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ABSTRACT

In this thesis, we describe the synthesis of periodic substrate-integrated waveguide sup-

porting degenerate band edge (DBE) points. The DBE is a special fourth-order de-

generate point encountered at the edge of the stopband in a periodic structure, which

leads to field enhancement and high-Q resonances. First DBE realizations have been

proposed in optics (with anisotropic dielectrics) and in the low microwave frequencies

(with microstrips and waveguides). The choice of SIW technology can lead to the use of

the DBE concept in microwave and millimeter-wave integrated circuits, given the easy

fabrication, low profile and low-cost features of this technology. Applications of this

concept will be oscillators having low threshold currents and being robust to external

loading, and sensors with high directivity and sensitivity.

Here a multimodal transfer-matrix method is used to analyse the 4-port unit cell com-

posing the periodic lines which supports a DBE. Conditions for the design of a unit

cell providing a DBE point are given after an analysis of several kinds of unit cells,

classified according to their S-parameter properties. Based on these guidelines, several

SIWs-DBE designs are presented. In each case, a full dispersion analysis including both

phase and attenuation constants of each Bloch mode is performed. A distance among

all the Bloch-mode eigenvectors is computed to confirm the coalescence of four modes

and the existence of a DBE. The influence of losses, of geometrical perturbations, and

of truncation are considered. Typical DBE characteristics, such as field enhancement

and a steep increase of Q factor and group delay vs. the number of cell in a trun-

cated resonator are observed in lossless and lossy situations. Three low-loss designs

are proposed, based on either a low-loss substrate or air-filled SIW solutions. These

designs are capable to maintain strong DBE resonances even in the presence of losses.

Feeding transitions are designed to feed the SIWs-DBE lines and to perform measure-

ments which fully validate the theoretical analyses. Finally, the design procedure is

also applied to a multilayer integrated waveguide, particularly suitable for integrated

millimeter-wave applications, showing the versatility of the proposed methodology.

Keywords: Degenerate band edge, dispersive analyses, transmission matrix, high-Q

resonators, periodic structures, substrate-integrated waveguides.
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CHAPTER 1

Introduction

Electromagnetic propagation properties of metamaterials are characterized by the fre-

quency dependence of the various modal wavenumbers supported by the material, defin-

ing the series of pass-bands and stop-bands and their features. This information is vi-

sualized by means of the well-known Brillouin diagram of the structure. Degenerate

points in this diagram occur when two or more wavenumbers meet together with their

relevant eigenmodal vectors. At these meeting points, new modes with different propa-

gating features are usually originating. From a physical point of view, this corresponds

to the coupling between different modes or harmonics, and can be a quite trivial phe-

nomenon in periodic structures. For example, common degeneracies occur at each band

edge of the Brillouin diagram, where two real harmonics (a forward and a backward

one) meet to originate two complex conjugate modes. This is indeed the mechanism

describing the transition from a pass-band to a stop-band.

Other kinds of degeneracies are less frequent and have received attentions in the last

years. Namely, degenerate band edge (DBE) points have recently been investigated

and have attracted considerable interest, because they introduce strong dispersive be-

haviors in periodic structures. The implementation of DBE leads to so-called “giant

resonances” characterized by enhanced field magnitudes and then high Q-factors in

relatively short lengths, which provides insights into the design of new high Q-factor

resonators in a compact size.

These features are particular attractive for the realization of printed circuits in stan-

dard PCB technology. For this reason, we aim at studying the possibility to support and

excite DBE in an efficient way in substrate integrated waveguides (SIW). These are par-

ticularly interesting for low-cost and easy-fabricated microwave circuits, and can pave

the way to apply this new DBE concept to other kinds high-performance microwave

and millimeter-wave circuits.

In this chapter, the research background and key terms on DBE are introduced. In

Section 1, typical dispersion behaviors of one-dimensional (1-D) periodic structures

are discussed. In Section 2, we briefly introduce the definition of degenerate band edge

(DBE), the giant DBE resonances, and review several existing DBE structures in the
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microwave area. After that, a compact, low-cost, and easy-fabricated waveguide called

substrate-integrated waveguide (SIW) is presented in Section 3. At last, we describe the

research objectives of this work and the outline of the thesis.

1.1 Dispersive properties of periodic structures

Let us assume an electromagnetic structure periodic along one direction (z) with period

length d, whose period is called in the following a “unit cell” (Fig. 1.1(a)). A monochro-

matic regime of angular frequency ω = 2π f is also assumed in the following, where the

time-dependence ejωt is suppressed. A Bloch mode supported by the structure is a solu-

tion of Maxwell equations verifying the boundary conditions enforced by the structure.

By virtue of the periodicity, a Bloch mode verifies Floquet-Bloch boundary conditions

at the edge of the cell. If we imagine the periodic structure as a series of scatterers

embedded in an uniform waveguide, the Bloch mode will be a superposition of forward

and backward waves originated by the multiple reflections from the scatterers. If V is a

field component only dependent on the z dimension, its eigenvalue function is explicitly

given by [1],

V (z + d) = e−jkdV (z) (1.1)

where k is the complex modal wavenumber. When decomposed in real and imaginary

parts k = β − jα, the two quantities have different physical meanings. β is the prop-

agation constant, which describes the phase variation of the field along the structure

(together with its phase and group velocity). α is the attenuation constant of the mode,

which is responsible for a possible exponential attenuation along the structure.

We will refer to the dispersive properties of the periodic structure as the properties

related to the frequency dependence of the modes supported by the structure (Bloch

modes). These properties are simply visualized in the Brillouin diagram, which is a plot

of the curve Re(k) = β as a function of ω. This diagram is periodic of 2π/d as shown

in Fig. 1.1(b), and can be thus restricted to the so-called first zone (−π ≤ βd ≤ π)

with no loss of generality [1]. Since the Bloch wavenumber is in general complex, it

is possible to plot also the attenuation constant as a function of the frequency. If this is

done close to the Brillouin diagram, the two curves give complete information on the

propagation regimes supported by the structure (Fig. 1.1(b)).

One of the most typical dispersive features of periodic structures is the alternating fre-

quency intervals of different Bloch-mode regimes: pass-bands and stop-bands. A pass-

band is a frequency range where a Bloch mode can propagate without a significant at-

tenuation (apart from possible loss effects). A mode in this regime can carry real power

and it is visualized in the Brillouin diagram as a real wavenumber (in the absence of

losses). A stop-band is a frequency range where the Bloch mode is attenuated and can-

2



Brillouin zone

Bandgap

Bandgap

ω

Re(kd) Passband

ω

Im(kd)

0-π π0-π π 2π

... ...

(b)

(a)

...

zd

Forward wave

Backward wave

Fig. 1.1 1-D EBG structure [1]: (a) Schematic of 1-D EBG structure, where d is the

period. (b) Dispersion diagram of 1-D EBG structure. The Brillouin diagram (on the

left) shows the frequency variations of the phase constant Re(k) = β. It is periodic of

2π if the normalized constant Re(kd) is plotted. The diagram on the right shows the

attenuation constant Im(k) and completes the description of the dispersion properties

of the structure.

not carry real power along the structure. This is visualized in the Brillouin diagram as

a complex mode with a fixed phase constant not varying with frequency (either β = 0

or β = π/p in the first zone, but most often not even plotted). In a stop-band regime,

the Bloch mode attenuation constant changes with frequency, and its knowledge helps

to evaluate the stop-band attenuation and to clarify the regime under study.

This rich dispersive behavior has been one of the reasons of intensive research on pe-

riodic structures in the past decades. They can provide frequency-filtering properties

or prevent completely wave propagation in the frequency range of interest. In the lat-

ter case, and especially in the case of periodicity along two directions, the structure is

commonly referred to an electromagnetic band-gap (EBG). After seminal papers such

as the one by E. Yablonovitch [17] proposing laser applications of artificial photonic

band-gap (PBG), blocking the propagation of light in a specific frequency band, the

concept of EBG has been introduced into the electromagnetic field [18]. As the in-

creasing demand of compact and high performance devices, EBG structures have been

widely used in electromagnetic applications, including filters [19, 20], resonators [21],

waveguides [22], antennas [23], etc.
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Most studies of the EBG structures focus on the bandgap behaviors to confine the wave

in a waveguide or a cavity surrounded by EBG walls. So far, however, very little atten-

tion has been paid to the band edge to achieve interesting wave propagation behaviors.

A well-known behavior of waves at the edge of a stopband is the fact that the group

velocity ∂ω/∂β = 0 at the band edge, which means that the energy propagation slows

down as the transition to a reactive regime is approached (in stopbands, no active power

is carried along the structure). Therefore, the band-edge point has been used to design

resonators and slow-wave structures [24].

In this thesis, we are interested into the synthesis of an exceptional band edge condi-

tion called degenerate band edge (DBE) in 1-D EBG structures, whose definition and

properties are discussed in the following sections.

1.2 Degenerate Band Edge (DBE)

A new dispersion phenomenon called degenerate band edge (DBE) was observed and

studied by Figotin and Vitebisky [25] in the context of slow-light propagation in pho-

tonic crystals. It was pointed out that a series of anisotropic layers having principal axes

suitably misaligned leads to a new DBE dispersion relation characterized by a dramatic

field enhancement in the structure. In this section, we will review this phenomenon and

show several applications.

1.2.1 Exceptional points and degenerate band edges

The DBE is a particular example of the more general concept of “exceptional point”

(EP). An EP is a solution in the Floquet eigenvalue problem (1.1) (or another eigenvalue

problem in different domains of physics) where several eigenvalues coalesce together

with their eigenvectors [26]. The requirement of a degeneracy of both eigenvalues and

eigenvectors exclude the modal crossing due to simple symmetric configuration inside

each unit cell (such as glide-symmetry [16]). Since EPs are related to modal coupling,

the relevant Hamiltonian can be formulated as perturbation of uncoupled Hamiltonians,

where the perturbation coefficient describes the coupling between different systems.

EPs arise when this coupling coefficient is analytically continued in a complex domain

for specific values of this coefficients, corresponding to branch-point singularities in this

complex plane [27]. After these first theoretical analyses, several experimental results

revealed the physical importance of EP [28]. Since EPs can occur in any eigenvalue

problem, these results can be applied and observed in a wide variety of physical systems,

such as microwave cavity [29], parity-time-symmetric systems [30] (where periodic

losses and gains balance each other), optical systems [31], quantum phase transitions

[32].

Trivial degeneracies of second-order occur at each stop-band edge frequency, where two
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different real harmonics (a forward and a backward) coalesce and originate two complex

conjugate modes. These are called regular band edges (RBE). The phase constants of

the real harmonics is quadratic in the neighborhood of the RBE [2]

f ≈ fg +
fg

′′

2
(β − kg)

2 (1.2)

where fg
′′ = ∂2f

∂k2
< 0, fg is the frequency at RBE and kg is the wavenumber at RBE

(see Fig. 1.2(a)).

While RBE occur in any periodic structure, this work focuses on DBE, which are fourth-

order EP occurring at a frequency-edge of a stop-band. The phase constants of the real

harmonics in the neighborhood of the DBE is this time of fourth order:

f ≈ fd +
f ′′′′
d

24
(β − kd)

4 (1.3)

where fd
′′′′ = ∂4f

∂k4
< 0, fd is the frequency at DBE and kd is the wavenumber at the

DBE. The different behaviour of a DBE with respect to a RBE can be visualized in Fig.

1.2.

A first study of DBE was proposed by Figotin and Vitebsky in the context of slow-

light propagation in photonic crystals [33]. They show the possibility to obtain an DBE

by cascading a series of dielectric anisotropic slabs, whose principal axes are properly

misaligned.

The behavior (1.3) leads to different dispersive features in wave propagation close to the

band edge. As observed in the dispersion diagrams in Fig. 1.2(a) and (d) [2], near the

band edge the DBE dispersion curve is flatter, because the phase constant β near DBE

increases much slower than the k near RBE. At the DBE point, not only the group ve-

locity vanishes, i.e., vg = ∂ω/∂k = 0, but also the first and second derivative of group

velocity reach zeros, i.e., ∂vg/∂k = ∂2ω/∂k2 = 0 and ∂v2g/∂k
2 = ∂3ω/∂k3 = 0 [6].

On the contrary, at the RBE point only the group velocity vanishes, while its derivatives

are different from zero. This leads to much lower group velocities at frequency suffi-

ciently close to the DBE. For this reason, higher-order degeneracy are often referred to

as “frozen modes”.

1.2.2 Requirements to achieve the DBE

While RBEs are encountered in all periodic waveguides, specific conditions should be

designed in order to support a DBE. No general formulas are known in order to obtain

such a result without a trial-and-error design procedure. Here we describe previous

works providing guidelines for a correct design by analogy. In Chapter 2 we will study

in detail the problem of the design of periodic coupled waveguides which can synthesize
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Fig. 1.2 Dispersion relation comparison between RBE and DBE. (a-b) Dispersion re-

lation of RBE in (a) phase constant and (b) attenuation constant. (c) Demonstration of

RBE modes in the complex space: with the increasing of the frequency, two propagat-

ing modes (k1, k2) coalesce at the RBE point. (e-f) Dispersion relation of DBE: (e)

phase constant, (f) attenuation constant. (f) Demonstration of DBE in complex space:

at DBE point, four modes coalesce (two propagating modes (k1, k2), two evanescent

modes (k3, k4)).

a DBE.

The configuration studied in [2] is a periodic stack of photonic layers. As shown in

Fig. 1.3(a), if the unit cell consists of two isotropic layers (A and B), RBEs are ob-

tained. In contrast, when the unit cell of Fig. 1.3(b) includes two anisotropic layers (A1

and A2) together with an isotropic layer (B), a DBE condition can be reached. Neces-

sary conditions are that layers A1 and A2 have different orientations of their principal

axes: ϕ1 and ϕ2, and the misalignment angle between the axes is ϕ = ϕ1 − ϕ2, which

can be varied between 0 and π/2 [34] to obtain the DBE. The role of the anisotropy

misalignment is to assure the effective coupling between plane waves with different po-

larization propagating in the isotropic layer. In [2], the following important constrains

to obtain a DBE in this configuration are reached:

• The periodic stack should include anisotropic layers.

• At least two of these anisotropic layers should provide in-plane anisotropy not

aligned or perpendicular to each other, but with a proper misalignment angle.
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• The presence of an isotropic layer is also necessary if the anisotropic layers are

identical apart a rotation.

Other structures proposed in the last years confirm the need of the coupling between two

different waveguide modes in order to achieve DBE. In [6], two elliptic rings are placed

in a circular waveguide, providing a coupling between two TE11 with orthogonal polar-

ization. While one ring only is not capable to achieve a DBE condition, by modifying

the distance and the misalignment between the rings in a unit cell, a DBE can be ob-

tained. In [35], a DBE is obtained by modulating the coupling between microstrip lines

along a unit cell. In [36], a double-ladder topology circuit was used to obtain the DBE

with a lumped-element circuit. Models for DBE in transmission lines are discussed in

[37] and [38] where analytic constraints on the characteristic impedances of multicon-

ductor transmission lines are derived to fulfill the DBE condition. These studies can

give useful guidelines to achieve a DBE in specific structures by showing the need of a

coupling mechanism between modes to achieve a DBE. However, no general results are

available to design a periodic array whose unit cell is made of a coupler having suitable

parameters capable to assure a DBE.

... ...A B A B A B ... ...A1 B A2 A1 B A2

y

x

z

d d

(a) (b)

Isotropic layers Anisotropic layers

Fig. 1.3 Stacks of periodic layers to develop RBE and DBE [2]. (a) Stacks of isotropic

periodic layers A and B. (b) Stacks of anisotropic periodic layers to develop DBE.

Layer A1 and A2 are anisotropic and their in-plane axes have a proper misalignment

angle. Layer B is isotropic.

1.2.3 Truncated Structures based on DBE Resonances

Any practical application of structures supporting DBE points always require the trun-

cation of the periodic structures, i.e. the use of a finite number of unit cells. It is then of

interest to know how the field excited in a truncated waveguide behaves, if the original

periodic structure supported a DBE condition. It has been shown that, if compared to

RBE, DBE resonances lead to an enhancement of the field amplitude, and then to a

7



higher quality factor Q, which scales differently vs. the number of cells in DBE than in

RBE [2].

By truncating a periodic structure which develops RBE or DBE, a Fabry-Pérot res-

onator is obtained [1]. If this resonator is accessible through two ports at its ends, a

typical transmission spectrum through the cavity is shown in Fig. 1.4 [2], where N is

the number of cells retained in the truncation.

Fig. 1.4 Typical transmission spectrum of Fabry-Pérot resonator [2]. The peaks below

the band edge frequency ωg represent the resonances. (a) The length of resonator N =
16. (b) The length N = 32. The resonances are narrower when the length increases and

their angular frequency positions are closer to the RBE angular frequency ωg.

When N increases, the finite-length structure is approaching the ideal periodic config-

uration. The transmission peaks at frequencies lower than the band edge ωg become

sharper and their frequencies approach ωg. These transmission peaks under ωg approx-

imately correspond to stationary waves inside the stack, approximately composed by a

forward and a backward Bloch mode of similar amplitude, which cancel each other on

the boundaries of the structure. It is easy to verify that the waves capable to fulfill this

conditions have the following phase constants

βs(N) ≈ βg ±
π

Nd
s, s = 1, 2, . . . (1.4)

where βg = π/d is the band-edge wavenumber, the ± sign depends on the forward or

backward wave, and the index s selects the resonances shown in Fig. 1.4.

Once the dispersion equation (1.2) is taken into account, the resonant angular frequen-

cies close to an RBE are [2]

ωs(N) ≈ ωg +
ωg

′′

2

( π

Nd
s
)2

, s = 1, 2, . . . (1.5)
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Here and in the following we only consider the first resonance closest to the RBE (s =

1), which has the narrowest resonance among the different peaks. Its angular frequency

is then

ωRBE
1 (N) ≈ ωg +

ωg
′′

2

( π

Nd

)2

(1.6)

If a periodic structure supporting a DBE is truncated, the different (fourth-order) dis-

persion curve of the kind (1.3) leads to the angular frequency of a DBE resonance

ωDBE
1 (N) ≈ ωd +

ωd
′′′′

24

( π

Nd

)4

(1.7)

where a fourth-order dependence on the number of cells N is recovered.

A different scaling with respect to N is also found when observing the field density in

the finite stack of cells. The electromagnetic field distribution inside the Fabry-Pérot

cavity of RBE resonances is shown in Fig. 1.5. As we can see, the maximum field

density is found in the middle of the resonator (as expected in a stationary wave with

only one maximum), and it increases when the length of the cavity increases. The

relationship between the maximum field density |Ψ(z)|2, the incident wave amplitude

ΨI , the number of cells N and the order number of RBE resonance peak s is

max |Ψ(z)|2 ∝ |ΨI |2
(

N

s

)2

(1.8)

As shown in Fig. 1.5(c), (d), the DBE generates a stronger field enhancement com-

pared to RBE. In fact, the relationship between maximum field density and N of DBE

structures scales with a fourth power with respect to N

max |Ψ(z)|2 ∝ |ΨI |2
(

N

s

)4

(1.9)

While more challenging to achieve, the DBE provides a field enhancement proportional

to N4, whereas the RBE field enhancement is only proportional to N2. It indicates that

the DBE structures can use a smaller number of periods to achieve the same perfor-

mance as RBE structures, which can be attractive for compact design. Furthermore,

fewer cells may suffer less of losses and imperfections.

The difference in formulas (1.8)-(1.9) can be explained by recurring to the composition

of a RBE vs. a DBE point. The RBE resonance field is composed of two propagating

Bloch modes (forward and backward modes) with close phase constant. In a periodic

structure, these two modes eventually coalesce into one at the band edge frequency. In

the truncated structure, the squared amplitude of the two Bloch components of the RBE

resonance field ΨT (z) is shown in Fig 1.6, where numbers 1 and 2 represent the forward

and backward Bloch components. Higher-order evanescent fields are also depicted with
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Fig. 1.5 The field intensity of RBE and DBE structures with different lengths [2]. (a)

16-cell RBE structure field distribution. (b) 32-cell RBE structure field distribution. (c)

16-cell DBE structure field distribution. (d) 32-cell DBE structure field distribution.

numbers 3 and 4, but their amplitude is negligible with respect to the main propagating

modes. The squared amplitude of the overall propagating and evanescent fields are

respectively

|Ψpr(z)|2 = |Ψ1(z) + Ψ2(z)|2, |Ψev(z)|2 = |Ψ3(z) + Ψ4(z)|2 (1.10)

Since the evanescent components are negligible, the overall field is determined by the

propagating components as

Ψtotal(z) ≈ Ψpr(z) (1.11)

We also notice that the amplitudes of the two propagating modes have similar magnitude

and opposite phase at the endpoints of the resonator. This allows an approximated

standing wave with small amplitudes on the endpoints to be excited, as explained at the

beginning of this paragraph.

By contrast, the field composition is different in the DBE situation. It is important to

recall that a DBE is the coalescence point of four different modes, two real and two

evanescent ones. Therefore, at frequencies close to the DBE, the amplitudes of all four

modes are relevant in the total DBE resonance of the truncated structure. This is shown

in Fig. 1.7 [2]. The two propagating modes are again labeled as 1 and 2, while the

evanescent modes are 3 (forward, attenuating for increasing z values) and 4 (backward,
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Fig. 1.6 Bloch components of RBE resonance [2]. (a) Individual Bloch compo-

nents: forward/backward propagating Bloch modes, forward/backward evanescent

Bloch modes. (b) Overall propagating and evanescent modes.

attenuating for decreasing z values). At the boundaries at z = 0 and z = Nd, both the

propagating and evanescent components are large, and the four of them cancel together

to fit standing-wave boundary conditions. Inside the resonator, the evanescent modes

decay fast away from the interfaces, but the propagating modes remain large. This

shows that the evanescent components play an important role in forming large field

enhancement in the middle of truncated structures at DBE resonances. The presence of

evanescent modes helps matching the slowly propagating mode to a fast mode across

the interface [39].

