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Résumé vulgarisé

L’apprentissage de la parole chez les enfants est similaire à celle du chant chez les oiseaux.
Ils passent par les mêmes phases de développement: ils commencent par écouter leurs
parents, puis ils essayent de reproduire leurs vocalisations en babillant, pour enfin produire
des sons de plus en plus proches de ceux de leurs parents. L’oiseau chanteur a des circuits
cérébraux spécifiques dédiés à cet apprentissage, ce qui en fait un modèle idéal pour
explorer les mécanismes neuronaux de l’apprentissage vocal par imitation. Dans cette
thèse, on modélise cet apprentissage à l’aide d’une boucle perceptuo-motrice dans laquelle
un mécanisme d’évaluation sensorielle guide l’apprentissage. On utilise notamment des
développements récents de l’intelligence artificielle (réseaux antagonistes génératifs) pour
produire les chants d’oiseaux. Cela nous permet de mieux comprendre l’apprentissage
vocal par imitation, et plus généralement l’apprentissage sensorimoteur.

English version

Humans learn to speak in a similar way as how songbirds learn to sing. Both learn to
speak/sing by imitation from an early age going through the same stages of development.
First they listen to their parents’ vocalizations, then they try to reproduce them:
initially babbling, until their vocal output mimics those of their parents. Songbirds
have dedicated brain circuits for vocal learning, making them an ideal model for
exploring the representation of imitative vocal learning. My research project aims to
build a bio-inspired model to describe imitative vocal learning. This model consists in
a perceptual-motor loop where a sensory evaluation mechanism drives learning. The
sound production is obtained from real recordings, using recent developments in artificial
intelligence. This project, in between computer science and neuroscience, may help to
better understand imitative vocal learning, and more generally sensorimotor learning.
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Titre : Modélisation du réseau neuronal responsable de l’apprentissage du
chant chez l’oiseau chanteur

Resumé
Pendant la première période de leur vie, les bébés et les jeunes oiseaux présentent des
phases de développement vocal comparables : ils écoutent d’abord leurs parents/tuteurs
afin de construire une représentation neurale du stimulus auditif perçu, puis ils commen-
cent à produire des sons qui se rapprochent progressivement du chant de leur tuteur.
Cette phase d’apprentissage est appelée la phase sensorimotrice et se caractérise par la
présence de babillage. Elle se termine lorsque le chant se cristallise, c’est-à-dire lorsqu’il
devient semblable à celui produit par les adultes.

Il y a des similitudes entre les voies cérébrales responsables de l’apprentissage senso-
rimoteur chez l’homme et chez les oiseaux. Dans les deux cas, une voie s’occupe de la
production vocale et implique des projections directes des zones auditives vers les zones
motrices, et une autre voie s’occupe de l’apprentissage vocal, de l’imitation et de la plas-
ticité. Chez les oiseaux, ces circuits cérébraux sont exclusivement dédiés à l’apprentissage
du chant, ce qui en fait un modèle idéal pour explorer les mécanismes neuronaux de
l’apprentissage vocal par imitation.

Cette thèse vise à construire un modèle de l’apprentissage du chant des oiseaux par
imitation. De nombreuses études antérieures ont tenté de mettre en œuvre l’apprentissage
par imitation dans des modèles informatiques et partagent une structure commune. Ces
modèles comprennent des mécanismes d’apprentissage et, éventuellement, des stratégies
d’exploration et d’évaluation. Dans ces modèles, une fonction de contrôle moteur permet
la production de sons et une réponse sensorielle modélise soit la façon dont le son est
perçu, soit la façon dont il façonne la récompense. Les entrées et les sorties de ces
fonctions sont dans plusieurs espaces: l’espace moteur (paramètres moteurs), l’espace
sensoriel (sons réels), l’espace perceptif (représentation à faible dimension du son) ou
l’espace des objectifs (représentation non perceptive du son cible).

Le premier modèle proposé est un modèle théorique inverse basé sur un modèle
d’apprentissage vocal simplifié où l’espace sensoriel cöıncide avec l’espace moteur (c’est-
à-dire qu’il n’y a pas de production sonore). Une telle simplification permet d’étudier
comment introduire des hypothèses biologiques (par exemple, une réponse non linéaire)
dans un modèle d’apprentissage vocal et quels sont les paramètres qui influencent le plus
la puissance de calcul du modèle. Afin de disposer d’un modèle complet (capable de
percevoir et de produire des sons), nous avions besoin d’une fonction de contrôle moteur
capable de reproduire des sons similaires à des données réelles. Nous avons analysé la ca-
pacité de WaveGAN (un réseau de génération) à produire des chants de canari réalistes.
Dans ce modèle, l’espace d’entrée devient l’espace latent après l’entrâınement et permet la
représentation d’un ensemble de données à haute dimension dans une variété à plus basse
dimension. Nous avons obtenu des chants de canari réalistes en utilisant seulement trois
dimensions pour l’espace latent. Des analyses quantitatives et qualitatives démontrent
les capacités d’interpolation du modèle, ce qui suggère que le modèle peut être utilisé
comme fonction motrice dans un modèle d’apprentissage vocal. La deuxième version du
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modèle est un modèle d’apprentissage vocal complet avec une boucle action-perception
complète (il comprend l’espace moteur, l’espace sensoriel et l’espace perceptif). La pro-
duction sonore est réalisée par le générateur GAN obtenu précédemment. Un réseau
neuronal récurrent classant les syllabes sert de réponse sensorielle perceptive. La corre-
spondance entre l’espace perceptuel et l’espace moteur est apprise par un modèle inverse.
Les résultats préliminaires montrent l’impact du taux d’apprentissage lorsque différentes
fonctions de réponse sensorielle sont mises en œuvre.

Mots clés :modélisation, modèle inverse, apprentissage sensori-moteur, oiseau
chanteur, réseau de neurones artificiels, réseaux génératifs antagonistes

Title : Modeling the neural network responsible for song learning

Abstract
During the first period of their life, babies and juvenile birds show comparable phases
of vocal development: first, they listen to their parents/tutors in order to build a neural
representation of the experienced auditory stimulus, then they start to produce sound
and progressively get closer to reproducing their tutor song. This phase of learning is
called the sensorimotor phase and is characterized by the presence of babbling, in babies,
and subsong, in birds. It ends when the song crystallizes and becomes similar to the one
produced by the adults.

It is possible to find analogies between brain pathways responsible for sensorimotor
learning in humans and birds: a vocal production pathway involves direct projections
from auditory areas to motor neurons, and a vocal learning pathway is responsible for
imitation and plasticity. The behavioral studies and the neuroanatomical structure of
the vocal control circuit in humans and birds provide the basis for bio-inspired models
of vocal learning. In particular, birds have brain circuits exclusively dedicated to song
learning, making them an ideal model for exploring the representation of vocal learning
by imitation of tutors.

This thesis aims to build a vocal learning model underlying song learning in birds.
An extensive review of the existing literature is discussed in the thesis: many previous
studies have attempted to implement imitative learning in computational models and
share a common structure. These learning architectures include the learning mechanisms
and, eventually, exploration and evaluation strategies. A motor control function enables
sound production and sensory response models either how sound is perceived or how
it shapes the reward. The inputs and outputs of these functions lie (1) in the motor
space (motor parameters’ space), (2) in the sensory space (real sounds) and (3) either in
the perceptual space (a low dimensional representation of the sound) or in the internal
representation of goals (a non-perceptual representation of the target sound).

The first model proposed in this thesis is a theoretical inverse model based on a
simplified vocal learning model where the sensory space coincides with the motor space
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(i.e., there is no sound production). Such a simplification allows us to investigate how to
introduce biological assumptions (e.g. non-linearity response) into a vocal learning model
and which parameters influence the computational power of the model the most. The
influence of the sharpness of auditory selectivity and the motor dimension are discussed.

To have a complete model (which is able to perceive and produce sound), we needed a
motor control function capable of reproducing sounds similar to real data (e.g. recordings
of adult canaries). We analyzed the capability of WaveGAN (a Generative Adversarial
Network) to provide a generator model able to produce realistic canary songs. In this
generator model, the input space becomes the latent space after training and allows
the representation of a high-dimensional dataset in a lower-dimensional manifold. We
obtained realistic canary sounds using only three dimensions for the latent space. Among
other results, quantitative and qualitative analyses demonstrate the interpolation abilities
of the model, which suggests that the generator model we studied can be used as a motor
function in a vocal learning model.

The second version of the sensorimotor model is a complete vocal learning model with
a full action-perception loop (i.e., it includes motor space, sensory space, and perceptual
space). The sound production is performed by the GAN generator previously obtained.
A recurrent neural network classifying syllables serves as the perceptual sensory response.
Similar to the first model, the mapping between the perceptual space and the motor space
is learned via an inverse model. Preliminary results show the influence of the learning
rate when different sensory response functions are implemented.

Keywords : modeling, inverse model, sensorimotor learning, songbird, artifi-
cial neural network, generative adversarial network
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Bordeaux. 146 Rue Léo Saignat − 33000, Bordeaux.

INRIA Bordeaux Sud-Ouest. 200 Avenue de la Vieille Tour − 33405 Talence

UMR 5800 − LABRI. Université de Bordeaux. 351, Cours de la Libération −
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Résumé détaillé de la thèse en langue française

Les humains, comme les oiseaux chanteurs, apprennent par imitation dès leur plus jeune
âge (par exemple, apprentissage de la parole chez les enfants et du chant chez les oiseaux
chanteurs) : ils sont capables de reproduire un stimulus sensoriel vécu (par exemple un
son) en trouvant la commande motrice appropriée pour le reproduire. Comment abor-
der la définition d’un modèle d’apprentissage sensorimoteur ? Quels sont les principaux
éléments nécessaires pour construire une représentation minimale ? Le problème diffi-
cile de l’apprentissage sensorimoteur pour les systèmes naturels et artificiels motive notre
recherche sur l’apprentissage vocal imitatif. Les études comportementales et la structure
neuroanatomique du circuit de contrôle vocal chez les humains et les oiseaux servent de
base pour un modèle bio-inspiré d’apprentissage vocal. En particulier, les oiseaux ont
des circuits cérébraux exclusivement dédiés à l’apprentissage du chant, ce qui en fait un
modèle idéal pour explorer la représentation de l’apprentissage vocal par imitation.

Cette thèse vise à construire un modèle bio-inspiré pour décrire l’apprentissage vocal par
imitation chez les oiseaux en utilisant les récents développements de l’intelligence artifi-
cielle (par exemple les réseaux antagonistes génératifs, dénommés GAN). Un travail de
revue de la littérature a été mené afin de comprendre en profondeur les concepts fon-
damentaux sur lesquels la thèse est basée. Le Chapitre 1 contient une introduction à
ces concepts: l’apprentissage sensorimoteur, l’apprentissage vocal d’un point de vue bi-
ologique et informatique et les modèles génératifs.

La littérature sur les modèles d’apprentissage vocal est vaste, variée et pleine de con-
tenus multidisciplinaires. Le Chapitre 2 compare les modèles d’apprentissage vocal
existants issus d’études sur différents sujets (humains ou oiseaux chanteurs) et décrit la
représentation d’un modèle d’apprentissage vocal minimal et comment il a été mis en
œuvre dans la littérature. Tout d’abord, il contient une introduction à la neuroanatomie
du cerveau humain et des oiseaux chanteurs, ainsi qu’une analyse des liens entre la biolo-
gie et les composants sensorimoteurs. Ensuite, il contient la description des composantes
des modèles présents dans la littérature, et comment les modèles examinés peuvent être
décomposés en fonction de ceux-ci. La comparaison entre plusieurs études a été effectuée
avec soin et les différences/similitudes ont été largement discutées. Deux tableaux conti-
ennent les détails de la comparaison. L’objectif est de trouver un scénario commun pour
de démêler les compostants des modèles afin de mieux les comparer entre eux.

Un bref compte-rendu préliminaire a été publié précédemment dans le cadre d’un
workshop de la conférence internationale ICDL-Epirob sur l’apprentissage sensorimo-
teur continu et non-supervisé (septembre 2018, Tokyo, Japon) et a ensuite été étendu
au Chapitre 2. Vocal Imitation in Sensorimotor Learning Models A Comparative Re-
view (Pagliarini et al., 2020) a été publié dans le Journal of Transactions on Cognitive
and Developmental Systems, SI : Continual Unsupervised Sensorimotor Learning.
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Le modèle d’apprentissage vocal le plus simple ne comprend que deux espaces : l’espace
perceptuel (représentant par exemple les aires auditives du cerveau de l’oiseau) et l’espace
moteur (représentant par exemple les aires motrices du cerveau de l’oiseau). Dans ce type
de modèle, l’espace sensoriel et l’espace moteur se retrouvent être un seul et même espace.

Le premier modèle proposé dans cette thèse est un modèle inverse théorique basé sur un
modèle d’apprentissage vocal simplifié où l’espace sensoriel cöıncide avec l’espace moteur
(c’est-à-dire qu’il n’y a pas de production sonore). Le Chapitre 3 décrit l’architecture
d’un modèle simple d’apprentissage vocal dans lequel une réponse sensorielle non linéaire
active les unités perceptuelles et une règle d’apprentissage hébbienne normalisée pilote
l’apprentissage. Ce modèle s’inspire du modèle théorique d’apprentissage vocal pro-
posé précédemment par Hanuschkin et al. (2013) et Hahnloser and Ganguli (2013).
L’architecture d’apprentissage est basée sur un appariement de la zone sensorielle à la zone
motrice, apprise par une règle d’apprentissage hébbienne. L’exploration est aléatoire, et la
réponse sensorielle permet l’activation des neurones sensoriels. Il est présenté un modèle
théorique bio-inspiré de l’apprentissage vocal chez les oiseaux chanteurs et il reproduit
numériquement les résultats théoriques. Dans ce chapitre, l’aire perceptuel correspond
à la zone du cerveau où le stimulus perceptif est encodé et l’aire motrice correspond à
la zone du cerveau d’où part l’entrée dans l’appareil moteur. En même temps, comme
introduit dans le Chapitre 2, le stimulus appartient à l’espace perceptuel, est encodé dans
l’espace perceptif et est produit grâce à une commande motrice appartenant à l’espace
moteur.

Une telle simplification permet d’étudier comment introduire des hypothèses bi-
ologiques dans un modèle d’apprentissage vocal et quels sont les paramètres qui influencent
le plus la puissance de calcul du modèle. La vitesse et la précision de l’apprentissage sont
influencées par la sélectivité d’une part, et par la taille de l’aire motrice d’autre part.
Cette dernière sera le point clé pour le développement ultérieur du modèle.

A Bio-inspired Model Towards Vocal Gesture Learning in Songbird” (Pagliarini et al.,
2018a) a été publié dans les actes de l’ICDL-Epirob, et utilisé plusieurs fois pour des
présentations orales et des sessions de posters. Plus de détails sont disponibles sur le site
https://github.com/spagliarini/2018-ICDL-EPIROB.

Le modèle proposé dans le Chapitre 3 est construit en supposant qu’à chaque étape
d’une nouvelle exploration motrice, une nouvelle réponse auditive est calculée et les poids
synaptiques sont mis à jour en conséquence. En d’autres termes, les syllabes ont été
considérées comme des entités qui durent un seul pas de temps, sans tenir compte du
fait que, biologiquement, elles ont une certaine durée. En outre, le délai entre l’activité
des motoneurones et celle des neurones auditifs (qui provoque le chevauchement entre la
représentation auditive d’une syllabe et la production de la nouvelle syllabe) n’a pas été
pris en compte. Une contribution pour décrire l’effet du retard du retour d’information
auditif sur la précision de l’apprentissage se trouve dans une section dédiée qui contient
des résultats complémentaires non publiés.
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Pour disposer d’un modèle complet (c’est-à-dire capable de percevoir et de produire),
il faut une fonction de contrôle moteur capable de reproduire des sons similaires à des
données réelles (c’est-à-dire des enregistrements de canaris et de diamants mandarins,
d’adultes et de jeunes).

Les modèles de variables latentes (ou modèles d’espace latent) sont une classe de modèles
qui permettent de représenter des données en haute dimension en une représentation
significative en basse dimension (appelée espace latent) où les points proches ont des
propriétés similaires. En effet, l’espace latent est capable de représenter la variation des
données réelles et d’encoder des éléments réalistes, y compris ceux qui ne font pas partie
du jeu de données d’entrâınement (Roberts et al., 2018). De plus, un espace latent pour-
rait permettre de générer un résultat réaliste en interpolant entre des points de l’espace
latent (Radford et al., 2015). Toutes ces propriétés mettent en évidence la possibilité
d’utiliser l’espace latent pour obtenir une représentation continue à faible dimension d’un
ensemble de données donné.

Le Chapitre 4 explore l’application d’un GAN à un ensemble de données de syllabes
de canaris. WaveGAN (Donahue et al., 2018) a été entrâıné sur un jeu de données vocales
et sur des enregistrements dans la nature de plusieurs espèces d’oiseaux. Les résultats
prometteurs obtenus sur un vaste ensemble de données très variables de chants d’oiseaux
ont déterminé le choix d’étudier les performances du générateur WaveGAN sur un ensem-
ble de données plus petit et plus propre, plus proche de l’ensemble de données vocales
utilisé dans le travail original. D’une part, la capacité du générateur à reproduire des
échantillons réalistes est confirmée par une analyse qualitative qui a été effectuée à la
fin de l’entrâınement. D’autre part, il met en évidence la possibilité d’utiliser un espace
latent de faible dimension.

Comme mentionné dans le Chapitre 2, le modèle plus simple ne met pas en œuvre une
fonction de contrôle moteur (c’est-à-dire que l’espace sensoriel cöıncide avec l’espace mo-
teur et qu’il n’y a pas de production sonore). Les modèles plus complexes définissent une
fonction de contrôle moteur qui permet la production de sons. La fonction de réponse
sensorielle traite le son et définit l’espace perceptuel. Enfin, l’architecture d’apprentissage
décrit le lien entre l’espace perceptuel et l’espace moteur. L’objectif est de disposer d’un
modèle basé sur une hypothèse biologique et réalisable par calcul (c’est-à-dire capable de
converger vers l’apprentissage dans un laps de temps raisonnable et limité), contenant les
éléments mentionnés ci-dessus et capable de produire un son réaliste en sortie.

Dans la littérature sur les oiseaux chanteurs, la fonction de contrôle moteur a sou-
vent été définie à l’aide d’un système d’équations différentielles ordinaires qui modélisent
l’anatomie du syrinx (c’est-à-dire l’organe vocal des oiseaux) (Amador et al., 2013) ou
les caractéristiques du son (Doya, 2000). De tels modèles peuvent fournir des produc-
tions qualitativement bonnes mais ne sont pas toujours en mesure de reproduire parfaite-
ment les connexions perceptuo-motrices (Pagliarini et al., 2020). Habituellement, les
modèles mécanistes n’utilisent que quelques paramètres moteurs pour induire la plupart
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des changements dans la production. Il est donc difficile de comprendre la correspondance
entre les paramètres moteurs et la sortie. De plus, ils sont lents à simuler.

Le Chapitre 5 propose un modèle complet d’apprentissage vocal. Le modèle
comprend un espace moteur, un espace sensoriel et un espace perceptif, la fonction de
contrôle moteur et la fonction de réponse sensorielle. Un modèle génératif de dimension
3 (c’est-à-dire que l’espace latent a 3 coordonnées) présenté dans le Chapitre 4 modélise
la fonction de contrôle moteur, tandis que la combinaison d’un classificateur, basé sur un
réseau neuronal récurrent (comme celui entrâıné dans la section 4.3.4 du Chapitre 4) et
une couche de normalisation, modélise la fonction de réponse sensorielle. Un point clé
qu’il faut garder à l’esprit est la redondance de WaveGAN (Donahue et al., 2018) (et des
GAN en général) : une syllabe peut être produite en utilisant de multiples configurations
motrices. L’objectif du modèle est donc défini comme un objectif perceptuel. Les
connexions entre l’espace moteur et l’espace perceptuel sont apprises par un modèle
inverse. L’espace moteur est exploré à l’aide d’une exploration uniforme aléatoire et
une simple règle d’apprentissage hébbienne dirige l’apprentissage. Le chapitre présente
des résultats préliminaires sur l’influence du taux d’apprentissage lorsque différentes
fonctions de réponse sensorielle sont mises en œuvre. Ces résultats ont été obtenus sur
la base d’hypothèses simples et visent à être étendus. Des études plus approfondies de
l’espace moteur (espace latent) sont nécessaires pour comprendre (1) comment il est
structuré et quelle est sa topologie (où chaque classe de syllabes est située dans l’espace
tridimensionnel), et (2) si la topologie particulière donnerait un indice pour une stratégie
d’exploration particulière. Une simple règle d’apprentissage hébienne permet d’atteindre
les objectifs perceptuels “cibles” mais ne comporte pas de critères d’arrêt. L’introduction
d’un signal de renforcement pourrait aider l’apprentissage à se stabiliser après avoir
atteint la région de l’espace moteur qui permet la production du but perceptuel correct.

Bien qu’il soit nécessaire de vérifier la capacité de chaque composante du modèle à traiter
des données différentes, le modèle proposé au Chapitre 5 peut potentiellement aider à
expliquer l’apprentissage vocal chez les oiseaux chanteurs, mais il est également ouvert à
d’autres perspectives. Par exemple, la même structure de modèle pourrait être utilisée
pour l’apprentissage vocal chez les humains ou dans la communication entre agents
artificiels. Par exemple, WaveGAN, et en général les modèles génératifs, pourraient
servir de fonction de contrôle moteur pour différents modèles d’apprentissage vocal.
C’est-à-dire qu’on pourrait utiliser le même générateur (entrâıné avec différents jeux de
données) pour modéliser la fonction de contrôle moteur dans un modèle d’apprentissage
vocal en essayant d’expliquer l’apprentissage des chansons dans les cas des canaries ou
le développement de la parole chez les humains. Pour tester cette possibilité, le même
modèle génératif devrait être entrâıné sur différents ensembles de données afin d’évaluer
sa capacité à reproduire des sorties réalistes.
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General Introduction

Humans, like songbirds, learn by imitation from an early age (e.g. speech learning in

children and song learning in songbirds): they are capable to reproduce an experienced

sensory stimulus (e.g. a sound) by finding the appropriate motor command of reproducing

it. The behavioral studies and the neuroanatomical structure of the vocal control circuit

in humans and birds provide the basis for a bio-inspired model of vocal learning. In

particular, birds have brain circuits exclusively dedicated to song learning, making them

an ideal model for exploring the representation of vocal learning by imitation.

How to approach the definition of a sensorimotor learning model? What are the main

components needed to build a minimal representation? This thesis aims to build a bio-

inspired model to describe imitative vocal learning in birds using recent developments

in artificial intelligence (e.g. Generative Adversarial Networks, the so-called GAN). An

extensive review work has been conducted to understand deeply the fundamental concepts

on which the thesis is based. Chapter 1 contains a gentle introduction to these concepts:

sensorimotor learning, vocal learning from both a biological and computational point of

view and generative models. Chapter 2 describes the representation of a minimal vocal

learning model and how it has been implemented in literature. The comparison between

several studies has been carried out carefully and the differences/similarities have been

extensively discussed. Two tables contain the details of the comparison.

The first model proposed is a theoretical inverse model based on a simplified vocal

learning model where there is no sound production. Such a simplification allows to inves-

tigate how to introduce biological assumptions into a vocal learning model and which pa-
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rameters influence the computational power of the model the most. Chapter 3 describes

the architecture of a simple vocal learning model where a non-linear sensory response

activates perceptual units and a normalized Hebbian learning rule drives learning. The

influence of the sharpness of auditory selectivity and of the motor dimension is discussed.

In order to have a complete model (i.e. able to perceive and produce), a motor control

function capable of reproducing sounds similar to real data (i.e. recordings of canaries

and zebra finches, adults and juveniles) is needed. Latent models allow to obtain a low-

dimensional representation of the sound, called latent space. Chapter 4 explores the

application of a GAN to a dataset of canary syllables. On the one hand, the study shows

the capability of the generator of reproducing realistic syllables after training. On the

other hand, it highlights the possibility of using a low-dimensional latent space.

The generator introduced above has been used as a motor function to build a sensori-

motor model with an action-perception loop, where the connections between perceptual

space and motor space are learned via an inverse model. Chapter 5 describes the archi-

tecture of the vocal learning model and its components. Early phases of learning allow the

investigation of whether or not the learning tends toward the target when using random

motor exploration and a non-normalized Hebbian learning rule.

24



Chapter 1

Introduction
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1.1 Introduction to sensorimotor learning . . . . . . . . . . . . . . 26

1.1.1 Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
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1.1.3 Mirror neurons . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
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1.3.4 Sound generation models . . . . . . . . . . . . . . . . . . . . . 52

1.4 Objectives of the thesis . . . . . . . . . . . . . . . . . . . . . . . 57

1.1 Introduction to sensorimotor learning

Humans show an innate ability to learn motor skills both in early and advanced stages

of life. For instance, babies learn how to pronounce a word, or how to play with a toy.

Similarly, adults can learn how to pronounce a word from a foreign language, or how

to play an instrument. Sensorimotor learning allows humans to improve their ability to

produce sensory-guided motor actions. Learning how to reproduce a sound or a movement

requires processing sensory information, choosing the adequate learning strategy, selecting

a target sound or movement (Wolpert et al., 2011).

Section 1.1.1 describes human behavior during sensorimotor learning, defining the

concepts of imitation and trial-and-error strategy. Section 1.1.2 gives a general overview of

brain areas involved in sensorimotor learning. Section 1.1.3 defines Mirror Neurons (MNs)

and their implication in sensorimotor integration and learning. Section 1.1.4 describes the

different theoretical frameworks developed to model sensorimotor learning.

1.1.1 Behaviour

During sensorimotor learning, a learner tries to execute actions and receives external

feedback which gives information about whether the action is performed correctly or not.

In the case of imitative learning, the learner is guided by a tutor. For instance, a parent

teaching his child to pronounce a new word, or a coach showing his team how to kick the

ball correctly. In the first case, the sensory stimulus is mainly an auditory stimulus (how

a syllable sounds), even if a visual component could be present (e.g., the lips movement).

In the second case, the stimulus is mainly visual (the actual demonstration of kicking

the ball), sometimes enriched by a cognitive component (the vocal explanation that the

coach might give). When learning a motor skill, humans focus on the relevant sensory
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modality. When learning a new sound, a baby tries to reproduce the auditory stimulus.

When trying to kick a ball, a player tries to place his foot in a similar position as his

coach.

Imitation is a key mechanism for sensorimotor learning. It represents the ability

to observe and replicate another’s behavior to either learn new actions or to adapt to a

changing environment. It is motivated by intention and purpose, such as curiosity (Zentall,

2001). Such motivation could come from external or internal factors. For instance, a child

doing his homework might be motivated either by the fact that his parent won’t bother

him later (external motivation), or by the fact that he thinks that it will be good for

his future (internal motivation) (Oudeyer and Kaplan, 2009). As shown in Figure 1.1, in

both cases the action selection actuated by the learner (here called autonomous agent)

depends both on the sensations derived from the external environment and on the rewards

obtained. In the case of externally motivated behavior, the reward directly comes from

the external environment. For instance, the parents’ appreciation (or the absence of

punishment) with respect to the child doing his homework. In the case of internally

motivated behavior, the sensations coming from the external environment also provide

input to the motivation system, which generates an internal reward and thus contributes

to the action selection. For instance, the child’s feeling of learning something useful to

become an astronaut (here, the external motivation is given by the aim to become an

astronaut). A third possibility is that the child is doing his homework because he is

having fun: this is an intrinsically motivated behaviour (Oudeyer and Kaplan, 2009).

Intrinsic motivation is internally driven by curiosity, novelty, knowledge and surprise.

Imitation relies on the ability to produce a motor command that replicates a previously

experienced sensory stimulus. This ability is enabled by a causal relationship between the

external stimulus and the produced action (in the case of a baby learning how to speak,

the replication of a sound) (Kuhl, 2004). Once the observer has received the sensory

stimulus, he tries to replicate the perceived behavior and to produce a motor command

that enables the production of a response as similar as possible to the experienced sensory

stimulus. Imitation behavior is not specific to humans: several examples of animals
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Figure 1.1: External and internal motivated behavior. Each learner can be driven
by external (top panel) or internal motivation (bottom panel). The selection
of the action is guided by the sensations coming from the external environment
and a reward. The latter either comes directly from the external environment
(in the case of external motivation) or is processed through a motivation
system (in the case of internal motivation). Image from Oudeyer and Kaplan
(2009).

showing imitative learning have been highlighted in the literature (Zentall, 2003). For

instance, young canaries learn how to sing by copying the song of an adult tutor and

trying to reproduce it until they have learned it (Brainard and Doupe, 2002). Or, home-

raised chimpanzees learn how to wash the dishes and how to apply lipstick on their mouth,

showing imitative learning similar to humans (Hayes and Hayes, 1952).

As an alternative to imitation, a trial-and-error strategy has first been described

by (Thorndike, 1898) who observed that learning is promoted by positive results. Trial-
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and-error is characterized by repeated attempts to reach a designated goal, until success.

Each attempt is usually called trial and learning is characterized by a gradual improve-

ment in performance (Krakauer and Mazzoni, 2011). The repetition of the successful

action translates in an increased probability to perform this particular action (Verstynen

and Sabes, 2011).

In no case is an animal activity to be interpreted in terms of higher psychological pro-

cesses if it can be fairly interpreted in terms of processes which stand lower in the scale

of psychological evolution and development (Morgan, 1903). Morgan’s Canon claims that

animal behavior should be explained in the simplest possible way. Behind the learning

behavior, there are many psychological and neural processes involved in the sensorimo-

tor system. The ability to estimate the external world and the state of our body allows

the brain to process two types of information: a sensory prediction of the expected out-

come, and a sensory feedback describing the actual outcome (Shadmehr et al., 2010).

The sensory feedback provides pieces of information from sensory receptors through the

afferent pathways. It can be provided by auditory or visual stimulation in response to

a specific behavior (the perceived stimulus, i.e. the goal of the learning). Moreover, it

contains information about the prediction error, which can support learning by evaluating

the current output and driving the next trial (Mooney, 2009; Wolpert et al., 2011). The

sensory prediction has the advantage of being available before the motor action takes

place, and of overcoming the sensory feedback delay, and helps in measuring the environ-

ment (Shadmehr et al., 2010). Combining sensory prediction and sensory feedback, the

perception would be more accurate. The prediction error on one trial is the error obtained

by comparing the predicted outcome with the actual outcome and can influence the next

trial (Thoroughman and Shadmehr, 2000; Tanaka et al., 2009). Computationally, the sen-

sorimotor system estimates the motor command and computes an error signal (Wolpert

et al., 2011) that guides the learner toward the correct motor command. This process is

at the basis of Reinforcement Learning (RL), as described in Section 1.1.4.
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1.1.2 Brain circuits

Sensorimotor learning involves several areas of the brain that are related to the perception

of a stimulus and to motor production. Imitation relies on sensory areas to process the

sensory information (i.e., the information coming from the sensory stimulus while perceiv-

ing it) before performing the movement. Sensory information is first processed through

sensory ascending pathways (from the receptor organ up to cortical sensory areas). Such

pathways are classified according to their functional components and their anatomical

location, and convey the sensory information to the thalamus, the cerebellum and the

prefrontal cortex. Then, motor descending pathways convey the information from the

cortical sensory areas to the muscles: such pathways are involved in motor control. Along

with motor cortical areas, the prefrontal cortex, the basal ganglia and the cerebellum play

a role in skill learning (Krakauer and Mazzoni, 2011). The prefrontal cortex plays a role

in task strategy, while the basal ganglia contribute to optimizing the motor output. The

basal ganglia circuits indeed promote sequence learning through trial-and-error learning

and help the neural system promoting optimal motor and cognitive control (Graybiel,

2005). Moreover, basal ganglia contribute to the generation of a long-term representation

of learned actions, supporting the notion that it participates in learning and adapta-

tion (Bédard and Sanes, 2011). Basal ganglia are linked to reinforcement learning (Doya,

2000), whereas the cerebellum to linked with supervised learning (and, in particular, in-

ternal models). Functionally, cerebellum and basal ganglia are slightly different: they

participate in motor control with specific functions (Graybiel, 2005). Basal ganglia are

involved in the specification of the movement before execution (selection, preparation,

retention), whereas the cerebellum is more involved in setting the movement parameters

during execution (Jueptner et al., 1997). Furthermore, the cerebellum has a crucial role

in adaptation (Mazzoni and Krakauer, 2006; Galea et al., 2011; Wolpert et al., 2011), i.e.

its contribution in adjusting the learning model (using the prediction error) can result in

faster adaptation (Krakauer and Mazzoni, 2011). Once learning is completed, the motor

skills representation is encoded by the motor cortex (Gentner and Classen, 2006; Reis
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et al., 2009).

The encoding of a sensory stimulus reveals premotor circuits helping in processing

the perceived stimulus (Rizzolatti et al., 1996; Roberts et al., 2012). During imitation,

regions in the inferior frontal cortex and inferior parietal cortex are activated (Iacoboni

et al., 1999). When an action is retrieved, even if not executed, it may play a role in

understanding the motor events. That is, there exists an observation/execution system,

which is coherent with the findings of mirror neurons in macaque monkey prefrontal

cortex (Rizzolatti et al., 1996; Rizzolatti and Craighero, 2004).

1.1.3 Mirror neurons

Mirror neurons (MNs) are neurons that fire both during the observation and the produc-

tion of a gesture (Gallese et al., 1996; Oztop et al., 2013). Due to this interesting property,

mirror neurons have been largely investigated for the importance they could have in social

neuroscience (Ferrari and Rizzolatti, 2015), imitative learning(Cross and Iacoboni, 2014)

and culture evolution (Tramacere and Moore, 2018).

Mirror neurons (MNs) have been discovered in the premotor cortex and Intraparietal

Lobule (IPL) of macaque monkeys (Di Pellegrino et al., 1992; Rizzolatti et al., 1996).

IPL plays a role in action organization and action understanding: it’s part of the motor

system. IPL and the Superior Temporal Sulcus (STS), an area that codes behaviors

such as walking and hand movement, form the Mirror Neuron System (MNS). STS does

not contain mirror neurons but is involved in the process of information about action

observation and execution. Lately, mirror neurons presence has also been highlighted in

the medial frontal cortex known as supplementary motor area (SMA) (Yoshida et al.,

2011).

Moreover, mirror neurons have been found in HVC (used as a proper name), a brain

area responsible for song perception, learning and production (Prather et al., 2008). Neu-

rons from HVC projecting to other brain areas of the bird exhibit patterns of sing-related

and auditory activity. The former could provide a motor estimation of auditory feedback,
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the latter could facilitate communication (Prather et al., 2008).

Although the investigation of mirror neurons activity primarily relies on electrophysi-

ological recordings in monkeys and birds, techniques such as neuroimaging and magnetic

resonance can find mirror-like activities in humans. A mirror system for speech perception

and production has been identified (Pulvermüller and Fadiga, 2010), and audio-vocal mir-

ror activity has been observed in human Broca’s area (Wilson et al., 2004), the homolog

region of monkey ventral premotor cortex (Gallese et al., 1996). Also, these techniques

have been used to study mirror responses associated with the perception and the execu-

tion of facial or hand gestures in humans (Ferrari et al., 2003; Rizzolatti and Craighero,

2004; Heyes, 2010). Here, the coupling between observation and execution of the move-

ment in a social context has been observed. That is, MNs may have a role in social

learning (Tramacere and Moore, 2018; Arbib, 2005).

1.1.4 Theoretical frameworks for sensorimotor learning

Depending on the type of information used during learning (e.g., prediction of the out-

come gesture), different learning processes can be distinguished (Wolpert et al., 2011).

