, these re-
sults suggest that the origin semantics does not necessarily yield a better
complexity for the equivalence problem.

We consider in this subsection a restricted class of DSSTs, called sepa-
rated DSSTs, for which origin-equivalence can be solved in PTime.

Separated DSST. We call an update separated if the right-hand side of
the update never contains a subword of the form rr′ for two registers r,
r′. This means that occurrences of two registers are always separated by
some non-empty word in the right-hand side of an update. For example the
update r := r1abr2 is separated, whereas the update r := ar1r2b is not.

We call an DSST separated if all its updates are separated. We show
that restricting to separated updates does not decrease the expressiveness
of DSST as long as we allow bounded-copy DSST, originally defined in
[AFT12]..

To define bounded-copy DSST, we need to define the flow graph of a run
of a copyful DSST. The flow graph of a run is a directed acyclic multi-graph,
defined in a similar way to flow trees. For a run ρ of length n, the vertices
of the flow graph of ρ are (R×{0, 1, . . . , n})∪{out}. The (i−1)-th and i-th
level simulate the updates, i.e, there is an edge from (r′, i− 1) to (r, i) if the
i-th update to register r, upi(r) uses the register r′. As a register can occur
in several updates, there can be multiple outgoing edges from any vertex,
and the flow graph can have multiple edges between two vertices. There is
a unique final output register out , which corresponds to the final output.
All the nodes in the flow graph must have a path to the final register. This
assumption ensures that all registers in the flow graph contribute to the final
output.

A copyful DSST is called bounded-copy DSST if there exists a bound k
such that ∀ run ρ and ∀ vertex (r, i) in the flow graph of ρ, there are at most
k paths from of (r, i) to out . Alur et. al.[AFT12] showed that bounded-copy
DSST are expressively equivalent to (copyless) DSST. The construction also
preserves the origins. Therefore, the class of (copyless) DSST and bounded-
copy, separated DSST are expressively equivalent in the origin semantics.

Theorem 2.3.13. Every DSST can be transformed to an origin-equivalent
bounded-copy, separated DSST with exponentially many additional registers.
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Thus, DSSTs and bounded-copy separated DSSTs are expressively equivalent,
both in the classical semantics and origin semantics.

Proof. Let T = (Q,Σ,Γ, R, I, F, out ,∆) be a DSST. We want
to build an origin-equivalent bounded-copy, separated DSST T ′ =
(Q,Σ,Γ, R′, I, F, out ′,∆′). Note that the states remain the same. The only
changes are in the set of registers and updates to the registers.

Let R be the set of registers of T and Π denote the set of words α ∈ R+

such that every register occurs at most once in α. For every word α ∈ Π,
we have a register xα in R′. The updates to a register xα are determined by
the updates to the original registers. For a transition (q, a, q′, up) in ∆, we
have a transition (q, a, q′, up′) in ∆′ such that, if α = r1 . . . rk, then up′(xα)
evaluates to up(r1) . . . up(rk).

However, the word up(r1) . . . up(rk) need not be separated. We use the
registers in X to make the right-hand side separated. The update to register
xα, up′(xα) will be the string obtained by replacing every maximal factor
α′ of up(r1)up(r2) . . . up(rk), by xα′ .

Consider for example up(r) = br′, and up(r′) = r where r, r′ are registers
of T . The update to the string rr′ is br′r. Therefore, the update to the
register xrr′ in T ′ will use the register xr′r instead of using the concatenation
of registers r′r. Therefore, we have up′(xrr′) = bxr′r.

The transducers T and T ′ are origin-equivalent since after reading a
prefix of the input, the register xα of T ′ computes the value of the string α
obtained after T reads the same prefix, and the origins in output of T and
T ′ are the same.

To show that the copyful DSST T ′ is indeed bounded-copy, consider a
run of T ′ of length n. We show that there is exactly one path from any
node (xα, i) to out ′ in the flow multi-graph using the fact that the DSST
T was copyless. Let α = r1r2 . . . rk and suppose there exists a node (xα, i)
with more than one path to out ′. This implies the contents of registers
r1, r2, . . . , rk will have more than one path to the final output out in the
flow graph of corresponding to a run of T . This contradicts the fact that T
is copyless. Therefore, the DSST T ′ is bounded-copy with a bound of 1.

The number of register in T ′ is exponential in the number of registers
of T . Therefore, T ′ is a bounded-copy, separated DSST with exponentially
many additional registers that is origin-equivalent to T .

We give an example showing that the exponential number of registers in
indeed required.

Example 2.3.14. We give an example of a DSST with n registers for which
exponentially many registers are needed for an equivalent separated DSST.

The DSST Tn = (Q,Σ,Γ, R, I, F, out ,∆) has two states Q = {q0, q1},
with q0 being the initial state and q1 being a final state. The set of registers
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R = {r1, . . . rn}. The input alphabet is Σ = {a} ∪ {ai,j | ∀i, j ∈ {1, . . . , n}}
and the output alphabet is ∆ = {b1, . . . , bn}.

On the letter a, there is a transition in ∆ (q0, a, q1, up), where up(ri) :=
bi. On the letters ai,j , for all i, j ∈ {1, . . . , n}, there is a transition
(q1, ai,j , q1, upi,j). The update upi,j swaps the contents of registers ri and
rj and keeps all the other registers unchanged. The DSST accepts words of
the form aw where all letters in w are aij , for some i, j ∈ {1, . . . , n}. The
final output function is out(q1) = r1r2 . . . rn.

Since any permutation of n elements can be generated by transpositions,
the output can be any permutation of b1, b2, . . . bn, depending on the word
aw, as every transition on aij is a transposition of the registers.

In any equivalent separated DSST, there needs to be a register storing
every possible permutation after reading the first a of the input. Otherwise,
the registers would be storing only part of the output and as concatenation
of registers is not allowed in the updates, it would not be possible to output
the correct permutation.

PTime algorithm for origin-equivalence. We now give a PTime algo-
rithm to check origin-equivalence of copyful, separated DSST. The algorithm
is a backward constraint propagation algorithm similar to the one in proof
of Theorem 2.3.6 for copyful DSSTs.

Theorem 2.3.15. The origin-equivalence problem for copyful, separated
DSST is in PTime.

Proof. The algorithm labels the product graph of copyful, separated DSSTs
T1 and T2 with sets of registers R and S respectively, by constraints of the
form r = s, or r = ε, or s = ε, where r ∈ R and s ∈ S are registers of T1

and T2 respectively. We denote constraints by a pair (r, s) where r and s
are either registers or the empty word ε.

The algorithm is the same as for general copyful case. However, here
we have to deal with the output alphabet not being unary. This is because
the transformation of DSST with an arbitrary output alphabet to one with
unary output alphabet in proof of Theorem 2.1.1 does not preserve separated
updates.

For this reason, we need to define compatible updates differently. Let r
and s be registers of T1 and T2, or the empty word, and up1 and up2 be
updates of T1 and T2 respectively such that up1(r) = c1r1c2r2 . . . ckrkck+1

and up2(s) = c′1s1c
′
2s2 . . . c

′
`s`c

′
`+1, where every ci and c′i are letters from

the output alphabet Γ and every ri (si) is either a register in R (S) or the
empty word. We say up1 and up2 are compatible with respect to registers
r and s if k = ` and ci = c′i for every 1 ≤ i ≤ k + 1. In other words,
the projection on to Γ are equal. The constraints implied by the two words
up1(r) and up2(s) are the pairs (ri, si) for all 1 ≤ i ≤ k. Given an edge
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e labeled with updates up1; up2 and a constraint (r, s) such that up1, up2

are compatible with respect to r and s, we denote by Eq(r, s, e) the set of
constraints implied by the words up1(r) and up2(s).

With this definition of compatible updates, the algorithm in the proof of
Theorem 2.3.6 works for copyful, separated DSSTs as well. The algorithm
labels the product graph of T1 and T2 with constraints of the form r = s.
Recall that the product graph has vertices V = Q1 × Q2 with edges from
(q1, q2) to (q′1, q

′
2) labeled with updates up1; up2 if there is a letter a such that

(q1, a, q
′
1, up1) and (q2, a, q

′
2, up2) are transitions of T1 and T2 respectively.

For a node (f1, f2) in the product graph, the initial constraints are out(f1) =
out(f2).

In the propagation step, if a node v′ = (q′1, q
′
2) has a constraint r = s,

and e = (v, v′) is an edge labeled by up1; , up2, we check if the updates up1

and up2 are compatible with respect to r and s. If so, we add the constraints
Eq(r, s, e) to the node v.

An inconsistency in the algorithm is a constraint (r, s) at a vertex v′

and an edge e = (v, v′), such that up1(r) and up2(s) are not compatible,
where up1; up2 is the label of edge e. The algorithm stops if it encounters
an inconsistency or reaches a fixed point. no more new constraints can be
added by propagating existing constraints. The total number of possible
constraints at a vertex is polynomial in |R| + |S|. Therefore, the number
of propagation steps needed to reach a fixed point is polynomial in |R| +
|S|. Each propagation step needs to check compatibility of the updates,
which can be done in polynomial time. Therefore, the running time of the
algorithm will be polynomial in |T1|+ |T2|. The correctness of the algorithm
follows a proof similar to the proof of Theorem 2.3.6.

Therefore, the origin-equivalence problem of copyful, separated DSSTs
is in PTime.

2.4 Conclusions

We studied the origin-equivalence (and origin-containment) problems for
2NFTs, NSSTs and various subclasses of NSSTs. We first showed that the
output alphabet can be encoded in the input using origins and therefore,
the origin-equivalence problem for 2NFTs (or NSSTs) with unary output
alphabet is as hard as the general case(Theorem 2.1.1). This is in contrast
with the classical semantics, where restricting to unary output alphabet
often makes the problem easier. For instance, the equivalence for DSSTs
with unary alphabet is in PTime [ADD+13], compared to PSpace in the
general case [AD11].

For 2NFTs, we showed that the origin-equivalence problem is PSpace-
complete (Theorem 2.2.1), which is the lowest complexity possible as equiv-
alence of NFA is already PSpace-hard. The result holds even for the more
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general model of 2NFT with common guess. In the process, we introduce a
normalization process of eliminating non-productive U -turns, which reduces
the problem to a simpler case of busy 2NFTs. For the case of busy 2NFTs,
we reduce the origin-equivalence problem to emptiness of NFA using variants
of classical techniques involving crossing sequences.

For NSSTs, the origin-equivalence problem can be reduced to
MSO-satisfiability on origin graphs, which was shown to be decidable
in [BDGP17]. However, this algorithm does not give any interesting com-
plexity bounds. We give a direct algorithm which reduces the problem to
emptiness of NFA, by considering the register patterns encountered during
a run. This algorithm gives an upper bound of ExpSpace for NSSTs and
PSpace for DSSTs for the origin-equivalence problem (Theorem 2.3.2). The
best known lower bounds are PSpace-hardness for NSSTs and NlogSpace-
hardness for DSSTs obtained from the equivalence of NFA and DFA respec-
tively. Therefore, the complexity of the origin-equivalence problem remains
open. An interesting observation is that the complexity of classical equiv-
alence for DSSTs is also between PSpace and NlogSpace. For DSSTs
with unary output alphabet, the classical equivalence problem is in PTime.
Therefore, the best known upper bound is better for the classical equivalence
problem in this case, compared to the origin-equivalence problem.

We also show that the origin-equivalence problem for copyful DSSTs is
decidable (Theorem 2.3.6). The proof uses a constraint propagation algo-
rithm and uses Makanin’s algorithm to ensure termination. The backward
constraint propagation algorithm also gives an alternate PSpace algorithm
for (copyless) DSSTs, as Makanin’s algorithm is no longer needed to ensure
termination. Thus, we have both a forward and a backward algorithm for
origin-equivalence of DSSTs. In the copyful case, we do not obtain any good
complexity bounds, since the algorithm has to use the Makanin’s algorithm
as a subroutine. Note that the classical equivalence problem for copyful
DSSTs is also decidable [FR17].

We also introduce a subclass of DSSTs, called separated -DSSTs, in which
registers can be appear in the right-hand side of the same update, only if a
letter separates them in the update. We show that any DSST is equivalent to
a bounded-copy separated DSST (Theorem 2.3.13). However, the obtained
separated DSST can be exponential in size with respect to the original DSST.
We also show that the origin-equivalence problem is in PTime, even for
copyful separated DSSTs (Theorem 2.3.15).

Another class of word transductions with a decidable equivalence prob-
lem is the logic LT [DFL18]. However, this class is incomparable to the
classes of transducers we have considered.

To conclude, the complexity for origin-equivalence (or even classical
equivalence) problem for DSSTs remains a major open problem. Another
possible direction of future work would be to study origin-equivalence prob-
lem for transductions on other objects, such as trees, data words, etc, by
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introducing appropriate notions of origins. For transductions on trees, the
origin-equivalence problem for deterministic top-down tree-to-string trans-
ducers was shown to be decidable in [FMRT15], which is open in the classical
semantics. For data words, transducers in the origin semantics were con-
sidered in [DGH16, Pra20]. However, to the best of our knowledge, the
origin-equivalence problem has not been considered.
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Chapter 3

Resynchronizers

We saw in Chapter 2 that unlike the classical equivalence problem,
the origin-equivalence problem is decidable for several classes of non-
deterministic transducers such as NFTs, 2NFTs, NSSTs. However, origin-
equivalence is more fine-grained than classical-equivalence, i.e, origin-
equivalence might distinguish transducers that are classically equivalent.
For example, the reverse and identity transductions over an unary alphabet
are classically equivalent, but not origin-equivalent (see Figure 1.8). In this
chapter, we discuss resynchronizers as a means to study a relaxation of the
origin-equivalence relationship. Resynchronizers were originally introduced
by Filiot et al. [FJLW16] in the context of NFTs. We first present the
original model of rational resynchronizers, followed by a larger class of log-
ical resynchronizers, called regular resynchronizers, which work for 2NFTs
and NSSTs as well. The model of regular resynchronizers was introduced
in [BMPP18] and has been further studied in [BKM+19, KM20]. Finally,
we study the expressiveness of rational and regular resynchronizers when
restricted to the class of NFTs [BKM+19].

3.1 Resychronization and Containment problem

We start by presenting some examples of transducers which are classi-
cally equivalent but not origin-equivalent.

Example 3.1.1. Consider the NFTs T1 and T2 on the left of Figure 3.1
that processes inputs from a+. On the word an, T1 produces (c, 2) . . . (c, n)
in the origin semantics, whereas T2 produces the output (c, 1) . . . (c, n − 1).
Therefore, both are origin-inequivalent, but classically equivalent as both cor-
respond to classical output cn−1.

Example 3.1.2. For the NFTs T3 and T4 on the right of Figure 3.1, the
inputs are of the form an, for n ∈ N. The induced output of T3 (resp. T4) is
(c, 1)m (resp. (c, n)m), for any m. Therefore, they are origin-inequivalent,
but classically equivalent.
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T1 q1 q′1
a | ε

a | c

T2 q2 q′2
a | ε

a | c

T3 q3 q′3
a | c∗

a | ε

T4 q4 q′4

a | ε

a | c∗

Figure 3.1 – Classically equivalent transducers that are not origin-equivalent

Note that in Example 3.1.1, for every output position, the difference
between the origins in T1 and T2 is 1, whereas in Example 3.1.2, the difference
in origins of an output position in T3 and T4 can be arbitrarily large.

Example 3.1.3. Another example is that of the identity and reverse
function over the unary alphabet Σ = Γ = {a}. The identity function
maps an to (a, 1)(a, 2) . . . (a, n), whereas the reverse function maps an to
(a, n)(a, n− 1) . . . (a, 1). These functions can be implemented by two NSSTs
(given on 24) or 2NFTs, which will be equivalent in the classical semantics
but inequivalent in the origin semantics.

Resynchronization. A resynchronization relation R is a binary relation
over synchronized pairs, so R ⊆ (Σ∗ × (Γ× N)∗)2. Any pair ((u, v), (u′, v′))
in the relation R satisfies the following properties:

— the inputs are the same, i.e, u = u′,
— the outputs are the same except for the origins, i.e, vΓ = v′Γ, where

vΓ (v′Γ, resp.) represents v (v′, resp.) projected onto Γ.
We call the pair (u, v) the source synchronized pair and (u′, v′) the target
synchronized pair.

We use a resynchronization relation as a way to change the origins in
a transduction while preserving the input and output of the source and
target pairs. Given a resynchronization relation R, and a transducer T ,
we write R(T ) to denote the set of synchronized pairs {(u′, v′) | ∃(u, v) ∈
[[T ]]o s.t. ((u, v), (u′, v′)) ∈ R}. Note that we use the notation R(T ) instead
of R([[T ]]o) for the sake of clarity, even though the resynchronizer is applied
to the transduction [[T ]]o and not directly to the transducer T .

We define below the problem of containment up to resynchronization,
which consists of deciding whether a transducer is contained in the other up
to a change in origins defined by a given resynchronization relation.

Problem 3.1.4 (Containment Up to Resynchronization). Given two
transducers T1 and T2 and a resynchronization relation R, is T1 ⊆o R(T2),
i.e, [[T1]]o ⊆ R(T2)?
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If this is the case, we say T1 is contained in T2 up to the resynchronization
R. Intuitively, T1 ⊆o R(T2) means that any synchronized pair of T1 can be
obtained by applying the resynchronization relation R to some synchronized
pair of T2. We often write T1 ⊆R T2 to denote T1 ⊆o R(T2).

One can also consider the symmetric variant asking whether R(T1) ⊆o
T2. Intuitively, this would mean the resynchronizer R changes the origins of
the synchronized pairs of T1 to obtain a synchronized pair of T2. However,
in this case, we would always have a resynchronization relation, namely the
empty resynchronization R = ∅, such that R(T1) ⊆o T2, for any transducers
T1 and T2. To avoid this, we consider the variant T1 ⊆o R(T2).

We now present examples of resynchronization relations.

Example 3.1.5. The universal resynchronization Runiv allows the origins
of an output position to move in any possible way. Therefore, Runiv contains
all pairs of synchronized pairs ((u, v), (u′, v′)), such that u = u′ and vΓ = v′Γ.
A transducer T1 is contained in T2 up to Runiv if and only if T1 is classically
contained in T2.

Example 3.1.6. The resynchronization Rfirst-to-last moves the origins of all
output positions from the first input position to the last position of the input.
So this relation contains all pairs ((u, v), (u, v′)) such that orig(v(x)) = 1
and orig(v′(x)) = |u| for all output positions x ∈ dom(v).

Example 3.1.7. The resynchronization Rshift shifts the origins by one po-
sition to the right. It contains those pairs ((u, v), (u, v′)) such that for every
output position x, orig(v′(x)) = orig(v(x)) + 1 if orig(v(x)) < |u|. The
domain of R excludes pairs ((u, v), (u, v′)) such that v has a position x with
orig(v(x)) = |u|.

Example 3.1.5 shows that containment up to a given resynchronization,
in general, is as hard as classical containment of transducers, and therefore
undecidable. We will consider in the next sections two classes of resynchro-
nization relations for which the problem of containment up to resynchro-
nization is decidable, relative to specific classes of transducers.

3.2 Rational Resynchronizers

In this section, we present the model of rational resynchronizers for
NFTs, which was introduced by Filiot et al. [FJLW16]. Recall from Sec-
tion 1.7 (Page 22), that a synchronized pair (u, v) produced by an NFT
is order-preserving, i.e, for any positions x and x′ of v, orig(v(x)) ≤
orig(v(x′)) if x < x′. Given such an order-preserving synchronized pair
(u, v) ∈ Σ∗ × Γ∗, the synchronized word representation of (u, v) is the word
w = u(1)v1u(2)v2 . . . u(n)vn ∈ (Σ]Γ)∗, where u(i) is the i-th letter of u, and
vi is the projection on Γ of the maximal factor of v with origin i. Recall that
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in order to define the synchronization language, we assume that Σ and Γ are
disjoint. In case they are not, we can always tag the letter with information
about whether it is an input or output letter. The set of synchronized words
defined by an NFT T is called the synchronization language of T , denoted
by Sync(T ), and it is a regular language (see Theorem 1.7.1).

Since the synchronization language captures the origin information of an
NFT, transformations of synchronization languages can be used to define a
resynchronization relation. In fact, the name resynchronization, introduced
by Filiot et al. [FJLW16], is motivated by the observation that resynchro-
nizations are transformations of synchronization languages. In this section,
we present some results from [FJLW16] about (rational) resynchronizers.

We fix Σ and Γ to be disjoint input and output alphabet. A rational
resynchronizer is an NFT R satisfying the following properties. We refer to
the input and output of R as the source and the target respectively. The
resynchronizer R has the same source and target alphabet Σ]Γ. Moreover,
for all source-target pair (w,w′) ∈ [[R]], the projections of w and w′ over Σ
(resp. Γ) coincide, so wΣ = w′Σ and wΓ = w′Γ. By slight abuse of notation,
we write R instead of [[R]] when no confusion arises.

Because of the restriction that projections of w and w′ to both Σ and
Γ are equal, a rational resynchronizer is a length-preserving transducer.
In the thesis, we assume that a rational resynchronizer is a letter-to-letter
transducer, i.e, it processes a single letter in the source and produces a single
target letter in a single transition, even though the original definition does
not require this assumption [FJLW16]. Note that this is not a restriction,
as all length-preserving transducers can be equivalently expressed by letter-
to-letter NFTs, see [EM65].

Example 3.2.1. The following resynchronizer R in Figure 3.2 shifts the
origin of the output positions by 1 to the left and makes the NFTs in Example
3.1.1 equivalent modulo R.

T1 q1 q′1
a | ε

a | c

T2 q2 q′2
a | ε

a | c

R p1 p2 p3

a | a
a | c

c | a

Figure 3.2 – Resynchronizer R such that T1 and T2 are origin-equivalent
modulo R
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The image of the synchronization language Sync(T ) of an NFT T
through a rational resynchronizer R is the set of words R(Sync(T )) = {w′ |
∃w ∈ Sync(T ) such that(w,w′) ∈ R}. It is a regular synchronization lan-
guage and a corresponding NFA can be obtained by taking the product of
the NFA representation of Sync(T ) and the resynchronizer R. The NFA
representation of R(Sync(T )) thus obtained is polynomial in the size of R
and T . We often write R(T ) instead of R(Sync(T )) as long as it is clear
from the context that T is an NFT.

Therefore, given two NFTs T1 and T2, the containment up to a rational
resynchronizer R, T1 ⊆o R(T2) reduces to the containment problem between
the regular languages Sync(T1) and R(Sync(T2)). Since both languages
are described by NFA of size polynomial in T1, T2 and R, we have that
containment up to rational resynchronizer is in PSpace (and also PSpace-
hard, because of containment of NFA).

Theorem 3.2.2 (Theorem 7 in [FJLW16]). The containment up to a given
rational resynchronizer for NFT is PSpace-complete.

We now introduce two technical notions specific to rational resynchro-
nizers, the lag and delay.

Lag of a rational resynchronizer. A rational resynchronizer processes
a synchronized word as the source and produces another synchronized word
as the target. Recall that synchronized words are words over the disjoint
union of input and output alphabet, i.e, Σ ] Γ. The notion of lag counts
the difference between the number of input letters from Σ consumed in
the source and produced in the target. The lag depends on a run of the
resynchronizer. Given a partial run ρ = q0 −

a1 | c1−−−−→ q1 −
a2 | c2−−−−→ . . . −an | cn−−−−→ qn

of the (letter-to-letter) resynchronizer R, its lag is lag(ρ) = |a1 . . . an|Σ −
|c1 . . . cn|Σ, where |u|Σ denotes the length of the word u projected to Σ.

A transition q −a | c−−→ q′ in ρ increases lag(ρ) by 1 if a ∈ Σ and c ∈ Γ,
and decreases lag(ρ) by 1 if a ∈ Γ and c ∈ Σ. Otherwise if both a, c ∈ Σ
or a, c ∈ Γ, then lag(ρ) remains unchanged. Note that since R is letter-to-
letter, we could have equivalently defined lag(ρ) by counting the difference
between the number of output letters instead of the input letters produced
in the source and consumed in the target. Further, note that the lag of a
successful run is always 0, since R preserves the input projection, and thus
the number of input letters in source and target must be same.

Even though the lag depends on the run, it can be easily seen that it is
in fact a property of the states:

Lemma 3.2.3 (Lemma 15 in [BKM+19]). Assuming that R is trimmed and
has exactly one initial state, for every two runs ρ1 and ρ2 of R that begin
with the same state and end with the same state, lag(ρ1) = lag(ρ2).
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Proof. Since R is trimmed, both runs ρ1 and ρ2 can be completed to some
successful runs of the form ρ′ρ1ρ

′′ and ρ′ρ2ρ
′′. From lag(ρ′ρ1ρ

′′) = 0 =
lag(ρ′ρ2ρ

′′), it immediately follows that lag(ρ1) = −(lag(ρ′) + lag(ρ′′)) =
lag(ρ2).

Note that we can assume, without loss of generality that R is trimmed
and has exactly one initial state. Using the above lemma, we can uniquely
associate a lag with each state q of R, denoted by lag(q), by choosing an
arbitrary run ρ that starts with the initial state of R and ends with q, and
letting lag(q) = lag(ρ). Note also that all lags range over the finite set
{−|Q|, . . . , |Q|}, where Q is the state space of R, since each transition of R
can only increase or decrease the lag by 1.

Bounded-delay resynchronizers. A different notion that measures how
much the source and the target have diverged in a given resynchronization,
called delay, was introduced in Filiot et al. [FJLW16]. Unlike the lag, the
delay is defined as a property of a source and target pair, instead of being
a property of the resynchronizer. Given two words w and w′ over Σ ] Γ
such that wΣ = w′Σ, let v = wΓ and v′ = w′Γ. Define diff (v, v′) as the
word v−1v′ over Γ∪Γ−1, modulo the cancellation rule a−1a = ε. Intuitively,
diff (v, v′) removes the (longest) common prefix of v and v′, keeping the
remainders. The word u−1 is, as usual, u(n)−1 . . . u(1)−1. For example,
diff (ab, ac) = b−1c. If w is a prefix of w′, then diff (w,w′) = w−1w′ ∈ Γ∗.
Similarly, if w′ is a prefix of w, then diff (w,w′) = ((w′)−1w)−1 ∈ (Γ−1)∗.

Let w = u(1)v1u(2)v2 . . . u(n)vn, w′ = u(1)v′1u(2)v′2 . . . u(n)v′n be two
synchronized words with the same input and output, so v1 . . . vn = v′1 . . . v

′
n.

The delay(w,w′) is defined as maxi (|diff (v1 . . . vi, v
′
1 . . . v

′
i)|). Intuitively, a

delay of k implies that after consuming equal parts of the input, the word
w is ahead or behind of w′ by at most k positions in the output.

Using the notion of delay, we can define the k-delay resynchronization
relation Delk = {(w,w′) | wΣ = w′Σ , wΓ = w′Γ and delay(w,w′) ≤ k}. Note
that this relation depends only on the definition of delay. As it turns out,
the k-delay resynchronization relation Delk is rational [FJLW16].

Proposition 3.2.4 (Proposition 8 in [FJLW16]). For every k, there exists
a rational resynchronizer Dk defining Delk.

The proof given by Filiot et al [FJLW16] gives a rational resynchronizer
whose states correspond to words w ∈ Γ∗ ∪ (Γ−1)∗, where |w| ≤ k. The
transitions consume a single input letter in both source and target at a time
and the state corresponds to diff (v1 . . . vk, v

′
1 . . . v

′
k) after reading k input

letters. When consuming output letters, the diff between the output read
in source and target can change, and this corresponds to an update in the
state. However, the obtained rational resynchronizer is not a letter-to-letter
NFT. Converting it into a letter-to-letter NFT is of course possible, but the
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ε

c c−1

a | a , c | c

c | ε

ε | c

a | a , c | c

ε | c

a | a , c | c

c | ε

Figure 3.3 – 1-delay resynchronizer D1

states lose their intuitive meaning. We present an example of the 1-delay
rational resynchronizer with Σ = {a} and Γ = {c} without the letter-to-
letter restriction in Figure 3.3. An important observation here is that since
the states corresponds to words of length at most k, there are exponentially
many states. Therefore, the rational resynchronizer Dk has state space
exponential in k. As a consequence of Proposition 3.2.4 and Theorem 3.2.2,
containment up to a bounded-delay resynchronizer for a fixed bound k is
decidable in ExpSpace (Theorem 9 in [FJLW16]).

To illustrate the difference between lag and delay, we give an example.

Example 3.2.5. The NFTs T1 and T2 in Figure 3.4 produce, on the input
aa, output (c, 1)n and (c, 2)n respectively, for any n ≥ 1. The delay between
the pair of synchronized words (acna, aacn) is n, since after the first a, the
difference in number of cs is n. Therefore, the maximum delay among the
pairs of synchronized words accepted by R is unbounded.