Fig. 1.7 Bloch components of DBE resonances [2]. The evanescent modes are essential

for the enhancement of field amplitudes. (a) Four individual Bloch modes: forward and

backward propagating modes, forward and backward evanescent modes. (b) Overall

propagating and evanescent modes.
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The enhancement of the amplitude levels of DBE resonant fields with respect to RBE

fields leads to an important consequence in Q factors of truncated resonators. In fact,

Q-factors of DBE structures are proportional to N5, while RBE structures’ Q-factors

are proportional to N3 [40]. In [3], the higher Q-factors related to DBE is verified in a

double-ladder-circuit resonators and the increase of Q-factors vs. the number of cells

is studied in both RBE and DBE resonators. The results are shown in Fig. 1.8. The

sharp increase of Q-factors in DBE structures is particularly attractive for the design of

high Q-factor resonators of compact size. This field enhancement and the increase of

the loaded Q factor confirms the possibility to develop integrated circuits for interesting

applications. These include sensors very sensitive to geometrical or physical changes

close to the periodic line, oscillators having lower starting current with respect to or-

dinary oscillators [41], and directive and sensitive antennas if the Fabry-Perot cavity

is open with slots, for example. In this view, the development of DBE conditions in

integrated technology such as SIW is then important for the design of this new class of

circuits and antennas. Of course, resonant phenomena in SIW can suffer from the pres-

ence of dielectric and metallic losses, and require a careful design in terms of circuit

topology and to the materials to use.

Fig. 1.8 The comparison of Q-factor trends in single ladder circuit with RBE and double

ladder circuit with DBE [3]. The red line represents the Q-factor of the single ladder

circuit with RBE resonances and it is proportional to N3. The blue line represents the

Q-factor of double ladder circuit with DBE resonances, which is proportional to N5

.
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1.2.4 Effect of Losses on DBE Structures

One of the attractive characteristics of RBE and DBE structures is their slow-wave fea-

tures. As discussed earlier in this section, in an ideal situation the group velocity van-

ishes at the band edge frequency [39]. However, in reality, the group velocity reaches a

minimum attainable limit because of the losses of material, fabrication tolerances, and

finite-length truncation [4]. A few theoretical and experimental researches have dealt

with losses influences on DBE synthesis [4] and Q-factors [5, 42].

Losses can be classified as dielectric, conductivity, and radiation losses. Dielectric

losses are particularly simple to model, since they can be taken into account by using a

complex dielectric constant, whose imaginary part is related to the loss tangent of the

material ǫ = ǫ′−jǫ′′ [14] where ǫ is the complex permittivity, ǫ′ is the real part of dielec-

tric permittivity and ǫ′′ represents the dielectric loss. The knowledge of the loss tangent

of a material leads to a straightforward estimation of losses of plane waves propagating

inside the material. However, loss analysis is more complicated in waveguide struc-

tures, and specifically in DBE structures, since the impact of losses depends on the field

configuration and is therefore strongly dependent on the structure under analysis.

A few theoretical works are available for a theoretical estimate of group velocity at

band edge of photonic crystals. In [43], Pedersen et al. proposed a lower bound of the

group velocity of RBE structures. Laude et al. used a perturbation method to analyze

the influence of losses on a dispersion relation close to a band edge, and gave a general

analytical expression of the lower limit of the group velocity of complex band structures

[4]

D(ω, k, µ+ δµ) = ω − ω0 − δω − α(k − k0)
n = 0 (1.12)

where D(ω, k, µ + σµ) is the general dispersion relation, µ is a small perturbation of

the material constant, α is the constant determined by the shape of the unperturbed

dispersion curve near the point (ω0, k0), and n is the degenerate order of the band edge

(If n = 2, it is a RBE; if n = 4, it is a DBE).

Fig.1.9 from [4] shows a typical comparison between lossless and lossy dispersion

curves near DBE. In the lossy case, the degeneracy is lost, and the group velocity at

the DBE does not reach zero as expected in the lossless case. The minimum limit of

group velocity given by [4] is

vLg = n · 2−n−1

n cos
(n− 1)π

2n
|α| 1n (ω · FL)

n−1

n (1.13)

where vLg is the minimum bound of the real part of the group velocity, which is vLg =

min |Re(vg)|. F is the filling fraction representing the ratio of energy inside the dielec-

tric to the total energy. L is the loss factor. The detailed definitions of F and L are given

in [4].
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by the coalescence of four eigenvectors of the Floquet eigenproblem. A measure of the

“hyperdistance” DH among these vectors can thus quantify how far a point on disper-

sion relation curve is to an ideal DBE [5]. This hyperdistance can be defined as the sum

of the six distances between each pair of the four eigenvectors:

DH =
1

6

4
∑

m,n=1

m 6=n

sin θmn, cos θmn =
Re(Ψm,Ψn)

||Ψm|| · ||Ψn||
(1.14)

where Ψm are complex Bloch-mode vectors in a four-dimensional complex vector space

[44]. (Ψm,Ψn) is the hermitian inner product between Ψm and Ψn, ‖Ψm‖ is the norm

of Ψm, and θmn is the angle between Φm and Φn, defined by means of the standard

hermitian product between the vectors. In equation (1.14), a perfect DBE corresponds

to DH = 0. The lower DH is, the nearer the point is to an ideal DBE condition.

Losses also limit the expected Q-factor variation when the number of cells in truncated

structure is increased. As the length of truncated DBE resonator increases, the influ-

ences of the loss is higher [42]. In general, loss tends to limit DBE unique features,

especially for long structures, so minimizing losses is an essential task in designing

DBE structures.

1.2.5 Review of Existing DBE Structures

Given the interesting characteristics previously described, DBE have been recently syn-

thesized in different technologies, both in photonic and at microwave frequencies, such

as double ladder lumped circuit [3, 36, 45], coupled microstrip lines [5, 38, 46–50],

circular waveguide [6, 42], silicon ridge waveguides [51, 52], coupled resonator optical

waveguide [24, 31, 53], multilayer dielectric resonator [35, 54–56], multilayer dielectric

antenna [7, 8, 57–62], coupled transmission line array antenna [63], high power oscil-

lator [64–69], pulse compression device [70], low threshold switching [71], laser [72].

In the following, we show three representative structures for microwave applications,

which will be helpful to develop the designs proposed in the following chapters.

1.2.5.1 Circular Waveguide with DBE

In [6], a DBE is obtained in a circular waveguide by introducing two elliptical irises

with a proper misalignment angle. The unit cell of the metallic circular waveguide is

shown in Fig. 1.11 [6, Fig. 1]. Two forward 90◦-rotated degenerate TE11 modes travel

along the circular waveguide as well as other two backward modes. The misaligned

irises mix the four modes, thus forming the DBE. In [42] the structure is fabricated

(Fig. 1.12) and successfully validated by an experiment. Furthermore, as shown in

Fig. 1.13, the scaling of the quality factor Q fits with a N5 law as expected in DBE
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resonances. The results show that losses do not impact considerably the structure. This

structure can be used in many applications, such as, high power microwave tubes having

a strong interaction with an electron beam [73].

Fig. 1.11 The unit cell for a lossless air-filled circular waveguide with DBE [6]. Two

discs with elliptical irises are placed in the waveguide with a proper misalignment angle.

Fig. 1.12 The fabrication of the circular waveguide with DBE. The elliptic rings are

supported by low-index foam and different lengths of the structure are considered.
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Fig. 1.13 The scaling of the Q factor to the number of the cells fits N5.

1.2.5.2 Coupled Microstrip Lines with DBE

A pair of coupled microstrip lines is proposed in [35], where coupled and uncoupled

line sections are alternated inside each unit cell to obtain the effect given in photonic

crystals by anisotropic layers. The geometry is shown in Fig. 1.14 [7]. In the unit cell,

the first part A1 can be modeled by two uncoupled lines. In a parallel with the photonic

crystal of Fig. 1.3, they play the role of one anisotropic layer. The second part A2

couples the lines and emulates the unaligned anisotropic layer. The DBE condition is

developed by adjusting the distance between lines and the length of the A2 section.

This coupled-microstrip-lines DBE structure is the first DBE synthesized in PCB tech-

nology, and it can be used for microwave and antenna designs. One of the applications

is the microstrip antenna in [7]. The slow-wave condition close to the DBE allows to

miniaturize the size of the antenna to λ0/9× λ0/9.

Fig. 1.14 Geometry of Coupled microstrip lines with DBE [7]. Two sections of the

coupled lines emulate the anisotropic layers used in [2].
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1.3 Substrate-integrated Waveguide (SIW)

In this section some fundamental concepts are recalled for the definition and design

of substrate-integrated waveguide (SIW), together with existing SIW transitions, SIW

filter technology, and air-filled SIW. These concepts will be useful in the following

chapters for the design of SIW presenting DBE conditions.

1.3.1 Fundamental Properties of SIW

Substrate-integrated waveguides (SIW) [74] have attracted a lot of interest in the last

decades and have become a common solution for integrated circuits at microwave and

millimeter-wave frequencies. They are low cost, easy to fabricate, and have a good

trade-off between high power-handling capability and the compact size compared to

microstrip lines (low power-handling ability but compact) and metallic waveguide (high

power density but bulk and not integrated). They have been proved to be able to address

several issues for applications in high-frequency, high-performance circuits, such as

resonators, filters, antennas.

Fig. 1.17 Schematic of SIW structure [9]

A schematic of SIW is shown in Fig. 1.17 [9]. A substrate-integrated waveguide (SIW)

consists of two ground planes, a dielectric substrate, and parallel lines of metallic vias.

The tightly spaced vias act as sidewalls, to confine the wave inside the SIW, which

therefore simulates a rectangular waveguide in a fully integrated technology. Therefore,

the SIW can be equivalent to a dielectric rectangular waveguide whose width is given

by [75]

weff = w − d2

0.95s
, (1.15)

where w is the width of SIW, weff is the width of the equivalent rectangular waveguide,

s is the distance between vias. The cut-off frequency of SIW for the dominant TE10

19



mode is therefore

fc =
c

2weff

√
ǫr
, (1.16)

where c is the light speed, ǫr is the relative permittivity of the substrate. In order to

prevent lateral power leakage, the rules for via’s diameter d and via’s separation s are

[76]

s 6 2d, s/λc < 0.35 (1.17)

where λc is the wavelength in the substrate, i.e., 1/fc
√
ǫrǫ0µ0. Once the desired cutoff

frequency fc is determined, we can use equations 1.15 to 1.17 to design the SIW.

1.3.2 SIW Transitions

In order to connect SIW to other parts of integrated circuits realized in different tech-

nology, or to perform measurements, suitable transitions are required. Several types

of transitions have been used, such as microstrip line [10], conductor-backed coplanar-

waveguide (CBCPW) [11], SMA-SIW launcher [12], as shown in Fig. 1.18.

(a) (b) (c)

Fig. 1.18 Three common types of SIW transitions. (a) Tapered microstrip to SIW tran-

sition [10]. (b) CBCPW to SIW transition [11]. (c) SMA-SIW transition [12].

Microstrip transitions are commonly used and easy to design, according to rules pro-

posed for example in [10]. Only two parameters, the width and length of taper need to

be adjusted, and a good performance can be achieved. The transition of CBCPW, whose

design details are discussed in [11], is preferable for its low-loss and wide-banded char-

acteristics. The transition between an SMA connector and the SIW is effective to pre-

vent energy leakage, and its design is proposed in [12].

1.3.3 SIW Filters

SIW has been widely applied in compact, high-Q, and cost effective filters for the

millimeter-wave applications. A great deal of topologies have been reported, such as
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ridge SIW filters [77], half-mode SIW filters [78], SIW filters with modified comple-

mentary split ring resonators [79], SIW filters with finite transmission zeros (FTZs)

[80–85], etc.

The SIW filters with FTZs are designed by optimizing the FTZs position in the complex

frequency plane. There are two methods to produce FTZs [86]. One method introduces

a controlled coupling to generate different signal paths. When two signal paths cancel

each other out, i.e. they have the same amplitude but opposite phase, an FTZ is intro-

duced. Another method uses stopband resonators to introduce FTZs. Many topologies

have been reported capable to grant a proper placement of FTZs. In [87], inductive posts

are suitably placed to building the bandpass filter. In [88], a magnetic iris coupling is

introduced in a half-wavelength SIW resonator. The most common topologies have

multiple paths connecting different resonators. In [80], two bandstop resonators were

used to locate FTZs on the imaginary axis. Another four resonators provide FTZs on

the real axis and the whole filter was designed using an extracted-pole method [89]. In

[81–85], a “negative coupling” was introduced, consisting of a magnetic iris providing

an additional 180◦ phase change to the resonant mode. Furthermore, cross-coupling can

be realized by introducing a spurious resonant mode: in [90], the main resonance and

the spurious resonance generate together the FTZs. This topology gives the possibility

to locate the FTZs near the passband region and thus obtain a high selectivity.

Besides single-mode SIW filters, dual-mode SIW filters aim to decrease the filter’s size

by more than 50% compared to the cascaded SIW filters, lowering at the same time

transmission losses. The first dual-band SIW was proposed in [91]. After that, many

dual-band SIW filters were realized in SIW circular cavity as shown in [92–94].

SIW have also been used to implement wideband filters [95–97], multiband filters [98–

102], and reconfigurable filters [103, 104]. In [95], a zigzag topology provides a wide

bandwidth from 6 GHz to 8.5 GHz. By structuring the ground plane as a periodic

structure, a compact and wideband SIW filter is designed in [96]. An ultra-wideband

response can also be achieved by cascading lowpass filters, as shown in [97]. Multiband

(dual-band) SIW filters are proposed by cascading two passband filters with different

center frequencies in [98]. To include reconfigurability, tunable resonators are used to

adjust the frequency response. In [103], the vertical posts are used to configure the

filter. By short-circuiting the posts to the ground plane, the frequency response can

be configured. Another method uses pin diode switching elements to control the filter

[104]. The diodes determine if the vias connect to the top layer of the cavity or not. By

connecting or disconnecting the vias, the filter’s center frequency is reconfigured.
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1.3.4 Air-filled SIW

Dielectric losses are one of the main loss contributions in SIW lines [105], and could

be of course avoided if the substrate is replaced by air. In [13], an air-filled SIW is

proposed. It consists of three substrate layers as shown in Fig. 1.19. The top and bot-

tom layers have metallized lower and upper faces, respectively, in order to act as copper

planes for the middle layer. The metallic vias are in the middle layer, and the inner

substrate (where vias are not present) is removed before stacking the layers. Measure-

ments show that the air-filled SIW reduces the loss and increases the power-handling

capability compared to the normal SIW [13].

Transitions between air-filled SIW and standard SIW are also proposed in [13], and a

broadband air-filled SIW to waveguide transition is designed in [106]. Several appli-

cations have used air-filled SIWs. Here we cite bandpass filters with inductive posts

[107], a fifth-order air-filled SIW filter with iris windows [108], a dual-mode air-filled

SIW [109], and an air-filled SIW with FTZs [110].

Fig. 1.19 The demonstration of an air-filled SIW [13]. (a) Cross-section diagram. (b)

Geometry
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1.4 Research Objectives and Outline

The goal of this thesis is to obtain guidlines for the design of DBE in periodic waveg-

uides, propose SIW periodic structures supporting DBE, and to study the effect of trun-

cation in DBE giant resonances presenting the expected Q-factor growth described in

the previous sections. The objectives of this thesis are summarized below:

• Develop a mathematical model to find guidelines to achieve the DBE in SIW.

By considering the scattering parameters of unit cells providing modal coupling

between waveguides, sufficient conditions are sought to design the geometrical

shape of couplers capable to grant the existence of DBE.

• Study several unit cell designs of periodic SIW lines with DBE and discuss their

optimized designs in terms of losses, robustness to parameter variations, cost, and

fabrication aspects.

• Study the effect of truncation of the proposed periodic SIW lines together with

the suitable feeding to observe experimentally the giant resonances.

• Fabricate and measure the designed prototypes. The S-parameters and Q-factors

of the prototypes are measured and compared with the results of numerical sim-

ulations. A discussion is given about challenges encountered and solved during

the manufacturing process.

The outline of the remaining chapters of this thesis is as follows:

– Chapter 2: Guidelines for the Synthesis of SIW-DBE Periodic Structures and

Unit-Cell Design. In this chapter, the Bloch analysis of one-dimensional (1D)

periodic structures is presented, by assuming different ideal scattering parameters

to describe the unit cell as a four-port network. With the help of transmission line

analysis, we look for guidelines for the design of unit cells capable to grant a

DBE condition. The results lead to the proposal of several SIW unit-cell designs

with DBE. We also compare the size of these unit cells, the impact of losses, and

the robustness to parametric variations.

– Chapter 3: Design of Truncated SIW DBE Structures. In this chapter, we con-

sider truncated SIW composed of unit cells described in Chapter 2 and study the

excitation of DBE resonances and their properties. Low-loss solutions are pro-

posed based on low-loss substrates and air-filled SIW. These structures are fabri-

cated and measured. The distinctive features of DBE resonances are observed in

the experiments.
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– Chapter 4 Conclusions and Future Works: We conclude the thesis and offer

the prospect of future work.
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CHAPTER 2

Guidelines for the Synthesis of SIW-DBE Periodic Structures

and Unit-Cell Designs

2.1 Introduction

In this chapter, we present the tools used to analyze and design SIW periodic structures

providing a DBE conditions, we study different types of unit cells with the aim of

synthesizing a DBE response, and we propose several periodic SIWs capable to achieve

this response.

It should be remarked that the detection of a DBE condition requires the computation

of a full Brillouin diagram including both phase and attenuation constants. In fact, the

coalescence of four modes (two propagating and two evanescent, the latter ones having

a complex propagation constant) must be verified. Together with the eigenvalues in the

Brillouin diagram, the calculation of the Bloch eigenvectors is also required. They are

needed to compute the hyperdistance (1.14) to understand if the DBE is met or if further

adjustment to the structure should (and can) be done. All these quantities cannot be eas-

ily computed with ordinary simulation software. The available commercial numerical

tools performing dispersion analyses are in fact limited to real-mode computation only.

For this reason, the Floquet eigenvalue problem must be solved with an ad-hoc method.

We first give in Section 2.1 a brief review of the Bloch analysis of 1-D periodic struc-

tures using the well-known transfer-matrix method. Then we generalize the analysis

by means of a multimodal transfer matrix which can take into account several modes

at each side of the unit cell. This is particularly interesting to study DBEs, which arise

from a coupling between different lines. In Section 2.2, we assume a unit cell composed

by two identical transmission lines coupled with a coupler characterized by certain scat-

tering parameters. We study different kinds of couplers and we address the study of

constraints on these parameters to achieve the DBE. Based on these conclusions, we

proceed proposing several SIW-DBE unit cell designs in Section 3.
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2.2 Multimode Analysis of 1-D Periodic Structures with DBE

2.2.1 Bloch Analysis of a Cascade of 2-port Networks

The Bloch analysis of a periodic line whose unit cell can be modeled as a 2-port network

is well-established as described in [14]. We give a brief review here to show the general

idea, and then we extend it into the analysis of periodic structures formed by cascading

4-port networks in the next subsection.

A 1-D periodically loaded transmission line is shown in Fig. 2.1. To fix the ideas as in

[14], each unit cell is composed of a shunt susceptance and a transmission line. The

length of the unit cell is the period d, and the periodic shunt susceptance is b. A transfer

matrix or T matrix can be computed, relating the total voltages and currents on two

sides of the 2-port unit cell:
[

Vn+1

In+1

]

= T

[

Vn

In

]

(2.1)

Fig. 2.1 Equivalent circuit of a periodically loaded transmission line [14]

The transfer matrix is particularly useful since the transfer matrix of a cascade of el-

ements is simply the matrix product of the transfer matrices of the elements (in the

right order). It is important to note that the definition of transfer matrix or transmission

matrix may differ according to the author, but these definitions are basically the same

concept. In [5, 6, 111], the transfer matrix is the inverse of the transmission matrix

defined in [14]. Other transfer matrices can be defined on the basis of incident and

reflected waves, instead of total fields as here (e.g. in [112]). However, the analyses

performed under these definitions are equivalent (apart from an unessential exchange

between forward and backward modes if the inverse matrix is considered). To prevent

any ambiguity, we use in the following the definition of transfer matrix in (2.1). The

unit cell of Fig. 2.1 can be divided into a cascade of three parts: a d/2-length transmis-

sion line, a shunt susceptance b, and another d/2-length transmission line. Due to the

definition of the matrix, the T matrix of the cascade of different elements along a line is

given by the ordered product of the individual T matrices. Therefore, the normalized T

matrix of a unit cell of Fig. 2.1 can be expanded as the product of three matrices [14]:
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T =









cos
θ

2
−j sin

θ

2

−j sin
θ

2
cos

θ

2









[

1 0

−jb 1

]









cos
θ

2
−j sin

θ

2

−j sin
θ

2
cos

θ

2









(2.2)

where θ = kd and impedances are normalized to the same characteristic impedance of

the line. Equation (2.1) leads to a simple way to enforce Floquet boundary conditions

at the border of the unit cell (1.1). For a Bloch-mode propagating in the z direction, the

voltage and current at the n th terminals differ from the voltage and current at (n+1) th

terminals by a propagation factor e−jkd, where k = β + jα is the complex propagation

constant. Thus, the relation (1.1) can be written as:

[

Vn+1

In+1

]

= e−jkd

[

Vn

In

]

(2.3)

Comparing equation (2.1) and (2.3), the forward and backward propagation constants

k1 and k2 are related to the eigenvalues of the T matrix of the unit cell λ1, λ2. The

electromagnetic problem is then equivalent to an eigenvalue problem of a 2× 2 matrix

ki = − 1

jd
ln(λi), i = 1, 2 (2.4)

When α = 0, β 6= 0, the wave propagate along the structure without attenuation. Oth-

erwise, the wave is evanescent. The decay due to α can be due to material losses,

radiation losses, or to the presence of a stopband preventing the transport of real power,

as explained in the previous chapter.