Internal models (IM) are predictor models that can be used to understand sensorimotor

learning and motor control behaviour (Wolpert et al., 1995). In particular, they propose

a mechanism to improve motor control, defining the relationship between an experienced

sensory stimulus and the motor configuration needed to reproduce that exact stimulus.

Moreover, imitative learning, where a learner tries to replicate (by finding the correct mo-

tor configuration) the tutor’s gesture, can rely on internal models. There are two types

of internal models: inverse models and forward models1, that can be used one at a time,

or coupled. Inverse models estimate the motor command that corresponds to the de-

sired state. Forward models predict the expected sensory feedback of a motor command.

Moreover, a forward model can be used to integrate a prediction error able to predict

the sensory consequences of a motor action (Wolpert et al., 2011). If both are present,

1In contrast with internal forward models, goal babbling literature call forwards models as the real
forward model that is given by the world (Rolf et al., 2010; Rolf, 2013; Reinhart, 2017; Philippsen, 2021).
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the model describes the learning of a bi-directional mapping between motor and sensory

variables.

Neurophysiology of MNs is compatible both with an inverse model and a for-

ward model (Tramacere et al., 2019). MNs could be part of an inverse model be-

tween the sensory representation of intended actions and the motor commands to reach

them (Hanuschkin et al., 2013). Alternatively, MNs are also compatible with a forward

model: the internal prediction generated by auditory feedback and tutor perception may

be learned by associating the auditory feedback registered in HVC and the premotor

activity in birds (Tramacere et al., 2019).

Reinforcement learning (RL) is a basic machine learning paradigm (along with su-

pervised learning and unsupervised learning), that formulates how learning can occur by

taking actions following a certain criterium (i.e., a policy) and receiving a reward conse-

quently. The amount of reward received for a given action is given by the value function.

RL can be divided into two categories, depending on how the policy and the value function

are estimated: model-free RL and model-based RL. Model-free algorithms can be thought

of as a direct implementation of trial-and-error method (Sutton and Barto, 2018): the

algorithm does not use the prediction of the environment and the reward function. Al-

ternatively, a model of the environment and the reward function are used to estimate

the optimal policy in model-based algorithms. Recently, other classes of RL algorithms

have been proposed. Inverse RL substitutes the reward with information coming from

an external observer (Ng et al., 2000). Deep RL extends RL using deep neural net-

works (François-Lavet et al., 2018): this approach allows to solve complex tasks requiring

high-dimensional inputs. In RL the agent must explore different possibilities to be suc-

cessful and to improve the motor output (by improving the motor commands): this comes

from the fact that the received information about how good is the motor output, and not

directly information about which is the correct direction it should take (which would be

the case in supervised learning) (Wolpert et al., 2011). This progressive improvement of

the produced gestures provides a theoretical framework to explain the mechanisms under

trial-and-error learning (introduced in Section 1.1.1).
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Sensorimotor learning requires exploration mechanisms, which can be used to drive

learning. Random motor exploration is the simpler exploration strategy (so-called motor

babbling) (Rohde et al., 2019). More complicated exploration strategies are goal-directed

and could be driven by intrinsic or extrinsic motivation. A goal-directed strategy takes

into account the memory of the current and preceding perceived outcome (Rolf et al.,

2010). It could be based on the novelty level of the goal or on the competence of the

agent. For instance, a goal babbling approach defines an exploration strategy constantly

motivated by goals and not simply random.

1.2 Vocal learning

Vocal learning represents the ability to acquire new sounds via imitation, and should

not be confused with usage vocal learning and auditory learning (Petkov and Jarvis,

2012). The former involves the learning of the context in which to vocalize, and not the

production of new vocalizations itself. For instance, a predator alarm calls, or another

appropriate behavioral response upon hearing the call from a conspecific (Seyfarth et al.,

1980). The latter represents the ability to form memories of experienced sounds (even if

these sounds are not included in the learner’s innate repertoire) and to react differently

to different sounds. For instance, a dog that performs the act of sitting after the human

says sit.

Several animals, like parrots, songbirds, bats, elephants, dolphins, and humans can

produce vocalizations (sounds generated by the vocal organ) and learn by imitation from

a tutor (Petkov and Jarvis, 2012). That is, they show vocal learning in their behavior.

For this reason, they are identified as vocal learner, in opposite with vocal non-learner.

The distinction between vocal learners and vocal non-learners evidences different levels

of vocal learning ability (Petkov and Jarvis, 2012): vocal non-learners have a lower level

of laryngeal (mammalian) or syringeal (avian) control as seen in complex vocal learners.

For Janik and Slater (1997) complex vocal learning is determined by whether or not an

animal can learn to copy a sound from another species. When animals copy complex
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vocalizations not present in the species-specific repertoire they are forcibly learning a

new acoustic template, and then learning how to develop a matching vocalization. These

hypotheses suggest the presence of different levels (non-learners, limited vocal learners,

moderate vocal learners, complex vocal learners and high vocal learners) of vocal learners

and the hypothesis that vocal learning is a continuum rather than a binary classifica-

tion (Arriaga et al., 2012). For instance, humans are considered high vocal learners,

and songbirds are classified as complex learners. Non-human primates, mice, and goats

are considered limited vocal learners under this system (Petkov and Jarvis, 2012; Tyack,

2020).

From a neuroanatomical point of view, brain control circuits in animals show dif-

ferences depending on their behavior (vocal non-learners and learners), or order (birds,

mammals, etc.). The auditory-motor pathway connectivity of vocal non-learners and

learners shows differences: for instance, the auditory pathway of a vocal non-learner does

not provide input to the vocal learning system (Petkov and Jarvis, 2012). This comes

from the fact that vocal non-learners rely on an innate vocal-production system where au-

ditory input is not required to regulate vocal production. On the contrary, vocal learners

provide an auditory input that enables the learning of complex motor control.

In birds and humans, brain circuits involved in vocal learning contain two main path-

ways: the vocal learning pathway and the vocal production pathway Chakraborty and

Jarvis (2015). The vocal learning pathway is responsible for vocal imitation and plastic-

ity. The vocal production pathway is responsible for vocal production. Section 1.2.1 and

Section 1.2.2 respectively introduce vocal learning in humans and in birds, highlighting

the behavior paradigm, and the main brain circuits that underline the learning process. In

particular, Section 1.2.2 clarify why birdsongs are a powerful model to study vocal learn-

ing. Section 1.2.3 defines the acoustic of birdsong, focusing on the important features

and the available tools to deal with segmentation and features extraction. Section 1.2.5

briefly introduces the structure of a minimal computational model for vocal learning. An

extensive and detailed review of vocal learning can be found in Chapter 2.
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1.2.1 Vocal learning in humans

Behavior

During their first year of life, infant speech-perception and speech-production develop

in parallel. Speech-perception is characterized by a sensory learning phase, which be-

gins immediately after birth when infants experience their first exposure to vocalizations.

Starting from their sixth month of life, infants begin to develop language-specific vowel

perception, and it’s only around the first year of their life that they can perceive native

language consonants (Kuhl, 2004). During all their learning period, infants are exposed

to vocalizations and guided by auditory feedback that guides the learning. At birth, and

during the first three months of their life, infants produce non-speech sounds called pro-

tophone (e.g., quasivowels and primitive squeals), which are considered to be the earliest

precursors to speech (Oller, 2000; Buder et al., 2013; Oller et al., 2019; Warlaumont,

2020). During this period infants learn how to control infrastructural speech proper-

ties (Oller, 2000). Within the third and the seventh month of their life, infants learn

how to control their vocal tract and begin to produce vowel-like sounds with a significant

variation in duration, amplitude, and quality (Kuhl, 2004; Oller et al., 2013; Warlaumont,

2020). Moreover, they become able to produce consonant-like elements and to add pauses

in phonations (Oller and Eilers, 1988; Oller, 2000). At approximately seven months of

age, infants begin to produce canonical babbling (Kuhl, 2004; Buder et al., 2013; War-

laumont, 2020) i.e. a canonical syllable without a clear meaning. A canonical syllable

is a vocalization containing at least one full vowel coupled with a following or preceding

consonant (Warlaumont, 2020). Interestingly, even when infants reach the ability to pro-

duce meaningful speech, canonical babbling continues to be present in their production,

and gradually decreases (Robb et al., 1994). Around the first year of their life, infants

begin producing words (Kuhl, 2004; Warlaumont, 2020), which at the beginning could

be better understood by their caregivers (Baudonck et al., 2009). Then, infants develop

their vocabulary, adding a richer and more flexible lexicon (Warlaumont, 2020).
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Brain circuits

Diving in the neuroanatomical framework, a cortico-basal ganglia-thalamocortical loop

involves connections between the cortex, the basal ganglia, the thalamus, and back to

the cortex. Thus, the vocal learning pathway in humans includes the Broca’s area, the

Wernicke’s area and superior temporal gyrus (Friederici, 2011; Jarvis, 2019). The vocal

production pathway primarily involves the laryngeal motor cortex (LMC), from where the

connections to vocal motor neurons start (Chakraborty and Jarvis, 2015; Jarvis, 2019).

That is, the motor cortex is the core area responsible for controlling movements in the

human brain. A more precise description of the neuroanatomy of the human brain can

be found in Section 2.2.2 of Chapter 2.

1.2.2 Vocal learning in birds

Songbirds represent the most studied model organisms of vocal learning for many rea-

sons. First, birds share with humans not only a similar behavior paradigm during

vocal learning (Kuhl, 2004), but they have also a comparable neuroanatomical struc-

ture (Chakraborty and Jarvis, 2015). Besides, in songbirds brain structure there is a

circuit dedicated exclusively to vocal learning, which gives inputs to study and to un-

derstand human brain structures. Last but not least, songbirds are easier than bats or

cetaceans to deal with from an experimental point of view.

Behavior

Vocal learning in birdsongs is characterized by two distinct phases, sensory learning

(related to sound perception) and sensorimotor learning (related to sound produc-

tion) (Kuhl, 2004). At the beginning of their life, juveniles birdsongs listen to a tutor and

they do not produce any vocalization. Sensory learning begins immediately after hatch

and lasts until the juvenile birds start to produce earlier songs. During this period, the

pupils memorize their tutor songs (Mooney, 2009). It’s only later that the birds start

to produce their song. Three phases characterize learning production in birds: subsong,
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plastic song, crystallization (Brainard and Doupe, 2002). During sensorimotor learning

juvenile birds relies on auditory feedback to match their own song to the memorized

model (Mooney, 2009). A variable babbling behavior, called subsong, characterizes this

phase of learning. Subsong vocalizations are driven by an immature motor pathway and

become more and more plastic and identifiable with time. To do so juvenile birds adapt

their vocalizations to incorporate some elements of the tutor song. Finally, the plastic song

is gradually transformed into highly complex, stereotyped motifs (Aronov et al., 2008),

becoming less and less dependent on the auditory feedback (Mooney, 2009). This phase

is called crystallization. Birdsongs are now able to produce stable adult vocalizations,

highly similar to the tutor song.

The degree of vocal learning vary within species: songbirds like hummingbirds learn

only during a single sensorimotor phase of learning, other songbirds like canaries show

several sensorimotor phases of learning during which they can learn new sounds (Petkov

and Jarvis, 2012). This difference separate birdsongs into two categories: closed-ended

learners, and open-ended learners (Brenowitz and Beecher, 2005). Closed-ended learn-

ers such as the zebra finches and hummingbirds can only learn during a limited period

and subsequently produce highly stereotyped or non-variable vocalizations consisting of

a single, fixed song which they repeat their entire lives. In contrast, open-ended learners,

including canaries and various parrot species, display significant life-long plasticity and

continue to learn new songs throughout their lives.

Brain circuits

Neuroanatomy of birdsong involves auditory and motor areas Chakraborty and Jarvis

(2015); Jarvis (2019). The vocal production pathway projects from HVC, to the robust

nucleus of arcopallium (RA), which is analogous to the laryngeal motor cortex (LMC) in

humans. RA controls the syrinx in birds, similarly as LMC controls the larynx in humans.

The vocal learning pathway involves indirect projections from the song-related basal gan-

glia nucleus Area X to the robust nucleus of arcopallium (RA), the lateral magnocellular
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nucleus of the anterior nidopallium (LMAN), and a thalamic nucleus. This pathway is

responsible for imitation and plasticity, forming a basal-ganglia-thalamocortical loop. A

more precise description of these pathways and a figure helping the comparison between

the neuroanatomy of the brain in humans and birds can be found in Section 2.2.2 of

Chapter 2.

The basal-ganglia-thalamocortical loop is highly selective for the bird’s own song (Solis

and Doupe, 1997). On the one hand, auditory neurons in adult zebra finches respond more

to the bird’s own song than to songs from other conspecifics. On the other hand, juveniles’

neurons respond well to both their own song and the tutor song (from conspecific adults).

The sensory properties of Area X and the Lateral Magnocellular nucleus of Anterior

Nidopallium (LMAN), two of the basal-ganglia-thalamocortical loop nuclei, in both young

(the presence of auditory neurons in early stages of learning) and adult birds (selectivity

to bird’s own song) are consistent with an auditory role of the loop in the song-learning

process (Doupe, 1997).

1.2.3 Structure of speech and birdsong

Human speech and birdsongs consist of strings of sounds separated by silent inter-

vals (Doupe and Kuhl, 1999). Analogies can be found in speech and birdsong. Infants, as

speech development advances, start to produce vowel sounds, with or without surround-

ing consonants, i.e., syllables. Infants generally produce sounds having about the same

duration as syllables in adult speech (Kent and Murray, 1982). That is sounds of length

400ms or less, with some exceptions that reach a duration of 2s or more. Differences in

vocal tract features result in different acoustic feature distributions: for instance, because

of the anatomical properties of their vocal tract, infants produce a more nasal sound with

respect to adults (Kent and Murray, 1982). Only about their third month of life, infants

begin to produce non-nasal vowel sounds (Oller, 1978), as a consequence of the vocal tract

development.

In songbirds, the smallest unit of a song is the note. A note is a sub-syllabic element
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and the combination of multiple notes originates a syllable. Syllables are stereotyped

sounds which duration ranges from 20 to 200ms (Markowitz et al., 2013), and the reper-

toire is usually bird-specific (Lehongre et al., 2008). However, some syllables can be

produced across families of the same species, such as canaries (Güttinger et al., 1978;

Güttinger, 1985). Concerning canaries, when syllables are repeated multiple times, they

form a phrase which can range from 500 ms to 3s of duration. There is no general corre-

lation between the length of a phrase and the length of the syllables, but rather there is

a correlation between the length of a phrase and the length of phrase that comes before

or after (Markowitz et al., 2013). Finally, phrases are chained together to form songs of

about 5− 15s duration (Belzner et al., 2009). In zebra finches, a song is composed by a

repeated sound pattern, called motif (Leonardo and Fee, 2005). The motif is composed

of a sequence of syllables.

Although there is no evidence that the complexity of human language is observable

in nonhuman animals (Beckers et al., 2012), there are similarities and parallels between

birdsong and speech. The main difference between birdsong and speech is that in the

former a simpler grammar is involved (Doupe and Kuhl, 1999). Another difference is that

speech can convey complex meaning, which is not the case for birdsong. Nevertheless,

birdsong can be compared with spoken speech (Doupe and Kuhl, 1999).

1.2.4 Sensorimotor integration in vocal learning

In the context of vocal learning, sensorimotor integration can be defined as the set of

mechanisms connecting vocal production and vocal perception. For instance, the set

of mechanisms connecting speech production and speech perception in humans, or song

production and song perception in birds. The motor theory of speech perception states

the role of the speech motor system not only to produce speech but also to detect it.

The main hypothesis is that humans perceive speech by identifying the vocal tract ges-

tures that produced it rather than by identifying the sound patterns generated by that

speech (Liberman et al., 1967; Liberman and Mattingly, 1985). The motor speech the-
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ory contains two main claims (Liberman and Mattingly, 1985). The objects of speech

perception are the phonetic gestures of the speaker, represented in terms of the invariant

motor commands needed to produce certain linguistic configurations. The motor theory

by Liberman and Mattingly (1985) confirms that speech production and speech perception

are both motor, and are regulated by the same structural constraints.

Such a link is supported by the existence of mirror neurons and of a common cod-

ing between the representations used for perception and action. Schwartz et al. (2012)

proposed a perceptual-motor theory of speech perception, called Perception for Action

Control Theory (PACT) of speech perception. Speech percepts seem to be related both

to sound and to gestures. During speech production, auditory commands are non-linearly

transformed into complex acoustic features. During perception, the motor system can

be accessed and complex connections between perception and gestures arise. The role of

perceptual-motor interactions is to predict missing information and to relate perceptual

categories to their motor content.

There exist evidences of the influence of sensory perception on speech production

and the influence of motor speech system on speech perception (Hickok and Poeppel,

2007). The perceptual system self-monitors the speech output via feedback signals and

the auditory system plays an important role in speech production. For instance, speech

production can be negatively influenced by the delay in the auditory feedback (Stuart

et al., 2002), or by deafness (Waldstein, 1990), or by a shift in the voice pitch (Burnett

et al., 1998). The fact that the motor speech system influences speech perception could

explain the fact that there is not a one-to-one relation between acoustic patterns and

perceived speech sounds (Liberman et al., 1967). Behind this idea, there is the fact that

auditory signal can be variable across different sounds, whereas the motor configurations

that produce them are often fixed. Moreover, it has been shown that the motor speech

system is not necessary to solve the problem of context-dependency (Lotto et al., 2009).

Rather, the auditory system maintains an estimate of the acoustic context and uses this

information while encoding sounds. Recently, the modulation of perceptual response via

motor-speech stimulation has been shown (Hickok et al., 2011). In the end, birdsongs and
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humans behave optimally depending on the information they can gather from the motor

plan and the auditory feedback (Hahnloser and Narula, 2017).

1.2.5 Modeling vocal learning

Vocal learning supposes the existence of a set of auditory targets that the learner tries to

reproduce. Each target is an external sound that the learner processes and uses to guide

his own sound generations. Thus, a required feature for a vocal learning model is the

ability to produce and process a sound.

The representation of a minimal vocal learning model includes three feature spaces

and the functional connections between them (Oudeyer, 2005). The motor space contains

the motor parameters (related to the anatomical structure of the vocal organ). The

sensory space contains the auditory stimulus (the real sound), which is generated by the

motor control function. The goal space is the space of the perceptual representation or

motor command corresponding to the sensory output that the bird wants to reproduce.

Two types of models can be defined, depending on how the goal space is defined. In the

sensorimotor model with an action-perception loop, the sensory stimuli are encoded via the

sensory response function in the perceptual space (a low dimensional representation of the

sound). This model potentially includes an inverse and a forward model between the motor

space and the perceptual space. Alternatively, in the non-perceptual sensorimotor model,

there is a non-perceptual representation of the goals (called internal representation). A

goal-to-motor model learns the connection from the internal representation to the motor

space. In this scenario, and depending on the learning framework, the sensory response

function could provide a reward or an evaluation of the learning (Pagliarini et al., 2020).

For a better understanding, refer to Figures 2.1 and 2.2 of Chapter 2: a schematic figure

of each model highlights the architecture.
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Motor control

To have a complete model (i.e., able to produce sounds), the aim is to have a motor control

function capable of reproducing sounds similar to real data (e.g. recordings of canaries,

vowels, sentences). The input set of the motor control function, called motor space, is the

set of the motor parameters used to produce the sound (see Chapter 2). For instance, a

set of parameters describing the tongue position in humans (Howard and Messum, 2007;

Howard and Huckvale, 2005). The motor control function is a computational model of the

vocal apparatus. For instance, in humans, it describes the joint activity of the respiratory

system, vocal organs and vocal tract. Section 2.4 in Chapter 2 extensively detail how

the motor space and the motor control function has been defined in the vocal learning

literature.

Sensory function

As mentioned in Section 1.2.5, the sensory function results in a perceptual representation

of the sound and, eventually, helps the evaluation of the produced sound. In the first

scenario, the sensory function allows to encode the sound in a low-dimensional space and

provides feedback of the motor command. In the second scenario, the sensory function

contributes to the reward signal and can be used to drive learning towards a specific goal.

Section 2.5 in Chapter 2 motivates the choice of the sensory response function, the sensory

space and the perceptual space.

Learning architecture

One way to model the connection between the perceptual space (or the internal repre-

sentation) and the motor space is using plastic synapses. The simplest artificial Neural

Network (NN) is the feedforward neural network, where the connections between the

nodes do not form a cycle. The information moves from the input nodes to the output

nodes, passing eventually through hidden nodes, following one direction. The simplest

example of a feedforward neural network is the perceptron: here, the inputs are directly
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fed to the single layer of output nodes. Then, multi-layer perceptrons contain several

layers, where each neuron in one layer is connected to all neurons in the next layer. Alter-

natively, Recurrent Neural Networks (RNNs) contain loop connections between the nodes

and can use their internal state (called memory) to process sequences. This property

makes them interesting to solve problems such as speech recognition (Li and Wu, 2015)

or vocal learning (Hinaut and Dominey, 2013; Philippsen et al., 2014; Warlaumont and

Finnegan, 2016). Although usually the learning architecture defined in a vocal learning

model is based on a feed-forward neural network or a RNN, recent deep learning stud-

ies have highlighted several powerful tools that could be used to model vocal learning.

Convolutional Neural Networks (CNNs) represent a famous extension of multi-layer per-

ceptrons: the architecture includes an input and an output layer, as well as multiple

hidden layers (LeCun et al., 1989). CNNs find origins in models of visual processing: the

connectivity pattern between neurons is inspired by the organization of the animal visual

cortex (François-Lavet et al., 2018).

Internal models and reinforcement learning can be used to learn connections between

the perceptual and the motor layer, or to define a trial-and-error algorithm aiming to

succeed in a pre-defined task. Section 2.6 in Chapter 2 highlights the different learning

architectures that have been implemented to model vocal learning in literature.

1.3 Generative models

Generative models can generate new data samples, after having been trained on a dataset.

For instance, a generative model could generate new samples of images containing flowers

that look like real flowers. To be able to generate a new image of a rose that looks like

a real rose, a generative model needs to learn the distribution of the real data. Formally,

given a dataset X and a set of labels Y , a generative model estimates the joint probability

P (X, Y ) (Ng and Jordan, 2002).

At first, generative models can be classified depending on the density function they

define: it can be explicit or implicit (Goodfellow, 2016). Figure 1.2 shows a schematical
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summary of generative models. For simplicity, the models have been thought as if they

were implemented in their maximum likelihood formulation (that is, they aim to maximize

the likelihood). Models that construct an explicit density could deal with a tractable

function or with an intractable function. In the case of an intractable density, the use of

approximations is required to maximize the likelihood. For instance, an approximative

density can be obtained using a variational approximation, that is, using Variational

Auto-Encoders (VAEs). Alternatively, there are models that do not represent explicitly

a probability distribution, but rather represent a way to interact with it. For instance,

the act of drawing samples from a distribution is an interaction between the generative

model and the probability distribution of the input. This is the principle of Generative

Adversarial Networks (GANs).

Figure 1.2: Generative models taxonomy. Generative models can define either an
explicit or an implicit density. On the left branch, an explicit density can
bifurcate into a tractable or an intractable density. The latter makes necessary
the definition of an approximative density, that might be given by a variational
approximation in the case of VAEs. On the right branch, an implicit density
can be solved using a Markov chain or, in a direct way, by a GAN. Image
from Goodfellow (2016).
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Generative models are a great tool to deal with complex data and high-dimensional

probability distributions in a wide variety of engineering domains (Goodfellow, 2016). For

instance, generative models such as GANs and VAEs enable to represent high-dimensional

distributions in a meaningful lower-dimensional representation called latent space.

Subsection 1.3.1 defines what are latent variables and latent models. Subsections 1.3.2

and 1.3.3 introduce, respectively, the basics of VAEs and GANs, highlighting the advan-

tages and drawbacks. Subsection 1.3.4 describes the available models to generate sound,

with examples both from the music domain and from the speech domain.

1.3.1 Latent models

Latent variables, or hidden variables, are variables that cannot be directly observed.

Instead, they are inferred through a mathematical model from the observable variables.

Indeed, latent variables are meaningful, but not directly measurable: they usually encode

abstract concepts, such as categories or hidden data structures. Latent variables allow

to reduce the dimensionality of the data, to compress the relevant information about

the input data into a lower-dimensional space, and to understand better the manifold

structure of the data.

The relationship between a set of observable variables (the dataset containing the real

images of flowers) and a set of latent variables (a symbolic representation of the real data)

can be described by a so-called latent variable model. Latent space models are capable

of learning the fundamental characteristics of a training dataset and able to represent

the variation of real data in a lower-dimensional space. When compressing the manifold

of the dataset, latent space models tend to organize it based on fundamental qualities,

which clusters similar examples close together (Roberts et al., 2018). Moreover, they can

both reconstruct real examples with high accuracy and generate samples that are not

in the training dataset. Indeed, it is possible to observe the latent space structure by

using simple arithmetic and observing the outcoming generations. Figure 1.3 shows the

analysis of the latent space structure made by Radford et al. (2015): it is possible to obtain
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generations that are similar to the training dataset but do not belong to it. Moreover,

with this analysis, it is possible to see an example of a conditional generative model,

where generations can be manually tuned to show a particular feature (for instance, the

presence or not of glasses).

Figure 1.3: Latent space structure. The z samples corresponding to each image are
averaged over each column in order to obtain an average latent vector repre-
senting a certain set of features. Then simple arithmetic produces the new
latent vector, which has been used to generate the first sample on the right
(top-left corner). Finally, noise has been applied to this latent vector to mod-
ify it and use it to generate 8 more images. Image from Radford et al. (2015).

1.3.2 Variational Auto-Encoders (VAEs)

VAEs are a particular instance of a more general algorithm, called Autoencoder Vari-

ational Bayes (AEVB) (Kingma and Welling, 2013). This algorithm is based on the
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Stochastic Gradient Variational Bayes (SGVB) estimator that allows to efficiently ap-

proximate posterior inference.

The standard schema of a VAE as a graphical model is shown in Figure 1.4. A dataset

of N i.i.d samples of continuous or discrete variables x is randomly generated from a set

of variables z. VAEs assume that is not possible to give a simple interpretation of the

dimensions of z: instead, z can be taken as a normal distribution with mean 0 and variance

1 (i.e., z ∼ N(0, 1)) and can be interpreted as a latent code (i.e., a latent space) (Kingma

and Welling, 2013; Doersch, 2016). The encoder and the decoder are probabilistic models.

The former models the distribution over the possible values z from which samples x have

been generated. The latter models the distribution over the possible values x, given the

latent code z. These two probabilities rely on two parameters that are jointly learned

with the Autoencoder Variational Bayes (AEVB) algorithm: the variational parameter

ϕ and the generative model parameter θ (Kingma and Welling, 2013). A schema of a

standard VAE represented as a graphical model is shown in Figure 1.4.

The learned model can be used for many tasks such as visualization, denoising or recog-

nition. VAEs are composed of an encoder (recognition model) and a decoder (generative

model). The encoder takes a real sample as input and builds a lower-dimensional repre-

sentation of it (i.e., a latent space). The decoder takes a latent vector (i.e., an element

of the latent space) as input and generates back the original sample. In this framework,

the decoder represents the generative model (Doersch, 2016). Some authors (Goodfellow,

2016; Doersch, 2016) state that VAEs often obtain very good likelihood but produces

low-quality samples (lower than GANs, for example).

1.3.3 Generative Adversarial Networks (GANs)

In the original formulation of GANs (Goodfellow et al., 2014), given a training dataset,

two players (a generator model G and a discriminator model D) are involved in a back-

and-forth competition. The generator model takes noise as input and aims to learn how to

produce samples as much similar to the real samples as possible. The discriminator takes
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Figure 1.4: Varietional Autoencoder general schema. A standard VAE allows to
sample from any input z ∼ N(0, 1) keeping fix the generative model parameter
θ. ϕ is the variational parameter. Image reproduce from Kingma and Welling
(2013); Doersch (2016).

real and generated samples as input and aims to maximize its capacity of differentiating

between them. That is, G and D are involved in a min-max game where G aims to

minimize the loss function (defined using the Jensen-Shannon divergence (Goodfellow,

2016)), and D aims to maximize it. As summarized in the right part of Figure 1.5, G is

trained several times, then D is used to obtain a validation of the training: it can output

a value between 0 and 1, which represents the probability of whether a sample comes from

the distribution of the data (a value near 1) or not (a value near 0) (Goodfellow, 2016).

Of course, as shown in the left part of Figure 1.5, D applied to the real data should result

in a value near 1.

In further developments of GANs, several authors proposed variations in the model

architecture or in the loss function. More stable training has been obtained by using deep

convolutional neural networks (Radford et al., 2015) or modifying the loss function defi-

nition. In particular, the loss function has been enriched by an additional term describing
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Figure 1.5: GAN framework. The first formulation of GANs included two models: a
generator modelG and a discriminator modelD. The goal of the discriminator
is to learn how to well differentiate real samples from fake samples. That is, D
is a differentiable function that tried to obtain a value near 1 when applied to
real samples, and a value near 0 when applied to fake samples. The goal of the
generator is to become better and better at generating samples looking like
real ones, such that the discriminator has a more difficult job to differentiate
fake samples from real samples. The input of G is represented by noise, and its
output (the generated sample) is then the input for D. Image from Goodfellow
(2016).

either gradient penalty (GP) (Gulrajani et al., 2017) or Lipshitz continuity (LP) (Petzka

et al., 2017). In this scenario, the discriminator does not provide a direct estimation of

whether a sample belongs to the real data or not, but rather acts as a critic, and assists

the computation of the Wasserstein distance between the training data and the generated

data (Arjovsky et al., 2017). The discriminator provides the generator with a loss that

can be trained until optimality (Arjovsky et al., 2017), and gives stability to the GAN

and avoids mode collapse2 (Dong et al., 2018).

2Mode collapse is a form of GAN failure. The generator starts to produce the same set of outputs
over and over, provoking an over-optimization of these outputs. As a consequence, the discriminator
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Figure 1.6: Examples of generated samples. Left panels: visualization of randomly
generated samples after training a GAN (Goodfellow et al., 2014) on MNIST
dataset (number from 0 to 9), above, and TFD dataset (black and white
faces), below. Right panel: visualization of randomly generated samples after
training DCGAN (Radford et al., 2015) on SUN dataset (bedroom pictures).
Image from Goodfellow et al. (2014)(left panels) and Goodfellow (2016) (right
panel).

GANs’ advantages are represented by the computational power and realistic sample

production. Figure 1.6 shows random samples generated after training different types

of GANs on different datasets. It is possible to observe how the samples belong to the

model distributions (Goodfellow et al., 2014). At the same time, GANs could have several

problems, coming for example from the dataset, or from the optimization algorithm. If

the optimizer is not perfect, underfitting could arise, or, if the training data size is limited,

overfitting could arise (Goodfellow, 2016). Moreover, GANs could not reach convergence,

due to the high non-convex dimensional space they are dealing with. Indeed, G and D

can’t learn how to discriminate the generations. This implies that the generator does not produce a wide
enough variety of outputs.
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are non-convex parametric functions (e.g., deep neural networks) that do not guarantee

convergence. There are two ways in which GANs could fail to converge: 1) oscillation,

that is the GANs is trained for a very long time and generates many different categories

of samples, but never generates better samples; 2) mode collapse, that is the generator

produces always the same sample, or samples belonging to the same theme (Goodfellow,

2016). Mode collapse is the worst form of non-convergence and the one that happens

more often. This comes from the fact that GANs are trained using gradient descent

which is leading, at the same time, to convergence (when solving the classic min-max

game mentioned above) and to concentrate on most likely points (when solving the reverse

max-min problem) (Metz et al., 2016). To avoid mode collapse, a solution is to look at

the features of an entire mini-batch of samples when examining a single sample: if that

sample is too close to the other samples in the mini-batch, it could be rejected (Salimans

et al., 2016).

Evaluation of GANs, that is the capability of the generative model to produce a re-

alistic output, is a challenging and debated topic (Goodfellow, 2016; Theis et al., 2015).

Models with good likelihood could produce bad samples, and, vice versa, models that

produce good samples could have a bad likelihood. The likelihood itself is not easy to

estimate. Also, there is not a unique way to measure how good samples are. Lately,

Borji (2019) proposed a combination of a quantitative and a qualitative measure to eval-

uate GANs’ performance. The first allows to understand the capability of the generator

of reproducing a wide enough variety of samples, and to evaluate the model in a low-

dimensional complexity (i.e., it is usually a value representing the entropy, the variance,

etc.). The latter helps the inspection of the generated samples and is usually based on

human judgment.

1.3.4 Sound generation models

Several models for speech and music generation have been proposed. Not all of them are

GANs, and often the basics to define the architecture of the model have been imported
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from image generation studies. Below, the main characteristics of several models are high-

lighted. In particular, these models are on the one side well-known models for sound and

speech generation, on the other side models that helped me understanding the desirable

properties of a generative model and how to investigate them.

Oord et al. (2016b) proposed a deep neural network (called PixarCNN) that operates

directly on the raw waveform. It has been used to define WaveNET: its architecture

is based on convolutional neural networks combined with a non-linear function to recon-

struct the conditional distributions over the samples. The model shows good results when

applied to a dataset of different speakers in the context of speech generation and text-

to-speech (i.e. the model is able to generate a realistic speech starting from a dataset of

written texts). Moreover, when trained with music, WaveNET shows the ability to gener-

ate novel sounds that were not present in the training dataset (Oord et al., 2016a). Such

a model enables the generation of realistic sound but does not provide a low-dimensional

representation of it. The backside of WaveNET is the computational time: the model

takes two minutes to synthesize one second of audio (Goodfellow, 2016). To evaluate the

sound generated using Wavenet, Oord et al. (2016b) used blind subjective evaluation.

Magenta from Google AI is an open-source research project devoted to understanding

the role of machine learning in the creative process. Engel et al. (2017) developed NSynth

(Neural Synthesizer), a music synthesizer that uses deep neural networks to generate

sounds at the level of individual samples. The architecture is based on a WaveNet-style

autoencoder model able to meaningfully represent the sound space. That is, the sound

is encoded in a latent space that preserves uniquely the identity of the timbre and the

dynamics. This allows both to obtain a lower-dimensional representation of the input

space and to explore new sounds by controlling over the two components of the latent

space. To qualitatively evaluate NSynth, they trained a multi-task classification network

able to predict pitch and label. The obtained accuracy on the NSynth generated data is

roughly equal to the original audio. Lately, Roberts et al. (2018) proposed MusicVAE,

a hierarchical variational autoencoder for learning latent spaces for musical scores. The

basic structure of the model was previously proposed for sequential data (Bowman et al.,
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2015), and a hierarchical decoder has been introduced as proposed in SketchRNN for hand

drawing (Ha and Eck, 2017). The novelty is represented by the introduction of a sequence

of RNNs that autoregressively decode the input sequence: each RNN processes a segment

of the input of the decoder and output a new sequence, which is processed through a

final RNN decoder. The experiments on music data show good performances: on the one

hand, samples resembling real ones can be produced; on the other hand, interpolations

between produced samples show continuity in the latent space.

Pascual et al. (2017) proposed SEGAN, a Speech Enhancement Generative Adver-

sarial Network that works end-to-end with waveform data (that is, it takes waveforms as

input and it provides waveform generation). The generator network is composed of two

convolutional neural networks: one takes a noisy waveform as input and extracts acous-

tic features, encoding the input in a low-dimensional vector (i.e., a latent variable); the

other takes a latent vector as input, apply convolution, and outputs a waveform having

the same dimension of the input waveform. The discriminator learns how to discrimi-

nate a generated sound from a real one, and helps the generator to correct its output

waveform towards a realistic distribution. The adversarial training has been done using

gradient backpropagation. To evaluate the performance of SEGAN, both quantitative

and qualitative measures have been used. For instance, Pascual et al. (2017) measure

speech distortion and background noise influence (quantitative evaluation), or asked for

human judgment on generated samples (qualitative evaluation).

