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FRENCH ABSTRACT

Résumé en Français

Les éoliennes à axe horizontal (HAWT) et les hélices marines sont deux pplications

très étudiés dans le domaine de la recherche en mécanique des fluides. Cependant, la

transition de couche limite sur celles-ci n’est pas encore entièrement comprise. Dans

cette thèse, des Simulations Numériques Direct sont effectuées sur ces deux cas, à l’aide

de supercalculateurs. Le principal l’objectif est d’étudier l’effet de la rotation sur la

transition de couche limite.

Les couches limites des HAWT et des hélices marines partagent un point commun

avec l’écoulement de von Kármán, qui est créé par un disque rotatif immergé dans

un fluide. L’écoulement de von Kármán peut induire ce que l’on appelle une ’cross

flow’ transition. L’objet de la présente étude est d’étudier la possibilité d’une transition

d’écoulement transversal sur les HAWT et les hélices marines.

Cette étude montre que la transition naturelle de couche limite sur les HAWTs et

les hélices marine est induite par des mécanismes distinctement différents. Le résultat

de l’écoulement autour d’un pale de HAWT montre que le profil de la couche limite est

très proche d’un profil bidimensionel. Sur la pale, la vitesse dans le sens de l’envergure

est faible lorsque la couche limite est attachée. En conséquence, la transition naturelle

est très similaire au profil 2D et est due aux ondes de Tollmien–Schlichting (T-S).

Sur la pale d’hélice marine, l’écoulement de la couche limite est entièrement tridi-

mensionnel (3D) à cause des effets combinés de la rotation et de la géométrie de la

pale. L’instabilité et la transition des ’cross-flow’ sont clairement observées. La forme

des tourbillons est en bon accord avec la prédiction de la théorie de la stabilité linéaire

(LST). Bien qu’il ait été longtemps supposé que la ”cross-flow” transition devrait être

importante sur les hélices, il s’agit de première observation directe de tels phénomènes

à notre connaissance. Parceque l’hélice n’a pas de symétrie de rotation infinie, notre

résultat suggère que la couche limite sur les hélices marines est instable par convection.

Cet aspect est différent de l’écoulement de von Kármán, qui est absolument instable.

Les différences observée sur les écoulements de couche limite sur les HAWTs et les

hélices marines sont probablement causées par leur degré de complexité géométrique
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variable. La pale de HAWT a un rapport ’aspect trés important, par conséquent, l’écoulement

transverse n’a pas assez de distance pour se développer du bord d’attaque au bord de

fuite. Au contraire, l’écoulement transverse est capable de croı̂tre assez pour conduire

à la transition sur l’hélice, où le rapport d’aspect est petit.

Nous soutenons qu’il est nécessaire de travailler dans le référentiel rotatif pour

évaluer l’effet de la rotation. Dans le cas du référentiel rotatif, la force centrifuge a

une position donnée est une constante, tandis que la force de Coriolis dépend de la

vitesse locale. L’amplitude de la vitesse en envergure (cross-flow) est étroitement liée

à la force centrifuge et à la force de Coriolis. Par exemple, l’écoulement transverse

est généralement le plus forte autour de la séparation de couche limite, où la force de

Coriolis change de direction et agit dans le même sens que la force centrifuge.
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Abstract

The Horizontal Axis Wind Turbines (HAWTs) and marine propellers are two types

of important fluid machineries. The boundary layer transition on them is nonetheless

not fully understood yet. Equipped with modern cluster computers, Under-resolved

Direct Numerical Simulations (UDNS) are performed on both of them in this thesis.

The main objective is to study the effect of rotations on the boundary layer transition.

The boundary layers on HAWTs and marine propellers share an apparent common

point with von Kármán swirling flow, which is created by a rotating disk in the otherwise

still fluid. The von Kármán swirling flow is the prototype of cross-flow transition.

Therefore one focus of the present study is the possibility of the cross-flow transition

on HAWTs and marine propellers.

The present study shows that the natural boundary layer transitions on the HAWT

and the marine propeller are induced by distinctively different mechanisms. The numer-

ical result of a HAWT blade shows that the boundary layer profile on it is very close to

the 2-Dimensional (2D) airfoil flow. On the blade, the velocity in spanwise direction is

small in the attached boundary layer. As a result, the natural transition on HAWT blade

is very similar to the 2D airfoil flow and is due to Tollmien–Schlichting (T-S) waves.

On the marine propeller blade, the boundary layer flow is fully 3-Dimensional (3D)

due to the rotation. The cross-flow instability and transition are clearly observed. The

shapes of the cross-flow vortices are in good agreement with the prediction of Linear

Stability Theory (LST). Although it has been long assumed that cross-flow transition

should be important for propellers, this is the first direct observation of such phenomena

as far as we know. Because the propeller does not have infinite rotational symmetry, our

result suggests the boundary layer on the marine propeller is convectively unstable. This

is different with the von Kármán boundary layer flow, which is absolutely unstable.

The difference in boundary layer flows and therefore transitions between the HAWT

and the marine propeller is likely caused by their shapes. The HAWT blade has a

very large aspect ratio, consequently, the cross-flow does not have enough distance to

develop from the leading edge to the trailing edge. On the contrary, the cross-flow
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velocity is able to grow large enough to lead flow transition on the propeller, where the

aspect ratio is small.

We also argue that it is necessary to work in the rotating reference frame in order to

evaluate the effect of rotations. In the rotating reference frame, the centrifugal force at

one position is a constant, while the Coriolis force depends on the local velocity. The

magnitude of the spanwise (cross-flow) velocity is closely related to the relative strength

of centrifugal and Coriolis forces. For example, cross-flow is usually the largest around

separation bubbles, where Coriolis force changes its direction and acts in the same

direction as centrifugal force.
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Chapter 1

Background and Introduction

1.1 Background

As a source of renewable energy, the installation capacity of wind turbines has been in-

creasing steadily around the world. It is projected that this trend would last at least for

the foreseeable future. What’s more, the recent development of offshore wind turbines

offers a new promising possibility. As one of the fundamental problems, the aerody-

namic of wind turbines and wind farms has attracted many researchers.

As indicates by its name, one of the many research fields of the LHEEA (Laboratory

in Hydrodynamics, Energetics and Atmospheric Environment) in ECN (École Centrale

de Nantes) is the wind energy. The specific topics under active studies in the lab include

the aerodynamic of blade sections [1, 2], turbine wakes [3], as well as floating wind

turbines etc.

Another broad topic in the LHEEA lab is the naval engineering. The research areas

include cavitation of marine propellers [4], development of composite hydrofoils [5],

and numerical methods for hydrodynamic [6, 7] etc.

HAWTs harvest energy from the wind. The torque that drives motors is from the

lift force on airfoil sections of the turbine blades [8]. Whereas marine propellers exert

energy to the surrounding fluid. The propulsion is also from the lift force on sections

[9]. Although the HAWTs and marine propellers have quite different geometries and
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CHAPTER 1. BACKGROUND AND INTRODUCTION

working conditions, they are both based on the aerodynamic of 2D airfoils. Except this,

there is another apparent similarity, i.e. they both rotates.

(a)

(b)

Figure 1.1: (a) NM80 wind turbine in the DanAero MW project. (b) A marine propeller,
from Wikipedia.

1.1.1 Motivation of the present work

The fact that both HAWTs and marine propellers rotate during operations makes them

bear a resemblance to one of the most classic problems in fluid dynamic, which is the

laminar-turbulent transition of the rotating disk boundary layer.

The most notable feature of the rotating disk boundary layer is the 3D effect on the

boundary layer due to the rotation. This gives rise to a totally different transition mech-

anism from 2D boundary layers, namely the cross-flow transition [10]. However, most

studies on HAWTs and marine propellers’ boundary layer transition are based on 2D

airfoils. To get better understanding of the process on HAWTs and marine propellers,

it is necessary to quantify the effect of rotations.

In the rest of this chapter, we will firstly give a brief description of the aerodynamics

of 2D airfoils. Then the laminar-turbulent transition of boundary layer is introduced,

followed by the description of possible transition scenarios related to the present study.

2



CHAPTER 1. BACKGROUND AND INTRODUCTION

We then revisit the rotating disk flow and its transition. The rise of cross-flow inside

boundary layer is explained. We re-state the similarity between the rotating disk flow

and HWATs and marine propellers. At last, the state-of-the-art about the boundary layer

transition on rotating blades is reviewed.

1.2 Aerodynamics of 2-Dimensional Airfoil

The airfoil is the basis of many practical fluid machinery including HAWTs, propellers,

and airplane wings et al. It is a lift generating structure. Figure 1.2 gives an illustration

of the flow around a typical 2D airfoil. When the flow passes around the airfoil, there

usually exists a pressure difference between the two sides of the airfoil (the side with

large pressure is usually referred to as the pressure side, and the one with smaller pres-

sure is referred to as the suction side). This pressure difference is the main source of

the force on the airfoil.

Figure 1.2: Flow around a 2D airfoil. The incoming flow is in x direction.

The force component parallel to the incoming flow is the drag. The component

perpendicular to the incoming flow is the lift. The magnitude of the lift depends on

many parameters and is measured by lift coefficient Cl. For a given airfoil, one of the

most important parameter determining Cl is Angle of Attack (AoA).

AoA measures the angle between the incoming flow direction and the direction

of airfoil’s chord, which is the line connecting the leading edge and the trailing edge

of the airfoil. When AoA is small, lift coefficient Cl roughly increases linearly with

3



CHAPTER 1. BACKGROUND AND INTRODUCTION

AoA as predicted by lifting-line theory. However, if AoA further increases, the Cl

would decrease rapidly after Cl having reached maximum. At the same time, the drag

increases as well. This phenomenon is called ’stall’.

Stall is generally related to massive flow separations on the airfoil [11, 12]. Pressure

gradients always present along the airfoil chord. The adversary pressure gradient (where

the downstream pressure is larger than upstream pressure) is inevitable due to the nature

of airfoils. The adversary pressure gradient would decelerate the flow. When the inertial

force is not able to overcome the adversary pressure gradient, the attached boundary

layer flow could separate for the wall surface.

When AoA is small, the flow separation does not exist or is very weak. The flow

usually reattaches after separations, which is usually close to the trailing edge. As AoA

and the adversary pressure gradient increase, the separation points moves upstream on

the airfoil. Under stall conditions, massive flow separations appear close to leading

edge [12] and the flow does not reattach. The effective shape of the airfoil is profoundly

changed and its aerodynamic performance deteriorates.

1.3 The boundary layer and its transition

1.3.1 The boundary layer

On the airfoil surface, the flow velocity decelerates to zero due to the non-slip boundary

condition. Very close the airfoil wall, there exists a thin layer of fluid, through which the

outside inviscid flow velocity decreases to zero on the wall. This fluid layer is referred

to as ’boundary layer’ and is firstly discovered by Prandtl [13]. The importance of the

boundary layer could not be emphasized too much.

Figure 1.3 shows the Blasius profile, which describes the boundary layer formed

by flow over a flat plate. It is a self-similar solution in that the velocity profiles at

different streamwise locations x is the same after being normalized. The boundary

layer thickness of Blasius solution increases along streamwise direction according to

δx ∝
√
x. When there is a pressure gradient along x, the velocity profile is still self-

4



CHAPTER 1. BACKGROUND AND INTRODUCTION

Figure 1.3: Blasius boundary layer on a flat plate.

similar and can be described by the Falkner-Skan solution [13]. Inside the boundary

layer, the large velocity gradient in wall-normal direction makes the viscous force non-

negligible.

The boundary layer around airfoil is usually not self-similar. However, many con-

cepts from Blasius solution can be applied to airfoil boundary layer. For example, they

both develop from the leading edge toward downstream. The same technique is often

used in the derivation and solving of the boundary layer equation for airfoil. What’s

more, the transition on airfoils is very much similar to flat plate when the boundary

layer is attached.

1.3.2 The laminar-turbulent transition

The famous Reynolds’ experiment [14] on the pipe flow shows that there are two dif-

ferent flow states depends on a parameter which is now called Reynolds number (Re).

When Re is small, the dye streaks are aligned with each other and the flow is laminar.

When Re is large, the flow become chaotic and turbulent.

The laminar-turbulent transition has many implications on the aerodynamic perfor-

mances of the bodies. It affects flow separation, increases drags, and introduces fluc-

tuating loads etc. The transition process of boundary layer flow is quite complex and

depends on many factors. Figure 1.4 summaries the main routes through which a lami-

nar boundary layer could become turbulent. In short, if the flow is unstable to external

5
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Figure 1.4: Paths to transition with increasing environmental disturbances. In this the-
sis, we only consider the path A in the figure. From [15]

disturbance, the disturbance would increase its magnitude and eventually leads to flow

transition.

In this thesis, only the natural transition is considered (Path A in figure 1.4). Al-

though natural transitions are more common when the environmental disturbances are

small, a good understanding of them is important to predict the boundary layer’s re-

sponses to large disturbances. In the following subsections, several natural transition

modes pertain to airfoil boundary layers are described briefly.

1.3.3 T-S wave instability

The Blasius boundary layer is subjected to the Tollmien-Schlichting (T-S) instability,

which is firstly studied theoretically by Tollmien and Schlichting around the late 1920s.

It was confirmed by the experiments of Schubauer and Skramstad [17, 18]. Figure 1.5

shows the different stages in the T-S wave transition. Near the leading edge, where the

Reynolds number Reδ is small, the flow is laminar and stable. As the boundary layer

thickness increases downstream, the local Reδ increases as well. The laminar flow be-

comes unstable. The outside (or inside, e.g. roughness on the plate) disturbances can

6
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Figure 1.5: Top view and side view of the T-S wave transition on the flat plate. From
[16]

form 2D T-S waves through the ’receptivity’ process. The amplitude of the T-S wave

grows exponentially along the streamwise direction. When the amplitude of the distur-

bance wave reaches around 2% ∼ 10% of the boundary layer edge velocity, nonlinear

interactions between different T-S waves become significant. The new flow field, which

is greatly modulated by the 2D unstable wave, becomes unstable to 3D disturbance.

When the 3D disturbance becomes large, the flow usually exhibits Λ structures. The

3D flow structure itself is quite unstable and would quickly breakdown to smaller struc-

tures. The transition process finishes and the flow becomes fully turbulent.

1.3.4 Flow separation induced transition

The Laminar Separation Bubble (LSB) is commonly seen on the suction side of airfoils.

Figure 1.6 depicts the flow structures around a 2D LSB. The adversary pressure gradient

in stream-wise makes the initially wall-attached streamlines to separate from the wall.

A recirculation zone appears near the wall with part of the fluid moves reversely. After

the boundary layer transition to turbulent, the streamlines reattaches.

Depending on many factors such as the geometry of airfoil, Re, AoA, and inflow

conditions [20, 21], LSBs have different shapes. However, they are generally quite

7
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Figure 1.6: Flow structures around a typical 2D separation bubble. From [19]

Figure 1.7: LSB induced transition on a flat plate. The flow separation is caused by ad-
versary pressure gradient. The contour is based on the normalized streamwise velocity.

unstable when Re is large. The wall-normal velocity profile of LSB usually has an

inflectional point, making it unstable according to inviscid stability theory.

When the separation bubble is small, the unstable T-S wave, which appears in the

upstream attached boundary layer, can go through the LSB. In Ref. [22], the growth rate

of the T-S wave in separation region obtained from DNS (Direct Numerical Simulation)

agrees quite well that from LST. Inflectional instability can also happen due to the

upstream disturbance [23]. However, this instability is convectively unstable in nature.

When the separation is strong and the reverse flow is large, inviscid instability mech-

8
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anism would dominate the transition process. The boundary layer velocity profile with

large reverse flow is similar to a mixing layer, where rapid flow transition can be ob-

served due to Kelvin-Helmholtz (K-H) instability. Similar transition processes to K-H

instability are often observed around the LSB. The primary stability results in 2D shed-

ding vortices. As the shedding vortices being convected to downstream, secondary

instability occurs[24]. The flow becomes rapidly turbulent. Figure 1.7 shows the struc-

tures in a LSB induced transition, where the rollers are clearly visible.

Similar to the K-H instability, LSB is absolute unstable when the reverse flow is

large. As a result, the LBS always exhibit unsteadiness. Pauley et al. [25] use the

Stroulhal number based on the boundary-layer momentum thickness at separation and

the local free-stream velocity to quantify the shedding frequency, which is in agreement

with the prediction of linear inviscid stability theory.

It should be noted that there is no universal criterion to determine whether the LSB

is large or small. Generally speaking the flow is absolute unstable only when the reverse

flow is as large as 12%− 20% of the boundary layer edge velocity [26, 27]. The inter-

actions between the viscous instability and the inflectional instability are also reported

in the literatures (for example [28]).

1.3.5 Cross-flow transition

So far, we have been talking about 2D boundary layer. i.e. the flow is homogeneous in

one direction (usually spanwise) and the fluid does not move along that direction. How-

ever, 3D boundary layer, where there is no homogeneous direction, is quite common in

practical engineering flows.

Figure 1.8 shows the typical flow structure inside a 3D boundary layer. Inside the

boundary layer, there is a velocity component which is perpendicular to the inviscid

flow direction. This velocity profile is refereed to as ’cross-flow’.

Because cross-flow is zero on the wall and outside the boundary layer, its profile

usually has an inflectional point, which makes it unstable according to the Rayleigh

theorem. The cross-flow transition can be observed in many typically 3D flows, e.g. the

9
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Figure 1.8: 3D boundary layer flow structure. From [15]. yt is the local wall-normal
direction. xt is the local streamwise direction and zt is perpendicular to xt and yt.
Outside boundary layer, the velocity is totally in streamwise direction. However, there
is a velocity component in zt direction inside the boundary layer.

