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Résumé vulgarisé

L'apprentissage de la parole chez les enfants est similaire à celle du chant chez les oiseaux. Ils passent par les mêmes phases de développement: ils commencent par écouter leurs parents, puis ils essayent de reproduire leurs vocalisations en babillant, pour enfin produire des sons de plus en plus proches de ceux de leurs parents. L'oiseau chanteur a des circuits cérébraux spécifiques dédiés à cet apprentissage, ce qui en fait un modèle idéal pour explorer les mécanismes neuronaux de l'apprentissage vocal par imitation. Dans cette thèse, on modélise cet apprentissage à l'aide d'une boucle perceptuo-motrice dans laquelle un mécanisme d'évaluation sensorielle guide l'apprentissage. On utilise notamment des développements récents de l'intelligence artificielle (réseaux antagonistes génératifs) pour produire les chants d'oiseaux. Cela nous permet de mieux comprendre l'apprentissage vocal par imitation, et plus généralement l'apprentissage sensorimoteur.

English version

Humans learn to speak in a similar way as how songbirds learn to sing. Both learn to speak/sing by imitation from an early age going through the same stages of development. First they listen to their parents' vocalizations, then they try to reproduce them: initially babbling, until their vocal output mimics those of their parents. Songbirds have dedicated brain circuits for vocal learning, making them an ideal model for exploring the representation of imitative vocal learning. My research project aims to build a bio-inspired model to describe imitative vocal learning. This model consists in a perceptual-motor loop where a sensory evaluation mechanism drives learning. The sound production is obtained from real recordings, using recent developments in artificial intelligence. This project, in between computer science and neuroscience, may help to better understand imitative vocal learning, and more generally sensorimotor learning.

Titre : Modélisation du réseau neuronal responsable de l'apprentissage du chant chez l'oiseau chanteur Resumé Pendant la première période de leur vie, les bébés et les jeunes oiseaux présentent des phases de développement vocal comparables : ils écoutent d'abord leurs parents/tuteurs afin de construire une représentation neurale du stimulus auditif perçu, puis ils commencent à produire des sons qui se rapprochent progressivement du chant de leur tuteur. Cette phase d'apprentissage est appelée la phase sensorimotrice et se caractérise par la présence de babillage. Elle se termine lorsque le chant se cristallise, c'est-à-dire lorsqu'il devient semblable à celui produit par les adultes.

Il y a des similitudes entre les voies cérébrales responsables de l'apprentissage sensorimoteur chez l'homme et chez les oiseaux. Dans les deux cas, une voie s'occupe de la production vocale et implique des projections directes des zones auditives vers les zones motrices, et une autre voie s'occupe de l'apprentissage vocal, de l'imitation et de la plasticité. Chez les oiseaux, ces circuits cérébraux sont exclusivement dédiés à l'apprentissage du chant, ce qui en fait un modèle idéal pour explorer les mécanismes neuronaux de l'apprentissage vocal par imitation.

Cette thèse vise à construire un modèle de l'apprentissage du chant des oiseaux par imitation. De nombreuses études antérieures ont tenté de mettre en oeuvre l'apprentissage par imitation dans des modèles informatiques et partagent une structure commune. Ces modèles comprennent des mécanismes d'apprentissage et, éventuellement, des stratégies d'exploration et d'évaluation. Dans ces modèles, une fonction de contrôle moteur permet la production de sons et une réponse sensorielle modélise soit la façon dont le son est perçu, soit la façon dont il façonne la récompense. Les entrées et les sorties de ces fonctions sont dans plusieurs espaces: l'espace moteur (paramètres moteurs), l'espace sensoriel (sons réels), l'espace perceptif (représentation à faible dimension du son) ou l'espace des objectifs (représentation non perceptive du son cible).

Le premier modèle proposé est un modèle théorique inverse basé sur un modèle d'apprentissage vocal simplifié où l'espace sensoriel coïncide avec l'espace moteur (c'està-dire qu'il n'y a pas de production sonore). Une telle simplification permet d'étudier comment introduire des hypothèses biologiques (par exemple, une réponse non linéaire) dans un modèle d'apprentissage vocal et quels sont les paramètres qui influencent le plus la puissance de calcul du modèle. Afin de disposer d'un modèle complet (capable de percevoir et de produire des sons), nous avions besoin d'une fonction de contrôle moteur capable de reproduire des sons similaires à des données réelles. Nous avons analysé la capacité de WaveGAN (un réseau de génération) à produire des chants de canari réalistes. Dans ce modèle, l'espace d'entrée devient l'espace latent après l'entraînement et permet la représentation d'un ensemble de données à haute dimension dans une variété à plus basse dimension. Nous avons obtenu des chants de canari réalistes en utilisant seulement trois dimensions pour l'espace latent. Des analyses quantitatives et qualitatives démontrent les capacités d'interpolation du modèle, ce qui suggère que le modèle peut être utilisé comme fonction motrice dans un modèle d'apprentissage vocal. La deuxième version du modèle est un modèle d'apprentissage vocal complet avec une boucle action-perception complète (il comprend l'espace moteur, l'espace sensoriel et l'espace perceptif). La production sonore est réalisée par le générateur GAN obtenu précédemment. Un réseau neuronal récurrent classant les syllabes sert de réponse sensorielle perceptive. La correspondance entre l'espace perceptuel et l'espace moteur est apprise par un modèle inverse. Les résultats préliminaires montrent l'impact du taux d'apprentissage lorsque différentes fonctions de réponse sensorielle sont mises en oeuvre.

Mots clés :modélisation, modèle inverse, apprentissage sensori-moteur, oiseau chanteur, réseau de neurones artificiels, réseaux génératifs antagonistes Title : Modeling the neural network responsible for song learning Abstract During the first period of their life, babies and juvenile birds show comparable phases of vocal development: first, they listen to their parents/tutors in order to build a neural representation of the experienced auditory stimulus, then they start to produce sound and progressively get closer to reproducing their tutor song. This phase of learning is called the sensorimotor phase and is characterized by the presence of babbling, in babies, and subsong, in birds. It ends when the song crystallizes and becomes similar to the one produced by the adults.

It is possible to find analogies between brain pathways responsible for sensorimotor learning in humans and birds: a vocal production pathway involves direct projections from auditory areas to motor neurons, and a vocal learning pathway is responsible for imitation and plasticity. The behavioral studies and the neuroanatomical structure of the vocal control circuit in humans and birds provide the basis for bio-inspired models of vocal learning. In particular, birds have brain circuits exclusively dedicated to song learning, making them an ideal model for exploring the representation of vocal learning by imitation of tutors.

This thesis aims to build a vocal learning model underlying song learning in birds. An extensive review of the existing literature is discussed in the thesis: many previous studies have attempted to implement imitative learning in computational models and share a common structure. These learning architectures include the learning mechanisms and, eventually, exploration and evaluation strategies. A motor control function enables sound production and sensory response models either how sound is perceived or how it shapes the reward. The inputs and outputs of these functions lie (1) in the motor space (motor parameters' space), (2) in the sensory space (real sounds) and (3) either in the perceptual space (a low dimensional representation of the sound) or in the internal representation of goals (a non-perceptual representation of the target sound).

The first model proposed in this thesis is a theoretical inverse model based on a simplified vocal learning model where the sensory space coincides with the motor space (i.e., there is no sound production). Such a simplification allows us to investigate how to introduce biological assumptions (e.g. non-linearity response) into a vocal learning model and which parameters influence the computational power of the model the most. The influence of the sharpness of auditory selectivity and the motor dimension are discussed.

To have a complete model (which is able to perceive and produce sound), we needed a motor control function capable of reproducing sounds similar to real data (e.g. recordings of adult canaries). We analyzed the capability of WaveGAN (a Generative Adversarial Network) to provide a generator model able to produce realistic canary songs. In this generator model, the input space becomes the latent space after training and allows the representation of a high-dimensional dataset in a lower-dimensional manifold. We obtained realistic canary sounds using only three dimensions for the latent space. Among other results, quantitative and qualitative analyses demonstrate the interpolation abilities of the model, which suggests that the generator model we studied can be used as a motor function in a vocal learning model.

The second version of the sensorimotor model is a complete vocal learning model with a full action-perception loop (i.e., it includes motor space, sensory space, and perceptual space). The sound production is performed by the GAN generator previously obtained. A recurrent neural network classifying syllables serves as the perceptual sensory response. Similar to the first model, the mapping between the perceptual space and the motor space is learned via an inverse model. Preliminary results show the influence of the learning rate when different sensory response functions are implemented.

Keywords : modeling, inverse model, sensorimotor learning, songbird, artificial neural network, generative adversarial network 
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Résumé détaillé de la thèse en langue française

Les humains, comme les oiseaux chanteurs, apprennent par imitation dès leur plus jeune âge (par exemple, apprentissage de la parole chez les enfants et du chant chez les oiseaux chanteurs) : ils sont capables de reproduire un stimulus sensoriel vécu (par exemple un son) en trouvant la commande motrice appropriée pour le reproduire. Comment aborder la définition d'un modèle d'apprentissage sensorimoteur ? Quels sont les principaux éléments nécessaires pour construire une représentation minimale ? Le problème difficile de l'apprentissage sensorimoteur pour les systèmes naturels et artificiels motive notre recherche sur l'apprentissage vocal imitatif. Les études comportementales et la structure neuroanatomique du circuit de contrôle vocal chez les humains et les oiseaux servent de base pour un modèle bio-inspiré d'apprentissage vocal. En particulier, les oiseaux ont des circuits cérébraux exclusivement dédiés à l'apprentissage du chant, ce qui en fait un modèle idéal pour explorer la représentation de l'apprentissage vocal par imitation.

Cette thèse vise à construire un modèle bio-inspiré pour décrire l'apprentissage vocal par imitation chez les oiseaux en utilisant les récents développements de l'intelligence artificielle (par exemple les réseaux antagonistes génératifs, dénommés GAN). Un travail de revue de la littérature a été mené afin de comprendre en profondeur les concepts fondamentaux sur lesquels la thèse est basée. Le Chapitre 1 contient une introduction à ces concepts: l'apprentissage sensorimoteur, l'apprentissage vocal d'un point de vue biologique et informatique et les modèles génératifs.

La littérature sur les modèles d'apprentissage vocal est vaste, variée et pleine de contenus multidisciplinaires. Le Chapitre 2 compare les modèles d'apprentissage vocal existants issus d'études sur différents sujets (humains ou oiseaux chanteurs) et décrit la représentation d'un modèle d'apprentissage vocal minimal et comment il a été mis en oeuvre dans la littérature. Tout d'abord, il contient une introduction à la neuroanatomie du cerveau humain et des oiseaux chanteurs, ainsi qu'une analyse des liens entre la biologie et les composants sensorimoteurs. Ensuite, il contient la description des composantes des modèles présents dans la littérature, et comment les modèles examinés peuvent être décomposés en fonction de ceux-ci. La comparaison entre plusieurs études a été effectuée avec soin et les différences/similitudes ont été largement discutées. Deux tableaux contiennent les détails de la comparaison. L'objectif est de trouver un scénario commun pour de démêler les compostants des modèles afin de mieux les comparer entre eux.

Un bref compte-rendu préliminaire a été publié précédemment dans le cadre d'un workshop de la conférence internationale ICDL-Epirob sur l'apprentissage sensorimoteur continu et non-supervisé (septembre 2018, Tokyo, Japon) et a ensuite été étendu au Chapitre 2. Vocal Imitation in Sensorimotor Learning Models A Comparative Review [START_REF] Pagliarini | Vocal imitation in sensorimotor learning models: a comparative review[END_REF] Le modèle d'apprentissage vocal le plus simple ne comprend que deux espaces : l'espace perceptuel (représentant par exemple les aires auditives du cerveau de l'oiseau) et l'espace moteur (représentant par exemple les aires motrices du cerveau de l'oiseau). Dans ce type de modèle, l'espace sensoriel et l'espace moteur se retrouvent être un seul et même espace.

Le premier modèle proposé dans cette thèse est un modèle inverse théorique basé sur un modèle d'apprentissage vocal simplifié où l'espace sensoriel coïncide avec l'espace moteur (c'est-à-dire qu'il n'y a pas de production sonore). Le Chapitre 3 décrit l'architecture d'un modèle simple d'apprentissage vocal dans lequel une réponse sensorielle non linéaire active les unités perceptuelles et une règle d'apprentissage hébbienne normalisée pilote l'apprentissage. Ce modèle s'inspire du modèle théorique d'apprentissage vocal proposé précédemment par [START_REF] Hanuschkin | A hebbian learning rule gives rise to mirror neurons and links them to control theoretic inverse models[END_REF] et [START_REF] Hahnloser | Vocal learning with inverse models[END_REF]. L'architecture d'apprentissage est basée sur un appariement de la zone sensorielle à la zone motrice, apprise par une règle d'apprentissage hébbienne. L'exploration est aléatoire, et la réponse sensorielle permet l'activation des neurones sensoriels. Il est présenté un modèle théorique bio-inspiré de l'apprentissage vocal chez les oiseaux chanteurs et il reproduit numériquement les résultats théoriques. Dans ce chapitre, l'aire perceptuel correspond à la zone du cerveau où le stimulus perceptif est encodé et l'aire motrice correspond à la zone du cerveau d'où part l'entrée dans l'appareil moteur. En même temps, comme introduit dans le Chapitre 2, le stimulus appartient à l'espace perceptuel, est encodé dans l'espace perceptif et est produit grâce à une commande motrice appartenant à l'espace moteur.

Une telle simplification permet d'étudier comment introduire des hypothèses biologiques dans un modèle d'apprentissage vocal et quels sont les paramètres qui influencent le plus la puissance de calcul du modèle. La vitesse et la précision de l'apprentissage sont influencées par la sélectivité d'une part, et par la taille de l'aire motrice d'autre part. Cette dernière sera le point clé pour le développement ultérieur du modèle.

A Bio-inspired Model Towards Vocal Gesture Learning in Songbird " (Pagliarini et al., 2018a) a été publié dans les actes de l'ICDL-Epirob, et utilisé plusieurs fois pour des présentations orales et des sessions de posters. Plus de détails sont disponibles sur le site https://github.com/spagliarini/2018-ICDL-EPIROB.

Le modèle proposé dans le Chapitre 3 est construit en supposant qu'à chaque étape d'une nouvelle exploration motrice, une nouvelle réponse auditive est calculée et les poids synaptiques sont mis à jour en conséquence. En d'autres termes, les syllabes ont été considérées comme des entités qui durent un seul pas de temps, sans tenir compte du fait que, biologiquement, elles ont une certaine durée. En outre, le délai entre l'activité des motoneurones et celle des neurones auditifs (qui provoque le chevauchement entre la représentation auditive d'une syllabe et la production de la nouvelle syllabe) n'a pas été pris en compte. Une contribution pour décrire l'effet du retard du retour d'information auditif sur la précision de l'apprentissage se trouve dans une section dédiée qui contient des résultats complémentaires non publiés.

Pour disposer d'un modèle complet (c'est-à-dire capable de percevoir et de produire), il faut une fonction de contrôle moteur capable de reproduire des sons similaires à des données réelles (c'est-à-dire des enregistrements de canaris et de diamants mandarins, d'adultes et de jeunes).

Les modèles de variables latentes (ou modèles d'espace latent) sont une classe de modèles qui permettent de représenter des données en haute dimension en une représentation significative en basse dimension (appelée espace latent) où les points proches ont des propriétés similaires. En effet, l'espace latent est capable de représenter la variation des données réelles et d'encoder des éléments réalistes, y compris ceux qui ne font pas partie du jeu de données d'entraînement [START_REF] Roberts | A hierarchical latent vector model for learning long-term structure in music[END_REF]. De plus, un espace latent pourrait permettre de générer un résultat réaliste en interpolant entre des points de l'espace latent [START_REF] Radford | Unsupervised representation learning with deep convolutional generative adversarial networks[END_REF]. Toutes ces propriétés mettent en évidence la possibilité d'utiliser l'espace latent pour obtenir une représentation continue à faible dimension d'un ensemble de données donné.

Le Chapitre 4 explore l'application d'un GAN à un ensemble de données de syllabes de canaris. WaveGAN [START_REF] Donahue | Adversarial audio synthesis[END_REF] a été entraîné sur un jeu de données vocales et sur des enregistrements dans la nature de plusieurs espèces d'oiseaux. Les résultats prometteurs obtenus sur un vaste ensemble de données très variables de chants d'oiseaux ont déterminé le choix d'étudier les performances du générateur WaveGAN sur un ensemble de données plus petit et plus propre, plus proche de l'ensemble de données vocales utilisé dans le travail original. D'une part, la capacité du générateur à reproduire des échantillons réalistes est confirmée par une analyse qualitative qui a été effectuée à la fin de l'entraînement. D'autre part, il met en évidence la possibilité d'utiliser un espace latent de faible dimension.

Comme mentionné dans le Chapitre 2, le modèle plus simple ne met pas en oeuvre une fonction de contrôle moteur (c'est-à-dire que l'espace sensoriel coïncide avec l'espace moteur et qu'il n'y a pas de production sonore). Les modèles plus complexes définissent une fonction de contrôle moteur qui permet la production de sons. La fonction de réponse sensorielle traite le son et définit l'espace perceptuel. Enfin, l'architecture d'apprentissage décrit le lien entre l'espace perceptuel et l'espace moteur. L'objectif est de disposer d'un modèle basé sur une hypothèse biologique et réalisable par calcul (c'est-à-dire capable de converger vers l'apprentissage dans un laps de temps raisonnable et limité), contenant les éléments mentionnés ci-dessus et capable de produire un son réaliste en sortie.

Dans la littérature sur les oiseaux chanteurs, la fonction de contrôle moteur a souvent été définie à l'aide d'un système d'équations différentielles ordinaires qui modélisent l'anatomie du syrinx (c'est-à-dire l'organe vocal des oiseaux) [START_REF] Amador | Elemental gesture dynamics are encoded by song premotor cortical neurons[END_REF] ou les caractéristiques du son [START_REF] Doya | Complementary roles of basal ganglia and cerebellum in learning and motor control[END_REF]. De tels modèles peuvent fournir des productions qualitativement bonnes mais ne sont pas toujours en mesure de reproduire parfaitement les connexions perceptuo-motrices [START_REF] Pagliarini | Vocal imitation in sensorimotor learning models: a comparative review[END_REF]. Habituellement, les modèles mécanistes n'utilisent que quelques paramètres moteurs pour induire la plupart des changements dans la production. Il est donc difficile de comprendre la correspondance entre les paramètres moteurs et la sortie. De plus, ils sont lents à simuler.

Le Chapitre 5 propose un modèle complet d'apprentissage vocal. Le modèle comprend un espace moteur, un espace sensoriel et un espace perceptif, la fonction de contrôle moteur et la fonction de réponse sensorielle. Un modèle génératif de dimension 3 (c'est-à-dire que l'espace latent a 3 coordonnées) présenté dans le Chapitre 4 modélise la fonction de contrôle moteur, tandis que la combinaison d'un classificateur, basé sur un réseau neuronal récurrent (comme celui entraîné dans la section 4.3.4 du Chapitre 4) et une couche de normalisation, modélise la fonction de réponse sensorielle. Un point clé qu'il faut garder à l'esprit est la redondance de WaveGAN [START_REF] Donahue | Adversarial audio synthesis[END_REF] (et des GAN en général) : une syllabe peut être produite en utilisant de multiples configurations motrices. L'objectif du modèle est donc défini comme un objectif perceptuel. Les connexions entre l'espace moteur et l'espace perceptuel sont apprises par un modèle inverse. L'espace moteur est exploré à l'aide d'une exploration uniforme aléatoire et une simple règle d'apprentissage hébbienne dirige l'apprentissage. Le chapitre présente des résultats préliminaires sur l'influence du taux d'apprentissage lorsque différentes fonctions de réponse sensorielle sont mises en oeuvre. Ces résultats ont été obtenus sur la base d'hypothèses simples et visent à être étendus. Des études plus approfondies de l'espace moteur (espace latent) sont nécessaires pour comprendre (1) comment il est structuré et quelle est sa topologie (où chaque classe de syllabes est située dans l'espace tridimensionnel), et (2) si la topologie particulière donnerait un indice pour une stratégie d'exploration particulière. Une simple règle d'apprentissage hébienne permet d'atteindre les objectifs perceptuels "cibles" mais ne comporte pas de critères d'arrêt. L'introduction d'un signal de renforcement pourrait aider l'apprentissage à se stabiliser après avoir atteint la région de l'espace moteur qui permet la production du but perceptuel correct.

Bien qu'il soit nécessaire de vérifier la capacité de chaque composante du modèle à traiter des données différentes, le modèle proposé au Chapitre 5 peut potentiellement aider à expliquer l'apprentissage vocal chez les oiseaux chanteurs, mais il est également ouvert à d'autres perspectives. Par exemple, la même structure de modèle pourrait être utilisée pour l'apprentissage vocal chez les humains ou dans la communication entre agents artificiels. Par exemple, WaveGAN, et en général les modèles génératifs, pourraient servir de fonction de contrôle moteur pour différents modèles d'apprentissage vocal. C'est-à-dire qu'on pourrait utiliser le même générateur (entraîné avec différents jeux de données) pour modéliser la fonction de contrôle moteur dans un modèle d'apprentissage vocal en essayant d'expliquer l'apprentissage des chansons dans les cas des canaries ou le développement de la parole chez les humains. Pour tester cette possibilité, le même modèle génératif devrait être entraîné sur différents ensembles de données afin d'évaluer sa capacité à reproduire des sorties réalistes.
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Introduction to sensorimotor learning

Humans show an innate ability to learn motor skills both in early and advanced stages of life. For instance, babies learn how to pronounce a word, or how to play with a toy.

Similarly, adults can learn how to pronounce a word from a foreign language, or how to play an instrument. Sensorimotor learning allows humans to improve their ability to produce sensory-guided motor actions. Learning how to reproduce a sound or a movement requires processing sensory information, choosing the adequate learning strategy, selecting a target sound or movement [START_REF] Wolpert | Principles of sensorimotor learning[END_REF]. 

Behaviour

During sensorimotor learning, a learner tries to execute actions and receives external feedback which gives information about whether the action is performed correctly or not.

In the case of imitative learning, the learner is guided by a tutor. For instance, a parent teaching his child to pronounce a new word, or a coach showing his team how to kick the ball correctly. In the first case, the sensory stimulus is mainly an auditory stimulus (how a syllable sounds), even if a visual component could be present (e.g., the lips movement).

In the second case, the stimulus is mainly visual (the actual demonstration of kicking the ball), sometimes enriched by a cognitive component (the vocal explanation that the coach might give). When learning a motor skill, humans focus on the relevant sensory modality. When learning a new sound, a baby tries to reproduce the auditory stimulus.

When trying to kick a ball, a player tries to place his foot in a similar position as his coach.

Imitation is a key mechanism for sensorimotor learning. It represents the ability to observe and replicate another's behavior to either learn new actions or to adapt to a changing environment. It is motivated by intention and purpose, such as curiosity [START_REF] Zentall | Imitation in animals: evidence, function, and mechanisms[END_REF]. Such motivation could come from external or internal factors. For instance, a child doing his homework might be motivated either by the fact that his parent won't bother him later (external motivation), or by the fact that he thinks that it will be good for his future (internal motivation) [START_REF] Oudeyer | What is intrinsic motivation? a typology of computational approaches[END_REF]. As shown in Figure 1.1, in both cases the action selection actuated by the learner (here called autonomous agent)

depends both on the sensations derived from the external environment and on the rewards obtained. In the case of externally motivated behavior, the reward directly comes from the external environment. For instance, the parents' appreciation (or the absence of punishment) with respect to the child doing his homework. In the case of internally motivated behavior, the sensations coming from the external environment also provide input to the motivation system, which generates an internal reward and thus contributes to the action selection. For instance, the child's feeling of learning something useful to become an astronaut (here, the external motivation is given by the aim to become an astronaut). A third possibility is that the child is doing his homework because he is having fun: this is an intrinsically motivated behaviour [START_REF] Oudeyer | What is intrinsic motivation? a typology of computational approaches[END_REF].

Intrinsic motivation is internally driven by curiosity, novelty, knowledge and surprise.

Imitation relies on the ability to produce a motor command that replicates a previously experienced sensory stimulus. This ability is enabled by a causal relationship between the external stimulus and the produced action (in the case of a baby learning how to speak, the replication of a sound) [START_REF] Kuhl | Early language acquisition: cracking the speech code[END_REF]. Once the observer has received the sensory stimulus, he tries to replicate the perceived behavior and to produce a motor command that enables the production of a response as similar as possible to the experienced sensory stimulus. Imitation behavior is not specific to humans: several examples of animals (2009).

showing imitative learning have been highlighted in the literature [START_REF] Zentall | Imitation by animals: How do they do it?[END_REF]. For instance, young canaries learn how to sing by copying the song of an adult tutor and trying to reproduce it until they have learned it [START_REF] Brainard | What songbirds teach us about learning[END_REF]. Or, homeraised chimpanzees learn how to wash the dishes and how to apply lipstick on their mouth, showing imitative learning similar to humans [START_REF] Hayes | Imitation in a home-raised chimpanzee[END_REF].

As an alternative to imitation, a trial-and-error strategy has first been described by [START_REF] Thorndike | Animal intelligence: an experimental study of the associative processes in animals[END_REF] who observed that learning is promoted by positive results. Trial-and-error is characterized by repeated attempts to reach a designated goal, until success.

Each attempt is usually called trial and learning is characterized by a gradual improvement in performance [START_REF] Krakauer | Human sensorimotor learning: adaptation, skill, and beyond[END_REF]. The repetition of the successful action translates in an increased probability to perform this particular action [START_REF] Verstynen | How each movement changes the next: an experimental and theoretical study of fast adaptive priors in reaching[END_REF].

In no case is an animal activity to be interpreted in terms of higher psychological processes if it can be fairly interpreted in terms of processes which stand lower in the scale of psychological evolution and development [START_REF] Morgan | An introduction to comparative psychology[END_REF]). Morgan's Canon claims that animal behavior should be explained in the simplest possible way. Behind the learning behavior, there are many psychological and neural processes involved in the sensorimotor system. The ability to estimate the external world and the state of our body allows the brain to process two types of information: a sensory prediction of the expected outcome, and a sensory feedback describing the actual outcome [START_REF] Shadmehr | Error correction, sensory prediction, and adaptation in motor control[END_REF].

The sensory feedback provides pieces of information from sensory receptors through the afferent pathways. It can be provided by auditory or visual stimulation in response to a specific behavior (the perceived stimulus, i.e. the goal of the learning). Moreover, it contains information about the prediction error, which can support learning by evaluating the current output and driving the next trial [START_REF] Mooney | Neural mechanisms for learned birdsong[END_REF][START_REF] Wolpert | Principles of sensorimotor learning[END_REF]. The sensory prediction has the advantage of being available before the motor action takes place, and of overcoming the sensory feedback delay, and helps in measuring the environment [START_REF] Shadmehr | Error correction, sensory prediction, and adaptation in motor control[END_REF]. Combining sensory prediction and sensory feedback, the perception would be more accurate. The prediction error on one trial is the error obtained by comparing the predicted outcome with the actual outcome and can influence the next trial [START_REF] Thoroughman | Learning of action through adaptive combination of motor primitives[END_REF][START_REF] Tanaka | Adaptation to visuomotor rotation through interaction between posterior parietal and motor cortical areas[END_REF]. Computationally, the sensorimotor system estimates the motor command and computes an error signal [START_REF] Wolpert | Principles of sensorimotor learning[END_REF] that guides the learner toward the correct motor command. This process is at the basis of Reinforcement Learning (RL), as described in Section 1.1.4.

Brain circuits

Sensorimotor learning involves several areas of the brain that are related to the perception of a stimulus and to motor production. Imitation relies on sensory areas to process the sensory information (i.e., the information coming from the sensory stimulus while perceiving it) before performing the movement. Sensory information is first processed through sensory ascending pathways (from the receptor organ up to cortical sensory areas). Such pathways are classified according to their functional components and their anatomical location, and convey the sensory information to the thalamus, the cerebellum and the prefrontal cortex. Then, motor descending pathways convey the information from the cortical sensory areas to the muscles: such pathways are involved in motor control. Along with motor cortical areas, the prefrontal cortex, the basal ganglia and the cerebellum play a role in skill learning [START_REF] Krakauer | Human sensorimotor learning: adaptation, skill, and beyond[END_REF]. The prefrontal cortex plays a role in task strategy, while the basal ganglia contribute to optimizing the motor output. The basal ganglia circuits indeed promote sequence learning through trial-and-error learning and help the neural system promoting optimal motor and cognitive control [START_REF] Graybiel | The basal ganglia: learning new tricks and loving it[END_REF]. Moreover, basal ganglia contribute to the generation of a long-term representation of learned actions, supporting the notion that it participates in learning and adaptation [START_REF] Bédard | Basal ganglia-dependent processes in recalling learned visualmotor adaptations[END_REF]. Basal ganglia are linked to reinforcement learning [START_REF] Doya | Complementary roles of basal ganglia and cerebellum in learning and motor control[END_REF], whereas the cerebellum to linked with supervised learning (and, in particular, internal models). Functionally, cerebellum and basal ganglia are slightly different: they participate in motor control with specific functions [START_REF] Graybiel | The basal ganglia: learning new tricks and loving it[END_REF]. Basal ganglia are involved in the specification of the movement before execution (selection, preparation, retention), whereas the cerebellum is more involved in setting the movement parameters during execution [START_REF] Jueptner | Anatomy of motor learning. ii. subcortical structures and learning by trial and error[END_REF]. Furthermore, the cerebellum has a crucial role in adaptation [START_REF] Mazzoni | An implicit plan overrides an explicit strategy during visuomotor adaptation[END_REF][START_REF] Galea | Dissociating the roles of the cerebellum and motor cortex during adaptive learning: the motor cortex retains what the cerebellum learns[END_REF][START_REF] Wolpert | Principles of sensorimotor learning[END_REF], i.e.

its contribution in adjusting the learning model (using the prediction error) can result in faster adaptation [START_REF] Krakauer | Human sensorimotor learning: adaptation, skill, and beyond[END_REF]. Once learning is completed, the motor skills representation is encoded by the motor cortex [START_REF] Gentner | Modular organization of finger movements by the human central nervous system[END_REF][START_REF] Reis | Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation[END_REF].

The encoding of a sensory stimulus reveals premotor circuits helping in processing the perceived stimulus [START_REF] Rizzolatti | Premotor cortex and the recognition of motor actions[END_REF][START_REF] Roberts | Motor circuits are required to encode a sensory model for imitative learning[END_REF]. During imitation, regions in the inferior frontal cortex and inferior parietal cortex are activated [START_REF] Iacoboni | Cortical mechanisms of human imitation[END_REF]. When an action is retrieved, even if not executed, it may play a role in understanding the motor events. That is, there exists an observation/execution system, which is coherent with the findings of mirror neurons in macaque monkey prefrontal cortex [START_REF] Rizzolatti | Premotor cortex and the recognition of motor actions[END_REF][START_REF] Rizzolatti | The mirror-neuron system[END_REF].

Mirror neurons

Mirror neurons (MNs) are neurons that fire both during the observation and the production of a gesture [START_REF] Gallese | Action recognition in the premotor cortex[END_REF][START_REF] Oztop | Mirror neurons: functions, mechanisms and models[END_REF]. Due to this interesting property, mirror neurons have been largely investigated for the importance they could have in social neuroscience [START_REF] Ferrari | New frontiers in mirror neurons research[END_REF], imitative learning [START_REF] Cross | Neural systems for preparatory control of imitation[END_REF] and culture evolution [START_REF] Tramacere | Reconsidering the role of manual imitation in language evolution[END_REF].

Mirror neurons (MNs) have been discovered in the premotor cortex and Intraparietal Lobule (IPL) of macaque monkeys [START_REF] Pellegrino | Understanding motor events: a neurophysiological study[END_REF][START_REF] Rizzolatti | Premotor cortex and the recognition of motor actions[END_REF].

IPL plays a role in action organization and action understanding: it's part of the motor system. IPL and the Superior Temporal Sulcus (STS), an area that codes behaviors such as walking and hand movement, form the Mirror Neuron System (MNS). STS does not contain mirror neurons but is involved in the process of information about action observation and execution. Lately, mirror neurons presence has also been highlighted in the medial frontal cortex known as supplementary motor area (SMA) [START_REF] Yoshida | Representation of others' action by neurons in monkey medial frontal cortex[END_REF].

Moreover, mirror neurons have been found in HVC (used as a proper name), a brain area responsible for song perception, learning and production [START_REF] Prather | Precise auditory-vocal mirroring in neurons for learned vocal communication[END_REF]. Neurons from HVC projecting to other brain areas of the bird exhibit patterns of sing-related and auditory activity. The former could provide a motor estimation of auditory feedback, the latter could facilitate communication [START_REF] Prather | Precise auditory-vocal mirroring in neurons for learned vocal communication[END_REF].

Although the investigation of mirror neurons activity primarily relies on electrophysiological recordings in monkeys and birds, techniques such as neuroimaging and magnetic resonance can find mirror-like activities in humans. A mirror system for speech perception and production has been identified [START_REF] Pulvermüller | Active perception: sensorimotor circuits as a cortical basis for language[END_REF], and audio-vocal mirror activity has been observed in human Broca's area [START_REF] Wilson | Listening to speech activates motor areas involved in speech production[END_REF], the homolog region of monkey ventral premotor cortex [START_REF] Gallese | Action recognition in the premotor cortex[END_REF]. Also, these techniques have been used to study mirror responses associated with the perception and the execution of facial or hand gestures in humans [START_REF] Ferrari | Mirror neurons responding to the observation of ingestive and communicative mouth actions in the monkey ventral premotor cortex[END_REF][START_REF] Rizzolatti | The mirror-neuron system[END_REF][START_REF] Heyes | Where do mirror neurons come from?[END_REF]. Here, the coupling between observation and execution of the movement in a social context has been observed. That is, MNs may have a role in social learning [START_REF] Tramacere | Reconsidering the role of manual imitation in language evolution[END_REF][START_REF] Arbib | From monkey-like action recognition to human language: An evolutionary framework for neurolinguistics[END_REF].

Theoretical frameworks for sensorimotor learning

Depending on the type of information used during learning (e.g., prediction of the outcome gesture), different learning processes can be distinguished [START_REF] Wolpert | Principles of sensorimotor learning[END_REF].

Internal models (IM) are predictor models that can be used to understand sensorimotor learning and motor control behaviour [START_REF] Wolpert | An internal model for sensorimotor integration[END_REF]. In particular, they propose a mechanism to improve motor control, defining the relationship between an experienced sensory stimulus and the motor configuration needed to reproduce that exact stimulus.

Moreover, imitative learning, where a learner tries to replicate (by finding the correct motor configuration) the tutor's gesture, can rely on internal models. There are two types of internal models: inverse models and forward models1 , that can be used one at a time, or coupled. Inverse models estimate the motor command that corresponds to the desired state. Forward models predict the expected sensory feedback of a motor command.

Moreover, a forward model can be used to integrate a prediction error able to predict the sensory consequences of a motor action [START_REF] Wolpert | Principles of sensorimotor learning[END_REF]. If both are present, the model describes the learning of a bi-directional mapping between motor and sensory variables.

Neurophysiology of MNs is compatible both with an inverse model and a forward model [START_REF] Tramacere | Auditory-motor matching in vocal recognition and imitative learning[END_REF]. MNs could be part of an inverse model between the sensory representation of intended actions and the motor commands to reach them [START_REF] Hanuschkin | A hebbian learning rule gives rise to mirror neurons and links them to control theoretic inverse models[END_REF]. Alternatively, MNs are also compatible with a forward model: the internal prediction generated by auditory feedback and tutor perception may be learned by associating the auditory feedback registered in HVC and the premotor activity in birds [START_REF] Tramacere | Auditory-motor matching in vocal recognition and imitative learning[END_REF].

Reinforcement learning (RL) is a basic machine learning paradigm (along with supervised learning and unsupervised learning), that formulates how learning can occur by taking actions following a certain criterium (i.e., a policy) and receiving a reward consequently. The amount of reward received for a given action is given by the value function.

RL can be divided into two categories, depending on how the policy and the value function an external observer [START_REF] Ng | Algorithms for inverse reinforcement learning[END_REF]. Deep RL extends RL using deep neural networks [START_REF] François-Lavet | An introduction to deep reinforcement learning[END_REF]: this approach allows to solve complex tasks requiring high-dimensional inputs. In RL the agent must explore different possibilities to be successful and to improve the motor output (by improving the motor commands): this comes from the fact that the received information about how good is the motor output, and not directly information about which is the correct direction it should take (which would be the case in supervised learning) [START_REF] Wolpert | Principles of sensorimotor learning[END_REF]. This progressive improvement of the produced gestures provides a theoretical framework to explain the mechanisms under trial-and-error learning (introduced in Section 1.1.1).

Sensorimotor learning requires exploration mechanisms, which can be used to drive learning. Random motor exploration is the simpler exploration strategy (so-called motor babbling) [START_REF] Rohde | Goal-related feedback guides motor exploration and redundancy resolution in human motor skill acquisition[END_REF]. More complicated exploration strategies are goal-directed and could be driven by intrinsic or extrinsic motivation. A goal-directed strategy takes into account the memory of the current and preceding perceived outcome [START_REF] Rolf | Goal babbling permits direct learning of inverse kinematics[END_REF]. It could be based on the novelty level of the goal or on the competence of the agent. For instance, a goal babbling approach defines an exploration strategy constantly motivated by goals and not simply random.

Vocal learning

Vocal learning represents the ability to acquire new sounds via imitation, and should not be confused with usage vocal learning and auditory learning [START_REF] Petkov | Birds, primates, and spoken language origins: behavioral phenotypes and neurobiological substrates[END_REF]. The former involves the learning of the context in which to vocalize, and not the production of new vocalizations itself. For instance, a predator alarm calls, or another appropriate behavioral response upon hearing the call from a conspecific [START_REF] Seyfarth | Monkey responses to three different alarm calls: evidence of predator classification and semantic communication[END_REF]. The latter represents the ability to form memories of experienced sounds (even if these sounds are not included in the learner's innate repertoire) and to react differently to different sounds. For instance, a dog that performs the act of sitting after the human says sit.

Several animals, like parrots, songbirds, bats, elephants, dolphins, and humans can produce vocalizations (sounds generated by the vocal organ) and learn by imitation from a tutor [START_REF] Petkov | Birds, primates, and spoken language origins: behavioral phenotypes and neurobiological substrates[END_REF]. That is, they show vocal learning in their behavior.

For this reason, they are identified as vocal learner, in opposite with vocal non-learner.

The distinction between vocal learners and vocal non-learners evidences different levels of vocal learning ability [START_REF] Petkov | Birds, primates, and spoken language origins: behavioral phenotypes and neurobiological substrates[END_REF]: vocal non-learners have a lower level of laryngeal (mammalian) or syringeal (avian) control as seen in complex vocal learners.

For [START_REF] Janik | Vocal learning in mammals[END_REF] complex vocal learning is determined by whether or not an animal can learn to copy a sound from another species. When animals copy complex vocalizations not present in the species-specific repertoire they are forcibly learning a new acoustic template, and then learning how to develop a matching vocalization. These hypotheses suggest the presence of different levels (non-learners, limited vocal learners, moderate vocal learners, complex vocal learners and high vocal learners) of vocal learners and the hypothesis that vocal learning is a continuum rather than a binary classification [START_REF] Arriaga | Of mice, birds, and men: the mouse ultrasonic song system has some features similar to humans and song-learning birds[END_REF]. For instance, humans are considered high vocal learners, and songbirds are classified as complex learners. Non-human primates, mice, and goats are considered limited vocal learners under this system [START_REF] Petkov | Birds, primates, and spoken language origins: behavioral phenotypes and neurobiological substrates[END_REF][START_REF] Tyack | A taxonomy for vocal learning[END_REF].

From a neuroanatomical point of view, brain control circuits in animals show differences depending on their behavior (vocal non-learners and learners), or order (birds, mammals, etc.). The auditory-motor pathway connectivity of vocal non-learners and learners shows differences: for instance, the auditory pathway of a vocal non-learner does not provide input to the vocal learning system [START_REF] Petkov | Birds, primates, and spoken language origins: behavioral phenotypes and neurobiological substrates[END_REF]. This comes from the fact that vocal non-learners rely on an innate vocal-production system where auditory input is not required to regulate vocal production. On the contrary, vocal learners provide an auditory input that enables the learning of complex motor control.

In birds and humans, brain circuits involved in vocal learning contain two main pathways: the vocal learning pathway and the vocal production pathway [START_REF] Chakraborty | Brain evolution by brain pathway duplication[END_REF]. The vocal learning pathway is responsible for vocal imitation and plasticity. The vocal production pathway is responsible for vocal production. Section 1. 

Vocal learning in humans Behavior

During their first year of life, infant speech-perception and speech-production develop in parallel. Speech-perception is characterized by a sensory learning phase, which begins immediately after birth when infants experience their first exposure to vocalizations.