2.2.2 Bloch Analysis of a Cascade of 4-port Networks

As seen in the previous chapter, the DBE condition arises from the mutual coupling of

two lines or modes in a guiding structure. For this reason, the approach of the simple T

matrix outlined in the previous section is not suitable for the analysis to be performed

here.

Already in [5, 6, 111], a generalization of the transfer matrix approach is proposed, by

describing the unit cell of a pair of 1-D periodic coupled transmission lines (CTL) as

a four-port network. With this approach, a unit cell for CTLs (Fig. 2.2) is accessible

from two ports on one Floquet boundary (labeled here ports 1 and 2) and other two

ports on the other Floquet boundary (labeled here port 3 and 4). On each port an equiv-

alent transmission line is defined, so that two scalar quantities (a voltage and a current)

are defined. Accordingly, Vn(z), In(z) are interpreted as CTLs voltages and currents,

namely, V(z) = [V1(z) V2(z)]
T and I(z) = [I1(z) I2(z)]

T . A four-dimensional state
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vector is defined as

Ψ(z) = [V1(z) V2(z) I1(z) I2(z)]
T (2.5)

Thanks to the linearity of the system, we can define a new 4× 4 transfer matrix relating

the state vector from one side of the unit cell Ψ(z) to the state vector to the opposite

side Ψ(z + d):

T ·Ψ(z) = Ψ(z + d) (2.6)

Floquet boundary conditions are still enforced as in (2.3) on the four-dimensional state

vector:

T ·Ψ(z) = e−jkd
Ψ(z) (2.7)

The Bloch wavenumbers are therefore related to the eigenvalues of the transfer matrix

T as in the single transmission-line approach.

Unfortunately commercial software do not compute directly transmission matrices. De-

spite some interest in the last years for the study of periodic structures where multimodal

coupling is particularly relevant, to the best of the author’s knowledge general formulas

for the practical calculation of this matrix are usually omitted in the literature. Note

also that, due to the presence of total fields, the calculations are slightly lengthier than

those for the matrix used in [112]. Here we propose a method employing the 4 × 4

impedance (or Z) matrix of the four-port unit cell, easily obtained with ad-hoc codes or

with commercial software, to be converted to a transfer matrix.

V1 I1
Port 1

Port 2

Port 3

Port 4

z

V2 I2

V3 I3

V4 I4

Fig. 2.2 The port numbering of the 4-port network.

The port numbering of the 4-port unit cell is shown in Fig. 2.2. According to the mi-

crowave network analysis [14], the impedance relates the voltages and currents are













V1

V2

V3

V4













=





Zaa Zab

Zba Zbb



 ·













I1

I2

−I3

−I4













(2.8)

where the minus signs of I3 and I4 depend on the direction chosen in 2.2 for these cur-

rents.
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Zaa =

[

Z11 Z12

Z21 Z22

]

, Zab =

[

Z13 Z14

Z23 Z24

]

(2.9)

Zba =

[

Z31 Z32

Z41 Z42

]

, Zbb =

[

Z33 Z34

Z43 Z44

]

(2.10)

We can rewrite (2.8) into two different matrix equations as

−
[

I3

I4

]

= Z
−1

ab ·
[

V1

V2

]

− Z
−1

ab · Zaa

[

I1

I2

]

(2.11)

[

V3

V4

]

= Zbb · Z−1

ab

[

V1

V2

]

+ (Zba − Zbb · Z−1

ab · Zaa)

[

I1

I2

]

(2.12)

If we combine (2.11) and (2.12) together, we obtain













V3

V4

I3

I4













=





Zbb · Z−1

ab Zba − Zbb · Z−1

ab · Zaa

−Z
−1

ab Z
−1

ab · Zaa

















V1

V2

I1

I2













(2.13)

Thus, the four-port transfer matrix is expressed as a function of the impedance matrix

with the following expression

T =





Zbb · Z−1

ab Zba − Zbb · Z−1

ab · Zaa

−Z
−1

ab Z
−1

ab · Zaa



 (2.14)

2.2.3 Conversion between S-parameters and Transfer Matrix

The formula (2.14) is useful to convert an impedance matrix to a transfer matrix, but

very often microwave components are characterized with scattering parameters. There-

fore, in this subsection we give formulas to convert S matrix to T matrices.

A 4× 4 scattering matrix S can be partitioned into four 2× 2 blocks

S =













s11 s12 s13 s14

s21 s22 s23 s24

s31 s32 s33 s34

s41 s42 s43 s44













=

(

Sii Sio

Soi Soo

)

(2.15)
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where the four block matrices are

Sii =

(

s11 s12

s21 s22

)

, Sio =

(

s13 s14

s23 s24

)

(2.16)

Soi =

(

s31 s32

s41 s42

)

, Soo =

(

s33 s34

s43 s44

)

(2.17)

Similarly, the transfer matrix can be divided into four 2× 2 blocks

T ·
[

V

I

]

=

[

Tii Tio

Toi Too

]

·
[

V

I

]

(2.18)

As reported in [113], the transformation from the scattering matrix to the transfer matrix

is

Tii =
1

2
Z

−1

i ·
[

(I− Sii) · S−1

oi · (I+ Soo) + Sio

]

· Zo (2.19)

Tio = −1

2

[

(I+ Sii) · S−1

oi · (I+ Soo)− Sio

]

· Zo (2.20)

Toi = −1

2
Z

−1

i ·
[

(I− Sii) · S−1

oi · (I− Soo)− Sio

]

(2.21)

Too =
1

2

[

(I+ Sii) · S−1

oi · (I− Soo) + Sio

]

(2.22)

where I is the identity matrix, Zi and Zo are diagonal matrices whose diagonal elements

are the characteristic impedances of input/output ports.

2.2.4 Choice of equivalent transmission lines at ports

Since we will study unit cells realized in SIW technology, a TE10 rectangular-waveguide

mode will be defined on each one of their four ports. Equivalent associated transmission

lines are required in order to define the voltages and currents of the state vector (2.5).

More specifically, the characteristic impedances Zi and Zo of these transmission lines

depend on the definition of the voltages and currents can be set to arbitrary numbers, by

means of a suitable rescaling of the voltages and currents.

However, this is not a limitation of the method. It is easily shown that if the same

voltage/current definition is kept for ports on opposite cell sides (which are connected

when the cell is placed in a periodic configuration), the identity holds Zi = Zo. By

rewriting (2.19)-(2.22) in a matrix form, we obtain

T = U
−1 ·T0 ·U =

[

I 0

0 Zi

]−1

·T0 ·
[

I 0

0 Zo

]

(2.23)
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where the matrix in the middle, T0 corresponds to the choice Zi = Zo = I. A differ-

ent choice transforms the transfer matrix into a new matrix similar to T0, as long as

Zi = Zo. The eigenvalues are therefore not modified by modifying the definition of the

transmission lines. In a practical implementation with a commercial software, the scat-

tering matrix or the impedance matrix will then be computed by defining identical ports

on opposite sides of the unit cell. This will be sufficient to grant a correct dispersion

analysis.

It is also important to mention that the two ports on the same side of the unit cell can be

defined on the same physical face of the unit cell. This is the case of the circular waveg-

uide in Section 1.2.5.1, where two TE11 modes with different polarization are defined

on the same face of the waveguide section. More generally, on the same physical face

several modes could be defined, by obtaining a transfer matrix of larger dimensions.

In several cases, this can enhance the accuracy of the analysis if the periodic unit cells

interact among them by means of higher-order modes. In our structures this will not be

necessary, so that 4× 4 matrices will always be implied in the following.

2.2.5 Formulas for the conversion from scattering matrix to T matrix

The inverse transformations of (2.19)-(2.22) required to obtain the scattering matrix

from the knowledge of the transfer matrix of a N -port network can be easily obtained.

Since these formulas are not given in the literature, to the best of the author’s knowledge,

and they will be required later in this chapter, they are reported here.

Sii = (−ZiTiiZ
−1

o −TioZ
−1

o + ZiToi +Too)

· (ZiTiiZ
−1

o −TioZ
−1

o − ZiToi +Too)
−1 (2.24)

Soo = (ZiTiiZ
−1

o −TioZ
−1

o + ZiToi −Too)

· (ZiTiiZ
−1

o −TioZ
−1

o − ZiToi +Too)
−1 (2.25)

Soi = 2(ZiTooZ
−1

o −TioZ
−1

o − ZiToi +Too)
−1 (2.26)

Sio = 2Too − (I+ Sii)S
−1

oi (I− Soo) (2.27)

More details about the inversion of these formulas can be found in the Appendix.

2.3 Modal Couplings for DBE Conditions

As discussed in Chapter 1, the DBE is a degeneracy of four Bloch modes (two prop-

agating modes and two evanescent modes). In order to achieve it, we need a unit cell

supporting at least two modes per direction (each described as a transmission line).

Furthermore, the unit cell needs to provide a suitable coupling among these modes. We

assume here a unit-cell topology (Fig. 2.3) of length d, composed of a two transmission-
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line sections of length d1, connected to a lossless and reciprocal four-port coupler, fol-

lowed by another pair of transmission-line section of the same length d1 (with no loss of

generality). The two transmission lines are identical, as in the majority of the structures

recently proposed to achieve a DBE conditions. As shown in [35], two different lines

could also be used in order to obtain a further degree of freedom, but this possibility

will not be used in the following analysis. As it will be clear from the results, different

coupler topologies can indeed achieve DBE by using identical CTLs.

The two transmission lines are assumed uniform and identical, describing waveguide

modes with cutoff frequency fc = c kc
2π

, where c is the free-space light velocity and kc is

the modal transverse wavenumber. The propagation constant is therefore [76]

kz =
√

k2 − k2
c (2.28)

The transfer matrix of one single line is [14]

T =

(

cos kzd1 −jZ0 sin kzd1

−jY0 sin kzd1 cos kzd1

)

(2.29)

where Y0 = 1/Z0, d1 is the length of the line. The normalized T matrix of the two lines

is













V3

Z0I3

V4

Z0I4













=













cos kzd1 −j sin kzd1 0 0

−j sin kzd1 cos kzd1 0 0

0 0 cos kzd1 −j sin kzd1

0 0 −j sin kzdl cos kzd1

























V1

Z0I1

V2

Z0I2













(2.30)

The order of the voltage and currents in the state vector is different than in (2.5) in order

to highlight the block structure of (2.30). Of course this has no impact on the eigen-

values of the matrices, as long as the same variable ordering is used when multiplying

TL1

TL2

Coupler

d1 l

d

TL1

TL2

d1

1

2

3

4

Fig. 2.3 Schematic of unit cell with one coupler.
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different T matrices inside the same cell. Also, currents in (2.30) are normalized with

respect to the port characteristic impedance, so that this parameter does not appear in

the matrix. As seen in (2.23), as long as this normalization is the same on opposite

ports, the eigenvalue results are not affected.

In the following sections, we look for conditions on the coupler scattering parame-

ters capable to reach a DBE. These conditions will guide the design of a number of

SIW unit-cells exhibiting DBE. The model based on T -matrix computation of ideal

components is particularly interesting since it is very general (not limited of course

to SIW lines) and very efficient, so that many numerical analysis can be easily car-

ried out. Unfortunately, analytical formulas cannot be obtained with this model, due

to the mathematical complexity of the DBE condition (null hyperdistance among the

four eigenvectors of the problem (2.7)), so it is more amenable to a numerical than an

analytical solution. It is important to note that analytical conditions for DBE synthe-

sis are available for coupled uniform transmission lines. However, those analyses rely

on the existence of an equivalent circuit-model description of the transmission lines.

Therefore, it can be not directly applicable to the design of a cell of the kind of Fig. 2.3.

We analyze here three cases where the components of the unit cells are different. By

analyzing the three following cases, we find the connections between the S-parameters

of couplers and the existence of DBE. The couplers are defined on the basis of their

scattering matrix, as usual in microwave four-port structures.

2.3.1 Case 1: Perfectly Matched Directional Coupler

In this first paragraph, the coupler is assumed to be perfectly matched at all its ports,

and its schematic is shown in Fig. 2.4 together with its port numbering. p represents the

transmission coefficient between ports connecting the same transmission line (Ports 1

and 3, Ports 2 and 4), and q represents the cross-coupling between the diagonal ports

connecting different transmission lines (Ports 1 and 4, Ports 2 and 3).

1

2

3

4

p

q

Matched Coupler

Fig. 2.4 Schematic of a matched coupler. p represents the transmission coefficient be-

tween Ports 1 and 3, Ports 2 and 4. q represents the cross-coupling between Ports 1 and

4, Ports 2 and 3.

The S-parameters fulfil the reciprocal conditions Sij = Sji and lossless conditions:

S · (S∗)T = I [14]. This means that two real parameters p and q and a phase φ describe

the directional coupler. p is magnitude of the direct coupling between ports 1 and 3 and
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between ports 2 and 4, while q is the cross coupling between ports 1 and 4 and between

ports 2 and 3. φ is the phase of the direct coupling. The coupling magnitudes verify

the constraint p2 + q2 = 1, so that only the parameter p is assumed independent in the

following analysis. Two choices can be done to verify the constraint, thus obtaining two

different couplers:

1. Symmetric Coupler:

S
1
=













0 0 p · ejφ jq · ejφ
0 0 jq · ejφ p · ejφ

p · ejφ jq · ejφ 0 0

jq · ejφ p · ejφ 0 0













(2.31)

2. Antisymmetric Coupler:

S
2
=













0 0 p · ejφ q · ejφ
0 0 −q · ejφ p · ejφ

p · ejφ −q · ejφ 0 0

q · ejφ p · ejφ 0 0













(2.32)

The overall T matrix of the unit cell is

Ttotal = TTL ·Tcoupler ·TTL (2.33)

where the transmission matrix of the coupler can be converted from its S-parameters

according to (2.19)-(2.22). Then, the unit cell dispersion relation is obtained by solving

the eigenvalue problem using the overall T matrix.

To assess if the unit cell in Fig. 2.4 can achieve a DBE condition, we compute the

hyperdistance (1.14) among the eigenvectors of (2.33). If the value of the hyperdistance

is zero, then a DBE point is met. This computation is performed in the frequency

interval from dc to 2fc. By referring to a rectangular waveguide configuration (the one

used in the SIW designs later in this chapter), beyond the frequency 2fc, higher-order

modes start propagating and the analysis is no more accurate. These higher-order modes

need to be included in the model by adding additional access point to the unit cell and

leading to a larger T matrix. However, this possibility is not relevant here: the unit cell

would be electrically large at those frequencies, so we aim at a DBE synthesis within

this frequency limit.

Another important point should be stressed here. The coupler parameters are here as-

sumed constant with respect to frequency. Obviously, this hypothesis is never verified

for real couplers. However, the problem to be solved is narrowband (the eigenvalue is
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solved at each frequency). If a DBE condition is met at a frequency f̂ with a certain

coupler, this means that the required coupler needs to have the selected S parameters at

f̂ , while they will vary at other frequencies. It should be noted that the transmission-line

sections at the side of the coupler could be included in the coupler definition. However,

their presence is useful to keep a frequency dispersion typical of waveguide modes (cut-

off frequency, etc) of the unit cell, while keeping a simple description for the coupler.

Of course the design presented later in the second part of this chapter will take into ac-

count the correct frequency dispersion of the unit-cell parameters by means of full-wave

simulations.

Unfortunately, the eigenvectors of (2.33) cannot be determined in closed form. For this

reason, an extensive numerical analysis is performed over the values p ∈ [0, 1], the

phase φ ∈ [0, π], and the period d ∈ [λc/4, λc], λc being the cutoff wavelength. For

each combination of parameters we compute the hyperdistance at each frequency point

in f ∈ [0, 2fc] and we show the minimum of this distance. A zero will reveal that a

DBE is met at a frequency point within the considered range. A number different from

zero will show that no DBE is achievable with the selected parameters.

In the following, two different sizes are considered for the coupler, as a fraction of the

period.

1. The length of the coupler is d/4, the length of each transmission-line section is

therefore d1 = 3d/8.

The hyperdistance diagram of the coupler defined by (2.31) is shown in Fig. 2.5a,

and the coupler defined by (2.32) is shown in Fig. 2.5b. The color of the point on

the plane indicates the hyperdistance value, and the color mapping is showed on

the right side of the diagram.

2. The length of the coupler is d/2, the length of each transmission-line section is

therefore d1 = d/4.

The hyperdistance diagrams of the coupler defined by (2.31) or by (2.32) are

shown in Fig. 2.6a and Fig. 2.6b.

Resuming the results shown in these hyperdistance diagrams, it is seen that it is im-

possible to achieve a DBE condition with a fully matched coupler. For the coupler

whose S-parameters are S1, the hyperdistances are all near 1. For the coupler with S-

parameters of S2, the hyperdistances may have lower values, but stay well above 0, so

no DBE is obtained. It means that other types of unit-cell models must be explored to

obtain DBE points.
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(a) coupler defined by S1 in (2.31) (b) coupler defined by S2 in (2.32)

Fig. 2.5 Hyperdistance diagram of the the unit-cell model (Fig. 2.3) with a matched

coupler. The coupler’s length is d/4.

(a) coupler defined by S1 in (2.31) (b) coupler defined by S2 in (2.32)

Fig. 2.6 Hyperdistance diagram of the the unit-cell model (Fig. 2.3) with a matched

coupler. The coupler’s length is d/2.

2.3.2 Case 2: The Unit Cell Consists of One Unmatched Symmetric Coupler

Here the complexity of the coupler is increased, by admitting a level of mismatch at the

ports. However, we still keep a fully symmetric form of the coupler. This means that

s11 = s22 = s33 = s44, s12 = s34, s14 = s32. The schematic is shown in Fig.2.7.

The scattering matrix of this coupler is

S3 =













h · ejφ1 −jg · ejφ2 p · ejφ1 jq · ejφ2

−jg · ejφ2 h · ejφ1 jq · ejφ2 p · ejφ1

p · ejφ1 jq · ejφ2 h · ejφ1 −jg · ejφ2

jq · ejφ2 p · ejφ1 −jg · ejφ2 h · ejφ1













(2.34)

where the real numbers p, q, g, h are the coupling magnitudes described in Fig. 2.7, and

the constraints due to the lossless and reciprocal conditions are: p2+q2+g2+h2 = 1 and

ph = gq. Among the four parameters p, q, g, h, two of them are therefore independent.
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Fig. 2.7 Schematic of signal flow in the mismatched symmetric coupler. h represents

the magnitude of the reflection coefficient, g, p, q are the magnitude of transmission

coefficients between ports on the same side, aligned on the opposite side, and on the

diagonal corners, respectively.

We assume them to be p and q, together with the two phases φ1, φ2 related to these two

free parameters.

Due to the large number of parameters to consider, different analyses are performed.

For each of the following cases, the minimum hyperdistance in the frequency interval

[0, 2fc] is shown, for couplers whose length is d/4 and d/2. As in the previous section,

different period lengths are considered.

1. We sweep p and q in the intervals p ∈ [0, 1] and q ∈ [0, 1]. We keep fixed the

phases φ1 and φ2 for different values (minimum hyperdistance in Fig. 2.8a).

2. We sweep φ1 and φ2 in the intervals φ1 ∈ [0, π] and φ2 ∈ [0, π]. We keep fixed

the magnitude p and q for different values (minimum hyperdistance in Fig. 2.9).

(a) φ1 = φ2 = 0 (b) φ1 = π/6, φ2 = π/4

Fig. 2.8 Hyperdistance diagram of the unit-cell model (Fig. 2.3) with an unmatched

coupler. The coupler length is d/4.

Again, no DBE is found in these configurations, as the hyperdistance is clearly never

even close to a null. The results collected so far show that a symmetric coupling between

identical transmission lines is not sufficient to generate a DBE response, but we need

also a suitable level of asymmetry in the way we couple the lines: e.g., s14 6= s23. This

will lead in turn to a fully asymmetric coupler design having for example also s11 6= s22.
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Fig. 2.9 Hyperdistance diagram of the unmatched coupler whose p = 0.3, q = 0.1. The

coupler length is d/4.

2.3.3 Case 3: Asymmetric Coupler Formed with Two Misaligned Symmetric Cou-

plers

In order to visualize the effect of coupling asymmetries capable to produce a DBE, we

choose not to perform parametric analyses of general scattering matrices, due to the

large number of free parameters and the lack of physical insight that would be gained.

Instead, we recur to the basic ideas of the DBE condition achieved in the circular waveg-

uide by means of two rotated rings assuring the coupling of two degenerate orthogonal

TE11 (Section 1.2.5.1). Simple parametric analyses confirm that one ring only is not

sufficient to achieve a DBE condition. The presence of two rotated rings introduce the

required asymmetry in the unit cell.