Figure 1.9: Cross-flow vortices and flow transition (iso-surface of λ2). The inviscid
flow is roughly in x direction. From [31]

.

rotating disk [29], swept wings [15], and the yawed cone [30] etc.

Figure 1.9 shows the process of cross-flow transition. Similar to the T-S wave tran-

sition, the whole process can be roughly divided into linear, nonlinear (saturation), and

breakdown stages. The small disturbance, which usually form a wave pattern in the

cross-flow direction, firstly grows exponentially in the linear stage. As goes to down-

stream, the wave develops into streamwise vortices with larger amplitude. Both sta-

tionary and traveling cross-flow vortices can exist. When their amplitudes are around

1% ∼ 10% of the streamwise inviscid velocities, nonlinearity comes into effect. The

vortices grow with smaller growth rates and eventually saturate. The saturated cross-

flow vortices can maintain a rather long distance. Their flow structures are usually

referred to as ”half mushroom” in contrast to the ”mushroom” structures observed in

Görtler instability.

10
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(a) (b)

Figure 1.10: (a) The mushroom-like structure in Görtler instability. From [32]. (b) The
half mushroom structure in cross-flow instability. From [33].

The saturated cross-flow vortices are subjected to the secondary instability. In this

stage, the vortices are unstable with respect to high-frequency oscillations. With the

growth of secondary instability, the flow quickly becomes turbulent.

1.3.6 Others

Many other unstable modes also exist depending on the flow configurations. For exam-

ple, along concave walls, Görtler instability often appears in the boundary layer. The

flow along the leading edge of a swept wing is subjected to so-called ’leading edge con-

tamination’. Roughness elements on the wall can also lead to boundary layer transition.

1.4 Transition on the 2D airfoil

On 2D airfoil without swept or where the blade spanwise variation is small, the natural

transition of the boundary layer can be either triggered by T-S wave or flow separation.

When the Reynolds number is large, the boundary layer close to the leading edge

would be unstable to T-S wave [34, 35]. The T-S wave on the airfoil is very much similar

to the flat plate case describe above. However, there is usually a pressure gradient along

the streamwise direction on the airfoil. Similar to the Falkner-Skan boundary layer

[36], the adversary pressure gradient has a dis-stabilizing effect whereas the favorable

pressure gradient makes the boundary layer be more stable.

When the chord Reynolds number is small (for example, the unmanned aerial ve-

hicles), the laminar boundary layer can maintain a long distance on the airfoil. In that

case, the boundary layer transition is usually triggered by the LSB, which appears when

11
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Figure 1.11: Illustration of streamlines in inviscid region and in boundary layer on a
rotating disk. Because the wall-normal velocity, which is parallel to the angular velocity
vector, does not affect the direction and magnitude of the forces, therefore it is neglected
in plotting these streamlines

the local adversary pressure gradient is large [2].

1.5 The rotating disk flow

1.5.1 Cross-flow velocity

The laminar rotating disk flow has an exact self-similar solution of the Navier-Stokes

(NS) equations, which is first discovered by von Kármán [37]. It can be classified

into a family of NS solutions, where rotations play an important role [38, 39]. The

essential feature of von Kármán flow is the appearance of cross-flow velocity inside

boundary layer, which can be explained by the relationship between centrifugal and

Coriolis forces in the rotating reference frame.

Let’s consider the flow on a rotating disk in figure 1.11, which rotates with an an-

gular velocity ω = (0, 0, ωz). It is natural to work under the rotating reference frame in

which the disk is stationary. Because rotating reference frames are non-inertial frames,

two additional fictitious forces arise. The centrifugal force −ω × (r × ω) on a fluid

parcel at r = (r, θ, z) (r, θ, z are radius, angle, and depth coordinates respectively in

the cylindrical system, which is in the rotating reference frame) is (rω2
z , 0, 0). And the

Coriolis force −2ω ×U on it would be (−2uθωz, 2urωz, 0), where U = (ur, uθ, uz) is

the velocity of the fluid parcel with respect to the rotating reference frame.

12



CHAPTER 1. BACKGROUND AND INTRODUCTION

In the rotating reference frame, we can treat the fictitious forces like real forces, and

pretend we are in an inertial frame [40]. For a fluid parcel far away from the disk, it is

not affected by the presence of the disk (the wall-normal velocity induced by the disk is

neglected, which would not change the analysis) and does circular motion with radius

r and uθ = rωz. The centripetal force needed for this circular motion is (−rω2
z , 0, 0),

which is exactly the combination of the corresponding centrifugal force and Coriolis

force.

For a fluid parcel at the same r but inside the boundary layer, its circumferential

velocity uθ is smaller than rωz because of non-slip boundary condition. Therefore,

the Coriolis force, which depends on the velocity, is smaller than the inviscid case.

However, the centrifugal velocity force, which depends only on r, is the same as the

inviscid case. As a result, the combination of the centrifugal force and Coriolis force

is no longer large enough to keep the fluid parcel doing circular motion with radius r,

but with a larger radius. This means that a radial velocity appears inside the boundary

layer. The cross-flow velocity profile introduces an inward viscous stress in radial di-

rection, which partially counteract the outward motion to the extent that an equilibrium

is reached.

Figure 1.12 summaries the above process. In short, the radial (cross-flow) veloc-

ity can be seen as a secondary flow induced by the primary flow in circumferential

direction. Later we will see that the process illustrated in the figure can explain the

more complex phenomena on rotating blade boundary layer. For example, when flow

separates, the Coriolis force changes its direction and acts in the same direction as cen-

trifugal force. On the other hand, because the separation bubble is usually thicker than

the attached boundary layer, the viscous force is small. These two factors would result

a large radial flow around separation regions.

Figure 1.13 plots the velocity profiles of von Kármán solution from [10]. The cir-

cumferential velocity is similar to the Blasius boundary layer. However, the radial ve-

locity inside boundary layer is not zero as explained above. Because the fluid is pumped

outwards near the wall, there is a wall-normal velocity so the continuity equation is sat-

13
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1. In the rotating reference frame, the velocity inside 
boundary layers decreases due to the none-slip boundary 
condition. 

 

2. The radial Coriolis force inside boundary layers decreases 
because it linearly depends on the circumferential velocity. 

 

3. The fluid particle can no longer do the perfect circular 
motion. i.e. a radial (cross-flow) velocity appears inside 
boundary layers. 

 

4. The cross-flow velocity profile induces an inwards radial 
viscous force, which partially counteracts the Coriolis force 

to the extent that an equilibrium is reached. 

Figure 1.12: The arise of the cross-flow velocity in the rotating disk boundary layer.

Figure 1.13: Self-similar solution of the von Kármán boundary layer. From [10]

14
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Figure 1.14: The flow inside a teacup, which is an example of Bödewadt layer. Here
the cross-flow velocity is towards the rotating axis. From [41]

isfied. It should also be noted that the Re in the rotating disk flow is usually defined as

r
√
ω/ν, where ν is the kinematic viscosity.

Another example of the rotating flow system is the Bödewadt layer, where the disk

is at rest while the inviscid flow rotates. It can be analyzed in the rotating reference

frame similarly. Like the von Kármán flow, there is a cross-flow velocity close to the

disk. However, the cross-flow velocity in Bödewadt layer is towards the rotating axis.

A daily example is the flow inside a teacup. After stirring, the tea-leaf at the cup bottom

would alway come to the center.
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1.5.2 Its transition

(a)

(b)

Figure 1.15: (a) Boundary layer transition on the rotating disk. The spirals are cross-
flow vortices. (b) Close-up view of the cross-flow vortices. The high-frequency oscil-
lations due to secondary instability can be clearly seen. From [42].

The cross-flow profile is unstable as it has an inflectional point. Figure 1.15 shows the

experimental visualization of the cross-flow transition on the rotating disk, which is

similar to the description in 1.3.4. Around the center of the disk, the flow is laminar

as the local Reynolds number is small. At larger radius, the spiral vortices are unstable

cross-flow waves, which grow outwards and lead to the transition.

The cross-flow instability has received much attention because of its importance in

modern airliner swept wings [15]. As a prototype for cross-flow transition, the rotating

disk boundary layer has been under extensive theoretical, experimental, and numerical

studies for its geometry simplicity. In the experiment of Gregory et al. [43] around

30 stationary spiral vortices were observed on the disk. The vortices propagate in the

direction predicted by the inviscid stability theory. Malik et al. [44] showed that the
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Coriolis and curvature terms, which have a stabilizing effect, need to be included in

linear stability analysis. The critical Reynolds’Rec number obtained by Linear Stability

Theory (LST) is around 287, which is in agreement with their experiment (Rec = 294)

and the experiment (Rec = 297) of Kobayashi [42]. In the two important works of

Lingwood [10, 45], the author found that the boundary layer on the rotating disk is

absolutely unstable when Re is larger than 510. This value corresponds well with the

turbulence onsetRe observed in several experiments. However, later it is shown that the

cross-flow instability are only convective unstable in Falkner-Skan-Cooke (FSC) flows

and swept wing boundary layer [29, 46]. The global instability of rotating disks has

also been discussed in many literatures[47].

1.5.3 Implication

As mentioned earlier, both HAWTs and marine propellers rotate during operation. As

a result, the same reasoning in figure 1.12 can be readily applied. There should be a

cross-flow velocity in their boundary layers. Therefore, a natural question to ask is

whether cross-flow instability and transition can be observed on HAWTs and marine

propeller blades.

1.6 HAWTs and marine propellers

The boundary layer’s state could have a big implication on the aerodynamic of the

bodies. A well-know example is the dimples on golf balls, which prompt the boundary

layer transition. The turbulent boundary layer is usually harder to separate from the

wall. The drag is therefore smaller and the golf ball can fly farther.

A good knowledge of the transition process is needed to model it in numerical sim-

ulations, which are widely used to predict and optimize the performance of turbines or

propellers. Much effort has been done to understand the transition on rotating blades in

the past decades.
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1.6.1 HAWTs blades boundary layer

Effect of the rotation

HAWT blades consist of a series of 2D airfoil sections with different thicknesses, chord

lengths, and twist angles. In the design and optimization of HAWTs, Blade Element

Theory (BET) is widely used. After dividing the blade into sections (or elements) in

the spanwise direction, BET assumes that the flow around each section is locally 2-

dimensional. The lift and drag forces for each section can be obtained from momentum

theory or calculated from 2D potential flow code such as XFOIL[48]. The total torque

of the blade can be then obtained by summing local sections’ performance together[8,

49].

Nonetheless, the flow around the HAWT blade is not strictly 2D. As early as 1945,

Himmelskamp [50] observed that the lift coefficient for the rotating blade is increased

compared with the non-rotating case, and the stall is postponed. This phenomenon

is referred to as rotational augmentation in the later literature. Fogarty[51] solved

the boundary-layer equations for rotating blade and found that the effect of rotation

is small, which contradicts with engineers’ impression. He suggests one of possible

reasons might be that his analysis is only valid for attached flow region. McCroskey’s

flow visualization of rotating blade shows that the boundary layer transition on rotating

blade resembles non-rotating blade, but there is a significant outward radial velocity in

laminar separation bubble and in trailing-edge separated flow [52]. Snel[53] performed

a scale magnitude analysis for rotating blade boundary layer equations, where he con-

sidered flow separation. His results show an improved Cl prediction compared to 2D

calculation. Corten[54] pointed out that the boundary layer assumption in Snel’s anal-

ysis is not necessary for separation regions. He also shows that the separated flow will

move in outward radial direction due to centrifugal force.

Nowadays, it is well recognized that rotational augmentation is closely related to

the large spanwise velocities in separation regions. On the one hand, the radial velocity

pump fluid from separation region to spanwise direction, leading to volume reduction

of separation bubble[55]. On the other hand, the radial velocity induces a streamwise
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Coriolis force, which partially counteracts the adverse pressure gradient[56].

Figure 1.16: Inside the separation bubble, streamwise velocity changes its direction
(red arrow), which causes the Coriolis force (green arrow) acts in the same direction as
the centrifugal force (black arrow).

In section 1.5, we pointed out the similarity between the boundary layer flows on

HAWT blades and on the rotating disk. Here we argue that the radial velocities in sepa-

ration regions of HAWT blades can be analyzed similarly. Here we repeat the argument.

In figure 1.16 a blade is rotating in the plane (x, y), i.e., the angular velocity ω of the

rotating reference frame fixed to the blade is (0, 0, ωz). Considering a fluid parcel at

r = (r, θ, z) (r, θ, z are radius, angle, and depth in the cylindrical coordinate system

respectively), its velocity relative to the rotating reference frame U is (ur, uθ, uz). The

centrifugal force−ω× (ω×r) on this fluid parcel would be (rω2
z , 0, 0) (in local radial,

circumferential, and depth directions respectively). And the Coriolis force −2ω × U

on it would be (−2uθωz, 2urωz, 0).

Far away from the blade, the fluid parcel experience circular motion with uθ = rωz.

The centripetal force needed for this circular motion is (−rω2
z , 0, 0), which is exactly the

combination of centrifugal and Coriolis forces. When flow detaches, the circumferential

velocity decreases and reverses its direction. As a result, Coriolis force changes its

direction and acts in the same direction as centrifugal force, which results in large radial

velocity ur.

It is obvious to see that there should be a radial flow velocity inside the attached
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boundary layer as well. The argument on the rotating disk flow applies to HAWT blades

without any changes (please refer to section 1.5). Indeed, this radial velocity was ob-

served in [57], where the boundary layer equations on a rotating blade was solved.

Boundary layer transition on rotating blades

Figure 1.17: Transition location on the center of a HAWT blade (where there is a glove).
Visualized using thermal images. The bright color is laminar flow whereas dark color
is turbulent. (a) Start-up stage. (b) Operating. From [58]

The laminar-turbulent transition on HAWTs is drawing increasing attention. It not

only affects aerodynamic characteristics like lift and drag but also generates load fluctu-

ations, which might decrease the rotor life. Much endeavor has been made to understand

the flow transition on rotating blade.

Bosschers et al. [57] solved the boundary layer equation on a rotating blade and

observed a cross-flow velocity component. They pointed out that laminar-turbulent

transition on a rotating blade might occur due to cross-flow. Heister’s [59] study of he-

licopter rotor shows there coexist multiple transition scenarios, including bypass transi-

tion, leading edge contamination, cross-flow transition, and T-S wave. Hernandez [60]

performed LST analysis on rotating flat plate boundary layers to study the transition on

HAWT. Although there is a cross-flow component in the base flow, his analysis is only

restricted to T-S waves. Weiss [61] measured the boundary layer transition on rotating

blades by temperature-sensitive paint. He also performed LST analysis and found that

the critical transition N-factor is around 8.4.
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Figure 1.18: An example of transition location (red line) derived from pressure fluctua-
tions, which varies with time. From the DanAero MW project. For the meaning of the
symbols in the figure, please refer to [62]

Due to the rotation and their large scale, it is very challenging to detect and measure

the unstable waves HAWT blades in similarly to the flat plate. However, the transition

locations on full-scale HAWTs are obtained using different experimental techniques.

In Reichstein et al. [58], the thermo-graphic imaging was used as a non-intrusive

method for detecting flow transition on a MW wind turbine. The transition location

from thermo-graphic imaging is in good agreement with results from microphones and

transitional CFD simulations. Figure 1.17 is taken from [58]. It can be seen that when

the wind turbine is in regular operation mode, the transition appears quite near the

leading edge (x/c = 0.05).

In the DanAero MW projects[63, 64], the transition location on a MW turbine is

derived from surface pressure fluctuations measured by microphones. The transition

location on the full scale turbine blade is advanced as compared to wind tunnel exper-

iments. This difference of transition locations is caused by different characteristics of

incoming turbulence in wind tunnel and field measurements.

1.6.2 Cavitation and marine propeller boundary layer

The marine propeller is another important type of flow machinery. Similar to HAWT

blades, propeller blades are based on the hydrodynamic of 2D blade. However, pro-

peller sections are defined on a series of concentric cylindrical surfaces as shown in
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Figure 1.19: The Propeller C from Kuiper [65]. The green surface is one of the cylin-
drical surfaces on which the blade sections are defined.

figure 1.19. After expanding the cylindrical surfaces, the sections on them are simply

2D airfoils. The lift force on the expanded 2D sections has two components. It is the

component parallel to the shaft axis that provides the propulsion.

The boundary layer transition

The boundary layer around marine propellers is a typical 3-Dimensional (3D) flow due

to the geometries and rotations. Transitional flow can be often observed on the model

testing propellers.

Similar to the HAWTs, transition locations on propeller blades can be obtained ex-

perimentally. In the classic work of Kuiper [66], he shows that although the exact

transition location on propeller blades depends on a number of factors, the flow regimes

can be generally divided into laminar and turbulent regions according to the direction

of paint streaks. In the laminar flow region, the paint streaks point outwards towards

the tip, whereas they are aligned to the circumferential direction in the turbulent region.

This streamline pattern difference is still the most commonly-used criteria to distinguish

the flow status in marine propeller experiments [67, 68].

Using oil-film interferometry, Schülein et al. [69] obtained the friction coefficient

on a whole blade of a high-speed aeronautic propeller. Some fine flow structures, not

only in the attached flow but also in the separation bubble, are also clearly visualized in
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their paper. However, these works are more focused on transition locations on propeller

blades instead of the transition process itself.

There are also numerous of CFD studies about the transition on propeller blade.