Starting from their sixth month of life, infants begin to develop language-specific vowel perception, and it's only around the first year of their life that they can perceive native language consonants [START_REF] Kuhl | Early language acquisition: cracking the speech code[END_REF]. During all their learning period, infants are exposed to vocalizations and guided by auditory feedback that guides the learning. At birth, and during the first three months of their life, infants produce non-speech sounds called protophone (e.g., quasivowels and primitive squeals), which are considered to be the earliest precursors to speech [START_REF] Oller | The emergence of the speech capacity[END_REF][START_REF] Buder | An acoustic phonetic catalog of prespeech vocalizations from a developmental perspective. Comprehensive perspectives on child speech development and disorders: Pathways from linguistic theory to clinical practice[END_REF][START_REF] Oller | Preterm and full term infant vocalization and the origin of language[END_REF][START_REF] Warlaumont | The Cambridge Handbook of Infant Development: Brain, Behavior, and Cultural Context, chapter Infant vocal learning and speech production[END_REF]. During this period infants learn how to control infrastructural speech properties [START_REF] Oller | The emergence of the speech capacity[END_REF]. Within the third and the seventh month of their life, infants learn how to control their vocal tract and begin to produce vowel-like sounds with a significant variation in duration, amplitude, and quality [START_REF] Kuhl | Early language acquisition: cracking the speech code[END_REF][START_REF] Oller | Functional flexibility of infant vocalization and the emergence of language[END_REF][START_REF] Warlaumont | The Cambridge Handbook of Infant Development: Brain, Behavior, and Cultural Context, chapter Infant vocal learning and speech production[END_REF]. Moreover, they become able to produce consonant-like elements and to add pauses in phonations [START_REF] Oller | The role of audition in infant babbling[END_REF][START_REF] Oller | The emergence of the speech capacity[END_REF]. At approximately seven months of age, infants begin to produce canonical babbling [START_REF] Kuhl | Early language acquisition: cracking the speech code[END_REF][START_REF] Buder | An acoustic phonetic catalog of prespeech vocalizations from a developmental perspective. Comprehensive perspectives on child speech development and disorders: Pathways from linguistic theory to clinical practice[END_REF][START_REF] Warlaumont | The Cambridge Handbook of Infant Development: Brain, Behavior, and Cultural Context, chapter Infant vocal learning and speech production[END_REF] i.e. a canonical syllable without a clear meaning. A canonical syllable is a vocalization containing at least one full vowel coupled with a following or preceding consonant [START_REF] Warlaumont | The Cambridge Handbook of Infant Development: Brain, Behavior, and Cultural Context, chapter Infant vocal learning and speech production[END_REF]. Interestingly, even when infants reach the ability to produce meaningful speech, canonical babbling continues to be present in their production, and gradually decreases [START_REF] Robb | A quantitative analysis of the single-word stage[END_REF]. Around the first year of their life, infants begin producing words [START_REF] Kuhl | Early language acquisition: cracking the speech code[END_REF][START_REF] Warlaumont | The Cambridge Handbook of Infant Development: Brain, Behavior, and Cultural Context, chapter Infant vocal learning and speech production[END_REF], which at the beginning could be better understood by their caregivers [START_REF] Baudonck | Speech intelligibility of flemish children as judged by their parents[END_REF]. Then, infants develop their vocabulary, adding a richer and more flexible lexicon [START_REF] Warlaumont | The Cambridge Handbook of Infant Development: Brain, Behavior, and Cultural Context, chapter Infant vocal learning and speech production[END_REF].

Brain circuits

Diving in the neuroanatomical framework, a cortico-basal ganglia-thalamocortical loop involves connections between the cortex, the basal ganglia, the thalamus, and back to the cortex. Thus, the vocal learning pathway in humans includes the Broca's area, the Wernicke's area and superior temporal gyrus [START_REF] Friederici | The brain basis of language processing: from structure to function[END_REF][START_REF] Jarvis | Evolution of vocal learning and spoken language[END_REF]. The vocal production pathway primarily involves the laryngeal motor cortex (LMC), from where the connections to vocal motor neurons start [START_REF] Chakraborty | Brain evolution by brain pathway duplication[END_REF][START_REF] Jarvis | Evolution of vocal learning and spoken language[END_REF].

That is, the motor cortex is the core area responsible for controlling movements in the human brain. A more precise description of the neuroanatomy of the human brain can be found in Section 2.2.2 of Chapter 2.

Vocal learning in birds

Songbirds represent the most studied model organisms of vocal learning for many reasons. First, birds share with humans not only a similar behavior paradigm during vocal learning [START_REF] Kuhl | Early language acquisition: cracking the speech code[END_REF]), but they have also a comparable neuroanatomical structure [START_REF] Chakraborty | Brain evolution by brain pathway duplication[END_REF]. Besides, in songbirds brain structure there is a circuit dedicated exclusively to vocal learning, which gives inputs to study and to understand human brain structures. Last but not least, songbirds are easier than bats or cetaceans to deal with from an experimental point of view.

Behavior

Vocal learning in birdsongs is characterized by two distinct phases, sensory learning (related to sound perception) and sensorimotor learning (related to sound production) [START_REF] Kuhl | Early language acquisition: cracking the speech code[END_REF]. At the beginning of their life, juveniles birdsongs listen to a tutor and they do not produce any vocalization. Sensory learning begins immediately after hatch and lasts until the juvenile birds start to produce earlier songs. During this period, the pupils memorize their tutor songs [START_REF] Mooney | Neural mechanisms for learned birdsong[END_REF]). It's only later that the birds start to produce their song. Three phases characterize learning production in birds: subsong, plastic song, crystallization [START_REF] Brainard | What songbirds teach us about learning[END_REF]. During sensorimotor learning juvenile birds relies on auditory feedback to match their own song to the memorized model [START_REF] Mooney | Neural mechanisms for learned birdsong[END_REF]. A variable babbling behavior, called subsong, characterizes this phase of learning. Subsong vocalizations are driven by an immature motor pathway and become more and more plastic and identifiable with time. To do so juvenile birds adapt their vocalizations to incorporate some elements of the tutor song. Finally, the plastic song is gradually transformed into highly complex, stereotyped motifs [START_REF] Aronov | A specialized forebrain circuit for vocal babbling in the juvenile songbird[END_REF], becoming less and less dependent on the auditory feedback [START_REF] Mooney | Neural mechanisms for learned birdsong[END_REF]. This phase is called crystallization. Birdsongs are now able to produce stable adult vocalizations, highly similar to the tutor song.

The degree of vocal learning vary within species: songbirds like hummingbirds learn only during a single sensorimotor phase of learning, other songbirds like canaries show several sensorimotor phases of learning during which they can learn new sounds [START_REF] Petkov | Birds, primates, and spoken language origins: behavioral phenotypes and neurobiological substrates[END_REF]. This difference separate birdsongs into two categories: closed-ended

learners, and open-ended learners [START_REF] Brenowitz | Song learning in birds: diversity and plasticity, opportunities and challenges[END_REF]. Closed-ended learners such as the zebra finches and hummingbirds can only learn during a limited period and subsequently produce highly stereotyped or non-variable vocalizations consisting of a single, fixed song which they repeat their entire lives.

In contrast, open-ended learners, including canaries and various parrot species, display significant life-long plasticity and continue to learn new songs throughout their lives.

Brain circuits

Neuroanatomy of birdsong involves auditory and motor areas [START_REF] Chakraborty | Brain evolution by brain pathway duplication[END_REF]; [START_REF] Jarvis | Evolution of vocal learning and spoken language[END_REF]. The vocal production pathway projects from HVC, to the robust nucleus of arcopallium (RA), which is analogous to the laryngeal motor cortex (LMC) in humans. RA controls the syrinx in birds, similarly as LMC controls the larynx in humans.

The vocal learning pathway involves indirect projections from the song-related basal ganglia nucleus Area X to the robust nucleus of arcopallium (RA), the lateral magnocellular nucleus of the anterior nidopallium (LMAN), and a thalamic nucleus. This pathway is responsible for imitation and plasticity, forming a basal-ganglia-thalamocortical loop. A more precise description of these pathways and a figure helping the comparison between the neuroanatomy of the brain in humans and birds can be found in Section 2.2.2 of Chapter 2.

The basal-ganglia-thalamocortical loop is highly selective for the bird's own song [START_REF] Solis | Anterior forebrain neurons develop selectivity by an intermediate stage of birdsong learning[END_REF]. On the one hand, auditory neurons in adult zebra finches respond more to the bird's own song than to songs from other conspecifics. On the other hand, juveniles' neurons respond well to both their own song and the tutor song (from conspecific adults).

The sensory properties of Area X and the Lateral Magnocellular nucleus of Anterior Nidopallium (LMAN), two of the basal-ganglia-thalamocortical loop nuclei, in both young (the presence of auditory neurons in early stages of learning) and adult birds (selectivity to bird's own song) are consistent with an auditory role of the loop in the song-learning process [START_REF] Doupe | Song-and order-selective neurons in the songbird anterior forebrain and their emergence during vocal development[END_REF].

Structure of speech and birdsong

Human speech and birdsongs consist of strings of sounds separated by silent intervals [START_REF] Doupe | Birdsong and human speech: common themes and mechanisms[END_REF]. Analogies can be found in speech and birdsong. Infants, as speech development advances, start to produce vowel sounds, with or without surrounding consonants, i.e., syllables. Infants generally produce sounds having about the same duration as syllables in adult speech [START_REF] Kent | Acoustic features of infant vocalic utterances at 3, 6, and 9 months[END_REF]. That is sounds of length 400ms or less, with some exceptions that reach a duration of 2s or more. Differences in vocal tract features result in different acoustic feature distributions: for instance, because of the anatomical properties of their vocal tract, infants produce a more nasal sound with respect to adults [START_REF] Kent | Acoustic features of infant vocalic utterances at 3, 6, and 9 months[END_REF]. Only about their third month of life, infants begin to produce non-nasal vowel sounds [START_REF] Oller | Infant vocalization and the development of speech[END_REF], as a consequence of the vocal tract development.

In songbirds, the smallest unit of a song is the note. A note is a sub-syllabic element and the combination of multiple notes originates a syllable. Syllables are stereotyped sounds which duration ranges from 20 to 200ms [START_REF] Markowitz | Long-range order in canary song[END_REF], and the repertoire is usually bird-specific [START_REF] Lehongre | Individual signature in canary songs: contribution of multiple levels of song structure[END_REF]. However, some syllables can be produced across families of the same species, such as canaries [START_REF] Güttinger | The relationship between species specific song programs and individual learning in songbirds[END_REF][START_REF] Güttinger | Consequences of domestication on the song structures in the canary[END_REF]. Concerning canaries, when syllables are repeated multiple times, they form a phrase which can range from 500 ms to 3s of duration. There is no general correlation between the length of a phrase and the length of the syllables, but rather there is a correlation between the length of a phrase and the length of phrase that comes before or after [START_REF] Markowitz | Long-range order in canary song[END_REF]. Finally, phrases are chained together to form songs of about 5 -15s duration [START_REF] Belzner | Song learning in domesticated canaries in a restricted acoustic environment[END_REF]. In zebra finches, a song is composed by a repeated sound pattern, called motif [START_REF] Leonardo | Ensemble coding of vocal control in birdsong[END_REF]. The motif is composed of a sequence of syllables.

Although there is no evidence that the complexity of human language is observable in nonhuman animals [START_REF] Beckers | Birdsong neurolinguistics: Songbird context-free grammar claim is premature[END_REF], there are similarities and parallels between birdsong and speech. The main difference between birdsong and speech is that in the former a simpler grammar is involved [START_REF] Doupe | Birdsong and human speech: common themes and mechanisms[END_REF]. Another difference is that speech can convey complex meaning, which is not the case for birdsong. Nevertheless, birdsong can be compared with spoken speech [START_REF] Doupe | Birdsong and human speech: common themes and mechanisms[END_REF].

Sensorimotor integration in vocal learning

In the context of vocal learning, sensorimotor integration can be defined as the set of mechanisms connecting vocal production and vocal perception. For instance, the set of mechanisms connecting speech production and speech perception in humans, or song production and song perception in birds. The motor theory of speech perception states the role of the speech motor system not only to produce speech but also to detect it.

The main hypothesis is that humans perceive speech by identifying the vocal tract gestures that produced it rather than by identifying the sound patterns generated by that speech [START_REF] Liberman | Perception of the speech code[END_REF][START_REF] Liberman | The motor theory of speech perception revised[END_REF]. The motor speech the-ory contains two main claims [START_REF] Liberman | The motor theory of speech perception revised[END_REF]. The objects of speech perception are the phonetic gestures of the speaker, represented in terms of the invariant motor commands needed to produce certain linguistic configurations. The motor theory by [START_REF] Liberman | The motor theory of speech perception revised[END_REF] confirms that speech production and speech perception are both motor, and are regulated by the same structural constraints.

Such a link is supported by the existence of mirror neurons and of a common coding between the representations used for perception and action. [START_REF] Schwartz | The perception-for-action-control theory (pact): A perceptuo-motor theory of speech perception[END_REF] proposed a perceptual-motor theory of speech perception, called Perception for Action Control Theory (PACT) of speech perception. Speech percepts seem to be related both to sound and to gestures. During speech production, auditory commands are non-linearly transformed into complex acoustic features. During perception, the motor system can be accessed and complex connections between perception and gestures arise. The role of perceptual-motor interactions is to predict missing information and to relate perceptual categories to their motor content.

There exist evidences of the influence of sensory perception on speech production and the influence of motor speech system on speech perception [START_REF] Hickok | The cortical organization of speech processing[END_REF]. The perceptual system self-monitors the speech output via feedback signals and

the auditory system plays an important role in speech production. For instance, speech production can be negatively influenced by the delay in the auditory feedback [START_REF] Stuart | Effect of delayed auditory feedback on normal speakers at two speech rates[END_REF], or by deafness [START_REF] Waldstein | Effects of postlingual deafness on speech production: implications for the role of auditory feedback[END_REF], or by a shift in the voice pitch [START_REF] Burnett | Voice f0 responses to manipulations in pitch feedback[END_REF]. The fact that the motor speech system influences speech perception could explain the fact that there is not a one-to-one relation between acoustic patterns and perceived speech sounds [START_REF] Liberman | Perception of the speech code[END_REF]. Behind this idea, there is the fact that auditory signal can be variable across different sounds, whereas the motor configurations that produce them are often fixed. Moreover, it has been shown that the motor speech system is not necessary to solve the problem of context-dependency [START_REF] Lotto | Reflections on mirror neurons and speech perception[END_REF].

Rather, the auditory system maintains an estimate of the acoustic context and uses this information while encoding sounds. Recently, the modulation of perceptual response via motor-speech stimulation has been shown [START_REF] Hickok | Sensorimotor integration in speech processing: computational basis and neural organization[END_REF]. In the end, birdsongs and humans behave optimally depending on the information they can gather from the motor plan and the auditory feedback [START_REF] Hahnloser | A bayesian account of vocal adaptation to pitch-shifted auditory feedback[END_REF].

Modeling vocal learning

Vocal learning supposes the existence of a set of auditory targets that the learner tries to reproduce. Each target is an external sound that the learner processes and uses to guide his own sound generations. Thus, a required feature for a vocal learning model is the ability to produce and process a sound.

The representation of a minimal vocal learning model includes three feature spaces and the functional connections between them [START_REF] Oudeyer | The self-organization of speech sounds[END_REF]. The motor space contains the motor parameters (related to the anatomical structure of the vocal organ). The sensory space contains the auditory stimulus (the real sound), which is generated by the motor control function. The goal space is the space of the perceptual representation or motor command corresponding to the sensory output that the bird wants to reproduce.

Two types of models can be defined, depending on how the goal space is defined. In the sensorimotor model with an action-perception loop, the sensory stimuli are encoded via the sensory response function in the perceptual space (a low dimensional representation of the sound). This model potentially includes an inverse and a forward model between the motor space and the perceptual space. Alternatively, in the non-perceptual sensorimotor model, there is a non-perceptual representation of the goals (called internal representation). A goal-to-motor model learns the connection from the internal representation to the motor space. In this scenario, and depending on the learning framework, the sensory response function could provide a reward or an evaluation of the learning [START_REF] Pagliarini | Vocal imitation in sensorimotor learning models: a comparative review[END_REF].

For a better understanding, refer to Figures 2.1 

Motor control

To have a complete model (i.e., able to produce sounds), the aim is to have a motor control function capable of reproducing sounds similar to real data (e.g. recordings of canaries, vowels, sentences). The input set of the motor control function, called motor space, is the set of the motor parameters used to produce the sound (see Chapter 2). For instance, a set of parameters describing the tongue position in humans [START_REF] Howard | A computational model of infant speech development[END_REF][START_REF] Howard | Training a vocal tract synthesiser to imitate speech using distal supervised learning[END_REF]. The motor control function is a computational model of the vocal apparatus. For instance, in humans, it describes the joint activity of the respiratory system, vocal organs and vocal tract. Section 2.4 in Chapter 2 extensively detail how the motor space and the motor control function has been defined in the vocal learning literature.

Sensory function

As mentioned in Section 1.2.5, the sensory function results in a perceptual representation of the sound and, eventually, helps the evaluation of the produced sound. In the first scenario, the sensory function allows to encode the sound in a low-dimensional space and provides feedback of the motor command. In the second scenario, the sensory function contributes to the reward signal and can be used to drive learning towards a specific goal.

Section 2.5 in Chapter 2 motivates the choice of the sensory response function, the sensory space and the perceptual space.

Learning architecture

One way to model the connection between the perceptual space (or the internal representation) and the motor space is using plastic synapses. The simplest artificial Neural Network (NN) is the feedforward neural network, where the connections between the nodes do not form a cycle. The information moves from the input nodes to the output nodes, passing eventually through hidden nodes, following one direction. The simplest example of a feedforward neural network is the perceptron: here, the inputs are directly fed to the single layer of output nodes. Then, multi-layer perceptrons contain several layers, where each neuron in one layer is connected to all neurons in the next layer. Alternatively, Recurrent Neural Networks (RNNs) contain loop connections between the nodes and can use their internal state (called memory) to process sequences. This property makes them interesting to solve problems such as speech recognition [START_REF] Li | Constructing long short-term memory based deep recurrent neural networks for large vocabulary speech recognition[END_REF] or vocal learning [START_REF] Hinaut | Real-time parallel processing of grammatical structure in the fronto-striatal system: A recurrent network simulation study using reservoir computing[END_REF][START_REF] Philippsen | Learning how to speak: Imitation-based refinement of syllable production in an articulatory-acoustic model[END_REF][START_REF] Warlaumont | Learning to produce syllabic speech sounds via rewardmodulated neural plasticity[END_REF]. Although usually the learning architecture defined in a vocal learning model is based on a feed-forward neural network or a RNN, recent deep learning studies have highlighted several powerful tools that could be used to model vocal learning.

Convolutional Neural Networks (CNNs) represent a famous extension of multi-layer perceptrons: the architecture includes an input and an output layer, as well as multiple hidden layers [START_REF] Lecun | Backpropagation applied to handwritten zip code recognition[END_REF]. CNNs find origins in models of visual processing: the connectivity pattern between neurons is inspired by the organization of the animal visual cortex [START_REF] François-Lavet | An introduction to deep reinforcement learning[END_REF].

Internal models and reinforcement learning can be used to learn connections between the perceptual and the motor layer, or to define a trial-and-error algorithm aiming to succeed in a pre-defined task. Section 2.6 in Chapter 2 highlights the different learning architectures that have been implemented to model vocal learning in literature.

Generative models

Generative models can generate new data samples, after having been trained on a dataset.

For instance, a generative model could generate new samples of images containing flowers that look like real flowers. To be able to generate a new image of a rose that looks like a real rose, a generative model needs to learn the distribution of the real data. Formally, given a dataset X and a set of labels Y , a generative model estimates the joint probability P (X, Y ) [START_REF] Ng | On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes[END_REF].

At first, generative models can be classified depending on the density function they define: it can be explicit or implicit [START_REF] Goodfellow | Nips 2016 tutorial: Generative adversarial networks[END_REF]. Figure 1.2 shows a schematical summary of generative models. For simplicity, the models have been thought as if they were implemented in their maximum likelihood formulation (that is, they aim to maximize the likelihood). Models that construct an explicit density could deal with a tractable function or with an intractable function. In the case of an intractable density, the use of approximations is required to maximize the likelihood. For instance, an approximative density can be obtained using a variational approximation, that is, using Variational Auto-Encoders (VAEs). Alternatively, there are models that do not represent explicitly a probability distribution, but rather represent a way to interact with it. For instance, the act of drawing samples from a distribution is an interaction between the generative model and the probability distribution of the input. This is the principle of Generative Adversarial Networks (GANs).

Figure 1.2: Generative models taxonomy. Generative models can define either an explicit or an implicit density. On the left branch, an explicit density can bifurcate into a tractable or an intractable density. The latter makes necessary the definition of an approximative density, that might be given by a variational approximation in the case of VAEs. On the right branch, an implicit density can be solved using a Markov chain or, in a direct way, by a GAN. Image from [START_REF] Goodfellow | Nips 2016 tutorial: Generative adversarial networks[END_REF].

Generative models are a great tool to deal with complex data and high-dimensional probability distributions in a wide variety of engineering domains [START_REF] Goodfellow | Nips 2016 tutorial: Generative adversarial networks[END_REF] with examples both from the music domain and from the speech domain.

Latent models

Latent variables, or hidden variables, are variables that cannot be directly observed.

Instead, they are inferred through a mathematical model from the observable variables.

Indeed, latent variables are meaningful, but not directly measurable: they usually encode abstract concepts, such as categories or hidden data structures. Latent variables allow to reduce the dimensionality of the data, to compress the relevant information about the input data into a lower-dimensional space, and to understand better the manifold structure of the data.

The relationship between a set of observable variables (the dataset containing the real images of flowers) and a set of latent variables (a symbolic representation of the real data) can be described by a so-called latent variable model. Latent space models are capable of learning the fundamental characteristics of a training dataset and able to represent the variation of real data in a lower-dimensional space. When compressing the manifold of the dataset, latent space models tend to organize it based on fundamental qualities, which clusters similar examples close together [START_REF] Roberts | A hierarchical latent vector model for learning long-term structure in music[END_REF]. Moreover, they can both reconstruct real examples with high accuracy and generate samples that are not in the training dataset. Indeed, it is possible to observe the latent space structure by using simple arithmetic and observing the outcoming generations. Figure 1.3 shows the analysis of the latent space structure made by [START_REF] Radford | Unsupervised representation learning with deep convolutional generative adversarial networks[END_REF]: it is possible to obtain generations that are similar to the training dataset but do not belong to it. Moreover, with this analysis, it is possible to see an example of a conditional generative model, where generations can be manually tuned to show a particular feature (for instance, the presence or not of glasses).

Figure 1.3: Latent space structure. The z samples corresponding to each image are averaged over each column in order to obtain an average latent vector representing a certain set of features. Then simple arithmetic produces the new latent vector, which has been used to generate the first sample on the right (top-left corner). Finally, noise has been applied to this latent vector to modify it and use it to generate 8 more images. Image from [START_REF] Radford | Unsupervised representation learning with deep convolutional generative adversarial networks[END_REF].

Variational Auto-Encoders (VAEs)

VAEs are a particular instance of a more general algorithm, called Autoencoder Variational Bayes (AEVB) [START_REF] Kingma | Auto-encoding variational bayes[END_REF]. This algorithm is based on the Stochastic Gradient Variational Bayes (SGVB) estimator that allows to efficiently approximate posterior inference.

The standard schema of a VAE as a graphical model is shown in Figure 1.4. A dataset of N i.i.d samples of continuous or discrete variables x is randomly generated from a set of variables z. VAEs assume that is not possible to give a simple interpretation of the dimensions of z: instead, z can be taken as a normal distribution with mean 0 and variance 1 (i.e., z ∼ N (0, 1)) and can be interpreted as a latent code (i.e., a latent space) [START_REF] Kingma | Auto-encoding variational bayes[END_REF][START_REF] Doersch | Tutorial on variational autoencoders[END_REF]. The encoder and the decoder are probabilistic models.

The former models the distribution over the possible values z from which samples x have been generated. The latter models the distribution over the possible values x, given the latent code z. These two probabilities rely on two parameters that are jointly learned with the Autoencoder Variational Bayes (AEVB) algorithm: the variational parameter ϕ and the generative model parameter θ [START_REF] Kingma | Auto-encoding variational bayes[END_REF]. A schema of a standard VAE represented as a graphical model is shown in Figure 1.4.

The learned model can be used for many tasks such as visualization, denoising or recognition. VAEs are composed of an encoder (recognition model) and a decoder (generative model). The encoder takes a real sample as input and builds a lower-dimensional representation of it (i.e., a latent space). The decoder takes a latent vector (i.e., an element of the latent space) as input and generates back the original sample. In this framework, the decoder represents the generative model [START_REF] Doersch | Tutorial on variational autoencoders[END_REF]. Some authors [START_REF] Goodfellow | Nips 2016 tutorial: Generative adversarial networks[END_REF][START_REF] Doersch | Tutorial on variational autoencoders[END_REF] state that VAEs often obtain very good likelihood but produces low-quality samples (lower than GANs, for example).

Generative Adversarial Networks (GANs)

In the original formulation of GANs [START_REF] Goodfellow | Generative adversarial nets[END_REF] real and generated samples as input and aims to maximize its capacity of differentiating between them. That is, G and D are involved in a min-max game where G aims to minimize the loss function (defined using the Jensen-Shannon divergence [START_REF] Goodfellow | Nips 2016 tutorial: Generative adversarial networks[END_REF]), and D aims to maximize it. As summarized in the right part of Figure 1.5, G is trained several times, then D is used to obtain a validation of the training: it can output a value between 0 and 1, which represents the probability of whether a sample comes from the distribution of the data (a value near 1) or not (a value near 0) [START_REF] Goodfellow | Nips 2016 tutorial: Generative adversarial networks[END_REF].

Of course, as shown in the left part of Figure 1.5, D applied to the real data should result in a value near 1.

In further developments of GANs, several authors proposed variations in the model architecture or in the loss function. More stable training has been obtained by using deep convolutional neural networks [START_REF] Radford | Unsupervised representation learning with deep convolutional generative adversarial networks[END_REF] or modifying the loss function definition. In particular, the loss function has been enriched by an additional term describing The goal of the discriminator is to learn how to well differentiate real samples from fake samples. That is, D is a differentiable function that tried to obtain a value near 1 when applied to real samples, and a value near 0 when applied to fake samples. The goal of the generator is to become better and better at generating samples looking like real ones, such that the discriminator has a more difficult job to differentiate fake samples from real samples. The input of G is represented by noise, and its output (the generated sample) is then the input for D. Image from [START_REF] Goodfellow | Nips 2016 tutorial: Generative adversarial networks[END_REF].

either gradient penalty (GP) [START_REF] Gulrajani | Improved training of wasserstein gans[END_REF] or Lipshitz continuity (LP) [START_REF] Petzka | On the regularization of wasserstein gans[END_REF]. In this scenario, the discriminator does not provide a direct estimation of whether a sample belongs to the real data or not, but rather acts as a critic, and assists the computation of the Wasserstein distance between the training data and the generated data (Arjovsky et al., 2017). The discriminator provides the generator with a loss that can be trained until optimality (Arjovsky et al., 2017), and gives stability to the GAN and avoids mode collapse2 [START_REF] Dong | Musegan: Multi-track sequential generative adversarial networks for symbolic music generation and accompaniment[END_REF]. GANs' advantages are represented by the computational power and realistic sample production. Figure 1.6 shows random samples generated after training different types of GANs on different datasets. It is possible to observe how the samples belong to the model distributions [START_REF] Goodfellow | Generative adversarial nets[END_REF]. At the same time, GANs could have several problems, coming for example from the dataset, or from the optimization algorithm. If the optimizer is not perfect, underfitting could arise, or, if the training data size is limited, overfitting could arise [START_REF] Goodfellow | Nips 2016 tutorial: Generative adversarial networks[END_REF]. Moreover, GANs could not reach convergence, due to the high non-convex dimensional space they are dealing with. Indeed, G and D can't learn how to discriminate the generations. This implies that the generator does not produce a wide enough variety of outputs.

are non-convex parametric functions (e.g., deep neural networks) that do not guarantee convergence. There are two ways in which GANs could fail to converge: 1) oscillation, that is the GANs is trained for a very long time and generates many different categories of samples, but never generates better samples; 2) mode collapse, that is the generator produces always the same sample, or samples belonging to the same theme [START_REF] Goodfellow | Nips 2016 tutorial: Generative adversarial networks[END_REF]. Mode collapse is the worst form of non-convergence and the one that happens more often. This comes from the fact that GANs are trained using gradient descent which is leading, at the same time, to convergence (when solving the classic min-max game mentioned above) and to concentrate on most likely points (when solving the reverse max-min problem) [START_REF] Metz | Unrolled generative adversarial networks[END_REF]. To avoid mode collapse, a solution is to look at the features of an entire mini-batch of samples when examining a single sample: if that sample is too close to the other samples in the mini-batch, it could be rejected [START_REF] Salimans | Improved techniques for training gans[END_REF].

Evaluation of GANs, that is the capability of the generative model to produce a realistic output, is a challenging and debated topic [START_REF] Goodfellow | Nips 2016 tutorial: Generative adversarial networks[END_REF][START_REF] Theis | A note on the evaluation of generative models[END_REF].

Models with good likelihood could produce bad samples, and, vice versa, models that produce good samples could have a bad likelihood. The likelihood itself is not easy to estimate. Also, there is not a unique way to measure how good samples are. Lately, [START_REF] Borji | Pros and cons of gan evaluation measures[END_REF] proposed a combination of a quantitative and a qualitative measure to evaluate GANs' performance. The first allows to understand the capability of the generator of reproducing a wide enough variety of samples, and to evaluate the model in a lowdimensional complexity (i.e., it is usually a value representing the entropy, the variance, etc.). The latter helps the inspection of the generated samples and is usually based on human judgment.

Sound generation models

Several models for speech and music generation have been proposed. Not all of them are GANs, and often the basics to define the architecture of the model have been imported from image generation studies. Below, the main characteristics of several models are highlighted. In particular, these models are on the one side well-known models for sound and speech generation, on the other side models that helped me understanding the desirable properties of a generative model and how to investigate them. [START_REF] Radford | Unsupervised representation learning with deep convolutional generative adversarial networks[END_REF], and eventually, introduce variations in order to adapt the model to the dataset. On the one hand, in SpecGAN the spectrogram representation is designed in order to suit the DCGAN image generation and to allow inversion (which is needed to obtain the waveform after the generation). On the other hand, WaveGAN architecture has been modified in order to take into account waveforms as input, and the WGAN-GP [START_REF] Gulrajani | Improved training of wasserstein gans[END_REF] strategy has been used to optimize the loss function.

Both models can generate samples of speech that are intelligible by humans. Nevertheless, WaveGAN generates sounds of better quality with respect to SpecGAN. This could be due to the sub-optimality of the spectrogram inversion algorithm (here, Griffin-Lim inversion [START_REF] Griffin | Signal estimation from modified short-time fourier transform[END_REF] has been used). Moreover, the frequency domain produced by WaveGAN resulted to be more coherent with the real data. Good results have been obtained for music generation (drums and piano), speech and birdsong, with a wide variety of generated sounds.

To 

Objectives of the thesis

Vocal learning models can either aim to obtain a vocal learning machine or to understand the biology of vocal learning. The first objective of this thesis is to understand the biology underlying vocal learning (e.g., learning phases, behavioral studies, neurobiological basis).

Secondly, starting from the literature about vocal learning models, we aim to define a schema that could help to compare the existent models in terms of their goal, assumptions and components (e.g., learning algorithm, motor control function). Moreover, we aim to understand the computational tools available to implement the components of a vocal learning model (e.g., dynamical systems and generative models to implement the motor control function) to identify which ones could be used in our model. In particular, we want to test how they work on real recordings (in our case, canary data). Finally, we aim to place this thesis in the context of the existing vocal learning literature and provide perspectives for this work.
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Chapter 2

Vocal Imitation in Sensorimotor

Learning Models

A Comparative Review

Vocal learning models literature is vast, variegate and full of multidisciplinary contents.

The chapter attempts to compare existing vocal learning models from studies on different subjects (humans or songbirds). The objective is to find a common scenario to disentangle a model into components that can be compared across models. 

Abstract

Sensorimotor learning represents a challenging problem for natural and artificial systems.

Several computational models have been proposed to explain the neural and cognitive mechanisms at play in the brain. In general, these models can be decomposed in three common components: a sensory system, a motor control device and a learning framework.

The latter includes the architecture, the learning rule or optimisation method, and the exploration strategy used to guide learning. In this review, we focus on imitative vocal learning, that is exemplified in song learning in birds and speech acquisition in humans.

We aim to synthesise, analyse and compare the various models of vocal learning that have been proposed, highlighting their common points and differences. We first introduce the biological context, including the behavioural and physiological hallmarks of vocal learning and sketch the neural circuits involved. Then, we detail the different components of a vocal learning model and how they are implemented in the reviewed models. 

Introduction

Humans and animals such as songbirds show imitative vocal learning: they are able to produce a motor command that replicates a previously experienced auditory stimulus [START_REF] Brainard | What songbirds teach us about learning[END_REF][START_REF] Heyes | Causes and consequences of imitation[END_REF][START_REF] Heyes | What's social about social learning[END_REF][START_REF] Kuhl | Early language acquisition: cracking the speech code[END_REF]. Imitation implies a causal relationship between the observed stimulus and the produced action, and requires a mechanism to translate the sensory input into motor commands [START_REF] Heyes | Causes and consequences of imitation[END_REF]. Humans and animals are able to perform complex imitation, this is illustrated by the imitation of novel action sequences in response to environmental cues [START_REF] Heyes | What's social about social learning[END_REF].

Imitative vocal learning, and more generally sensorimotor learning, are the subject of behavioural, anatomical, physiological and computational studies. Taking into account the biological evidence and constraints revealed by experimental investigations of the underlying brain circuits, many previous studies have attempted to implement imitative learning in computational models. The aim of this review is to identify and compare the various components of existing vocal learning models to provide an integrated and organised view of the literature. While we focus our analysis on vocal learning, the principles addressed here may also apply to sensorimotor learning models in general. To analyse and compare the existing models, we will now define the core components at play in models of vocal learning.

As depicted in Figures 2.1 and 2.2, the representations needed for a minimal vocal learning model can be cast into three spaces [START_REF] Oudeyer | The self-organization of speech sounds[END_REF]: motor, sensory and perceptual/internal space. In addition, one needs to define a learning framework and define the connections between the spaces: a motor control function and a sensory response function. The learning framework contains the architecture, the learning algorithm, the evaluation and the exploration strategy (see Table 2.6). We define the input and output spaces of the learning algorithm as the learning domain and the learning image 1 . The motor space corresponds either to the muscle activation patterns sent to the vocal or-gan (e.g. larynx and syrinx for human and birds respectively) or articulatory parameters (e.g. the tongue height) for humans. The sensory space, in the case of vocal learning, represents the physical space of the sound. The perceptual space corresponds to the neural representation of perceived vocalisations in the brain (e.g. acoustic features as pitch in birdsong or first formants in speech). Space representations are implemented as vectors or trajectories (i.e. sequences of vectors) in these multi-dimensional spaces.

Figure 2.1 shows the canonical model including an action-perception loop: the perceptual space is connected to the motor and sensory spaces through a sensory system and a motor control device. Depending on the modeller's choice, the perceptual and motor spaces may be linked through an inverse model, or both an inverse and a forward model (see definition of internal models and in particular inverse and forward model in Section 2.6). The learning domain (i.e. input space of the learning algorithm) is the perceptual space in the case of inverse models, and the motor space in the case of forward models.

An internal representation of the goal could lie in the perceptual space, or alternatively as shown in Figure 2.2, in a separated space if it is encoded independently of the sensory processes of experienced vocalisations. In such a model, an internal representation of the goal is used as the learning domain and hence, it is non-perceptual. In the present review, we call goal-to-motor model the connections between the internal representation and the motor space. The sensory processing of the produced vocalisations may still be implemented downstream from the motor space, for instance to provide a reward signal that guides learning in a reinforcement learning framework.

Whichever the particular learning framework and mechanisms used, the modelled agent must explore either the goal space or the motor space to later adjust its production.

Such a vocal exploration may be purely random or more sophisticated (e.g. intrinsically motivated exploration) [START_REF] Oudeyer | Intrinsic motivation systems for autonomous mental development[END_REF]. To explore either the motor space or the goal space, and to improve current vocal performance, learning models rely on the evaluation of the produced vocalisation. The aim of the evaluation is to obtain a measure that defines an error signal and/or a reinforcement signal, later used by the learning [START_REF] Wolpert | Multiple paired forward and inverse models for motor control[END_REF].

framework to update the architecture.

Table 2.1 contains all the acronyms used along the review. Section 2.2 contains an introduction to the neuroanatomy of the human and songbird brains. Additionally, it contains an analysis of the links between biology and the sensorimotor components. Section 2.3 details the aim of the reviewed models, giving an overview of the objectives and questions pursued by the modellers. Table 2.2 summarises the aims of the models. Section 2.4 describes the motor control device and its components: the motor space, the articulatory model and the connection with the sensory space. Section 2.5 introduces the representation of the sensory system and its components: the sensory space, the sensory response function and the perceptual space. The dotted line represent learned connection from goals to motor commands: we call this the goal-to-motor model. Sensory response function processes the sound and can be implemented in various ways depending on the learning framework: it could be used to provide a reward or an evaluation of the learning (for this reason there is an arrow starting from the sensory space, but without a specific output space).

of the learning framework and Table 2.6 summarises the implementations used in the models. Section 2.7 contains a discussion about the reviewed models, their relation with the biological framework introduced in Section 2.2, and further directions are proposed.

Biological context

We present here the biological context of vocal learning. We first highlight the behavioural phases included in imitative vocal learning in humans and songbirds. Then, the main brain circuits related to song (for birds) and spoken language (for humans) are discussed and compared. Finally, we introduce current mechanistic hypotheses and some biological constraints that should be taken into account while defining a vocal learning model: mirror neurons' activity and their putative function in vocal learning, experimental evidence for synaptic plasticity and the sensory representation of vocalisations. In the last three subsections, the literature comes mainly from songbirds, but may also serve as biological support for human studies.

Learning phases and behaviour

From a behavioural point of view, speech learning in humans and song acquisition in birds are made up of the same developmental behavioural phases [START_REF] Doupe | Birdsong and human speech: common themes and mechanisms[END_REF][START_REF] Kuhl | Early language acquisition: cracking the speech code[END_REF][START_REF] Kuhl | A new view of language acquisition[END_REF]. Figures 2.3 and 2.4 show the first year of speech perception (green background) and production (pink background) development in infants (adapted from Kuhl ( 2004)) and songbirds (adapted from [START_REF] Doupe | Birdsong and human speech: common themes and mechanisms[END_REF]). In babies, as shown in Figure 2.3, sensory learning starts immediately after birth and allows the infant to discriminate the phonetic contrasts specific to the learned language. This process, also known as categorical learning, is described in Subsection 2.2.3. Vocal production starts with the production of non-speech sounds, also shortly after birth. After this preliminary phase, sensorimotor learning starts: speech-like sounds are first produced erratically, then "canonical babbling" emerges and the first words are produced by the infant around the age of one year [START_REF] Kuhl | Early language acquisition: cracking the speech code[END_REF][START_REF] Moulin-Frier | Self-organization of early vocal development in infants and machines: the role of intrinsic motivation[END_REF].

In birds, as shown in Figure 2.4, the sensory learning phase enables juveniles to build a neural representation of adult vocalisations, which would later guide vocal production [START_REF] Doupe | Birdsong and human speech: common themes and mechanisms[END_REF]. Juveniles have a species-specific predisposition and listen to the sounds produced by their parents [START_REF] Doupe | Birdsong and human speech: common themes and mechanisms[END_REF]. Then, during the sensorimotor phase, the young birds start to vocalise, initially producing babbling sounds and then adapting their vocal output to imitate previously heard vocalisations [START_REF] Brainard | What songbirds teach us about learning[END_REF]. Finally, the produced vocalisation becomes more and more stereotyped and vocal plasticity significantly drops. This final phase, when song production converges towards the stereotyped adult song, is called crystallisation in birds (Doupe and Kuhl, opment. Speech perception development (green background) is characterised by a sensory learning phase that shapes perception, from an initially universal perception to language-specific phoneme discrimination. Speech production development (pink background) is characterised by some preliminary phases followed by sensorimotor learning, where "canonical babbling" takes place. Image adapted from [START_REF] Kuhl | Early language acquisition: cracking the speech code[END_REF]. [START_REF] Kawato | Internal models for motor control and trajectory planning[END_REF][START_REF] Kuhl | A new view of language acquisition[END_REF]. itative learning in songbirds: the sensory learning phase, the sensorimotor learning phase (starting with subsong and continuing with a plastic song), and crystallization of the song (i.e. convergence to adult song). Image adapted from [START_REF] Doupe | Birdsong and human speech: common themes and mechanisms[END_REF].

Neuroanatomy of human and bird brain

RA and its analogous in humans, represented by the laryngeal motor cortex (LMC), connect directly to vocal motor neurons (plain red arrows, lower panel) providing the motor output (controlling the larynx in humans or syrinx in birds) [START_REF] Chakraborty | Brain evolution by brain pathway duplication[END_REF][START_REF] Jarvis | Evolution of vocal learning and spoken language[END_REF]. The vocal learning pathway is responsible for vocal imitation and plasticity: it forms a basal ganglia-thalamo-cortical loop. In birds, as shown in gyrus [START_REF] Friederici | The brain basis of language processing: from structure to function[END_REF]), the anterior striatum (aSt) and anterior thalamus (aT).

The neuroanatomical structure of the vocal control circuit in human and bird provides the anatomical basis for bio-inspired models of vocal learning that often question the differential gene expression experiments, which show that the avian pallium has a functional columnar organization similar to the mammalian pallial domain [39,[52][53][54]. Further, the mammalian non-vocal motor descending pathway and the pre-motor pathway share similar connectivity patterns in avian posterior and anterior motor pathways, respectively, suggesting the presence of a pre-existing motor system shared by both groups and their most recent ancestor [1,39,55,56].

The proposed mechanism of evolution of vocal learning pathways was by brain pathway duplication [39]. In this regard, it was hypothesized that parallel forebrain motor learning pathways with auditory, somatosensory or other sensory input, normally replicate multiple times during embryonic development and connect to different brainstem and spinal cord neurons to control different muscle groups. In vocal learners, this forebrain pathway is hypothesized to replicate one more time and then connect to the brainstem circuits that control vocalizations and respiration. Then the new vocal learning pathway would diverge to form novel connections and functions relative to the adjacent nonvocal motor pathways. Under this duplication hypothesis, the vocal learning pathways share a deep homology with the surrounding motor pathways, but convergence in the independent lineages of vocal learners.