Here we investigate the introduction of an asymmetric coupling between identical lines

by considering a unit cell analogous to the one in Section 1.2.5.1: a coupler is here

composed by the cascade of a symmetric element in (2.34), a transmission-line section,

and a second identical element rotated with respect to the previous one. The rotation

operation is particular interesting for several reasons. By modifying the rotation angle

at a fixed frequency, we transition from a perfectly symmetric coupler to an asymmet-

ric one. If the DBE is met for a suitable angle, the S parameters evolution can be

tracked and their values can be used as guidelines to design practical DBE in different

waveguide technologies (SIW in our case). The rotation operation is also interesting

since it can be described in a simple analytical approach, as it is described later in this

paragraph.

The schematic of the unit cell is shown in Fig. 2.10. The unit cell can be divided into

three parts: two uncoupled transmission lines touching the two boundaries of the cell,

and a coupler between the lines. This coupler in turn is composed of a symmetric
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coupler, a transmission-line section and a rotated symmetric coupler.

R R
-1

Coupler

d1 l d2

d

TL1

TL2

TL1

TL2

l

TL1

TL2

d1

Fig. 2.10 Schematic of unit cell with two misaligned symmetric couplers in a circular

waveguide.

The S-parameters of the two symmetric couplers have the same form as S3 in (2.34).

In a circular waveguide, the rotation of a scatterer can be performed on its transmission

matrix with a simple analytical formulation, as discussed in [114]. Since voltages and

currents are associated to transverse fields of waveguide modes, a rotation Rθ of an

angle θ on them has the same effect of a rotation of these modal fields. To fix the ideas,

let us rotate the tangential electric field of a mode with mφ angular dependence. Two

degenerate modes are present, one with cos and the other with sin dependence:

Ecos

mn(ρ, φ) = Jm (kmnρ) cos (mφ) (2.35)

Esin

mn(ρ, φ) = Jm (kmnρ) sin (mφ) (2.36)

The coordinate rotation of θ of these two modes is

RθE
cos

mn(ρ, φ) = cos(mθ)Ecos

mn(ρ, φ)− sin(mθ)Esin

mn(ρ, φ) (2.37)

RθE
sin

mn(ρ, φ) = sin(mθ)Ecos

mn(ρ, φ) + cos(mθ)Esin

mn(ρ, φ) (2.38)

Once the coordinates are rotated, the original transmission matrix can be used in the

rotated coordinates. After the effect of the coupler, the original coordinates should be

recovered by means of an opposite rotation R−θ for the last part of the unit cell.

The transformations (2.37)-(2.38) can be expressed in a matrix form by means of the

rotation matrix R acting on the voltages/currents (we suppose the presence of a circular-

waveguide TE11 modes)

R













V3

Z0I3

V4

Z0I4













=













cos θ 0 sin θ 0

0 cos θ 0 sin θ

− sin θ 0 cos θ 0

0 − sin θ 0 cos θ

























V3

Z0I3

V4

Z0I4













(2.39)
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The overall T matrix of the rotated coupler is therefore

Trotated coupler = R ·Tcoupler ·R−1 (2.40)

and the T matrix of the unit cell is

Ttotal = TTL1 ·Tcoupler ·TTL2 ·R ·Tcoupler ·R−1
TTL1 (2.41)
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Fig. 2.11 S parameters comparison of circular waveguide’s ring rotated in HFSS or

rotated using the rotation matrix R

We verify the rotation matrix R method using a ring structure in circular waveguide

from [6] (see Fig.1.11). With the commercial software HFSS we simulate the ring

scattering parameters with and without rotation where the rotation angle θ is 72◦. For

the rotation matrix method, we firstly convert the S parameters of ring without rotation

to a T matrix and then use (2.40) to get the T matrix of the rotated coupler. At last,

we convert back the rotated T matrix to an S matrix and compare with the simulation

of the rotated ring results from HFSS. In Fig. 2.11, the magnitudes of S11, S12, S13,

and S14 from HFSS and from the rotation matrix method fit well with each other, which
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verifies the effectiveness of the rotation matrix method. The other S parameters are also

compared and fit well, but they are not showed here for brevity.

Here we search for a DBE point with this unit-cell model at a selected frequency of

1.4fc. Since there are several variables to be determined, some of them are set to be

constant to limit the degrees of freedom. We set q = 0.2, φ1 = φ2 = 0 but keep p and

rotation angle θ to be variables. The hyperdistance diagram in Fig. 2.12 shows some

regions in the parametric space where nulls of the hyperdistance appear at the chosen

frequency, confirming the existence of DBEs.

(a) q = 0.2 (b) q = 0.4

(c) q = 0.6 (d) q = 0.8

Fig. 2.12 Hyperdistance diagram of the unit-cell model in Fig. 2.10. The length of each

coupler is 0.375d, the two transmission-line lengths are d1 = 0.05d, d2 = 0.15d. We

assume q = 0.2, φ1 = φ2 = 0.

To verify the DBE existence using the dispersion relation, we choose the point p =

0.161, θ = 47.7◦, d = 0.25λc corresponding to a null of the hyperdistance to plot the

corresponding dispersion diagram in Fig. 2.13 which fits the typical dispersion curve

as shown in Fig. 1.2. This confirms that this unit-cell can achieve a DBE at the chosen

frequency. Different frequencies in the range [fc, 2fc] would lead to other solutions for

the θ, p parameters, but not to remarkable differences.
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Fig. 2.13 The dispersion diagram to verify the DBE point on the hyperdistance plane.

The parameters for the unit cell are: p = 0.161, q = 0.2, φ1 = φ2 = 0, θ = 47.7◦, d =
0.25 · λc. The DBE frequency is at 1.4fc.

2.3.3.1 Relationship between S-parameters and the Existence of DBE

We have found points in the parameter space of Fig. 2.13 corresponding to dispersion

diagram with a DBE point. We study now the scattering parameters of the complete

coupler composed of the first coupler and the rotated one. We will track the scattering

parameters as the rotation angle varies, from the absence of rotation (symmetric cou-

pler) to the angle leading to the DBE condition. This evolution will give us qualitative

information on the kind of coupler required to obtain a DBE condition in a general

configuration (not necessarily composed of two misaligned sub-couplers).

For this task we use the formulas (2.42), in order to compute the scattering matrix

starting from a 4-port transmission matrix. We first cascade the T matrices of the sub-

elements to get the T matrix of the equivalent coupler

Teq = Tcoupler ·TTL2 ·R ·Tcoupler ·R−1
TTL1 (2.42)

Then, we use the formulas (2.24)-(2.27) to compute the scattering matrix of the coupler

starting from a 4-port transmission matrix. We consider several cases to explore the

evolution of the scattering parameters in the complex plane towards the DBE point.

In Fig. 2.14, the S parameters of the complete couplers are shown as the θ angle varies.

We notice that the perfectly symmetry for θ = 0◦ is broken as the angle starts varying.

The DBE is met for couplers characterized by a strong mismatch at least at one or two

input ports (sii coefficients close to unitary magnitude) and a different phase of these

coefficients. This was expected, since perfectly matched couplers tend to be symmetric,

and they cannot reach a DBE point as shown in Section 2.3.1. Conversely, the introduc-
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Fig. 2.14 Polar plots of S parameters in coupler of Fig. 2.10, when p = 0.161, q = 0.2,

d = 0.25λc, θ from 0◦ to 90◦

tion of a strong mismatch allows for a significant asymmetry in the cross-coupling.

In addition to this condition, one or two of the other coupling parameters have a much

higher level with respect to the other ones. In Figs. 2.14 and 2.16, a strong s12 is

obtained if compared to the other coefficients. In Figs. 2.15 and 2.17 strong s12 and s34

are obtained. In Figs. 2.18 and 2.19, higher s12 and s34 are found, together with higher

cross coupling s14 and s23, which is associated to a slightly smaller reflection level at

the ports.

These qualitative conditions are sufficient in order to obtain a DBE point in a unit cell

of the chosen period. As a summary, the ideal unit-cell candidate for a DBE structure,

should provide

• a strong reflection at some ports

• a privileged propagation path between two of the four ports.

Even if these are not necessary conditions, they can be useful guidelines in order to

design a unit-cell topology as a starting-point to be subsequently fine tuned and provide

a DBE.
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Fig. 2.15 Polar plots of S parameters in coupler of Fig. 2.10, when p = 0.321, q = 0.2,

d = 0.5λc, θ from 0◦ to 90◦
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Fig. 2.16 Polar plots of S parameters in coupler of Fig. 2.10, when p = 0.141, q = 0.4,

d = 0.25λc, θ from 0◦ to 90◦.
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Fig. 2.17 Polar plots of S parameters in coupler of Fig. 2.10, when p = 0.421, q = 0.4,

d = 0.5λc, θ from 0◦ to 90◦
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Fig. 2.18 Polar plots of S parameters in coupler of Fig. 2.10, when p = 0.411, q = 0.6,

d = 0.5λc, θ from 0◦ to 90◦.
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Fig. 2.19 Polar plots of S parameters in coupler of Fig. 2.10, when p = 0.281, q = 0.8,

d = 0.5λc, θ from 0◦ to 90◦
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2.4 SIW-DBE Unit Cell Designs

In this section, we will implement a few designs of SIW-DBE unit cells inspired by

the conclusions of the previous section. In the first part, we propose a design with

a coupler composed of two sub-elements, which can be considered analogous to the

circular waveguide with DBE in [6]. In the second part, we will shorten the original

coupler by transforming it to a single-element coupler, following the rules in 2.3.3.1.

Four different designs are thus proposed. The first design uses two oblique lines of vias

and one coupling gap, which can be seen as a simplified version of the two-coupler

SIW-DBE cell by removing one coupling gap. The second design uses one oblique

line of vias and one coupling gap to explore the simplest way to implement the coupler

with DBE. In the third design, we explore if other structures (such as an array of air

vias) can also synthesize the proper coupler. In the last design, we further simplify the

unit cell by minimizing the presence of vias, which can be beneficial for the practical

implementation of the structure in different technologies. Finally, in order to reduce

the dielectric losses impact on DBE, we propose three low-loss designs: one employs a

low-loss substrate, and other two utilize air-filled SIWs.

For the convenience of comparison, we give these designed structures short names as

“long cell”, “double-oblique-line cell”, “single-oblique-line cell”, “air-via cell”, “corner

cell”, “low-loss-substrate cell”, “air-filled cell 1”, “air-filled cell 2”, respectively.

2.4.1 Unit Cell with Two Coupling Gaps ( “long cell”)

Inspired by the misaligned metal rings introducing DBE in circular waveguide [6], we

first try using similar physical structures to demonstrate DBE in SIWs. We use two

identical parallel SIWs supporting the same fundamental TE10 mode. The two modes

are coupled with two oblique lines of vias and coupling gaps inside each unit cell. The

coupling gaps are chosen to provide the cross couplings, and the oblique lines of vias

provide rotations between coupled models.

The geometry of the “long cell” is shown in Fig. 2.20. The structure of Fig. 2.3 is vis-

ible, with two waveguides on the sides of the cell and a central coupler formed here

of two oblique lines and two coupling gaps between the SIW waveguides. The topol-

ogy formed with the via distributions is a very good example of how the guidelines

obtained in the study of ideal couplers in the previous sections can help the choice of

the geometry. In fact, the unit cell is expected to offer a stronger reflection at the four

input ports because of the presence of the oblique lines (stronger at ports 1 and 4 than

at ports 2 and 3). This reflection can be tuned by increasing the density of pins along

these lines. Also, two different propagation paths exist between ports in the two SIW

waveguides. The path joining port 1 to 4 is expected to be privileged by the orientation
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Fig. 2.20 Geometry of the “long cell” SIWs-DBE design. (a) Top view with the defini-

tion of the relevant parameters. (b) 3-D view with the definition of the access ports.

of the pin, and again the value of the transmission coefficient (in magnitude and phase)

can be tuned by the angle ϕ of the lines and the density of vias. These properties will

be later verified on the optimized geometry.

The width w is 30 mm, the period d is 90 mm and the thickness of the substrate is 1 mm.

For the parallel vias of the SIWs, the radius is 0.8 mm and the distance between con-

secutive via is 1.6 mm. The lengths of the middle via lines l1 = 4mm and l2 = 6.8mm,

respectively. The length of the coupling gap g1 = 34.2mm. The length from the start-

ing point of oblique line to the left border l3 = 9.1mm and the distance between the

oblique vias g2 = 8mm. The material of the substrate is Rogers RO3010, whose rela-

tive permittivity is 10.2. The vias and the ground plane are perfect electric conductors

(PECs), and, at this stage, the structure is assumed to be lossless.

The mode-coupling parts in the unit cell affect the existence of DBE, and the oblique

line’s misalignment angle ϕ and position l3 are two main parameters in order to per-

form a fine tuning of the structure and to obtain a DBE. In Fig. 2.21 (a), we report the

dispersion diagram for three different misalignment angles, ϕ = 60◦ , ϕ = 61.7◦ and

ϕ = 63◦, and the oblique line’s position is fixed to l3 = 9.2mm. These simulations

have been performed with the frequency-domain finite-element solver of commercial
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Fig. 2.21 The dispersion diagram of “long cell” design without considering losses. (a)

The dispersion relation for different misalignment angles. (blue curves represent the

propagation modes, red curves represent the evanescent modes.) (b) The dispersion

diagram when DBE is achieved. (c) Hyperdistance of “long cell” design without losses.

software HFSS. The full-wave solver computes the multimodal S parameters of a sin-

gle cell and the multimodal Z matrix. In each simulation, the excitations at the four

ports are defined as ‘wave port’ with the fundamental TE10 mode. The accuracy for

the ‘maximum delta S’ is set as 5 × 10−3. The Z matrix from HFSS is used to com-

pute the T matrix according to the (2.14). After computing the T matrix, we solve the

Floquet eigenvalue problem to obtain dispersion relations, and from the values of the

hyperdistance among the four eigenvectors we can verify the presence of a DBE point.

Based on the simulation results, we find that, for different misalignment angles, we can

always get an RBE point, but the DBE point is more difficult to obtain. When ϕ in-

creased from 60◦ to 61.7◦, the dispersion curve of propagating modes becomes more

flat and the four Bloch modes tend to degenerate together. When the misalignment

angle is increased to 63◦, the dispersion curves separate from each other, i.e., the four

Bloch modes do not align to each other and it is impossible to achieve a DBE. In con-

clusion, the DBE point exists for ϕDBE = 61.7◦, and the dispersion curve is shown in
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Fig. 2.21 (b). As desired, the four modes degenerate into one point in the dispersion

diagram, thus meeting the definition of the DBE condition.
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Fig. 2.22 The four derivatives of the dispersion curve near DBE point for the “long cell”

design. The first, second and third derivatives are all zero at the Brillouin edge and the

fourth derivative is a constant of −9.71× 109, which meets the definition of the DBE.

According to (1.3), at the DBE point, the first three derivatives ∂n
k f (n ∈ {1, 2, 3})

should be zero at the DBE (namely, the first-order derivative is the group velocity

∂kω = 0). Therefore, if these constraints on the first derivatives are satisfied, we can

confirm that there is a DBE point. The four derivatives near the DBE point are shown

in Fig. 2.22, which satisfies the constraints and proves the existence of the DBE point.

The constant α in (1.3) can be computed as α = ∂4
kf/24. In this case, we obtain

α = −4.05 × 108 m4s−1 for a DBE frequency at fDBE = 2.218 GHz, as shown in

Fig. 2.21 (b). Then, the knowledge of α can lead to plot the fitting curve f − fDBE = α (k−
kd)

4 in Fig. 2.21 (b). A root-mean-square error (RMSE) is in the order of ∼ 10−4, in-

dicating that a very good fit is obtained with this fourth-order local approximation, as

expected close to DBE points. We also show the hyperdistance plot in Fig. 2.21 (c) to

confirm that the four Bloch vectors coalesce. A clear sharp peak of the hyperdistance

going to zero is observed close to the DBE frequency as expected.

The S parameters of the coupler used in the optimized unit cell are depicted in Fig. 2.23.

As expected, the coupler is of the kind seen in the previous section. All the reflection

coefficients sii are large, two being close to unity magnitude, and only one off-diagonal

term (the s14) is dominant with respect to the others. This confirms the results of the

analysis discussed at the end of Section 2.3.3.

Moreover, we use the eigensolver tool in HFSS to plot the Brillouin diagram as a vali-

dation of the transmission-matrix method. Of course this method does not allow for the

computation of the hyperdistance and of the evanescent modes coalescing together with

the real modes at DBE. For this reason these results can validate the analysis done by re-

vealing a fourth-order behaviour of the real Bloch-mode, but cannot replace the analysis

based on the transmission matrix and its associated eigenvalue problem. The results of
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Fig. 2.23 Polar plot of scattering parameters of the coupler part of “ long cell” design

in the frequency range 2.15 GHz - 2.236 GHz.

the eigensolver HFSS tool fit well with Bloch analysis results in Fig 2.21(b). This also

confirms that neglecting higher-order modes of SIWs in the transmission matrix (which

would have required a matrix of larger dimension than 4× 4) was a correct hypothesis:

these modes are neglected in the transmission-matrix computation but not in the HFSS

eigensolver. The agreement between the methods confirm that higher-order modes do

not play a significant role in the coupling among the discontinuities of the waveguides.

Using the eigensolver, we also obtain the field distribution inside a unit cell at the DBE

frequency, shown in Fig. 2.24. We can see how the oblique lines couple the two modes

between the different SIWs.

Since the DBE is achieved in a lossless situation, losses should be considered because

they prevent the degeneracy of the Bloch modes, i.e. the existence of the DBE point.

Losses in SIW include conductor losses, dielectric losses and leakage through the via

wall, but leakage is here negligible when the via wall satisfies the rules in [76]. The

dielectric losses are determined by the loss tangent of the substrate (3.5 × 10−3 for

Rogers RO3010). In Fig. 2.25a, after considering losses, the dispersion shows a smooth

behaviour near the band edge and the DBE point is not perfectly degenerated. Fur-

thermore, if we consider conductor losses and dielectric losses separately, we can see

that dielectric losses is the main contribution to total losses. The hyperdistance results

confirm this conclusion (Fig. 2.25b): while the hyperdistance of the lossless case is

51



E Field (V/m)

0.0 1.00.5

Coupling

Port 1

Port 2

z

Fig. 2.24 The E-field distribution for the unit cell in Fig. 2.20.

zero, it stays above 0.4 after considering the losses. The hyperdistance invcluding only

the dielectric losses is larger than the one only considering the conductor losses, which

confirms that the dielectric losses are the main source of losses. Furthermore, we notice

that a thicker SIW can reduce the influence of copper losses. In Fig. 2.26 (a) and (b),

if we only consider the conductor losses, after increasing the thickness from 0.5 mm

to 2 mm, the hyperdistance is decreased from 0.47 to 0.36. As expected, as shown in

Fig. 2.26, the thickness does not affect the influence of dielectric losses.
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Fig. 2.25 Loss influence on DBE of “long cell” design. (a) Dispersion relation consid-

ering different losses influence (only conductor losses, only dielectric losses, and both

of them). (b) Hyperdistance considering different losses influence.

In conclusion, the Bloch analysis method is in perfect agreement with independent

results. The guidelines developed in the previous sections led to a geometrical config-

uration which, upon optimization, could successfully develop DBE in a periodic SIWs

structure.
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Fig. 2.26 Relationship between thickness and losses in the “long cell” design. (a)

Dispersion relation of “long cell” with only conductor losses in different thicknesses

(0.5mm, 1mm, 2mm). (b) Hyperdistance of “long cell” with only conductor losses in

different thicknesses (0.5mm, 1mm, 2mm). (c) Dispersion relation of “long cell” with

only dielectric losses in different thicknesses (0.5mm, 1mm, 2mm). (d) Hyperdistance

of “long cell” with only dielectric losses in different thicknesses (0.5mm, 1mm, 2mm).
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2.4.2 Compact Unit Cell with Two Oblique Lines of Vias (“double-oblique-line cell”)

We design now a coupler with only one coupling gap and two oblique lines of vias to

acquire the DBE, in Fig. 2.27.

The two oblique lines of vias are placed in front of ports 1 and 4, which makes ports

2 and 3 have strong reflections. An asymmetric response among different ports is cer-

tainly obtained, since the reflection coefficients at ports 2 and 3 are expected to be

smaller than those at ports 1 and 3. The two oblique lines also enhance the cross cou-

pling between ports 1 and 4 while suppressing the one between ports 2 and 3. Thus, the

oblique line of vias blocks the wave propagation, making the cross coupling between

port 1-4 stronger than port 2-3. This is expected to potentially lead again to a DBE

response after fine tuning of the unit cell. The S parameters of the unit cell will be

computed after the optimization in order to confirm this reasoning.

The distance between the vias in the oblique line is g2 =9mm. The oblique line’s angle

ϕDBE = 63.4◦, and its position l2 =24mm. The via’s diameter, the separation of the

parallel vias, and the parameters of the substrate are the same as the “long cell” we

proposed above. The width of the SIW follows w =20mm. The period d =45mm.

The overall size of the unit cell is 40 mm × 45 mm. The length of the gap g1 =25mm,

and l1 =10mm. The substrate material is Rogers RO3010, whose ǫr = 10.2 and loss

tangent is 3.5× 10−3.

The lossless dispersion diagram is shown in Fig. 2.28(a), where the DBE point is

achieved at 2.53 GHz. It is verified that the hyperdistance is a null at the DBE point in

Fig. 2.28(b), which indicates the existence of DBE.

