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Résumé étendu

Chapitre 1: Introduction

Ce chapitre commence par évoquer les enjeux économiques et environnementaux
du contrôle en mécanique des fluides. Nous rappelons notamment que les en-
gagements européens en matière de réduction des émissions de dioxyde de car-
bone se traduisent notamment par le développement des énergies renouvelables
et l’amélioration de l’efficacité énergétique de l’industrie du transport. Autant de
domaines où le contrôle d’écoulement est à la fois un challenge et une opportunité
pour les réductions de coûts énergétiques.

Nous rappelons les grandes lignes de la discipline qui sont: l’aérodynamisme
ou l’optimisation des formes, le contrôle passif par la modification locale de la
géométrie et bien sûr le contrôle actif qui nécessite l’injection en temps réel
d’énergie dans l’écoulement. C’est grâce à sa flexibilité et à la possibilité de pro-
duire un contrôle qui dépend de l’état du système que le contrôle actif permet, a
priori, les meilleures performances de contrôle. Mais le contrôle actif des fluides
doit surmonter les obstacles qui sont: la très grande dimension des systèmes fluides
qui rendent toutes simulations numériques coûteuses, les retards entre l’action, la
mesure de l’état et la réponse à l’action sans oublier les interactions non-linéaires
entre modes. Les deux derniers étant en général incompatibles avec une descrip-
tion linéaire de l’écoulement. C’est ce qui nous oriente vers un développement
des approches sans modèles qui permettent de conserver toute la richesse des non-
linéarités de l’écoulement. On considère alors le système sous contrôle comme une
boîte noire avec des entrées (la commande de l’action) et des sorties (les données
des capteurs). Le problème de contrôle consiste alors à déterminer la relation
fonctionnelle qui lie les entrées et les sorties: la loi de contrôle. La reformulation
de ce problème sous forme de problème d’optimisation fonctionnelle permet alors
d’employer de puissant algorithme d’apprentissage automatique (machine learn-
ing) pour le résoudre. On s’intéresse notamment à la programmation génétique
GP pour l’optimisation des lois de contrôle. On rappelle que la programmation
génétique est employée avec succès depuis plusieurs années pour résoudre des
problèmes de contrôle à la fois numérique et expérimental.

L’objectif principal de la thèse est alors d’accélérer le processus d’apprentissage
de l’algorithme de programmation génétique à fin de pouvoir explorer des prob-
lèmes de contrôle de plus en plus complexes, comprenant, par exemple, un grand
nombre d’actionneurs et de capteurs et pour lesquels les temps d’apprentissage
actuels sont souvent rédhibitoires. Dans cet objectif, nous avons développé deux
codes de machine learning, le xMLC basé sur les algorithmes existants de program-
mation génétique et le gMLC, basé sur un nouvel algorithme que nous proposons
et qui combine programmation génétique et méthodes de gradients pour aboutir
à un apprentissage accéléré. Nos algorithmes testés en simulations numériques
sur le pinball fluidique et en expérience sur la cavité ouverte, sont tous les deux
disponibles en ligne.
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Partie 1: Contrôle de sillage par programmation génétique

Chapitre 2: L’algorithme de programmation génétique pour
l’apprentissage de lois de contrôle (LGPC)

Dans ce chapitre, nous décrivons l’algorithme de programmation génétique linéaire
dans le contexte de résolution des problèmes de contrôle (LGPC). LGPC est une
méthode d’optimisation fonctionnelle basé sur le processus biologique d’évolution
des espèces. L’idée principale étant l’essaie successif de solutions candidates à un
problème. Dans ce contexte, ces solutions candidates sont aussi appelées individus
ou encore lois de contrôle. Les principaux mécanismes biologiques dont s’inspire
la méthode de programmation génétique sont: la sélection naturelle, la recom-
binaison aléatoire des individus (crossover) et la mutation des individus, égale-
ment aléatoire. Les opérations de crossover et mutation sont les forces principales
d’évolution des solutions candidates et permettent de construire des solutions de
plus en plus performantes. L’algorithme de programmation génétique linéaire est
alors un processus itératif et stochastique qui imite l’évolution naturelle des es-
pèces en combinant et modifiant des solutions candidates à un problème au fur et
à mesure des générations. D’un point de vue algorithmique, la représentation in-
terne des solutions candidates se fait grâce à une matrice d’instruction qui «code»
une expression mathématique. Ces expressions mathématiques sont en particulier
construites à partir d’une bibliothèque donnée de fonctions de bases et de données
du problème telles que l’état du système au cours du temps.

Dans une seconde partie, nous nous intéressons à la stabilisation d’un oscil-
lateur amorti, dit de Landau, pour effectuer une étude paramétrique de LGPC.
L’oscillateur de Landau est un système de deux équations différentielles ordinaires
présentant un point fixe et un cycle limite. Le problème de contrôle est alors
de ramener le système sur son point fixe en ajoutant un terme de forçage à la
deuxième équation du système. La fonction de coût associée comprend à la fois la
distance au point fixe et un terme de pénalisation de l’action. Un contrôle linéaire,
calculé grâce à la fonction fminsearch de MATLAB, montre que le problème peut
être résolu par un retour linéaire de l’état du système. Le but LGPC est donc de
construire une loi de contrôle basée sur le retour d’état et des fonctions de bases
définies par l’utilisateur, qui performerait mieux que la loi linéaire. Nous testons,
notamment l’impact des probabilités de crossover, mutation et réplication sur la
solution finale. Pour cela, nous effectuons 100 réalisations pour chaque combinai-
son de paramètres. Les intervalles des probabilités des opérateurs génétiques sont
discrétisés par pas de 0.1 résultant en 66 combinaisons à tester. On montre alors
que les opérations seules de crossover et mutation ne sont pas les combinaisons
les plus performantes et que c’est bien la combinaison des deux qui permet les
meilleurs résultats. Aussi, de manière surprenante, l’opération de réplication sem-
ble être nécessaire en faible proportion pour garantir une bonne optimisation et
ce même si le problème ne présente, a priori, que peu de minima.

Nous étudions aussi le rôle de la taille de la population, le nombre d’instructions
et le choix des fonctions de bases. Des tests exhaustifs montrent que les config-
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urations qui permettent le plus d’étapes d’évolutions donnent les meilleurs résul-
tats. On montre aussi que le nombre d’individus à évaluer croît avec le nombre
de fonctions de bases. Finalement, parmi toutes les simulations effectuées, nous
déterminons deux solutions particulières: une loi de contrôle linéaire plus perfor-
mante que celle définie par fminsearch, révélant qu’il y a plus d’un minimum
dans le sous-espace des lois de contrôle linéaire; et une loi non-linéaire surclas-
sant toutes les lois apprises et qui agit uniquement lorsque c’est nécessaire. Ces
études paramétriques ont permis de comprendre le rôle de chaque paramètre et de
révéler des règles empiriques pour le choix des paramètres de LGPC. Ces règles
sont notamment utilisées dans toute cette étude.

Enfin, l’ensemble des simulations ont été réalisées grâce à notre propre code
développé sur le langage MATLAB et GNU Octave et librement accessible.

Chapitre 3: Réduction de traînée du pinball fluidic par LGPC

Ce chapitre s’appuie sur l’étude des méta-paramètres de LGPC du chapitre précé-
dent pour réduire la puissance nette de traînée sur le problème 2D du pinball
fluidique. Le pinball fluidique est un système fluide comprenant trois cylindres dis-
posés aux sommets d’un triangle équilatéral pointant vers l’amont de l’écoulement.
Malgré sa géométrie simple, le pinball fluidique conserve des caractéristiques présentes
dans les écoulements réels telles que des bifurcations successives et des interac-
tions non-linéaires entre modes. En effet, la configuration du pinball passe pre-
mièrement par une bifurcation de Hopf, responsable d’un lâché tourbillonnaire de
type von Kármán, puis une bifurcation de type fourche qui brise la symétrie de
l’écoulement et provoque une déflexion du jet à l’arrière des cylindres en aval de
l’écoulement. C’est cet écoulement statistiquement asymétrique et périodique que
nous souhaitons contrôler grâce à la méthode de programmation génétique.

L’action sur l’écoulement se fait par la rotation indépendante des cylindres
et l’objectif visé est la réduction de la puissance nette de traînée. Pour ce faire,
on minimise une fonction de coût qui comprend la puissance de traînée et un
terme de pénalisation de la puissance de l’action. Une étude de contrôle en boucle
ouverte explorant l’espace des lois de contrôle symétrique révèle que la meilleure
stratégie pour réduire la traînée est la configuration dite de boat tailing. Dans
cette configuration, le cylindre frontale est immobile et les deux cylindres arrières
aspire l’écoulement à contre-courant.

LGPC est alors employé pour réduire la puissance nette de traînée du pinball
en explorant trois types de contrôle:

• forçage multi-fréquence: on autorise l’emploi de fonction périodiques
pour construire les lois de contrôle;

• contrôle en boucle fermée: on autorise l’emploi de données de vitesses
prélevées en aval de l’écoulement;

• contrôle généralisé: on autorise à la fois les fonctions périodiques et les
données de vitesse.
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À fin de rester compatible avec des conditions expérimentales, l’optimisation a
été limité à l’évaluation de 1000 individus répartis dans une population de 100
individus évoluant à travers 10 générations. L’optimisation des lois de contrôle
dans ces trois catégories révèle dans un premier temps que le forçage périodique
n’est pas une solution viable pour réduire la puissance nette de traînée. En effet,
les deux stratégies, forçage multi-fréquence et forçage généralisé, ont exclus les
fonctions périodiques des solutions finales. De fait, le forçage multi-fréquence a
construit une loi de contrôle constante pour les trois cylindres et qui imite une
configuration boat tailing légèrement asymétrique. Cette loi de contrôle a permis
une réduction de la puissance nette de traînée supérieure à celle du boat tailing
symétrique. L’ajout de données de vitesse comme entrée de la loi de contrôle a
permis de réduire davantage la fonction de coût. La meilleure solution est obtenue
pour le troisième type d’optimisation et combine un forçage de type boat tailing
asymétrique ainsi qu’un retour en boucle fermée pour les trois cylindres qui ajoute
au contrôle une composante dépendante du temps. Ce contrôle a pour conséquence
de réduire l’intensité des tourbillons en aval de l’écoulement ainsi que de retarder
leurs lâchers par rapport à l’écoulement naturel sans contrôle.

Le succès de LGPC est alors d’avoir découvert des mécanismes d’action de la
littérature et de les combiner pour réduire significativement la fonction de coût,
et ce, sans connaissance a priori de la physique de l’écoulement.

Partie 2: Contrôle de sillage à convergence rapide par
combinaison de programmation génétique et de méthodes de
gradient

Chapitre 4: L’Explorative Gradient Method (EGM) ou méth-
ode d’optimisation paramétrique par exploration et méth-
odes de gradient

Dans ce chapitre, nous traitons un nouveau problème de contrôle, la stabili-
sation du pinball fluidique, grâce à une méthode d’optimisation paramétrique,
l’Explorative Gradient Method (EGM) introduite par Li et al. (2021). EGM est
un algorithme d’optimisation de paramètres basé sur l’équilibre entre exploration
et exploitation de l’espace de recherche pour résoudre des problèmes d’optimisation
non-convexe et avec de nombreux minima. EGM est une méthode itérative com-
binant exploration et exploitation. L’exploration se fait grâce à une méthode
de remplissage d’espace (le latin hypercube sampling, LHS), dont l’objectif est
de trouver les minima du problème en évaluant à chaque fois l’individu le plus
«éloigné» de ceux déjà évalués. L’exploitation est, quant à elle, effectuée grâce
à l’application de la méthode du simplexe de Nelder & Mead (1965) dont l’idée
est de faire progresser un sous-ensemble d’individu vers un minimum grâce des
opérations géométriques (réflexion, contraction, expansion) basées sur les perfor-
mances des individus. De fait, la méthode du simplexe exploite les gradients lo-
caux pour descendre en direction du minimum local. Les opérations d’exploitation
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et d’exploration sont alors alternées pour équilibrer la recherche du voisinage du
minimum global et la descente effective vers le minimum.

Cette méthode est alors appliquée au problème de stabilisation du pinball flu-
idique. Le but étant d’atteindre l’état symétrique stationnaire de l’écoulement.
Pour cela, nous regardons la distance en norme L2 à cet état symétrique station-
naire, le tout moyenné sur une fenêtre de temps suffisamment longue pour nég-
liger la contribution du transitoire. Une première étude paramétrique des forçages
symétriques en boucle ouverte montre que pour stabiliser l’écoulement, la config-
uration dite de base bleeding, où le fluide est éjecté à co-courant par les cylindres
arrières, est favorable. Cette configuration permet notamment de re-symétriser
l’écoulement. Par la suite, nous appliquons l’algorithme EGM à deux types de
forçage:

• périodique symétrique: le cylindre frontal est immobile et les deux cylin-
dres arrières sont pilotés par la même commande périodique au signe près.

• libre et constant: on autorise la rotation à vitesse constante des trois
cylindres de manière indépendante.

Dans le premier cas, nous optimisons deux paramètres, l’amplitude et la fréquence
de forçage tandis que dans le deuxième, nous devons déterminer trois constantes
de vitesses, une pour chaque cylindre. Dans les deux cas, EGM réussit à trouver
des solutions diminuant significativement la fonction de coût en moins de 50 indi-
vidus évalués. Le cas du forçage périodique symétrique permet une stabilisation
complète du sillage, mais au détriment d’un coût d’action très élevé. Le cas du
forçage libre révèle, quant à lui, qu’un forçage asymétrique permet une meilleure
stabilisation que le forçage symétrique. Le principe d’exploration et d’exploitation
de l’espace de recherche introduit par EGM a servi d’inspiration pour accélérer la
vitesse d’apprentissage de LGPC en y ajoutant une phase d’exploitation basée sur
la méthode de simplexe. La nouvelle méthode est alors appelée gradient-enriched
machine learning method (gMLC) et est détaillé en chapitre 5.

Chapitre 5: Le Gradient-enriched machine learning control
(gMLC) ou apprentissage automatique de lois de contrôle
par combinaison de programmation génétique et méthodes
de gradient

Dans ce chapitre, nous présentons un nouvel algorithme d’apprentissage automa-
tique original combinant, à l’instar d’EGM, une phase d’exploration et une phase
d’exploitation, le gradient-enriched machine learning control (gMLC). L’algorithme
se base sur le processus itératif et stochastique de LGPC, mais s’en distingue par
l’absence d’une population qui évolue par générations successives. En effet, dans
cette approche, on considère l’ensemble des solutions candidates testées. À cet en-
semble s’ajoute par la suite de nouveaux individus issus des phases d’exploration
et d’exploitation. L’exploration se fait grâce à une recombinaison stochastique
des individus grâce aux opérateurs génétiques de crossover et de mutation. C’est
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une étape qui s’inspire fortement de la méthode de programmation génétique.
L’exploitation se fait grâce à une variante de la méthode du simplexe appliqué
dans un sous-ensemble de l’espace des lois de contrôle. Une des innovations qui
a permis ce mariage est, notamment, la mise en place d’une étape de reconstruc-
tion qui permet d’appliquer les opérateurs génétiques sur des individus issus d’une
étape de simplexe.

Appliqué au problème de stabilisation du pinball fluidique, le gMLC a con-
struit une loi de contrôle combinant un forçage asymétrique et un contrôle en
boucle fermée qui surpasse toutes les solutions trouvées jusque-là. C’est une loi
qui combine linéairement 14 autres lois et qui, en plus de permettre une diminution
plus importante de la fonction de coût, le fait avec avec la plus faible puissance
d’action. Les performances de gMLC comparées avec l’algorithme LGPC pour le
problème de stabilisation montre que la nouvelle méthode permet, non seulement,
de construire des solutions plus performantes, mais de plus s’obtiennent avec un
nombre plus faible d’évaluations. En effet, déjà après 250 évaluations, les résul-
tats de gMLC sont meilleurs qu’une optimisation sur 1000 individus de LGPC.
L’accélération de l’apprentissage est confirmée par un test de répétabilité sur un
système dynamique (le generalized mean-field model, GMFM). Sur 100 évaluations
de chaque algorithme, la distribution des réalisations montre que gMLC surpasse
LGPC à la fois en termes de vitesse de convergence ainsi que de la performance
de la solution finale.

Dans la dernière partie, gMLC est testé en conditions expérimentales pour
contrôler l’écoulement de cavité ouverte.

Partie 3: Démonstration expérimentale

Chapitre 6: Description du banc expérimental de la cavité
ouverte

La dernière partie du travail consiste à confronter nos avancées méthodologiques
d’apprentissage automatique à la réalité expérimentale. Nous présentons dans ce
chapitre la configuration d’écoulement choisie, à savoir, l’écoulement d’une cavité
ouverte en interaction avec une couche limite laminaire. Cet écoulement présente
une dynamique riche pilotée par cinq paramètres en incompressible: les trois di-
mensions de la cavité, l’épaisseur de la couche limite et la vitesse incidente du
fluide incident. Le contrôle de la cavité se fait grâce à un actionneur plasma DBD
(décharge à barrière diélectrique), situé au bord de fuite amont de la cavité. Cet
actionneur permet d’imiter l’action d’une force volumique le long de la cavité.
Un capteur fil chaud en aval de l’écoulement mesure la vitesse du fluide en aval
de la cavité et nous permet à la fois de caractériser l’écoulement et de contrôler
l’actionneur plasma par retour de l’état instantané. Le tout est alors piloté grâce
à un contrôleur en temps réel dSPACE.

Dans cette étude, nous nous plaçons à Reynolds Re ≈ 104, dans une configu-
ration où la réponse fréquentielle présente une fréquence dominante qui reflète les
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oscillations de la couche de mélange. Une étude en boucle ouverte avec une action
constante a été réalisée. Elle révèle notamment qu’une action forte et constante
tue la dynamique de la cavité et «noie» le pic principale par la destruction de
l’amplificateur de Kelvin-Helmholtz. Une action modérée permet, quant à elle,
de réduire la puissance associée au pic principale et fait resurgir un autre mode
de l’écoulement. Nous limitons la gamme d’intensité de l’action entre le seuil
d’ionisation de l’actionneur plasma (action nulle) et un maximum conservant la
résonnance principale de la cavité. Enfin, soulignons que l’expérience est sujette
à différentes dérives, telles que la température de la salle, la vitesse débitante de
la soufflerie et l’action du plasma DBD. Ces dérives devant rester «acceptables»
pour l’apprentissage, la durée de l’expérience sera nécessairement limité.

Chapitre 7: Contrôle de la cavité ouverte par LGPC et gMLC

Dans ce chapitre, nous appliquons les méthodes de LGPC et gMLC au contrôle de
la cavité. L’objectif de contrôle cherche à réduire la puissance du pic de résonance
de la cavité et celle des modes associés. Pour ce faire, nous construisons une
fonction de coût qui mesure la valeur maximale du pic dans le spectre du fil chaud
sur une fenêtre qui englobe l’ensemble des modes fréquentiels à l’ordre 1 (sans les
harmoniques). Enfin, un terme de pénalisation de l’action est inclus pour orienter
l’action vers un contrôle de l’état stationnaire instable et non vers un «soufflage»
de la couche de mélange.

Les algorithmes, LGPC et gMLC, sont appliqués pour une évaluation totale de
1000 individus. Après 1000 évaluations, LGPC réussit à considérablement dimin-
uer la puissance associé au premier pic (gain d’un facteur 1000 en puissance) avec
un coût d’action quasi-négligeable mais au détriment d’une augmentation significa-
tive de la déviation standard du signal global. LGPC réduit le pic, mais augmente
le bruit de fond. Gradient-enriched MLC, quant à lui, réussit à construire une loi
de contrôle en boucle fermée en moins de 300 évaluations dont les performances
sont similaires à la loi LGPC, mais avec une réduction des fluctuations de vitesse
sur toutes les fréquences, conduisant à une diminution de la déviation standard de
14% par rapport au cas naturel sans contrôle. De plus, contrairement à LGPC,
cette loi de contrôle diminue la déviation standard du signal. Par ailleurs, nous
apportons la preuve que cette loi de contrôle est effectivement une loi en boucle
fermée dont la rétroaction est essentielle bien que quasi-négligeable en amplitude.

Aussi, nous démontrons la capacité de nos algorithmes à opérer dans des con-
ditions expérimentales réelles, incluant du bruit externe et des dérives. C’est notre
nouvel algorithme gMLC qui présente le résultat le plus impressionnant, en réus-
sissant à surclasser LGPC en termes de vitesse de convergence, solution finale et
qualité de la solution.

Chapitre 8: Conclusion

Dans ce chapitre final, nous rappelons ce qui a pu être accompli durant ce travail
de thèse. L’ensemble des efforts ont pu converger vers la principale innovation: le
développement d’un nouvel algorithme de contrôle, le gMLC. L’efficacité de gMLC



ix

a été démontré à la fois numériquement, avec le contrôle du pinball fluidique, et
expérimentalement, avec le contrôle de la cavité ouverte. En intégrant, l’ensemble
des bénéfices, vitesse de convergence et qualité de la solution finale, on peut es-
timer qu’une accélération d’un facteur au moins 10 a été obtenu entre gMLC et
LGPC. Une telle accélération ouvre la porte à des expériences de contrôle plus
complexes avec des temps d’expérience limités ou des espaces de recherches plus
riches. En particulier, un apprentissage plus rapide permet de considérer des méth-
odes d’entraînements plus complexes en multipliant les évaluations d’une même
loi de contrôle pour assurer une robustesse vis-à-vis des paramètres du problème
et des conditions de fonctionnement.
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1.1 Economic and industrial context

Flow control has been at the heart of many engineering advancements through
time. One of the oldest examples of flow control being the use of the fletching or
feathers on the foragers’ arrows to stabilize the flight of their projectiles, thou-
sands of years ago. Even if the feathers are responsible for about 35% of the
drag (Meyer, 2015), the additional lateral surfaces provide a stability of the ar-
row throughout the entirety of its flight, thus improving significantly its objective:
reaching the target. Such a technological advancement had a significant impact on
the development and survival of the foragers. Nowadays, building on great theo-
retical advancements, more complex controllers and control strategies, capable to
react in real-time, have been set up, enabling long-range intercontinental missiles
that can travel up to 17 000 km as in the case of the Russian RS-28 Sarmat.

But flow control is not only about ballistics. Flow control is now a key oppor-
tunity for the next challenges of the century, as modelling, predicting and control
of fluid flows are fundamentals problems for engineers in the industry. One of
the most compelling examples being the transport field. Traffic alone profits from
flow control via drag reduction of transport vehicles (Choi et al., 2008), lift in-
crease of wings (Semaan et al., 2016), mixing control for more efficient combustion
(Dowling & Morgans, 2005) and noise reduction (Jordan & Colonius, 2013). An
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improvement of performances in one of those fields will be greatly beneficial al-
lowing reduction of the energy consumption, increase of payloads reductions and
facilitates the ecological transition.

In the last two decades, the total number of cars increased dramatically pos-
ing environmental and energy resources concerns. Indeed, in 2010 the number of
motorized vehicles worldwide exceeded 1 billion and this number is expected to
double by 2030 (Sousanis, 2011). In 2015, the annual global CO2 emissions from
road vehicles surpassed 22Mt and is expected to reach more than 30Mt by 2030
(Brunton & Noack, 2015). To limit the polluting impact of the increase of the car
population and the emission of greenhouse gases and to achieve climate-neutral
by 2050, the European Parliament and the Council adopted, on April 2019, the
Regulation (EU) 2019/631 setting CO2 emission performance standards for new
passenger cars and for new vans in the EU (European Commission, 2019). This
regulation includes 15% CO2 reduction from 2025 on and 37.5% CO2 reduction
from 2030 on. Thus, developing flow control to be manageable for real life con-
ditions is a key opportunity for improving industrial efficiency and reducing CO2

emissions. And recent advances show that active flow control is already able to
achieve up to 15% net power saving for 3D bluff bodies in experiments (Pfeiffer &
King, 2012). Of course, the impact of flow control in the transport field is only an
example among other fields such as: drag reduction for airborne, ground and sea
transport, lift increase of wings (Semaan et al., 2016), gust mitigation for wind
power generation and heat transfer improvement to cite a few.

The aim of this study is then to advance the flow control field towards real life
applications. In the following, we make an overview of turbulence flow control,
the main challenges of the field, the framework used in this study and its main
objectives.

1.2 Turbulence flow control

Turbulence flow control is the field that comprises decisions on the flow control
system or plant, on the cost function that measures the objective, on the actuation
and sensing and the control logic. In this following, we give a short overview of
the field and more details on active flow control and the control logic.

1.2.1 Overview of the field

By manipulating the flow around a body or in a cavity, performance can be im-
proved and energy consumption reduced, but there are different ways to act on
the flow. In this section, we present an overview of the three main categories of
flow control: aerodynamic shape optimization, passive control and active control.

The goal of aerodynamic shaping is to optimize the geometry of a body to im-
prove its interaction with the flow. One can consider that the field of aerodynamic
shaping started with Isaac Newton and his sine-squared law for the hydrodynamic
force on an inclined surface, at the end of the 17th century. In his renowned
Principia, Isaac Newton made the mathematical connection between geometry of
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a body and the forces that are applied to it (Anderson, 2011). Modern examples
of shape optimizing include airfoil design, heat exchangers, wind turbine blades
and combustion chambers to cite a few examples. Historically, the field is based
on potential flow theory pioneered 150 years ago, but, today, modern techniques
rely on efficient adjoint-based methods but relying on costly numerical simulations
of the full Navier-Stokes equations, such as the pioneering work of Reuther et al.
(1996).

The second approach is passive control. While aerodynamic shaping aims to
optimize the shape of the system, passive control adds features to further increase
the performance. As described earlier, the feathers on the archer’s arrow is an
example of passive control, increasing the stability of the projectile but also in-
creasing the drag. The same mechanism is exploited for the stabilization of rockets
thanks to the lateral fins. On another example, is the presence of dimples on the
surface of golf balls that facilitates the transition from a laminar to turbulent flow
and thus reducing the drag force. The roughness of the surface combined with
the rotation of the ball produces an increased Magnus lift. Those two mechanisms
greatly increase the distance covered by golf balls and make that, now, dimpled
golf balls a standard in the field. Other engineering applications of passive control
are the turbulators on wings that facilitate the transition towards a turbulent flow
and allow a lift increase; another example is the use of Gurney flaps at the trailing
edge of airfoils that helps the boundary layer to stay attached until the trailing
edge, increasing the maximum lift (Myose et al., 1998). However, these benefits
are often accompanied by drawbacks, such as drag increase, that are not easily
avoided as these additional devices are not meant to be controlled in ‘real time.’
For academic flows, passive control can be achieved with the introduction of a
plate behind a bluff to suppress the vortex shedding or control the aeroacoustic
effects (Winkler et al., 2012).

The third approach, active control, on the other hand, uses actuators to disturb
favorably the flow. These include Coanda blowers, synthetic jets (You & Moin,
2008), plasma actuators (Moreau, 2007), rotating blades, fluidic oscillator (Guyot
et al., 2008; Bobusch et al., 2013) and zero-net-mass-flux actuators (Zhang et al.,
2008) and piezoelectric actuators (Cattafesta et al., 2001). Their purpose is to
inject/suppress momentum into/from the flow with a time response of the same
order of magnitude as the time scales of the flow. Such control requires a positive
balance between the energy injected and the energy saved. However, as opposed to
passive control, active control can be switched on and off following the conditions,
limiting the negative impact of such control. Thus, actuators can be controlled
by external commands, independently of the flow state, such as periodic blowing
or suction; this control is referred to as open-loop control. An online adaption of
the control is possible thanks to the feedback of sensor information; this control
is referred to as closed-loop control. The sensors can be employed to feedback
direct flow information such as velocity components or pressure, but it can also
be employed to reconstruct the flow from sparse measurements (Podvin et al.,
2005). The position and number of sensors and actuators is a hard problem in
itself. Sensitive regions can be derived thanks to adjoint based methods such as
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in Giannetti & Luchini (2007) for the cylinder wake. Position of the sensors is
crucial as two types of closed-loop control arise in convective flows: feedforward
(sensors are located upstream of the actuators) and feedback (sensors are located
downstream of the actuators). Feedback proved to efficiently reject disturbances
and is able to compensate unmodeled dynamics (Belson et al., 2013). Optimal
positions of sensors have also been studied in a data-driven manner for dynamic
processes in (Proctor et al., 2014; Brunton et al., 2014). The largest gains of
performance happens to be realized with a closed-loop control where the actuation
command is directly related to the flow state.

However, deriving the optimal control command for the actuators, that in-
creases the performances and limits the negative impacts, is in general a difficult
problem. Indeed, the nonlinear nature of the partial differential equations that
describe the motion of a flow, the Navier-Stokes equations, bears fundamental
challenges for modelling, predicting and real-time control:

high-dimensionality: to have an accurate description of all the spatial and time
scales of the flow, such as in turbulent flows, a high number of virtual par-
ticles needs to be simulated, rendering such simulations very costly;

time-delayed response: there is in general a non-negligible transient time be-
tween actuation and response and between actuation and measure of the
state;

frequency crosstalk or nonlinear interaction between modes: exciting a
given mode with a given frequency may give a response at a different mode
with a different frequency, making modelling and prediction delicate.

We can distinguish two approaches to derive the optimal control command that
takes more or less into account these challenges. First is the model-based approach
based on linear control theory. The main idea is to model the flow by linearizing
its dynamics around a state of interest such as the mean flow or a fixed point to
exploit powerful mathematical tools to control and predict the flow (Sipp et al.,
2010; Bagheri & Henningson, 2011). Examples of model-based control successes
relate to first and second order dynamics, e.g., the quasi-steady response to quasi-
steady actuation (Pfeiffer & King, 2012), opposition control near walls (Choi et al.,
1994; Fukagata & Nobuhide, 2003), energy attenuation for Tollmien-Schlichting
waves and streaks in a transitional boundary layer (Semeraro et al., 2011), phasor
control of oscillations (Pastoor et al., 2008), two-frequency crosstalk (Glezer et al.,
2005; Luchtenburg et al., 2009) and robust control of an Ahmed body (Plumejeau
et al., 2019; Chovet et al., 2020). The linearizing of the equations can be avoided
by relying on models produced by input-ouput data thanks to the eigensystem
realization algorithm (ERA) (Juang & Pappa, 1985). ERA has been used, for
example, to build an optimal controller to suppress three-dimensional Tollmien-
Schlichting waves in a transitional boundary layer (Semeraro et al., 2013).