At present, almost all those studies rely on the RANS, where transition models are

usually used to capture the boundary layer transition. Transition models in the RANS

usually include empirical correlations and their effectiveness depend on the transition

scenarios [70, 71]. Therefore, the understanding of possible transition mechanisms is

vital for modeling the transition problem. One of the most popular transition models is

γ − Reθ model developed by Menter et al. [72]. Bhattacharyya et al. [68] shows that

the inclusion of γ − Reθ model results a better agreement with experimental paint test

in terms of flow patterns on the propeller. Pawar and Brizzolara [73] show that γ−Reθ

is able to correctly predict the complex flow phenomena on propellers like leading edge

separation. However, the inlet condition need to be tuned RANS in order to get a better

agreement with experiment. In the Moran-Guerrero et al.[74], they investigated the

boundary layer transition on a propeller using γ − Reθ that is able to take cross-flow

into account. They show that the addition of cross-flow terms in the γ−Reθ model can

promote the transition onset and result a larger turbulent region.

Interaction with cavitation

The cavitation is perhaps the most important and challenging problem on ship pro-

pellers. As mentioned above, propellers work based on the pressure difference between

the two sides of the blades. When the pressure on the suction side decreases too much

locally, the fluid could become vapor rapidly. When the bubble ( or cavity ) filled with

vapor is convected to downstream where the ambient pressure is large, it collapses. Dur-

ing the implosion, there is usually a high speed water jet which can reach supersonic

speed. If the water jet hits the propeller, it exerts a considerable force on the body. Be-

cause the cavitation can generate numerous bubble, it is a main cause of propeller wear

and failure.

Figure 1.20 shows the typical Cp distribution on the suction side of a blade section.
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Figure 1.20: Illustration of the suction side Cp, flow structure and the cavitation on
hydrofoil sections.

When the AoA is large, a low pressure region forms near the leading edge. If the

pressure is small enough, a large, quasi-steady cavity of vapor could appear. On a

whole blade, this forms so-called sheet cavitation as shown in the figure 1.21a. If the

pressure is small locally and there is nuclei, bubble cavitation would appear (1.21b).

(a) (b)

Figure 1.21: (a)Sheet cavitation (b) Bubble cavitation. From [75]

In the transition flow region, the pressure fluctuates at a significant magnitude. Pre-

vious studies show that the cavitation might occur either at the location of minimum Cp

or at the transition region [76]. The fluctuation in the laminar separation bubble might

affect the inception of sheet cavitation [77, 78, 79] whereas the turbulent spot during
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transition can affect the bubble cavitation [75].

1.7 Summary

At the beginning of this chapter, we introduced some basic fluid dynamic concepts such

as airfoil aerodynamics, boundary layers and the laminar-turbulent transition. Then we

explained the origin of cross-flow on the rotating disk and its transition.

After having pointed out the similarity between the rotating disk and HAWTs and

marine propellers, we reviewed the related works on rotating blades’ boundary layer.

Although many works has been done, they are more focused on the transition location

on HAWT and propeller blades. Little is known about the transition process itself on

rotating blades.

Indeed, the complex operating conditions, twisted geometries and unsteadiness make

the accurate measurements of the boundary layer profile and transition by experiments

to be very difficult. On the other hand, CFD offers a feasible approach, which can get

the full information of the flow fields. To the best of our knowledge, there is no numer-

ical simulation which fully resolve the laminar-turbulent transition on rotating HAWT

or propeller blades. This work aims partially fill this gap.
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Chapter 2

Methodology

In this chapter, we will first present the stability theory. Then we offer a description of

Spectral Element Method, which is the main numerical tool used in this thesis. How-

ever, both subjects are so developed that it is impossible to give an extensive explana-

tion. Therefore, we will focus on the basic concepts and terminology. References are

given as much as possible.

2.1 Hydrodynamic instability

Stability theory studies the response of a system when it is disturbed. The toy in figure

2.1 together with a horizontal plane define a stable system. The base state of the toy

is simply stationary. Any disturbance added to it would decay due to frictions and the

system would finally return to the base state. It likes the Gömböc which would always

return to the same position.

The laminar-turbulent transition is usually accompanied by the amplification of

small disturbances. The hydrodynamic instability theory attempts studies the evolution

of small disturbances in the laminar flow. If the disturbance increases in its amplitude,

the laminar base flow is said to be unstable and could transition to turbulence. The

development history of the linear instability theory can be found in the monograph of

Drazin and Reid [18].
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(a) (b)

Figure 2.1: (a) A traditional Chinese roly-poly toy (A-person-won’t-fall). It is an ex-
ample of a stable system. From taobao.com (b) The Gömböc, which is a homogeneous
body having just one stable and one unstable point of equilibrium. From Wikipedia.

2.1.1 The Linearized NS equations

The low-speed motion of Newtonian fluid is governed by the incompressible Navier-

Stokes equations, which can be written as:

∇ ·U b = 0

∂U b

∂t
+ U b · ∇U b = −∇p+

1

Re
∆U b

(2.1)

Suppose that we have a laminar base flow field (U b, pb) which satisfies eq. 2.1.

After introducing a perturbation (U ′, p′) to the base flow, the total flow field (U ′ +

U b, pb + p′) also satisfies eq.2.1, which now is written as:

∇ · (U b + U ′) = 0

∂(U b + U ′)

∂t
+ (U b + U ′) · ∇(U b + U ′) = −∇(pb + p′) +

1

Re
∆(U b + U ′)

(2.2)

Subtracting eq. 2.1 satisfied by the (U b, pb) from eq. 2.2, we obtain the governing equa-

tions of the disturbance (U ′, p′). Because the amplitude of the disturbance is generally

very small, the nonlinear terms of the disturbance can be neglected. The Linearized NS
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Figure 2.2: Plane Poiseuille flow. The height is normalized by the half wall distance.
The velocities is normalized by the centerline velocity.

equation can be written as:

∇ ·U ′ = 0

∂U ′

∂t
+ U ′ · ∇U b + U b · ∇U ′ = −∇p′ + 1

Re
∆U ′

(2.3)

By solving eq. 2.3, we can obtain the evolution of a perturbation in the laminar base

flow. If the amplitude (or energy) of the perturbation increases, then we say that the

base flow is unstable. However, eq. 2.3 are still a set of Partial Differential Equations

and are elliptic. Solving them is as expensive as solving the original NS equation.

2.1.2 Linear Stability Theory

With additional assumptions, eq. 2.3 can be further reduced. Consider the plane

Poiseuille flow in a channel formed by two parallel walls, which is shown in figure

2.2 and has a steady base flow solution:

U b = (U b
x, U

b
y , U

b
z ) = (1− y2, 0, 0)

pb = −2x/Re+ C.

(2.4)

The Re is based on the centerline velocity and the half height of the channel.

Suppose the disturbance had a wave form in the streamwise and the spanwise direc-
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tions, it can be then written as:

U ′ = Û(y)ei(βz+αx−ωt) + c.c.

p′ = p̂(y)ei(βz+αx−ωt) + c.c.

(2.5)

where α and β are complex wave-numbers of the disturbance in streamwise and span-

wise (or radial) directions respectively, and ω is a complex frequency. Û and p̂ are the

shape of the disturbance along y, or, eigenfunction. If αi < 0, βi < 0, or ωi > 0, the

wave-amplitude in eq. 2.5 would grow exponentially either with time or space.

Substitute eq. 2.4 and eq. 2.5 into equations 2.3 and rearrange the result, we can

obtain the O-S (Orr-Sommerfield) equation [80]:

{(D2 − k2)2 − iαRe[(U b
x − ω/α)(D2 − k2)−D2U b

x]}U ′y = 0 (2.6)

where D is the differential operator in y direction. k = α2 + β2.

The O-S equation is a fourth order Ordinary Differential Equations (ODEs). It de-

fines an eigenvalue problem in that the solution U ′y (eigenfunction) only exists with

certain values of ω, α, and β. In the spatial mode analysis, ωi is set to be 0. If the

imaginary part of the streamwise wave-number αi is negative, the flow is unstable and

the disturbance grows along streamwise direction.

(a) (b) (c)

Figure 2.3: Example waves with different wave-vector. The inviscid flow is in x direc-
tion. (a) k = (1, 0) This wave pattern is usually seen in the T-S wave transition. (b)
k = (1, 1) This pattern can be observed in the oblique transition. (c) k = (0, 1) This
pattern is usually seen in the cross-flow transition.

Different transition mechanisms usually involve the amplification of different pri-
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mary instabilities, which exhibit variant wave patterns. Figure 2.3 shows three patterns

with different streamwise and spanwise wave-number combinations. In the T-S wave

transition, the wave-vector k = (αr, βr) of the unstable wave is usually parallel to

the main flow. Whereas in the cross-flow transition, the wave-vector of the vortices is

usually close to be perpendicular to the main flow direction.

The 3D boundary layers usually have more component than just the streamwise

velocity. In that case, the final governing equation of linear stability analysis is usually

a system of ODEs instead of the O-S equation ([81]). However, all the concepts in O-S

equation are still valid and the final system is an eigenvalue problem too.

2.1.3 Further notes on LST

The parallel assumption on base flow

The above derivation of O-S equation relies on two assumptions. Firstly, the base flow

only has a streamwise component and is uniform along z and x directions. The bound-

ary layer flow, e.g. Blasius solution, is usually not uniform in streamwise direction.

However, the streamwise variation of the flow is generally small and can be neglected

(the local parallel assumption). Therefore, the O-S equation is still applicable.

LST is a local analysis method in that it depends only on the velocity profile at

one location. In certain situations, the base flow’s variation in streamwise or spanwise

direction could not be neglected (e.g. flow around roughness elements). For such flows,

the Global Stability theory is developed (see e.g. [82]), where the base flow and the

eigenfunction are 2D or 3D.

The normal mode assumption on the disturbance

The second assumption in LST is that the disturbance can be written in wave forms.

This is referred to as normal mode analysis. It implies that the small disturbances

with different wave-numbers grow independently and do not interact with each other.

Whereas this is true for the T-S wave and cross-flow transitions, other growing mecha-

nism can play an important role in other flows (for instance Couette flow [83]).
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Figure 2.4: Energy cascade in turbulent flow. k is the wave-number. The larger k is,
the smaller the length scale. The green bars represent the resolved scale ranges and red
bars modeled scale range in different simulation strategies.

Despite the laminar-turbulent transition observed in numerical and experimental re-

sults, the LST of Couette flow gives no unstable eigenvalue. One of the explanations of

this paradox is the non-modal growth theory, where two decaying modes could result a

transient growing disturbance [80, 83].

2.2 Comparison of different simulation strategies for tran-

sitional flows

With the advent of high performance computation, the numerical simulation becomes

an indispensable research method in fluid dynamics. The numerical simulation provides

many observations and insights on the boundary layer transition. In stability analysis,

the numerical simulation is also needed to obtain the base flows around complex ge-

ometries.

Transitional flows and turbulent flows share many similarities. Although we focus

on the laminar-turbulent transition of the boundary layer, it is necessary and useful to
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firstly introduce the basic concepts in turbulent simulation. One of the biggest chal-

lenges to simulate turbulence is its multi-scales nature. From the perspective of the

energy, the kinematic energy in large eddies is successively transferred to smaller ones

as they break into smaller eddies. This process continues until the energy being dissi-

pated by the viscous effect at the smallest scales. Figure 2.4 illustrate this process.

It can be shown that the ratio between the large eddy length scales and dissipation

length scale isRe3/4 [84]. This implicates that if one wants to resolve all the flow details

in 3D, the total mesh pointN3 is of the order ofRe9/4. Considering that the time-step dt

usually has to be smaller when the mesh is finer, the total operation isO(Re3(logRe3))

[85]. If the Re doubles, the computational cost increases by a factor of 11! For a

MegaWatts (MW) wind turbine, the Re based on total blade length is O(1× 107). The

Re of a modern airliner is O(1 × 108). Even with modern cluster computers, there is

no way to directly simulate the turbulent flow with such large Re. In short, the demand

for faster calculation is insatiable in the fluid dynamic.

2.2.1 RANS

For engineering applications, we are often only interested in the time-averaged forces

and moments induced by the flows, therefore there is no need to resolve all the flow

details. The Reynolds Averaged Navier-Stokes(RANS) equations are based on this idea.

RANS equations describes the time-averaged behavior of turbulent flows. However,

RANS equations are not closed. The relation between the Reynolds stress Rij and the

fluctuation velocity need to be described by empirical models [86]. There are many

models exist but their effectiveness generally depends on the flows. Most of RANS

models are based on the concept of eddy viscosity, which relates the Reynolds stress to

the mean flow quantities.

As shown in figure 2.4, RANS only resolves the very large scale motions of tur-

bulent flow. Any unsteady small scale motion is averaged out. As a result, it is not

able to capture the laminar-turbulent transition process. To take into account transition,

extra transition models are often employed in RANS simulations. Almost all the tran-
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sition models are based on some empirical relations between local flow quantities and

transitions.

2.2.2 LES

Large Eddy Simulation (LES), as its name indicates, aims to resolve the large energy-

containing motion of turbulent flows (figure 2.4). It is firstly introduced in the sim-

ulation of atmospheric flow [87]. As the development of more and more powerful

computers, it is making its way towards industry applications.

Although the large motions of the turbulence are geometry dependent, according to

the Kolmogorov theory, the small scale motion of turbulent is universal whenRe is suf-

ficiently large. Therefore we can only capture the geometry-dependent large motions,

while leave the small scale motion’s effect to be modeled. Since their effect is mainly

dissipating the energy, the modeling can be realized by introducing a kind of artificial

viscosity.

A finer grid than RANS is needed in LES, but the gird size is usually larger than

the dissipation scale. Therefore the LES models are sometimes called sub-grid models

because they emulate the effect of the eddies smaller than the grid. Generally speaking,

there are two broad classes of LES models.

Explicit LES

The traditional LES (or Explicit LES) solves the filtered NS equations [88]. Similar to

RANS, filtered NS equations are not closed. Explicit LES try to model the subgrid stress

τij from the resolved flow field. In the classic Smagorinsky model, an eddy viscosity

term νr is added to the kinematic viscosity:

νr = (Cs∆)2S (2.7)

where ∆ is filter width, S =
√

2SijSij is magnitude of strain-rate tensor Sij of the

resolved flow. The coefficient Cs is Smagorinsky coefficient and is around 0.1− 0.2.
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A constant Cs, does not apply for transitional flow because the subgrid stress (unre-

solved stress) is different for laminar and turbulent flows. In the dynamic Smagorinsky

model, the Cs is determined by local resolved flow field and adjust accordingly [89]

[90]. Because the result coefficient is usually quite volatile across the field, averaging

techniques are usually needed in the dynamic Smagorinsky model [91].

Implicit LES

Implicit-LES (ILES) solve the unmodified NS equations directly. However, the mesh

resolution in ILES is not fine enough to capture the smallest scale of the turbulence.

The numerical dissipation is used as a subgrid model.

The differential equations after discretization are not the same as the original ones.

For relatively simple schemes like finite difference method, it can be shown that the

truncate error of a convective problem includes even-order derivatives, which behaves

like diffusion terms [86].

Consider the following convection problem, which is adapted from [92]:

vt + vx = 0 x ∈ (0, 1)

v(x, 0) = sin40(πx) x ∈ (0, 1)

v(0, t) = v(1, t) t ≥ 0

(2.8)

Equation 2.8 is a pure convection problem. The initial condition v0 = sin40(πx)

creates a localized wave-shape. The exact solution of this equation is v = v0(x − t),

which always has the same wave shape as the initial condition. Because the domain is

periodic at the boundaries, any wave exits the domain from the right boundary would

re-enter the domain from the left.

Figure 2.5 plots the numerical solution of eq. 2.8 obtained by finite difference

method. As can be seen, the amplitude of the wave is damped as it is being convected.

At the same time, the wave is diffused to a lager range as well. However, as mentioned

above, eq. 2.8 is a pure convection problem, the wave shape should stay the same as

being convected. The dumping and diffusion are due to numerical effect. If we define
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Figure 2.5: Solution of the model problem 2.8 at different times. ∆x = 0.005. Time is
discretized using Forward Euler method. Spatial derivative is approximated using first
order upwind finite difference.

the energy of the wave as E =
∫ 1

0
v2/2, its value decreases as the wave being dumped.

Figure 2.6 shows the energy variation as the waves being convected. For smaller mesh

size, the numerical dissipation is smaller.

For more sophisticated numerical schemes, the numerical dissipation also exits.

After tuning, the numerical dissipation is able to serve as a sub-grid model in LES

([93, 94]). This approach is refereed to as Implicit-LES because there is no explicit

LES models in the solver. It is also called as ’Under-resolved DNS (UDNS)’ because

the only difference between ILES and DNS is the mesh resolution. If the ILES mesh is

successively refined, the solutions should be closer and closer to DNS result.

Because there is no explicit filtering operation, ILES is faster than classic LES.

However, the effectiveness of ILES often depends on the numerical method and meshes

[95], [96]. Good familiarity and understanding about the numerical method are often

needed for ILES.

2.2.3 DNS

DNS (Direct Numerical Simulation) solves the NS equations without any turbulence

modeling. Since DNS has to resolve the smallest dissipative scale, it requires very fine
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Figure 2.6: Variation of wave energy with time for different mesh sizes.

mesh. Although DNS is able to tackle flow problems with higher and higher Re since

its birth (see [97, 98]), its applications are still restricted to relatively simple geometry

and relatively low Re. There are very few DNSs which deal with practical industrial

flow problems.

However, DNS provides a non-intrusive way to obtain all the flow information. It

is an important tool to valid theories and develop new turbulent models for RANS and

LES methods ([99, 100]).

The nature of DNS requires low-dissipation schemes such as compact schemes or

spectral method, which will be the subject of the following section.

2.2.4 Choice of the numerical method

In this thesis, we are more interested in the transition process instead of the turbulence.