In Fig. 2.29 the scattering parameters of the optimized unit cell are shown. As expected,

a strong asymmetry is obtained on the diagonal elements (s22 and s33 have high mag-

nitude, while s11 and s44 are negligible), and only one off-diagonal element (s14) has

much larger magnitude than the others.

w
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Port 1
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Port 4

Fig. 2.27 Geometry of the “double-oblique-line cell” design.
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Fig. 2.28 The dispersion relation of lossless “double-oblique-line cell” design. The

DBE point locates at 2.53 GHz. (a) Dispersion diagram: propagating modes (blue

lines), evanescent modes (red lines). (b) Hyperdistance.

The influence of losses on the dispersion diagram is shown in Fig. 2.30. In this design,

the DBE is more sensitive to the losses compared to the previous “long cell” design.

When considering the losses, the shape of the dispersion curve is more heavily distorted

which can be seen form the hyperdistance in Fig. 2.30(b). After considering the losses,

the hyperdistance increased to 0.76, while for “long cell” design, it was around 0.6.

However, since the period is smaller with respect to the previous structure, losses are

expected to have here a lower impact than when truncating the two structures with the

same number of cells. This design indicates that the configuration with one coupling

gap with two oblique lines of vias is able to implement a suitable asymmetric coupler

to achieve a DBE.
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(d) Polar Plot of S14, S41, S23, S32.

Fig. 2.29 Polar plot of coupling part of “double-oblique-line cell”. The frequency

changes from 2.5 GHz to 2.54 GHz.
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Fig. 2.30 Influences of losses on the dispersion diagram of “double-oblique-line cell”

design in different cases (only conductor losses, only dielectric losses and both of them).

(a) Dispersion diagrams. (b) Hyperdistance.
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2.4.3 Compact Unit Cell with One Oblique Line of Vias (“single-oblique-line cell”)

The previous design gave relatively good results in achieving DBE, but we want to fur-

ther simplify the unit cell in order to make it more robust with respect to geometrical

imperfections and possibly losses. We use here only one coupling gap and only one

oblique line of vias to get the asymmetric reflections and couplings. The S matrix of

the coupler used here is less simple than the previous cases. Here we expect as before

a clear asymmetry in the diagonal terms (s11 being higher than the other reflections co-

efficients). However, no single coupling between ports is clearly dominant. We expect

that s23, s34 and s24 are large due to the absence of vias blocking these paths.

The compact design with only one oblique line of vias is shown in Fig. 2.31. In

this design, we only use one coupling gap in each cell, and the the whole size is

40 mm×44.8 mm, i.e., 1.07λDBE × 1.20λDBE , where λDBE is the wavelength in the

unit cell at the DBE frequency. The width of the SIW w =20 mm and the period

d =44.8 mm. To ignore the leakage losses, the via’s diameter is set to 0.4 mm and their

separation is 0.8 mm. The thickness of the substrate is 1.28 mm and the material of

the substrate is Rogers RO3010, which is the same as the “long cell” design with two

coupling gaps. The coupling-gap length is gc =26.4 mm. The distance between vias in

the oblique line go =7 mm. After optimization, the angle ϕDBE = 71◦ and the length

of the line gd =11.3 mm.

The dispersion diagram is shown in Fig. 2.32(a). The DBE point is at 2.516 GHz and

is confirmed to satisfy its definition in (1.3). The hyperdistance null also confirms the

DBE requirement in Fig. 2.32(b). The losses influence on the dispersion diagram is

shown in Fig. 2.33, which reconfirmed that DBE requires low-loss structures.

In Fig. 2.34, the S parameters of this cell are shown. They confirm what was said at

the beginning of the paragraph. The scattering matrix form found in Section 2.3.3.1 is

a sufficient requirement to obtain a DBE point, but the optimization of the structure can

lead to more complex matrices still compatible with a DBE condition.
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Fig. 2.31 Geometry of “single-oblique-line cell”.
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Fig. 2.32 Dispersion relation of “single-oblique-line cell”. The DBE locates at 2.516

GHz. (a) Dispersion diagram: propagating modes (blue lines), evanescent modes (red

lines). (b) Hyperdistance of lossless cell.
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Fig. 2.33 Losses influences to dispersion diagram of “single-oblique-line cell” design

in different cases (only conductor losses, only dielectric losses and both of them). (a)

Dispersion diagrams. (b) Hyperdistance.
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Fig. 2.34 Polar plot of coupling part of “single-oblique-line cell” design. The frequency

changes from 2.46 GHz to 2.55GHz.
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2.4.4 Compact Unit Cell with an Array of Air Vias (“air-via cell”)

In this section, we want to explore if other types of defect in SIW can also be used

to design a proper coupler to achieve a DBE point. This can inspire other ideas to

develop the coupler with different geometric and physical solutions. Scatterers in SIW

are not only restricted to metallic vias: slots or other possible structures embedded in

the substrate can also be used to develop the DBE, which can give more freedom in

certain technologies.

In Fig. 2.35, inspired from [115], we use several lines of air holes to create a reflection at

port 1 which is not present in the other ports, and leave a gap between the waveguides to

couple them. The width of each waveguide is w =30mm, the period is d =45mm. The

substrate parameters do not change. After optimization of the parameters, the length of

the via line is l1 =9.6mm and the gap length is g1 =25.4mm. The position of air-

holes array l2 =7.5mm. The length of the air-holes array l3 =20mm and the width

l4 =6mm. The diameter of each air hole is 1mm and the separation between each hole

is 2mm. The air holes only go through the substrate and are covered by the two copper

layers, in order to avoid any leakage through the air holes.

The DBE is obtained at 1.858 GHz as shown in Fig. 2.36(a). The result is verified using

the hyperdistance in Fig. 2.36(b).

The scattering parameters of the coupler used here (Fig. 2.37) show that the expected

asymmetries in the parameters are mainly concentrated in the phases of the reflec-

tion coefficients at each port, while the coupling among ports are quite similar (s12 ≈
s34, s13 ≈ s24, s14 ≈ s24). This coupler is therefore not of the kind discussed in Sec-

tion 2.3.3.1. This should not surprise, since that form is sufficient but not necessary to

achieve a DBE.

The dispersion diagram including losses is shown in Fig. 2.38. Even though a DBE con-

dition has been obtained, losses have a huge influence on the dispersion diagram. Even

conductor losses alone lead a strong distortion of the dispersion curve near the DBE.

This phenomenon is related to the presence of a propagating mode in pass-band close

to the DBE, at higher frequencies. In the presence of losses, the pass-band reaching

the DBE and the higher-frequency pass-band are joined together and the DBE is lost.

So, although this design proves that different topologies could also be used to develop

a DBE point, it will not be considered in the following truncated SIWs-DBE designs.
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Fig. 2.35 Geometry of the “air-via cell” design.
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Fig. 2.36 Dispersion diagram of the lossless “air-via cell”. The DBE locates at 1.858

GHz. (a) Dispersion diagram: propagating modes (blue lines), evanescent modes (red

lines). (b) Hyperdistance.
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Fig. 2.37 Polar plot of coupling part of “air-via cell” design. (1.58 GHz to 1.9 GHz)
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Fig. 2.38 Losses influence on the dispersion relation of “air-via cell” in different cases

(lossless, only conductor losses, only dielectric losses, conductor and dielectric losses).

(a) Dispersion diagram. (b) Hyperdistance.
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2.4.5 Unit Cell Robust to Perturbations (“corner cell”)

Here we propose a last design to make easier the matching of the periodic line once a

truncated resonator will be designed in the following. In [36, 116], the truncated DBE

resonators are excited from two opposite ports, and the other two ports are shorted.

In this design we adopt a geometry such that the two ports which are not shorted are

minimally perturbed by the periodic vias assuring the DBE conditions. Even more

interestingly, this design is found to be far more robust to the perturbation of the oblique

vias position if compared with previous designs.

The new design includes two short oblique lines of vias near port 1 and 3 and a coupling

gap as shown in Fig 2.39. The new unit cell is now symmetric with respect to the

middle plane orthogonal to both waveguides, and the required asymmetry between the

waveguides is due to the two short oblique lines of vias in front of port 1 and 3, which

provide different reflections at port 1 (3) and at port 2 (4). Of course the coupling

between ports 1-3 and between ports 2-4 are different. The width w = 21.5 mm;

the period d = 34.8 mm; the length l1 = 4.5 mm, l2 = 4.5 mm; the gap’s length

g = 25.8 mm; the angle ϕ = 76◦. The diameter of the via is 0.6 mm, the separation

between vias is 1.2 mm. The substrate is 1.524 mm Rogers RO3010.
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g

Port 1

Port 2

Port 3

Port 4

Fig. 2.39 Geometry of “corner cell”.

The dispersion diagram for the lossless cell is shown in Fig. 2.40(a) which shows the

DBE is achieved at 2.5 GHz (similar as ”double-oblique-line cell” and ”single-oblique-

line cell”). The hyperdistance is zero at DBE in Fig. 2.40(b), which confirms the exis-

tence of DBE. The most interesting feature of this new design is its increased robustness

to the perturbation of the oblique lines of vias. In Fig. 2.41, we compared the influence

of a perturbation (angle φ of oblique vias) on DBE of this design and the “single-

oblique-line cell”. From Fig. 2.41(a) and (c), we can see that, for a wide range of

perturbation (from 11.3 deg to 84 deg), the new compact design can always achieve the

DBE with a small frequency shift. On the contrary, the “single-oblique-line cell” loses

the DBE even for a small perturbation of 5 deg (Fig. 2.41(c)). Not only the dispersion
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Fig. 2.40 Dispersion diagram of the lossless “corner cell”. The DBE frequency is at 2.5

GHz. (a) Dispersion diagram: propagating modes (blue lines), evanescent modes (red

lines). (b) Hyperdistance.

diagrams, but also the hyperdistances in Figs. 2.41(b) and (d) confirm this conclusion.

The same conclusion can be drawn if this comparison is be performed with the first

“long cell” design. In Fig. 2.21, we observed the loss of DBE for small perturbation

of 1.7 deg and 1.3 deg. This robustness is particularly useful, since it allows to move

the DBE frequency when changing the ϕ angle of the oblique lines. This gives an ad-

ditional degree of freedom in order to place the DBE frequency as far as possible from

other stop-band and RBE points. In fact, as shown with the “air-via cell”, the presence

of higher-order pass-bands close to the DBE point can deteriorate the degeneracy much

more when losses or imperfections are introduced (and also when the periodic structure

is truncated with a finite number of cells).

The scattering parameters of the coupler (Fig. 2.42) show that the symmetric geometry

of “corner cell” lead the same reflections for ports 1 (3) and 2 (4) (s11 = s33, s22 = s44).

However, this does not contradicts the conclusions in Section 2.3.3, since asymmetries

are still visible (s11 6= s22, s22 6= s44). The symmetry also lead the same coupling

(s12 = s34, s14 = s23). The coupling between ports 2-4 is strong (s24 ≈ 0.9), while the

coupling between ports 1-3 are influenced by the oblique vias but still not negligible

(s13 ≈ 0.5).

Finally, the effect of losses is shown in Fig. 2.43. The hyperdistance is the smallest

among all the cells presented: a minimum value of 0.2 is reached, while the other cells
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reach minimum values larger than 0.5. In conclusion, this new compact “corner cell”

design has a similar size of the previous “single-oblique-line cell” design, it is much

more robust to the perturbation of oblique vias, and seems to suffer less of losses. For

this reason, we select this topology for modifications by using a low-loss substrate and

further improve its performance under losses.
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Fig. 2.41 The influence of perturbation (angle ϕ of oblique vias) to DBE. (a) Dispersion

diagram of new compact design with different ϕ. (b) Hyperdistance of new compact de-

sign with different ϕ. (c) Dispersion diagram of “single-oblique-line cell” with different

ϕ. (d) Hyperdistance of “single-oblique-line cell” with different ϕ.
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Fig. 2.42 Polar plot of coupling part of “corner cell” design. (2.1 GHz to 2.6 GHz)
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Fig. 2.43 Losses influence on the dispersion diagram of the “corner cell” in different

cases (lossless, only conductor losses, only dielectric losses, both conductor and dielec-

tric losses). (a) Dispersion diagram. (b) Hyperdistance.
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2.4.6 Corner-cell using Low-loss Substrate (“low-loss-substrate cell”)

As shown in the four previous designs, the DBE sensitivity to losses makes is necessary

the development of low-loss designs where the DBE behavior does not change a lot.

This is crucial to be able to cascade several SIW-DBE cells to achieve a high Q-factor

resonator. Also, this would be helpful to increase the DBE point in higher frequency,

where the advantage of SIW over other printed technologies is more relevant.

In all previous designs, dielectric losses are the main contributors to the total losses.

For this reason, we propose here a higher-frequency design using a low-loss substrate.

We set the DBE frequency to about 6 GHz. We modify slightly the geometry shown in

Fig. 2.39. The width of both SIW is w = 20 mm; the period d = 30 mm; the coupling

gap’s length g = 21.6 mm; the length l1 = 4.2 mm; the length l2 = 4 mm; the angle

ϕ = 45◦. The diameter of the via is 0.6 mm, the separation between two vias is 1.2 mm.

The thickness of the substrate is 1.524 mm. The substrate material is Neltec NY9208,

whose ǫr = 2.08, loss tangent is 6× 10−4.

The dispersion relation of “low-loss-substrate cell” is shown in Fig. 2.44(a). The DBE

point is at 6.17 GHz and its existence is confirmed by a null of the hyperdistance in

Fig. 2.44(b). The loss influences on the dispersion relation of “low-loss-substrate cell”

is shown in Fig. 2.45. From Fig. 2.45, we find that the contribution of dielectric losses is

now decreased comparable to the conductive losses, indicating that the loss tangent of

the new substrate is sufficiently low and even lower loss tangent would not significantly

increase the degeneracy.

In order to clearly show the reduction of the losses, we compare the hyperdistance at the

DBE point with losses for all the SIW unit cell designs in Table. 2.1. After considering

the losses, the first four designs’ hyperdistance are all above 0.5, which means the

DBE degeneracy is almost lost. In contrast, the hyperdistance of the low-loss design is

decreased to less than 20% of the first four designs.

Table 2.1 Hyperdistance of the Lossy SIW Unit Cells at the DBE Frequency

Unit Cell Type
DBE Frequency

(GHz)
Hyperdistance

“long cell” 2.218 5.20× 10−1

“double-oblique-line cell” 2.530 7.64× 10−1

“single-oblique-line cell” 2.516 8.31× 10−1

“air-via cell” 1.858 5.72× 10−1

“corner cell” 2.500 2.01× 10−1

“low-loss-substrate cell” 6.170 1.26× 10−1

“air-filled cell 1” 8.830 9.82× 10−2

“air-filled cell 2” 9.100 5.40× 10−2
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Fig. 2.44 The dispersion diagram of “low-loss-substrate cell” design without consider-

ing losses. The DBE frequency is at 6.17 GHz. (a) Dispersion diagram. (b) Hyperdis-

tance.
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Fig. 2.45 Loss influence on the dispersion diagram of “low-loss-substrate cell” in dif-

ferent cases (lossless, only conductor losses, only dielectric losses, both conductor and

dielectric losses). (a) Dispersion diagram. (b) Hyperdistance.
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2.4.7 Low-loss Compact Unit Cell using Air-filled SIW Structure (“air-filled cell 1”)

As introduced in Section 1.3.4, air-filled SIW structures are reported in many publica-

tions to decrease the dielectric losses in SIW. Air-filled SIW can possibly provide then

a cost-effective solution to achieve the DBE. Compared to a more expensive design re-

quiring a low-loss substrate, the air-filled SIW only needs low-cost FR-4 substrates to

have even lower dielectric losses. In this design, we develop the DBE in an air-filled

SIW cell with a similar structure as the previous “low-loss-substrate cell”.

Top PCB board

Bottom PCB board

Air-filled SIWs

w

w

d

l1 l1

l2

g

AFSIW1

AFSIW2

Port 1

Port 2

Port 3

Port 4

Fig. 2.46 Geometry of the “air-filled cell 1”.

The geometry of “air-filled cell 1” is shown in Fig .2.46. The air-filled SIW cell con-

sists of three layers: top PCB board, bottom PCB board and the air-filled middle PCB

board. The top and bottom boards provide the copper planes for the air-filled middle

PCB board, and the wave propagate in the air-filled part of the middle board, so that

dielectric losses are virtually suppressed. The following are the dimensions of the air-

filled SIWs in the middle layer: The width w = 20 mm, the period d = 30 mm, the

length l1 = 4.2 mm, l2 = 5 mm, the coupling gap g = 21.6 mm, the angle ϕ is 63.4◦.

The substrate is FR-4 whose ǫr is 4.4, loss tangent is 0.02. Considering the fabrication

limitations, the minimum distance from the via center to the edge of the air-filled part

is 0.9 mm. A 1.2 mm-width bar is remained at the coupling gap; otherwise, the middle

vias between two air-filled SIWs will drop from the middle layer when fabricating the

truncated periodic lines.

The dispersion relation without considering losses is shown in Fig. 2.48(a) where the

DBE is achieved at 8.83 GHz. The null hyperdistance in Fig. 2.48(b) confirms the ex-

istence of DBE. The dispersion relation considering the losses is shown in Fig. 2.49

where the dielectric losses is decreased to the same level as conductor losses indicating

the influence of losses is reduced. The hyperdistance in Fig. 2.49(b) shows that even af-

ter considering all the losses (conductor losses and dielectric losses), the hyperdistance

still stays in a low value about 0.1.

The scattering parameters of the coupler is shown in Fig. 2.47, which is similar to
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“corner cell” design as expected.
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Fig. 2.47 Polar plot of the coupling part of “air-filled cell 1”. (8.7 GHz to 8.9 GHz)
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Fig. 2.48 The dispersion diagram of the “air-filled cell 1” without considering losses.

The DBE frequency is at 8.83 GHz. (a) Dispersion diagram. (b) Hyperdistance.

0.6 0.8 1 1.2 1.4

Re(kd/ )

8.7

8.75

8.8

8.85

8.9

F
re

q
u
e
n
c
y
 (

G
H

z
)

Lossless

Only conductor losses

Only dielectric losses

Conductor and dielectric losses

(a)

10
-3

10
-2

10
-1

10
0

8.7

8.75

8.8

8.85

8.9

Lossless

Only conductor losses

Only dielectric losses

Conductor and dielectric losses

(b)

Fig. 2.49 Loss influence on the dispersion diagram of the “air-filled cell 1” in differ-

ent cases (lossless, only conductor losses, only dielectric losses, conductor losses and

dielectric losses). (a) Dispersion diagram. (b) Hyperdistance.
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2.4.8 Air-filled SIW Structure using Copper Pillars (“air-filled cell 2”)

The previous “air-filled cell 1” design has to leave a part of substrate at the coupling gap

to hold the vias, which is a source of losses and may increase fabrication complexity.

A simplified design is shown in Fig. 2.50. In the design, several copper pillars are

inserted through the air-filled SIW cell to act as the metallic vias and soldered to the

SIW plates. This avoids keeping a dielectric line inside the structure. The dimensions

are: w = 20 mm, d = 30 mm, l1 = 3.8 mm, l2 = 5 mm, g = 22.4 mm, ϕ = 76.6◦. The

thickness of the middle FR-4 board is 1.6 mm. The copper pillars penetrate the top and

bottom PCB boards.

The scattering parameters of the coupler (Fig. 2.51) show that the copper pillars de-

crease the coupling between ports 1-3 more than “corner cell” design, while the other

characteristics of S parameters stay similar to “corner cell” design.

The lossless dispersion diagram is shown in Fig. 2.48(a) where the DBE is obtained

at 9.1 GHz confirmed by the zero hyperdistance in Fig. 2.48(b). The lossy dispersion

diagram is shown in Fig. 2.53(a). The dielectric losses are so low in this case that

the dispersion curve considering only the dielectric losses almost overlaps the lossless

curve. In Fig. 2.53(b), the hyperdistance with only dielectric losses is also almost the

same as lossless case. In other words, dielectric losses are negligible and the only

source of losses are conductor losses. The hyperdistance at the DBE frequency when

considering the losses is presented in Table. 2.1. This is the lowest lossy hyperdistance

compared to the other designs, which confirms the fact that this structure is the less

affected by losses among the presented ones.
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Fig. 2.50 Geometry of the “air-filled cell 2”.
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Fig. 2.51 Polar plot of “air-filled cell 2” (the whole unit cell). The frequency interval is

from 9 GHz to 9.15 GHz.
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Fig. 2.52 The dispersion diagram of “air-filled cell 2” without considering losses. The

DBE frequency locates at 9.1 GHz. (a) Dispersion diagram. (b) Hyperdistance.
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Fig. 2.53 Loss influence on the dispersion diagram of “air-filled cell 2” in four cases

(lossless, only conductor losses, only dielectric losses, both conductor and dielectric

losses). (a) Dispersion diagram. (b) Hyperdistance.
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2.4.9 Comparison of the Normalized Size of the SIW-DBE Designs

One of the advantages of the SIW structures is their low-profile and ease of integration.

DBE provides the possibility to obtain high Q-factor values with a small number of unit

cells, so the size of each unit cell is an important factor to evaluate, being related to the

size of the truncated DBE structure.

The different designs presented in the previous sections have different DBE frequencies

and substrate materials. In order to compare their size, we normalize them with respect

to the dielectric wavelength at the DBE frequency. The comparison of the SIW-DBE

unit cells in normalized size is shown in Table. 2.2. Among all the designs, the “air-via

cell”, the “corner cell” and the three derived ones (the “low-loss-substrate cell” and the

two air-filled designs) have the smallest normalized size, about 1.20 × 0.90.