Several alternative hypotheses have been proposed for evolution of vocal learning pathways, including that the pathways in humans and song-learning birds originated out of either a pre-existing auditory pathway [57,58], a non-motor cognitive region [59,60], a combined auditory-motor pathway [61], or completely de novo [62]. In support of an auditory origin hypothesis, the songbird posterior vocal motor pathway is also partly adjacent to the auditory pathway and has some parallel connections with the descending auditory system [58]. However, such an anatomical position is not present in hummingbirds, parrots, or humans [1,2]. With the exception of the completely de novo hypothesis, even if the vocal learning pathway arose from a non-motor pathway, the hypothesis of pathway duplication could still apply.

If the duplication hypothesis were true, then one would expect to find most genes expressed in vocal learning pathways to be similar to the pathway from which they were duplicated. Further, one would expect to find divergent molecular changes in neural connectivity genes associated with the unique connections found in vocal learning pathways. These ideas were recently tested in a high-throughput gene expression study using a novel computational approach that determines homologous and convergent specialized anatomical gene expression profiles from thousands of samples and genes from multiple species [50]. Using comparative microarray gene expression profiling of approximately 3000-7000 genes in vocal learning and vocal non-learning avian and primate species, Pfenning et al. [50] found that the song and speech brain pathway regions of vocal learning birds and humans have gene expression profiles that more closely match motor and premotor cortex and striatal pathway regions adjacent to them than they do to auditory, somatosensory or other brain regions (figure 1). These results corroborated some earlier single gene expression, developmental, functional, and connectivity studies [24,52,[63][64][65][66][67]. Combined, the findings support the idea that the similarities are owing to homology and not convergence. Further, Pfenning et al. [50] found divergent changes in expression of genes that control neural connectivity in the avian song and the human speech regions from the surrounding motor show motor (m), auditory (a), equally both motor and auditory (m/a) neural activity or activity-dependent gene expression in awake animals. Adapted from [2,50]. Not all connections are shown, for simplicity. Some connections in the human brain are proposed based on known connectivity of adjacent brain regions in non-human primates. A1 -L4, primary auditory cortex-layer 4; Am, nucleus ambiguous; aSt, anterior striatum; Av, avalanche; aDLM, anterior dorsolateral nucleus of the thalamus; DM, dorsal medial nucleus of the midbrain; HVC, a vocal nucleus (no abbreviation); L2, field L2; LMC, laryngeal motor cortex; LSC, laryngeal somatosensory cortex; NIf, interfacial nucleus of the nidopallium; MAN, magnocellular nucleus of the anterior nidopallium; MN, motor neurons; MO, oval nucleus of the anterior mesopallium; PAG, peri-aqueductal gray; RA, robust nucleus of the arcopallium; v, ventricle space.

rstb.royalsocietypublishing.org Phil. Trans. R. Soc. B 370 : 20150056 differential gene expression experiments, which show that the avian pallium has a functional columnar organization similar to the mammalian pallial domain [39,[52][53][54]. Further, the mammalian non-vocal motor descending pathway and the pre-motor pathway share similar connectivity patterns in avian posterior and anterior motor pathways, respectively, suggesting the presence of a pre-existing motor system shared by both groups and their most recent ancestor [1,39,55,56].

The proposed mechanism of evolution of vocal learning pathways was by brain pathway duplication [39]. In this regard, it was hypothesized that parallel forebrain motor learning pathways with auditory, somatosensory or other sensory input, normally replicate multiple times during embryonic development and connect to different brainstem and spinal cord neurons to control different muscle groups. In vocal learners, this forebrain pathway is hypothesized to replicate one more time and then connect to the brainstem circuits that control vocalizations and respiration. Then the new vocal learning pathway would diverge to form novel connections and functions relative to the adjacent nonvocal motor pathways. Under this duplication hypothesis, the vocal learning pathways share a deep homology with the surrounding motor pathways, but convergence in the independent lineages of vocal learners.

Several alternative hypotheses have been proposed for evolution of vocal learning pathways, including that the pathways in humans and song-learning birds originated out of either a pre-existing auditory pathway [57,58], a non-motor cognitive region [59,60], a combined auditory-motor pathway [61], or completely de novo [62]. In support of an auditory origin hypothesis, the songbird posterior vocal motor pathway is also partly adjacent to the auditory pathway and has some parallel connections with the descending auditory system [58]. However, such an anatomical position is not present in hummingbirds, parrots, or humans [1,2]. With the exception of the completely de novo hypothesis, even if the vocal learning pathway arose from a non-motor pathway, the hypothesis of pathway duplication could still apply.

If the duplication hypothesis were true, then one would expect to find most genes expressed in vocal learning pathways to be similar to the pathway from which they were duplicated. Further, one would expect to find divergent molecular changes in neural connectivity genes associated with the unique connections found in vocal learning pathways. These ideas were recently tested in a high-throughput gene expression study using a novel computational approach that determines homologous and convergent specialized anatomical gene expression profiles from thousands of samples and genes from multiple species [50]. Using comparative microarray gene expression profiling of approximately 3000-7000 genes in vocal learning and vocal non-learning avian and primate species, Pfenning et al. [50] found that the song and speech brain pathway regions of vocal learning birds and humans have gene expression profiles that more closely match motor and premotor cortex and striatal pathway regions adjacent to them than they do to auditory, somatosensory or other brain regions (figure 1). These results corroborated some earlier single gene expression, developmental, functional, and connectivity studies [24,52,[63][64][65][66][67]. Combined, the findings support the idea that the similarities are owing to homology and not convergence. Further, Pfenning et al. [50] found divergent changes in expression of genes that control neural connectivity in the avian song and the human speech regions from the surrounding motor function of specific brain areas and/or the connections between them. Please refer to Section 2.3 and Table 2.2 for studies making explicit reference to the neuroanatomy of the brain.

Sensory system

The auditory system of mammals and birds builds up selective responses to auditory stimuli. Ultimately, auditory selectivity may give rise to categorical perception, the tendency to perceive a continuous change in sensory space (e.g. sound) as discrete percepts (e.g.

phonemes or bird syllables). This ability exists in both humans and birds [START_REF] Kuhl | A new view of language acquisition[END_REF][START_REF] Kuhl | Early language acquisition: cracking the speech code[END_REF]. During infant first months, the acoustic differences detected influence the selection of phonetic units, and infants become more sensitive to the units that are important for the language they hear [START_REF] Kuhl | A new view of language acquisition[END_REF][START_REF] Kuhl | Early language acquisition: cracking the speech code[END_REF]. Similarly in birds, neural selectivity for the imitated song develops slowly during song ontogeny [START_REF] Brainard | What songbirds teach us about learning[END_REF].

In birds, the auditory system is involved in the discrimination of songs, and relies on the temporal cues and pitch of the song to provide information about the identity of the singer [START_REF] Hahnloser | Auditory representations and memory in birdsong learning[END_REF]. Song-selective responses (with different responses to the bird's own song and other's vocalisations) have been observed in various high sensory brain areas. The sharp auditory selectivity of neurons in these high sensory areas emerge from a multi-stages auditory pathway that starts from the inner ear. At lower stages of this pathway, sensory responses evoked by the playback of songs or other sounds (including white noise) are well modelled using a linear summation of spatio-temporal receptive fields (STRF) [START_REF] Theunissen | Spectral-temporal receptive fields of nonlinear auditory neurons obtained using natural sounds[END_REF]. Higher in the auditory pathway, responses become sparser and more non-linear (i.e. less well modellable by such a linear model) [START_REF] Hahnloser | Auditory representations and memory in birdsong learning[END_REF].

Interestingly, experimental studies in birds have revealed that some auditory neurons also respond to perturbations of the auditory feedback during singing [START_REF] Keller | Neural processing of auditory feedback during vocal practice in a songbird[END_REF][START_REF] Hahnloser | Auditory representations and memory in birdsong learning[END_REF]. This highlights the fact that the whole pathway from high auditory area to motor areas could be involved in the recognition of tutor or conspecific songs and in the evaluation of the bird's auditory feedback.

Mirror neurons and perceptuo-motor coherence

Some neurons, called mirror neurons (MNs) show a similar response during the perception and the production of a motor or vocal gesture [START_REF] Rizzolatti | Premotor cortex and the recognition of motor actions[END_REF][START_REF] Gallese | Action recognition in the premotor cortex[END_REF][START_REF] Oztop | Mirror neurons and imitation: A computationally guided review[END_REF][START_REF] Prather | Precise auditory-vocal mirroring in neurons for learned vocal communication[END_REF]. Convergence of sensory and motor signals in the same neurons points to a possible mechanism to enable vocal learning [START_REF] Heyes | Causes and consequences of imitation[END_REF]:

during vocal production, auditory feedback could activate a sensory neural population directly connected to motor neurons driving song production, leading to a strengthening of connections between sensory and motor neural populations through Hebbian learn-ing [START_REF] Hahnloser | Vocal learning with inverse models[END_REF][START_REF] Tramacere | Auditory-motor matching in vocal recognition and imitative learning[END_REF]. These connections could be the substrate of internal models [START_REF] Kawato | Internal models for motor control and trajectory planning[END_REF][START_REF] Giret | Evidence for a causal inverse model in an avian cortico-basal ganglia circuit[END_REF]. However, mirror neurons have only been reported in adult songbirds until now, and it remains unclear whether they are selectively responding to the tutor song following the sensory learning phase. Alternatively, song-related auditory responses may emerge only after the end of the sensorimotor learning phase, ruling out a role for these neurons in song acquisition [START_REF] Tramacere | Auditory-motor matching in vocal recognition and imitative learning[END_REF].

In humans, different theories try to explain why there is activation of motor areas during speech perception [START_REF] Liberman | The motor theory of speech perception revised[END_REF][START_REF] Wilson | Listening to speech activates motor areas involved in speech production[END_REF][START_REF] Fowler | Speech perception as a perceptuo-motor skill[END_REF]. For example, the Perception-for-Action-Control Theory (PACT) (?) highlights how speech percepts are related not only to sounds, but also to motor gestures: speech perception could be biased by articulatory invariant commands.

Syllables are perceptuo-motor by essence: i.e. perception shapes action (e.g. some abstract representation of motor gesture can be recovered to disambiguate perception) and, at the same time, action shapes perception (e.g. motor gestures are "selected for their functional and perceptual value for communication" (?)). An example is the fact that acoustic features can change abruptly when changing the jaw height or jaw cycle, producing phase transition in the perceptuo-motor phase space diagram (?).

Learning rules and synaptic plasticity

Learning rules implemented in artificial neural networks are often inspired by biological synaptic plasticity. Evidence for synaptic plasticity in the songbirds song-related network has been highlighted recently [START_REF] Boettiger | Developmentally restricted synaptic plasticity in a songbird nucleus required for song learning[END_REF][START_REF] Ding | Long-term potentiation in an avian basal ganglia nucleus essential for vocal learning[END_REF][START_REF] Sizemore | Premotor synaptic plasticity limited to the critical period for song learning[END_REF][START_REF] Mehaffey | Naturalistic stimulation drives opposing heterosynaptic plasticity at two inputs to songbird cortex[END_REF]. The various sites of synaptic plasticity could underlie separate learning processes.

Plasticity in the thalamo-cortical synapse of the learning pathway may subserve early sensory learning [START_REF] Boettiger | Developmentally restricted synaptic plasticity in a songbird nucleus required for song learning[END_REF]. Still, in the learning pathway, long-term potentiation (LTP) in Area X is modulated by dopamine [START_REF] Ding | Long-term potentiation in an avian basal ganglia nucleus essential for vocal learning[END_REF]. LTP provides experimental evidence for a three-factor learning rule as those often used to model reinforcement learning processes in neural circuits [START_REF] Legenstein | A reward-modulated hebbian learning rule can explain experimentally observed network reorganization in a brain control task[END_REF]. Indeed, dopamine often mediates reinforcement signals [START_REF] Schultz | Predictive reward signal of dopamine neurons[END_REF], and several vocal learning models borrow concepts and algorithms from reinforcement learning (RL) theory [START_REF] Goldberg | Basal ganglia output to the thalamus: still a paradox[END_REF]. In this framework, the progressive improvement of vocalisations observable in the behaviour reflects a trial-and-error strategy guided by the internal evaluation of the produced vocalisations (likely through its comparison with previously experienced adult vocalisations) as well as external rewarding cues directly provided by the adults [START_REF] Doupe | Birdsong and human speech: common themes and mechanisms[END_REF].

Then, the long-term depression (LTD) of RA recurrent collateral synapses (i.e. between projection neurons) is limited to the song learning critical period; this could implement the pruning of unnecessary connections within RA [START_REF] Sizemore | Premotor synaptic plasticity limited to the critical period for song learning[END_REF].

The connections in the HVC-RA network are thought to be formed by a dense network that provides many paths for the descending motor signals, and only circuits that were active during singing need to be maintained. This is consistent with the high variability of juvenile's song or infant babbling [START_REF] Sizemore | Premotor synaptic plasticity limited to the critical period for song learning[END_REF][START_REF] Darshan | A canonical neural mechanism for behavioral variability[END_REF].

Finally, recent evidence for synaptic plasticity in the inputs to RA neurons from HVC and LMAN may provide a key element to model the interaction between the motor and learning pathways during learning [START_REF] Mehaffey | Naturalistic stimulation drives opposing heterosynaptic plasticity at two inputs to songbird cortex[END_REF]. Indeed, naturalistic stimulation patterns drive opposing changes in the strength of RA's inputs from HVC or LMAN. The extrapolated learning rule may allow the transfer of motor corrections initially driven by LMAN inputs and later consolidated in the motor pathway [START_REF] Andalman | A basal ganglia-forebrain circuit in the songbird biases motor output to avoid vocal errors[END_REF].

Aims of the models

The topics of the reviewed models are either speech perception and production development in humans, or song acquisition in birds. The second column of Table 2.4 contains the subject of the study of each paper that is reviewed: either humans ("H") or song-

Sensorimotor integration

Brain area functions Table 2.2: Summary of the main objectives pursued by the authors of the reviewed models.

birds ("SB"). In both cases, the focus is on early stages of learning, when babbling takes place (see Section 2.2 for more details about learning phases in humans and songbirds).

Beyond the general topic, there are several objectives and questions that the authors have pursued. An overview of these objectives is shown in Table 2 

Effects of sensorimotor integration

Some authors aim to study sensorimotor integration and its effect on sensory and motor space representations: [START_REF] Bailly | Learning to speak. sensori-motor control of speech movements[END_REF] is interested in sensorimotor redundancy given the constraints imposed by the articulatory system; [START_REF] Westerman | Modelling the development of mirror neurons for auditorymotor integration[END_REF] are concerned by the effect of auditory perception and production on the development.

Biological plausibility

Many authors are interested in modelling song-related pathways in birds, and in the study of auditory feedback. [START_REF] Troyer | An associational model of birdsong sensorimotor learning i. efference copy and the learning of song syllables[END_REF] test several hypotheses about anterior vocal learning pathway including HVC-RA connections, efference copy and auditory feedback. [START_REF] Doya | A computational model of birdsong learning by auditory experience and auditory feedback[END_REF] test the hypothesis that LMAN drives slow exploration in the connection from HVC to RA. Alternatively, [START_REF] Fiete | Model of birdsong learning based on gradient estimation by dynamic perturbation of neural conductances[END_REF] hypothesise that LMAN produces transient song perturbations by driving rapid conductance fluctuations in RA neurons. In the context of speech production and perception, some authors developed models inspired by functions of brain areas [START_REF] Kröger | Towards a neurocomputational model of speech production and perception[END_REF]. [START_REF] Cohen | Social babbling: The emergence of symbolic gestures and words[END_REF] tested the hypothesis that human brain areas are shared in language understanding and production, and their implication in goal-directed actions using active language learning and social babbling. [START_REF] Barnaud | Computer simulations of coupled idiosyncrasies in speech perception and speech production with cosmo, a perceptuomotor bayesian model of speech communication[END_REF] tested the hypothesis of idiosyncrasies (individual specificity) in production and perception; moreover, they tested the inter-individual variability in auditory and motor prototypes within a given language.

Learning architectures and algorithms

Some authors test the hypothesis that the anterior vocal learning pathway works as an actor-critic system and implement a gradient-based reinforcement learning rule. This is the case of [START_REF] Doya | A computational model of birdsong learning by auditory experience and auditory feedback[END_REF] and [START_REF] Fiete | Model of birdsong learning based on gradient estimation by dynamic perturbation of neural conductances[END_REF]. Reinforcement learning is implemented also by [START_REF] Howard | A computational model of infant speech development[END_REF] and [START_REF] Warlaumont | Learning to produce syllabic speech sounds via rewardmodulated neural plasticity[END_REF]:

they test the hypothesis that actions are reinforced based on auditory salience. Finally, [START_REF] Troyer | An associational model of birdsong sensorimotor learning i. efference copy and the learning of song syllables[END_REF] combine Hebbian leanring and a reinforcement learning signal in their architecture. Alternatively, other authors learn internal models using different learning rules to update the synaptic weights matrix representing the connections between motor commands and goal representations. [START_REF] Howard | Training a vocal tract synthesiser to imitate speech using distal supervised learning[END_REF] 

A realistic vocal tract model

One of the objectives of many authors is to take into account anatomical and physiological constraints using a realistic model of the vocal tract for the production of the sound. 

Motor control

The first step in defining motor control is to choose an appropriate model mapping a motor space (i.e. muscle command) onto a sensory space (i.e. sound or acoustic representation).

This section provides definitions of motor spaces and motor control functions that have been used in models. 

Motor space

The motor space is used to describe motor articulations parameters (ideally as a function of time). These parameters control the dynamics of vocal tract muscles and glottis (for human control models). A high number of parameters is usually provided but often several can be kept constant, either because they do not have much influence on the sound produced or in order to reduce the number of parameters. The dimension of the motor space depends on the motor control function applied and also on the choices made by the modellers. There is a large variability in the number of dimensions of the motor space: from a low dimensional motor space, which only considers the parameters related to lip and tongue, to high dimensional motor spaces which include almost all the available parameters for the vocal tract and, in addition, the glottis parameters.

Motor control function

In humans, vocal motor control involves the respiratory system, the vocal organs (e.g. tongue, lips, jaw, larynx) and the vocal tract. Although some studies have been conducted in the context of vocalisations, neural mechanisms underlying the diversity of respiratory rhythms are largely unknown [START_REF] Scharff | A comparative study of the behavioral deficits following lesions of various parts of the zebra finch song system: implications for vocal learning[END_REF].

A basic model of speech production, therefore, includes a sound source (vocal folds) and a linear acoustic filter (vocal tract) [START_REF] Fant | Acoustic theory of speech production: with calculations based on X-ray studies of Russian articulations[END_REF]. The sound source is the combination of vocal folds vibration output and noise. Such noise can be due to pressure fluctuations or by activities of other parts of the apparatus (e.g. the glottis). Lumped-element models are a class of self-oscillating biomechanical vocal folds models: these low-dimensional vocal fold models couple airflow and biomechanics [START_REF] Birkholz | A survey of self-oscillating lumped-element models of the vocal folds[END_REF]. Such low-dimensional models can reproduce characteristics of real vocal fold oscillations [START_REF] Ishizaka | Synthesis of voiced sounds from a two-mass model of the vocal cords[END_REF] and have been largely applied in speech research [START_REF] Erath | A review of lumped-element models of voiced speech[END_REF]: the parameters and the structure of lumped-element models can be tuned to sustained vowel simulations to obtain different frequencies. Additionally, it can be tuned to simulate various vocal registers, e.g. to generate a sequence of sounds (to simulate running speech), or to study some pathological phonation conditions (e.g. incomplete glottal closure).

Downstream from the sound source, the vocal tract acts as a resonator, filtering the sound as it travels to the outside world. It modifies the original sound wave and changes the balance between its frequency components. The resonance frequencies of the vocal tract are called formants [START_REF] Ladefoged | Elements of acoustic phonetics[END_REF]. The human vocal tract has been often modelled as a structure of pipes: in the literature, Ordinary Differential Equations (ODEs) models describe air pressure dynamics in the vocal tract. For example, [START_REF] Westerman | Modelling the development of mirror neurons for auditorymotor integration[END_REF] used a synthesizer which models the vocal system as a structure of pipes, each one having four walls represented as mass spring damper models (useful to model non-linearities): the 2D model equations describe the pipe wall physical behaviour, evolution of the movements and air pressure. Similarly, De Boer model (De Boer, 2000, 2001) has been used by [START_REF] Oudeyer | The self-organization of speech sounds[END_REF]: the synthesizer is based on the interpolation between the formant frequencies of vowels generated by Maeda's articulatory model [START_REF] Maeda | Compensatory articulation in speech: analysis of x-ray data with an articulatory model[END_REF].

Articulatory synthesizers are based on the same idea and control the vocal articulators: (i) Praat, a software for speech analysis containing an articulatory synthesizer, developed by [START_REF] Boersma | Functional phonology: Formalizing the interactions between articulatory and perceptual drives[END_REF], and used by [START_REF] Westerman | Modelling the development of mirror neurons for auditorymotor integration[END_REF], and by [START_REF] Warlaumont | Learning to produce syllabic speech sounds via rewardmodulated neural plasticity[END_REF]; (ii) VocalTractLab (VTL), developed by Birkholz et al. (Birkholz, Accessed Sept. 2019;[START_REF] Birkholz | Construction and control of a three-dimensional vocal tract model[END_REF], and used by [START_REF] Philippsen | Learning how to speak: Imitation-based refinement of syllable production in an articulatory-acoustic model[END_REF][START_REF] Philippsen | Goal babbling of acoustic-articulatory models with adaptive exploration noise[END_REF], [START_REF] Murakami | Seeing [u] aids vocal learning: Babbling and imitation of vowels using a 3d vocal tract model, reinforcement learning, and reservoir computing[END_REF], [START_REF] Howard | Modelling vowel acquisition using the birkholz synthesizer[END_REF], as well as in speech signal filtering [START_REF] Gudhnason | Evaluation of speech inverse filtering techniques using a physiologically based synthesizer[END_REF] Taking inspiration from previously developed vocal tract models, [START_REF] Kröger | Towards a neurocomputational model of speech production and perception[END_REF] proposed to define two parameters (back-front and low-high) describing the state of the motor plan and covering the whole articulatory vowel space. Other motor parameters like tongue position and lip parameters are expressed in function of these two motor plan parameters. Two particular cases are given by [START_REF] Lyon | Interactive language learning by robots: The transition from babbling to word forms[END_REF] which used eSpeak, a synthesizer that uses a formant synthesizer method [START_REF] Foundation | [END_REF] and [START_REF] Liu | Learning model-based f0 production through goal-directed babbling[END_REF], where qTA (quantitative Target Approximation) has been used to mimic the motor control dynamics, controlling them via three parameters related to the target properties.

For modelling song production in birds, an interactive model where nonlinear interaction between timescales enables motor instructions has been proposed. More recently, [START_REF] Alonso | A circular model for song motor control in serinus canaria[END_REF] developed a simple time continuous additive neural network model that drives the dynamics of respiratory activity: respiratory patterns can be reproduced and predictions on the timing of HVc activity during the production can be performed.

Anatomical properties and small size of birds make the investigation of vocal fold mechanisms difficult. It has been shown that the brain seems unable to control each motor parameter independently but it uses a complex gesture-dependent control scheme to drive the vocal output [START_REF] Elemans | Universal mechanisms of sound production and control in birds and mammals[END_REF][START_REF] Srivastava | Multifunctional and context-dependent control of vocal acoustics by individual muscles[END_REF]. Different studies have been looking at the properties of vocal motor control in correlation with acoustic features, such as 3D imaging techniques to investigate the control of sound pitch [START_REF] Düring | In situ vocal fold properties and pitch prediction by dynamic actuation of the songbird syrinx[END_REF] or neural recordings analysis to investigate the variations in the song [START_REF] Sober | Central contributions to acoustic variation in birdsong[END_REF]. 

Sound production

More realistic models generate sound production through the motor control device: Bailly 

Sensory system

The sensory system processes sensory stimuli and leads to a perceptual representation of those stimuli (in the perceptual space). While sensory stimuli may arise from other subjects (e.g. adult vocalisations to be memorised during the sensory learning phase), the production of vocalisations by the motor control apparatus also leads to the stimulation of the sensory system. As mentioned in Section 2.2.3, it provides a feedback of the motor command that allows to compare the perceived vocal production with previously experienced adult vocalisations (e.g. the memorised tutor song in the case of birds). The evoked sensory responses may also be conveyed to the reinforcement system, where an evaluation of the produced sounds leads to a reward signal. The sensory response function is often modelled as a minimal extraction of a low dimensional feature-based description of sounds in vocal learning models.

This section motivates the choice of the sensory response function, the sensory space and the perceptual space. In Table 2.4 we separate the physical space of the sound, which is the sensory space, and its abstract representation, which is composed of a preprocessed sound and the perceptual space. This allows to highlight whether a model has sound production or not, and to compare them in both cases.

Sensory space

The sensory space is the output space of the motor control device. As mentioned in Section 2.4.3 not all the models include sound production. The most simplistic models do not define the motor control device, leading to a coincidence between motor and sensory space. For instance, this approach has been used by [START_REF] Cohen | Social babbling: The emergence of symbolic gestures and words[END_REF] and Pagliarini et al. (2018a) (i.e. Identical to Motor Space (IMS) in Table 2.4).

Sensory response function

The sensory response function acts on the sensory space and drives the activity in the perceptual space, where the auditory stimuli are represented with a lower dimension. This process is the result of one or more steps that lead to a filtered, normalised and/or reduced subspace representing the auditory stimulus. The output is an abstract representation of the sound which represents its encoding in the brain. To highlight the fact that the auditory process is in general not a single-step process, a column (Pre-processing of the sound ) represents an intermediate step between the real sound and the perceptual space.

Most models describe first the sound as a trajectory in the formants' space, varying the dimension of the space (usually from 2 to 4) and the measure unit (either Barks or Hertz). Alternatively, other common examples of preprocessed sound are given by a low pass filtered version of the spectrogram, or the trajectory of the fundamental frequency.

A filter on the spectrogram or on the formant space has been applied by [START_REF] Westerman | Modelling the development of mirror neurons for auditorymotor integration[END_REF]. A linear combination has been used in the works from Oudeyer (2018). Alternatively, some authors extracted different features from the sound to build its representation in the perceptual space, or its internal representation. This is the case for Howard andMessum (2011, 2007), [START_REF] Philippsen | Learning how to speak: Imitation-based refinement of syllable production in an articulatory-acoustic model[END_REF], [START_REF] Philippsen | Goal babbling of acoustic-articulatory models with adaptive exploration noise[END_REF], [START_REF] Liu | Learning model-based f0 production through goal-directed babbling[END_REF]. [START_REF] Howard | Training a vocal tract synthesiser to imitate speech using distal supervised learning[END_REF] estimate the autocorrelation of the fundamental frequency of the sound and of the voicing parameter (from the motor control).

Nonlinearity in the sensory response function can be introduced defining the auditory activity as a bell-shaped function around the target motor pattern. For instance, this choice has been made in the works of [START_REF] Westerman | Modelling the development of mirror neurons for auditorymotor integration[END_REF], [START_REF] Oudeyer | The self-organization of speech sounds[END_REF] and Pagliarini et al. (2018a). A few particular cases are given by the work from Lyon The percepts can be given by the spectral properties of the sound: for instance the frequency powers, the power change, the fundamental frequency, the Mel-Frequency Cepstral Coefficients (MFCC), or also pitch and amplitude. This choice has been made by Howard andMessum (2011, 2007), [START_REF] Najnin | A predictive coding framework for a developmental agent: Speech motor skill acquisition and speech production[END_REF], [START_REF] Philippsen | Learning how to speak: Imitation-based refinement of syllable production in an articulatory-acoustic model[END_REF], [START_REF] Philippsen | Goal babbling of acoustic-articulatory models with adaptive exploration noise[END_REF], [START_REF] Liu | Learning model-based f0 production through goal-directed babbling[END_REF] and [START_REF] Fiete | Model of birdsong learning based on gradient estimation by dynamic perturbation of neural conductances[END_REF]. Alternatively, the percepts can be the classes of phonemes, as in the works by [START_REF] Lyon | Interactive language learning by robots: The transition from babbling to word forms[END_REF] and [START_REF] Murakami | Seeing [u] aids vocal learning: Babbling and imitation of vowels using a 3d vocal tract model, reinforcement learning, and reservoir computing[END_REF].

For any species, it is likely that the representation of a given sound in the perceptual space keeps changing during development, thus making the learning of inverse model even more difficult until the moment when the perceptual space "converged". That is why the vast majority of the models have a sensory response function that does not change during learning and is kept fixed. This can be justified based on the assumption that learning the inverse model only starts at the end of the "universal sensory period", which is the case for some species of birds like sparrows.

Some studies do not have a sensory response function that leads to a perceptual space.

These are models with a non-perceptual internal representation of the goals, such as the general model shown in Figure 2.2. As for the perceptual space, the choices made by the author can be found in the last column of Table 2.4. This is the case for the reinforcement learning models proposed by Doya and Sejnowski (2000), [START_REF] Troyer | An associational model of birdsong sensorimotor learning i. efference copy and the learning of song syllables[END_REF], [START_REF] Fiete | Model of birdsong learning based on gradient estimation by dynamic perturbation of neural conductances[END_REF], [START_REF] Warlaumont | Learning to produce syllabic speech sounds via rewardmodulated neural plasticity[END_REF], [START_REF] Cohen | Social babbling: The emergence of symbolic gestures and words[END_REF] and [START_REF] Howard | Modelling vowel acquisition using the birkholz synthesizer[END_REF]. In the context of songbirds, a typical choice is to use an arbitrary syllable space given by a localist encoding, as in the works from [START_REF] Doya | A computational model of birdsong learning by auditory experience and auditory feedback[END_REF] and [START_REF] Troyer | An associational model of birdsong sensorimotor learning i. efference copy and the learning of song syllables[END_REF]. Alternatively, [START_REF] Fiete | Model of birdsong learning based on gradient estimation by dynamic perturbation of neural conductances[END_REF] use the neural activity of a spiking neural network. Finally, in the work from [START_REF] Cohen | Social babbling: The emergence of symbolic gestures and words[END_REF] goals are specific needs of the agent (e.g. thirsty, hunger).

Learning framework

This section introduces the different types of architectures, the learning domains (i.e. perceptual, motor or goal spaces), the learning rules or optimisation algorithms, the exploration strategies that could drive learning, and finally the evaluation measures. Table 2.6

summarises how the reviewed models implement the learning framework. 

Architecture

The architecture linking the learning domain to the learning image varies between models and different architectures can be used. Biological hypotheses made in a particular model are important to understand the choice of the architecture and the learning rule. For more details about the biological hypothesis refer to 2.2.4 and 2.2.5).

Inverse and forward models (i.e. internal models) are both predictor models: they provide a bi-directional link between the perceptual space and the motor space, when both a forward and an inverse model are included. Inverse models have the aim to provide an appropriate motor command for a given perceptual goal, which is driven by the sensory response; the learning domain is defined by the perceptual space. Forward models describe a causal relationship between motor commands and their corresponding perceptual representations; the learning domain is defined by the motor space. As mentioned in Section 4.1, sensorimotor integration leads to redundancy: this is a fundamental problem with inverse models since introducing such kind of model leads to non-convex problems [START_REF] Reinhart | Reservoir computing with output feedback[END_REF]. This problem can be approached using the combination of an inverse and a forward model [START_REF] Jordan | Forward models: Supervised learning with a distal teacher[END_REF][START_REF] Wolpert | Multiple paired forward and inverse models for motor control[END_REF].

Indeed, forward modelling can be used to facilitate the estimation of the current state enabling the learner to modify its action and match the prediction: this switches action and perception representations, and explain the effects of perception on action [START_REF] Pickering | An integrated theory of language production and comprehension[END_REF]. Else, the non-convexity problem can be solved using a combination of an inverse model and a feedback controller [START_REF] Kawato | Feedback-error-learning neural network for supervised motor learning[END_REF] or "goal-babbling" to drive learning [START_REF] Rolf | Goal babbling permits direct learning of inverse kinematics[END_REF].

Alternatively, as shown in Figure 2.2 other models define a non-perceptual internal representation of goals and learn not the connections between the perceptual and the motor space, but the link between the internal representation and the motor space. These models include a sensory space if there is a motor control producing a real sound as output, and a sensory response function, which is used to process the sound and build a reward or an evaluation of the learning.
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The structure of the network varies among the models. Some approaches involve feedforward neural networks (FF NN) in the learning architecture. For instance, a 1-layer perceptron has been used in the works by Pagliarini et al. (2018a), [START_REF] Westerman | Modelling the development of mirror neurons for auditorymotor integration[END_REF], [START_REF] Oudeyer | The self-organization of speech sounds[END_REF] and [START_REF] Cohen | Social babbling: The emergence of symbolic gestures and words[END_REF]. A multi-layer perceptron has been used in the works by Doya and Sejnowski (2000), [START_REF] Troyer | An associational model of birdsong sensorimotor learning i. efference copy and the learning of song syllables[END_REF], [START_REF] Howard | Training a vocal tract synthesiser to imitate speech using distal supervised learning[END_REF] 

Learning domain

The learning domain, in the case of inverse models, coincides with the perceptual space, which contains the representation of the stimuli (how the brain encodes sensory stimuli)

and is obtained through the sensory response. In the case of forward models the perceptual space coincides with the output, and the learning domain coincides with the motor space.

Alternatively, the learning domain is defined as the internal representation of goals and the sensory response drives a reward that modulates the learning rule. In the latter case, the learning domain may be an abstract representation of the goal, that could represent for instance a sound trajectory. Of course, the internal representation could be considered as a component and not the domain of the learning framework, but we prefer to consider it as the domain of the learning mechanism (or architecture), in order to know what is needed for the learning or optimisation to be available. The full learning domain, or a sub-part, could be also called goal space in models using goal-driven exploration.

The learning domain might encode a whole song (that is a sequence of syllables) or a single syllable, depending on the choices and aims of the model. For instance, the learning domain can be defined as a syllable space that might encode features, as in the works from [START_REF] Troyer | An associational model of birdsong sensorimotor learning i. efference copy and the learning of song syllables[END_REF], [START_REF] Liu | Learning model-based f0 production through goal-directed babbling[END_REF]. Or again, using localist encoding (i.e. one-hot encoding)3 as in the work from Pagliarini et al. (2018a). Finally, the learning domain can be identified with the output of specific neural networks architecture or particular software. For instance, in the work from [START_REF] Lyon | Interactive language learning by robots: The transition from babbling to word forms[END_REF] the goal is represented by a phoneme stream computed using the software SAPI 5.4 (Yildiz and Kiebel), and the work from [START_REF] Murakami | Seeing [u] aids vocal learning: Babbling and imitation of vowels using a 3d vocal tract model, reinforcement learning, and reservoir computing[END_REF] where an intrinsic learning is defined to build the goal space. In the latter, an Echo State Network (ESN, a specific Recurrent Neural Network (RNN), called reservoir) has been used to learn in advance the goals, and an auditory memory encodes the knowledge of each goal (called auditory memory function).

Learning rule

Different types of learning have been used to model sensorimotor learning: supervised and unsupervised learning, and reinforcement learning. In a few models, an optimization algorithm (instead of a learning rule) has been used to improve motor production.

Unsupervised learning

Biologically, as seen in Section 2.2.5, specificity, cooperativity and associativity are expressed in the neural activity. Computationally, this can be modelled using associative learning rules, which are usually used for building internal models (inverse or forward) and are unsupervised. Hebbian-inspired learning algorithms typically implement associative learning and shape the excitatory links between perceptual and motor representations [START_REF] Heyes | Causes and consequences of imitation[END_REF].

A theoretical inverse model has been proposed by [START_REF] Hahnloser | Vocal learning with inverse models[END_REF],

where an Hebbian-inspired learning rule drives learning. Hebbian-inspired learning rules have been used in the works from [START_REF] Troyer | An associational model of birdsong sensorimotor learning i. efference copy and the learning of song syllables[END_REF], [START_REF] Kröger | Towards a neurocomputational model of speech production and perception[END_REF] and Pagliarini et al. (2018a). Also, a Hebbian correlation rule involving the mean activation of neurons over a certain time interval [START_REF] Sejnowski | Storing covariance with nonlinearly interacting neurons[END_REF] has been used in the works from [START_REF] Westerman | Modelling the development of mirror neurons for auditorymotor integration[END_REF] and [START_REF] Oudeyer | The self-organization of speech sounds[END_REF]. Otherwise, to define a learning rule one can use the distance between the target and the actual production in the goal space as in the work from [START_REF] Philippsen | Goal babbling of acoustic-articulatory models with adaptive exploration noise[END_REF].

Reinforcement learning

Reinforcement learning (RL) is a mechanism to learn an action policy to maximize the expected reward, where the reward function encodes the goal. The goal space (internal representation of goals in Figure 2.1) defines the learning domain. The definition of the learning domain (given in Table 2.4 in column "Perceptual space/Internal representation")

and of the reward function (given in Table 2.6 in column"Evaluation") are important to determine the complexity of the learning and the biological plausibility of the model.

Among the reviewed models there are models which implement classical RL: Troyer and Doupe (2000) used a plasticity rule which combines an associative learning rule and a reinforcement signal. Doya and Sejnowski (2000), [START_REF] Fiete | Model of birdsong learning based on gradient estimation by dynamic perturbation of neural conductances[END_REF] and [START_REF] Howard | Modeling the development of pronunciation in infant speech acquisition[END_REF] implemented reinforcement learning using a gradient ascent or descent algorithm. Similarly, gradient descent has been used in the work from [START_REF] Howard | Modelling vowel acquisition using the birkholz synthesizer[END_REF]. In these studies, the reward was computed as the correlation between spectrograms by [START_REF] Doya | A computational model of birdsong learning by auditory experience and auditory feedback[END_REF], or based on the feature of the song (the delayed estimation of the sum of the squares of pitch and amplitude) in the work from [START_REF] Fiete | Model of birdsong learning based on gradient estimation by dynamic perturbation of neural conductances[END_REF]. In these models, the reward function, which is treated in Subsection 2.6.5, encodes the goal and contributes to the learning. Alternatively, the reward can be driven by the auditory salience as in the works from [START_REF] Warlaumont | Learning to produce syllabic speech sounds via rewardmodulated neural plasticity[END_REF], [START_REF] Howard | A computational model of infant speech development[END_REF] and [START_REF] Philippsen | Goal babbling of acoustic-articulatory models with adaptive exploration noise[END_REF], or by the caregiver choice which defines any novel situation that the agent must learn [START_REF] Cohen | Social babbling: The emergence of symbolic gestures and words[END_REF]. 

Optimisation algorithm

Learning can also be driven by an optimisation algorithm that tunes the motor parameters: this is an exception and hence we did not use a more general category Parameter tuning instead of Learning in Table 2.6. The optimisation procedure can aim to maximise the ability of the agent in reproducing a selected goal via a reaching algorithm (Forestier and Oudeyer, 2017;[START_REF] Moulin-Frier | Curiosity-driven phonetic learning[END_REF], or to maximise the reward [START_REF] Cohen | Social babbling: The emergence of symbolic gestures and words[END_REF]. Alternatively, a gradient inversion has been proposed by [START_REF] Bailly | Learning to speak. sensori-motor control of speech movements[END_REF], and a quasi-Newton gradient descent algorithm has been proposed by [START_REF] Howard | Modeling the development of pronunciation in infant speech acquisition[END_REF] to maximise a reward given by the combination of auditory salience, a diversity measure in the sensory space and en effort measure in the motor space. A particular example of optimisation algorithm is the Covariance Matrix Adaptation -Evolution Strategy (CMA-ES) [START_REF] Murakami | Seeing [u] aids vocal learning: Babbling and imitation of vowels using a 3d vocal tract model, reinforcement learning, and reservoir computing[END_REF], that is a searching algorithm to maximise the confidence level of each goal. Finally, [START_REF] Najnin | A predictive coding framework for a developmental agent: Speech motor skill acquisition and speech production[END_REF] propose an actorcritic network to obtain the optimal sequence of actions to reach the target.

Supervised learning

Some works use supervised learning to learn the sensorimotor map. This could be implemented using an online algorithm via backpropagation as proposed by [START_REF] Liu | Learning model-based f0 production through goal-directed babbling[END_REF].

Otherwise, this could be implemented combining backpropagation and gradient descent as proposed by [START_REF] Howard | Training a vocal tract synthesiser to imitate speech using distal supervised learning[END_REF]. Supervised and unsupervised learning can also be used in combination with forward and inverse models, as in the work from Philippsen 

Evaluation

Evaluation of learning (or reward computation) can take place in the perceptual space, in the internal representation or in an additional space defined ad hoc. In models using the reinforcement learning (RL) paradigm it is common to have such ad hoc definitions:

in such a case the evaluation is called reward and is computed by a critic. For example, the reward can be given by the correlation between the target and the output songs represented as a filtered, vectorized version of the sound spectrogram as in the work from Doya and Sejnowski (2000), or by the sum of the squares of pitch and amplitude as in the work from [START_REF] Fiete | Model of birdsong learning based on gradient estimation by dynamic perturbation of neural conductances[END_REF]. In the work of [START_REF] Troyer | An associational model of birdsong sensorimotor learning i. efference copy and the learning of song syllables[END_REF], the quality of learning can be computed using the correlation coefficients between matrices representing the co-fluctuation of activity at different syllable epochs

In the case of intrinsically motivated agents, evaluation guides exploration, even if it does not contribute directly to the learning algorithm. These examples are related to evaluation computed in the goal space (i.e. perceptual or internal space). It can be computed using competence progress as proposed by [START_REF] Moulin-Frier | Curiosity-driven phonetic learning[END_REF] and [START_REF] Philippsen | Goal babbling of acoustic-articulatory models with adaptive exploration noise[END_REF], or defining the confidence level of each goal as proposed by [START_REF] Murakami | Seeing [u] aids vocal learning: Babbling and imitation of vowels using a 3d vocal tract model, reinforcement learning, and reservoir computing[END_REF]. Alternatively, other distance measures can be used to evaluate the learning in the perceptual space. For instance, Mean Square Error (MSE) has been used by [START_REF] Philippsen | Learning how to speak: Imitation-based refinement of syllable production in an articulatory-acoustic model[END_REF], an intensity measure has been used by [START_REF] Moulin-Frier | Self-organization of early vocal development in infants and machines: the role of intrinsic motivation[END_REF], the distance between sound trajectories in the formant space is used by Forestier and Oudeyer (2017). Sum of Squared Error (SSE) has been used by [START_REF] Liu | Learning model-based f0 production through goal-directed babbling[END_REF] is used to check the performance in learning the phonemes' dictionary.