Dong et al. (2018) proposed MuseGAN, a music generator trained on a multi-track

piano-rolls dataset. They use symbolic timing, that is each beat has the same length,

and propose three different music generation models. First, multiple generators work

independently and generate music, to receive later critics from several discriminators.

Then, a single generator creates a multi-channel (each representing a specific track), and a

discriminator differentiates real samples from generated samples. Finally, a hybrid model

combines the two previous models to build the music composer: it can use different

network architectures and have different inputs). To evaluate MuseGAN, they used a

quantitative measure based on the characteristics of the dataset they are using (i.e multi-
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track piano rolls): for example, they measured the distance between tones and the drum

pattern. They applied the metric both to the training dataset and to a dataset of generated

samples: the statistics of the real and the generated data should become closer as the

training goes on.

Figure 1.7: Examples of samples for WaveGAN and SpecGAN models. Visual-
ization of random samples from the training dataset (top line), the generated
data using the WaveGAN generator (middle line), the generated data using
the SpecGAN generator (bottom line). Respectively, the first column shows
the comparison between the real data made of speech recordings and the gen-
erations obtained after training), the second column shows the comparison
between the real data made of drums recordings and the generations obtained
after training, the third column shows the comparison between the real data
made of wild birdsongs recordings and the generations obtained after train-
ing, the last column shows the comparison between the real data made of
piano recordings and the generations obtained after training. Image adapted
from Donahue et al. (2018).

55



Donahue et al. (2018) proposed two GANs for music, speech and, to a lesser extent,

birdsong generation: SpecGAN enables spectrogram generation, WaveGAN enables

waveform generation. Both the models are based on Deep Convolutional GAN architec-

ture (Radford et al., 2015), and eventually, introduce variations in order to adapt the

model to the dataset. On the one hand, in SpecGAN the spectrogram representation is

designed in order to suit the DCGAN image generation and to allow inversion (which

is needed to obtain the waveform after the generation). On the other hand, WaveGAN

architecture has been modified in order to take into account waveforms as input, and the

WGAN-GP (Gulrajani et al., 2017) strategy has been used to optimize the loss function.

Both models can generate samples of speech that are intelligible by humans. Neverthe-

less, WaveGAN generates sounds of better quality with respect to SpecGAN. This could

be due to the sub-optimality of the spectrogram inversion algorithm (here, Griffin-Lim

inversion (Griffin and Lim, 1984) has been used). Moreover, the frequency domain pro-

duced by WaveGAN resulted to be more coherent with the real data. Good results have

been obtained for music generation (drums and piano), speech and birdsong, with a wide

variety of generated sounds.

To evaluate WaveGAN performances on a speech dataset, Donahue et al. (2018) used

several quantitative measures. First, they computed the Inception Score (IS), a metric

proposed previously by Salimans et al. (2016) that represents the capacity of the generator

of producing a wide enough diversity of samples. In addition, they computed the Euclidian

distance in the space of log-Mel spectrograms (1) within the training and the generated

data separately, and (2) between the training and the generated data. In this way, they

show the intra-diversity of the generated data and the ability of WaveGAN of producing

sounds not belonging to the training dataset. Finally, they used human judgment as a

qualitative measure.
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1.4 Objectives of the thesis

Vocal learning models can either aim to obtain a vocal learning machine or to understand

the biology of vocal learning. The first objective of this thesis is to understand the biology

underlying vocal learning (e.g., learning phases, behavioral studies, neurobiological basis).

Secondly, starting from the literature about vocal learning models, we aim to define a

schema that could help to compare the existent models in terms of their goal, assumptions

and components (e.g., learning algorithm, motor control function). Moreover, we aim to

understand the computational tools available to implement the components of a vocal

learning model (e.g., dynamical systems and generative models to implement the motor

control function) to identify which ones could be used in our model. In particular, we

want to test how they work on real recordings (in our case, canary data). Finally, we aim

to place this thesis in the context of the existing vocal learning literature and provide

perspectives for this work.
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Chapter 2

Vocal Imitation in Sensorimotor

Learning Models

A Comparative Review

Vocal learning models literature is vast, variegate and full of multidisciplinary contents.

The chapter attempts to compare existing vocal learning models from studies on different

subjects (humans or songbirds). The objective is to find a common scenario to disentangle

a model into components that can be compared across models.

Section 4.1 defines the vocal learning model schema identified as a guideline to com-

pare different models. Section 2.2 contains a gentle introduction to the neuroanatomy

of the human and songbird brain, and an analysis of the links between biology and the

sensorimotor components. Section 2.3 introduces the reviewed models and their main

objectives. Sections 2.4, 2.5 and 2.6 contain the description of the components of the

baseline models, and how the reviewed models can be decomposed in terms of them. Sec-

tion 2.7 contains a discussion about how the reviewed models are positioned with respect

to the biological framework. Moreover, on the one hand, it underlines directions to define

a more and more bio-inspired model, and, on the other hand, it summarizes how the

proposed schema can help in the comparison between different models.
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A preliminary short review was previously published within the ICDL-Epirob

Workshop on Continual Unsupervised Sensorimotor Learning (Sep 2018, Tokyo,

Japan) (Pagliarini et al., 2018b) and then extended to the current chapter. ”Vocal Imi-

tation in Sensorimotor Learning Models A Comparative Review (Pagliarini et al., 2020)

has been published within the Journal of Transactions on Cognitive and Developmental

Systems, SI: Continual Unsupervised Sensorimotor Learning.

Abstract

Sensorimotor learning represents a challenging problem for natural and artificial systems.

Several computational models have been proposed to explain the neural and cognitive

mechanisms at play in the brain. In general, these models can be decomposed in three

common components: a sensory system, a motor control device and a learning framework.

The latter includes the architecture, the learning rule or optimisation method, and the

exploration strategy used to guide learning. In this review, we focus on imitative vocal

learning, that is exemplified in song learning in birds and speech acquisition in humans.

We aim to synthesise, analyse and compare the various models of vocal learning that have

been proposed, highlighting their common points and differences. We first introduce the

biological context, including the behavioural and physiological hallmarks of vocal learning

and sketch the neural circuits involved. Then, we detail the different components of a

vocal learning model and how they are implemented in the reviewed models.
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2.1 Introduction

Humans and animals such as songbirds show imitative vocal learning: they are able

to produce a motor command that replicates a previously experienced auditory stim-

ulus (Brainard and Doupe, 2002; Heyes, 2001, 2012; Kuhl, 2004). Imitation implies a

causal relationship between the observed stimulus and the produced action, and requires

a mechanism to translate the sensory input into motor commands (Heyes, 2001). Humans

and animals are able to perform complex imitation, this is illustrated by the imitation of

novel action sequences in response to environmental cues (Heyes, 2012).

Imitative vocal learning, and more generally sensorimotor learning, are the subject of

behavioural, anatomical, physiological and computational studies. Taking into account

the biological evidence and constraints revealed by experimental investigations of the

underlying brain circuits, many previous studies have attempted to implement imitative

learning in computational models. The aim of this review is to identify and compare

the various components of existing vocal learning models to provide an integrated and

organised view of the literature. While we focus our analysis on vocal learning, the

principles addressed here may also apply to sensorimotor learning models in general. To

analyse and compare the existing models, we will now define the core components at play

in models of vocal learning.

As depicted in Figures 2.1 and 2.2, the representations needed for a minimal vocal

learning model can be cast into three spaces (Oudeyer, 2005): motor, sensory and per-

ceptual/internal space. In addition, one needs to define a learning framework and define

the connections between the spaces: a motor control function and a sensory response

function. The learning framework contains the architecture, the learning algorithm, the

evaluation and the exploration strategy (see Table 2.6). We define the input and output

spaces of the learning algorithm as the learning domain and the learning image1. The

motor space corresponds either to the muscle activation patterns sent to the vocal or-

1The idea is to conceptualise the learning algorithm as a mathematical function going from the domain,
called learning domain, to its co-domain, called learning image. For simplicity, we will use learning image
instead of learning co-domain.
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gan (e.g. larynx and syrinx for human and birds respectively) or articulatory parameters

(e.g. the tongue height) for humans. The sensory space, in the case of vocal learning, rep-

resents the physical space of the sound. The perceptual space corresponds to the neural

representation of perceived vocalisations in the brain (e.g. acoustic features as pitch in

birdsong or first formants in speech). Space representations are implemented as vectors

or trajectories (i.e. sequences of vectors) in these multi-dimensional spaces.

Figure 2.1 shows the canonical model including an action-perception loop: the per-

ceptual space is connected to the motor and sensory spaces through a sensory system

and a motor control device. Depending on the modeller’s choice, the perceptual and mo-

tor spaces may be linked through an inverse model, or both an inverse and a forward

model (see definition of internal models and in particular inverse and forward model in

Section 2.6). The learning domain (i.e. input space of the learning algorithm) is the

perceptual space in the case of inverse models, and the motor space in the case of forward

models.

An internal representation of the goal could lie in the perceptual space, or alternatively

as shown in Figure 2.2, in a separated space if it is encoded independently of the sensory

processes of experienced vocalisations. In such a model, an internal representation of

the goal is used as the learning domain and hence, it is non-perceptual. In the present

review, we call goal-to-motor model the connections between the internal representation

and the motor space. The sensory processing of the produced vocalisations may still be

implemented downstream from the motor space, for instance to provide a reward signal

that guides learning in a reinforcement learning framework.

Whichever the particular learning framework and mechanisms used, the modelled

agent must explore either the goal space or the motor space to later adjust its production.

Such a vocal exploration may be purely random or more sophisticated (e.g. intrinsically

motivated exploration) (Oudeyer et al., 2007). To explore either the motor space or

the goal space, and to improve current vocal performance, learning models rely on the

evaluation of the produced vocalisation. The aim of the evaluation is to obtain a measure

that defines an error signal and/or a reinforcement signal, later used by the learning
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Figure 2.1: Sensorimotor model with a action-perception loop. The motor control
function generates a sensory representation (a sound in the more complete
models) given the motor command parameters. This kind of sensorimotor
model includes an inverse model, and potentially a forward model. One of
the advantages of a forward model is that it can bias the perceptual representa-
tion in order to facilitate the inverse model learning towards perceptuo-motor
representations (Wolpert and Kawato, 1998).

framework to update the architecture.

Table 2.1 contains all the acronyms used along the review. Section 2.2 contains an

introduction to the neuroanatomy of the human and songbird brains. Additionally, it

contains an analysis of the links between biology and the sensorimotor components. Sec-

tion 2.3 details the aim of the reviewed models, giving an overview of the objectives and

questions pursued by the modellers. Table 2.2 summarises the aims of the models. Sec-

tion 2.4 describes the motor control device and its components: the motor space, the

articulatory model and the connection with the sensory space. Section 2.5 introduces

the representation of the sensory system and its components: the sensory space, the sen-

sory response function and the perceptual space. Table 2.4 contains a summary of the

spaces and functions of sensorimotor models. Section 2.6 elaborates on the components
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Figure 2.2: Non-perceptual sensorimotor model. This kind of model is non-
perceptual because it has a non-perceptual internal representation of goals.
The dotted line represent learned connection from goals to motor commands:
we call this the goal-to-motor model. Sensory response function processes the
sound and can be implemented in various ways depending on the learning
framework: it could be used to provide a reward or an evaluation of the learn-
ing (for this reason there is an arrow starting from the sensory space, but
without a specific output space).

of the learning framework and Table 2.6 summarises the implementations used in the

models. Section 2.7 contains a discussion about the reviewed models, their relation with

the biological framework introduced in Section 2.2, and further directions are proposed.

2.2 Biological context

We present here the biological context of vocal learning. We first highlight the behavioural

phases included in imitative vocal learning in humans and songbirds. Then, the main

brain circuits related to song (for birds) and spoken language (for humans) are discussed

and compared. Finally, we introduce current mechanistic hypotheses and some biological
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Acronym Extended name

Biological context
DLM thalamic nucleus DorsoLateralis anterior par Medialis
aSt anterior Striatum
aT anterior Thalamus

HVC High Vocal Center
LFP Local Field Potential

LMAN Lateral Magnocellular nucleus of Anterior Nidopallium
LMC Laryngeal Motor Cortex
LTD Long-Term Depression
LTP Long-Term Potentiation
MNs Mirron Neurons
RA Robust nucles of Arcopallium

SMP Song Motor Pathway
STRF Spatio-Temporal Receptive Field

Computational Models of the Vocal Tract
DIVA Directions Into Velocities of Articulators
ODEs Ordinary Differential Equations
qTA quantitative Target Approximation
VTL VocalTractLab

VLAM Vocal Linear Articulatory Model

Learning Framework
COSMO Communicating Objects through SensoriMotor Operations
CMA-ES Covariance Matrix Adaptation - Evolution Strategy

ESN Echo State Network
FF NN Feed Forward Neural Network

IAC Intelligent Adaptive Curiosity
O Optimization algorithm

RBF Radial Basis Function
RL Reinforcement Learning

RNN Recurrent Neural Network
S Supervised learning

SOM Self-Organizing Map
U Unsupervised learning

Algorithms
BMU Best Matching Unit

F0 Fundamental frequency
GMM Gaussian Mixture Models
HPF High-Pass Filter
LDA Linear Discriminant Analysis
LPF Low-Pass Filter

MFCC Mel-Frequency Cepstral Coefficients
MSE Mean Square Error
PCA Principal Component Analysis
SSE Sum of Squared Error

Table 2.1: Summary of the acronyms used in the review.
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constraints that should be taken into account while defining a vocal learning model: mirror

neurons’ activity and their putative function in vocal learning, experimental evidence

for synaptic plasticity and the sensory representation of vocalisations. In the last three

subsections, the literature comes mainly from songbirds, but may also serve as biological

support for human studies.

2.2.1 Learning phases and behaviour

From a behavioural point of view, speech learning in humans and song acquisition in birds

are made up of the same developmental behavioural phases (Doupe and Kuhl, 1999; Kuhl,

2004, 2000). Figures 2.3 and 2.4 show the first year of speech perception (green back-

ground) and production (pink background) development in infants (adapted from Kuhl

(2004)) and songbirds (adapted from Doupe and Kuhl (1999)). In babies, as shown

in Figure 2.3, sensory learning starts immediately after birth and allows the infant to

discriminate the phonetic contrasts specific to the learned language. This process, also

known as categorical learning, is described in Subsection 2.2.3. Vocal production starts

with the production of non-speech sounds, also shortly after birth. After this preliminary

phase, sensorimotor learning starts: speech-like sounds are first produced erratically, then

“canonical babbling” emerges and the first words are produced by the infant around the

age of one year (Kuhl, 2004; Moulin-Frier et al., 2014).

In birds, as shown in Figure 2.4, the sensory learning phase enables juveniles to build

a neural representation of adult vocalisations, which would later guide vocal produc-

tion (Doupe and Kuhl, 1999). Juveniles have a species-specific predisposition and listen

to the sounds produced by their parents (Doupe and Kuhl, 1999). Then, during the senso-

rimotor phase, the young birds start to vocalise, initially producing babbling sounds and

then adapting their vocal output to imitate previously heard vocalisations (Brainard and

Doupe, 2002). Finally, the produced vocalisation becomes more and more stereotyped

and vocal plasticity significantly drops. This final phase, when song production converges

towards the stereotyped adult song, is called crystallisation in birds (Doupe and Kuhl,
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Figure 2.3: First year of infant speech-perception and speech-production devel-
opment. Speech perception development (green background) is characterised
by a sensory learning phase that shapes perception, from an initially universal
perception to language-specific phoneme discrimination. Speech production
development (pink background) is characterised by some preliminary phases
followed by sensorimotor learning, where ”canonical babbling” takes place.
Image adapted from Kuhl (2004).

1999; Kuhl, 2000).

2.2.2 Neuroanatomy of human and bird brain

Figure 2.5 shows the brain pathways controlling song in songbirds (upper panel) and

spoken language in humans (lower panel). In both cases, there are two main path-

ways (Chakraborty and Jarvis, 2015): the posterior vocal motor pathway (plain black

arrows) and the anterior vocal learning pathway (plain white arrows). In addition, there

are connections between the two pathways (dashed black arrows) and specialised direct

projection to vocal motor neurons (plain red arrows).

The vocal production pathway in birds (Figure 2.5(a)) projects from HVC (used as a

proper name2) to robust nucleus of arcopallium (RA) (plain black arrows, upper panel).

2HVC was originally High Vocal Center.
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crystallization of the song (i.e. convergence to adult song). Image adapted
from Doupe and Kuhl (1999).

RA and its analogous in humans, represented by the laryngeal motor cortex (LMC),

connect directly to vocal motor neurons (plain red arrows, lower panel) providing the

motor output (controlling the larynx in humans or syrinx in birds) (Chakraborty and

Jarvis, 2015; Jarvis, 2019). The vocal learning pathway is responsible for vocal imita-

tion and plasticity: it forms a basal ganglia-thalamo-cortical loop. In birds, as shown

in Figure 2.5(a), it involves the song-related song nucleus Area X, the thalamic nucleus

dorsolateralis anterior pars medialis (DLM, sometimes called aDLM) and the lateral mag-

nocellular nucleus of the anterior nidopallium (LMAN, more generally called MAN). The

indirect projection onto RA from Area X, through DLM and LMAN is represented by

a dashed black arrow (Chakraborty and Jarvis, 2015; Jarvis, 2019). In humans, in Fig-

ure 2.5(b), the vocal learning pathway presumably includes Broca’s area (one of the main

areas of the language cortex in humans along with Wernicke’s area and superior temporal

gyrus (Friederici, 2011)), the anterior striatum (aSt) and anterior thalamus (aT).

The neuroanatomical structure of the vocal control circuit in human and bird provides

the anatomical basis for bio-inspired models of vocal learning that often question the
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differential gene expression experiments, which show that the
avian pallium has a functional columnar organization similar
to the mammalian pallial domain [39,52–54]. Further, the
mammalian non-vocal motor descending pathway and
the pre-motor pathway share similar connectivity patterns in
avian posterior and anterior motor pathways, respectively,
suggesting the presence of a pre-existing motor system shared
by both groups and their most recent ancestor [1,39,55,56].

The proposed mechanism of evolution of vocal learning
pathways was by brain pathway duplication [39]. In this
regard, it was hypothesized that parallel forebrain motor
learning pathways with auditory, somatosensory or other
sensory input, normally replicate multiple times during
embryonic development and connect to different brainstem
and spinal cord neurons to control different muscle groups.
In vocal learners, this forebrain pathway is hypothesized to
replicate one more time and then connect to the brainstem
circuits that control vocalizations and respiration. Then the
new vocal learning pathway would diverge to form novel
connections and functions relative to the adjacent non-
vocal motor pathways. Under this duplication hypothesis,
the vocal learning pathways share a deep homology with
the surrounding motor pathways, but convergence in the
independent lineages of vocal learners.

Several alternative hypotheses have been proposed for
evolution of vocal learning pathways, including that the path-
ways in humans and song-learning birds originated out of
either a pre-existing auditory pathway [57,58], a non-motor
cognitive region [59,60], a combined auditory–motor pathway
[61], or completely de novo [62]. In support of an auditory
origin hypothesis, the songbird posterior vocal motor pathway
is also partly adjacent to the auditory pathway and has some

parallel connections with the descending auditory system
[58]. However, such an anatomical position is not present in
hummingbirds, parrots, or humans [1,2]. With the exception
of the completely de novo hypothesis, even if the vocal learning
pathway arose from a non-motor pathway, the hypothesis of
pathway duplication could still apply.

If the duplication hypothesis were true, then one would
expect to find most genes expressed in vocal learning path-
ways to be similar to the pathway from which they were
duplicated. Further, one would expect to find divergent mol-
ecular changes in neural connectivity genes associated with
the unique connections found in vocal learning pathways.
These ideas were recently tested in a high-throughput gene
expression study using a novel computational approach
that determines homologous and convergent specialized ana-
tomical gene expression profiles from thousands of samples
and genes from multiple species [50]. Using comparative
microarray gene expression profiling of approximately
3000–7000 genes in vocal learning and vocal non-learning
avian and primate species, Pfenning et al. [50] found that
the song and speech brain pathway regions of vocal learning
birds and humans have gene expression profiles that more
closely match motor and premotor cortex and striatal path-
way regions adjacent to them than they do to auditory,
somatosensory or other brain regions (figure 1). These results
corroborated some earlier single gene expression, develop-
mental, functional, and connectivity studies [24,52,63–67].
Combined, the findings support the idea that the similarities
are owing to homology and not convergence. Further, Pfen-
ning et al. [50] found divergent changes in expression of
genes that control neural connectivity in the avian song and
the human speech regions from the surrounding motor
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differential gene expression experiments, which show that the
avian pallium has a functional columnar organization similar
to the mammalian pallial domain [39,52–54]. Further, the
mammalian non-vocal motor descending pathway and
the pre-motor pathway share similar connectivity patterns in
avian posterior and anterior motor pathways, respectively,
suggesting the presence of a pre-existing motor system shared
by both groups and their most recent ancestor [1,39,55,56].

The proposed mechanism of evolution of vocal learning
pathways was by brain pathway duplication [39]. In this
regard, it was hypothesized that parallel forebrain motor
learning pathways with auditory, somatosensory or other
sensory input, normally replicate multiple times during
embryonic development and connect to different brainstem
and spinal cord neurons to control different muscle groups.
In vocal learners, this forebrain pathway is hypothesized to
replicate one more time and then connect to the brainstem
circuits that control vocalizations and respiration. Then the
new vocal learning pathway would diverge to form novel
connections and functions relative to the adjacent non-
vocal motor pathways. Under this duplication hypothesis,
the vocal learning pathways share a deep homology with
the surrounding motor pathways, but convergence in the
independent lineages of vocal learners.

Several alternative hypotheses have been proposed for
evolution of vocal learning pathways, including that the path-
ways in humans and song-learning birds originated out of
either a pre-existing auditory pathway [57,58], a non-motor
cognitive region [59,60], a combined auditory–motor pathway
[61], or completely de novo [62]. In support of an auditory
origin hypothesis, the songbird posterior vocal motor pathway
is also partly adjacent to the auditory pathway and has some

parallel connections with the descending auditory system
[58]. However, such an anatomical position is not present in
hummingbirds, parrots, or humans [1,2]. With the exception
of the completely de novo hypothesis, even if the vocal learning
pathway arose from a non-motor pathway, the hypothesis of
pathway duplication could still apply.

If the duplication hypothesis were true, then one would
expect to find most genes expressed in vocal learning path-
ways to be similar to the pathway from which they were
duplicated. Further, one would expect to find divergent mol-
ecular changes in neural connectivity genes associated with
the unique connections found in vocal learning pathways.
These ideas were recently tested in a high-throughput gene
expression study using a novel computational approach
that determines homologous and convergent specialized ana-
tomical gene expression profiles from thousands of samples
and genes from multiple species [50]. Using comparative
microarray gene expression profiling of approximately
3000–7000 genes in vocal learning and vocal non-learning
avian and primate species, Pfenning et al. [50] found that
the song and speech brain pathway regions of vocal learning
birds and humans have gene expression profiles that more
closely match motor and premotor cortex and striatal path-
way regions adjacent to them than they do to auditory,
somatosensory or other brain regions (figure 1). These results
corroborated some earlier single gene expression, develop-
mental, functional, and connectivity studies [24,52,63–67].
Combined, the findings support the idea that the similarities
are owing to homology and not convergence. Further, Pfen-
ning et al. [50] found divergent changes in expression of
genes that control neural connectivity in the avian song and
the human speech regions from the surrounding motor
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Figure 2.5: Brain pathways controlling (a) song in songbirds and (b) spoken lan-
guage in humans. The posterior vocal motor pathway (plain black arrows)
is also called vocal production pathway, since it involves direct projections
to motor neurons. The anterior vocal learning pathway (plain white arrows)
is responsible for vocal imitation and plasticity. In addition, there are the
connections between the two pathways (dashed black arrows) and specialised
direct projection to vocal motor neurons (plain red arrows). In panel (a), a
indicates a region where there is an auditory neural activity, m a region where
there is motor neural activity, m/a a region where both auditory and motor
neural activities are present. In panel (b), v indicates the ventricle space.
Image from Chakraborty and Jarvis (2015), CC-BY 4.0 license.

function of specific brain areas and/or the connections between them. Please refer to

Section 2.3 and Table 2.2 for studies making explicit reference to the neuroanatomy of

the brain.

2.2.3 Sensory system

The auditory system of mammals and birds builds up selective responses to auditory stim-

uli. Ultimately, auditory selectivity may give rise to categorical perception, the tendency

to perceive a continuous change in sensory space (e.g. sound) as discrete percepts (e.g.

phonemes or bird syllables). This ability exists in both humans and birds (Kuhl, 2000,

2004). During infant first months, the acoustic differences detected influence the selection
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of phonetic units, and infants become more sensitive to the units that are important for

the language they hear (Kuhl, 2000, 2004). Similarly in birds, neural selectivity for the

imitated song develops slowly during song ontogeny (Brainard and Doupe, 2002).

In birds, the auditory system is involved in the discrimination of songs, and relies on

the temporal cues and pitch of the song to provide information about the identity of the

singer (Hahnloser and Kotowicz, 2010). Song-selective responses (with different responses

to the bird’s own song and other’s vocalisations) have been observed in various high sen-

sory brain areas. The sharp auditory selectivity of neurons in these high sensory areas

emerge from a multi-stages auditory pathway that starts from the inner ear. At lower

stages of this pathway, sensory responses evoked by the playback of songs or other sounds

(including white noise) are well modelled using a linear summation of spatio-temporal

receptive fields (STRF) (Theunissen et al., 2000). Higher in the auditory pathway, re-

sponses become sparser and more non-linear (i.e. less well modellable by such a linear

model) (Hahnloser and Kotowicz, 2010).

Interestingly, experimental studies in birds have revealed that some auditory neu-

rons also respond to perturbations of the auditory feedback during singing (Keller and

Hahnloser, 2009; Hahnloser and Kotowicz, 2010). This highlights the fact that the whole

pathway from high auditory area to motor areas could be involved in the recognition of

tutor or conspecific songs and in the evaluation of the bird’s auditory feedback.

2.2.4 Mirror neurons and perceptuo-motor coherence

Some neurons, called mirror neurons (MNs) show a similar response during the perception

and the production of a motor or vocal gesture (Rizzolatti et al., 1996; Gallese et al., 1996;

Oztop et al., 2006; Prather et al., 2008). Convergence of sensory and motor signals in

the same neurons points to a possible mechanism to enable vocal learning (Heyes, 2001):

during vocal production, auditory feedback could activate a sensory neural population

directly connected to motor neurons driving song production, leading to a strengthening

of connections between sensory and motor neural populations through Hebbian learn-
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ing (Hahnloser and Ganguli, 2013; Tramacere et al., 2019). These connections could be

the substrate of internal models (Kawato, 1999; Giret et al., 2014). However, mirror

neurons have only been reported in adult songbirds until now, and it remains unclear

whether they are selectively responding to the tutor song following the sensory learning

phase. Alternatively, song-related auditory responses may emerge only after the end of the

sensorimotor learning phase, ruling out a role for these neurons in song acquisition (Tra-

macere et al., 2019).

In humans, different theories try to explain why there is activation of motor areas

during speech perception (Liberman and Mattingly, 1985; Wilson et al., 2004; Fowler,

2016). For example, the Perception-for-Action-Control Theory (PACT) (?) highlights

how speech percepts are related not only to sounds, but also to motor gestures: speech

perception could be biased by articulatory invariant commands.

Syllables are perceptuo-motor by essence: i.e. perception shapes action (e.g. some

abstract representation of motor gesture can be recovered to disambiguate perception)

and, at the same time, action shapes perception (e.g. motor gestures are ”selected for

their functional and perceptual value for communication” (?)). An example is the fact

that acoustic features can change abruptly when changing the jaw height or jaw cycle,

producing phase transition in the perceptuo-motor phase space diagram (?).

2.2.5 Learning rules and synaptic plasticity

Learning rules implemented in artificial neural networks are often inspired by biological

synaptic plasticity. Evidence for synaptic plasticity in the songbirds song-related net-

work has been highlighted recently (Boettiger and Doupe, 2001; Ding and Perkel, 2004;

Sizemore and Perkel, 2011; Mehaffey and Doupe, 2015). The various sites of synaptic

plasticity could underlie separate learning processes.

Plasticity in the thalamo-cortical synapse of the learning pathway may subserve early

sensory learning (Boettiger and Doupe, 2001). Still, in the learning pathway, long-term

potentiation (LTP) in Area X is modulated by dopamine (Ding and Perkel, 2004). LTP
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provides experimental evidence for a three-factor learning rule as those often used to

model reinforcement learning processes in neural circuits (Legenstein et al., 2010). In-

deed, dopamine often mediates reinforcement signals (Schultz, 1998), and several vocal

learning models borrow concepts and algorithms from reinforcement learning (RL) the-

ory (Goldberg et al., 2013). In this framework, the progressive improvement of vocalisa-

tions observable in the behaviour reflects a trial-and-error strategy guided by the internal

evaluation of the produced vocalisations (likely through its comparison with previously

experienced adult vocalisations) as well as external rewarding cues directly provided by

the adults (Doupe and Kuhl, 1999).

Then, the long-term depression (LTD) of RA recurrent collateral synapses (i.e. be-

tween projection neurons) is limited to the song learning critical period; this could im-

plement the pruning of unnecessary connections within RA (Sizemore and Perkel, 2011).

The connections in the HVC-RA network are thought to be formed by a dense network

that provides many paths for the descending motor signals, and only circuits that were

active during singing need to be maintained. This is consistent with the high variability

of juvenile’s song or infant babbling (Sizemore and Perkel, 2011; Darshan et al., 2017).

Finally, recent evidence for synaptic plasticity in the inputs to RA neurons from HVC

and LMAN may provide a key element to model the interaction between the motor and

learning pathways during learning (Mehaffey and Doupe, 2015). Indeed, naturalistic

stimulation patterns drive opposing changes in the strength of RA’s inputs from HVC

or LMAN. The extrapolated learning rule may allow the transfer of motor corrections

initially driven by LMAN inputs and later consolidated in the motor pathway (Andalman

and Fee, 2009).

2.3 Aims of the models

The topics of the reviewed models are either speech perception and production develop-

ment in humans, or song acquisition in birds. The second column of Table 2.4 contains

the subject of the study of each paper that is reviewed: either humans (”H”) or song-
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Sensorimotor
integration

Brain area
functions

Architecture/
plasticity rule

Bailly (1997) Doya and Sejnowski (1998) Doya and Sejnowski (1998)
Westerman and Miranda (2002) Troyer and Doupe (2000) Troyer and Doupe (2000)
Moulin-Frier et al. (2015) Fiete et al. (2007) Fiete et al. (2007)

Cohen and Billard (2018) Howard and Huckvale (2005)
Barnaud et al. (2019) Oudeyer (2005)

Howard and Messum (2007)
Kröger et al. (2009)
Liu and Xu (2014)
Philippsen et al. (2014)
Murakami et al. (2015)
Warlaumont and Finnegan (2016)
Najnin and Banerjee (2017)
Pagliarini et al. (2018a)
Barnaud et al. (2019)

Realistic
vocal tract

Exploration
Social

interactions
Doya and Sejnowski (1998) Moulin-Frier and Oudeyer (2012) Oudeyer (2005)
Howard and Huckvale (2005) Moulin-Frier et al. (2014) Lyon et al. (2012)
Moulin-Frier and Oudeyer (2012) Philippsen et al. (2016) Moulin-Frier et al. (2015)
Murakami et al. (2015) Forestier et al. (2017) Acevedo-Valle et al. (2018)
Philippsen et al. (2016) Acevedo-Valle et al. (2018)
Teramoto et al. (2017)
Howard and Birkholz (2019)

Table 2.2: Summary of the main objectives pursued by the authors of the reviewed models.

birds (”SB”). In both cases, the focus is on early stages of learning, when babbling takes

place (see Section 2.2 for more details about learning phases in humans and songbirds).

Beyond the general topic, there are several objectives and questions that the authors have

pursued. An overview of these objectives is shown in Table 2.2: (i) investigate the effects

of sensorimotor integration on the model definition, (ii) test the biological plausibility of

hypotheses for the function of vocal learning brain areas, (iii) test a particular architec-

ture and/or plasticity rule, (iv) include a realistic vocal tract, (v) test different types of

exploration, and (vi) model social interactions.

2.3.1 Effects of sensorimotor integration

Some authors aim to study sensorimotor integration and its effect on sensory and mo-

tor space representations: Bailly (1997) is interested in sensorimotor redundancy given
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the constraints imposed by the articulatory system; Westerman and Miranda (2002) are

concerned by the effect of auditory perception and production on the development.

2.3.2 Biological plausibility

Many authors are interested in modelling song-related pathways in birds, and in the

study of auditory feedback. Troyer and Doupe (2000) test several hypotheses about ante-

rior vocal learning pathway including HVC-RA connections, efference copy and auditory

feedback. Doya and Sejnowski (1998) test the hypothesis that LMAN drives slow explo-

ration in the connection from HVC to RA. Alternatively, Fiete et al. (2007) hypothesise

that LMAN produces transient song perturbations by driving rapid conductance fluctua-

tions in RA neurons. In the context of speech production and perception, some authors

developed models inspired by functions of brain areas (Kröger et al., 2009). Cohen and

Billard (2018) tested the hypothesis that human brain areas are shared in language un-

derstanding and production, and their implication in goal-directed actions using active

language learning and social babbling. Barnaud et al. (2019) tested the hypothesis of id-

iosyncrasies (individual specificity) in production and perception; moreover, they tested

the inter-individual variability in auditory and motor prototypes within a given language.

2.3.3 Learning architectures and algorithms

Some authors test the hypothesis that the anterior vocal learning pathway works as an

actor-critic system and implement a gradient-based reinforcement learning rule. This is

the case of Doya and Sejnowski (1998) and Fiete et al. (2007). Reinforcement learning is

implemented also by Howard and Messum (2007) and Warlaumont and Finnegan (2016):

they test the hypothesis that actions are reinforced based on auditory salience. Finally,

Troyer and Doupe (2000) combine Hebbian leanring and a reinforcement learning signal

in their architecture. Alternatively, other authors learn internal models using different

learning rules to update the synaptic weights matrix representing the connections between

motor commands and goal representations. Howard and Huckvale (2005) compare direct
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inverse mapping and distal supervised learning in the context of speech generated both

by a real human subject and by a synthesizer; Philippsen et al. (2014) aim to understand

how to reduce the need for supervised training using only acoustic examples learning

efficiently an inverse and a forward model. Oudeyer (2005) and Pagliarini et al. (2018a)

test a normalised Hebbian rule to learn the inverse model. Liu and Xu (2014) test if it

is possible to develop the acoustic-to-articulatory model by learning inverse kinematics

in speech acquisition. More particular cases are presented by the works from Murakami

et al. (2015) who test imitation learning using a recurrent neural network, Kröger et al.

(2009) who test a self-organised network (SOM), and Barnaud et al. (2019) who test a

Bayesian model of speech communication.

2.3.4 A realistic vocal tract model

One of the objectives of many authors is to take into account anatomical and physiological

constraints using a realistic model of the vocal tract for the production of the sound.

Many authors want to include such a model in their study: Doya and Sejnowski (1998),

Howard and Huckvale (2005), Moulin-Frier and Oudeyer (2012), Murakami et al. (2015),

Philippsen et al. (2016), Teramoto et al. (2017). In particular, Howard and Birkholz

(2019) test two different vocal tract models, with increasing complexity, both in the case

of a real human teacher and in the case of an automatic synthesizer of sounds.