Table 2.2 Normalized Size Comparison of Proposed SIW-DBE designs

Unit Cell Type
DBE Frequency

(GHz)

Size (mm)

(width ×
length)

Normalized Size

(size / λDBE)

“long cell” 2.218 60×90 1.42×2.13

“double-oblique-line cell” 2.53 40×45 1.08×1.21

“single-oblique-line cell” 2.516 40×44.8 1.07×1.21

“air-via cell” 1.858 60×45 1.19×0.89

“corner cell” 2.5 43×34.8 1.14×0.93

“low-loss-substrate cell” 6.17 40×30 1.19×0.89

“air-filled cell 1” 8.83 40×30 1.17×0.88

“air-filled cell 2” 9.1 40×30 1.21×0.91
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2.5 Conclusions

In this chapter, we proposed a multimodal transfer-matrix method to analyse the 4-port

DBE unit cell. We modelled a single unit cell as a four-port network formed of two

transmission-line sections on both ends of the cell, and a coupler granting the necessary

modal coupling responsible for the DBE degeneracy.

Based on this method, we studied different S matrix forms of the couplers to see which

couple form can lead to a DBE synthesis. We found that the symmetric couplers (such

as the perfectly matched one and the symmetric unmatched one) cannot introduce a

DBE. Sufficient qualitative conditions for a coupler to obtain a DBE are: (1) Differ-

ent reflections at the four ports and strong reflection at some ports; (2) a privileged

propagation path between at least two of the four ports.

Following this guidelines, we successfully synthesised a DBE degeneracy in different

kinds of SIW cells, including “long cell”, “double-oblique-line cell”, “single-oblique-

line cell”, “air-via cell”, “corner cell”, “low-loss-substrate cell”, “air-filled cell 1”, “air-

filled cell 2”. For all these unit cells, we explained the rationale behind their design,

we gave the key parameters capable to reach a DBE condition, considered the influence

of losses, and compared their performance in terms of robustness to the variation of

geometrical parameters. The last low-loss designs (“low-loss-substrate cell”, “air-filled

cell 1”, “air-filled cell 2”) have a good performance when considering losses and have

the smallest normalized size. The impact of losses confirms the difficulty in designing

a periodic SIW presenting DBE effects which can be observed, if compared to other

structures (empty waveguides, microstrip lines) which either do not present dielectric

losses or suffer less of both metallic and dielectric losses. The last three low-loss results

show that once dielectric losses are sufficiently reduced, metallic losses seem not to

impact significantly the degeneracy. This will be verified in the next chapter by studying

the resonances of truncated structures.
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CHAPTER 3

Truncated SIWs-DBE Lines

3.1 Introduction

In the previous chapter, five SIWs-DBE unit cell designs have been proposed. The in-

fluence of losses has been considered, and their sizes have been compared to show their

miniaturization efficiency. By suitably modifying one of the unit cells, three low-loss

designs have also been proposed to lower the impacts of losses as much as possible. The

last three low-loss unit cells are also relatively compact among the proposed designs.

In this chapter, we study the resonant behavior of truncated SIW lines made with the unit

cells described in the previous chapter. We calculate the S parameters, Q-factors and

group delays for different length of SIWs-DBE resonators with and without losses. This

will lead to the confirmation of the possibility to excite DBE resonances in finite SIW

structures. After presenting all the designs, we discuss the choice of the most suitable

designs for fabrication, among the three low-loss ones. Experimental validation of these

resonances will then be obtained.

3.2 Resonant Behavior of Truncated SIWs-DBE Lines

In order to build practical resonators, the periodic DBE structures have to be truncated

into finite-length lines. It is then necessary to check if the exceptional DBE resonant

behaviors, as presented in Section 1.2, can be observed after the truncation. In this

section, full-wave simulations of six truncated SIWs-DBE lines are presented, which

are “long cell” SIWs line, “double-oblique-line cell” SIWs line, “single-oblique-line

cell” SIWs line, “corner cell” SIWs line, “low-loss-substrate cell” SIWs line, “air-filled

cell 1” SIWs lines and “air-filled cell 2” SIW lines. Among the unit cell discussed

in the previous chapter, only the “air-via cell” design is not presented here. In that

case, a higher-frequency pass-band is very close to the DBE, which severely affects the

DBE shape when losses are added. The same strong perturbation is observed when the

structure is truncated: the DBE resonance vanishes even in the absence of losses. For

the sake of brevity, the results of the truncation of this structure are not presented here.

For each design, truncated lines with different numbers of cells are considered, where
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the number of cell varying from 4 to 8. Both lossless and lossy cases are considered,

and the S parameters, Q factors and group delays are calculated to verify the enhanced

resonances by DBE.

3.2.1 Truncated “long cell” SIWs Lines

An N -cells truncated “long cell” SIWs line is shown in Fig. 3.1. The feeding of the

finite structure needs to be addressed before this truncated structure can be considered.

Each unit cell is a four-port structure, and so the entire line can be accessed through four

different ports (the two left ports of the first cell, and the two right port of the last cell).

However, as in [36], the truncated DBE resonator is here accessed through two ports, a

feeding port on the left and an output port on the right. The other two ports are shorted

in order to keep the design simpler than a feeder distributed on two ports would require.

In Fig. 3.1, we short the up-left and down-right ports by PEC boundaries and connect

the other two ports to external waveguide ports. The choice for the excitation ports

is dictated by avoiding too strong reflections at the first cell, in order to have a smooth

transition from the waveguide to the unit cell. This should assure a good matching to the

overall line. As shown in Fig. 2.23, the oblique lines of vias cause strong reflections at

the up-left and down-right ports, so we shorted these two ports. Different combinations

of excitation ports have also been verified and led to worse performances and will not

be considered in the following.

...

Unit Cell

N-cell truncated line

Input port

Output portShorted by PEC

Shorted by PEC

Fig. 3.1 N -cell truncated “long cell” SIWs Lines.

At first, we study the S parameters of truncated lines of different lengths in the pass-

band just below the DBE frequency. The simulations are performed with the commer-

cial software HFSS [117]. The simulation relative accuracy is set as 10−2 on the S

parameter computation. The full-wave simulation results of S parameters of the differ-

ent truncated lines are shown in Fig. 3.2 considering both lossless and lossy conditions.

The DBE resonance occurs at fr,d which is the closest resonance peak to the DBE fre-

quency fd. To show the DBE resonance peak clearly, we plot all the S11 parameters

in a narrow frequency range close to the DBE frequency in Fig. 3.4. The DBE reso-

nant frequency is approaching the DBE frequency as the number of cells N increases,

which is a characteristic of Fabry-Pérot resonator as explained in Section 1.2. In the
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lossless situation, the DBE resonance peaks are clear indicating resonances are increas-

ingly narrow. However, when considering losses, the DBE resonance peaks become

flat, indicating that the resonances are strongly affected.
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Fig. 3.2 S parameters of “long cell” SIWs lines. (a) 4-cell truncated SIWs line. (b)

5-cell truncated SIWs line. (c) 6-cell truncated SIWs line. (d) 7-cell truncated SIWs

line. (e) 8-cell truncated SIWs line.

The DBE condition leads to a stronger field enhancement with the same number of cells

compared to RBE as described in Section 1.2. In order to verify this conclusion, we

only modify the oblique-line angle ϕ to break the DBE and form a RBE at 2.242 GHz,

which is not far from the DBE frequency of the original line (2.218 GHz). The other

parameters of this new RBE structure remain the same in order to get a fair comparison

between these structures. By calculating the E-field at the DBE or RBE resonance

frequency when both lines are fed on the left with an ideal waveguide port of 1 W, we

observe the resonance DBE/RBE field in the 8-cell truncated SIWs line (Fig. 3.4(a) and

(b)). As expected, the E-field amplitude is higher at the center and much smaller at the
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Fig. 3.3 S11 magnitude of lossless truncated “long cell” SIWs lines at the DBE reso-

nances.

two ends, as shown in Fig. 1.5. We compare the E-field magnitude of DBE and RBE

lines in Fig. 3.4(c). The data is taken along the black dashed lines (middle of the bottom

SIW) in Fig. 3.4(a) and Fig. 3.4(b). The results show that, at the center of the resonator,

the field is enhanced up to about 60 kV/m for DBE lines, while the maximum E-field

of 8-cell RBE line is about 26 kV/m (Fig. 3.4(c)).

Despite the strong impact of losses on this truncated structure, we propose a simple way

to verify the DBE nature of the resonances observed so far, i.e., the computation of the

Q factors of these filters:

Q =
fr,d
BW

≈ 2πfr,d
Wrad

Ploss

(3.1)

where fr,d is the resonance frequency, BW is the resonance bandwidth defined as the

full width at half maximum. If Q is much larger than unity, the two expressions given in

(3.1) are approximately equivalent. Wrad is the stored energy in the line. In the lossless

case, the dissipated power Ploss is the power delivered on the output port, while in the

lossy case also the dissipated power is considered in the denominator. In any case, the

expression of Q given in terms of resonance frequencies will be used. The resonances

are defined on the S11 parameters of the relevant truncated lines. The same definitions

have been used for example in [42].

The loaded Q-factor for SIWs lines is then here computed in order to observe the fast

increase of Q-factors with the number of cells N . The loaded Q-factors of different

length lossless truncated resonators are shown in Fig. 3.5a, which shows that the Q-

factor is proportional to N5. This is the typical DBE characteristic of fast increasing

Q-factor with the length of truncated lines as shown in Section 1.2.

The transmission group delay is also a prove of the existence of DBE, which is defined

as τ = −∂ (∠S21) /∂ω, ∠S21 being the phase of the transmission coefficient S21. [6]. In

order to compare the group delays between different length truncated lines, the group

delay is normalized by the delay in free space Nd/c. The normalized group delay
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Fig. 3.4 E-field comparison between DBE and RBE 8-cell “long cell” line. (a) E-field

distribution of DBE line. (b) E-field distribution of RBE line. (c) E-field magnitude

(comparison between DBE and RBE lines) computed along the black dashed lines in

the two previous subfigures.

is shown in Fig. 3.5b, where the group delay is proportional to N4, typical of DBE

resonances in [73].

To summarize these first results, for the lossless case, the “long cell” truncated SIW

lines support strong DBE resonances, as confirmed by the computed Q factors, group

delays, and field amplitude distribution. However, when the losses are considered, the

DBE resonances are strongly affected. These results emphasize again the very sen-

sitive behavior of DBE to the loss in SIW structures, with respect to other previous

designs such as empty waveguides (where dielectric losses are absent) and microstrip

lines (where conducting and dielectric losses are less severe). This confirms the diffi-

culty in designing SIWs-DBE lines, where losses should carefully controlled.
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Fig. 3.5 The Q-factor and group delay of different length “long cell” truncated SIWs

resonators. (a) Q-factor whose scaling is proportional to N5. (b) Group delay whose

scaling fits to N4.

3.2.2 Truncated “Double-oblique-line cell” SIWs Lines

The schematic of N -cell truncated SIWs lines of “double-oblique-line” unit cells is

shown in Fig. 3.6, where the left-down and right-up ports are shorted by PEC boundaries

and the other two ports are excited. Also in this case, the two ports to be shorted have

been selected because they have strong reflections according to Fig. 2.29.

The S parameters of 4- to 8-cell SIWs resonators are shown in Fig. 3.7 with and without

losses. For the lossy case, the resonance peaks are flat indicating that also in this case the

perturbation of the DBE condition is severe. The magnitude of lossless S11 at the DBE

resonance frequency is shown in Fig. 3.8, which shows more clearly that the resonance

frequency is approaching to the DBE frequency as N increases.

The E-field distribution for a 8-cell truncated structure at the DBE resonance frequency

is shown in Fig. 3.10(a). We modify this structure by shortening the separation between

the oblique vias. This leads to an alternative line having a RBE at 2.507 GHz. The

E-field distribution of 8-cell truncated RBE line is shown in Fig. 3.10(b). We plot also

the E-field magnitude along the black dashed lines in Fig. 3.10(a) and (b), when the

8-cell DBE and RBE lines are both fed on the upper-left port with an ideal waveguide

of 1W. The maximum field density of 8-cell DBE line is 47 kV/m, while for 8-cell RBE

line, it is 35 kV/m.

For the lossless situation, the Q-factor according to the number of cells is shown in

Fig. 3.9a, confirming the trend proportional to N5. In Fig. 3.9b, the group delay of the

lossless truncated lines fits the N4 scaling.

As a conclusion, the “double-oblique-line” truncated SIWs lines support strong DBE

resonances for the lossless case, but losses weaken considerably these resonances.

82



...

Unit Cell

N-cell truncated line

Input port

Output portShorted by PEC

Shorted by PEC

Fig. 3.6 N -cell “double-oblique-line” SIWs line.
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Fig. 3.7 S parameters of the “double-oblique-line” truncated SIWs lines. (a) 4-cell

truncated SIWs line. (b) 5-cell truncated SIWs line. (c) 6-cell truncated SIWs line. (d)

7-cell truncated SIWs line. (e) 8-cell truncated SIWs line.
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Fig. 3.8 |S11| at the resonance frequency for different length of “double-oblique-line”

truncated SIWs lines.
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Fig. 3.9 The Q-factor and group delay of different length “double-oblique-line” trun-

cated SIWs resonators. (a) The Q-factor is proportional to N5. (b) The group delay is

proportional to N4.
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Fig. 3.10 E-field comparison between DBE and RBE 8-cell “double-oblique-line cell”

line. (a) E-field distribution of DBE line. (b) E-field distribution of RBE line. (c) E-

field magnitude (comparison between DBE and RBE lines) computed along the black

dashed lines in the two previous subfigures.
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3.2.3 Truncated “Single-oblique-line cell” SIW Lines

A finite-length SIW line composed of “N single-oblique-line” cells is shown in Fig. 3.11,

whose upper-left and lower-right ports are shorted by two PEC boundaries and the other

two ports are excited in the simulation.

...

Unit Cell

N-cell truncated line

Input port

Output portShorted by PEC

Shorted by PEC

Fig. 3.11 The N -cell truncated simulation model of “single-oblique-line cell”.

The magnitude of S parameters for different truncated lines with and without losses are

shown in Fig. 3.12. Again, losses have a strong impact on the DBE condition. In this

structure, the DBE resonance is still visible with a 4-cell lossy structures, but it is lost as

the structures becomes longer. Losses limit then the total length of the structures. When

we increase the length from 6 cells to 8 cells, the DBE disappears (the |S11| peak does

not drop below -3dB at the resonance frequency). For the lossless case, the coefficient

S11 has a very narrow peak at the resonance frequency, which means the resonator is

well matched and the quality factor Q is very high. The resonance frequency fr,d is

approaching to DBE frequency fd, when the number of cells is increasing, as shown

in Fig. 3.13. Also the resonance peak is getting narrower, which means the Q factor is

increasing. As the number of cell N increases, the Q factor is in fact again proportional

to N5 (Fig. 3.15a), and the group delay is proportional to N4 (Fig. 3.15b).

The E-field distribution at the DBE and RBE resonance frequency is shown in Fig. 3.14,

where the RBE structure is obtained by adjusting the oblique angle ϕ to 76 deg. The

two 8-cell resonators are excited by an ideal 1W waveguide at bottom-left port. In

Fig. 3.14(c), the E-field magnitude along the dashed black lines in Fig. 3.14(a) and (b)

shows the maximum field density is enhanced to 60 kV/m in DBE line compared to 25

kV/m in RBE line.

In conclusion, for the lossless truncated N -cell SIW-DBE resonator, as expected, its

Q factor is proportional to N5. The resonance frequency is approaching the DBE fre-

quency when the number of cells is increasing, and a giant field enhancement at the

center is obtained. However, we also find that losses strongly impact the robustness of

the DBE condition, which may disappear as the length of the structure increases.

86



2.46 2.48 2.5 2.52

Frequency (GHz)

-30

-20

-10

0

|S
| 
(d

B
)

8 Cells

2.46 2.48 2.5 2.52

Frequency (GHz)

-30

-20

-10

0

|S
| 
(d

B
)

7 Cells

2.46 2.48 2.5 2.52

Frequency (GHz)

-30

-20

-10

0

|S
| 
(d

B
)

6 Cells

2.46 2.48 2.5 2.52

Frequency (GHz)

-30

-20

-10

0

|S
| 
(d

B
)

5 Cells

2.46 2.48 2.5 2.52

Frequency (GHz)

-30

-20

-10

0

|S
| 
(d

B
)

4 Cells

S11: lossless lines

S21: lossless lines

S11: lossy lines

S21: lossy lines

(a) (b)

(c) (d)

(e)

fr, d

fr, d

fd
fr, d

fd fd

fr, d

fr, d

fd

fd

Fig. 3.12 Full-wave simulation results of S parameters of “single-oblique-line cell”

SIWs lines considering the influence of losses. (a) 4-cell truncated SIWs line. (b) 5-cell

truncated SIWs line. (c) 6-cell truncated SIWs line. (d) 7-cell truncated SIWs line. (e)

8-cell truncated SIWs line.
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Fig. 3.13 Magnitude of S11 of different length “single-oblique-line cell” SIWs lines.

When the number of cells increases, the resonance frequency is approaching the DBE

frequency and the resonance peak gets narrower.
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Fig. 3.14 E-field comparison between DBE and RBE 8-cell “single-oblique-line cell”

line. (a) E-field distribution of DBE line. (b) E-field distribution of RBE line. (c) E-

field magnitude (comparison between DBE and RBE lines) computed along the black

dashed lines in the two previous subfigures.
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Fig. 3.15 The Q-factor and group delay of “single-oblique-line cell” SIWs lines. (a)

The Q-factor is proportional to N5. (b) The group delay is proportional to N4.
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3.2.4 Truncated “Corner cell” SIWs Lines

The truncated “corner cell” SIWs line is shown in Fig. 3.16. The structure is accessible

through the two lower ports, excited in the HFSS simulation with ideal waveguide ports,

while the two upper ports are shorted with PEC boundaries, again in order to minimize

reflections close to the ports of the truncated line.

...

Unit Cell

N-cell truncated line

Input port Output port

Shorted by PEC Shorted by PEC

Fig. 3.16 The N -cell truncated SIWs simulation model of “corner cell” and “low-loss-

substrate cell” designs.

The magnitude of the S parameters (Fig. 3.17) show the DBE resonances of different

length lines with and without losses. In the lossless case, the |S11| and |S21| patterns are

the same as in the previous truncated lines (the DBE resonance peak gets narrower and

approaches DBE frequency as N increases). Interestingly, the “corner cell” truncated

lines are more robust under the losses influence compared to the previous three designs.

The shape of the resonance peaks are still recognizable and the magnitude peak of S11

is below -3 dB for filters of 4, 5 and 6 cells (Fig. 3.18). This phenomenon confirms the

reduced impact of losses as quantified by the hyperdistance in Table. 2.1: the hyperdis-

tance of lossy “corner cell” is 0.2, lower than the one of the lossy “long cell” (0.52),

“double-oblique-line cell” (0.76), and “single-oblique-line cell” (0.83). This indicates

that the “corner cell” is not only more robust to the perturbations of oblique vias but also

to the losses influence, as confirmed by these truncated-line results. The E-field distri-

bution of 8-cell “corner cell” is shown in Fig. 3.19. The distribution of RBE resonator

is not shown here for the “corner cell” topology. As explained, this cell is more robust

to the geometrical perturbation. Therefore, it is hard to get a structure having a RBE

near the DBE frequency of the original structure, by modifying a single geometrical

parameter.

The Q-factors and group delays are shown in Fig. 3.20a and Fig. 3.20b. As the lossy

4- and 5-cell truncated lines have recognizable DBE resonance peak, lossy Q factors

can be computed and plotted in these cases. In Fig. 3.20a, the lossless Q-factors fit

N5 as observed in previous designs, and the lossy Q-factors have the same trend, but
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Fig. 3.17 S parameters of “corner cell” SIWs line considering the influence of losses.

(a) 4-cell truncated SIWs line. (b) 5-cell truncated SIWs line. (c) 6-cell truncated SIWs

line. (d) 7-cell truncated SIWs line. (e) 8-cell truncated SIWs line.

with lower values. The group delay of lossless lines fit N4 but the two lossy lines group

delays do not increase with N , which may be related to weaker resonances under losses.
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Fig. 3.18 Magnitude of S11 for different length “corner cell” SIWs structures.
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Fig. 3.19 The E-field distribution of 8-cell truncated SIWs of “corner cell”.
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Fig. 3.20 The Q-factor and group delay of “corner cell” SIWs lines. (a) The scaling of

Q factor fits a N5 law. (b) The scaling of group delay fits a N4 law.
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3.3 Truncated Low-loss SIWs Lines

In this section we simulate the truncated lines obtained with the three different low-

loss cells proposed in the previous chapter: the “low-loss-substrate cell” employing a

low-loss substrate and the two air-filled SIWs.

3.3.1 Truncated “Low-loss-substrate cell” SIWs Lines

The simulation model of N -cell truncated SIW line of “low-loss-substrate cell” having

a DBE frequency at around 6 GHz is similar to the “corner cell” of Fig. 3.16, apart from

the different values of parameters given in section 2.4.6. In this structure, the upper two

ports are shorted and the bottom two ports are connected to waveguide ports.