Although evaluation is not usually implemented in the motor space, it is possible that some motor properties are used (e.g. articulator speed to compute the cost of a movement)

to compute the reward. [START_REF] Kröger | Towards a neurocomputational model of speech production and perception[END_REF] compute the error value estimating the distance between the initial motor pattern and the estimated one. Interestingly, the works from Howard andMessum (2007, 2011) and [START_REF] Howard | Modelling vowel acquisition using the birkholz synthesizer[END_REF] contain an example of a reward computed combining motor properties (voicing, effort, diversity)

and auditory salience (computed using the spectral properties of the sound such as acoustic power, high to low frequency ration and vice-versa). Auditory salience has been used also in the work from [START_REF] Warlaumont | Learning to produce syllabic speech sounds via rewardmodulated neural plasticity[END_REF].

Two particular cases are given by the work from [START_REF] Howard | Training a vocal tract synthesiser to imitate speech using distal supervised learning[END_REF], where a spectrographic analysis is used to determine similarity between target and produced sound, and the work from [START_REF] Moulin-Frier | communicating about objects using sensory-motor operations"): A bayesian modeling framework for studying speech communication and the emergence of phonological systems[END_REF] and [START_REF] Barnaud | Computer simulations of coupled idiosyncrasies in speech perception and speech production with cosmo, a perceptuomotor bayesian model of speech communication[END_REF], where simulations are evaluated using the Dispersion Theory formula [START_REF] Liljencrants | Numerical simulation of vowel quality systems: The role of perceptual contrast[END_REF] in the COSMO architecture [START_REF] Moulin-Frier | communicating about objects using sensory-motor operations"): A bayesian modeling framework for studying speech communication and the emergence of phonological systems[END_REF].

Discussion

To the functions going from one space to another. Table 2.4 and Table 2.6 highlight all the components we discussed in the review for all the considered models. However, it is not always possible to clearly identify each model component as they are missing in some models (indicated by "-" in the tables).

In general, motor control in vocal learning models is often based on pre-existing biologically-inspired models of vocal production and include the production of sound.

The motor parameters are usually related either to sound properties (e.g. fundamental frequency, pitch period) or to anatomical parts of the body (e.g tongue and lips in humans, air pressure in birds). Models of sound production (e.g. VTL, DIVA) may not be able to reproduce perfectly the distribution of sounds that could be obtained from real data. Therefore, they may not have the same perceptuo-motor phase space than the target (e.g. infant's brain) they are trying to model. Indeed, the perceptuo-motor phase space is shaped by the fact that "some regions of the motor command do almost not change the sound, while others change it abruply" (?). Thus, we suggest that, in their computational experiments, modellers control for the potential discrepancy between produced sounds and target sounds. More generally, they should check for perceptuo-motor phase space discrepancies. Such an issue could impact learning efficiency. Some learning frameworks do not take inspiration from biology. Indeed, some reinforcement learning algorithms and Hebbian learning rules used to implement synaptic plasticity are coherent with biology (as described in Section 2.2.5), but some authors proposed biologically implausible learning algorithms (e.g. optimisation algorithms to implement trial-and-error strategies, or particular ways of training internal models). Moreover, it is not easy to cast learning algorithms into clear-cut categories: the ambiguity comes from the fact that different readers might have different definitions or categorisations. For instance, one can think about an architecture where a supervised algorithm is incorporated into a reinforcement learning framework.

The dimensions of the sensory, perceptual and motor spaces greatly vary among models, and the learning architectures do not deal with the same task complexity. Performance can thus not be directly compared between models. The choice of learning framework may constrain the authors to reduce the space dimensions: many learning frameworks and exploration strategies cannot deal with high-dimensional spaces, and brains likely reduce complexity because they cannot control all muscle fibers [START_REF] Wolpert | Perspectives and problems in motor learning[END_REF][START_REF] Dhawale | The role of variability in motor learning[END_REF].

In order to find an evaluation strategy and reward function definition, it is convenient Models for sensorimotor learning with different motivations (e.g. grasping, recognition) are important complementary studies to take into account while studying vocal learning model. Indeed, these studies contain many important discussions about exploration strategies, target definition, motor space identification [START_REF] Baranes | Active learning of inverse models with intrinsically motivated goal exploration in robots[END_REF][START_REF] Rolf | Goal babbling permits direct learning of inverse kinematics[END_REF] that can be useful to take inspiration for future investigation of vocal learning mechanisms. Perceptuo-motor skills, typical of speech production, do also exist in non-vocal gestures [START_REF] Fowler | Speech perception as a perceptuo-motor skill[END_REF]. In some of the mentioned studies, other modalities than vocal were used. For example, Forestier and Oudeyer (2017) propose two sensorimotor models: a vocal learning model and an action motor learning model. [START_REF] Cohen | Social babbling: The emergence of symbolic gestures and words[END_REF] propose a model of symbol acquisition via active language learning (which combines vocal learning and symbol recognition).

We did not discuss previous modelling of the developmental aspects of vocal learning that investigate the effects of slow changes in the motor control apparatus or sensory system related to growth in the present review. It is, however, important to consider how such slow changes influence vocal production and interact with the learning process [START_REF] Ghazanfar | Constraints and flexibility during vocal development: insights from marmoset monkeys[END_REF].

We provided different diagrams, tables, along with segmentation of spaces and functions, as a conceptual tool to analyse and compare existing models of vocal learning. We believe it provides several benefits: to understand the choices of the authors, to look at the biological plausibility of a model or part of it, to compare models systematically, and to give a baseline to build new models. We hope that researchers in the field will agree with our attempt of categorisations and comparisons, and that it will help in further studies to make descriptions more explicit and comparable.

Chapter 3

A Bio-inspired Model Towards Vocal

Gesture Learning in Songbird

The simplest vocal learning model includes only two spaces: the perceptual space (representing the auditory area of the bird's brain) and the motor space (representing the motor areas of the bird's brain). Moreover, it does not define sound production. As highlighted in Chapter 2, in this type of model the sensory and the motor space collapse in one space.

To avoid any misunderstanding, in this chapter, the sensory area corresponds to the brain area where the sensory stimulus is encoded and the motor area corresponds to the brain area from where the input to the motor apparatus start. At the same time, as introduced in Chapter 2, the stimulus belongs to the sensory space, is encoded in the perceptual space, and is produced thanks to a motor command belonging to the motor space.

The model is inspired by the theoretical vocal learning model previously proposed by [START_REF] Hanuschkin | A hebbian learning rule gives rise to mirror neurons and links them to control theoretic inverse models[END_REF] and [START_REF] Hahnloser | Vocal learning with inverse models[END_REF]. The learning architecture is based on an inverse map from the sensory area onto the motor area, learned by a Hebbian learning rule. The exploration is random, and the sensory response enables the activations of sensory neurons. Here, the sensory response is referred to as the auditory response.

The chapter shows how it is possible to integrate bio-inspired assumptions in a theoretical inverse model for learning the connections between two neural populations. It 

Abstract

The paper proposes a bio-inspired model for imitative sensorimotor learning, which aims at building a map between the sensory representations of gestures (sensory targets) and their underlying motor pattern through a random exploration of the motor space. An example of such a learning process occurs during vocal learning in humans or birds when young subjects babble and learn to copy previously heard adult vocalizations. Previous work has suggested that a simple Hebbian learning rule allows perfect imitation when sensory feedback is a purely linear function of the motor pattern underlying movement production. We aim at generalizing this model to the more realistic case where sensory responses are sparse and non-linear. To this end, we explore the performance of various learning rules and normalizations and discuss their biological relevance. Importantly, the proposed model is robust whatever normalization is chosen. We show that both the imitation quality and the convergence time are highly dependent on the sensory selectivity and dimension of the motor representation. An interesting property of some neurons in the brain is the ability to respond similarly during the production or observation (or listening for vocal gestures) of a given movement.

This property has been linked with imitative sensorimotor learning and internal models (inverse or forward model). These neurons are referred to as mirror neuron [START_REF] Oztop | Mirror neurons and imitation: A computationally guided review[END_REF][START_REF] Prather | Precise auditory-vocal mirroring in neurons for learned vocal communication[END_REF][START_REF] Giret | Evidence for a causal inverse model in an avian cortico-basal ganglia circuit[END_REF]. While forward models describe a causal relationship between the sensory input and the motor system, inverse models have the aim to provide an appropriate motor command to a given state of the motor system. Although building an inverse model is easier when a forward model is available as proposed by [START_REF] Jordan | Forward models: Supervised learning with a distal teacher[END_REF] and [START_REF] Philippsen | Learning how to speak: Imitation-based refinement of syllable production in an articulatory-acoustic model[END_REF], inverse models could be enough to bootstrap the development of a simple computational mechanism, describing a memory system composed by the motor plan and the sensory stimulus [START_REF] Oztop | Mirror neurons: functions, mechanisms and models[END_REF]. The importance of computational models involving mirrors systems and learning processes has been stressed by [START_REF] Oztop | Mirror neurons and imitation: A computationally guided review[END_REF][START_REF] Oztop | Mirror neurons: functions, mechanisms and models[END_REF], and the "Mirror-system hypothesis" stated by [START_REF] Arbib | The mirror system, imitation, and the evolution of language[END_REF] links mirror neurons with the emergence of human language during evolution. Songbirds learn their vocalization by imitation through a vocal learning process that very much resembles speech learning in human babies [START_REF] Doupe | Birdsong and human speech: common themes and mechanisms[END_REF]. In the brain of songbirds, a part of the basal ganglia-thalamo-cortical circuitry is devoted to song learning in juveniles and plasticity in adults. This circuit is homologuous to the basal ganglia circuits responsible for motor learning in mammals, and involved in speech learning in humans [START_REF] Doupe | Birdbrains could teach basal ganglia research a new song[END_REF][START_REF] Mooney | Neural mechanisms for learned birdsong[END_REF]. Moreover, this song-related BG-thalamo-cortical circuit in birds receives input from mirror neurons [START_REF] Prather | Precise auditory-vocal mirroring in neurons for learned vocal communication[END_REF]. Therefore, the brain circuits responsible for avian song learning represent an ideal framework to study the neural mechanisms underlying imitative learning.

A theoretical model describing the implementation of an inverse model between auditive and motor areas through associative learning has been proposed recently [START_REF] Hahnloser | Vocal learning with inverse models[END_REF][START_REF] Hanuschkin | A hebbian learning rule gives rise to mirror neurons and links them to control theoretic inverse models[END_REF]. The model is based on a simple Hebbian learning rule driven through random motor exploration and auditory feedback responses to this motor exploration. The proposed model assumes linearity for mathematical simplicity. As auditory responses in the brain are rather sparse and nonlinear we aim to extent the theoretical framework to a more realistic scenario [START_REF] Hahnloser | Auditory representations and memory in birdsong learning[END_REF].

We used an inverse model inspired by [START_REF] Hahnloser | Vocal learning with inverse models[END_REF] to describe the interaction between two populations of neurons, one formed by motor neurons and another formed by sensory neurons. We first show that replacing the learning rule by a simple normalized Hebbian learning rule allows rapid convergence in a simple non-linear model.

We apply different normalizations in the learning rule. We then explore the influence of the sharpness of auditory selectivity in relation with the learning error after convergence and convergence time of the learning. Finally, we show how changing the number of sensory or motor dimensions modifies learning.

Method

Network and goal

The model includes two neural populations as shown in Fig. 3.1. The first layer is composed by afferent neurons and represents the sensory area. The second layer is composed by motor neurons, which represent the starting point for muscle activation, and thereby for movement production. The synaptic weights describing the strength of the connection between neurons are defined by matrix W .

Figure 3.1: Neural network schema. The network includes two neural populations: the first layer is composed by n a afferent neurons and represents the sensory area, the second layer is composed by n m motor neurons and represents the motor area. W i,j represents the synaptic connections between sensory and motor neurons. Below the network schema we highlight how we define the sensory response. At each time step t, the sensory response is a function of the motor output, that is A t = f (M t ).

A model describing sensorimotor phase of learning based on a network as in Fig. 3.1 has been previously proposed by [START_REF] Hahnloser | Vocal learning with inverse models[END_REF]. Neurons are linear units and at each time t motor and auditory activity are defined as a n m -dimensional vector M t and a n a -dimensional vector A t , where n m and n a represent respectively the number of motor and auditory neurons in the network.

Auditory response

At each time t the auditory activity A t is defined as a function of the motor pattern M t at that particular time, that is A t = f (M t ). [START_REF] Hahnloser | Vocal learning with inverse models[END_REF] define the auditory activity as a linear function of M t , that is

A t = QM t , (3.1)
where M t represents the motor pattern at time t and Q the linear map defining the auditory activity due to the auditory feedback driven by current motor activity.

We then introduce non-linearity in the sensory response to auditory feedback. To represent selective responses as observed in various high sensory brain areas (e.g. auditory regions of the pallium in birds display responses selective to tutor syllables or to the bird's own syllables), we define the auditory activity A t for each j = 1, .., n a neurons as a bellshaped function around a target motor pattern:

A jt = exp -||M * j -M t || 2 2σ 2 n m , (3.2) 
where σ represents the selectivity tuning width, n m the number of motor neurons belonging to the network, M t the motor pattern at time t and M * the center of the auditory activity.

Learning process

Learning is driven by the Hebbian learning rule

∆W t ∝ ηM t A t , (3.3) 
where W t represents the synaptic weights between sensory and motor neurons, η the learning rate, M t the motor pattern at time t and A t the auditory activity at time t.

Synaptic weights W t=t 0 between sensory and motor neurons are initially weak and increase according with (5.3) during learning until a certain time t = t f , as

W t = W t-1 + ∆W t , (3.4) 
where W t represents the synaptic connections between sensory and motor neurons and ∆W t is defined by ( 5.3).

However, synaptic weights have an upper boundary due to biological limitations (maximal number of synaptic receptors or neurotransmitters released). This can be introduced by a normalization either on the synaptic weights W i,j or on their variation ∆W i,j .

Hahnloser and Ganguli (2013) proposed a postdictive Hebbian learning rule given by

∆W t = η(M t -W t-1 A t )A T t , (3.5) 
where W t represents the synaptic weights between sensory and motor neurons, η the learning rate, M t the motor pattern and A t is defined by Eq. (3.1). Here the apex T indicates the transpose of the vector A t .

In our model, we kept the basic Hebbian rule and we tested three normalizations in two different cases: a normalization over motor neurons (over all targets of one postsynaptic neuron) and a normalization over auditory neurons (over all inputs of one presynaptic neuron).

In practice, the two types of normalization are respectively implemented by normalizing over the lines or columns of the weights matrix W . The aim of the normalization is to bound either the mean of each column or line of W i,j or the euclidean norm of each column or line of W i,j to a maximum of 1. Considering the case of normalizing with respect to auditory neurons and pushing the mean of every column of W to a maximum of 1, the applied normalizations are the following:

• Maximum weights normalization

W i,j = n m W i,j Σ i W i,j , (3.6) 
• Supremum weights normalization

W i,j =      W i,j Σ i W i,j nm < 1, nmW i,j Σ i W i,j
otherwise,

(3.7)

• Decreasing factor normalization ∆W i,j = ηM t A t 1 - Σ i W i,j n m . (3.8)
Here W i,j represents the synaptic connections between sensory neuron j and motor neurons i = 1, .., n m , where n m is the number of motor neurons.

To obtain the normalization over the motor neurons and pushing the mean of each line of W to a maximum of 1, it is enough to change the index i for the index j and use the auditory dimension n a . In order to use the norm instead of the mean in the definiton of the normalizations it is enough to introduce the norm on the column or the norm on the line of W in place of the mean.

At the same time, normalizing synaptic weights forces us to also normalize the motor target M * , which represents what the model would learn at t = t f . This is equivalent to a reduction of the target motor space (as it introduces a constraint on the final output of the model).

Simulation details

Each sensory neuron contains the response to a motor performance, and this is represented by the motor target M * . We did not consider any strategy for the exploration. That is, at each time step t we simply considered the case of a random motor exploration M t on which the auditory selectivity depends.

In the Hahnloser-Ganguli model there exist a direct map which defines the motor activity from the auditory activity as

M t = Q d A t .
For the inverse model we need to define A t in dependence on M t as in Eq. (3.1). That is the inverse matrix of Q, i.e Q d represents the motor target M * , that is the ideal motor activity which the model should have learned once learning phase has ended. The goal then is to activate each sensory neuron can drive M * j through W , such that

W A * -→ M * , (3.9) 
where A * = A 0 I defines the ideal auditory activity. We fixed A 0 = 1.

Given the motor targets M * , at each time step t, the distance between what the model actually learned and what it should have learned is defined as

d t = ||M * -W t A * || n m , (3.10)
where M * represents the motor target, W t the synaptic weights matrix, A * the ideal auditory activity and n m the number of motor neurons.

We defined the convergence time τ as the number of time steps at which the updates of the weights are small enough. and we used it as threshold, in a way that a particular experiment stops either if reaches the value * = 10 -9 either if it goes until a fixed time t = t f . We tested several values for the tuning selectivity width, i.e. σ = [0.02, 0.05, 0.1, 0.2, 0.3, 0.5, 0.7], varying in this way the auditory selectivity. We used for almost every value an interval of length N = 400.

However, since the distance evolves very slowly, for small values of σ this interval is not large enough. For instance, an interval with N = 500000 has been used for σ = 0.02. As expected by the theory [START_REF] Hahnloser | Vocal learning with inverse models[END_REF], the distance between W A * and the target motor pattern M * (which is the inverse of Q) converges exponentially to zero. The learning rule therefore ensures proper learning of the inverse model. In contrast, when auditory feedback is non-linear (orange line in Fig. 3.2), where the auditory activity is defined by Eq. (3.2), the postdictive Hebbian learning rule does not allow convergence, and the distance between W A * and the target motor pattern M * rather diverges.

Results

Simple model with linear auditory responses

Define the auditory activity as in Eq. (3.1) means that the matrix Q needs to be invertible to reach convergence. We also don't know how to define the exploration space starting from the map Q. We assumed as given the space of the inverse of Q, which means that we solved at each time step t the linear system Q -1 A t = M t , where Q -1 = M * . At the same time to solve a linear system means to face the problem of invertibility of matrix M * . Indeed, if the matrix M * is singular or close to be singular, then the numerical In this way we simulated all the simulations in Fig. 3.2 without having ill-posed problems.

Without the application of this condition, simulations were often diverging because of the divergence of M * -1 . A nonlinear auditory response defined by Eq. (3.2) enables to avoid ill-posed problems. At the same time (as underlined in the small box with logarithmic scale in Fig. 3.2) it leads to a divergence in the distance between the target motor pattern M * and W A * . That is, the model does not learn anymore after the introduction of nonlinearity. So far, instead of keeping the postdictive Hebbian rule proposed by [START_REF] Hahnloser | Vocal learning with inverse models[END_REF], we used a traditional Hebbian rule to drive learning and tried to face the problem by applying other types of normalization.

A nonlinear auditory response

Fig. 3.3 shows the evolution of the distance between W A * and the target motor pattern M * for one example neuron. The initially weak synaptic connections evolves following the Hebbian learning rule given by Eq. ( 5.3) and finally approaches M * . To obtain these results we applied the normalization defined by Eq. (3.8). By introducing nonlinearity, as shown by Fig. 3.2, the Ganguli-Hahnloser model does not converge anymore.

We tested three different normalizations, given by Eq. (3.6), Eq. (3.7) and Eq. (3.8).

The upper panel of Fig. 3.4 shows the comparison between the three normalizations with respect to auditory neurons. That is, with respect to the columns of W . Normalizations given by Eq. (3.6) and Eq. (3.7) are applied directly to the weights matrix, which gives a faster convergence but a lost in smoothness. Normalization given by Eq. (3.8) is applied to the variation of the weights, by multiplying its classical definition by a decreasing factor. This means that the variation is smaller and smaller as the weights approaches the target, which results in a smooth trend of the distance curve. To highlight better the difference between normalization over auditory and motor neurons, the bottom panel of Fig. 3.4 shows the comparison between the normalization given by Eq. (3.8) applied in its mean and norm version. As it is shown, a normalization over auditory neurons works better than the same normalization over motor neurons in the sense that the distance between W A * and M * is lower if the normalization is applied over the auditory neurons than if the normalization is applied over the motor neurons. 

Auditory selectivity effect

Auditory selectivity impact on the learning can be observed by varying its value and by observing both the convergence time τ both the distance at t = τ between W A * and M * . Fig. 3.5 shows how the mean convergence time τ and the mean distance d t at t = τ depends on the auditory selectivity. As the tuning selectivity width σ increases, a decreasing in the mean convergence time and an increasing in the mean distance can be observed.

In particular, for the value σ = 0.02 convergence time is not fully correct because many simulation reached a fixed time t f = 2 * 10 7 before having reached convergence. This is displayed on the plot by the first dashed part of the red line. . We applied the decreasing factor normalization given by Eq. (3.8). To exit the simulations we compute as in Eq. (3.11). We used for almost every value an interval with N = 400. However, since the distance evolves very slowly, for small values of σ this interval is not large enough. For instance, an interval with N = 500000 has been used for σ = 0.02.

Varying network dimensions

The quality of learning in terms of the distance at the convergence time t = τ and how slow learning develops can be investigated by varying the network dimension. Firstly, the number of auditory neurons has been kept fixed at the value n a = 3, and the number of motor neurons varied as n m = [2,3,4,5,6,7]. Then, viceversa, the number of motor neurons has been kept fixed at n m = 3 and the number of the auditory neurons varied using the same values as before. Fig. 3.6 shows the effect of changes in the network dimension respectively on the mean convergence time τ and on the mean distance at t = τ , computed over 50 simulations. The upper panel shows how, keeping fixed the motor network where the number of auditory neurons has been kept fixed at n a = 3, whereas the light red line refers to a network where the number of motor neurons has been kept fixed at n m = 3. In both cases, the second dimension has been varied as [2,3,4,5,6,7]. Parameters value: η = 0.01, σ = 0.1. Here we applied the decreasing factor normalization given by Eq. (3.8). To exit the simulations we compute as in Eq. (3.11) with N = 400. dimension, there is not an evidence of network dimension effect on the mean convergence time. Viceversa, keeping fixed the auditory dimension the learning slows down as the motor dimension increases. However, the mean distance at t = τ is not affected by any change in the neural network dimensions, as shown in the bottom panel of Fig. 3.6. More details are available at https://github.com/spagliarini/2018-ICDL-EPIROB.

Discussion

Hahnloser and Ganguli (2013) proposed a simple mathematical framework to approach the sensorimotor learning problem in songbirds. It is based on a linear auditory activity and a postdictive Hebbian learning rule. Linearity in the auditory activity makes the theoretical investigation possible but is not biologically realistic. To be invertible, the matrix Q for auditory response must be squared, which means that auditory and motor dimensions have to be equal. Moreover, numerical implementation of the learning algorithm proposed by

Hahnloser and Ganguli requires to invert the auditory response matrix (Q) to determine the range of motor output required for proper exploration and learning. As there is no general method to invert a random matrix Q, a numerical implementation of the model requires to set a specific Q that can be inverted. Finally, the postdictive learning rule only works for the linear model and it is not clear whether biologically realistic learning rules can still lead to convergence or near-convergence in the case of non-linear auditory feedback.

As Hebbian or associative learning rules are implemented through activity-dependent synapse-specific increases in synaptic weights (synaptic potentiation), that must be augmented by global processes that regulate overall levels of neuronal and network activity to prevent explosion of synaptic weights [START_REF] Abbott | Synaptic plasticity: taming the beast[END_REF]. Regulatory processes are often as important as the more intensively studied Hebbian processes in determining the consequences of synaptic plasticity for network function. Setting an upper bound on the total synaptic weights to or from a given neuron may also reflect the biological limitation of synaptic connections: limits are imposed on their growth due to the limited quantity of available material (receptors, neurotransmitters, ...). The introduction of normalization on the weights or on their variations is a simple solution to this problem.

Several forms of normalization were considered here to take into account this biological limitation. While the linear model of [START_REF] Hahnloser | Vocal learning with inverse models[END_REF] converges for the postdictive learning rule described there, we show that near-convergence can be achieved with multiple normalization rules added to a simple and typical associative learning rule given by Eq. ( 5.3). Convergence time, final distance from motor output to target, and smoothness of the distance evolution through time all depend on the specific normalization used. However, it is important to notice that the final "error" (distance from motor final weights to target motor pattern) does not vary much with normalization, assuming it is applied on all synaptic outputs from a given presynaptic (auditory) neuron.

In most of the simulations we focused on normalization given by the decreasing factor normalization in Eq. (3.8). We kept this normalization for all our analyses because it gives better performance (i.e. low "error"). We noticed that when this normalization is applied, it gives better performances over auditory neurons (presynaptic) than over motor neurons (postsynaptic), despite the fact that a normalization with respect to motor neurons (regulated at the level of the post-synaptic neuron) may be more biologically A remaining open question is related to the final value (after convergence) of the distance between the target motor pattern and what the model actually learned. Future work is needed to determine the factors that determine this final error and how it can be reduced. One possibility is that various motor targets (one for each auditory neuron) may interfere during learning, leading to imperfect copies. However, our preliminary experiments didn't show that interference had an influence on the final error.

We investigated how learning depends on the auditory selectivity observing that as the tuning selectivity width σ increases as the final distance between weight matrix and motor target (error) increases while convergence time decreases. There is therefore a trade-off between learning speed and accuracy that can be balanced through the selectivity of auditory neurons. One way to make learning both fast and accurate could be to start the learning process with a large tuning width (low selectivity) and to decrease it progressively as learning goes on. Interestingly, in many songbird species (including the well-studied zebra finches), sensory learning overlaps with sensorimotor learning, and the auditory selectivity therefore develops during the early sensorimotor phase.

Finally, taking into account the influence of the dimensions (i.e. number of units) of the sensory and motor layers we noticed that motor dimension has a strong influence on convergence time. This strong influence comes from the fact that for lower values of σ the distance between the target and W A * tents to decrease much more slowly. In our network we are considering a motor output that does not distinguishes muscle control and sound production. It is not clear which of these two components is responsible for the high increase in convergence time. A model displaying a motor output and a sound generating system is needed to resolve this question. Future work could include (1) the addition of an artificial syrinx model as motor output and more auditive like feature selectivity in the auditory layer, and ( 2) the influence of different exploration methods such as goal-directed exploration.
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Non-published complementary results

Babbling generation

In this chapter, we built the model assuming that at each time step a new motor exploration takes place, a new auditory response is computed and the synaptic weights are updated as a consequence. That is, syllables has been considered as entities lasting the time of one-time step, without taking into consideration the fact that biologically they do have a certain duration. Moreover, the delay between the motor neurons activity and the activity of the auditory neurons (which causes the overlap between the auditory representation of a syllable and the production of the new syllable) has not been taken account.

To introduce a babbling paradigm in the model means to introduce the concept of the syllable (continuous lines in the top panel of Figure 3.7) and gap (dotted lines in the top panel of Figure 3.7) duration. Mathematically, this means that for a certain number of timesteps the same motor exploration m i is performed and the same auditory response a i is received. To obtain such a babbling paradigm, we introduced the syllable duration, the gap duration, and the initial delay as values taken from an exponential distribution The continuous lines in the activity represent the syllables, whereas the dot lines represent the gap between two consecutive syllables. The bottom panels represent the possible configurations that can arise from the activity: correct (correspondence between the motor activity and the auditory activity), incorrect (i.e., mismatched, when there is no correspondence between the motor activity and the auditory activity), null motor (motor activity equal to zero), null auditory (auditory activity equal to zero), null activity (both motor and auditory activity equal to zero). If d = 0, only correct and incorrect configurations are present. Otherwise, depending on the activity parameters λ d , λ gap and λ syll .

of parameterλ > 0 [START_REF] Darshan | A canonical neural mechanism for behavioral variability[END_REF]:

f (x) = λe -λx wherex ≥ 0 (3.13)
The syllable duration follows an exponential law of mean λ syll = 150 ms (i.e., 15 time steps). The gap duration follows an exponential law of mean λ gap = 50 ms (i.e., 5 time steps). The delay duration follows an exponential law of mean λ d = 30 ms (i.e., 3 time steps).

In terms of time steps, each motor exploration m i and its corresponding auditory response a i last for several time steps: for instance, in the top panel of Figure 3.7 the motor exploration m 1 lasts 4 time steps, whereas the motor exploration m 2 lasts 3 time steps. Taking into account the delay d and the gap between syllables, the four possible configurations that can emerge are listed below.

• Correct: when there is a correspondence between the motor activity and the auditory activity (i.e., m i happens at the same time step as a i ).

• Null motor: when the motor activity is equal to zero, but the auditory activity is not equal to zero.

• Null auditory: when the auditory activity is equal to zero, but the motor activity is not equal to zero.

• Null activity: when both the motor and the auditory activities are equal to zero.

• Incorrect: when both the motor and the auditory activities are different from zero and there is not a correspondence between them (i.e., m i happens at the same time step as a j , with i = j).

Temporally, as shown in the bottom-left panel, m i and a i coincide only when d = 0 (i.e., there is no delay between the motor activity and the auditory activity). Indeed, when d = 0, the null activity corresponds exactly to the occurrence of gaps. The null activity here corresponds to the occurrence of the gap. Otherwise, when d = 0 the percentage of correct correspondences is lower, but it remains higher than the percentage of null or incorrect configurations. Else, if d = 0, several configurations can be observed: correct correspondence between motor and auditory activity (i.e., m i happens at the same time step as a i ); incorrect (i.e., m i happens at the same time step as a j , with i = j); null activity To observe the dependence on the syllable duration, the parameters relative to the distribution of the gap and the delay have been kept fixed (i.e., λ gap = 50 ms and λ d = 30). The parameter λ syll has been varied as [30,50,100,150,210]. To observe the dependence on the gap duration, the parameters relative to the distribution of the syllables and the delay have been kept fixed(i.e., λ syll = 150 ms and λ d = 30). The parameter λ gap has been varied as [20,30,40,50,60]. To observe the dependence on the delay duration, the parameters relative to the distribution of the syllables and the gap have been kept fixed(i.e., λ syll = 150 ms and λ gap = 50). The parameter λ d has been varied as [30,40,50,60,70]. Parameters value: t f = 3 * 10 5 , n m = n a = 3, η = 0.01, σ = 0.1 .

We kept the same network dimensions as in the model introduced in the main chapter,

with n m = n a = 3. We used an Hebbian learning rulle normalizes using Equation 3.8 (the one that was working better for the simple task). We fixed the learning rate at η = 0.01, the auditory selectivity at σ = 0.1 and the exit time at t f = 3 * 10 5 . The babbling paradigm introduces three new parameters: λ syll , λ gap and λ d . For each of these three parameters, we explored different values keeping fix the others. The aim is to observe how the distance between the target and the ideal motor pattern evolves depending on each of the three new parameters.

Results

The evolution in time of the smooth average distance between W A * and the target motor both the gap and the syllable duration parameters, things get better: if λ syll ≥ 100 ms and λ gap ≥ 30, the distance remains smaller than 0.04. Interestinlgy, the lower average distance has been observer for λ syll = 50 and λ gap = 30.

Discussion

The delay of the auditory feedback plays an important role in how a sequence of syllables is perceived, introducing uncertainty in the predictions of syllables [START_REF] Bouchard | Auditory-induced neural dynamics in sensory-motor circuitry predict learned temporal and sequential statistics of birdsong[END_REF]. Indeed, sensory feedback impacts the repetitions of motor sequences by enabling long repetitive vocal sequences [START_REF] Wittenbach | An adapting auditorymotor feedback loop can contribute to generating vocal repetition[END_REF]. Similarly, during speaking, speech-articulator representations are temporally coordinated in humans (Bouchard et al., 2013). Indeed, the motor command and the sensory information are combined to gather a rapid feedback control (Guenther et al., 2006b). A negative feedback can play a role in speech disorders such as stuttering [START_REF] Wittenbach | An adapting auditorymotor feedback loop can contribute to generating vocal repetition[END_REF].

The model proposed in Section 3.5 describes the overlap between motor activity and auditory activity which has been shown experimentally [START_REF] Bouchard | Neural encoding and integration of learned probabilistic sequences in avian sensory-motor circuitry[END_REF][START_REF] Darshan | A canonical neural mechanism for behavioral variability[END_REF]. Such an overlap is caused by the presence of a delay in the auditory feedback, which usually has the same order of the duration of the syllables (CITE?).

Indeed, if the delay distribution is kept fix (λ d = 30 ms), it is possible to observe how long syllables do not allow a high learning accuracy (bottom line in Figure 3.9).

Introduction

The presence of different talkers, rates and contexts makes speech composition difficult to define physically. Indeed, when different talkers produce the same sound, the acoustics (i.e. formant frequencies) vary [START_REF] Hillenbrand | Acoustic characteristics of american english vowels[END_REF], making speech highly variable.

Similarly, faster speech acoustics differ from slower speech acoustics, and contexts variations can determine a change in the acoustic features [START_REF] Miller | Some effects of later-occurring information on the perception of stop consonant and semivowel[END_REF]. That is, speech represents a high dimensional domain difficult to deal with. As a consequence, speech generation is a challenging problem which involves several research fields such as signal processing and machine learning. [START_REF] Pagliarini | Vocal imitation in sensorimotor learning models: a comparative review[END_REF]. Behavioural and the neuroanatomical similarities between songbirds and humans [START_REF] Kuhl | Early language acquisition: cracking the speech code[END_REF][START_REF] Chakraborty | Brain evolution by brain pathway duplication[END_REF] suggest songbirds as a model for a reduced version of the vocal learning in humans, enabling simpler hypotheses. In particular, canaries have a large highly variant repertoire and their songs are characterized by a complex syntax with long-time dependencies [START_REF] Markowitz | Long-range order in canary song[END_REF]. These properties make canary songs a reasonable middle ground between human speech and simpler birdsongs (e.g., zebra finches' song).

We aim to investigate if a generative model can be used as the motor control function in a vocal learning model describing sensorimotor learning. In such a scenario, the generative model plays the role of the motor control function and takes the motor space as input. At the same time, the motor space is involved in the learning algorithm: a high dimensional motor space would make the learning computationally costly (Pagliarini et al., 2018a).

Some models based on dynamical systems are interesting candidates as motor generator models [START_REF] Gardner | Simple motor gestures for birdsongs[END_REF][START_REF] Amador | Elemental gesture dynamics are encoded by song premotor cortical neurons[END_REF].

Generative Adversarial Networks (GANs) are an example of generative models which enable to represent high-dimensional distributions in a latent space. In general, the main components of a GAN are a generator, that tries to reproduce a target distribution (e.g. images) given random inputs, and a discriminator, which tries to recognize real samples from generated ones. The "latent space" of a GAN is the input dimension of the generator part after training: continuous changes in this latent space will hopefully produce smooth changes in the generated samples. GANs have been used to produce complex datasets such as images, sounds, music, speech and, to a lesser extent, birdsongs [START_REF] Salimans | Improved techniques for training gans[END_REF][START_REF] Dong | Musegan: Multi-track sequential generative adversarial networks for symbolic music generation and accompaniment[END_REF][START_REF] Donahue | Adversarial audio synthesis[END_REF]. Indeed, [START_REF] Donahue | Adversarial audio synthesis[END_REF] trained their model, called WaveGAN, on a speech dataset composed of 10 classes (i.e., 10 words representing the numbers from 0 to 9) and on wild recordings from several bird species.

The promising but noisy results on a wide and highly variable dataset of birdsongs determined our choice to study the performance of the WaveGAN generator on a smaller, cleaner dataset, more similar to the speech dataset used in the original work.

In this paper, we trained a Wesserstein GAN with Gradient Penalty (WGAN-GP) (Arjovsky et al., 2017) using the WaveGAN [START_REF] Donahue | Adversarial audio synthesis[END_REF] setup on an adult canary dataset. The main objectives of this study is not to improve the current version of WaveGAN, but rather to test its ability to produce realistic canary syllables for different conditions of two parameters: the latent space dimension and the size of the dataset. On the one hand, we are interested in finding the minimal latent space dimension that allows to reproduce real songs fluctuations. On the other hand, we are interested in exploring the capability of the generator to reproduce a good output when the network has been trained with datasets of different sizes. Indeed, having a lower amount of training data would speed up the computational time to train the generator. Another main aim of the paper is to explore the latent space obtained in order to measure (quantitatively and qualitatively) how good this space is to describe the smooth transitions from one syllable to another. This is a way to check if the generator model is able not only to interpolate between syllables but also to generalize (i.e., the latent space is not a collection of homogeneous regions separated by sharp transitions). 

GAN background

Recently, several generative models have been proposed, such as Wavenet (Oord et al., 2016a), Variational autoencoders (VAEs) [START_REF] Kingma | Auto-encoding variational bayes[END_REF] and Generative Adversarial Networks (GANs) [START_REF] Goodfellow | Generative adversarial nets[END_REF]. In particular, GANs have been Wasserstein GAN (WGAN) (Arjovsky et al., 2017) and improved it by modifying the loss function definition, such that it is robust to changes in the network architecture. Firstly, the role of the discriminator has changed: it is not making anymore a direct choice to assess whether a sample is real or fake. Instead, the discriminator acts as a critic and provides the generator a loss allowing it to be trained until it reaches an optimum. An advantage of the critic is that it can't saturate and converges to a linear function, whereas the classic discriminator could learn too quickly, becoming not reliable (Arjovsky et al., 2017). Secondly, the loss is based on the computation of Wasserstein distance, which gives stability to the GAN and avoids mode collapsing [START_REF] Dong | Musegan: Multi-track sequential generative adversarial networks for symbolic music generation and accompaniment[END_REF]. Moreover, weight clipping is used to enforce the continuity of the loss function. Finally, WGAN has been improved by the introduction of a regularization parameter, usually called λ.

Gulrajani et al. [START_REF] Gulrajani | Improved training of wasserstein gans[END_REF] proposed the addition of a Gradient Penalty (GP) term in the loss function, driven by λ. GP penalizes any deviation of the gradient norm of the critic. This enables a faster training and less parameter tuning. This model is called WGAN with Gradient Penalty (WGAN-GP). Alternatively, [START_REF] Petzka | On the regularization of wasserstein gans[END_REF] proposed the addition of a Lipshitz Penalty (LP) term in the loss function, driven by λ.

LP penalized only larger (> 1) deviations of the gradient norm (and not all of them, as GP does). For small values of λ WGAN-GP and WGAN-LP perform similarly, whereas for larger values of λ the performance of WGAN-GP are more λ-dependent [START_REF] Petzka | On the regularization of wasserstein gans[END_REF].

MuseGAN [START_REF] Dong | Musegan: Multi-track sequential generative adversarial networks for symbolic music generation and accompaniment[END_REF] and WaveGAN [START_REF] Donahue | Adversarial audio synthesis[END_REF] which were present in the original formulation [START_REF] Gulrajani | Improved training of wasserstein gans[END_REF]. Please refer to Appendix 4.2 for further details about the architecture of WaveGAN.

Methods

Data pre-processing

Canaries sing sequences of syllables organized in phrases: a phrase is a short part of the song where the same syllable is repeated a certain number of times [START_REF] Markowitz | Long-range order in canary song[END_REF]. The starting dataset was composed of a repertoire of 27 classes of syllables organized in labeled phrases (i.e. each phrase was already assigned to a specific class), manually sorted from X hours of recording at 44100Hz from an adult canary. First, we focus on the selection of the syllables. We considered a subset of the repertoire. Among the 27 classes, we focused on 16 classes in order to have only classes with enough samples:

A, B1, B2, C, D, E, H, J1, J2, L, M, N, O, Q, R, V . We performed the following steps on each phrase:

1. We downsampled each phrase to a sampling rate of 16000Hz.

2.

From each phrase we made a first syllable selection tuning three parameters: the amplitude threshold, the minimal duration of the syllable and the duration of the gap (i.e., the silence between two consecutive syllables).

3. We applied to all the selected syllables a high-pass filter of order 5 to remove all frequencies below 700Hz. The automatic selection based on an amplitude threshold, the duration of the syllable and the duration of the gap, could fail to select correctly the syllable. We performed a 

Experimental setup

We selected a balanced training dataset in order to consider almost the same number of samples per syllable type. Among all the selected syllables, we used a subset of 16k syllables: 1k syllables per class. From now on, we will refer to this balanced dataset as the training dataset. Each syllable has been padded with silence to obtain recordings having a length of exactly 1 s. This step has been done to create a dataset resembling the speech dataset that was originally used to train WaveGAN [START_REF] Donahue | Adversarial audio synthesis[END_REF]. We used the balanced training dataset to train both the classifier (described in Section 4.3.4) and the network (described in Section 4.2).

We used the original WaveGAN [START_REF] Donahue | Adversarial audio synthesis[END_REF] setup to train the network.

We used the original network architecture with gradient penalty option, with λ = 10 and Adam optimizer in the training phase. We used a batch size of 64 samples and we trained the discriminator 5 times more than the generator.

We tested different conditions for the latent space dimension, varying it from ld = 6 to ld = 1. In the following, we will refer to one of these particular conditions using, for instance, 6-dimensional WaveGAN to refer to a GAN trained with a 6-dimensional latent space, or 5-dimensional WaveGAN to refer to a GAN trained with a 5-dimensional latent space. We tested different sizes for the training dataset. For this analysis, we used the preliminary training dataset described in Appendix 4.1: first, we trained WaveGAN using the complete dataset, then we reduced it by a factor of ∼ 8 and finally by a factor of ∼ 16.