However, even though linear control theory may have some answers, it calls
upon restrictive linear hypotheses that discard nonlinear interactions between
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modes, which is often essential for fluid control. Indeed, examples of wake sta-
bilization with high-frequency forcing and low-frequency forcing show that fre-
quency crosstalk is a key enabler for control (Pastoor et al., 2008; Luchtenburg
et al., 2009). Moreover, in addition to the nonlinear complexity of the flow, there
are a number of constraints related to real-life experiments, such as the number,
location and type of sensors and actuators required in a closed-loop system, such
features are typically determined from engineering wisdom (Cattafesta & Shelpak,
2011). Finally, the use of non-intrusive sensors gives access only to very sparse
information of the dynamics. Those additional constraints make linear control
theory often unpractical for in-time control.

Thus, it is essential to consider another approach: the derivation of the optimal
control command in a model-free framework with sparse knowledge of the system
state. In this case, the system to control is considered as a black-box model only
taking into account the actuation command and the sensor signals. Thus, the
entirety of the dynamics are taken into account even sparsely in space and time
but with all its richness including both linear and nonlinear aspects. Deriving the
optimal control in such framework is a hard problem that needs powerful regression
techniques inspired of machine learning methods.

Thus in this study, we aim to develop a model-free methodology to derive
the optimal actuation command for active flow control. In the next sections, we
present the active control framework, introducing notations and terminology used
throughout the study.

1.2.2 Active control

In this section, we describe the framework of active control for fluid flows.
Throughout this study, the system to control will be referred as the plant. The

plant can designate a(n):

dynamical system: such as the Lorenz system with its three ordinary differen-
tial equations;

numerical simulation: two-dimensional or three dimensional flows comprising
bluff bodies, shear layers or other interesting geometries with full information
of the state and no noise or disturbances a priori;

experiment: such as an open cavity, a mixing jet or an Ahmed body with con-
trolled experimental conditions but with external noise, disturbances and
measurements uncertainties.

real fluid flow: a car, a truck, a plane, a wind turbine or a heat exchanger in
real-life conditions;

or any other system with actuator(s).

In fluid mechanics, the quantities of interest that we want to control, are the
ones related to the aerodynamics. For example, increasing the lift of an airfoil or
reducing the drag of a cylinder. But we can also be interested in the dynamics
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of the flow and its coherent structures, for example, reducing the oscillations of
a shear layer, stabilizing the wake behind a bluff body and reducing the fluid-
structure interactions. Of course, controlling the flow and its coherent structures
is intrinsically related to undesirable forces to mitigate. The plant is then the
main system to control.

In order to control the plant, one or several actuators are needed. The actua-
tors can be, for example, synthetic jets on an airfoil, Coanda blowers at the back
of an Ahmed body, piezoelectric actuators, dielectric-barrier discharge (DBD) or
rotating bodies. Their goal is to perturb favorably the flow by injecting or sup-
pressing momentum, for blowers or vorticity, for rotating bodies. The intensity of
the control and its ‘form’ (strong or weak jets, fast or slow rotation, mean value
and frequencies) is directly related to an external input, we refer as the actuation
command and is denoted by the vectorial quantity b.

Solely with actuators, active flow control in an open-loop manner can be per-
formed. Indeed, time-dependent functions can be employed as an actuation com-
mand to steady actuation (Mestiri et al., 2014) as well as multi-frequency forcing
(Li et al., 2019). Throughout this study, the time-dependent functions are denoted
as h.

Now, to have a control that reacts to the flow behaviour, a feedback of the
state is needed. For this, sensors can be introduced in the plant in order to retrieve
information of the flow, such as velocity probes, hot-wires and pressure sensors.
In the following, the sensor information is denoted by the vectorial quantity s.

However, in order to effectively perform closed-loop control, the relationship
between the actuation command and the sensor signals needs to be defined. In
the most general case, the actuation command b is a function of sensor signals s
and time-dependent functions h. The controller then reads:

b(t) = K(s(t),h(t)). (1.1)

The function K that maps s, h and b is referred as the control law. K is an
element of K : X 7→ Y , the space of all possible control laws, also called, in this
study, control law space, search space or control landscape. Here, X is the input
space, e.g., the space of sensor signals and Y is the output space for actuation
commands.

To determine the optimal K that fulfills a given objective such as drag reduc-
tion or lift increase, a measure of the performance of the control is needed. This
is achieved by the cost function J .

J = Ja(b) + γJb(b) (1.2)

The cost function is a function that gives a scalar value related to the performance
of the control. It is defined such as the optimal control regarding our objective
is an extremum of the cost function. In this study, we choose the convention
to minimize the cost function, i.e. the optimal control K∗ corresponds to the
minimum of the cost function J over the search space K. The cost function J
is usually the sum of two components, Ja and Jb, defining different aspects to
optimize. Ja is generally directly related to the physical quantity to optimize, it
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can be the lift or drag coefficient, the turbulent kinetic energy or the length of the
recirculation bubble, for example. Jb, on the other hand, is a measure of the energy
invested in the control, such as the momentum injected in the flow or the actuation
power related to the rotation of some bodies. It is computed so that strong
actuations are penalized. The parameter γ then serves to balance the objective
and the actuation penalization term. The computation of the cost function is, in
general, not directly related to the sensor signals and can be computed offline,
meaning once the controlled is performed. J can be, for example, computed from
time series measurements with an aerodynamic balance, flow fields measured with
particle image velocimetry (PIV) or estimations of the flow state thanks to sensor
signals.

Figure 1.1 gives a description of the components of the plant. The position
of the actuators and the sensors in the figure do not assume their position in the
plant. Indeed, sensors can be located at the leading edge of an airfoil and the
actuators and the trailing edge and vice versa.

Figure 1.1: Configuration for a plant to control. The actuators receive an exter-
nal actuation command and control and thus modify the natural flow. Then the
sensors retrieve some flow state information. The cost function measures the per-
formance of the control. The arrows do not assume the position of the actuator(s)
and sensor(s).

Efficient methods that rely solely on the actuation command and the sensor
signals exists, such as extremum-seeking control (Gelbert et al., 2012), opposition
control (Choi et al., 1994; Fukagata & Nobuhide, 2003) or proportional-integral-
derivative (PID) control (Krstic et al., 1999). However, they all rely on a pre-
determined structure of the control law and tuning such control law is to tune
a set of parameters. Moreover, the predefined structure of the control law then
bounds the actuation to a subspace of K, limiting the possibility to exploit the
nonlinearities of the flow for control.

In order to take advantage of the nonlinear richness for the control, we consider
a structure-free control law approach and our aim is to build the relationship
between the inputs and the outputs from scratch. Such a control problem is hard
to solve and require powerful methods of machine learning or artificial intelligence
to build the mapping. A key enabler to employ such methods is the formulation
of the control problem as an optimization problem: the goal is to find K∗ that
minimizes J .
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1.2.3 Flow control as an optimization problem

The main approach to solving the model-free, structure-free control problem is to
formulate it as a function optimization problem where the function to optimize is
the control law itself, according to a cost function J to minimize. Equation 1.3 is
the optimization problem to solve to find the optimal control law K∗.

K∗ = arg min
K∈K

J(K) (1.3)

withK, the control law space as defined above. The resulting optimization problem
is another non-convex optimization problem, which is difficult, but much more
accessible to machine learning/artificial intelligence regression solvers. Indeed,
equation 1.3 can also be interpreted as a regression problem of the second kind,
meaning a regression problem where the optimal solution is unknown. The term
regression model of the first and second kind has been introduced by Fisk (1967)
in the field of statistics and designate two types of models. In the following, we
detail the meaning in the control optimization context. In a regression problem,
the goal is to determine the relationship that ties several sets of data. There are
two types of regression problems: the first and the second kind.

For a regression problem of the first kind, we assume the knowledge of the re-
sponse of all the possible actions for every state. So, we have access to the matrix
P of the plant that connects the actuation to the sensing: s = Pb. The goal
is then to build a function representing the inverse model P−1 of the plant by
approximating a mapping between the sensors and the actuation command. The
quality of the inverse model P−1 is evaluated thanks to a metric that compares the
real action b and the reconstruction P−1Pb. The inverse model is then enough to
derive the optimal control for a given objective. Such approach has been success-
fully employed by Lee et al. (1997); Lorang et al. (2008) to reduce the drag in a
turbulent channel flow, where the inverse model has been reconstructed thanks to
neural networks. The reconstruction of the input-output relationship can also be
realized in a data-driven manner, directly from time series or snapshots thanks to
mode decomposition such as in Proctor et al. (2016), where the actuation input
is included in the data. Regression problems of the first kind can be considered
as part of supervised learning, as they rely on the prior knowledge of the plant
behaviour. Linear regression can be seen as a regression problem of the first kind
where an assumption of a linear model is made. Thus, inverting the model, based
on the observations, is to determine the best fitting parameters of the model. With
these parameters, it is then possible to interpolate, extrapolate the data beyond
the observation range. Of course, the area of validity of the learned model depends
on the data and type of problem.

On the other hand, regression problem of the second kind are only based on the
control performance, without any knowledge of the plant nor the optimal solution.
The control performance is, of course, computed thanks to the cost function J .
The aim is to optimize/build better control laws solely based on their performance.
As each new state is a consequence of the action-response relationship, what is
learned is a curve or a trajectory of the system state. It is the trajectory towards
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Linear
regression

regression
problem of the

first kind

regression
problem of the
second kind

visual
representation

mapping
function Y = αX + β b = P−1s b = K(s)

unknown of the
problem

best fitting
parameters

(α∗, β∗)

the inverse
plant
P−1

the optimal
control law

K∗

optimization
type parametric function

optimization
curve/trajectory
optimization

optimization
criterion

coefficient of
determination

R2

metric cost function J

Table 1.1: Table summarizing the two types of regression problem. A comparison
with regression linear is displayed. For regression problems of the first kind, the
knowledge of the action-response relationship is assumed. For a regression of the
second kind, the optimal solution is not known. Linear regression is a type of
regression problem of the first kind where an assumption of the linear model is
made.

the unknown optimal solution that is built. Table 1.1, illustrates linear regression
and the differences between the two types of regression.

An alternative for solving control problems is also their reformulation as a
Bellman equation where the principle is to break down an optimization problem
in a sequence of subproblems. This is at the basis of reinforcement learning (RL)
algorithm and has been proven to be efficient to derive feedback control laws in
simulations and experiments (Fan et al., 2020; Rabault et al., 2019; Bucci et al.,
2019).

In this study, to solve the control problem, we will focus on genetic program-
ming which is regression solver of the second second kind. Genetic programming
control (GPC) has been pioneered by Dracopoulos (1997) over 20 years ago and
has been proven to be particularly successful for nonlinear feedback turbulence
control in experiments. Examples include the drag reduction of the Ahmed body
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(Li et al., 2018) and the same obstacle under yaw angle (Li et al., 2019), mixing
layer control (Parezanović et al., 2016), separation control of a turbulent boundary
layer (Debien et al., 2016) recirculation zone reduction behind a backward facing
step (Gautier et al., 2015), and jet mixing enhancement (Zhou et al., 2020), just
to name a few. GPC has consistently outperformed existing optimized control
approaches, often with unexpected frequency crosstalk mechanisms (Noack, 2019;
Ren et al., 2020). GPC has a powerful capability to find new mechanisms, thanks
to exploration and populate the best minima, thanks to exploitation. Yet, the
exploitation is inefficient leading to increasing redundant testing of similar con-
trol laws with poor convergence to the minimum. This challenge is well known
and is the main objective of this study. Indeed, the acceleration of the learning
is crucial for future experiments. As it will truly multiple the number of control
experiments. The acceleration of the learning will, among other things, enable to
control experiments with many actuators and sensors and are subject to the curse
of dimensionality. It will also allow complex training requiring multi-parameter
testing for robustness and it will make possible to control costly experiments with
a reduced experiment time. The acceleration of the learning is also part of a
broader perspective concerning learning and what performance is accessible from
our current knowledge. This resonates with the concepts of exploration, to ac-
quire more knowledge and exploitation, to build something new from our current
knowledge. It is not a surprise that, exploration and exploitation are the two main
forces behind the learning process of genetic programming. Their role is further
detailed in this study as they have a primordial place in the speed up achieved by
our new algorithm, the gradient-enriched machine learning control.

In (Schoenauer et al., 1996), the authors introduce a hill-climbing stage in
genetic programming to improve the learning rate by exploring local minima in
model identification for a material. Such improvement proved to be efficient but
only for a given set of meta-parameters. Our work is part of the same perspective
but the local minima are explored thanks to gradient-based methods instead of
hill-climbing.

1.3 Our plants: the fluidic pinball and the open
cavity

Our algorithmic development needs to be tested on relevant plants. However real
flows are complex. Indeed, reducing the drag of a real car or increasing the lift
of an airplane implies considering the interaction of different physical mechanisms
due to the complexity of the geometries. That is why, real systems are broken
down into canonical geometries that represent simplified versions of the system
or parts of it. In this work, we focus on two plants: a numerical simulation of a
fluidic pinball and an experiment on an open cavity.

As main benchmark control problem, we choose to study the fluidic pinball,
a configuration of three cylinders situated at the vertices of an equilateral tri-
angle pointing in the upstream direction (Noack et al., 2016; Deng et al., 2020;
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Chen et al., 2020). The actuation is performed by the independent rotation of the
three cylinders and the flow is monitored by 9 velocity probes downstream. This
choice is motivated by several reasons. First, already the unforced fluidic pinball
shows a surprisingly rich dynamics. With increasing Reynolds number the steady
wake becomes successively unstable and goes through a Hopf bifurcation, a pitch-
fork bifurcation and another Hopf bifurcation before, eventually, a chaotic state
is reached (Deng et al., 2020). Second, the cylinder rotations may encapsulate
the most common wake stabilization approaches, like Coanda forcing (Geropp &
Odenthal, 2000), base bleed (Wood, 1964; Bearman, 1967), low-frequency forcing
(Pastoor et al., 2008), high-frequency forcing (Thiria et al., 2006), phasor control
(Roussopoulos, 1993) and circulation control (Cortelezzi et al., 1994). Third, the
rich unforced and controlled dynamics mimic nonlinear behaviour of turbulence
while the computation of the two-dimensional flow is manageable on workstations.
To summarize, the fluidic pinball is an attractive all-weather plant for non-trivial
multiple-input multiple-output control dynamics.

As for the open cavity, its choice is motivated by both the simplicity of its
geometry and the richness of its dynamics. It is a well-known configuration pre-
senting a wide range of dynamics accessible by tuning only two parameters: the
aspect ratio and the Reynolds number. Thus, the dynamics may go from a sin-
gle main mode to a rich spectrum comprising a various coupled modes (Rowley &
Williams, 2006; Basley et al., 2014). Experimentally, the cavity has been controlled
both in a passive way, with the introduction of a cylinder upstream (Keirsbulck
et al., 2008; El Hassan & Keirsbulck, 2017) or in an active way, with synthetic
jets (Kourta & Vitale, 2008) for example, suppressing of the cavity resonance or
significantly reducing the noise level. Finally, the dynamics of the cavity have
been thoroughly studied throughout the years in our laboratory, strengthening
our choice as a control benchmark .

1.4 Objectives of the thesis

The main goal of this thesis it to push further the methodology of model-free
real-time control for numerical simulations and experiments. We focus especially
on the algorithmic development for the acceleration of the learning process of ge-
netic programming control, while keeping the possibility to build complex control
laws. For this, we developed our own machine learning codes: 1) xMLC based
on linear genetic programming and 2) gMLC, based on our new algorithm, the
gradient-enriched machine learning control (gMLC). Our codes have been been
demonstrated both on numerical and experimental plants revealing efficient and
rich control mechanisms for control. The xMLC and gMLC source code are both
available online.

The thesis is organized in three parts. In the first part, we describe the genetic
programming methodology in the context of flow control and is illustrated with
the control of the fluidic pinball. In chapter 2, we give a full presentation of the
genetic programming control algorithm and the ‘forces’ that drive the learning
process. In particular, we illustrate the learning capability of GPC with an ex-
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haustive parametric study, revealing key operating combinations in the space of
meta-parameters. We conclude the first part, by a net drag power optimization
carried out on the fluidic pinball in chapter 3 in which we explore three different
control spaces and reveal some actuation mechanisms behind net drag reduction.
In the second part, we introduce our new algorithm for fast learning of feedback
control laws, the gradient-enriched machine learning control (gMLC). But first, in
chapter 4, we focus on the Explorative Gradient Method (EGM)(Li et al., 2021),
a new algorithm that exploits the principles of exploration and exploitation for
parametric optimization. The method is fully described and applied to the fluidic
pinball as it largely inspired our new algorithm. In chapter 5, we describe in detail
gMLC algorithm and employ it for the stabilization of the fluidic pinball. gMLC
manages to build a non-trivial feedback control law outperforming GPC in terms
of learning rate and final solution. The third part focuses on the deployment of
our algorithms in experimental conditions: For this, we give a description of the
open cavity setup, its means of action and sensing and its response to actuation
(chapter 6).Finally, we present and compare experimental results of GPC and
gMLC applied to the open cavity (chapter 7). We note, in particular, the same
learning speed up observed for the stabilization of the fluidic pinball. It has been
observed that the learning process has been accelerated by at least a factor 10,
in both, the numerical simulations and the experiment. A closing chapter will
summarizes the achievements of this work and opens on the future challenges of
the field (chapter 8).
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Wake control with genetic
programming
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Chapter 2

Linear genetic programming
control—Description and
parametric study

The first part of this thesis aims to describe the linear genetic programming
methodology and its application to control and especially on the net drag re-
duction of the fluidic pinball. This chapter focuses on the description of the
genetic programming algorithm in a control framework and the understanding of
the internal learning process.

First, we introduce the field of evolutionary algorithms and give a complete
description of the linear genetic programming control (LGPC) algorithm in sec-
tion 2.1. Secondly, in section 2.2, we illustrate the learning process of LGPC with
the stabilization of a two-equation dynamical system—the Landau oscillator. Fi-
nally in section 2.3, we carry out an extensive study of the meta-parameters of
the algorithm before a demonstration on the fluidic pinball in chapter 3.
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2.1 An evolutionary algorithm

Genetic programming control (GPC) is a technique that is part of the machine
learning control (MLC) field, it is an evolutionary algorithm that builds control
laws, such as K in equation 1.1, to solve control problems. As all evolutionary
algorithms, GPC is an optimization algorithm that relies on mechanisms inspired
by biological evolution to build candidates solutions for the optimization problem
in an iterative and stochastic manner.

The main idea of evolutionary algorithms is based on the evolution or pro-
gression of a set of candidate solutions throughout generations thanks to selected
recombinations. Following the biological terminology, a candidate solution is also
called an individual and a set of individuals, a population, thus, in the following,
candidate solutions build in the context of genetic programming will also be re-
ferred as individuals. The theory of evolution conceived by Charles Darwin in the
mid-19th century and augmented/completed throughout the years describes the
forces and mechanisms of the evolution of species. We shall not enter in detail
in the theory, but only detail key elements that are at the heart of evolutionary
algorithms such as:

the survival of the fittest: it is the selection of the most fitting individual, or
the most efficient individual according to the environment, to pass on the
next generation. This mechanism assures that at each new generation the
‘best’ individuals are at least as good as the ‘best’ individuals of the past gen-
eration, thus, assuring that the quality of the population improves through
time;

crossover: it is one of the two forces of evolution that brings diversity to the
population and gives opportunity to improve individuals; crossover is able to
exploit the strengths of individuals by recombining two or more individuals
and generating one or more offspring build from their ‘parents’.

mutation: it is the second force of evolution; it is the force that brings novelty to
the population; new features unknown to the individuals are likely to appear
thanks to mutation.

It is worth noting that both crossover and mutation are stochastic mechanisms.
Indeed, the recombination and the mutation of given individuals are random pro-
cesses that, in general, give always different results. An evolutionary algorithm
is, then, a stochastic process that aims to build better solutions to a problem by
making a population of individuals or candidate solutions, evolve by breeding and
mutating the best of them.

It is thanks to a similar process, but much more complex, that after millions of
years of evolution, the eagle, figure 2.1, evolved as a bird of prey able to fly and land
in calm, as well as, harsh, windy conditions thanks to the skillful maneuvering of
its wings. A success that is the envy of many, starting with drone manufacturers.
Examples of this kind are numerous in nature. Of course, the environment plays
a decisive role in the definition and selection of the fittest individual. Indeed
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following the environment, animals evolved in different ways, exploiting different
features of their environment. Thus, insects and birds exploit different actuation
mechanisms to fly. Insects, due to their small size and slow speed, fly at laminar
regimes, at Reynolds numbers close Re ≈ 200, where they are able to eject fluid
momentum to propel themselves. Whereas, birds, which are bigger and fly at
higher speed, navigate at regimes close to Re ≈ 20000, where they have to deal
with turbulence and wingtip vortices to maneuver. It is worth noting that for
viscous dominant regimes such as Re ≈ 20, there is no possibility to exploit a
reaction to a momentum variation of the fluid as the fluid remains sticked to the
body steadily, thus this Reynolds number range is also known as the ‘death’ region
where no animal can move and live. This shows the importance of the environment
in the process of evolution.

In the case of solving optimization problems with evolutionary algorithms, the
environment is imitated by the cost function J , that assess the performance/quality
of an individual.

Figure 2.1: The bald eagle, Haliaeetus leucocephalus, sharpened its skills through
millions of years of evolution.

The beginning of the field can be attributed to Alan Turing, who used the
denomination ‘evolutionary’ in Turing (1950). But it is Ingo Rechenberg, that
pioneered the field of evolutionary computation and artificial evolution. Indeed,
in the 1960s and 1970s, him and his team, developed a highly influential set of
optimization methods known as evolution strategies. One of the key successes of
their approach is the design of aerodynamic wings.

Evolutionary algorithms comprise plethora of techniques to solve different kind
of problems. For optimization problems in control, one can, for example, perform
parametric optimization with evolutionary algorithms. Examples of such algo-
rithms are genetic algorithms (Holland, 1975) and strategy with covariance matrix
adaptation evolution (CMA-ES) (Hansen & Ostermeier, 1996). Complex controls
involving high-dimensional parameter optimization has been possible thanks ge-
netic algorithms (Benard et al., 2016). Evolutionary algorithms are also useful
to build complex, approximate solutions to problems where the form of the exact
solution is not known or very hard to compute(Koumoutsakos et al., 2001). They
can also be employed for multi-objectives optimization problems (Paschereit et al.,
2003). Genetic programming (GP) (Koza, 1992) is one of those techniques.
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The idea of GP is to describe the candidate solutions under the form of a com-
puter program. By making an analogy with biology, those computer programs can
be considered as the genome of the individual and the operations of mutation and
crossover are applied directly on the computer programs. In this context, we refer
the mutation and crossover as genetic operators. The computer programs can rep-
resent solutions to all kind of problems, they can be functions for surface fitting,
control laws and computer programs including boolean operations and conditional
branches (Brameier & Banzhaf, 2006). GP is then capable to approximate solu-
tions for vast number of problems such as: symbolic regression, classification, data
modelling, path finding and, in our case, control (White et al., 2013). For more
information on the achievement of GP, we refer to Koza (2010), where the author
lists 76 examples where GP’s results are competitive to human-produced results.

In the field of flow control, GP is used a regression solver of the second kind
to build a mapping between sensor signals b/time-dependent functions h and
actuation command b, minimizing a cost function J . The mapping is referred is
a control law K and is a function, living in a infinite dimension, Hilbert function
space.

In the following, we will describe the genetic programming control algorithm
in the control framework. First, we will present the internal representation of the
control laws and how we operate on them to generate new control laws.

2.1.1 Internal representation

To be able to combine and mutate the control laws throughout the generations,
an internal representation of a mathematical function is needed. There are mainly
two types of genetic programming to build functions:

tree-based genetic programming: the function or control law is represented
by a tree, where the nodes are the operators (+, −, ×, ÷, sin, exp, etc.)
and the leaves are the operands, meaning the arguments of the operators
(Duriez et al., 2016).

linear genetic programming (LGP): the function is decomposed in a sequence
of unitary or binary mathematical operations. The sequence is then encoded
in a four column matrix and read sequentially (Brameier & Banzhaf, 2006).

There is, of course, an equivalence between the two representations. However,
we prefer the linear genetic programming representation for its simplicity:

easier for multiple-input control: in the case of multiple-input control, i.e.
when there are more than one controller to command, linear genetic pro-
gramming has the benefit to represent all the associated control law with
only one matrix. Thus, the relationship between the control laws is inherent
to the representation. The definition of several control laws with only one
matrix is detailed lower. Whereas, for tree-based genetic programming, one
tree will be needed for each controller, making the interaction between the
control laws more difficult to build.
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easier to define the genetic operators: because mutation and crossover are
defined only on one matrix, instead of several trees or subtrees for tree-based
GP. Indeed, sharing substructures between individuals need to be carefully
defined, adding more complexity to the genetic operators.

In LGP, the individuals are considered as little computer programs, using a
finite number Ninst of instructions, a given register of variables and a set of con-
stants. The instructions employ basic operations (+, −, ×, ÷, cos, sin, tanh, etc.)
using inputs (hi time-dependent functions and si sensor signals) and yielding the
control commands as outputs. A matrix representation conveniently comprises
the operations of each individual. Every row describes one instruction. The first
two columns define the register indices of the arguments, the third column the
index of the operation and the fourth column the output register. Before execu-
tion, all registers are zeroed. Then, the last registers are initialized with the input
arguments, while the output is read from the first registers after the execution
of all instructions. This leads to a Ninst × 4 matrix representing the control law
K. The name ‘linear’ refers to the sequential execution of the instructions. If the
operation to execute only requires one operand, only the first column is considered
and the second one is ignored. Each column of the matrix has its own range of
values following what it codes. For single input control, i.e. when there is only
one controller, the control law is read in the first register. For Nb controllers, the
control laws are read in the first Nb registers. Finally, to avoid definition problems,
the operators such as division and logarithm are protected to be defined on R the
space of all the real numbers, see Duriez et al. (2016).

The registers play the role of memory slots. We distinguish two types of
registers:

variable registers: they are registers that can be overwritten while executing an
instruction. They help to store intermediate calculations.

constant registers: they are registers that are protected during the reading of
the matrix. They are used to store random constants or data of the problem.

Figure 2.2, illustrates how a single instruction is represented in matrix form.
It is worth noting that for a given mathematical expression, there is more

than one matrix representation. Indeed, as stated before, there are instructions
in the matrix that have no impact in the output registers. Also, the matrix
representation takes into account the order of the operations even for operators
that are commutative: the control laws b = s1 + s2 and b = s1 + s2 will be have
different representation while they are the same control laws. As consequence,
several instances of the same individual can be present in the population. In order
to accelerate the learning and avoid to evaluate redundant individuals, we carry
out a numerical test that removes such individuals. section 2.4 gives more details
on how we detect and remove redundant individuals.

Figure 2.3 depicts how a matrix of instructions is read to build a control law.
We notice that in the instruction matrix, not all instruction lines are useful. In-
deed, if an instruction line does not affect one of the output registers then it is,
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Figure 2.2: Matrix representation of one single operation. The operations and
the arguments are numbered separately. This representation is inspired of reverse
polish notation. The vertical column are the indices of the registers. In this figure,
the result of the instruction is stored in the variable register r2, overwriting its
previous value.

in reality, useless. However, in the process of recombination or mutation, these
instructions lines can be ‘activated’, changing the final control law. Following
Brameier & Banzhaf (2006), these ‘useless’ instruction lines, also called introns,
play a major in the process of building relevant structures.

With enough instructions and operators, any function can be represented in
matrix form. LGP can, for example, reproduce the Taylor expansion of any func-
tion until an arbitrary order by deriving the coefficients of the power series. Also,
using the matrix representation, we do not constrain, a priori, the structure of
the control laws. Of course, the solutions built strongly depend on the library of
operators and control inputs given to the algorithm. Indeed, the richness of these
libraries defines the complexity of the search space for the optimization problem.
The choice of the function libraries is studied in section 2.3 on a dynamical sys-
tem whereas different sets of control inputs are tested for the control of the fluidic
pinball in chapter 3.

Before giving the genetic algorithm in its final form, we first describe its first,
the Monte Carlo step, as it is an optimization algorithm on its own.

2.1.2 Monte Carlo optimization

A starting point for genetic programming is the random generation of the first
set of individuals. This operation can be seen as a Monte Carlo optimization
process. In the LGPC framework, to define a control law is to chose a library for
the operators (+, −, cos, etc.), a library for the inputs (a1, a2, etc.), the maximum
number of instruction Ninst,max, or the number of rows in the matrices, the number
of variable registers Nvr and the number of constant registers Ncr. From these
parameters, we can generate random matrices that are then read sequentially to
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Figure 2.3: Representation of the transcription of a matrix of instructions into
a control law (expression framed in the bottom). The matrix (middle) has five
instructions. The instruction are displayed on the left and the evolution of the
registers after the execution of the first and fifth instruction on the right. The
library of operators (+, −, ×, ÷) and there corresponding index are displayed
on the top. The first three registers (r1, r2, r3) are the variable register and the
last three (r4, r5, r6) are the constant register. The control law is derived from
the expression stored in the first register. In case of multiple input problems the
others control laws would be derived from the following registers.

form control laws. The number of instructions for each matrix is randomly drawn
from an uniform distribution between 1 and Ninst,max. In theory, a Monte Carlo
process is enough to solve equation (1.3) but a very large number of individuals
might be needed to reach the global optimum of the problem, especially for search
spaces of infinite dimension. For pragmatic reasons and also to emulate limited
experiment time, we fixed the total number of individuals tested Ni. Ni can also
be seen as the total number of cost function callings and also the total number of
experiments to run. Figure 2.4 illustrates the Monte Carlo optimization process.
Ni individuals are generated randomly, they are all tested and sorted following
their cost. The final result of the algorithm is the individual with the lowest
cost J , thus the most performing following the cost function criterion. Figure 2.4
depicts the Monte Carlo process for controlling a plant P (framed in the figure).

In the next section, we describe how to create the next generations of individ-
uals from a set of individuals generated thanks to a Monte Carlo process.