The DNS up to Kolmogorov scale is not necessary as long as the transition is well

resolved. Therefore, we chose to use LES as the main tool.

Another issue is the choice between the Explicit LES and the ILES. We extended

the original explicit LES model in Nek5000 to general 3D problems. The details are

given in the appendix. However, our tests show that the Explicit LES doesn’t possess

significant advantages over ILES in terms of transition studies. One of the reasons is
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that Explicit LES would result some eddy viscosity as long as there are small structures

in flow fields. However, during the transition, the flow before fully breakdowns has fine

patterns but it is still laminar technically. We don’t want any artificial viscosity in this

situation.

On the other hand, the Explicit LES involves many operations such as filtering,

which can be costly. As a result, the following simulations are based on ILES (or

UDNS). That said, the meshes used are finer than the commonly-seen LES because the

unstable waves during transition are quite small.

2.3 Spectral Element Method

2.3.1 Spectral Method

In spectral method, unknown solutions of differential equations are approximated by the

sum of ’basis functions’. The commonly-used basis functions include Fourier series,

Legendre series, and Chebyshev series. Spectral method has two important advantages.

It has low numerical dissipation and converges fast.

Perhaps the most commonly-seen spectral method is Fourier Spectral Method, where

the trigonometric functions are used as basis functions. It is usually used in periodic

problems. For instance, DNS of 3D homogeneous isotropic turbulence is usually based

on Fourier Spectral Method. Fourier series can be also used only in certain directions

instead of in all of 3 directions. For example, in turbulent channel simulation, one can

use Fourier series in the two directions parallel to the wall and use other methods in the

wall-normal direction [98].

For non-periodic problem, the Fourier Spectral Method can be used with modifica-

tions (e.g. the Fourier expansion is used in stream-wise direction of flat plate boundary

layer in [101]). But basis functions like Chebyshev polynomials and Legendre poly-

nomials are more suitable choices in these cases. One of the earliest application of

Chebyshev method is in hydrodynamic instability [102], where the Orr-Sommerfield

equation is solved numerically.
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However, both the Fourier Spectral Method and the Chybeshev Method are usually

used for single-domain problems with simple geometry. Their lack of geometry flexibil-

ity severely restricts their application in more complex flow problem. This shortcoming

is overcome by Spectral Element Method (SEM).

2.3.2 Spectral Element Method

Spectral Element Method (SEM) is firstly introduced by Patera [103]. It is a hybrid

method combining the geometry flexibility of Finite Element Method and the high ac-

curacy of Spectral Method. The model problem 2.8 is used again to illustrate the basic

idea of FEM. Recall the model problem 2.8:

vt + vx = 0 x ∈ (0, 1)

v(x, 0) = sin40(πx) x ∈ (0, 1)

v(0, t) = v(1, t) t ≥ 0

(2.9)

In SEM, the exact solution of 2.9 is approximated by a series expansion v(t, x) ≈∑N
i=1 ci(t)φi(x), where N is the number of basis functions used in the expansion; φi(x)

is the basis function (or trial function) on [0, 1], ci(t) is the time-dependent coefficient

for the ith basis function. Since this expansion is only an approximation of the exact

solution, there is an error when one plug the expansion into the differential equation:

N∑
i=1

ci(t+ dt)− ci(t)
dt

φi(x) +
N∑
i=1

ci(t)φi(x)′ = R(x) (2.10)

Where the time derivative is approximated using Eular scheme.

We want to minimize the residual R(x) on the domain [0, 1]. This is done with the

help of another function series called test (weight) function ξ(x)j . We require that the
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R(x) be orthogonal to ξ(x)j for every j.

∫ 1

0

ξj(x)R(x) =

∫ 1

0

ξj(x)
N∑
i=1

ci(t+ dt)−
∫ 1

0
ci(t)

dt
φi(x)+

∫ 1

0

ξj(x)
N∑
i=1

ci(t)φi(x)′ = 0

(2.11)

Different choices of the test function lead to different formulations. In collocation

method, the test function ξj is the Dirac delta function δ(xj), where xj is a set of point.

In other word, collocations method requires R(x) to be zero at the points xj .

A more common choice is to let the test function ξ(x) be the same as the trail

function φ(x). This formulation is refereed to as Galerkin method. Rearrange eq. 2.11

and we have:

N∑
i=1

ci(t+ dt)− ci(t)
dt

∫ 1

0

φj(x)φi(x) +
N∑
i=1

ci(t)

∫ 1

0

φj(x)φi(x)′ = 0 (2.12)

For each test function, we have an equation like 2.12. There are totallyN equations.

So we can write them in matrix form:

A~c(t+ dt) = A~c(t)− dtB~c(t) (2.13)

where Aij =
∫ 1

0
φi(x)φj(x) is the mass matrix, Bij =

∫ 1

0
φi(x)′φj(x) is the advection

matrix, ~c(t+ dt) is the solution vector.

Although the trial function and the test function are defined on the global domain,

they are constructed locally. Figure 2.7 shows the trial functions on the global domain

[0, 1] when 3 elements are used. It can be seen that the trial functions φi(x)s are piece-

wise functions and each φi(x) is nonzero in only one or two elements. Inside each

element, Lagrange polynomials ln are used to construct the global trial functions. Once

the trial functions are available, the mass matrix A and advection matrix B can be eval-

uated by Gauss quadrature rule of integration. In fact, A and B are evaluated locally in

each element and then assembled to get the final ones.
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Figure 2.7: The global trail function φi(x) on [0, 1]. The domain is divided into three
elements. Inside each element, 4th order Lagrange polynomial is used to construct the
piecewise global trail function.

In the Spectral Element Method, the Lagrange polynomials li used in elements is

based on Gauss–Lobatto–Legendre (GLL) points. This is the most important difference

with Finite Element Method, which uses even-spaced point. Figure 2.8 shows the five

4th order lis based on GLL points. GLL points are in the domain [-1, 1], but they can

be readily transformed into the domain of any local element. Compared with evenly

distributed points, the space between points near the boundaries is smaller than the

center. This distribution can eliminate the Runge’s phenomenon, which appears on

even-spaced grids. Therefore high order schemes are possible in SEM.

Using GLL Lagrange polynomials is refereed to as the nodal approach because

the coefficients ci equals to the value of v at corresponding nodes. SEM can be also

based on the modal basis, where the functions in each element are the combinations of

Legendre polynomials. Although these two approaches are equivalent, modal approach

could be more convenient when explicit filtering is needed.

Figure 2.9 plots the SEM solution of the advection problem 2.9. Compared with
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Figure 2.8: 4th order Lagrange polynomial on GLL points, li is shifted upwards by 2i.

Figure 2.9: Spectral Element Method solution of the problem 2.9. Six elements, 15th
order in each elements.
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the finite difference solution in figure 2.5, although significantly fewer points are used,

the wave’s shape is not changed much after t = 10. This means that the numerical

dissipation of in the SEM method is quite small. On the other hand, similar to FEM,

SEM has much larger geometry flexibility than Spectral Method.

For 2D and 3D problem, the basic idea of SEM is the same. However, the formulas

in 2D and 3D are much more complex than 1D. Many special numerical treatments are

also necessary. For more information about the formulation and application of SEM in

fluid dynamic, please refer to [104], [105].

The SEM belongs to hp methods. The mesh convergence study and refinement

can be done either by increasing the order of spectrum in the elements (p refinement)

or generating new mesh (h refinement). In this thesis, we rely on p refinement after

obtaining the meshes for elements.

2.3.3 Nek5000

The NS solver used in the present study is Nek5000 [106], which is a highly scalable

solver based on SEM. It is widely used in the studies of hydrodynamic instability and

receptivity problems because of its high accuracy, geometry flexibility, as well as ex-

tensibility.

Nek5000 was developed by Argonne National Laboratory in U.S. several decades

ago. It has been actively maintained and now supports many useful features like de-

forming mesh, conjugate heat transfer, and Magnetohydrodynamics (MHD) equations

etc. Here we offer a description of the two features that is relevant to the present study.

1. The perturbation mode: As we mentioned, the Linearized NS equations 2.3 are

still a set of elliptic PDE. The perturbation mode of Nek5000 solves eq. 2.3 using

similar methods as solving the original NS equations. It supports more than one

disturbance in one calculation. The user needs to provide a pre-calculated base

flow U b.

2. Overlapping overset meshes: Although Nek5000 uses unstructured meshes, the
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(a) (b)

Figure 2.10: (a) An example of overlapping meshes. (This is just a illustration because
there is no need to use two meshes for this simple geometry.) (b) The x velocity of
Walsh’s eddy solution at t = 0.04 obtained using the meshes in figure (a) .

elements has to be hexahedron. As a result, the meshes are usually generated as

structured ones in meshing softwares. Then they are transformed into the format

needed by Nek5000.

For certain complex geometries, it could be very difficult to generated one single

structured mesh even with block-structured mesh. Nek5000 provides an elegant

solution to this kind of problem, which is the overlapping overset meshes tech-

niques.

Figure 2.10a shows an example overlapping meshes. The total domain is a square

with periodic Boundary Conditions (BCs) in both directions. It is filled by two

partially overlapping meshes. The outside mesh is in black and the inside in

red. During the simulation, there are two sessions running simultaneously. One

for each mesh. For the boundaries located in the another mesh, velocity BC is

used and the value specified is interpolated from the another session. For the

implementation details, please refer to [107].

Walsh’s solution [108] is calculated using the overlapping meshes in figure 2.10a.

The result x velocity at t = 0.04 was given in the contour 2.10b. It can be seen

that the flow field is continuous across the boundaries. It looks like that there is

44



CHAPTER 2. METHODOLOGY

only one single domain.

In chapter 5, we will show why this technique is necessary for the marine blade

simulation.

2.3.4 NS equations in the rotating reference frame

For the HWAT and marine propeller blades simulations, it is a natural choice to let the

meshes (therefore the geometry) to be stationary during the calculations. So the moving

mesh is avoided. The effect of rotation is taken into account by solving the NS equations

in the rotating reference frame.

Suppose the velocity of the fluid is W for a stationary observer in inertial frame.

Then W satisfies the NS equations 2.1.

Suppose there is another observer who is stationary to the HWAT or the propeller

(i.e. he or she rotates with the HWATs or propellers). The velocity of the fluid with

respect to this observer is U . W and U are related by:

W = ω × r + U (2.14)

Where r is the position vector of the fluid with respect to the second observer. Substitute

2.14 into 2.1 satisfied by W , we will get:

∇ ·U = 0

∂U

∂t
+ U · ∇U = −∇p+

1

Re
∆U − ω × (ω × r)︸ ︷︷ ︸

Centrifugal term

− 2ω ×U︸ ︷︷ ︸
Coriolis term

(2.15)

The second observer defines a rotating reference frame, in which the NS equations

become 2.15. Compared with the NS equation in the inertial reference frame, two

additional terms arise because of rotation. The centrifugal force ω × (ω × r) depends

on the ω and r. The Coriolis force 2ω × U depends on ω as well as the local flow

velocity U .

In the following sections, all the velocities refer to the velocity in rotating reference

frames. As mentioned before, Nek5000 has a good extensibility. The centrifugal and
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Coriolis terms is modeled by the volume force in the simulations. It should be also

noted that the rotation axis of the HAWT blade and the propeller blade are aligned to

z direction. I.e. ω = (0, 0, ωz). As a result, The velocity component in z direction

Uz, which is parallel to the angular velocity vector, does not affect the Coriolis force.

Similarly, z coordinate does not affect the centrifugal force.

2.3.5 IDRIS

All the simulations in this thesis are realized on the cluster computers in the IDRIS

(Institut du Développement et des Ressources en Informatique Scientifique) located in

Paris, France. It has 1528 HPE XA730i nodes and the peak power can reach 4,89

PFlop/s. It also has 1292 NVIDIA GPUs. At the time of writing, IDRIS ranks 54th on

the top500 list of the fastest computer in the world.

2.4 Summary

This chapter described the main tools at our disposal for the boundary layer transition

study. We first introduced the linear stability theory and shortly discussed its limitation.

Then we described the different strategies in the turbulent modeling with emphasis on

the correlation between numerical dissipation and ILES.

We demonstrated the basic idea of SEM using a simple model problem. It is a

Galerkin method so has a good geometry adaptivity. On the other hand, it is a spectral

method and therefore has low numerical dissipation. The code Nek5000 used in the

present study is introduced. At last, we briefly introduced the super computer we used.
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Rotating HAWT blade

This chapter presents the results on a HAWT blades. We will first describe the set-ups

of the simulations such as the blade, the parameters as well as the meshes. Then the

main results from LES and stability analysis are given. Followed by discussion and

implication of the present results.

3.1 Set-ups of the simulations

3.1.1 The HAWT blade

The model under investigation is the LM38.8 blade from the DanAero MW project,

whose section is a series of NACA63-4XX profiles (XX is the maximum thicknesses).

It has a 1.24-meter extension in the root, so the total span length R is 40.04 meter. The

simulation parameters are taken from the first round of calculations of DanAero MW

experiments: the incoming wind velocity U∞ is uniform and equals to 6.1m/s, the

blade rotates with an angular velocity ωz = 12.3rpm. However, to make the simulation

feasible, we reduced the Reynolds number by one order. For that purpose, the kinematic

viscosity ν is set to 2 ∗ 10−4m2/s, which is about one order larger than that of air. The

induction effect of the wind turbine is not taken into consideration in the present study.

However, it can be included by changing the normal incoming velocity U∞ to 9.15m/s

if the induction factor a = 0.33 for the ideal wind turbine is used.
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Figure 3.1: Variation of Rec, Ur, Ut along the span (Velocities are normalized by U∞).

During the simulations, the blade is kept stationary, whereas the blade rotation is

taken into account by solving the Navier-Stokes equation in rotational reference frame.

The coordinate system used is shown in figure 1.16. The blade’s span direction is

aligned with y axis. At each span section y, the local effective velocity Ut has two

components: the velocity of wind U∞, which is in z direction; and a component due to

rotation Ur = rω, which is in x− y plane. Figure 3.1 shows the variation of Ur and Ut

along the span. The variation of chord Reynolds’ number Rec = Utcl/ν based on local

chord length cl is also plotted in the figure.

Figure 3.2: The first version of the mesh. The domain encloses the whole blade. How-
ever, this mesh is too large and lots of elements are wasted because we are only inter-
ested in the boundary layer.
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3.1.2 The meshes and boundary conditions

Even with the reduced Reynolds number, it is still impossible to resolve the whole blade

with our computational capacity (please see figure 3.2). So we restrict the simulation

domain from y = 15m to y = 35m, where the chord Reynolds’ number is roughly

constant (figure 3.1). For Section5 and Section8 marked in figure 3.1 (the names follow

the convention in DanAero MW project), 2D airfoil (uniform span and without rotation)

wind tunnel measurements of pressure coefficient Cp are also available for each section.

In the simulation, 42 sensors are put along Section1 to record the variation of flow

quantities with time.

Figure 3.3 shows the computational domain and mesh. As can be seen in figure 3.3a,

the mesh in span direction is concentrated on the center of the blade. The coarse mesh

near the root and tip should dissipate any large nonphysical flow structures induced by

the inaccurate BCs. Local mesh refinement in wall-normal direction for the boundary

layer is shown in figure 3.3b. There are 230 elements in spanwise direction, 25 elements

in wall-normal direction, and 78 elements around the airfoil in the streamwise direction.

The total element number is 0.67 million (wake mesh included), which means the total

degree of freedom is 0.49 billion if order 10 is used in each element.

On the blade surface, non-slip wall BC is applied. Outflow BC is used on the ver-

tical surface behind the trailing edge. Dirichlet BC is used for the surface around the

blade. The BC on the two ends of spanwise direction is hard to define because the

computational domain is truncated from a whole blade and the flow quantities on those

boundaries are not known. We simply impose Dirichlet BCs on them. On all the Dirich-

let BCs, the velocities at position (x, y, z) are specified as Ux = ωzy, Uy = −ωzx, and

Uz = U∞, which are the sum of unperturbed rotation and wind velocities. A smaller

domain simulation shows that the boundary conditions at two span ends have negligible

influence on the flow in the center region.
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(a)

(b) (c)

Figure 3.3: The mesh for the turbine blade

3.1.3 The 2D airfoil simulation

To better illustrate the effect of rotation, an airfoil simulation is also performed in this

paper. The airfoil used is NACA63-420, which is the same as the LM38.8 blade section

at y0 = 25.24m(y0/R = 0.63). It is extruded to 1 meter in y direction (spanwise

direction). Periodic BCs are used on the two span ends for this airfoil simulation. The

incoming flow is uniform along the span and is the same as the local incoming flow at y0

of the 3D blade case. Velocities on the Dirichlet boundary are specified as Ux = ωzy0,

Uy = 0, and Uz = U∞.

The mesh for the airfoil simulation is uniform in the spanwise direction and has a

roughly same resolution as the 3D blade simulation. The blade rotation is not consid-

ered. When airfoil sections are tested in wind tunnels, it usually has a uniform span

and does not rotate. The airfoil simulation serves the purpose of replicating wind tunnel

experiments.

3.2 Results

As mentioned in the section 2.3.3, the NS equations are solved in the open source code

Nek5000. For the 3D blade simulations, the Coriolis and centrifugal terms are included.

The solver NEK5000 is based on the Cartesian coordinate. However, when circum-
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ferential and radial velocities are refereed to, the velocities in x − y plane are trans-

formed into the cylindrical coordinate system that shares the same z as the Cartesian

frame. Obviously, without the blade, radial velocity ur would be zero.