We first trained WaveGAN using a preliminary dataset (see Appendix 4.1). We trained 3 instances per latent space condition (keeping the dataset size fixed) and dataset size condition (keeping the latent space dimension fixed), to observe the performance of the generator across time. Then, we used the optimal combination of latent space dimension and dataset size to train 10 instances of WaveGAN with the training dataset introduced at the beginning of this Section. For all the instances, we trained the network until epoch ∼ 1000, saving the model every ∼ 15 epochs. After training, we used the generator to produce new syllables at every saved epoch. We evaluated the generated data using both a quantitative and a qualitative measure, as described in Sections 4.3.3 and 4.3.3.

Evaluation

We evaluated the performance of the generator across epochs and across training conditions, in order to see the optimal choice of parameters. As explained in Section 4.3.2, after training, we used the generator to produce new syllables every 15 epochs and we used the classifier described in Section 4.3.4 to identify the generated syllables as elements of one class of the vocabulary. To this aim, accordingly with the type of evaluation we want to perform, we defined two vocabularies and trained two classifiers.

First, we used the balanced training dataset to train a classifier able to provide the probability of each sample belonging to each class of a vocabulary composed by the 16 classes of the repertoire. We refer to this model as classifier-REAL. Then, we introduced the possibility for the classifier to classify a sample as not belonging to any of the 16 classes of the repertoire, but to an alternative unknown class. For simplicity of notation, we will call the set of unknown classes X. We define a class x ∈ X as a class representing either white noise, or samples containing a lot of noise and with a low variability one from the other (usually, resembling early generations), or to a class of samples resembling the real ones but followed by some artifacts (usually, such samples start to happen at late stages of training). We trained a classifier able to provide the probability of each syllable belonging to 21 classes: the 16 classes of the repertoire, a white noise (WN ) class, an overtraining (OT ) class, and three EARLY classes, respectively obtained from epochs 15, 30 and 45. To train the classifier to recognize the alternative unknown classes x ∈ X, in addition to the usual training dataset, we used three additional sets of generated samples.

In summary, to train the classifier we used:

• EARLY 15 : 1k samples of early generations, obtained after ∼ 15 epochs using two different instances of a 3-dimensional WaveGAN (respectively, 500 samples per instance);

• EARLY 30 : 1k samples of early generations, obtained after ∼ 30 epochs using two different instances of a 3-dimensional WaveGAN (respectively, 500 samples per instance);

• EARLY 45 : samples of early generations, obtained after ∼ 45 epochs using two different instances of a 3-dimensional WaveGAN (respectively, 500 samples per instance);

• OT : 1k samples obtained when two instances of a 3-dimensional WaveGAN reach overtraining (respectively, 500 samples per instance);

• WN : 1k samples of artificial white noise.

The two different instances used to define the classes above are instances Ex 0 and Ex 1 in Figure 4.8. We will refer to this classifier as classifier-EXT (where EXT stands for extended).

Quantitative evaluation

A quantitative measure is a measure which allows to understand if the model is able to reproduce a wide enough variety of samples [START_REF] Borji | Pros and cons of gan evaluation measures[END_REF], and provides a preliminary measure of whether or not the generated data resemble the real syllables. To observe the generator's performance across time we will describe how many classes it is able to produce and how many syllables per class it is able to produce in average. In this way, we studied the stability of WaveGAN across different instances of training. Moreover, we computed the Inception Score (IS) at several epochs of the training, we observed its evolution and we compared it with the IS obtained from the training dataset. IS has been proposed by [START_REF] Salimans | Improved techniques for training gans[END_REF] as a quantitative measure to evaluate GANs: a pre-trained deep learning neural network model for image classification provides the probability of each image belonging to each class. This information is then summarized in the IS, which is defined as follow:

IS = exp(E(KL(p(y|x)||p(y)))), (4.1) 
where KL stands for Kullback-Leibler divergence. Given a problem with N classes,

IS ∈ [1, N ]
. IS provides both a measure of the quality and of the entropy of the generations, giving an idea of the generator ability to produce a wide set of new data [START_REF] Salimans | Improved techniques for training gans[END_REF]. The IS as a method of objective evaluation for GANs performance has been used by several authors [START_REF] Donahue | Adversarial audio synthesis[END_REF][START_REF] Gulrajani | Improved training of wasserstein gans[END_REF].

Qualitative evaluation

First, we based our qualitative analysis on spectrogram analysis. On the one hand, we computed the mean spectrogram of the generated data, and we compared it with the mean spectrogram of the dataset and with the repertoire. To obtain the mean spectrogram,

for each class, we first aligned the syllables' envelope, then we computed the mean of the spectrograms of all the syllables belonging to that class. On the other hand, we observed the spatial organization of the data using Uniform Manifold Approximation and Projection for Dimension Reduction (UMAP) [START_REF] Mcinnes | Umap: Uniform manifold approximation and projection for dimension reduction[END_REF]. We applied UMAP to the spectrograms of the samples. Further details about the algorithm can be found in Section 4.3.5.

Secondly, we explored the latent space to study the continuity of the generations. We generated syllables for each small variation of the latent vector.

• One component variation. We selected a random latent vector z ∼ R 3 ([-1, 1]) to generate a baseline syllable using a 3-dimensional WaveGAN after training. Then, we moved one by one the components of the vector by a variation step equal to v step = 0.05. To explore critical points (i.e., where a bigger variation arises a sudden non-smooth change between two syllables) we moved one by one the components of the vector by a variation step equal to v step = 0.01 and v step = 0.001. Moreover, we used a step v step = 0.001 to vary one by one each component of z between [-1, 1] and we compared the generations obtained by each variation (one per component of the latent vector) with a set of 16k generated data from the same epoch.

• Three components variation. We first selected 2 syllables s 1 and s 2 and their correspondent latent vectors z 1 and z 2 , where z 1 , z 2 ∈ R 3 ([-1, 1]). Then, we moved in the latent space from z 1 to z 2 using a variable step depending on the distance between the components of z 1 and z 2 . That is, the step applied to each component i is

step[i] =      z 1 [i]-z 2 [i] Nstep z 1 [i] > z 2 [i], -|z 1 [i]-z 2 [i]| Nstep otherwise, (4.2) 
where N steps is the number of steps. We used N steps = 1000. We used classifier-EXT to identify the syllables and see which class is assigned to the transition between s 1 and s 2 . We used the UMAP representation to compare the variations with a bigger set of generated data.

Finally, we used human judgment to provide an additional qualitative evaluation. We asked 2 people to participate in a syllable recognition test organized as described below.

• Training phase. Recognition of a sample of 100 syllables from the training dataset:

for the first 50 (or less, if not needed anymore) the person is authorized to look at the repertoire to classify the syllables. After each guess, the person can also look at the correct answer to learn and become more specialized. Then, the last 50 syllables have to be recognized. No helps is allowed here, and no correct answer can be seen.

In the training phase, the available classes are the 16 classes of the repertoire.

• Then, we computed the proportion of agreement without considering the chance agreement (i.e., that percentage of agreement that would have occurred anyway) using Cohen's kappa coefficient [START_REF] Cohen | A coefficient of agreement for nominal scales[END_REF][START_REF] Artstein | Inter-coder agreement for computational linguistics[END_REF]. If κ Cohen = 0, then the agreement is equal to agreement by chance. Alternatively, κ Cohen ∈ (0, 1] represents a positive agreement and κ Cohen = 1 represents a perfect agreement between two judges [START_REF] Cohen | A coefficient of agreement for nominal scales[END_REF]. We computed κ Cohen for each of the participant with respect to classifier-EXT and for each couple of participants.

Classifier

The two classifiers (classifier-REAL and classifier-EXT ) used during the evaluation phase (described in Section 4. The ESNs trained on the classification tasks are built using RerservoirPy Python toolkit [START_REF] Trouvain | Reservoirpy: an efficient and userfriendly library to design echo state networks[END_REF] 1 , and are described by the following equations:

x(n) = (1 -α)x(n -1) + α tanh (W in u(n) + W x(n -1)) (4.3) y(n) = W out x(n) (4.4) 
where u(n), x(n) and y(n) are respectively the input features, the internal state of the network and the output vector at time step n. W in stores the connection weights between the inputs and the neuronal units of the network. These weights are sampled from a discrete bi-modal distribution, i.e. are randomly chosen between 1 or -1. The proportion of non-zero connection weights is fixed to 10%. W in is defined in R N ×I , where N is the number of neuronal units and I is the dimension of the input. In our case I = 41, with input features being 20 derivatives of MFCCs, 20 second derivatives of MFCCs, and a constant bias equal to 1. Each set of features is scaled by multiplying the corresponding connection weights in W in by a constant. The first derivatives and the bias are scaled by a factor 1, and the second derivatives are scaled by a factor 0.7. W stores the connection weights of the neuronal units of the network. These weights are sampled from a standard normal distribution, with a proportion of non-zero connections between neuronal units fixed to 10%. W is defined in R N ×N , with N equal to 1000. W is scaled using a factor equal to a fixed spectral radius of 0.5 divided by the largest absolute eigenvalue of W . The A L2 regularization coefficient of value 10 -8 is applied during the linear regression.

The classifiers then output a vector ŷ(n) of dimension V representing its activation for each time step n and for each category of syllable in the vocabulary. Then, these output activities are averaged over the whole sequence of MFCC time steps representing each syllables. A softmax operation finally provides a probability distribution representing the chance for the syllable to belong to one of the classes of the vocabulary.

A preliminary version of the classifier can be found in Appendix 4.3.1 and a further analysis of its robustness can be found in Appendix 4.3.2.

Uniform Manifold Approximation and Projection for Dimension Reduction (UMAP)

Similarly to t-SNE, Uniform Manifold Approximation and Projection for Dimension Reduction (UMAP) [START_REF] Mcinnes | Umap: Uniform manifold approximation and projection for dimension reduction[END_REF]) is a dimension reduction technique. As a plus, it can be used to perform non-linear dimension reduction, and it has a higher computational power (i.e., it is faster than other reduction techniques). The axis are not meaningful to identify a discriminant feature (i.e., they do not represent, for example, the pitch of the syllable, or another syllable-related feature). Instead, there are hyperparameters that simply work well to represent the given dataset: for instance, the size of the neighborhood used to estimate the manifold structure of the data and the minimum distance apart that points are allowed to be. The tuning of these hyperparameters, respectively, allows to obtain a more or less local representation of the data (where a higher size of the neighborhood translates in a more local representation) and to pack or not pack together the points in the clusters (where a higher distance allows a more sparse representation). For instance, the power of UMAP to represent birdsongs' data have been explored by [START_REF] Sainburg | Latent space visualization, characterization, and generation of diverse vocal communication signals[END_REF]. to zero. Looking at the confusion matrix for both classifier-REAL and classifier-EXT, a confusion between syllable B1 and syllable B2, and between syllable J1 and syllable J2 can be seen on the diagonal in correspondence of these elements (sub-diagonal elements are darker than the others for these 4 syllables). This confusion can be explained with the fact that phrases formed by syllables B1 and phrases formed by syllables B2, and phrases formed by syllables J1 and phrases formed by syllables J2 differ in repetition rate more than in frequency.

Results

Analysis of the training dataset

The Inception Score (IS) obtained for the training dataset after using classifier-REAL to recognize the syllables is IS real = 15, 92. The range of the IS for our dataset is

IS ∈ [1, 16].

Evaluation of the model

We used the classifier described in Section 4.3.3 to obtain a quantitative analysis. We 

Quantitative evaluation

At each epoch, we generated 1k samples and we used classifier-EXT to calculate the probability distribution of the classes. Here, the generator obtained from the instance Ex 6 in Figure 4.7 has been used to generate the syllables across time; latent space dimension ld = 3; Ep. stands for epoch.

A B1 B2 C D E H J1 J2 L M N O Q R V EARLY15 EARLY30 EARLY45 OT WN

Classes of syllables

Number of occurences

Epoch 15 

A B1 B2 C D E H J1 J2 L M N O Q R V EARLY15 EARLY30 
A B1 B2 C D E H J1 J2 L M N O Q R V EARLY15 EARLY30 
A B1 B2 C D E H J1 J2 L M N O Q R V EARLY15 EARLY30 EARLY45 OT WN

Classes of syllables

Number of occurences

Epoch 318

A B1 B2 C D E H J1 J2 L M N O Q R V EARLY15 EARLY30 EARLY45 OT WN
Classes of syllables 

A B1 B2 C D E H J1 J2 L M N O Q R V EARLY15 EARLY30 EARLY45 OT WN
Classes of syllables At the same time, the number of syllables belonging to one of the alternative classes

x ∈ X (EARLY15, EARLY30 and EARLY45 ) decreases over time (Figures 4.7d,4.7e and 4.7f). Classes EARLY15 and EARLY30 decrease faster with respect to EARLY45, which, eventually, never reaches a level comparable to the percentage found in the training data.

Although this show that the generator produces better and better samples over time, Finally, as a last quantitative measure of the generator performance, we computed the Inception Score (IS) across time. For 3 instances (i.e., Ex 0, Ex 2 and Ex 6 ) we generated 16k samples every ∼ 100 epochs and we used classifier-REAL to classify them. Then, we computed the IS as in Equation 4.1 at each saved epoch. 

Qualitative evaluation

For qualitative evaluation, we focused on instance Ex 6 of training. We chose to focus on this instance because it remains stable until epoch ∼ 1000 (see Figure 4.7) and we obtained an increasing and high Inception Score (see Figure 4.10 and Table 4.1). Indeed, Ex 6 is also the example we used since the beginning of Section 4.4.2 as a baseline example.

The generator produces a higher number of good syllables over time. At early epochs of training, when not all the classes are covered by the generator (empty boxes in Fig- Here, the training has been done using ld = 3, the generator of instance Ex 6 has been used to generate the syllables and classifier-EXT has been used to identify both the generated data and the training data.

(1) the generated data are grouped together as they were an additional cluster with respect to the ones obtained from the training data (Figures 4.12(a-c, g)) and ( 2) the generated data belong to the same cluster of the training data h)).

On the one hand, the generated data spread over time, moving from being a cluster in itself (light blue points in Figures 4.12 

Latent space exploration

To explore the continuity of the latent space we used the generator obtained from one instance of training of a 3-dimensional WaveGAN. In particular, we used Ex 6 at epoch 984. We used two different strategy to (1) explore the latent space in all the direction starting from one point (one component variation described in Section 4.3.3) and ( 2)

observe the transition from one syllable to another (three components variation described in Section 4.3.3).

First, we selected a random latent vector z ∼ R 3 ([-1, 1]) to create a baseline syllable,

then continuously move from one representation to another by changing one dimension of the latent space by a fix variation step. The syllables highlighted by the red squares in For these particular transitions, we considered the two consecutive syllables obtained from Table 4.2: Human Judgment. Cohen's kappa coefficient computed per each couple across human judges and versus classifier-EXT. Each judge evaluated 200 syllables produced using the generator of instance Ex 6. The kappa coefficients κ Cohen obtained across judges and with respect to classifier-EXT are comparable.

Cohen's kappa Judge 1 vs Judge 2 0, 74 Judge 2 vs classifier-EXT 0, 79 Judge 1 vs classifier-EXT 0, 73 the first variation step (i.e., two consecutive syllables contained in two consecutive red squares) and we applied a smaller variation step. The bottom-left panel of Figure 4.14 shows the latter operation applied to the first non-smooth transition in the first component and highlights a new non-smooth transition that needs to be investigated. Using the same procedure, we applied a smaller variation step and reached a point at which we cannot see any more clear evidence of non-smooth transitions (bottom-right panel of Figure 4.14).

The investigation of the second non-smooth transition highlighted in the upper panel of shows smooth passages between one syllable to another. It is not surprising that a difficulty in the classification arises between syllable V (magenta cluster) and syllable C (orange cluster): indeed, syllable V is a syllable that shares its content with other syllables of the repertoire, causing uncertainty and errors for the classifier. The UMAP representation of the training dataset (Figure 4.3a) and then the UMAP representation of the generated data (Figure 4.13) already show multiple cluster locations for syllable V. We used N steps = 1000 and we computed the three components transition from (i) syllable M and syllable D, (ii) syllable M and syllable V and (iii) syllable H and syllable N. Indeed, these couples of syllables are not adjacent in the UMAP representation of the generated data (see Figure 4.13). For all the transitions, it is possible to observe that the variational data cross the generated data (left panels of 

Latent space dimension

Until now, we have shown results obtained from a 3-dimensional WaveGAN. Indeed, a 3-dimensional WaveGAN works nicely and as good as higher dimensional WaveGANs and, at the same time, lower dimensional WaveGANs do not show good performances or stability (Figure 4.17). Although all conditions allows the generator to reach the ability of producing all the type of syllables, 1-dimensional and 2-dimensional WaveGANs converge later with respect to higher dimensional WaveGANs ( (what we refer to as overtraining), without distinction of latent space dimension (e.g., overtraining happens for ld = 3 as well as for ld = 6). This can be seen in a decrease in the mean and median evolution (Figure 4.17b) and in an increase in the variance evolution (Figure 4.17c).

A qualitative measure of the generated syllables obtained from WaveGANs of different dimensions (e.g., for different conditions of the latent space dimension) can be found in 

Discussion

In this paper we analyzed the ability of WaveGAN [START_REF] Donahue | Adversarial audio synthesis[END_REF] (2) to study the stability of the training. We explored the latent space to highlight its smoothness: we first explored how small changes in the latent space influence the generations (see Figure 4.14); then, we explored the latent space by moving from one syllable to another (see Figure 4.16). In summary, we concluded that a low-dimensional GAN is able to generalize and interpolate between syllables, as well as to produce good quality syllables.

The analysis we have we have conducted leads to the conclusion that GANs producing sounds can be used in vocal learning models to model the motor function as an alternative to other sound synthesis. Indeed, motor control in vocal learning models has been often modeled using Ordinary Differential Equations (ODEs) [START_REF] Amador | Elemental gesture dynamics are encoded by song premotor cortical neurons[END_REF][START_REF] Gardner | Simple motor gestures for birdsongs[END_REF][START_REF] Westerman | Modelling the development of mirror neurons for auditorymotor integration[END_REF][START_REF] Maeda | Compensatory articulation in speech: analysis of x-ray data with an articulatory model[END_REF]. Such models are usually based on the anatomical structure of the vocal tract and the respiratory apparatus, and, especially for humans, can include a large number of parameters. Originally, WaveGAN [START_REF] Donahue | Adversarial audio synthesis[END_REF] has been trained with a 100-dimensional latent space.

Notably, we showed that WaveGAN can produce good syllables even if the latent space dimension is reduced to ld = 3. This is one of the key points in order to have a biologically motivated vocal sensorimotor model. Indeed, a high-dimensional motor space in a vocal learning model would lead to unrealistic computational time (Pagliarini et al., 2018a). Consequently, we believe that our 3-dimensional WaveGAN could serve as motor function in such sensorimotor model.

Although we believe in the possibility that generative models can be used as motor control in vocal learning models, many aspects of GANs need to be deeply understood.

The problem of instability (i.e., like often in deep learning applications, GAN instances do not always reach an optimal performance), the hyperparameter sensibility and the limitations related to overfitting arise the necessity of a high computational time to explore the performance of GANs. For instance, a limitation of WaveGAN [START_REF] Donahue | Adversarial audio synthesis[END_REF] is the absence of a stopping criteria for the training: this introduces an incertitude about how to evaluate the learning and its stability (i.e., in number of epochs rather than depending on the loss function value). Moreover, the algorithm proposed is based on the gradient penalty (GP) factor (introduced by [START_REF] Gulrajani | Improved training of wasserstein gans[END_REF]) but alternative regularization techniques have been proposed (e.g., the Lipshitz penalty (LP) proposed by [START_REF] Petzka | On the regularization of wasserstein gans[END_REF]). These improvements are out of the scope of this paper.

Despite the fact that it is not clear how to evaluate generative models, and especially GANs [START_REF] Goodfellow | Nips 2016 tutorial: Generative adversarial networks[END_REF][START_REF] Borji | Pros and cons of gan evaluation measures[END_REF], generally both a quantitative and a qualitative measure are used to this end. A quantitative evaluation aims to determine whether or not the generator is producing only examples on which the classifier was trained or always the same example per type. At the same time, it could lack in representing well human perception [START_REF] Donahue | Adversarial audio synthesis[END_REF]. The latter can be solved by introducing a qualitative measure (e.g., a measure based on human judgment [START_REF] Borji | Pros and cons of gan evaluation measures[END_REF]). A qualitative mea-sure is indispensable to truly understand the quality of the produced samples and their comparability to real recordings in term of whether or not they are comprehensible to an external expert judge. At the same time, the drawbacks of a qualitative measure is that it could be biased (by the experience the human is having), expensive, not efficient in detecting overfitting. Also, a qualitative measure presupposes the interpretability of the data by humans, which is not always possible [START_REF] Borji | Pros and cons of gan evaluation measures[END_REF].

Inception Score (IS) [START_REF] Salimans | Improved techniques for training gans[END_REF] is a broadly used quantitative measure which gives an idea about whether or not the generator model is able to produce a wide enough variety of samples. Nevertheless, IS is not able to detect if the generator is pro-

ducing only examples that belong to the training dataset or if the generator enter mode collapse (i.e., it produces always the same example per type) [START_REF] Gui | A review on generative adversarial networks: Algorithms, theory, and applications[END_REF]. Thus, IS should not be used as a holistic method to evaluate the performance of a model and must be combined with another evaluation method [START_REF] Barratt | A note on the inception score[END_REF]. Instead, an additional quantitative measure could be used to have a better understanding of the qual- We tried to characterize it using a specific class (OT ) which truly arises at advanced stages of training, but never becomes the most represented class (see Figure 4.9). Instead, after the training drops, there is an exponential increase in the number of element assigned to early classes (see Figure 4.8(d-f)).

A qualitative evaluation based on human judgment has been proposed by Salimans are more difficult to select. Often the automatic selection based on amplitude threshold, duration of the syllable and of the gap, fails to select completely the syllable. That is, the beginning or the end of the syllable is systematically not recognized. In this case, we tried to correct manually the selection by adding a certain amount of samples after (or before) the automatic selection: in this way, more syllables can be correctly isolated.

As a preliminary solution for these errors, we applied a filter on the duration of the samples to eliminate samples that are too short (usually, we do not consider syllables shorter than 10ms) or too long (usually, we do not consider syllables longer than 300ms).

Of course, as for the selection parameters, these threshold values could change depending on the syllable type. This procedure allows to eliminate error due to a cutting failure and resulting in samples containing more than one syllable, samples containing a very short sound (which is not always a syllable), or, occasionally, the wrong, misclassified, Errors due to an a priori misclassified phrase can't always be solved applying a threshold based on the syllable duration. On the one hand, if the difference between two syllables is evident, the error can be corrected simply using a threshold based on the syllable duration. This is the case of a phrase M wrongly classified as phrase A. The mean duration of syllable A is much smaller than the mean duration of syllable M : this means that we can fairly assume that a 100ms sample can't be syllable A (which has a shorter average duration). Viceversa, we can assume that a 30ms sample does not belong to class M .

On the other hand, if two syllables share their duration distribution, it becomes more randomly initialized, trained and tested. The models were evaluated using an accuracy measure.

The accuracy has been defined as: 

accuracy(y, ŷ) = 1 n timesteps n timesteps i=0 1(y(i) -ŷ(i)) (4.

Certainty of the classifier

For each syllable, the classifier described in Section 4.3.4 provides a distribution which determines to which class the classifier assign that particular syllable. As mentioned, a soft-max operation is then applied in order to obtain a distribution bounded between 0 and 1. That is, each syllable is assigned to a particular class with a probability given by the max value of the resulting N -dimensional vector, where N is the number of classes present in the vocabulary. For instance, N = 21 for classifier-EXT. Such a classifier gives high scores for the training data, for which the majority of the syllables is assigned to a class with p s > 0.9 (brown points in Figure 4.37a). Only a few syllables are assigned to a class with a probability p s ≤ 0.9.

Differently, classifier-EXT shows a higher uncertainty while classifying the generated data (Figure 4.37b). Although the majority of the syllables is assigned to a class with p s > 0.9 (brown points), the number of syllables assigned to a particular class with a lower probability increases. Each color corresponds to an interval starting at the value indicated in the legend and ending at the next color value. For example, brown points belong to a certain class of the vocabulary with a probability 0.9 < p s ≤ 1. An higher uncertainty of classifier-EXT can be observed when it is applied to the generated data: indeed, an higher number of syllables are assigned to a certain class with a probability p s ≤ 0.9 (all the points but the brown points). 

Latent space exploration

Preliminary analysis

In a preliminary analysis, we used the preliminary training dataset described in Ap- 

Introduction

The basic structure of a vocal learning schema involves three spaces (motor, sensory, perceptual), the motor control function, the sensory response function, and the learning architecture [START_REF] Pagliarini | Vocal imitation in sensorimotor learning models: a comparative review[END_REF]. The simpler model developed in this thesis (see Chapter 3) does not implement a motor control function (i.e., the sensory space coincides with the motor space and there is no sound production). More complex models define a motor control function that allows the production of sound. The sensory response function processes the sound and defines the perceptual space. Finally, the learning architecture defines the goal of the learning, the learning algorithm, and, eventually, the exploration strategy.

The objective of this chapter is to define a vocal learning model that mimics the sensorimotor phase of learning in songbirds. The model should contain the three spaces mentioned above and must be able to produce a realistic sound as output. We aim to support the definition of this model with biological assumptions. At the same time, we aim to build a model able to learn in a finite amount of time.

In Chapter 3, the connections between the motor space and the perceptual space were learned using a theoretical inverse model (Pagliarini et al., 2018a) in a simple model where no distinction between the motor and the sensory space was made. That is, there was no need for defining a motor control function since there was no sound production. The simple model helped the understanding of how to introduce biological assumptions in a computational framework. On the one hand, even with a theoretical model, convergence problems arise from non-linearity. On the other side, it allowed the exploration of the structure of the network and, in particular, the dimension of the motor space: a high dimensional motor space leads to convergence in an unreasonable computational time (Pagliarini et al., 2018a).

In songbird literature, the motor control function has been often defined using a system of ordinary differential equations that model the anatomy of the syrinx (i.e., the birds' vocal organ) [START_REF] Amador | Elemental gesture dynamics are encoded by song premotor cortical neurons[END_REF], or the features of sound [START_REF] Doya | A computational model of birdsong learning by auditory experience and auditory feedback[END_REF]. Such models can provide qualitatively good productions but might be not able to perfectly reproduce the perceptuo-motor connections [START_REF] Pagliarini | Vocal imitation in sensorimotor learning models: a comparative review[END_REF]. Usually, mechanistic models only use a few motor parameters to induce most of the changes in the output. Thus, it is hard to understand the mapping between motor parameters and output. Moreover, they are slow to simulate.

This chapter proposes to use the generator of WaveGAN [START_REF] Donahue | Adversarial audio synthesis[END_REF] to define the motor control function. The advantages of using generative neural networks are to obtain, on the one side, an uniformly distributed low-dimensional motor space and, on the other side, the resemblance of the generated data with the real data. These models have been introduced to solve tasks such as image, music, and speech generation or classification and have been used to investigate visual pathways in the brain [START_REF] Ponce | Evolving images for visual neurons using a deep generative network reveals coding principles and neuronal preferences[END_REF].

In this chapter, we define a complete vocal learning model. The model includes a motor, a sensory and a perceptual space, the motor control function, and the sensory response function. A 3-dimensional generative model (i.e., the latent space has dimension 3) introduced in Chapter 4 models the motor control function, while the combination of a Recurrent Neural Network-based classifier (as the one trained in Section ?? in Chapter 4)

and a normalization layer models the sensory response function. The first problem we faced is dealing with a redundant motor space, i.e. multiple motor configurations correspond to the same sensory production. The goal of the model is therefore defined as a perceptual goal. The connections between the motor space and the perceptual space are learned through an inverse model. The motor space is explored using a random uniform exploration and a simple Hebbian learning rule drives the learning.

Section 5.2 introduces the vocal learning model schema and its components. Section 5.3 shows preliminary results about the influence of the learning rate when different sensory response functions are implemented. These results have been obtained under the simple assumptions described above and aim to be expanded. Section 5.4 summarizes the advantages of the tools we used to define the model and discusses the possible perspectives.

Methods

Network description

As for the simple theoretical model introduced in Chapter 3, a two-layer network models the connections between the perceptual space and the motor space. The first layer (on the left in Figure 5.1) represents the perceptual space. The second layer (on the right in Figure 5.1) represents the motor space. At each time t, the perceptual units are defined as a n A -dimensional vector A t , where n A represents the size of the perceptual layer. The target set is the set of sounds (here, the N -dimensional repertoire of canary syllables)

that we aim the model to learn. The motor units are defined as a n M -dimensional vector M t , where n M represents the number of motor parameters. The synaptic weights at time t describing the connections between the motor and the perceptual space are defined by matrix W t . Given M t as input, the motor control function G t provides a real sound S t as output (i.e., an element of the sensory space). The sensory space is the domain of the sensory response function, that is, at each time t, the sensory response is a function of the actual sound production S t : A t = f (S t ).

Motor control

The motor control function is needed to perform both the motor exploration during learning and to generate the goal syllables across time (to check how the learning goes on).

In the proposed model, the generator part of a 3-dimensional GAN (i.e., n M = 3) is used as motor control function. We decided to use a 3-dimensional generator to avoid a high dimensional motor space which could result in slower convergence (Pagliarini et al., 2018a). The generative model is fully described in Chapter 4. WaveGAN has been previously trained on a dataset of canary syllables to obtain a generator model able to provide good outputs (i.e., resembling the training data). Significantly, WaveGAN [START_REF] Donahue | Adversarial audio synthesis[END_REF] and GANs, in general, are characterized by a redundant input space (properly called latent space): one sensory output corresponds to multiple latent space syllable given as input. We will refer to (1) as softmax score and to (2) as raw score.

Learning algorithm

The model aims to learn n A = N different syllables. As mentioned in Section 5.2.2, the motor function G allows multiple motor configurations to produce the same sensory output. To deal with the redundancy of the motor control function, the goal is not represented by a motor target. Rather, it is a perceptual target. That is,

A i t f -→ 1 f or1 ≤ i ≤ n A = N, (5.2) 
where A i t f represents the sensory response relative to syllable i at time t f (i.e., the last epoch of training), and N is the number of classes of the repertoire.

Learning is driven by the Hebbian learning rule ∆W t ∝ ηM t A t , (5.3) where W t represents the synaptic weight, η the learning rate, M t the motor pattern at time t and A t the sensory response at time t. The synaptic weights W t=t 0 are initialized as random uniform values and vary according with Equation 5.3 until time t = t f . We did not introduce a normalization in the learning rule: this choice is motivated by the fact that the motor space we consider in this model can not be normalized (otherwise, this would change the relationship between the motor command and the sensory output).

The motor space is explored using random exploration.

Simulation details

We chose a set of n A = 16 syllables as target set. This is the same repertoire as the one used in Chapter 4 to train the 3-dimensional GAN which serves as a motor control function and the classifier which serves as a sensory response function. At each time step t, a random motor vector M t is given as input to the motor control function G. M t is a 3-dimensional vector taking random values in U [-1, 1]. The motor control function G produces a syllable, which is given to the classifier as input and used to compute the sensory response (i.e., the perceptual representation). For simplicity, we generated a priori a set of 5k motor vectors, the waveforms of the corresponding syllables, and the corresponding sensory response (both using the softmax and the raw score).

The synaptic weights W ∈ M 16×3 are initialized as W t 0 ∈ [-0.001, 0.001]. We kept fixed the initial weights and the motor vector and we compared (1) the performance of the model when classifier-REAL and classifier-EXT are used as sensory response functions,

(2) the performance of the model when different sensory responses (i.e., softmax score and raw score) are used to encode the probability of a syllable to belong to each class of the repertoire, and (3) the influence of using different learning rates (η = 0.01 versus η = 0.1). For each condition, we stop the learning at time t = t f = 1500.

Results

Motor exploration

At each time t the model performs a random motor exploration M t which enables the generations of a sound and, consequently, the sensory response to this sound is computed through the sensory function. Depending on how we compute the sensory response (either using the softmax score or the raw score defined by Equation 5.1), we obtain different activations in the perceptual layer. Please note that the architecture of the motor control function allows a sensory activation bigger than zero also at the beginning of the learning (when the synaptic connections are weak and close to 0). This is due to the fact that there is not a "neutral position" in the latent space: at any point of the space, the generator can produce a syllable that will activate (at least slightly) one class of the classifier. . Total amount (out of 1500) of motor exploration having either a softmax score (first and third lines) or a raw score (second and fourth lines) higher than 0.9 per class of syllables in the repertoire. The sensory activation vector has been obtained either using classifier-REAL (first and second lines) or classifier-EXT (third and fourth lines).

Influence of the learning rate

A learning rate of η = 0.1 (red lines in Figures 5.5 Several modelers have proposed dynamic systems to model the motor control function in songbirds: in such case, the motor space describes the time-dependent motor articulations parameters which control the dynamics of the syrinx (e.g., air pressure, syringeal labial tension) [START_REF] Doya | A computational model of birdsong learning by auditory experience and auditory feedback[END_REF][START_REF] Fiete | Model of birdsong learning based on gradient estimation by dynamic perturbation of neural conductances[END_REF][START_REF] Amador | Elemental gesture dynamics are encoded by song premotor cortical neurons[END_REF][START_REF] Alonso | A circular model for song motor control in serinus canaria[END_REF]. Such dynamical systems have been used also in vocal development study to model the vocal production in marmoset [START_REF] Teramoto | Vocal development in a waddington landscape[END_REF].

As mentioned in Section 5.2.2, this brings to have a redundant motor space where multiple motor configurations correspond to the same syllable production (in terms of classes). Moreover, the motor space (properly called GAN latent space) has a high density of good productions (sounds highly activating one syllable in the perceptual layer).. On the one hand, the generator model learns well how to produce syllables resembling the training data (based on a clean dataset). On the other hand, the classifier has high accuracy when it comes to assigning each syllable to a syllable class. This results almost always in a "good" assignment (to one class of the repertoire and not to an unknown class X ). To force the motor space to be less dense of "good" syllables one could either

(1) modify the training dataset by introducing artificially modified syllables (e.g., by adding some noise or syllable interpolations 1 ) or ( 2) do not use the generator model at convergence but rather stop its training earlier (to have a higher percentage of "bad" productions). Further investigations of the motor space (latent space) are needed to understand (1) how it is structured and what is its topology (where each class of syllables is located in the 3-dimensional space), and ( 2) if the particular topology would give a hint for a particular exploration strategy.

A simple Hebbian learning rule allows the learning to reach the "targetted" perceptual goals but does not include stopping criteria. The introduction of a reinforcement signal could help the learning to stabilize after having reached the region of the motor space region that enables the production of the correct perceptual goal. The results obtained in this chapter aim to be expanded (1) by choosing a longer time t f to stop the learning, (2) by exploring different strategies of exploration (e.g., goal-directed) and (3) by modifying the learning rule (e.g., combining Hebbian learning rule with Reinforcement Learning).

1 Using interpolations of syllable generated from a previous generator model of a GAN.

has been chosen to model sparse and nonlinear auditory response in the brain [START_REF] Hahnloser | Auditory representations and memory in birdsong learning[END_REF]. The influence of the model parameters on the learning speed and accuracy highlights perspectives and limitations. On the one hand, the influence of the tuning selectivity on the learning speed and accuracy represents a trade-off that can be solved by introducing an evolutionary tuning selectivity (i.e., changing over time). On the other hand, the fact that the motor dimension drastically influences the learning speed points out a computational limitation of the model. 

Positioning the work

The following paragraphs focus on the limitations, advantages, and perspectives of the approach presented in this thesis. Moreover, it places this thesis in the context of vocal learning in terms of goal, hypothesis and methods, and relates it to other published studies aiming at modeling vocal learning.

Motor control

Speech production models that aims to be bio-inspired take into account the anatomical configuration of the vocal production apparatus. For instance, models based on the structure of the vocal folds and the vocal tract [START_REF] Titze | A four-parameter model of the glottis and vocal fold contact area[END_REF][START_REF] Titze | Principles of voice production[END_REF][START_REF] Fant | Acoustic theory of speech production: with calculations based on X-ray studies of Russian articulations[END_REF]. The former realizes the production of the sound thanks to the combination of the output of the vocal folds vibration and of the noise. While for birds the investigation is complicated given their small size, models able to reproduce vocal folds oscillations have been proposed for humans [START_REF] Ishizaka | Synthesis of voiced sounds from a two-mass model of the vocal cords[END_REF][START_REF] Birkholz | A survey of self-oscillating lumped-element models of the vocal folds[END_REF][START_REF] Amador | Elemental gesture dynamics are encoded by song premotor cortical neurons[END_REF][START_REF] Mindlin | The physics of birdsong production[END_REF]. The vocal tract acts as a filter for the sound produced by the vocal folds: it modifies it by balancing its frequency components. The vocal tract, and in particular the air pressure dynamics, has been often modeled using Ordinary Differential Equations (ODEs) [START_REF] Westerman | Modelling the development of mirror neurons for auditorymotor integration[END_REF][START_REF] Maeda | Compensatory articulation in speech: analysis of x-ray data with an articulatory model[END_REF]. Several synthesizer attempts to model the non-linear structure of the vocal tract and introduces a high number of parameter to describe all the involved muscles (e.g., tongue, jaw). For instance, this is the case of Vocal Linear Articulatory Model (VLAM) [START_REF] Maeda | Compensatory articulation during speech: Evidence from the analysis and synthesis of vocal-tract shapes using an articulatory model[END_REF], Vocal Tract Lab (VTL) [START_REF] Birkholz | Construction and control of a three-dimensional vocal tract model[END_REF]Birkholz, Accessed Sept. 2019) and Directions Into Velocities of Articulators (DIVA) (Guenther et al., 2006a;[START_REF] Tourville | The diva model: A neural theory of speech acquisition and production[END_REF]. Similarly, the vocal tract dynamics in birds have been modeled using ODEs [START_REF] Amador | Elemental gesture dynamics are encoded by song premotor cortical neurons[END_REF][START_REF] Gardner | Simple motor gestures for birdsongs[END_REF]. These models enable the production of sounds resembling the real ones for speech and, to a limited extent, birds. Moreover, they might be slow to simulate.

For this reason, usually, only a few parameters influence the vocal production (they are time-dependent), while the remaining parameters are kept fix over time.

The brain seems unable to control each motor parameter independently but it uses a complex gesture-dependent control scheme to drive the vocal output [START_REF] Elemans | Universal mechanisms of sound production and control in birds and mammals[END_REF][START_REF] Srivastava | Multifunctional and context-dependent control of vocal acoustics by individual muscles[END_REF]. There is a lack of experimental evidence regarding how the vocal production pathway develops in juvenile birds. At the beginning of their life, juveniles do not have developed motor control. Later, each RA stimulation enables the production of vocalizations in adult zebra finches and canaries [START_REF] Vicario | Electrical stimulation in forebrain nuclei elicits learned vocal patterns in songbirds[END_REF].

Recently, artificial neural networks have been explored as a possible way to describe the non-linear multi-layer structure of the brain [START_REF] Yamins | Performance-optimized hierarchical models predict neural responses in higher visual cortex[END_REF][START_REF] Ponce | Evolving images for visual neurons using a deep generative network reveals coding principles and neuronal preferences[END_REF].

In the original work from [START_REF] Donahue | Adversarial audio synthesis[END_REF], the aim of the authors is to verify whether or not WaveGAN is able to reproduce realistic speech and birdsong (from wild recordings).

In Chapter 4, WaveGAN has been trained on a dataset of recordings from an adult canary.

The restriction of the dataset to only one canary reduces the variability with respect of using a set of wild recordings coming from different species. Moreover, it takes into account that, usually, canaries learn from their conspecific tutor. The goal of the thesis is to describe the sensorimotor phase of learning, which allows the bird to go from producing subsong to produce crystallized syllables (similar to the tutor's syllables). The training of WaveGAN has been done using adult recordings. Indeed, the vocal learning model should be able to learn adult songs (i.e., crystallized songs) and, in principle, a model trained on recordings from a different learning phase (e.g., subsongs from juveniles) would not be able to produce adult-like syllables. Moreover, juvenile' songs show a higher variability reflecting in a high variability. Whether or not WaveGAN can deal and converge with juveniles data remains unknown. A key characteristic of WaveGAN, and of GANs in general, is the redundancy of the latent space. When using such a model as motor control function in a vocal learning model, this means that multiple motor configurations produce the same sensory output (i.e., the same sound). Regardless, a deeper comparison between a vocal learning model where the motor function is implemented using WaveGAN and one in which it is implemented using an ODE model based on the avian organ (e.g., the work from Amador et al. ( 2013)) remains needed.

Learning architecture

While reward-driven learning is associated with trial-and-error processes, associative learning is associated with the co-activation of neural populations. Hebbian learning is likely the mechanism for associative learning, while RL needs an additional reward signal, provided by neuromodulators.

Several modelers used a gradient-based RL algorithm to explain vocal learning in humans [START_REF] Howard | A computational model of infant speech development[END_REF][START_REF] Warlaumont | Learning to produce syllabic speech sounds via rewardmodulated neural plasticity[END_REF][START_REF] Howard | Modelling vowel acquisition using the birkholz synthesizer[END_REF] and birds (Doya and Sejnowski, 2000;[START_REF] Fiete | Model of birdsong learning based on gradient estimation by dynamic perturbation of neural conductances[END_REF][START_REF] Troyer | An associational model of birdsong sensorimotor learning i. efference copy and the learning of song syllables[END_REF].

The hypothesis that the auditory feedback reinforces actions is tested by [START_REF] Howard | A computational model of infant speech development[END_REF], [START_REF] Warlaumont | Learning to produce syllabic speech sounds via rewardmodulated neural plasticity[END_REF] and [START_REF] Howard | Modelling vowel acquisition using the birkholz synthesizer[END_REF]:

the estimated auditory salience determines whether or not to reward the model. Alternatively, the existence of internal models is suggested by one-shot learning in humans.