2.3.5 Exploration strategies

Several authors test whether or not mechanisms of intrinsically motivated exploration can

self-organise early developmental stages of learning: Moulin-Frier et al (Moulin-Frier and

Oudeyer, 2012; Moulin-Frier et al., 2014) compare different exploration strategies (ran-

dom motor exploration, random goal selection and curiosity-driven active goal selection)

to drive learning; Forestier and Oudeyer (2017) focus on body babbling coupling self-

generation of goals and imitation learning without any assumptions of capabilities for

complex sequencing; (Philippsen et al., 2016) test goal-directed exploration of the target
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space and assume that there is no need of visual information. On the contrary Murakami

et al. (2015) starts and studies the relevance of visual information. Intrinsically motivated

exploration is also in the interest of Acevedo-Valle et al. (2018): they formalise a socially

reinforced and intrinsically motivated architecture for sensorimotor exploration to study

the impact of social reinforcement on pre-linguistic development.

2.3.6 Social and multi-agent interactions

Many authors are interested in the influence of social interactions during early pre-

linguistic development: Acevedo-Valle et al. (2018) study the influence of imitation ma-

ternal responsiveness; Lyon et al. (2012) embed their learning system in a humanoid

robot that interacts in real-time with naive participants. Moulin-Frier et al. (2015) and

Oudeyer (2005) study self-organising properties of coupling perception and production

within agents and between agents.

2.4 Motor control

The first step in defining motor control is to choose an appropriate model mapping a motor

space (i.e. muscle command) onto a sensory space (i.e. sound or acoustic representation).

This section provides definitions of motor spaces and motor control functions that have

been used in models.
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2.4.1 Motor space

The motor space is used to describe motor articulations parameters (ideally as a function

of time). These parameters control the dynamics of vocal tract muscles and glottis (for

human control models). A high number of parameters is usually provided but often

several can be kept constant, either because they do not have much influence on the

sound produced or in order to reduce the number of parameters. The dimension of the

motor space depends on the motor control function applied and also on the choices made

by the modellers. There is a large variability in the number of dimensions of the motor

space: from a low dimensional motor space, which only considers the parameters related

to lip and tongue, to high dimensional motor spaces which include almost all the available

parameters for the vocal tract and, in addition, the glottis parameters.

2.4.2 Motor control function

In humans, vocal motor control involves the respiratory system, the vocal or-

gans (e.g. tongue, lips, jaw, larynx) and the vocal tract. Although some studies have

been conducted in the context of vocalisations, neural mechanisms underlying the diver-

sity of respiratory rhythms are largely unknown (Scharff and Nottebohm, 1991).

A basic model of speech production, therefore, includes a sound source (vocal folds)

and a linear acoustic filter (vocal tract) (Fant, 2012). The sound source is the combination

of vocal folds vibration output and noise. Such noise can be due to pressure fluctuations

or by activities of other parts of the apparatus (e.g. the glottis). Lumped-element models

are a class of self-oscillating biomechanical vocal folds models: these low-dimensional vo-

cal fold models couple airflow and biomechanics (Birkholz, 2011). Such low-dimensional

models can reproduce characteristics of real vocal fold oscillations (Ishizaka and Flana-

gan, 1972) and have been largely applied in speech research (Erath et al., 2013): the

parameters and the structure of lumped-element models can be tuned to sustained vowel

simulations to obtain different frequencies. Additionally, it can be tuned to simulate var-

ious vocal registers, e.g. to generate a sequence of sounds (to simulate running speech),
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or to study some pathological phonation conditions (e.g. incomplete glottal closure).

Downstream from the sound source, the vocal tract acts as a resonator, filtering the

sound as it travels to the outside world. It modifies the original sound wave and changes

the balance between its frequency components. The resonance frequencies of the vocal

tract are called formants (Ladefoged, 1996). The human vocal tract has been often mod-

elled as a structure of pipes: in the literature, Ordinary Differential Equations (ODEs)

models describe air pressure dynamics in the vocal tract. For example, Westerman and

Miranda (2002) used a synthesizer which models the vocal system as a structure of pipes,

each one having four walls represented as mass spring damper models (useful to model

non-linearities): the 2D model equations describe the pipe wall physical behaviour, evolu-

tion of the movements and air pressure. Similarly, De Boer model (De Boer, 2000, 2001)

has been used by Oudeyer (2005): the synthesizer is based on the interpolation between

the formant frequencies of vowels generated by Maeda’s articulatory model (Maeda, 1989).

Articulatory synthesizers are based on the same idea and control the vocal articu-

lators: (i) Praat, a software for speech analysis containing an articulatory synthesizer,

developed by Boersma et al. (1998), and used by Westerman and Miranda (2002), and

by Warlaumont and Finnegan (2016); (ii) VocalTractLab (VTL), developed by Birkholz

et al. (Birkholz, Accessed Sept. 2019; Birkholz et al., 2006), and used by Philippsen et al.

(2014, 2016), Murakami et al. (2015), Howard and Birkholz (2019), as well as in speech

signal filtering (Gudhnason et al., 2015) or articulatory synthesizer training (Prom-on

et al., 2013); (iii) Vocal Linear Articulatory Model (VLAM) (Maeda, 1990)) has been

used by Howard and Huckvale (2005), Moulin-Frier and Oudeyer (2012); Moulin-Frier

et al. (2015), Howard and Messum (2007); (iv) Directions Into Velocities of Articula-

tors (DIVA) (Guenther et al., 2006a; Tourville and Guenther, 2011) has been used by

Bailly (1997), Moulin-Frier et al. (2014), Forestier et al. (2017) and Acevedo-Valle et al.

(2018); (v) VTCalcs software proposed by Maeda (Maeda) has been used by Howard and

Messum (2011).

Taking inspiration from previously developed vocal tract models, Kröger et al. (2009)

proposed to define two parameters (back-front and low-high) describing the state of the
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motor plan and covering the whole articulatory vowel space. Other motor parameters

like tongue position and lip parameters are expressed in function of these two motor plan

parameters. Two particular cases are given by Lyon et al. (2012) which used eSpeak, a

synthesizer that uses a formant synthesizer method (Foundation, 2007) and Liu and Xu

(2014), where qTA (quantitative Target Approximation) has been used to mimic the motor

control dynamics, controlling them via three parameters related to the target properties.

For modelling song production in birds, an interactive model where nonlinear inter-

action between timescales enables motor instructions has been proposed. More recently,

Alonso et al. (2015) developed a simple time continuous additive neural network model

that drives the dynamics of respiratory activity: respiratory patterns can be reproduced

and predictions on the timing of HVc activity during the production can be performed.

Anatomical properties and small size of birds make the investigation of vocal fold mech-

anisms difficult. It has been shown that the brain seems unable to control each motor

parameter independently but it uses a complex gesture-dependent control scheme to drive

the vocal output (Elemans et al., 2015; Srivastava et al., 2015). Different studies have

been looking at the properties of vocal motor control in correlation with acoustic features,

such as 3D imaging techniques to investigate the control of sound pitch (Düring et al.,

2017) or neural recordings analysis to investigate the variations in the song (Sober et al.,

2008).

Amador et al. (2013), Doya and Sejnowski (1998), Fiete et al. (2007) model the vocal

tract dynamics in birds using ODEs. They include time-dependent constants related to

air pressure and syringeal labial tension. The output is the pressure needed to generate

the sound. Such a dynamical system is able to synthesise realistic vocalisation sounds if a

series of instruction derived from a recorded song input is given (Boari et al., 2015). The

model from Amador et al. (2013) has been used by Teramoto et al. with marmoset (Ter-

amoto et al., 2017) in a vocal development study.
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2.4.3 Sound production

More realistic models generate sound production through the motor control device: Bailly

(1997), Doya and Sejnowski (1998), Westerman and Miranda (2002), Howard and Huck-

vale (2005), Fiete et al. (2007), Howard and Messum (2011, 2007), Howard and Birkholz

(2019), Lyon et al. (2012), Moulin-Frier et al. (2014); Moulin-Frier and Oudeyer (2012),

Forestier and Oudeyer (2017), Philippsen et al. (2014), Philippsen et al. (2016), Murakami

et al. (2015), Acevedo-Valle et al. (2018), Warlaumont and Finnegan (2016). Some models

rather rely on an abstract representation of the vocal output including a discrete set of

features (e.g. formants) as in the works from Troyer and Doupe (2000), Oudeyer (2005),

Moulin-Frier et al. (2015) and Barnaud et al. (2019).

2.5 Sensory system

The sensory system processes sensory stimuli and leads to a perceptual representation

of those stimuli (in the perceptual space). While sensory stimuli may arise from other

subjects (e.g. adult vocalisations to be memorised during the sensory learning phase), the

production of vocalisations by the motor control apparatus also leads to the stimulation

of the sensory system. As mentioned in Section 2.2.3, it provides a feedback of the

motor command that allows to compare the perceived vocal production with previously

experienced adult vocalisations (e.g. the memorised tutor song in the case of birds). The

evoked sensory responses may also be conveyed to the reinforcement system, where an

evaluation of the produced sounds leads to a reward signal. The sensory response function

is often modelled as a minimal extraction of a low dimensional feature-based description

of sounds in vocal learning models.

This section motivates the choice of the sensory response function, the sensory space

and the perceptual space. In Table 2.4 we separate the physical space of the sound,

which is the sensory space, and its abstract representation, which is composed of a pre-

processed sound and the perceptual space. This allows to highlight whether a model has
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sound production or not, and to compare them in both cases.

2.5.1 Sensory space

The sensory space is the output space of the motor control device. As mentioned in

Section 2.4.3 not all the models include sound production. The most simplistic models

do not define the motor control device, leading to a coincidence between motor and

sensory space. For instance, this approach has been used by Cohen and Billard (2018)

and Pagliarini et al. (2018a) (i.e. Identical to Motor Space (IMS) in Table 2.4).

2.5.2 Sensory response function

The sensory response function acts on the sensory space and drives the activity in the

perceptual space, where the auditory stimuli are represented with a lower dimension. This

process is the result of one or more steps that lead to a filtered, normalised and/or reduced

subspace representing the auditory stimulus. The output is an abstract representation

of the sound which represents its encoding in the brain. To highlight the fact that the

auditory process is in general not a single-step process, a column (Pre-processing of the

sound) represents an intermediate step between the real sound and the perceptual space.

Most models describe first the sound as a trajectory in the formants’ space, varying

the dimension of the space (usually from 2 to 4) and the measure unit (either Barks or

Hertz). Alternatively, other common examples of preprocessed sound are given by a low

pass filtered version of the spectrogram, or the trajectory of the fundamental frequency.

A filter on the spectrogram or on the formant space has been applied by Westerman

and Miranda (2002). A linear combination has been used in the works from Oudeyer

(2005) and Moulin-Frier and Oudeyer (2012). Furthermore, Principal Component Anal-

ysis (PCA) and Linear Discriminant Analysis (LDA) have been applied by Philippsen

et al. (2016). An average over sound trajectories has been used by Acevedo-Valle et al.

(2018). Alternatively, some authors extracted different features from the sound to build

its representation in the perceptual space, or its internal representation. This is the case
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for Howard and Messum (2011, 2007), Philippsen et al. (2014), Philippsen et al. (2016),

Liu and Xu (2014). Howard and Huckvale (2005) estimate the autocorrelation of the fun-

damental frequency of the sound and of the voicing parameter (from the motor control).

Nonlinearity in the sensory response function can be introduced defining the auditory

activity as a bell-shaped function around the target motor pattern. For instance, this

choice has been made in the works of Westerman and Miranda (2002), Oudeyer (2005)

and Pagliarini et al. (2018a). A few particular cases are given by the work from Lyon

et al. Lyon et al. (2012) where a specific software, called SAPI 5.4 (Yildiz and Kiebel),

has been used to encode the stimulus and by the works of Murakami et al. (2015) where

a phoneme representation of the stimulus is obtained from a Random Recurrent Neural

Network (RNN), called a reservoir.

2.5.3 Perceptual space/Internal representation

The output of the sensory response function is a lower dimensional representation of

the sound produced by the vocal apparatus. In the context of humans the sound have

been represented in the space of the first 2, 3 or 4 formants (in Hertz or Bark scale)

by Westerman and Miranda (2002), Oudeyer (2005), Kröger et al. (2009), Moulin-Frier

et al. (2014); Moulin-Frier and Oudeyer (2012); Moulin-Frier et al. (2015), Forestier and

Oudeyer (2017), Najnin and Banerjee (2017), Philippsen et al. (2016) and Barnaud et al.

(2019), Acevedo-Valle et al. (2018). The latter also consider the intonation as third

acoustic parameter. Alternatively, Pagliarini et al. (2018a) propose a localist encoding

for the syllables.

The percepts can be given by the spectral properties of the sound: for instance the

frequency powers, the power change, the fundamental frequency, the Mel-Frequency Cep-

stral Coefficients (MFCC), or also pitch and amplitude. This choice has been made by

Howard and Messum (2011, 2007), Najnin and Banerjee (2017), Philippsen et al. (2014),

Philippsen et al. (2016), Liu and Xu (2014) and Fiete et al. (2007). Alternatively, the per-

cepts can be the classes of phonemes, as in the works by Lyon et al. (2012) and Murakami
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et al. (2015).

For any species, it is likely that the representation of a given sound in the perceptual

space keeps changing during development, thus making the learning of inverse model even

more difficult until the moment when the perceptual space ”converged”. That is why the

vast majority of the models have a sensory response function that does not change during

learning and is kept fixed. This can be justified based on the assumption that learning

the inverse model only starts at the end of the “universal sensory period”, which is the

case for some species of birds like sparrows.

Some studies do not have a sensory response function that leads to a perceptual space.

These are models with a non-perceptual internal representation of the goals, such as the

general model shown in Figure 2.2. As for the perceptual space, the choices made by the

author can be found in the last column of Table 2.4. This is the case for the reinforcement

learning models proposed by Doya and Sejnowski (2000), Troyer and Doupe (2000), Fiete

et al. (2007), Warlaumont and Finnegan (2016), Cohen and Billard (2018) and Howard

and Birkholz (2019). In the context of songbirds, a typical choice is to use an arbitrary

syllable space given by a localist encoding, as in the works from Doya and Sejnowski

(1998) and Troyer and Doupe (2000). Alternatively, Fiete et al. (2007) use the neural

activity of a spiking neural network. Finally, in the work from Cohen and Billard (2018)

goals are specific needs of the agent (e.g. thirsty, hunger).

2.6 Learning framework

This section introduces the different types of architectures, the learning domains (i.e. per-

ceptual, motor or goal spaces), the learning rules or optimisation algorithms, the explo-

ration strategies that could drive learning, and finally the evaluation measures. Table 2.6

summarises how the reviewed models implement the learning framework.
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2.6.1 Architecture

The architecture linking the learning domain to the learning image varies between models

and different architectures can be used. Biological hypotheses made in a particular model

are important to understand the choice of the architecture and the learning rule. For

more details about the biological hypothesis refer to 2.2.4 and 2.2.5).

Inverse and forward models (i.e. internal models) are both predictor models: they

provide a bi-directional link between the perceptual space and the motor space, when

both a forward and an inverse model are included. Inverse models have the aim to

provide an appropriate motor command for a given perceptual goal, which is driven by

the sensory response; the learning domain is defined by the perceptual space. Forward

models describe a causal relationship between motor commands and their corresponding

perceptual representations; the learning domain is defined by the motor space. As men-

tioned in Section 4.1, sensorimotor integration leads to redundancy: this is a fundamental

problem with inverse models since introducing such kind of model leads to non-convex

problems (Reinhart, 2011). This problem can be approached using the combination of an

inverse and a forward model (Jordan and Rumelhart, 1992; Wolpert and Kawato, 1998).

Indeed, forward modelling can be used to facilitate the estimation of the current state

enabling the learner to modify its action and match the prediction: this switches action

and perception representations, and explain the effects of perception on action (Pickering

and Garrod, 2013). Else, the non-convexity problem can be solved using a combination

of an inverse model and a feedback controller (Kawato, 1990) or ”goal-babbling” to drive

learning (Rolf et al., 2010).

Alternatively, as shown in Figure 2.2 other models define a non-perceptual internal

representation of goals and learn not the connections between the perceptual and the

motor space, but the link between the internal representation and the motor space. These

models include a sensory space if there is a motor control producing a real sound as output,

and a sensory response function, which is used to process the sound and build a reward

or an evaluation of the learning.
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The structure of the network varies among the models. Some approaches involve feed-

forward neural networks (FF NN) in the learning architecture. For instance, a 1-layer

perceptron has been used in the works by Pagliarini et al. (2018a), Westerman and Mi-

randa (2002), Oudeyer (2005) and Cohen and Billard (2018). A multi-layer perceptron

has been used in the works by Doya and Sejnowski (2000), Troyer and Doupe (2000),

Howard and Huckvale (2005) and Liu and Xu (2014). A Radial Basis Function (RBF)

network has been used by Philippsen et al. (2016). Alternatively, a reservoir has been

used by some authors: Warlaumont and Finnegan (2016) uses a reservoir as a kind of bio-

logical implementation of reinforcement learning for high-level control of sequential motor

production; Philippsen et al. (2014) use two reservoirs to learn both the forward and the

inverse models that link motor space with perceptual space; Najnin and Banerjee (2017)

use a 3-layered RNN to define the predictive model that uses a generative network to

predict the proprioceptive sensory (representing the perceptual dimension) from a causal

state (representing the motor dimension). A Bayesian architecture has been proposed in

the works from Moulin-Frier et al. (2014), Moulin-Frier et al. (2015) and Barnaud et al.

(2019). Finally, three Self-Organizing Maps (SOM) have been used in the work by Kröger

et al. (2009).

2.6.2 Learning domain

The learning domain, in the case of inverse models, coincides with the perceptual space,

which contains the representation of the stimuli (how the brain encodes sensory stimuli)

and is obtained through the sensory response. In the case of forward models the perceptual

space coincides with the output, and the learning domain coincides with the motor space.

Alternatively, the learning domain is defined as the internal representation of goals and

the sensory response drives a reward that modulates the learning rule. In the latter case,

the learning domain may be an abstract representation of the goal, that could represent

for instance a sound trajectory. Of course, the internal representation could be considered

as a component and not the domain of the learning framework, but we prefer to consider
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it as the domain of the learning mechanism (or architecture), in order to know what is

needed for the learning or optimisation to be available. The full learning domain, or a

sub-part, could be also called goal space in models using goal-driven exploration.

The learning domain might encode a whole song (that is a sequence of syllables) or

a single syllable, depending on the choices and aims of the model. For instance, the

learning domain can be defined as a syllable space that might encode features, as in

the works from Troyer and Doupe (2000), Liu and Xu (2014). Or again, using localist

encoding (i.e. one-hot encoding)3 as in the work from Pagliarini et al. (2018a).

Some authors use sound features to describe the perception of a stimulus, for example

intensity in the work from Moulin-Frier et al. (2014), fundamental frequency in the work

from Howard and Huckvale (2005), Frequency power and spectral change in the works

from Howard and Messum (2011, 2007) or pitch and amplitude in the work from Fiete

et al. (2007). Alternatively, the learning domain has been defined as a subspace of the

formants in the works from Oudeyer (2005), Moulin-Frier et al. (2014, 2015), Kröger et al.

(2009), Acevedo-Valle et al. (2018), Forestier et al. (2017) and Barnaud et al. (2019).

Philippsen et al. (2016) define the learning domain as the first two dimensions of the

embedding space. Here the stimulus has been modelled using the sound trajectory lying

in the correspondent space.

Finally, the learning domain can be identified with the output of specific neural net-

works architecture or particular software. For instance, in the work from Lyon et al. (2012)

the goal is represented by a phoneme stream computed using the software SAPI 5.4 (Yildiz

and Kiebel), and the work from Murakami et al. (2015) where an intrinsic learning is de-

fined to build the goal space. In the latter, an Echo State Network (ESN, a specific

Recurrent Neural Network (RNN), called reservoir) has been used to learn in advance

the goals, and an auditory memory encodes the knowledge of each goal (called auditory

memory function).

3Localist and one-hot encoding is probably the simplest orthogonal representation one can have. It
consists of a binary encoding where an input is represented by one feature at 1 and all the other features
at 0: e.g. 4-dimensional vectors [0 1 0 0] and [0 0 0 1] could represent two different inputs with localist
encoding.
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2.6.3 Learning rule

Different types of learning have been used to model sensorimotor learning: supervised

and unsupervised learning, and reinforcement learning. In a few models, an optimization

algorithm (instead of a learning rule) has been used to improve motor production.

Unsupervised learning

Biologically, as seen in Section 2.2.5, specificity, cooperativity and associativity are ex-

pressed in the neural activity. Computationally, this can be modelled using associative

learning rules, which are usually used for building internal models (inverse or forward)

and are unsupervised. Hebbian-inspired learning algorithms typically implement associa-

tive learning and shape the excitatory links between perceptual and motor representa-

tions (Heyes, 2001).

A theoretical inverse model has been proposed by Hahnloser and Ganguli (2013),

where an Hebbian-inspired learning rule drives learning. Hebbian-inspired learning rules

have been used in the works from Troyer and Doupe (2000), Kröger et al. (2009) and

Pagliarini et al. (2018a). Also, a Hebbian correlation rule involving the mean activation

of neurons over a certain time interval (Sejnowski, 1977) has been used in the works from

Westerman and Miranda (2002) and Oudeyer (2005). Otherwise, to define a learning rule

one can use the distance between the target and the actual production in the goal space

as in the work from Philippsen et al. (2016).

Reinforcement learning

Reinforcement learning (RL) is a mechanism to learn an action policy to maximize the

expected reward, where the reward function encodes the goal. The goal space (internal

representation of goals in Figure 2.1) defines the learning domain. The definition of the

learning domain (given in Table 2.4 in column ”Perceptual space/Internal representation”)

and of the reward function (given in Table 2.6 in column”Evaluation”) are important to

determine the complexity of the learning and the biological plausibility of the model.
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Among the reviewed models there are models which implement classical RL: Troyer

and Doupe (2000) used a plasticity rule which combines an associative learning rule and

a reinforcement signal. Doya and Sejnowski (2000), Fiete et al. (2007) and Howard and

Messum (2011) implemented reinforcement learning using a gradient ascent or descent al-

gorithm. Similarly, gradient descent has been used in the work from Howard and Birkholz

(2019). In these studies, the reward was computed as the correlation between spectro-

grams by Doya and Sejnowski (1998), or based on the feature of the song (the delayed

estimation of the sum of the squares of pitch and amplitude) in the work from Fiete

et al. (2007). In these models, the reward function, which is treated in Subsection 2.6.5,

encodes the goal and contributes to the learning. Alternatively, the reward can be driven

by the auditory salience as in the works from Warlaumont and Finnegan (2016), Howard

and Messum (2007) and Philippsen et al. (2016), or by the caregiver choice which defines

any novel situation that the agent must learn (Cohen and Billard, 2018).

Other authors did not choose to maximise a classical reward function but other quan-

tities encoding the goal (e.g. a competence function, auditory salience). In this sense,

RL has been implemented introducing intrinsically motivated exploration and active-goal

selection. A Competence Progress algorithm which updates the internal representation of

the goal and drives the exploration has been used by Moulin-Frier et al. (2014); Moulin-

Frier and Oudeyer (2012): in the particular case of Moulin-Frier et al. (2014) the learning

algorithm is based on Gaussian Mixture Models(GMM) updated via Bayesian inference in

a self-supervised paradigm. Intrinsic motivation has been used by Forestier and Forestier

et al. (2017) and different types of goal selection have been proposed by Moulin-Frier and

Oudeyer (2012), Moulin-Frier et al. (2014). See Subsection 2.6.4 for details.

Optimisation algorithm

Learning can also be driven by an optimisation algorithm that tunes the motor param-

eters: this is an exception and hence we did not use a more general category Parameter

tuning instead of Learning in Table 2.6. The optimisation procedure can aim to maximise
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the ability of the agent in reproducing a selected goal via a reaching algorithm (Forestier

and Oudeyer, 2017; Moulin-Frier and Oudeyer, 2012), or to maximise the reward (Co-

hen and Billard, 2018). Alternatively, a gradient inversion has been proposed by Bailly

(1997), and a quasi-Newton gradient descent algorithm has been proposed by Howard and

Messum (2011) to maximise a reward given by the combination of auditory salience, a

diversity measure in the sensory space and en effort measure in the motor space. A partic-

ular example of optimisation algorithm is the Covariance Matrix Adaptation - Evolution

Strategy (CMA-ES) (Murakami et al., 2015), that is a searching algorithm to maximise

the confidence level of each goal. Finally, Najnin and Banerjee (2017) propose an actor-

critic network to obtain the optimal sequence of actions to reach the target.

Supervised learning

Some works use supervised learning to learn the sensorimotor map. This could be imple-

mented using an online algorithm via backpropagation as proposed by Liu and Xu (2014).

Otherwise, this could be implemented combining backpropagation and gradient descent as

proposed by Howard and Huckvale (2005). Supervised and unsupervised learning can also

be used in combination with forward and inverse models, as in the work from Philippsen

et al. (2014). They move from supervised self-training (thanks to the availability of a for-

ward model) to unsupervised learning when imitation of novel contexts is included (after

the training).

Other types of learning

Alternatively, incremental learning Gaussian Mixture Models (ilGMM) has been pro-

posed by Acevedo-Valle et al. (2018) or GMM updated using Bayesian inference has been

proposed by Moulin-Frier et al. (2014). A probability-based model has been proposed

by Barnaud et al. with COSMO (Communicating Objects through SensoriMotor Opera-

tions) (Barnaud et al., 2019) architecture. This architecture was proposed by Moulin-Frier

et al. (2015) and represents a Bayesian framework to approach vocal learning.
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2.6.4 Exploration strategies

Different exploration strategies have been studied in the context of vocal learning or in

other types of sensorimotor learning. Exploration can take place either in the motor space

or in the goal space (perceptual space or internal representation). The simplest explo-

ration mechanism is driven by uniform random exploration. Pure random exploration does

not take into account (1) the memory of perceived stimuli (e.g. the distribution of per-

cept vectors in the perceptual space), (2) the history of what has already been explored

in the past. Several works use this approach to explore the motor space: Troyer and

Doupe (2000), Westerman and Miranda (2002), Howard and Huckvale (2005), Howard

and Messum (2007), Howard and Birkholz (2019), Oudeyer (2005), Moulin-Frier et al.

(2015), Warlaumont and Finnegan (2016), Pagliarini et al. (2018a) and Barnaud et al.

(2019). Alternatively, dynamic perturbation around a motor configuration has been used

in the works from Doya and Sejnowski (1998) and Fiete et al. (2007) while implementing

RL. A few authors used random exploration in the goal space: Forestier and Oudeyer

(2017), Najnin and Banerjee (2017), Moulin-Frier and Oudeyer (2012) and Philippsen

et al. (2014).

More sophisticated strategies are inspired by the nature of human development, which

is progressive, incremental, autonomous and active. Behavioural analysis evidences how

the actions of an agent are motivated by an internal or external reward. Following this

idea, intrinsic motivation makes the agent choose an action basing the decision on the

level of novelty, on the challenge it represents and on an internal reward. An example

of such a strategy is called Intelligent Adaptive Curiosity (IAC) (Oudeyer et al., 2007):

using a similarity-based progress maximisation the exploration is driven by the aim of

maximising the learning progress, while the agent goes towards novel situations. Intrin-

sic motivation can drive motor babbling, defining a goal-directed exploration strategy.

Usually, a competence function drives the choice of the next goal estimating the error or

the reward or the level of knowledge relative to the goal. Different goal-directed strate-

gies have been proposed in kinematic motor control learning by Forestier et al. (2017),
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Forestier and Oudeyer (2016), Baranes and Oudeyer (2013) and Rolf et al. (2010).

Studies in the speech domain take inspiration from kinematic studies and introduce

goal babbling as exploration strategy. This strategy allows the agent to do intermediate

productions in the direction of the selected goal: that is, for any chosen goal the agent can

define and make use of intermediate sub-goals to adapt the production. Goal babbling

has been used by Liu and Xu (2014) and proposed in unsupervised learning driven by a

measure of confidence to reproduce a sound as in the works from Philippsen et al. (2016)

and Murakami et al. (2015), a competence progress as in the works from Moulin-Frier

et al. (2014) and Moulin-Frier and Oudeyer (2012), an interest model as in the work from

Acevedo-Valle et al. (2018) or the intrinsic reward as in the works from Forestier and

Oudeyer (2017).

2.6.5 Evaluation

Evaluation of learning (or reward computation) can take place in the perceptual space,

in the internal representation or in an additional space defined ad hoc. In models using

the reinforcement learning (RL) paradigm it is common to have such ad hoc definitions:

in such a case the evaluation is called reward and is computed by a critic. For example,

the reward can be given by the correlation between the target and the output songs

represented as a filtered, vectorized version of the sound spectrogram as in the work from

Doya and Sejnowski (2000), or by the sum of the squares of pitch and amplitude as in

the work from Fiete et al. (2007). In the work of Troyer and Doupe (2000), the quality of

learning can be computed using the correlation coefficients between matrices representing

the co-fluctuation of activity at different syllable epochs

In the case of intrinsically motivated agents, evaluation guides exploration, even if

it does not contribute directly to the learning algorithm. These examples are related

to evaluation computed in the goal space (i.e. perceptual or internal space). It can be

computed using competence progress as proposed by Moulin-Frier and Oudeyer (2012)

and Philippsen et al. (2016), or defining the confidence level of each goal as proposed
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by Murakami et al. Murakami et al. (2015). Alternatively, other distance measures can

be used to evaluate the learning in the perceptual space. For instance, Mean Square

Error (MSE) has been used by Philippsen et al. (2014), an intensity measure has been

used by Moulin-Frier et al. (2014), the distance between sound trajectories in the formant

space is used by Forestier and Oudeyer (2017). Sum of Squared Error (SSE) has been

used by Liu and Xu (2014) and Euclidean distance has been used by Acevedo-Valle et al.

(2018) and Pagliarini et al. (2018a). A particular example of evaluation performed in the

perceptual space is the work from Lyon et al. (2012) where a measure (called F-measure)

is used to check the performance in learning the phonemes’ dictionary.

Although evaluation is not usually implemented in the motor space, it is possible that

some motor properties are used (e.g. articulator speed to compute the cost of a movement)

to compute the reward. Kröger et al. (2009) compute the error value estimating the

distance between the initial motor pattern and the estimated one. Interestingly, the

works from Howard and Messum (2007, 2011) and Howard and Birkholz (2019) contain

an example of a reward computed combining motor properties (voicing, effort, diversity)

and auditory salience (computed using the spectral properties of the sound such as acoustic

power, high to low frequency ration and vice-versa). Auditory salience has been used also

in the work from Warlaumont and Finnegan (2016).

Two particular cases are given by the work from Howard and Huckvale (2005), where

a spectrographic analysis is used to determine similarity between target and produced

sound, and the work from Moulin-Frier et al. (2015) and Barnaud et al. (2019), where

simulations are evaluated using the Dispersion Theory formula (Liljencrants et al., 1972)

in the COSMO architecture (Moulin-Frier et al., 2015).

2.7 Discussion

To provide an accurate representation of the vocal learning process in humans or song-

birds, a model should implement the biological mechanisms revealed by past experimental

investigations at the behavioural, anatomical and physiological level (see the biological
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context introduced in Section 2.2). The various models presented here are about song

learning in songbirds and speech development in humans, but have been built to answer

different questions (as highlighted in Section 2.3). However, we believe that comparing

the various frameworks used to model different aspects of vocal learning will help to iden-

tify the important components and the links between them. Ultimately, such comparison

may also reveal the next steps required to build a common model schema to study various

questions about vocal learning and to account for a large number of experimental findings.

In Section 4.1 we introduced two kinds of sensorimotor learning models (see Fig-

ure 2.1 and Figure 2.2), the different spaces characterising a vocal learning model, and

the functions going from one space to another. Table 2.4 and Table 2.6 highlight all the

components we discussed in the review for all the considered models. However, it is not

always possible to clearly identify each model component as they are missing in some

models (indicated by ”–” in the tables).

In general, motor control in vocal learning models is often based on pre-existing

biologically-inspired models of vocal production and include the production of sound.

The motor parameters are usually related either to sound properties (e.g. fundamental

frequency, pitch period) or to anatomical parts of the body (e.g tongue and lips in hu-

mans, air pressure in birds). Models of sound production (e.g. VTL, DIVA) may not be

able to reproduce perfectly the distribution of sounds that could be obtained from real

data. Therefore, they may not have the same perceptuo-motor phase space than the target

(e.g. infant’s brain) they are trying to model. Indeed, the perceptuo-motor phase space is

shaped by the fact that “some regions of the motor command do almost not change the

sound, while others change it abruply” (?). Thus, we suggest that, in their computational

experiments, modellers control for the potential discrepancy between produced sounds

and target sounds. More generally, they should check for perceptuo-motor phase space

discrepancies. Such an issue could impact learning efficiency.

Some learning frameworks do not take inspiration from biology. Indeed, some rein-

forcement learning algorithms and Hebbian learning rules used to implement synaptic

plasticity are coherent with biology (as described in Section 2.2.5), but some authors
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proposed biologically implausible learning algorithms (e.g. optimisation algorithms to im-

plement trial-and-error strategies, or particular ways of training internal models). More-

over, it is not easy to cast learning algorithms into clear-cut categories: the ambiguity

comes from the fact that different readers might have different definitions or categorisa-

tions. For instance, one can think about an architecture where a supervised algorithm is

incorporated into a reinforcement learning framework.

The dimensions of the sensory, perceptual and motor spaces greatly vary among mod-

els, and the learning architectures do not deal with the same task complexity. Performance

can thus not be directly compared between models. The choice of learning framework may

constrain the authors to reduce the space dimensions: many learning frameworks and ex-

ploration strategies cannot deal with high-dimensional spaces, and brains likely reduce

complexity because they cannot control all muscle fibers (Wolpert et al., 2001; Dhawale

et al., 2017).

In order to find an evaluation strategy and reward function definition, it is convenient

to have a low-dimensional preprocessed representation of the sound. To obtain such a rep-

resentation, several reduction techniques have been used in the reviewed models: PCA and

LDA (e.g. (Philippsen et al., 2016)), formant extraction (e.g. (Oudeyer, 2005; Moulin-

Frier et al., 2014)), or scaling and normalization techniques (e.g. (Doya and Sejnowski,

1998; Kröger et al., 2009)). Ongoing studies try to use Variational Autoencoder (VAE)

to help exploration strategies, reducing the goal space to a low-dimensional space while

keeping an important part of the information encoded. For instance, Laversanne-Finot

et al. (2018) use a particular type of VAE, called β-VAE to achieve this aim.

Models for sensorimotor learning with different motivations (e.g. grasping, recogni-

tion) are important complementary studies to take into account while studying vocal

learning model. Indeed, these studies contain many important discussions about explo-

ration strategies, target definition, motor space identification (Baranes and Oudeyer, 2013;

Rolf et al., 2010) that can be useful to take inspiration for future investigation of vocal

learning mechanisms. Perceptuo-motor skills, typical of speech production, do also exist

in non-vocal gestures (Fowler, 2016). In some of the mentioned studies, other modalities
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than vocal were used. For example, Forestier and Oudeyer (2017) propose two sensori-

motor models: a vocal learning model and an action motor learning model. Cohen and

Billard (2018) propose a model of symbol acquisition via active language learning (which

combines vocal learning and symbol recognition).