However, the lag at state p1, p2 and p4 of the resynchronizer R is 0, and
at state p3 the lag is −1.

T1 q1 q′1 q′′1
a | c+ a | ε

T2 q2 q′2 q′′2
a | ε a | c+

R p1 p2 p3 p4

a | a c | a

c | c

a | c

Figure 3.4 – Resynchronizer with unbounded delay

The main difference between delay and lag is that while lag compares
the difference in the input projection (or, equivalently, in the output projec-
tion) between prefixes of the synchronized words of equal length, the delay
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compares the difference in total length between prefixes of the synchronized
words which have equal projection to the input alphabet.

Note that in Example 3.2.5, the delay is unbounded because the length
of the output between consecutive input positions was unbounded. For
example, for every n ≥ 1, T1 produces the synchronized word acna, whereas
T2 produces the synchronized word aacn.

A resynchronization relation [[R]] defined by a rational resynchronizer R,
such that [[R]] ⊆ Delk for some k ≥ 0, is called a bounded-delay resynchro-
nization.

We now restrict our attention to the class of real-time NFTs, whose
synchronized words have a bounded number of output letters between con-
secutive input positions (see Page 8). Recall that real-time NFTs have
transitions with finite language output, i.e, in a transition (q, a, L, q′), the
language L is a finite language.

The following theorem from [FJLW16] shows that for real-time NFTs,
bounded-delay resynchronizations are equally expressive as rational resyn-
chronizers.

Theorem 3.2.6 (Theorem 11 in [FJLW16]). Given two real-time NFTs T1

and T2 and a rational resynchronizer R such that T1 ⊆o R(T2), an integer
k can be computed such that T1 ⊆o Delk(T2) holds. Furthermore, the value
of k is polynomially bounded in the sizes of T1, T2, R.

We show an alternative proof of Theorem 3.2.6 using the definition of
lag. For the real-time NFTs T1 and T2, consider the length of the longest
word appearing in a language L in any of the transitions of T1 or T2. Call
this number `. Note that ` must be polynomial in the size of T1 and T2. We
prove the following lemma.

Lemma 3.2.7. Let R be a letter-to-letter rational resynchronizer with
maximum lag k′. Let (w,w′) be a pair of synchronized words such that
(w,w′) ∈ R, w ∈ Sync(T2) and w′ ∈ Sync(T1). Then delay(w,w′) ≤ k′`.

Proof. Let w = u(1)v1u(2)v2 . . . u(n)vn and w′ = u(1)v′1u(2)v′2 . . . u(n)v′n.
We need to show that |diff (v1 . . . vm, v

′
1 . . . v

′
m)| ≤ k′` for all 1 ≤ m ≤ n.

Suppose for some m, |u(1)v1 . . . u(m)vm| = |u(1)v′1 . . . u(m)v′m| + C, where
C > 0 (the case of C ≤ 0 can be handled similarly). Let w′′ be the prefix
of w′ that has the same length as |u(1)v1 . . . u(m)vm|. Let the run of R
corresponding to the pair (w,w′) reach some state q after reading the prefix
u(1)v1 . . . u(m)vm in source and producing w′′ in the target. The lag at the
state q is at most k′, therefore there are at most m + k′ input positions in
w′′, since there are m input positions in u(1)v1 . . . u(m)vm. Between two
consecutive input positions, there are at most ` output positions. Therefore
|w′′| − |u(1)v′1 . . . u(m)v′m| is at most k′`. Since this holds for every m,
delay(w,w′) is at most k′`.
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Let us now turn to the proof of Theorem 3.2.6. Since the delay between
pairs (w,w′) in R, such that w ∈ Sync(T2) and w′ ∈ Sync(T1) is at most
k′`, R(T2) ⊆ Delk′`(T2). Therefore, T2 ⊆o R(T1) ⊆o Delk′`(T1). Since k′ is
polynomial in the size of R and ` is polynomial in the size of T1 and T2,
k′` is polynomial in the size of R, T1 and T2. This concludes the proof of
Theorem 3.2.6.

Rational resynchronizability. Given NFTs T1 and T2, we say T1 is
resynchronizable in to T2 by a rational resynchronizer, if there exists a ratio-
nal resynchronizer R such that T1 ⊆o R(T2). We denote this by T1 �rat T2.
We call this relation the rational resynchronizability relation on NFTs and
present some of its properties.

Properties of rational resynchronizability. First, it is easy to see that
rational resynchronizability is in between origin-equivalence and classical
equivalence, i.e, (1) T1 ⊆o T2 implies T1 �rat T2; and (2) T1 �rat T2 implies
T1 ⊆ T2, where ⊆ is the classical containment relation. The first condition
follows simply by considering the identity resynchronizer. The second con-
dition follows from the definition of resynchronizability, since T1 ⊆o R(T2)
for some R and R(T2) ⊆ T2, and therefore, T1 ⊆ T2.

By the above arguments, it is not clear whether rational resynchroniz-
ability coincides with classical equivalence or not, i.e, for every T1 ⊆ T2,
whether T1 �rat T2 or not. As it turns out, they do not coincide.

Example 3.2.8. Consider the NFT T1 and T2 given in Figure 3.5. Both
T1 and T2 read words of the form ak, for any k, as input and produces a
word from (c, 1)∗ and (c, k)∗ respectively. We prove that there is no rational
resynchronizer R, such that T1 ⊆o R(T2).

T1 q1 q′1
a | c∗

a | ε

T2 q2 q′2

a | ε

a | c∗

Figure 3.5 – T1 not rational resynchronizable to T2

Proposition 3.2.9. For any rational resynchronizer R, T1 6⊆o R(T2) for
T1, T2 in Figure 3.5.

Proof. Suppose there exists a rational resynchronizer R such that T1 ⊆o
R(T2). Let k be an upper bound on the |lag(q)| at any state q of R. Recall
that lag(q) = k means that for any run of R′ that reaches q after reading
a prefix of the input u and producing v, we have |uΣ| − |vΣ| = k. Con-
sider the pair of synchronized words w1 = ack+2ak+1, w2 = ak+2ck+2. The
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synchronized word w1 is produced by T1 and the word w2 is produced by
T2. Note that R must contain (w1, w2) as T1 ⊆o R(T2) and w2 is the only
synchronized word in T2 that can be mapped to w1 by R.

Consider the prefixes ack+1 and ak+2 of w1 and w2 respectively. Suppose
that after reading the prefix ack+1, R reaches state q. Clearly, |lag(q)| =
k+1 > k. This is a contradiction. Therefore, such a rational resynchronizer
cannot exist.

Remark 1. While, rational resynchronizability and classical containment
do not coincide in general, we will see in Chapter 4, that the two properties
are equivalent for the class of finitely-valued NFTs. In other words, given
two k-valued NFTs T1 and T2, T1 ⊆ T2 if and only if, there exists a (bounded-
delay) rational resynchronizer R such that T1 ⊆o R(T2).

The identity resynchronization, R = {(w,w) | w ∈ (Σ ] Γ)∗} can be
expressed by a rational resynchronizer and witnesses the reflexivity of the
�rat relation. The transitivity of the �rat relation follows from composition
of rational resynchronizers. Since rational resynchronizers are NFTs, they
are closed under composition. If R1, R2 are rational resynchronizers, such
that T1 ⊆o R1(T2) and T2 ⊆o R2(T3), then T1 ⊆o R1 ·R2(T3).

However, the relation �rat is not symmetric. For example, let T∅ be an
NFT defining the empty transduction. Clearly T∅ �rat T for any NFT T .
But the opposite is not true as long as T contains at least one synchronized
word w.

The above example is not a corner case. We give a general technique to
find NFTs T1, T2 such that T1 �rat T2, but T2 6�rat T1. Let T ′1, T ′2 be NFTs
such that T ′1 6�rat T

′
2. In particular, we can take the NFTs from Example

3.2.8. Let T1 = T ′1 ∪ T2, T2 = T ′2. Clearly T2 ⊆o Rid(T1). However, we
can show by contradiction that T1 6�rat T2. Suppose T1 ⊆o R(T2) for some
resynchronizer R. Then T ′1 ⊆o T1 ⊆o R(T2) =o R(T ′2), which contradicts the
assumption that T ′1 6�rat T

′
2.

It is possible to define an equivalence of NFT up to rational resynchroniz-
ers by requiring T1 �rat T2 and T2 �rat T1. This will be in between classical
and origin equivalence. However, in this thesis, we are mainly interested in
the rational resynchronizability relation.

3.3 Regular Resynchronizers

For transductions defined by 2NFT or NSST, we can no longer use ra-
tional resynchronizers, because we cannot work with the synchronization
language. Therefore, we introduce a logic-based model of resynchronization,
called regular resynchronizers, which is motivated by logical transformation
of graphs [Cou94]. Regular resynchronizers were originally introduced in
[BMPP18] with the name of MSO-resynchronizers and were applied to origin
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graphs. This model has been further studied [BKM+19, KM20, BKMP21].
Here, we apply regular resynchronizers to synchronized pairs instead of ori-
gin graphs (the two formalisms are in fact equivalent, see page 21).

The key idea is to define an MSO-formula move with two-free variables
interpreted over positions of the input word. Intuitively, if (u, i, j) � move,
then output positions with origin i can be moved to have origin j. We
illustrate this with an example.

Example 3.3.1. Consider the NFTs in Figure 3.6, which accept words of
the form a2n and output c2n, but with different origins. For example, on
input aa, the output of T1 is (c, 1)(c, 2) and the output of T2 is (c, 1)(c, 1).

To make T1 contained in T2 modulo a resynchronization relation, the
move formula must change the origins that are even numbers in T2 by shifting
to the right by 1, and keep the origins that are odd unchanged.

Therefore, the formula move(y, z) : (y = z) ∨ (y = z + 1), will allow to
shift the origins of some output positions (e.g. the even ones) by 1 to the
right and keep the origins of other positions unchanged. However, there are
many other possible shifts of origins.

For example, on the synchronized pair (aa, (c, 1)(c, 2)), the origin of the
first output position can be kept unchanged by choosing y = z and the origin
of the second position can be changed to 1 by choosing y = z+1. This choice
is shown in figure at the bottom of Figure 3.6. The source origin is denoted
by blue arrow, whereas the target origin is denoted by a brown arrow.

T1 q1 q′1

a | c

a | c

T2 q2 q′2

a | cc

a | ε

move

a a

c c

z y

Figure 3.6 – move(y, z) : (y = z) ∨ (y = z + 1)

To further restrict changes in origins as defined by the move formula,
we add other components to the resynchronizer. The first one is parameters
(or colors). Output parameters label the output positions using a finite set
of parameters O = (O1, O2, . . . , Ok). This defines different types of output
positions based on which of the parameters are true in a given position as
well as based on the letter at that position. Formally, the type τ of an output
position is (a, S) where, a ∈ Γ is the letter at the position and S ⊆ O is
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the set of output parameters hold at that position. Therefore, the output-
type can be thought of as the letter of the output position in the extended
alphabet Γ′ = Γ× 2O.

Output-types are then used to relativize move formulas. For example,
if there are output parameters O = {odd, even}, that identify even and
odd output positions, then we can have moveodd(y, z) := (y = z) and
moveeven(y, z) := (y = z + 1). Note that here since there is only one
letter c ∈ Γ, we do not explicitly write c in the output types. The regular
resynchronizer R defined by moveodd,moveeven, assuming the parameters
odd, even correctly identify odd and even positions, will satisfy T1 =o R(T2)
as in Example 3.3.1.

We can also use input parameters I = {I1, I2, . . . , I`}, which label the
input positions. Then, an input position will be labeled by a letter from
Σ′ = Σ×2I . The move relation can inspect both the letter and the associated
input parameters.

Both input and output parameters must satisfy some constraints defined
by MSO-formulas ipar and opar, interpreted over the annotated input and
output words, respectively. In the above example, the opar formula can be
used to check that the even and odd positions in the output are correctly
annotated with the parameters even and odd. We denote by extended al-
phabets Σ′ = Σ× 2I and Γ′ = Γ× 2O, and call words over this alphabet as
annotated inputs and annotated outputs respectively.

Finally, we add to a resynchronizer some formulas next, which are, as
move, MSO-formulas with two free variables interpreted over the annotated
input word. The idea behind the next formulas is to constraint the target
origins of consecutive output positions. The intended meaning of next is
that if two consecutive output positions x, x + 1 get target origins z and
z′, respectively, by the move formula, then (û, z, z′) � next. Essentially,
next allows to discard some of the synchronized pairs obtained by applying
move. Like the move formula, the next formula, can also take into account
the output-types of the output positions x and x + 1, i.e, for every pair of
output-type τ, τ ′, we have a formula nextτ,τ ′ .

For example, to define order-preserving synchronized pairs, the next for-
mula can constrain the target origins z, z′ by enforcing z ≤ z′. This means
that for any output positions x with target origin z, the output position
x+ 1 must have target origin z′ ≥ z.

Regular resynchronizers Formally, a regular resynchronizer R is defined
as a tuple R = (I,O, ipar, opar, (move)τ , (next)τ,τ ′), where

— I and O are finite sets of input and output parameters,
— ipar and opar are MSO-sentences on words over the alphabets Σ′ =

Σ× 2I and Γ′ = Γ× 2O respectively,
— for every τ ∈ Γ′, moveτ is an MSO-formula over Σ′ with two first-
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order free variables (usually denoted by y, z),
— for every τ, τ ′ ∈ Γ′, nextτ,τ ′ is an MSO-formula over Σ′ with two

first-order free variables (usually denoted by z, z′).

Semantics of regular resynchronizers. Consider a regular resynchro-
nizer R = (I,O, ipar, opar, (move)τ , (next)τ,τ ′). Let (u, v) and (u, v′) be two
synchronized pairs with vΓ = v′Γ. The pair ((u, v), (u, v′)) belongs to [[R]] if

and only if there exist words û ∈ (Σ× 2I)∗ and v̂ ∈ (Γ× 2O)∗ satisfying the
following conditions:

— û � ipar and v̂ � opar,
— ûΣ = u, v̂Γ = vΓ,
— for every output position x in dom(v̂) labeled by τ = (a, S), v(x) =

(a, i) and v′(x) = (a, j) imply (û, i, j) � moveτ ;
— for every pair (x, x + 1) of consecutive output positions in dom(v̂)

labeled by τ = (a, S) and τ ′ = (b, S′), v′(x) = (a, j) and v′(x+ 1) =
(b, j′) imply (û, j, j′) � nextτ,τ ′ .

With a slight abuse of notation, we write R instead of [[R]] to denote the
semantics of a regular resynchronizer when no confusion arises.

Note that the universal resynchronization, defined in Example 3.1.5, is
regular. This can be done without any input/output parameters, just by
letting movea be the formula that is vacuously true. This implies that the
containment up to any given (unrestricted) regular resynchronizer is unde-
cidable in general. Therefore, we have the following result.

Proposition 3.3.2. Containment (equivalence) up to a regular resynchro-
nizer is undecidable.

To obtain a more interesting class of resynchronizers, we introduce a
restriction on the moveτ formulas.

Bounded regular resynchronizers. The restriction we consider is as
follows. There exists a natural number k such that for every output type τ ,
every word û ∈ Σ′∗ and every j ∈ dom(u), there exist at most k distinct po-
sitions i ∈ dom(u) such that (û, i, j) � moveτ . We call such a resynchronizer
k-bounded. A resynchronizer is bounded if it is k-bounded for some k.

In other words, for a fixed input annotated with parameters, the moveτ
defines a finite union of functions from target origins to source origins. Note
that this restriction is decidable, i.e, we can check whether a given regular
resynchronizer is bounded or not:

Proposition 3.3.3 (Proposition 15 in [BMPP18]). Given a regular resyn-
chronizer R, it is decidable to check if it is bounded.

Proof. It suffices to check that moveτ is bounded for every fixed output-type
τ . We show how this can be checked. By Büchi’s theorem the moveτ formula
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can be expressed by a DFA A, accepting words with two marked positions,
over the alphabet Σ′ × {0, 1}2, where the last two components are used to
mark the positions i, j corresponding to the two free variables. Therefore,
A accepts words over the alphabet Σ′ × {0, 1}2 such that there is exactly
one position with second component marked 1 and exactly one position with
last component marked 1.

Consider the language obtained by projecting out the second component,
i.e, the positions corresponding to i. This is a regular language and an NFA
A′ accepting this language can be obtained by projecting out the second
component of the alphabet in the transitions.

Consider a word (û, j) accepted by A′. Note that j here refers to the
position marked by the last component as 1. This word is accepted by A′

if and only if, there exists i ∈ dom(u) such that (û, i, j) is accepted by A.
For every such i ∈ dom(u), there exists exactly one run in A since A is a
DFA. Furthermore, for positions i 6= i′ ∈ dom(u) such that there is a run
ρ on (û, i, j) and a run ρ′ on (û, i′, j), then the runs of A′ corresponding to
ρ and ρ′ are different. If they correspond to the same run of A′, then the
states visited in both ρ and ρ′ are the same. Therefore, the word with both
i and i′ marked by the third component will also be accepted by A, which
is a contradiction.

Therefore, the NFA A′ is at most k-ambiguous, if and only if, for every û
and j, there are at most k positions i ∈ dom(u) such that (û, i, j) is accepted
by A. In other words, the problem of checking whether the resynchronizer
R is bounded or not reduces to checking whether A′ is finitely ambiguous
or not. To conclude, we recall that one can decide whether a given NFA is
finitely ambiguous [WS91].

We now prove that for every bounded, regular resynchronizer, we can
build an equivalent 1-bounded, regular resynchronizer by introducing addi-
tional output parameters.

Lemma 3.3.4. Every k-bounded, regular resynchronizer is effectively equiv-
alent to a 1-bounded, regular resynchronizer.

Proof. Let R = (I,O, ipar, opar, (moveτ )τ , (nextτ,τ ′)τ,τ ′) be a k-bounded, reg-
ular resynchronizer. Let û and v̂ be a pair of annotated input and output sat-
isfying ipar and opar respectively. To construct an equivalent 1-bounded reg-
ular resynchronizer R′ we introduce additional output parameters. Specifi-
cally, each output position will be annotated with an output type τ from R
and an additional index in {1, . . . , k}. The intended meaning of the index is
as follows: if (y, z) is the source/target origin pair associated with an output
position labeled by (τ, i), i ∈ {1, . . . , k}, then then there are exactly (i− 1)
positions y′ < y such that (û, y′, z) � moveτ .

Note that this indexing depends on the choice of the target origin z.
Therefore, different indexing are possible for different choice of the target
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origin z.
Based on the resynchronizer R, we define the new resynchronizer as

R′ = (I,O
′
, ipar, opar′, (move′(τ,i))τ,i, (next(τ,i),(τ ′,i′))τ,i,τ ′,i′), where

— O
′

= O ] {O′1, . . . , O′k} consists of the old output parameters O of
R plus some new parameters O′1, . . . , O

′
k for representing indices in

{1, . . . , k};
— opar′ defines language of all output annotations whose projections

over Γ′ (the output alphabet extended with the parameters of R)
satisfy opar and each position is marked by exactly one index;

— given a type τ ′ that encodes a type τ of R and an index i ∈ {1, . . . , k},
move′τ ′(y, z) states that y is the i-th position y′ satisfying moveτ (y′, z);
This property can be expressed by the MSO-formula

∃ y1 < · · · < yi = y
∧

j
moveτ (yj , z)

∧ ∀y′ ≤ y
(
moveτ (y′, z)→

∨
j
y′ = yj

)
;

— next′(τ,i),(τ ′,i′)(z, z
′) enforces the same property as nextτ,τ ′(z, z

′).

The resynchronizer R′ is 1-bounded by definition of move′(τ,i). If for

positions y < y′, (û, y, z) � move′(τ,i) and (û, y′, z) � move′(τ,i), then y and y′

are both the i-th source position in û satisfying moveτ with target z, which
is a contradiction.

We now prove that R and R′ define the same relation between synchro-
nized pairs. First we show R′ ⊆ R. Consider ((u, v), (u, v′)) ∈ R′. Therefore,
there exists û � ipar and v̂ � opar′ such that move′ applied to positions of v̂
give the v′ witnessing ((u, v), (u, v′)) ∈ R′. By definition of opar′, v̂Γ′ � opar.
Suppose, a position x of output type (τ, i) is moved from origin y in v to
z in v′. This means (û, y, z) � move′(τ,i). Then, by definition of move′(τ,i),

(û, y, z) � moveτ . This shows R′ ⊆ R.
For the containment R ⊆ R′, consider ((u, v), (u, v′)) ∈ R. Therefore,

there exists û � ipar and v̂ � opar such that move applied to each po-
sition in v̂ witnesses ((u, v), (u, v′)) ∈ R. This means for every position
x ∈ dom(v̂) with output-type τ , there exist y, z, such that (û, y, z) � moveτ ,
y = orig(v(x)) and z = orig(v′(x)). For such a position x ∈ dom(v̂) of out-
put type τ , let i ∈ {1, . . . , k} be such that there are exactly i − 1 positions
y1 < y2 < . . . yi−1 < y such that (û, yj , z) � moveτ . Let v̂′ be the annotation
of v̂ where every position x is annotated with the index i as above. Clearly
v̂′ � opar′ and therefore, ((u, v), (u, v′)) ∈ R′. We conclude R = R′.

The boundedness restriction excludes resynchronizations such as the uni-
versal resynchronization Runiv (cf. Example 3.1.5) for which the problem of
containment up to resynchronizer is undecidable. As we will see in Theo-
rem 3.3.6 later, the boundedness restriction ensures that for every bounded,
regular resynchronizer R and every 2NFT T , the relation R(T ) is realized
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by a 2NFT with common guess (see page 12 for definition of 2NFT with
common guess).

Another important property of bounded, regular resynchronizers is clo-
sure under composition.

Lemma 3.3.5. The class of bounded regular resynchronizers is effectively
closed under composition.

Proof. Let R = (I,O, ipar, opar, (moveτ )τ , (nextτ,τ ′)τ,τ ′) and R′ =

(I
′
, O
′
, ipar′, opar′, (move′λ)λ, (next

′
λ,λ′)λ,λ′) be two bounded, regular resyn-

chronizers. In view of Lemma 3.3.4, we can assume that both
resynchronizers are 1-bounded. The composition R ◦ R′ can be de-
fined by combining the effects of R and R′ almost component-wise.
Some care should be taken, however, in combining the formulas next
and next′. Formally, we define the composed resynchronizer R′′ =
(I
′′
, O
′′
, ipar′′, opar′′, (move′′(τ,λ))τ,λ, (next

′′
(τ,λ),(τ ′,λ′))τ,λ,τ ′,λ′), where

— I
′′

is the union of the parameters I and I
′
,

— O
′′

is the union of the parameters O and O
′
,

— ipar′′ is the conjunction of the formulas ipar and ipar′;
— opar′′ is the conjunction of the formulas opar and opar′;
— move′′(τ,λ)(y, z) states the existence of some position t satisfying both

formulas moveτ (t, z) and move′λ(y, t);
— next(τ,λ),(τ ′,λ′)(z, z

′) requires that nextτ,τ ′(z, z
′) holds and, more-

over, that there exist some positions t, t′ satisfying moveτ (t, z),
moveτ ′(t

′, z′), and nextλ,λ′(t, t
′); note that these positions t, t′ are

uniquely determined from z, z′ since R is 1-bounded, and they act,
at the same time, as source origins for R and as target origins for R′.

By definition, move′′(τ,λ) is 1-bounded, thus z and τ determine a unique
t, which together with λ determines a unique y. It is also easy to see that
R′′ is equivalent to R ◦ R′ as the positions corresponding to t in formulas
move′′(τ,λ) and next′′(τ,λ),(τ ′,λ′) correspond to the source origin of R and target

origin of R′.

We now show why the boundedness restriction is important. For the pur-
pose of Theorem 3.3.6 below, we assume the regular languages ipar, opar,
moveτ and nextτ,τ ′ are all given as NFA. Recall that the regular languages
corresponding to moveτ and nextτ,τ ′ will be over words with two marked po-
sitions, i.e, over the alphabet Σ′×{0, 1}2, with the last two components used
to mark two positions in the input. The sentences ipar and opar correspond
to languages over Σ′ and Γ′ respectively.

For complexity arguments we use the notion of PSpace-constructibility.
Recall that a 2NFT has PSpace-constructible states and transitions with
respect to n means that the states and transition relation can be enumerated
using working space polynomial in n. In particular, this also means that
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the NFA representation of the output languages in transitions have size
polynomial in n.

Theorem 3.3.6 (Theorem 16 in [BMPP18]). Given a bounded, regular
resynchronizer R and a 2NFT (possibly with common guess) T one can
construct a 2NFT with common guess T ′ such that

T ′ =o R(T )

Moreover, assuming the 2NFT T has n states and PSpace-constructible
transitions w.r.t. n, and the resynchronizer relations move, next, ipar and
opar are given as NFA of size at most k, the size of T ′ is exponential in n
and k.

Proof. To prove the theorem, it is convenient to first assume that R has no
input/output parameters and T has no common guess. We will see later
how to adapt the proof when input and output parameters and common
guess are used.

Let R = (∅, ∅, ipar, opar, (move)τ , (next)τ,τ ′) be a bounded regular resyn-
chronizer with no input/output parameters. Note that the output-types τ
are simply letters from Γ.

Applying the resynchronization defined by R to a 2NFT T can be seen
as a repeated application of resynchronizations consisting of a single moveτ
formula for every output-type τ , which changes the origins according to
output-type τ , followed by resynchronizations corresponding to the nextτ,τ ′

formula, for every pair of output-types τ, τ ′. The resynchronization corre-
sponding to moveτ changes origins of output positions of type τ , whereas
the resynchronization corresponding to nextτ,τ ′ does not change any origins,
but discards those outputs that violate nextτ,τ ′ . Given a 2NFT T and a
resynchronization R corresponding to a single moveτ relation, we first show
how to construct a 2NFT T ′ with T ′ =o R(T ).

For sake of clarity in the proof, we assume that T outputs at most a
single letter at each transition. This assumption can be made without loss
of generality, since we can reproduce any word v ∈ L that is outputted by
some transition (q, i) −a|L−−→ (q′, i′), letter by letter, with several transitions
that move back and forth around position i. Note that this transformation
adds polynomially many new states to simulate an original transition. This
is because the transitions are PSpace-constructible and therefore, we can
use the states of the polynomial sized NFA-representation of the output
language as intermediate states while simulating a transition.

Dealing with move. The idea here is that T ′ has to simulate an arbitrary
run of T on an input u, by displacing the origins of any output letter with
type τ from a source i to a target j, as indicated by (u, i, j) ∈ moveτ .
The idea of the construction is as follows. Whenever T outputs a letter b
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with origin i, T ′ non-deterministically moves to some position j such that,
(u, i, j) ∈ moveb (recall that b is also the output-type of the produced letter
since there are no output parameters). Then T ′ produces the same output
b as T , but at position j. Finally, it moves back to the original position i.
For the latter step, we will exploit the fact that moveb is bounded.

Since moveb is a regular property, there is a corresponding finite monoid
(M, ·, F ), where F ⊆ M , and a monoid morphism h : (Σ × {0, 1}2)∗ → M ,
such that (u, i, j) ∈ moveb if and only if h(u, i, j) ∈ F .

Recall that we denote by u(k, k′), k ≤ k′, to be the factor between
the k-th and k′-th positions of u (both included). Let u′ ∈ (Σ × {0, 1}2)∗

be a word with two marked positions. For any such word u′ and for all
1 ≤ k ≤ k′ ≤ |u′|, we then define `k = h(u′(1, k−1)), rk′ = h(u′(k′+1, |u′|)),
and mk,k′ = h(u′(k, k′)). We observe that

u′ = (u, i, j) ∈ moveb iff

{
`i ·mi,j · rj ∈ F if i ≤ j
`j ·mj,i · ri ∈ F if i > j.

The elements `i and ri associated with each position i of the word u′ are func-
tionally determined by u′. In particular the word `1 . . . `|u| (resp. r1 . . . r|u|)
can be seen as the run of a deterministic (resp. co-deterministic) automaton
on u.

We now describe the required 2NFT with common guess T ′. The trans-
ducer T ′ uses the common guess to annotate every input position k with
`k and rk. This can be done by an NFA for the common guess by simply
checking that `i · h(u(i)) = `i+1 and ri = h(u(i + 1)) · ri+1. The common
guess NFA will need to store in its state the current `i and ri.

Over the annotated input, the computation by T ′ is done in three phases,
which we call the original phase, the simulation phase and the backtracking
phase. The original phase simulates an arbitrary run of T as long as the
transitions do not produce any output with letter b. In this phase, the state
of T ′ is updated in the same way as in transitions in T .