2.1.3 The evolution process—Selection and genetic opera-
tors

In the following sections, we will describe how the natural selection is emulated
and the implementation of the genetic operators. In this section, we detail the
steps carried out to create a new population based on a previous one.
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Figure 2.4: A randomly generated set of control laws is evaluated and sorted
following their performances. The red bar on the right of each individual is a
visual representation of the performance. The smaller the bar is, the better the
individual performs. The superscript 1 on the individuals Ki signify that they
belong to the first generation of individuals. The top part of the figure, represents
the controller K, receiving the sensors signals s as input and giving back the
actuation command b to the plant P.

Selection

To create the next generation of individuals, we need, first, to select the most
performing individuals to be combined and mutated. The operation of selection is
carried out thanks to a tournament selection. The idea of a tournament selection
is to select Ntour individuals among the Ni individuals in the population. Among
the Ntour individuals selected, the best one is selected with a probability of Ptour.
If the best one is not chosen, the second best is chosen with the same probability
Ptour and so on for all the selected individuals. At the end, if no other individual is
chosen, the least performing among the Ntour is selected. The choice of Ntour and
Ptour influence the extent to which well-performing individuals are preferred over
least-performing ones. This feature is called selection pressure and is developed in
detail in Wahde (2008). In this study, we choose to follow the recommendations
of (Duriez et al., 2016) and set Ntour = 7 for a population of Ni = 100 individuals
and Ptour = 1.
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Crossover for exploitation

Crossover is the operation of recombination of individuals. It has the potential to
extract and combine relevant structures in the individuals. That is why, we refer
this genetic operator as the exploitation operator. To combine the individuals, two
individuals are selected in the population, and their matrices are split in two and
the parts are swapped to generate two new individuals, also referred as offsprings.
Figure 2.5 illustrates the crossover operation between two individuals. It is worth

Parent 1 Parent 2

Offspring 1 Offspring 2

Crossover

Generation
n

Generation
n + 1

Figure 2.5: Exploitation of the genetic material by recombining two individuals.
The parts of the matrices are switched to build new matrices.

noting that, the crossover operation is defined such as the length of the matrices
may increase or decrease. To avoid that the size of the matrices explodes, we set a
upper limit to the number of rows in the matrix. In practice, this limit is the same
Ninst,max. If this limit is exceeded, then the operation is restarted until offspring
with lesser instructions are built.

Mutation for exploration

Mutation is the operator that generates new sequences in the matrices. The role
of this operator is to find new structures, unknown to the population, to improve
the solutions. For the mutation of one individual, each row of the corresponding
matrix representation has a probability of Pmut to be completely changed. The
parameter Pmut is chosen such as at least one row is changed in the matrix. The
change of one line can either have no consequences in the final output, if the
instruction stays an intron, or it can also completely change the final output. To
improve our exploration potential, we choose to restart the mutation operation
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when the mutated individual is identical to the original one. Figure 2.6, depicts
the process of mutation for an individual.

Parent Offspring

Mutation

Generation n Generation n + 1

Figure 2.6: Exploration of the search space by creating new instructions and thus
new structures.

Of course, there are several ways to define the crossover and mutation operators
but we choose to realize the simplest implementation.

From an optimization point of view, crossover is the operator that improves
existing solution. Its role is to ‘explore’ the neighbourhood of a minimum, while
mutation is the one that explores the control landscape to discover new minima.
The learning principles are illustrated in figure 2.7.

Replication and elitism for memory

In addition to crossover and mutation, we also consider two other operators: repli-
cation and elitism. With replication an identical copy of one individual is copied
to the next generation, assuring memory of good individuals and allowing future
recombination. This elitism operation assures that the best individual is always
in the latest generation so that ‘the winner does not get lost’ throughout the
generations.

Figure 2.8, illustrates the complete LGPC algorithm. The first generation of
individuals is generated thanks to a random sampling of the individuals (Monte
Carlo method). Then, from a generation n, the individuals are all evaluated
and sorted following their performances. The best individuals are then selected,
thanks to a tournament method, to be modified and recombined with crossover
and mutation. Replication and elitism assures a memory of the good individuals.
The choice of crossover, mutation or replication to populate the next generation
is controlled by the probabilities Pc, the crossover probability, Pm, the mutation
probability and Pr the replication probability. They are chosen such as Pc +Pm +
Pr = 1. The balance between crossover, mutation and replication is thoroughly
analyzed in section 2.2.3.

There are several variations of the genetic programming algorithm, where the
genetic operators are not separated but applied one after the other and where the
offspring replaces the ‘parent’ individual in the population only if it is better than
it. In this study, we choose to follow the classical evolutionary algorithm described
in Brameier & Banzhaf (2006) and also employed by Duriez et al. (2016).
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Figure 2.7: Scheme of principle of the exploitation/exploration potential of
crossover and mutation. The background is a 2D representation of a control land-
scape. White regions denoting good performances and dark regions poor perfor-
mances. Three minima are depicted. After an a priori exploration of the control
landscape with Monte Carlo, crossover and mutation improve the evaluated indi-
viduals. Crossover individuals have the potential to explore the neighbourhood of
a minimum whereas mutation discovers new minima by combining good individ-
uals.

In the next section, we will illustrate the learning process of LGPC and analyze
the role of some parameters by stabilizing a Landau oscillator.

2.2 Stabilization of the Landau oscillator

To illustrate the linear genetic programming learning methodology, we optimize
a controller for a damped Landau oscillator. First, we present the dynamical
system used for this study. Then, we describe the learning mechanisms of LGPC
by stabilizing the Landau oscillator with increasingly more complex algorithms.
We start with a Monte Carlo optimization then we stabilize the oscillator with
the LGPC algorithm described in fig. 2.8. In this section, we focus on the meta-
parameters (Pc, Pm, Pr) to analyze the role of crossover, mutation and replication
in the learning process. We reveal, among other things, that there is sweet spot
in the meta-parameter space.

All the simulations have been carried out thanks to our own LGPC code de-
veloped on MATLAB and also available for the free software GNU Octave.
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Figure 2.8: Linear genetic programming algorithm. Each generation is built from
the previous one thanks to the genetic operators.

2.2.1 The damped Landau oscillator

The controlled dynamical system

The damped Landau oscillator is a system of two coupled ordinary differential
equations with a nonlinear damping of the growth rate. Despite its simplicity, it
describes a fundamental oscillatory process at the heart of physical mechanisms
such as the von Kármán vortex shedding behind a cylinder (Luchtenburg et al.,
2009). To control the oscillator a forcing term b is introduced in the second
equation. The systems reads:

ȧ1 = σa1 − a2

ȧ2 = σa2 + a1 + b
σ = (1− a2

1 − a2
2)

(2.1)

For b = 0, we have an oscillator of growth rate σ, angular frequency 1, period
T = 2π and fixed point (0, 0). For an initial condition close to the fixed point,
the quadratic terms in σ are negligible, leading to an exponential growth. When
the system is far from the fixed point, the growth is damped due to the quadratic
terms, stabilizing the oscillator to the limit cycle of radius

√
1 = 1. The same

reasoning for an initial condition outside the circle of radius 1 shows that the limit
cycle is globally stable. The uncontrolled dynamics are depicted in figure 2.9 a)
and b). The control on the second equation has the effect of pushing the system
upwards or downwards following the sign of b. Upwards if b > 0 and downwards
if b < 0.



2.2. STABILIZATION OF THE LANDAU OSCILLATOR 27

−1 0 1

−1

0

1

a1

a 2

a)

−1 0 1
a1

b)

−1 0 1
a1

c)

Figure 2.9: a) Phase portrait of the oscillator with no actuation (b = 0) with
(a1, a2)t=0 = (0.1, 0.1) as initial condition. b) Phase portrait for the initial condi-
tion (a1, a2)t=0 = (1.5, 1.5). In both cases the system converges towards the limit
cycle of radius 1. c) Optimal linear control for four different initial conditions.

Objective and cost function

Our control objective is to bring the system to the fixed point (a1, a2) = (0, 0)
from the limit cycle. For the cost function, we consider the two terms Ja and Jb
of equation 1.2: {

Ja = a2
1 + a2

2

Jb = b2
(2.2)

where

f(t) =

ˆ 20π

0

f(t)dt.

Ja is the integral of the distance to the fixed point and Jb measures the total
energy delivered for the control. Both are integrals quantities over 10 periods as
we are interested not only in the final solution but also on the trajectory. In order
to assure a general solution, we consider four initial conditions on the limit cycle:
(1, 0), (0, 1), (−1, 0), (0,−1). The cost function J is then a mean value between
these four initial conditions.

For the uncontrolled dynamics, we have a2
1 + a2

2 = 1 and b2 = 0, therefore
Ja = 20π ≈ 63 and Jb = 0. The unforced cost is then J0 = 20π. J0 is our
reference for future controls.

Actuation limitation

For the control, we decide to add a saturation function for the actuation com-
mand. This motivated by two reasons: first, we do not want to explore actuations
with excessive values that we know they won’t work. As a result we restrict the
search space and accelerate the learning. The second reason is that with a satu-
rated control we are closer to experimental conditions where the maximum power
for control is limited. The one-dimensional saturation function is described in
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equation 2.2.1. Of course, different thresholds can be set for each actuators.

h : R −→ R

x 7−→


bmin if x < bmin,

x if bmin ≤ x ≤ bmax,

bmax if x > bmax.

In the following, we will not differentiate the actuation command b and the
bounded actuation command h(b) to alleviate the notations.

Optimal linear solution

We compute the optimal linear control of the control problem thanks to the
fminsearch function of MATLAB. fminsearch is a derivative-free method based
on Nelder-Mead simplex method (Nelder & Mead, 1965). For this problem, we
optimize the parameters of a linear control to stabilize the Landau oscillator. The
optimal linear control is detailed in equation 2.3. This solution has been found
with a random initialization of the fminsearch function. We do not know if this
solution is the optimal one but it is the best one so far, thus we refer to it as ‘the
optimal linear control’. In fact, section 2.2.3 reveals that this solution is not the
optimal linear control as another linear solution performs better. For now, we only
focus on the solution in equation 2.3, that is only a local minimum. The associated
cost is Jopt = 3.3403 which corresponding to a ∆Jopt/J0 = 94.68% reduction of
the unforced cost.

bopt = 2.4061a1 − 3.0984a2 (2.3)
Figure 2.10 shows the controlled Landau oscillator and the actuation map for

the control 2.3. We notice that the symmetry of the problem is respected and that
the system is successfully brought to the fixed point (a1, a2) = (0, 0) in less than
a period. The strategy employed by the optimal control is to vigorously push the
system towards the fixed point in the zones where the dynamics naturally lead
them closer in terms of a2. Once the system is close enough to the fixed point,
the intensity of the actuation decreases. The slope of the actuation is determined
by the cost function of the problem, with different cost functions, different slopes
are expected. Indeed, as it is defined, solutions reaching the fixed point faster and
with least actuation are favored. The linear optimal control is then the fastest
trajectory, with the given constraints, to stabilize the oscillator. It is worth noting
that the optimal control leads the system beyond the limit cycle for a short period
of time. Evidently, if the control would be on the first equation instead of the
second, the results would be symmetrical to the a1 = a2 axis.

Our goal is then to stabilize the Landau oscillator with LGPC and to find a
better solution than the optimal linear control.

2.2.2 Monte Carlo reference

In this section, we stabilize the Landau oscillator with a Monte Carlo optimization
process. This optimization is used as a reference to compare the learning process
of LGPC.
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Figure 2.10: Visualization of the linear optimal control law and actuation map.
Time series of a1, a2 and b for the two first periods is presented on the left. On
the right, is depicted the trajectories of the controlled system for the four initial
conditions and the actuation map on the background. Red regions mean that the
system is pushed upwards and blue regions downwards.

The search space

In the linear genetic programming framework, the search space is defined by the
function and inputs library. In the following, we designate by parameters, the
meta-parameters of the algorithm as we do not consider other configurations for
the Landau oscillator. The other parameters than can influence the exploration
of the landscape are the number of variable registers Nvr, the number of constant
registers Ncr and the maximum number of instructions Ninst,max. Indeed if Nvr,
Ncr and Ninst,max are small then the control laws are bound to contain only few
operations, thus complex expressions become inaccessible. This aspect is further
studied in section 2.3.

Table 2.1 summarizes the parameters chosen for the Monte Carlo optimization.
From these parameters, we can compute the total number of control laws in the

parameter description value

function library F1 = {+,−,×,÷}
s controller inputs a1, a2

Nvr number of variable
registers

3

Ncr number of constant
registers

3

Ninst,max max number of
instructions

5

Table 2.1: Parameters for the control ansatz.
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search space by listing all the possible combinations. For this, we multiple the
possible values for each columns of the instruction matrix and elevate the result
at the power of the number of rows in the matrix. As we allow matrices of different
sizes, we need to add the results for each possible number of rows. Expression 2.4
gives the order of magnitude of the number of possible control laws with the chosen
parameters.

Ninst,max∑
q=1

[Nr ×Nr ×No ×Nvr]
q ≈ 1.5× 1013 (2.4)

where
Ninst,max: maximum number of instructions.

Nr: total number of registers: Nr = Nvr +Ncr.
No: number of functions in the library or mathematical operators.
Nvr: number of variable registers, where to store intermediate calculations.

This number 1.5×1013 represents the total number of matrices. We assumed that
all registers where initialized with different values which is often the case in prac-
tice, unless we want to favor a given information. Table 2.2 presents the initial-
ization of the registers for the oscillator stabilization problem before the execution
of the instruction matrices.

variable registers

r1 0
r2 s1

r3 s2

constant registers

r4 c1 = −0.94
r5 c2 = −0.05
r6 c3 = −0.72

Table 2.2: Initialization of the registers. The constants ci have been randomly
taken in the range [−1, 1].

Also, among the 1.5×1013, there are, of course, a lot of identical and equivalent
control laws, due to overwriting, useless instructions, etc. This feature is valuable
as the expression of the global minimum is no longer unique and can be built in
different ways.

A randomly generated control law

Before performing a Monte Carlo optimization, let’s first generate a random con-
trol law. Figure 2.11 shows an instruction matrix randomly generated and depicts
the process of translation to a control law. The resulting control is a constant be-
yond the actuation limits, thus this control law is equivalent to constant forcing at
b = 1. Figure 2.12 gives a visualization of the actuation. We notice that with such
action, the point (a1, a2) = (−1, 0) becomes a fixed point. Indeed, without control
this point is the unique point where (ȧ1, ȧ2) = (0,−1), thus with the actuation,
this point becomes a fixed point.
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Figure 2.11: Matrix of the randomly generated control law and translation.
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Figure 2.12: Visualization of the randomly generated control law and time series
of a1, a2 and b.

Monte Carlo optimization

Now, let’s perform a Monte Carlo optimization with the parameters of 2.1. In
order to emulate experimental conditions, we only perform Ni = 1000 evaluations
of the cost functions. Thus, we only generate 1000 control laws to be evaluated.
Our Monte Carlo implementation is optimized with the screening of redundant
individuals. More informations are provided in section 2.4. Figure 2.13a shows
the distribution of costs in log-log scale. The values are sorted and normalized
with the unforced cost J0. We notice in figure 2.13a, that the performance of the
best solution after 1000 evaluated control laws is not as good as the optimal linear
solution. The associated cost reduction is ∆J/J0 = 74%.

However, as we rely on a stochastic process, only one realization of the opti-
mization process is not enough to estimate the performance of the method. That
is why, we performed Nρ = 100 realizations of Monte Carlo to have statistically
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relevant realizations. Figure 2.13b shows the envelop of the one hundred realiza-
tions of Monte Carlo. The cost reduction of the best individuals in the realization
envelop goes from 58.55% to 94.64%, and the median performance reduces the
cost by ∆J/J0 = 91.17%. The median performance is defined as the ρ = 50th
best realization.

100 101 102 103

10−1

100

i

J
/J

0

optimal solution
costs

(a)

100 101 102 103

10−1

100

i

J
/J

0

realization envelop
median realization
optimal solution
median best cost

(b)

Figure 2.13: (a) Distribution of the cost of 1000 randomly generated control laws
for the Landau oscillator. (b) Envelop of 100 realizations of Monte Carlo. The
median realization (ρ = 50th best) is depicted in red. In both (a) and (b) the
individuals are sorted following their cost. The black horizontal line represents
the cost of the best individual of the median realization. The associated cost
reduction is ∆J/J0 = 91.17%. The dashed line represents the cost of the linear
optimal solution (∆Jopt/J0 = 94.68%). The vertical and horizontal axis are in log
scale.

Figure 2.14 displays the best individuals for each one the one hundred real-
izations. We notice that the first twenty-three control laws are all similar. They
resemble the linear optimal control with different band width. Starting from the
33th run, the best individuals takes more than two periods to reach the fixed
point. We remark a majority of linear-like solutions, especially among the best
ones. The first nonlinear solution is ranked 49th and the other ones are ranked
beyond the 80th realizations. We also notice that those nonlinear solutions still
present a symmetry in their actuation map.

The best control law of the median realization is:

bMC,median = 2.0907(a1 − a2)

and the best control law of the best realization is:

bMC,best = 3, 7747(a1 − a2).

The expressions have been simplified compared to the expressions computed by
LGPC. The two controls have the same form but with a different coefficient. The
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Figure 2.14: Visualization of the best control laws for one hundred 100 Monte Carlo
realizations. The realizations are sorted by the cost of their best individual. The
numbering corresponds to the different realizations. 1 being the best realization
and 100 the worst. The trajectories for the four initial conditions are plotted for
two periods.

coefficients are related to the width of the control band and thus at the speed
of convergence of the oscillator towards the fixed point. This difference can be
appreciated in figures 2.15 and 2.16
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Figure 2.15: Visualization of the best control law for the median Monte Carlo
realization. The Landau oscillator is controlled by bmedian = 2.0907(a1 − a2)
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Figure 2.16: Visualization of the best control law for the best Monte Carlo real-
ization. The Landau oscillator is controlled by bbest = 3, 7747(a1 − a2)

2.2.3 LGPC optimization

In this section, we stabilize the Landau oscillator with the LGPC algorithm. We
especially study the influence of the operators probability (Pc, Pm, Pr). For this,
we ran LGPC optimizations with different combinations of (Pc, Pm, Pr). We start
from (Pc, Pm, Pr) = (1, 0, 0), full crossover, and we increase and decrease each pa-
rameter with a step of 0.1. We recall that Pc + Pm + Pr = 1. There are in total
66 combination of parameters to test. Also, as in the Monte Carlo optimization,
only one realization is not enough to estimate the performance of the algorithm,
thus we run Nρ = 100 realizations for each combination of probabilities. To have
a fair comparison between Monte Carlo and LGPC, we also evaluate Ni = 1000
individuals distributed in a population of Npopsize = 100 individuals that evolves
9 times for a total of Nρ = 10 generations. The parameters are summarized in
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table 2.3. Figure 2.17 summarizes the parameters for one combination of proba-
bilities. The parameters used for the description of the search space are the same
as the ones used for Monte Carlo.

parameter description value

function library F1 = {+,−,×,÷}
s controller inputs a1, a2

Nvr number of variable registers 3
Ncr number of constant registers 3

Ninst,max max number of instructions 5
Npopsize population size 100
NG number of generations 10
Ntour tournament size 7
Ne elitism 1
Pc crossover probability Pc
Pm mutation probability Pm
Pr replication probability 1− Pc − Pm

Table 2.3: Parameters for LGPC. The operators probability (Pc, Pm, Pr) are dis-
cussed in section 2.2.3.

Influence of genetic probabilities Pc, Pm and Pr

Figure 2.18 presents the results of the 66 tests.
The replication-only is, as expected, the worse configuration. Indeed, this is

equivalent to run a Monte Carlo optimization with only Ni = 100 individuals
and no more individuals. The addition of crossover and mutation progressively
improves the replication-only optimization. We notice that both crossover-only
and mutation-only LGPC are less efficient than the combination of crossover,
mutation and replication. Also from configuration 52 and lower, (Pc, Pm, Pr) =
(0.4, 0.1, 0.5), the median cost is lower than the median cost of Monte Carlo op-
timization. We note, in particular, that for a replication probability less than
0.5, LGPC performs better than Monte Carlo regardless of the crossover and mu-
tation probability. This shows that crossover and mutation allow to effectively
explore the search space. The operations of crossover and mutation, defined on
the control law representations, manage to improve the individuals throughout the
generations. Also it is the combination of crossover and mutation that gives the
best results. It is worth noting that crossover-only LGPC (ranked 43) is better
than mutation-only LGPC (ranked 47). This indicates that crossover and explo-
ration has a better learning potential than the explorative power of mutation.
This feature may be related to the choice of the problem as only few minima are
expected, rendering the exploration operator less useful.

Also, we highlight that the median cost of the 21 first configurations are all
equal. Indeed, the median realizations of these 21 configurations all manage to
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Figure 2.17: Conceptual figure describing all the parameters for the Nρ = 100
realizations of one probability configuration. The realizations or indexed by ρ and
the generations by n. For each generation, the individuals are sorted following
their cost.

build the same controller, in 13 different ways:

bLGPC,median = 2a1 − 3a2

that reduces the cost by ∆J/J0 = 94.62%, see figure 2.19. We recall that the
linear optimal control reduces the cost by ∆Jopt/J0 = 94.68%. Surprisingly, even
for such simple configuration, the replication operator also plays a non-negligible
part as the 21 first configurations are all equivalent. We can conclude that memory
is beneficial to explore a search space even when it is expected to have few minima.

Among all these configurations, there are 47 configurations that managed to
build control laws that are better than the linear optimal control. Figure 2.20
depicts the number of realizations that managed to build a better control law than
the optimal linear control. We notice that there is a clear region in the parameter
space that favors better solutions, specially around (Pc, Pm, Pr) = (0.6, 0.2, 0.2)
and (Pc, Pm, Pr) = (0.6, 0.3, 0.1).

Once again, we notice that crossover-only is better than mutation-only. Also
replication seems essential to learn complex control laws.

The best control law all probability combinations and realizations combined is
found for the configuration (Pc, Pm, Pr) = (0.5, 0.4, 0.1) and reads after simplifica-
tion:

bbest =
(a1 − 2a2)2(a1 − a2)

a1

.

It allows a cost reduction of ∆Jbest/J0 = 94.78%, better than the optimal linear
control, revealing that the linear control is in fact not the global minimum of the
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Figure 2.18: Performance of LGPC regarding the parameters (Pc, Pm, Pr = 1 −
Pc−Pm). Each block of the triangle corresponds to one probability configuration.
A neighbour block means a variation of 0.1 in the genetic operator probabilities.
Thus the top block is crossover only (1, 0, 0), the bottom-left block corresponds
to replication only (0, 0, 1) and the bottom-right block corresponds to mutation
only (0, 1, 0). For each configuration 100 realizations have been carried out. The
color code symbolize the performance of the median cost for each configuration.
The configurations are ranked following their relative performance, 1 being the
best configuration and 66 the worst. The first 21 configurations have all the same
minimum value log10(J/J0) = −1.26. From the 52th rank, the configurations has
a higher median cost than the median cost of Monte Carlo optimization.

problem. It is worth noting that bbest is built only from a1 and a2. No constants
have been used to ‘adjust’ the control law. This may be explained by the fact that
tuning constants from the initial random ones is costly in terms of instructions.
Figure 2.21 shows the phase portrait of the controlled oscillator with the best
control found. The actuation map displays the nonlinear effect of the control. The
actuation is globally similar to the linear control, however the control intensifies
near the fixed point. An absence of control in the diagonal direction prevents the
system to go beyond the limit cycle unlike the optimal linear control and thus
converges even faster. The curvature of the lobes that delimit the control must
play a role in the fast convergence of the system towards the fixed point. We note
that the oscillator converges linearly when close enough to the fixed point. Thus,
LGPC manages to find an unexpected structure for the control law that performs
better than the linear optimal control. We can expect that this nonlinear control
law can be improved with adequate constant tuning.
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Figure 2.19: Visualization of the controlled Landau oscillator with bLGPC,median =
2a1 − 3a2.

If we take a look at the best individual of the (Pc, Pm, Pr) = (0.6, 0.3, 0.1)
combination, all realizations combined, we notice that the best control law is not
only linear:

b(0.6,0.3,0.1),best = 2.4353a1 − 3.1238a2

but the associated cost reduction ∆J/J0 = 94.70% is also higher than the ‘optimal’
linear control found with fminsearch ∆Jopt/J0 = 94.68%. This shows that the
solution (equation 2.3) is, in fact only a local minimum of the space of linear control
laws. When we run a fminsearch with this new control law as initial condition,
we do not observe any improvement thus we can assume that this new solution is
another local minimum in the space of linear control laws. One explanation of the
presence of several minima in such simple dynamical system may be the nonlinear
saturation of the actuation command. We do not display the phase portrait of
the best linear control found with the (Pc, Pm, Pr) = (0.6, 0.3, 0.1) combination
because it is almost identical to figure 2.10 and no differences can be seen with
the naked eye.

Here, we shall stop the analysis of the influence of the probability operators
(Pc, Pm, Pr) to focus on other meta-parameters. In the following, we will consider
the (Pc, Pm, Pr) = (0.6, 0.3, 0.1) combination as it is one of the configurations that
have the lowest median cost value and is the one that have the most realizations
with better solutions that the linear ‘optimal’ control.
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Figure 2.20: Number of realizations that managed to build a control law more
efficient than the linear optimal control. The configurations are distributed as in
figure 2.18. The color intensity indicates the number of individuals.

2.3 Parametric study of LGPC

In this section, we present the influence of other parameters on the learning process
of LGPC. In particular, we investigate the role of the population size Npopsize, the
maximum number of instructions Ninst,max and the choice of the function library.
For a fair comparison between the parameters, we run all LGPC optimizations
with Ni = 1000 individuals. Seven population sizes are tested: 10, 20, 50, 100,
200, 500, 1000 with the adequate number of generations: 100, 50, 20, 10, 5, 2, 1.
The 1000 individual run is equivalent to a Monte Carlo optimization, Also, we vary
the maximum number of instructions Ninst,max, nine values are tested: 2, 5, 10, 20,
50, 100, 200, 500, 1000. This means that for Ninst,max = 2, the instruction matrix
only contains two rows, and one thousand rows for Ninst,max = 1000. Finally, we
look at the impact of the function library in the optimization process. We investi-
gate two libraries:F1 = {+,−,×,÷} and F2 = {+,−,×,÷, exp, tanh, sin, cos, log}.
The rest of the parameters are the same as the previous section and are summa-
rized in table 2.4. The operator probabilities (Pr, Pc, Pr) are chosen according to
section 2.2.3.

To have a relevant estimation of the performance of each combination of pa-
rameters, we realize Nρ = 100 runs for each combination of parameters.
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Figure 2.21: Visualization of the best control law derived thanks to LGPC with
the (Pc, Pm, Pr) = (0.5, 0.4, 0.1) combination.

2.3.1 F1 = {+,−,×,÷}
Let’s first look at the results for the library employed in section 2.2.3. In fig-
ure 2.22, we notice, first, that there is a favored region in the parameter space
for a best median performance. This region includes Ninst,max ∈ [5, 10] and
Npopsize ∈ [50, 100] and the performance decreases smoothly beyond this region.
The best configuration of all is (Ninst,max, Npopsize) = (5, 100).

We remark that for a fixed population size, performance decreases when we
increase the maximum number of instructions. This can be explained by the fact
that as we allow more instructions, the search space becomes all the more bigger.
Indeed, with more instructions, more and more complex control laws can be built,
with the possibility to have a high level of function nesting. When a large number
of instructions is employed, a bigger number of generations is preferred. Indeed,
as the matrices have much more rows, several rounds of crossover and mutation
will be needed to shape the control law by selecting the adequate operators, reg-
isters and avoiding that further instructions destroy the intermediate expressions.
This also shows that too much instructions can be a hindrance for the learning
process. For the ‘simple’ problem that is the stabilization of the oscillator where
rather simple control laws are expected to work, a small number of instructions
seems to be favored. However, to chose too few instructions is not advantageous
as we lose too much in complexity of the control laws. The maximum number
of instructions should be large enough to include relevant solutions but not too
much otherwise, the search space becomes too large to be effectively explored in
a reasonable number of generations.

Concerning the population size, we notice that population sizes around 50 and
100 are favored. Also, some Monte Carlo optimizations, especially with Ninst,max =
2 and 5, performed better than LGPC with Npopsize = 10. This is because small
populations are more vulnerable to random variations of the population due to
mutation; a given structure can more easily take over the population even if it is
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parameter description value

function library F1 = {+,−,×,÷}
F2 =

F1∪{exp, tanh, sin, cos, log}
s controller inputs a1, a2

Nvr number of variable registers 3
Ncr number of constant registers 3

Ninst,max max number of instructions [2,5,10,20,50,100,200,500,1000]
Npopsize population size [10,20,50,100,200,500,1000]
NG number of generations [100,50,20,10,5,2,1]
Ntour tournament size 7
Ne elitism 1
Pc crossover probability 0.6
Pm mutation probability 0.3
Pr replication probability 0.1

Table 2.4: Parameters for the parametric study of LGPC. The studied parameters
are in bold. Parameters are separated in two sets: (top) parameters that define
the control laws, (bottom) parameters that define the learning process.

not the best one, discarding relevant structures and leading the population into a
local minimum. This effect is also referred in biology as genetic drift.

Figure 2.23 shows that small population sizes and moderate number of instruc-
tions tend to build better solutions. Around 10% of the realizations manage to
build more efficient solutions than the linear optimal control. The best control
law among all realizations is:

bF1,best =
(a2 − a1)2

(a2 − a1)

−0.69096
− 5(a2 − a1)

(a2 − a1)
− 6(a2 − a1)

− 3(a2 − a1)

and is depicted in figure 2.24. This complex expression, nesting divisions, has
been found with the combination (Ninst,max, Npopsize) = (20, 200) and reduces the
cost by ∆J/J0 = 95.50%. Even though a limit a 200 instructions was needed to
find it, we note that the matrix of this control law has in fact 23 rows. Figure 2.24
shows that the convergence of the oscillator towards the fixed point is not as fast
as previous solution, indeed, we can still distinguish oscillations after the second
period. However, this solution seems to favor less intense actuation and thus
reducing the Jb component of the cost function. Indeed, the cost of the optimal
linear optimal control is as follows: Jaopt/J0 = 2.16%, Jaopt/J0 = 3.14% and the
cost of bF1,best is: Ja/J0 = 1.76%, Ja/J0 = 2.74%

In conclusion, a low population size is more likely to build a better/more
complex solution due to the large number of generations but the performance of
the median realization drops.
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Figure 2.22: (a) Performance of LGPC regarding population size and maximum
number of instructions for the function library F1 = {+,−,×,÷}. The combi-
nation of parameters are ranked following the performance of their median real-
ization. The combination ranked first is (Ninst,max, Npopsize) = (5, 100). (b) Cost
reduction of the median realization of the different combinations. The horizontal
axis represent the rank of the configuration described in (a). (a) and (b) share the
same color code.