A proper local coordinate system is also needed when velocity profiles are con-

cerned. In figure 1.16, n is the wall-normal direction of a point on the blade wall.

Streamwise velocity is obtained by projecting circumferential velocity and Uz to wall

tangential direction (perpendicular to n). The local radial velocity is the same as that

in cylindrical coordinate. Another note is that all the velocities are normalized by the

incoming flow velocity U∞.

3.2.1 The influence of BCs at two ends

To evaluate the influence of BCs at span end on the flow field in the center blade,

simulation of a more truncated case is performed. Its span range is from y = 18m to

y = 32m. All the set-ups for this smaller case is the same as the standard case except

for the domain size.

Figure 3.4 compares the velocity profiles at center blade. Both simulations are

UDNS with spectrum order 8. The streamwise velocities at pressure side agree so well

that they are indistinguishable. On suction side, a small difference of the two results

can be observed near the wall. There is a weak separation for standard domain results,

whereas the smaller domain profile is barely attached.

The radial velocity profiles in figure 3.4b are typical cross-flow profile, i.e., the

maximum velocity appears inside boundary layer. So an inflectional point exists and

the flow is inherently unstable. There are some small differences between the two

simulations in the figure 3.4b, but their shapes and magnitudes agree quite well. It

can be concluded that the domain size is large enough to avoid that the BCs at the span

end affect the flow field in center of the blade.
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(a) (b)

Figure 3.4: Boundary layer velocity profile at x/cl = 0.4 y = 25.24m(y/R = 0.63),
(a) streamwise velocity (b) radial velocity

3.2.2 Mesh Convergence

For the standard domain 3D rotating blade, simulations have been performed with three

different orders 6, 8, 10. The order 6 results are omitted for the sake of clarity. Figure

3.5a plots the pressure coefficients along Section8 from the simulations and the 2D

wind tunnel experiment. It can be seen that the numerical simulation results overlap

with each other in most region. The only discrepancy appears when there is sudden

pressure increase (x/cl = 0.4 on suction side and x/cl = 0.8 on pressure side). The

order 8 result fails to capture the small pressure plateau on the mid-chord of suction

side, which is caused by separation bubble. On the pressure side, the separation happens

quite late and is near the trailing edge.

The chord Reynolds’ number of wind tunnel experiments is 1.5 million, which is

five times larger than the Rec of numerical simulation. Despite the Reynolds numbers

difference, the Cp agrees well with each other. In fact, when the Rec is large enough,

the boundary layer is thin enough to not affect Cp very much.

Figure 3.5b compares the velocity profile at the blade center. The pressure side ve-

locity profiles are laminar flow and both simulations give almost the same result. On

suction side, where the flow is turbulent, the results do not match each other. Although

the boundary layer’s thickness and edge velocity are similar, it seems that order 8 so-
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(a) (b)

Figure 3.5: Comparison of results obtained by different orders (a) pressure coefficient
along Section8 (y/R = 0.75), normalized by local incoming flow, x coordinate is normal-
ized by local chord length (b) velocity profile at x/cl = 0.5, y = 25.24m(y/R = 0.63)

(a) (b)

Figure 3.6: The spectrum of the circumferential velocity signal (a) x/cl = 0.36, Sec-
tion1, Suction side. (b) x/cl = 0.63, Section1, Suction side.

lution does not fully capture the turbulent profile. Overall, the mesh resolution is fine

enough to give a mesh-independent laminar solution.

Figure 3.6 compares the spectrum of the velocity signals from the order 8 and order

10 results. At x/cl = 0.36, although the flow is still laminar, the TS wave has developed

a significant amplitude (which will be analyzed further in the next section). Therefore

there is a frequency peak in both simulations (figure 3.6a). However, the frequency

peaks differ slightly in their values, which means that the unsteady transitional flow is

not fully mesh independent. At x/cl = 0.63, the flow is fully turbulent. Both simula-
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tions show similar spectrum distributions. As expected, the order 10 resolves more high

frequency components than order 8 in the figure 3.6b.

2D simulations with different orders are also performed. In the follows sections,

only the highest resolution (order 10) results will be shown.

3.2.3 Flow fields

(a) (b)

(c) (d)

Figure 3.7: Averaged velocity contour (a) 3D blade simulation, circumferential veloc-
ity on r = 25.24m (b) The same as (a), radial velocity (c) 2D simulation Ux (c) 2D
simulation, spanwise velocity Uy

Figure 3.7 shows the velocity distribution of the 2D and 3D simulations. The cir-

cumferential velocity of 3D blade simulation (figure 3.7a) is almost the same as the Ux

in 2D simulation(figure 3.7c). They are typical flows around 2D blade. The flow is first

decelerated near stagnation point. On both suction side and pressure side, the maximum

velocities are found around the maximum thickness position. Inside the boundary layer,
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a separation bubble can be found, where there is negative streamwise velocity.

However, unlike 2D airfoil flow, where the spanwise velocity is zero in laminar

region, a radial velocity can be found around the rotating blade (figure 3.7b). As men-

tioned above, the radial velocity arises because the Coriolis force and centrifugal force

can no longer keep fluid doing circular motion. Outside boundary layer, the radial

velocity is the largest near stagnation point. This results from potential flow effect,

the stream-wise velocity is decreased near stagnation point, as a consequence, Coriolis

force decreases and fluid moves outward due to centrifugal force.

Inside the attached boundary layer, the radial velocity is negligible. In contrast, the

radial velocity can reach 0.2 in separation bubble. However, at r = 25, the incoming

flow velocity is around 4.5. So the largest radial velocity is still smaller than 5 percent

of incoming flow.

(a) Section1 (y/R = 0.62) (b) Section5 (y/R = 0.47)

Figure 3.8: Comparison of pressure coefficients of 3D simulation, Airfoil simulation
and wind tunnel measurement

Figure 3.8 shows the chord-wise Cp distribution at two sections. An important ob-

servation from figure 3.8 is that the Cp of 3D simulation agrees well with both the air-

foil simulation and the wind tunnel test. The rotating blade simulation Cp is almost the

same as the airfoil simulation result (figure 3.8a). However, this is not against rotation

augmentation because it only happens when there are large flow separations.

In figure 3.8b, two pressure plateaus are marked out on the numerical results. Pres-

sure plateaus usually indicate laminar separations bubble at the corresponding locations.
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However, there is no pressure plateau in the experimental Cp. As mentioned earlier, the

wind tunnel test’s Reynolds’ number is larger than that in the numerical simulation.

Together with free-stream turbulence, the boundary layer transition happens earlier in

the experiment. After the transition, the flow re-attaches and there is no separation.

(a) (b)

(c) (d)

Figure 3.9: Velocity profile. red-dashed line: 3D rotating blade; black-solid line: Airfoil
(a) Streamwise velocity, Suction side (b) Streamwise velocity, Pressure side (c) Cross-
flow velocity, Suction side (d) Cross-flow velocity, Pressure side

Figure 3.9 compares the boundary layer velocity profiles of 3D and airfoil simula-

tions. The 3D simulation profiles are at y0 = 25.24m, where the section shape is the

same as the airfoil case. The two simulations’ streamwise velocity agrees surprisingly

well at different locations for both pressure and suction side. The boundary layer flows

are laminar at all the locations except for the location x/c = 0.6 on the suction side,

which is turbulent flow. From the leading edge towards the trailing edge, the laminar

boundary layer becomes thicker and the separation begins to develop. However, the
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separations on both sides are very weak.

In laminar region, the cross-flow velocities of the airfoil simulation are zero since

there is no spanwise fluid motion. As a contrast, although the cross-flow velocities are

very small, they are not exactly zero for the 3D rotating blade result. Outside boundary

layer (inviscid flow region), the radial velocity is positive near the leading edge (x/c =

0.2), where the circumferential velocity decreases because of stagnation point. Near

the maximum chord location on suction side (x/c = 0.4), because the circumferential

velocity is larger than incoming flow, the Coriolis force outperforms centrifugal force

and pull the fluid inward, and the radial velocity is slightly negative.

The radial velocities inside the boundary layer are typical cross-flow profiles, i.e.,

the maximum velocity appears inside the boundary layer. So an inflectional point exists

and the flow is inherently unstable. On the suction side, the radial velocity is small

near the leading edge, where the flow is fully attached. It progressively increases until

reaching its maximum value (Ur = 0.2 ) just before the separation bubble (x/c = 0.4).

However, the largest radial velocity is lower than 5% of the corresponding stream-

wise velocity. Although the cross-flow profile is inherently unstable, its magnitude must

be large enough to overcome the viscous effect. In rotating disk and swept wing bound-

ary layers, the cross-flow velocity has to reach 10%−20% of the streamwise velocity to

intrigue cross-flow transition. Furthermore, the cross-flow component has to maintain a

rather long distance to let the disturbance grow. The current result shows that cross-flow

transition is unlikely to happen in rotating HAWT blade since cross-flow’s magnitude

is too small and it is restricted to the separation region which is quite short.

3.2.4 Boundary layer instability and transition

Figure 3.10 gives an overall view of coherent structures at the suction side of the blade.

The first noticeable feature is the spanwise streaks around mid-chord of the blade, which

are formed by TS waves during laminar-turbulent transition. After the transition, small

structures appear in the turbulent region. An interesting feature is that the TS waves are

not perfectly aligned to the spanwise direction, i.e., the spanwise wave-number of the
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Figure 3.10: Coherent structure on suction side. Iso-contour of λ2, colored by circum-
ferential velocity . (The blade is not to scale)

TS wave is not zero.

From the coherent structures, the flow field can be divided into three regions. In the

two regions near the tip and root, the mesh resolution in y direction is not enough. As

a result, the coherent structures show some patterns related to the mesh (please refer

to figure 3.3). For the center portion from around y = 23 to y = 27, the laminar to

turbulent transition and the small turbulent structures are captured.

The skin friction on the suction side of the blade is given in figure 3.11. The cf near

the tip and the root is effected by the non-physical boundary condition and is unusually

large. But their regions are restricted to the first two layers of the mesh in spanwise

direction, which is another evidence that the non-physical BC has a neglected effect on

the blade center.

Along the spanwise direction, The cf roughly increases at large y because that the

local chord Reynolds’ number increases. The boundary layer is relatively thiner at

larger y. Along one section, the cf is large near the leading edge because that the
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Figure 3.11: Skin friction contour. Normalized using U∞

boundary layer is very thin. As its thickness increases downstream, the friction de-

creases accordingly. At the mid-chord, the friction is slightly negative because of the

weak separation. After the transition, the cf increases sharply and decreases gradually

again towards the trailing edge. This trend is most obvious in the resolved region.

Figure 3.12 gives a close-up view of the coherent structures at the suction side of

the blade mid-span as well as the airfoil case. The spanwise vortices are formed by

TS waves. 3D and 2D simulations show similar characteristics. In both simulations,

the TS waves incept around x/cl = 0.4. They grow quickly and break down after

three waves length. After the breakdown, small structures appear and the flow becomes

turbulent. For the airfoil simulation, the vortex shedding is also visible. The TS waves

in the 2D simulation are 2D (the streak are perfectly aligned to spanwise direction and

therefore the spanwise wave number is zero), whereas the TS waves in 3D rotating

blade simulation are 3D waves. As a consequence, one end of TS waves can be seen.

However, the small difference between 2D and 3D flow is hardly of any importance

from an engineering perspective since the transitional flow region is rather small.

Figure 3.13 gives the spatio-temporal distribution of streamwise velocity signals

recorded during the simulations. Again, the 2D and 3D simulations are similar. The

sensors are inside boundary layers and have a roughly constant distance to the wall. As

a result, the velocity signal is large near the leading edge since the boundary layer is

thin. It decreases until x/cl = 0.3 as the boundary layer grows thicker and thicker. The
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(a)

(b)

Figure 3.12: Close up view of coherent structure on suction side (a) 3D rotating blade
simulation (b) Airfoil simulation

signals for x/cl < 0.3 do not vary with time since the flow is laminar. Near x/cl = 0.35

the TS wave incepts so the signals become time-periodic. The frequency of 2D and 3D

simulation is a little different. 2D TS wave’s frequency is around 75 Hz and 3D TS

wave’s frequency is around 65 Hz. After the breakdown of TS waves near x/cl = 0.40,

the signals become chaotic in both cases.

Figure 3.14 shows linear stability analysis results. The base flow used is at x/c =

0.3 on suction side of the 2D and 3D simulations. The Coriolis and centrifugal terms

are not included in the linear stability equation. Figure 3.14a shows the variation of

growth rate of a 2D wave (spanwise wave number βr = 0) with frequency. The unsta-

ble wave found is obviously TS wave instead of cross-flow mode since βr = 0. The

frequency observed in simulations are marked with arrows. Although there is a differ-

ence between the growth rates between 2D and 3D simulations, they follow the same
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(a) (b)

Figure 3.13: Spatio-temporal diagram of velocity signal (a) circumferential velocity
from 3D simulation at y = 25.24m (the sensors are along Section1) (b) Airfoil simula-
tion (the sensors are located along the mid-span section)

trend with variation of frequency.

When the base flow is 2D (no cross-flow component), the most unstable wave is 2D

(βr = 0), and 3D unstable wave’s growth rate is symmetric along βr = 0. However,

as shown in figure 3.14b, when cross-flow exist, the most unstable waves βr 6= 0. This

might be the reason that the TS wave in figure 3.10 is not aligned to spanwise.

The flow structures on the pressure side of the blade is given in figure 3.15. As

indicated in the Cp distribution, the flow transition happens later than the suction side.

This is a result of the more favorable pressure distribution along the chord. Similar to

the suction side, the weak separation bubble is basically 2D.

3.3 Summary

In this chapter, numerical simulations resolving the boundary layer laminar-turbulent

transition are performed for the flow around the rotating LM38.8 blade. A correspond-

ing airfoil simulation with a uniform span is also performed to assess the effect of

rotation on this laminar to turbulent transition. It is shown that for the current configu-

ration, the local flow field and pressure distribution around the 3D rotating blade can

be well approximated by the corresponding 2D airfoil flow except for the small radial
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(a) (b)

Figure 3.14: Variation of growth rate of unstable wave with (a) ωr ( Normalized by
1ms. spanwise wave βr number is zero. The arrows mark out the observed ones in the
simulations) (b) spanwise wave number βr (ωr = 0.4)

velocity component.

In the rotating 3D blade boundary layer, a radial velocity arises because the Coriolis

and centrifugal forces cannot keep fluid doing a perfect circular motion. This is very

similar to the rotating disk flow introduced in section 1.5. The radial flow is larger in

separation bubbles than in attached flow regions. This is in agreement with conclusions

from rotating helicopter blades experiments [52]. The radial velocity in separation can

be analyzed similarly to the rotating disk flow. There are two reasons responsible for the

larger velocity: firstly, the Coriolis force acts in the same direction as the centrifugal

force when flow reverses; Secondly, the viscous effect is small since the separation

bubble is thick.

However, the radial velocity on the rotating HAWT blade is not large enough to

affect the flow transition significantly. It is shown that the transition on the rotating

blade is caused by TS wave, which resembles the TS wave on the 2D airfoil.

There are several limitations in the current study as well. First, the region inves-

tigated does not include tip and root, where the 3D effect is stronger. The parameter

chosen in this study (incoming flow and angular velocity) is near-optimal, so there is no

massive separation. However, the rotation effect would be more significant when large

flow separations exist.
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Figure 3.15: Coherent structure on the pressure side.

In a wind turbine farm, most wind turbines operate in the wakes of others. At

the same time, wind turbines usually operate in atmospheric boundary layers. The

incoming flow is rather complex and depends on the upstream turbines, topology of the

terrain, and thermal effects. As a result, the transition observed in experiments [64]

[58] happens quite near the leading edge and is likely triggered by the bypass transition

instead of natural transitions. So another limitation of this study is the uniform inflow

and therefore the lack of incoming free stream turbulence. Nevertheless, as it is shown

that the effect of rotation on the boundary layer flow is quite small in the attached

boundary layer, it is reasonable to believe that the bypass transition on 3D blade is

similar to airfoil flow. This study might offer some justifications to study the transition

on a HAWT blade using airfoil wind tunnel experiments, as long as the incoming flow

condition is well controlled.
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Chapter 4

Marine propeller

Despite the apparent similarities between the rotating disk and propellers, there are very

few investigations on propeller boundary layers instability and transition. The works

reviewed in Chapter 1 are more concerned with the transition location. Although it has

been pointed out that cross-flow instability is relevant for the rotating blade boundary

layer transition [74, 69], to the present authors best knowledge, there is no concrete

numerical or experimental evidence that shows cross-flow instability exists on marine

propellers. This chapter aims to provide a numerical simulation that captures the whole

laminar-turbulent transition process on a marine propeller and to find the similarities

and differences between the boundary layers on the rotating disk and propellers.

The structure of this chapter is similar to the last one. We will first give the descrip-

tions of the numerical set-ups. Then the results from DNS and stability analysis are

given. We also address the problem of convective/absolute instability. At last, it ends

with a summary.

4.1 Methodology

4.1.1 Blade geometry and parameters

The propeller investigated in the present study is the Propeller C from Kuiper [65],

which was tested in the towing tank at MARIN institute in the late 1970s. The laminar to

65



CHAPTER 4. MARINE PROPELLER

turbulent transition was measured in the context of investigating the cavitation inception

in the original experiments. This propeller is chosen because of its large blade area ratio,

and relatively small pressure gradient on the bulk of the blade. Therefore, cross-flow

has a sufficient distance to develop from the leading edge to the trailing edge. The blade

geometry data can be found in Kuiper’s paper.