To simulate a transition of T with output b, say q −a|b−−→ q′, that originates
at a position i and produces the letter b, T ′ stores in its control state the
transition rule to be simulated and the monoid element `i associated with
the current position i (the source). It then guesses whether the displaced
origin j (i.e. the target) is to the left or to the right of i. Consider the case
where j ≥ i (the case j < i is symmetric). In this case T ′ starts moving to
the right, until it reaches some position j ≥ i such that (u, i, j) ∈ moveb.
This is equivalent to checking that `i · mi,j · rj ∈ F . Once a target j is
reached, T ′ produces the same output b as the original transition. We call
this the simulation phase. In this phase, the states of T ′ need to store `i
and compute mi,j during the run.

After the simulation phase, T ′ begins the backtracking phase for back-
tracking to the source i. During this phase, T ′ will maintain the previous
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monoid elements `i, mi,j , and, while moving backwards, compute mi′,j for all
i′ ≤ j. We claim that there is a unique i′ such that `i′ = `i and mi′,j = mi,j ,
and hence such i′ must coincide with the source i. Indeed, if this were not
the case, we could pump the factor of the input between the correct source
i and some i′ 6= i, showing that the relation moveb is not bounded.

Based on this, the transducer T ′ can move back to the correct source
i, from which it can then simulate the change of control state from q to q′

and move to the appropriate next position in the original phase. Any run
of T ′ that simulates a run of T on input u, as described above, results in
producing the same output v as T , but with the origins modified according
to moveb.

In the original phase, the information needed in the states is simply
the state in the original run of T . However, in the simulation phase, for
moving from position i to j, T needs to store the letter b to be output,
whether j is to the left or right, the monoid element `i, and compute the
monoid element mi,j (which will be used in the backtracking phase). In the
backtracking phase, this information is used to return to the correct position
i. Therefore, the states of T ′ are in the set Q × Γ × {`, r} ×M2, where Q
is the set of states of T . The only dependency on the size of T is in the
component Q and Γ. Therefore, the size is polynomial in n. The dependency
on the resynchronizer comes from the M2 component. Since the monoid M
is exponential in the size of the NFA representation of moveb, the size of T ′

is exponential in k (which is a bound on the size of the NFA-representation
of the resynchronizer relations).

Dealing with next. We now consider the case of nextb,b′ , which restricts
the origins in such a way that pairs of origins j, j′ associated with consecutive
outputs positions x and x + 1 labeled by letters b and b′ respectively, such
that (u, j, j′) satisfies nextb,b′ . In particular, it will disallow runs that produce
outputs that do not satisfy nextb,b′ .

To deal with this case, we assume that T ′ uses the common guess to
annotate every input position with the set of lazy U -turns. Recall that a
lazy left (right) U -turn at position i is a sequence of transitions starting
at the (i − 1)-th cut (i-th cut) and coming back to the same cut without
producing any output and only reading positions to the left (right) of the cut.
The set of lazy U -turns at position i can be checked using a common guess
NFA as described in the proof of Theorem 2.2.1. We can normalize T with
respect to lazy U -turns, i.e., construct Norm(T ) that is origin-equivalent to
T , such that Norm(T ) does not have any lazy U -turns (see page 39). This
means that if we have two consecutive output positions x and x + 1 with
origins j and j′ respectively, then the run of Norm(T ) moves from j to j′ by a
sequence of LR transitions (respectively RL transitions) if j < j′ (respectively
j > j′). If j = j′, then the outputs x and x + 1 are produced in a single

79



transition. Note that Norm(T ) requires transitions with language outputs,
in order to eliminate all U -turns. Note also that the states of Norm(T ) need
to store the set of lazy U -turns for the input positions. Therefore, Norm(T )
has size exponential in |T |.

For the construction of T ′, we begin by following the same approach
as in case of move. Consider the finite monoid (M, ·, F ), F ⊆ M , and a
monoid morphism h : (Σ × {0, 1}2)∗ → M , and some subset F of M , such
that (u, j, j′) ∈ nextb,b′ if and only if h((u, j, j′)) ∈ F . The element h(u, j, j′)
is equal to either `j ·mj,j′ ·rj′ or `j′ ·mj′,j ·rj depending on whether j ≤ j′ or
j ≥ j′. We assume j ≤ j′, and the case of j ≥ j′ can be handled similarly.
As in the case of moveb, the elements `j and rj′ are assumed to be available
as explicit annotations of the input which can be checked by the common
guess. The element mj,j′ , on the other hand, can be computed by T ′ while
moving from j to j′. Note that, to compute the monoid element mj,j′ , it is
important that Norm(T ) does not have any lazy U -turns.

We now specify how T ′ simulates a run of Norm(T ), while restricting the
set of possible outputs. As explained above, T ′ maintains in its control state
the monoid elements `j , mj,j′ , and rj , where j is the origin of the last non-
empty output and j′ is the current input position (for simplicity, here we
assume that j ≤ j′, otherwise we swap the roles of j and j′). In addition, it
also maintains whether the most recently produced output letter is b or not.
Now, suppose Norm(T ) takes a transition from the current position j′ to a
position j′′, say with j′′ ≥ j, and outputs words from the language L ⊆ Γ∗.
Let Lε = L∩ {ε}, L−b = L∩ Γ∗b, Lb′− = L∩ b′Γ∗ and L−bb′− = L∩ Γ∗bb′Γ∗

and Lrest is the set of words in L that are in neither of the above languages.
Then T ′ non-deterministically chooses to output a word. We describe below
the updates in the states needed based on which of the above languages the
word belongs to.

1. if it chooses to output a word in Lε, then, assuming Lε 6= ∅, it
simulates the change of control state of the transition of Norm(T ),
moves from j′ to j′′, and updates the stored monoid element from
mj,j′ to mj,j′′ = mj,j′ · h(a), where a is the input letter read while
moving from j′ to j′′. This indicates the last output letter has not
changed and the last position with non-empty output is still j;

2. if it chooses to output a word in Lb′−, then, assuming b was the
last output symbol (given by the control state), it checks that `j ·
mj,j′ · rj′ ∈ F . This corresponds to checking (u, j, j′) satisfies nextb,b′

and then T ′ simulates the change of control state of the transition of
Norm(T ), moves from position j′ to j′′, updates the stored monoid
element from mj,j′ to mj′,j′′ = h(ε). This corresponds to the case
where the last output letter was b and the first output letter in v is

3. if it chooses to output a word in L−bb′−, then `j′ · rj′ ∈ F . This
corresponds to the case that bb′ is a factor of v and checks (u, j′, j′)
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satisfies nextb,b′ ;

4. if it chooses to output a word in L−b, then it updates in its control
state the last produced output symbol to be b and updates the stored
monoid element from mj,j′ to mj′,j′′ = h(ε).

5. if it chooses to output a word in Lrest, then it updates the stored
monoid element from mj,j′ to mj′,j′′ = h(ε). This corresponds to
producing a non-empty output which do not contribute to any bb′

factor in the output. The control state is updated to reflect that the
last produced output letter is not a b.

Note that for a choice of output in L, it might be possible for it to be
included in many of the languages above, for example v = b′ab will be in
Lb′− and in L−b. Therefore, in general, we will need to check a combination
of the above conditions.

In case conditions 2. or 3. are not satisfied, i.e, `j ·mj,j′ · rj′ does not
belong to the set F , then the control of T ′ moves to a rejecting sink state.
The above behaviour guarantees the following property: for consecutive
output positions x and x + 1 labeled by b and b′ and with origins j, j′

in a run of T such that (u, j, j′) 6∈ nextb,b′ , the corresponding run in T ′ is
rejecting.

The transducer T ′ needs to store two monoid elements, the original states
of Norm(T ) and the last output letter produced. Therefore T ′ has states
polynomial in the size of Norm(T ) and exponential in the size of R, since
the monoid M can be exponential in the size of the NFA-representation of
next. Since Norm(T ) itself is exponential in the size of T , the size of T ′ is
exponential in both |T | and |R|.

We now need to show that these constructions for moveb and nextb,b′ are
independent and can be done one after the other. Note that in each of these
constructions, we build a 2NFT with common guess. The common guess
can be done in one step, by having the guesses on marked by the transducer
they correspond to. For example, suppose T1 and T2 are two 2NFTs with
common guess such that the common guess of T1 (respectively T2) is over
the alphabet C1 (respectively C2) such that C1 and C2 are disjoint. Then
we can obtain a 2NFT with common guess over C1 × C2. Therefore, the
2NFTs can be applied one-after another, i.e, we can obtain a 2NFT with
common guess describing R(T ). Since each of the intermediate steps incur
a polynomial blowup in n and exponential blowup in k, the final 2NFT T ′

will also be polynomial sized in n and exponential sized in k.
To complete the proof, we discuss how to generalise to the case with

input and output parameters. In this case, we can modify T and add com-
mon guess such that T reads inputs over Σ× 2I , guessing a valuation of the
parameters I, and produces outputs over Γ × 2O, guessing a valuation of
O. We could then apply the constructions that follow, and finally modify
the resulting transducer T ′ by projecting away the input and output anno-
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tations. We observe that the projection operation on the input and output
is easy and can be implemented directly at the level of the transitions of T ′

by taking a product with the NFA representation of the regular languages
ipar and opar. Since ipar and opar are already given as part of the input, we
observe that complexity bounds are preserved.

Since R(T ) can be defined by a 2NFT with common guess, the problem of
checking containment up to a given bounded, regular resynchronizer reduces
to the origin-containment problem. As a corollary, we obtain the following
result.

Corollary 3.3.6.1 (Corollary 17 in [BMPP18]). Given two 2NFTs T1 and
T2, and a bounded regular resynchronizer R, whose relations are given by
NFA, one can decide whether T1 ⊆o R(T2) in ExpSpace. Furthermore, if
the bounded, regular resynchronizer R is fixed (i.e, not part of the input),
the complexity decreases to PSpace.

When the regular resynchronizer is given as part of the input, the 2NFT
describing R(T2) can be of size exponential in size of R and T2. Since the
origin-containment problem is in PSpace, we obtain an upper bound of
ExpSpace. When the regular resynchronizer considered is fixed, then the
complexity decreases to PSpace, since the size of 2NFT describing R(T2)
is polynomial in size of T2.

Regular Resynchronizability. We now discuss some properties of reg-
ular resynchronizers. Note that in a bounded, regular resynchronizer, the
different components are used for different purposes. The input and output
parameters are used to identify special positions, the move relation is used to
change origins, and the next relation is used to restrict the origins of consec-
utive output positions. However, the parameters and the next relations only
restrict the set of origin graphs obtained. In other words, given a bounded
regular resynchronizer R = (I,O, ipar, opar, (move)τ , (next)τ,τ ′), we can de-
fine R′ = (∅, ∅,Σ∗,Γ∗,moveR, true), where there are no input and output
parameters, and no restrictions defined by ipar, opar and next relations. The
moveR relation in R′ is the union of moveτ for all output-types τ ∈ Γ×2O of
R. In other words, (u, i, j) ∈ moveR if and only if, there exists û ∈ ipar, and
a output-type τ , such that (û, i, j) ∈ moveτ . With slight abuse of notation,
we can represent the resynchronizer R′ by moveR, since the other compo-
nents of the resynchronizer are trivial. The following Proposition follows by
definition of moveR.

Proposition 3.3.7. For any 2NFT T , R(T ) ⊆o moveR(T ).

This result can be rephrased as follows: the parameters and the next
relation only restrict the set of synchronized pairs obtained after applying
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the resynchronizer. In other words, they are used to disallow some runs of
the resynchronized transducer moveR(T ), but do not add any new runs.

As in the case of rational resynchronizers, given 2NFT T1 and T2, we say
T1 is resynchronizable to T2 by a bounded, regular resynchronizer, if there
exists a bounded, regular resynchronizer R such that T1 ⊆o R(T2). We
denote this by T1 �reg T2. With respect to the regular resynchronizability
relation (T1 �reg T2), Proposition 3.3.7 implies that we can assume regular
resynchronizers do not have parameters nor next relations. It was shown by
Kuperberg and Martens [KM20], that �reg is a pre-order on 2NFTs, i.e, it
is reflexive and transitive.

Proposition 3.3.8 (Lemma 11 in [KM20]). The relation �reg is a pre-order
on 2NFTs.

Proof. The identity resynchronizer can be defined by having (u, i, i) � move,
for all u ∈ Σ∗, and for all i ∈ dom(u). Thus �reg is reflexive.

Transitivity of regular resynchronizability follows from closure under
composition of bounded, regular resynchronizers proved in Lemma 3.3.5.

Similar to what happens with �rat, the following example by Kuperberg
and Martens [KM20], shows that �reg is not symmetric, and therefore not
an equivalence relation.

Example 3.3.9. Let T1 and T2 be the NFTs given in Figure 3.7. Both
T1 and T2 take inputs of the form an and outputs a word of the form
cm. The origin-output of T1 is (c, 1)(c, 2) . . . (c, n)(m−n+1), if m ≥ n, and
(c, 1) . . . (c,m) otherwise. On the other hand, the origin-output of T2 is of
the form (c, 1)m. In other words, T1 produces a single c for every a read,
and produces the remaining c’s, if any, at the last letter of the input with
origin n, whereas T2 produces the c’s all at once at the first input position.

T2 q1 q′1

a | c∗

a | ε
T1 q2

q′2

q′′2

a | c

a | c∗

a | ε

a | ε

Figure 3.7 – Example to show �reg is not symmetric

By taking R with movec containing words of the form (an, 1, j) for all
1 ≤ j ≤ n, and nextc,c containing words of the form (an, j, j + 1) for all
1 ≤ j ≤ n and (an, n, n), we get T1 ⊆o R(T2). Therefore, T1 �reg T2.
However, there is no bounded regular resynchronizer R′ such that T2 ⊆o
R′(T1). This is because the resynchronizer would need to move the origins
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to a single position. Therefore, for an input an, the move′ relation of R′

needs to contain all pairs of the form (an, i, 1) for all 1 ≤ i ≤ n. This is
clearly not bounded, and therefore T2 6�reg T1.

We now present a machine independent characterization of the synchro-
nized pairs defined by transducers T1 and T2 that captures the (non) exis-
tence of a bounded, regular resynchronizer. This result, due to Kuperberg
and Martens [KM20], states that T1 �reg T2 if and only if pairs of origin
graphs from T1 and T2 are bounded-traversal. Here, we present the notion
of bounded-traversal by adapting it to the formalism of synchronized pairs
instead of origin-graphs.

Bounded Traversal Resynchronizers (Definition 13 in [KM20]).
Let (u, v) and (u, v′), where vΓ = v′Γ, be two synchronized pairs with the
same input word and output word (without origins). Given two input posi-
tions i, j ∈ dom(u), we say i traverses j, if there exists an output position
x labeled by (a, i) in v, such that

— i ≤ j and x is labeled by (a, j′) in v′ for some j′ > j (left-to-right
traversal).

— i ≥ j and x is labeled by (a, j′) in v′ for some j′ < j (right-to-left
traversal).

Intuitively, i is said to traverse j when a resynchronizer maps (u, v) to
(u, v′) and moves some outputs from origin i to j′ such that j is in between
i and j′.

A pair ((u, v), (u, v′)) is k-traversal if for every input position j, there
exist at most k positions i1, . . . ik ∈ dom(u) such that i` traverses j for all
1 ≤ ` ≤ k.

An important observation in the above definition is that we require each
of the i` to be the origin of some output position. Therefore, it is still possible
to resynchronize the origin to an input position j′ far from the source origin
i, while being k-traversal.

A bounded, regular resynchronizer is said to be bounded-traversal if there
exists a natural number k if for every pair ((u, v), (u, v′)) in the resynchro-
nization relation defined by R, ((u, v), (u, v′)) is k-traversal.

One of the main results of Kuperberg and Martens [KM20] is to construct
for every natural number k, a bounded, regular resynchronizer Travk, such
that ((u, v), (u, v′)) ∈ Travk if and only if, ((u, v), (u, v′)) have k-traversal.
The intuitive idea in constructing the resynchronizer Travk is as follows.
There are 2k input parameters, Right` and Left` for ` = 1, . . . , k. The set
of input positions defined by these parameters should satisfy the criterion
that no position i in Right` (respectively Left`) traverses another position
j marked by the same parameter from left to right, i.e, i ≤ j (respectively
right to left, i.e, i ≥ j).

The move formula of the resynchronizer Travk acts as follows. Let i, j
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be positions in Right` such that no position between i and j is in the set
Right`. The move formula can then move the origin of an output position
from i to j′, for any j′ such thati ≤ j′ ≤ j. Similarly, we can define a move
formula for Left` sets. Note that the same position can be in multiple such
sets Right` for different `.

We illustrate this on an example using the origin graph representation.
Consider the origin graphs given in Figure 3.8, where the solid lines rep-
resent a origin graph G1 and dashed lines represent origin graph G2. The
position 1 only traverses both 1 and 2. The position 2 traverses 2 and 3.
The position 3 only traverses itself, and all the traversals are left-to-right
traversals. Therefore, the pair of origin graph is 2-traversal. Consider the
resynchronizer with input parameters Right1 marking the positions 1 and
3 and Right2 marking the position 2. According to the bounded-traversal
resynchronizer Trav2, the origins can be moved from position 1 to anywhere
between 1 and 3, and from position 3 to anywhere greater than or equal to
3.

a a a a a

c c c

Right1

Figure 3.8 – An example to illustrate bounded-traversal resynchronizer

Note that the resynchronizer Travk is bounded due to the definition of
the sets Right` and the corresponding move. For any target origin j, there
can be exactly one source from a set Right` (or Left`). This is because if there
are two positions i and i′ such that (u, i, j) � move and (u, i′, j) � move, then
both i < j and i′ < j. W.l.o.g, assume i < i′. Then i traverses i′, as some
output position can be redirected from i to j and i′ is a position between i
and j and this contradicts the definition of move. This also implies that for
any fixed target origin j, there can be at most 2k distinct source positions,
each corresponding to different set Right` or Left`.

The class of resynchronizers Travk for all k ∈ N is called the class
of bounded-traversal resynchronizers. The main result about this class of
resynchronizers is that they characterize the class of bounded, regular resyn-
chronizers.

Theorem 3.3.10 (Lemma 16 in [KM20]). A regular resynchronizer is
bounded if and only if it is bounded-traversal.
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An application of this theorem is to show non-existence of a bounded,
regular resynchronizer.

Example 3.3.11. Consider the 2NFTs T1 and T2 that do the identity
and reverse transformation on unary alphabet. Therefore, on input an, T1

produces (a, 1)(a, 2) . . . (a, n), whereas T2 produces (a, n) . . . (a, 1). Suppose
there exists a bounded, regular resynchronizer R such that T1 ⊆o R(T2). The
origin of the (n+ 1)-th position is the same in both T1 and T2. This means
the last n positions traverses the n + 1-th position, since they have to be
redirected from some position > n+ 1 to some position < n+ 1. Therefore,
R is not bounded-traversal, which is a contradiction.

Therefore, as a consequence, for any 2NFTs, T1 �reg T2 if and only if
there exists a k such that T1 ⊆o Travk(T2). Therefore, bounded-traversal
resynchronizers are universal in the sense that if two transducers are resyn-
chronizable by a bounded, regular resynchronizer, they are resynchronizable
by some Travk. This class can be seen as analogous to the class of bounded-
delay resynchronizers when considering rational resynchronizers. Indeed,
recall that for rational resynchronizers, Theorem 3.2.6 states that two real-
time NFTs are resynchronizable if and only if they are resynchronizable by
a bounded-delay resynchronizer.

Other possible formalisms for resynchronizers. We defined regular
resynchronizers using the input and output parameters, the move relation to
define a change of origin, and the next relation to restrict the changed origins.
The most important criterion for this choice is to define change of origin
without changing the underlying input-output pair. One motivation for
introducing the next relation is to restrict the transformed synchronized pairs
to order-preserving ones, namely those synchronized pairs that are produced
by NFTs instead of 2NFTs. Definitions were also chosen so that the set of
target synchronized pairs could be generated by means of a transducer. We
discuss some potential alternative formalisms and the problems with those
approaches.

To define resynchronizers for 2NFTs, one natural idea would be to use
logical transformations on origin graphs. Recall that an origin graph G is an
equivalent representation of a synchronized pair (u, v), which has nodes cor-
responding to input and output positions labeled with letters from Σ and Γ,
and edges from output positions to the corresponding origins. Specifically,
for an output position (a, x), there is an edge from that output position
to the x-th input position. Therefore, classical MSO-logic based transfor-
mations of graphs [Cou97, Eng97] can be used to define resynchronization
relations. We refer to [Cou97] for a introduction to MSO-definable graph
transductions. A natural question is to ask whether the regular resynchro-
nizers (with or without the boundedness restriction) is a special case of
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MSO-definable transformation of origin graphs. Note that we require the
input and output words to be fixed. Therefore, the graph transduction
should not change the domain or the input and output orders, but only
change the origin relation. Given a MSO-formula move(y, z), the modified
origin relation orig ′(x, z) to define a graph transduction, denoting that the
modified origin of output position x is the input position y, can be defined
as the conjunction of the conditions orig(x, y) and move(y, z). However,
this runs into the problem that the same position x is assigned different
origins z1, . . . zk, whenever move(y, zi) is satisfied. This can be resolved by
considering NMSO-transductions which allow to choose a single zi from all
the possible choices. Therefore, it is worthwhile to consider the more gen-
eral NMSO-definable transductions of origin graphs as a generalisation of
regular resynchronizers.

The MSO-formula defining the modified origin relation can talk about
the entire origin graph. This makes it difficult to find a restriction that
allows to define R(T ) by means of a 2NFT. However, MSO-logic over origin
graphs generated by 2NFT is undecidable, as one can encode grids in those
origin graphs:

Example 3.3.12. Consider the 2NFT T that copies an input u an arbitrary
number of times. Therefore on an input u of length k, the output produced
can be ((u(1), 1)(u(2), 2) . . . (u(k), k))m for any m > 0. The origin graph
representation for k = 3 and m = 2 is given in Figure 3.9.

A 2 × 3 grid can be interpreted in the output part with the 1st and 2nd
copy of w in the output as the 1st and 2rd rows respectively. The horizontal
edges correspond to the successor inside w and the vertical edges corresponds
to same positions of w in consecutive copies. In this way, we can interpret
an m× k grid inside an origin graph. In Figure 3.9, the output vertices are
labeled by numbers from 1 to 6 to identify the corresponding vertices in the
grid.

Input a b a

Output a

1

b

2

a

3

a

4

b

5

a

6

Grid

a
1

b
2

a
3

a

4

b

5

a

6

Figure 3.9 – A 2× 3 grid in the output of a 2NFT

For all the above reasons, we restrict our attention to the simpler model
of bounded, regular resynchronizer.
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There are other decidable logics over origin graphs, such as the logic
introduced by Dartois et al. in [DFL18]. However, this logic is not suitable
for defining resynchronizers for various reasons. Firstly, its expressive power
is incomparable to 2NFTs. Moreover, the logic defines a word transduction
with origins, but a resynchronizer requires defining a transduction of origin
graphs.

Another possible approach is to define resynchronizers as transforma-
tions of data words. A data word is a word over the alphabet Ω×N, where
Ω is a finite alphabet and N is an infinite set of data values. For example, the
output v in a synchronized pair (u, v) is a data word. The synchronized pair
can indeed be represented as the data word (u(1), 1)(u(2), 2) . . . (u(n), n)v.
Transformations of data words have been already studied, such as the model
of SDST (Streaming Data String Transducers), which was the original mo-
tivation behind studying NSSTs [AC11]. However, they fail to have various
desirable properties, such as composition, and they do not enjoy equivalent
characterizations. Another model of data transductions through origins was
studied by Habermehl and Durand-Gasselin [DGH16]. In both these mod-
els, a finite number of data values can be stored in data variables. The
transducer can later use these data variables to assign the data value at an
output position. For the purpose of resynchronizer, the assigned data value
would be the origin of the position. This means that all the assigned target
origins must be at some point stored in the data variable, and thus must be
source origin of some position. This restriction makes it an unsatisfactory
model to define resynchronizers.

3.4 Rational vs Regular Resynchronizers

In this section, we study the expressiveness of the two models of resyn-
chronizers previously defined, namely the rational resynchronizers and the
bounded regular resynchronizers, when restricted to NFTs. Recall that the
rational resynchronizer changes origins by using a transformation of the syn-
chronization language. On the other hand, a bounded regular resynchronizer
uses different formulas such as move, next, etc to define changes of origin.
Given a rational resynchronizer R and a bounded regular resynchronizer R′,
we call them equivalent if [[R]] = [[R′]]. Our main result in this section is
to show that rational resynchronizers are a strict subclass of bounded regu-
lar resynchronizer. In other words, for every rational resynchronizer, there
exists an equivalent bounded, regular resynchronizer. However, there exist
bounded regular resynchronizers which cannot be equivalently expressed by
any rational resynchronizer, even when the resynchronization is restricted
to order-preserving synchronized pairs.

Theorem 3.4.1. Rational resynchronizers are a strict subclass of bounded
regular resynchronizers.
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We first prove that for every rational resynchronizer, we can build an
equivalent bounded, regular resynchronizer.

Theorem 3.4.2. For every rational resynchronizer R, there exists an equiv-
alent 1-bounded, regular resynchronizer R′. In particular, for all NFTs T ,
T1 and T2, we have R(T ) =o R

′(T ), and T1 �rat T2 implies T1 �reg T2.

We fix an NFT R over Σ ] Γ that defines a rational resynchronizer. We
assume without loss of generality that R is letter-to-letter and trimmed,
namely, every state in R occurs in some successful run. Note that R maps
synchronized words to synchronized words. Recall that, we use the terms
‘source’ (resp. ‘target’) to refer to a synchronized word that is an input
(resp. an output) of R. On the other hand, we shall use the terms ‘input’
and ‘output’ to refer to the projections of a synchronized word over Σ and
Γ, respectively (note that, in this case, it does not matter whether the
synchronized word is the source or the target, since these have the same
projections over Σ and Γ). The goal is to construct a 1-bounded, regular
resynchronizer R′ (with parameters) that defines the same resynchronization
as R.

The main idea is to encode the run of the rational resynchronizer R
on the input and use this encoding to define the transformation of origins.
Consider a successful run of R, say ρ = q0 −

c1 | d1−−−→ q1 −
c2 | d2−−−→ . . . −cn | dn−−−−→ qn,

and define relations omatchρ and imatchρ between transitions of ρ. These
relations are used later to define a bijection between source and target origins
and ultimately define the move formula.

The relation omatchρ consists of all pairs (i, j) of positions of ρ such
that ci and dj are output letters and (c1c2 . . . ci)Γ = (d1d2 . . . dj)Γ Therefore,
omatchρ matches transitions of ρ that correspond to the same occurrence of
an output letter in the source and the target. Note that omatchρ is in fact a
partial bijection. In a similar way, we define imatchρ as the partial bijection
that contains all pairs (i, j) of positions of ρ such that ci and dj are input
letters and (c1c2 . . . ci)Σ = (d1d2 . . . dj)Σ. Thus, imatchρ matches the same
input positions in source and target.

Here we give an example of the omatchρ relation. Consider the pair
of source and target synchronized words in Figure 3.10 with Σ = {a} and
Γ = {b} which could be realized by a successful run ρ of R. Because R is
letter-to-letter, any position in any of the two words corresponds precisely to
a position in the run ρ, so we can represent the relations omatchρ and imatchρ
by means of edges between source and target positions. In Figure 3.10, the
solid vertical edges between the source and target positions represent pairs
of omatchρ, while the dashed edges represent some pairs of imatchρ. The
significance of the backward horizontal edges will be explained later and can
be temporarily overlooked.
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a a b a a a b b a a a b a

a b a a a b a a a b b a a

Figure 3.10 – imatchρ and omatchρ

Mapping the source to target origins. We now explain how the rela-
tions imatchρ and omatchρ can be used to define the required move formula.
We do so by first using Figure 3.10. Consider any output letter at position
i in the source synchronized word w, for e.g. the first occurrence of b with
i = 3. Let i′ be the last Σ-labelled position before i in w, as indicated by the
backward arrow on top (i′ = 2 in the example). This position i′ determines
the source origin j = |w(1, i′)Σ| of the output position.

To find the corresponding target origin, we observe that the position i is
mapped via the relation omatchρ (solid vertical arrow) to some position k in
the target synchronized word w′. Let k′ be the last Σ-labelled position before
k in w′(backward arrow at the bottom), and map k′ back to a position ` in
the source via the relation imatchρ (dashed edges). In our example, k = 2
and k′ = 1 = `. The position ` in w determines precisely the target origin
`′ = |w(1, `)Σ| of the considered output letter. The above steps describe a
correspondence between two transitions i′ and ` in ρ, with labels over Σ,
that is precisely defined by

∃i, k, k′, j, `′



ρ[i′, i] consumes a word in ΣΓ+

(i, k) ∈ omatchρ

ρ[k′, k] produces a word in ΣΓ+

(`, k′) ∈ imatchρ

j = |w(1, i′)|Σ
`′ = |w(1, l)|Σ

(?)

The first (resp. third) conditions ensure that i′ (resp. k′) is the last input
position before i (resp. k). In the above equation, ρ[i′, i] represents the part
of ρ between positions i′, i (both i′, i included).