Hebbian-inspired learning rules have been proposed to drive learning when the learning architecture is based on internal models [START_REF] Troyer | An associational model of birdsong sensorimotor learning i. efference copy and the learning of song syllables[END_REF][START_REF] Westerman | Modelling the development of mirror neurons for auditorymotor integration[END_REF][START_REF] Oudeyer | The self-organization of speech sounds[END_REF][START_REF] Kröger | Towards a neurocomputational model of speech production and perception[END_REF]. Internal models (inverse and forward) usually modifies the simple Hebbian learning rule in order to make the model biologically plausible and allow convergence of the learning [START_REF] Hahnloser | Vocal learning with inverse models[END_REF].

A simple Hebbian learning rule can drive the learning at early stages but is not expected to converge. Alternatively, some normalization rules can assert convergence under certain conditions [START_REF] Hahnloser | Vocal learning with inverse models[END_REF]. Similarly, the model proposed in Chap-ter 3 defines an inverse model driven by a normalized Hebbian learning rule. Interestinlgy, a normalization over auditory neurons works better than a normalization over motor neurons: this might be connected to the fact that the target of the model is perceptual, thus corresponds to the auditory dimension of the synaptic weights. Chapter 3 provides a perspective on how the learning is influenced by the auditory selectivity and by the size of the network. A higher selectivity and a higher motor dimension introduce sparsity in the target, and thus makes it more difficult to learn.

Chapter 5 relies on a simple Hebbian learning rule to learn the connections between the perceptual and the motor space (see Figure 5.1) in a complete vocal learning model. The idea is to keep a simple Hebbian learning rule at the early stages of learning and introduce a goal-directed strategy when the perceptual target is closer. A combination of Hebbian learning and RL has been previously proposed by [START_REF] Troyer | An associational model of birdsong sensorimotor learning i. efference copy and the learning of song syllables[END_REF] and the perceptual score described above could be used to determine whether or not the model receives a reward or not (similarly to how auditory salience has been used

with humans [START_REF] Howard | A computational model of infant speech development[END_REF][START_REF] Warlaumont | Learning to produce syllabic speech sounds via rewardmodulated neural plasticity[END_REF][START_REF] Howard | Modelling vowel acquisition using the birkholz synthesizer[END_REF].

Sensory response

The sensory response attempts to model how the sensory space (usually a sound in vocal learning) is perceived. The ability to perceive a continuous space (e.g. sound) as discretized (e. g., phonemes) exists both in humans and birds [START_REF] Kuhl | A new view of language acquisition[END_REF][START_REF] Kuhl | Early language acquisition: cracking the speech code[END_REF]). The auditory system enables the discrimination of songs, the recognition of the tutor, and the evaluation of auditory feedback [START_REF] Hahnloser | Auditory representations and memory in birdsong learning[END_REF]. Moreover, in birds, neural selectivity develops during song ontogeny [START_REF] Brainard | What songbirds teach us about learning[END_REF].

Computationally, the sensory response provides a perceptual representation of the sound. In reinforcement learning (RL), the sensory response may also trigger the reward. Usually, the sensory response function allows to the interpretation of the sound in a low-dimensional space thanks to a multi-step process that leads to the perceptual space representation. This is coherent with the evidence of highly non-linear and sparse responses found in the auditory pathway [START_REF] Hahnloser | Auditory representations and memory in birdsong learning[END_REF]. For example, [START_REF] Philippsen | Goal babbling of acoustic-articulatory models with adaptive exploration noise[END_REF] uses Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). Alternatively, the sensory response function can be based on the sound features [START_REF] Westerman | Modelling the development of mirror neurons for auditorymotor integration[END_REF][START_REF] Howard | Training a vocal tract synthesiser to imitate speech using distal supervised learning[END_REF][START_REF] Philippsen | Learning how to speak: Imitation-based refinement of syllable production in an articulatory-acoustic model[END_REF].

The model proposed in Chapter 3 models the auditory pathway proposing a non-linear auditory response similar to the one used by [START_REF] Westerman | Modelling the development of mirror neurons for auditorymotor integration[END_REF] and Oudeyer 

Perspectives

As a general perspective on how this study can be extended, the following paragraphs explore how the proposed methods could be the subject of further investigation. The classifier model proposed in Chapter 4 has been used to obtain a quantitative measure of the generated data. In this sense, the trade-off between having an accurate classifier and a too accurate classifier is a sensitive point. On the one hand, an accurate classifier is useful to distinguish the syllables from one another. This classification is needed to compare the syllables qualitatively and qualitatively2 . On the other hand, a too accurate classifier could learn how to differentiate a training sample from a generated sample before learning how to classify them correctly. In this scenario, a good syllable could be classified as an alternative syllable (as it was defined in Section 4.3.3 of Chapter 4) because the classifier bases its decision on a binary choice real/generated. This was a sensible point in Chapter 4, and is the reason why we chose a classifier with lower accuracy on the real data because it was less prone to label generated syllables as "alternative syllables".

Additionally, the classifier could help to detect errors in the selection of single syllables, and it could be useful to identify to which class a phrase belongs to by using the selection of the single syllables. Nevertheless, a percentage of manual work would still be needed to select the training labeled dataset.

The methods proposed in Chapter 4 to evaluate the generator model aim to describe the training and the generated data in a way they can be compared. To this end, we used qualitative measures such as the mean spectrogram and the UMAP representation.

The latter serves as a bridge between a qualitative measure of the generated data and a representation of an exploration of the latent space. This is an important point both for the vocal learning model, when a low-dimensional motor space is required and for the motor control function itself, where continuity in the motor space is biologically plausible.

To analyze better the capability of the models of reproducing good sounds, different motor control models should be tested and their output should be compared using a common representation.

WaveGAN, and in general generative models, could be able to serve as a motor control 
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  it. The behavioral studies and the neuroanatomical structure of the vocal control circuit in humans and birds provide the basis for a bio-inspired model of vocal learning. In particular, birds have brain circuits exclusively dedicated to song learning, making them an ideal model for exploring the representation of vocal learning by imitation.How to approach the definition of a sensorimotor learning model? What are the main components needed to build a minimal representation? This thesis aims to build a bioinspired model to describe imitative vocal learning in birds using recent developments in artificial intelligence (e.g. Generative Adversarial Networks, the so-called GAN). An extensive review work has been conducted to understand deeply the fundamental concepts on which the thesis is based. Chapter 1 contains a gentle introduction to these concepts: sensorimotor learning, vocal learning from both a biological and computational point of view and generative models. Chapter 2 describes the representation of a minimal vocal learning model and how it has been implemented in literature. The comparison between several studies has been carried out carefully and the differences/similarities have been extensively discussed. Two tables contain the details of the comparison. The first model proposed is a theoretical inverse model based on a simplified vocal learning model where there is no sound production. Such a simplification allows to investigate how to introduce biological assumptions into a vocal learning model and which pa-rameters influence the computational power of the model the most. Chapter 3 describes the architecture of a simple vocal learning model where a non-linear sensory response activates perceptual units and a normalized Hebbian learning rule drives learning. The influence of the sharpness of auditory selectivity and of the motor dimension is discussed.In order to have a complete model (i.e. able to perceive and produce), a motor control function capable of reproducing sounds similar to real data (i.e. recordings of canaries and zebra finches, adults and juveniles) is needed. Latent models allow to obtain a lowdimensional representation of the sound, called latent space. Chapter 4 explores the application of a GAN to a dataset of canary syllables. On the one hand, the study shows the capability of the generator of reproducing realistic syllables after training. On the other hand, it highlights the possibility of using a low-dimensional latent space. The generator introduced above has been used as a motor function to build a sensorimotor model with an action-perception loop, where the connections between perceptual space and motor space are learned via an inverse model. Chapter 5 describes the architecture of the vocal learning model and its components. Early phases of learning allow the investigation of whether or not the learning tends toward the target when using random motor exploration and a non-normalized Hebbian learning rule. to sensorimotor learning . . . . . . . . . . . . . . 1.1.1 Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.2 Brain circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.3 Mirror neurons . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.

  Section 1.1.1 describes human behavior during sensorimotor learning, defining the concepts of imitation and trial-and-error strategy. Section 1.1.2 gives a general overview of brain areas involved in sensorimotor learning. Section 1.1.3 defines Mirror Neurons (MNs) and their implication in sensorimotor integration and learning. Section 1.1.4 describes the different theoretical frameworks developed to model sensorimotor learning.

Figure 1 . 1 :

 11 Figure 1.1: External and internal motivated behavior. Each learner can be driven by external (top panel) or internal motivation (bottom panel). The selection of the action is guided by the sensations coming from the external environment and a reward. The latter either comes directly from the external environment (in the case of external motivation) or is processed through a motivation system (in the case of internal motivation). Image from Oudeyer and Kaplan (2009).

  are estimated: model-free RL and model-based RL. Model-free algorithms can be thought of as a direct implementation of trial-and-error method[START_REF] Sutton | Reinforcement learning: An introduction[END_REF]: the algorithm does not use the prediction of the environment and the reward function. Alternatively, a model of the environment and the reward function are used to estimate the optimal policy in model-based algorithms. Recently, other classes of RL algorithms have been proposed. Inverse RL substitutes the reward with information coming from

  and 2.2 of Chapter 2: a schematic figure of each model highlights the architecture.
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 14 Figure 1.4: Varietional Autoencoder general schema. A standard VAE allows to sample from any input z ∼ N(0, 1) keeping fix the generative model parameter θ. ϕ is the variational parameter. Image reproduce from Kingma and Welling (2013); Doersch (2016).
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 15 Figure 1.5: GAN framework. The first formulation of GANs included two models: a generator model G and a discriminator model D.The goal of the discriminator is to learn how to well differentiate real samples from fake samples. That is, D is a differentiable function that tried to obtain a value near 1 when applied to real samples, and a value near 0 when applied to fake samples. The goal of the generator is to become better and better at generating samples looking like real ones, such that the discriminator has a more difficult job to differentiate fake samples from real samples. The input of G is represented by noise, and its output (the generated sample) is then the input for D. Image from Goodfellow (2016).
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 16 Figure 1.6: Examples of generated samples. Left panels: visualization of randomly generated samples after training a GAN (Goodfellow et al., 2014) on MNIST dataset (number from 0 to 9), above, and TFD dataset (black and white faces), below. Right panel: visualization of randomly generated samples after training DCGAN (Radford et al., 2015) on SUN dataset (bedroom pictures). Image from Goodfellow et al. (2014)(left panels) and Goodfellow (2016) (right panel).

  track piano rolls): for example, they measured the distance between tones and the drum pattern. They applied the metric both to the training dataset and to a dataset of generated samples: the statistics of the real and the generated data should become closer as the training goes on.

Figure 1 . 7 :

 17 Figure 1.7: Examples of samples for WaveGAN and SpecGAN models. Visualization of random samples from the training dataset (top line), the generated data using the WaveGAN generator (middle line), the generated data using the SpecGAN generator (bottom line). Respectively, the first column shows the comparison between the real data made of speech recordings and the generations obtained after training), the second column shows the comparison between the real data made of drums recordings and the generations obtained after training, the third column shows the comparison between the real data made of wild birdsongs recordings and the generations obtained after training, the last column shows the comparison between the real data made of piano recordings and the generations obtained after training. Image adapted from Donahue et al. (2018).

  evaluate WaveGAN performances on a speech dataset, Donahue et al. (2018) used several quantitative measures. First, they computed the Inception Score (IS), a metric proposed previously by Salimans et al. (2016) that represents the capacity of the generator of producing a wide enough diversity of samples. In addition, they computed the Euclidian distance in the space of log-Mel spectrograms (1) within the training and the generated data separately, and (2) between the training and the generated data. In this way, they show the intra-diversity of the generated data and the ability of WaveGAN of producing sounds not belonging to the training dataset. Finally, they used human judgment as a qualitative measure.

Section 4 .

 4 1 defines the vocal learning model schema identified as a guideline to compare different models. Section 2.2 contains a gentle introduction to the neuroanatomy of the human and songbird brain, and an analysis of the links between biology and the sensorimotor components. Section 2.3 introduces the reviewed models and their main objectives. Sections 2.4, 2.5 and 2.6 contain the description of the components of the baseline models, and how the reviewed models can be decomposed in terms of them. Section 2.7 contains a discussion about how the reviewed models are positioned with respect to the biological framework. Moreover, on the one hand, it underlines directions to define a more and more bio-inspired model, and, on the other hand, it summarizes how the proposed schema can help in the comparison between different models.A preliminary short review was previously published within the ICDL-Epirob Workshop on Continual Unsupervised Sensorimotor Learning (Sep 2018, Tokyo, Japan)(Pagliarini et al., 2018b) and then extended to the current chapter. "Vocal Imitation in Sensorimotor Learning Models A Comparative Review (Pagliarini et al., 2020) has been published within the Journal of Transactions on Cognitive and Developmental Systems, SI: Continual Unsupervised Sensorimotor Learning.
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 21 Figure2.1: Sensorimotor model with a action-perception loop. The motor control function generates a sensory representation (a sound in the more complete models) given the motor command parameters. This kind of sensorimotor model includes an inverse model, and potentially a forward model. One of the advantages of a forward model is that it can bias the perceptual representation in order to facilitate the inverse model learning towards perceptuo-motor representations[START_REF] Wolpert | Multiple paired forward and inverse models for motor control[END_REF].
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 22 Figure 2.2: Non-perceptual sensorimotor model. This kind of model is nonperceptual because it has a non-perceptual internal representation of goals.The dotted line represent learned connection from goals to motor commands: we call this the goal-to-motor model. Sensory response function processes the sound and can be implemented in various ways depending on the learning framework: it could be used to provide a reward or an evaluation of the learning (for this reason there is an arrow starting from the sensory space, but without a specific output space).
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 23 Figure 2.3: First year of infant speech-perception and speech-production development. Speech perception development (green background) is characterised by a sensory learning phase that shapes perception, from an initially universal perception to language-specific phoneme discrimination. Speech production development (pink background) is characterised by some preliminary phases followed by sensorimotor learning, where "canonical babbling" takes place. Image adapted from[START_REF] Kuhl | Early language acquisition: cracking the speech code[END_REF].
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 224 Figure 2.5 shows the brain pathways controlling song in songbirds (upper panel) and spoken language in humans (lower panel). In both cases, there are two main pathways[START_REF] Chakraborty | Brain evolution by brain pathway duplication[END_REF]: the posterior vocal motor pathway (plain black arrows) and the anterior vocal learning pathway (plain white arrows). In addition, there are connections between the two pathways (dashed black arrows) and specialised direct projection to vocal motor neurons (plain red arrows).The vocal production pathway in birds (Figure2.5(a)) projects from HVC (used as a proper name 2 ) to robust nucleus of arcopallium (RA) (plain black arrows, upper panel).

Figure 2 .

 2 5(a), it involves the song-related song nucleus Area X, the thalamic nucleus dorsolateralis anterior pars medialis (DLM, sometimes called aDLM) and the lateral magnocellular nucleus of the anterior nidopallium (LMAN, more generally called MAN). The indirect projection onto RA from Area X, through DLM and LMAN is represented by a dashed black arrow[START_REF] Chakraborty | Brain evolution by brain pathway duplication[END_REF][START_REF] Jarvis | Evolution of vocal learning and spoken language[END_REF]. In humans, in Figure 2.5(b), the vocal learning pathway presumably includes Broca's area (one of the main areas of the language cortex in humans along with Wernicke's area and superior temporal

Figure 1 .

 1 Figure 1. Brain pathways controlling song in songbirds and spoken language in humans. (a) Vocal learning song pathway of songbirds. (b) Spoken language pathway of humans. Black arrows, posterior vocal motor pathway; white arrows, anterior vocal learning pathway; dashed arrows, connections between the two pathways; red arrows, specialized direct projection from forebrain to brainstem vocal MN in vocal learners.Italicized letters indicate that these regions mainly show motor (m), auditory (a), equally both motor and auditory (m/a) neural activity or activity-dependent gene expression in awake animals. Adapted from[2,50]. Not all connections are shown, for simplicity. Some connections in the human brain are proposed based on known connectivity of adjacent brain regions in non-human primates. A1 -L4, primary auditory cortex-layer 4; Am, nucleus ambiguous; aSt, anterior striatum; Av, avalanche; aDLM, anterior dorsolateral nucleus of the thalamus; DM, dorsal medial nucleus of the midbrain; HVC, a vocal nucleus (no abbreviation); L2, field L2; LMC, laryngeal motor cortex; LSC, laryngeal somatosensory cortex; NIf, interfacial nucleus of the nidopallium; MAN, magnocellular nucleus of the anterior nidopallium; MN, motor neurons; MO, oval nucleus of the anterior mesopallium; PAG, peri-aqueductal gray; RA, robust nucleus of the arcopallium; v, ventricle space.
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 1 Figure 1. Brain pathways controlling song in songbirds and spoken language in humans. (a) Vocal learning song pathway of songbirds. (b) Spoken language pathway of humans. Black arrows, posterior vocal motor pathway; white arrows, anterior vocal learning pathway; dashed arrows, connections between the two pathways; red arrows, specialized direct projection from forebrain to brainstem vocal MN in vocal learners.Italicized letters indicate that these regions mainly show motor (m), auditory (a), equally both motor and auditory (m/a) neural activity or activity-dependent gene expression in awake animals. Adapted from[2,50]. Not all connections are shown, for simplicity. Some connections in the human brain are proposed based on known connectivity of adjacent brain regions in non-human primates. A1 -L4, primary auditory cortex-layer 4; Am, nucleus ambiguous; aSt, anterior striatum; Av, avalanche; aDLM, anterior dorsolateral nucleus of the thalamus; DM, dorsal medial nucleus of the midbrain; HVC, a vocal nucleus (no abbreviation); L2, field L2; LMC, laryngeal motor cortex; LSC, laryngeal somatosensory cortex; NIf, interfacial nucleus of the nidopallium; MAN, magnocellular nucleus of the anterior nidopallium; MN, motor neurons; MO, oval nucleus of the anterior mesopallium; PAG, peri-aqueductal gray; RA, robust nucleus of the arcopallium; v, ventricle space.
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 25 Figure 2.5: Brain pathways controlling (a) song in songbirds and (b) spoken language in humans. The posterior vocal motor pathway (plain black arrows) is also called vocal production pathway, since it involves direct projections to motor neurons. The anterior vocal learning pathway (plain white arrows) is responsible for vocal imitation and plasticity. In addition, there are the connections between the two pathways (dashed black arrows) and specialised direct projection to vocal motor neurons (plain red arrows). In panel (a), a indicates a region where there is an auditory neural activity, m a region where there is motor neural activity, m/a a region where both auditory and motor neural activities are present. In panel (b), v indicates the ventricle space. Image from Chakraborty and Jarvis (2015), CC-BY 4.0 license.

  Many authors want to include such a model in their study:[START_REF] Doya | A computational model of birdsong learning by auditory experience and auditory feedback[END_REF],[START_REF] Howard | Training a vocal tract synthesiser to imitate speech using distal supervised learning[END_REF], Moulin-Frier and[START_REF] Moulin-Frier | Curiosity-driven phonetic learning[END_REF],[START_REF] Murakami | Seeing [u] aids vocal learning: Babbling and imitation of vowels using a 3d vocal tract model, reinforcement learning, and reservoir computing[END_REF],[START_REF] Philippsen | Goal babbling of acoustic-articulatory models with adaptive exploration noise[END_REF][START_REF] Teramoto | Vocal development in a waddington landscape[END_REF]. In particular,[START_REF] Howard | Modelling vowel acquisition using the birkholz synthesizer[END_REF] test two different vocal tract models, with increasing complexity, both in the case of a real human teacher and in the case of an automatic synthesizer of sounds.2.3.5 Exploration strategiesSeveral authors test whether or not mechanisms of intrinsically motivated exploration can self-organise early developmental stages of learning: Moulin-Frier et al[START_REF] Moulin-Frier | Curiosity-driven phonetic learning[END_REF][START_REF] Moulin-Frier | Self-organization of early vocal development in infants and machines: the role of intrinsic motivation[END_REF] compare different exploration strategies (random motor exploration, random goal selection and curiosity-driven active goal selection) to drive learning;Forestier and Oudeyer (2017) focus on body babbling coupling selfgeneration of goals and imitation learning without any assumptions of capabilities for complex sequencing;[START_REF] Philippsen | Goal babbling of acoustic-articulatory models with adaptive exploration noise[END_REF] test goal-directed exploration of the target space and assume that there is no need of visual information. On the contrary[START_REF] Murakami | Seeing [u] aids vocal learning: Babbling and imitation of vowels using a 3d vocal tract model, reinforcement learning, and reservoir computing[END_REF] starts and studies the relevance of visual information. Intrinsically motivated exploration is also in the interest of[START_REF] Acevedo-Valle | Social reinforcement in artificial prelinguistic development: A study using intrinsically motivated exploration architectures[END_REF]: they formalise a socially reinforced and intrinsically motivated architecture for sensorimotor exploration to study the impact of social reinforcement on pre-linguistic development.2.3.6 Social and multi-agent interactionsMany authors are interested in the influence of social interactions during early prelinguistic development: Acevedo-Valle et al. (2018) study the influence of imitation maternal responsiveness; Lyon et al. (2012) embed their learning system in a humanoid robot that interacts in real-time with naive participants. Moulin-Frier et al. (2015) and Oudeyer (2005) study self-organising properties of coupling perception and production within agents and between agents.

  or articulatory synthesizer training[START_REF] Prom-On | Training an articulatory synthesizer with continuous acoustic data[END_REF]; (iii) Vocal Linear Articulatory Model (VLAM)[START_REF] Maeda | Compensatory articulation during speech: Evidence from the analysis and synthesis of vocal-tract shapes using an articulatory model[END_REF])) has been used by[START_REF] Howard | Training a vocal tract synthesiser to imitate speech using distal supervised learning[END_REF], Moulin-Frier and Oudeyer (2012);[START_REF] Moulin-Frier | communicating about objects using sensory-motor operations"): A bayesian modeling framework for studying speech communication and the emergence of phonological systems[END_REF],[START_REF] Howard | A computational model of infant speech development[END_REF]; (iv) Directions Into Velocities of Articulators (DIVA)(Guenther et al., 2006a;[START_REF] Tourville | The diva model: A neural theory of speech acquisition and production[END_REF] has been used by[START_REF] Bailly | Learning to speak. sensori-motor control of speech movements[END_REF][START_REF] Moulin-Frier | Self-organization of early vocal development in infants and machines: the role of intrinsic motivation[END_REF]), Forestier et al. (2017) and[START_REF] Acevedo-Valle | Social reinforcement in artificial prelinguistic development: A study using intrinsically motivated exploration architectures[END_REF]; (v) VTCalcs software proposed by Maeda(Maeda) has been used by[START_REF] Howard | Modeling the development of pronunciation in infant speech acquisition[END_REF].

(

  1997),[START_REF] Doya | A computational model of birdsong learning by auditory experience and auditory feedback[END_REF],[START_REF] Westerman | Modelling the development of mirror neurons for auditorymotor integration[END_REF],[START_REF] Howard | Training a vocal tract synthesiser to imitate speech using distal supervised learning[END_REF],[START_REF] Fiete | Model of birdsong learning based on gradient estimation by dynamic perturbation of neural conductances[END_REF],Howard and Messum (2011, 2007), Howard and Birkholz (2019), Lyon et al. (2012), Moulin-Frier et al. (2014); Moulin-Frier and Oudeyer (2012), Forestier and Oudeyer (2017), Philippsen et al. (2014), Philippsen et al. (2016), Murakami et al. (2015), Acevedo-Valle et al. (2018),[START_REF] Warlaumont | Learning to produce syllabic speech sounds via rewardmodulated neural plasticity[END_REF]. Some models rather rely on an abstract representation of the vocal output including a discrete set of features (e.g. formants) as in the works from[START_REF] Troyer | An associational model of birdsong sensorimotor learning i. efference copy and the learning of song syllables[END_REF],[START_REF] Oudeyer | The self-organization of speech sounds[END_REF],[START_REF] Moulin-Frier | communicating about objects using sensory-motor operations"): A bayesian modeling framework for studying speech communication and the emergence of phonological systems[END_REF] and[START_REF] Barnaud | Computer simulations of coupled idiosyncrasies in speech perception and speech production with cosmo, a perceptuomotor bayesian model of speech communication[END_REF].

(

  2005) and[START_REF] Moulin-Frier | Curiosity-driven phonetic learning[END_REF]. Furthermore, Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) have been applied by[START_REF] Philippsen | Goal babbling of acoustic-articulatory models with adaptive exploration noise[END_REF]. An average over sound trajectories has been used by Acevedo-Valle et al.

  et al.[START_REF] Lyon | Interactive language learning by robots: The transition from babbling to word forms[END_REF] where a specific software, calledSAPI 5.4 (Yildiz and Kiebel), has been used to encode the stimulus and by the works of[START_REF] Murakami | Seeing [u] aids vocal learning: Babbling and imitation of vowels using a 3d vocal tract model, reinforcement learning, and reservoir computing[END_REF] where a phoneme representation of the stimulus is obtained from a Random Recurrent Neural Network (RNN), called a reservoir.2.5.3 Perceptual space/Internal representationThe output of the sensory response function is a lower dimensional representation of the sound produced by the vocal apparatus. In the context of humans the sound have been represented in the space of the first 2, 3 or 4 formants (in Hertz or Bark scale) by[START_REF] Westerman | Modelling the development of mirror neurons for auditorymotor integration[END_REF],[START_REF] Oudeyer | The self-organization of speech sounds[END_REF],[START_REF] Kröger | Towards a neurocomputational model of speech production and perception[END_REF],[START_REF] Moulin-Frier | Self-organization of early vocal development in infants and machines: the role of intrinsic motivation[END_REF];[START_REF] Moulin-Frier | Curiosity-driven phonetic learning[END_REF];[START_REF] Moulin-Frier | communicating about objects using sensory-motor operations"): A bayesian modeling framework for studying speech communication and the emergence of phonological systems[END_REF],Forestier and Oudeyer (2017),[START_REF] Najnin | A predictive coding framework for a developmental agent: Speech motor skill acquisition and speech production[END_REF],[START_REF] Philippsen | Goal babbling of acoustic-articulatory models with adaptive exploration noise[END_REF] and[START_REF] Barnaud | Computer simulations of coupled idiosyncrasies in speech perception and speech production with cosmo, a perceptuomotor bayesian model of speech communication[END_REF][START_REF] Acevedo-Valle | Social reinforcement in artificial prelinguistic development: A study using intrinsically motivated exploration architectures[END_REF]. The latter also consider the intonation as third acoustic parameter. Alternatively,Pagliarini et al. (2018a) propose a localist encoding for the syllables.

  [START_REF] Liu | Learning model-based f0 production through goal-directed babbling[END_REF]. A Radial Basis Function (RBF) network has been used by[START_REF] Philippsen | Goal babbling of acoustic-articulatory models with adaptive exploration noise[END_REF]. Alternatively, a reservoir has been used by some authors:[START_REF] Warlaumont | Learning to produce syllabic speech sounds via rewardmodulated neural plasticity[END_REF] uses a reservoir as a kind of biological implementation of reinforcement learning for high-level control of sequential motor production;[START_REF] Philippsen | Learning how to speak: Imitation-based refinement of syllable production in an articulatory-acoustic model[END_REF] use two reservoirs to learn both the forward and the inverse models that link motor space with perceptual space; Najnin and Banerjee (2017) use a 3-layered RNN to define the predictive model that uses a generative network to predict the proprioceptive sensory (representing the perceptual dimension) from a causal state (representing the motor dimension). A Bayesian architecture has been proposed in the works from[START_REF] Moulin-Frier | Self-organization of early vocal development in infants and machines: the role of intrinsic motivation[END_REF][START_REF] Moulin-Frier | communicating about objects using sensory-motor operations"): A bayesian modeling framework for studying speech communication and the emergence of phonological systems[END_REF] and[START_REF] Barnaud | Computer simulations of coupled idiosyncrasies in speech perception and speech production with cosmo, a perceptuomotor bayesian model of speech communication[END_REF]. Finally, three Self-Organizing Maps (SOM) have been used in the work by[START_REF] Kröger | Towards a neurocomputational model of speech production and perception[END_REF].

  Some authors use sound features to describe the perception of a stimulus, for example intensity in the work from[START_REF] Moulin-Frier | Self-organization of early vocal development in infants and machines: the role of intrinsic motivation[END_REF], fundamental frequency in the work from[START_REF] Howard | Training a vocal tract synthesiser to imitate speech using distal supervised learning[END_REF], Frequency power and spectral change in the works fromHoward and Messum (2011, 2007) or pitch and amplitude in the work from[START_REF] Fiete | Model of birdsong learning based on gradient estimation by dynamic perturbation of neural conductances[END_REF]. Alternatively, the learning domain has been defined as a subspace of the formants in the works from[START_REF] Oudeyer | The self-organization of speech sounds[END_REF],[START_REF] Moulin-Frier | Self-organization of early vocal development in infants and machines: the role of intrinsic motivation[END_REF], 2015),[START_REF] Kröger | Towards a neurocomputational model of speech production and perception[END_REF][START_REF] Acevedo-Valle | Social reinforcement in artificial prelinguistic development: A study using intrinsically motivated exploration architectures[END_REF]), Forestier et al. (2017) and[START_REF] Barnaud | Computer simulations of coupled idiosyncrasies in speech perception and speech production with cosmo, a perceptuomotor bayesian model of speech communication[END_REF].[START_REF] Philippsen | Goal babbling of acoustic-articulatory models with adaptive exploration noise[END_REF] define the learning domain as the first two dimensions of the embedding space. Here the stimulus has been modelled using the sound trajectory lying in the correspondent space.

  Other authors did not choose to maximise a classical reward function but other quantities encoding the goal (e.g. a competence function, auditory salience). In this sense, RL has been implemented introducing intrinsically motivated exploration and active-goal selection. A Competence Progress algorithm which updates the internal representation of the goal and drives the exploration has been used by Moulin-Frier et al. (2014); Moulin-Frier and Oudeyer (2012): in the particular case of Moulin-Frier et al. (2014) the learning algorithm is based on Gaussian Mixture Models(GMM) updated via Bayesian inference in a self-supervised paradigm. Intrinsic motivation has been used by Forestier and Forestier et al. (2017) and different types of goal selection have been proposed by Moulin-Frier and Oudeyer (2012), Moulin-Frier et al. (2014). See Subsection 2.6.4 for details.

  et al. (2014). They move from supervised self-training (thanks to the availability of a forward model) to unsupervised learning when imitation of novel contexts is included (after the training).Other types of learningAlternatively, incremental learning Gaussian Mixture Models (ilGMM) has been proposed by[START_REF] Acevedo-Valle | Social reinforcement in artificial prelinguistic development: A study using intrinsically motivated exploration architectures[END_REF] or GMM updated using Bayesian inference has been proposed by[START_REF] Moulin-Frier | Self-organization of early vocal development in infants and machines: the role of intrinsic motivation[END_REF]. A probability-based model has been proposed byBarnaud et al. with COSMO (Communicating Objects through SensoriMotor Operations)[START_REF] Barnaud | Computer simulations of coupled idiosyncrasies in speech perception and speech production with cosmo, a perceptuomotor bayesian model of speech communication[END_REF] architecture. This architecture was proposed by[START_REF] Moulin-Frier | communicating about objects using sensory-motor operations"): A bayesian modeling framework for studying speech communication and the emergence of phonological systems[END_REF] and represents a Bayesian framework to approach vocal learning.

2. 6 . 4

 64 Exploration strategiesDifferent exploration strategies have been studied in the context of vocal learning or in other types of sensorimotor learning. Exploration can take place either in the motor space or in the goal space (perceptual space or internal representation). The simplest exploration mechanism is driven by uniform random exploration. Pure random exploration does not take into account (1) the memory of perceived stimuli (e.g. the distribution of percept vectors in the perceptual space),(2) the history of what has already been explored in the past. Several works use this approach to explore the motor space:[START_REF] Troyer | An associational model of birdsong sensorimotor learning i. efference copy and the learning of song syllables[END_REF],[START_REF] Westerman | Modelling the development of mirror neurons for auditorymotor integration[END_REF],Howard and[START_REF] Howard | Training a vocal tract synthesiser to imitate speech using distal supervised learning[END_REF][START_REF] Howard | A computational model of infant speech development[END_REF],[START_REF] Howard | Modelling vowel acquisition using the birkholz synthesizer[END_REF],[START_REF] Oudeyer | The self-organization of speech sounds[END_REF],[START_REF] Moulin-Frier | communicating about objects using sensory-motor operations"): A bayesian modeling framework for studying speech communication and the emergence of phonological systems[END_REF],[START_REF] Warlaumont | Learning to produce syllabic speech sounds via rewardmodulated neural plasticity[END_REF],Pagliarini et al. (2018a) and[START_REF] Barnaud | Computer simulations of coupled idiosyncrasies in speech perception and speech production with cosmo, a perceptuomotor bayesian model of speech communication[END_REF]. Alternatively, dynamic perturbation around a motor configuration has been used in the works from[START_REF] Doya | A computational model of birdsong learning by auditory experience and auditory feedback[END_REF] and[START_REF] Fiete | Model of birdsong learning based on gradient estimation by dynamic perturbation of neural conductances[END_REF] while implementing RL. A few authors used random exploration in the goal space: Forestier and Oudeyer (2017), Najnin and Banerjee (2017), Moulin-Frier and Oudeyer (2012) and Philippsen et al. (2014).More sophisticated strategies are inspired by the nature of human development, which is progressive, incremental, autonomous and active. Behavioural analysis evidences how the actions of an agent are motivated by an internal or external reward. Following this idea, intrinsic motivation makes the agent choose an action basing the decision on the level of novelty, on the challenge it represents and on an internal reward. An example of such a strategy is called Intelligent Adaptive Curiosity (IAC)[START_REF] Oudeyer | Intrinsic motivation systems for autonomous mental development[END_REF]: using a similarity-based progress maximisation the exploration is driven by the aim of maximising the learning progress, while the agent goes towards novel situations. Intrinsic motivation can drive motor babbling, defining a goal-directed exploration strategy.Usually, a competence function drives the choice of the next goal estimating the error or the reward or the level of knowledge relative to the goal. Different goal-directed strategies have been proposed in kinematic motor control learning byForestier et al. (2017),[START_REF] Forestier | Curiosity-driven development of tool use precursors: a computational model[END_REF],[START_REF] Baranes | Active learning of inverse models with intrinsically motivated goal exploration in robots[END_REF] and[START_REF] Rolf | Goal babbling permits direct learning of inverse kinematics[END_REF].Studies in the speech domain take inspiration from kinematic studies and introduce goal babbling as exploration strategy. This strategy allows the agent to do intermediate productions in the direction of the selected goal: that is, for any chosen goal the agent can define and make use of intermediate sub-goals to adapt the production. Goal babbling has been used by[START_REF] Liu | Learning model-based f0 production through goal-directed babbling[END_REF] and proposed in unsupervised learning driven by a measure of confidence to reproduce a sound as in the works from[START_REF] Philippsen | Goal babbling of acoustic-articulatory models with adaptive exploration noise[END_REF] and[START_REF] Murakami | Seeing [u] aids vocal learning: Babbling and imitation of vowels using a 3d vocal tract model, reinforcement learning, and reservoir computing[END_REF], a competence progress as in the works from[START_REF] Moulin-Frier | Self-organization of early vocal development in infants and machines: the role of intrinsic motivation[END_REF] and[START_REF] Moulin-Frier | Curiosity-driven phonetic learning[END_REF], an interest model as in the work from[START_REF] Acevedo-Valle | Social reinforcement in artificial prelinguistic development: A study using intrinsically motivated exploration architectures[END_REF] or the intrinsic reward as in the works fromForestier and Oudeyer (2017).

  and Euclidean distance has been used by Acevedo-Valle et al. (2018) and Pagliarini et al. (2018a). A particular example of evaluation performed in the perceptual space is the work from Lyon et al. (2012) where a measure (called F-measure)

  provide an accurate representation of the vocal learning process in humans or songbirds, a model should implement the biological mechanisms revealed by past experimental investigations at the behavioural, anatomical and physiological level (see the biological context introduced in Section 2.2). The various models presented here are about song learning in songbirds and speech development in humans, but have been built to answer different questions (as highlighted in Section 2.3). However, we believe that comparing the various frameworks used to model different aspects of vocal learning will help to identify the important components and the links between them. Ultimately, such comparison may also reveal the next steps required to build a common model schema to study various questions about vocal learning and to account for a large number of experimental findings.In Section 4.1 we introduced two kinds of sensorimotor learning models (see Figure 2.1 and Figure 2.2), the different spaces characterising a vocal learning model, and

  to have a low-dimensional preprocessed representation of the sound. To obtain such a representation, several reduction techniques have been used in the reviewed models: PCA and LDA (e.g.[START_REF] Philippsen | Goal babbling of acoustic-articulatory models with adaptive exploration noise[END_REF]), formant extraction (e.g.[START_REF] Oudeyer | The self-organization of speech sounds[END_REF][START_REF] Moulin-Frier | Self-organization of early vocal development in infants and machines: the role of intrinsic motivation[END_REF]), or scaling and normalization techniques (e.g.[START_REF] Doya | A computational model of birdsong learning by auditory experience and auditory feedback[END_REF][START_REF] Kröger | Towards a neurocomputational model of speech production and perception[END_REF]). Ongoing studies try to use Variational Autoencoder (VAE) to help exploration strategies, reducing the goal space to a low-dimensional space while keeping an important part of the information encoded. For instance, Laversanne-Finot et al. (2018) use a particular type of VAE, called β-VAE to achieve this aim.

  reproduces numerically the theoretical results and introduces the bio-inspired theoretical model of vocal learning in songbirds. A novelty non-linear sensory response function is introduced, and the Hebbian learning rule has been modified as a consequence. Moreover, it shows how the parameters can influence the learning progress: velocity and accuracy of learning are influenced by the selectivity on the one hand, and by the motor area size on the other hand. The latter will be the key point for further development of the model, as highlighted in Chapter 4. Section 3.1 introduces imitative sensorimotor learning and the model used as a starting point for the following. Section 3.2 describes the architecture of the model, highlighting the definition of the auditory response and learning rule. Section 3.3 shows the numerical implementation of the linear and non-linear models. In particular, it shows how the parameters can influence the velocity and the accuracy of learning. Section 3.4 summarizes the obtained results and gives some perspectives about how to develop this study. "A Bio-inspired Model Towards Vocal Gesture Learning in Songbird " (Pagliarini et al., 2018a) has been published in ICDL-Epirob proceedings, and used for oral presentation and poster session multiple times. More details are available at https://github.com/spagliarini/2018-ICDL-EPIROB.
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 3 Fig. 3.2 shows the evolution in time of the smooth average distance between W A * and the target motor pattern M * , defined by Eq. (3.10) for each simulation. In the linear version of the model (blue line) , the auditory activity is a linear function of the motor production, as in Eq. (3.1), and the postdictive Hebbian rule defined by Eq. (3.5) guides learning.

  Figure 3.2: Ganguli-Hahnloser linear and nonlinear model. Evolution in time of the smooth average distance between W A * and the target motor pattern M * , computed over 50 simulations. Comparison between the Hahnloser-Ganguli linear model (in blue) where the auditory response is defined by Eq. (3.1) and the nonlinear version of Hahnloser-Ganguli model (in orange) where the auditory response is defined by Eq. (3.2). In both cases learning is driven by the postidictive Hebbian learning rule in Eq. (3.5) and weights are updated following Eq. (3.4). To highlight the behavior of the linear model, the same comparison using a log scale is shown in the box. Parameters value: t f = 1.5 * 10 4 , n m = n a = 3, η = 0.01, σ = 0.1, C = 20.

  Figure 3.3: Evolution of synaptic weights in time relative to a single auditory neuron and distance from the target motor pattern (three neurons example). Evolution in time of the synaptic weights W (continuous blue line) and the target motor pattern M * (dashed blue line) for one example neuron. Each auditory neuron is composed by three components represented by the three lines. Here the auditory activity is defined by Eq. (3.2) and learning is driven by the Hebbian learning rule in Eq. (5.3). At each time steps weights are updated following Eq. (3.4) and the normalization defined by Eq. (3.8) has been applied. Parameters value: t f = 1 * 10 5 , n m = 3, n a = 1, η = 0.01, σ = 0.1.
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 3435 Figure 3.4: Comparison between different types of normalization: evolution in time of the distance. Evolution in time of the smooth average distance between W A * and the target motor pattern M * , computed over 50 simulations. (Top) Comparison between the model normalized by the maximum weights normalization in Eq. (3.6) and the corresponding norm version (respectively the continuous blue line and the dashed blue line), the model normalized by the supremum weights normalization in Eq. (3.7) and the corresponding norm version (respectively the continuous green line and the dashed green line), the model normalized by the decreasing factor normalization in Eq. (3.8) and the corresponding norm version (respectively the continuous red line and the dashed red line). All the normalizations have been taken with respect to auditory neurons. (Bottom) Comparison between the model normalized by the decreasing factor normalization in Eq. (3.8) with respect to auditory neurons (red lines) and with respect to motor neurons (dark red lines). Comparison between the normalization applied using the mean of W (continuous lines) and the norm of W (dashed lines). Here the auditory activity is defined by Eq. (3.2) and learning is driven by the Hebbian learning rule in Eq. (5.3). At each time steps weights are updated following Eq. (3.4). Parameters value: t f = 1 * 10 5 , n m = n a = 3, η = 0.01, σ = 0.1.
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 36 Figure 3.6: Effect of network dimension on the convergence time and the distance. (Left) Network dimensions effect on the mean convergence time τ and (Right) on the mean distance between W A * at time t = τ and the target motor pattern M * , computed over 50 simulations. The dark red line refers to anetwork where the number of auditory neurons has been kept fixed at n a = 3, whereas the light red line refers to a network where the number of motor neurons has been kept fixed at n m = 3. In both cases, the second dimension has been varied as[2, 3, 4, 5, 6, 7]. Parameters value: η = 0.01, σ = 0.1. Here we applied the decreasing factor normalization given by Eq. (3.8). To exit the simulations we compute as in Eq. (3.11) with N = 400.

  plausible. Although other forms of plasticity exist, including presynaptic modulation of synaptic strength, classic long-term potentiation/depression (LTP/LTD) mechanisms mostly involve postsynaptic receptor reorganization.
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 37 Figure 3.7: Babbling paradigm. The top panel shows the schema of the motor and the auditory activity (left) and how it translates in term of each motor exploration m i and its corresponding auditory response a i (right). The continuous lines in the activity represent the syllables, whereas the dot lines represent the gap between two consecutive syllables. The parameter d represents the delay between the motor neuron activity and the activity of the auditory neurons.The continuous lines in the activity represent the syllables, whereas the dot lines represent the gap between two consecutive syllables. The bottom panels represent the possible configurations that can arise from the activity: correct (correspondence between the motor activity and the auditory activity), incorrect (i.e., mismatched, when there is no correspondence between the motor activity and the auditory activity), null motor (motor activity equal to zero), null auditory (auditory activity equal to zero), null activity (both motor and auditory activity equal to zero). If d = 0, only correct and incorrect configurations are present. Otherwise, depending on the activity parameters λ d , λ gap and λ syll .