The S parameters of different truncated lines with and without losses are shown in

Fig. 3.21. As expected, the use of a lower-loss substrate considerably reduces the loss

impact on the resonances, and it is confirmed to be the main cause for the DBE disap-

pearance in the results of the previous section. Despite the presence of the losses in the

copper, the resonance peaks of |S11| are now below -3dB until 8 cells. The |S11| of the

DBE resonances in the different structures are shown together in Fig. 3.22, which shows

more clearly the influence of the losses as a decrease of the peaks of DBE resonances

as N increases. The E-field distribution of 8-cell line at DBE frequency is shown in

Fig. 3.23.

The Q-factors and group delay in lossless and lossy conditions are shown in Fig. 3.24a

and Fig. 3.24b. Both the Q-factors with and without losses fit the N5 scaling. The

difference between them becomes larger with the increase of N , thus predicting a limi-

tation in the number of cells when observing the DBE. The influence of losses is more

significant for group delays. For the lossless SIWs lines, the group delay fits the N4

scaling. However, for the lossy SIWs lines, the growth rate significantly slows down

when the number of cells is more than 6.

To summarize, losses have been significantly reduced in this “low-loss-substrate cell”

SIWs design to such a point that the DBE resonances can be observed in 8-cell lines

whose |S11| is below -3dB. The Q-factor trend with respect to the number of cells N

is not significantly modified by losses, despite lower values, while the group delay of

lossy lines indicates that the typical fast increase with N is lost for long truncated lines.
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Fig. 3.21 S parameters of “low-loss-substrate cell” SIWs line considering the influence

of losses. (a) 4-cell truncated SIWs line. (b) 5-cell truncated SIWs line. (c) 6-cell

truncated SIWs line. (d) 7-cell truncated SIWs line. (e) 8-cell truncated SIWs line.
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Fig. 3.22 Magnitude of S11 for different length “low-loss-substrate cell” SIWs struc-

tures.
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Fig. 3.23 The E-field distribution of 8-cell truncated SIWs of “low-loss-substrate cell”.
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Fig. 3.24 The Q-factor and group delay of “low-loss-substrate cell” SIWs lines. (a) The

scaling of Q factor fits a N5 law. (b) The scaling of group delay fits a N4 law.
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3.3.2 Truncated “Air-filled cell 1” SIWs Lines

Fig. 3.25 shows the middle layer of the simulation model of truncated “air-filled cell

1” SIWs lines (see Section 2.4.7), in which the two ports of the upper SIW line are

shorted and the bottom two ports are excited. As explained in the previous chapter, the

air-filled SIWs are composed of three layers, where the top and bottom layers act as

copper planes and the air-filled part of middle layer provides the propagation path of

the wave.

The S parameters of different truncated lines with and without losses are shown in

Fig. 3.26. The DBE resonance peaks of |S11| are shown in Fig. 3.27. The loss influence

is reduced with respect to the previous low-loss structure, thanks to the absence of

dielectric. The DBE resonance peak of |S11| is below -3dB until 7 cells. The E-field

distribution of 8-cell truncated SIW lines at the DBE frequency is shown in Fig. 3.28.

The Q-factors and group delays of different truncated SIW lines are shown in Fig. 3.29a,

and Fig. 3.29b. The Q-factor of lossy lines also fit the N5 scaling as the lossless case.

However, the group delay of the lossy case does not increase fast with N4 as lossless

case. The group delay of 8-cell line is even lower than 7-cell line, which corresponds to

the disappearance of the DBE resonance peak of 8-cell line in |S11| curve.

To resume, the “air-filled cell 1” design also reduced the losses as the previous “low-

loss-substrate cell” design. Still, the FR-4 substrate embedded in the air-filled area to

realize the central lines of pins may be source of losses. In the next design, we use the

second air-filled unit cell of Section 2.4.8, where this middle line is not present, with

the aim of further minimizing losses.

...

Unit Cell

N-cell truncated line

Input port Output port

Shorted by PEC Shorted by PEC

Fig. 3.25 The N -cell truncated simulation model of “air-filled cell 1”.
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Fig. 3.26 S parameters of “air-filled cell 1” SIWs lines considering the influence of

losses. (a) 4-cell truncated SIWs line. (b) 5-cell truncated SIWs line. (c) 6-cell truncated

SIWs line. (d) 7-cell truncated SIWs line. (e) 8-cell truncated SIWs line.
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Fig. 3.27 Magnitude of S11 of different length “air-filled cell 1” SIWs lines.
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Fig. 3.28 The E-field distribution of 8-cell truncated SIWs of “air-filled cell 1”.
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Fig. 3.29 The Q-factor and group delay of “air-filled cell 1” SIWs lines. (a) The scaling

of Q factor is 5-th power of N . (b) The scaling of group delay is fit to N4.
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3.3.3 Truncated “air-filled cell 2” SIWs Lines

The simulation model of the truncated SIW lines composed of the “air-filled cell 2” unit

cells discussed in Section 2.4.8 is shown in Fig. 3.30. Again the upper two ports are

shorted by PEC and the lower ports are excitation ports. As explained in the previous

chapter, the “air-filled cell 2” line are made up of three PCB boards, where the top and

bottom boards act as copper planes and the middle board is an air-filled SIW line. The

copper pillars are soldered to the top and bottom layers, so the substrate middle line

used in the previous design to hold the vias is no more needed, which is expected to

further reduce the substrate losses.

The S parameters of different truncated lines are shown in Fig. 3.31 with and without

losses. And the |S11| of DBE resonance peaks is below -3 dB until 7 cells as shown in

Fig. 3.32. In Fig. 3.33, the E-field distribution at the DBE resonance frequency of 8-cell

truncated line is presented.

The Q-factor and group delay are shown in Fig, 3.34a and Fig. 3.34b. Similar to the

the “air-filled cell 1” SIWs designs, the Q fits N5 for both lossless and lossy cases. The

group delay for lossless case fits N4 as usual, while, for the lossy case, the group delay

decreases if more than 6 cells.

...

Unit Cell

N-cell truncated line

Input port Output port

Shorted by PEC Shorted by PEC

Fig. 3.30 The N -cell truncated simulation model of “air-filled cell 2”.
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Fig. 3.31 S parameters of “air-filled cell 2” SIWs lines considering the influence of

losses. (a) 4-cell truncated SIWs line. (b) 5-cell truncated SIWs line. (c) 6-cell truncated

SIWs line. (d) 7-cell truncated SIWs line. (e) 8-cell truncated SIWs line.
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Fig. 3.32 Magnitude of S11 of different length “air-filled cell 2” SIWs lines.
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Fig. 3.33 The E-field distribution of 8-cell truncated SIWs of “air-filled cell 2”.
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Fig. 3.34 The Q-factor and group delay of “air-filled cell 2” SIWs lines. (a) The scaling

of Q factor is 5-th power of N . (b) The scaling of group delay is fit to N4.
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3.3.4 Comparison of Truncated SIWs Designs

In this subsection, we compare the Q-factors and normalized group delays of different

SIWs designs. This comparison will also help to select the best candidate for an exper-

imental validation fabrication. The results are shown in Table. 3.1. The three low-loss

designs (“low-loss-substrate cell”, “air-filled cell 1”, and “air-filled cell 2”) can lead to

measurable DBE resonances considering losses. Among them, we find that although

they have similar unit cell size, their loaded Q-factor and group delay have significant

differences.

The lossless results of these last three structures are at first analyzed. The Q-factor of

“air-filled cell 1” SIWs is more than twice than the one of a “low-loss-substrate cell”

SIW. In turn, the Q factor of the “air-filled cell 2” is more than twice than the “air-filled

cell 1”. The group delay of “low-loss-substrate cell” SIWs lines and “air-filled cell”

SIWs lines are similar, but the group delays of “air-filled cell 2” lines are more than

doubled.

Other considerations can be added if losses are included in the model. Among these

last three designs, the “low-loss-substrate cell” design suffers less from losses for larger

values of N . This makes it a good candidate for an experimental validation of the

growing trend of Q vs. N . The “air-filled cell 1” and “air-filled cell 2” are also robust

to the influence of loss and obtain DBE resonances. Although their DBE resonances

disappear for long lines, their load Q-factors of 6 or 7 cells are still larger than the 8-

cell “low-loss-substrate cell”. This makes them interesting structures to be fabricated

as comparison. This is particularly true if the cost factor is also considered, since these

structures use low-cost FR-4 dielectrics instead of a more expensive low-loss substrate.
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Table 3.1 Comparison of loaded Q-factor and group delay between different truncated

SIWs designs

Type of SIWs design N
Loaded Q-factor Normalized group delay

lossless lossy lossless lossy

“long cell”

4 178 / 74 /

5 463 / 108 /

6 1101 / 179 /

7 2358 / 294 /

8 4484 / 495 /

“double-oblique-line cell”

4 171 / 33 /

5 249 / 41 /

6 467 / 56 /

7 820 / 78 /

8 1274 / 103 /

“single-oblique-line cell”

4 289 / 74 /

5 541 / 106 /

6 1124 / 174 /

7 2457 / 306 /

8 4477 / 479 /

“corner cell”

4 228 122 71 36

5 503 267 121 36

6 1048 / 204 /

7 2071 / 340 /

8 3588 / 509 /

“low-loss-substrate cell”

4 130 110 20 17

5 212 168 25 20

6 383 278 36 25

7 695 460 55 29

8 1202 808 81 32

“air-filled cell 1”

4 233 186 24 19

5 467 333 36 24

6 1000 667 63 30

7 1864 1598 99 32

8 3490 / 158 32

“air-filled cell 2”

4 675 528 61 45

5 1624 1138 107 63

6 3096 2416 171 68

7 5132 / 254 66

8 8315 / 350 64
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3.4 Design of feeding transitions for Truncated SIWs-DBE Lines

In this subsection, we describe the designs of two SIW transitions (a CBCPW transition

and an SMA-SIW transition) necessary to connect the truncated SIW-DBE lines (or

truncated AFSIW-DBE lines) with a coaxial cable. These transitions will be used for

the measurement of the fabricated prototypes. The transitions are designed by means

of the full-wave simulator HFSS. The S parameters of the transitions are first given.

After, we simulate truncated SIW-DBE lines together with the transitions and SMA

connectors in order to show the transitions influence on the DBE resonances.

3.4.0.1 CBCPW Transition for SIW-DBE Lines

Due to the wide use of SIW in microwave and millimeter-wave applications, high per-

formance transitions are a key component to connect SIW and planar transmission

lines in the integrated circuit. As presented in Section 1.3.2, both microstrip line and

CBCPW transitions have been investigated to connect SIW. For our SIW-DBE struc-

tures, a moderate thickness of the substrate was shown capable to reduce losses on the

copper plates (Fig. 2.26). This suggests that the CBCPW transition is more suitable

than the microstrip transition, which can suffer from leakage in such a configuration.

So the CBCPW reported in [11], which works better for the high thickness substrate

and has a good performance for high-frequency applications, is here re-designed for the

structures presented in the previous section.

We first propose a transition from CBCPW to AFSIW, composed of a first section to

match a standard SIW and a second section to transition from an SIW to an AFSIW.

The schematic of a CBCPW-to-SIW transition is shown in the left part of Fig. 3.35 (a)

and the relevant dimensions are shown in Fig. 3.35 (b), where w1=2 mm, l1=3.7 mm,

θ = 132◦. Here, the substrate is a FR-4 (ǫr = 4.4) with thickness of 2.5 mm, but the

CBCPW transition can be applied to other thick substrates by suitably optimizing the

parameters w1, l1 and θ. The SMA connector is a 50 Ω PCB edge mounting connector,

whose working frequency is from dc to 18 GHz, which covers the DBE resonances of

the SIW designs. In order to transition to the AFSIW-DBE design, a transition from

SIW to AFSIW is also necessary. We implement a similar design as [13], but we accept

a reduction in the operational bandwidth in order to make the transition more compact.

The second section in Fig. 3.35 shows also the geometry of the SIW-AFSIW transition,

where w2 is 6.4 mm, l2 is 25 mm, and the width of the connected AFSIW line is 20 mm.

The S parameters of CBCPW transition and the complete transition including CBCPW

and SIW to AFSIW transitions are shown in Fig. 3.36. The CBCPW transition has

a wider bandwidth compared to the overall transition. Its |S11| is below -15 dB from

7.5 GHz and beyond 10 GHz, and it is below -20 dB from 8.5 GHz to 9.7 GHz. By
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contrast, for the complete transition |S11| is below -15 dB ranges from 8.1 GHz to 9.2

GHz, and below -20 dB from 8.28 GHz to 8.84 GHz. Since the DBE frequency of

the “air-filled cell 1” design is at 8.83 GHz, and the DBE resonance frequencies of the

truncated lines are slightly below that frequency, the overall transition |S11| is below

-20 dB at frequencies of interest. However, the insertion loss |S21| is low near the

DBE frequency, which is -1.1 dB for both the CBCPW and the overall transition. We

can see that this return loss is caused by the dielectric losses in FR-4 substrate. If we

only consider the conductor losses in CBCPW-SIW-AFSIW transition, the return loss

decreases to -0.26 dB.

To summarize, the CBCPW to SIW and the SIW to AFSIW transitions presented pro-

vide a |S11| < −20 dB and |S21| = −1.1 dB matching for the “air-filled” SIWs trun-

cated lines. The |S21| is low because of dielectric losses, so, in the next subsection, we

will try another transition design to have a better performance.

(a) (b)

SMA

}
CBCPW to SIW

w1

l1

w2

l2

}
SIW to AFSIW

Fig. 3.35 The CBCPW to SIW transition.
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Fig. 3.36 The magnitude of S parameters of CBCPW to AFSIW-DBE lines transition.
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3.4.1 SMA-SIW/AFSIW transitions for SIW-DBE Lines

In order to improve the matching of the structures, an SMA-SIW/AFSIW transition is

studied to be implemented into SIW/AFSIW-DBE lines which is inspired by the design

in [12]. The advantage of these transitions are their compact size. They are also easier

to design compared to CBCPW transitions. The SMA transition for SIW is shown in

Fig. 3.37 (a). It is designed for the “low-loss-substrate cell” designs, whose substrate

is Neltec NY9208 (ǫr=2.08), and the substrate thickness is 1.28 mm. The relevant

dimensions shown in the figure are w1=23.6 mm, l1=25.2 mm, l2=6.8 mm, l3=1.8 mm,

l4=11.1 mm. The SMA-AFSIW transition is shown in Fig. 3.37(b), and it is designed

for the “air-filled cell 1” design. Its substrate is 2.5 mm FR-4 board. The top and

bottom board acting for the copper planes are transparent in the figure, in order to show

the details of the middle air-filled layer. After optimization, the relevant dimensions are

w2=26 mm, w3=22 mm, l5=20.4 mm, l6=12 mm, l7=19.3 mm. Both the SMA-SIW and

SMA-AFSIW are connected to the 20 mm width SIW/AFSIW lines.
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w1

l1

l2

l4

l3

w2

l5 l6

w3

l7

Fig. 3.37 The SMA transition. (a) SMA-SIW transition. (b) SMA-AFSIW transition
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Fig. 3.38 The S parameters of SMA-SIW transition. (a) S parameters of SMA-SIW

transition. (b) S parameters of SMA-AFSIW transition.

The S parameters of both the SMA-SIW and SMA-AFSIW transitions are shown in

Fig. 3.38. The |S11| is lower than -20 dB from 5.69 GHz to 6.26 GHz for the SMA-SIW
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transition, and from 7.71 GHz to 9.24 GHz for the SMA-AFSIW transition. Both of

them cover the DBE resonance frequencies of the relevant structures. Good levels of

|S21| are obtained for both the transitions, (-0.07 and -0.05 dB respectively).
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Fig. 3.39 Influence of SMA-SIW transition on |S11| of “low-loss-substrate cell” lines.

(a) 4-cell line. (b) 5-cell line. (c) 6-cell line. (d) 7-cell line. The “no transition” results

(red solid lines) are obtained with ideal waveguide ports. The “with transition” results

(blue dashed lines) are obtained with the SMA-SIW transition.

The magnitude of S11 of the “low-loss-substrate cell” lines with the SMA-SIW transi-

tions and the “air-filled cell 1” lines with the SMA-AFSIW transitions are now shown

in Fig. 3.39 and Fig. 3.40 respectively, and show a perfect agreement with the results

obtained with the ideal waveguide ports.

In conclusion, SMA-SIW and SMA-AFSIW transition suffers much less from losses

if compared to CBCPW-AFSIW transition, which do not involve wave-propagation in

lossy dielectric. The shape and frequency of the DBE resonances are not altered by the

presence of the transitions.
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Fig. 3.40 Influence of SMA-AFSIW transition on |S11| of “air-filled cell 1” lines. (a)

4-cell line. (b) 5-cell line. (c) 6-cell line. (d) 7-cell line. The “no transition” results (red

solid lines) are obtained with ideal waveguide ports. The “with transition” results (blue

dashed lines) are obtained with the SMA-AFSIW transition.

3.5 Experimental Results

In this section, fabrications and measurements are described of the SIWs-DBE designs

chosen from previous section. Two SIWs-DBE designs are fabricated, selected among

the ones who are among the less impacted by losses. They are the “low-loss-substrate

cell” and “air-filled cell 2”. At first, the manufacturing process and the limitations

of the fabrications are presented. Then, the S parameters of different truncated lines

are measured and compared with the full-wave simulation results. Their Q-factors are

calculated and compared with the simulation results to recover the N5 typical trend in

DBE structures.

3.5.1 Manufacturing Process

Two kinds of manufacturing processes are used here. One process was used for the

fabrication of the “air-filled cell 2” lines, and another for “low-loss-substrate cell” lines.

In the two process, we met different issues and we will introduce and discuss them
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separately. In both cases, 4-, 5-, and 6-cell truncated lines have been fabricated, due to

the size limitation of the substrates which can be treated by the laser etching machine

and the drilling machine used.

3.5.1.1 Fabrication of “air-filled cell 2” lines

The “air-filled cell 2” lines consist of three layers. The top and bottom layers are used

as copper planes, the middle layer is air-filled and consists of metallic vias. A LPKF

S4 machine was used to drill the vias by laser; the fabricated FR-4 board after this step

is shown in Fig. 3.41(a). Then, after the vias were drilled, we used LPKF contact S4

machine to metallize the vias as shown in Fig. 3.41(b). After the metallization, we cut

the substrate of the middle layer to make it air-filled, and then drilled side holes for

the assembly screws using the laser. The top and bottom layers are fabricated using a

similar process and all three fabricated layers are shown in Fig. 3.41(c). At last, we

assembled them together using the screws, soldered the copper pillars which act as

internal metallic vias inside the air region, and soldered the SMA connectors as shown

in Fig. 3.41(d).

Fig. 3.41 The fabrication of “air-filled cell 2” SIWs lines. (a) Drilling of different length

truncated “air-filled cell 2” lines. (b) Metallization of “air-filled cell 2” lines. (c) Top,

bottom and air-filled middle layer of the 5-cell line. (d) Assembling of the 5-cell line.
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The specifications of the “air-filled cell 2” prototypes are summarized here:

• substrate: 0.8 mm FR-4 for top and bottom layers. 1.6 mm FR-4 for middle

layer. The ǫr is 4.4, the loss tangent is 0.02. The real dielectric constant was

independently measured for the transmission coefficient in an SIW waveguide of

known length.

• Dimensions (including transitions): 52 mm ×200 mm (4 cells); 52 mm×230 mm

(5 cells); 52mm × 260 mm (6 cells).

3.5.1.2 Fabrication of low-loss-substrate SIWs-DBE lines

We used the Neltec NY9208 as the low-loss substrate, which is made by PTFE ma-

terial. The substrate cannot be drilled with the laser of LPKF S4 machine, and does

not activate during the galvanic metallization process. We have used therefore different

drilling and metallization methods. We have used a mechanical milling machine (LPKF

ProtoMat S64) to drill the vias (Fig. 3.42(a)). The vias were metallized with an LPKF

metallization paste (a rubber scraper was used to push the paste inside the vias and the

board was heated in an oven to solidify the paste, see Fig. 3.42(b)). At last, the SMA

connectors were soldered and the final prototypes are shown in Fig. 3.42(c).

Fig. 3.42 The fabrication of “low-loss-substrate cell” SIWs lines. (a) Drilling details.

(b) Metallic paste for the vias. (c) Final prototypes of 4-cell, 5-cell and 6-cell “low-

loss-substrate cell” SIWs lines.
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The specifications of the “low-loss-substrate cell” prototypes are resumed here:

• substrate: 1.524 mm Neltec NY9208, whose ǫr is 2.08, loss tangent is 6× 10−4.

The real dielectric constant was independently estimated by measurements of the

phase of the transmission coefficient in an SIW waveguide of known length.

• Dimension (including transitions): 52 mm×190 mm (4 cells); 52 mm×220 mm

(5 cells); 52 mm×250 mm (6 cells).

3.5.2 Measurement Results

In this section, we present the measurement results of “air-filled cell 2” lines and “low-

loss-substrate cell” lines.

In Fig. 3.43, the S parameters of 4-, 5-, 6- “low-loss-substrate cell” SIWs lines are pre-

sented. The measurement results are compared with the lossy models simulated with

HFSS, complete with transitions and SMA connectors. The measured curves fit the

simulation results well, confirming the existence of the resonance and their approach-

ing to the ideal DBE frequency as the number of cells increases. Since the comparisons

are most interesting around the DBE resonance peaks, relevant data are resumed in Ta-

ble 3.2. From the data in the table, we can see that there is a slight frequency shift going

from 0.01 GHz to 0.018 GHz between the measurements and the simulation results.