Note that the quantified positions j, `′ are uniquely determined by i′ and
` thanks to the last two conditions. We denote by matchρ the relation of
all pairs (j, `′) that satisfy Equation (?). This determines a correspondence
between source and target origins on the input projection.

We intend to use match to define the move relation for the regular resyn-
chronizer. However, there are several issues with this approach: the relation
match is not yet a partial bijection (since different output positions may have
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the same source origin but different target origins), Moreover, the match re-
lation needs to be implemented by means of a MSO-formula moveτ that
only considers positions of the input, but it needs to be able to reason about
a fixed run of R. Therefore, the transitions in the run on output letters
need to be encoded into the input annotation. Below, we explain how to
overcome these issues.

Hereafter, we call output block any maximal factor of a synchronized
word that is labeled over Γ. Intuitively, this corresponds to a maximal
factor of the output that originates at the same input position. We first
consider, as a simpler case, a rational resynchronizer R that reads source
synchronized words where the lengths of the output blocks are uniformly
bounded by some constant, say B (a similar property holds for the blocks
of the target synchronized words, using lag-based arguments).

Case A. Bounded output blocks: Encoding the runs. In this case
we can encode any successful run ρ of R entirely on the input, by annotating
every Σ-labelled position i with a factor ρi of ρ that reads the input symbol
at position i, followed by the sequence of output symbols up to the next
input symbol. Note that every factor ρi has length at most B+1 since there
can be at most B many output positions in the block. This annotation can
be done using the input parameters since the length of ρi is bounded by B.
The correctness of the input annotation can be checked by an MSO-sentence
ipar.

Let û denote the input word u where every position i is annotated with
ρi. Given a factor of the run ρi ∈ ΣΓ+, ρi[1] ∈ Σ is the first position of the
factor ρi.

In addition, we also annotate the output word with indices from
{1, . . . , B}, which we call offsets, in such a way that an output position
x is annotated with an offset o if and only if it is the o-th output position
with the same source origin. These will form the output parameters O.
Note that the correctness of the annotation cannot be checked by an MSO-
sentence opar that refers only to the output. The check will be done instead
by a combined use of the formulas moveτ and nextτ,τ ′ .

Checking validity of the encoding. We first check using next that, for
every pair of consecutive output positions x and x + 1 annotated with the
offsets o and o′ (recall that offset is a number in {1, . . . , B}), respectively, it
holds that o′ = o+ 1 or o′ = 1, depending on whether the source origins of
x and x+ 1 coincide or not. For this we let (û, k, k′) � nextτ,τ ′ , if

1. either o′ = o + 1 and there is j = j′ such that (û, j, k) � moveτ and
(û, j′, k′) � moveτ ′ ,

2. or o′ = 1 and there are j < j′ such that (û, j, k) � moveτ and
(û, j′, k′) � moveτ ′ .
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Note that the above definition of the formula nextτ,τ ′ refers to the for-
mulas moveτ and moveτ ′ and needs to guess the correct source origins j and
j′. However, nextτ,τ ′ must be defined in terms of the target origins of output
positions x and x + 1. Assuming that for every output type τ the formula
moveτ , which will be defined later, determines a partial bijection between
input positions, the above definition of nextτ,τ ′ can be used to determine the
positions k and k′ uniquely and hence define nextτ,τ ′ as required. We will
define moveτ such that indeed it defines a partial bijection.

It remains to check that maximal offset occurring in an output block
with origin j coincides with the number of output symbols produced by the
corresponding factor ρj of the run. Thus, we modify slightly the definition
of nextτ,τ ′ in case 2., as follows:

2’. or o′ = 1 and there are j < j′ such that (û, j, k) � moveτ and
(û, j′, k′) � moveτ ′ , and o = |ρj | − 1.

Note that the factor ρj can be derived by inspecting the annotation of the
input position j. The modification guarantees that the output annotation
is correct for all output blocks but the last one. The annotation for the
last output block can be checked by marking the last output position with a
distinguished symbol (using again some parameters) and by requiring that if
τ witnesses the marked symbol and the offset o, then moveτ can be satisfied
by a triple of the form (û, j, k), with o = |ρj | − 1. We omit the tedious
definitions in this case. This concludes the definitions of next and how it is
used to check correctness of the encoding of a run.

Having the input correctly annotated with the factors ρj of ρ and the
output correctly annotated with the offsets, we can encode the i-th transition
of ρ by a pair (j, o) that consists of a position j of the input and an offset o ∈
{0, 1, . . . , B}. The encoding is defined in such a way that i =

∑
j′<j |ρj′ |+o+

1 (in particular, o = 0 when the i-th transition consumes an input symbol,
otherwise o ≥ 1). We use this encoding to translate the relations omatchρ,
imatchρ, and matchρ, to equivalent finite unions of partial bijections between
input positions parameterized by output-types. We begin by explaining the
translation of omatchρ.

Translation of omatchρ. Consider any pair (i, i′) ∈ omatchρ. Since the i-
th transition of ρ consumes an output symbol in the source, it is encoded by
a pair of the form (j, o), with o ≥ 1. On the other hand, the i′-th transition
may consume either an input letter or an output letter in the source, but
always produces an output letter in the target. In the former case, i′ is
encoded by a pair (j′, 0); in the latter case, it is encoded by a pair (j′, o′),
with o′ ≥ 1.

As an example, in the Figure 3.11, (7, 4) ∈ omatchρ. Position 7 of the
run is encoded as (5, 1) on the input. The transition at position 4 consumes
an input symbol a, and produces the output symbol b, and is encoded as
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(3, 0).
In general, we observe that the lag induced just after the o-th transition

of ρj must be equal to the number of output symbols produced between
the (o′ + 1)-th transition of ρj′ and the o-th transition of ρj , both included
(when the lag is negative one follows the transitions in reverse order, i.e,
from j′ to j counting negatively). As an illustration in the figure, the lag
after the first transition of ρ5 is 2, which is the number of output symbols in
the dotted box. The dotted box consists of the symbols produced between
the first transition of ρ3′ and the first transition of ρ5, and has two output
symbols.

a
(1,0)

a
(2,0)

b
(2,1)

a
(3,0)

a
(4,0)

a
(5,0)

b
(5,1)

b
(5,2)

b
(5,3)

a b a b a b b a a

Figure 3.11 – An example illustrating omatchρ

Translation of imatchρ. The translation of the relation imatchρ is simi-
lar. The only difference is that now the pairs (i, i′) ∈ imatchρ are encoded
by tuples of the form

(
(j, o), (j′, o′)

)
, with o = 0 since the i-th transition

consumes an input symbol in the source. The i′-th transition, as before, can
consume an input symbol or an output symbol in the source.

Consider the Figure 3.12, where (2, 3) ∈ imatchρ. Position i = 2 is
encoded as (2, 0). The transition at position 3 consumes an output letter b
(and produces the input letter a). Position 3 is encoded as (2, 1).

a a b a
(3,0)

a
(4,0)

a b b b

a b a b a b b a a

Figure 3.12 – An example illustrating imatchρ

The only difference here is that one has to relate the lag with the num-
ber of input letters produced between (both positions included) the first
transition of ρj and the o′-th transition of ρj′ . Again, in the figure, the lag
after the first transition of ρ3 is 1, which is the number of input symbols
in the dotted box. The dotted box contains the symbols produced between
the first transition of ρ3 and the first transition of ρ4′ , and has one input
symbol.
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Relations encoding omatchρ and imatchρ. We can represent omatchρ
as a finite union of relations Oo,o′ ⊆ (Σ × 2I)∗ × N × N, each describing a
regular property of annotated inputs with two distinguished positions, (j, o)
and (j′, o′) in it, in such a way that the positions are bijectively related one
to another.

Likewise, we can represent imatchρ as a finite union of relations I0,o′ , each
describing a regular property of annotated inputs with two distinguished
positions encoded as (j, 0) and (j′, o′) in it, which are bijectively related one
to another.

Translation of matchρ. We finally turn to the translation of the relation
matchρ, which will eventually determine the relations moveτ of the desired
regular resynchronizer R′. This is done by mimicking Equation (?) via the
encoding of positions in the run ρ using pairs of input positions and offsets,
and more precisely, by replacing the variables i′, i, k, k′, ` of Equation (*)
with the pairs (j, 0), (j, o), (m′, o′), (m′′, o′′), (j′, 0).

Formally, for every offset o ∈ {1, . . . , B}, we define the set Mo of all
triples (û, y, z), where û is an annotated input and j, j′ are positions in it
that satisfy the following property:

∃m′,m′′
∨

0≤o′,o′′≤B



ρj [1, o+ 1] consumes a word in ΣΓ+

(û, j,m′) ∈ Oo,o′
ρm′′ [o

′′ + 1, |ρm′′ |] ρm′′+1 . . . ρm′−1 ρm′ [1, o
′ + 1]

produces a word in ΣΓ+

(û, j′,m′′) ∈ I0,o′′ .

(??)

Note that the first condition holds trivially by definition of ρj , while the
third condition is easily implemented by accessing the factors ρm′′ , . . . , ρm′ of
ρ that are encoded by the input parameters. For simplicity, here we assumed
that (m′′, o′′) is lexicographically before (m′, o′); to treat the symmetric case,
one has to interpret the definition by considering the sequence of transitions
in reverse, i.e, from (m′, o′) to (m′′, o′′). The intended meaning of (û, j, j′) ∈
Mo is as follows. Suppose that the input is correctly annotated with the
factors ρj of a successful run ρ of R, and that the output position x of ρ
is correctly annotated with an offset o. Assuming that x is the o-th output
position with source origin j, then j′ is its target origin in ρ.

Continuing with our running example, we determine the target origin
for the point b annotated (5,1), whose source origin is (5,0) (see Figure
3.13). We will find the target origin of this b annotated (5,1). As seen in the
computation of omatchρ, we know that (u, 5, 3) ∈ O1,0. The factor ρ5 = abbb,
and ρ5[1, 2] = ab ∈ ΣΓ+, and as we have seen, (u, 5, 3) ∈ O1,0. Now,
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a
(1,0)

a
(2,0)

b
(2,1)

a
(3,0)

a
(4,0)

a
(5,0)

b
(5,1)

b
(5,2)

b
(5,3)

a b a b a b b a a

Figure 3.13 – Figure depicting the Mo relation

consider the part of the source u annotated with (2, 1)(3, 0). This produces
the output ab ∈ ΣΓ+. That is, for m′′ = 2, o′′ = 1, and m′ = 3, o′ = 0, we
have ρm′′ [o

′′ + 1, 2] ρm′ [1, o
′ + 1] = ρ2[2, 2]ρ3[1, 1] = ba produces the output

ab ∈ ΣΓ+.
Consider (j′, 0) = (2, 0). The lag after the a at i = 2 annotated (2, 0) is

1. Also, (2, 3) ∈ imatchρ. The position 3 consumes an output and produces
an input a. Indeed, the lag after the first transition of ρ2 is 1, which is the
number of input symbols between the first transition of ρ2 and the second
transition ((o′ + 1)-th transition) of ρ2. That is, (u, 2, 2) ∈ I0,1. Thus,
starting with the b annotated (j, o) = (5, 1) such that ρ5[1, 2] ∈ ΣΓ+, we first
obtain (m′, o′) = (3, 0) with (u, 5, 3) ∈ O1,0. Further, ρ2[2, 2]ρ3[1, 1] produces
a word in ΣΓ+. Finally, we have (u, 2, 2) ∈ I0,1, obtaining (u, 5, 2) ∈M1.

Definition of moveτ . We could define moveτ just as Mo, for every
τ = (a, o) ∈ Γ×{1, . . . , B}. However, recall that the correctness of the out-
put annotation is guaranteed only once if ensure that moveτ defines a partial
bijection between input positions j and j′ (hereafter we say for short that
the relation is bijective), which is not known a priori. Bijectiveness can be
enforced syntactically, by defining moveτ as {(û, j, j′) ∈Mo | ∀(û,m,m′) ∈
Mo (j = m) ↔ (j′ = m′)}. Observe that either Mo is bijective, and hence
moveτ = Mo, or it is not, and in this case moveτ defines a subrelation of Mo

that is bijective. Note that, in the case where moveτ defines a subrelation of
Mo, there will be no induced pair of synchronized words, since the origins
of some output elements could not be redirected. This is fine, and actually
needed, in order to avoid generating with R′ spurious pairs of synchronized
words, that are not also generated by R. On the other hand, observe that
the formula moveτ does generate, for appropriate choices of the output an-
notations, all the pairs of synchronized words that are generated by R. We
finally observe that moveτ and nextτ,τ ′ can be defined in MSO. We obtain
in this way, a 1-bounded, regular resynchronizer R′ equivalent to R.

Case B. The general case. We generalize the previous ideas to capture a
rational resynchronizer R with source output blocks of possibly unbounded
length. One additional difficulty is that we cannot anymore encode a suc-
cessful run ρ of R entirely on the input, as ρ may have arbitrarily long factors
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on outputs blocks. Another difficulty is that we cannot uniquely identify the
positions in an output block using offsets ranging over a fixed finite set. We
will see that a solution to both problems comes from covering most of the
output by factors in which the positions behave similarly in terms of the
source-to-target origin transformation. Intuitively, each of these factors can
be thought of as a ‘pseudo-position’, and accordingly the output blocks can
be thought of as having boundedly many pseudo-positions. This will make
it possible to apply the same ideas as before. We now state the key lemma
that identifies the aforesaid factors. By a slight abuse of terminology, we call
output blocks also the maximal Γ-labeled factors of a synchronized word.

Lemma 3.4.3. Let R be a rational resynchronizer with set of states Q.
Let ρ be a successful run of R, and let w and w′ be the source and target
synchronized words induced by ρ.

— Every output block v of w can be factorized into O(|Q|2) sub-blocks
v1, . . . , vn such that if |vi| > 1 and ρi is the factor of ρ that corre-
sponds to vi, then all states in ρi have the same lag, say `i, and the
factor of ρ obtained by extending ρi to the left and to the right by
exactly |`i| transitions forms a loop of R, i.e, begins and ends with
the same state.

— Moreover, for every factorization v = v1 . . . vn as above, each sub-
block vi is also a factor of w′, and hence all positions in vi have the
same target origin.

Before proving the Lemma, we give an example to illustrate how the
Lemma is used in presence of unbounded output blocks. In Figure 3.14, we
show a rational resynchronizer with Σ = {a}, Γ = {c}.

R p1 p2 p3 p4

a | a a | c c | a

c | c

Figure 3.14 – Resynchronizer with unbounded output block

Consider the source and target synchronized words aack+1 and acack re-
spectively, where k ≥ 0. The source has exactly one output block ck+1. The
state p3 has lag 1 whereas all other states have lag 0. The sequence of states
in the run on the output block is p3p4 . . . p4. Therefore, the decomposition
of the output block ck+1 into v1v2 with v1 = c and v2 = ck, satisfies the
conditions of the Lemma. For the block v1 = c, the corresponding state p3

has lag 1. By shifting 1 to the right, we obtain a loop on state p4. The same
holds for positions in v2 since the lag of p4 is 0.

Furthermore, the blocks v1 and v2 have different origins in the target
synchronized word as well, illustrating the second condition of the Lemma.
The intended use of the Lemma is to decompose the unbounded block into
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singleton sub-blocksnon-overlapping maximal loops

loops shrinked by lag

Figure 3.15 – Factorization of an output block.

a bounded number of factors, which are then moved together in the target.
Now, we prove this Lemma.

Proof of Lemma 3.4.3. We prove the first claim of the lemma (Figure 3.15
provides an intuitive account of the constructions). Let v be an output
block of the source synchronized word w and let ρ′ be the factor of the run
ρ aligned with v. As a preliminary step, we fix a maximal set of pairwise
non-overlapping maximal loops inside ρ′, say ρ′1, . . . , ρ

′
m. A simple counting

argument shows that m ≤ |Q| and that there are at most |Q| positions in ρ′

that are not covered by the loops ρ′1, . . . , ρ
′
m. The latter positions determine

some sub-blocks of v of length 1 in the required decomposition.
The remaining sub-blocks of v will be obtained by factorizing the loops

ρ′1, . . . , ρ
′
m, as follows. Consider any loop ρ′j . By construction, all letters

consumed by ρ′j occur in v, so they are output letters. Similarly, all letters
produced by ρ′j are also output letters, since otherwise, by considering rep-
etitions of the loop ρ′j , one could get different lags, violating Lemma 3.2.3.
This means that the lag associated with all the states along ρ′j is constant,
say `j (≤ |Q|). If ρ′j has length at most 2|`j |, then we simply decompose
it into 2|`j | factors of length 1. Otherwise, we cover a prefix of ρ′j with |`j |
factors of length 1, and a suffix of ρ′j with |`j | other factors of length 1. The
remaining part of ρ′j is covered by a last factor of length |ρ′j | − 2|`j |.

Overall, this induces a factorization of v into at most |Q| (the sub-blocks
not covered by a loop) + |Q| · (2|Q| + 1) is decomposed into (2`j + 1) ≤
(2|Q|+ 1) sub-blocks).

This gives O(|Q|2) sub-blocks v1, . . . , vn. Moreover, by construction, if
|vi| > 1, then in the corresponding factor ρi of ρ, all states have the same
lag, say `i, and if we extend ρi to the left and to the right by exactly |`i|
transitions, we get back one of the loops ρ′j (recall that each loop ρ′j of
length > 2|`j | is decomposed into |`j | blocks of length 1, then a block of
length |ρ′j | − |`j |, and finally, |`j | blocks of length 1. Clearly, if we extend
the middle block on either side by blocks of length |`j |, then we get back ρ′j .
This proves the first claim of the lemma.
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As for the second claim, suppose that v1, . . . , vn is a factorization of an
output block v of w satisfying the first claim. Clearly, every sub-block vi of
length 1 is also a factor of the target synchronized word w′. The interesting
case is when a sub-block vi has length larger than 1. In this case, by the
previous claim, we know that in the corresponding factor ρi of ρ, all states
have the same lag `i, and the factor ρ′i of ρ that is obtained by expanding
ρi to the left and to the right by |`i| transition is a loop. In fact, since ρ′i is
a loop, we also know that all states in it have lag `i. Now, to prove that vi
is a factor of the target synchronized word w′, it suffices to show that every
two consecutive positions of ρi are mapped to consecutive positions via the
relation omatchρ. This follows almost by construction, since for every pair
(j, k) ∈ omatchρ, if j occurs inside the factor ρi, then k occurs inside the
loop ρ′i (recall that ρ′i consumes and produces only output symbols), and
hence k = j − `i. In addition, if j + 1 also occurs inside ρi, then clearly
(j + 1, k + 1) ∈ omatchρ. This proves that vi is a factor of the target
synchronized word w′, and hence all positions in it have the same target
origin.

We now continue with the proof of Theorem 3.4.2. In view of the above
lemma we can guess a suitable factorization of the output into sub-blocks
that refine the output blocks, and treat each sub-block as if it were a single
pseudo-position. In particular, we can annotate every sub-block with a
unique offset from a finite set of quadratic size w.r.t. |Q|. The role of the
offsets will be the same as in the case of bounded output blocks, namely,
determine some partial bijections Oo,o′ , I0,o′ , and Mo between positions of
the input. In addition, we annotate every sub-block with the pair consisting
of the first and last states of the factor of the successful run that consumes
that sub-block. We call such a pair of states a pseudo-transition, as it plays
the same role of a transition associated with a single output position. Finally,
we annotate every input position j with a sequence of bounded length that
represents a single transition on j followed by the pseudo-transitions on the
subblocks with source origin j. The resulting input annotation provides an
abstraction of a successful run of R.

The correctness of the above annotations can be enforced by defining
suitable formulas ipar, opar, nextτ,τ ′ for the regular resynchronizer R′. We
omit the tedious details concerning these formulas, and only observe that,
as before, the definition nextτ,τ ′ relies on the fact that moveτ and moveτ ′

define partial bijections between input positions.
Finally, we turn to describing the formulas moveτ that maps source to

target origins for τ -labeled output positions. The definition is basically
the same as before, based on some auxiliary relations Oo,o′ and I0,o′′ that
implement omatchρ and imatchρ at the level of input positions. As before,
we guarantee, by means of a syntactical trick, that moveτ determines a
partial bijection between input positions. In conclusion, we get a regular
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resynchronizer R′, with input and output parameters, that is equivalent
to the rational resynchronizer R. This concludes the proof of Theorem
3.4.2.

Not all regular resynchronizers are rational. We now give an exam-
ple of a bounded, regular resynchronizer R and NFTs T1 and T2, such that
T1 ⊆o R(T2), but for which there is no rational resynchronizer R′ such that
T1 ⊆o R′(T2). This will show that bounded, regular resynchronizers are
strictly more expressive than rational ones, even when applied to NFTs. We
have already seen in Example 3.2.8, some T1 and T2 such that no rational
resynchronizer exists. Recall that in the example, we had Sync(T1) = ac∗a∗

and Sync(T2) = a∗ac∗. In other words, the origin of every output position
in T1 is the first position and the origin of every output position in T2 is
the last position. Therefore, it suffices to define a regular resynchronizer R
with movec(y, z) : first(y) ∧ last(z), where first(y) checks that y is the first
input position and last(z) checks that z is the last input position. It is easy
to see that R is 1-bounded. Clearly T1 ⊆o R(T2), but no rational rational
resynchronizer R′ exists. This concludes the proof of Theorem 3.4.1.

Expressiveness restricted to Real-time NFTs. Observe that the
NFTs T1 and T2 in the previous example were not real-time. For real-time
NFTs, rational resynchronizers and bounded, regular resynchronizers are in
fact equally expressive.

Theorem 3.4.4. Given real-time NFTs T1 and T2, the following conditions
are equivalent

1. T1 ⊆o Delk(T2) for some integer k.

2. T1 ⊆o R(T2) for some rational resynchronizer R.

3. T1 ⊆o R′(T2) for some bounded, regular resynchronizer R′.

4. T1 ⊆o Travk(T2) for some bounded-traversal resynchronizer Travk.

Proof. The equivalence of statements 1. and 2. follows from Theorem 3.2.6,
as shown by Filiot et al. [FJLW16]. The equivalence of statements 3 and 4
follow from Theorem 3.3.10, as shown by Kuperberg and Martens [KM20].
The implication 2. to 3. follows from Theorem 3.4.2. We now prove the
implication 4. to 1. which completes the proof of the Theorem.

Suppose there exists a bounded-traversal resynchronizer Travk for some
k such that T1 ⊆o Travk(T2). We also assume that the length of the longest
output in any transition of the real-time NFTs T1 and T2 is at most `. Let
w1 ∈ Sync(T1) and w2 ∈ Sync(T2) be synchronized words and (u, v1) and
(u, v2) be the corresponding synchronized pairs such that ((u, v1), (u, v2)) ∈
Travk.

Consider an input position i ∈ dom(u). Let u′ be the prefix of u of
length i. Let v′1 and v′2 be the maximal prefixes of outputs v1 and v2 that
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have origins in u′. Since ((u, v1), (u, v2)) is k-traversal, there exists at most k
positions i1, . . . , ik such that ij traverses i. We want to prove |diff (v′1, v

′
2)| <

k · `.
Suppose |v′1| ≤ |v′2|. Note that for every j ∈ {1, . . . , k}, ij must be the

origin of some position x in v1. If orig(v1(x)) ≤ i, then x is a position in v′1
and therefore orig(v2(x)) ≤ i, which contradicts that ij traverses i. There-
fore, orig(v1(x)) > i and for ij to traverse i, it must be that orig(v2(x)) ≤ i.
Therefore, x is a position in the difference between v′1 and v′2. Since there are
at most k positions that traverses i and each of these position is the origin
of at most ` output positions, there are k · ` such position in the difference
of v′1 and v′2. The case of |v′1 > |v′2| is symmetric.

Therefore, delay(w1, w2) < k · `, and thus, T1 ⊆o Delk·`(T2).

Summing up, our last theorem shows that relativized to real-time NFTs,
the expressive power of rational resynchronizers and bounded, regular resyn-
chronizers is the same. This establishes an equivalence between logic-based
resynchronizers and machine-based resynchronizers.

3.5 Conclusions

We recalled the model of rational resynchronizers and introduced
bounded, regular resynchronizers as a means to study problems for trans-
ducers between the classical and origin semantics. We showed that the
resynchronized transformations can be defined by means of a transducer
(NFT or 2NFT with common guess). This allows us to reduce the prob-
lem of containment up to a given resynchronizer to the origin-containment
problem. A general direction for future work is to study classical problems
through the lens of resynchronizers. For example, in Chapter 5, we will
study the one-way definability problem up to resynchronizers, which asks
whether a given 2NFT is origin-equivalent to a NFT up to a resynchronizer.

We also saw examples of transducers for which no rational/bounded,
regular resynchronizers exist. The non-existence of resynchronizer can be
proved by the notion of lag for rational resynchronizers and bounded-
traversal for the regular counterpart. An interesting problem, which we
will study in Chapter 4, is to decide whether such a resynchronizer exists or
not.

In Section 3.4, we saw the comparison between the two models of resyn-
chronizers. In particular, for real-time NFTs, the models are equally ex-
pressive, thus yielding a logic-machine equivalence result. An interesting
problem is to find a logic-based model of resynchronizers for rational resyn-
chronizers, or a machine-based model equivalent to bounded, regular resyn-
chronizers. Another direction for future work would be to lift the notion of
resynchronizers from words to more general objects such as trees, graphs,
etc.
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Chapter 4

Synthesis Problem for
Resynchronizers

In Chapter 3, we introduced rational resynchronizers and bounded, reg-
ular resynchronizers and showed that the containment up to a given resyn-
chronizer (of any of the two forms) is decidable. In that case, the resynchro-
nizers and the transducers were both given as input to the problem.

In this Chapter, we consider the resynchronizer synthesis problem,
where the input consists of two transducers T1 ⊆ T2, and the problem is
to decide if there is a resynchronizer R such that T1 ⊆o R(T2). If such a
resynchronizer exists, we also want to synthesize it.

Problem 4.0.1. (Resynchronizer Synthesis Problem) Given two transduc-
ers T1 ⊆ T2, compute, whenever possible, a resynchronizer R such that
T1 ⊆o R(T2)?

Note that checking T1 ⊆ T2 is already undecidable [FR68, Gri68], even
for NFTs. Therefore, it is important to assume that the NFTs given are
such that T1 ⊆ T2. Thus, this is a promise problem.

The problem of course depends on the class of transducers (such as NFTs,
2NFTs, etc) and the class of resynchronizers (rational or bounded, regular)
that we consider. Recall that we have already given examples of transducers
T1 and T2 for which no rational/bounded, regular resynchronizer R exists,
such that T1 ⊆o R(T2) (see Examples 3.2.8 and 3.3.9). The problem of
checking whether such a resynchronizer exists (but not synthesizing) can
therefore be seen as containment up to an unknown resynchronizer.

We show that checking whether a rational/bounded, regular resynchro-
nizer exists such that T1 ⊆o R(T2) is undecidable, even when the input trans-
ducers are NFTs. We also identify cases where the problem is decidable. For
rational resynchronizers, we show that a rational resynchronizer can always
be synthesized if the given transducers are functional or even finite-valued.
For synthesis of regular resynchronizers, we look at the case where the given
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transducers are unambiguous, i.e, they admit at most one accepting run on
every input. For this simpler case, we show that the problem is decidable
and give an algorithm to synthesize the required resynchronizer.

4.1 Synthesis Problem for NFTs

We first prove that the synthesis problem for rational resynchronizers
is undecidable. The proof we present is a modification of the proof of un-
decidability of synthesis of bounded, regular resynchronizer for NFTs by
Kuperberg and Martens [KM20].

Theorem 4.1.1. The rational resynchronizer synthesis problem is undecid-
able for NFTs.

Proof. We consider a variant of the Post Correspondence Problem (PCP),
called the PCP-boundedness problem, and reduce it to the synthesis problem
for rational resynchronizers.

An instance of the problem consists of a finite set of pairs of words
P = {(ui, vi) ∈ (Γ∗)2 | i ∈ I} as input, where I is a finite set of indices.
Given a sequence of indices x = i1i2 . . . ik ∈ I∗, let ux = ui1ui2 . . . uik , and
vx = vi1vi2 . . . vik . We assume that P satisfies the following properties:

— 6 ∃x ∈ I∗, such that vx v ux, where v is the prefix relation.
— There is an infinite sequence x̂ = i1i2 . . . of indices such that for all

x ∈ I∗, ux v vx if and only if x @ x̂. In this case, x is called a partial
solution to the PCP-instance.

The PCP-boundedness problem asks whether there exists a bound k, such
that, for all partial solutions x to the PCP instance it holds that |vx|−|ux| <
k. If this is the case, we say P is k-bounded.