2.3.2 F2 = F1 ∪ {exp, tanh, sin, cos, log}
We now add nonlinear functions in the function library, allowing oscillations with
cos and sin, exponential and logarithm growth with exp and log and saturation
with tanh. As we allow more complex expressions, we can expect to find complex
and more efficient solutions than the linear optimal control. Figure 2.25 show
similar tendencies for the median realization as for the F1 library. We note however
that the performances have dropped in general. This can be explained by the fact,
as we augment the function library, the search space becomes bigger and more
individuals are needed to explore more control law structures. The combination
(Ninst,max, Npopsize) = (5, 100) stands out from the other combinations as the best
one with a reduction of ∆J/J0 = 93.40% of the unforced cost.

Figure 2.26, shows also similar trends as for the F1 function library. Small
populations are favored for matrices with more than 10 instructions. When a
small number of instructions is allowed, diversity with a larger population size is
preferred.

The best configuration for the F2 library is (Ninst,max, Npopsize) = (5, 100) as it
is ranked first in terms of median cost and also it is one of the configurations to
have the most realizations that outperformed the linear optimal control.

However the all time best control law has been found by the combination
(Ninst,max, Npopsize) = (20, 50) and reduces the cost by ∆J/J0 = 97.08% with a
matrix containing 28 rows. We will not show the control law as it is exceedingly
complex. It comprises 215 instances of cos, 217 instances of ÷, 216 instances of
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Figure 2.23: Number of realizations that managed to build a control law more
efficient than the linear optimal control for the function library F1 = {+,−,×,÷}.
The color intensity indicates the number of individuals.
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Figure 2.24: Visualization of the controlled Landau oscillator with the best control
law found for the function library F1 = {+,−,×,÷}.

(a1 − a2) and two times the same constant. Following the number of occurrences
of the operators, we can assume that the same pattern has been repeated and
nested to shape the control law. The control is depicted in figure 2.27. The
external regions show a chaotic behaviour with strong actuation, however as the
sign of the actuation changes intermittently, we can assume that those regions are
equivalent to no actuation, indeed, we note that when leaving the chaotic control
region, the system is at near the periodic orbit. The control activates once the
system is in the region where actuation is the more efficient. We also note that
the system converges quickly towards the fixed point. Thus, the control comprises
fast convergence with lowest actuation. This control may reveal another way of
controlling the system by forcing only in the regions where it matters, allowing
then to limit the energy expense.

The success of LGPC is that it managed to detect and exploit the most recep-
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Figure 2.25: (a) Performance of LGPC regarding population size and maximum
number of instructions for the function library F2 = F1 ∪ {exp, tanh, sin, cos, log}.
The combination of parameters are ranked following the performance of their
median realization. The combination ranked first is (Ninst,max, Npopsize) = (5, 100)
(b) Cost reduction of the median realization of the different combinations. The
horizontal axis represent the rank of the configuration described in (a). (a) and
(b) share the same color code.

tive state of the oscillator to efficiently control it with minimum actuation energy.
The most difficult task for LGPC may have been to build the transient part of the
control, to guide the system towards the state of interest. An absence of control
may have been possible but building such control is maybe even more difficult.
The enabler for such control was the introduction of nonlinear functions. We can
assume that augmenting the function library with more nonlinear functions, such
as inequality signs (> or ≤) and boolean operators, can help the learning of better
control laws. However, one must select the function library carefully since a too
diverse library lowers the general performance.

2.4 Learning acceleration
In this last section, we describe some accelerators that manage to increase the
learning rate of LGPC. The main idea of these accelerators is to avoid redundant
evaluations, meaning to prevent the evaluation of the same control laws. First,
we need to detect equivalent control laws. However, this is not an easy task as
simplification of two mathematical expressions is not guaranteed to give the same
results because of the commutative operators. Moreover, another complication is
the protection of the ÷ and log operators. Because of the protection, these func-
tions present a discontinuous behaviour near 0 that prevents from simplification.
Thus, we propose another way to detect equivalent expressions. To detect if two
control laws are similar, we evaluate them on 1000 random sample inputs and we
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Figure 2.26: Number of realizations that managed to build a control law more
efficient than the linear optimal control for the function library F2 = F1 ∪
{exp, tanh, sin, cos, log}. The color intensity indicates the number of individuals.
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Figure 2.27: Visualization of the controlled Landau oscillator with the best control
law found for the function library F2 = F1 ∪ {exp, tanh, sin, cos, log}.

compare the control outputs. These methods allows to detect mathematical equiv-
alent control laws even though their expressions are very different. Indeed, thanks
to such test, control laws that are beyond the actuation thresholds will also be
ruled out. For example, the control laws b = 1.01 and b = 1023 will be considered
as the same control laws. Moreover, the random samples are taken in the range
of the sensors signals making the comparison between the control laws even more
meaningful. In practice, each time a new control law is built, we evaluate it over
the 1000 random sample inputs and store the result in the database. Each new
control law is then compared to the database to verify if it has not been already
evaluated.

Equivalent control laws can then be filterer out in two ways:

in the population: if a new individual is equivalent to an individual already
present in the population, then it is discarded and a new individual is built
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(randomly if it is the first generation or with one of the genetic operators).

in the database: if a new individual is equivalent to a previous individual in
the current or past generations, then it is discarded and a new individual is
built.

Of course the second option includes the first one. Those rules do not apply for
individuals generated thanks to replication and elitism as their role is to emulate
memory through the generations. Those filtering assures that the population of
individuals is always moving towards unexplored regions of the control landscape
and backward steps are not possible.

These techniques have been used in Cornejo Maceda et al. (2019) and allowed
a acceleration of the learning rate by at least a factor 3 for the net drag reduction
of the fluidic pinball.

In conclusion, in this chapter, we described the LGPC algorithm and applied
it to stabilize a simple, yet fundamental dynamical system, the damped Landau
oscillator. We showed that the genetic operators allow the exploration of the
control law landscape to find the minima of the problem and the exploitation of
the explored control laws to build even better solutions. Through an extensive
parametric study of the LGPC algorithm, we revealed that it is the interaction
between crossover and mutation that allows an effective learning. We also drew
some rule of thumbs to choose the population size, the maximum number of in-
structions and the function library. Too extreme values for the population size
and maximum number of instructions give poor performances and a balance be-
tween population size and maximum number of instructions is required to be able
to build complex control laws. For a single input problem such as the stabiliza-
tion of the Landau oscillator, a population of 100 individuals and a number of
instructions between 5 and 10 are appropriate for a good median performance.
Finally, a rich function library allows to build complex control laws and discover
new strategies of control. However, for a large number of functions the overall
performance drops. A solution may be to increase the total number of evalua-
tions; a population of 100 individuals evolving through 50 generations may bring
enough diversity and combinatorial power to explore effectively such large search
spaces. In the following the operator probabilities (Pc, Pm, Pr) = (0.6, 0.3, 0.1) has
been chosen, as it is the best in terms of median performance and most number of
realization with better results than the linear optimal control. Finally, the source
code of our LGPC implementation is freely available online under the name xMLC
at https://github.com/gycm134/xMLC.

https://github.com/gycm134/xMLC


Chapter 3

Drag reduction on the fluidic pinball

In this chapter, we aim to reduce the net drag power of the fluidic pinball thanks
to the linear genetic programming control methodology presented in chapter 2.
For this study, we explore three different search spaces: first we look for a multi-
frequency forcing controller, second we look for feedback control laws and finally
we investigate an hybrid search space comprising periodic functions and sensor
signals. Thus, in section 3.1 we present the fluidic pinball and the optimization
problem. In section 3.2, we detail an open-loop control study of the fluidic pinball
for a control reference. Lastly, we apply LGPC to minimize the net drag power
with multi-frequency forcing (section 3.3), feedback control (section 3.4) and a
search space allowing both strategies (section 3.5).
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3.1 The fluidic pinball—A benchmark flow control
problem

In this section, we describe the fluid system studied for the control optimization—
the fluidic pinball. First we present the fluidic pinball configuration and the un-
steady 2D Navier-Stokes solver in section 3.1.1, then the unforced flow spatio-
temporal dynamics in section 3.1.2 and finally the control problem for the fluidic

47
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pinball in section 3.1.3. This section is largely inspired from section 2 of Cornejo
Maceda et al. (2020).

3.1.1 Configuration and numerical solver

The test case is a two-dimensional uniform flow past a cluster of three cylinders
of same diameter D. The centre of the cylinders form an equilateral triangle
pointing upstream. The flow is controlled by the independent rotation of the
cylinders along their axis. The rotation of the cylinders enables the steering of
incoming fluid particles, like a pinball machine. Thus, we refer this configuration
as the fluidic pinball. In our study, we choose the side length of the equilateral
triangle equal to be 1.5D. Various side lengths have been explored numerically in
(Chen et al., 2020), revealing a myriad of interesting regimes.

The flow is described in a Cartesian coordinate system, where the origin is
located midway between the two rearward cylinders. The x-axis is parallel to
the stream-wise direction. The y-axis is orthogonal to the cylinder axis. The
velocity field is denoted by u = (u, v) and the pressure field by p. Here, u and v
are, respectively, the stream-wise and transverse components of the velocity. We
consider a Newtonian fluid of constant density ρ and kinematic viscosity ν. For
the direct numerical simulation, the unsteady incompressible viscous Navier-Stokes
equations are non-dimensionalized with cylinder diameterD, the incoming velocity
U∞ and the fluid density ρ. The corresponding Reynolds number is ReD = U∞D/
ν. Throughout this study, only ReD = 100 is considered.

The computational domain Ω is a rectangle bounded by [−6, 20]× [−6, 6] ex-
cluding the interior of the cylinders:

Ω = {[x, y]ᵀ ∈ R2 : [x, y]ᵀ ∈ [−6, 20]×[−6, 6]∧(x−xi)2+(y−yi)2 ≥ 1/4, i = 1, 2, 3}.

Here, [xi, yi]
ᵀ with i = 1, 2, 3, are the coordinates of the cylinder centres, starting

from the front cylinder and numbered in mathematically positive direction,

x1 = −3/2 cos(30◦) y1 = 0,
x2 = 0 y2 = −3/4,
x3 = 0 y3 = 3/4.

The computational domain Ω is discretized on an unstructured grid comprising
4225 triangles and 8633 nodes. The grid is optimized to provide a balance between
computation speed and accuracy. Grid independence of the direct Navier-Stokes
solutions has been established by Deng et al. (2020).

The boundary conditions for the inflow, upper and lower boundaries are U∞ =
ex while a stress-free condition is assumed for the outflow boundary. The control
of the fluidic pinball is carried out by the rotation of the cylinders. A non-slip
condition is adopted on the cylinders: the flow adopts the circumferential veloc-
ities of the front, bottom and top cylinder specified by b1 = UF , b2 = UB and
b3 = UT . The actuation command comprises these velocities, b = [b1, b2, b3]ᵀ.
A positive (negative) value of the actuation command corresponds to counter-
clockwise (clockwise) rotation of the cylinders along their axis. The numerical
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integration of the Navier-Stokes equations is carried by an in-house solver using a
fully implicit Finite-Element Method (Noack et al., 2003, 2016). The method is
third order accurate in time and space.

(a) Symmetric steady solution. (b) Unforced flow at t = 400.

Figure 3.1: Vorticity fields for the unforced fluidic pinball at ReD = 100. Blue (red)
regions bounded by dashed lines represent negative (positive) vorticity. Darker
regions indicate higher values of vorticity magnitude.

The initial condition for the numerical simulations is the symmetric steady
solution. The symmetrical steady solution is computed with a Newton-Raphson
method on the steady Navier-Stokes. An initial short, small rotation of the front
cylinder is used to kick-start the transient to natural vortex shedding in the first
period (Deng et al., 2020). The transient regime lasts around 400 convective time
units. Figure 3.1 shows the vorticity field for the symmetric steady solution and
the natural unforced flow after 400 convective units. The snapshot at t = 400 in
figure 3.1b will be the initial condition for all the following simulations.

3.1.2 Unforced reference

The fluidic pinball is a geometrically simple configuration that comprises key fea-
tures of real-life flows such as successive bifurcations and frequency crosstalk be-
tween modes. Deng et al. (2020) shows that the unforced fluidic pinball undergoes
successive bifurcations with increasing Reynolds number before reaching a chaotic
regime. The first Hopf bifurcation at Reynolds number Re ≈ 18 breaks the sym-
metry in the flow and initiates the von Kármán vortex shedding. The second
bifurcation at Reynolds number Re ≈ 68 is of pitchfork type and gives rise to a
transverse deflection of jet-like flow appearing between the two rearward cylinders.
The bi-stability of the jet deflection has been reported by Deng et al. (2020). At
a Reynolds number Re = 100 the jet deflection is rapid and occurs before the
vortex shedding is fully established. Figure 3.2a shows an increase of the lift co-
efficient CL before oscillations set in and the lift coefficient converges against a
periodic oscillation around a slightly reduced mean value. Those bifurcations are
a consequence of multiple instabilities present in the flow: there are two shear in-
stabilities, on the top and bottom cylinder and a jet bi-stability originating from
the gap between the two back cylinders. The shear-layer instabilities synchronize
to a von Kármán vortex shedding.

Figure 3.2 illustrates the dynamics of the unforced flow from the unstable
steady symmetric solution to the post-transient periodic flow. The phase portrait
in figure 3.2b and the power spectral density (PSD) in figure 3.2d show a periodic
regime with frequency f0 = 0.116 and its harmonic. Figure 3.2a shows that the
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Figure 3.2: Characteristics of the unforced natural flow starting from the steady
solution (t = 0). The transient spans until t ≈ 400. (a) Time evolution of the
lift coefficient CL, (b) phase portrait, (c) time evolution of the drag power Ja
(blue), actuation power Jb (green) and net drag power J (red) and (d) Power
Spectral Density (PSD) showing the natural frequency f0 = 0.116. The phase
portrait is computed during the post-transient regime t ∈ [900, 1400] and the PSD
is computed over the last 1000 convective time units, t ∈ [400, 1400].

mean value of the lift coefficient CL is not null. This is due to the deflection
of the jet behind the two rearward cylinders during the post-transient regime.
During this regime, the deflection of the jet stays on one side as it is illustrated
in figure 3.3a-3.3h over one period and in figure 3.3j in the mean field. This
deflection explains the lift coefficient CL asymmetry. Indeed, the upward oriented
jet increases the pressure on the lower part of the top cylinder leading to an
increase of the lift coefficient. In figure 3.2a, the initial downward spike on the
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(a) t+ T0/8 (b) t+ 2T0/8

(c) t+ 3T0/8 (d) t+ 4T0/8

(e) t+ 5T0/8 (f) t+ 6T0/8

(g) t+ 7T0/8 (h) t+ T0

Figure 3.3: Vorticity fields of the unforced flow. (a)-(f) Time evolution of the
vorticity field in the last period of the simulation. The color code is the same as
figure 3.1. T0 is the natural period associated to the natural frequency f0.

lift coefficient is due to the initial kick. The unforced natural flow is our reference
simulation for future comparisons.

Thanks to the rotation of the cylinders, the fluidic pinball is capable of repro-
ducing six actuation mechanisms inspired from wake stabilization literature and
exploiting distinct physics. Examples of those mechanisms can be found in Ishar
et al. (2019). First, the wake can be stabilized by shaping the wake region more
aerodynamically—also called fluidic boat tailing. The shear layers are vectored
towards the centre region with passive devices, like vanes (Flügel, 1930) or active
control through Coanda blowing (Geropp, 1995; Geropp & Odenthal, 2000; Bar-
ros et al., 2016). In the case of the fluidic pinball, we can mimic this effect by
a counter-rotating rearward cylinders which accelerates the boundary layers and
delays separation. This fluidic boat tailing is typically associated with significant
drag reduction. Second, the two rearward cylinders can also rotate oppositely
ejecting a fluid jet on the centreline. Thus, interaction between the upper and
lower shear layer is suppressed, preventing the development of a von Kármán vor-
tex in the vicinity of the cylinders. Such base bleeding mechanisms has a similar
physical effect as a splitter plate behind a bluff body and has been proved to be
an effective means for wake stabilization (Wood, 1964; Bearman, 1967).
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Third, phasor control can be performed by estimating the oscillation phase
and feeding it back with a phase shift and gain (Protas, 2004). Fourth, unified
rotation of the three cylinders in the same direction gives rise to higher velocities,
and thus larger vorticity, on one side at the expense of the other side, destroying
the vortex shedding. This effect relates to the Magnus effect and stagnation point
control (Seifert, 2012). Fifth, high-frequency forcing can be effected by symmetric
periodic oscillation of the rearward cylinders. With a vigorous cylinder rotation
(Thiria et al., 2006), the upper and lower shear layers are re-energized, reducing
the transverse wake profile gradients and thus the instability of the flow. Thus,
the effective eddy viscosity in the von Kármán vortices increases, adding a damp-
ing effect. Sixth and finally, a symmetrical forcing at a lower frequency than the
natural vortex shedding may stabilize the wake (Pastoor et al., 2008). This is
due to the mismatch between the anti-symmetric vortex shedding and the forced
symmetric dynamics whose clock-work is distinctly out of sync with the shedding
period. High- and low-frequency forcing lead to frequency crosstalk between actu-
ation and vortex shedding over the mean flows, as described by low-dimensional
generalized mean-field model (Luchtenburg et al., 2009).

We confirm therefore that the fluidic pinball is an interesting Multiple-Input
Multiple-Output (MIMO) control benchmark. The configuration exhibits well-
known wake stabilization mechanisms in physics. From a dynamical perspective,
nonlinear frequency crosstalk can easily be enforced. In addition, even long-term
simulations can easily be performed on a laptop within an hour.

3.1.3 Control objective and optimization problem

Several control objectives related to the suppression or reduction of undesired
forces can be considered for the fluidic pinball. We can increase the recirculation
bubble length, reduce lift fluctuations or even mitigate the total fluctuation energy.

In this study, we aim to reduce the net drag power at ReD = 100. The
associated objectives are Ja, the drag power and Jb, the actuation power. The
cost Ja is defined as the temporal average of the drag power of the controlled flow
field:

Ja =
1

Tev

ˆ t0+Tev

t0

ja(t) dt (3.1)

with the instantaneous cost function

ja(t) = Fx(t) ·U∞ (3.2)

where Fx is the drag and U∞ is the incoming velocity. The control is activated at
t0 = 400 convective time units after the starting kick on the steady solution. Thus,
we have a fully established post-transient regime. The cost function is evaluated
until Tev = 525 convective time units. Thus, the time average is effected over
125 convective time units which corresponds to more than 10 periods T0 of the
unforced flow.

Jb is naturally chosen as a measurement of the actuation energy investment.
Evidently, a low actuation energy is desirable. The actuation power is computed
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as the power of the torque applied by the fluid on the cylinders. Jb is the time-
averaged actuation power over Tev = 125 time units:

Jb(b) =
1

Tev

ˆ t0+Tev

t0

3∑
i=1

Pact,i dt (3.3)

where Pact,i is the actuation power supplied integrated over cylinder i:

Pact,i = −
‹

biF
θ
s,i ds

where
(
F θ
s,ids

)
is the azimuthal component of the local fluid forces applied to

cylinder i. The negative sign denotes that the power is supplied and not received
by the cylinders.

Thus, the cost function employed for the optimization is J = Ja+γJb. γ is the
penalization parameter. It allows to balance the terms of the cost function. In this
study as we aim to reduce the net drag power, we set γ = 1 so both components
Ja and Jb have the same weight.

The instantaneous values of Ja and Jb are plotted in figure 3.2c. Naturally,
for the unforced flow, the actuation power is null, and the cost function is only
the drag power. We note that the drag power takes around 300 convective units
to stabilize. The cost of the post-transient regime is J0 = 1.87. J0 serves as a
reference for future comparisons. The cost of the steady flow 3.1a is Jsteady = 1.80
which is lower than J0 but still high. Therefore, we can assume that stabilizing
the symmetric steady solution may not be the best strategy to reduce the net drag
power.

In order to minimize the net drag power, the flow is forced by the rotation
of the three cylinders. The actuation command b = [b1, b2, b3]ᵀ is determined by
the control law K. This control law may operate open-loop or closed-loop with
flow input. Considered open-loop actuations are steady or harmonic oscillation
around a vanishing mean. Considered feedback includes velocity sensor signals
in the wake. Thus, in the most general formulation, the control law reads the
equation described in section 1.2.2: b(t) = K(h(t), s(t)) with h(t) and s(t) being
vectors comprising respectively time dependent harmonic functions and sensor
signals. The sensor signals include the instantaneous velocity signals as well as
three recorded values over one period as elaborated in the result section 3.4. In
the following, Nb represents the number of actuators, Nh for the number of time-
dependent functions and Ns for the number of sensor signals.

3.2 Symmetric steady actuation for net drag re-
duction

First, we carry out an open-loop parametric study to assess the effect of control
on the drag power. To achieve an exhaustive parametric study is a costly task as
we need to operate in 3-dimensional parameter space. That is why we restrict the
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search to the subspace of symmetric actuations: the front cylinder does not rotate
and the two back cylinders rotate at the same speed but in opposite directions:

b1 = 0,
b2 = −b3.

Thus, we explore the effect of only one parameter b2. b2 is defined so that when it is
positive, the flow is vectored towards the centreline—boat tailing configuration—
and when it is negative, the inner flow is accelerated—base bleeding configuration.
Figure 3.4 shows the evolution of Ja, Jb and J = Ja+Jb as a function of b2. Solely
considering Ja, boat tailing is the best strategy to reduce the drag power. Indeed,
drag power decreases monotonously with increasing b2. For a strong actuation,
b2 > 3, Ja even becomes negative and the fluidic pinball becomes a jet. Base
bleeding, on the other hand, is not a viable strategy to reduce the drag power.
There is a local minimum around b2 = −4 but its associated drag power is still
higher than the natural unforced flow. When adding the actuation power, there
is only one minimum for the cost function J , around b2 = 1. Its associated cost
is JBT/J0 = 0.77. A more detailed analysis of the different controlled regimes is
given in section 4.2.2

Figure 3.4: Cost function evolution regarding actuation intensity for symmetric
constant actuation.

Figure 3.5d shows the characteristics of the controlled flow with the best boat
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tailing solution. We note that the regime is purely harmonic with an increase
of the main frequency from f0 = 0.116, for the unforced flow, to f1 = 0.128.
We also remark a symmetrization of the lift coefficient CL alongside a significant
increase of the oscillations amplitude. The loss of the mean value results in a
symmetrization of the flow. Indeed, figure 3.6 shows that the near jet completely
disappeared. We also observe a considerable reduction of the recirculation bubble,
as a consequence, the base pressure behind the back cylinders increases and the
total drag decreases.

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

1
2
0
0

1
4
0
0

-0.5

-0.25

0

0.25

0.5

forcedunforced

(a)

-0.5 -0.3 -0.1 0.1 0.3 0.5

-0.5

-0.3

-0.1

0.1

0.3

0.5

(b)

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

1
2
0
0

1
4
0
0

0

0.5

1

1.5

2

2.5

3

forcedunforced

(c)

0 0.05 0.1 0.15 0.2 0.25

0

2

4

6

8

(d)

Figure 3.5: Characteristics of the best boat tailing solution starting from the
steady solution (t = 0). The transient spans until t ≈ 400. (a) Time evolution
of the lift coefficient CL, (b) phase portrait, (c) time evolution of the drag power
Ja (blue), actuation power Jb (green) and net drag power J (red) and (d) Power
Spectral Density (PSD) showing the frequency f1 = 0.128.
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(a) t+ T1/8 (b) t+ 2T1/8

(c) t+ 3T1/8 (d) t+ 4T1/8

(e) t+ 5T1/8 (f) t+ 6T1/8

(g) t+ 7T1/8 (h) t+ T1

Figure 3.6: Vorticity fields of the flow controlled by the best boat tailing solution.
(a)-(f) Time evolution of the vorticity field in the last period of the 1000 time units
simulation. The color code is the same as figure 3.1. T1 is the period associated
to the frequency f1.

Thanks to a 1-dimensional parametric study, we highlighted the benefit of boat
tailing to reduce the drag power. Of course, a control based on the three cylinders
may certainly improve the results. This is explored in a model-free framework
thanks to LGPC in the next sections. The exploration of a the 3-dimensional
parameter space is enabled thanks to a novel machine learning algorithm, the ex-
plorative gradient method (EGM) (Li et al., 2021). EGM is thoroughly explained
in section 4.1.2.

3.3 Multi-frequency optimization

In this section, we explore the space of open-loop controllers, in particular periodic
control laws. In order to do so, we consider cosine functions as inputs for the
control laws. Thus, equation 1.1 becomes: b(t) = K(h(t)). To enrich our search
space and to avoid resonance effects, we choose eight periodic functions whose
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frequencies are incommensurable with the natural frequency f0:

h1 = cos(2πΦ−4f0t), h5 = cos(2πΦ1f0t),
h2 = cos(2πΦ−3f0t), h6 = cos(2πΦ2f0t),
h3 = cos(2πΦ−2f0t), h7 = cos(2πΦ3f0t),
h4 = cos(2πΦ−1f0t), h8 = cos(2πΦ4f0t).

The golden ration Φ assures that the periodic function is incommensurable with
the natural frequency f0, i.e. the natural frequency cannot be reconstructed thanks
to the algebraic operators (+,−,×,÷).

The rest of the LGPC parameters are summarized in table 3.1. We choose
the operators probability (Pc, Pm, Pr) = (0.6, 0.3, 0.1) as explained in 2.2.3. As
we optimize three controllers, we decided to increase the number of maximum
instructions to 50. To build complex control laws, we employ the function library
F2 = {+,−,×,÷, exp, tanh, sin, cos, log}. Also, since we have eight inputs for the
control laws, we need to increase the number of variable registers to include an
instance of all inputs. Thus, we also increase the number of constants.

parameter description value

function library F2 = {+,−,×,÷,
exp, tanh, sin, cos, log}

h controller inputs hi, i = −4, ..,−1, 1, ..4
Nvr number of variable registers 8 + 3 = 11
Ncr number of constant registers 10

Ninst,max max number of instructions 50
Npopsize population size 100
NG number of generations 10
Ntour tournament size 7
Ne elitism 1
Pc crossover probability 0.6
Pm mutation probability 0.3
Pr replication probability 0.1

Table 3.1: LGPC parameters for multi-frequency forcing optimization.

We ran the optimization with a population of 100 individuals evolving through
10 generations. The learning process is illustrated in figure 3.7. Most of the
learning is done during the Monte Carlo step, indeed after 100 random evaluations
the cost is equal to J/J0 = 0.80. Only small improvements are made until the
fourth generation where a big jump manages to reduce the cost lower than the
boat tailing solution. From there, only small improvements are achieved.

The best control law bMF reads:

bMF
1 = −0.13732,
bMF

2 = 0.982511,
bMF

3 = −1.1979,
JMF/J0 = 0.7476

(3.4)
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Figure 3.7: Distribution of the costs during the multi-frequency forcing LGPC
optimization process. Each dot represents the cost Ja/J0 of one individual. The
color of the dots represents how the individuals have been generated. Black dots
denote the individuals which are randomly generated (Monte Carlo). Blue dots
refer to individuals which are generated from a genetic operator. The individuals
from each generation have been sorted following their costs. The red line shows
the evolution of the best cost. The dashed horizontal line corresponds to the best
symmetric solution b2 = 1 with a cost of JBT/J0 = 0.77. The vertical axis is in
log scale and has been truncated to help the visualization of the best individuals.

We note that the control is steady and does not contain any hi, suggesting that
periodic forcing is not a viable solution to reduce the net drag power. Indeed,
periodic forcing must increase the gradient of the azimuthal speed, thus increasing
the torque and actuation power. bMF resembles a boat tailing configuration with
a slight asymmetry as the bottom cylinders rotates faster than the top one and
the front cylinder also presents a small rotation. We suspect that this asymmetry
is typical of pitchfork bifurcated flows as it was also reported by Raibaudo et al.
(2019).

The characteristics of the flow controlled by bMF are shown in figure 3.8. As
for the best boat tailing solution, the controlled flow with bMF is purely harmonic
with a slightly lower frequency f2 = 0.126. The amplitude of the oscillations of the
lift coefficient has also increased. However, the slight asymmetry in the control
results in a significant increase of the mean value of the lift coefficient.

The mean value variation of the lift coefficient is, nonetheless, hardly visible
on the snapshots in figure 3.9. As the actuation is close to the best boat tailing
control, the controlled flows are also similar. By squinting ones eye, we notice that
there is a small region, at the lower-back part of the front cylinder, with intense
vorticity. We can assume that this small vortex increased the local pressure and
thus shifts the mean value of the lift positively.
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Figure 3.8: Characteristics of the flow controlled by bMF starting from the steady
solution (t = 0). The transient spans until t ≈ 400. (a) Time evolution of the lift
coefficient CL, (b) phase portrait, (c) time evolution of the drag power Ja (blue),
actuation power Jb (green) and net drag power J (red) and (d) Power Spectral
Density (PSD) showing the frequency f2 = 0.126.

3.4 Feedback control law optimization

In this section, we allow feedback control laws by adding sensor signals as inputs.
Thus, equation 1.1 becomes: b(t) = K(s(t)). We choose a grid of nine sensor
downstream measuring either x or y velocity components. The coordinates of the
sensors are x = 5, 6.5, 8 and y = 1.25, 0, −1.25. The six exterior sensors are u
sensors while v sensors are chosen for the ones on the symmetry line y = 0. The
information of sensors is summarized in table 3.2. Moreover, in order to take into
account the convective nature of the flow, we add time-delayed sensors as inputs of
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(a) t+ T2/8 (b) t+ 2T2/8

(c) t+ 3T2/8 (d) t+ 4T2/8

(e) t+ 5T2/8 (f) t+ 6T2/8

(g) t+ 7T2/8 (h) t+ T2

Figure 3.9: Vorticity fields of the flow controlled by the best boat tailing solution.
(a)-(f) Time evolution of the vorticity field in the last period of the 1000 time units
simulation. The color code is the same as figure 3.1. T2 is the period associated
to the frequency f2.

the control laws. The delays are a quarter, half and three-quarters of the unforced
natural period, yielding following additional lifted sensor signals:

si+9(t) = si(t− T0/4), si+18(t) = si(t− T0/2), si+27(t) = si(t− 3T0/4).