We did not discuss previous modelling of the developmental aspects of vocal learning

that investigate the effects of slow changes in the motor control apparatus or sensory sys-

tem related to growth in the present review. It is, however, important to consider how such

slow changes influence vocal production and interact with the learning process (Ghazanfar

and Liao, 2018).

We provided different diagrams, tables, along with segmentation of spaces and func-

tions, as a conceptual tool to analyse and compare existing models of vocal learning. We

believe it provides several benefits: to understand the choices of the authors, to look at the

biological plausibility of a model or part of it, to compare models systematically, and to

give a baseline to build new models. We hope that researchers in the field will agree with

our attempt of categorisations and comparisons, and that it will help in further studies

to make descriptions more explicit and comparable.
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Chapter 3

A Bio-inspired Model Towards Vocal

Gesture Learning in Songbird

The simplest vocal learning model includes only two spaces: the perceptual space (repre-

senting the auditory area of the bird’s brain) and the motor space (representing the motor

areas of the bird’s brain). Moreover, it does not define sound production. As highlighted

in Chapter 2, in this type of model the sensory and the motor space collapse in one space.

To avoid any misunderstanding, in this chapter, the sensory area corresponds to the brain

area where the sensory stimulus is encoded and the motor area corresponds to the brain

area from where the input to the motor apparatus start. At the same time, as introduced

in Chapter 2, the stimulus belongs to the sensory space, is encoded in the perceptual

space, and is produced thanks to a motor command belonging to the motor space.

The model is inspired by the theoretical vocal learning model previously proposed by

Hanuschkin et al. (2013) and Hahnloser and Ganguli (2013). The learning architecture is

based on an inverse map from the sensory area onto the motor area, learned by a Hebbian

learning rule. The exploration is random, and the sensory response enables the activations

of sensory neurons. Here, the sensory response is referred to as the auditory response.

The chapter shows how it is possible to integrate bio-inspired assumptions in a the-

oretical inverse model for learning the connections between two neural populations. It
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reproduces numerically the theoretical results and introduces the bio-inspired theoretical

model of vocal learning in songbirds. A novelty non-linear sensory response function is

introduced, and the Hebbian learning rule has been modified as a consequence. Moreover,

it shows how the parameters can influence the learning progress: velocity and accuracy

of learning are influenced by the selectivity on the one hand, and by the motor area size

on the other hand. The latter will be the key point for further development of the model,

as highlighted in Chapter 4. Section 3.1 introduces imitative sensorimotor learning and

the model used as a starting point for the following. Section 3.2 describes the architec-

ture of the model, highlighting the definition of the auditory response and learning rule.

Section 3.3 shows the numerical implementation of the linear and non-linear models. In

particular, it shows how the parameters can influence the velocity and the accuracy of

learning. Section 3.4 summarizes the obtained results and gives some perspectives about

how to develop this study.

”A Bio-inspired Model Towards Vocal Gesture Learning in Songbird” (Pagliarini

et al., 2018a) has been published in ICDL-Epirob proceedings, and used for oral

presentation and poster session multiple times. More details are available at

https://github.com/spagliarini/2018-ICDL-EPIROB.

Abstract

The paper proposes a bio-inspired model for imitative sensorimotor learning, which aims

at building a map between the sensory representations of gestures (sensory targets) and

their underlying motor pattern through a random exploration of the motor space. An

example of such a learning process occurs during vocal learning in humans or birds when

young subjects babble and learn to copy previously heard adult vocalizations. Previous

work has suggested that a simple Hebbian learning rule allows perfect imitation when

sensory feedback is a purely linear function of the motor pattern underlying movement

production. We aim at generalizing this model to the more realistic case where sensory

responses are sparse and non-linear. To this end, we explore the performance of various

106



learning rules and normalizations and discuss their biological relevance. Importantly,

the proposed model is robust whatever normalization is chosen. We show that both the

imitation quality and the convergence time are highly dependent on the sensory selectivity

and dimension of the motor representation.
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3.1 Introduction

Imitative sensorimotor learning can be though as a control problem aiming to map the

sensory input into a motor output. For example, humans and songbirds learn to produce

107



species-specific vocalizations as juveniles by imitating surrounding adults. The vocal

learning process displays distinct (although partially overlapping) processes. First, dur-

ing a sensory learning phase, young subjects memorize adult vocalizations, and build

neuronal representations of their species vocal gestures. Then, in a sensorimotor phase,

they start vocalizing and progressively converge to a good imitation of previously ex-

prienced vocalizations. It is believed that during the early phase of this sensorimotor

process, called babbling, the subject maps representation of sensory (auditory) targets

to the corresponding motor commands. In other words, the subject learns an inverse

model. In this study, we assume the auditory selective responses to be already in place

and investigate biological plausible mechanisms to learn an inverse model enabling this

sensorimotor mapping.

An interesting property of some neurons in the brain is the ability to respond similarly

during the production or observation (or listening for vocal gestures) of a given movement.

This property has been linked with imitative sensorimotor learning and internal models

(inverse or forward model). These neurons are referred to as mirror neuron (Oztop et al.,

2006; Prather et al., 2008; Giret et al., 2014). While forward models describe a causal

relationship between the sensory input and the motor system, inverse models have the aim

to provide an appropriate motor command to a given state of the motor system. Although

building an inverse model is easier when a forward model is available as proposed by

Jordan and Rumelhart (1992) and Philippsen et al. (2014), inverse models could be enough

to bootstrap the development of a simple computational mechanism, describing a memory

system composed by the motor plan and the sensory stimulus (Oztop et al., 2013). The

importance of computational models involving mirrors systems and learning processes has

been stressed by Oztop et al. (2006, 2013), and the ”Mirror-system hypothesis” stated

by Arbib (2002) links mirror neurons with the emergence of human language during

evolution. Songbirds learn their vocalization by imitation through a vocal learning process

that very much resembles speech learning in human babies (Doupe and Kuhl, 1999). In

the brain of songbirds, a part of the basal ganglia-thalamo-cortical circuitry is devoted

to song learning in juveniles and plasticity in adults. This circuit is homologuous to the
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basal ganglia circuits responsible for motor learning in mammals, and involved in speech

learning in humans (Doupe et al., 2005; Mooney, 2009). Moreover, this song-related

BG-thalamo-cortical circuit in birds receives input from mirror neurons (Prather et al.,

2008). Therefore, the brain circuits responsible for avian song learning represent an ideal

framework to study the neural mechanisms underlying imitative learning.

A theoretical model describing the implementation of an inverse model between audi-

tive and motor areas through associative learning has been proposed recently (Hahnloser

and Ganguli, 2013; Hanuschkin et al., 2013). The model is based on a simple Hebbian

learning rule driven through random motor exploration and auditory feedback responses

to this motor exploration. The proposed model assumes linearity for mathematical sim-

plicity. As auditory responses in the brain are rather sparse and nonlinear we aim to

extent the theoretical framework to a more realistic scenario (Hahnloser and Kotowicz,

2010).

We used an inverse model inspired by Hahnloser and Ganguli (2013) to describe the

interaction between two populations of neurons, one formed by motor neurons and another

formed by sensory neurons. We first show that replacing the learning rule by a simple

normalized Hebbian learning rule allows rapid convergence in a simple non-linear model.

We apply different normalizations in the learning rule. We then explore the influence of

the sharpness of auditory selectivity in relation with the learning error after convergence

and convergence time of the learning. Finally, we show how changing the number of

sensory or motor dimensions modifies learning.

3.2 Method

3.2.1 Network and goal

The model includes two neural populations as shown in Fig. 3.1. The first layer is com-

posed by afferent neurons and represents the sensory area. The second layer is composed

by motor neurons, which represent the starting point for muscle activation, and thereby

109



for movement production. The synaptic weights describing the strength of the connection

between neurons are defined by matrix W .

Figure 3.1: Neural network schema. The network includes two neural populations:
the first layer is composed by na afferent neurons and represents the sensory
area, the second layer is composed by nm motor neurons and represents the
motor area. Wi,j represents the synaptic connections between sensory and
motor neurons. Below the network schema we highlight how we define the
sensory response. At each time step t, the sensory response is a function of
the motor output, that is At = f(Mt).

A model describing sensorimotor phase of learning based on a network as in Fig. 3.1

has been previously proposed by Hahnloser and Ganguli (2013). Neurons are linear units

and at each time t motor and auditory activity are defined as a nm-dimensional vector

Mt and a na-dimensional vector At, where nm and na represent respectively the number

of motor and auditory neurons in the network.

3.2.2 Auditory response

At each time t the auditory activity At is defined as a function of the motor pattern Mt

at that particular time, that is At = f(Mt). Hahnloser and Ganguli (2013) define the

auditory activity as a linear function of Mt, that is

At = QMt, (3.1)
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where Mt represents the motor pattern at time t and Q the linear map defining the

auditory activity due to the auditory feedback driven by current motor activity.

We then introduce non-linearity in the sensory response to auditory feedback. To

represent selective responses as observed in various high sensory brain areas (e.g. auditory

regions of the pallium in birds display responses selective to tutor syllables or to the bird’s

own syllables), we define the auditory activity At for each j = 1, .., na neurons as a bell-

shaped function around a target motor pattern:

Ajt = exp

(−||M∗
j −Mt||2

2σ2nm

)
, (3.2)

where σ represents the selectivity tuning width, nm the number of motor neurons belong-

ing to the network, Mt the motor pattern at time t and M∗ the center of the auditory

activity.

3.2.3 Learning process

Learning is driven by the Hebbian learning rule

∆Wt ∝ ηMtAt, (3.3)

where Wt represents the synaptic weights between sensory and motor neurons, η the

learning rate, Mt the motor pattern at time t and At the auditory activity at time t.

Synaptic weights Wt=t0 between sensory and motor neurons are initially weak and

increase according with (5.3) during learning until a certain time t = tf , as

Wt = Wt−1 + ∆Wt, (3.4)

where Wt represents the synaptic connections between sensory and motor neurons and

∆Wt is defined by (5.3).

However, synaptic weights have an upper boundary due to biological limitations (max-

imal number of synaptic receptors or neurotransmitters released). This can be introduced

by a normalization either on the synaptic weights Wi,j or on their variation ∆Wi,j.

Hahnloser and Ganguli (2013) proposed a postdictive Hebbian learning rule given by

∆Wt = η(Mt −Wt−1At)A
T
t , (3.5)
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where Wt represents the synaptic weights between sensory and motor neurons, η the

learning rate, Mt the motor pattern and At is defined by Eq. (3.1). Here the apex T

indicates the transpose of the vector At.

In our model, we kept the basic Hebbian rule and we tested three normalizations in two

different cases: a normalization over motor neurons (over all targets of one postsynaptic

neuron) and a normalization over auditory neurons (over all inputs of one presynaptic

neuron).

In practice, the two types of normalization are respectively implemented by normal-

izing over the lines or columns of the weights matrix W . The aim of the normalization

is to bound either the mean of each column or line of Wi,j or the euclidean norm of each

column or line of Wi,j to a maximum of 1. Considering the case of normalizing with

respect to auditory neurons and pushing the mean of every column of W to a maximum

of 1, the applied normalizations are the following:

• Maximum weights normalization

Wi,j =
nmWi,j

ΣiWi,j

, (3.6)

• Supremum weights normalization

Wi,j =

 Wi,j
ΣiWi,j

nm
< 1,

nmWi,j

ΣiWi,j
otherwise,

(3.7)

• Decreasing factor normalization

∆Wi,j = ηMtAt

(
1− ΣiWi,j

nm

)
. (3.8)

Here Wi,j represents the synaptic connections between sensory neuron j and motor neu-

rons i = 1, .., nm, where nm is the number of motor neurons.

To obtain the normalization over the motor neurons and pushing the mean of each

line of W to a maximum of 1, it is enough to change the index i for the index j and use

the auditory dimension na. In order to use the norm instead of the mean in the definiton

of the normalizations it is enough to introduce the norm on the column or the norm on

the line of W in place of the mean.
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At the same time, normalizing synaptic weights forces us to also normalize the motor

target M∗, which represents what the model would learn at t = tf . This is equivalent to

a reduction of the target motor space (as it introduces a constraint on the final output of

the model).

3.2.4 Simulation details

Each sensory neuron contains the response to a motor performance, and this is represented

by the motor target M∗. We did not consider any strategy for the exploration. That is,

at each time step t we simply considered the case of a random motor exploration Mt on

which the auditory selectivity depends.

In the Hahnloser-Ganguli model there exist a direct map which defines the motor

activity from the auditory activity as Mt = QdAt. For the inverse model we need to

define At in dependence on Mt as in Eq. (3.1). That is the inverse matrix of Q, i.e Qd

represents the motor target M∗, that is the ideal motor activity which the model should

have learned once learning phase has ended. The goal then is to activate each sensory

neuron can drive M∗
j through W , such that

WA∗ −→M∗, (3.9)

where A∗ = A0I defines the ideal auditory activity. We fixed A0 = 1.

Given the motor targets M∗, at each time step t, the distance between what the model

actually learned and what it should have learned is defined as

dt =
||M∗ −WtA

∗||
nm

, (3.10)

where M∗ represents the motor target, Wt the synaptic weights matrix, A∗ the ideal

auditory activity and nm the number of motor neurons.

We defined the convergence time τ as the number of time steps at which the updates

of the weights are small enough. That is, the distance between what the model targets

should have learned and what he effectively learned reaches a plateau. After have chosen
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ε = 1 at t = t0, given an interval of time ∆t = [k, k + 2N ] of measure 2N , we defined

ε =
1

2N

(
Σk+2N
k+N dt − Σk+N

k dt

)
, (3.11)

and we used it as threshold, in a way that a particular experiment stops either if ε reaches

the value ε∗ = 10−9 either if it goes until a fixed time t = tf . We tested several values for

the tuning selectivity width, i.e. σ = [0.02, 0.05, 0.1, 0.2, 0.3, 0.5, 0.7], varying in this way

the auditory selectivity. We used for almost every value an interval of length N = 400.

However, since the distance evolves very slowly, for small values of σ this interval is not

large enough. For instance, an interval with N = 500000 has been used for σ = 0.02.

3.3 Results

3.3.1 Simple model with linear auditory responses

Fig. 3.2 shows the evolution in time of the smooth average distance between WA∗ and the

target motor pattern M∗, defined by Eq. (3.10) for each simulation. In the linear version

of the model (blue line) , the auditory activity is a linear function of the motor production,

as in Eq. (3.1), and the postdictive Hebbian rule defined by Eq. (3.5) guides learning.

As expected by the theory (Hahnloser and Ganguli, 2013), the distance between WA∗

and the target motor pattern M∗ (which is the inverse of Q) converges exponentially to

zero. The learning rule therefore ensures proper learning of the inverse model. In contrast,

when auditory feedback is non-linear (orange line in Fig. 3.2), where the auditory activity

is defined by Eq. (3.2), the postdictive Hebbian learning rule does not allow convergence,

and the distance between WA∗ and the target motor pattern M∗ rather diverges.

Define the auditory activity as in Eq. (3.1) means that the matrix Q needs to be

invertible to reach convergence. We also don’t know how to define the exploration space

starting from the map Q. We assumed as given the space of the inverse of Q, which means

that we solved at each time step t the linear system Q−1At = Mt, where Q−1 = M∗. At the

same time to solve a linear system means to face the problem of invertibility of matrix

M∗. Indeed, if the matrix M∗ is singular or close to be singular, then the numerical
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Figure 3.2: Ganguli-Hahnloser linear and nonlinear model. Evolution in time of
the smooth average distance between WA∗ and the target motor pattern M∗,
computed over 50 simulations. Comparison between the Hahnloser-Ganguli
linear model (in blue) where the auditory response is defined by Eq. (3.1)
and the nonlinear version of Hahnloser-Ganguli model (in orange) where the
auditory response is defined by Eq. (3.2). In both cases learning is driven
by the postidictive Hebbian learning rule in Eq. (3.5) and weights are up-
dated following Eq. (3.4). To highlight the behavior of the linear model, the
same comparison using a log scale is shown in the box. Parameters value:
tf = 1.5 ∗ 104, nm = na = 3, η = 0.01, σ = 0.1, C = 20.

algorithm is not longer working. To avoid an ill-posed problem we added a condition by

computing the condition number1 of the matrix M∗, forcing it to be such that

k(M∗) < C, (3.12)

where M∗ represents the motor target and C is a positive constant belonging to [1,+∞].

In this way we simulated all the simulations in Fig. 3.2 without having ill-posed problems.

Without the application of this condition, simulations were often diverging because of the

divergence of M∗−1
. A nonlinear auditory response defined by Eq. (3.2) enables to avoid

1Given a general linear system Ax = b, its condition number is defined as k(A) = ξmax(A)/ξmin(A),
where ξmax(A and ξmin(A) are respectively the maximal and minimal singular values of A. The value
k(A) represents the variability of the solution, so how much the solution x changes consequently to a
change in b. The lower bound for the condition number is k(A) = 1, whereas it can reaches the value
k(A) =∞ if the matrix A is singular.
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ill-posed problems. At the same time (as underlined in the small box with logarithmic

scale in Fig. 3.2) it leads to a divergence in the distance between the target motor

pattern M∗ and WA∗. That is, the model does not learn anymore after the introduction

of nonlinearity. So far, instead of keeping the postdictive Hebbian rule proposed by

Hahnloser and Ganguli (2013), we used a traditional Hebbian rule to drive learning and

tried to face the problem by applying other types of normalization.

3.3.2 A nonlinear auditory response

Fig. 3.3 shows the evolution of the distance between WA∗ and the target motor pattern

M∗ for one example neuron. The initially weak synaptic connections evolves following

the Hebbian learning rule given by Eq. (5.3) and finally approaches M∗. To obtain these

results we applied the normalization defined by Eq. (3.8). By introducing nonlinearity,

as shown by Fig. 3.2, the Ganguli-Hahnloser model does not converge anymore.

We tested three different normalizations, given by Eq. (3.6), Eq. (3.7) and Eq. (3.8).

The upper panel of Fig. 3.4 shows the comparison between the three normalizations with

respect to auditory neurons. That is, with respect to the columns of W . Normalizations

given by Eq. (3.6) and Eq. (3.7) are applied directly to the weights matrix, which gives a

faster convergence but a lost in smoothness. Normalization given by Eq. (3.8) is applied

to the variation of the weights, by multiplying its classical definition by a decreasing

factor. This means that the variation is smaller and smaller as the weights approaches

the target, which results in a smooth trend of the distance curve. To highlight better the

difference between normalization over auditory and motor neurons, the bottom panel of

Fig. 3.4 shows the comparison between the normalization given by Eq. (3.8) applied in

its mean and norm version. As it is shown, a normalization over auditory neurons works

better than the same normalization over motor neurons in the sense that the distance

between WA∗ and M∗ is lower if the normalization is applied over the auditory neurons

than if the normalization is applied over the motor neurons.
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Figure 3.3: Evolution of synaptic weights in time relative to a single auditory
neuron and distance from the target motor pattern (three neurons
example). Evolution in time of the synaptic weights W (continuous blue
line) and the target motor pattern M∗ (dashed blue line) for one example
neuron. Each auditory neuron is composed by three components represented
by the three lines. Here the auditory activity is defined by Eq. (3.2) and
learning is driven by the Hebbian learning rule in Eq. (5.3). At each time
steps weights are updated following Eq. (3.4) and the normalization defined
by Eq. (3.8) has been applied. Parameters value: tf = 1 ∗ 105, nm = 3,
na = 1, η = 0.01, σ = 0.1.

3.3.3 Auditory selectivity effect

Auditory selectivity impact on the learning can be observed by varying its value and by

observing both the convergence time τ both the distance at t = τ between WA∗ and M∗.

Fig. 3.5 shows how the mean convergence time τ and the mean distance dt at t = τ de-

pends on the auditory selectivity. As the tuning selectivity width σ increases, a decreasing

in the mean convergence time and an increasing in the mean distance can be observed.

In particular, for the value σ = 0.02 convergence time is not fully correct because many

simulation reached a fixed time tf = 2 ∗ 107 before having reached convergence. This is

displayed on the plot by the first dashed part of the red line.
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Figure 3.4: Comparison between different types of normalization: evolution in
time of the distance. Evolution in time of the smooth average distance be-
tween WA∗ and the target motor pattern M∗, computed over 50 simulations.
(Top) Comparison between the model normalized by the maximum weights
normalization in Eq. (3.6) and the corresponding norm version (respectively
the continuous blue line and the dashed blue line), the model normalized by
the supremum weights normalization in Eq. (3.7) and the corresponding norm
version (respectively the continuous green line and the dashed green line), the
model normalized by the decreasing factor normalization in Eq. (3.8) and
the corresponding norm version (respectively the continuous red line and the
dashed red line). All the normalizations have been taken with respect to au-
ditory neurons. (Bottom) Comparison between the model normalized by the
decreasing factor normalization in Eq. (3.8) with respect to auditory neurons
(red lines) and with respect to motor neurons (dark red lines). Comparison
between the normalization applied using the mean of W (continuous lines)
and the norm of W (dashed lines). Here the auditory activity is defined by
Eq. (3.2) and learning is driven by the Hebbian learning rule in Eq. (5.3). At
each time steps weights are updated following Eq. (3.4). Parameters value:
tf = 1 ∗ 105, nm = na = 3, η = 0.01, σ = 0.1.
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Figure 3.5: Effect of the auditory selectivity on convergence time and distance.
Auditory selectivity impact on the convergence time (in red) and on the dis-
tance between WA∗ at the convergence time τ and the target motor pattern
M∗ (in blue), computed over 50 simulations. The first dashed part of the red
line underlines the fact that for σ = 0.02 not all the simulations converges be-
fore having reach a fixed simulation exit time tf = 2 ∗ 107. Here the auditory
activity is defined by Eq. (3.2) and learning is driven by the Hebbian learn-
ing rule in Eq. (5.3). At each time steps weights are updated following Eq.
(3.4). Parameters value: σ = [0.02, 0.05, 0.1, 0.2, 0.3, 0.5, 0.7], nm = na = 3,
η = 0.01, ε∗ = 10−9. We applied the decreasing factor normalization given by
Eq. (3.8). To exit the simulations we compute ε as in Eq. (3.11). We used
for almost every value an interval with N = 400. However, since the distance
evolves very slowly, for small values of σ this interval is not large enough. For
instance, an interval with N = 500000 has been used for σ = 0.02.

3.3.4 Varying network dimensions

The quality of learning in terms of the distance at the convergence time t = τ and how

slow learning develops can be investigated by varying the network dimension. Firstly, the

number of auditory neurons has been kept fixed at the value na = 3, and the number

of motor neurons varied as nm = [2, 3, 4, 5, 6, 7]. Then, viceversa, the number of motor

neurons has been kept fixed at nm = 3 and the number of the auditory neurons varied

using the same values as before. Fig. 3.6 shows the effect of changes in the network

dimension respectively on the mean convergence time τ and on the mean distance at

t = τ , computed over 50 simulations. The upper panel shows how, keeping fixed the motor

119



2 3 4 5 6 7

10 2

10 1

Motor dim=3, Auditory dim=2:7
Auditory dim=3, Motor dim=2:7

2 3 4 5 6 7
1.1 × 104

1.1 × 105

1.01 × 106

Motor dim=3, Auditory dim=2:7
Auditory dim=3, Motor dim=2:7 D

is
ta

ne
 f

ro
m

 th
e 

ta
rg

et

C
on

ve
rg

en
ce

 ti
m

e 
(t

im
e 

st
ep

s)

Number of neurons Number of neurons 

Figure 3.6: Effect of network dimension on the convergence time and the dis-
tance. (Left) Network dimensions effect on the mean convergence time τ and
(Right) on the mean distance between WA∗ at time t = τ and the target mo-
tor pattern M∗, computed over 50 simulations. The dark red line refers to a
network where the number of auditory neurons has been kept fixed at na = 3,
whereas the light red line refers to a network where the number of motor
neurons has been kept fixed at nm = 3. In both cases, the second dimension
has been varied as [2, 3, 4, 5, 6, 7]. Parameters value: η = 0.01, σ = 0.1. Here
we applied the decreasing factor normalization given by Eq. (3.8). To exit
the simulations we compute ε as in Eq. (3.11) with N = 400.

dimension, there is not an evidence of network dimension effect on the mean convergence

time. Viceversa, keeping fixed the auditory dimension the learning slows down as the

motor dimension increases. However, the mean distance at t = τ is not affected by any

change in the neural network dimensions, as shown in the bottom panel of Fig. 3.6. More

details are available at https://github.com/spagliarini/2018-ICDL-EPIROB.

3.4 Discussion

Hahnloser and Ganguli (2013) proposed a simple mathematical framework to approach the

sensorimotor learning problem in songbirds. It is based on a linear auditory activity and a

postdictive Hebbian learning rule. Linearity in the auditory activity makes the theoretical

investigation possible but is not biologically realistic. To be invertible, the matrix Q for
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auditory response must be squared, which means that auditory and motor dimensions have

to be equal. Moreover, numerical implementation of the learning algorithm proposed by

Hahnloser and Ganguli requires to invert the auditory response matrix (Q) to determine

the range of motor output required for proper exploration and learning. As there is no

general method to invert a random matrix Q, a numerical implementation of the model

requires to set a specific Q that can be inverted. Finally, the postdictive learning rule

only works for the linear model and it is not clear whether biologically realistic learning

rules can still lead to convergence or near-convergence in the case of non-linear auditory

feedback.

As Hebbian or associative learning rules are implemented through activity-dependent

synapse-specific increases in synaptic weights (synaptic potentiation), that must be aug-

mented by global processes that regulate overall levels of neuronal and network activity to

prevent explosion of synaptic weights (Abbott and Nelson, 2000). Regulatory processes

are often as important as the more intensively studied Hebbian processes in determining

the consequences of synaptic plasticity for network function. Setting an upper bound

on the total synaptic weights to or from a given neuron may also reflect the biological

limitation of synaptic connections: limits are imposed on their growth due to the lim-

ited quantity of available material (receptors, neurotransmitters, ...). The introduction of

normalization on the weights or on their variations is a simple solution to this problem.

Several forms of normalization were considered here to take into account this biological

limitation. While the linear model of Hahnloser and Ganguli (2013) converges for the

postdictive learning rule described there, we show that near-convergence can be achieved

with multiple normalization rules added to a simple and typical associative learning rule

given by Eq. (5.3). Convergence time, final distance from motor output to target, and

smoothness of the distance evolution through time all depend on the specific normaliza-

tion used. However, it is important to notice that the final ”error” (distance from motor

final weights to target motor pattern) does not vary much with normalization, assuming

it is applied on all synaptic outputs from a given presynaptic (auditory) neuron.

In most of the simulations we focused on normalization given by the decreasing factor
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normalization in Eq. (3.8). We kept this normalization for all our analyses because it

gives better performance (i.e. low ”error”). We noticed that when this normalization

is applied, it gives better performances over auditory neurons (presynaptic) than over

motor neurons (postsynaptic), despite the fact that a normalization with respect to motor

neurons (regulated at the level of the post-synaptic neuron) may be more biologically

plausible. Although other forms of plasticity exist, including presynaptic modulation

of synaptic strength, classic long-term potentiation/depression (LTP/LTD) mechanisms

mostly involve postsynaptic receptor reorganization.

A remaining open question is related to the final value (after convergence) of the

distance between the target motor pattern and what the model actually learned. Future

work is needed to determine the factors that determine this final error and how it can

be reduced. One possibility is that various motor targets (one for each auditory neuron)

may interfere during learning, leading to imperfect copies. However, our preliminary

experiments didn’t show that interference had an influence on the final error.

We investigated how learning depends on the auditory selectivity observing that as the

tuning selectivity width σ increases as the final distance between weight matrix and motor

target (error) increases while convergence time decreases. There is therefore a trade-off

between learning speed and accuracy that can be balanced through the selectivity of

auditory neurons. One way to make learning both fast and accurate could be to start the

learning process with a large tuning width (low selectivity) and to decrease it progressively

as learning goes on. Interestingly, in many songbird species (including the well-studied

zebra finches), sensory learning overlaps with sensorimotor learning, and the auditory

selectivity therefore develops during the early sensorimotor phase.

Finally, taking into account the influence of the dimensions (i.e. number of units) of

the sensory and motor layers we noticed that motor dimension has a strong influence on

convergence time. This strong influence comes from the fact that for lower values of σ the

distance between the target and WA∗ tents to decrease much more slowly. In our network

we are considering a motor output that does not distinguishes muscle control and sound

production. It is not clear which of these two components is responsible for the high
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increase in convergence time. A model displaying a motor output and a sound generating

system is needed to resolve this question. Future work could include (1) the addition of

an artificial syrinx model as motor output and more auditive like feature selectivity in the

auditory layer, and (2) the influence of different exploration methods such as goal-directed

exploration.
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3.5 Non-published complementary results

3.5.1 Babbling generation

In this chapter, we built the model assuming that at each time step a new motor explo-

ration takes place, a new auditory response is computed and the synaptic weights are

updated as a consequence. That is, syllables has been considered as entities lasting the

time of one-time step, without taking into consideration the fact that biologically they

do have a certain duration. Moreover, the delay between the motor neurons activity

and the activity of the auditory neurons (which causes the overlap between the auditory

representation of a syllable and the production of the new syllable) has not been taken

account.

To introduce a babbling paradigm in the model means to introduce the concept of the

syllable (continuous lines in the top panel of Figure 3.7) and gap (dotted lines in the top

panel of Figure 3.7) duration. Mathematically, this means that for a certain number of

timesteps the same motor exploration mi is performed and the same auditory response

ai is received. To obtain such a babbling paradigm, we introduced the syllable duration,

the gap duration, and the initial delay as values taken from an exponential distribution
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Figure 3.7: Babbling paradigm. The top panel shows the schema of the motor and
the auditory activity (left) and how it translates in term of each motor explo-
ration mi and its corresponding auditory response ai (right). The continuous
lines in the activity represent the syllables, whereas the dot lines represent the
gap between two consecutive syllables. The parameter d represents the delay
between the motor neuron activity and the activity of the auditory neurons.
The continuous lines in the activity represent the syllables, whereas the dot
lines represent the gap between two consecutive syllables. The bottom panels
represent the possible configurations that can arise from the activity: correct
(correspondence between the motor activity and the auditory activity), incor-
rect (i.e., mismatched, when there is no correspondence between the motor
activity and the auditory activity), null motor (motor activity equal to zero),
null auditory (auditory activity equal to zero), null activity (both motor and
auditory activity equal to zero). If d = 0, only correct and incorrect configu-
rations are present. Otherwise, depending on the activity parameters λd, λgap
and λsyll.

of parameterλ > 0 (Darshan et al., 2017):

f(x) = λe−λx wherex ≥ 0 (3.13)

The syllable duration follows an exponential law of mean λsyll = 150 ms (i.e., 15 time

steps). The gap duration follows an exponential law of mean λgap = 50 ms (i.e., 5 time

steps). The delay duration follows an exponential law of mean λd = 30 ms (i.e., 3 time

steps).
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In terms of time steps, each motor exploration mi and its corresponding auditory

response ai last for several time steps: for instance, in the top panel of Figure 3.7 the

motor exploration m1 lasts 4 time steps, whereas the motor exploration m2 lasts 3 time

steps. Taking into account the delay d and the gap between syllables, the four possible

configurations that can emerge are listed below.

• Correct: when there is a correspondence between the motor activity and the auditory

activity (i.e., mi happens at the same time step as ai).

• Null motor: when the motor activity is equal to zero, but the auditory activity is

not equal to zero.

• Null auditory: when the auditory activity is equal to zero, but the motor activity

is not equal to zero.

• Null activity: when both the motor and the auditory activities are equal to zero.

• Incorrect: when both the motor and the auditory activities are different from zero

and there is not a correspondence between them (i.e., mi happens at the same time

step as aj, with i 6= j).

Temporally, as shown in the bottom-left panel, mi and ai coincide only when d = 0 (i.e.,

there is no delay between the motor activity and the auditory activity). Indeed, when

d = 0, the null activity corresponds exactly to the occurrence of gaps. The null activity

here corresponds to the occurrence of the gap. Otherwise, when d 6= 0 the percentage

of correct correspondences is lower, but it remains higher than the percentage of null or

incorrect configurations. Else, if d 6= 0, several configurations can be observed: correct

correspondence between motor and auditory activity (i.e., mi happens at the same time

step as ai); incorrect (i.e., mi happens at the same time step as aj, with i 6= j); null activity

(when the gap in the motor activity corresponds to a gap in the auditory activity); null

motor or auditory (when either the motor or the auditory activity is equal to 0, but

the other is different from 0). The bottom left diagram of Figure 3.7 shows an example

125



summary of how many times each of this configuration happen, over a simulation lasting

up to a final time tf = 3 ∗ 105.

Figure 3.8: Comparison between different parameters of the syllable, gap and
delay distribution. Evolution of the distance depending on the parameters
λsyll (top left panel), λgap (top right panel) and λd (bottom panel). To observe
the dependence on the syllable duration, the parameters relative to the distri-
bution of the gap and the delay have been kept fixed (i.e., λgap = 50 ms and
λd = 30). The parameter λsyll has been varied as [30, 50, 100, 150, 210]. To
observe the dependence on the gap duration, the parameters relative to the
distribution of the syllables and the delay have been kept fixed(i.e., λsyll = 150
ms and λd = 30). The parameter λgap has been varied as [20, 30, 40, 50, 60]. To
observe the dependence on the delay duration, the parameters relative to the
distribution of the syllables and the gap have been kept fixed(i.e., λsyll = 150
ms and λgap = 50). The parameter λd has been varied as [30, 40, 50, 60, 70].
Parameters value: tf = 3 ∗ 105, nm = na = 3, η = 0.01, σ = 0.1

.

We kept the same network dimensions as in the model introduced in the main chapter,

with nm = na = 3. We used an Hebbian learning rulle normalizes using Equation 3.8 (the
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one that was working better for the simple task). We fixed the learning rate at η = 0.01,

the auditory selectivity at σ = 0.1 and the exit time at tf = 3 ∗ 105. The babbling

paradigm introduces three new parameters: λsyll, λgap and λd. For each of these three

parameters, we explored different values keeping fix the others. The aim is to observe

how the distance between the target and the ideal motor pattern evolves depending on

each of the three new parameters.

3.5.2 Results

The evolution in time of the smooth average distance between WA∗ and the target motor

pattern M∗ shows a higher plateau for the error when small values of λsyll (top left panel

of Figure 3.8) and λgap (top right panel of Figure 3.8) or high values of λd (bottom panel

of Figure 3.8) are used.

At convergence (i.e., at time tf = 3 ∗ 105), the average final distance between WA∗

and the target motor pattern M∗ depends on the combination of the syllable and gap

duration. As shown in Figure 3.8, small values for λsyll and λgap lead to high distance

values. A small λsyll does not help the learning efficiecy (Figure 3.9): the bottom line of the

matrix contains values greater than 0.08 independently from the gap duration. Increasing

both the gap and the syllable duration parameters, things get better: if λsyll ≥ 100 ms

and λgap ≥ 30, the distance remains smaller than 0.04. Interestinlgy, the lower average

distance has been observer for λsyll = 50 and λgap = 30.