The undecidability of the PCP-boundedness problem is obtained from
the following boundedness problem: given a deterministic Turing machine
(DTM) that does not halt on empty tape, does it use a bounded amount
of tape? The classical reduction of DTM to PCP produces a set of pairs P
in such a way that partial solutions x correspond to partial computations
of the DTM, with vx ahead of ux by one configuration. Therefore, tape-
boundedness of the DTM reduces to the PCP-boundedness problem.

We now construct two NFTs T1 and T2 which read a sequence of indices
x to simulate the PCP-boundedness problem. These NFTs are shown in
Figure 4.1. The NFT T1 has only one state p0 with a transition that reads
any index i and outputs vi. Note that T1 is deterministic.

The NFT T2 has initial state q0 with a loop reading any index i and out-
putting the corresponding word ui, and therefore can output ux by staying
in the state q0. T2 can also guess that the input sequence does not corre-
spond to a partial solution; in that case, it takes the transition from q0 to
q1, where it reads index i and outputs any word u′i such that u′i 6v ui and
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T1 p0

i | vi

T2 q0

q1

q2

i | ui i | Wi

ε | Γ∗

i | Γ∗

Figure 4.1 – NFTs T1 and T2

|u′i| ≤ |ui|. The set of such words u′i is denoted by Wi. This ensures that
the output produced in this case is different from ux. In state q1, T2 can
read any index i and output any word in Γ∗. From q0, T2 can also move to
state q2 and produce any output in Γ∗. Intuitively, T2 produces ux, which
lags behind the vx produced by T1. The transition to state q2 allows T2 to
catch up with T1.

If the input x corresponds to a partial solution of the PCP instance, then
T2 has a run staying at state q0 which produces ux. Since x is a solution
to the PCP instance, ux v vx and therefore, T2 can move to state q2 and
produce the rest of the output to match with vx. If the input x does not
correspond to a partial solution of the PCP instance, it can be decomposed
into x = x1ix2 such that x1 is still a partial solution of the PCP instance, but
x1i is not. Therefore, ux1 v vx1 but ux1ui 6v vx1vi. In this case, consider the
run of T2 that reads the input x1 at state q0, moves to state q1 on reading i.
This partial run produces the output ux1u

′
i such that u′i 6v ui and |u′i| ≤ |ui|.

Since ux1ui 6v vx1vi, u′i can be chosen such that ux1u
′
i v vx1vi and |u′i| ≤ |ui|.

At state q1, T2 can immediately produce the rest of the suffix of vx1vi and
produce vi on reading the index i. This run produces exactly the output vx.
Therefore, in the classical semantics, we would have T1 ⊆ T2.

Suppose P is k-bounded. We prove that the delay between T1 and T2

is bounded by k. After reading a prefix x of the input, there are two cases.
If x is a partial solution to the PCP instance, T2 has a run producing ux.
Since, P is B-bounded, |diff (ux, vx)| ≤ k. Recall that diff (ux, vx) here will
be a word u, such that uxu = vx (see page 66 for definition). If x does not
correspond to a partial solution of the PCP instance, then let x = x1ix2

such that ux1 v vx1 , i.e, x′ is the maximal prefix of x that is a partial
solution of the PCP instance. Since P is k-bounded, |diff (ux1 , vx1)| ≤ k.
Therefore, there exists a run of T2 that reads the letter i after x1, produces
diff (ux1 , vx1 .vi), i.e, the suffix of vx1vi after ux1 . This can be done since at
state q1, T2 can produce any arbitrary output. After this transition, T2 can
produce vi on reading index i and therefore the delay is bounded by 0. We
conclude that when P is k-bounded, T1 ⊆o Delk(T2). Recall that Delk is
the k-delay resynchronizer which means after reading any sequence of input
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indices, the difference in the lengths of the produced outputs can differ by
at most k.

If P is not k-bounded, then for every bound k, there exists a prefix x v x̂
such that |diff (ux, vx)| > k. Note that since x is a prefix of x̂, the only run
of T2 that matches with the run of T1 is the one that stays in state q0.

Suppose there exists a rational resynchronizer R such that T1 ⊆ R(T2).
Let ` be a bound on the lag in any state of R and B be a bound on the
length of ui’s and vi’s. Recall that a state q of a rational resynchronizer has
lag ` if every run that reaches q, reads ` more input letters in the source
than in the target (see page 65 for definition).

Consider the sequence x = i1 . . . im such that |vx|−|ux| > (`+1) ·B. Let
wx2 denote the synchronized word i1vi1 . . . imvim and wx1 = i1ui1 . . . imuim ‘.
Since ux v vx, |wx2 | > |wx1 | + (` + 1) · B. Suppose R reaches state q after
reading wx2 in the source. In the target, R would have consumed (`+ 1) ·B
more letters, which means it must have consumed at least `+1 input symbols,
since each output block has size at most B. Therefore, lag(q) = `+ 1, which
contradicts the bound on the lag at any state of R. We conclude that when
P is not bounded, such a rational resynchronizer cannot exist.

Based on Theorem 4.1.1, the synthesis problem for rational resynchro-
nizers is undecidable. We observe that in this proof, one can also re-
place rational resynchronizers by bounded, regular resynchronizers. If P is
bounded, existence of rational resynchronizer implies existence of an equiv-
alent bounded, regular resynchronizer as well (see Theorem 3.4.2). For the
other case, if the PCP instance is not bounded, it is easy to show that for
a partial solution x = i1 . . . im, such that |vx| − |ux| > k · B, at least k
positions traverse im. Therefore, by Theorem 3.3.10, there is no bounded,
regular resynchronizer R such that T1 ⊆o R(T2).

Theorem 4.1.2 (Theorem 20 in [KM20]). Given two NFT s T1 ⊆ T2, it
is undecidable to check if there exists a bounded, regular resynchronizer R,
such that T1 ⊆o R(T2).

Therefore, the synthesis problem for both rational and bounded, regular
resynchronizers are undecidable. Note that in these proofs, the left-hand
side NFT T1 is even deterministic. We now look at some restrictions on
the class of transducers considered, which make the problem of synthesizing
resynchronizers decidable.

4.2 Decidable restrictions

4.2.1 Synthesizing Rational Resynchronizers

We first look at the problem of synthesizing rational resynchronizers.
Since the problem is undecidable for general NFTs, a natural restriction
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would be to consider functional and finite valued NFTs. This is motivated
by the fact that classical equivalence problem is also undecidable for NFTs,
but becomes decidable when restricted to finite-valued NFTs [CK86].

Finite valued NFTs. Recall that an NFTs is finite-valued, i.e, there
exists a bound k such that for every input u, there are at most k different
output in the classical semantics. The following result shows that, for finite-
valued NFTs, classical containment and rational resynchronizer synthesis
are equivalent.

Theorem 4.2.1. Let T1, T2 be k-valued NFTs. The following conditions are
equivalent, and decidable:

1. T1 ⊆ T2,

2. T1 ⊆o R(T2) for some resynchronization R,

3. T1 ⊆o R(T2) for some rational resynchronizer R.

Proof. The decidability comes from the fact that containment is decidable
for finite-valued 2NFTs [CK86] (condition 1). The implications from 3. to 2.
and 2. to 1. are trivial. We prove the only interesting implication from
1. to 3. Suppose that T1, T2 are k-valued NFTs such that T1 ⊆ T2. We use
a result that k-valued NFTs can be decomposed into union of k unambigu-
ous NFTs [Web96, SdS10]. Therefore, we can transform the k-valued NFT
T2 into an equivalent union of k unambiguous NFTs T ′2 =

⋃k
i=1 T

i
2. Note

that while T2 and T ′2 are equivalent in the classical semantics, in the origin
semantics, we only have T ′2 ⊆o T2. This is because in the decomposition
result, the runs of T ′2 correspond to some, but not all runs of T2. Therefore
some runs may not simulated in T ′2 and the corresponding output in the
origin semantics are not generated by T ′2.

Since T1 ⊆ T ′2, we can compute a d-delay (in particular, a rational) resyn-
chronizer Deld such that T1 ⊆o Deld(T

′
2). This uses the following theorem

from Filiot et al [FJLW16].

Theorem 4.2.2 ([FJLW16]). Let T1, T2 be NFTs, where T2 is k-ambiguous.
One can compute a d-delay resynchronizer Deld, for some d ∈ N, such that
T1 ⊆ T2 implies T1 ⊆o Deld(T2).

Finally, since T ′2 ⊆o T2, T1 ⊆o Deld(T
′
2), and Deld(T

′
2) ⊆o Deld(T2), we

get T1 ⊆o Deld(T2). This concludes the proof.

Therefore, the synthesis problem for rational resynchronizers restricted
to finite-valued NFTs is decidable. Furthermore, the synthesized resynchro-
nizer is also a bounded-delay resynchronizer.

105



Functional NFTs. Functional NFTs are a special case of k-valued NFTs
where k = 1. Recall that it can be decided in PSpace whether an NFT is
functional [BCPS03], and that the classical containment problem for func-
tional NFT is also in PSpace [BH77]. We show a stronger result for the
synthesis problem for rational resynchronizers restricted to functional NFTs
than in the finite-valued setting. The result is stronger because we show
that for functional NFTs, if there exists a rational resynchronizer R such
that T1 ⊆o R(T2), we can also assume T1 =o R(T2).

Theorem 4.2.3. Let T1, T2 be two functional NFTs. The following condi-
tions are equivalent, and decidable:

1. T1 ⊆ T2,

2. T1 ⊆o R(T2) for some resynchronization R,

3. T1 =o R(T2) for some rational resynchronizer R.

Proof. The implication from 3. to 2. and 2. to 1. are trivial. For the remain-
ing implication, from 1. to 3., suppose that T1, T2 are functional NFTs such
that T1 ⊆ T2. We construct a rational resynchronizer R over the disjoint
union Σ ] Γ of the input and output alphabets of T1, T2, using a variant of
the direct product of T1 and T2. More precisely, let T1 = (Q1, q1,∆1, F1),
T2 = (Q2, q2,∆2, F2), and R = (Q, q,∆, F ), where Q = Q1×Q2, q = (q1, q2),
F = F1×F2, ∆ contains all transitions of the form (s1, s2) −aw2 | aw1−−−−−−→ (t1, t2),
with si −

a |wi−−−→ ti in ∆i for both i = 1 and i = 2. Intuitively, the transducer
R simulates a run of T1 and a run of T2 in parallel, by repeatedly consuming
an input symbol a and the corresponding output w2 produced by T2, and
producing the same input symbol a followed by the corresponding output
w1 of T1. Since T1 and T2 are functional and classically contained one in
the other, we have that R maps strings over Σ ] Γ to strings over Σ ] Γ
while preserving the projections on the input and on the output alphabets.
This means that R is indeed a resynchronizer. Finally, T1 is clearly origin
equivalent to R(T2). Note that here R is not a letter-to-letter transducer.
However, since it is a length-preserving NFT, we can obtain an equivalent
letter-to-letter transducer as the required rational resynchronizer.

In conclusion, the results we have obtained for synthesis of rational resyn-
chronizer are very similar to the known results for classical equivalence prob-
lem. While the problem is undecidable in the unrestricted case, for the func-
tional and the finite-valued case, a rational resynchronizer always exists and
can be synthesized.

4.2.2 Regular Resynchronizers

We now consider the synthesis problem for bounded, regular resynchro-
nizers. Note that in this case, we can have different variants of the problem,
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by considering the given transducers coming from different classes (NFTs,
2NFTs, NSSTs). We look at the case when the given transducers are un-
ambiguous 2NFTs.

Case of Unambiguous 2NFTs. The synthesis problem for rational
resynchronizer, for two given functional (or even finite-valued) NFTs, is
decidable. In fact, a rational resynchronizer always exists and is also
bounded-delay resynchronizer. Therefore, an interesting question to ask is
the bounded, regular resynchronizer synthesis problem for two given func-
tional 2NFTs. We now present a positive result in the simpler case of un-
ambiguous 2NFTs. Note that every functional 2NFT can be converted to
a classically equivalent unambiguous 2NFT. However, such transformations
do not necessarily preserve the origins. This is because a functional 2NFT,
on a fixed input, can produce the same output in the classical semantics,
but different outputs in the origin semantics. An unambiguous 2NFT how-
ever has a unique successful run and therefore a output, even in the origin
semantics.

Our results about the regular resynchronizer synthesis problem for un-
ambiguous 2NFTs are in contrast with result about rational resynchronizers,
in the sense that a resynchronizer need not always exists. As an example,
consider the 2NFT T1 that consumes an input of the form a∗ from left to
right, while copying the letters to the output, and a 2NFT T2 that realizes
the same function but while consuming the input in reverse. We have seen
in Example 3.3.11 that T1 ⊆ T2, but T1 6�reg T2. On the other hand, for
functional NFTs, we are always able to synthesize a bounded-delay resyn-
chronizer.

As we will see, it is possible to associate a resynchronizer for pairs of
classically equivalent unambiguous 2NFTs if we move beyond the class of
bounded, regular resynchronizers and consider resynchronizers defined by
Parikh automata. The existence of bounded, regular resynchronizers be-
tween two given unambiguous 2NFTs can thus be seen as a strengthening
of the classical containment relation.

Parikh Resynchronizers. First we introduce resynchronizers definable
by Parikh automata. Formally, a Parikh automaton is a finite automa-
ton A = (Q,Σ, I,∆, F, Z, S) equipped with a function Z : ∆ → Zk that
associates vectors of integers to every transition of the automaton and a
semi-linear set S ⊆ Zk (Zk denotes the set of Z-vectors of dimension k). A
successful run of A is a run starting in a state in I, ending in a state in F ,
such that the vector obtained by summing together the vectors associated
with the transitions of the run belongs to the set S. The semi-linear set
S can therefore be seen as an acceptance condition. A Parikh automaton
can be seen as a recognizer of languages. We define the language recognized
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by A as the set of all words that admit a run ending in final states and
computing a vector in S.

We say that A is unambiguous if the underlying finite automaton is
unambiguous. In this case, the runs need not end with a valuation in S, but
end in a final state from F . In this case, we can associate with each input
u, the vector A(u) ∈ Zk associated with the unique run of the underlying
automaton of A on u, if such a run exists; otherwise A(u) is undefined.

An important property of unambiguous Parikh automata is that they are
closed under the pointwise sum and difference operations. More precisely,
given unambiguous Parikh automata A1 and A2, we can construct A+ and
A− such that A+(u) = A1(u) + A2(u) and A−(u) = A1(u) − A2(u), for all
possible inputs u.

In the rest of the thesis, we assume the set S is {0k}. This is without
loss of generality, since, for any given acceptance condition as a semi-linear
set, we can always add some transitions to subtract suitable vectors from S
at the end of the run.

By a slight abuse of terminology, we call Parikh resynchronizer any
resynchronizer with parameters whose relations moveτ and nextτ,τ ′ , seen as
languages of annotated words with two marked positions, are recognizable
by unambiguous Parikh automata, and ipar and opar are regular languages.
We naturally inherit from regular resynchronizers the notion of boundedness
concerning the relation move.

We introduce another technical notion, that will be helpful later. Given
a resynchronizer R, we define its target set as the set of all pairs (u, j) where
u is an input, j ∈ dom(u), and (w, i, j) ∈ moveτ for some annotation w
of u with input parameters, some input position i, and some output type
τ . Essentially, this is the set of pairs (u, i) where u is an input and i is
a potential origin in a target synchronized word obtained by applying the
resynchronizer R. Similarly, we define the origin set of a 2NFT T as the set
of all pairs (u, i) such that i is the origin of some position output by T on u.
Formally, u is an input of T and there exists a output position x ∈ dom(v),
such that (u, v) ∈ [[T ]]o and x is labeled by (a, i) for a ∈ Γ.

Theorem 4.2.4 (Theorem 12 in [BKM+19]). Let T1, T2 be two unambiguous
2NFT s. The following conditions are equivalent:

1. T1 ⊆ T2,

2. T1 ⊆o R(T2) for some resynchronization R,

3. T1 =o R(T2) for some 1-bounded, Parikh resynchronizer R whose
target set coincides with the origin set of T1.

The third condition requires that on input u, R can redirect the origin
of any output position x to some j if and only if j is the origin of some
position in the output produced by T1 on u. Note that since T1 and T2 are
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unambiguous, the outputs are determined by the input u. We now present
the proof of the theorem.

Proof. The implications from 2. to 1. and from 3. to 2. follow from the def-
initions. The only interesting implication is from 1. to 3, where we suppose
that T1 ⊆ T2 and we aim at constructing a 1-bounded Parikh resynchronizer
R such that T1 =o R(T2), and whose target set is the same as the origin
set of T1. The proof exploits variants of the classical constructions based
on crossing sequences [She59], as well as the reduction of containment of
functional 2NFT to emptiness of languages recognized by Parikh automata
[MP19b]. We adapt the definition of crossing sequences as a sequence of
transitions taken in a position, instead of the more classical definition as a
sequence of states visited in a position. A crossing sequence of a unambigu-
ous 2NFT is thus a tuple t = (t1, . . . , tn) of transitions such that the source
states of t1, t3, . . . are right-reading and the source states of t2, t4, . . . are
left-reading. The tuple is meant to describe the transitions along a success-
ful run that depart from configurations at a certain position i. Formally,
given a run ρ, the crossing sequence of ρ at input position i, denoted ρ[i],
consists of the quadruples (q, a, v, q′) such that (q, i) −a | v−−→ (q′, i′) is a tran-
sition of ρ, where the occurrence order of the said transitions coincides with
the order on the quadruples of the crossing sequence. Note that the cross-
ing sequences for an unambiguous 2NFT is bounded since the same position
cannot be visited with the same state more than once (otherwise there would
exists multiple run on the same input). In particular, we can assume that
the length of a crossing sequence is bounded by the total number of states
of the 2NFT. Moreover, for unambiguous 2NFTs, the input along with a
position, determines the crossing sequences of the successful run at the po-
sition. More precisely, there are regular languages Lt, one for each possible
crossing sequence t, that contains precisely those inputs u with a specific
position i marked on it (for short, we denote such words by 〈u, i〉), such that
the crossing sequence at i of the unique successful run on u is exactly t.

We can generalize the notation for words with marked positions to write
〈u, i1, i2, . . . , ik〉 to denote the word u with marked positions i1, . . . , ik.

We now turn to the main proof, which is divided into several steps.

Encoding output positions. We begin by describing an annotation over
the input that encodes an arbitrary output positions. We consider an un-
ambiguous 2NFT T (which can be either T1 or T2). We also consider an
arbitrary input for T , denoted by u and the unique induced successful run,
denoted by ρ. To simplify the notations, we assume that T produces at most
one letter at each transition.

Let n be the number of states of T . Since T is unambiguous, v contains
at most n output positions with the same origin (otherwise, the same con-
figuration would be visited at least twice along the successful run ρ, which
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could then be used to contradict the assumption of unambiguity). This
means that every output position x in dom(v) can be encoded by its origin
ix = orig(v(x)) together with a suitable index `x ∈ {1, . . . , n}, describing
the number of output positions x′ ≤ x with the same origin ix as x. We
recall that the input u together with the position i can be represented as an
annotated input of the form 〈u, i〉.

Decoding by Parikh automata. We now show that there are Parikh
automata that on input u compute the inverse of the encoding x 7→ (ix, `x)
described above. More precisely, there are unambiguous Parikh automata
A1, . . . , An such that each A` receives as input a word 〈u, i〉 having a special
position marked on it, and outputs the unique output position x such that
(i, `) = (ix, `x), if this exists, otherwise the output is undefined. By output
x of a Parikh automaton, we mean the vector computed by A` on the input
〈u, i〉, which in our case is the number (one-dimensional vector) x.

Each automaton A` can be constructed from T and ` by unambiguously
guessing the crossing sequences of the unique run of T on u, and by count-
ing the number of output symbols produced in the run until a productive
transition at the marked position i is executed for the `-th time (a pro-
ductive transition is a transition that produces non-empty output). This
requires A` to guess which productive transitions in the run occur before
the `-th productive transitions at i, and this can be easily be done by such
an automaton. The value x is computed by counting the number of output
symbols in the transition before the (ix, `x)-th transition.

Redirecting origins. We now apply the constructions outlined above in
order to obtain the desired Parikh resynchronizer R from T1 and T2. Let
u be some input and v1, v2 ∈ (Γ × N)∗ be the output in origin semantics
produced by the unique successful runs of T1, T2 on u. Since T1 ⊆ T2,
we can further assume v = (v1)Γ = (v2)Γ. Consider any output position
x ∈ dom(v). According to v2, x is encoded by an input position ix and an
index `x ∈ {1, . . . , n2}, where n2 is the number of states of T2. In a similar
way, according to v1, the same position x is encoded by some input position
jx and an index kx ∈ {1, . . . , n1}, where n1 is the number of states of T1.

Furthermore, based on the previous constructions, there are unambigu-
ous Parikh automata A2,` and A1,k such that

— A2,`(〈u, i〉) = x if and only (i, `) = (ix, `x),
— A1,k(〈u, j〉) = x if and only (j, k) = (jx, kx).
Intuitively, the position i will be the source origin (origin in T2) and the

position j will be the target origin (origin in T1), of the output position x.
Since unambiguous Parikh automata are closed under pointwise differ-

ence, there is a unambiguous Parikh automaton A`,k that recognizes pre-
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cisely the language of annotated words 〈u, i, j〉 such that

A2,`(〈u, i〉)−A1,k(〈u, j〉) = 0 (?)

Note that the above language defines a partial bijection between pairs
of positions i, j in the input u in such a way that i and j are the origins of
the same output position x according to the unique outputs v2, v1 of T2, T1

on input u. This property can be used to define the component moveτ of
the desired resynchronizer R, by simply letting

moveτ = {(u, i, j) | A`,k(〈u, i, j〉) = 0}

where τ = (a, `, k) ∈ Γ× {1, . . . , n2} × {1, . . . , n1}.
To check correctness of the above definition, we need to guess the pairs

of indices (`, k) correctly as annotations of output positions. More precisely,
we have that:

— for every output position x with origin i in v2, and with output
type τ = (a, `x, k), there is at most one input position j such that
(u, i, j) ∈ moveτ ; in addition, if we also have k = kx, then j is the
origin of the position x in v1; symmetrically,

— for every output position x with origin j in v1, and with output
type τ = (a, `, kx), there is at most one input position i such that
(u, i, j) ∈ moveτ ; in addition, if we also have ` = `x, then i is the
origin of x in v2.

Based on the above properties, we need to guess suitable output parameters
that associate with each position x, a correct pair (`x, kx). We explain below
how this is done using the components opar and nextτ,τ ′ of the resynchro-
nizer.

Constraining output parameters. We first focus on the indices kx re-
lated to T1; we will later explain how to adapt the constructions to check
the indices `x related to T2. Recall that we want R such that T1 =o R(T2).
Therefore, the origins in v1 are the target origins and origins in v2 are the
source origins. As usual, we fix an input u and the unique successful run ρ1

of T1 on u.
The idea is that each index kx corresponds to a certain element of the

crossing sequence of ρ1 at the target origin jx, and knowing the correct index
for x determines the correct index for the next output position x+ 1. Based
on this, correctness can be verified inductively using the guessed crossing
sequences and the relation nextτ,τ ′ of the resynchronizer, as explained in
details below.

For the base case, we check that the first output position is correctly
annotated. The encoding of the first position will be (j, 1) for some input
position j. Note that the index will always be 1 since this is the first output
position. This can easily be checked by opar. Additionally, we also need to
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check that there is no transition before the (j, 1)-th transition in the run.
For this latter constraint, we need access to the full run, which unfortunately
is not available in the output annotations. We can however use moveτ to
check this. Since it is interpreted over the input, which is annotated with
the crossing sequences, it is easy to check that all the transitions before the
(j, 1)-th transition produce non-empty outputs.

For the inductive step, we consider an output position x and assume
that it is correctly annotated with k = kx. Let k′ be the annotation of
the next position x + 1. To check that k′ is also correct, we consider the
k-th productive transition at the target origin of x and the k′-th productive
transition at the target origins of x+ 1, and verify that they are connected
by a non-productive run. More precisely, let z and z′ be the target origins
of x and x+1, respectively, and let tz and tz′ be the crossing sequences of ρ1

at those positions. We have that k′ = k′x+1 if and only if the k-th productive
transition of tz and the k′-th productive transition of tz′ are connected by
a factor of the run that consists only of non-productive transitions. The
latter property can be translated to a regular property nextτ,τ ′ concerning
the input annotated with two specific positions, z and z′, assuming that
τ = (a, `, k) and τ = (a′, `′, k′) are the letters of the output positions x and
x+ 1.

It now remains to check the correctness of the output annotations
w.r.t. the indices ` for the second 2NFT T2. We follow a principle similar to
the one described above for T1. The base case, checking the correctness of
the annotation of the first position can still be done using moveτ . The only
difference is that now, in the inductive step, we have to work with the source
origins y and y′ of consecutive output positions x and x+ 1. The additional
difficulty is that, by definition, the relation nextτ,τ ′ can only refer to target
origins. We overcome this problem by exploiting the fact that moveτ defines
a partial bijection between target and source origins.

Formally, we first define a relation nextsource
τ,τ ′ as before, that constrain

the indices ` and `′ associated with two consecutive output positions x and
x+ 1 labeled by τ and τ ′, respectively. We do this as if nextsource

τ,τ ′ were able
to speak about source origins. We combine the relations moveτ , moveτ ′ and
nextsource

τ,τ ′ to obtain the relation nextτ,τ ′ :{
(u, z, z′) | ∃y, y′ (u, y, y′) ∈ nextsource

τ,τ ′ , (u, y, z) ∈ moveτ , (u, y′, z′) ∈ moveτ ′
}
.

Since in the inductive step we assume that x is correctly annotated with
the pair (`, k) and x+1 is annotated with (`′, k′), where k′ = kx is correct by
the previous arguments, there are unique y, y′ that satisfy (u, y, z) ∈ moveτ
and (u, y′, z′) ∈ moveτ in the above definition, and these must be the source
origins of x and x+1. This means that the above relation, which is definable
by a unambiguous Parikh automaton, correctly verifies the correctness of the
index `′ associated with x+ 1.
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We conclude by observing a few properties of the defined Parikh resyn-
chronizer R. As already explained, the relation moveτ defines a bijection
between pairs of input positions, so R is a bijective Parikh resynchronizer.
In particular, this is a functional, 1-bounded resynchronizer. As concerns
its target set, that is the set of pairs (u, z) such that (u, y, z) ∈ moveτ for
some z ∈ dom(u) and some τ ∈ Γ × {1, . . . , n2} × {1, . . . , n1}, it coincides
by construction with the target set of T1.

Note that in the above proof, the relation nextτ,τ ′ is defined by conjoining
a regular property with the properties defined by the relations moveτ and
moveτ ′ . Therefore, we have the following property, which will be used later
to prove completeness for the synthesis problem.

Lemma 4.2.5. Let R be the Parikh Resynchronizer obtained from Theorem
4.2.4. The relation nextτ,τ ′ is regular if moveτ and moveτ ′ are regular.

From Theorem 4.2.4, we obtain a Parikh resynchronizer R. To solve the
regular resynchronizer synthesis problem for unambiguous 2NFTs, we can
check if the moveτ , for every type τ , defined by the Parikh automata in
R, defines a regular language. If this is indeed the case, then by Lemma
4.2.5, nextτ,τ ′ is also regular. Therefore, we are able to synthesize a regular

resynchronizer R̂. The following theorem shows that this check is sufficient,
i.e, if there is a suitable regular resynchronizer, then R̂ is regular.

Theorem 4.2.6 (Theorem 13 in [BKM+19]). Let T1, T2 be two 2NFTs such
that T1 ⊆ T2, and let R̂ be the bounded Parikh resynchronizer obtained from
Theorem 4.2.4. The following conditions are equivalent:

1. R̂ is a regular resynchronizer,

2. T1 ⊆o R(T2) for some bounded regular resynchronizer R,

3. T1 =o R(T2) for some 1-bounded regular resynchronizer R with the
same target set as T1.

Proof. We prove the following implications in the order: 1. → 2. → 3. → 1.

From 1. to 2. This is trivial since R̂ is bounded, and satisfies T1 =o R̂(T2),
and hence T1 ⊆o R̂(T2).

From 2. to 3. Suppose that R is a bounded, regular resynchronizer with
input alphabet Σ and output alphabet Γ, such that T1 ⊆o R(T2). Recall that
by Lemma 3.3.4, we can assume R is 1-bounded. The goal is to construct
a 1-bounded, regular resynchronizer R′, with the same target set as T1 and
such that T1 =o R

′(T2). For the sake of simplicity, we assume that R has no
input parameters, and similarly T1 has no common guess (the more general
cases can be dealt with by annotating the considered inputs with the possible
parameters and the common guess).
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The idea for defining the desired resynchronizer R′ is as follows. We first
restrict each formula moveτ so as to make it a partial bijection, that is, for
every input u, and every source origin y ∈ dom(u), there is an annotation û
of the input and at most one target origin z such that (û, y, z) ∈ moveτ (and
conversely, since R is 1-bounded, for every target origin z, there is a unique
source origin y). This step requires the use of appropriate input parameters
that determine a unique target origin z from any given source origin y. We
explain later how we achieve the goal of defining a moveτ that is a partial
bijection.