Hence, the dimension of the sensor vector s is 9 × 4 = 36 and X ⊂ R36. The
time-delayed sensors are also include as control inputs to mimic ARMAX-based
control (Hervé et al., 2012).

The same LGPC parameters as for section 3.3 have been chosen. The number
of variable constants increased as we now have 36 sensor signals.

Figure 3.10 shows cost of the individuals during the optimization process. We
note the same learning trend as for multi-frequency forcing optimization. However
in this case, the big jump appeared sooner, directly at the second generation. From
there, only small improvements are achieved. We note also that the Monte Carlo
step is less efficient as less individuals have reached a performance lower than the
unforced one. Moreover the best individual of the first generation has a cost of
J/J0 = 0.84 which is higher than in the multi-frequency forcing case. This can
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sensor x-coordinate y-coordinate velocity component

s1 5 1.25 u
s2 6.5 1.25 u
s3 8 1.25 u
s4 5 0 v
s5 6.5 0 v
s6 8 0 v
s7 5 -1.25 u
s8 6.5 -1.25 u
s9 8 -1.25 u

Table 3.2: Summary of sensor information.

parameter description value

function library F2 = {+,−,×,÷,
exp, tanh, sin, cos, log}

s controller inputs si(t), i = 1, .., 36
Nvr number of variable registers 36 + 3 = 39
Ncr number of constant registers 10

Ninst,max max number of instructions 50
Npopsize population size 100
NG number of generations 10
Ntour tournament size 7
Ne elitism 1
Pc crossover probability 0.6
Pm mutation probability 0.3
Pr replication probability 0.1

Table 3.3: LGPC parameters for feedback control optimization.

be explained by the fact that as there are more inputs, the search space becomes
larger thus the drop in performance of Monte Carlo.

The expression of the best control law bFB is:

bFB
1 (t) = log(s9(t− T0/2)),

bFB
2 (t) = exp(0.18549

s1(t− 4T0/3)

s9(t)
),

bFB
3 (t) = −1.12724,
JFB/J0 = 0.7451.

(3.5)

LGPC managed to successfully combined sensors signals, delayed sensor signals
and nonlinear function to build a controller bFB that reduces even further the
cost function compared to the bMF control law. The actuation command resulting
from bFB is plotted in figure 3.11. We note that the control resembles, again, the
boat tailing solution, however this strategy is augmented by a phasor control for
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Figure 3.10: Same as figure 3.7 but for the feedback optimization LGPC.

the front and bottom cylinder, meaning that the control of the front and bottom
cylinder is directly related to the oscillatory dynamics of the flow (Brunton &
Noack, 2015). A spectral analysis shows that the main frequency of b2 and b3 are
both f3 = 0.112, suggesting that it is a direct feedback.

Figure 3.11: Time series of the actuation command for the best feedback control
law found with LGPC.

Figure 3.12 shows the characteristics of flow controlled by bFB. The controlled
flow is purely harmonic according to figure 3.12d, but the phase portrait, fig-
ure 3.12b, is slightly deformed due to the third harmonic (not shown in the figure),
even though its amplitude is imperceptible. The amplitude oscillations of the lift
coefficient also increased and the mean value is not null.

The kinematics of the flow, figure 3.13, show that the near jet disappeared
and the length of the recirculation decreased like the two last control strategies.
However, we note that the recirculation bubble is a bit less reduced. Also, the vor-
tices stay attached longer before shedding. This is especially true for the bottom
part where the positive vortex stretches unusually, see figure 3.13c, 3.13d, 3.13e
and 3.13f. The intensity of the positive vortices is also lesser than the previous
control. This can be explained by the re-energization of the shear layers, espe-
cially the bottom one, due to the periodic component of the forcing, like Protas
(2004). The rotation of the front cylinder has been reported in other studies, such
as Cornejo Maceda et al. (2019), but its effect is not yet fully understood.
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Figure 3.12: Characteristics of the flow controlled by bFB starting from the steady
solution (t = 0). The transient spans until t ≈ 400. (a) Time evolution of the lift
coefficient CL, (b) phase portrait, (c) time evolution of the drag power Ja (blue),
actuation power Jb (green) and net drag power J (red) and (d) Power Spectral
Density (PSD) showing the frequency f3 = 0.112.

3.5 General control law optimization: multi-frequency
and feedback control

In this last section, we run a hybrid optimization allowing both multi-frequency
forcing and feedback control. We have seen in section 3.3, that periodic forcing has
not been selected to control the fluidic pinball, this may be related to the difficulty
to build the proper frequency for control. By adding flow information, we can
expect LGPC to build an open-loop periodic forcing modulated by a sensor signal
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(a) t+ T3/8 (b) t+ 2T3/8

(c) t+ 3T3/8 (d) t+ 4T3/8

(e) t+ 5T3/8 (f) t+ 6T3/8

(g) t+ 7T3/8 (h) t+ T3

Figure 3.13: Vorticity fields of the flow controlled by the feedback control law
derived by LGPC (a)-(f) Time evolution of the vorticity field in the last period of
the 1000 time units simulation. The color code is the same as figure 3.1. T3 is the
period associated to the frequency f3.

and thus enable a richer control. Such approach has been successfully employed
to reduce the recirculation bubble of a back-ward facing step at Reynolds number
Re = 31500 in Chovet et al. (2017). Then, we allow s and h as inputs of the
controller and equation 1.1 becomes: b(t) = K(s(t),h(t)). The LGPC parameters
are summarized in table 3.4.

Figure 3.14 illustrates the learning process for the hybrid optimization. First,
Monte Carlo optimization struggles to find a good individual and after 100 random
evaluations, the cost of the best individual is only J/J0 = 0.92. As detailed in
section 3.4, this can be explained by the adding of extra inputs, which enlarges the
search space. Contrary to the multi-frequency optimization and feedback control
optimization, we note that significant and regular improvements are made at each
generation until reaching a plateau at JHB = 0.7363 after seven generations. For
all generations the distribution of the individuals looks linear as opposed to the
two previous optimizations where there was an accumulation of good individuals
in the final generations. This may be explained by the fact that as new and more
efficient individuals are built at each generation, the is still a lot of diversity in
the population. When the learning is slowed down, then the best individual takes
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parameter description value

function library F2 = {+,−,×,÷,
exp, tanh, sin, cos, log}

s, h controller inputs si(t), i = 1..36
hi(t), i = −4, ..,−1, 1, ..4

Nvr number of variable registers 8 + 36 + 3 = 47
Ncr number of constant registers 10

Ninst,max max number of instructions 50
Npopsize population size 100
NG number of generations 10
Ntour tournament size 7
Ne elitism 1
Pc crossover probability 0.6
Pm mutation probability 0.3
Pr replication probability 0.1

Table 3.4: LGPC parameters for general optimization including multi-frequency
forcing and feedback control.

over the population thanks to replication. From there, we enter a phase of fine
tuning of the control law with only small improvements and thus an accumulation
of good individuals in the generation. Such behaviour is likely to be observed if
more generations were computed.

Figure 3.14: Same as figure 3.7 but for the hybrid optimization LGPC.

The final control law bHB reads:

bHB
1 (t) = cos(cos(s8(t− T0/2)) + 0.88123),
bHB

2 (t) = cos(cos(s8(t− T0/2))),
bHB

3 (t) = −0.36574− s2(t),
JHB/J0 = 0.7363

(3.6)

The control built includes sensor information, a nonlinear function, cos, but no
open-loop periodic function. The three components contain feedback information.
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Figure 3.15: Time series of the actuation command for the best feedback control
law found with LGPC.

The time series of this control are plotted in figure 3.15. The mean values of
all controllers are in line with a boat tailing configuration, however there is a
non-negligible oscillatory component for all actuations. The three cylinders are in
direct feedback as the dominant frequency of the actuation commands are f4 =
0.108, the main frequency of the flow. So far, bHB is the control that reduces the
most the cost function with JHB/J0 = 0.7363. However, in figure 3.16a and 3.16c,
we notice that the transient extends until ≈ 700 convective time units. The cost
of the controlled flow computed on the post-transient regime is J/J0 = 0.7369,
showing that the extended transient only brings a negligible improvement. We
note that taking into account a longer time-window may enable solutions with
long transients.

We notice in figure 3.16a that the oscillations of the lift coefficient increased
alongside with its mean value. Yet, this asymmetry is not obvious in the fig-
ure 3.17. Controlled with bHB, the flow is similar to the previous feedback control.
We note, nevertheless, that the recirculation bubble is slightly larger. As for bFB,
the vortices stay attached longer thanks to the closed-loop periodic forcing. We
notice in particular that the positive vortex is shed after a longer time interval than
the negative vortex, indeed we notice a larger distance between a positive vortex
and the previous negative vortex downstream than between a negative vortex and
the previous positive vortex downstream.

3.6 Conclusion

In this chapter, we apply the LGPC methodology previously described to mini-
mize the net drag power of the fluidic pinball. First, a parametric study on the
subspace of symmetric steady forcing supports that the boat tailing configuration
appears as a key strategy to reduce the drag power. Then three search spaces
are explored, first we allow for multi-frequency forcing, then we optimize a feed-
back control law, and finally, we allow both strategies for a hybrid optimization.
All three optimizations built control laws that include a boat tailing-like struc-
ture and discard the open-loop periodic functions when they are in the function
library. However, we notice that an asymmetry in the boat tailing is systemat-
ically favored. Some improvement can be achieved with the addition of sensor
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Figure 3.16: Characteristics of the flow controlled by bHB starting from the steady
solution (t = 0). The transient spans until t ≈ 400. (a) Time evolution of the lift
coefficient CL, (b) phase portrait, (c) time evolution of the drag power Ja (blue),
actuation power Jb (green) and net drag power J (red) and (d) Power Spectral
Density (PSD) showing the frequency f4 = 0.108 and its first harmonic.

information, reducing the cost from JMF/J0 = 0.7476 to JHB/J0 = 0.7363. The
costs of all runs are summarized in table 3.5. Thus, in less than 1000 evaluations,
LGPC managed to build a control combining asymmetric boat tailing and phasor
control to reduce the net drag power in a model-free and with very few knowledge
a priori. LGPC rediscovers, in particular, that to delay the vortex shedding, one
can re-energize the shear layer with periodic forcing and that vectoring the flow
towards the centreline helps to increase the base pressure. The hybrid control
built with LGPC achieves the most net drag reduction so far.

In this part, we unveiled the forces at play in the learning process of genetic
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(a) t+ T4/8 (b) t+ 2T4/8

(c) t+ 3T4/8 (d) t+ 4T4/8

(e) t+ 5T4/8 (f) t+ 6T4/8

(g) t+ 7T4/8 (h) t+ T4

Figure 3.17: Vorticity fields of the flow controlled by bHB. (a)-(f) Time evolution
of the vorticity field in the last period of the 1000 time units simulation. The color
code is the same as figure 3.1. T4 is the period associated to the frequency f4.

programming and applied to the reduction of the net drag power of the fluidic
pinball. The parametric study of LGPC, carried out in chapter 2, revealed the
importance of key meta-parameters. Such analysis serves as a guide to select ade-
quate parameters for future LGPC studies. Applied to the fluidic pinball, LGPC
successfully managed to build control laws in different search spaces in less than
1000 evaluations, revealing key actuation mechanisms, without any prior knowl-
edge, and combining them for further performance: the best control comprises a
combination of asymmetric boat tailing and phasor control.

The next part will focus on accelerating the learning process and building bet-
ter control laws thanks to our new algorithm the gradient-based machine learning
control.
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search space control law J/J0 Ja/J0 Jb/J0

unforced
natural

- 1 1 0

symmetric
steady

b1 = 0,
b2 = −b3 = cst

0.7652 0.5695 0.1956

multi-
frequency
forcing

b(t) = K(h(t)) 0.7476 0.5109 0.2368

feedback
control

b(t) = K(s(t)) 0.7451 0.4744 0.2706

general
control

b(t) =
K(s(t),h(t))

0.7363 0.4845 0.2518

Table 3.5: Summary of the performances for the best solutions of each type of
optimization. The bold values are the best for each cost.
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Chapter 4

Explorative gradient-method

The second part of this thesis focuses on gradient-based machine learning control
methods. In this chapter, we further explore the exploration-exploitation
optimization principles, presented in chapter 2, with a new algorithm, the
explorative gradient method (EGM) introduced in Li et al. (2021). EGM is a
parametric optimization algorithm for a moderate number of parameters. EGM
combines the exploration power of latin hypercube sampling and the convergence
rate and efficiency of downhill simplex for exploitation. The algorithm is
described in detail as it shares key characteristics with the gradient-enriched
machine learning control (gMLC) algorithm studied (chapter 5). Firstly, we
discuss the principles of exploration and exploitation and describe the EGM
algorithm in section 4.1. Secondly, we detail the cost function and carry out a
parametric study on the space of steady symmetric actuations in section 4.2.
Finally, the EGM is employed to stabilize the fluidic pinball in two different
search spaces: a 2-dimensional space of symmetric periodic actuations
(section 4.3) and a 3-dimensional space by allowing the independent rotation of
the three cylinders (section 4.4). This chapter is adapted from Cornejo Maceda
et al. (2020).
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4.1 Control optimization framework

In this section, we describe the optimization principles behind EGM and gMLC
and describe the EGM algorithm in detail.

4.1.1 Optimization principles—Exploration versus exploita-
tion

EGM and gMLC both combine the advantages of exploitation and exploration.
In this new context, exploitation is based on a downhill simplex method with the
best performing of all tested control laws. The goal is to ‘slide down’ the best
identified minimum.

Exploration is performed with another algorithm using all previously tested
individuals. The goal is to find potentially new and better minima, ideally the
global minimum. The method for exploration depends on the search space. For a
low-dimensional parameter space, a space-filling version of the Latin Hypercube
Sampling (LHS) guarantees optimal geometric coverage of the search space. For
a high-dimensional function space, genetic programming is found to be efficient.

EGM and gMLC start with an initial set of individuals to be evaluated. Then,
exploitive and explorative phases iterate until a convergence criterion is reached.
The iteration hedges against several worst-case scenarios. The control landscape
may have only a single minimum accessible from any other point by steepest
descend. In this case, exploration is often inefficient, although it might help in
avoiding slow marches through long shallow valleys (Li et al., 2021). The control
landscape may also have many minima accessible by gradient-based searches. In
this case, exploitation is likely to incrementally improve performance in suboptimal
minima and the search strategy should have a significant investment in exploration.
The minima of the control landscape may also have narrow basins of attractions for
gradient-based iterations and extended plateaus. This is another scenario where
iteration between exploitation and exploration is advised.

Many optimizers balance exploration and exploitation and gradually shift from
the former to the latter. This strategy sounds reasoning but is not a good hedge
against the described worst-case scenarios where almost all exploitative or almost
all explorative algorithms are doomed to fail.

Note that the chances of exploration landing close to a new better minimum
are small. Yet, the explorative phases may find new basins of attractions for
successful gradient-based descends. This is another argument for the alternating
execution of exploration and exploitation.

Finally, we note that the proposed explorative-exploitive schemes allows that
both kinds of iterations may be adjusted to the control landscape. For instance,
LHS in a high-dimensional search space will initially explore only the boundary
and may better be replaced by Monte Carlo or a genetic algorithm. We refer to



4.1. CONTROL OPTIMIZATION FRAMEWORK 75

Li et al. (2021) for a thorough comparison of EGM and five common optimizers.
In this chapter, we focus on EGM, whereas gMLC is detailed in chapter 5.

4.1.2 Parameter optimization with the explorative gradient
method (EGM)

The Explorative Gradient Method (EGM) optimizesNp parameters b =
[
b1, . . . , bNp

]ᵀ
with respect to cost J(b) and comprises exploration and exploitation phases. In
the context of parameter optimization, we do not differentiate between the con-
trol law K = const and the associated actuation command b = K. The search
space, or actuation domain, is a compact subset B of RNp , typically defined by
upper and lower bounds for each parameter. The exploration phase is based on
a space-filling variant of Latin hypercube sampling (LHS) (McKay et al., 1979)
whereas the exploitation phase is carried out by Nelder-Mead’s downhill simplex
(Nelder & Mead, 1965).

The first Np + 1 initial individuals bm, m = 1, . . . , Np + 1 define the first
‘amoeba’ of the downhill simplex method. The first individual b1 is typically
placed at the centre of B. The Np remaining vertices are slightly displaced along
the bm axes. In other words, bm = b1 + hmem−1 for m = 2, . . . , Np + 1. Here,
em :=

[
δm,1, ..., δm,Np

]ᵀ is the unit vector in the mth direction and hm is the
corresponding step size. The increment hm is chosen to be small compared to the
range of the corresponding dimension.

The exploitation phase employs the downhill simplex method. This method
is robust and widely used for data-driven optimization in low and moderate-
dimensional search spaces. No local gradients are required. The new individual
is a linear combination of the simplex individuals and follows a geometric rea-
soning. The vertex with the worst performance is replaced by a point reflected
at the centroid of the opposite side of the simplex. This step leads to a mirror-
symmetric version of the simplex where the new vertex has the best performance
if the cost function depends linearly on the input. Subsequent operations, like
expansion, single contraction and global shrinking ensure that iterations exploit
a favorable downhill behaviour and avoid getting stuck by nonlinearities. The
downhill simplex algorithm is detailed in the Exploitation phase of algorithm 1.

The explorative phase of EGM is inspired by the LHS method. LHS aims to
fill the complete domain B optimally. The pre-defined number m of individuals
maximizes the minimum distance of its neighbours:{

bLHS
1 , . . . , bLHS

m

}
:= arg max

b1,...,bm∈B
min

i∈{1,...,m−1},
j∈{i+1,...,m}

‖bi − bj‖ .

Here, ‖·‖ denotes the Euclidean norm. The number of individuals has to be deter-
mined in advance and cannot be augmented. This static feature is incompatible
with the iterative EGM algorithm. Thus, we resort to a recursive ‘greedy’ version.
Let b•1 be the first individual. Then, b•2 maximizes the distance from b•1,

b•2 := arg max
b∈B

‖b− b•1‖.
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The mth individual maximizes the minimum distance to all previous individuals,

b•m := arg max
b∈B

min
i∈{1,...,m−1}

‖b− b•i ‖.

This recursive definition allows adding explorative phases from any given set of
individuals.

Exploitation and exploration are iteratively continued until the stopping cri-
terion is reached. The stopping criterion may be a total number of cost function
evaluations, a threshold value for performance improvement. The Explorative
Gradient Method (EGM) phases are summarized in algorithm 1.

4.2 Control objective—Flow stabilization
In this section, we present the control problem associated to the stabilization of
the fluidic pinball. The control is performed following the same conditions as
chapter chapter 3.

4.2.1 Cost function

In this study, we aim to stabilize the unstable steady symmetric Navier-Stokes
solution at ReD = 100. The associated objectives are Ja, quantifying the closeness
to the symmetric steady solution and Jb, the actuation power. The cost Ja is
defined as the temporal average of the residual fluctuation energy of the actuated
flow field ub with respect to the symmetric steady flow us:

Ja =
1

Tev

ˆ t0+Tev

t0

ja(t) dt (4.1)

with the instantaneous cost function

ja(t) = ‖ub(t)− us‖2
Ω (4.2)

based on the L2-norm

‖u‖Ω =

√√√√¨
Ω

u2 + v2 dx. (4.3)

The control is activated at t0 = 400 convective time units after the starting kick
on the steady solution. Thus, we have a fully established post-transient regime.
The cost function is evaluated until Tev = 1400 convective time units. Thus, the
time average is effected over 1000 convective time units to make sure that the
transient regime has far less weight as compared to the actuated regime. Yet, a
faster stabilizing response to actuation is clearly desirable and factors positively
into the cost.

Jb is naturally chosen as a measurement of the actuation energy investment.
Jb has already been described in section 3.1 and we only recall its expression here:

Jb(b) =
1

Tev

ˆ t0+Tev

t0

3∑
i=1

Pact,i dt
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Algorithm 1: Explorative Gradient Method
Result: b∗, the best individual
Initialize the Np + 1 individuals of the dataset BI ;
Test all the individuals;
Build the simplex S by taking the Np + 1 best individuals;
while Stopping criterion is not reached do

Exploration phase—Latin hypercube sampling
Select bLHS by solving:

bLHS := arg max
b∈B

min
bi∈BI
‖b− bi‖

Test bLHS;
Augment dataset: BI := BI ∪

{
bLHS

}
;

Update simplex: replace the worst individual of S by bLHS if bLHS
performs better;

end
Exploitation phase—Downhill simplex

Sort and relabel S such as: JS1 ≤ JS2 ≤ . . . ≤ JSNp+1;
Compute the centroid c = 1

Np

∑Np

i=1 bi of S excluding bNp+1;
Reflection: compute and test br := c + (c− bNp+1);
if JS1 < JSr < JSNp+1 then

Update simplex: bNp+1 := br;
else if JSr < JS1 then

Expansion: compute and test be := c + 2 (c− bNp+1) ;
Update simplex: bNp+1 := min {br, be};

else if JSNp+1 ≤ JSr then
Contraction: compute and test bc := 1/2 (c + bNp+1);
if JSc < JSNp+1 then

Update simplex: bNp+1 := bc;
else

Shrink: compute and test
bs,i := 1/2 (b1 + bi), i = 2, . . . , Np + 1;
Update simplex: bi := bs,i, i = 2, . . . , Np + 1;

end
end
Augment dataset: add all the new individuals to BI ;

end
end
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where Tev = 1000 time units in this case and Pact,i is the actuation power supplied
to cylinder i.

In this study, optimization is based on the cost function J = Ja and the
actuation investment Jb is evaluated separately. We refrain from a cost function
J which employs the objective function Ja and penalizes the actuation investment
Jb with suitable weight γ, i.e., J = Ja + γJb. The procedure has two reasons.
First, the distance between two flows and actuation energy belong to two different
worlds, kinematics and dynamics. Any choice of the penalization parameter γ
will be subjective and implicate a sensitivity discussion. Second, the complete
stabilization of the steady solution would lead to a vanishing actuation b ≡ 0
and thus vanishing energy Jb. Thus, the optimization problem without actuation
energy can be expected to be well-posed.
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Figure 4.1: Time evolution of the instantaneous cost function ja for the unforced
natural flow.

The instantaneous cost function ja of the unforced flow is shown in figure 4.1.
We notice a slight overshoot around t = 200 before converging to a post-transient
fluctuating regime. The post-transient regime shows the expected periodic be-
haviour from von Kármán vortex shedding. The cost averaged over 1000 convec-
tive time units is J0 = 39.08 and serves as reference to actuation success.

For more informations on the optimization problem and the unforced flow of
the fluidic pinball, we refer to section 3.1.

4.2.2 Symmetric steady actuation for wake stabilization

This section describes the behaviour of the fluidic pinball under a symmetric steady
actuation. In this configuration, only the two rearward cylinders rotate at equal
but opposite rotation speeds, b2 = −b3. When b2 is positive, the rearward cylinders
accelerate the outer boundary layers and suck near-wake fluid upstream. This
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Figure 4.2: Parametric study for symmetric steady forcing. b2 = −b3 is the
velocity of the bottom cylinder. The normalized distance to the steady solution
Ja/J0 (top) and the actuation power Jb (middle) are plotted as a function of b2.
The bifurcation diagram (bottom) comprises all local maximum and minimum
lift values. The vertical red dashed line corresponds to b2 = 0 and separates the
base bleeding and the boat tailing configurations. The global minimum of Ja/J0

is reached at b2 = −0.375, as indicated by a vertical blue dashed line.

forcing delays separation, mimics Coanda forcing and leads to a fluidic boat tailing.
When b2 is negative, the cylinders eject fluid in the near wake like in base bleed
and oppose the outer boundary-layer velocities. Figure 4.2 shows the evolution of
Ja/J0 (top), Jb (middle) and the bifurcation diagram (bottom) as a function of b2.

We limited our study to b2 ∈ [−5, 6]. The trends are resolved with a dis-
cretization step of 0.25 and a finer resolution in the ranges [−2.5, 0] and [1, 2].
For each parameter, the cost Ja and actuation power Jb have been computed over
1000 convective time units. The bifurcation diagram has been built by detecting
the extrema of the lift coefficient over the last 600 convective time units. The
bifurcation diagram reveals five regimes:

Regime b2 < −4: the lift amplitude decreases to zero and the cost decreases to
the first minimum.

Regime −4 < b2 < −2.5: the extremal lift values increase and decrease to zero
again. The cost approaches another local minimum near b ≈ −2.5.
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Regime −2.54 < b2 < 0: a period doubling cascade is observed for decreasing
b2 leading to a chaotic regime. At b2 ≈ 0.375, the cost assumes it global
minimum with residual fluctuation of the lift coefficient.

Regime 0 < b2 < 2.375: the cost and the extremal lift values monotonically in-
crease.

Regime 2.375 < b2: the Coanda forcing completely stabilizes a symmetric steady
solution. The cost increases with the rotation speed.

Interestingly, the boat tailing discontinuity at b2 = 2.375 does not appear in
the graph of the cost function Ja/J0. This continuity, even in the derivative,
corresponds to a continuous passage from a periodic symmetrical solution to a
stationary solution which is itself symmetrical. As the value of the cost function
indicates, this stationary solution is quite far from the unforced symmetric steady
solution. The global minimum of Ja/J0 = 0.51 is reached near b2 = −0.375,
i.e., for a base bleeding configuration, corresponding to a small actuation power
Jb = 0.0490, roughly 0.1% of the J0.

The characteristics of the best base bleeding solution leading closest to the
symmetric steady solution are depicted in figure 4.3. In figure 4.3a, the lift coeffi-
cient is displayed for the unforced transient (blue curve) and the forced flow (red
curve). The unforced flow terminates in an asymmetric shedding with positive lift
values. After the start of forcing, the lift coefficient oscillates vigorously around
its vanishing mean value. This forced statistical symmetry is corroborated by the
oscillating jet in figures 4.4a-4.4h. Base bleed increases the velocity of the rear-
ward jet compared to the unforced flow. This jet instability mitigates the Coanda
effect on the bottom and top cylinder, i.e., the jet neither stays long at either side.

The vortex shedding persists similar to the unforced flow. However, the domi-
nant frequency is increase from f0 = 0.116 to f5 = 0.132. The instantaneous cost
function ja in figure 4.3c shows an unsteady non-periodic behaviour, reaching in-
termittently low levels. The broad spectral peak in figure 4.3d is a characteristic of
a chaotic regime. The phase portrait in figure 4.3b corroborates the non-periodic
oscillatory behaviour. The mean field in figure 4.4j, shows that actuated mean
jet is symmetric unlike the mean field of the unforced flow. Moreover, the shear-
layer on the upper and lower sides extend farther downstream as compared to the
unforced state.

This parametric study reveals that base bleeding is the best symmetric steady
forcing strategy to bring the flow close to the symmetric steady solution. However,
even though the cost Ja/J0 is almost halved, the best base bleeding control fails
to stabilize the flow.

4.3 Periodic forcing optimization

In this section, we aim to stabilize the symmetric steady solution thanks to a
symmetric periodic forcing. In this case, the two back cylinders oscillate in op-
posite directions whereas the front cylinder stays still. The control ansatz is the
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Figure 4.3: Characteristics of the best base bleeding solution. (a) Time evolution
of the lift coefficient CL, (b) phase portrait (c) time evolution of instantaneous cost
function ja and (d) Power Spectral Density (PSD) showing a broad spectral peak
at f5 = 0.132. The control starts at t = 400. The unforced phase is depicted in
blue and the forced one in red. The phase portrait is computed over t ∈ [900, 1400]
and the PSD is computed on the forced regime t ∈ [400, 1400].

following:
b1 = 0
b2 = B cos(2πFt)
b2 = −B cos(2πFt)

with B, the amplitude of the oscillations, and F , the frequency, being the two
parameters to optimize. The search space is limited to [B,F/f0]ᵀ ∈ [0, 5]× [0, 10]
as higher amplitudes and frequencies would be beyond our solver capabilities.
This two-dimensional search space is explored with EGM. The contour plot in
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(a) t+ T5/8 (b) t+ 2T5/8

(c) t+ 3T5/8 (d) t+ 4T5/8

(e) t+ 5T5/8 (f) t+ 6T5/8

(g) t+ 7T5/8 (h) t+ T5

(i) Symmetric steady solution (j) Mean field

Figure 4.4: Vorticity fields of the best base bleeding solution. (a)-(f) Time evolu-
tion of the vorticity field throughout the last period of the 1400 convective time
units, (i) the objective symmetric steady solution and (j) the mean field of the
forced flow. The color code is the same as figure 3.1. T5 is the period associated
to the main frequency f5 of the forced flow. The mean field has been computed
by averaging 100 periods.

figure 4.5 depicts the search space based on Ja/J0 and Jb. The contour plot
has been produced thanks to simulations for B ∈ {0.1, 0.5, 1, 2, 3.5, 5} and
F/f0 ∈ {0.1, 0.5, 1, 2, 3.5, 5, 7.5, 10}. The steps are finer for low frequencies
and low amplitudes. The individuals have been evaluated over 250 convective time
units. We notice that there is only one minimum on the plane, close to [B,F/f0]ᵀ =
[3.51, 3.19]ᵀ. Also, forcing at frequencies close to the natural frequency resonates
with the flow and drastically increases the distance to the steady solution for
high amplitudes. For Jb, the contour map expectedly displays high values at high
frequencies and large amplitudes. The three initial control laws for EGM are the
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(a) Ja/J0. (b) Jb.