3.5.3 Discussion

The delay of the auditory feedback plays an important role in how a sequence of syllables is

perceived, introducing uncertainty in the predictions of syllables (Bouchard and Brainard,

2016). Indeed, sensory feedback impacts the repetitions of motor sequences by enabling

long repetitive vocal sequences (Wittenbach et al., 2015). Similarly, during speaking,

speech-articulator representations are temporally coordinated in humans (Bouchard et al.,

2013). Indeed, the motor command and the sensory information are combined to gather
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Figure 3.9: Final average distance: comparison between different parameters
for the syllables and the duration of the gaps. Each square represent
the average distance between WA∗ and the target motor pattern M∗ com-
puted over 10 simulations, at time tf = 3 ∗ 105. Here, the axis represents
the variation of the syllable duration parameter λsyll (vertical axis), and the
variation of the gap duration parameter λgap (horizontal axis). To observe
how the final distance depends on the combination of syllable and gap dura-
tion, the parameters relative to the distribution of the delay have been kept
fixed(i.e., λd = 30 ms). Instead, λsyll and λgap have been varied, respectively,
as [20, 20, 50, 100, 150, 210] and [20, 30, 40, 50, 60]. The color scale becomes
reddish as the error increases. Lower errors are achieved when λsyll assumes
low values, λgap assumes high values, λd assumes low values. Parameter val-
ues: tf = 3 ∗ 105, nm = na = 3, η = 0.01, σ = 0.1

a rapid feedback control (Guenther et al., 2006b). A negative feedback can play a role in

speech disorders such as stuttering (Wittenbach et al., 2015).

The model proposed in Section 3.5 describes the overlap between motor activity and

auditory activity which has been shown experimentally (Bouchard and Brainard, 2013;

Darshan et al., 2017). Such an overlap is caused by the presence of a delay in the auditory

feedback, which usually has the same order of the duration of the syllables (CITE?).

Indeed, if the delay distribution is kept fix (λd = 30 ms), it is possible to observe how

long syllables do not allow a high learning accuracy (bottom line in Figure 3.9).
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Chapter 4

What does the Canary Say?

WaveGAN Applied to Birdsong

Abstract

Speech generation is a complex problem which has been approached by several studies.

Generative Adversarial Networks (GANs) have shown very good abilites generating im-

ages, and more recently sounds. An example is given by WaveGAN. We aim to test the

ability of WaveGAN to produce realistic canary syllables under the condition of having

a small latent space dimension. We first trained WaveGAN varying the latent space di-

mension from 1 to 6 on a dataset of 16 different canary syllables. We show that a latent

space of dimension 3 is enough to produce sounds of quality often indistinguishable from

real canary ones, while reproducing all the types of syllables of the dataset. Then, we

built a RNN-based classifier able to recognise the syllables of the dataset. Afterwords,

we use this classifier to identify the generated samples. We measure both quantitatively

and qualitatively the output across GAN training epochs and latent dimension. We also

compare different instances of training. Importantly, we show that a 3-dimensional GAN

is able to both reproduce the syllables and generalise by interpolating between the sylla-

bles. We used UMAP to qualitatively show the similarities between the training data and
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the generated data, and between the generated syllables and the interpolations produced.

Interestingly, this study provides tools to train simple sensorimotor models, as inverse

models, from perceived sounds to motor representations of the same sounds. Both the

RNN-based classifier and the small dimensional GAN provide a way to learn the mappings

of perceived and produced. This chapter will be submitted for pubblication soon.

Contents

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.2 GAN background . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.3.1 Data pre-processing . . . . . . . . . . . . . . . . . . . . . . . . 136

4.3.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.3.4 Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

4.3.5 Uniform Manifold Approximation and Projection for Dimension

Reduction (UMAP) . . . . . . . . . . . . . . . . . . . . . . . . 145

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

4.4.1 Analysis of the training dataset . . . . . . . . . . . . . . . . . . 146

4.4.2 Evaluation of the model . . . . . . . . . . . . . . . . . . . . . . 149

4.4.3 Latent space exploration . . . . . . . . . . . . . . . . . . . . . . 160

4.4.4 Latent space dimension . . . . . . . . . . . . . . . . . . . . . . 164

4.4.5 Training dataset dimension . . . . . . . . . . . . . . . . . . . . 167

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

4.1 Appendix I: Syllable Selection . . . . . . . . . . . . . . . . . . . 174

4.1.1 Preliminary training dataset . . . . . . . . . . . . . . . . . . . 174

4.2 Appendix II: WaveGAN architecture . . . . . . . . . . . . . . 179

130



4.3 Appendix III: Classifier . . . . . . . . . . . . . . . . . . . . . . . 181

4.3.1 Preliminary classifier . . . . . . . . . . . . . . . . . . . . . . . . 181

4.3.2 Robustness of the classifier . . . . . . . . . . . . . . . . . . . . 181

4.3.3 Certainty of the classifier . . . . . . . . . . . . . . . . . . . . . 184

4.4 Appendix IV: Extension of the qualitative analysis . . . . . . 185

4.4.1 Balanced UMAP representation . . . . . . . . . . . . . . . . . . 185

4.4.2 Stability of the training . . . . . . . . . . . . . . . . . . . . . . 187

4.4.3 Latent space exploration . . . . . . . . . . . . . . . . . . . . . . 189

4.4.4 Preliminary analysis . . . . . . . . . . . . . . . . . . . . . . . . 191

4.1 Introduction

The presence of different talkers, rates and contexts makes speech composition difficult

to define physically. Indeed, when different talkers produce the same sound, the acoustics

(i.e. formant frequencies) vary (Hillenbrand et al., 1995), making speech highly variable.

Similarly, faster speech acoustics differ from slower speech acoustics, and contexts varia-

tions can determine a change in the acoustic features (Miller and Liberman, 1979). That

is, speech represents a high dimensional domain difficult to deal with. As a consequence,

speech generation is a challenging problem which involves several research fields such as

signal processing and machine learning.

Speech generation and vocal learning face some common challenges due to the inter-

pretability and the complexity of the data they are dealing with. Moreover, besides the

subject of the study, a vocal learning model may require a realistic (i.e. a vocal output

that belongs to the probability distribution of the real training dataset) vocal production

apparatus. That is, a motor control function is necessary to obtain a complete vocal

learning model (Pagliarini et al., 2020). Behavioural and the neuroanatomical similarities

between songbirds and humans (Kuhl, 2004; Chakraborty and Jarvis, 2015) suggest song-

birds as a model for a reduced version of the vocal learning in humans, enabling simpler
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hypotheses. In particular, canaries have a large highly variant repertoire and their songs

are characterized by a complex syntax with long-time dependencies (Markowitz et al.,

2013). These properties make canary songs a reasonable middle ground between human

speech and simpler birdsongs (e.g., zebra finches’ song).

We aim to investigate if a generative model can be used as the motor control function in

a vocal learning model describing sensorimotor learning. In such a scenario, the generative

model plays the role of the motor control function and takes the motor space as input. At

the same time, the motor space is involved in the learning algorithm: a high dimensional

motor space would make the learning computationally costly (Pagliarini et al., 2018a).

Some models based on dynamical systems are interesting candidates as motor generator

models (Gardner et al., 2001; Amador et al., 2013).

Generative Adversarial Networks (GANs) are an example of generative models which

enable to represent high-dimensional distributions in a latent space. In general, the main

components of a GAN are a generator, that tries to reproduce a target distribution (e.g.

images) given random inputs, and a discriminator, which tries to recognize real samples

from generated ones. The ”latent space” of a GAN is the input dimension of the generator

part after training: continuous changes in this latent space will hopefully produce smooth

changes in the generated samples. GANs have been used to produce complex datasets

such as images, sounds, music, speech and, to a lesser extent, birdsongs (Salimans et al.,

2016; Dong et al., 2018; Donahue et al., 2018). Indeed, Donahue et al. (2018) trained

their model, called WaveGAN, on a speech dataset composed of 10 classes (i.e., 10 words

representing the numbers from 0 to 9) and on wild recordings from several bird species.

The promising but noisy results on a wide and highly variable dataset of birdsongs de-

termined our choice to study the performance of the WaveGAN generator on a smaller,

cleaner dataset, more similar to the speech dataset used in the original work.

In this paper, we trained a Wesserstein GAN with Gradient Penalty (WGAN-GP) (Ar-

jovsky et al., 2017) using the WaveGAN (Donahue et al., 2018) setup on an adult canary

dataset. The main objectives of this study is not to improve the current version of

WaveGAN, but rather to test its ability to produce realistic canary syllables for different
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conditions of two parameters: the latent space dimension and the size of the dataset. On

the one hand, we are interested in finding the minimal latent space dimension that allows

to reproduce real songs fluctuations. On the other hand, we are interested in exploring

the capability of the generator to reproduce a good output when the network has been

trained with datasets of different sizes. Indeed, having a lower amount of training data

would speed up the computational time to train the generator. Another main aim of

the paper is to explore the latent space obtained in order to measure (quantitatively and

qualitatively) how good this space is to describe the smooth transitions from one syllable

to another. This is a way to check if the generator model is able not only to interpo-

late between syllables but also to generalize (i.e., the latent space is not a collection of

homogeneous regions separated by sharp transitions).

Section 4.2 contains an introduction to Generative Adversarial Networks (GANs), a

brief mention to the models that are relevant for this study and the description of the

architecture of WaveGAN. Section 4.3.1 describes the pre-processing we did to prepare

the canary recordings. Section 4.3.2 explains our experimental setup by introducing the

training dataset and the different training conditions we used to train WaveGAN. Sec-

tion 4.3.3 introduces the metrics we used to evaluate the performance of the generator.

The tools used to evaluate the model are in Sections 4.3.4 and 4.3.5.

Section 4.4 contains the results obtained in this study. First, Section 4.4.1 shows how

the training dataset can be evaluated using our evaluation metrics.

Section 4.4.2 shows the analysis we carried out to evaluate the performance of the

generator across time. We observe the generator capacity of covering all the repertoire and

the number of syllables not resembling to the real ones (i.e. not recognized as an example

of a known class). We first show performance of the generator after one training as a

proof of concept, then we compare 10 different instances of the training without changing

the experimental setup. The capacity of the generator to reproduce realistic samples is

confirmed by a qualitative analysis that we carried out at the end of one instance of the

training. Section 4.4.3 shows some examples of generated data and how the output space

(i.e. the space of the generated syllables) can be explored and covered by the generator.
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Section 4.4.4 and Section 4.4.5 show the same type of analysis presented in Section 4.4.2

applied to compare the generator performances when using different conditions for the

latent space dimension, or for the size of the training dataset.

Section 4.5 summarizes the results we obtained and explains the advantages and the

limitations of the network. Moreover, we discuss how a generator model such the one

investigated by this study could be used in future work within the frame of vocal learning

models.

4.2 GAN background

Recently, several generative models have been proposed, such as Wavenet (Oord et al.,

2016a), Variational autoencoders (VAEs) (Kingma and Welling, 2013) and Generative

Adversarial Networks (GANs) (Goodfellow et al., 2014). In particular, GANs have been

introduced for the first time by Goodfellow et al. (2014) as a novel class of machine

learning frameworks. Two models, the generator model and the discriminator model,

compete to become better at their objective. The generator model aims to be able to

produce samples that come from the training data distribution, without having access

to any information regarding them. On the contrary, the discriminator has access to

the distribution of the training dataset, and should be able to discriminate between a

sample which belongs to the training dataset and a sample generated by the generator

model (Goodfellow, 2016). In the original formulation, the Jensen-Shannon divergence is

used as a loss function. To improve the performance of GANs, several authors proposed

new GANs varying the model architecture or the loss function. For example, a more

stable training has been obtained using deep convolutional neural networks for both the

generator and the discriminator: this is the case for Deep Convolutional GAN (DCGAN)

proposed by Radford et al. (DCGAN) (Radford et al., 2015). Alternatively, Berthelot

et al. (2017) proposed Boundary Equilibrium GAN (BEGAN) where the discriminator

is an auto-encoder (Zhao et al., 2016). Arjovsky et al. used a DCGAN architecture in

Wasserstein GAN (WGAN) (Arjovsky et al., 2017) and improved it by modifying the loss
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function definition, such that it is robust to changes in the network architecture. Firstly,

the role of the discriminator has changed: it is not making anymore a direct choice to

assess whether a sample is real or fake. Instead, the discriminator acts as a critic and

provides the generator a loss allowing it to be trained until it reaches an optimum. An

advantage of the critic is that it can’t saturate and converges to a linear function, whereas

the classic discriminator could learn too quickly, becoming not reliable (Arjovsky et al.,

2017). Secondly, the loss is based on the computation of Wasserstein distance, which

gives stability to the GAN and avoids mode collapsing (Dong et al., 2018). Moreover,

weight clipping is used to enforce the continuity of the loss function. Finally, WGAN

has been improved by the introduction of a regularization parameter, usually called λ.

Gulrajani et al. (Gulrajani et al., 2017) proposed the addition of a Gradient Penalty (GP)

term in the loss function, driven by λ. GP penalizes any deviation of the gradient norm

of the critic. This enables a faster training and less parameter tuning. This model is

called WGAN with Gradient Penalty (WGAN-GP). Alternatively, Petzka et al. (2017)

proposed the addition of a Lipshitz Penalty (LP) term in the loss function, driven by λ.

LP penalized only larger (> 1) deviations of the gradient norm (and not all of them, as

GP does). For small values of λ WGAN-GP and WGAN-LP perform similarly, whereas

for larger values of λ the performance of WGAN-GP are more λ-dependent (Petzka et al.,

2017).

MuseGAN (Dong et al., 2018) and WaveGAN (Donahue et al., 2018) are two examples

of application of WGAN-GP to achieve sound generation. Dong et al. (2018) used a

dataset of multi-track piano-rolls derived from the Lakh Midi Dataset (LMD) (Raffel,

2016) and train WGAN-GP to generate multi-track sequences. Donahue et al. (2018)

trained WGAN-GP to generate music (piano, drums), speech (i.e. the Speech Commands

Zero through Nine-SC09 dataset) and, to a lesser extent, birdsong (using a training dataset

composed by wild recordings of different species).

Donahue et al. (2018) highlighted using Principal Component Analysis (PCA) how

images and waveforms are different in their structure. Principal components capture gra-

dient, intensity and characteristics of the edges for images, whereas principal components
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form a periodic basis that decompose the audio signal for waveforms (Donahue et al.,

2018). Indeed, audio signals show more periodicity than images. Thus, a larger receptive

field to process audio signals is introduced in WaveGAN. This is similar to what Oord

et al. (2016a) did in WaveNet, where dilated convolutions has been used to increase the ef-

fective receptive field of the model. WaveGAN architecture is based on the architecture of

DCGAN (Radford et al., 2015) which uses GANs for image synthesis. DCGAN (Radford

et al., 2015) generator is a CNN where transposed convolution is used to upsample low-

resolution feature maps into a high-resolution image. As for DCGAN, the generator and

the discriminator of WaveGAN are CNNs. Donahue et al. (2018) used WGAN-GP (Gul-

rajani et al., 2017) strategy during training. This strategy consists in the introduction of

a gradient penalty term in the loss function, driven by the regularization hyperparameter

λ. The advantages of using GP are a faster training and the avoidance of problems com-

ing from weight clipping (used to force the gradient to stay below a certain threshold),

which were present in the original formulation (Gulrajani et al., 2017). Please refer to

Appendix 4.2 for further details about the architecture of WaveGAN.

4.3 Methods

4.3.1 Data pre-processing

Canaries sing sequences of syllables organized in phrases: a phrase is a short part of the

song where the same syllable is repeated a certain number of times (Markowitz et al.,

2013). The starting dataset was composed of a repertoire of 27 classes of syllables or-

ganized in labeled phrases (i.e. each phrase was already assigned to a specific class),

manually sorted from X hours of recording at 44100Hz from an adult canary. First, we

focus on the selection of the syllables. We considered a subset of the repertoire. Among

the 27 classes, we focused on 16 classes in order to have only classes with enough samples:

A,B1, B2, C,D,E,H, J1, J2, L,M,N,O,Q,R, V . We performed the following steps on

each phrase:
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1. We downsampled each phrase to a sampling rate of 16000Hz.

2. From each phrase we made a first syllable selection tuning three parameters: the

amplitude threshold, the minimal duration of the syllable and the duration of the

gap (i.e., the silence between two consecutive syllables).

3. We applied to all the selected syllables a high-pass filter of order 5 to remove all

frequencies below 700Hz.

Figure 4.1 shows a summary of the selection procedure for syllable J2. The upper

panel shows the downsampled phrase. The lower panel highlights each syllable of the

phrase: for each syllable, the green dashed line represents the onset (i.e., the beginning of

the syllable), and the blue dashed line represents the offset (i.e., the end of the syllable).

Figure 4.1: Selection of syllable J2. The upper panel shows the spectrogram of an ex-
ample phrase of syllable J2. The lower panel shows the selected syllables: the
green vertical lines represent the onset of each syllable, the blue vertical lines
represent the offset of each syllable. We used onset and offset to determine
where each syllable begins and ends.

The automatic selection based on an amplitude threshold, the duration of the syllable

and the duration of the gap, could fail to select correctly the syllable. We performed a

137



Figure 4.2: Example of single syllables J2. 100 random selected syllables from the
totality of the phrases belonging to class J2. To select the syllables we used
three parameters: amplitude threshold, minimal duration of the syllable and
duration of the gap between two consecutive syllables. Other examples of
selected syllables form other classes can be found in Appendix 4.1

visual inspection after selection on duration to filter misclassified and miscut elements.

The resulting dataset contains 72155 syllables from the 16 classes. Figure 4.2 shows an

example of a phrase from class J2 and 100 examples of samples that have been selected

from class J2, randomly selected. See Appendix 4.1 for a detailed explanation of the

syllable selection procedure.

4.3.2 Experimental setup

We selected a balanced training dataset in order to consider almost the same number

of samples per syllable type. Among all the selected syllables, we used a subset of 16k

syllables: 1k syllables per class. From now on, we will refer to this balanced dataset as the

training dataset. Each syllable has been padded with silence to obtain recordings having

a length of exactly 1 s. This step has been done to create a dataset resembling the speech

dataset that was originally used to train WaveGAN (Donahue et al., 2018). We used the

balanced training dataset to train both the classifier (described in Section 4.3.4) and the

network (described in Section 4.2).

We used the original WaveGAN (Donahue et al., 2018) setup to train the network.

We used the original network architecture with gradient penalty option, with λ = 10 and

Adam optimizer in the training phase. We used a batch size of 64 samples and we trained

the discriminator 5 times more than the generator.

We tested different conditions for the latent space dimension, varying it from ld = 6
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to ld = 1. In the following, we will refer to one of these particular conditions using, for

instance, 6-dimensional WaveGAN to refer to a GAN trained with a 6-dimensional latent

space, or 5-dimensional WaveGAN to refer to a GAN trained with a 5-dimensional latent

space. We tested different sizes for the training dataset. For this analysis, we used the

preliminary training dataset described in Appendix 4.1: first, we trained WaveGAN using

the complete dataset, then we reduced it by a factor of ∼ 8 and finally by a factor of

∼ 16.

We first trained WaveGAN using a preliminary dataset (see Appendix 4.1). We trained

3 instances per latent space condition (keeping the dataset size fixed) and dataset size

condition (keeping the latent space dimension fixed), to observe the performance of the

generator across time. Then, we used the optimal combination of latent space dimension

and dataset size to train 10 instances of WaveGAN with the training dataset introduced

at the beginning of this Section. For all the instances, we trained the network until epoch

∼ 1000, saving the model every ∼ 15 epochs. After training, we used the generator to

produce new syllables at every saved epoch. We evaluated the generated data using both

a quantitative and a qualitative measure, as described in Sections 4.3.3 and 4.3.3.

4.3.3 Evaluation

We evaluated the performance of the generator across epochs and across training condi-

tions, in order to see the optimal choice of parameters. As explained in Section 4.3.2, after

training, we used the generator to produce new syllables every 15 epochs and we used the

classifier described in Section 4.3.4 to identify the generated syllables as elements of one

class of the vocabulary. To this aim, accordingly with the type of evaluation we want to

perform, we defined two vocabularies and trained two classifiers.

First, we used the balanced training dataset to train a classifier able to provide the

probability of each sample belonging to each class of a vocabulary composed by the 16

classes of the repertoire. We refer to this model as classifier-REAL. Then, we introduced

the possibility for the classifier to classify a sample as not belonging to any of the 16
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classes of the repertoire, but to an alternative unknown class. For simplicity of notation,

we will call the set of unknown classes X. We define a class x ∈ X as a class representing

either white noise, or samples containing a lot of noise and with a low variability one from

the other (usually, resembling early generations), or to a class of samples resembling the

real ones but followed by some artifacts (usually, such samples start to happen at late

stages of training). We trained a classifier able to provide the probability of each syllable

belonging to 21 classes: the 16 classes of the repertoire, a white noise (WN ) class, an

overtraining (OT ) class, and three EARLY classes, respectively obtained from epochs 15,

30 and 45. To train the classifier to recognize the alternative unknown classes x ∈ X, in

addition to the usual training dataset, we used three additional sets of generated samples.

In summary, to train the classifier we used:

• EARLY 15 : 1k samples of early generations, obtained after ∼ 15 epochs using

two different instances of a 3-dimensional WaveGAN (respectively, 500 samples per

instance);

• EARLY 30 : 1k samples of early generations, obtained after ∼ 30 epochs using

two different instances of a 3-dimensional WaveGAN (respectively, 500 samples per

instance);

• EARLY 45 : samples of early generations, obtained after ∼ 45 epochs using two

different instances of a 3-dimensional WaveGAN (respectively, 500 samples per in-

stance);

• OT : 1k samples obtained when two instances of a 3-dimensional WaveGAN reach

overtraining (respectively, 500 samples per instance);

• WN : 1k samples of artificial white noise.

The two different instances used to define the classes above are instances Ex 0 and Ex

1 in Figure 4.8. We will refer to this classifier as classifier-EXT (where EXT stands for

extended).
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Quantitative evaluation

A quantitative measure is a measure which allows to understand if the model is able to

reproduce a wide enough variety of samples (Borji, 2019), and provides a preliminary

measure of whether or not the generated data resemble the real syllables. To observe

the generator’s performance across time we will describe how many classes it is able to

produce and how many syllables per class it is able to produce in average. In this way,

we studied the stability of WaveGAN across different instances of training. Moreover,

we computed the Inception Score (IS) at several epochs of the training, we observed its

evolution and we compared it with the IS obtained from the training dataset. IS has

been proposed by Salimans et al. (2016) as a quantitative measure to evaluate GANs:

a pre-trained deep learning neural network model for image classification provides the

probability of each image belonging to each class. This information is then summarized

in the IS, which is defined as follow:

IS = exp(E(KL(p(y|x)||p(y)))), (4.1)

where KL stands for Kullback-Leibler divergence. Given a problem with N classes,

IS ∈ [1, N ]. IS provides both a measure of the quality and of the entropy of the genera-

tions, giving an idea of the generator ability to produce a wide set of new data (Salimans

et al., 2016). The IS as a method of objective evaluation for GANs performance has been

used by several authors (Donahue et al., 2018; Gulrajani et al., 2017).

Qualitative evaluation

First, we based our qualitative analysis on spectrogram analysis. On the one hand, we

computed the mean spectrogram of the generated data, and we compared it with the mean

spectrogram of the dataset and with the repertoire. To obtain the mean spectrogram,

for each class, we first aligned the syllables’ envelope, then we computed the mean of

the spectrograms of all the syllables belonging to that class. On the other hand, we

observed the spatial organization of the data using Uniform Manifold Approximation and
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Projection for Dimension Reduction (UMAP) (McInnes et al., 2018). We applied UMAP

to the spectrograms of the samples. Further details about the algorithm can be found in

Section 4.3.5.

Secondly, we explored the latent space to study the continuity of the generations. We

generated syllables for each small variation of the latent vector.

• One component variation. We selected a random latent vector z ∼ R3([−1, 1]) to

generate a baseline syllable using a 3-dimensional WaveGAN after training. Then,

we moved one by one the components of the vector by a variation step equal to

vstep = 0.05. To explore critical points (i.e., where a bigger variation arises a sudden

non-smooth change between two syllables) we moved one by one the components of

the vector by a variation step equal to vstep = 0.01 and vstep = 0.001. Moreover, we

used a step vstep = 0.001 to vary one by one each component of z between [−1, 1]

and we compared the generations obtained by each variation (one per component

of the latent vector) with a set of 16k generated data from the same epoch.

• Three components variation. We first selected 2 syllables s1 and s2 and their

correspondent latent vectors z1 and z2, where z1, z2 ∈ R3([−1, 1]). Then, we moved

in the latent space from z1 to z2 using a variable step depending on the distance

between the components of z1 and z2. That is, the step applied to each component

i is

step[i] =


z1[i]−z2[i]
Nstep

z1[i] > z2[i],

− |z1[i]−z2[i]|
Nstep

otherwise,

(4.2)

where Nsteps is the number of steps. We used Nsteps = 1000. We used classifier-EXT

to identify the syllables and see which class is assigned to the transition between s1

and s2. We used the UMAP representation to compare the variations with a bigger

set of generated data.

Finally, we used human judgment to provide an additional qualitative evaluation. We

asked 2 people to participate in a syllable recognition test organized as described below.
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• Training phase. Recognition of a sample of 100 syllables from the training dataset:

for the first 50 (or less, if not needed anymore) the person is authorized to look at

the repertoire to classify the syllables. After each guess, the person can also look at

the correct answer to learn and become more specialized. Then, the last 50 syllables

have to be recognized. No helps is allowed here, and no correct answer can be seen.

In the training phase, the available classes are the 16 classes of the repertoire.

• Testing phase. Recognition of a sample of 200 syllables generated after training,

without the possibility of consulting the repertoire. In the testing phase, the avail-

able classes are the 16 classes of the repertoire plus a general X class which, ideally,

represents the alternative unknown classes (three EARLY classes, OT class and

WN class) recognized by the classifier.

Then, we computed the proportion of agreement without considering the chance agree-

ment (i.e., that percentage of agreement that would have occurred anyway) using Cohen’s

kappa coefficient (Cohen, 1960; Artstein and Poesio, 2008). If κCohen = 0, then the agree-

ment is equal to agreement by chance. Alternatively, κCohen ∈ (0, 1] represents a positive

agreement and κCohen = 1 represents a perfect agreement between two judges (Cohen,

1960). We computed κCohen for each of the participant with respect to classifier-EXT

and for each couple of participants.

4.3.4 Classifier

The two classifiers (classifier-REAL and classifier-EXT ) used during the evaluation phase

(described in Section 4.3.3) are Echo State Networks (ESNs) (Jaeger, 2001), a type of ar-

tificial neural network. ESNs and Support Vector Machines (SVMs) work similarly, by

embedding input data into a high dimensional space using a random non linear transfor-

mation. However, unlike SVMs, ESNs are designed to manipulate sequential data, like

recurrent neural networks (RNNs), and are relevant candidates for a sound classification

task.

143



The classifiers were fed with mel-frequency cepstral coefficients (MFCCs) representa-

tions of the syllables, a low dimensional spectral representation of sound. We extracted

20 MFCCs features per time step, one time step being defined as the result of a spectral

analysis window of 64ms applied to the 16kHz audio signal, with a 32ms jump between

each time step. Because the generated syllables tend to have higher amplitude than the

real ones, we used only the first and the second derivative of the extracted MFCC signals

to remove any influence of the signal amplitude in the representations. Otherwise, the

amplitude difference would bias the classifiers decisions, as it would be artificially easier

to separate real samples from generated samples only by comparing the average power of

the signals. First and second derivatives of the MFCC signal are also known to be good

representations of vocal signals, as they give relevant clues on the temporal dynamics of

the vocalizations.

The ESNs trained on the classification tasks are built using RerservoirPy Python

toolkit (Trouvain et al., 2020)1, and are described by the following equations:

x(n) = (1− α)x(n− 1)

+ α tanh (Winu(n) +Wx(n− 1))
(4.3)

y(n) = Woutx(n) (4.4)

where u(n), x(n) and y(n) are respectively the input features, the internal state of the

network and the output vector at time step n. Win stores the connection weights between

the inputs and the neuronal units of the network. These weights are sampled from a

discrete bi-modal distribution, i.e. are randomly chosen between 1 or −1. The proportion

of non-zero connection weights is fixed to 10%. Win is defined in RN×I , where N is the

number of neuronal units and I is the dimension of the input. In our case I = 41, with

input features being 20 derivatives of MFCCs, 20 second derivatives of MFCCs, and a

constant bias equal to 1. Each set of features is scaled by multiplying the corresponding

1https://github.com/reservoirpy/reservoirpy
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connection weights in Win by a constant. The first derivatives and the bias are scaled by

a factor 1, and the second derivatives are scaled by a factor 0.7. W stores the connection

weights of the neuronal units of the network. These weights are sampled from a standard

normal distribution, with a proportion of non-zero connections between neuronal units

fixed to 10%. W is defined in RN×N , with N equal to 1000. W is scaled using a factor

equal to a fixed spectral radius of 0.5 divided by the largest absolute eigenvalue of W . The

α parameter, called leaking rate, is set to 0.05. It controls the time constant of the ESNs

and allows information from past internal states to be fed to future internal states. All

connection weights defined in Win and W are fixed during the training phase of the ESNs,

as opposed to machine learning algorithms using gradient descent. Only the Wout ∈ RN×V

readout matrix is learned during training, where V is the dimension of the vocabulary used

to classify the input features, i.e. V = 16 for classifier-REAL and V = 21 for classifier-

EXT. The readout weights are learned using a simple linear regression between all the

internal states x generated from the inputs and all the expected values of the output y.

A L2 regularization coefficient of value 10−8 is applied during the linear regression.

The classifiers then output a vector ŷ(n) of dimension V representing its activation for

each time step n and for each category of syllable in the vocabulary. Then, these output

activities are averaged over the whole sequence of MFCC time steps representing each

syllables. A softmax operation finally provides a probability distribution representing the

chance for the syllable to belong to one of the classes of the vocabulary.

A preliminary version of the classifier can be found in Appendix 4.3.1 and a further

analysis of its robustness can be found in Appendix 4.3.2.

4.3.5 Uniform Manifold Approximation and Projection for Di-

mension Reduction (UMAP)

Similarly to t-SNE, Uniform Manifold Approximation and Projection for Dimension Re-

duction (UMAP) (McInnes et al., 2018) is a dimension reduction technique. As a plus, it

can be used to perform non-linear dimension reduction, and it has a higher computational
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power (i.e., it is faster than other reduction techniques). The axis are not meaningful to

identify a discriminant feature (i.e., they do not represent, for example, the pitch of the

syllable, or another syllable-related feature). Instead, there are hyperparameters that sim-

ply work well to represent the given dataset: for instance, the size of the neighborhood

used to estimate the manifold structure of the data and the minimum distance apart that

points are allowed to be. The tuning of these hyperparameters, respectively, allows to

obtain a more or less local representation of the data (where a higher size of the neigh-

borhood translates in a more local representation) and to pack or not pack together the

points in the clusters (where a higher distance allows a more sparse representation). For

instance, the power of UMAP to represent birdsongs’ data have been explored by Sainburg

et al. (2019).

4.4 Results

4.4.1 Analysis of the training dataset

This section describes the training dataset and highlights the performance of our eval-

uation metrics on it. The majority of the samples belong to 16 independent clus-

ters in the Uniform Manifold Approximation and Projection for Dimension Reduction

(UMAP) (McInnes et al., 2018) representation (left panel of Figure ??a). Besides, the

representation shows similarities between syllables B1 and B2 and syllables J1 ad J2 :

the clusters of syllables B1 (cream cluster) and B2 (light orange cluster) and the clus-

ters of syllables J1 (dark green cluster) ad J2 (light brown cluster) lie very close. These

similarities can be noticed also in the spectrogram representation (Figure ??b). For this

reason, in further representations using UMAP syllables B1 and B2, J1 ad J2 have been

grouped, respectively, into syllable B (keeping the light orange color to represent the clus-

ter) and J (keeping the dark green color to represent the cluster) because of their high

similarity. Each template shown in Figure 4.3a can be compared with the correspondent

mean spectrogram (Figure 4.3b).
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(a) UMAP representation and repertoire. (b) Mean spectrogram.

Figure 4.3: Repertoire. (a) UMAP (McInnes et al., 2018) representation of the training
dataset. Each cluster represents a class of the repertoire and a template
syllable of each class is highlighted with the corresponding spectrogram (an
arrow connects each cluster to the corresponding template). Syllables B1
(cream cluster) and B2 (light orange cluster) and syllables J1 (dark green
cluster) and J2 (light brown cluster) lie very close: this is why in the following
UMAP representations we will unify them in two big clusters, syllable B
(will be cream cluster) and syllable J (will be dark green cluster). (b) Mean
spectrogram computed after envelope alignment of the waveforms. To obtain
the UMAP representation and the mean spectrogram we used 1k syllables per
class (i.e., the training dataset) and their real labels. No classifier has been
applied to assign each syllable to the correct class.

The average number of syllables recognized for each of the 16 classes of the repertoire is

close to 1k both for classifier-REAL and classifier-EXT (panels (a-b) of Figure 4.4). This

is coherent with the fact that the training dataset contains 1k samples per class. Moreover,

the alternative unknown classes x ∈ X (i.e., three classes of EARLY generations, the

overtraining (OT ) class, and the artificial white noise (WN )) identified by classifier-EXT

contain a negligible number of elements, or zero elements (Figure 4.4b). The level of

confidence of the classifier in making the correct assignment can be represented using the

confusion matrix relative to the predictions. On the diagonal the optimal condition would

be to have values equal to 1, elsewhere the optimal condition would be to have values equal
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(b) Distribution of the training data obtained(a) Distribution of the training data obtained
classifier-EXT.classifier-REAL.

(c) Confusion matrix classifier-REAL. (d) Confusion matrix classifier-EXT.. 

Figure 4.4: Training data analysis. Panels (a-b) show the distribution obtained using
classifier-REAL and classifier-EXT on the training dataset. In both cases,
the average number of syllables per class is 1k for each of the 16 classes of the
repertoire. The remaining 5 columns (on the right part) in panel (b) represent
the alternative unknown classes x ∈ X (EARLY15, EARLY30, EARLY45, OT
and WN ). Panels (c-d) show the confusion matrix (i.e. the level of confidence
of the classifier in making the correct assignment) relative, respectively, to
classifier-REAL and classifier-EXT. Each square represent the level of confi-
dence of the classifier in making the correct assignment. The level of confi-
dence is expressed on a logarithmic scale using shades of blue.

to zero. Looking at the confusion matrix for both classifier-REAL and classifier-EXT, a

confusion between syllable B1 and syllable B2, and between syllable J1 and syllable J2

can be seen on the diagonal in correspondence of these elements (sub-diagonal elements
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are darker than the others for these 4 syllables). This confusion can be explained with the

fact that phrases formed by syllables B1 and phrases formed by syllables B2, and phrases

formed by syllables J1 and phrases formed by syllables J2 differ in repetition rate more

than in frequency.

The Inception Score (IS) obtained for the training dataset after using classifier-REAL

to recognize the syllables is ISreal = 15, 92. The range of the IS for our dataset is

IS ∈ [1, 16].

4.4.2 Evaluation of the model

We used the classifier described in Section 4.3.3 to obtain a quantitative analysis. We

saved the model every ∼ 15 epochs until epoch ∼ 1000. In order to determine a good

epoch to generate samples resembling the real ones, we are interested in the performance

of the generator across time. At the beginning of training (epoch 0 in Figure 4.5), there

is no variation between the syllables. At epoch 15 the generations start to be coherent in

duration but remain noisy and unclear. The resemblance increases at epoch 45 for some

syllables (e.g., syllable E ) but remains generally low for most of them. Finally, epoch 984

generations show a shape comparable with the training data in Figure 4.3.

Quantitative evaluation

At each epoch, we generated 1k samples and we used classifier-EXT to calculate the

probability distribution of the classes. Figure 4.6 shows the distribution obtained from

the classifier at 4 example epochs: epochs 15, 106, 212, 318, 514 and 984. Each columns

represents one of the 21 classes of the vocabulary: the 16 classes of the repertoire and

5 alternative unknown classes x ∈ X (i.e., three classes of EARLY generations, the

overtraining (OT ) class, and the artificial white noise (WN )). These results have been

obtained from an instance of training where the latent space dimension was fixed at ld = 3.