Then, we restrict further the formula moveτ so that every target origin
z is witnessed by T1. Formally, we introduce input parameters ranging over
BΓ and work with annotated inputs of the form u ⊗ w, with u ∈ Σ∗ and
w ∈ (BΓ)∗. Recall that BΓ are the output types. Given u ∈ Σ∗, we define
Ou as the set of all positions z ∈ dom(u) that are the origin of some position
x ∈ dom(v).

The new formula move′τ that redirects a source origins to target origins
is defined as the following restriction of moveτ :

move′τ =
{

(u⊗ w, y, z) | (u, y, z) ∈ moveτ , w(z)(τ) = 1, z ∈ Ou
}
.

Intuitively, this means that there is a output position x with output-type
τ (hence, w(z)(τ) = 1), and target origin z (hence z ∈ Ou). Clearly, the
above relation is MSO-definable and contained in moveτ . However, it is still
possible that move′τ associates multiple target origins with the same source
origin.

To get a partial bijection from move′τ we need to constrain the possible
annotated input u⊗ w. We do so by requiring that, for every output letter
τ ∈ Γ and every position y in u ⊗ w, if there is z with (u, y, z) � moveτ ,
then there is exactly one z′ such that (u, y, z′) � moveτ and w(τ)(z) = 1.
This again gives a new relation move′′τ that is contained in the previous
relation moveτ . Note that the latter property is again regular, and thus
could be conjoined with the original relation ipar to form the new relation
ipar′. Accordingly, the formula next′τ,τ ′ of the desired resynchronizer R′

checks the same properties as nextτ,τ ′ , but expanded with arbitrary input
annotations over BΓ.

It is now easy to see that the the resulting resynchronizer R′ is 1-
bounded, and in fact, on each input, defines a partial bijection between
source and target origins in such a way that the target set coincides with
that of T1. By pairing this with the containments R′(T2) ⊆o R(T2) and
T1 ⊆o R(T2), we obtain T1 =o R

′(T2).

From 3. to 1. Knowing that R̂(T2) =o T1 =o R(T2) for some 1-bounded
resynchronizers R and R̂ obtained from Theorem 4.2.2, with the same tar-

get sets as T1 implies that the formulas moveRτ and moveR̂τ , from R and R̂
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respectively, coincide. Moreover, since the relation moveRτ of R is regular,

this means that moveR̂τ is regular too. Finally, we recall from Lemma 4.2.5

that nextR̂τ,τ ′ is regular whenever moveR̂τ and moveR̂τ ′ are. We can then con-

clude that the relations nextR̂τ,τ ′ are also regular, and hence R̂ is a bounded,
regular resynchronizer.

Finally, in order to conclude that the synthesis problem for bounded,
regular resynchronizers is decidable, we use the result on decidability of reg-
ularity of languages recognized by unambiguous Parikh automata [CFM13].

Lemma 4.2.7 ([CFM13]). Given an unambiguous Parikh automaton A, it
is decidable to check whether [[A]] is a regular language.

Proof sketch. This result requires unambiguity and uses Presburger arith-
metics to determine, for each (simple) loop a threshold such that iterating
the loop more than the threshold always satisfies the Parikh constraint. A
run using such a simple loop adds keeps repeating the same computation.
If the computation is repeated several times above the threshold, always
satisfies the constraint, i.e, generates a vector that satisfies the acceptance
condition. The language of the Parikh automaton is regular if and only if
every (simple) loop has such a threshold.

We thus conclude:

Corollary 4.2.7.1. Given two unambiguous 2NFTs T1, T2, one can decide
whether there is a regular resynchronizer R such that T1 ⊆o R(T2).

Since the above result requires unambiguity, we cannot directly extend it
to functional 2NFTs. Another interesting problem would be to extend the
above result to k-ambiguous 2NFTs, which have at most k different runs
on an input. Recall that for NFTs, we are able to decompose k-ambiguous
ones into k unambiguous NFTs. For 2NFTs, such a decomposition result
remains open. Obtaining such a decomposition theorem could ease a solution
to the synthesis problem as well, as we could then apply the algorithm for
synthesizing a regular resynchronizer for k pairs of unambiguous 2NFTs,
given by the decomposition.

4.3 Conclusions

We saw that the synthesis problem for both rational and bounded, regu-
lar resynchronizers are undecidable (Theorem 4.1.1), even for NFTs. How-
ever, the NFT T2 used in the proof is not real-time. The synthesis problem
remains thus open for real-time NFTs. Note that by Theorem 3.4.4, ra-
tional resynchronizers and bounded, regular resynchronizers are equivalent
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for real-time NFTs. Therefore, the synthesis problem for bounded, regular
resynchronizers given two real-time NFTs also remains open.

For finite-valued NFTs, we saw that it is always possible to synthesize a
bounded-delay resynchronizer (Theorem 4.2.1). We were able to strengthen
the result for functional NFTs (Theorem 4.2.3), by constructing a resyn-
chronizer, that is of size polynomial in T1 and T2. In the k-valued case, the
synthesized resynchronizer is a k-delay resynchronizer, which can have size
exponential in k (see Proposition 3.2.4).

For 2NFTs and bounded, regular resynchronizers, we solved the synthe-
sis problem under the assumption that the 2NFTs are unambiguous (Theo-
rem 4.2.4). The synthesis problem for bounded, regular resynchronizer thus
remains open for functional, finitely ambiguous and finite-valued 2NFTs.
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Chapter 5

One-way Resynchronizability

We have seen various classes of transducers, such as NFTs, 2NFTs,
NSSTs, etc, with different expressive power. The class of relations defined
by NFTs is contained in the class of relations defined by 2NFTs. Therefore,
a natural question to ask is the class membership problem, i.e, given an
2NFT T , is it equivalent to some NFT? This is called the one-way defin-
ability problem and has been well studied in the classical semantics. This
problem is motivated by the fact that a NFT can produce the output in
a streaming manner, by processing one letter at a time, whereas a 2NFT
needs to store the entire input to produce the output.

In the origin semantics, the one-way definability problem becomes trivial
due to a machine independent characterization of relations defined by NFTs
as order-preserving transductions. In this chapter we study a variant of
this problem, which we call the one-way resynchronizability problem. A
2NFT T is one-way resynchronizable if there exists a resynchronizer R such
that R(T ) is origin-equivalent to some NFT. Intuitively, this means that T
uses the two-way movement in a limited manner and the resynchronizer R
can “undo” the effects of the two-way movement. We begin by recalling
the known results about one-way definability in both classical and origin
semantics and then present our results on one-way resynchronizability.

5.1 One-way Definability and Resynchronizability

Classical semantics. The one-way definability problem in the classical
setting is the following.

Problem 5.1.1 (One-way Definability). Given a 2NFT T , is it classically
equivalent to some NFT T ′?

If such a T ′ exists, T is called one-way definable. This one-way
definability problem is undecidable in the unrestricted (relational) case,
see [BGMP18]. However, restricted to functional transducers, the problem
becomes decidable [FGRS13] in 2-ExpSpace [BGMP18].
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Example 5.1.2. Let Tshift be a 2DFT that shifts the last letter of the input
to the beginning of the word. Therefore, on an input u = wa, Tshift produces
aw by making a first pass to the end of the word, outputting the last letter,
and then moving back to the beginning and copying the remaining w in a
second pass. This transformation can also be implemented by an NFT which
guesses and outputs the last letter, copies the suffix w, and finally checks the
guess, all of this in one pass. Therefore, Tshift is one-way definable.

Example 5.1.3. Let Trev be a 2NFT with Σ = Γ = {a} doing reverse
transformation. In other words, on an input u = an, Trev moves to the end
of the word, copies the word from the end to the beginning and moves to the
end to finish the computation. In the classical semantics, it is equivalent to
the identity transformation, which is definable by an NFT. Therefore, Trev

is one-way definable. However, if we take Σ = Γ = {a, b}, then Trev is no
longer one-way definable.

Origin semantics. In the origin semantics, the one-way definability prob-
lem becomes easier. The class of one-way definable functions was char-
acterized in [Boj14] as order-preserving transductions, namely, as those
transductions whose origins respect the input order. Formally, a trans-
duction T is order-preserving if for every (u, v) ∈ T , and output positions
x < x′ ∈ dom(v), orig(v(x)) ≤ orig(v(x′)).

Although order-preserving transductions were originally defined for func-
tions [Boj14], the definition can be extended to relational transductions
without any modifications. Note that none of the examples presented above
are one-way definable in the origin semantics. In fact, one-way definability
in the origin semantics is trivial as it boils down to checking one-wayness
after removing non-productive U -turns.

Proposition 5.1.4. A 2NFT T is one-way definable in the origin semantics
if and only if [[T ]]o is order-preserving. Moreover, the latter property is
PSpace-complete.

Proof. The left-to-right direction is trivial as T is one-way definable, and
therefore produces the output in such a way that the origins preserve the
input order. The right-to-left direction follows from the construction of
Shortcut(T ) (see page 39), which removes all non-productive U -turns. Recall
that the 2NFT Shortcut(T ) visits input position based on the order of origins
(see page 39). Therefore, Shortcut(T ) is an NFT that is origin-equivalent to
T . Thus, T is one-way definable.

For the last claim note that we can check that [[T ]]o is not order-
preserving by guessing on-the-fly an input uavbw and a run producing some
output on the letter b, then on the letter a, with empty output in-between.
We need to store information about non-productive U-turns to check this,
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hence the PSpace upper bound. The lower bound follows from the lan-
guage emptiness of 2DFA. Given a 2DFA accepting a language L, one can
construct a 2DFT that produces reverse of w, for every w ∈ L. This 2DFT
is one-way definable in origin semantics if and only if L is empty.

For sake of completeness, recall that the emptiness problem for 2DFA
is PSpace-hard. Given a PSpace Turing machine M with input w using
space n in the tape that is polynomial in |w|, we can construct a 2DFA that
reads sequences of configurations of the M and checks whether it encodes
a successful run of M on w or not. We can assume that all configura-
tions have size n, and the 2DFA can check that consecutive configurations
are connected by a transition by moving back and forth using the two-way
movement of the reading head. The language of the 2DFA is non-empty if
and only there is an accepting run of M on w that uses space polynomial in
|w|.

One-way resynchronizability. Since the one-way definability problem
in the origin semantics is too simple, and rather restrictive, we consider
a variant of the problem, that asks for one-way definability up to some
resynchronizer, i.e, whether there exists a regular resynchronizer R such
that R(T ) is one-way definable in the origin-semantics. For example, Tshift

in Example 5.1.2 can be made one-way by applying a resynchronizer that
moves the origin of the last output position from the end to the beginning
of the input. So there exists a regular resynchronizer R such that R(Tshift)
is order-preserving.

There is however a catch in the previous attempted definition of one-
way resynchronizability. The empty resynchronization relation applied to
any transduction gives the empty transduction, which is one-way definable.
This would make every 2NFT trivially resynchronizable to an NFT. To
avoid this, we also require R to be T -preserving, i.e, [[T ]]o is contained in the
domain of R. This ensures that every synchronized pair generated by T is
mapped to some synchronized pair by R and therefore, R(T ) is classically
equivalent to T .

We thus define the one-way resynchronizability problem as follows.

Problem 5.1.5 (One-way Resynchronizability). Given a 2NFT T , does
there exist a T -preserving, bounded, regular resynchronizer R such that R(T )
is order-preserving?

Our main result is to show that the one-way resynchronizability problem
is decidable.

Theorem 5.1.6. It is decidable in ExpSpace whether a given 2NFT T is
one-way resynchronizable.

We break the proof into two parts. First, we consider the case of bounded-
visit 2NFTs. A 2NFT T is called k-visit if every synchronized pair (u, v) ∈ T
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is accepted by a run ρ which has at most k occurrences of a configuration
from Q×{i}, for every input position i. In other words, the number of visits
to an input position i in the run ρ is at most k. A 2NFT T is called bounded-
visit if there exists a k such that T is k-visit. This restriction allows for runs
of T to be summarized by flows (a modification of the classical notion of
crossing sequence of [She59]) of bounded size.

We characterize one-way resynchronizability of a bounded-visit 2NFT T
by the absence of inversions (defined in Section 5.2), which can be detected
by inspecting the flows of T . We also provide another equivalent character-
ization, called bounded cross-width, based on the set of synchronized pairs
defined by the 2NFT T (also defined in Section 5.2).

For the general case, the main difficulty is that the flows are no longer
bounded. Therefore, the approach of checking the flows for absence of in-
versions no longer works. We will show that if a 2NFT T has a vertical
loop (sub-run starting and ending in the same configuration) which pro-
duces outputs with unbounded number of distinct origins, then T cannot
be one-way resynchronizable. In absence of such loops, we will show how to
build a bounded-visit 2NFT low(T ) classically equivalent to T , and reduce
the problem to the bounded-visit case.

5.2 Technical ingredients

In this section, we introduce the technical definitions used to characterize
one-way resynchronizability for bounded-visit 2NFTs.

Cross-width. Let σ = (u, v) be a synchronized pair and let X1, X2 ⊆
dom(v) be sets of output positions such that, for all x1 ∈ X1 and x2 ∈ X2,
x1 < x2 and orig(v(x1)) > orig(v(x2)). We call such a pair (X1, X2) a
cross and define its width as min(|orig(X1)|, |orig(X2)|), where orig(X) =
{orig(v(x)) | x ∈ X} is the set of origins corresponding to a set X of
output positions. Intuitively, to make the pair (u, v) order-preserving, a
resynchronizer needs to either redirect the origins of X1 or the origins of
X2.

The cross-width of a synchronized pair (u, v) is the maximal width of the
crosses in (u, v). We say a 2NFT T has bounded cross-width if there exists
a bound k, such that for all synchronized pairs (u, v) ∈ T , the cross-width
of (u, v) is at most k.

Examples of cross-width. The synchronized pairs produced by Tshift

from Example 5.1.2 have cross-width 1. For example, the synchronized pair
(aba, (b, 2)(a, 3)(a, 1)), has crosses (X1, X2), where X1 = {1} and X2 is a
non-empty subset of {2, 3}. In fact, for any synchronized pair generated
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by Tshift, a cross will always have X1 = {1}. Therefore, the cross-width is
bounded by 1.

For the 2NFT Trev in Example 5.1.3, for every integer k, there is a
synchronized pair with a cross of width k. For instance, the synchronized
pair (a2k, (a, 2k) . . . (a, 1)) has a cross (X1, X2), where X1 = {1, . . . , k} and
X2 = {k+ 1, . . . , 2k}, which has width k. Since, k can be chosen arbitrarily
large, the cross-width is unbounded.

It is easy to see that order-preserving synchronized pairs have cross-width
0, since they have no crosses. One of the characterizations in Theorem 5.3.1
is that a 2NFT T is one-way resynchronizable if and only if T has bounded
cross-width.

We now define the other key notion of inversion which will be used in
Theorem 5.3.1 To define inversions, we first need to define flows (a notion
inspired from crossing sequences [She59, BGMP18]).

Intervals. An interval of a word is a set of consecutive positions in it.
Recall that an interval [i, j] denotes the set {i, i+ 1, . . . , j}, where i ≤ j (see
page 2). We write I = [i, i′) to denote the interval [i, i′ + 1]. Given two
intervals I = [i, i′] and J = [j, j′], we write I < J if i′ < j, and we say that
I, J are adjacent if i′ = j− 1. The union of two adjacent intervals I = [i, i′],
J = [j, j′], denoted I ∪ J , is the interval [i, j′] (if I, J are not adjacent, then
I ∪ J is undefined).

Sub-runs. Given a run ρ of a 2NFT, a sub-run is a factor of ρ. Note that
a sub-run of a 2NFT may visit a position of the input several times. For
an input interval I = [i, j] and a run ρ, we say that a sub-run ρ′ of ρ spans
over I if i (resp. j) is the smallest (resp. greatest) input position visited in
the sub-run ρ′.

A subrun spanning over an interval I is said to be maximal if it cannot
be extended within the interval. In other words, the transitions before and
after the sub-run are not on a position of I. Such maximal sub-runs can be
left-to-right, left-to-left, right-to-left, or right-to-right depending on where
the starting and ending positions are w.r.t. the endpoints of the interval. For
example, in the run shown on the left-hand side of Figure 5.1, the sub-run
(q0, 1) → (q1, 2) → (q2, 2) → (q3, 1) is a maximal left-to-left sub-run on the
interval [2, 3].

Flows. Flows are used to summarize maximal sub-runs of a 2NFT that
span over a given interval. Given a 2NFT T , a flow of T is a graph with
vertices divided into L-vertices and R-vertices, labeled by states of T . The
directed edges of the flow are divided into two productive and non-productive
edges. We call a directed edge (v, v′) an LR edge if v is a L-vertex and v′ is
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Figure 5.1 – A run ρ and the flow of interval [2, 3]

a R-vertex. LL, RL and RR edges are defined similarly. Moreover, an edge
(v, v′) must satisfy the following conditions:

— The edge source v is either an L-vertex labeled by a right-reading
state, or an R-vertex labeled by a left-reading state.

— The edge destination v′ is either an L-vertex labeled by a left-reading
state, or an R-vertex labeled by a right-reading state.

— Each vertex is in exactly one edge, either as a source or destination.
— The set of L-vertices (R-vertices, resp.) is totally ordered, in such a

way that for every LL (RR, resp.) edge (v, v′), we have v < v′.

Flows of a run. When considering flows of a K-visit 2NFT, we assume
there are at most K L-vertices and K R-vertices. Given a run ρ of T and
an interval I = [i, i′] on the input, the flow of ρ on I, denoted flowρ(I),
is obtained by identifying every configuration at cut i − 1 (resp. i′) with
a left (resp. right) vertex, labeled by the state of the configuration, and
every maximal sub-run of ρ spanning over I with an edge connecting the
appropriate vertices (this sub-run is called the witnessing sub-run of the
edge of the flow). An edge is said to be productive if its witnessing sub-run
produces non-empty output.

Figure 5.1 shows a run ρ of a 2NFT, where the red edges indicate produc-
tive transitions. The flowρ(i) at any position i can be seen as the subgraph
restricted to vertices at the cuts surrounding position i (shown by dotted
lines). For example, the flowρ(4) only has one edge q6 → q7, which is pro-
ductive. The right-hand side of the figure shows flowρ([2, 3]).

Juxtaposition of flows. We now define the juxtaposition of flows. Intu-
itively, the juxtaposition of flows is obtained by glueing together two flows
F and G such that the set of R-vertices of F and L-vertices of G induce the
same sequence of states. These vertices are merged to obtain a graph with
three groups of vertices.

Formally, we define the juxtaposition FG as a graph with vertices divided
into three groups, L-vertices of F , R-vertices of F and R-vertices of G. The
edges consists the edges of F and G. Note that this is well-defined only
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if the L-vertices of G coincides with the R-vertices of F . The result of a
juxtaposition of two flows is not a flow, since it has three distinguished
groups of vertices.

Hereafter, we talk about juxtaposition assuming it is well-defined. It is
easy to extend juxtaposition to any number of flows, instead of just two
flows.

A run of a 2NFT be seen as the juxtaposition of the flows at each input
position. For example, in Figure 5.1, the flows at position i can always be
juxtaposed with the flow at position i+ 1.

Composition and flow monoid. The composition of two flows F and G
is defined when they can be juxtaposed. Given such F and G, the composi-
tion results in the flow F ·G obtained by keeping the L-vertices of F and the
R-vertices of G. The edges of the concatenated flow F · G are obtained by
shortcutting every path in the juxtaposition FG into an edge. An edge in
F ·G is productive if the corresponding path in FG had at least one produc-
tive edge (recall that a productive edge represents a sub-run that produces
non-empty output). We call this operation of obtaining the concatenation
from juxtaposition flattening. When the composition is undefined, we sim-
ply write F · G = ⊥. The above definitions naturally give rise to a flow
monoid associated with the 2NFT T , where elements are the flows of T ,
extended with a dummy element ⊥, and the product operation is given by
the composition of flows, with the convention that ⊥ is absorbing.

We can define the flow of a run on an interval I by flattening the jux-
taposition of the flows at positions from that interval. For example, the
flowρ([2, 3]) in Figure 5.1, is obtained by flattening the juxtaposition of
flows at position 2 and 3. It is easy to verify that for any two adjacent
intervals I < J and a run ρ, flowρ(I) · flowρ(J) = flowρ(I ∪ J).

Size of the flow monoid. We denote by MT the flow monoid of a K-visit
2NFT T . We now give a bound on the size of MT . If Q is the set of states of
T , there are at most |Q|2K possible sequences of L and R-vertices; and the
number of edges (marked as productive or not) is bounded by

(
2K
K

)
· (2K)K ·

2K ≤ (2K + 1)2K . Including the dummy element ⊥ in the flow monoid, we
get |MT | ≤ (|Q| · (2K + 1))2K + 1 =: M.

Accessibility order. Let F,G be two flows with edges f and g respec-
tively. We say f � g in FG if there is a directed path from f to g in
FG.

This order is well defined for flows corresponding to a run since they can
always be juxtaposed. Given a run ρ on input u, a partition of the input
into intervals I1 . . . Ik, and an edge ei of flowρ(Ii) and ej of flowρ(Ij), we
say ei � ej if there is a directed path from ei to ej in flowρ(I1) . . .flowρ(Ik).
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Note that this depends on both the run ρ and the partition I1 . . . Ik.
In general, given two disjoint intervals I = [i, i′] and J = [j, j′], we can
define the accessibility order between the edges of flowρ(I) and flowρ(J),
by choosing the partition of the input into intervals defined by the positions
i, i′, j, j′.

An important remark is that the accessibility order defined by runs is a
total order. Note that an edge in flowρ(I) corresponds to a sub-run of ρ in
the interval I. The accessibility relation with respect to a run is essentially
the order of occurrence of these sub-runs.

Idempotent flows and loops. An idempotent flow is a flow F such that
F · F = F . This is an important notion that is used to identify intervals
of the input on which the run can be pumped. For an idempotent flow,
we denote by F . . . F the n-fold juxtaposition and by F · · · · · F , the n-fold
concatenation of the flow F with itself.

A loop of a run ρ over input w is an interval I = [i, j] that induces an
idempotent flow F = flow(ρ, I), i.e, F · F = F . In the presence of a loop
I = [i, j], the run ρ can be pumped. Given n > 0, we denote by pumpnI (ρ)
the run obtained from ρ by glueing together the sub-runs that span over
the intervals [1, i) and (j, |w|] with n copies of the sub-runs spanning over I.
The run pumpnI (ρ) can be represented by flowρ([1, i))F . . . Fflowρ((j, |w|]),
where F . . . F represents the n-fold juxtaposition of F with itself. Note that
any edge f of the flow F occurs n times in the new run pumpnI (ρ).

For an example, consider the run shown in Figure 5.2. The flow F =
flowρ(I), is an idempotent. The other edges of the runs are shown with
dotted edges. On the right-hand side, we have the run pump2

I(ρ), obtained
by pumping F twice.

We call a LR or a RL edge of a flow a straight edge. A straight edge of
a loop is a straight edge of the idempotent flow corresponding to the loop.
For example, in Figure 5.2, the edges α2, β and γ are straight edges. The
Lemma below shows that such an edge acts as an invariant with respect
to the accessibility order in the pumped run, i.e, an edge, that is not part
of a loop, that occurs before (resp. after) a straight edge of a loop in the
original run occurs before (resp. after) all copies of the straight edge in the
pumped run as well. As an example, consider the edge ρ3 in Figure 5.2. In
the accessibility order, α � ρ3. In the pumped run as well, both copies of
the edge α precede the edge ρ4.

Lemma 5.2.1. Let ρ be a run of T on u, and J < I < K be a partition of
the domain of u into intervals, with I being a loop of ρ. Let F = flowρ(J),
E = flowρ(I), and G = flowρ(K) be the corresponding flows. Consider an
arbitrary edge f of either F or G, and a straight edge e of the idempotent
flow E such that f � e (resp. e � f) in FEG. Let e1, e2, . . . en be the
n copies of the edge e in pumpnI (ρ). Then, for all i ∈ {1, . . . , n}, f � ei
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Figure 5.2 – A loop and a pumped run

(resp. ei � f) in FE . . . EG.

Proof. Consider the maximal path π inside E . . . E that contains the edge
ei. Note that this path starts and ends at some extremal vertices of E . . . E
(otherwise the path could be extended while remaining inside E . . . E). Also
recall that concatenation can be defined from juxtaposition by flattening.
In particular, since E is idempotent, we have that E = E · . . . · E can be
obtained from the flattening of E . . . E, and this operation transforms the
path π into an edge e′. By construction, we have that f � ei in FE . . . EG
if and only if f � e′ in FEG. So it remains to prove that

f � e in FEG iff f � e′ in FEG.

Clearly, this latter claim holds if the edges e and e′ coincide. This is indeed
the case when e is a straight edge and E is idempotent. The formal proof
that this holds is rather tedious, but follows quite easily from a series of
results already proven in [BGMP18]. Here, we only present a sketch with
the key arguments used in the proof:

— the edges of an idempotent flow E can be grouped into components
(cf. Definition 6.4 from [BGMP18]), so that each component contains
exactly one straight edge,

— every path inside the juxtaposition EE, with E idempotent, consists
of edges from the same component, say C; moreover, after the flat-
tening from EE to E, this path becomes an edge of E that belongs
again to the component C (cf. Claims 7.3 and 7.4 in the proof of
Theorem 7.2 from [BGMP18]);
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— every maximal path in E . . . E that contains a straight edge starts
and end at opposite sides of E . . . E (simple observation based on the
definition of concatenation and Lemma 6.6 from [BGMP18]).

In our example in Figure 5.2, the edges α1, α2, α3 are in a single com-
ponent, and β and γ are two components with a single edge.

To conclude, recall that π is a path inside E . . . E that contains a copy ei
of the straight edge e, and that becomes the edge e′ after the flattening into
E. The previous properties immediately imply that e′ = e. In our example,
the path α2α1α3α2 is flattened to form the edge α2.

Inversions. An inversion of a run ρ is a tuple (I, e, I ′, e′) such that
— I, I ′ are loops of ρ and I < I ′,
— e, e′ are productive straight edges in flow(ρ, I) and flow(ρ, I ′) respec-

tively,
— e′ � e in the accessibility relation defined by ρ and the intervals I

and I ′.
Intuitively, the run ρ on intervals I and I ′ are loops which have pro-

ductive straight edges e and e′ which are produced in the reverse order, i.e,
I < I ′ and e′ � e in the run order. For example, in Figure 5.3, the intervals
I < I ′ are loops with productive straight edges e′ � e. Therefore, (I, e, I ′, e′)
is an inversion. A 2NFT T is said to have inversion if there is a successful
run ρ of T has an inversion.

The run obtained by pumping these loops yield a run with multiple
occurrences of the edges e and e′, which, by Lemma 5.2.1, are such that all
occurrences of e′ precede all occurrences of e. The key argument is to show
that these pumped runs create a cross of unbounded width.

Factorization Tree. Given a finite monoid and a sequence α of monoid
elements, a factorization tree for α is an ordered, unranked tree where the
nodes are labeled by monoid elements in such a way that

— the yield of the tree is the sequence α;
— all internal nodes have at least two children and are labeled by the

product of the monoid elements at the child nodes;
— if a node p has more than two children, then all its children must

have the same label as p, which must be an idempotent.
By Simon’s factorization theorem [Sim90], every sequence of monoid

elements has some factorization tree of height at most linear in the size of
the monoid (more precisely, at most 3|M | for a monoid M , see e.g. [Col07]).

In our case, we will use the flow monoid MT and look for some factoriza-
tion tree of a run ρ of the 2NFT T . Specifically, we are interested in some
factorization tree for the sequence of flows flowρ(1), . . .flowρ(n) represent-
ing the run ρ. Therefore, the idempotent nodes of the factorization tree will
correspond to loops of the run ρ.
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Consider the run to the left of Figure 5.2. Suppose that the input is of the
form ` aa, with I = {1}, and the sub-runs ρ1, ρ2, ρ5 being transitions on `
and ρ2, ρ3, ρ6 being sub-runs on a. Consider the pumped run ρ′ = pump3

I(ρ)
on the input ` aaaa. The factorization tree corresponding to ρ′ is depicted
in Figure 5.4, where F1 is the flow on `, F2 is the flow on a and F is the
idempotent flow on interval I. Note that the red colored node, which has 3
children, is labeled by an idempotent F .

The height of the factorization tree is 3. It is easy to see that on any
word ` an a, we have a factorization tree of height 3 simply by having the
idempotent node labeled by F have n children labeled by F .

Given a node p of the factorization tree of a sequence α, the yield of the
subtree at the node p gives a factor α([i, j]) of α. We denote by I(p) the
interval [i, j]. For the factorization tree of a run, I(p) also gives an interval
of the input. For example, the red node in Figure 5.4 gives the interval [2, 4]
of the input.