(

  Figure 3.8: Comparison between different parameters of the syllable, gap and delay distribution. Evolution of the distance depending on the parameters λ syll (top left panel), λ gap (top right panel) and λ d (bottom panel). To observe the dependence on the syllable duration, the parameters relative to the distribution of the gap and the delay have been kept fixed (i.e., λ gap = 50 ms and λ d = 30). The parameter λ syll has been varied as [30, 50, 100, 150, 210]. To observe the dependence on the gap duration, the parameters relative to the distribution of the syllables and the delay have been kept fixed(i.e., λ syll = 150 ms and λ d = 30). The parameter λ gap has been varied as [20, 30, 40, 50, 60]. To observe the dependence on the delay duration, the parameters relative to the distribution of the syllables and the gap have been kept fixed(i.e., λ syll = 150 ms and λ gap = 50). The parameter λ d has been varied as [30, 40, 50, 60, 70]. Parameters value: t f = 3 * 10 5 , n m = n a = 3, η = 0.01, σ = 0.1 .

  pattern M * shows a higher plateau for the error when small values of λ syll (top left panel of Figure 3.8) and λ gap (top right panel of Figure 3.8) or high values of λ d (bottom panel of Figure 3.8) are used.At convergence (i.e., at time t f = 3 * 10 5 ), the average final distance between W A * and the target motor pattern M * depends on the combination of the syllable and gap duration. As shown in Figure3.8, small values for λ syll and λ gap lead to high distance values. A small λ syll does not help the learning efficiecy (Figure3.9): the bottom line of the matrix contains values greater than 0.08 independently from the gap duration. Increasing
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 39 Figure 3.9: Final average distance: comparison between different parameters for the syllables and the duration of the gaps. Each square represent the average distance between W A * and the target motor pattern M * computed over 10 simulations, at time t f = 3 * 10 5 . Here, the axis represents the variation of the syllable duration parameter λ syll (vertical axis), and the variation of the gap duration parameter λ gap (horizontal axis). To observe how the final distance depends on the combination of syllable and gap duration, the parameters relative to the distribution of the delay have been kept fixed(i.e., λ d = 30 ms). Instead, λ syll and λ gap have been varied, respectively, as [20, 20, 50, 100, 150, 210] and [20, 30, 40, 50, 60]. The color scale becomes reddish as the error increases. Lower errors are achieved when λ syll assumes low values, λ gap assumes high values, λ d assumes low values. Parameter values: t f = 3 * 10 5 , n m = n a = 3, η = 0.01, σ = 0.1

  Speech generation and vocal learning face some common challenges due to the interpretability and the complexity of the data they are dealing with. Moreover, besides the subject of the study, a vocal learning model may require a realistic (i.e. a vocal output that belongs to the probability distribution of the real training dataset) vocal production apparatus. That is, a motor control function is necessary to obtain a complete vocal learning model

Section 4 .

 4 2 contains an introduction to Generative Adversarial Networks (GANs), a brief mention to the models that are relevant for this study and the description of the architecture of WaveGAN. Section 4.3.1 describes the pre-processing we did to prepare the canary recordings. Section 4.3.2 explains our experimental setup by introducing the training dataset and the different training conditions we used to train WaveGAN. Section 4.3.3 introduces the metrics we used to evaluate the performance of the generator. The tools used to evaluate the model are in Sections 4.3.4 and 4.3.5. Section 4.4 contains the results obtained in this study. First, Section 4.4.1 shows howthe training dataset can be evaluated using our evaluation metrics. Section 4.4.2 shows the analysis we carried out to evaluate the performance of the generator across time. We observe the generator capacity of covering all the repertoire and the number of syllables not resembling to the real ones (i.e. not recognized as an example of a known class). We first show performance of the generator after one training as a proof of concept, then we compare 10 different instances of the training without changing the experimental setup. The capacity of the generator to reproduce realistic samples is confirmed by a qualitative analysis that we carried out at the end of one instance of the training.Section 4.4.3 shows some examples of generated data and how the output space (i.e. the space of the generated syllables) can be explored and covered by the generator.Section 4.4.4 and Section 4.4.5 show the same type of analysis presented in Section 4.4.2 applied to compare the generator performances when using different conditions for the latent space dimension, or for the size of the training dataset. Section 4.5 summarizes the results we obtained and explains the advantages and the limitations of the network. Moreover, we discuss how a generator model such the one investigated by this study could be used in future work within the frame of vocal learning models.

  introduced for the first time by[START_REF] Goodfellow | Generative adversarial nets[END_REF] as a novel class of machine learning frameworks. Two models, the generator model and the discriminator model, compete to become better at their objective. The generator model aims to be able to produce samples that come from the training data distribution, without having access to any information regarding them. On the contrary, the discriminator has access to the distribution of the training dataset, and should be able to discriminate between a sample which belongs to the training dataset and a sample generated by the generator model[START_REF] Goodfellow | Nips 2016 tutorial: Generative adversarial networks[END_REF]. In the original formulation, the Jensen-Shannon divergence is used as a loss function. To improve the performance of GANs, several authors proposed new GANs varying the model architecture or the loss function. For example, a more stable training has been obtained using deep convolutional neural networks for both the generator and the discriminator: this is the case for Deep Convolutional GAN (DCGAN) proposed byRadford et al. (DCGAN) [START_REF] Radford | Unsupervised representation learning with deep convolutional generative adversarial networks[END_REF]. Alternatively,[START_REF] Berthelot | Began: Boundary equilibrium generative adversarial networks[END_REF] proposed Boundary Equilibrium GAN (BEGAN) where the discriminator is an auto-encoder(Zhao et al., 2016).Arjovsky et al. used a DCGAN architecture in 

  are two examples of application of WGAN-GP to achieve sound generation.[START_REF] Dong | Musegan: Multi-track sequential generative adversarial networks for symbolic music generation and accompaniment[END_REF] used a dataset of multi-track piano-rolls derived from the Lakh Midi Dataset (LMD)[START_REF] Raffel | Lakh midi dataset[END_REF] and train WGAN-GP to generate multi-track sequences.[START_REF] Donahue | Adversarial audio synthesis[END_REF] trained WGAN-GP to generate music (piano, drums), speech (i.e. the Speech Commands Zero through Nine-SC09 dataset) and, to a lesser extent, birdsong (using a training dataset composed by wild recordings of different species).[START_REF] Donahue | Adversarial audio synthesis[END_REF] highlighted using Principal Component Analysis (PCA) how images and waveforms are different in their structure. Principal components capture gradient, intensity and characteristics of the edges for images, whereas principal components form a periodic basis that decompose the audio signal for waveforms[START_REF] Donahue | Adversarial audio synthesis[END_REF]. Indeed, audio signals show more periodicity than images. Thus, a larger receptive field to process audio signals is introduced in WaveGAN. This is similar to what Oord et al. (2016a) did in WaveNet, where dilated convolutions has been used to increase the effective receptive field of the model. WaveGAN architecture is based on the architecture of DCGAN[START_REF] Radford | Unsupervised representation learning with deep convolutional generative adversarial networks[END_REF] which uses GANs for image synthesis. DCGAN[START_REF] Radford | Unsupervised representation learning with deep convolutional generative adversarial networks[END_REF] generator is a CNN where transposed convolution is used to upsample lowresolution feature maps into a high-resolution image. As for DCGAN, the generator and the discriminator of WaveGAN are CNNs.[START_REF] Donahue | Adversarial audio synthesis[END_REF] usedWGAN-GP (Gulrajani et al., 2017) strategy during training. This strategy consists in the introduction of a gradient penalty term in the loss function, driven by the regularization hyperparameter λ. The advantages of using GP are a faster training and the avoidance of problems coming from weight clipping (used to force the gradient to stay below a certain threshold),

Figure 4 .

 4 Figure 4.1 shows a summary of the selection procedure for syllable J2. The upper panel shows the downsampled phrase. The lower panel highlights each syllable of the phrase: for each syllable, the green dashed line represents the onset (i.e., the beginning of the syllable), and the blue dashed line represents the offset (i.e., the end of the syllable).
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 41 Figure 4.1: Selection of syllable J2. The upper panel shows the spectrogram of an example phrase of syllable J2. The lower panel shows the selected syllables: the green vertical lines represent the onset of each syllable, the blue vertical lines represent the offset of each syllable. We used onset and offset to determine where each syllable begins and ends.
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 42 Figure 4.2: Example of single syllables J2. 100 random selected syllables from the totality of the phrases belonging to class J2. To select the syllables we used three parameters: amplitude threshold, minimal duration of the syllable and duration of the gap between two consecutive syllables. Other examples of selected syllables form other classes can be found in Appendix 4.1

  Figure 4.2 shows an example of a phrase from class J2 and 100 examples of samples that have been selected from class J2, randomly selected. See Appendix 4.1 for a detailed explanation of the syllable selection procedure.

  Testing phase. Recognition of a sample of 200 syllables generated after training, without the possibility of consulting the repertoire. In the testing phase, the available classes are the 16 classes of the repertoire plus a general X class which, ideally, represents the alternative unknown classes (three EARLY classes, OT class and WN class) recognized by the classifier.

  3.3) are Echo State Networks (ESNs)[START_REF] Jaeger | The "echo state" approach to analysing and training recurrent neural networkswith an erratum note[END_REF], a type of artificial neural network. ESNs and Support Vector Machines (SVMs) work similarly, by embedding input data into a high dimensional space using a random non linear transformation. However, unlike SVMs, ESNs are designed to manipulate sequential data, like recurrent neural networks (RNNs), and are relevant candidates for a sound classification task.The classifiers were fed with mel-frequency cepstral coefficients (MFCCs) representations of the syllables, a low dimensional spectral representation of sound. We extracted 20 MFCCs features per time step, one time step being defined as the result of a spectral analysis window of 64ms applied to the 16kHz audio signal, with a 32ms jump between each time step. Because the generated syllables tend to have higher amplitude than the real ones, we used only the first and the second derivative of the extracted MFCC signals to remove any influence of the signal amplitude in the representations. Otherwise, the amplitude difference would bias the classifiers decisions, as it would be artificially easier to separate real samples from generated samples only by comparing the average power of the signals. First and second derivatives of the MFCC signal are also known to be good representations of vocal signals, as they give relevant clues on the temporal dynamics of the vocalizations.

α

  parameter, called leaking rate, is set to 0.05. It controls the time constant of the ESNs and allows information from past internal states to be fed to future internal states. All connection weights defined in W in and W are fixed during the training phase of the ESNs, as opposed to machine learning algorithms using gradient descent. Only the W out ∈ R N ×V readout matrix is learned during training, where V is the dimension of the vocabulary used to classify the input features, i.e. V = 16 for classifier-REAL and V = 21 for classifier-EXT. The readout weights are learned using a simple linear regression between all the internal states x generated from the inputs and all the expected values of the output y.

  This section describes the training dataset and highlights the performance of our evaluation metrics on it. The majority of the samples belong to 16 independent clusters in the Uniform Manifold Approximation and Projection for Dimension Reduction (UMAP) (McInnes et al., 2018) representation (left panel of Figure ??a). Besides, the representation shows similarities between syllables B1 and B2 and syllables J1 ad J2 : the clusters of syllables B1 (cream cluster) and B2 (light orange cluster) and the clusters of syllables J1 (dark green cluster) ad J2 (light brown cluster) lie very close. These similarities can be noticed also in the spectrogram representation (Figure ??b). For this reason, in further representations using UMAP syllables B1 and B2, J1 ad J2 have been grouped, respectively, into syllable B (keeping the light orange color to represent the cluster) and J (keeping the dark green color to represent the cluster) because of their high similarity. Each template shown in Figure 4.3a can be compared with the correspondent mean spectrogram (Figure 4.3b).

  (a) UMAP representation and repertoire. (b) Mean spectrogram.
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 43 Figure 4.3: Repertoire. (a) UMAP (McInnes et al., 2018) representation of the training dataset. Each cluster represents a class of the repertoire and a template syllable of each class is highlighted with the corresponding spectrogram (an arrow connects each cluster to the corresponding template). Syllables B1 (cream cluster) and B2 (light orange cluster) and syllables J1 (dark green cluster) and J2 (light brown cluster) lie very close: this is why in the following UMAP representations we will unify them in two big clusters, syllable B (will be cream cluster) and syllable J (will be dark green cluster). (b) Mean spectrogram computed after envelope alignment of the waveforms. To obtain the UMAP representation and the mean spectrogram we used 1k syllables per class (i.e., the training dataset) and their real labels. No classifier has been applied to assign each syllable to the correct class.
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 44 Figure 4.4: Training data analysis. Panels (a-b) show the distribution obtained using classifier-REAL and classifier-EXT on the training dataset. In both cases, the average number of syllables per class is 1k for each of the 16 classes of the repertoire. The remaining 5 columns (on the right part) in panel (b) represent the alternative unknown classes x ∈ X (EARLY15, EARLY30, EARLY45, OT and WN ). Panels (c-d) show the confusion matrix (i.e. the level of confidence of the classifier in making the correct assignment) relative, respectively, to classifier-REAL and classifier-EXT. Each square represent the level of confidence of the classifier in making the correct assignment. The level of confidence is expressed on a logarithmic scale using shades of blue.

  saved the model every ∼ 15 epochs until epoch ∼ 1000. In order to determine a good epoch to generate samples resembling the real ones, we are interested in the performance of the generator across time. At the beginning of training (epoch 0 in Figure 4.5), there is no variation between the syllables. At epoch 15 the generations start to be coherent in duration but remain noisy and unclear. The resemblance increases at epoch 45 for some syllables (e.g., syllable E ) but remains generally low for most of them. Finally, epoch 984 generations show a shape comparable with the training data in Figure 4.3.

Figure 4 .

 4 6 shows the distribution obtained from the classifier at 4 example epochs: epochs 15, 106, 212, 318, 514 and 984. Each columns represents one of the 21 classes of the vocabulary: the 16 classes of the repertoire and 5 alternative unknown classes x ∈ X (i.e., three classes of EARLY generations, the overtraining (OT ) class, and the artificial white noise (WN )). These results have been obtained from an instance of training where the latent space dimension was fixed at ld = 3. It is possible to observe a decrease in the number of syllables belonging to an alternative class, whereas an increasing number of syllables characterize the classes of the repertoire.
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 45 Figure 4.5: Generations across time. Example of one selected syllable per class across time. Each syllable has been first generated at epoch 984 and recognized using classifier-EXT. Then, the latent vector associated at each syllable has been used to generate the same syllable at epochs 0,15, 45, 106 and 514. At epoch 0 the generations do not vary from one class to another. At epoch 15 the generations start to be coherent in duration but remain noisy and unclear. At epoch 45 some syllables are more distinguishable than at earlier epochs, but the majority remains noisy and indistinguishable. As the training goes on, the generations resemble more and more the real syllables (epochs 106 and 514). The generations obtained at epoch 984 have a clear distinguishable shape. Here, the generator obtained from the instance Ex 6 in Figure 4.7 has been used to generate the syllables across time; latent space dimension ld = 3; Ep. stands for epoch.
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 46 Figure 4.6: Distribution of the classes. Distribution of 1k generated samples after 15, 106, 212, 318, 514, and 984 epochs of training. Each column represents a class of the vocabulary: a syllable from the repertoire, or an alternative unknown class x ∈ X (EARLY15, EARLY30, EARLY45, OT and WN ). The number of syllables belonging to a class x ∈ X decreases over time, whereas the average number of syllables belonging to the classes of the repertoire increases. The latent space dimension is ld = 3 and classifier-EXT has been used to classify the generated data.

, 4 .

 4 7e and 4.7f). Then, the number of samples recognized by classifier-EXT as belonging to a class of the repertoire increases leading to an increasing in the average number of syllables per class (Figure 4.7b). The dark green line shows the evolution of the mean, whereas the light green line shows the evolution of the median. After epoch ∼ 600 the average number of syllables per class remains stable. of syllables per class. (a) Number of represented classes. (c) Variance of the number of syllables per class. (d) Number of syllables belonging to the EARLY15 class. (e) Number of syllables belonging to the EARLY30 class. (f) Number of syllables belonging to the EARLY45 class.
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 47 Figure 4.7: Analysis of a 3-dimensional generator using classifier-EXT . Statistical analysis performed on the classifier distribution of one instance of the training. Panel (a) shows the number of classes represented by the generated data: that is, at each epoch, how many syllables of the repertoire are covered by the generator. The number of syllable reaches the maximum value 16 relatively quick and then stays high during all the training. Panel (b) shows the average number (dark colored lines) of elements per class and the median (light colored lines): across time, with some instability, we can observe an increasing of the mean across time. To compute the quantities in panels (a) and (b), alternative unknown classes x ∈ X have not been taken into account. Panel (c) shows the evolution of the variance of how many syllable per class have been produced. Here, x ∈ X classes are included. The variance starts at a high value when the majority of the samples produced are not classified as syllables of the repertoire, then it decreases when the generator becomes better at producing syllables. Panels (d-f) show the percentage of syllables that are classified as belonging to one of the alternative classes x ∈ X: from the left to the right, classes EARLY15, EARLY30 and EARLY45.

  further analysis are needed to understand if the quality of the samples keep increasing after epoch 600. The concept of overtraining arises comparing 10 different instances of training of 3dimensional WaveGANs. Not all the instances show the capability of the generator of producing syllables belonging to all the classes of the repertoire (Figure 4.8a). Instances Ex 2 (orange line), Ex 1 (yellow line) and Ex 5 (magenta line) show an early drop and, eventually, never reach to cover the repertoire. Nevertheless, the other instances show a drop at an advanced stage of the training (i.e., after epoch 600) or never drop. Similarly, the instances showing instability in Figure 4.8a show instability in the average number of syllables recognized per class (Figure 4.8b) and in the variance of the number of syllables recognized per class (Figure 4.8c). Moreover, alternative unknown classes, and in particular class EARLY45, are more represented even in advanced epochs of the training for those instances showing instability, as shown in Figures 4.8(d-f). Such an instability might characteriz the beginning of overtraining: the generator starts to produce samples that are recognized as elements of an EARLY class or of class OT. The latter is more represented in instances showing overtraining (Figure4.9). After, the generator is not able to recover. Further analysis are needed to understand how to carefully describe overtraining.

Figure 4 .

 4 10 shows the IS across time with respect to IS train (black line). The IS of Ex 0 and Ex 6 increases across time and, eventually, they reach a maximum value around 13 (for reference, the IS obtained from the training dataset is IS train = 15, 92); contrarily, the IS of Ex 2 increases at the beginning but remains low during all the training. The IS of Ex 0 suddenly breaks around epoch 800: this behavior confirms the results shown in Figure 4.8.
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 48 Figure 4.8: Different instances of a 3-dimensional WaveGAN. Statistical analysis performed on the classifier distribution of 10 instances of training. Panel (a) shows the number of classes represented by the generated data: that is, at each epoch, how many syllables of the repertoire are covered by the generator. An early drop (i.e., before epoch 600) in the number of represented classes can be seen for three instances (i.e, Ex 2 -orange line, Ex 1 -yellow line and Ex 5 -magenta line). Panel (b) shows the average number (dark colored lines) of elements per class and the median (light colored lines): depending on the instance, the mean and the median could increase over time and remain stable (Ex 6 -light blue line, Ex 7 -gray line, Ex. 8 -burgundy line), or increase until a certain epoch and then drop (Ex 3 -blue line, Ex 4 -green line, Ex 5 -magenta lines, Ex 9 -red line), or remain low for all the duration of the training (Ex 1 -yellow line, Ex 2 -orange line). To compute the quantities in panels (a) and (b), alternative unknown classes x ∈ X have not been taken into account. Panel (c) shows the evolution of the variance of how many syllable per class have been produced. Here, x ∈ X classes are included. For successful instances of training (Ex 6 -light blue line, Ex 7 -gray line, Ex. 8 -burgundy line), the variance starts at a high value when the majority of the samples produced are not classified as syllables of the repertoire, then it decreases when the generator becomes better at producing syllables. Eventually, it increases again later (Ex 3 -blue line, Ex 4 -green line, Ex 5 -magenta line, Ex 9 -red line) or never decrease enough (Ex 1 -yellow line, Ex 2 -orange line). Panels (d-f) show the percentage of syllables that are classified as belonging to one of the alternative classes x ∈ X: from the left to the right, classes EARLY15, EARLY30 and EARLY45. Alternative unknown classes, and in particular class EARLY45, are more present even in advanced epochs of the training for those instances where we identify overtraining (all but Ex. 6 -light blue line, Ex 7 -gray line and Ex. 8 -burgundy line. 154
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 49 Figure 4.9: Overtraining. Comparison between 10 instances of training: percentage of syllables classified by classifier-EXT as elements of class OT (i.e., overtraining). Instances Ex 0 (purple line), Ex 1 (yellow line), Ex 2 (orange line), Ex 3 (blue line), Ex 4 (green line), Ex 5 (magenta line), Ex 9 (red line) show an increasing number of syllables classified as belonging to class OT. These instances show instability also in the average an variance of the syllables belonging to the classes of the repertoire and in the number of syllables belonging to an EARLY class (see Figure 4.8). Latent space dimension: ld = 3.

Figure 4 .

 4 Figure 4.10: Inception Score across time. IS relative to the generator of instances Ex 0 (violet line), Ex 2 (orange line) and Ex 6 (light blue line, used as baseline) with respect to IS train (black line). IS for the instances Ex 0 and Ex 6 increases over time, whereas IS for the instance Ex 2 remains low over time.Here, for each instance we generated 16k samples every ∼ 100 epochs and we used classifier-REAL to classify them. This figure is not complete: we will add the IS relative to the remaining instances of training before the defense.The generator of each instance has been used to produce 16k syllables across time and classifier-EXT has been used to identify the generated syllables.

ure 4 .

 4 11(a-b)), the mean spectrograms are blurry and show syllables difficult to recognize as belonging to a class of the repertoire (see Figure4.3). The spectrograms look often as a mix of syllables coming from several classes (e.g, syllable A or syllable R in Figures 4.11(a-b)). At epoch 514 (Figure4.11c) all the syllables can be produced by the generator and only a few syllables remain difficult to be recognized as belonging to a class of the repertoire (e.g., syllable B2 and syllable L). Nevertheless, a lot of syllables are clearly recognizable (e.g., syllable N and syllable Q). Finally, at advanced stages of training, all the spectrograms show a recognizable syllable.

Figure 4 .

 4 Figure 4.11: Mean spectrogram across time. Mean spectrogram of 1k the syllables generated at epoch 106 (a), 212 (b) 514 (c) and 984 (d). Empty boxes in panels (a) and (b) mean that at epoch 106 and 212 not all the repertoire can be covered by the generator and no syllables have been recognized by classifier-EXT as elements of the not represented classes (e.g., class B2 ). At epochs 106 (panel (a)) and 212 (panel (a)) the correct duration and, eventually, the content of the syllables can be grasped. At epoch 514 (panel (c)) almost all the syllables can be distinguished and only a few remain noisy and unclear (A, E, L, R). At epoch 984 (panel (d)) all the syllables are clear and distinguishable. They can be compared with the repertoire in Figure 4.3.Here, the training has been done using ld = 3, the generator obtained from the instance Ex 6 in Figure4.7 has been used to generate the syllables across time and classifier-EXT has been used to identify the generated syllables.
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 4 Figure 4.12: Syllable space representation across time. Syllable space representation obtained from the training dataset (16k syllables) and 1k syllables generated at epochs 15, 106, 514 and 984 using UMAP McInnes et al. (2018). Panels (a-c) and (g) show the training data (brown points) and the generated data (blue points). These four figures are different because the analyzed dataset differs for the 1k generations specific of each epoch. Panels (d-f) and (h) show the same representation of panels (a-c) and (g) with the classes of syllables visible. Each cluster/color corresponds to one class of the repertoire and class X (in white) represents the cumulative class of the alternative unknown classes (in this case, EARLY15, EARLY30, EARLY45, OT and WN ).Here, the training has been done using ld = 3, the generator of instance Ex 6 has been used to generate the syllables and classifier-EXT has been used to identify both the generated data and the training data.

  (a-c, g)) to taking a conformation compatible with the training data (brown points inFigures 4.12

  (a-c, g)). On the other hand, the generated data are mostly constituted by syllables belonging to class X (the cumulative class of the alternative unknown classes (in this case, EARLY15, EARLY30, EARLY45, OT and WN ) at early stages of training (Figures 4.12(d-e)). Later, the majority of the generated data belongs to the same class as the closer cluster of training data in the UMAP representation (Figure 4.12h). Further observations regarding the comparison between the UMAP representation of training and generated data are discussed in Figure 4.38 in Appendix 4.4.The UMAP representation of the generated data shows smoother transitions from one cluster to another (Figure4.13). These transitions can be either represented by points belonging to one of the classes of the repertoire (e.g., between J and C ) or to class X (e.g., between N and Q). This observation highlights an interesting perspective for which elements classified in class X can be seen as intermediate elements between two syllables.We will deal with this concept in Section 4.4.3. Finally, human judgment confirms the goodness of the classifier and of the generated data. Each judge evaluated the same set of 200 samples generated at epoch 984 using the generator of instance Ex 6. The judges had the possibility to classify each of them as an element of one of the 16 classes of the repertoire or as an element of an alternative unknown class x ∈ X. Table 4.2 contains the Cohen's kappa values across the human judges and versus classifier-EXT. For further observations about the stability of the training, Appendix 4.4.2 shows how, combining the UMAP representation and the mean spectrogram, it is possible to compare three consecutive epochs of training to check the stability of the generator.

Figure 4 .

 4 Figure 4.13: UMAP representation of the generated data. UMAP representation of 16k generated syllables. Each cluster/color correspond to one class of the repertoire and class X (in white) represents the cumulative class of the alternative unknown classes (in this case, EARLY15, EARLY30, EARLY45, OT and WN ). Here, the training has been done using ld = 3, the generator obtained from the instance Ex 6 in Figure 4.7 has been used to generate the syllables at epoch 984 and classifier-EXT has been used to identify the generated syllables.
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 4 Figure4.14 (i.e., first C and J2, then V and V ) are an example of non-smooth transitions.

Figure 4 .

 4 Figure 4.14 and additional examples from the the second and the third components can be found in the supplementary material.

Figure 4 .

 4 Figure 4.14: Exploration of the latent space: one component variation. First component.. We selected a random latent vector z ∼ R 3 ([-1, 1]) to create a baseline syllable. Then, we moved one by one the components of the vector by a variation step equal to v step = 0.05. We observed all the syllables produced to look at how they evolve and if there are non-smooth transitions. The upper panel shows the exploration of the first component of the latent vector obtained with v step = 0.05. The syllables highlighted by the red squares (i.e., first C and J2, then V and V ) are an example of nonsmooth transitions. For these particular transitions, we considered the two consecutive syllables obtained from the first variation step (i.e., two consecutive syllables contained in two consecutive red squares) and we applied a variation step of v step = 0.01 to the first component of the latent vector to generate intermediate syllables. The bottom-left panel shows the latter operation applied to the first non-smooth transition in the first component and highlights a new non-smooth transition that needs to be investigated. To do so, as shown in the bottom-right panel, we used a variation step equal to v step = 0.001 to generate intermediate syllables. We have reached a point at which we cannot see any more clear evidence of non-smooth transitions. The syllables have been produced by the 3-dimensional generator obtained from instance Ex 6 and the name of the syllable for this analysis has been provided by classifier-EXT.

Figure 4 .

 4 Figure 4.15: Latent vector components variation. Panel (a) represents the first component variation, panel (b) represents the second component variation and panel (c) represents the third component variation. The left panels show the variational data (generated at each step) (light blue points) and 16k generated data from the same model at the same epoch (brown points). Each cluster/color in the right panels corresponds to one class of the repertoire and class X (in white) represents the cumulative class of the alternative unknown classes (in this case, EARLY15, EARLY30, EARLY45, OT and WN ). Here, the training has been done using ld = 3. A latent vector has been randomly selected and a step v step = 0.001 has been applied to its component, one by one. The generator obtained from instance Ex 6 of the training has been used classifier-EXT has been used to identify the generated syllables from the generator of instance Ex 6.
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 4 16) giving rise to a smooth change of syllable class (right panels ofFigure 4.16). Interestingly, the transition between syllable M and syllable D (Figure4.16a, right panel) shows that the intermediate syllables between two classes are sometimes recognized as class X (white points between syllable M (turquoise cluster) and syllable N (blue cluster). Moreover, the transition between syllable H and syllabe N shows (1) an interesting stretch of syllable B (cream cluster) connecting syllable B and syllable Q and (2) the uncertainty of the classifier in differentiating between syllable H (light green cluster) and syllable A (gray cluster).The latter was already shown by the UMAP representation of the generated data. This results, combined with the UMAP representation we obtained for the generated data and shown in Figure4.13, highlight the fact that the generator is not only producing samples from the training dataset but also other samples. This allows to move realistically between two syllables, as shown in Figure4.16.
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 4 17a). At the same time, 1dimensional and 2-dimensional WaveGANs show a slower increase in the average number of syllables belonging to each class of the repertoire (Figure 4.17b) and a slower decrease in the variance of the number of syllables per class. Nevertheless, as already mentioned

Figure 4 .

 4 Figure 4.16: Transition between two generated syllables. Panel (a) represents the transition between M (turquoise cluster) and syllable D (yellow cluster), panel (b) the transition between M (turquoise cluster) and syllable V (magenta cluster) and panel (c) the transition between H (light green cluster) and syllable N (blue cluster). The left panels show the variational data (generated at each step) (light blue points) and 16k generated data from the same model at the same epoch (brown points). Each cluster/color in the right panels corresponds to one class of the repertoire and class X (in white) represents the cumulative class of the alternative unknown classes (in this case, EARLY15, EARLY30, EARLY45, OT and WN ). Here, the training has been done using ld = 3 and classifier-EXT has been used to identify the generated syllables from the generator of instance Ex 6.

Figure 4 .

 4 Figure 4.45 in Appendix 4.4.4.

Figure 4 . 17 :

 417 Figure 4.17: Comparison between different latent space dimensions. Each line represents the average over 3 instances of training at a particular latent space dimension. Panel (a) shows how many syllables of the repertoire are covered by the generator across time. Panel (b) shows how many syllable per class have been generated in average. The dark lines show the evolution of the mean, whereas the light lines shows the evolution of the median. To build these two panels (a) and (b), only the repertoire's classes have been taken into account. Panel (c) shows the evolution of the variance of how many syllable per class have been produced. A 3-dimensional WaveGAN (orange line) reaches convergence as good as higher-dimensional WaveGANs (blue, green and magenta lines) and better than lower dimensional WaveGANs (purple and yellow lines). We varied the latent space dimension as ld = 1, 2, 3, 4, 5, 6 and we kept the training dataset fixed. The training of all the instances of WaveGAN has been done using the preliminary training dataset introduced in Appendix 4.1 and classifier-PRE (see Appendix 4.3.1) has been used to identify the syllables. A complete version of this figure is available in Appendix 4.4.4.

  to produce canary syllables in the case of a low dimensional latent space and of a limited training dataset size. In particular, we studied the capability of the generator of producing good quality outputs similar to the training outputs. We first used a RNN-based classifier to recognize the generated syllables. Then we evaluated them quantitatively and qualitatively. On the one hand, we looked at the statistical properties of a set of generated data (e.g., average and median number of syllables produced per class, variance, inception score). On the other hand, we used the mean spectrogram and the UMAP (McInnes Average and median of the number of syllables per class.

Figure 4 . 18 :

 418 Figure 4.18: Comparison between datasets of a different size. We varied the dataset size as d = 23456, 3600, 1600 and we kept fix the latent space dimension at ld = 3. Each line in this figure represents the average over 3 instances of training at a particular dataset size condition. Panel (a) shows how many syllables of the repertoire are covered by the generator across time. Panel (b) shows how many syllable per class have been generated in average. The dark lines show the evolution of the mean, whereas the light lines shows the evolution of the median. To build these two panels (a) and (b), only the repertoire's classes have been taken into account. Panel (c) shows the evolution of the variance of how many syllable per class have been produced. A dataset of bigger size (blue line) allows better and faster convergence than having a dataset of lower sizes (red and green lines). The training of all the instances of WaveGAN has been done using the preliminary training dataset introduced in Appendix 4.1 and classifier-PRE (see Appendix 4.3.1) has been used to identify the syllables. A complete version of this figure is available in Appendix 4.4.4.

  ity of the training. For instance, Donahue et al. (2018) measured the Euclidian distance in the space of log-Mel spectrograms (1) within the training and the generated data (to measure the intra-dataset diversity with respect to the training data), and (2) between the training and the generated data (to show the ability of WaveGAN of producing sounds not belonging to the training dataset). The mean and median of the number of syllables produced per class and the IS continuously increase over time and eventually drop if overtraining begins. We call overtraining the fact that, at a certain epoch, a drop in the IS (see Figure 4.10) or in the statistical properties of the classifier distribution (e.g., in the average number of elements per class in panel (b) of Figure 4.8) is shown. However, the concept of overtraining remains unclear.

  Figure 4.33.
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 419 Figure 4.19: Example of single syllables A. 100 random selected syllables from the totality of the phrases belonging to class A.

Figure 4 .

 4 Figure 4.20: Example of single syllables B1. 100 random selected syllables from the totality of the phrases belonging to class B1.

Figure 4 .

 4 Figure 4.21: Example of single syllables B2. 100 random selected syllables from the totality of the phrases belonging to class B2.

Figure 4 .

 4 Figure 4.22: Example of single syllables C. 100 random selected syllables from the totality of the phrases belonging to class C.

Figure 4 .

 4 Figure 4.23: Example of single syllables D. 100 random selected syllables from the totality of the phrases belonging to class D.

Figure 4 .

 4 Figure 4.24: Example of single syllables E. 100 random selected syllables from the totality of the phrases belonging to class E.

Figure 4 .

 4 Figure 4.25: Example of single syllables H. 100 random selected syllables from the totality of the phrases belonging to class H.

Figure 4 .

 4 Figure 4.26: Example of single syllables J1. 100 random selected syllables from the totality of the phrases belonging to class J1.

Figure 4 .

 4 Figure 4.27: Example of single syllables L. 100 random selected syllables from the totality of the phrases belonging to class L.

Figure 4 .

 4 Figure 4.28: Example of single syllables M . 100 random selected syllables from the totality of the phrases belonging to class M .

Figure 4 .

 4 Figure 4.29: Example of single syllables N . 100 random selected syllables from the totality of the phrases belonging to class N .

Figure 4 .

 4 Figure 4.30: Example of single syllables O. 100 random selected syllables from the totality of the phrases belonging to class O.

Figure 4 .

 4 Figure 4.31: Example of single syllables Q. 100 random selected syllables from the totality of the phrases belonging to class Q.

Figure 4 .

 4 Figure 4.32: Example of single syllables R. 100 random selected syllables from the totality of the phrases belonging to class R.

Figure 4 .

 4 Figure 4.33: Example of single syllables V . 100 random selected syllables from the totality of the phrases belonging to class V .
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 2 Appendix II: WaveGAN architecture

Figure 4 .

 4 Figure 4.34 shows the structure of the generator G and the discriminator D, highlighting the architecture, the input and the output of the models, and the value function definition (i.e., V ). The training data are pre-processed and stored in a tuple of np.float32 tensors representing audio waveforms (x in Figure 4.34).The generator model G takes as input the latent vector z ∼ U (-1, 1). In the original paper, z is an 100-dimensional vector, but

Figure 4 .

 4 Figure 4.34: WaveGAN architecture. The architecture of the generator model G is the same architecture used in DCGAN (Radford et al., 2015) with an additional convolutional layer to obtain 16384 samples (i.e., 1 s of sound). The generator takes a latent vector z ∼ U (-1, 1) as input. The discriminator model D takes alternatively the training data x and the output of the generator G(z) as input. After deconvolution, a representation of shape (16, 1024) is obtained. The outputs of the discriminator, D(x) and D(G(z)) are used as variable of the value function V (Gulrajani et al., 2017). Image adapted from Radford et al. (2015) .

  data obtained from classifier-PRE. (a) Distribution of the preliminary training (b) Confusion matrix classifier-PRE..

Figure 4 .

 4 Figure 4.35: Performance of the classifier on the training data. The upper left panel shows how classifier-REAL performs on the training dataset. The average number of syllables per class is ∼ 1k for each of the 16 classes of the repertoire. This is coherent with the fact that we are considering a balanced dataset containing ∼ 1k sample per class. The lower left panel shows how classifier-PRE performs on the training dataset. As for classifier-EXT, the alternative unknown classes (GAN1, GAN2 and GAN3 ) introduce a diffulty for the classifier. Although classifier-PRE suffers from a not cleaned training dataset (resulting in classification errors), it is able to well recognise the 16 classes of the repertoire. The upper right panel shows the confusion matrix (i.e. the level of confidence of the classifier in making the correct assignment) relative to classifier-REAL.

  5) where 1(x) is the indicator function, and considering a sequence of data x of length n timesteps , a sequence of labels y and a sequence of classifier outputs ŷ, both also of length n timesteps . The accuracy represents the capability of the classifier of making correct assignments for each time steps of MFCCs encoding the audio signal. An accuracy score close to 1 therefore indicates that the classifier is able to recognize the syllable categoryMean accuracy ClassifierTrain Validation classifier-PRE 0.9495 ± 0.0005 0.9460 ± 0.0032 classifier-REAL 0.9832 ± 0.0005 0.9815 ± 0.0024 classifier-EXT 0.9777 ± 0.0006 0.9756 ± 0.0025Table 4.3: Mean accuracy. Comparison between classifier-PRE (on the left), classifier-REAL (in the middle) and classifier-EXT (on the right) in terms of the median of the accuracy. For each model, the accuracy has been computed for the training set and for the validation set. The highest mean value has been reached with classifier-REAL where no alternative unknown classes have been introduced. The lowest mean value has been reached with classifier-PRE which has been trained with a preliminary non-cleaned dataset (see Appendix 4.1).

Figure 4 .

 4 Figure 4.37: Certainty of the classifier. Probability of each syllable (each point) to belong to a particular class for the trainin data (a) and the generated data (b).Each color corresponds to an interval starting at the value indicated in the legend and ending at the next color value. For example, brown points belong to a certain class of the vocabulary with a probability 0.9 < p s ≤ 1. An higher uncertainty of classifier-EXT can be observed when it is applied to the generated data: indeed, an higher number of syllables are assigned to a certain class with a probability p s ≤ 0.9 (all the points but the brown points).
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 4 Appendix IV: Extension of the qualitative analysis 4.4.1 Balanced UMAP representationA similar UMAP representation to the one shown in Figure4.12 can be obtained considering a balanced subset of ∼ 2100 generated syllables (100 per class) instead of 1k random generations at epochs 15, 106, 514 and 984. The fact that the generated syllables seem to be located at a bigger distance from the training data (Figure4.38(a-c, g)) when considering a balanced dataset of 2100 samples (with respect to the same representation obtained from 1k random generated syllables shown in Figure4.12(a-c, g)) can be related to the way UMAP determines the clusters. Indeed, as much generated data are given to UMAP as much the representation obtained takes into account the difference between the real and the generated data, showing a less compact representation.

Figure 4 .

 4 Figure 4.38: Syllable space representation across time. Syllable space representation obtained from the training dataset (16k syllables) and 2100 syllables (100 per class, when the class is present, for a total of 21 classes -the 16 classes of the repertoire and 5 alternative unknown classes, here grouped as class X ) generated at epochs 15, 106, 514 and 984 using UMAP (McInnes et al., 2018). Panels (a-c) and (g) show the training data (brown points) and the generated data (blue points). These four figures are different because the analyzed dataset differs for the 2100 generations specific of each epoch. Panels (d-f) and (h) show the same representation of panels (a-c) and (g) with the classes of syllables visible. Each cluster/color corresponds to one class of the repertoire and class X (in white) represents the cumulative class of the alternative unknown classes (in this case, EARLY15, EARLY30, EARLY45, OT and WN ). Here, the training has been done using ld = 3, the generator of instance Ex 6 has been used to generate the syllables and classifier-EXT has been used to identify both the generated data and the training data.
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 42 Stability of the trainingThe the mean spectrograms (Figure4.39) and the UMAP representations(Figure 4.40) show a similar representation for consecutive epochs (i.e., epochs 969, 984 and 999) which show the stability of instance Ex 6 around the convergence of the training. The differences in the UMAP representation (Figure4.40) are given by the fact that the set of generated data is different at each epoch.

Figure 4 .

 4 Figure 4.39: Stability of the mean spectrogram. Mean spectrogram of 1k syllables generated at epochs 969 (a), 984 (b) and 999. The three epochs share a similar representation of the syllables. Here, the training has been done using ld = 3, the generator of instance Ex 6 has been used to generate the syllables and classifier-EXT has been used to identify the generated data.

Figure 4 .