In the simulations, solely one phase flow is considered, i.e. there is no free surface or

cavitation. The blade is in 3D Cartesian coordinates system (x, y, z) and does not move

during the simulation. Its rotation is taken into account by solving the NS equations in

the rotating reference frame. To take advantage of the circumferential periodicity of the

propeller, the flow around a single blade is simulated. The shaft of the blade, therefore

the incoming flow direction (or the ship advancing direction), is in z axis. The directrix

of the blade is aligned with the y axis.

In the simulations, length scales are normalized by the radius of the blade R, and

velocities are normalized by the incoming flow Uz. The angular velocity of the blade is

ωz = 4.33 radian per unit time. This gives an advance ratio J = Uz/nD = 0.724, where

theD = 2 is the propeller’s diameter, and n = 0.69 is the number of revolutions per unit

time. This J is the same as the Kuiper’s original experiment. With the computational

resources available, the Reynolds number is reduced to make a DNS on the whole blade

to be possible. The kinematic viscosity ν of the fluid is set to be 1/80000. The diameter

Reynolds’ number ReN = nD2/ν based on this ν is 0.22 × 106, which is one third

of the experiment ReN in Ref [65]. Another widely-used Reynolds’ number in the

rotating disk studies is Rer = r
√
ωz/ν. Rer linearly depends on the radius r and is

usually interpreted as the position. In this study, Rer = 588 at the blade tip (r = R).

The Navier-Stokes equations in the rotating reference frame are solved using the

open source code Nek5000 [106]. Nek5000 is a highly scalable CFD solver based on

the Spectral Element Method (SEM), which is a hybrid method combining the geometry

flexibility of Finite Element Method and the high accuracy of Spectral Method. It has

been used in numbers of hydrodynamic stability studies [109, 110]. More information

on the applications of SEM in fluid dynamic can be found in Refs [111, 104] et al.
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Figure 4.1: The expanded blade section (in red) on the z − x plane at y = 0.8. Parts
of the adjacent blades are also plotted. The blue lines are domain boundaries in the
circumferential direction. The periodic points pairs have the same z coordinate.

4.1.2 Overlapping overset meshes

Propeller blade sections are usually defined on a series of concentric cylindrical sur-

faces. In the present case, we expand the cylindrical surfaces along the corresponding

straight geodesics that are on the upper side of the plane x = 0. After expanding the

cylindrical surfaces into z − x planes, the blade sections on these planes, which are

simply airfoil profiles with a given pitch, form a new expanded blade. The mesh is

generated on this expanded blade first, and then folded to obtain the final mesh.

Figure 4.1 shows the expanded blade section on the z−x plane at y = 0.8. The local

incoming flow Ut is the sum of the incoming (or ship advancing) velocity Uz and the

velocity Uθ arising from the propeller rotation. Because marine propellers rotate fast, a

large pitch of the blade section is necessary to ensure the angle of attacks is appropriate

in operation conditions.

Although Nek5000 uses unstructured meshes, the elements have to be hexahedron.

Therefore the mesh for Nek5000 is usually generated as structured ones in the soft-

wares. As shown in the figure 4.1, the pitch of the sections and periodic boundaries in

the circumferential direction make it quite challenging to generate a mesh around the

propeller. We decide to use the overlapping overset meshes technique in Nek5000 to
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(a)

(b)

Figure 4.2: The layout of overset overlapping mesh. The outside mesh is in black and
the inside mesh is red.(a)z− x slice of the expanded meshes. (b) x− y slice of the final
meshes.

guarantee the proper orientation of the grid lines. Two sets of mesh are used in the whole

domain: the outside one and inside one. Both of them consist of several structured mesh

blocks. The periodic boundary condition is only needed for the outside mesh. At the

same time, the inside grids roughly follow the flow direction. For the boundaries locate

in another domain, velocity Dirichlet BCs are used. The flow quantities on these Dirich-

let boundaries are interpolated from the another domain. The implementation details of

this technique in Nek5000 can be found in Ref. [107].

Figure 4.2 shows two slices of the layout of the inside and outside meshes. The

blade is mounted on an infinitely long shaft, whose radius is 0.313R. The radial range

of the computational domain is from the shaft to 3R, but the inside mesh only ranges

from 0.313R to 1.1R. The full domain in z (the shaft axis) direction extends to 1.8R

upstream and 3.2R downstream. The outside mesh has totally 0.22 million elements.

0.95 million elements are used in the inside mesh. Figure 4.3 shows the layout of the

mesh blocks on the pressure side of the blade. There are 25 elements in the wall-normal

direction, among which at least 10 ∼ 12 are inside the boundary layer in average. We

do not intend to perform a DNS which resolves the Kolmogorov scale of the turbulence.

However, as we will see, this mesh is sufficient to resolve the whole transition process.

On the blade surface, the non-slip BC is applied. The two boundaries in the cir-
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Figure 4.3: Topology of the structured mesh blocks on the blade (the pressure side).
The numbers are the element numbers along the corresponding edges.

cumferential direction are cyclic periodic to each other. The unmodified outflow BC in

Nek5000 is used on the boundary downstream the blade. Dirichlet BCs are applied on

the boundary upstream the bade, and the two boundaries in the radial direction. As the

shaft extends the whole domain in z direction, the velocity BC instead of non-slip wall

BC on it is used to avoid the boundary layer development. At any point (x, y, z) on these

boundaries, the velocities specified at the point are (Ux = yωz, Uy = −xωz, Uz = 1),

which is the summation of the unperturbed rotating velocity and the incoming velocity.

The uniform incoming flow Uz = 1 means there is no inlet turbulence. This is in agree-

ment of the original experiments of Kuiper, which is performed in a towing tank with

the fluid at rest.

4.1.3 Definition of local flow directions

As mentioned above, velocities in Nek5000 are based on the Cartesian coordinate sys-

tem and are represented by (Ux, Uy, Uz) in the solver. However, the cylindrical coordi-

nate system is a better choice for the results analysis because of the nature of propellers.

After the velocity solutions are obtained, they are transformed into the cylindrical co-

ordinate system which shares the same z axis with the Cartesian system used in the
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Figure 4.4: Definition of wall-normal and streamwise directions on the expanded z− x
plane. The geometry non-uniformity in spanwise direction is neglected.

simulation. I.e., Ux and Uy are decomposed into a circumferential velocity Uθ and a

radial velocity Ur, while Uz is intact.

Because the LST is a local analysis method, proper local flow directions are also

needed so that the wave-numbers and growth rates make sense. For general 3D flow,

the local streamwise direction is usually defined as the direction of streamline in the

inviscid region[15]. However, this means that the streamwise and cross-flow direc-

tions experience spatial variation, which makes measuring wave-number and growth

rate quite difficult along one direction.

For the present propeller case, it is natural to work on the cylindrical surfaces on

which the blade sections are defined. Figure 4.4 shows the expanded propeller section

on y = 0.6. If we neglect the geometry variation in the radial direction, the local flow

directions definition is straightforward. Similar to 2D airfoil case: the local wall-normal

direction is perpendicular to the wall and the streamwise is in wall tangential direction.

To obtain the streamwise velocity Us and the wall-normal velocity Un, Uθ and Uz need

to be projected into the corresponding directions on the expanded plane. The local

radial direction and therefore Ur are the same as in the cylindrical coordinates system.
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4.1.4 LNS simulation mesh

A body-fitted mesh is also generated for LNS simulation. Because we focus on the

boundary layer instability, computational domains for LNS simulation needs not be so

large as to enclose the whole blade. The structured LNS mesh consists of only one mesh

block, where the grid points can be indexed by i, j, k, corresponding to the streamwise,

wall-normal, and radial directions respectively.

This mesh is also generated firstly on the expanded blade and then folded. Figure

4.5 shows the first k − i slice in j direction of the final mesh, which is on the pressure

side of the blade. The grid lines in j direction are aligned to the wall-normal direction

defined in the section 4.1.3.

On each side of the blade, any point on the blade can be located by two cylindrical

coordinates (r, θ). In this thesis, θ is measured with respect to y axis and is positive

toward the trailing edge. On the blade, the gird points share the same k index have the

same θ coordinate, the gird points share the same i index have the same r coordinate.

This facilitates the measurement of growth rates as well as wave-numbers.

The LNS mesh covers the region −7.6◦ < θ < 32◦ and 0.6 < r < 0.9 on the

pressure side. The domain’s height in the wall-normal direction is 0.06R. Totally 80×

80×20 (radial, streamwise, and wall-normal directions respectively) elements are used.

The flow field on the LNS mesh is interpolated from the full mesh solution with spectral

accuracy. The interpolated solution can be then used as the base flow U b in LNS. In

the simulations, the homogeneous BCs are used on the four boundaries in radial and

wall-normal directions, which means that the velocity disturbances are zero on them.

Outflow BC is applied to the streamwise boundary near the trailing edge. Velocity inlet

BC is used on the streamwise boundary near the leading edge. The disturbance, which

is introduced by velocity inlet BC, will be discussed later.

A similar mesh is also generated for the suction side of the blade for the analysis of

DNS result. The mesh covers a slightly different region 0◦ < θ < 28◦ and 0.65 < r <

0.95.

71



CHAPTER 4. MARINE PROPELLER

Figure 4.5: First LNS mesh layer on the pressure side of the blade.

4.2 Results

4.2.1 Overlapping overset meshes

To save computational resources, the solution on the outside mesh is obtained firstly

with a coarse inside mesh (0.5 million elements), which does not resolve boundary

layer flow. This permits using a large time step to get a solution for the inviscid flow

region. After the outside solution is obtained, the inside mesh simulations are performed

without marching the outside mesh solution.

Figure 4.6 shows contour of Uz on two different z−x slices. Before expanding, half

of the domain is rotated 90 degrees towards the another half. As a result, the pressure

and suction sides of the blade form a passage similar to a compressor stator passage.

The cyclic periodic boundaries meet each other in the center of the passage. In figure

4.6, the velocity contours are continuous across the meshes and the periodic boundary,

which is in the center of the passage. This means that not only the cyclic periodic BC

works properly, but also the overlapping overset meshes technique.
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Figure 4.6: Uz contour on the expanded z − x slices at y = 0.5 and y = 0.8. The 2D
streamlines are based on Uθ and Uz, i.e. the radial motion is neglected.

4.2.2 Mesh convergence and velocity profiles

SEM is a type of h/p method. Mesh convergence study can be done either by using

different meshes (h refinement), or the same mesh with different spectral orders (p

refinement). For the inside mesh solution, two simulations with order 6 and order 8 are

performed to make sure the solution is mesh independent. Totally around 3 million cpu-

hours on the Jean Zay supercomputer of IDRIS (France) are spent to get the converged

solutions.

Thrust coefficient Kt and torque coefficient Kq are usually used to measure the

propeller’s performance. They are defined as:

Kt = T/ρn2D4

Kq = Q/ρn2D5

(4.1)

where T is the total thrust on the propeller and Q is the total torque.

The variation Kt and Kq with advance ratios J is given in figure 4.7. The values

of the coefficients calculated from the present simulations are marked out by symbols.
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Figure 4.7: Experiment measurements ofKt andKq for different advance ratios J (from
Ref. [65]). The symbols are from current simulations. The order 6 (red) and order 8
(black) results are quite close that they overlap with each other.

Figure 4.8: Estimation of y+ on the suction side.
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Despite the Re difference between the experiments and simulations, Kt and Kq from

simulations are quite close to the experiment values with the same J . The relative

differences between experiments and simulations are less than 10% for both Kt and

Kq. The difference between the order 6 and order 8 results are so small that they are

barely separable in the figure.

Figure 4.8 gives the wall unit y+ contour based on the order 8 mesh. Because the

grid spacings are not uniform across one element, the y+ is underestimated slightly in

the figure. As we will see, the flow is mostly laminar on the blade. The friction velocity

is therefore small. As a result, the y+ is less than 0.05 in most regions. Even for the

turbulent region, the maximum y+ is still less than 0.2.

Figure 4.9 shows the velocity profiles from the two simulations at different loca-

tions. Both streamwise and cross-flow velocities are plotted against distance-to-wall d.

The order 6 and order 8 results agree quite well with each other. The difference between

them is barely distinguishable at most positions.

Inside the boundary layer, the cross-flow profiles are similar to that on rotating disk

and swept wing. Their shapes indicate that inflectional points exist on the profiles,

making the flow unstable. The relative strengths of the maximum cross-flow velocities

depend on the locations and are about 5%− 10% of the inviscid streamwise velocities.

This is smaller than that on the rotating disk (around 18% of inviscid circumferential

velocity), but it is large enough to trigger cross-flow transition on the swept wing [112].

At most locations, the cross-flow velocities are slightly negative in the inviscid region,

which means that the flow is towards the blade root outside the boundary layer.

On the rotating disk, the boundary layer is homogeneous in the circumferential di-

rection. However, there is no such infinite rotational symmetry for propellers. At the

same radial position r, the boundary layer develops from the leading edge to the trailing

edge. Figure 4.9a shows the velocity profiles at the same r but with different θ on the

pressure side. The larger θ is, the closer to trailing edge is the position. The thick-

ness of the boundary layer increases as the position goes downstream. The strength of

cross-flow velocity increases as well towards the trailing edge.
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The pressure side boundary layer velocities at the same circumferential location θ

but different radial locations are plotted in figure 4.9b. As r increases, the inviscid

streamwise velocity increases, and the boundary thickness decreases. This is also dif-

ferent from the rotating disk flow, where the boundary layer thickness is a constant

along the radial direction. The strength of cross-flow decreases because the location

with a large r is closer to the leading edge.

On the suction side, the boundary layer profiles exhibit similar characteristics to the

pressure side. At θ = 0, r = 0.95, there is a significant disagreement between order

6 and order 8 results. The reason is that this location is close to the tip and the flow

is close to transition. In the following section, the order 8 DNS result will be used

exclusively.

4.2.3 Laminar-turbulent transition on the blade

The instantaneous coherent structures on the suction sides of the blade are visualized

by the lambda2 criterion in figure 4.10. The flow regimes on the blade are different

depending on the radius r. Firstly, there is a clearly visible tip vortex on the top edge

of the blade. It is laminar close to the leading edge, where it incepts at first. As it

goes to downstream, the laminar tip vortex rapidly becomes turbulent. The turbulent tip

vortex then slightly detaches from the blade, making the shade difference in the figure.

However, the turbulent tip vortex does not fully detach from the blade and it interacts

with the boundary layer close to the tip.

On the blade surface, two different laminar to turbulent processes are observed:

1. At about 0.75 < r < 0.98, a typical natural transition can be observed.

2. At about 0.4 < r < 0.7, transition caused by the laminar separation bubble near

the trailing edge.

The separation-induced transition near the trailing edge will be discussed in the

section 4.2.4. In this section, we focus on the cross-flow transition. Between 0.7 < r <

0.95, there are numbers of clearly observable streamwise streaks on the blade. These

76



CHAPTER 4. MARINE PROPELLER

(a) (b)

(c) (d)

Figure 4.9: Velocity profiles, the arrows indicate either increasing r or increasing θ. (a)
Pressure side, r = 0.8, θ = −7.6◦, 7◦, and 21.2◦ (b) Pressure side, θ = 0◦, r = 0.6, 0.75,
and 0.9 (c) Suction side, r = 0.80, θ = 0.0◦, 10.8◦, and 21.5◦ (d) Suction side, θ = 0◦,
r = 0.65, 0.80, and 0.95
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Figure 4.10: Iso-surface of lambda2 criterion (λ2 = −400) on the suction side, colored
by velocity in z direction.

Figure 4.11: Uz contour on the expanded section r = 0.95, which cut through the center
of the small radial aligned structures. The boundary layer is fully attached. The only
plausible explanation of the oscillation marked out is T-S waves.
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(a)

(b)

(c)

Figure 4.12: Uz contour at different θ locations (the suction side). d is distance-to-wall.
These planes are j − k slices of LNS mesh. (a) θ = 0◦ (b) θ = 13◦ (c) θ = 26◦
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streaks are stationary and are not convected downstream during the simulation. Their

shapes are similar to the cross-flow vortices observed on the rotating disk. In the figure,

they are roughly aligned in circumferential direction. However, it should be noted that

the streaks are actually helical because they have depths in the z direction.

Along the radial direction, the streamwise streaks are roughly equally spaced and

form a wave pattern. Very closer to the tip, the streaks gradually decay downstream.

Meanwhile, small radial aligned vortical structures appear and lead to transition. Fig-

ure 4.11 shows the Uz contour on the blade section slice r = 0.95. Before transition,

streamwise oscillation of the boundary layer can be observed, which look like very

much T-S waves. At this position, the cross-flow velocity is quite small(Fig. 8d), there-

fore it is reasonable that the local flow is more susceptible to T-S waves. However, a

detail analysis of the T-S waves is out of the scope of this thesis.

Moving inward, the laminar-turbulent transition is due to the breakdown of the

streamwise vortices. At smaller radius, the breakdown happens later and the transi-

tion locations is closer to trailing edge. Further inward around r ≈ 0.85, although the

streaks present until the trailing edge, they do not breakdown until leave the blade.

Figure 4.12 plot the Uz contour on several wall-normal slices along the radial direc-

tion at different θ locations. At θ = 0◦, the flow is all laminar in the shown range. There

is no visible waves in radial direction when r < 0.9. Close to the tip 0.90 < r < 0.94,

a short wave in radial direction can be observed, which increases the boundary layer

thickness.

Downstream at θ = 13◦, there is a clear distinction between the laminar and turbu-

lent regions. The flow is fully laminar for r < 0.85. When r increases, the boundary

layer experience periodic oscillations with larger and larger amplitudes. After about 3

wavelengths, the boundary layer becomes turbulent flow. The transition process finishes

completely at r = 0.92.