Figure 4.5: Contour plot for Ja/J0 (a) and Jb (b) as a function of the amplitude
B and the normalized frequency F/f0. For (a), blue (red) regions denote good
(bad) performances while white regions correspond to costs that are equivalent
to the natural flow. For (b), the color code describes the actuation energy. The
symbols represent the individuals tested with EGM: black diamonds for the initial
conditions, blue solid circles for exploration phases and yellow solid circles for the
exploitation phases. For the legend, refer to figure 4.9.

centre of the box and increments of 1/5 of the box size in each direction: [2.5, 5]ᵀ,
[3, 5]ᵀ, [2.5, 6]ᵀ. As expected, the LHS steps (in blue) spread rather evenly in
the domain whereas the simplex steps (in yellow) quickly descend into the global
minimum.

Figure 4.6 shows the progression of the best individual throughout the eval-
uations. The EGM optimization process converges after few tests as Ja/J0, the
amplitude and the frequency reach asymptotic values, without any significant im-
provement afterwards. The parameters of the best symmetric periodic forcing are
denoted by the superscript ‘EGM’ and read

BEGM = 3.51,
FEGM/f0 = 3.19.

The proximity between the initial values and the aimed minimum certainly ac-
celerates the observed convergences. Figure 4.7 shows the evolution of the lift
coefficient, the phase portrait, the power spectral density and the instantaneous
cost function ja for the controlled flow. The lift coefficient presents rather sym-
metric low amplitude oscillations, see figure 4.7a. This goes along with the flow
symmetry in figure 4.8a-4.8h. The oscillations are explained by the remaining
vortex shedding on both, the upper and lower, side of the fluidic pinball. Even
though the far field is close to the symmetric steady solution, this periodic solu-
tion changes radically the near field profile. The jet is completely flattened, see
figure 4.8c, 4.8d and 4.8e. Moreover, the vorticity around the cylinders is more
intense compared to the initial steady solution. This difference is present in the
final mean value ja in figure 4.7c and is responsible for the high actuation power
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(a) (b)

Figure 4.6: Evolution of (a) the amplitude B and the normalized frequency F/f0

and (b) the reduced cost Ja/J0 as a function of the number of evaluations i, for
the EGM optimization process. The red line in (b) shows the evolution of the best
cost. The evaluation time is 250 convective time units.

expense, Jb = 5.2799. The phase portrait shows a periodic regime, though de-
formed by the harmonics. The mean frequency f6 = 0.398 is slightly lower than
the forcing frequency FEGM = 0.37 and much lower than the natural frequency,
showing that it is not just a simple frequency locking, but a nonlinear frequency
crosstalk. The non-centred phase portrait indicates that there is still an asym-
metry in the flow, that may be a residual effect of the grid’s asymmetry. The
mean field in figure 4.8j is similar to the symmetric steady solution, however the
jet completely vanished. In addition, the distance between the upper and lower
vorticity branches is wider compared to the symmetric steady solution.

4.4 General non-symmetric steady actuation

In this section we aim to stabilize the symmetric steady solution by command-
ing the three cylinders with constant actuation without symmetry constraint.
This three-dimensional parameter space is explored with the explorative gradi-
ent method. The symmetry along the x-axis of the fluidic pinball allows us to
reduce our search space and to explore only positive values of b1. A coarse ini-
tial parametric study carried on b1, b2 and b3 by steps of unity indicates that the
global minimum of Ja/J0 should be near [b1, b2, b3]ᵀ = [1, 0, 0]ᵀ. Thus, we limit
our research to the actuation domain B = [0, 2] × [−2, 2] × [−2, 2]. The limita-
tion of b1 to positive values exploits the mirror symmetry of the configuration.
Figure 4.9 (bottom) depicts the cost function in the actuation domain B. Three
planes (b1 = const) are computed by interpolating parameters on a coarse grid.
The individuals computed with EGM are all shown in the 3D space. The four ini-
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Figure 4.7: Characteristics of the best periodic forcing found with EGM. (a)
Time evolution of the lift coefficient CL, (b) phase portrait (c) time evolution of
instantaneous cost function ja and (d) Power Spectral Density (PSD) showing the
main frequency f6 = 0.398 of the forced flow and six harmonics. The control
starts at t = 400. The unforced phase is depicted in blue and the forced one in
red. The phase portrait and the PSD are computed over t ∈ [900, 1400], during
the post-transient regime.

tial control laws (black diamonds) for EGM are the centre of the box and shifted
points from this centre. The shift is 10% of the box size in positive coordinate
direction. Thus, the four initial control laws are: [1, 0, 0]ᵀ, [1.2, 0, 0]ᵀ, [1, 0.4, 0]ᵀ

and [1, 0, 0.4]ᵀ. The exploration phase is then performed in B. For algorithmic
reasons, the explorative points are chosen from 1 million points obtained from
a space filling LHS. On one hand, we notice that the exploration phases (LHS
in blue) focus on the boundary of the search space. This is consistent with the



86 CHAPTER 4. EXPLORATIVE GRADIENT-METHOD

(a) t+ T6/8 (b) t+ 2T6/8

(c) t+ 3T6/8 (d) t+ 4T6/8

(e) t+ 5T6/8 (f) t+ 6T6/8

(g) t+ 7T6/8 (h) t+ T6

(i) Symmetric steady solution (j) Mean field

Figure 4.8: Vorticity fields of the best periodic forcing found with EGM. (a)-
(f) Time evolution of the vorticity field throughout the last period of the 1400
convective time units, (i) the objective symmetric steady solution and (j) the
mean field of the forced flow. The color code is the same as figure 3.1. T6 is the
period associated to the frequency f6. The mean field is computed by averaging
200 periods.

definition of LHS, as the furthest initial individuals are on the boundary of the
box. On the other hand, the exploitation phases (simplex in yellow) stay in the
same neighbourhood near the initial individuals, crawling along the local gradient
to find the minimum.

Figure 4.10 shows the progression of the best control laws throughout the eval-
uations after 25 iterations of the exploration/exploitation process. The progression
is plotted according to the number of cost function evaluations counted with the
dummy index i. Figure 4.10a depicts the progression of the best control law after
each downhill simplex step. We notice that a plateau is reached after 50 evalua-
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Figure 4.9: Contour map of Ja/J0 at the optimal plane b3 = bEGM = −0.156 found
with EGM (top) and at different levels of b1: b1 = 0, b1 = 1, b1 = 2 (bottom).
The colormap denotes white for Ja/J0 = 1, blue for better performances and red
for worse performances. The planes are shown with 75% transparency. The four
initial conditions [1, 0, 0]ᵀ, [1.2, 0, 0]ᵀ, [1, 0.4, 0]ᵀ and [0, 0, 0.4]ᵀ are represented by
black diamonds. Blue dots are the control laws build with the exploration phases
and yellow dots are the individuals build with the exploitation phases. All the
individuals have been projected on the plane b3 = −0.156. The arrows, on plane
b1 = 0, depict the base bleeding/boat tailing diagonal studied in section 4.2.2. A
parametric study shows that the minimum is close to [b1, b2, b3]ᵀ = [1, 0, 0]ᵀ whose
associated cost is Ja/J0=0.93.

tions and there are only small variations afterwards. The final control law after
100 evaluations reads[
bEGM

1 , bEGM
2 , bEGM

3

]ᵀ
= [1.11207,−0.20025,−0.15588]ᵀ with Ja = 10.85 (4.4)

From visualizations of the control landscape of Ja in figure 4.9, we can safely
infer that (4.4) describes the global minimum of our search space. Figure 4.10b
shows convergence after 70 evaluations. Thereafter, the downhill simplex itera-
tions show negligible improvements. In the whole EGM optimization, the explo-
ration appears to be ineffective as the initial individuals are close to the minimum.
An EGM run with different initial individuals ( [1, 0, 0]ᵀ, [1.5, 0, 0]ᵀ, [1, 1, 0]ᵀ and
[1, 0, 1]ᵀ, corresponding to a 25% of the box size shift) have been tested. After a
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few iterations, this new run started sliding down towards same minimum. This can
be explained by the fact that the neighbourhood around the minimum is smooth
enough for a downhill slide of the exploitation individuals.

(a) (b)

Figure 4.10: Evolution of b1, b2 and b3 (left) for each new simplex step indicated
by the scattered squares and Ja/J0 (right) according to the number of evaluations
i for the EGM optimization process. The red line on (b) shows the evolution
of the best cost. The color code of the dots on (b) is the same as figure 4.9.
The best control law is [bEGM

1 , bEGM
2 , bEGM

3 ]ᵀ = [1.11207,−0.20025,−0.15588]ᵀ with
Ja/J0 = 0.28.

The control law (4.4) shows that the front cylinder rotates almost five times
faster than the two other cylinders and in opposite directions. The asymmetry in
the control law corresponds to the asymmetry in the lift coefficient in figure 4.11a,
where the mean value is close to -0.7. The flow asymmetry can be visualized
in the mean field (figure 4.12j). The vorticity in the vicinity of the cylinder is
directly related to the actuation; thus the upward deflection near the front cylin-
der is explained by its fast rotation, around 1.1 times the incoming velocity. In
addition, the tip of the positive vorticity lobe in the jet is slightly deflected down-
wards. Figure 4.12a-4.12h shows that EGM control (4.4) enables a jet fluctuation
around vanishing mean, like the best base bleeding solution. Moreover, the phase
portrait and the PSD in figure 4.11 reveal that the flow is purely harmonic. The
main frequency f7 = 0.140 is close to the main frequency f5 = 0.132 of the base
bleeding solution. Contrary to the best base bleeding solution, the instantaneous
cost function ja stays at low levels with a mean value around 9. The associated
normalized cost is Ja/J0 = 0.28. It is worth noting that, even though the con-
trol law [b1, b2, b3]ᵀ = [1, 0, 0]ᵀ is close to the best one found with EGM, its cost,
Ja/J0 = 0.93, is much higher. Moreover, the coarse description of the optimal
plane b3 = bEGM = −0.15588, in figure 4.9 (top), does not show any minimum a
priori. This reveals large gradients in the control landscape, near the EGM so-
lution, where a small change in the control amplitude can drastically change the
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associated cost Ja/J0.
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Figure 4.11: Characteristics of the best steady actuation found by EGM. (a)
Time evolution of the lift coefficient CL, (b) phase portrait (c) time evolution of
instantaneous cost function ja and (d) Power Spectral Density (PSD) showing the
only frequency f7 = 0.140 of the forced flow. The control starts at t = 400. The
unforced phase is depicted in blue and the forced one in red. The phase portrait
and the PSD are computed over t ∈ [900, 1400] the post-transient regime.

In addition to the less deflected jet, we notice in figure 4.12 that the vortex
shedding differs from the symmetric steady solution leading to a more symmetric
flow. There are now two vortex streets of the shear layers, one on the upper
side and one on the lower side of the flow. These shear layer dynamics hardly
interact in the whole domain. Indeed, we notice that the distance between two
consecutive vortices increases significantly only before leaving the computational
domain which goes along with a slightly upward deflection of the wake. This
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(a) t+ T7/8 (b) t+ 2T7/8

(c) t+ 3T7/8 (d) t+ 4T7/8

(e) t+ 5T7/8 (f) t+ 6T7/8

(g) t+ 7T7/8 (h) t+ T7

(i) Symmetric steady solution (j) Mean Field

Figure 4.12: Vorticity fields of the best steady actuation found with EGM. (a)-
(f) Time evolution of the vorticity field throughout the last period of the 1400
convective time units, (i) the objective symmetric steady solution and (j) the
mean field of the forced flow. The color code is the same as figure 3.1. T7 is
the period associated to the frequency f7 of the forced flow. The mean field has
computed by averaging over 100 periods.

results in extended vorticity branches in the mean field (figure 4.12j) but with a
lower vorticity level compared to the symmetric steady solution.

In conclusion, we explore the stabilization of the fluidic pinball in different
search space. First, we carried out a study on steady symmetric actuation. We
show that, in the case of stabilization, it is the base bleeding that is favored. We
then explored a two-dimensional and three-dimensional search spaces thanks to
the explorative gradient method. As expected, exploring a richer search space im-
proved the stabilization of the flow. Stabilization of the flow with periodic forcing
is possible but at the cost of a high actuation power expense and a deformation
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of the near jet. Surprisingly, an asymmetric forcing managed to bring partial
symmetry to the flow and reduces the cost function even further compared to the
best base bleeding solution. Experimentally, the optimization of the steady fluid
pinball actuation also lead to asymmetric forcing Raibaudo et al. (2019). The
explorative gradient method managed to converge to the global minimum in less
than 50 evaluations. The exploration phases had a lesser impact during the opti-
mization process as we initiated the algorithm close to the global minimum. We
can expect the exploration phases to play a major role for more complex search
space, comprising several minima. The exploration and exploitation principle il-
lustrated with EGM inspired the gradient-enriched machine learning method for
accelerated learning. This new method is the subject of the next chapter.





Chapter 5

Gradient-enriched machine learning
control

In this chapter, we present the gradient-enriched machine learning control (gMLC)
algorithm to solve challenging nonlinear non-convex function optimization prob-
lems. Gradient-enriched MLC combines exploration of the search landscape with
evolutionary methods and fast convergence thanks to gradient-based methods. In
section 5.1, we detail the exploration and exploitation capabilities of gMLC by de-
scribing the algorithm. Then, in section 5.2, we demonstrate gMLC by optimizing
a feedback control law to stabilize the fluidic pinball. In section 5.3, we compare
the performances of LGPC and gMLC in terms of convergence rate, final solution
and repeatability. Finally, we end the chapter with a conclusion recalling all the
algorithms employed to stabilize the fluidic pinball (section 5.4). sections 5.1, 5.2
and 5.3.1 are largely inspired by Cornejo Maceda et al. (2020).

Contents
5.1 MIMO control optimization with gMLC . . . . . . . . . 93

5.2 Feedback control optimization . . . . . . . . . . . . . . . 99

5.3 Comparison between LGPC and gMLC . . . . . . . . . 106

5.3.1 Performance comparison on the fluidic pinball . . . . . . 106

5.3.2 Repetability study on the generealized mean-field model 107
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5.1 Multiple-input multiple-output control optimiza-
tion with gradient-enriched machine learning
control (gMLC)

In this chapter, we cure a challenge of linear genetic programming control—the
suboptimal exploitation of gradient information. Starting point is machine learn-
ing control (MLC) (Duriez et al., 2016) based on linear genetic programming
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(LGP). MLC or LGPC optimizes a control law without assuming a polynomial or
other structure of the mapping from input to output. The only assumption is that
the law can be expressed by a finite number of mathematical operations with a
finite memory, i.e., is computable. The optimization process relies on a stochastic
recombination of the control laws, also called evolution. LGPC has been amazingly
efficient in outperforming existing optimal control laws—often with surprising fre-
quency crosstalk mechanisms—in dozens of experiments (Noack, 2019). LGPC
demonstrates a good exploration of actuation mechanisms but a slow convergence
to an optimum, despite an increasing testing of redundant similar control laws.

The proposed gradient-enriched MLC departs in two aspects from LGPC. First,
the concept of evolution from generation to generation is not adopted. The ge-
netic operations include all tested individuals. One can argue that the neglection
of previous generations might imply loss of important information. Second, the
exploitation is accelerated by downhill subplex iteration (Rowan, 1990). The best
k + 1 individuals are chosen to define a k-dimensional subspace and a downhill
simplex algorithm optimizes the control law in this subspace.

Both LGPC and gMLC share the same matrix representation of the control
laws used in LGP (Brameier & Banzhaf, 2006) and described in chapter 2.

The algorithm begins with a Monte Carlo initialization of NMC individuals,
i.e., the indices of the matrix. The cost of these randomly generated functions
are evaluated in the plant. The number of individuals NMC needs to balance
exploration and cost. Too few individuals may lead to descend in a suboptimal
local minimum. Too many individuals may lead to unnecessary inefficient testing,
as Monte Carlo sampling is purely explorative.

Once the initial individuals are evaluated, an exploration phase is carried out.
New individuals are generated thanks to crossover and mutation operations. Thus,
this phase is also referred as evolution phase. These operations are performed on
the matrix representation of the individuals. As for MLC, crossover combines two
individuals by exchanging lines in their matrix representation, whereas mutation
randomly replaces values of some lines by new ones. In this approach, we no
longer consider a population but the database of all the individuals evaluated so
far. Thus, we no longer need the replication and elitism operators of MLC. This
choice is justified by the fact that we want to learn as much as possible from what
we already know and avoid reevaluating individuals. To perform the crossover
and mutation operation, individuals are selected from the database thanks to a
tournament selection. A tournament selection of size 7 for a population of 100
individuals is used in Duriez et al. (2016). That means that for a population of
100 individuals, 7 individuals are selected randomly and among the 7, the best one
is chosen for the crossover or mutation operation. For gMLC, as the individuals
are selected among all the evaluated individuals, the tournament size is properly
scaled at each call to preserve the 7/100 ratio between the tournament size and the
size of the database. The crossover and mutation operation are repeated randomly
following Pc, the crossover probability, and Pm, the mutation probability, until NG

individuals are generated. The probabilities Pc and Pm are such as Pm + Pc = 1.
Once the evolution phase is achieved, NG new individuals are generated thanks
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to downhill subplex iterations. Being in an infinite dimension function space,
Nelder-Mead’s downhill simplex is impractical as an exploitation tool. Thus, we
propose a variant of downhill simplex inspired by Rowan (1990), commonly called
downhill subplex. Just as downhill simplex, the strength of this approach is to ex-
ploit local gradients to explore the search space. In the original approach of Rowan
(1990), downhill simplex is applied to several orthogonal subspaces. However, in
order to limit the number of cost function evaluations, we apply downhill simplex
to only one subspace. This subspace is initialized by selecting Nsub individuals.
Two ways to build the subspace after the Monte Carlo process are listed below:

• Choose only the best individual: select the best Nsub individuals eval-
uated so-far in the whole database.

• Individuals near a minimum: select the best individual evaluated so-far
and the Nsub − 1 individuals closest to the best one.

The first approach has the benefit to comprise several minima candidates, whereas
the second one is bound to lead to a minimum in the neighbourhood of the best
individual and relies on a given metric. Once the subspace is built, the next
steps are similar to the downhill simplex method. As subplex and simplex are
essentially the same algorithm applied to different spaces, we will not designate
them differently.

Following the situation, downhill subplex may call 1 (only reflection), 2 (ex-
pansion or single contraction) or Nsub +1 (shrink) times the cost function. Several
iterations of downhill subplex are repeated until at least NG individuals are gener-
ated. In this study, the same number of individuals generated with the evolution
phase and the downhill subplex phase is chosen to balance exploration and ex-
ploitation.

Once the stopping criterion is reached, the most efficient individual in the
database is given back. Otherwise, we restart a new cycle by generating new
individuals with a new evolution phase, combining and modifying individuals de-
rived by evolution and downhill subplex. However, the individuals built thanks
to downhill subplex are linear combination of the original Nsub individuals. These
new individuals do not have a matrix representation which is necessary to generate
new individuals with genetic operators in the exploitation phase. To overcome this
problem, we introduce a new phase to compute a matrix representation for the
linearly combined control laws. The matrix representation is computed by solving
a regression problem of the first kind, similar to a function fitting problem, for
all the linearly combined control laws. First, each control law Ki is evaluated
on randomly sampled inputs srand, just as in section 2.4. The resulting output
Ki(srand) is used to solve a secondary optimization problem:

K∗
M = arg min

KM

‖(KM (srand)−Ki(srand))‖2 (5.1)

where ‖ · ‖ denotes the Euclidean norm. This optimization problem is a function
fitting problem that we solve with linear genetic programming. The LGP param-
eters are the same used for the gMLC so the computed individuals are compatible
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with the ones in the database. The best fitting control law K∗
M has then a matrix

representation and is used as a substitute for the original linear combination of con-
trol laws. The substitutes are then employed for the evolution phase even though
they may not be perfect substitutes of the original control laws. Indeed, following
the stopping criterion and population size of the secondary LGP optimization,
the control law substitutes may not be able to reproduce all the characteristics
of the linearly combined control laws. An accurate but costly representation may
not be needed as the control laws will be recombined afterwards. Moreover, the
introduction of some error may be beneficial to improve the exploration phase and
enrich our database.

Once the matrix representations are computed, a new cycle may begin with
a new evolution phase. In this phase, if any individual has a better performance
than the Nsub individuals in the simplex, then the least performing individuals
among the Nsub individuals are replaced. Thus, each evolution phase replaces ele-
ments in the simplex, allowing exploration beyond the initial subspace. Then, the
optimization continues with the exploitation phase on the updated Nsub individu-
als.

Algorithm 2: Gradient-enriched Machine Learning Control
Result: K∗, the best individual
Monte Carlo initialization: generate NMC individuals;
Test all the individuals;
Build the subplex S by taking the Nsub best individuals;
while Stopping criterion is not reached do

Exploration phase—Evolution
Generate and test NG individuals from all the individuals evaluated
so far thanks to crossover and mutation;
Update subplex S: choose the Nsub best indviduals among the new
NG individuals and the Nsub subplex individuals;

end
Exploitation phase—Downhill subplex

while The number of subplex individuals generated < NG do
Perform a downhill subplex iteration in the subspace spanned by
linear combinations of Nsub subplex control laws
(Downhill simplex method like in algorithm 1);

end
Reconstruction phase—Linear genetic programming
Compute a matrix representation for each new downhill subplex
individual (replace linearly combined individuals by matrices using
LGP);

end
end

Figure 5.1 illustrates the initialization, exploration and exploitation of gMLC.
The exploration is based on LGP. Also, the exploitation requires LGP. In the
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Figure 5.1: Schematic of the gradient-enriched MLC algorithm (bottom) and dis-
tribution of individuals in the search space (top) . First 1), Monte Carlo ini-
tialization performs a first coarse exploration of the search space. Second 2),
further exploration is performed thanks to genetic programming. Individuals are
selected in the whole dataset and combined thanks to genetic operators to gen-
erate new individuals (blue dots). Then the datase is augmented with the new
individuals. Third 3), exploitation focuses on a subspace (represented in yellow)
of finite dimension where downhill simplex iterations builds new individuals by
linear combination (yellow dots). A matrix representation is computed for the
downhill subplex individuals thanks to linear genetic programming, allowing the
downhill subplex individuals to be included in the database.

downhill simplex method, the individuals are linear combinations of the subplex
basis and are finally approximated as matrices. This process is repeated until the
stopping criterion is reached. The Gradient-enriched Machine Learning Control
(gMLC) is summarized by pseudo code in algorithm 2. And the source code
of our gMLC implementation is freely available online under the name gMLC at
https://github.com/gycm134/gMLC.

Finally, figure 5.2 summarizes the exploration and exploitation phases for EGM
and gMLC and highlights their similarities.

https://github.com/gycm134/gMLC
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Figure 5.2: Summary of the explorative gradient method (EGM) (left column)
and gradient-enriched machine learning control (gMLC) (right column). The level
plots are a schematic representation of the control landscape. Darker regions de-
pict poor performances and light regions depict good performances. Three minima
are shown, two on the top left and one in the top right (the global one). The map
represents an affine space (of finite dimension) for EGM and a Hilbert function
space for gMLC. The initialization step is depicted with black diamonds for EGM
and black dots for gMLC. The individuals generated thanks to an exploration
phase are represented by blue dots. Exploration is carried out with LHS for EGM
and evolution with genetic operators (crossover and mutation) for gMLC. The in-
dividuals generated thanks to an exploitation phase are represented in yellow. For
EGM, downhill simplex steps are carried out. One iteration of downhill simplex
is depicted: the reflected individual (yellow triangle) and the expanded individual
(reversed yellow triangle); the star is the centroid of the two best black diamonds.
For gMLC, the simplex steps are carried out in a subspace (downhill subplex) of
finite dimension. Two distinct simplex steps are depicted: first, a reflection step
(yellow triangle) with the two best black dots and the best blue dot; then a con-
traction step (yellow diamond) with the same black dots and the newly evaluated
yellow triangle. The stars are the centroids for each step. This process is repeated
until the stopping criterion is reached. In this figure, only one iteration of the loop
is depicted. The reconstruction phase is not depicted for the sake of clarity.
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5.2 Feedback control optimization

In this section, we optimize a feedback control law, again, to stabilize the unforced
symmetric steady solution. The feedback is provided by 9 velocity signals in the
wake as discussed in section 3.1.3.

We do not include time dependent functions as inputs of the control laws since
we aim to stabilize the flow towards the steady solution so an open-loop strategy
is not pursued.

As detailed in section 4.3, periodic forcing can stabilize the flow but at the
expanse of high actuation power, thus we refrain ourselves to include them as
control inputs. Thus, Nb = 3, Ns = 36 and Nh = 0. The control laws are
then built from 9 basic operations (+, −, ×, ÷, cos, sin, tanh, exp and log), 36
sensors signals si=1..36 and 10 constants. The control laws are restricted to the
range [−5, 5] to avoid excessive actuation. The basic operations ÷ and log are
protected in order to be defined on R in its entirety. The cost function has been
computed over 1000 convective time units, so that the post-transient regime is
fully established and the transient phase has a lesser weight.

For the implementation of the gMLC algorithm on the fluidic pinball, we start
with a Monte Carlo step of NMC = 100 individuals, the crossover probability and
mutation probability are both set at Pc = Pm = 0.5. Indeed, as the evolution phase
is mostly an explorative phase, the mutation probability is increased, from 0.3,
in previous studies, to 0.5, to improve the exploration capability. Moreover, even
though crossover is an exploitative operator, it is likely to find new minima thanks
to recombinations of radically different control laws. That is why, the crossover
and mutation probabilities are both set to 0.5. The dimension of the subspace
is set to Nsub = 10, so it is large enough to explore a rich subspace but not too
large to avoid a slowdown in the optimization process. Evidently with a higher
dimension subspace the control law can be more finely tuned. To assure that
the subplex step effectively goes down the local minimum, we choose to evaluate
Np = 50 individuals during the exploitation phase. Test runs with Np = 5 have
been carried out and showed that the learning process was slower. We believe one
reason is that each exploration phase changes systematically the subspace, which
makes it difficult for the subplex to improve effectively in only a few steps, thus,
subplex has almost no benefit in the early phases. Table 5.1 summarizes all the
parameters for gMLC. The secondary optimization problem (equation 5.1) used
to build a matrix representation for the control laws, is solved with LGP. To speed
up the computation, we choose to solve the secondary optimization problem with
100 individuals evolving through 10 generations. Finally, our implementation is
enhanced by a screening of the individuals to avoid reevaluating individuals that
have different mathematical expressions but are numerically equivalent, just as
LGPC and described in section 2.4. This screening is used only in steps where
the individuals are generated stochastically, meaning in the Monte Carlo step and
in the exploration phases. This improvement is also used in LGP to solve the
secondary optimization problem.

Figure 5.3 presents the learning process of gMLC for the stabilization of the flu-
idic pinball. We notice that the first exploration phase, individuals i = 101, . . . , 150,
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parameter description value

Nb number of actuators 3
Ns number of control inputs 9 sensors × 4 delays

= 36 sensor signals
Nh number of time-dependent

functions
0

Nvr number of variable registers 36 + 3 = 39
Ncr number of constant registers 10

Ninst,max max number of instructions 50
NMC Monte Carlo individuals 100
Nsub subspace size 10
Pc crossover probability 0.5
Pm mutation probability 0.5
Np number of individuals per phase 50

function library +, −, ×, ÷, cos, sin,
tanh, exp, log

Table 5.1: gMLC parameters for the fluidic pinball.

already improved the best cost compared to the Monte Carlo phase. The following
exploitation, individuals i = 151, . . . , 200, present a steep descent, improving the
best solution even further. During this phase, we notice a clear trend for the cost
of the new individuals. This trend indicates that the simplex is going down to-
wards a minimum. But this descent is interrupted by the next exploration phase.
Individuals i = 201, . . . , 250, greatly improve the best solution. Particularly, two
individuals have a much lower cost that the ones in the simplex, suggesting that
a new minima have been found. The next exploitation phase with individuals
i = 251, . . . , 300 brings no improvement. The high cost in the exploitation steps
following the exploration phases is explained by the fact that as we are exploring
new minima, shrink steps must be performed to bring the simplex towards the
new minima; and the shrink steps replaces all individuals in the simplex except
the best one. As we are leaving one minimum for another one, the intermediate
values can be arbitrarily high until the simplex reached the neighbourhood of the
new minimum. The next exploration phase with individuals i = 301, . . . , 350 also
give good individuals that have been included in the simplex. After 350 evalua-
tions, the only improvements are performed by exploitation phases. Even if the
best cost keeps decreasing slowly, the improvements are small, indicating that we
are close to the minimum. Once we reach a plateau, further improvement can only
be performed if an exploration phase finds an individual close to a better mini-
mum. That is why after 800 individuals we performed only exploration phases.
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The final control law build with gMLC reads

bgMLC
1 = = −0.0004 sin(cos(s30))− 0.0034(s6 + s22)− 0.0033(log(s11))− 0.0305(s3)

−0.0098(s16 + s15) + 0.0055s35(s16 + 0.31016)− 0.0091(s3 − s23)
+0.9206 tanh(s16)− 0.1238 cos(s31) + 0.1907,

bgMLC
2 = −0.0459(log(log(s31)))− 0.1946,

bgMLC
3 = −0.0004(0.841471s34 − s36)− 0.0043 log(s9)− 0.0022(s25 − s16)

−0.0098(cos(s3)− s16) + 0.9206 log(tanh(exp(s2)))− 0.0295
Ja = 7.82.

(5.2)

Figure 5.3: Distribution of the costs during the gMLC optimization process. Each
dot represents the cost Ja/J0 of one individual. The color of the dots represents
how the individuals have been generated. Black dots denote the individuals which
are randomly generated (Monte Carlo). Blue dots refer to individuals which are
generated from a genetic operator (exploration). And yellow dots correspond to
individuals arising from the subplex method (exploitation). The individuals from
the Monte Carlo step and the exploration phase have been sorted following their
costs. The red line shows the evolution of the best cost. The vertical axis is in log
scale.