 4 Figure 4.40: Stability of UMAP representation. UMAP representation of the training dataset (16k syllables) and 1k generated data at epochs 969 (a-d), 984 (b-e) and 999 (d-f). The top panels (a-c) show the representation of the training data (brown points) and the generated data (light blue points) over time. The bottom panels (d-f) show the same representation highlighting the classes of the vocabulary. Each cluster/color correspond to one class of the repertoire and class X (in white) represents the cumulative class of alternative unknown classes (in this case, EARLY15, EARLY30, EARLY45, OT and WN ). Although the representation is slightly different (given the fact that the generated syllables vary across time,it is possible to observe how the generated syllable mix well with the clusters obtained from the training data at all epochs), it remains stable across consecutive epochs. Here, the training has been done using ld = 3, the generator of instance Ex 6 has been used to generate the syllables and classifier-EXT has been used to identify both the generated data and the training data.

Figure 4 .

 4 Figure 4.41: Exploration of the latent space: one component variation. First component.. We selected a random latent vector z ∼ R 3 ([-1, 1]) to create a baseline syllable. Then, we moved one by one the components of the vector by a variation step equal to v step = 0.05. We observed all the syllables produced to look at how they evolve and if there are non-smooth transitions. The upper panel of Figure 4.14 shows the exploration of the first component of the latent vector obtained with v step = 0.05. The syllable V contained in the red square on the right represent a point where a non-smooth transition has been detected. For these particular transitions, we considered the two consecutive syllables obtained from the first variation step (i.e., two consecutive syllables contained in two consecutive red squares) and we applied a variation step of v step = 0.01 to the first component of the latent vector to generate intermediate syllables. The bottom panel show the exploration of the non-smooth transition highlighted above. The syllables have been obtained the 3-dimensional generator obtained from instance Ex 6 and the name of the syllable for this analysis has been provided by classifier-EXT.

Figure 4 .

 4 Figure 4.42: Exploration of the latent space: one component variation. Second component.. We selected a random latent vector z ∼ R 3 ([-1, 1]) to create a baseline syllable. Then, we moved one by one the components of the vector by a variation step equal to v step = 0.05. We observed all the syllables produced to look at how they evolve and if there are non-smooth transitions. The upper panel shows the exploration of the second component of the latent vector obtained with v step = 0.05. The syllable V contained in the red square on the right represent a point where a non-smooth transition has been detected. For these particular transitions, we considered the two consecutive syllables obtained from the first variation step (i.e., two consecutive syllables contained in two consecutive red squares) and we applied a variation step of v step = 0.01 to the first component of the latent vector to generate intermediate syllables. The bottom panel show the exploration of the nonsmooth transition highlighted above. The syllables have been obtained the 3-dimensional generator obtained from instance Ex 6 and the name of the syllable for this analysis has been provided by classifier-EXT.

Figure 4 .

 4 Figure 4.43: Exploration of the latent space: one component variation. Third component.. We selected a random latent vector z ∼ R 3 ([-1, 1]) to create a baseline syllable. Then, we moved one by one the components of the vector by a variation step equal to v step = 0.05. We observed all the syllables produced to look at how they evolve and if there are non-smooth transitions. The upper panel shows the exploration of the third component of the latent vector obtained with v step = 0.05. The syllable V contained in the red square on the right represent a point where a non-smooth transition has been detected. For these particular transitions, we considered the two consecutive syllables obtained from the first variation step (i.e., two consecutive syllables contained in two consecutive red squares) and we applied a variation step of v step = 0.01 to the first component of the latent vector to generate intermediate syllables. The bottom panel show the exploration of the nonsmooth transition highlighted above. The syllables have been obtained the 3-dimensional generator obtained from instance Ex 6 and the name of the syllable for this analysis has been provided by classifier-EXT.

pendix 4 .

 4 1 to train WaveGAN. Then, we used the experimental setup described in Section 4.3.2. We used the preliminary classifier described in Appendix 4.3.1 to identify the syllables as elements of 19 classes: the 16 classes of the repertoire and 3 alternative unknown classes x ∈ X (GAN1, GAN2 and GAN3 ). Further details about these classes can be found in Appendix 4.3.1.

Figure 4 .

 4 Figure 4.45: Comparison between different latent space dimension: qualitative measure. Mean spectrogram of 1k syllables generated at a good epoch of training determined by looking at the classifier distibution (on top of each spectrogram) for ld = 1, 2, 3, 4, 5, 6. Whereas the representations obtained for ld = 1 (a) and ld = 2 (b) show a noisy representation for several syllables (e.g., syllable M in (b)), ld = 3 (c) shows a representation comparable to the one obtained for higher conditions (d-f). We relate the noise shown by syllable N to the fact that these trainings have been done using the preliminary dataset described in Appendix 4.1. Here, classifier-PRE has been used to identify the generated data .
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 446 Figure 4.46: Comparison between datasets of a different size. We varied the dataset size as d = 23456, 3600, 1600 and we kept fix the latent space dimension at ld = 3. Each line in this figure represents the average over 3 instances of training at a particular dataset size condition. Panel (a) shows how many syllables of the repertoire are covered by the generator across time. Panel (b) shows how many syllable per class have been generated in average. The dark lines show the evolution of the mean, whereas the light lines shows the evolution of the median. To build these two panels (a) and (b), only the repertoire's classes have been taken into account. Panel (c) shows the evolution of the variance of how many syllable per class have been produced. Panels (d-f) show the percentage of generated syllables belonging to each garbage class (GAN1, GAN2 and GAN3 ) across time in comparison with the percentage of syllables belonging to each garbage class in the training data. A dataset of bigger size (blue line) allows better and faster convergence than having a dataset of lower sizes (red and green lines). The training of all the instances of WaveGAN has been done using the preliminary training dataset introduced in Appendix 4.1 and classifier-PRE (see Appendix 4.3.1) has been used to identify the syllables. .
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 51 Figure 5.1: Vocal learning model schema.. The model contains three spaces: the perceptual space, the motor space, and the sensory space. A two-layer network connects the perceptual space (on the left) to the motor space (on the right). W t represents the synaptic connections between perceptual and motor spaces at each time step t. The motor control function G is the generator part of the GAN trained in Chapter 4 that enables sound production. At each time step t, the sensory response A t is a function of the actual sound production (i.e., A t = f (S t ), where S t is the actual sound produced by G). The sensory response function is composed of a classifier (defined in Section 4.3.4 of Chapter 4), then a normalization layer to scale the obtained activation to values in [0, 1].

  When softmax score is used to model the sensory response, the majority of motor explorations performed (from the beginning of the learning until time t f = 1500) show a very low sensory response (most of the time). The distribution of the sensory response does not show intermediate values between 0 and 1 both when classifier-REAL (Figure5.2a) and classifier-EXT (Figure5.3a) are used as sensory response function.On the contrary, if the sensory function is computed as a normalized raw score (defined by Equation5.1, the distribution of the sensory responses (relative to the motor explorations performed during learning) becomes more homogeneous. The usage of the raw score instead of the softmax score, allows a smoother perceptual encoding both when classifier-REAL (Figure5.2b) and classifier-EXT (Figure5.3b) are used as sensory response function. Figure5.4 summarizes how many motor explorations obtained a sensory response in the range [0.9, 1] over 1500 motor explorations performed during learning.

Figure 5 . 4 :

 54 Figure 5.4: Sensory response relative to the motor exploration.. Total amount (out of 1500) of motor exploration having either a softmax score (first and third lines) or a raw score (second and fourth lines) higher than 0.9 per class of syllables in the repertoire. The sensory activation vector has been obtained either using classifier-REAL (first and second lines) or classifier-EXT (third and fourth lines).

  and 5.6) can induce faster changes in the synaptic weights (i. e., in W t ) with respect to η = 0.01 (blue lines inFigures 5.5 

and 5 .

 5 6). One can see that a bigger learning rate induces a faster learning and thus a sharper increase (and an eventual decrease) of the perceptual activation of a given syllable. This is independent on which sensory response function we use (classifier-REAL or classifier-EXT ) or which normalization we implement (the softmax score or the raw score). Instead, different ways to compute the sensory response normalization (softmax score versus raw score) result in different learning curves. A softmax score results in a highly non-linear learning curve: the sensory response stays low for several time steps after the beginning of the learning, and increases sharply after a number of time steps which differs from syllable to syllable(Figure 5.5). Afterward, the sensory response remains high and stable for a limited time before a new decay begins after a certain time t critic . A faster decay is observed for η = 0.1 (red lines in Figure5.5). obtained from training WaveGAN (seeChapter 4). The motor control function is a generator model that enables the production of syllables resembling real recordings. Thus, the sensory space encodes the actual syllables produced. The sensory response function encodes the generated syllables in a rather low-dimensional space, i.e. the perceptual space. We used a classifier as the one introduced in Section 4.3.4 of Chapter 4 as sensory response function. The learning algorithm includes a random motor exploration strategy and a simple Hebbian learning rule: it drives the learning of the inverse model between the perceptual space and the motor space. We tested how the learning is influenced by (1) different learning rates, (2) different sensory response functions (classifier-REAL versus classifier-EXT ), and (3) different sensory response definitions (softmax versus raw score). We showed that a simple Hebbian learning rule allows the learning but does not prevent divergence after a certain time step t critic . The value of t critic is syllable-specific (Figure5.5) and depends on the learning rate. A higher learning rate results in faster learning dynamics and, thus, in an earlier t critic . We compared two different ways to compute the sensory response: the usage of a softmax function (to obtain the probability distribution) may result in sharp transitions dynamics (see Figure5.5), whereas a normalized raw score allows smoother transitions over time (see Figure5.6).

  The definition of a complete vocal learning model presupposes the definition of a motor control model enabling sound production (Chapter 2). Chapter 4 draws on generative neural networks and proposed the generator part of WaveGAN[START_REF] Donahue | Adversarial audio synthesis[END_REF] (Generative Adversarial Network (GAN)) as a generative model for canary songs. The generator is capable of producing good outputs, i.e., resembling the training data (Figure 4.5) even when dealing with a low-dimensional latent space (Figure 4.7). Moreover, the 3-dimensional latent space used as input space for the generator turned out to be smooth when exploring the transition from one syllable to another (Figure 4.16). Chapter 4 also contains two salient methods. The proposed classifier can classify the real and the generated syllables as belonging to one particular class of the training data. The recently introduced representation method Uniform Manifold Approximation and Projection (UMAP) that allows the representation of a complex dataset in a two hyperparameter space where clusters and connections between clusters can be analyzed. The fact that the generator part of WaveGAN works with a smooth low-dimensional input space suggests that it could be used as a motor control function in a vocal learning model. Chapter 5 introduces a vocal learning model with a full action-perception loop (Figure 2.1). That is a model containing a motor space, a sensory space, and a perceptual space connected by a motor control function, a sensory response function, and a learning architecture (Figure 5.1). The model aims to learn each of the syllables present in the target set independently. The motor control function is a generator model obtained from a 3-dimensional WaveGAN. The model classifier-REAL proposed in Chapter 4 is used as a sensory response: it provides the probability of each generation of belonging to each classof the target set. The connections between the motor space and the perceptual space (represented by the probability vector described previously) are initially weak and the learning is driven by a simple Hebbian learning rule. As for the simple model described in Chapter 3, the motor space is uniformly explored and no goal-directed exploration takes place.

A 3 -

 3 dimensional generator model of WaveGAN is used as a motor control function. This means that (1) the model enables sound production and (2) the sound depends on 3 motor parameters. As mentioned above, such a motor control function leads to a redundant motor space. As a consequence, a reflection about how to define the target of the learning is needed. The solution proposed in Chapter 5 considers a perceptual target instead of a motor target. That is, each time a new sound is produced by the model and is processed by the sensory response function, it is awarded by a perceptual score. The model proposed in Chapter 5 can be extended and completed by introducing reinforcement learning (RL).

(

  2005). In particular, the sensory response defined in Chapter 3 does not rely on any feature of the sound since there is no sound production in the proposed model. The complete vocal learning model proposed in Chapter 4 introduces the generation of the sound and the sensory response to process the sound. The sensory response function is an Echo State Network (ESN), a type of artificial neural network designed to manipulate sequential data and appropriate to solve the problem of sound classification. The sensory response encodes the sound in the perceptual space as a probability vector which discriminates the class to which it belongs to.

  function for different vocal learning models. That is, one could use the same generator (trained with different datasets) to model the motor control function in a vocal learning model trying to explain song learning in caries or speech development in humans. To test this possibility, the same generative model should be trained on different datasets to assess its capability of reproducing realistic outputs. Although there is the need to check the ability of each component of the model to deal with different data, potentially the model proposed in Chapter 5 can help explaining vocal learning in songbirds but open also to other perspectives. For instance, the same model structure could be used for vocal learning in humans or in artificial agents' communication.
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Table 2

 2 

		Goal-to-motor model	
	Internal		Motor
	representation		space
	Sensory		
	response		Motor
	function	space Sensory	control function

.4 contains a summary of the spaces and functions of sensorimotor models. Section 2.6 elaborates on the components

Table 2 .

 2 

1: Summary of the acronyms used in the review.

  compare direct inverse mapping and distal supervised learning in the context of speech generated both by a real human subject and by a synthesizer; Philippsen et al. (2014) aim to understand how to reduce the need for supervised training using only acoustic examples learning efficiently an inverse and a forward model. Oudeyer (2005) and Pagliarini et al. (2018a) test a normalised Hebbian rule to learn the inverse model. Liu and Xu (2014) test if it is possible to develop the acoustic-to-articulatory model by learning inverse kinematics in speech acquisition. More particular cases are presented by the works from Murakami et al. (2015) who test imitation learning using a recurrent neural network, Kröger et al.

(2009) who test a self-organised network (SOM), and

[START_REF] Barnaud | Computer simulations of coupled idiosyncrasies in speech perception and speech production with cosmo, a perceptuomotor bayesian model of speech communication[END_REF] 

who test a Bayesian model of speech communication.

Table 2 .
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	Perceptual space/	Internal representation	Dim	2 Discriminant space					-Syllable space	(localist encoding)			40 Syllable space	(localist encoding)					2 Formants (in Hz)						21 * 30 Autocorr. estimate	(t) for F0 and voicing	Acoustic trajectory in	2 * ? a 2D subspace	(t) of the formants
	Sensory	response	Polynomial	interpolation	+ CDA				-					-				All-zero	filter	+ Autoregr.	+ Gaussian	selectivity					Autocorr.		Linear	combination	+ Gaussian	selectivity
	Pre-processing	of the sound		4 Formants (in Hz)						-					-						2 Formants (in Hz)						Spectrogram	via JSRU vocoder	4 Formants (in Barks)
	Sensory	space: SP(?)		S						S					-						S							S		-
	Motor control		Maeda						Source-filter		model			-					2D ODE model	(Pipes' walls	+ Air pressure)						VLAM		de Boer model
	Motor space		Lip, larynx, jaw,	tongue and apex	Fundamental	frequency and peak	frequency of sound,	sharpness of	band-pass filter,	gain of the	amplifier	Coordinates	(arb.)	Interarytenoid,	cricothyroid,	styloglossus,	levator palatini,	genioglossus,	hyloglossus,	mylohyoid,	orbicularis oris,	masseter	Jaw, tongue, lip,	voicing,	fundamental	frequency and	larynx height	Lip rounding,	tongue height,	tongue position.
			Dim	8						4					40						29							9		3
	Subject		H						SB					SB						H							H		H
				Bailly						Doya and Sejnowski					Troyer and Doupe						Westerman and Miranda							Howard and Huckvale		Oudeyer

3: Summary table of the spaces and functions of sensorimotor models. -: Not Available; Arb.: arbitrary; Dim: dimension; DIVA: directions into velocities of articulators; IMS: identical to motor space; H: human; JSRU: joint speech research unit; LDA: linear discriminant analysis; M: marmoset; MFCC: mel frequency cepstral coefficients; PCA: principal component analysis; S: sound; SB: songbird; SP?: Sound Production?; VLAM: vocal linear articulatory model

Table 2 .

 2 

	Perceptual space/	Internal representation	Dim	720 Neural activity	neurons			Low frequency	2 power +	spectral change		3 Formants (in Barks)			-Vector of continuous	values		4 sec. Phoneme stream		2 Subspace of the for-	mants		3 * 2 Formants (in Hz)	2(t) + intensity	3 Formants (in Barks)		Syllable space	5 (Time-normalized	F0 samples)
	Sensory	response		-				Differenced	narrow-band	spectrogram		Rescale to	[0,1]			-				SAPI 5.4		Linear com-	bination		Rescale to [-	1,1]	-			Sampling
	Pre-processing	of the sound		-				Low pass filtered	spectrogram		3 Formants (in Barks)				-				Phonemes	(CMU alphabet)	3 Formants (in Hz)			2 Formants (in Hz)		3 Formants (in Barks)			F0 continuous traj.	(2-dim)
	Sensory	space: SP(?)		S					S				S				S				S		S			S		-			-
	Motor control		Source-filter	model				VLAM				Motor plan state				VTCalcs				eSpeak		VLAM			DIVA		VLAM			quantitative Target	Approximation
	Motor space		Pitch period	and height	+ filter linear	predictive coeff.	Jaw, tongue, lip,	voicing,	fundamental	frequency and	larynx height	Back-front, low-	high	Jaw, tongue, lip,	voicing,	fundamental	frequency, larynx	height and nose	-	Jaw, tongue, lip,	separation and	larynx height	7 param. from the	PCA on the vocal	tract shape	Lip, tongue body	and dorsum	Target slope	and height,	rate of target	approximation
			Dim	12					4 to		9		2				10				-		7			7		3			3
	Subject		Fiete et al. SB					Howard and Messum H				Kröger et al. H				Howard and Messum H				Lyon et al. H		Moulin-Frier and Oudeyer H			Moulin-Frier et al. H		Moulin-Frier et al. H			Liu and Xu H

3: Summary table of the spaces and functions of sensorimotor models. -: Not Available; Arb.: arbitrary; Dim: dimension; DIVA: directions into velocities of articulators; IMS: identical to motor space; H: human; JSRU: joint speech research unit; LDA: linear discriminant analysis; M: marmoset; MFCC: mel frequency cepstral coefficients; PCA: principal component analysis; S: sound; SB: songbird; SP?: Sound Production?; VLAM: vocal linear articulatory model

Table 2 .

 2 

	Perceptual space/	Internal representation	Dim		39 * ? Acoustic trajectory		(t)		4	(+1 Phoneme classes	empty)	--			2 Goal vowel embed-		ding	Acoustic trajectory	2 * in the 2D	5(t) space of the first	two formants	Acoustic trajectory	in the 2D	4 / 12 space of the first	three formants and	phonation/normalized	MFCCs	--	3 * 2 Formants (in Hz)	2(t) + intonation	-Specific need	(ex: thirst, hunger)
	Sensory	response	Logaritmic	energy	+ 12 MFCC	features		Reservoir	(1000 units)		-		PCA	+ LDA (10 to	2 dim.)			DIVA						DIVA	-	of Average	trajectories	-
	Pre-processing	of the sound			-				Dual Resonance	Non-Linear	filter model	-		3 Formants	+ 13 MFCC features			-						-	-	2 Formants (in Hz)	IMS
	Sensory	space: SP(?)			S						S				S			S					S						S	S	S	-
	Motor control			VocalTractLab						VocalTractLab				Praat			VocalTractLab					DIVA						DIVA	Source-filter	model	DIVA	-
	Motor space		22 vocal tract	arb. param. +	glottis param.	Tongue, lip,	hyoid, jaw,	velic,	velum shape	Jaw and lip tra-	jectory	20 vocal tract	arb. param. +	glottis param.	7 param. from	the PCA on the	vocal tract shape		11 param.	for vocal tract	and 2 param.	for phonation	Air pression,	vocal fold tension,	time constant	10 position of the	articulators + 3	phonation	parameters	Arb.
			Dim		26						20				2			24					7						11	3	13*2	3
	Subject			Philippsen et al. H						Murakami et al. H				Warlaumont and Finnegan H			Philippsen et al. H					Forestier et al. H						Najnin and Banerjee H	Teramoto et al. M	Acevedo-Valle et al. H	Cohen and Billard H

3: Summary table of the spaces and functions of sensorimotor models. -: Not Available; Arb.: arbitrary; Dim: dimension; DIVA: directions into velocities of articulators; IMS: identical to motor space; H: human; JSRU: joint speech research unit; LDA: linear discriminant analysis; M: marmoset; MFCC: mel frequency cepstral coefficients; PCA: principal component analysis; S: sound; SB: songbird; SP?: Sound Production?; VLAM: vocal linear articulatory model Dim: dimension; DIVA: directions into velocities of articulators; IMS: identical to motor space; H: human; JSRU: joint speech research unit; LDA: linear discriminant analysis; M: marmoset; MFCC: mel frequency cepstral coefficients; PCA: principal component analysis; S: sound; SB: songbird; SP?: Sound Production?; VLAM: vocal linear articulatory model

Table 2 . 4 :

 24 Summary table of the learning frameworks of sensorimotor models.

	Evaluation	Measure Space	Real forward	measure and	Deviation its estimation	by the	interpolator
	Learning		Gradient	inversion	+ deviation	measure
		Dimension				Motor	
	Exploration	Goal-directed Random				X	
		Other					
	Architecture	RNN FF NN			1-layer	perceptron
	Internal	model	(if present)			I + F	
	Subject					H	
						Bailly		Doya and Sejnowski

-: Not Available; BMU: Best Matchin Unit; CMA-ES: covariance matrix adaptation -evolution strategy; COSMO: communicating objects through sensorimotor operations; ESN: Echo State Network; F: forward model; FF NN:feedforward neural network; GMM: gaussian mixture models; H: human; I:inverse model; ilGMM: incremental learning GMM; Int: Internal representation; MSE: mean square error; O: optimization algorithm; RL: reinforcement learning; RBF: radial basis function; RNN: recurrent neural network; S: supervised; SB: songbird; SSE: sum of squared error; SOM: self-organizing maps; STDP:spike timing dependent plasticity; U: unsupervised; X: distribution not specified

Table 2 . 4 :

 24 Summary table of the learning frameworks of sensorimotor models.

	Evaluation	Measure Space	Auditory	salience Spectral	+ effort properties	(voicing of the sound,	degree motor properties	in VLAM)	Distance Motor pattern	estimation	Auditory Spectral	salience, properties	diversity of the sound,	and effort motor properties	F-measure Perceptual		Competence Goal	progress	Distance Perceptual	Dispersion	Theory Perceptual	formula	SSE Perceptual	MSE Perceptual
	Learning	Dimension		Reinforcement	Motor learning via	gradient descent		Motor Hebbian	normalized rule		Sensory, Quasi-Newton	Motor gradient ascent		Perceptual -		Goal Reaching	algorithm	Goal GMM over	motor variables	Motor COSMO	Goal Online learning,	Backpropagation.	Goal Linear regression
	Exploration	Goal-directed Random				X					BMU			X			Syllable	probability	Competence	progress	Competence	progress	X	X	Uniform
		Other				-					SOM			Optimization			-		Optimization		Bayesian		Bayesian
	Architecture	FF NN RNN				--											--							2-layer	perceptron	ESN	(firing rate	reservoir)
	Internal	model	(if present)								I + F								I + F		I		I + F	I	I + F
	Subject					Howard and Messum H					Kröger et al. H			Howard and Messum H			Lyon et al. H		Moulin-Frier and Oudeyer H		Moulin-Frier et al. H		Moulin-Frier et al. H	Liu and Xu H	Philippsen et al. H

-: Not Available; BMU: Best Matchin Unit; CMA-ES: covariance matrix adaptation -evolution strategy; COSMO: communicating objects through sensorimotor operations; ESN: Echo State Network; F: forward model; FF NN:feedforward neural network; GMM: gaussian mixture models; H: human; I:inverse model; ilGMM: incremental learning GMM; Int: Internal representation; MSE: mean square error; O: optimization algorithm; RL: reinforcement learning; RBF: radial basis function; RNN: recurrent neural network; S: supervised; SB: songbird; SSE: sum of squared error; SOM: self-organizing maps; STDP:spike timing dependent plasticity; U: unsupervised; X: distribution not specified

Table 2 . 4 :

 24 Summary table of the learning frameworks of sensorimotor models.

	Evaluation	Space	
		Measure	
	Learning		
		Dimension	
	Exploration	Goal-directed Random	
		Other	
	Architecture	RNN FF NN	
	Internal	model	(if present)
	Subject		
			Murakami et al.

-: Not Available; BMU: Best Matchin Unit; CMA-ES: covariance matrix adaptation -evolution strategy; COSMO: communicating objects through sensorimotor operations; ESN: Echo State Network; F: forward model; FF NN:feedforward neural network; GMM: gaussian mixture models; H: human; I:inverse model; ilGMM: incremental learning GMM; Int: Internal representation; MSE: mean square error; O: optimization algorithm; RL: reinforcement learning; RBF: radial basis function; RNN: recurrent neural network; S: supervised; SB: songbird; SSE: sum of squared error; SOM: self-organizing maps; STDP:spike timing dependent plasticity; U: unsupervised; X: distribution not specified

Table 2 . 4 :

 24 Summary table of the learning frameworks of sensorimotor models.

	Evaluation	Measure Space	Auditory Spectral properties salience, of the sound, diversity motor properties	Dispersion	Theory Perceptual	formula
	Learning	Dimension	Reinforcement	Motor learning via	gradient descent		Perceptual COSMO
	Exploration	Random Goal-directed		X		Accomodation	strategy
		Other		-			Bayesian
	Architecture	RNN FF NN		-		
				-		
	Internal	model	(if present)			
	Subject			H			H
				Howard and Birkholz			Barnaud et al.

-: Not Available; BMU: Best Matchin Unit; CMA-ES: covariance matrix adaptation -evolution strategy; COSMO: communicating objects through sensorimotor operations; ESN: Echo State Network; F: forward model; FF NN:feedforward neural network; GMM: gaussian mixture models; H: human; I:inverse model; ilGMM: incremental learning GMM; Int: Internal representation; MSE: mean square error; O: optimization algorithm; RL: reinforcement learning; RBF: radial basis function; RNN: recurrent neural network; S: supervised; SB: songbird; SSE: sum of squared error; SOM: self-organizing maps; STDP:spike timing dependent plasticity; U: unsupervised; X: distribution not specified
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	species-specific vocalizations as juveniles by imitating surrounding adults. The vocal
	learning process displays distinct (although partially overlapping) processes. First, dur-
	ing a sensory learning phase, young subjects memorize adult vocalizations, and build
	neuronal representations of their species vocal gestures. Then, in a sensorimotor phase,
	they start vocalizing and progressively converge to a good imitation of previously ex-
	prienced vocalizations. It is believed that during the early phase of this sensorimotor
	process, called babbling, the subject maps representation of sensory (auditory) targets
	to the corresponding motor commands. In other words, the subject learns an inverse
	model. In this study, we assume the auditory selective responses to be already in place
	and investigate biological plausible mechanisms to learn an inverse model enabling this
	sensorimotor mapping.
	3.1 Introduction
	Imitative sensorimotor learning can be though as a control problem aiming to map the
	sensory input into a motor output. For example, humans and songbirds learn to produce
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  That is, the distance between what the model targets should have learned and what he effectively learned reaches a plateau. After have chosen = 1 at t = t 0 , given an interval of time ∆t = [k, k + 2N ] of measure 2N , we defined

	=	1 2N	Σ k+2N k+N d t -Σ k+N k	d t ,	(3.11)

Table 4 .

 4 1 summarizes the IS of the training dataset and each of the selected instances: we considered the highest IS within the time range shown in Figure 4.10.

Table 4 .

 4 1: Inception Score. IS of the training dataset and the selected instances: we considered the highest IS within the time range shown in Figure 4.10. For our dataset, IS ∈ [1, 16].

	Dataset	Epoch IS
	Training	-	15,92
	Ex 0	800	13,51
	Ex 2	515	5,65
	Ex 6 (baseline) 984	13,07

  representation of the spectrograms. Moreover, if the applied step for moving in the latent space is too big (i.e., it allows non-smooth transitions), reducing the step allows to obtain ) recordings from juveniles. These experiments could help understanding syllable generation in songbirds and the limitations of our model. In principle, the addition of more syllables or recordings from different canaries should not arise particular complications for WaveGAN, even if it would introduce complexity in the training dataset and it would increase the computational time (i.e., the number of epochs needed to obtain a generator able to output good syllables). On the contrary, the attempt of using the model on other species is not trivial. For instance, although zebra finches represent an important model for vocal learning, they produce a not purely harmonic song which could not be the ideal training dataset for WaveGAN. Moreover, with respect to canaries, zebra finches exhibit a more complex spectrogram, which might be difficult to categorize for a human judge, due to a poorer perceived visual quality of the spectrograms.[START_REF] Donahue | Adversarial audio synthesis[END_REF] trained WaveGAN on a set of wild recordings from different bird species: the generated samples were noisy due to the variability of the dataset without enough recordings for each specie. By introducing a dataset of recordings from a single adult canary, we simplified the complexity of the training dataset and obtained qualitatively better results. The fact that we deal with single syllables simplifies the analysis of the performance of the generator and the exploration of the latent space. If the generator model could produce sequences of syllables it would be difficult to perform the qualitative analysis we propose here (e.g., the mean spectrograms or the transition from one syllable to another in the latent space). Moreover, a model able to generate single syllables may be an adequate tool to generate full canary songs. Such model would require (1) an estimation of the distribution of the delay within syllables of the same class and (2) a probabilistic model estimating (i) how many time a syllable is repeated and (ii) the upcoming syllable in the phrase. Indeed, canary songs are composed of sequences of phrases, which are themselves repetitions of the same syllable with smooth transitions.The number of syllable repetitions in one phrase is variable. Thus, a GAN trained to produce bouts of a few seconds would not be able to reproduce the variability of canary song with much flexibility. On the contrary, a GAN like the one proposed, which is able to produce smooth controllable transitions between syllables, is likely to be a good tool to generate full canary songs.Training WaveGAN on both juveniles and adult data is an interesting and rather straightforward extension of this work. For instance, it can be useful to design a motor control function that could produce any possible canary sounds, from juveniles to adults.This would be useful in computational experiments in order to model the sound productions at different stages of learning. It could also be useful for behavioral experiments with birds. A similar experiment has been proposed by[START_REF] Sainburg | Latent space visualization, characterization, and generation of diverse vocal communication signals[END_REF]: generated samples from a Variational Autoencoder (VAE) has been played to a group of European starlings in a decision making experiment. The birds can learn the task with a high proficiency, and the neural responses obtained from electrophysiology vary smoothly when small variations are applied to the stimulus. from the 16 classes. Some syllables (such as syllables belonging to class O, N , or C)

	such smooth transitions (see Figure 4.14). As a perspective to this study, one could
	explore the possibility of enlarging the training dataset by including (1) more classes
	of syllables, (2) more birds (in terms of number), (3) recordings from different species
	or (4

In contrast with internal forward models, goal babbling literature call forwards models as the real forward model that is given by the world(Rolf et al., 

[START_REF] Heyes | Where do mirror neurons come from?[END_REF][START_REF] Rolf | Goal babbling with unknown ranges: A direction-sampling approach[END_REF][START_REF] Reinhart | Autonomous exploration of motor skills by skill babbling[END_REF][START_REF] Philippsen | Goal-directed exploration for learning vowels and syllables: A computational model of speech acquisition[END_REF].

Mode collapse is a form of GAN failure. The generator starts to produce the same set of outputs over and over, provoking an over-optimization of these outputs. As a consequence, the discriminator

The idea is to conceptualise the learning algorithm as a mathematical function going from the domain, called learning domain, to its co-domain, called learning image. For simplicity, we will use learning image instead of learning co-domain.

HVC was originally High Vocal Center.

on January 13, 2016 http://rstb.royalsocietypublishing.org/ Downloaded from

Formants (in Barks) -2 Formants (in Barks)

Localist and one-hot encoding is probably the simplest orthogonal representation one can have. It consists of a binary encoding where an input is represented by one feature at 1 and all the other features at 0: e.g.

4-dimensional vectors [0 1 0 0] and [0 0 0 1] could represent two different inputs with localist encoding.

Given a general linear system Ax = b, its condition number is defined as k(A) = ξ max (A)/ξ min (A), where ξ max (A and ξ min (A) are respectively the maximal and minimal singular values of A. The value k(A) represents the variability of the solution, so how much the solution x changes consequently to a change in b. The lower bound for the condition number is k(A) = 1, whereas it can reaches the value k(A) = ∞ if the matrix A is singular.

https://github.com/reservoirpy/reservoirpy

The classification provided by the classifier is needed to grup the syllables and represent them using, for example, the mean spectrogram or UMAP
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Chapter 4

What does the Canary Say? WaveGAN Applied to Birdsong Abstract Speech generation is a complex problem which has been approached by several studies.

Generative Adversarial Networks (GANs) have shown very good abilites generating images, and more recently sounds. An example is given by WaveGAN. We aim to test the ability of WaveGAN to produce realistic canary syllables under the condition of having a small latent space dimension. We first trained WaveGAN varying the latent space dimension from 1 to 6 on a dataset of 16 different canary syllables. We show that a latent space of dimension 3 is enough to produce sounds of quality often indistinguishable from real canary ones, while reproducing all the types of syllables of the dataset. Then, we built a RNN-based classifier able to recognise the syllables of the dataset. Afterwords, we use this classifier to identify the generated samples. We measure both quantitatively and qualitatively the output across GAN training epochs and latent dimension. We also compare different instances of training. Importantly, we show that a 3-dimensional GAN is able to both reproduce the syllables and generalise by interpolating between the syllables. We used UMAP to qualitatively show the similarities between the training data and the generated data, and between the generated syllables and the interpolations produced.

Interestingly, this study provides tools to train simple sensorimotor models, as inverse models, from perceived sounds to motor representations of the same sounds. Both the RNN-based classifier and the small dimensional GAN provide a way to learn the mappings of perceived and produced. This chapter will be submitted for pubblication soon. et al. (2016) and [START_REF] Denton | Deep generative image models using a laplacian pyramid of adversarial networks[END_REF] to evaluate GANs trained on MNIST or CIFAR-10 (image datasets). Similarly, [START_REF] Donahue | Adversarial audio synthesis[END_REF] used human judgment to evaluate WaveGAN performance when training on SC09 (speech dataset). We rely first on the mean spectrogram obtained from the generated data over time (see Figure ??) to observe at once how the average quality of syllables increases over time, becoming more and more comparable with the repertoire (see Figure 4.3). Then, we rely on the UMAP [START_REF] Mcinnes | Umap: Uniform manifold approximation and projection for dimension reduction[END_REF] representation of the spectrograms to compare the generated data with the training data. On the one hand, the generated data belong to the same cluster as the training data (see Figure 4.12) if represented together. On the other hand, when observing the generated data alone (see Figure 4.13), generated data form clusters as the training data do, and a continuity across clusters arises. The power of using UMAP representation to reduce the complexity of songbirds spectrograms has first been shown by [START_REF] Sainburg | Latent space visualization, characterization, and generation of diverse vocal communication signals[END_REF]: an exhaustive set of representations show how UMAP helps in representing not only the repertoire of a single species but also different species at the same time. The result is a two-dimensional representation where the two variables are not features-related but rather two hyperparameters that enables a synthetic, clear and simple representation of the original manifold. In the case of data not familiar for nonexpert humans (such as canary syllables), one could design a behavioral protocol to test the accuracy by measuring how canaries perceive the generated data. Although such an experiment could be very interesting, it is complicated to settle and require an expertise outside of the machine learning domain.

Contents

Additionally, to understand whether or not the generator is able to generalize and produce samples not belonging to the training dataset we explored the latent space.

We analyzed (1) how a small change in the latent space affects the generated syllable and (2) the transition between two different generated syllables. The training dataset is a discrete set, as shown in Figure 4.3, whereas the clusters obtained from a set of generated data appears less discontinuous when there is the transition between one class and another (see Figure 4.13). By moving from one syllable to another in the latent space by doing realistic steps, it is possible to move by continuous steps in the UMAP

Appendix I: Syllable Selection

Preliminary training dataset

We started from the same canary dataset as described in Section 4.3.1. We performed the following steps on each phrase.

1. We downsampled each phrase to a sampling rate of 16000Hz.

2.

From each phrase we made a first syllable selection tuning three parameters: the amplitude threshold, the minimal duration of the syllable and the duration of the gap (i.e., the silence between two consecutive syllables).

3. We added silence after each sample up to a duration of 1s.

That is, we did not filter the syllables and we did not remove the errors as we did for the dataset described in Section 4.3.1. The results is a dataset with errors more or less evident depending on the syllable class. We did this choice to be able to start training the network and the classifier and see preliminary results while investigating the syllable selection.

Semi-automatic error detection

As mentioned in Section 4.3.1, we manually check the syllables after the automatic selection. In this section we explain which errors could arise from the automatic selection and how we solved them. First, our algorithm could have failed in cutting a recording because of the presence of a too short gap between syllables. In this case we obtained samples containing more than one syllables. Alternatively, some samples could be too short, which means they contain only a part of the syllable. Finally, a bad initial classification (e.g. a phrase of class A was wrongly classified as class M ) could lead either to well-selected syllables belonging to the wrong class, or, again, to a not effective cut. Applying a semi-automatic procedure for syllable selection, including errors, we were able to select 78827 syllables 4.3 Appendix III: Classifier

Preliminary classifier

We first trained a classifier using the preliminary dataset described in Appendix 4.1. The classifier is able to differentiate 19 classes: the 16 classes of the repertoire and three alternative unknown classes: GAN1, GAN2 and GAN3. We refer to this model as to classifier-PRE, where PRE stands for preliminary (since we used the preliminary dataset described in Appendix 4.1 to train it). As explained in the main paper, to train the classifier to recognize the unknown classes, in addition to the usual training dataset, we used three additional sets of generated samples. In summary, the unknown classes and the corresponding dataset we used to train the classifier are listed below:

• GAN1 : 1k samples of early generations, obtained after ∼ 3 epochs of one instance of a 3-dimensional GAN;

• GAN2 : 1k samples of early generations, obtained after ∼ 100 epochs of one instance of a 1-dimensional GAN;

• GAN3 : 1k samples of early generations, obtained after ∼ 100 epochs of one instance of a 3-dimensional GAN;

The model classifier-PRE is able to well recognise the 16 classes of the repertoire, but several classification errors can be observed (i.e., the 16 syllables are not balanced) in the left bottom panel (Figure 4.35). This could be a result of using a not cleaned dataset for training. In any case, as for classifier-EXT, the alternative unknown classes (GAN1, GAN2 and GAN3 ) are only represented by a minority of samples.

Robustness of the classifier

The evaluation of the robustness of the three classifier (classifier-PRE, classifier-REAL and classifier-EXT ) has been performed using a 10 folds cross-validation over the three corresponding training datasets. For each fold, 5 different instances of each classifier were of each sample and to correctly assign this category to each time steps representing this sample.

Both classifier-REAL and classifier-REAL show an higher level of accuracy with respect to classifier-PRE (Figure 4.36). As summarized in Table 4.3 the mean accuracy for the validation set is 0.9460±0.0032 for classifier-PRE, 0.9815±0.0024 for classifier-REAL and 0.9756±0.0025 for classifier-EXT. The lower accuracy found for classifier-PRE could be related to the fact that it was trained on the preliminary training dataset described in Appendix 4.1 which contains a high number of errors in the ground truth. 

Latent space dimension

Complete version of Figures 4.17 

Sensory system

The dimension of the perceptual space depends on how many different syllables the model The distribution of the sensory repsonse obtained using the softmax score concentrates around 0 and, eventually, shows values close to 1 (over 1500 motor explorations, ∼ 1000 are close to 0). The distribution of the sensory response obtained using the raw score (defined by Equation 5.1) is more homegeneous, especially for small values (smaller than 0.5). Here, n A = 16, n M = 3, W t 0 ∈ [-0.001, 0.001], t f = 1500, η = 0.01 and classifier-EXT is used as the first layer of the sensory response function. For almost all the syllables, the sensory response gradually increases until a value of 1. Some syllables still show a sharp increase (e.g., syllable M in panel (a) or syllable R in panel (b)). The stability drops after a certain time. A higher learning rate results in faster learning dynamics. The sharpness is more pronounced for a bigger learning rate. Here, n A = 16, n M = 3, W seed = 0.001, t f = 1500 and classifier-EXT is used as the first layer of the sensory response function.

Such decay is due to the fact that the learning is driven by a simple Hebbian learning rule which is not expected to converge because it will never stop updating the weights (due to the absence of normalization). One can notice that a decay is also expected for those syllables that are stable at 1 at t f = 1500: due to time constraints, it has not been possible to perform longer simulations. obtained from all the sounds generated after learning (if a sound S produced at a certain time t i is such that raw score S t i ≥ 0.9, then we consider all the sounds produced during learning from t i and until t f .). An empty box in panel (b) means that for that class, for all the produced sounds, we obtain raw score S t < 0.9, f orallS, ∀t 0 < t < t f . The learning rate is fixed at η = 0.01 and either classifier-REAL or classifier-EXT is used as the first layer of the sensory response function. Here, n A = 16, n M = 3, W t 0 ∈ U [-0.001, 0.001], t f = 1500. The raw score has been used to normalize the output of the classifier.

Alternatively, the usage of a normalized raw score as the one defined by Equation 5.1 results in a less abrupt trend (Figure 5.6) with respect to the dynamics observed in Figure 5.5. A sharp increase still happens for some syllables (e.g., syllable M in Figure 5.6(a) or syllable R in Figure 5.6(b)), but in general the sensory response evolution is more gradual. Even if not shown, a decay is expected for those syllables that are stable at 1 at t f = 1500. Due to time constraints, it has not been possible to perform simulations longer than 1500 time steps.

The sounds produced after learning (for each class of syllables, we consider the syllable as learned when the raw score is stably higher than 0.9) is stable for any class of syllables both when classifier-REAL (Figure 5.7a) and classifier-EXT (Figure 5.7b) is used as the first layer of the sensory response function. Empty boxes in Figure 5.7b mean that for syllable O and syllable J1 the raw score is never higher than 0.9 (see Figure 5.6). 

Discussion

In this chapter, we built a vocal learning model with a full action-perception loop (as the model suggested by to model the limit in the number of synapsis that a neuron can do in nature [START_REF] Abbott | Synaptic plasticity: taming the beast[END_REF]. Moreover, the introduction of a non-linear sensory response to the model