Further downstream at θ = 26◦, the flow has a similar pattern as the previous posi-

tion. However, as shown in figure 4.9, the cross-flow velocities are larger downstream.

As a result, the radial wave appears earlier than the previous θ position. The transition
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Figure 4.13: Iso-surface of lambda2 criterion on pressure side.

completes at r = 0.90, which is smaller than θ = 13◦ as well. Before the fully break-

down, the velocity contour looks like a half mushroom, which is a typical flow structure

in the nonlinear stage of the cross-flow transition.

Figure 4.13 shows the flow structures on the pressure side of the blade. Although

several cross-flow vortices can be observed near the trailing edge at r > 0.8R, they

are restricted to a smaller region than suction side. The flow transition does not fully

complete until the vortices leave the blade. Closer to the root, the flow separation is very

weak compared the suction side. This is more or less expected because the pressure

gradient on the pressure side is usually more favorable than the suction side.

Uz contours on radial slices at several θ positions are plotted in figure 4.14. At θ =

−7◦, the boundary layer’s thickness decrease as r get close to the blade tip. However,

at θ = 11◦, the boundary layer has a roughly constant thickness in r direction despite

that the chord Reynold’s number is larger for a larger r section. This is similar to

laminar rotating disk flow, where the boundary layer thickness is a constant in the radial

direction (and circumferential direction as well). The existence of cross-flow velocity is
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(a)

(b)

(c)

Figure 4.14: Uz contour for different θ locations. (a) θ = −7◦ (b) θ = 11◦ (c) θ = 30◦

important in eliminating the inhomogeneous boundary layer thickness because it pumps

the fluid inside the boundary layer from the blade root to tip.

At θ = −7◦ and θ = 11◦, both flows are laminar and there are no visible boundary

layer oscillations. However, at θ = 30◦, the cross-flow waves have developed a signifi-

cant amplitude that they are recognizable. The wave-number in the radial direction can

be calculated from the contour and is around βr = 3.15 (normalized by boundary layer

scale 0.01R.)

4.2.4 Separation-induced transition and the influence of rotation

Close to the blade root(0.4 < r < 0.7), the laminar flow extends to almost the trailing

edge on the suction side (figure 4.10). Near the trailing edge, the laminar-turbulent

transition process happens abruptly. A turbulent region is subsequently observed with

large flow structures. This part of the propeller is characterized with thicker lifting

sections. The adverse pressure gradient, which appears after the maximum thickness,
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Figure 4.15: 2D streamlines and the contour of radial velocity Ur near the trailing edge
on the expanded z − x plane y = 0.45. The radial movement of the streamlines are
neglected. Because the blade is not uniform in spanwise, the wall-normal velocity is
not exactly zero. As a result, some of the streamlines end on the wall.

is strong enough to induce the boundary layer separation.

Figure 4.15 shows the 2D streamlines and the cross-flow velocity contour around

the trailing edge of the expanded section r = 0.45. On the suction side, the directions

of streamlines indicate that the flow separates and form a Laminar Separation Bubble

(LSB). When reverse flows inside the bubble is large enough, the boundary layer can be

absolutely unstable [27, 113] and the flow would quickly become turbulent. Because the

instability of LSB is similar to the Kelvin-Helmholtz instability, large vortex shedding

structures are also observed in figure 4.10.

In figure 4.15, an exceptionally large cross-flow velocity can be seen around the

separation region. This velocity is similar to the one in the attached boundary layer. It is

zero on the wall and almost zero in the inviscid region. But the maximum velocity near

the bubble can be as large as 1.2, which is about 50% of the unperturbed streamwise

velocity. This velocity profile should be quite unstable, but a detailed study of flow

transition induced by the separation bubble with a large cross-flow is out of the scope

of this thesis. We are more interested in why does this large cross-flow appear. Similar

to the cross-flow in the attached flow, the large cross-flow around the separation can be
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(a) (b)

Figure 4.16: (a)Streamlines based on the current DNS. They are generated as close to
the wall as possible. (b) Paint streaks from the experiment of [65]

explained through the relationship between the Coriolis forces and the circumferential

velocities. When flow separates, parts of fluid change their circumferential velocity

direction. As a result, Coriolis force changes its direction, which means that it now acts

in the same direction as centrifugal force. On the other hand, the large thickness of the

separation region means that the viscous force is relatively small. These two effects

would cause a large radial velocity in the separation region on the propeller.

On other rotating blades like helicopter rotor and Horizontal Axis Wind Turbines,

the large radial (cross-flow) velocities around flow separations are well-documented

[52, 55]. This radial velocity would induce a Coriolis force component in the circum-

ferential direction, which partially suppresses flow separations and leads to so-called

rotational augmentation. However, few authors pointed out the relationship between

the circumferential separations and the large radial velocities.

4.2.5 Flow transition’s influence on the surface streamlines

Figure 4.16a shows the surface streamlines based on the current DNS. It can be seen

that they point to different directions depending on the flow regimes. Around the sep-

aration region, the flow is almost totally in the radial direction due to the large radial

velocity discussed in the section 4.2.4. In the laminar region, the streamlines are devi-

ated significantly outwards. After the flow become turbulent, they are pulled back to the
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Figure 4.17: Skin friction and streamlines obtained by RANS simulations. From [114].

circumferential direction. Figure 4.16b gives the experiment result on the same blade

from Ref. [65], where the surface streamlines direction is revealed by paint streaks. Be-

cause the Re in the experiment is much larger than the simulation, the turbulent region

near the tip is larger in the experiment. The flow direction difference between laminar

and turbulent regions is quite visible. Near the trailing edge, a sudden outward move-

ment of the paint streaks can be also observed in the experiment result. Similar flow

direction pattern can be also found in numbers of more recent experiments on different

propellers [67, 68], where the high-quality images are available.

For comparison, figure 4.17 gives the RANS results of skin friction and streamline.

The streamline in different flow regime regions have similar patterns as our result and

the experiment. However, even though that the Re in the RANS simulation is the same

as the experiment (i.e. it is three times larger than the present simulation), the turbulent

region is restricted in the small tip region. This shows the necessity of including the

proper transition model in RANS.

The surface streamlines show that the near-wall cross-flow velocity is much smaller

in the laminar region than in the turbulent region. Kuiper [66] attributed this to the wall

stress difference in the two regions. For the laminar region, where the wall shear stress

are weak, the centrifugal force dominates and tend to push to fluid outward. In contrast,

the large wall stress in turbulent boundary layer would pull the streamline back to the
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circumferential direction. However, we argue that this explanation is only partially true.

It is necessary to see the phenomena in rotating reference frame. Close to the wall, the

circumferential velocity of a turbulent boundary layer increases faster than a laminar

one, so the Coriolis force is less decreased. As a result, the volume force which pushes

the fluid outward is smaller in turbulent boundary layer. On the other hand, the large

velocity gradient means that the viscous effect is strong. A small cross-flow velocity

would produce a large viscous force in radial direction, making the fluid difficult to

be pushed outward. In this sense, turbulent boundary layer is exactly opposite to the

separated flow, where the cross-flow is unusually large.

In rotating disk boundary layer, the surface streamline direction experiences a simi-

lar change. In the laminar region, the angle between the surface streamlines and circum-

ferential direction is around 40◦. Whereas this angle is around 12◦ ∼ 17◦ in turbulent

region [115, 116].

4.3 Stability Analysis

4.3.1 Linear Stability Analysis

To further verify that the streamwise streaks observed in the DNS are indeed cross-flows

vortices, linear stability analysis is performed. The prediction of LST is compared with

the observed cross-flow vortices in terms of wave-numbers and wave-angle.

Both LST and LNS require a steady, unperturbed base flow. However, it is rather

difficult to separate the total DNS field into a base flow field and a perturbation field

because both of them are unknown and the perturbation are usually quite small. We

chose to use part of the total DNS solution, where there is no significant presence of

perturbations, as the base flow for LST and LNS. Most of the boundary layer flow on

the suction side is affected by the existence of cross-flow waves. Whereas the flow on

the pressure side is more ’laminar’, which makes it more suitable as the base flow. In

the following section, the base flow always refers to the flow on the pressure side of the

blade.
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Figure 4.18 shows the linear stability analysis result at r = 0.80, θ = 11◦. At this

location, the disturbance in the DNS result is quite small compared to downstream,

but its amplitude is large enough for measuring the wave-numbers. In the LST, only

the stationary cross-flow waves are considered. Variation of the growth rate αi and

the streamwise wave-number αr are plotted as a function radial wave-number βr. The

wave-numbers of the vortices observed in DNS are also given in the figure. Since the

waves are almost aligned to streamwise direction in DNS, the αr is small and it is

hard to measure a local value. The αr marked out in the figure is calculated from two

streamwise wavelengths.

The radial wave-number of the most unstable stationary wave predicted by LST is

around βr ≈ 3.1. Although a slightly different value of βr = 3.7 is observed in DNS,

this wave is still quite unstable according to LST. Its growth rate predicted by LST is

quite close to the most unstable wave. For the streamwise wavenumber, the difference

between DNS result and LST prediction is quite small. From the wave-numbers in

radial and streamwise directions, the wave angle φ = arctan(αi/βr) can be calculated.

The local φ is around 8◦, which is much smaller than the rotating disk value of 14◦.

The reason is that the strength of cross-flow is smaller on the propeller than on rotating

disks. As a result, the unstable wave is less convected in the radial direction.

4.3.2 Linearized Navier-Stokes simulation

Because the growth rate of the cross-flow vortices from DNS is hard to measure, we

perform a LNS simulation to quantify the growth of the cross-flow wave on the blade.

The mesh and BCs used for LNS have been described in section 4.1.4. The disturbance

source is introduced by the inhomogeneous inlet boundary condition. The velocities

at inlet are set as U ′x = f(r, d), U ′y = 0, U ′z = 0. The function f(r, d) is separable

with radius r and distance-to-wall d, so f(r, d) = 0.001a(r)b(d). The exact forms of

a(r) and b(d) are given in equation 4.2. In short, a(r) creates a localized wave-package

along the radius. b(d), which is adapted from Ref [110], emulates the wall-normal

eigenfunction of LST equations. The maximum value of the disturbance is 3 × 10−5,
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Figure 4.18: αi and αr of stationary cross-flow waves with different βr. The horizontal
line marks the αr measured from the DNS. The vertical line marks the βr measured
from the DNS. All the wave-numbers are normalized using the boundary layer scale
0.01R

which is small enough to make sure the disturbance is always in the linear stage. The

inlet disturbance persists during the whole simulation.

a(r) =
e200(r−0.7)

(e200(r−0.7) + 1)

e200(0.75−r)

(e200(0.75−r) + 1)
sin(350r)

b(d) = de−1000∗d
(4.2)

Figure 4.20a shows the U ′z iso-contours of the converged LNS field. The inlet distur-

bance develops into cross-flow streaks downstream. The shape of the streaks matches

the DNS results. They orient roughly in circumferential direction but deviate slightly

outward in the radial direction. As moving downstream, the disturbance propagates in

both outward and inward radial directions.

The variation of U ′s along streamwise direction on the section r = 0.75 is plotted in

figure 4.20b. The disturbance velocity U ′s has a wave form in the streamwise direction

and its amplitude grows downstream. The amplitude A(s) along s is interpolated by

the Lagrange polynomials from the crests and troughs. Assuming the amplitude of the

unstable wave has the form A(s) = A0e
∫ s
s0
αi(t)dt, the growth rate can be calculated as

αi(s) = A(s)′/A(s).
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(a) (b)

Figure 4.19: Inlet disturbance function (a) a(r) (b) b(d)

(a) (b)

Figure 4.20: LNS simulation (a) Iso-surfaces of U ′z. red: 2 × 10−5, blue: −2 × 10−5

(b) U ′s along streamwise direction on the section r = 0.75. s is the local curve length to
the inlet on the airfoil. Each red line represents one different wall-normal distance, the
envelope of the wave is interpolated from the crests and troughs of the wave.
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Figure 4.21: Growth rates along streamwise direction at the section r = 0.75. For LST,
the radial wave-number βr = 3.5, which is the same as the inlet disturbance of LNS
simulation

Figure 4.21 compares the growth rates calculated from LNS simulation and LST.

When the disturbance enters the domain through the inlet, an adjustment stage is usu-

ally needed. The large growth rate of LNS results at s < 10 is a result of this adjustment.

Further downstream, the LST and LNS results show a similar trend, but LST overes-

timates the growth rate because neither the streamwise curvature nor Coriolis force is

included.

4.3.3 Convective/absolute nature of the instability

The above results demonstrate that flow transition on propeller blades share many sim-

ilarities with rotating disk flow transition. Since it is well known that the rotating disk

boundary layer flow is absolutely unstable when Re is large enough, a natural ques-

tion to ask is that can the instability of the propeller blade boundary layer be absolutely

unstable.

However, if the flow were locally absolutely unstable, it is would be hard to obtain

a laminar solution by DNS. Any disturbance during the simulation would persist and

lead to the transition. As Landau et al.[117] put it, those (solutions) which do (exist in

nature) must not only obey the equation of fluid dynamics but also be stable. At least on
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(a) (b)

(c) (d)

Figure 4.22: Iso-contour of perturbed velocity at different time (a) t = 0.128 (b) t =
0.256(c) t = 0.384(d) t = 0.512

the pressure side, there is no laminar-turbulent transition in the present DNS. The flow

should not be absolutely unstable.

Nonetheless, without any known perturbation source, the cross-flow vortices appear

on the pressure side and are not convected downstream. It is worth to make a simple in-

vestigation. A LNS simulation with the same settings as the previous one is performed.

However, the inlet disturbance lasts only a limited time t ≤ 0.064. When t > 0.064, the

boundary condition is set to be homogeneous, so the source of disturbance disappears.

The U ′ fields at different times are given in figure 4.22. The convective nature of the

instability is clearly shown in the figure. After the initial pulse disturbance is removed,

the wave-package keeps growing in its amplitude. At the same time, it is convected

downstream until it goes out of the simulation domain.
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However, an interesting feature is that the radial range of the wave-package keeps

increasing as being convected downstream. The disturbance propagates both outward

and inward radial directions, which means that the flow in absolutely unstable in the

radial direction. Similar results are obtained on the FSC flows and swept wing boundary

layer flows [46, 29], where the flows are absolutely unstable in one direction while are

convective unstable in another direction.

As pointed out in Ref [118], because of the periodicity in the circumferential direc-

tion of rotating disk flow, only the radial group velocity has to vanish for an absolute

instability to exist. In another word, on the rotating disk, although an unstable wave-

package is convected in the circumferential direction, it will return to the location where

it begins with a larger amplitude as long as it is not convected in the radial direction.

Obviously propellers do not have this periodicity, as a result, unstable waves are con-

vected downstream and eventually detach from the blade.

If the same definition of Re = r
√
ωz/ν as the rotating disk flow is used, the Re

range of the base flow in LNS is between 353 and 529. However, in rotating disk

flow, the absolute instability does not appear until Re > 510, which is much higher

than the current propeller blade case. This difference is likely caused by the different

cross-flow velocities in the inviscid region. In rotating disk flow, the cross-flow in the

inviscid region is zero. However, as have been seen in the figure 4.9, the cross-flow in

the inviscid region is negative in the blade case, which means that the fluid is flowing

inward in the inviscid region. This provides a mechanism for the unstable wave to

propagate toward the blade root.

The above study on the convective/absolute nature of the instability is only a very

first attempt and not conclusive. An interesting observation in figure 4.13 is that the

cross-flow vortices are very close to the trailing edge. Similar observation have been

made near the edge of the rotating disk in Yim et. al.[47] The superposition of so

called ’elephant global modes’, which exists near the boundary of the local convective

instability and the local absolute instability, forms a front.
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4.4 Summary

The laminar-turbulent transition on marine propellers is a complex problem. The bound-

ary layer flow often interacts with cavitation and different transition scenarios could

coexist. In this thesis, DNSs are performed to identify potential mechanisms that are

responsible for the boundary layer transition on propellers. The computational domain

used follows the pitch direction of the blade. Overset overlapping meshes are used to

ensure cyclic boundary conditions. The transitional boundary layer is full-resolved in

this study.

As far as we know, this is a first direct observation of cross-flow vortices on pro-

pellers. It is show that the radial velocity in the attached boundary layer is large enough

to trigger cross-flow instability. The cross-flow vortices observed in the present re-

sults are similar to that on the rotating disk but with depths in z axis. LST can predict

the shape of the unstable cross-flow waves but overestimates the growth rate of the

cross-flow wave without Coriolis force and streamwise curvature included. Our results

show that cross-flow transition is an important transition route on the rotating propeller

blades, as has been expected previously.

It is also argued that it is necessary to see the boundary layer flows under the rotating

reference frame. Close to the blade root and trailing edge, the transition location is very

close to the flow separation region. An exceptionally large cross-flow presents around

the separation points, which is essentially caused by the same reason as the cross-flow

in the attached flow region. However, when flow separates, the Coriolis force in the

rotating reference frame acts outwards in the radial direction, causing the large radial

velocity. Opposite to the separation region, the cross-flow velocity in the turbulent

region is small, which causing the direction deviation when streamlines go into the

turbulent region from the laminar region.

The LNS simulation also shows that the boundary layer is absolutely unstable in the

radial direction. However, since the periodicity is broken on the propeller, the unstable

wave exhibits convective natures in the streamwise direction.
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Chapter 5

Conclusion and Perspectives

5.1 Conclusion

In this thesis, we investigated the boundary layer transition of two typical rotating blade

machineries: a HAWT and a marine propeller. Numerical simulations which fully re-

solve the transition process are performed with high order SEM method. The results

provide some direct observations on the transition process on them.