Output blocks. Given an input interval I, we denote by out(I) the set
of output positions whose origins belong to I (note that this might not be
an output interval). An output block of I is a maximal interval contained in
out(I). In Figure 5.5, the output blocks of interval [2, 3] are marked as red.

For a node p of a factorization tree of a run ρ, the set of output positions
with origins in I(p) is denoted by out(p) instead of out(I(p)). We now
introduce the notion of dominant output blocks of a node p of a factorization
tree, denoted by bigoutp(I), and prove some of its properties.
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Figure 5.5 – Output blocks of interval [2, 3]

Dominant output blocks. For the rest of this section, we fix a synchro-
nized pair (u, v) generated by a run ρ of a K-visit 2NFT T .

Given n ∈ N, we say that a set B of output positions is n-large if
|orig(B)| > n; otherwise, we say that B is n-small. For example, in Figure
5.5, the input interval [2, 3] has three output blocks, of which the first one
is 1-small and the other two are 1-large.

The constant M = (|Q| · (2K+1))2K +1 is an upper bound to the size of
the flow monoid MT . We use the derived constant C = M2K to distinguish
between large and small sets of output positions.

The intuition behind this constant is that for any run ρ, a set of output
positions that is C-large must traverse a loop of ρ. This is formalized in the
lemma below.

Lemma 5.2.2. Let I be an input interval and B a set of output positions
with origins inside I. If B is C-large, then there is a loop J ⊆ I of ρ such
that flowρ(J) contains a productive straight edge witnessed by a sub-run that
intersects B (in particular, out(J) ∩B 6= ∅).

Proof. The proof uses algebraic properties of the flow monoid MT [Jec21]
(see also Theorem 7.2 in [BGMP18], which proves a similar result, but with
a larger constant derived from Simon’s factorization theorem). In particular,
[Jec21] shows that in any sequence α of monoid elements such that |α| ≥ C
there is some interval with idempotent product.

Since, B is C-large, the interval I can be partitioned into intervals
I1, . . . , IC, where Ij is the interval between the (j − 1)-th and j-th dis-
tinct position in orig(B). The intervals I1 and IC start and end with the
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beginning and end of I respectively. Therefore, by considering the flows of
these intervals, we obtain a sub-interval J which is a loop. Since we have
J = Ij . . . Ik, for some i ≤ k, clearly out(J) ∩B is non-empty.

The dominant output interval of I, denoted bigoutρ(I), is the smallest
output interval that contains all C-large output blocks of I. For example, if
C = 1, then in Figure 5.5, bigoutρ([2, 3]) will be (d, 3)(c, 2)(c, 4)(d, 2)(d, 3).
We sometimes write bigout (I), when the run ρ is clear from the context.
Note that bigout (I) either is empty or begins with the first C-large output
block of I and ends with the last C-large output block of I.

Properties of dominant output blocks. We present some technical
lemmas that will be used in the the proof of Theorem 5.3.1. In all lemmas till
the end of this section, we assume that all successful runs of T (in particular,
ρ) avoid inversions.

The following lemma intuitively shows that the dominant output blocks
respect the input order of the intervals.

Lemma 5.2.3. Let I1 < I2 be two input intervals and B1, B2 output blocks
of I1, I2, respectively. If both B1, B2 are C-large, then B1 < B2.

Proof. B1 and B2 are clearly disjoint. Assume that B1 and B2 are C-
large, but B1 > B2. By Lemma 5.2.2, we can find for both i = 1 and
i = 2 a loop Ji ⊆ Ii and a productive straight edge ei ∈ flowρ(Ji) that is
witnessed by a sub-run intersecting Bi. Clearly, we have J1 < J2, and since
B1 > B2, the sub-run witnessing e1 follows the sub-run witnessing e2. Thus,
(J1, e1, J2, e2) is an inversion of ρ, which contradicts the assumption that T
avoids inversions. Therefore, the lemma holds.

The next lemma says that the number of output positions between two
C-large output blocks of an interval, with origins outside the interval, is
small.

Lemma 5.2.4. Let I be an input interval, B1 < B2 two output blocks of
I, and S the set of output positions strictly between B1 and B2 and with
origins outside I. If B1, B2 are C-large, then S is 2C-small.

Proof. By way of contradiction, suppose that S is 2C-large. This means
that |orig(S) ∩ I ′| > C for some interval I ′ disjoint from I, say I ′ < I
(the case of I ′ > I is treated similarly). By Lemma 5.2.2, we can find two
loops J ⊆ I and J ′ ⊆ I ′ and some productive straight edges e ∈ flowρ(J)
and e′ ∈ flowρ(J

′) that are witnessed by sub-runs intersecting B1 and S,
respectively. Since S > B1, we know that the sub-run witnessing e follows
the sub-run witnessing e′. As in the previous proof, this shows the inversion
(J, e, J ′, e′), which contradicts the assumption that T avoids inversions.
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Another lemma below shows that the number of positions added to dom-
inant blocks by merging the dominant blocks of two consecutive intervals is
small.

Lemma 5.2.5. Let I = I1 · I2, B = bigout (I), and Bi = bigout (Ii) for
i = 1, 2. Then B \ (B1 ∪B2) is 4KC-small.

Proof. By Lemma 5.2.3, we have B1 < B2. Moreover, all C-large output
blocks of I1 or I2 are also C-large output blocks of I, so B contains both B1

and B2. Let I0 be the maximal interval to the left of I1, and thus adjacent
to it, and, similarly, let I3 be the maximal interval to the right of I2, and
thus adjacent to it.

Suppose, by way of contradiction, that B \ (B1∪B2) is 4KC-large. This
means that there is a 2KC-large set S ⊆ B \ (B1 ∪B2) with origins entirely
inside I0 · I1 or entirely inside I2 · I3. Suppose, w.l.o.g., that the former case
holds, and decompose S as a union of maximal output blocks B′1, B

′
2, . . . , B

′
n

of either I0 or I1. Since S∩B1 = ∅, we have that every block B′i with origins
inside I1 is C-small. Similarly, by Lemma 5.2.4, every block B′i with origins
inside I0 is C-small too. Moreover, since T is K-visit, we have that the
number n of maximal output blocks of either I0 or I1 that are contained in
S is at most 2K. All together, this contradicts the assumption that S is
2KC-large.

Lemma 5.2.6. Let I be a loop of ρ. Then flowρ(I) has at most one pro-
ductive straight edge, and this edge must be LR.

Proof. Suppose, by way of contradiction, that there are two productive
straight edges in flowρ(I), say e and f , with e before f in ρ. Suppose
that we pump I twice, and let I1 < I2 be the copies of I in the pumped run
ρ′. Let also e1, e2 (resp. f1, f2) be the corresponding copies of e (resp. f),
so that ej , fj belong to the flowρ′(Ij). It is easy to check the following
properties:

— if e is an LR edge, then the sub-run witnessed by e1 occurs in ρ′ before
the sub-run witnessed by e2 (and the other way around if e is RL);

— the sub-runs witnessed by e1 and e2 occur in ρ′ before the sub-runs
witnessed by f1, f2.

Let us assume first that e is an RL edge. Then observe that (I1, e1, I2, e2)
is an inversion in ρ′. But this contradicts T being inversion-free. Therefore,
both e, f are LR edges. But then, (I1, f1, I2, e2) is an inversion in ρ′, and we
have again a contradiction.

Using the above lemma, we prove our last technical lemma:

Lemma 5.2.7. Let I = I1 · I2 · · · In, such that I is a loop and flowρ(I) =
flowρ(Ik) for all k. Then bigout (I) can be decomposed as B1 · J1 · B2 · J2 ·
· · · · Jn−1 ·Bn, where
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1. Bk = bigout (Ik) for all k (with Bk possibly empty);

2. for 1 ≤ k < n, the positions in Jk have origins inside Ik ∪ Ik+1 and
Jk is 2KC-small.

Proof. By Lemma 5.2.6, we can assume that flowρ(I) = flowρ(Ik) has a
unique productive straight edge e, which is an LR edge. Let B′k be the
output block corresponding to e in flowρ(Ik). Since flowρ(I) is idempotent,
any output block of I has one of the following shapes:

(a) A block B = B′1 · J ′1 · . . . J ′n−1 · B′n, for some intervals J ′1, . . . , J
′
n−1

such that out(Ik) is included in J ′k−1 ·B′k · J ′k for all 1 < k < n,
(b) At most 2K output blocks L1, . . . , Lp, R1, . . . , Rs, where each Li and

Rj corresponds to an edge of flowρ(I1) and flowρ(In), respectively:
the blocks Li, Rj appear before, respectively after the straight edge.

Moreover, the order of the output blocks of I is L1, . . . , Lp, B,R1, . . . , Rs.
Note that Bk = bigout (Ik) is contained in J ′k−1 · B′k · J ′k for all 1 <

k < n. Moreover, B1 = bigout (I1) is contained in L1 · · ·Lp · B′1 · J ′1, and
Bn = bigout (In) is contained in J ′n−1 ·B′n ·R1 · · ·Rs. Also by Lemma 5.2.3,
Bj precedes Bj+1 for all j.

If one of the Lk is C-large, then B1 is non-empty, hence bigout (I) is
non-empty and starts at the first position of B1. Similarly, if one of the
Rk is C-large then Bn is non-empty, hence bigout (I) is non-empty and
ends with the last position of Bn. Otherwise, if all Lj , Rj are C-small
then bigout (I) is either empty or equal to B. In all cases we can write
bigout (I) = B1 · J1 · B2 · J2 · · · · · Jn−1 · Bn, with each Jk consisting of at
most K C-small blocks of Ik and K C-small blocks of Ik+1, namely those
left over after gathering the C-large blocks into bigout (Ik) and bigout (Ik+1),
respectively. Therefore, each Jk is 2KC-small.

In the proof of Theorem 5.3.1, we will use the previous Lemmas and an
induction on the factorization tree of a run to build the desired resynchro-
nizer.

5.3 Bounded-visit case

We call a bounded, regular resynchronizer functional, if for every û ∈
ipar, for every position i, j, j′ ∈ dom(u), and for every output type τ , if
(û, i, j) � moveτ and (û, i, j′) � moveτ , then j = j′. In other words, for a
fixed annotated input, moveτ functionally determines the target origin based
on the source origin. Note that this is the dual of the 1-bounded restriction
(see page 73), where the target origin uniquely determines the source origin.
Note that functionality here is a restriction on moveτ . A synchronized pair
(u, v) can still be mapped to multiple synchronized pairs depending on the
input annotations defined by ipar.
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We now state and prove the characterization of one-way resynchroniz-
ability for bounded-visit 2NFTs.

Theorem 5.3.1. For every bounded-visit 2NFT T , the following are equiv-
alent:

(1) T is one-way resynchronizable, i.e, there exists a bounded, regular
resynchronizer R such that R(T ) is one-way definable in the origin
semantics,

(2) the cross-width of T is finite,
(3) no successful run of T has inversions,
(4) there is a functional, 1-bounded, regular resynchronizer R that is

T -preserving and such that R(T ) is order-preserving.
The complexity of one-way resynchronizability is PSpace-complete (assum-
ing that the bound for visits is given in unary).

Proof. First of all, observe that the implication 4. to 1. is straightforward.

Implication 1. to 2. Assume that there is a k-bounded, regular resyn-
chronizer R that is T -preserving and such that R(T ) is order-preserving.
Theorem 3.3.10 implies that R is bounded-traversal by t, for some constant
t. We prove that T has cross-width bounded by t+ k.

Consider two synchronized pairs (u, v) and (u, v′) such that (u, v) ∈ T
and ((u, v), (u, v′)) ∈ R, and consider a cross (X1, X2) of (u, v). We denote
by orig(X) the set of input positions i such that i = orig(v(x)) for some
position x ∈ X. These are the set of origins of positions in X in v. Similarly,
we denote by orig ′(X) the set of origins of positions in X in v′. We claim
that for the cross (X1, X2), either |orig(X1)| or |orig(X2)| is at most t+ k.

Let i1 = min(orig(X1)), i′1 = max(orig ′(X1)), and i2 = max(orig(X2)),
and i′2 = min(orig ′(X2)), where min and max is based on the input or-
der. Since (X1, X2) is a cross, we have i1 > i2, and since (u, v′) is order-
preserving, we have i′1 ≤ i′2.

Now, suppose i′1 < i1. This corresponds to the case that, for all positions
of x ∈ X1, orig(v′(x)) < orig(v(x)), i.e, the origins of all positions in X1

are moved to the left of i1. Therefore, then at least |orig(X1)| − k input
positions from orig(X1) traverse i′1 from the right. The −k term is due to
the fact that at most k input positions can be resynchronized to i′1.

Symmetrically, if i′2 > i2, then at least |orig(X2)| − k input positions
from orig(X2) traverse i2 from the left. Note that this corresponds to the
case when the origins of all positions of X2 are moved to the right of i2. In
both these cases, we have |orig(X1)| (resp. |orig(X2)|) to be less than k+ t.
Otherwise, (u, v) is not traversal bounded by t.

If i′1 ≥ i1, and i′2 ≤ i2, then we have i′1 ≥ i1 > i2 ≥ i′2, which contradicts
that (u, v′) is order-preserving. Therefore, min(|orig(X1)|, |orig(X2)|) ≤
t+ k, as claimed.
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Note that this part of the proof does not use the bounded-visit restriction
in any way. The remaining implications however, rely on the assumption
that T is bounded-visit.

Implication 2. to 3. We prove this implication by contradiction. Con-
sider a successful run ρ of T on some input u and suppose there is an in-
version: ρ has disjoint loops I < I ′, whose flows contain productive straight
edges, say e in flowρ(I) and e′ in flowρ(I

′), such that e′ precedes e in the
run order. Let u = u1w u2w

′ u3 so that w and w′ are the factors of the
input delimited by the loops I and I ′, respectively. Further let v and v′ be
the outputs produced along the edges e and e′, respectively. Consider now
the run ρk obtained from ρ by pumping the input an arbitrary number k of
times on the loops I and I ′. This run is over the input u1 (w)k u2 (w′)k u3,
and in the output produced by ρk there are k (possibly non-consecutive)
occurrences of v and v′. By Lemma 5.2.1 all occurrences of v′ precede all
occurrences of v. In particular, if X1 (resp. X2) is the set of positions cor-
responding to all the occurrences of v (resp. v′) in the output produced by
ρk, then (X1, X2) is a cross of width at least k.

Implication 3. to 4. This is the most interesting direction of the proof.
In the absence of inversions, we construct a functional resynchronizer. The
resynchronizer R will use input and output parameters to guess a success-
ful run ρ of T on the input u and a corresponding factorization tree for ρ
of height at most H = 3|MT |. The existence of such a factorization tree
linear in the size of the monoid is guaranteed by Simon’s factorization the-
orem [Sim90]. The bound can be in fact be made 3|MT | (see [Col07]). We
build the resynchronizer inductively using the properties of the dominant
output blocks proved earlier (see page 128).

Let (u, v) be a synchronized pair produced by a run ρ of T . Fix a
factorization tree of the run ρ. For an output position x ∈ dom(v), and a
level ` of the factorization tree of ρ, we denote by px,` the unique node at
level ` such that I(px,`) contains the source origin of x.

Input parameters. The successful run ρ together with its factorization
tree of height at most H = 3|MT | can be encoded over the input using input
parameters and the formula ipar using classical techniques. The parameters
describe each input interval I(p) and the label flow(I(p)) of each node p
in the factorization tree. Formally, an input interval I(p) is described by
marking the begin and end with two distinguished parameters for the spe-
cific level. The label flow(I(p)) annotates every position inside I(p). This
accounts for H(2 + |MT |) input parameters. Correctness of the annotations
with the above input parameters can be expressed by a formula ipar. In
particular, on the leaves, ipar checks that every interval is a singleton of the
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form {i} and its flow is the one induced by the letter u(i). On the internal
nodes, ipar checks that the label of a node coincides with the monoid product
of the labels of its children, which is a composition of flows. It also checks
that for every node with more than two children, the node and the children
are labeled by the same idempotent flow.

Output parameters. We also need to encode the run ρ on the output,
because the resynchronizer will determine the target origin of an output
position, not only on the basis of the flow at the source origin, but also on
the basis of the productive transition that generated that particular position.
The annotation that encodes the run ρ on the output is done using output
parameters (one for each transition in ∆), and its correctness will be enforced
by a suitable combination of the formulas opar, moveτ , and nextτ,τ ′ .

Below, we explain how the resynchronizer works assuming the output
is correctly annotated with the flow and the marked productive transition.
We will explain how to check the correctness of the annotations later.

In a nutshell, origins are transformed below by a series of partial resyn-
chronizers R` that “converge” in finitely many steps to a desired resynchro-
nization, under the assumption that the output annotation correctly encodes
the same run ρ that is represented in the input annotation.

Moving origins. Here we will work with a fixed successful run ρ and a
factorization tree for it, that we assume are correctly encoded by the in-
put and output annotations. For every level ` of the factorization tree, we
will define a functional, bounded, regular resynchronizer R`. Each resyn-
chronizer R` will be partial, in the sense that for some output positions it
will not define source-target origin pairs. However, the set of output po-
sitions with associated source-target origin pairs increases with the level `,
and the top level resynchronizer R∗ will specify source-target origin pairs
for all output positions. The latter resynchronizer will almost define the
resynchronization that is needed to prove item (4) of the theorem; we will
only need to modify it slightly in order to make it 1-bounded and to check
that the output annotation is correct.

To enable the inductive construction, we need the resynchronizer R` to
satisfy the following properties, for every level ` of the factorization tree:

— the set of output positions for which R` defines target origins is the
union of the dominant output intervals bigout (p) of all nodes p at
level `;

— R` only moves origins within the same interval at level `, that is, R`
defines only pairs (y, z) of source-target origins such that y, z ∈ I(p)
for some node p at level `;

— the target origins defined by R` are order-preserving within the same
interval at level `, that is, for all output positions x < x′, if R` defines
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the target origins of x, x′ to be z, z′, respectively, and if z, z′ ∈ I(p)
for some node p at level `, then z ≤ z′.

— R` is ` · 4KC-bounded, namely, there are at most ` · 4KC distinct
source origins that are moved by R` to the same target origin.

The inductive construction of R` will basically amount to defining ap-
propriate formulas moveτ (y, z).
Base case. The base case is ` = 0, namely, when the resynchronization
is acting at the leaves of the factorization tree. In this case, the regular
resynchronizer R` is vacuous, as the input intervals I(p) associated with the
leaves p are singletons, and hence all dominant output intervals bigout (p)
are empty. Formally, for this resynchronizer R`, we simply let moveτ (y, z)
be false, independently of the underlying output type τ and of the source
and target origins. This resynchronization is clearly functional, 0-bounded,
and order-preserving.
Inductive step. For the inductive step, we explain how the origins of an
output position x ∈ bigout (p) are moved within the interval I(p), where
p = px,` is the node at level ` that “generates” x. Even though we explain
this by mentioning the node px,`, the definition of the resynchronization will
not depend on it, but only on the level ` and the underlying input and
output parameters. In particular, to describe how the origin of a τ -labeled
output position x is moved, the formula moveτ (y, z) has to determine the
productive edge that generated x in the flow that labels the node px,`. This
can be done by first determining from the output type τ the productive
transition tx that generated x, and then inspecting the annotation at the
source origin y to “track” tx inside the productive edges of the flow flow(Ip′),
for each node p′ along the unique path from the leaf px,0 to node px,`. In
the case distinction below, we implicitly rely on this type of computation,
which can be easily implemented in MSO using the output parameters.

1. px,`px,`px,` is a binary node. We first consider the case where p = px,` is a
binary node (the annotation on the source origin y will tell us whether
this is the case). Let p1, p2 be the left and right children of p. If x be-
longs to one of the dominant output blocks bigout (p1) and bigout (p2)
(again, this information is available at the input annotation), then
the resynchronizer R` will inherit the source-target origin pairs asso-
ciated with x from the lower level resynchronization R`−1. Note that
bigout (p1) < bigout (p2) by Lemma 5.2.3, so R` is order-preserving at
least for the output positions inside bigoutp1(∪)bigoutp2().

We now describe the source-target origin pairs when x ∈ bigout (p) \
(bigout (p1) ∪ bigout (p2)). The idea is to move the origin of x to one
of the following three input positions, depending on the relative order
between x and the positions in bigout (p1) and in bigout (p2):
— the first position of I(p1), if x < bigout (p1);
— the last position of I(p1), if bigout (p1) < x < bigout (p2);
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— the last position of I(p2), if x > bigout (p2).
Which of the above cases holds can be determined, again, by inspect-
ing the output type τ and the annotation of the source origin y, in a
way similar to the computation of the productive edge that generated
x at level `. So the described resynchronization can be implemented
by an MSO formula moveτ (y, z).

The resulting resynchronization R` is functional and order-preserving
inside every interval at level `. It remains to argue that R` is ` ·4KC-
bounded. To see why this holds, assume, by the inductive hypothesis,
that R`−1 is (`−1)·4KC-bounded. Recall that the new source-target
origin pairs that are added to R` are those associated with output
positions in bigout (p)\(bigout (p1)∪bigout (p2)). Lemma 5.2.5 tells us
that there are at most 4KC distinct positions that are source origins
of such positions. So, in the worst case, at most (`− 1) · 4KC source
origins from R`−1 and at most 4KC new source origins from R` are
moved to the same target origin. This shows that R` is ` · 4KC-
bounded.

2. px,`px,`px,` is an idempotent node. The case where p = px,` is an idempo-
tent node with children p1, p2, . . . , pn follows a similar approach. For
brevity, let Ii = I(pi) and Bi = bigout (pi). By Lemma 5.2.3, we have
B1 < B2 < · · · < Bn. Lemma 5.2.7 then provides a decomposition of
bigout (p) as B1 ·J1 ·B2 ·J2 · · · · ·Jn−1 ·Bn, for some 2KC-small output
intervals Jk, for k = 1, . . . , n− 1, that have origins inside Ik ∪ Ik+1.

As before, the resynchronizer R` behaves exactly as R`−1 for the
output positions inside the Bk’s. For any other output position, say
x ∈ Jk for some k = 1, 2, . . . , n − 1, we first recall that the source
origin y of x is either inside Ik or inside Ik+1. Depending on which
of the two intervals contains y, the resynchronizer R` will define the
target origin z to be either the last position of Ik or the first position
of Ik+1. However, since we cannot determine using MSO the index k
of the interval Jk that contains x, we proceed as follows.

First observe that any block Bi can be identified by some flow edge
at level `−1, and the latter edge can represented in MSO by suitable
monadic predicates over the input. Let B,B′ be the two consecu-
tive blocks among B1, . . . , Bn such that B < x < B′. Note that
these blocks can be determined in MSO once the productive edge
that generated x is identified. Further let I be the interval among
I1, . . . , In that contains the origin y of x. By the previous arguments,
we have that the interval I contains either all the origins of B or all
the origins B′. Moreover, which of the two sub-cases holds can again
be determined in MSO by inspecting the annotations. The formula
moveτ (y, z) can thus define the target origin z to be
— the last position of I, if I contains the origins of B;
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— the first position of I, if I contains the origins of B′.
The above construction results in a functional regular resynchroniza-
tion R` that associates with any two output positions x < x′ with
source origins in the same interval I(p), some target origins z ≤ z′.
In other words, the resynchronization R` is order-preserving in each
interval at level `.

It remains to show that R` is ` · 4KC-bounded, under the inductive
hypothesis that R`−1 is (` − 1) · 4KC-bounded. This is done using
a similar argument as before, that is, by observing that the output
positions in bigout (p) \

(⋃
1≤k≤n bigout (pi)

)
belong to some Jk, and

in the worst case all source origins y of positions from Jk are moved
to the last position of Ik. By Lemma 5.2.7, there are at most 2KC
such positions y.

Top level resynchronizer. Let R∗ be the resynchronizer R` obtained at
the top level ` of the factorization tree. Based on the above constructions,
R∗ defines target origins for all output positions, unless the dominant out-
put interval bigout (p) associated with the root p is empty (this can indeed
happen when the number of different origins in the output is at most C, so
not sufficient for having at least one C-large output factor). In particular,
if bigout (p) 6= ∅, then bigout (p) is the whole output, and R` is basically the
desired resynchronization, assuming that the output annotations are correct.

Let us now discuss briefly the degenerate case where bigout (p) = ∅, which
of course can be detected in MSO. In this case, the appropriate resynchro-
nizer R∗ should be redefined so that it moves all source origins to the same
target origin, say the first input position. Clearly, this gives a functional,
regular resynchronizer that is order-preserving and C-bounded.

Correctness of output annotation. Recall that the properties of the
resynchronizers R` crucially rely on the assumption that every output posi-
tion x is correctly annotated with the productive transition that generated
it. This assumption cannot be guaranteed by the MSO sentence opar alone
since the property intrinsically talks about a relation between input and out-
put annotations. Below, we explain how to check correctness of the output
annotation with the additional help of the formulas moveτ (y, z) (that will
be modified for this purpose) and nextτ,τ ′(z, z

′).
Let ρ be the successful run as encoded by the input annotation. The

idea is to check that the sequence of productive transitions tx, where tx is
the transition that annotates position x in the output, is the maximal sub-
sequence of ρ consisting only of productive transitions. Besides the straight-
forward conditions (concerning, for instance, the first and last productive
transitions of ρ, or the possible multiple symbols that could be produced
within a single transition), the important and difficult condition to be veri-
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fied is the following:

Let ρ be the run that is annotated on the input. For every pair
of consecutive output positions x, x + 1 with source origins y, y′,
respectively, one can move from transition tx at position y of ρ to
transition tx+1 at position y′ of ρ by using as intermediate steps
only non-productive transitions.

(†)

The above property is easily expressible by an MSO formula ϕ†τ,τ ′(y, y
′),

assuming that τ, τ ′ are the output types of x, x+ 1 and the free variables y
and y′ are interpreted as the source origins of x and x + 1, with x ranging
over all output positions. This is very close to the type of constraints that
can be enforced by the formula nextτ,τ ′ of a regular resynchronizer, with the
only difference that the latter formula can only access the target origins z, z′

of x, x+ 1.
We thus need a way to uniquely determine from the target origins z, z′

of x the source origins y, y′ of x. For this, we could rely on the formulas
moveτ (y, z), if only they were defining a partial bijection between y and z.
Those formulas are in fact close to define partial bijections, as they are func-
tional and k-bounded, for k = H · 4KC. The latter boundedness property,
however, depends again on the assumption that the output annotation is
correct. We overcome this problem by gradually modifying the resynchro-
nizer R∗ so as to make it functional and 1-bounded, independently of the
output annotations.

We start by modifying the formulas moveτ (y, z) to make them “syntac-
tically” k-bounded. Formally, we construct from moveτ (y, z) the formula

move′τ (y, z) = moveτ (y, z)

∧ ∀y1, . . . , yk, yk+1

(∧
i
moveτ (yi, z)

)
→
(∨

i 6=j
yi = yj

)
.

Intuitively, the above formula is semantically equivalent to moveτ (y, z) when
there are at most k input positions y′ that can be paired with z via the same
formula moveτ , and it is false otherwise.

Let R′∗ be the regular resynchronizer obtained from R∗ by re-
placing the formulas moveτ by move′τ , for every output type τ .
By construction, R′∗ is functional and k-bounded, independently of
any assumption on the output annotations. We can then apply
Lemma 3.3.4 and obtain from R′∗ an equivalent regular resynchronizer

R′′∗ = (I
′′
, O
′′
, ipar′′, opar′′, (move′′τ )τ , (next

′′
τ,τ ′)τ,τ ′) that is functional and 1-

bounded, and therefore, defines a partial bijection.
We are now ready to verify the correctness of the output annotation.

Recall that the idea is to enforce the property (†) by exploiting the pre-

viously defined formula ϕ†τ,τ ′(y, y
′) and the partial bijection between the

source origins y, y′ and the target origins z, z′, as defined by move′′τ (y, z) and
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move′′τ ′(y
′, z′). Formally, we define

next′′′τ,τ ′(z, z
′) = next′′τ,τ ′(z, z

′) ∧ ∃y, y′ move′′τ (y, z) ∧move′′τ ′(y
′, z′) ∧ ϕ†τ,τ ′(y, y

′).

To conclude, by replacing in R′′ the formulas next′′τ,τ ′ with next′′′τ,τ ′ , we ob-
tain a regular resynchronizer R that is functional, 1-bounded, T -preserving
and such that R(T ) is order-preserving. This completes the proof of the
implication 3. to 4. of our Theorem 5.3.1.