Figure 5.4 presents the characteristics of the flow controlled by the best con-
trol law KgMLC built with gMLC. This control law is detailed later specially in
table 5.2. In figure 5.4a, we can see that even if the resulting lift coefficient is still
asymmetric, the mean value (around −0.1) is closer to 0 as compared to the EGM
solution. The PSD in figure 5.4d shows a dominant frequency at f8 = 0.144 and
one of its higher harmonics. A small peak can be seen for f9 ≈ 0.016. The non-
linear interaction between the frequencies f8 = 0.144 and f9 = 0.016 gives rise to
another small peak at f10 = 0.160. The phase portrait in figure 5.4b reveals drifts
in pronounced oscillations due to the low frequency modulation. The presence of
the dominant frequency f8 = 0.144 and its harmonic in the spectrum is consistent
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Figure 5.4: Characteristics of the flow controlled by the best feedback control law
found with gMLC. (a) Time evolution of the lift coefficient CL, (b) phase portrait,
(c) time evolution of instantaneous cost function ja and (d) Power Spectral Density
(PSD) showing the frequency f8 = 0.144 of the forced flow, one of its harmonics
and two low-power frequencies f9 = 0.016 and f10 = 0.160. The control starts
at t = 400. The unforced phase is depicted in blue and the forced one in red.
The phase portrait and the PSD are computed over t ∈ [900, 1400], during the
post-transient regime.

with the periodic behaviour of the flow. The f9 = 0.016 peak is responsible for
the width of a predominant limit-cycle dynamics in the phase portrait.

The evolution of the instantaneous cost function ja in figure 5.4c shows a
plateau after 200 convective time units, reaching an even lower level (around 6),
compared to the EGM solution (around 9). The associated cost Ja/J0 = 0.20 is
better than the EGM solution at Ja/J0 = 0.28.
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Figure 5.5: Time series of the actuation command for the best feedback control
law found with gMLC.

# b1 b2 b3 weight Ja/J0

1 sin(cos(s30)) 0 0.841471s34 − s36 −4× 10−4 0.91
2 s6 + s22 0 0 −3.4× 10−3 0.94
3 0 0 log(s9) −4.3× 10−3 0.97
4 0 0 s25 − s16 −2.2× 10−3 0.97
5 log(s11) 0 0 −3.3× 10−3 0.95
6 s3 0 0 −3.05× 10−2 0.92
7 s16 + s15 0 cos(s3)− s16 −9.8× 10−3 0.97
8 s35(s16 + 0.31016) 0 0 5.5× 10−3 0.80
9 s3 − s23 0 0 −9.1× 10−3 0.88
10 1 log(log(s31)) 0 −4.59× 10−2 0.93
11 tanh (s16) −0.187071 log ( tanh ( exp (s2))) 9.206× 10−1 0.26
12 0.540302 −0.144304 −0.0144074 6.87× 10−2 0.34
13 cos (s31) −0.144304 −0.0144074 −1.238× 10−1 0.36
14 0.949948 −0.144304 −0.0144074 2.100× 10−1 0.39

Table 5.2: Summary of the 14 control laws composingKgMLC described in equation
(5.2). For each control law, we present b1, b2, b3, the associated weight and the
reduced cost Ja/J0. The three best control laws are #11, #13 and #14.

cylinder mean value main frequency peak-to-peak amplitude

front (b1, green) 0.48 2f8 0.12
bottom (b2, blue) -0.19 2f8 0.03
top (b3, red) -0.02 f8 < 0.01

Table 5.3: Summary of control law information. The frequencies and peak-to-peak
amplitude have been computed on the post-transient regime.
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(a) t+ T8/8 (b) t+ 2T8/8

(c) t+ 3T8/8 (d) t+ 4T8/8

(e) t+ 5T8/8 (f) t+ 6T8/8

(g) t+ 7T8/8 (h) t+ T8

(i) Symmetric steady solution (j) Mean field

Figure 5.6: Vorticity fields of the best feedback control found with gMLC. (a)-
(f) Time evolution of the vorticity field throughout the last period of the 1400
convective time units, (i) the objective symmetric steady solution and (j) the
mean field of the forced flow. The color code is the same as figure 3.1. T8 is
the period associated to the frequency f8. The mean field has been computed by
averaging 100 periods.

Table 5.2, 5.3 and figure 5.5 give more details on the control law KgMLC built
with gMLC. Firstly, we can see that even though the simplex comprises Nsub = 10
individuals, subplex build the control law KgMLC by linearly combining 14 control
laws. Indeed, after a few iterations of simplex, all the individuals are eventu-
ally a linear combination of the initial individuals forming simplex. When a new
individual is introduced in the basis thanks to the exploration phase, the exploita-
tion phase will combine the remaining individuals with the new one, making the
next individual a linear combination of more than 10 individuals. It is important
to note that even after the introduction of new individuals with the exploration
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phase, the subspace to explore changes but the dimension remains. In this case,
with Nsub = 10, the dimension of the subspace is 9. The repetition of this pro-
cess builds each time more complex control laws. Thus, in table 5.2, individuals
i = 11, 12, 13, 14 have been introduced thanks to exploration phases. The control
laws with the strongest weights are i = 11, 13 and 14, whereas the weight associ-
ated with the other control laws are at least one order of magnitude lower. Control
law i = 11 is also the one with the lowest cost Ja/J0 = 0.26. KgMLC is then mainly
based on i = 11 and corrected by the remaining control laws. This indicates that
on the last phase of the learning, it is the minimum in the neighbourhood of i = 11
that has been found.

Moreover, table 5.2 shows that all three control components bgMLC
1 , bgMLC

2 and
bgMLC

3 of the gMLC control law include sensor information. However, figure 5.5
shows that the actuation command associated with KgMLC for the two rearward
cylinders (b2 and b3) are nearly constant. This is partially due to the low weights
associated to the control laws with sensor signals. We can also assume that the
sensor signals cancel each other, leading to such low peak-to-peak amplitudes.
Table 5.3 shows the characteristics of the actuation command during the post-
transient regime. A spectral analysis shows that the main frequency of the actua-
tion command for the front and bottom cylinder are twice the main frequency of
the flow f8, revealing that the actuation is a function of the flow. Thus, gMLC
managed to build a combination between asymmetric steady forcing and feedback
control. Finally, like EGM, the best solution found is asymmetric but with lower
amplitudes. Consequently, the associated actuation power is lower compared to
general steady actuation found with EGM: Jb = 0.2018 for the general steady
actuation and Jb = 0.0391 for the feedback control law found with gMLC.

The controlled flow is depicted over one period in figure 5.6a-5.6h. First, we
notice that the jet fluctuates around a vanishing mean, as for the EGM actuation.
Also, the vortex shedding of the upper and lower shear layers hardly interact.
Compared to the EGM solution, the stability of the wake is improved as the two
Kelvin-Helmholtz vortices keep their transverse distance to the symmetry line until
the very end of the computational domain. This is explained by the re-energization
of the shear layers thanks to the vigorous rotation of the front cylinder at twice
the main frequency f8 of the controlled flow, like Protas (2004). The mean field, in
figure 5.6j, is similar to the symmetric steady solution. Indeed, we notice that the
vorticity regions extend to the end of the computation domain, like the symmetric
steady solution. Also, like for the best general steady actuation, the region near
the cylinders is non-symmetrical due to the action. However, contrary to the
symmetric steady solution, the mean field of the feedback control has a narrower
region between the vorticity regions upstream and a wider region downstream.

As expected, gMLC manages to find a new solution that surpasses the best
general steady actuation found with EGM. Surprisingly, gMLC built a non-trivial
solution, combining asymmetric steady forcing and feedback control for the front
cylinder. Interestingly, gMLC composed a control law that forces the flow at twice
the main frequency. In addition, compared to the best general steady actuation,
the actuation power is significantly reduced. Lastly, the learning process of gMLC
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exploited both the evolution phases and the simplex steps to rapidly build better
solutions. Thanks to the evolution phases, new minima have been successfully
found and thanks to the simplex steps, the solutions have been improved even
more. The progress of the subplex steps show that local gradient information
can be exploited in a subspace of an infinite dimension space to minimize a cost
function. Building on this success, we believe that gradient-enriched MLC will
greatly accelerate the optimization of control laws for MIMO control as compared
to the linear genetic programming control.

5.3 Comparison between LGPC and gMLC

5.3.1 Performance comparison on the fluidic pinball

In this section, we compare the performances of a linear genetic programming
control (LGPC), based on linear genetic programming control (Li et al., 2018; Zhou
et al., 2020) and presented in chapter 2 and the proposed gradient-enriched MLC
(gMLC) variant for the stabilization of the fluidic pinball. During the evolution
process, the better-performing individuals are selected with larger probability to
build new individuals thanks to the genetic operators. The best individuals are
selected thanks to a tournament selection method. As in Duriez et al. (2016), we
choose a tournament selection of size 7 for 100 individuals. A genetic operation
is chosen randomly following given probabilities: the crossover probability Pc,
the mutation probability Pm and the replication probability Pr. We recall that
the probabilities add up to unity Pc + Pm + Pr = 1. The set of parameters
[Pc, Pm, Pr]

ᵀ = [0.6, 0.3, 0.1]ᵀ have been chosen for LGPC, see chapter 3.
The meta-parameters of the linear programming control laws are the same for

LGPC and gMLC, including the mathematical operations, number of constants,
number of registers, as well as inputs and outputs (see table 5.1).

The cost function is evaluated over 1000 convective time units, both in LGPC
and gMLC.

The LGPC and gMLC algorithms are compared over 1000 evaluations. For
LGPC, a population of 100 individuals is chosen to evolve over 10 generations. For
a fair comparison, LGPC and gMLC share the same initial Monte Carlo generation,
comprising the first 100 randomly generated individuals. Figure 5.7 shows the
distribution of the costs Ja/J0 as a function of the evaluations. We notice that
for both algorithms the first exploration phase makes great improvement. In the
second generation, the best cost is 0.80 for gMLC and 0.70 for LGPC. LGPC’s
better performance is understandable as 100 individuals have been evaluated for
the second generation whereas only 50 individuals have been evaluated for gMLC.
After testing 200 individuals, gMLC surpasses LGPC thanks to the subplex steps,
reaching a cost Ja/J0 = 0.52. For the second evolution phase, both LGPC and
gMLC perform well reaching low levels of Ja/J0: 0.36 for LGPC and 0.26 for
gMLC. Then, LGPC achieves only small progress after 900 evaluations, the cost
improves from 0.36 to 0.33. The series of blue dots at Ja/J0 = 0.36 from i = 201
to i = 900 represents several instances of the best individual of generation 3,
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duplicated thanks to elitism. For gMLC, figure 5.3 shows that evolution phases
do not bring any progress after 250 evaluations and further improvement is made
thanks to the subplex steps. As described in section 5.2, the evolution phases
help to enrich the simplex subspace. The subplex steps manage to reduce the cost
function from 0.26 to 0.20. We notice that after 600 evaluations all new subplex
individuals have the same cost. Hence, gMLC surpasses LGPC with a smaller
number of evaluations and enables improvement/fine-tuning of the control laws in
the final phase.

Figure 5.7: Distribution of the costs during the LGPC optimization process and
evolution of the best individual for the gMLC learning process (green line). Each
dot represents the cost Ja/J0 of one individual. The color of the dots represent
how the individuals have been generated. Black dots for the individuals randomly
generated by a Monte Carlo process (individuals i = 1, . . . , 100), blue dots for the
individuals generated from a genetic operator (individuals i = 101, . . . , 1000). For
each generation the individuals have been sorted according to their cost. The red
line shows the evolution of the best cost for the LGPC optimization process. The
green curve corresponds to the gMLC optimization process. The vertical axis is
in log scale.

5.3.2 Repetability study on the generealized mean-field model

In this section, we discuss the repeatability and convergence speed of the gMLC
algorithm. To assess gMLC’s performances, we compare the method with Monte
Carlo optimization and LGPC. Running several instances of gMLC on the fluidic
pinball for comparison can be expensive, so we decide to study a simpler dynamical
system that comprises key nonlinear interactions. The dynamical system consid-
ered for control is the generalized mean-field model (GMFM). The GMFM is a
system of four equations describing two oscillators nonlinear coupled. The first
oscillator is unstable with a nonlinear damping of the growth rate, stabilizing at
an limit cycle Rc. The second oscillator is stable with a frequency ten times higher
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than the first oscillator. The objective is to stabilize the first oscillator by actu-
ating on one of the components of the second oscillator. This dynamical system
models the interaction between the natural vortex shedding and the shear layer
oscillation for the cylinder flow (Luchtenburg et al., 2009; Duriez et al., 2016).
The equations of the GMFM are the following:

ȧ1

ȧ2

ȧ3

ȧ4

 =


σa1 − a2

σa2 + a1

−0.1a3 − 10a4

−0.1a4 + 10a3

+


0
0
0

K(a1, a2, a3, a4)

 (5.3)

with
σ = 0.1− a1

2 − a2
2 − a3

2 − a4
2 (5.4)

A full-state control is performed by adding a forcing term b on the fourth equation
of the system. The cost function J comprises the mean distance to the fixed point
Ja and a penalization term for the actuation Jb:

J =Ja + γJb

Ja =
1

Tmax

ˆ Tmax

0

a2
1(t) + a2

2(t) dt

Jb =
1

Tmax

ˆ Tmax

0

b2(t) dt

(5.5)

with b(t) = K(a1(t), a2(t), a3(t), a4(t)). The penalization parameter γ is taken
equal to 0.01 as in Duriez et al. (2016). The cost function is computed for Tmax =
100T1 where T1 = 2π is the period of the first oscillator. We note Rc =

√
0.1 the

radius of the limit cycle. The initial condition is set to (a1, a2, a3, a4) = (Rc, 0, 0, 0),
in this case the first cylinder is on its limit cycle and the second cylinder is at
the fixed point (0,0). The dynamics of the GMFM without control is described
in figure 5.8a. Figure 5.8b shows the control of the GMFM with an open-loop
control law K = cos(10t). This control illustrates the coupling between the two
cylinders as the first one is stabilized by destabilizing the first one. Any linearizion
of the equations, leads to a decoupling of the oscillators and rendering any control
hopeless. Thus, the nonlinear coupling is a key enabler for controlling the GMFM.
We benchmark the Monte Carlo, LGPC and gMLC algorithms with the GMFM.
Each algorithm has been tested one hundred times. The stopping criterion for
all of them is the total number of individuals evaluated, fixed at Ni = 1000
individualss. For one realization, first a Monte Carlo step of 100 individuals is
performed. Then those 100 individuals are completed with Monte Carlo, LGPC
or gMLC. The parameters for each algorithm is summarized in table 5.4.

To assess the speed of each algorithm, we introduce a metric to measure the
learning speed: N95%.

N95% = arg min
N∈[1,1000]

[JN − Jfinal − 0.05(J0 − Jfinal)]

with J0 being the unforced cost and Jfinal being the final value that is the best cost
of the realization. N95% represents the number of the individual that reaches 95%
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(a) Unforced dynamics for the GMFM
with [0.01, 0, Rc, 0] as initial conditions.

0 50T 100T

-1

0

1

0 50T 100T

-20

-10

0

-0.5 -r
1

0 r
1

0.5
-0.5

-r
1

0

r
1

0.5

-5 0 5

-5

0

5

(b) Dynamics of the GMFM controlled
with the open-loop control law K =
cos(10t). The initial conditions taken
are [Rc, 0, 0, 0].

Figure 5.8: Unforced and energy-based open-loop control. For each case, we
display the actuation command b, the growth rate σ and the two phase portrait.
The red circle depicts the initial condition and the red dot the final state after one
hundred periods.

of the final value. N95% measure how fast we reach 95% of the final value.This
measure is not enough to assess the performance of a realization, as a quick con-
vergence can mean getting stuck in a local minimum. Thus, figure 5.9 displays
the N95% measure of one hundred realizations of each algorithm against the cost
of their best individual. The x-axis is learning time and the y-axis is the cost.
Thus, we take into account both the convergence speed and the final solution.

Figure 5.9a, reveals that all three algorithms, Monte Carlo, LGPC and gMLC,
converges rather quickly as most of the realizations have a N95% value less than 400
individuals, except isolated cases. Moreover, the distribution of costs of the best
individuals shows that most of Monte Carlo realizations are above J/J0 = 0.02
whereas LGPC and gMLC are below that limit. Moreover, the density of costs, in
figure 5.9b, reveals that there is a higher concentration of individuals in the lower
left corner of the graph for gMLC compared to LGPC. This shows that gMLC is
the algorithm that converges the fastest and towards better individuals.

5.4 Conclusion

We have stabilized the wake behind a fluidic pinball with three independent cylin-
der rotations in successively larger search spaces for control laws. Figure 5.10
summarizes the corresponding performances quantified by the average distance
between the controlled flow and the steady symmetric solution. First, steady
symmetric forcing is employed. A base bleed with a cylinder rotation of 28% of
the oncoming velocity leads to a flow which is 49% closer to the symmetric solution
than the unforced attractor. Other studies also report about a stabilizing effect
of base bleed on bluff body wakes (Wood, 1964; Bearman, 1967). In contrast,
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parameter description value

function library +, −, ×, ÷, sin, tanh,
exp, log

Nb number of controllers 1
s control law inputs a1, a2, a3, a4

Nvr number of variable registers 1+4=5
Ncr number of constant registers 10

Ninst,max max number of instructions 50
NMC Monte Carlo individuals 100

LGPC parameters
Pc crossover probability 0.6
Pm mutation probability 0.3
Pr mutation probability 0.1
Ne elitism number 1

gMLC parameters
Nsub subspace size 10
Pc crossover probability 0.5
Pm mutation probability 0.5
Np number of individuals per phase 50

Table 5.4: Algorithm parameters for the GMFM

Coanda forcing, i.e., two symmetric cylinder rotations which accelerate the outer
flow, may completely stabilize the flow. Yet, this new wake has no long vortex
bubble and is further away from the symmetric steady solution than the unforced
vortex shedding.

Second, a general non-symmetric actuation is optimized with the explorative
gradient method. Surprisingly, an asymmetric actuation reduces the average dis-
tance between the flow and the steady target solution further to 28% of the un-
forced value. This asymmetric actuation leads to shear layer vortices which do
not interact and thus do not form von Kármán vortices. The mean flow is slightly
asymmetric, but largely mimics the elongated steady symmetric solution. The
price for the better performance is a larger actuation power (see figure 5.10). In-
triguingly, machine learning control also leads to distinctly asymmetric actuation
in experiments (Raibaudo et al., 2019) and simulations (Cornejo Maceda et al.,
2019) for other cost functions.

Third, a feedback actuation obtained from gradient-enriched machine learning
control brings the flow even closer to the steady target solution. The associated
actuation power is smaller than the previous optimized steady actuations (see
figure 5.10). The actuation is a combination of asymmetric steady forcing and
phasor control. The resulting flow looks similar to the optimal asymmetric steady
forcing.

The feedback control does not seem to have the authority to completely sta-
bilize the symmetric target solution like for the cylinder wake controlled by a
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Figure 5.9: Results of the one hundred realizations for each algorithm: Monte
Carlo (left), LGPC (middle) and gMLC (right). In the joint pdf plots, bright colors
denote higher probability of presence. N95% represents the number of individuals
to reach 95% of the final value.

volume force (Gerhard et al., 2003). The wake can be ‘almost’ stabilized for short
periods of time, starting from the unforced flow. Then, new coherent structures
emerge and lead to residual shear-layer shedding. This lack of complete author-
ity for stabilization may be explained by the complexity of the dynamics. The
fluidic pinball has a primary instability associated with von Kármán vortex shed-
ding, a secondary pitchfork instability associated with the centreline jet and two
Kelvin-Helmholtz instabilities of the top and bottom shear layer.

Intriguingly, symmetric high-frequency forcing can bring the flow even closer
to the steady target solution but with an actuation power which is roughly two
orders of magnitude larger than the previous control laws (see figure 5.10). Protas
(2004) and Thiria et al. (2006) also find a stabilizing effect of high-frequency
forcing on vortex shedding. The thickening of the shear layers by high-frequency
vortices reduces the gradients and thus the instability. To summarize, machine
learning control has automatically discovered well known stabilizing mechanisms,
like base bleed and phasor control, but added an unexpected asymmetric forcing
and combination of this open-loop actuation and phasor feedback for improved
performance.

Finally, the combination of the gradient optimizer with genetic programming
manage a significant improvement in terms of convergence speed and final solution.
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Figure 5.10: Summary of the performances for the best solutions for each
method/search space couple. The relative distance to the symmetric steady so-
lution Ja/J0 and the actuation power Jb is represented. The costs are computed
over 1000 convective time units.

This has been confirmed both on the stabilization of the fluidic pinball and the
control of the generalized mean-field model. The most impressive results lies for
the fluid system where after 200 evaluations, gMLC already built a better control
law than 1000 evaluations of LGPC. Such speed up is a valuable feature as it
allows to multiply the number of parameters tested in experiments. Moreover, the
repeatability test on the GMFM assures the robustness of the benefits of gMLC
compared to LGPC. Even for such simple dynamical system, gMLC performs
better than LGPC in terms of speed and final solution.

In the next part, gMLC is experimentally demonstrated on the control of the
open cavity.
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Chapter 6

Open cavity experiment

Now, we test the gradient-enriched machine learning control on real experimental
conditions. We employ gMLC to control a single-input single-output experiment,
the open cavity flow. In this chapter, we describe the experiment setup and the
dynamics of the flow to be controlled. First, we give an introduction on cavity
flows in section 6.1. Then, we present the wind tunnel, the means of actuation
and sensing and the real-time system in section 6.2. In section 6.3, we detail
the dynamics of the unforced flow and the controlled dynamics with constant
actuation. In the next chapter, we present the control results both LGPC and
gMLC.
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6.1 Introduction
The development of the many possible machine learning methods to achieve active
control of fluid flows must cope with the intrinsic complexity of the fluid-structure
interaction as soon as high velocity regimes are considered. The fairly recent
tendency to use artificial intelligence methods in this field of control is not the
result of a fashion effect, but of the observation that deducing a law of control
from the general equations of the highly nonlinear problem to be solved has found
a solution only in very specific cases, mainly when a linearization (Brunton &
Noack, 2015; Rowley et al., 2006), formal or implicit, around the state to be
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reached was conceivable. It is clear that such approach cannot answer to the
demand for complex process optimizations in the fields of transport, heat and
chemistry, to cite a few examples. The already very significant successes of passive
control, particularly in the automotive and aviation sectors are coming up against
the constraints of use and design. It is to overcome these limitations that active
control, i.e. time-dependent action by means of an actuator, is considered. In case
of closed loop control, the action depends on a measurement of the system state at
the current or/and previous time. In this experimental work, we aim to confront
the efficiency of our methodological developments in machine learning control
with the test of experience on real flows. We will compare the two approaches
presented for the building of the control laws: the linear genetic programming
control (LGPC, chapter 2) our newly developed method, the gradient-enriched
machine learning control (gMLC, chapter 5).

If, in fluid control, the ultimate goal is indeed the control of fully developed
turbulence in its whole complexity, we choose here a flow configuration gathering
most of the mechanisms responsible for nonlinear interactions but keeping the
self-organization of the spatial structures still coherent: the flow above an open
cavity for a moderate Reynolds number value (ReL ≈ 104). The dynamics of
the interaction between a boundary layer and a rectangular cavity depends on
6 parameters, the ratios of the 3 spatial dimensions of the cavity, in particular
the width L and depth D, the boundary layer momentum thickness θ0 at the
upstream edge, the velocity of the incoming flow U∞ and for compressible flows
the Mach number. A given cavity, open to an incoming flow, successively presents,
as the incoming velocity increases, first, intra-cavitary centrifugal instabilities and
second, self-sustained oscillation in the mixing layer (Rowley & Williams, 2006;
Basley et al., 2014; Feger et al., 2019). Therefore, by playing on the 2 main control
parameters, L/D and ReL = U∞L

ν
, it is possible to scan a wide range of dynamics,

from a single main mode to spectra with a rich number of coupled modes. This
is, in addition to the practical implications, the reason for the repeated interest in
this flow pattern from pioneering work to the present day (Krishnamurty, 1955;
Rossiter, 1964; Gharib & Roshko, 1987). We cannot forget to mention one of
the very first and remarkable closed-loop control attempts by Gharib and his co-
authors on an open cavity in a water canal (Gharib et al., 1985).

6.2 Experimental setup

6.2.1 Wind tunnel and cavity setup

The cavity is inserted into the rectangular cross-section duct of a small wind
tunnel, 0.075 m high and 0.30 m wide. The cavity is D = 0.05 m deep, S =
0.30 m wide and L = 0.075 m long. Figure 6.1 illustrates the cavity configuration.
Upstream of the cavity a Blasius-type boundary layer develops over a distance
of 0.30 m from an elliptical edge. The residual standard deviation of velocity
fluctuations is less than 1%.

An anemometer is located at the exit of the open wind tunnel vein. Measure-
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Figure 6.1: Experimental set up. The red band depicts the DBD upstream. A
focus is made at the trailing edge: the Blasius boundary layer is depicted in blue
and the body force effect of the plasma actuator in red.

ments show that the free stream velocity U∞ and the velocity measured at the
exit are linearly related to the rotation speed of the wind tunnel fan ω motor, thus
U∞ can be estimated from the anemometer. We set then U∞ = 2.11±0 04m/s, so
that the Reynolds number is ReL = 1.03×104±200 and the momentum boundary
layer thickness is estimated at θ0/L = 1.05 × 10−2 following chapter 4 of Basley
(2012). Great care has been taken to calibrate the incoming speed with reference
to LDV measurements and its regulation. However due to the variation in tem-
perature (≈2 ◦C) and very low cycle frequencies in the wind tunnel at this low
operating point of around two meters per second, it is difficult to maintain the
speed constant within better than 2% over the 24 hours necessary for the longest
experiment sessions. The flow is within the incompressible range with a Mach
number less than 10−2. A more detailed description of the set-up can be found in
Basley et al. (2013); Lusseyran et al. (2018).

6.2.2 Actuation and sensing

In this section we describe the DBD plasma used for actuation and the hot-wire
sensor used to measure the outflow velocity.

Actuation

The actuation is carried out thanks to a non-thermal plasma actuator to locally
force the boundary layer at the entrance of the cavity as depicted in red in fig-
ure 6.1. The idea of acting on a flow using a cold plasma is due to J. R. Roth
who filed a patent in 1995 (Roth et al., 1998). The DBD electrode consists of two
conductive blades placed on either side of an insulating blade and subjected to
a high alternating voltage. The lateral offset between the two blades creates the
component of the electric field parallel to the plate and responsible for an ion wind
in the stream-wise direction. The principle and the adjustment of the parameters
for an application as a fluid actuator are detailed thoroughly in Forte et al. (2007);
Benard et al. (2010).

In our experimental setup, the dielectric is made of 2 mm-thick acrylic glass
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Figure 6.2: Sketch of the DBD used for the experiment.

and the electrodes are made of 9 mm wide and 26 cm long copper ribbon. Our
DBD actuator is placed at x = 4 mm upstream to the leading edge.

The active electrode is supplied by a Trek high-voltage amplifier amplifying
(×3000) a carrying signal e(t) = êmax(t) sin(2πfpt) created by an Agilent Function
Generator. The amplitude of the carrying signal êmax is modulated by a command
signal y, such as êmax(t) = (y(t) + 5) / 10emax, where y ∈ [−5, 5]. fp being the
carrying frequency and emax is the maximum amplitude. Both fp and emax are
parameters of the generator. Thus, the active electrode voltage is finally given by

E(t) =
y(t) + 5

10
Emax sin(2πfpt) (6.1)

where Emax = 3000×emax. To generate the ionic wind, E(t) needs to be higher than
the ignition voltage E0 = 3000× e0. Emax is set such as the electro-hydrodynamic
force does not modify too much the shear layer thickness. It is defined as the
maximum action level that keeps the main resonance of the cavity. The command
signal y(t) is sent from a dSPACE system and defined by

y(t) =
α

2
b(t) + y0 (6.2)

where y0 is an user-defined offset, α is a scaling factor and b ∈ [−1, 1] is the
actuation command. α and y0 are chosen such as E|b=−1 = E0 and E|b=1 = Emax.

In practice, the values of e0 and emax are measured before each experiment
as they are sensible to the atmospheric pressure, temperature of the room and
number of hours of use of the electrode. The range of the actuation command b
being independent of e0 and emax makes the control robust against their variations.

Sensing

For sensing, we use constant temperature anemometer (DANTEC hot wire prob
55P16, converter mini CTA54T30) with a single 1D hot-wire sensor 5 µm diameter
and 1 mm length located slightly before the trailing edge of the cavity, as sketched
in green in figure 6.1. The measured signal Ehw(t) is converted into stream-wise
velocity information uhw according to King’s law:

E2
hw = A+Bunhw (6.3)

where the coefficients A, B and n are determined using a calibrated anemometer
at different speeds. Time series recorded by the 1D hot-wire for the natural open
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cavity flow is presented in figure 6.5. We do not correct the temperature drift
on the hot-wire measurements as we do not have a direct measurements of the
temperature.

6.2.3 Real-time system

In our experiment, the signal acquisition and control are carried out by a dSPACE
real-time controller, including a DS1600 4 cores processors board and a DS2201
I/O board with a 12 bits on±10 volt analog-to-digital converter. The output of the
hot-wire device is translated and amplified (×40) before conversion. A Simulink
model is built and exploited by the ControlDesk software. The simulink model is
displayed in figure 6.3. First, the signal from the hot-wire sensor is amplified and
and serves as input to a control model. Then, a linear correction is applied before
the nonlinear transformation by the King’s law. A correction of the mean value is
then performed to compensate the motor’s drift. The input for the second block
is then the velocity measured by the hot-wire. A list of control laws is generated
and integrated directed in the model thanks to the controlLaws function block,
the selection of the control laws is then done thanks to an external ‘knob’. The
output is the actuation command b(t) with value in [−1, 1]. Then, the next block
scales the actuation command to y(t) so that E|b=−1 = E0 and E|b=1 = Emax. The
final block is the output block that sends the scaled signal y(t) to the amplitude
modulation protocol of the Agilent Function Generator V5462IA. Of course, all
the intermediate quantities are stored for each control law to compute their cost
and carry out all the post-processing.
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6.3 Flow dynamics

6.3.1 Natural unforced flow

As suggested in section 6.1, one can easily choose the degree of complexity of
the intra-cavity dynamics by playing on the two control parameters which remain
adjustable: the width and depth of the cavity. Following Basley et al. (2013), most
main frequencies measured in the downstream shear layer align together around
the lines of locked-on modes (figure 6.4). The associated Strouhal number based
on L is then given by equation 6.4:

StLn

(
L

θ0

)
=
fn L

U∞
=
n− γn(L/θ0)

2
(6.4)

where the parameter n = 1, 2, 3 can be seen as the number of wavelengths
within the cavity length and the corrective term γn corresponds to the deviation
from the ideal phase difference 2πn. The expression of γn being:

γn(L/θ0) =
41 n− L/θ0

10 (17− n)
(6.5)

In this work, θ0 was not measured directly, but deduced from an modified
Blasius law θ0 = κ

√
2νlx/U∞ with κ = 0.3973 instead of the classical Blasius’s

value κ = 0.4696, ν = 15.3× 10−6m2 s−1. This reduction of the boundary layer
thickness is due to the planing effect of the 200 µm thick DBD electrode, glued
just before the leading edge.