The most prominent feature of HAWTs and propellers is the rotation. The effect of

rotation on the boundary layer flow can be analyzed similarly to von Kármán swirling

flow, where there is an exact solution. We argue that it is necessary to see the problems

in rotating reference frame. The cross-flow (spanwise or radial velocity) can be seen

as a secondary flow induced by the primary flow in the circumferential direction. The

Coriolis force relates the circumferential velocity with the cross-flow velocity. The

numerical results show this argument is not only valid for attached laminar boundary

layer, but also in separation bubbles and turbulent boundary layers.

The HAWT results show that the boundary layer around a rotating HAWT blade is

very close to the corresponding 2D airfoil case. Their boundary layer velocity profiles

are almost identical in the attached laminar flow region. As a result, the natural tran-

sition on the 3D blade is induced by T-S wave. The transition location is almost the

same for the blade and the 2D airfoil. This suggests that the 2D wind tunnel test can be
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served as an approximation of the flow around a blade section.

On the marine propeller blade, the boundary layer transition is induced by the cross-

flow. As far as we know, this is the first direct observation of cross-flow vortices on

marine propeller. The shape of the cross-flow vortices agrees well with the prediction

of linear stability theory. For different flow regimes, the flow directions are different.

This is reflected in the surface streamline directions and should be explained through

the relationship between the Coriolis force and the circumferential velocity.

Our results imply the transition on marine propeller can not be based on 2D airfoil

tests or simulations, where the 3D effects are neglected. For RANS simulation of ma-

rine propeller, it is important to use a transition model that is capable to take cross-flow

into account.

The difference between HAWT and marine propeller blades is likely caused by

their shapes. On the rotating disk, the only relevant quantity is the Reynolds number

Re = r
√
ω/ν. However, on rotating blade, the distance to the leading edge is also

important because the 3D effect need time to develop. For HAWT blades, which is

very thin, the cross-flow velocity does not have an enough long distance to grow before

leaving the blade from the trailing edge. As a result, the 3D effect due to the rotation is

rather small.

5.2 Perspectives

Although we have identified the different transition scenarios on HAWT and propeller

blades, more works could be done regarding the boundary layer transition on rotating

blades. Following are several points that we believe is worth pursuing:

The influence of free stream turbulence

In this thesis, the inflow for both cases is uniform, which means that there is no free

stream turbulence. This is not a realistic assumption for HAWT and propellers, which

usually operate under complex inflow conditions.
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The free stream turbulence provides a source of disturbance. When its intensity

increase, the primary instability appears earlier and the transition finishes earlier. When

the inflow turbulence is large enough, a different transition scenario (bypass transition)

could happen.

For the HAWT blade, because the flow is very close to 2D airfoil flow, it is reason-

able to believe that the bypass transition would be similar to 2D flow as well. However,

for marine propellers, the 3D effect due to the rotation could play a role in the bypass

transition.

The 3D separation bubble

We have shown that when flow separates on rotating blades, a much larger cross-flow

velocity appears around the separation bubbles than in the attached boundary layer. In

that case, the separation bubbles have essentially 3D structures.

As we mentioned, this 3D separation should be quite unstable. At present, almost all

the studies on separation-induce transition are based on 2D LSBs (i.e. the streamlines

of the flow is in 2D planes). There is seldom any study on the instability of 3D LSBs.

However, this kind of flow can be quite important from engineering perspectives (for

instance, leading edge separation of marine propellers, which plays an important role

in the cavitation inceptions) and therefore needs to be further studied.

The aeronautic propellers

There are other rotating blades machineries like aeronautic propellers which are not

studied in the present thesis. The aspect ratios of aeronautic propeller are much smaller

than HAWT blades. On the other hands, they are usually larger than marine propeller

blades. Therefore it is rather difficult to reach any conclusion about its boundary layer

transition based on the present results. Further works are necessary to get a better

understanding.
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Appendix A

The Explicit LES model in the

Nek5000

This appendix addresses some specific problems when implementing the classic Smagorin-

sky LES model in the Spectral Element Method. Therefore the theoretical basis of the

LES and the derivation of governing equations are only introduced very briefly. For the

details, please refer to the textbook of Pope [84] and the references given below.

As mentioned in the section 2.2.2, the traditional LES solves the filtered NS equa-

tions:

∇ · u = 0

∂ui
∂t

+
∂(ui uj)

∂xi
= ν

∂ui
∂2xi

− ∂τij
∂xi
− 1

ρ

∂P

∂xi

(A.1)

where over-bar represents the resolved flow quantities using the given meshes (which

can be viewed as a filter). The subgrid stress τij need to be modeled using the resolved

quantities.

To account for the dissipation due to the unresolved small scale motions, artificial

viscosity is needed in modeling the subgrid stress τij . In the dynamic Smagorinsky
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model, the coefficient Cs in equation 2.7 can be obtained using the Lilly contraction:

cs =
MijLij

MklMkl

(A.2)

where the tensor Lij and Mij can be obtained from the resolved flow. Their definition

can be found in [84, 90].

A.1 Filtering

x
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Figure A.1: An example of the Gaussian filter

In the calculation of Lij and Mij , explicit filtering is needed. Figure A.1 shows an

one dimensional velocity example before and after filtering (the magnitude and coordi-

nate are arbitrary). Clearly the unfiltered velocity could dissipate more energy than the

filtered one.

Commonly-seen filtering include the box filter, the cut-off filter, and the Gaussian

filter. For spectral method, the cut-off filter is a natural choice [119], where the physical

quantity is transformed to the frequency domain. The high frequency components are

cut off before being transformed back.

As mentioned before, the SEM can be switched back and forth from the nodal and

the modal formulation. Supposing we have an one-dimension velocity ui on the GLL

point xi (i = 0, ..., N ). Since the Legendre polynomials Pj(x) form a complete orthog-
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Figure A.2: An example filter kernel function for N = 7

onal basis, ui can be expanded as a series:

ui =
N∑
j=0

u∗jPj(xi) (A.3)

where u∗j is the coefficient corresponding to jth Legendre polynomial Pj(x).

Before transforming back, the coefficient u∗j is multiplied by a kernel function lj ,

which is 1 for small i and 0 for large i. The high-frequency oscillation is removed in

this way. Figure A.2 shows an example li for N = 7.

ui =
N∑
j=0

lju
∗
jPj(xi) (A.4)

In the implementation of the filtering operation, the matrix-vector multiplication is

used to simplify the above calculation. The equation A.3 can be written in the following

matrix form [120]:

u = Bu∗ (A.5)

Where Bij = Pj(xi). So:

u∗ = B−1u (A.6)
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Define matrix L = diag(l0, ..., lN). Equation A.4 can be written as:

u = BLB−1u (A.7)

In order to conserve the continuity across the elements boundary in the filtered flow

field, the basis function in the above expansion is based on following polynomials in-

stead of Pj(x).

φi = Pj (for i = 0, 1)

φi = Pj − Pj−2 (for i greater than 1)

(A.8)

φi equals 0 at two boundaries when i > 1. Therefore the filtering using φi does not

affect the value at boundaries. If the original flow field is continuous, the filtered one is

continuous as well.

A.2 Averaging of the eddy viscosity

The above model is available in the turbChannel example case in Nek5000. In the

application of dynamic Smagorinsky model, it is found that Cs varies volatilely across

the domain. Therefore some averaging techniques are need to keep simulations stable.

For flow with homogeneous direction, the averaging can be done across that direction.

This method is used in the turbChannel case.

To extend the LES model in the turbChannel case to general 3D flows, another

averaging technique other than averaging along homogeneous directions is need. One

brilliant idea is from [91], where the dynamic eddy viscosity is time-averaged in a

Lagrangian frame. In another word, the averaging is along flow tracelines. A weighting

function is used to give more weights to the near position.

However, this averaging method is not suitable for the SEM. The filtering operation

introduced above is not uniform or equal across the elements. As a result, the final Cs

exhibits some mesh-dependent patterns as shown in A.3, which are not convected with
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Figure A.3: Smagorinsky length along the channel height, the influence of elements
boundaries can be clearly observed. From [120]

the flow. Therefore the Lagrangian averaging idea does not apply.

Inspired by [121], we spatially average the viscosity inside each element. The final

viscosity field is obtained by interpolations. The details can be found in [121]. However,

we use a quadratic interpolation instead of linear one.

A.3 Test cases

Tests on flows such as the flat plate boundary layers show that the above LES model

results some improvements compared with ILES (UDNS). However, for flows with

long transitional regions, although the model correctly distinguishes the laminar and

turbulent regions, the eddy viscosity is not zero in the transitional region, which is

technically laminar. Due to the artificial viscosity, the equivalent Reynolds number is

decreased.

Because this thesis is focused on the flow transition, we do not want any artificial

viscosity in transitional regions, which can be quite long in certain cases. Therefore we

chose to used UDNS (ILES) as the main tool. Nonetheless, we give part of the Exlicit

LES results on two test cases.
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A.3.1 The flat plate

The first case is a transitional flat plate boundary layer flow with zero pressure gradient.

The computational domain is 1000δ0×120δ0×62.24δ0 in x, y and z directions, where

the δ0 is the displacement thickness at the inlet x0. The Reynolds number Reδ0based on

δ0 is 650.

Three cases with the same flow parameter but different meshes or settings are carried

out. The DNS case has an element number 240 × 40 × 32 in x, y and z directions

respectively. The LES case uses 120 × 20 × 16 elements. The Under-resolved DNS

case uses the same mesh as LES but without the model. For all the calculation, the order

inside the elements are 8.

TS wave

wall suction/blowing

Blaius profile
x

y

z

Figure A.4: Illustration of flat plate flow set-up (not to scale)

The inlet condition is the Blasius profile. The periodic boundary condition is used

on the two surfaces perpendicular to the span. Disturbance is introduced by wall suc-

tion/blowing. At 50 < x < 85, the wall-normal velocity v at the boundary is specified

as 0.01 × sin[0.18(x − 50)] × cos(0.05t) + 0.001 × sin(0.2z) × sin(0.05t). The first

term corresponds to a 2D harmonic disturbance while the second term introduces a

non-uniformity in span-wise. The wave-number 0.18 and frequency 0.05 are chosen to

match that of the T-S wave. Figure A.4 gives an illustrative sketch of the set-up.

Figure A.5 shows the flow structures for the DNS and LES cases. They show similar

results despite that the DNS is cleaner than the LES. After some adjustment, the distur-

bance evolves to T-S wave behind the suction/blowing location. Because the amplitude

of disturber (0.01) is relatively large, the T-S wave enters nonlinear stage quite early.

The Λ vortex structures can be clearly identified around x = 200 in DNS result. Further
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downstream, they break down and the flow becomes turbulent. For the LES, although

the Λ structures are less clear, they are identifiable.

(a)

(b)

Figure A.5: Iso-surface of λ2, colored by distance to wall. (a)DNS (b)LES

Figure A.6 compares the mean profile and Root Mean Squared (RMS) at x = 380

and x = 600 from current simulations with the DNS from[122]. Overall, Both DNS and

LES agree well with the result from literatures, while the under-resolved DNS results

departure from DNS in the buffer region and the log-law region.

The eddy viscosity in figure A.7 is at the same time as figure A.5b. The model

manages to correctly identify the laminar and turbulent regions. However, there is a

non-negligible viscosity around x = 180, where is transitional flow.
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Figure A.6: Comparison of mean profile (solid lines) and RMS (dashed line) with that
from [122](a) Reθ = 670, (b) Reθ = 1000

Figure A.7: Contour of instantaneous eddy-viscosity from the LES model on a horizon-
tal plane. The viscosity is 1/Re = 0.0016.

A.3.2 The wind turbine blade

The second test case of the Explicit LES is the wind turbine blade. The mesh and

parameters are the same as in the chapter 3. The order is 8.
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(a) (b)

Figure A.8: Same as figure 3.5.

Figure A.9: Same as figure 3.13.
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Figure A.10: (a) Flow structure on the suction side of the center HAWT blade. The dy-
namic Smagorinsky model is turned on. (b) The iso-surface of eddy-viscosity obtained
by the model.
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Titre  Simulations Numériques des Transitions de Couche Limite sur des Pales en Rotation: 
Eolienne à Axe Horizontal et Hélice Marine 

Mots clés :  Transitions de Couche Limite,  Pales Rotatif,  Eolienne,  Hélice Marine 

Résumé :  Les couches limites des  Eolienne à 
Axe Horizontal (HAWT) et des hélices marines 
partagent un point commun avec l'écoulement 
de von Kármán, qui est créé par un disque 
rotatif immensé  dans un fluide. L'écoulement de 
von Kármán peut induire une transition par 
écoulement transverse aussi dite "corss-flow". 
L'objet de la présente étude est la possibilité 
d'une transition d'écoulement transversal sur les 
HAWT et les hélices marines. 
Cette étude montre que les transitions naturelle 

de couche limite sur les HAWTs et les hélices 
marine sont induites par des mécanismes 
distinctement différents. Le résultat de 
l'écoulement autour d'un pale de HAWT montre 
que le profil de la couche limite est très proche 
d'un profil bidimensionnel. Sur la pale, la vitesse 
dans le sens de l'envergure est faible lorsque la 
couche limite est attachée. En conséquence, la 
transition naturelle est très similaire au profil 2D 
et est aux ondes de Tollmien – Schlichting (TS). 

Sur la pale d'hélice marine, l'écoulement de la 
couche limite est entièrement tridimensionnel 
(3D) en raison de la rotation. L'instabilité et la 
transition des "cross-flow" sont clairement 
observées. La forme des tourbillons est en bon 
accord avec la prédiction de la théorie de la 
stabilité linéaire (LST). Bien qu'il ait été 
longtemps supposé que la "cross-flow" 
transition devrait être importante sur les 
hélices, il s'agit de la première observation 
directe de tels phénomènes à notre 
connaissance. Parsque l'hélice n'a pas de 
symétrie de rotation infinie, notre résultat 
suggère que la couche limite sur les hélices 
marines est instable par convection. Cet aspect 
est différent par rapport a l'écoulement de von 
Kármán, qui est inconditionellement instable. 

 

Title :  Numerical Simulations of boundary layer transitions on rotating blades: Horizontal Axis Wind 
Turbine and Marine Propeller 

Keywords :  boundary layer transition, rotating blade, HAWT, marine propeller 

Abstract :  The boundary layers on HAWTs and 
marine propellers share an apparent common 
point with von Kármán swirling flow, which is 
created by a rotating disk in the otherwise still 
fluid. von Kármán swirling flow is the prototype 
of cross-flow transition. Therefore one focus of 
the present study is the possibility of cross-flow 
transition on HAWTs and marine propellers. 
This study shows that the natural boundary 

layer transitions on the HAWT and the marine 
propeller are induced by distinctively different 
mechanisms. The numerical result of a HAWT 
blade shows that the boundary layer profile on it 
is very close to 2-Dimensional (2D) airfoil flow. 
On the blade, the velocity in spanwise direction 
is small in the attached boundary layer. As a 
result, the natural transition on HAWT blade is 
very similar to the 2D airfoil and is due to 
Tollmien-Schlichting (TS) wave. 

On the marine propeller blade, the boundary 
layer flow is fully 3-Dimensional (3D) due to 
rotation. Cross-flow instability and transition are 
clearly observed. The shapes of the cross-flow 
vortices are in good agreement with the 
prediction of Linear Stability Theory (LST). 
Although its been long assumed that cross-flow 
transition should be important for propellers, 
this is the first direct observation of such 
phenomena as far as we know. Because the 
propeller does not have infinite rotational 
symmetry, our result suggests the boundary 
layer on the marine propeller is convectively 
unstable. This is different with von Kármán 
boundary layer flow, which is absolutely 
unstable. 
 

 


	Acknowledgements
	List of Figures
	Abstract
	Background and Introduction
	Background
	Motivation of the present work

	Aerodynamics of 2-Dimensional Airfoil
	The boundary layer and its transition
	The boundary layer
	The laminar-turbulent transition
	T-S wave instability
	Flow separation induced transition
	Cross-flow transition
	Others

	Transition on the 2D airfoil
	The rotating disk flow
	Cross-flow velocity
	Its transition
	Implication

	HAWTs and marine propellers
	HAWTs blades boundary layer
	Cavitation and marine propeller boundary layer

	Summary

	Methodology
	Hydrodynamic instability
	The Linearized NS equations
	Linear Stability Theory
	Further notes on LST

	Comparison of different simulation strategies for transitional flows
	RANS
	LES
	DNS
	Choice of the numerical method

	Spectral Element Method
	Spectral Method
	Spectral Element Method
	Nek5000
	NS equations in the rotating reference frame
	IDRIS

	Summary

	Rotating HAWT blade
	Set-ups of the simulations
	The HAWT blade
	The meshes and boundary conditions
	The 2D airfoil simulation

	Results
	The influence of BCs at two ends
	Mesh Convergence
	Flow fields
	Boundary layer instability and transition

	Summary

	Marine propeller
	Methodology
	Blade geometry and parameters
	Overlapping overset meshes
	Definition of local flow directions
	LNS simulation mesh

	Results
	Overlapping overset meshes
	Mesh convergence and velocity profiles
	Laminar-turbulent transition on the blade
	Separation-induced transition and the influence of rotation
	Flow transition's influence on the surface streamlines

	Stability Analysis
	Linear Stability Analysis
	Linearized Navier-Stokes simulation
	Convective/absolute nature of the instability

	Summary

	Conclusion and Perspectives
	Conclusion
	Perspectives

	The Explicit LES model in the Nek5000
	Filtering
	Averaging of the eddy viscosity
	Test cases
	The flat plate
	The wind turbine blade


	Bibliography