It is possible to observe a decrease in the number of syllables belonging to an alternative

class, whereas an increasing number of syllables characterize the classes of the repertoire.
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Figure 4.5: Generations across time. Example of one selected syllable per class across
time. Each syllable has been first generated at epoch 984 and recognized using
classifier-EXT. Then, the latent vector associated at each syllable has been
used to generate the same syllable at epochs 0,15, 45, 106 and 514. At epoch
0 the generations do not vary from one class to another. At epoch 15 the
generations start to be coherent in duration but remain noisy and unclear.
At epoch 45 some syllables are more distinguishable than at earlier epochs,
but the majority remains noisy and indistinguishable. As the training goes
on, the generations resemble more and more the real syllables (epochs 106
and 514). The generations obtained at epoch 984 have a clear distinguishable
shape. Here, the generator obtained from the instance Ex 6 in Figure 4.7 has
been used to generate the syllables across time; latent space dimension ld = 3;
Ep. stands for epoch.
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Figure 4.6: Distribution of the classes. Distribution of 1k generated samples after 15,
106, 212, 318, 514, and 984 epochs of training. Each column represents a class
of the vocabulary: a syllable from the repertoire, or an alternative unknown
class x ∈ X (EARLY15, EARLY30, EARLY45, OT and WN ). The number of
syllables belonging to a class x ∈ X decreases over time, whereas the average
number of syllables belonging to the classes of the repertoire increases. The
latent space dimension is ld = 3 and classifier-EXT has been used to classify
the generated data.

The capacity of a 3-dimensional generator model to produce samples that are classified

as belonging to the repertoire increases over time. After ∼ 200 epochs of training, the

generator is able to cover all the syllables of the repertoire (Figure 4.7a). In parallel,

the total variance (considering both the classes of the repertoire and the 5 alternative

unknown classes) decreases over time (Figure 4.7c). That is, at early stages of training

the majority of the samples generated are classified by classifier-EXT as elements of an

alternative unknown class x ∈ X (Figures 4.7d, 4.7e and 4.7f). Then, the number of

samples recognized by classifier-EXT as belonging to a class of the repertoire increases

leading to an increasing in the average number of syllables per class (Figure 4.7b). The

dark green line shows the evolution of the mean, whereas the light green line shows the

evolution of the median. After epoch ∼ 600 the average number of syllables per class

remains stable.
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of syllables per class.
(a) Number of represented classes. (c) Variance of the number of syllables per class.

(d) Number of syllables belonging
to the EARLY15 class.

(e) Number of syllables belonging
to the EARLY30 class.

(f) Number of syllables belonging
to the EARLY45 class.
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Figure 4.7: Analysis of a 3-dimensional generator using classifier-EXT . Statis-
tical analysis performed on the classifier distribution of one instance of the
training. Panel (a) shows the number of classes represented by the generated
data: that is, at each epoch, how many syllables of the repertoire are cov-
ered by the generator. The number of syllable reaches the maximum value 16
relatively quick and then stays high during all the training. Panel (b) shows
the average number (dark colored lines) of elements per class and the median
(light colored lines): across time, with some instability, we can observe an
increasing of the mean across time. To compute the quantities in panels (a)
and (b), alternative unknown classes x ∈ X have not been taken into account.
Panel (c) shows the evolution of the variance of how many syllable per class
have been produced. Here, x ∈ X classes are included. The variance starts
at a high value when the majority of the samples produced are not classified
as syllables of the repertoire, then it decreases when the generator becomes
better at producing syllables. Panels (d-f) show the percentage of syllables
that are classified as belonging to one of the alternative classes x ∈ X: from
the left to the right, classes EARLY15, EARLY30 and EARLY45.

At the same time, the number of syllables belonging to one of the alternative classes

x ∈ X (EARLY15, EARLY30 and EARLY45 ) decreases over time (Figures 4.7d, 4.7e and

4.7f). Classes EARLY15 and EARLY30 decrease faster with respect to EARLY45, which,

eventually, never reaches a level comparable to the percentage found in the training data.

Although this show that the generator produces better and better samples over time,

152



further analysis are needed to understand if the quality of the samples keep increasing

after epoch 600.

The concept of overtraining arises comparing 10 different instances of training of 3-

dimensional WaveGANs. Not all the instances show the capability of the generator of

producing syllables belonging to all the classes of the repertoire (Figure 4.8a). Instances

Ex 2 (orange line), Ex 1 (yellow line) and Ex 5 (magenta line) show an early drop and,

eventually, never reach to cover the repertoire. Nevertheless, the other instances show a

drop at an advanced stage of the training (i.e., after epoch 600) or never drop. Similarly,

the instances showing instability in Figure 4.8a show instability in the average number

of syllables recognized per class (Figure 4.8b) and in the variance of the number of syl-

lables recognized per class (Figure 4.8c). Moreover, alternative unknown classes, and in

particular class EARLY45, are more represented even in advanced epochs of the training

for those instances showing instability, as shown in Figures 4.8(d-f). Such an instability

might characteriz the beginning of overtraining: the generator starts to produce samples

that are recognized as elements of an EARLY class or of class OT. The latter is more rep-

resented in instances showing overtraining (Figure 4.9). After, the generator is not able to

recover. Further analysis are needed to understand how to carefully describe overtraining.

Finally, as a last quantitative measure of the generator performance, we computed the

Inception Score (IS) across time. For 3 instances (i.e., Ex 0, Ex 2 and Ex 6 ) we generated

16k samples every ∼ 100 epochs and we used classifier-REAL to classify them. Then, we

computed the IS as in Equation 4.1 at each saved epoch. Figure 4.10 shows the IS across

time with respect to IStrain (black line). The IS of Ex 0 and Ex 6 increases across time

and, eventually, they reach a maximum value around 13 (for reference, the IS obtained

from the training dataset is IStrain = 15, 92); contrarily, the IS of Ex 2 increases at the

beginning but remains low during all the training. The IS of Ex 0 suddenly breaks around

epoch 800: this behavior confirms the results shown in Figure 4.8.
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Figure 4.8: Different instances of a 3-dimensional WaveGAN. Statistical analysis
performed on the classifier distribution of 10 instances of training. Panel (a)
shows the number of classes represented by the generated data: that is, at
each epoch, how many syllables of the repertoire are covered by the generator.
An early drop (i.e., before epoch 600) in the number of represented classes
can be seen for three instances (i.e, Ex 2 – orange line, Ex 1 – yellow line
and Ex 5 – magenta line). Panel (b) shows the average number (dark colored
lines) of elements per class and the median (light colored lines): depending on
the instance, the mean and the median could increase over time and remain
stable (Ex 6 – light blue line, Ex 7 – gray line, Ex. 8 – burgundy line), or
increase until a certain epoch and then drop (Ex 3 -blue line, Ex 4 – green
line, Ex 5 – magenta lines, Ex 9 -red line), or remain low for all the duration
of the training (Ex 1 – yellow line, Ex 2 – orange line). To compute the
quantities in panels (a) and (b), alternative unknown classes x ∈ X have
not been taken into account. Panel (c) shows the evolution of the variance
of how many syllable per class have been produced. Here, x ∈ X classes
are included. For successful instances of training (Ex 6 – light blue line, Ex
7 – gray line, Ex. 8 – burgundy line), the variance starts at a high value
when the majority of the samples produced are not classified as syllables
of the repertoire, then it decreases when the generator becomes better at
producing syllables. Eventually, it increases again later (Ex 3 – blue line,
Ex 4 – green line, Ex 5 – magenta line, Ex 9 – red line) or never decrease
enough (Ex 1 – yellow line, Ex 2 – orange line). Panels (d-f) show the
percentage of syllables that are classified as belonging to one of the alternative
classes x ∈ X: from the left to the right, classes EARLY15, EARLY30 and
EARLY45. Alternative unknown classes, and in particular class EARLY45,
are more present even in advanced epochs of the training for those instances
where we identify overtraining (all but Ex. 6 – light blue line, Ex 7 – gray
line and Ex. 8 – burgundy line.
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Figure 4.9: Overtraining. Comparison between 10 instances of training: percentage of
syllables classified by classifier-EXT as elements of class OT (i.e., overtrain-
ing). Instances Ex 0 (purple line), Ex 1 (yellow line), Ex 2 (orange line), Ex
3 (blue line), Ex 4 (green line), Ex 5 (magenta line), Ex 9 (red line) show
an increasing number of syllables classified as belonging to class OT. These
instances show instability also in the average an variance of the syllables be-
longing to the classes of the repertoire and in the number of syllables belonging
to an EARLY class (see Figure 4.8). Latent space dimension: ld = 3.

Figure 4.10: Inception Score across time. IS relative to the generator of instances Ex
0 (violet line), Ex 2 (orange line) and Ex 6 (light blue line, used as baseline)
with respect to IStrain (black line). IS for the instances Ex 0 and Ex 6
increases over time, whereas IS for the instance Ex 2 remains low over time.
Here, for each instance we generated 16k samples every ∼ 100 epochs and we
used classifier-REAL to classify them. This figure is not complete: we will
add the IS relative to the remaining instances of training before the defense.
The generator of each instance has been used to produce 16k syllables across
time and classifier-EXT has been used to identify the generated syllables.
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Table 4.1 summarizes the IS of the training dataset and each of the selected instances:

we considered the highest IS within the time range shown in Figure 4.10.

Table 4.1: Inception Score. IS of the training dataset and the selected instances: we
considered the highest IS within the time range shown in Figure 4.10. For our
dataset, IS ∈ [1, 16].

Dataset Epoch IS

Training - 15,92

Ex 0 800 13,51

Ex 2 515 5,65

Ex 6 (baseline) 984 13,07

Qualitative evaluation

For qualitative evaluation, we focused on instance Ex 6 of training. We chose to focus

on this instance because it remains stable until epoch ∼ 1000 (see Figure 4.7) and we

obtained an increasing and high Inception Score (see Figure 4.10 and Table 4.1). Indeed,

Ex 6 is also the example we used since the beginning of Section 4.4.2 as a baseline example.

The generator produces a higher number of good syllables over time. At early epochs

of training, when not all the classes are covered by the generator (empty boxes in Fig-

ure 4.11(a-b)), the mean spectrograms are blurry and show syllables difficult to recognize

as belonging to a class of the repertoire (see Figure 4.3). The spectrograms look often

as a mix of syllables coming from several classes (e.g, syllable A or syllable R in Fig-

ures 4.11(a-b)). At epoch 514 (Figure 4.11c) all the syllables can be produced by the

generator and only a few syllables remain difficult to be recognized as belonging to a

class of the repertoire (e.g., syllable B2 and syllable L). Nevertheless, a lot of syllables

are clearly recognizable (e.g., syllable N and syllable Q). Finally, at advanced stages of

training, all the spectrograms show a recognizable syllable.
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(c) Epoch 514.

(a) Epoch 106 (b) Epoch 212.
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(d) Epoch 984.

Figure 4.11: Mean spectrogram across time. Mean spectrogram of 1k the syllables
generated at epoch 106 (a), 212 (b) 514 (c) and 984 (d). Empty boxes in
panels (a) and (b) mean that at epoch 106 and 212 not all the repertoire
can be covered by the generator and no syllables have been recognized by
classifier-EXT as elements of the not represented classes (e.g., class B2 ). At
epochs 106 (panel (a)) and 212 (panel (a)) the correct duration and, even-
tually, the content of the syllables can be grasped. At epoch 514 (panel (c))
almost all the syllables can be distinguished and only a few remain noisy and
unclear (A, E, L, R). At epoch 984 (panel (d)) all the syllables are clear and
distinguishable. They can be compared with the repertoire in Figure 4.3.
Here, the training has been done using ld = 3, the generator obtained from
the instance Ex 6 in Figure 4.7 has been used to generate the syllables across
time and classifier-EXT has been used to identify the generated syllables.

The UMAP representation of the generated data and the training data show that

157



(a) Epoch 15 (b) Epoch 106 (c) Epoch 514

(d) Epoch 15 (e) Epoch 106 (f) Epoch 514

(g) Epoch 984 - Real VS generated (h) Epoch 984 - Classe

Figure 4.12: Syllable space representation across time. Syllable space representa-
tion obtained from the training dataset (16k syllables) and 1k syllables gen-
erated at epochs 15, 106, 514 and 984 using UMAP McInnes et al. (2018).
Panels (a-c) and (g) show the training data (brown points) and the gener-
ated data (blue points). These four figures are different because the analyzed
dataset differs for the 1k generations specific of each epoch. Panels (d-f) and
(h) show the same representation of panels (a-c) and (g) with the classes of
syllables visible. Each cluster/color corresponds to one class of the repertoire
and class X (in white) represents the cumulative class of the alternative un-
known classes (in this case, EARLY15, EARLY30, EARLY45, OT and WN ).
Here, the training has been done using ld = 3, the generator of instance Ex
6 has been used to generate the syllables and classifier-EXT has been used
to identify both the generated data and the training data.

(1) the generated data are grouped together as they were an additional cluster with

respect to the ones obtained from the training data (Figures 4.12(a-c, g)) and (2) the

generated data belong to the same cluster of the training data (Figures 4.12(d-f, h)).
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On the one hand, the generated data spread over time, moving from being a cluster

in itself (light blue points in Figures 4.12(a-c, g)) to taking a conformation compatible

with the training data (brown points in Figures 4.12(a-c, g)). On the other hand, the

generated data are mostly constituted by syllables belonging to class X (the cumulative

class of the alternative unknown classes (in this case, EARLY15, EARLY30, EARLY45,

OT and WN ) at early stages of training (Figures 4.12(d-e)). Later, the majority of the

generated data belongs to the same class as the closer cluster of training data in the UMAP

representation (Figure 4.12h). Further observations regarding the comparison between

the UMAP representation of training and generated data are discussed in Figure 4.38 in

Appendix 4.4.

The UMAP representation of the generated data shows smoother transitions from one

cluster to another (Figure 4.13). These transitions can be either represented by points

belonging to one of the classes of the repertoire (e.g., between J and C ) or to class X

(e.g., between N and Q). This observation highlights an interesting perspective for which

elements classified in class X can be seen as intermediate elements between two syllables.

We will deal with this concept in Section 4.4.3.

Finally, human judgment confirms the goodness of the classifier and of the generated

data. Each judge evaluated the same set of 200 samples generated at epoch 984 using

the generator of instance Ex 6. The judges had the possibility to classify each of them

as an element of one of the 16 classes of the repertoire or as an element of an alternative

unknown class x ∈ X. Table 4.2 contains the Cohen’s kappa values across the human

judges and versus classifier-EXT.

For further observations about the stability of the training, Appendix 4.4.2 shows how,

combining the UMAP representation and the mean spectrogram, it is possible to compare

three consecutive epochs of training to check the stability of the generator.
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Figure 4.13: UMAP representation of the generated data. UMAP representation
of 16k generated syllables. Each cluster/color correspond to one class of
the repertoire and class X (in white) represents the cumulative class of the
alternative unknown classes (in this case, EARLY15, EARLY30, EARLY45,
OT and WN ). Here, the training has been done using ld = 3, the generator
obtained from the instance Ex 6 in Figure 4.7 has been used to generate
the syllables at epoch 984 and classifier-EXT has been used to identify the
generated syllables.

4.4.3 Latent space exploration

To explore the continuity of the latent space we used the generator obtained from one

instance of training of a 3-dimensional WaveGAN. In particular, we used Ex 6 at epoch

984. We used two different strategy to (1) explore the latent space in all the direction

starting from one point (one component variation described in Section 4.3.3) and (2)

observe the transition from one syllable to another (three components variation described

in Section 4.3.3).

First, we selected a random latent vector z ∼ R3([−1, 1]) to create a baseline syllable,

then continuously move from one representation to another by changing one dimension

of the latent space by a fix variation step. The syllables highlighted by the red squares in

Figure 4.14 (i.e., first C and J2, then V and V ) are an example of non-smooth transitions.

For these particular transitions, we considered the two consecutive syllables obtained from
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Table 4.2: Human Judgment. Cohen’s kappa coefficient computed per each couple
across human judges and versus classifier-EXT. Each judge evaluated 200 syl-
lables produced using the generator of instance Ex 6. The kappa coefficients
κCohen obtained across judges and with respect to classifier-EXT are compa-
rable.

Cohen’s kappa

Judge 1 vs Judge 2 0, 74
Judge 2 vs classifier-EXT 0, 79
Judge 1 vs classifier-EXT 0, 73

the first variation step (i.e., two consecutive syllables contained in two consecutive red

squares) and we applied a smaller variation step. The bottom-left panel of Figure 4.14

shows the latter operation applied to the first non-smooth transition in the first component

and highlights a new non-smooth transition that needs to be investigated. Using the same

procedure, we applied a smaller variation step and reached a point at which we cannot see

any more clear evidence of non-smooth transitions (bottom-right panel of Figure 4.14).

The investigation of the second non-smooth transition highlighted in the upper panel of

Figure 4.14 and additional examples from the the second and the third components can

be found in the supplementary material.

A better visualization of such smooth transition can be observed in the UMAP rep-

resentation shown in Figure 4.15. The exploration obtained varying, one by one, each

component of a random latent vector z ∼ R3([−1, 1]) by a step equal to vstep = 0.001

shows smooth passages between one syllable to another. It is not surprising that a dif-

ficulty in the classification arises between syllable V (magenta cluster) and syllable C

(orange cluster): indeed, syllable V is a syllable that shares its content with other syl-

lables of the repertoire, causing uncertainty and errors for the classifier. The UMAP

representation of the training dataset (Figure 4.3a) and then the UMAP representation

of the generated data (Figure 4.13) already show multiple cluster locations for syllable V.
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Figure 4.14: Exploration of the latent space: one component variation. First
component.. We selected a random latent vector z ∼ R3([−1, 1]) to create
a baseline syllable. Then, we moved one by one the components of the vec-
tor by a variation step equal to vstep = 0.05. We observed all the syllables
produced to look at how they evolve and if there are non-smooth transi-
tions. The upper panel shows the exploration of the first component of the
latent vector obtained with vstep = 0.05. The syllables highlighted by the
red squares (i.e., first C and J2, then V and V ) are an example of non-
smooth transitions. For these particular transitions, we considered the two
consecutive syllables obtained from the first variation step (i.e., two con-
secutive syllables contained in two consecutive red squares) and we applied
a variation step of vstep = 0.01 to the first component of the latent vector
to generate intermediate syllables. The bottom-left panel shows the latter
operation applied to the first non-smooth transition in the first component
and highlights a new non-smooth transition that needs to be investigated.
To do so, as shown in the bottom-right panel, we used a variation step equal
to vstep = 0.001 to generate intermediate syllables. We have reached a point
at which we cannot see any more clear evidence of non-smooth transitions.
The syllables have been produced by the 3-dimensional generator obtained
from instance Ex 6 and the name of the syllable for this analysis has been
provided by classifier-EXT.
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(c) Variation in the third component

(b) Variation in the second component

(a) Variation in the first component

Figure 4.15: Latent vector components variation. Panel (a) represents the first com-
ponent variation, panel (b) represents the second component variation and
panel (c) represents the third component variation. The left panels show the
variational data (generated at each step) (light blue points) and 16k gen-
erated data from the same model at the same epoch (brown points). Each
cluster/color in the right panels corresponds to one class of the repertoire and
class X (in white) represents the cumulative class of the alternative unknown
classes (in this case, EARLY15, EARLY30, EARLY45, OT and WN ). Here,
the training has been done using ld = 3. A latent vector has been randomly
selected and a step vstep = 0.001 has been applied to its component, one by
one. The generator obtained from instance Ex 6 of the training has been
used classifier-EXT has been used to identify the generated syllables from
the generator of instance Ex 6.
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We used Nsteps = 1000 and we computed the three components transition from (i) syl-

lable M and syllable D, (ii) syllable M and syllable V and (iii) syllable H and syllable

N. Indeed, these couples of syllables are not adjacent in the UMAP representation of the

generated data (see Figure 4.13). For all the transitions, it is possible to observe that

the variational data cross the generated data (left panels of Figure 4.16) giving rise to a

smooth change of syllable class (right panels of Figure 4.16). Interestingly, the transition

between syllable M and syllable D (Figure 4.16a, right panel) shows that the intermediate

syllables between two classes are sometimes recognized as class X (white points between

syllable M (turquoise cluster) and syllable N (blue cluster). Moreover, the transition

between syllable H and syllabe N shows (1) an interesting stretch of syllable B (cream

cluster) connecting syllable B and syllable Q and (2) the uncertainty of the classifier

in differentiating between syllable H (light green cluster) and syllable A (gray cluster).

The latter was already shown by the UMAP representation of the generated data (Fig-

ure 4.13). This results, combined with the UMAP representation we obtained for the

generated data and shown in Figure 4.13, highlight the fact that the generator is not only

producing samples from the training dataset but also other samples. This allows to move

realistically between two syllables, as shown in Figure 4.16.

4.4.4 Latent space dimension

Until now, we have shown results obtained from a 3-dimensional WaveGAN. Indeed, a

3-dimensional WaveGAN works nicely and as good as higher dimensional WaveGANs

and, at the same time, lower dimensional WaveGANs do not show good performances or

stability (Figure 4.17). Although all conditions allows the generator to reach the ability of

producing all the type of syllables, 1-dimensional and 2-dimensional WaveGANs converge

later with respect to higher dimensional WaveGANs (Figure 4.17a). At the same time, 1-

dimensional and 2-dimensional WaveGANs show a slower increase in the average number

of syllables belonging to each class of the repertoire (Figure 4.17b) and a slower decrease

in the variance of the number of syllables per class. Nevertheless, as already mentioned
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(a) Transition from M to D

(c) Transition from H to N

(b) Transition from M to V

Figure 4.16: Transition between two generated syllables. Panel (a) represents the
transition between M (turquoise cluster) and syllable D (yellow cluster),
panel (b) the transition between M (turquoise cluster) and syllable V (ma-
genta cluster) and panel (c) the transition between H (light green cluster)
and syllable N (blue cluster). The left panels show the variational data
(generated at each step) (light blue points) and 16k generated data from the
same model at the same epoch (brown points). Each cluster/color in the
right panels corresponds to one class of the repertoire and class X (in white)
represents the cumulative class of the alternative unknown classes (in this
case, EARLY15, EARLY30, EARLY45, OT and WN ). Here, the training
has been done using ld = 3 and classifier-EXT has been used to identify the
generated syllables from the generator of instance Ex 6.
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in Section 4.4.2, towards the end of the training a generalized instability could appear

(what we refer to as overtraining), without distinction of latent space dimension (e.g.,

overtraining happens for ld = 3 as well as for ld = 6). This can be seen in a decrease in

the mean and median evolution (Figure 4.17b) and in an increase in the variance evolution

(Figure 4.17c).

A qualitative measure of the generated syllables obtained from WaveGANs of different

dimensions (e.g., for different conditions of the latent space dimension) can be found in

Figure 4.45 in Appendix 4.4.4.

(a) Number of represented classes. (c) Variance of the number of syllables per class.
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(b) Average and median of the number
of syllables per class.

Figure 4.17: Comparison between different latent space dimensions. Each line
represents the average over 3 instances of training at a particular latent
space dimension. Panel (a) shows how many syllables of the repertoire are
covered by the generator across time. Panel (b) shows how many syllable per
class have been generated in average. The dark lines show the evolution of
the mean, whereas the light lines shows the evolution of the median. To build
these two panels (a) and (b), only the repertoire’s classes have been taken into
account. Panel (c) shows the evolution of the variance of how many syllable
per class have been produced. A 3-dimensional WaveGAN (orange line)
reaches convergence as good as higher-dimensional WaveGANs (blue, green
and magenta lines) and better than lower dimensional WaveGANs (purple
and yellow lines). We varied the latent space dimension as ld = 1, 2, 3, 4, 5, 6
and we kept the training dataset fixed. The training of all the instances of
WaveGAN has been done using the preliminary training dataset introduced
in Appendix 4.1 and classifier-PRE (see Appendix 4.3.1) has been used
to identify the syllables. A complete version of this figure is available in
Appendix 4.4.4.
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4.4.5 Training dataset dimension

A larger dataset allows WaveGAN to converge faster and better (Figure 4.18). At the

beginning of the training the generator was only able to produce a limited number of

syllable types, whereas it becomes able to reproduce all of them after some epochs of

training (Figure 4.18a). In particular, for both trainings with dataset 1 and dataset 8, after

∼ 250 epochs, the generator is already able to produce samples which the classifier can

recognize as one element of the repertoire. Likewise, Figure 4.18b shows how the average

number of syllables generated per class across time increases more when WaveGAN is

trained with a larger dataset (blue lines) than when WaveGAN is trained with smaller

datasets (red and green lines). Similarly, the variance evolution shows a faster and better

convergence when WaveGAN is trained with a larger dataset (blue lines) than when

WaveGAN is trained with smaller datasets (red and green lines). All the trainings show

a decreasing behavior, with dataset 1 (blue line) showing a higher slope at the beginning

and reaching a lower minimum. Moreover, dataset 1 (blue lines) shows instability in the

average number of syllable belonging to each class of the repertoire and a slight increase

in variance around epoch 850: this could be identified as the beginning of what we refer

to as overtraining.

4.5 Discussion

In this paper we analyzed the ability of WaveGAN (Donahue et al., 2018) to produce

canary syllables in the case of a low dimensional latent space and of a limited training

dataset size. In particular, we studied the capability of the generator of producing good

quality outputs similar to the training outputs. We first used a RNN-based classifier to

recognize the generated syllables. Then we evaluated them quantitatively and qualita-

tively. On the one hand, we looked at the statistical properties of a set of generated

data (e.g., average and median number of syllables produced per class, variance, incep-

tion score). On the other hand, we used the mean spectrogram and the UMAP (McInnes
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(a) Number of represented classes. (c) Variance of the number of elements per class.
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(b) Average and median of the number
of syllables per class.

Figure 4.18: Comparison between datasets of a different size. We varied the
dataset size as d = 23456, 3600, 1600 and we kept fix the latent space di-
mension at ld = 3. Each line in this figure represents the average over 3
instances of training at a particular dataset size condition. Panel (a) shows
how many syllables of the repertoire are covered by the generator across time.
Panel (b) shows how many syllable per class have been generated in average.
The dark lines show the evolution of the mean, whereas the light lines shows
the evolution of the median. To build these two panels (a) and (b), only
the repertoire’s classes have been taken into account. Panel (c) shows the
evolution of the variance of how many syllable per class have been produced.
A dataset of bigger size (blue line) allows better and faster convergence than
having a dataset of lower sizes (red and green lines). The training of all
the instances of WaveGAN has been done using the preliminary training
dataset introduced in Appendix 4.1 and classifier-PRE (see Appendix 4.3.1)
has been used to identify the syllables. A complete version of this figure is
available in Appendix 4.4.4.

et al., 2018) representations (1) to compare the generated data with the training data and

(2) to study the stability of the training. We explored the latent space to highlight its

smoothness: we first explored how small changes in the latent space influence the gener-

ations (see Figure 4.14); then, we explored the latent space by moving from one syllable

to another (see Figure 4.16). In summary, we concluded that a low-dimensional GAN is

able to generalize and interpolate between syllables, as well as to produce good quality

syllables.

The analysis we have we have conducted leads to the conclusion that GANs pro-

ducing sounds can be used in vocal learning models to model the motor function as an

alternative to other sound synthesis. Indeed, motor control in vocal learning models has

been often modeled using Ordinary Differential Equations (ODEs) (Amador et al., 2013;
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Gardner et al., 2001; Westerman and Miranda, 2002; Maeda, 1989). Such models are

usually based on the anatomical structure of the vocal tract and the respiratory appa-

ratus, and, especially for humans, can include a large number of parameters. Originally,

WaveGAN (Donahue et al., 2018) has been trained with a 100-dimensional latent space.

Notably, we showed that WaveGAN can produce good syllables even if the latent space

dimension is reduced to ld = 3. This is one of the key points in order to have a bio-

logically motivated vocal sensorimotor model. Indeed, a high-dimensional motor space

in a vocal learning model would lead to unrealistic computational time (Pagliarini et al.,

2018a). Consequently, we believe that our 3-dimensional WaveGAN could serve as motor

function in such sensorimotor model.

Although we believe in the possibility that generative models can be used as motor

control in vocal learning models, many aspects of GANs need to be deeply understood.

The problem of instability (i.e., like often in deep learning applications, GAN instances

do not always reach an optimal performance), the hyperparameter sensibility and the

limitations related to overfitting arise the necessity of a high computational time to explore

the performance of GANs. For instance, a limitation of WaveGAN (Donahue et al., 2018)

is the absence of a stopping criteria for the training: this introduces an incertitude about

how to evaluate the learning and its stability (i.e., in number of epochs rather than

depending on the loss function value). Moreover, the algorithm proposed is based on

the gradient penalty (GP) factor (introduced by (Gulrajani et al., 2017)) but alternative

regularization techniques have been proposed (e.g., the Lipshitz penalty (LP) proposed

by (Petzka et al., 2017)). These improvements are out of the scope of this paper.

Despite the fact that it is not clear how to evaluate generative models, and especially

GANs (Goodfellow, 2016; Borji, 2019), generally both a quantitative and a qualitative

measure are used to this end. A quantitative evaluation aims to determine whether or

not the generator is producing only examples on which the classifier was trained or always

the same example per type. At the same time, it could lack in representing well human

perception (Donahue et al., 2018). The latter can be solved by introducing a qualitative

measure (e.g., a measure based on human judgment (Borji, 2019)). A qualitative mea-
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sure is indispensable to truly understand the quality of the produced samples and their

comparability to real recordings in term of whether or not they are comprehensible to an

external expert judge. At the same time, the drawbacks of a qualitative measure is that

it could be biased (by the experience the human is having), expensive, not efficient in

detecting overfitting. Also, a qualitative measure presupposes the interpretability of the

data by humans, which is not always possible (Borji, 2019).

Inception Score (IS) (Salimans et al., 2016) is a broadly used quantitative measure

which gives an idea about whether or not the generator model is able to produce a wide

enough variety of samples. Nevertheless, IS is not able to detect if the generator is pro-

ducing only examples that belong to the training dataset or if the generator enter mode

collapse (i.e., it produces always the same example per type) (Gui et al., 2020). Thus, IS

should not be used as a holistic method to evaluate the performance of a model and must

be combined with another evaluation method (Barratt and Sharma, 2018). Instead, an

additional quantitative measure could be used to have a better understanding of the qual-

ity of the training. For instance, Donahue et al. (2018) measured the Euclidian distance

in the space of log-Mel spectrograms (1) within the training and the generated data (to

measure the intra-dataset diversity with respect to the training data), and (2) between

the training and the generated data (to show the ability of WaveGAN of producing sounds

not belonging to the training dataset).

The mean and median of the number of syllables produced per class and the IS contin-

uously increase over time and eventually drop if overtraining begins. We call overtraining

the fact that, at a certain epoch, a drop in the IS (see Figure 4.10) or in the statistical

properties of the classifier distribution (e.g., in the average number of elements per class in

panel (b) of Figure 4.8) is shown. However, the concept of overtraining remains unclear.

We tried to characterize it using a specific class (OT ) which truly arises at advanced stages

of training, but never becomes the most represented class (see Figure 4.9). Instead, after

the training drops, there is an exponential increase in the number of element assigned to

early classes (see Figure 4.8(d-f)).

A qualitative evaluation based on human judgment has been proposed by Salimans
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et al. (2016) and Denton et al. (2015) to evaluate GANs trained on MNIST or CIFAR-

10 (image datasets). Similarly, Donahue et al. (2018) used human judgment to evaluate

WaveGAN performance when training on SC09 (speech dataset). We rely first on the

mean spectrogram obtained from the generated data over time (see Figure ??) to observe

at once how the average quality of syllables increases over time, becoming more and more

comparable with the repertoire (see Figure 4.3). Then, we rely on the UMAP (McInnes

et al., 2018) representation of the spectrograms to compare the generated data with

the training data. On the one hand, the generated data belong to the same cluster as

the training data (see Figure 4.12) if represented together. On the other hand, when

observing the generated data alone (see Figure 4.13), generated data form clusters as

the training data do, and a continuity across clusters arises. The power of using UMAP

representation to reduce the complexity of songbirds spectrograms has first been shown

by Sainburg et al. (2019): an exhaustive set of representations show how UMAP helps

in representing not only the repertoire of a single species but also different species at the

same time. The result is a two-dimensional representation where the two variables are

not features-related but rather two hyperparameters that enables a synthetic, clear and

simple representation of the original manifold. In the case of data not familiar for non-

expert humans (such as canary syllables), one could design a behavioral protocol to test

the accuracy by measuring how canaries perceive the generated data. Although such an

experiment could be very interesting, it is complicated to settle and require an expertise

outside of the machine learning domain.

Additionally, to understand whether or not the generator is able to generalize and

produce samples not belonging to the training dataset we explored the latent space.

We analyzed (1) how a small change in the latent space affects the generated syllable

and (2) the transition between two different generated syllables. The training dataset

is a discrete set, as shown in Figure 4.3, whereas the clusters obtained from a set of

generated data appears less discontinuous when there is the transition between one class

and another (see Figure 4.13). By moving from one syllable to another in the latent

space by doing realistic steps, it is possible to move by continuous steps in the UMAP
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representation of the spectrograms. Moreover, if the applied step for moving in the latent

space is too big (i.e., it allows non-smooth transitions), reducing the step allows to obtain

such smooth transitions (see Figure 4.14). As a perspective to this study, one could

explore the possibility of enlarging the training dataset by including (1) more classes

of syllables, (2) more birds (in terms of number), (3) recordings from different species

or (4) recordings from juveniles. These experiments could help understanding syllable

generation in songbirds and the limitations of our model. In principle, the addition of more

syllables or recordings from different canaries should not arise particular complications

for WaveGAN, even if it would introduce complexity in the training dataset and it would

increase the computational time (i.e., the number of epochs needed to obtain a generator

able to output good syllables). On the contrary, the attempt of using the model on other

species is not trivial. For instance, although zebra finches represent an important model

for vocal learning, they produce a not purely harmonic song which could not be the ideal

training dataset for WaveGAN. Moreover, with respect to canaries, zebra finches exhibit

a more complex spectrogram, which might be difficult to categorize for a human judge,

due to a poorer perceived visual quality of the spectrograms.

Donahue et al. (2018) trained WaveGAN on a set of wild recordings from different

bird species: the generated samples were noisy due to the variability of the dataset with-

out enough recordings for each specie. By introducing a dataset of recordings from a

single adult canary, we simplified the complexity of the training dataset and obtained

qualitatively better results. The fact that we deal with single syllables simplifies the

analysis of the performance of the generator and the exploration of the latent space. If

the generator model could produce sequences of syllables it would be difficult to perform

the qualitative analysis we propose here (e.g., the mean spectrograms or the transition

from one syllable to another in the latent space). Moreover, a model able to generate

single syllables may be an adequate tool to generate full canary songs. Such model would

require (1) an estimation of the distribution of the delay within syllables of the same class

and (2) a probabilistic model estimating (i) how many time a syllable is repeated and

(ii) the upcoming syllable in the phrase. Indeed, canary songs are composed of sequences
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of phrases, which are themselves repetitions of the same syllable with smooth transitions.

The number of syllable repetitions in one phrase is variable. Thus, a GAN trained to

produce bouts of a few seconds would not be able to reproduce the variability of canary

song with much flexibility. On the contrary, a GAN like the one proposed, which is able

to produce smooth controllable transitions between syllables, is likely to be a good tool

to generate full canary songs.

Training WaveGAN on both juveniles and adult data is an interesting and rather

straightforward extension of this work. For instance, it can be useful to design a motor

control function that could produce any possible canary sounds, from juveniles to adults.