We target a flow whose oscillations are centred on a main frequency fa such
that 8 × fa ≤ fs, with fs = 250 Hz being the sampling frequency. In order for
this frequency fa to be predominant but nevertheless accompanied by side-band
peaks, it must be close to resonance, i.e. with a small but not zero γn. By choosing
a cavity with an aspect ratio R = L/D = 1.5 we obtain for U = 2.15 m s−1, a
Strouhal number StL = fL/U∞ close to 1 for n=2 and in the right frequency
range. Table 6.1 summarizes the main frequencies along with their associated
characteristics computed from equation 6.4 and 6.2.2eq:gamma for θ0/L = 91.0.
The frequencies are also depicted in figure 6.5. The low and very low frequencies

peaks f− fa f+ fb ≈ f+−fa ≈ fa−f−

n 1 2 3 -
StLn 0.6563 1.0300 1.3857 -
γn -0.3126 -0.0601 0.2285 -

freq. (Hz) 18.80 29.50 39.69 10.45

Table 6.1: Summary of the main frequencies fb, f−, fa, f+ for θ0/L = 91.0.

generated by nonlinearities are a source of difficulties, thus we choose to reduce
their impact in this first study of control of intra-cavity dynamics. The choice
of parameters (cf. table 6.1) contributes to that in two ways. Firstly, we reduce
the intermittence phenomena between the main frequency fa and its side-band
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Figure 6.4: Primary Strouhal numbers based on L are displayed as functions of
dimensionless cavity length L/θ0; self-sustained oscillations frequencies (black),
side-band peaks (gray) and low frequencies (white). Rectangle dimensions rep-
resent uncertainties. The shaded area (yellow) is drawn a posteriori such as to
segregate self-sustained oscillation frequencies from most side-band peaks. It is
delimited by StL = StL∗ ± 1/3,with StL∗ = 0.014 × (L/θ0 − 10) the centreline
Strouhal number. Hatched regions highlight side-band frequencies departing from
the general scheme. Figure and legend from Basley et al. (2013).
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Figure 6.5: Characteristics of the unforced cavity flow. Time series of the velocity
retrieved by the hot-wire downstream (top) and PSD of the signal with its main
frequencies (bottom). The green region expands from f = 27.5 Hz to f = 43 Hz.
The frequencies displayed are theoretical values computed from equation 6.4 and
6.5.

frequencies when their amplitude become comparable, as it is the case when |γ2| &
0.1. And secondly, we reduce the coupling between the low frequencies originating
from the transverse centrifugal instabilities and the energy supply provided by the
instability of the shear layer.

To conclude this description of the cavity dynamics, let us specify that the
goal we set for the control is to reduce the oscillations of the mixing layer by
penalizing the amplitude of the frequencies fa = 29.50 Hz and those connected to
f+ = 39.69 Hz in the first order of the spectrum, as indicated by the green shaded
area of the figure 6.5. We note, however, that there is a small discrepancy between
the measured values and the theoretical values, indeed, the measured values of f−
and f+ seems to be higher and lower, respectively, than the theoretical ones. The
measured value of fb is then consistent with its definition. The sharp peak at
frequency 50 Hz corresponds to electric noise, its associated power is more than
three orders of magnitude lower compared to the fa. The other sharp frequency
at ≈ 36 Hz may corresponds to another external noise.

6.3.2 Actuation response

In this section, we described the response to a steady actuation at different levels.
For this, we vary êmax from 1.8 V to 4 V with a 0.2 V step, such as we cross the
ignition voltage associated to e0. Each actuation is run over one minute with a
five second pause between the tests. Two sets of measurements have been done,
one where the values are tested increasingly and another where the values are
tested decreasingly. Figure 6.6 shows the spectrum for each actuation level for
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the two sets of measurements. First, we notice that, as we increase the actuation
level, the spectrum flattens. The third harmonic 3fa is no longer distinguishable
after V = 2.4, the second harmonic 2fa subsists until V = 3.4 and the first
harmonic fa disappears around V = 3.9. We note that along the decrease of the
harmonics, the noise level increases. The frequency f+ is visible at start, then
becomes less distinguishable from V = 2.4 to V = 2.7, then it appears again,
gaining magnitude until it vanishes in the noise level at V = 3.9. We note that
the frequency f+ slightly shifts towards higher levels, this may be explained by the
increase of the momentum boundary layer thickness due of the strong actuation.
We also remark a discontinuous behaviour between V = 2.4 and V = 2.5 for the
ascending measurements and between V = 2.5 and V = 2.6 for the descending
measurements. Indeed, at V = 2.4, the second harmonic is clearly visible but
at V = 2.5, it almost flattened while a bulge appeared around f+. This bulge
progressively decreases to the benefit of the second harmonic. The ascending
and the descending measurements show almost the same dynamics except for the
discontinuity described. We take care to choose e0 and emax, the action level
thresholds such as they include the rich dynamics around the discontinuity. We
note that there is also a discrepancy between the measured frequencies and the
theoretical values. This kind of hysteresis underlines the complexity of the coupling
between the DBD actuator and the flow, especially just above the E0 threshold.
In this voltage range, the actuator does not reduce itself to an affine law between
command and action. The learning process will have to take this complexity into
account.

In this chapter, we presented the experimental setup of the single-input single-
output control system that is the open cavity. We described the hardware, software
and the control tools. As a first study, we decided to work on a weakly nonlinear
regime but that still displays complex and rich dynamics.
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Figure 6.6: Actuation response for different steady actuation levels. The actuation
levels are displayed on the right side of the plots. The vertical axis is in log scale.
The spectra have been successively shifted by 102 from the unforced natural flow
(in red) to ease the visualization.





Chapter 7

Feedback control optimization

In this chapter, we aim to control the single-input single-output cavity flow by
the means a DBD situated at the trailing edge upstream. We employ our two
codes: xMLC based on linear genetic programming control (LGPC, chapter 2) and
gMLC based on gradient-enriched machine learning control (gMLC, chapter 5) in
order to find a control law aiming to mitigate the oscillations of the mixing layer.
Then, we carry out an analysis of the control law derived with each algorithm.
We show, in particular, that gMLC presents a significant speed-up in learning
efficient feedback control laws compared LGPC, confirming the speed-up observed
for numerical simulations in chapter 5. First, in section 7.1, we present the control
problem, then we detail the LGPC and gMLC results in section 7.2 and section 7.3
respectively. Finally, we conclude with a discussion on the learning process in
experimental conditions in section 7.4.
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7.1 Control problem

In this section, we describe the cost function associated to our control problem.
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7.1.1 Cost function

As stated in chapter 6, our aim is to mitigate the oscillations of the mixing layer,
for this we consider the main frequency of the spectrum in a given range as a
measure of the control performance. Also, in section 6.3.2, we notice that a strong
constant actuation is enough to reduce significantly the main peak of the spectrum,
thus we consider an actuation penalization term for the control. The cost function
then reads:

J(b) = Ja(b) + γJb(b) (7.1)

Amplitude reduction

The term Ja serves to characterize the reduction of the main frequency fa. We
choose to focus our search in the range [27.5, 43] comprising fa and f+. f+ is also
included in the detection range as it corresponds to a mode that is excited with
enough steady actuation, see section 6.3.2. Thus, Ja reads:

Ja(b) =
aPSD(ũ(f))

aPSD(ũ0(f))
(7.2)

where aPSD(ũhw(f)) = max
f∈[27.5,43]

ũ(f) and ũ(f) is the Fourier transform of the veloc-

ity u measured by the hot-wire sensor. We normalize the cost by the value of the
peak for the natural unforced flow, so we have a direct measure of the reduction
of the peak. The PSD is computed over Tev = 40 seconds. The evaluation time
has been chosen to balance converged statistics and practicality. Indeed, a too
long evaluation time would be unpractical as several hundreds of control laws are
tested.

Actuation penalization

For the actuation penalization term, we base Jb on the actuation command b(t)
as we do not have access to the effective power supplied for the control. Jb is then
computed as the square of the actuation command averaged over Tev so that it
is analogue to an energy. Jb is normalized by the range of the actuation, so that
Jb(b = −1) = 0 and Jb(b = 1) = 1.

Jb(b) =
〈(E − E0)2〉Tev
(Emax − E0)2

=
〈(b(t) + 1)2〉Tev

4
(7.3)

As both cost function components Ja and Jb are normalized, we choose the penal-
ization parameter γ = 1.

Standard deviation

Moreover to assess the performance of the control, we compute the standard devi-
ation of the signal. Tev is also chosen such as the standard deviation is sufficiently
converged.

σ̃ =
σTev(uhw)

σTev(u0)
(7.4)
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Figure 7.1: Diagram of the machine learning control learning process. S is the
memory buffer for the velocity signal.

The standard variation is normalized by the standard variation of the natural
unforced flow.

7.1.2 Control law ansatz

To control the cavity, we feedback the velocity measured downstream to the DBD
upstream. We choose to take into account times-delayed signals as additional
inputs. This choice is motivated by two reasons: first, by adding delayed informa-
tion, we take into account the convective character of the fluid and secondly, with
sensor history we allow to build ARMAX-based control such as in Hervé et al.
(2012). Thus, the control ansatz is:

b(t) = K(s(t)) (7.5)

with
s(t) = [uhw(t), uhw(t− 2Ts), ..., uhw(t− 20Ts)]. (7.6)

Ts = 1/fs = 1/250 s being the sampling time. We took 10 delays with a 2Ts step
so that information of the 2.5 past periods is employed as input for the control
laws. Figure 7.1 illustrates the experimental and control setup. The velocity
measured by the hot-wire sensor is used both to characterize the flow thanks to
the cost function and as an input for the controller. There is a fast evaluation
loop for the evaluation of all the individuals and slow learning loop that updates
the control laws according to the performance of the previous individuals. In the
following, we present results for two machine learning control algorithms: linear
genetic programming control and gradient-enriched machine learning control.

7.2 Linear genetic programming control
In this section, we present the results on controlling the open cavity flow by means
of LGPC. The parameters chosen for the optimization are detailed in table 7.1.

The control optimization has been carried out for 10 generations of 100 indi-
viduals for a total of 1000 evaluations. As, we are dealing, in experiment, with a
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parameter description value

function library +, −, ×, ÷, sin, cos, tanh,
exp, log

Nb number of controllers 1
s control law inputs uhw(t),uhw(t− 2Ts), ...,

uhw(t− 20Ts)
Nvr number of variable registers 14
Ncr number of constant

registers
10

Ninst,max max number of instructions 100
NMC Monte Carlo individuals 100

LGPC parameters
Pc crossover probability 0.6
Pm mutation probability 0.3
Pr mutation probability 0.1
Ne elitism number 1

gMLC parameters
Nsub subspace size 10
Pc crossover probability 0.5
Pm mutation probability 0.5
Np number of individuals per

phase
50

Table 7.1: LGPC and gMLC parameters to control the open cavity.
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Figure 7.2: Leaning process of LGPC for the control of the open cavity. Each
generation is sorted according to their cost. The vertical axis is in log scale.

noisy environment, the performance of an individual is taken as the average cost
of all its past evaluations. Replicated individuals and copied thanks to elitism
are then evaluated more than one time, thus their performance is more accurately
assessed. However during the evolution process, only the immediate cost of the
individual is used for the relative ordering of the individuals. Indeed, as we are
likely to face drifts due to the temperature variations of the room, the time evo-
lution of the response of the DBD actuator or the variations of the frequency of
the fan motor, a comparison of individuals evaluated in the same conditions is
preferred.

7.2.1 Controlled flow analysis

Figure 7.2 depicts the learning process for the 10 generations. We note that some
dots come out of line. This is because those individuals have been evaluated
several times and their prior evaluation were different from the following(s). Also,
we remark that most of the learning is made in the first 6 generations. The last
generation brings only a small improvement. The final cost after 1000 evaluations
is: JLGPC = 0.0561.

The associated control law is:

KLGPC
1 = log(sin(exp(s4))× sin(log(0.636628 sin(exp(s4)))))

JLGPC = 0.0561,
Ja = 0.0313,
Jb = 0.0248,
σ̃LGPC = 1.4631.

(7.7)

We notice that it is a nonlinear feedback control law comprising sin, log, exp and
only one sensor s4(t) = uhw(t− 8Ts) repeated twice. We note that both Ja and Jb
have been reduced by a factor ≈ 30. However the associated standard deviation
increased compared to the unforced flow. This is translated by an erratic velocity
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signal in figure 7.3. The associated spectrum shows that, LGPC successfully
managed to reduce the main peak fa without exciting f+. Nevertheless, this
solution increased the general noise level of the flow compared to the unforced
flow. This solution is similar to a strong steady actuation, such as V = 4 in
fig. 6.6, but with a much lower actuation.

Figure 7.3: Dynamics of the open cavity controlled with LGPC.

7.3 Gradient-enriched machine learning control

Now let’s consider the results of feedback control optimization with gradient-
enriched machine learning control (gMLC), see chapter 5. The parameters used
for this optimization are summarized in table 7.1.

7.3.1 Fast learning of feedback control laws

Figure 7.4, depicts the learning process for the gMLC optimization. Only 300
evaluations have bee carried out because of the drifts that perturb the learning
process. We note that for both optimization algorithms, LGPC and gMLC, the
initial Monte Carlo step manage to reduce the cost by more than 90%. The
first evolution step of gMLC also brings comparable results with LGPC. Most
of the improvement is done during the first exploitation step, where the simplex
phase builds, after 50 evaluations, individuals whose cost is comparable to the
best LGPC solution. The next evolution step do not bring any improvement and
the last exploitation step only slightly reduces the cost. The final cost after 300
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Figure 7.4: Learning process of gMLC for the control of the open cavity. The
individuals are colored following the phase that generated them: blue for the
exploration steps and yellow for the exploitation steps.

evaluations JgMLC = 0.0578 is slightly higher than JLGPC. The expression of the
best individual after simplification is:

KgMLC
1 =

− 0.382095

tanh(s6)
+

(
− 0.324022

s1

)
− 0.107455

tanh(s9)
+ 0.071158,

JgMLC = 0.0578,
Ja = 0.0173,
Jb = 0.0405,
σ̃gMLC = 0.8681.

(7.8)

We note that KgMLC allows a greater reduction of Ja compared. However, the
actuation cost associated with the gMLC control is higher than the actuation cost
of LGPC but still in the lower range of actions. Surprisingly, this nonlinear control
law combining three sensors s1, s6 and s9 reduces the standard deviation of the
velocity to σ̃gMLC = 0.8681.

The control law KgMLC is in fact a linear combination of 10 control laws. Ta-
ble 7.2 gathers all the control laws that compose bgMLC along with their weights,
costs and standard deviation. We note, that control law #7 managed an equiv-
alent reduction of Ja but with a much higher actuation cost. The success of the
downhill simplex step is to combine not so good individuals to build a better or
that surpasses all of them. Indeed the cost of the best control law among the ten
is J = 0.15 and KgMLC improves this cost by almost a factor 3.

7.3.2 Feedback control law

The time series and PSD of the controlled flow byKgMLC is depicted in fig. 7.5. We
note that the time series of the measured velocity is comparable to the unforced
flow unlike the flow controlled by KLGPC. This solution manages to efficiently
reduce the main peak fa and its harmonics without exciting f+, just like the
LGPC solution. However, in the case of the gMLC solution, the noise level stays



134 CHAPTER 7. FEEDBACK CONTROL OPTIMIZATION

# b weight J Ja Jb σ̃

1 −0.286174 7.5977× 10−2 0.25 0.13 0.13 0.90
2 −0.361287 −1.0647× 10−1 0.27 0.17 0.10 0.93
3 −0.223013 −1.0111× 10−1 0.22 0.07 0.15 0.86

4
− 0.468662

tanh(s6)
8.1529× 10−1 0.17 0.11 0.07 0.96

5 −0.128124 −2.8648× 10−1 0.25 0.06 0.19 0.87
6 −0.5174 4.821× 10−2 0.26 0.20 0.06 1.01

7
− 0.5174

s1

6.2625× 10−1 0.15 0.02 0.14 0.79

8
− 0.468662

tanh(s9)
2.2928× 10−1 0.18 0.12 0.07 0.99

9 −0.174613 −5.2789× 10−1 0.27 0.10 0.17 0.90
10 −0.317493 2.2694× 10−1 0.23 0.11 0.12 0.98

KgMLC 0.06 0.02 0.04 0.87

Table 7.2: Summary of the 10 control laws composingKgMLC described in equation
(7.8). For each control law, we present the control law, the associated weight, J ,
Ja, Jb and the standard deviation. The best values for each quantity are written
in bold. The values associated to the whole KgMLC are also given for comparison
in the last line.

low. Indeed, the spectrum of the gMLC controlled flow is close to the unforced one
beyond the frequency window scanned. In fig. 7.5, the gMLC control command
looks like a constant actuation at 10% of the maximum action. Thus, one can
wonder if an equivalent constant action can produce the same results. Thus, to
test this hypothesis, we control the flow with the same actuation command but
as an open loop control. The PSD of the controlled with the open loop control
equivalent is depicted in blue in figure 7.5 as ‘gMLC-OL’. In the case of the
gMLC-OL control, the main peak at fa and its harmonics come back. We note
in particular that the amplitude of the main peak increased almost by a factor 10
between the gMLC control and the gMLC-OL control. This shows that the small
feedback, barely visible on the time series, is essential to the control of fa. Thus,
gMLC managed to build a feedback control law that effectively takes advantage
of the flow information to kill the oscillations of the mixing layer without rising
the noise level.

7.4 Conclusion

In conclusion, we successfully managed to control the flow in an experiment. De-
spite the complexity of the dynamics, the noisy environment and the various source
of drift, both LGPC and gMLC managed to build relevant control laws capable to
act effectively on the shear layer. The most impressive results are given by gMLC.
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Figure 7.5: Dynamics of the open cavity controlled with the best control law
derived by gMLC (in red). The control of the flow by the equivalent open loop
actuation is depicted in blue, see text for more details.

Indeed, gMLC manage to build in less than 300 evaluations a feedback control law
that manages to act on the main frequency of the flow. Moreover, the significant
speed up of gMLC compared to LGPC, observed in chapter 5, is also observed in
experimental conditions. These are not isolated results, as the speed up has been
also observed in the preliminary tests. The drift of the DBD actuator resulted in
slightly different solutions between the runs, but the order of magnitude of the
cost reduction was the same between the different tests.





Chapter 8

Conclusion

This final section summarizes the key achievements described in this thesis and
concludes with the perspectives and futures challenges of the field.

8.1 Achievements

8.1.1 Algorithmic development: fast learning of control laws
with gMLC

In this work, we have pushed back the boundaries of control law optimization
thanks to our new algorithm, the gradient-enriched machine learning control. We
inspired ourselves from the EGM methodology (Li et al., 2021) to combine genetic
programming explorative power and gradient-based methods for speed. We em-
ployed our algorithms both in numerical simulations and experiments, revealing
that gMLC outperforms consistently LGPC in terms of convergence speed and
final solution.

Between the accelerated speed and quality of the solutions, we can safely state
that we have accelerated the learning process by, at least, a factor 10, though a
factor 25 can be said for some cases.

Such acceleration is valuable as it will open the access to a wide range of control
experiments, including many actuators and sensors and multi-parameter testing
for robustness. It will also enable control for costly experiments where long hours
of training is often prohibitive.

8.1.2 Code development: xMLC and gMLC

Our algorithmic advancements come along software development. Indeed, we de-
veloped our own codes based on the literature Duriez et al. (2016); Brameier &
Banzhaf (2006) and our methodological progress. Our two softwares xMLC and
gMLC have been developed on MATLAB and are compatible with the free software
GNU Octave. To understand and improve the learning process of LGPC, we car-
ried out an extensive meta-parameter study of the genetic programming algorithm
and elaborated some rules of thumb for the choice of the meta-parameters. Such
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study has also been directly profitable to the success of gMLC as it contains a ver-
sion of xMLC as a module for the reconstruction phase. The role of the xMLC solver
and its efficiency is essential in the learning process of gMLC as it allows to integrate
the simplex individuals in the database. Finally, thanks to the fruitful interaction
with experimentalist collaborators such as Eliot Varon, Fan Dewei and Philipp
Oswald, we designed our codes to an easy interface with real time controllers.
This allowed us to distribute our code easily and facilitate its implementation in
many experiments.

8.1.3 Control of the fluidic pinball in numerical simulations

Our codes have been applied to the fluidic pinball for two different problems: the
reduction of net drag power and the stabilization of the flow. We carried out
open-loop studies in the subspace of symmetric controllers revealing that boat
tailing is the best strategy to reduce the drag power and that for flow stabilization
base bleeding is preferred. Then, we allowed for a non-symmetric control with
an independent rotation of the three cylinders. In those cases, LGPC, EGM
and gMLC algorithms are employed to deal with such complex search spaces.
EGM and LGPC showed for both control problems that an asymmetric control
gives the best performances. We note also that a full stabilization of the flow
is possible with high-frequency but with a high cost expense. However, for drag
reduction, periodic forcing seems inefficient as LGPC systematically discarded
the time-dependent functions provided. For both problems the best solutions
correspond to combinations of known strategies including information of flow state
thanks to velocity probes downstream:

• phasor control and asymmetric boat tailing for the net drag reduction prob-
lem;

• phasor control and asymmetric forcing for the flow stabilization problem.

8.1.4 Control of the open cavity in experiments

xMLC and gMLC have also been deployed in experimental conditions for the control
of the open cavity. Despite the noisy environment and many sources of drifts,
xMLC and gMLC managed to learn efficient control laws that reduce the main peak
of the power spectrum, related to the oscillations of the mixing layer, by a factor
1000. The most impressive results are for the gMLC optimization, that managed
a fast learning (less than 300 evaluations) of a feedback control law that reduces
the target main frequency by a factor 1000 (in power) but also whole standard
deviation. The feedback control law has been analyzed in detail, revealing that
the control is effectively based on a feedback mechanism. Indeed, the suppression
of the feedback leads to drastic loose in performance.
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8.2 Future challenges

8.2.1 Performance with many sensors and actuators

We demonstrated the performances of gMLC for systems with less than O(10) ac-
tuators and sensors. One can also wonder how gMLC performances will scale with
control problems including many inputs and outputs. From a practical point of
view, nothing prevents us from including as many inputs and outputs as required.
The stabilization of the fluidic pinball shows that increasing the number of sensor
information is likely to enhance the maximum control performance. However, it
is expected to also increase the total learning time. From LGPC’s experience in
past experiments (Ren et al., 2020; Noack, 2019), we notice that there is only a
low impact on the learning speed with increasing control inputs and outputs.

Also, to consider many inputs and outputs comes with the curse of dimensional-
ity. One remedy for this, would be to augment the learning methods by exploiting
the symmetries and invariants of the problem, such as Belus et al. (2019) for deep
reinforcement learning. For LGPC, self-discovery of symmetries and invariants
of the problem is unlikely, especially with high dimensional spaces. Indeed, ge-
netic operations, crossover and mutation, work in a stochastic way and preserving
symmetries of the controls laws with such nonlinear operators seems improbable.
However, gradient-based methods have the benefit to linearly combine solutions,
preserving symmetries and invariance among the solutions. We believe that, in
this case, the continuous exploration of the search space can steer the simplex
towards active subspaces and avoid the exploration of too large subspaces.

Finally, we can see two additional ways to overcome this challenge. We could
artificially impose the symmetries and invariants of the problems on the individuals
themselves, discarding those who do not satisfy the constraints. Another solution
would be to relax the symmetry constraints by adding a specific term in the cost
function. In this case, the choice of the penalization coefficient is open to discussion
and would be tuned depending the need. Both approaches would, of course, be
based on a prior analysis of the dynamics of the problem.

8.2.2 Control of complex flows

The scalability of the method to more complex flows, such as high Reynolds num-
ber presenting broadband turbulence, is also one question to be addressed in future
works. We believe that the optimization principle that we present, balancing ex-
ploration (for discovering new basins of attraction of minima) and exploitation (for
a fast descent towards the minimum) is a general scheme for non-convex optimiza-
tion in high or infinite dimension spaces. In the case of gMLC, the exploration
phases may be capable to discover the basin of attraction of the global minimum
for more complex problems. As for the gradient-based part, our slide towards the
minimum might only be stopped by erratic gradients. However, this limitation
does not only apply to gMLC as it is inherently correlated to the definition of the
cost function. It is likely that all model- free methods based on the same metric
would face the same issues near the optimum. For more complex flows, the main
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challenge lies in the physics of the problem and the definition of a cost function
that is the least sensible to the random behaviour of turbulence.

Finally, recent successes on the control of turbulent jet (Zhou et al., 2020) with
GPC in high Reynolds number strengthen us to expect that our methodology
is generalizable to complex flows. Recent experimental applications of gMLC,
including mitigation of cavity oscillations, drag reduction of a generic truck model
under yaw and lift increase of an airfoil under angle of attack at Reynolds number
near one million, also reinforce our expectations. Performance and reproducibility
of gMLC control are promising and outperform other methods, including LGPC.

LGPC and gMLC are powerful regression solvers validated in numerical sim-
ulations and experiments. They can derive complex expressions that exploit the
nonlinearities of the flow. However, they may not be the most adequate algo-
rithm for all problems. Indeed, a minimum number of evaluations is required for a
converged learning and it may become impractical for complex 3D simulations or
systems comprising very low frequencies. Moreover, employing LGPC or gMLC to
derive smooth control laws that have a linear or affine relationship with the sensor
signals may be overkill. Other methods such as cluster-based control (Nair et al.,
2019) or gradient augmented genetic algorithmMaehara & Shimoda (2013) may be
more suited for such problems. Finally, optimization of the whole trajectory such
as the stabilization of the fluidic pinball may not be ideal for systems that have low
time scale responses. In this case, deep reinforcement learning approaches may be
more efficient to build an optimal solution (Fan et al., 2020; Rabault et al., 2019).
A hybridization of these techniques may result in more efficient algorithms, in the
same way gMLC combines LGPC and gradient-based methods. In addition, so
far, we only employed our algorithms as plug-and-play codes. Another next step
to accelerate the learning process and achieve better performances would be to
pre-process the feedback information to extractor key features based (or not) on
the physics of the problem. For this purpose, the introduction of Morlet filters for
the control of the cavity is already in progress.

8.2.3 Robustness

Lastly, we approach the problem of the robustness of the control laws. In this
work, we optimized control laws only for a single Reynolds number. We believe
that the question of robustness is also intrinsically linked to the cost function def-
inition. Only a proper cost function that takes into account several conditions
(such as different initial conditions or Reynolds numbers) may be general enough
to regularize the control law landscape and set robustness as one the criteria of op-
timality. However such trainings, with varying conditions, require proper methods
like multiple evaluations of the same control law (Asai et al., 2019). An example
of such training is proposed in Tang et al. (2020) for deep reinforcement learning.
Therefore, the significant increase in the learning speed compared to LGPC is a
decisive feature as it allows the testing of the same control at different conditions
while keeping the total number of evaluation at realistic levels for experiment
steadiness.

Robustness is currently explored in various experiments and will be the theme
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of future publications.
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Titre: Contrôle par apprentissage automatique et méthodes de gradient appliqué aux
écoulements cisaillés numériques et expérimentaux
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Résumé: Nous proposons un algorithme
rapide et automatisé de contrôle par apprentis-
sage automatique enrichi de méthodes de gra-
dients (gMLC) pour l’optimisation de lois de
contrôle en boucle fermée. Notre méthodolo-
gie alterne entre l’exploration de l’espace de
recherche et l’exploitation des gradients lo-
caux, et généralise la programmation géné-
tique (GPC) et l’Explorative Gradient Method
(EGM). L’algorithme gMLC est implémenté et
testé numériquement, par la stabilisation d’un
système multi-entrées multi-sorties, le pinball
fluidique et expérimentalement, par le contrôle
de la cavité ouverte. Dans les deux cas, gMLC
a construit des lois de contrôle en boucle fermée
permettant les meilleures performances réper-

toriées. Nous démontrons aussi que les mé-
canismes de contrôle pour la cavité reposent
effectivement sur la rétroaction à partir de la
mesure de l’état. La comparaison entre gMLC
et GPC est toujours à l’avantage de gMLC
aussi bien en termes de vitesse de convergence
que de qualité de la solution finale. Le gain
en vitesse d’apprentissage est d’au moins un
facteur 10, permettant d’envisager le contrôle
d’expériences complexes avec, par exemple, un
grand nombre d’entrées et de sorties ou des tests
multi-paramètres pour assurer la robustesse de
l’apprentissage. Enfin, deux codes sont mis en
ligne en libre accès: xMLC, basé sur le contrôle
par programmation génétique et gMLC, basé sur
notre nouvel algorithme.

Title: Gradient-enriched machine learning control exemplified for shear flows in simula-
tions and experiments

Keywords: flow control, fluidic pinball, open cavity, machine learning control (MLC), genetic
programming control (GPC), gradient-enriched machine learning control (gMLC).

Abstract: As main contribution we propose
a fast and automated gradient-enriched ma-
chine learning control (gMLC) algorithm to
learn feedback control laws. The framework
alternates between explorative and exploitive
gradient- based iterations, generalizing genetic
programming control (GPC) and the Explo-
rative Gradient Method (EGM). The gMLC al-
gorithm has been demonstrated both numeri-
cally, with the stabilization of a MIMO system,
the fluidic pinball and experimentally, with the
control of the open cavity. In both cases, gMLC
successfully built closed-loop control laws allow-

ing the best performances so far. We prove, in
particular, that the mechanisms behind the con-
trol of the cavity rely effectively on feedback.
The benchmark of gMLC with GPC on both
problems, shows that gMLC outperforms GPC
both in terms of convergence speed and final
solution efficiency. An acceleration of at least
a factor 10 between the GPC and gMLC has
been achieved, allowing the control of many ex-
periments, e.g., with a large number of inputs
and outputs or multiple parameters testing for
robustness. The two developed codes are both
freely available online: xMLC, based on GPC and
gMLC, based on our new algorithm.
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