This frequency shift may be caused by the fabrication tolerances and the transition im-

perfections. The 4 cells measurement results fit very well with the simulation results

with only a difference of 0.89 dB for |S11| and 1.15 dB for S21. With the increase of

the number of cells, small differences of the minimal peak values of |S11| appear (for 5

cells -7 dB are measured instead of -12 dB, and for 6 cells -6 dB are measured instead

of -9 dB). This can be related to an imperfect metallization of the vias holes with the

metallic paste. Based on the S parameters measurements, we obtain the Q-factors in

Fig. 3.44a. The Q-factor of the measurement are slightly below the Q-factor of sim-

ulation of lossy DBE lines with transitions, indicating that real losses are higher than

simulated results as fabrication error can influence the fabricated DBE structures. Still,

the Q factor increases as expected following the same trend as in the simulated results,

thus confirming the excitation of DBE resonances.

The measured S parameters of “air-filled cell 2” lines are shown in Fig. 3.45. The

frequency shift for 4-cell line is negligible, while the frequency shift of 5-cell line and 6-

cell line are more visible but still low (around 1-5%, magnified by the narrow bandwidth

shown in the figures). This can be explained with imperfections in the transitions and

in the copper-pillar soldering. The details of the S parameters at the DBE resonance

frequency is shown in Table. 3.3. The measured S11 is decreasing with the number of

cell and we can see that the resonance for the 6-cell line is already weaker than expected,
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Fig. 3.43 S parameters measurements of “low-loss-substrate cell” SIWs lines. (a) 4-cell

truncated line. (b) 5-cell truncated line. (c) 6-cell truncated line.

which confirms that the fabrication of the air-filled SIW can be subject to imperfections,

mainly related to the substrate stacking and the vias soldering. The Q-factor of the “air-

filled cell 2” are shown in Fig. 3.44b. Its values follow well the simulated ones, apart

from the last 6-cell case, where the resonance becomes too weak to measure the factor.

In conclusion, the S parameters measurement results of the fabricated “air-filled cell

2” and of the “low-loss-substrate cell” SIWs have been presented. All the measured S

parameters fit very well with the simulated ones, with negligible frequency shifts in the

resonances, which approach the ideal DBE frequency of the infinite line as expected.

The shape of the resonance is also the same. A weak resonance has been measured in

the 6-cell “air-filled cell 2”, probably due to the difficult fabrication process required to

embed the vias inside the air-filled region and to close the full structure. The Q-factor

of “low-loss-substrate cell” and “air-filled cell 2” SIWs lines shows the fast increasing

trend as the simulation results.
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Table 3.2 Comparison between measured and simulated S parameters of “low-loss-

substrate cell” SIWs lines at the DBE resonance peak

Type DBE Resonance Frequency (GHz) Magnitude (dB)

4 cells

Simulated
S11 6.04 -16.28

S21 6.04 -1.71

Measured
S11 6.026 -17.17

S21 6.026 -2.86

5 cells

Simulated
S11 6.098 -12.78

S21 6.098 -2,58

Measured
S11 6.08 -7.67

S21 6.08 -5.72

6 cells

Simulated
S11 6.126 -9.07

S21 6.126 -4.07

Measured
S11 6.116 -6.12

S21 6.116 -6.34
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Fig. 3.44 Measurement of Q factor. (a) Q-factors of “low-loss-substrate cell” lines. (b)

Q-factors of “air-filled cell 2” lines.
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Fig. 3.45 S parameters of measurements of “air-filled cell 2” lines. (a) 4-cell truncated

line. (b) 5-cell truncated line. (c) 6-cell truncated line.

Table 3.3 Comparison between measurement and simulation S parameters of “air-filled

cell 2” lines at the DBE resonance peak

Type DBE Resonance Frequency (GHz) Magnitude (dB)

4 cells

Simulated
S11 9.004 -12.99

S21 9.004 -2.47

Measured
S11 8.993 -8.39

S21 8.993 -7.23

5 cells

Simulated
S11 9.041 -7.56

S21 9.041 -4.91

Measured
S11 8.956 -5.38

S21 8.956 -9.54

6 cells

Simulated
S11 9.064 -5.18

S21 9.064 -7.59

Measured
S11 9.017 -4.26

S21 9.017 -14.72
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3.6 Conclusions

In this chapter, we studied the resonant behavior of different truncated SIWs-DBE

lines by full-wave simulations. For the “long cell”, “double-oblique-line cell”, “single-

oblique-line cell”, and “corner cell” designs, the truncated lines support strong DBE

resonances in the absence of losses, as confirmed by their simulated S parameters and

computed Q factors, group delays, and field amplitude distribution. However, in the

lossy cases, the DBE resonances are strongly affected, which confirms the importance

of minimizing losses when designing practical SIWs-DBE structures. Interestingly, the

“corner cell” design share the same substrate and similar size with “double-oblique-line

cell” and “single-oblique-line cell”, but it is more robust to losses, which confirms it as

a good topology to design SIWs-DBE structures. The low-loss designs of “low-loss-

substrate cell”, “air-filled cell 1”, and “air-filled cell 2” present DBE resonances which

are reasonably robust to the presence of losses (“low-loss-substrate cell” design until

8 cells, “air-filled cell 1” design until 7 cells, “air-filled cell 2” design until 6 cells).

Although the DBE resonances are weakly influenced by losses, the Q factor still shows

the typical trend with respect to the number of cells N .

Secondly, we proposed two designs of feeding transitions (a CBCPW transition and

an SMA-SIW transition) for the truncated SIWs-DBE or AFSIWs-DBE lines. The

CBCPW-SIW-AFSIW transition provides a good matching for the “air-filled” SIWs

truncated lines near DBE frequency, but suffer from substrate losses (|S11| < −20 dB

and |S21| = −1.1 dB). The SMA-SIW transition provides good matching both for the

“low-loss-substrate” SIWs lines and the “air-filled” SIWs lines (|S11| < −20 dB and

|S21| < −0.7 dB).

At last, fabrication and measurement of the “low-loss-substrate cell” and the “air-filled

cell 2” designs are discussed. The measured S parameters of both designs fit well with

the simulation results with negligible frequency shifts and their Q factors show the fast

increasing trend as the simulation results. A weaker resonance than expected in one of

the prototypes (the 6-cell “air-filled cell 2”) maybe caused by the fabrication tolerance

of the air-filled region.

These results show good solutions (in term of materials and geometry) for the realiza-

tion of DBE condition in SIW technology. They confirm that this condition can be

observed with prototype realized with standard fabrication procedures usually available

in microwave labs, despite the expected sensitivity to losses and geometric parameters

of this resonant phenomenon. This is partly due to the properties of the selected cell,

which 1) keeps a DBE point even if the angle of its oblique lines is varied within a fairly

large range of values, 2) is less sensitive to losses with respect to the other geometries

proposed here. Another major issue is of course evident from the comparison of the

different truncated lines: the minimization of dielectric losses, which prevent the ob-
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servation of DBE resonances with a large number of cells. This was achieved in one

case by replacing the Rogers RO3010 (loss tangent 5× 10−3) with the Neltec NY9208

substrate (loss tangent 6× 10−4) and in the other cases by designing air-filled SIW.
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CHAPTER 4

Conclusions and Future Works

In this final Chapter we draw some conclusions on the analyses presented in this thesis

in Section 4.1. In Section 4.2 we present some preliminary analyses to show how the

results obtained in the previous chapters can be easily used to implement DBE points in

different millimeter-wave technologies, such as gap waveguides and multilayer waveg-

uides. Finally, in Section 4.3, we present some possible future research topics to use

the results presented in the thesis for the development of novel integrated microwave

devices and antennas at millimeter waves.

4.1 Conclusions

In this thesis, a design method to introduce degenerate band edge conditions into peri-

odic SIW lines has been presented. We proposed a multimodal transfer-matrix method

to perform a Bloch analysis of the 4-port unit cell including both phase and attenua-

tion constants. This leads to the computation of a hyperdistance among the four Bloch

eigenvectors who coalesce at DBE points.

This makes it possible to study and design DBE unit cells in SIW. Simple models for

the unit cell have been studied in order to understand which kind of couplers can de-

velop a DBE. Different kinds of couplers have been studied based on the form of their

scattering matrix. The results show that sufficient conditions to achieve a DBE can be

recognized: i) different reflections at the four ports of the unit cell, and high reflec-

tion at some of the ports; ii) a privileged propagation path between at least two of the

four ports. According to these rules, we successfully synthesised the DBE in differ-

ent SIW designs. By studying the dispersion relation and hyperdistance near DBE, we

studied the sensitiveness of the DBE condition to geometrical parameters and to losses.

We remark that a condition to minimize the impact of losses and truncation effects

is the absence of higher-order passbands in the proximity of DBE points. Considering

these results, the most robust cell design was selected for lower-loss lines, characterized

by either a low-loss substrate or air-filled SIW structure, thus successfully minimizing

losses. It is important to stress, after these analyses, that despite the large number of

unit-cell configurations proposed here capable to achieve a DBE condition, the design
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of a topology suitable for this task is not at all a simple task. This can be understood for

example by looking at the results in 2.3.3, where only a suitable rotation of one of the

two sub-couplers gives the required DBE. Also, this is clear by considering the para-

metric full-wave analyses of the unit cells in Chapter 2. The variation of geometrical

parameters (such as the ϕ angles defining the orientation of the oblique lines) the DBE

condition is lost on the entire frequency band of observation. This sensitivity makes it

particularly difficult to find unit cells assuring DBE conditions, and makes even more

useful both the guidelines developed on the basis of the unit-cell scattering parameters

and the unit cells proposed. Furthermore, an important result of our analyses is that this

sensitivity is strongly reduced in one of the proposed geometries (the “corner cell” one),

where the modification of some geometrical parameters move the DBE in frequency but

do not suppress it. This cell was subsequently used for experiments.

Following the analysis of the unit cells, we studied the resonant behavior of truncated

SIW lines by full-wave simulations. The S parameters, Q factors and group delays were

presented for different length SIW lines with and without losses. The typical charac-

teristics of DBE resonance were observed for all the lossless designs. With losses, the

three low-loss designs present observable DBE resonances, while the other designs are

strongly affected by dielectric losses. Two transitions were designed in order to feed

the truncated structures, and one of the them (minimizing dielectric losses) has been

selected for the realization of the prototypes. Considering all the influence of losses,

truncation and transitions, we fabricated 4-, 5-, and 6-cell SIWs lines, one using a low-

loss substrate and the other realized as an air-filled SIW. For both of the designs, the

measured S parameters fit well with the simulation results. The same design rules

used for the SIW designs were successfully used also for the design of a DBE point in

an air-filled multilayer waveguide, a recent dielectric-less technology based on glide-

symmetric holey metasurfaces, suitable for application at millimeter-waves.

In summary, as proposed in Chapter 1, we have (1) developed a mathematical model

to find design rules based on the S matrix of unit cells capable to achieve DBE points;

(2) designed several unit cells of SIWs-DBE periodic structures and studied their per-

formance considering the losses, robustness to geometrical perturbations, cost, and fab-

rication aspects; (3) studied the influence of truncation on DBE resonances, fabricated

and measured two prototypes after designing proper transitions. In the next section

we propose a unit-cell achieving a DBE condition in a different technology, recently

developed for low-cost and low-loss millimeter-wave integrated devices: the air-filled

multilayer waveguide (MLW).
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4.2 DBE Point in a Multilayer Waveguide with Glide-Symmetric EBG

The modelling tools and the guidelines for the S matrix design proposed in Chapter 2

can be extended to achieve the DBE in other 1-D periodic structures whose unit cell

consists of a combination of coupled transmission lines. In order to limit the loss in-

fluence to DBE, especially if the design is done at higher frequencies (for example at

millimeter-wave frequencies), the best candidate for an alternative technology would

be a metallic-like waveguide having a low profile and compact size, and being easy to

integrate as a SIW. One of the potential structure is the recently proposed air-filled mul-

tilayer waveguide (MLW) [15], whose schematic is shown in Fig. 4.1. It is a metallic

waveguide whose side walls are composed of a stack of thin metallic plates suitably

etched to host a groove where wave propagation occur. The plates are stacked one on

top of the others. This leaves air gaps between the plates, which would be responsible

for a very strong lateral leakage (see Fig. 4.1a). The leakage is avoided by etching a

glide symmetric arrangement of holes acting as lateral EBG to confine the wave inside

the groove. While simple periodic holes do not create a stopband sufficiently strong

to confine the field, their alternating distribution increases the confinement and make

a suitable EBG for this kind of application. Also, the use of holes instead of other

structures (e.g., pins as in gap waveguides) make the fabrication process particularly

interesting for its simplicity.

The effectiveness of a glide symmetric arrangement of holes to create a robust EBG

effect is a surprising result which was only recently reported [118], and deserves a

short discussion. Glide symmetry is a kind of higher symmetries in periodic structure.

Its definition [16] indicates that a glide-symmetric periodic structure is invariant after a

translation of half period and a mirroring with respect to a plane. A normal 1-D periodic

structure and a glide-symmetric periodic structure are shown in Fig. 4.2. Based on

the Cartesian coordinates shown in Fig. 4.2, the mathematical definition of 1-D glide-

symmetric operator Gp is [16]

x → x+ d/2

y → y

z → −z

(4.1)

where d is the length of period. Note that in the case of the 2-D glide-symmetric holes

in the MLW, the translation of half a period occurs both along the x and y directions.

Glide symmetry often brings special propagation characteristics to periodic structures,

such as a low-dispersive response for the first propagating mode [119] and the disap-

pearance of the first bandgap between first and second mode [120]. These features

are interesting to design ultra-wideband metasurface graded-index lenses: the refrac-
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Fig. 4.1 Schematic of the air-filled multilayer waveguide [15]. (a) Cross section view.

(b) The contribution of glide symmetric holes for field-leakage suppression.

(a) (b)

d

z

xy

d/2

Unit Cell Unit Cell

Fig. 4.2 Geometry comparison between normal periodic structures and glide-symmetric

periodic structures [16], where d is the period length. (a) Normal periodic structures.

(b) Glide-symmetric periodic structures.
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tive index can be modified with an adiabatic variation of geometrical parameters along

the metasurface, as done e.g. in [121], while a local glide-symmetric configuration

decreases the frequency dispersion of the effective index [122]. Furthermore, glide

symmetry also leads to a wider stopband at higher frequency with respect to the sim-

pler non-glide structure. This has a large range of applications in high-frequency EBG

structures [118]. In our case, compared to an air-filled SIW, the fabrication process

of glide-symmetric holes in MLW is much easier because it does not require contact

between different layers or the use of dielectric. This technology is also easier to im-

plement than standard gap waveguide, since it does not require the realization of pins

by means of a precise milling process.

Based on this MLW structure, we show with some preliminary result that a DBE can be

achieved with this technology by using the results discussed in the previous section. Ac-

cording to the EBG done with glide-symmetric holes proposed in [15], we designed the

unit cell of glide-symmetric holes whose wide stop-band is from 50 GHz to 100 GHz.

These results have been obtained with the HFSS eigensolver, where the unit cell in Fig.

Fig. 4.3(a) is simulated with periodic lateral boundary conditions. Five metallic plates

are staked. The period d is 3.72 mm, the diameter of the holes dh is 2 mm, the thickness

of each plate h is 0.2 mm, the thickness of the gaps is 0.01 mm. The dispersion diagram

is shown in Fig. 4.3(b) and confirms the presence of the stop-band.
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Fig. 4.3 EBG design of glide-symmetric holes. (a) Geometry of the unit cell. (b)

Dispersion diagram. The stop-band is from 50 GHz to 100 GHz.

Following the guidelines given in Section 2.3.3.1 regarding the types of couplers, we

propose a unit cell design to achieve the DBE in Fig. 4.4. The periodic corrugations

along the edges of the waveguides are used to avoid the wave coupling in the gap be-

tween different layers [118]. In order to increase reflections at some ports only, and

at the same time to introduce an asymmetry in the coupled lines, we put an extra hole

acting as a partial blockage in waveguide 1 as shown in the red square in Fig. 4.4. The
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Fig. 4.4 Multilayer glide-symmetric unit cell with DBE. (a) Geometry of the unit cell.

(b) Hyperdistance. (c) Dispersion diagram: propagating modes (blue lines), evanescent

modes (red lines). The DBE frequency locates at 65.19 GHz.
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coupling between two waveguides is provided by removing part of the glide-symmetric

EBG holes between two waveguides, so the wave can propagate through this path. The

lossless dispersion diagram in Fig. 4.4(c) shows a DBE at 65.19 GHz, confirmed by the

the null hyperdistance among the four eigenvectors at that frequency (Fig. 4.4(b)).

Although the DBE in the MLW is achieved as desired, this unit cell is not a fully opti-

mized design. Its DBE is too near to the higher-frequency passbands at 66 GHz, which

will affect the DBE resonances once the periodic lines are truncated. Further optimiza-

tion of the topology of unit cell, and the study of loss impact on truncated lines will be

the subject of future work.

4.3 Future work

The analysis on the presence of a DBE conditions in coupled transmission lines has

been validated by simulations and experimental results of SIWs-DBE structures. This

method can be extended to other type of structures particularly suitable for millimeter-

wave applications. Among the potential structures, two low-loss candidates are the gap

waveguide and the air-filled multilayer waveguide. The last one, shown in the previous

section, can easily grant low-loss DBE due to the absence of dielectrics, similarly to

what has been shown in the air-filled SIW.

The development of more solutions for DBE excitation in microwave and millimeter-

wave devices will open the way to the design of strongly coupled resonators and an-

tennas. As in [41], a negative resistance can compensate the losses in DBE unit cells,

which is an interesting solution to eliminate the losses influence on DBE resonances.

This can be implemented on the unit cells presented in this thesis, and will allow the

realization of integrated oscillators with high spectral purity and performance largely

independent on external loads.

Another potential application is the development of an antenna array, based on the idea

developed in [123] where coupled microstrip lines with RBE are used, and radiation

losses are balanced with distributed gain as in the previously discussed oscillator. This

is a radiating array with stable radiation frequency at millimeter-waves which can be

very suitably extended to SIWs-DBE circuits thanks to our work. In order to make

our truncated device radiate, slots should be etched in its top metallic plate. This is

particularly simple in our “corner-cell” topology, since a large part of the unit cell is

free of pins, which leaves flexibility for the choice of the position, shape, and number

of slots in each cell. The same would not be true for the other unit cells proposed, where

the oblique lines of vias cover a large part of their footprint.

The independence on loading and the power efficiency suggest these devices as promis-

ing for applications to integrated circuits, front-end, active antennas for next-generation

communicating devices.
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rio, “Résonances géantes en substrate integrated waveguides,” JNM 2019, Poster

presentation.

5. T. Zheng, M. Casaletti, A. F. Abdelshafy, F. Capolino, Z. Ren, and G. Vale-

rio, “Bloch analysis for the study of degenerate band edge modes in periodic

substrate-integrated waveguides,” COMPUMAG 2019, Poster presentation.

6. T. Zheng, M. Casaletti, Z. Ren, A. F. Abdelshafy, F. Capolino and G. Valerio,

”High-Q substrate-integrated-waveguide resonator with degenerate band edge,”

ICEAA 2019.

7. T. Zheng, M. Casaletti, A. F. Abdelshafy, F. Capolino, Z. Ren and G. Valerio,

”Degenerate band edge resonances in air-filled substrate integrated waveguide,”

EuCAP 2020, Poster presentation.

135



Publications in Journals

1. T. Zheng, M. Casaletti, A. F. Abdelshafy, F. Capolino, Z. Ren and G. Vale-

rio, “Synthesis of DBE degeneracies in substrate-integrated waveguides,” IEEE

Transactions on Microwave Theory and Techniques, to be submitted.

136



Appendix

Conversion formulas from the scattering matrix

to the transmission matrix

According to (2.19)-(2.22), we have the following expressions:

Too −TioZ
−1

o =
1

2

[

(I+ Sii) · S−1

oi · (I− Soo) + Sio

]

+
1

2

[

(I+ Sii) · S−1

oi · (I+ Soo)− Sio

]

= (I+ Sii)S
−1

oi (A.1)

−ZiToi + ZiTiiZ
−1

o =
1

2

[

(I− Sii) · S−1

oi · (I− Soo)− Sio

]

+
1

2

[

(I− Sii) · S−1

oi · (I+ Soo) + Sio

]

= (I− Sii)S
−1

oi (A.2)

−Too + Z
−1

i Toi = −1

2

[

(I+ Sii) · S−1

oi · (I− Soo) + Sio

]

− 1

2

[

(I− Sii) · S−1

oi · (I− Soo)− Sio

]

= S
−1

oi (Soo − I) (A.3)

−TioZ
−1

o + Z
−1

i TiiZ
−1

o =
1

2

[

(I+ Sii) · S−1

oi · (I+ Soo)− Sio

]

+
1

2

[

(I− Sii) · S−1

oi · (I+ Soo) + Sio

]

= S
−1

oi (Soo + I) (A.4)

Solving (A.1) and (A.2) together, we get

Sii = (−ZiTiiZ
−1

o −TioZ
−1

o + ZiToi +Too)

· (ZiTiiZ
−1

o −TioZ
−1

o − ZiToi +Too)
−1 (A.5)

Soi = 2(ZiTooZ
−1

o −TioZ
−1

o − ZiToi +Too)
−1 (A.6)
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Solving (A.3) and (A.4) together, we get

Soo = (ZiTiiZ
−1

o −TioZ
−1

o + ZiToi −Too)

· (ZiTiiZ
−1

o −TioZ
−1

o − ZiToi +Too)
−1 (A.7)

Substituting Sii, Soo, and Soi into (2.22), we obtain the expression of Sio

Sio = 2Too − (I+ Sii)S
−1

oi (I− Soo) (A.8)
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