Complexity. The effectiveness of Theorem 5.3.1 comes from condition (3)
about inversions. The presence of inversions in a run can be guessed and
verified in space exponential in the size of T . Indeed, to guess an inversion,
the algorithm needs to guess the flows at loops I < I ′ and check that it
is indeed an inversion. To do this, it needs to be checked that there exist
flows F1, F2, F3 such that F1 · flowρ(I) · F2 · flowρ(I

′) · F3 corresponds to
a run, and there exist straight productive edges e and e′ in flowρ(I) and
flowρ(I

′) e′ < e in the juxtaposition. Note that even though the size of
the flow monoid is exponential in the constant K bounding the number of
visits, to detect inversions, one only needs to guess O(1) flows. Since, each
of them has size polynomial in the size of T and K, the algorithm only needs
polynomial space. Therefore, we have an upper bound of PSpace.

The lower bound of PSpace comes from the emptiness problem for
2DFA, similar to the lower bound for one-way definability in the origin
semantics (Proposition 5.1.4). Given a 2DFA accepting a regular language
L, we can construct another 2DFA accepting (L#)∗ which is the language
of words of the form w1# . . . wn#, where wi ∈ L. The reverse function on
(L#)∗ can be realized by a 2DFT, which will be one-way resynchronizable if
and only if (L#)∗ is empty. Note that here we require the reverse function
on (L#)∗ instead of L because the reverse function on L can be one-way
resynchronizable if L is a finite language.

5.4 General case

In this section, we prove Theorem 5.1.6, which says that one-way resyn-
chronizability is decidable for arbitrary 2NFTs. The idea is to use the de-
cidability result for the bounded-visit case, which was proved in Theorem
5.3.1.

The main obstacle towards dropping the bounded-visit restriction from
Theorem 5.3.1, while maintaining the effectiveness of the characterization,
is the lack of a bound on the number of flows. For a 2NFT T that is not
necessarily bounded-visit, there is no bound on the number of emerging flows
that encode successful runs of T . Note that the proofs of the implications
1. to 2. and 4. to 1. in Theorem 5.3.1 remain valid, even for a 2NFT T that
is not bounded-visit.
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Given a 2NFT T , we would like to construct:

1. a bounded-visit 2NFT low(T ) that is classically equivalent to T ,

2. a functional, 1-bounded, regular resynchronizer R that is T -
preserving and such that R(T ) =o low(T ).

Once we did so, we could apply our characterization of one-way resyn-
chronizability in the bounded-visit case to the 2NFT low(T ). If low(T ) is
one-way resynchronizable, then by Theorem 5.3.1 we obtain another func-
tional, 1-bounded, regular resynchronizer R′ that is low(T )-preserving and
such that R′(low(T ))) is order-preserving. Thanks to Lemma 3.3.5, the
resynchronizers R and R′ can be composed, so we conclude that the original
2NFT T is one-way resynchronizable. Otherwise, if low(T ) is not one-way
resynchronizable, we show that neither is T .

There are however some challenges in the approach described above.
First, as T may output arbitrarily many symbols with origin in the same
input position, and low(T ) is bounded-visit, we need low(T ) to be able to
produce arbitrarily long outputs within a single transition. For this reason,
we allow low(T ) to be a 2NFT with regular outputs (see page 9). The
transition relation of such a 2NFT consists of finitely many tuples of the
form (q, a, L, q′), with q, q′ ∈ Q, a ∈ Σ, and L ⊆ Γ∗ a regular language
over the output alphabet. Such a transition can output any word from L.
We also need to use 2NFTs with common guess (see page 12). It can be
checked that the proof of Theorem 5.3.1 in the bounded-visit case can be
rather easily adapted to these features.

There is still another problem: we cannot always expect that there ex-
ists a bounded-visit 2NFT low(T ) classically equivalent to T . Consider,
for instance, the 2NFT that performs an arbitrary number of passes on
the input, and on each left-to-right pass, it reads the input position and
copies the letter. Therefore, the output on an input u will be any word
in ((u(1), 1)(u(2), 2) . . . (u(n), n))∗. By standard pumping arguments, it is
possible to show that no bounded-visit 2NFT can realize such a relation.
Therefore, we first check a suitable condition on the 2NFT T under which
it becomes possible to construct an equivalent bounded-visit 2NFT low(T )
such that T is one-way resynchronizable if and only if low(T ) is one-way
resynchronizable. For this, we introduce the notion of vertical loop.

Vertical loop. Given a run ρ of a 2NFT T on an input u, a vertical loop
is a sub-run of ρ that begins and ends with the same state at the same cut.
For example, in Figure 5.6, the blue sub-run starts and ends in the same
configuration(q1, 2) (recall that cut i is between positions i and i+ 1). This
is an example of a vertical loop. We use this run from the figure as a running
example. The intuition for defining such a loop is that it can be pumped
without having to pump the input.
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Figure 5.6 – A vertical loop and the summarized run

Given a vertical loop ρ′, we say an input position i is an origin in ρ′

if there is a productive transition in ρ′ reading the i-th position. In our
example, both position 2 and 3 are origins in the vertical loop.

Reachability order on an input. Given an input u and a 2NFT T , a
tagged transition is any pair (t, i), where t ∈ ∆ is a transition of T and
i is a position of the input u, such that t occurs at position i in some
successful run on u. The reachability preorder on tagged transitions is such
that (t, i) �u (t′, i′) whenever T has a run on u starting with the transition
t reading the letter u(i) and ending with the transition t′ reading the letter
u(i′). We can use this preorder to define an equivalence relation ∼u such
that (t, i) ∼u (t′, i′) if and only if (t, i) �u (t′, i′) and (t′, i′) �u (t, i). Strictly
speaking, this is not an equivalence relation on all tagged transitions, since
it is possible to have (t, i) 6�u (t, i). However, for tagged transitions that are
part of a vertical loop, this is indeed a equivalence relation.

Intuitively, (t, i) ∼u (t′, i′) means that T can cycle an arbitrary number
of times between these two tagged transitions on the input u. In particular,
each equivalence class identifies a vertical loop in some run of T . In our
example, let t1 = (q1, b, c, q2) and t2 = (q2, a, d, q1) be the transition marked
in blue. Therefore, the tagged transitions (t1, 3) and (t2, 2) are in the same
equivalence class defined by the word u = ` aba.

A ∼u-equivalence class C is called realizable on u if there is a successful
run on u that uses at least once a tagged transition from the class C. If a
transition (t, i) from C is used in some run ρ, it can be easily extended to a
run ρ′ which uses all tagged transitions from C. For any (t′, i′) ∈ C, the run
ρ can be changed to move from (t, i) to (t′, i′) and back to (t, i) witnessing
realizability of (t′, i′).

Sparsity of vertical loops. We say that T is k-sparse if for every input
u and every realizable ∼u-equivalence class C, there are at most k tagged
transitions in C that are productive (recall that a productive transition is
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one that produces non-empty output). Intuitively, bounded sparsity means
that the number of origins of outputs produced by vertical loops in successful
runs of T is uniformly bounded.

When T is k-sparse, the productive tagged transitions from the same
realizable ∼u-equivalence class can be lexicographically ordered and distin-
guished by means of numbers from a fixed finite range, say {1, . . . , k}. An
important observation is that the equivalence ∼u is a regular property, in
the sense that one can construct, for instance, an MSO formula ϕ∼u

t,t′ (i, i
′)

that holds on input u if and only if (t, i) ∼u (t′, i′). In particular, this
implies that unbounded sparsity can be effectively tested. It suffices to
construct the regular language consisting of every possible input u with a
distinguished realizable ∼u-equivalence class marked on it. The problem
of checking unbounded sparsity therefore reduces to checking whether this
language contains words with arbitrarily many marked positions that cor-
respond to productive tagged transitions. If there are unboundedly many
marked positions, then by standard pumping arguments, there must be a
loop. Therefore, the problem reduces to checking loops with a marked po-
sition in the NFA for the language of inputs with marked equivalence class.

Lemma 5.4.1. If T has unbounded sparsity, then T is not one-way resyn-
chronizable.

Proof. The assumption that T has unbounded sparsity and the definition of
∼u imply that, for every n ∈ N, there exist an input u, a successful run ρ
on u, and 2n tagged transitions (t1, i1), . . . , (tn, in), (t′1, i

′
1), . . . , (t′n, i

′
n) such

that the tj ’s occur before the t′` in ρ and the ij are to the right of the i′`.
Since n can grow arbitrarily, this witnesses precisely the fact that T has
unbounded cross-width. Thus, by the implication 1 → 2 of Theorem 5.3.1,
which is independent of T being bounded-visit, we know that T is not one-
way resynchronizable.

We now construct from a given 2NFT with bounded-sparsity, a classically
equivalent bounded-visit 2NFT low(T ) such that T is one-way resynchro-
nizable if and only if low(T ) is one-way resynchronizable. We will use the
features of regular outputs and common guess in low(T ).

Equivalent bounded-visit 2NFT. Assume T is a k-sparse 2NFT. In-
tuitively, low(T ) simulates successful runs of T on input u by shortcutting
maximal vertical loops. The output of a vertical loop will be summarized
by a regular language.

For a run ρ on input u, let ρ′ be a vertical loop starting with the transition
(t, i). By definition, all tagged transitions of ρ′ (t′, i′) are ∼u-equivalent to
(t, i). Call this equivalence class C(t,i). Since T is k-sparse, there are at most
k productive tagged transitions in C(t,i).
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The productive transitions of Ct,i can be seen as the vertices of a strongly
connected graph, with edge from (t, i) to (t′, i′), if there is a non-productive
run on u starting with (t, i) and ending in (t′, i′). By replacing the vertex
(t, i) by Lt, where Lt is the language of output words in the transition t,
we can obtain a NFA. Note that this is not immediately an NFA, since the
words are at a state. However, by standard arguments, we can replace the
vertices by an edge to obtain an NFA. By fixing a tagged transition (t, i) as
the initial vertex, we obtain a regular language Lt,i. This language will be
used to summarize the output of a vertical loop. Note that for any choice
of (t, i), there are only finitely many languages Lt,i. This is because each
of the languages corresponds to choosing a subset of the transitions of T ,
which there are finitely many. In the equivalence class in our example, the
transitions (t1, 3) and (t2, 2) are in the same equivalence class. Therefore,
the language starting with transition (t1, 3) is (cd)∗.

Given a input u, a position i ∈ dom(u) can be annotated with two sets of
transitions as follows. The first set corresponds to transitions that are part
of some vertical loop at i, i.e, (t, i) ∼u (t, i) and the second set consists of
transitions t such that (t, i) 6∼u (t, i). Furthermore, for every transition t in
the first set, the annotation also includes an NFA representing the language
Lt,i. The correctness of the annotation of the sets can be easily checked.
The partition of transitions into sets can be checked by a 2NFA that checks
whether the transition is part of a vertical loop or not. The annotation of
the language Lt,i can in fact be built on-the-fly by checking the other (at
most k) productive transitions in the equivalence class of (t, i) and building
the NFA defined earlier. Therefore, using common guess in low(T ), we can
assume that every position i carries as annotation the language Lt,i for each
transition t such that (t, i) is part of some vertical loop.

Shortcutting runs. Consider an arbitrary successful run ρ of T on u. Let
low(ρ) be the run obtained by replacing, from left to right, every maximal
vertical loop at (t, i), where t starts from state q by the two transitions
t1 = (q, u(i), ε, p) and t2 = (p, u(i − 1), L, q′), where L = Lt,i and q′ is a
copy of the state q. Here, maximality refers to the sub-run relation, i.e, the
vertical loop cannot be extended to a bigger sub-run which is also a vertical
loop. We require two transitions t1 and t2 because it needs to start and end
in the same configuration which is not possible by a single transition. In
our example, we do this by having two transitions (q1, p1) and (p1, q

′
1). Note

that this introduces an intermediate state for every transition t, and a copy
of every state of T . We call low(ρ) the normalization of ρ and we observe
that this is a successful, 2|Q|+ |∆|-visit run. This means that

— low(ρ) can be finitely encoded on the input as a sequence of flows of
height at most 2|Q|+ |∆|,

— the language consisting of inputs annotated with such encodings is
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regular.
The 2NFT low(T ) guesses the encoding of a normalization low(ρ) and

uses it to simulate a possible run ρ of T . Recall that the annotations contain
the information about whether a transition is a part of a vertical loop or not.
For transitions that are not part of a vertical loop, low(T ) behaves exactly
as before. However, every time low(T ) traverses a transition t starting
from state q, that is part of a vertical loop, it outputs a word from the
language Lt,i, moves to an intermediate state and comes back to a copy of
q. Intuitively, the first copy of q allows to produce outputs that are part of
a vertical loop and the second copy is used to simulate the part of the run
without a vertical loop. However, in order to simplify later the construction
of a resynchronizer R such that R(T ) =o low(T ), it is convenient that low(T )
outputs the word from Lt,i in a origin possibly different from i. This new
origin is uniquely determined by the ∼u-equivalence class of (t, i).

Formally, we define the anchor of a ∼u-equivalence class C, denoted
an(C), to be the leftmost input position j such that (t′, j) ∈ C for some
transition t′. In our example (Figure 5.6), we have an(C) = 2 for the
equivalence class {(t1, 3), (t2, 2)}.

After traversing a transition t from the flow at position i, and be-
fore outputting a word from Lt,i, the 2NFT low(T ) moves to the anchor
an([(t, i)]∼u). Then it outputs the appropriate word and moves back to po-
sition i, where it can resume the simulation of the normalized run low(ρ).
Note that the position i can be recovered from the anchor an([(t, i)]∼u) since
the elements inside the equivalence class [(t, i)]∼u can be identified by num-
bers from {1, . . . , k} (recall that T is k-sparse), and since the relationship
between any two such elements is a regular property. Note that this will in-
troduce several new states to move to the anchor and return to the original
position. However, the 2NFT low(T ) still remains bounded-visit. It follows
from the definitions that low(T ) is classically equivalent to T .

Building a resynchronizer. We now explain how to construct a func-
tional, 1-bounded, regular resynchronizer R that is T -preserving and such
that R(T ) =o low(T ). We proceed as in the construction of low(T ) by anno-
tating the input word u with flows that encode the normalization low(ρ) of
a successful run ρ of T on u. Note that it is possible to define the flow of the
normalization low(ρ), since it is bounded-visit. As for the output word v, we
annotate every position x of v with the productive transition t = (q, a, v, q′)
of ρ that generated x. For short, we call t the transition of x. In addition,
we fix an MSO-definable total ordering on tagged transitions (e.g. the lex-
icographic ordering). Then, we determine from each output position x the
∼u-equivalence class C = [(t, i)]∼u , where u is the underlying input, t is the
productive transition that generated x, and i is its origin. We extend the
annotation of x with the index of the element (t, i) inside the equivalence
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class C, according to the fixed total ordering on tagged transitions. This
number i is called the index of x. This is possible because there are at most
k such transitions due to T being k-sparse.

The resynchronizer R needs to redirect the source origin i of any out-
put position generated by a transition t to a target origin j that is the
anchor of the ∼u-equivalence class of (t, i). To simplify the explanation,
we temporarily assume that the input and output are correctly annotated
as described above. By inspecting the type τ of an output position x, the
formula moveτ (y, z) of R can determine the transition t of x, and enforce
that (t, y) ∼u (t′, z), for some transition t′, and that (t, y) 6∼u (t′′, z′), for all
z′ < z and all transitions t′′.

Under the assumption that the input and output annotations are correct,
this would result in a bounded resynchronizer R. Indeed, for every position
z, there exist at most k · |∆| positions y that, paired with some productive
transition, turn out to be ∼u-equivalent to (t′, z) for some transition t′. In
fact, we need to further constrain the relation moveτ (y, z) so that it describes
a partial bijection between source and target origins (this will be used later,
similar to the bounded-visit case). For this, it suffices to additionally enforce
that (t, y) is the `-th element in its ∼u-equivalence class, accordingly to the
fixed total ordering on tagged transitions, where ` is the index specified in
the output type τ of x. As a matter of fact, this latter modification also
guarantees that ` is the correct index of x.

The above arguments crucially rely on the assumption that the input
and output annotations are correct. However, we can apply the same trick
that we used in the proof of Theorem 5.3.1, to make the resynchronizer
R “syntactically” 1-bounded, even in the presence of badly-formed annota-
tions. Formally, let moveτ (y, z) be the formula that transforms the origins
in the way described above, and define

move′τ (y, z) = moveτ (y, z) ∧ ∀y′
(
moveτ (y′, z)→ y′ = y

)
.

By construction, the above formula defines a partial bijection entailing the
old relation moveτ (in the worst case, when the annotations are not correct,
the above formula may not hold for some pairs of source and target origins).
In addition, if the annotations are correct, then move′τ (y, z) is semantically
equivalent to moveτ (y, z), as desired. In this way, we obtain a regular resyn-
chronizer R = (I,O, ipar, opar,move′τ , next) that is always 1-bounded, no
matter how we define ipar, opar, and next.

Checking annotations. We now explain how to check that the annota-
tions are correct. The input annotation does not pose any particular prob-
lem, since the language of inputs annotated with normalized runs is regular,
and can be checked using the first formula ipar of the resynchronizer. As for
the output annotation, correctness of the indices was already enforced by
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the move′τ relation. It remains to enforce correctness of the transitions. As
before, this boils down to verifying the following property (†):

Let ρ be the run encoded on the input. For every pair of consecutive
output positions x, x+1 with source origins y, y′, respectively, if t, t′

are the productive transitions specified in the output types of x, x+1,
one can move from transition t at position y of ρ to transition t′ at
position y′ of ρ by using as intermediate edges only non-productive
transitions.

(†)

From here we proceed exactly as in the proof of Theorem 5.3.1. Observe
that Property (†) is expressible by an MSO formula ϕ†τ,τ ′(y, y

′), assuming
that τ, τ ′ are the output types of x, x + 1, that y, y′ are interpreted by the
source origins of x, x+1, and that x ranges over all output positions. We then
recall that moveτ (y, z) and moveτ (y′, z′) describe partial bijections between
source and target origins, and exploit this enforce (†) by means of the last
formula of R:

nextτ,τ ′(z, z
′) = ∃y, y′ moveτ (y, z) ∧ moveτ ′(y

′, z′) ∧ ϕ†τ,τ ′(y, y
′).

This guarantees that all annotations are correct, and proves that R is a
functional, 1-bounded, regular resynchronizer satisfying R(T ) =o low(T ).
It is also immediate to see that R is T -preserving.

Checking one-way resynchronizability. We finally prove that one-way
resynchronizability of T reduces to one-way resynchronizability of low(T ),
which can be effectively tested using Theorem 5.3.1 since low(T ) is bounded-
visit.

Lemma 5.4.2. For all 2NFTs T, T ′, with T ′ bounded-visit, and for every
functional, 1-bounded, regular resynchronizer R that is T -preserving and
such that R(T ) =o T

′, T is one-way resynchronizable if and only if T ′ is
one-way resynchronizable.

Proof. For the right-to-left implication, suppose that T ′ =o R(T ) is
bounded-visit and one-way resynchronizable. Since T ′ is bounded-visit,
we can use the condition 4. in Theorem 5.3.1 to get the existence of a
functional, 1-bounded, T ′-preserving, regular resynchronizer R′ that is T ′-
preserving and such that R′(T ′) is order-preserving. By Lemma 3.3.5, there
is a bounded, regular resynchronizer R′′ that is equivalent to R′ ◦ R. In
particular, R′′(T ) is order-preserving. It remains to verify that R′′ is also
T -preserving. Consider any synchronized pair (u, v) ∈ [[T ]]o. Since R is T -
preserving, (u, v) belongs to the domain of R′, and hence ((u, v), (u, v′)) ∈ R
for some synchronized pair (u, v′) ∈ [[T ′]]o. Since R is T ′-preserving, (u, v′)
belongs to the domain of R, and hence there is ((u, v), (u, v′′)) ∈ (R′ ◦R) =

146



R′′. This shows that R′′ is T -preserving, and hence T is one-way resynchro-
nizable.

For the converse direction, suppose that T ′ is bounded-visit, but not
one-way resynchronizable. We apply again Theorem 5.3.1, and obtain that
T ′ has unbounded cross-width

We also recall that R = (I,O, ipar, (moveτ )τ , (nextτ,τ ′)τ,τ ) is functional
and 1-bounded. In particular, this means that every formula moveτ (y, z)
defines a partial bijection from source to target positions. A useful property
of every MSO-definable partial bijection is that, for every position t, it can
only define boundedly many pairs (y, z) with either y ≤ t < z or z ≤
t < y for short, we say call such a pair (y, z) t-separated. This follows
from compositional properties of regular languages. Indeed, let A be a
deterministic automaton equivalent to the formula that defines the partial
bijection. For every pair (y, z) in the partial bijection, let qy,z be the state
visited at position t by the successful run of A on the input annotated with
the pair (y, z). If A accepted more than |Q| pairs that are t-separated,
where Q is the state space of A, then at least two of them, say (y, z) and
(y′, z′), would satisfy qy,z = qy′,z′ . But this would imply that the pair (y, z′)
is also accepted by A, which contradicts the assumption that A defines a
partial bijection. Note that for this proof, we require the resynchronizer to
be functional, in order to get a partial bijection from moveτ .

We now exploit the above result to prove that the property of having
unbounded cross-width transfers from T ′ to T . Consider a cross (X1, X2) of
arbitrarily large width h in some synchronized pair σ = (u, v) of T ′. Without
loss of generality, assume that all positions in X1 ∪X2 have the same type
τ . Let Zi = orig(Xi), for i = 1, 2, and t = max(Z2). By definition of cross,
we have X1 < X2 and Z2 ≤ t < Z1. Here, we write X1 < X2 to denote for
every x1 ∈ X1 and x2 ∈ X2, x1 < x2, and Z2 ≤ t < Z1 is defined similarly.

Recall that moveτ defines a partial bijection, and that this implies that
there are only boundedly many pairs of source-target origins that are t-
separated, say (y1, z1), . . . , (yk, zk) for a constant k that only depends on
R. Moreover, since R(T ) =o T

′, the positions in Zi can be seen as target
origins of the formula moveτ of R. Now, let X ′i = Xi \ orig−1({z1, . . . , zk}),
where orig−1({z1, . . . , zk}) denotes the set of output positions with target
origin zj , and Y ′i = orig ′(X ′i), for any synchronized pair σ′ = (u, v′) such
that (σ, σ′) ∈ R.

By construction, we have X ′1 < X ′2 and Y ′2 ≤ t < Y ′1 (the latter condition
follows from the fact that the source origins from Y ′i can only be moved to
target origins on the same side w.r.t. t). This means that (X ′1, X

′
2) is a cross

of width h − k. As h can be taken arbitrarily large and k is constant, this
proves that T has unbounded cross-width as well.

Finally, by the contrapositive of the implication 1. to 2. of Theorem 5.3.1,
we conclude that T is not one-way resynchronizable.
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The algorithm and complexity. Summing up, the algorithm that de-
cides whether a given 2NFT T is one-way resynchronizable first verifies that
T is k-sparse for some k. If so, the algorithm constructs a bounded-visit
2NFT low(T ) equivalent to T , and finally decides whether low(T ) is one-
way resynchronizable. This concludes the proof of Theorem 5.1.6.

To recall, we summarize the steps of the algorithm.

1. As a first step, one has to check if T has a bounded sparsity. To do
this, we annotate a possible input u of T with a distinguished ∼u-
equivalence class, and crossing sequences at positions which belong
to this particular ∼u-equivalence class. Note that we can assume
the configuration only repeats at the anchor (leftmost) position and
therefore the crossing sequences are bounded. Checking unbounded
sparsity reduces to detecting the presence of a loop with respect to the
annotated crossing sequence which contains a productive transition.
This is a witness for unbounded sparsity as by pumping such a loop,
one can obtain an input on which T is k-sparse, for any k. Standard
techniques for two-way automata allow to decide presence of such
loops in space that is polynomial in the size of T . Moreover, this
also gives us a computable exponential bound to the largest constant
k for which T can be k-sparse for T to have bounded sparsity. The
exponential bound comes from the fact that the size of the crossing
sequences are exponential in size of T .

2. Next, we construct from the k-sparse T , bounded-visit 2NFT low(T )
that is classically equivalent to T . A close inspection to the con-
struction of low(T ) shows that, this can be done in space that is
exponential in the size of T . Note that the construction of low(T )
introduces |Q|+ |∆| many new states. The |∆| new states are needed
to produce Lt,i for some tagged transition in a ∼u-equivalence class.
However, the output languages Lt,i introduced in low(T ) can have
size polynomial in k, where k is a bound on the sparsity. Since k is
exponential is T , low(T ) can have size exponential in size of T .

3. Finally, one has to decide one-way resynchronizability of low(T ) by
detecting inversions in successful runs of low(T ). Since low(T ) is
bounded-visit and has size exponential in the size of T , we obtain an
upper bound of ExpSpace.

This concludes the proof of Theorem 5.1.6. The best lower bound we
have is PSpace, same as in the bounded-visit case. Therefore, it is an open
question if the upper bound of ExpSpace is optimal or not.

5.5 Conclusions

The one-way definability problem happens to be straightforward in ori-
gin semantics due to the characterization as order-preserving transductions
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(cross-width 0) due to [Boj14]. In the classical semantics, the problem
is decidable with 2-ExpSpace complexity for functional 2NFTs thanks
to [BGMP18].

We showed that the problem of one-way resynchronizability is decidable
in PSpace for bounded-visit 2NFTs (which contains the class of functional
2NFTs). In fact, the characterization of T having no inversions is also similar
to the one of Theorem 3.6 from [BGMP18] for one-way definability in the
classical semantics. The main difference is that in the classical semantics,
one also needs to check some combinatorial properties of the inversions,
which we are able to avoid in our result.

For the bounded-visit case, the bounded cross-width property generalizes
the notion of order-preserving transductions, which corresponds to the case
of cross-width 0. For the general case, every one-way resynchronizable 2NFT
T has the bounded cross-width property. Whether the converse holds or
not is not known. One approach to solve this would be to build a family of
resynchronizers Rk, for every k, such whenever T has cross-width bounded
by k, Rk(T ) is order preserving. In other words, Rk would undo crosses of
width k.

Another point worth mentioning is that in our constructions, we always
build a functional resynchronizer that defines a partial bijection between
source and target origins. This shows that whenever T is one-way resyn-
chronizable, it is resynchronizable using a functional resynchronizer. Lemma
5.4.2 shows that the class of one-way resynchronizable 2NFTs are closed un-
der application of functional resynchronizer.

In both the bounded-visit and the general case, we give upper bounds
of PSpace and ExpSpace for the one-way resynchronizability problem.
We also give a lower bound of PSpace by a reduction from the emptiness
problem for 2DFA.

Possible extensions to NSSTs. One of the motivation for studying the
one-way resynchronizability problem is the connection to streamability. A
NFT can produce the output without having to store the input, which is
interesting for many applications. A 2NFT, on the other hand, has to store
the entire input to produce the output. Therefore, one-way resynchroniz-
ability identifies classes of transductions which can be preprocessed to obtain
streamability. In this case, the preprocessing step is the application of the
appropriate resynchronizer.

The class of NSSTs was also introduced with a similar motivation of
streamability. NSSTs process the input one letter at a time, but use reg-
isters to store parts of the output that are later combined to obtain the
output. A NFT can be seen as a NSST with a single register that is allowed
to append only to the right. Therefore, a generalization of the one-way
resynchronizability problem would be to check whether a given 2NFT be
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resynchronized to k-register NSST.

Other definability problems. Finally, there are analogous definabil-
ity problems that emerge in the origin semantics. For instance, one could
ask whether a given 2NFT can be resynchronized, through some bounded,
regular resynchronization, to a relation that is origin-equivalent to a first-
order logical transduction. A first-order transduction is a model of logi-
cal transduction, that is a restriction of the MSO-transduction defined by
Courcelle[Cou94]. This can be seen as a relaxation of the first-order defin-
ability problem in the origin semantics. The first-order definability problem,
i.e, checking whether a 2NFT is origin-equivalent to some first-order trans-
duction was shown to be decidable for functional transductions in [Boj14].
In the classical semantics, the first-order definability problem is open for
2NFTs and NSSTs. A restriction of NSSTs, called aperiodic DSSTs, cap-
turing first-order definable functional NSSTs was given in [FKT14], but
checking whether a given NSST is equivalent to an aperiodic one remains
open.
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tals of Computation Theory, pages 226–237, Berlin, Heidelberg,
2007. Springer Berlin Heidelberg.

[Cou94] Bruno Courcelle. Monadic second-order definable graph trans-
ductions: a survey. Theoretical Computer Science, 126(1):53 –
75, 1994.

[Cou97] Bruno Courcelle. The expression of graph properties and graph
transformations in monadic second-order logic. In G. Rozen-
berg, editor, Handbook of Graph Transformations: Foundations,
volume 1, pages 165–254. World Scientific, 1997.

[DFL18] Luc Dartois, Emmanuel Filiot, and Nathan Lhote. Logics for
word transductions with synthesis. In Proceedings of the 33rd
Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS ’18, page 295–304, New York, NY, USA, 2018. Association
for Computing Machinery.

[DGH16] Antoine Durand-Gasselin and Peter Habermehl. Regular trans-
formations of data words through origin information. In Bart Ja-
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