This would be useful in computational experiments in order to model the sound produc-

tions at different stages of learning. It could also be useful for behavioral experiments

with birds. A similar experiment has been proposed by Sainburg et al. (2019): generated

samples from a Variational Autoencoder (VAE) has been played to a group of European

starlings in a decision making experiment. The birds can learn the task with a high pro-

ficiency, and the neural responses obtained from electrophysiology vary smoothly when

small variations are applied to the stimulus.
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4.1 Appendix I: Syllable Selection

4.1.1 Preliminary training dataset

We started from the same canary dataset as described in Section 4.3.1. We performed

the following steps on each phrase.

1. We downsampled each phrase to a sampling rate of 16000Hz.

2. From each phrase we made a first syllable selection tuning three parameters: the

amplitude threshold, the minimal duration of the syllable and the duration of the

gap (i.e., the silence between two consecutive syllables).

3. We added silence after each sample up to a duration of 1s.

That is, we did not filter the syllables and we did not remove the errors as we did for

the dataset described in Section 4.3.1. The results is a dataset with errors more or less

evident depending on the syllable class. We did this choice to be able to start training

the network and the classifier and see preliminary results while investigating the syllable

selection.

Semi-automatic error detection

As mentioned in Section 4.3.1, we manually check the syllables after the automatic selec-

tion. In this section we explain which errors could arise from the automatic selection and

how we solved them.

First, our algorithm could have failed in cutting a recording because of the presence

of a too short gap between syllables. In this case we obtained samples containing more

than one syllables. Alternatively, some samples could be too short, which means they

contain only a part of the syllable. Finally, a bad initial classification (e.g. a phrase

of class A was wrongly classified as class M) could lead either to well-selected syllables

belonging to the wrong class, or, again, to a not effective cut. Applying a semi-automatic

procedure for syllable selection, including errors, we were able to select 78827 syllables
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from the 16 classes. Some syllables (such as syllables belonging to class O, N , or C)

are more difficult to select. Often the automatic selection based on amplitude threshold,

duration of the syllable and of the gap, fails to select completely the syllable. That is,

the beginning or the end of the syllable is systematically not recognized. In this case, we

tried to correct manually the selection by adding a certain amount of samples after (or

before) the automatic selection: in this way, more syllables can be correctly isolated.

As a preliminary solution for these errors, we applied a filter on the duration of the

samples to eliminate samples that are too short (usually, we do not consider syllables

shorter than 10ms) or too long (usually, we do not consider syllables longer than 300ms).

Of course, as for the selection parameters, these threshold values could change depending

on the syllable type. This procedure allows to eliminate error due to a cutting failure

and resulting in samples containing more than one syllable, samples containing a very

short sound (which is not always a syllable), or, occasionally, the wrong, misclassified,

syllable. Using a threshold based on the duration, we could remove 6672 errors. That

is, we had an error equal to 8, 46% after the semi-automatic selection. The clean dataset

contains 72155 syllables from the 16 classes. A random set of 100 single syllables (selected

from the phrases) belonging to each class of the repertoire are collected in Figure 4.19 to

Figure 4.33.

Figure 4.19: Example of single syllables A. 100 random selected syllables from the
totality of the phrases belonging to class A.

Errors due to an a priori misclassified phrase can’t always be solved applying a thresh-

old based on the syllable duration. On the one hand, if the difference between two syllables

is evident, the error can be corrected simply using a threshold based on the syllable du-

ration. This is the case of a phrase M wrongly classified as phrase A. The mean duration

175



Figure 4.20: Example of single syllables B1. 100 random selected syllables from the
totality of the phrases belonging to class B1.

Figure 4.21: Example of single syllables B2. 100 random selected syllables from the
totality of the phrases belonging to class B2.

Figure 4.22: Example of single syllables C. 100 random selected syllables from the
totality of the phrases belonging to class C.

Figure 4.23: Example of single syllables D. 100 random selected syllables from the
totality of the phrases belonging to class D.

of syllable A is much smaller than the mean duration of syllable M : this means that we

can fairly assume that a 100ms sample can’t be syllable A (which has a shorter average

duration). Viceversa, we can assume that a 30ms sample does not belong to class M .

On the other hand, if two syllables share their duration distribution, it becomes more
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Figure 4.24: Example of single syllables E. 100 random selected syllables from the
totality of the phrases belonging to class E.

Figure 4.25: Example of single syllables H. 100 random selected syllables from the
totality of the phrases belonging to class H.

Figure 4.26: Example of single syllables J1. 100 random selected syllables from the
totality of the phrases belonging to class J1.

Figure 4.27: Example of single syllables L. 100 random selected syllables from the
totality of the phrases belonging to class L.

difficult to get rid of samples coming from a wrongly classified phrases. This is the case

of a phrase M wrongly classified as phrase D: the two syllables have not only a similar

duration distribution, but also a similar structure (please look at Figure 4.3 in the main

paper for a full comparison between D and M , and refer to Figure 4.23 to find an example
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Figure 4.28: Example of single syllables M . 100 random selected syllables from the
totality of the phrases belonging to class M .

Figure 4.29: Example of single syllables N . 100 random selected syllables from the
totality of the phrases belonging to class N .

Figure 4.30: Example of single syllables O. 100 random selected syllables from the
totality of the phrases belonging to class O.

Figure 4.31: Example of single syllables Q. 100 random selected syllables from the
totality of the phrases belonging to class Q.

of such error). To understand if this type of error can affect our work, we need to think

about the use we want to make of the training dataset (e.g. which network we want to

train and its characteristics). On the one side, we aim to use the dataset to train the

generator of the GAN to produce realistic samples: from the structure of the network, we
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Figure 4.32: Example of single syllables R. 100 random selected syllables from the
totality of the phrases belonging to class R.

Figure 4.33: Example of single syllables V . 100 random selected syllables from the
totality of the phrases belonging to class V .

know that the generator does not care about the class of each samples (indeed, it does

not know the distribution of the training data). Since the generator does not have access

to the classification, it is not a problem to have well selected samples in the wrong class.

On the other side, we want to use the dataset to train a classifier able to determine for

each sample the class it belongs to. We need to have a clean dataset to be able to teach

the classifier. Nevertheless, after a visual inspection of the samples and after a validation

of the classifier using the training dataset, we can assume that this type of error represent

a low percentage of the total amount of error.

4.2 Appendix II: WaveGAN architecture

Figure 4.34 shows the structure of the generator G and the discriminator D, highlighting

the architecture, the input and the output of the models, and the value function definition

(i.e., V ). The training data are pre-processed and stored in a tuple of np.float32 tensors

representing audio waveforms (x in Figure 4.34). The generator model G takes as input

the latent vector z ∼ U(−1, 1). In the original paper, z is an 100-dimensional vector, but
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we will use several lower dimensional inputs in this study. The upper part of Figure 4.34

shows the architecture of G: it has been taken from DCGAN (Radford et al., 2015)

generator and it has been modified with an additional layer to obtain as output 16384

samples (i.e., 1 s of sound). Similarly, the discriminator model D takes as input vectors

of length 16384 and gives as output an object of shape (16, 1024). D can take as input

the training data x or the output of the generator G(z), respectively resulting, after

deconvolution, in D(x) and D(G(z)). These two quantities are the variables of the value

function V . To define V , Donahue et al. (2018) removed the batch normalization from the

generator and discriminator, and they used WGAN-GP (Gulrajani et al., 2017) strategy

during training. This strategy consists in the introduction of a gradient penalty term in

the loss function, driven by the regularization hyperparamaeter λ.

Figure 4.34: WaveGAN architecture. The architecture of the generator model G is the
same architecture used in DCGAN (Radford et al., 2015) with an additional
convolutional layer to obtain 16384 samples (i.e., 1 s of sound). The generator
takes a latent vector z ∼ U(−1, 1) as input. The discriminator model D takes
alternatively the training data x and the output of the generator G(z) as
input. After deconvolution, a representation of shape (16, 1024) is obtained.
The outputs of the discriminator, D(x) and D(G(z)) are used as variable of
the value function V (Gulrajani et al., 2017). Image adapted from Radford
et al. (2015)

.
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4.3 Appendix III: Classifier

4.3.1 Preliminary classifier

We first trained a classifier using the preliminary dataset described in Appendix 4.1. The

classifier is able to differentiate 19 classes: the 16 classes of the repertoire and three

alternative unknown classes: GAN1, GAN2 and GAN3. We refer to this model as to

classifier-PRE, where PRE stands for preliminary (since we used the preliminary dataset

described in Appendix 4.1 to train it). As explained in the main paper, to train the

classifier to recognize the unknown classes, in addition to the usual training dataset, we

used three additional sets of generated samples. In summary, the unknown classes and

the corresponding dataset we used to train the classifier are listed below:

• GAN1 : 1k samples of early generations, obtained after ∼ 3 epochs of one instance

of a 3-dimensional GAN;

• GAN2 : 1k samples of early generations, obtained after ∼ 100 epochs of one instance

of a 1-dimensional GAN;

• GAN3 : 1k samples of early generations, obtained after ∼ 100 epochs of one instance

of a 3-dimensional GAN;

The model classifier-PRE is able to well recognise the 16 classes of the repertoire, but

several classification errors can be observed (i.e., the 16 syllables are not balanced) in the

left bottom panel (Figure 4.35). This could be a result of using a not cleaned dataset

for training. In any case, as for classifier-EXT, the alternative unknown classes (GAN1,

GAN2 and GAN3 ) are only represented by a minority of samples.

4.3.2 Robustness of the classifier

The evaluation of the robustness of the three classifier (classifier-PRE, classifier-REAL

and classifier-EXT ) has been performed using a 10 folds cross-validation over the three

corresponding training datasets. For each fold, 5 different instances of each classifier were
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data obtained from classifier-PRE.
(a) Distribution of the  preliminary training (b) Confusion matrix classifier-PRE.. 

Figure 4.35: Performance of the classifier on the training data. The upper left
panel shows how classifier-REAL performs on the training dataset. The
average number of syllables per class is ∼ 1k for each of the 16 classes of the
repertoire. This is coherent with the fact that we are considering a balanced
dataset containing ∼ 1k sample per class. The lower left panel shows how
classifier-PRE performs on the training dataset. As for classifier-EXT, the
alternative unknown classes (GAN1, GAN2 and GAN3 ) introduce a diffulty
for the classifier. Although classifier-PRE suffers from a not cleaned training
dataset (resulting in classification errors), it is able to well recognise the 16
classes of the repertoire. The upper right panel shows the confusion matrix
(i.e. the level of confidence of the classifier in making the correct assignment)
relative to classifier-REAL.

randomly initialized, trained and tested. The models were evaluated using an accuracy

measure.

The accuracy has been defined as:

accuracy(y, ŷ) =
1

ntimesteps

ntimesteps∑
i=0

1(y(i)− ŷ(i)) (4.5)

where 1(x) is the indicator function, and considering a sequence of data x of length

ntimesteps, a sequence of labels y and a sequence of classifier outputs ŷ, both also of

length ntimesteps. The accuracy represents the capability of the classifier of making correct

assignments for each time steps of MFCCs encoding the audio signal. An accuracy score

close to 1 therefore indicates that the classifier is able to recognize the syllable category
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of each sample and to correctly assign this category to each time steps representing this

sample.

Both classifier-REAL and classifier-REAL show an higher level of accuracy with re-

spect to classifier-PRE (Figure 4.36). As summarized in Table 4.3 the mean accuracy for

the validation set is 0.9460±0.0032 for classifier-PRE, 0.9815±0.0024 for classifier-REAL

and 0.9756±0.0025 for classifier-EXT. The lower accuracy found for classifier-PRE could

be related to the fact that it was trained on the preliminary training dataset described in

Appendix 4.1 which contains a high number of errors in the ground truth.

Figure 4.36: Accuracy of the classifiers. Comparison between classifier-PRE (on the
left), classifier-REAL (in the middle) and classifier-EXT (on the right) in
terms of the accuracy. For each model, the accuracy has been computed for
the training set (gray rectangles) and for the validation set (white rectan-
gles). The red lines represent the median accuracy relative to each set for
each model. The white point visible for classifier-EXT represents an outlier,
determined by the fact that the accuracy distribution is sharp. The highest
accuracy has been reached with classifier-REAL where no alternative un-
known classes have been introduced. The lowest accuracy has been reached
with classifier-PRE which has been trained with a preliminary non-cleaned
dataset (see Appendix 4.1).
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Mean accuracy
Classifier Train Validation

classifier-PRE 0.9495± 0.0005 0.9460± 0.0032
classifier-REAL 0.9832± 0.0005 0.9815± 0.0024
classifier-EXT 0.9777± 0.0006 0.9756± 0.0025

Table 4.3: Mean accuracy. Comparison between classifier-PRE (on the left), classifier-
REAL (in the middle) and classifier-EXT (on the right) in terms of the median
of the accuracy. For each model, the accuracy has been computed for the
training set and for the validation set. The highest mean value has been
reached with classifier-REAL where no alternative unknown classes have been
introduced. The lowest mean value has been reached with classifier-PRE which
has been trained with a preliminary non-cleaned dataset (see Appendix 4.1).

4.3.3 Certainty of the classifier

For each syllable, the classifier described in Section 4.3.4 provides a distribution which

determines to which class the classifier assign that particular syllable. As mentioned, a

soft-max operation is then applied in order to obtain a distribution bounded between 0

and 1. That is, each syllable is assigned to a particular class with a probability given by

the max value of the resulting N -dimensional vector, where N is the number of classes

present in the vocabulary. For instance, N = 21 for classifier-EXT. Such a classifier gives

high scores for the training data, for which the majority of the syllables is assigned to a

class with ps > 0.9 (brown points in Figure 4.37a). Only a few syllables are assigned to

a class with a probability ps ≤ 0.9.

Differently, classifier-EXT shows a higher uncertainty while classifying the generated

data (Figure 4.37b). Although the majority of the syllables is assigned to a class with

ps > 0.9 (brown points), the number of syllables assigned to a particular class with a

lower probability increases.
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(a)  Training data (b) Generated data

Figure 4.37: Certainty of the classifier. Probability of each syllable (each point) to
belong to a particular class for the trainin data (a) and the generated data
(b). Each color corresponds to an interval starting at the value indicated in
the legend and ending at the next color value. For example, brown points
belong to a certain class of the vocabulary with a probability 0.9 < ps ≤ 1.
An higher uncertainty of classifier-EXT can be observed when it is applied
to the generated data: indeed, an higher number of syllables are assigned
to a certain class with a probability ps ≤ 0.9 (all the points but the brown
points).

4.4 Appendix IV: Extension of the qualitative anal-

ysis

4.4.1 Balanced UMAP representation

A similar UMAP representation to the one shown in Figure 4.12 can be obtained con-

sidering a balanced subset of ∼ 2100 generated syllables (100 per class) instead of 1k

random generations at epochs 15, 106, 514 and 984. The fact that the generated syllables

seem to be located at a bigger distance from the training data (Figure 4.38(a-c, g)) when

considering a balanced dataset of 2100 samples (with respect to the same representation

obtained from 1k random generated syllables shown in Figure 4.12(a-c, g)) can be related

to the way UMAP determines the clusters. Indeed, as much generated data are given to

UMAP as much the representation obtained takes into account the difference between the
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real and the generated data, showing a less compact representation.

(a) Epoch 15 (b) Epoch 106 (c) Epoch 514

(d) Epoch 15 (e) Epoch 106 (f) Epoch 514

(a) Epoch 15 (b) Epoch 106 (c) Epoch 514

(d) Epoch 15 (e) Epoch 106 (f) Epoch 514

(g) Epoch 984 - Real VS generated (h) Epoch 984 - Classe

Figure 4.38: Syllable space representation across time. Syllable space representa-
tion obtained from the training dataset (16k syllables) and 2100 syllables
(100 per class, when the class is present, for a total of 21 classes - the 16
classes of the repertoire and 5 alternative unknown classes, here grouped as
class X ) generated at epochs 15, 106, 514 and 984 using UMAP (McInnes
et al., 2018). Panels (a-c) and (g) show the training data (brown points) and
the generated data (blue points). These four figures are different because the
analyzed dataset differs for the 2100 generations specific of each epoch. Pan-
els (d-f) and (h) show the same representation of panels (a-c) and (g) with
the classes of syllables visible. Each cluster/color corresponds to one class of
the repertoire and class X (in white) represents the cumulative class of the
alternative unknown classes (in this case, EARLY15, EARLY30, EARLY45,
OT and WN ). Here, the training has been done using ld = 3, the generator
of instance Ex 6 has been used to generate the syllables and classifier-EXT
has been used to identify both the generated data and the training data.
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4.4.2 Stability of the training

The the mean spectrograms (Figure 4.39) and the UMAP representations (Figure 4.40)

show a similar representation for consecutive epochs (i.e., epochs 969, 984 and 999) which

show the stability of instance Ex 6 around the convergence of the training. The differences

in the UMAP representation (Figure 4.40) are given by the fact that the set of generated

data is different at each epoch.

(c) Epoch 999.(a) Epoch 969 (b) Epoch 984.

Figure 4.39: Stability of the mean spectrogram. Mean spectrogram of 1k syllables
generated at epochs 969 (a), 984 (b) and 999. The three epochs share a
similar representation of the syllables. Here, the training has been done
using ld = 3, the generator of instance Ex 6 has been used to generate the
syllables and classifier-EXT has been used to identify the generated data.
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(a) Epoch 15 (b) Epoch 106 (c) Epoch 514

(d) Epoch 15 (e) Epoch 106 (f) Epoch 

(a) Epoch 969 (b) Epoch 984 (c) Epoch 999

(d) Epoch 969 (e) Epoch 984 (f) Epoch 999

Figure 4.40: Stability of UMAP representation. UMAP representation of the train-
ing dataset (16k syllables) and 1k generated data at epochs 969 (a-d), 984
(b-e) and 999 (d-f). The top panels (a-c) show the representation of the
training data (brown points) and the generated data (light blue points) over
time. The bottom panels (d-f) show the same representation highlighting
the classes of the vocabulary. Each cluster/color correspond to one class of
the repertoire and class X (in white) represents the cumulative class of alter-
native unknown classes (in this case, EARLY15, EARLY30, EARLY45, OT
and WN ). Although the representation is slightly different (given the fact
that the generated syllables vary across time,it is possible to observe how
the generated syllable mix well with the clusters obtained from the training
data at all epochs), it remains stable across consecutive epochs. Here, the
training has been done using ld = 3, the generator of instance Ex 6 has been
used to generate the syllables and classifier-EXT has been used to identify
both the generated data and the training data.
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4.4.3 Latent space exploration

Figure 4.41: Exploration of the latent space: one component variation. First
component.. We selected a random latent vector z ∼ R3([−1, 1]) to create
a baseline syllable. Then, we moved one by one the components of the vec-
tor by a variation step equal to vstep = 0.05. We observed all the syllables
produced to look at how they evolve and if there are non-smooth transitions.
The upper panel of Figure 4.14 shows the exploration of the first component
of the latent vector obtained with vstep = 0.05. The syllable V contained in
the red square on the right represent a point where a non-smooth transition
has been detected. For these particular transitions, we considered the two
consecutive syllables obtained from the first variation step (i.e., two con-
secutive syllables contained in two consecutive red squares) and we applied
a variation step of vstep = 0.01 to the first component of the latent vector
to generate intermediate syllables. The bottom panel show the exploration
of the non-smooth transition highlighted above. The syllables have been
obtained the 3-dimensional generator obtained from instance Ex 6 and the
name of the syllable for this analysis has been provided by classifier-EXT.
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Figure 4.42: Exploration of the latent space: one component variation. Second
component.. We selected a random latent vector z ∼ R3([−1, 1]) to create
a baseline syllable. Then, we moved one by one the components of the vec-
tor by a variation step equal to vstep = 0.05. We observed all the syllables
produced to look at how they evolve and if there are non-smooth transitions.
The upper panel shows the exploration of the second component of the la-
tent vector obtained with vstep = 0.05. The syllable V contained in the red
square on the right represent a point where a non-smooth transition has been
detected. For these particular transitions, we considered the two consecutive
syllables obtained from the first variation step (i.e., two consecutive sylla-
bles contained in two consecutive red squares) and we applied a variation
step of vstep = 0.01 to the first component of the latent vector to generate
intermediate syllables. The bottom panel show the exploration of the non-
smooth transition highlighted above. The syllables have been obtained the
3-dimensional generator obtained from instance Ex 6 and the name of the
syllable for this analysis has been provided by classifier-EXT.
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Figure 4.43: Exploration of the latent space: one component variation. Third
component.. We selected a random latent vector z ∼ R3([−1, 1]) to create
a baseline syllable. Then, we moved one by one the components of the vec-
tor by a variation step equal to vstep = 0.05. We observed all the syllables
produced to look at how they evolve and if there are non-smooth transitions.
The upper panel shows the exploration of the third component of the latent
vector obtained with vstep = 0.05. The syllable V contained in the red square
on the right represent a point where a non-smooth transition has been de-
tected. For these particular transitions, we considered the two consecutive
syllables obtained from the first variation step (i.e., two consecutive sylla-
bles contained in two consecutive red squares) and we applied a variation
step of vstep = 0.01 to the first component of the latent vector to generate
intermediate syllables. The bottom panel show the exploration of the non-
smooth transition highlighted above. The syllables have been obtained the
3-dimensional generator obtained from instance Ex 6 and the name of the
syllable for this analysis has been provided by classifier-EXT.

4.4.4 Preliminary analysis

In a preliminary analysis, we used the preliminary training dataset described in Ap-

pendix 4.1 to train WaveGAN. Then, we used the experimental setup described in Sec-

tion 4.3.2. We used the preliminary classifier described in Appendix 4.3.1 to identify

the syllables as elements of 19 classes: the 16 classes of the repertoire and 3 alternative

unknown classes x ∈ X (GAN1, GAN2 and GAN3 ). Further details about these classes

can be found in Appendix 4.3.1.
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Latent space dimension

Complete version of Figures 4.17 (Figure 4.44). Accordingly to what observed in the main

paper for Figure 4.44(a-c) and similarly to what shown in Figure 4.8, the percentage of

alternative unknown syllables (here, GAN1, GAN2 and GAN3 ) decreases over time, and

eventually increases when overtraining begins (e.g., the green line in Figure 4.44e).

The fact that the performance obtained for ld = 3 is comparable with the performance

obtained for 3 > l2 ≤ 6 and better than the performance obtained for 1 ≤ ld ≤ 2

(Figure 4.44) is also confirmed by a better mean spectrogram representation 4.45. A

good epoch of training is determined by looking at the classifier distribution (shown

on the top of each spectrogram in Figure 4.45. The mean spectrograms obtained for

ld = 1 (Figure 4.45a) and ld = 2 (Figure 4.45b) show noisy representations for several

syllables. For instance, but not restricted to, syllables C, H, O. Nevertheless, some syllable

representation are influenced by the fact that the trainings used to generated the samples

have been done using the preliminary dataset described in Appendix 4.1.

Dataset size

Complete version of Figure 4.18 (Figure 4.46). Accordingly to what observed in the main

paper for Figure 4.44(a-c) and similarly to what shown in Figure 4.8 and Figure 4.44, the

percentage of alternative unknown syllables (here, GAN1, GAN2 and GAN3 ) decreases

over time, and eventually increases when overtraining begins (e.g., the blue line aroung

epoch 900 in Figure 4.44e).
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(a) Number of represented classes. (b) Average number of syllables per class. (c) Variance of the number of syllables per class.

(d) Number of syllables belonging
to the GAN1 class.

(e) Number of syllables belonging
to the GAN2 class.

(f) Number of syllables belonging
to the GAN3 class.
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Figure 4.44: Comparison between different latent space dimension: quantita-
tive measure..Each line represents the average over 3 instances of training
at a particular latent space dimension. Panel (a) shows how many syllables of
the repertoire are covered by the generator across time. Panel (b) shows how
many syllable per class have been generated in average. The dark lines show
the evolution of the mean, whereas the light lines shows the evolution of the
median. To build these two panels (a) and (b), only the repertoire’s classes
have been taken into account. Panel (c) shows the evolution of the variance of
how many syllable per class have been produced. Panels (d-f) show the per-
centage of generated syllables belonging to classes GAN1, GAN2 and GAN3
across time in comparison with the percentage of syllables belonging to the
same class in the training data. A 3-dimensional WaveGAN (orange line)
reacheas convergence as good as higher-dimensional WaveGANs(blue, green
and magenta lines) and better than lower dimensional WaveGANs (purple
and yellow lines). We varied the latent space dimension as ld = 1, 2, 3, 4, 5, 6
and we kept fix the training dataset. The training of all the instances of
WaveGAN has been done using the preliminary training dataset introduced
in Appendix 4.1 and classifier-PRE (see Appendix 4.3.1) has been used to
identify the syllables.

.
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(a) Dim 1 (b) Dim 2 (c) Dim 3

(d) Dim 4 (e) Dim 5 (f) Dim 6

Figure 4.45: Comparison between different latent space dimension: qualitative
measure. Mean spectrogram of 1k syllables generated at a good epoch of
training determined by looking at the classifier distibution (on top of each
spectrogram) for ld = 1, 2, 3, 4, 5, 6. Whereas the representations obtained
for ld = 1 (a) and ld = 2 (b) show a noisy representation for several syllables
(e.g., syllable M in (b)), ld = 3 (c) shows a representation comparable to
the one obtained for higher conditions (d-f). We relate the noise shown
by syllable N to the fact that these trainings have been done using the
preliminary dataset described in Appendix 4.1. Here, classifier-PRE has
been used to identify the generated data

.

194



0 200 400 600 800 1000

Time (in number of epochs)

0

2

4

6

8

10

12

14

16

N
u
m

b
e
r 

o
f 

c
la

ss
e
s

1

1/8

1/16

0 200 400 600 800 1000

Time (in number of epochs)

0

10

20

30

40

50

M
e
a
n
 a

n
d

 m
e
d

ia
n

1

1/8

1/16

0 200 400 600 800 1000

Time (in number of epochs)

0

20

40

60

80

100

P
e
rc

e
n
ta

g
e
 o

f 
sy

ll
a
b

le
s

1

1/8

1/16

Training

0 200 400 600 800 1000

Time (in number of epochs)

0

20

40

60

80

100

P
e
rc

e
n
ta

g
e
 o

f 
sy

lla
b
le

s

1

1/8

1/16

Training

0 200 400 600 800 1000

Time (in number of epochs)

0

20

40

60

80

100

P
e
rc

e
n
ta

g
e
 o

f 
sy

ll
a
b
le

s

1

1/8

1/16

Training

(a) Number of represented classes. (c) Variance of the number of syllables per class.
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to the GAN1 class.
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to the GAN3 class.

(b) Average and median of the number
of syllables per class.

Figure 4.46: Comparison between datasets of a different size. We varied the
dataset size as d = 23456, 3600, 1600 and we kept fix the latent space di-
mension at ld = 3. Each line in this figure represents the average over 3
instances of training at a particular dataset size condition. Panel (a) shows
how many syllables of the repertoire are covered by the generator across time.
Panel (b) shows how many syllable per class have been generated in average.
The dark lines show the evolution of the mean, whereas the light lines shows
the evolution of the median. To build these two panels (a) and (b), only
the repertoire’s classes have been taken into account. Panel (c) shows the
evolution of the variance of how many syllable per class have been produced.
Panels (d-f) show the percentage of generated syllables belonging to each
garbage class (GAN1, GAN2 and GAN3 ) across time in comparison with
the percentage of syllables belonging to each garbage class in the training
data. A dataset of bigger size (blue line) allows better and faster convergence
than having a dataset of lower sizes (red and green lines). The training of
all the instances of WaveGAN has been done using the preliminary training
dataset introduced in Appendix 4.1 and classifier-PRE (see Appendix 4.3.1)
has been used to identify the syllables.
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Chapter 5

Canary sensorimotor model with a

low-dimensional GAN generator

Contents

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

5.2.1 Network description . . . . . . . . . . . . . . . . . . . . . . . . 200

5.2.2 Motor control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

5.2.3 Sensory system . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

5.2.4 Learning algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 203

5.2.5 Simulation details . . . . . . . . . . . . . . . . . . . . . . . . . 203

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

5.3.1 Motor exploration . . . . . . . . . . . . . . . . . . . . . . . . . 204

5.3.2 Influence of the learning rate . . . . . . . . . . . . . . . . . . . 208

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

197



5.1 Introduction

The basic structure of a vocal learning schema involves three spaces (motor, sensory,

perceptual), the motor control function, the sensory response function, and the learning

architecture (Pagliarini et al., 2020). The simpler model developed in this thesis (see

Chapter 3) does not implement a motor control function (i.e., the sensory space coincides

with the motor space and there is no sound production). More complex models define a

motor control function that allows the production of sound. The sensory response function

processes the sound and defines the perceptual space. Finally, the learning architecture

defines the goal of the learning, the learning algorithm, and, eventually, the exploration

strategy.

The objective of this chapter is to define a vocal learning model that mimics the

sensorimotor phase of learning in songbirds. The model should contain the three spaces

mentioned above and must be able to produce a realistic sound as output. We aim to

support the definition of this model with biological assumptions. At the same time, we

aim to build a model able to learn in a finite amount of time.

In Chapter 3, the connections between the motor space and the perceptual space were

learned using a theoretical inverse model (Pagliarini et al., 2018a) in a simple model where

no distinction between the motor and the sensory space was made. That is, there was

no need for defining a motor control function since there was no sound production. The

simple model helped the understanding of how to introduce biological assumptions in

a computational framework. On the one hand, even with a theoretical model, conver-

gence problems arise from non-linearity. On the other side, it allowed the exploration

of the structure of the network and, in particular, the dimension of the motor space:

a high dimensional motor space leads to convergence in an unreasonable computational

time (Pagliarini et al., 2018a).

In songbird literature, the motor control function has been often defined using a sys-

tem of ordinary differential equations that model the anatomy of the syrinx (i.e., the

birds’ vocal organ) (Amador et al., 2013), or the features of sound (Doya and Sejnowski,
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1998). Such models can provide qualitatively good productions but might be not able to

perfectly reproduce the perceptuo-motor connections (Pagliarini et al., 2020). Usually,

mechanistic models only use a few motor parameters to induce most of the changes in

the output. Thus, it is hard to understand the mapping between motor parameters and

output. Moreover, they are slow to simulate.

This chapter proposes to use the generator of WaveGAN (Donahue et al., 2018) to

define the motor control function. The advantages of using generative neural networks

are to obtain, on the one side, an uniformly distributed low-dimensional motor space

and, on the other side, the resemblance of the generated data with the real data. These

models have been introduced to solve tasks such as image, music, and speech generation

or classification and have been used to investigate visual pathways in the brain (Ponce

et al., 2019).

In this chapter, we define a complete vocal learning model. The model includes a

motor, a sensory and a perceptual space, the motor control function, and the sensory

response function. A 3-dimensional generative model (i.e., the latent space has dimension

3) introduced in Chapter 4 models the motor control function, while the combination of a

Recurrent Neural Network-based classifier (as the one trained in Section ?? in Chapter 4)

and a normalization layer models the sensory response function. The first problem we

faced is dealing with a redundant motor space, i.e. multiple motor configurations corre-

spond to the same sensory production. The goal of the model is therefore defined as a

perceptual goal. The connections between the motor space and the perceptual space are

learned through an inverse model. The motor space is explored using a random uniform

exploration and a simple Hebbian learning rule drives the learning.

Section 5.2 introduces the vocal learning model schema and its components. Sec-

tion 5.3 shows preliminary results about the influence of the learning rate when different

sensory response functions are implemented. These results have been obtained under

the simple assumptions described above and aim to be expanded. Section 5.4 summa-

rizes the advantages of the tools we used to define the model and discusses the possible

perspectives.
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5.2 Methods

5.2.1 Network description

As for the simple theoretical model introduced in Chapter 3, a two-layer network models

the connections between the perceptual space and the motor space. The first layer (on

the left in Figure 5.1) represents the perceptual space. The second layer (on the right in

Figure 5.1) represents the motor space. At each time t, the perceptual units are defined

as a nA-dimensional vector At, where nA represents the size of the perceptual layer. The

target set is the set of sounds (here, the N -dimensional repertoire of canary syllables)

that we aim the model to learn. The motor units are defined as a nM -dimensional vector

Mt, where nM represents the number of motor parameters. The synaptic weights at time

t describing the connections between the motor and the perceptual space are defined by

matrix Wt. Given Mt as input, the motor control function Gt provides a real sound St

as output (i.e., an element of the sensory space). The sensory space is the domain of the

sensory response function, that is, at each time t, the sensory response is a function of

the actual sound production St: At = f(St).

5.2.2 Motor control

The motor control function is needed to perform both the motor exploration during learn-

ing and to generate the goal syllables across time (to check how the learning goes on).

In the proposed model, the generator part of a 3-dimensional GAN (i.e., nM = 3) is

used as motor control function. We decided to use a 3-dimensional generator to avoid a

high dimensional motor space which could result in slower convergence (Pagliarini et al.,

2018a). The generative model is fully described in Chapter 4. WaveGAN has been

previously trained on a dataset of canary syllables to obtain a generator model able to

provide good outputs (i.e., resembling the training data). Significantly, WaveGAN (Don-

ahue et al., 2018) and GANs, in general, are characterized by a redundant input space

(properly called latent space): one sensory output corresponds to multiple latent space
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Figure 5.1: Vocal learning model schema.. The model contains three spaces: the per-
ceptual space, the motor space, and the sensory space. A two-layer network
connects the perceptual space (on the left) to the motor space (on the right).
Wt represents the synaptic connections between perceptual and motor spaces
at each time step t. The motor control function G is the generator part of
the GAN trained in Chapter 4 that enables sound production. At each time
step t, the sensory response At is a function of the actual sound production
(i.e., At = f(St), where St is the actual sound produced by G). The sensory
response function is composed of a classifier (defined in Section 4.3.4 of Chap-
ter 4), then a normalization layer to scale the obtained activation to values in
[0, 1].

vectors. In terms of the vocal learning model introduced in Section 5.2.1, one syllable

type (i.e., belonging to one class of the repertoire) can be produced using multiple motor

configurations.
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5.2.3 Sensory system

The dimension of the perceptual space depends on how many different syllables the model

learns at a time. The minimal dimension of the perceptual space is nA = 1 when the

model is learning only one syllable. The maximal dimension is nA = N when the model

is learning all the syllables contained in the repertoire if it contains N different classes

of syllables. The repertoire used to define the sensory target space is the same that has

been used to train the generator model (i.e., the motor control function) and the classifier

(i.e., the first layer of the sensory response function) in Chapter 4).

The sensory response function (i.e., At in Figure 5.1) is composed by two components.

First, either classifier-REAL or classifier-EXT provides the sensory activation of a sound

St (a syllable) over time for each class of the vocabulary. The vocabulary is classifier-

specific. On the one hand, classifier-REAL returns as output a N -dimensional vector

representing the likelihood that the syllable belongs to a given class for each of the N

classes of the repertoire. On the other hand, classifier-EXT returns as output a N + 1-

dimensional vector representing the syllable activation for each of the N classes of the

repertoire and an alternative class X (i.e., a class defined by early and late generations

of GAN generations, and artificial white noise). These classifiers have been defined in

Section 4.3.4 of Chapter 4 and have been previously trained with the same dataset as the

one used to train WaveGAN (to obtain the motor control function). Here, N = 16 and

X = 1 (that is the cumulative class for multiple unknown classes). Further details about

what X class represents are provided in Section 4.3.3 of Chapter 4. Then, a normalization

layer rescales the obtained activation to values in [0, 1]: either (1) a softmax function

provides a probability distribution representing the chance of the syllable to belong to

each class of the vocabulary, or (2) a max-min scaling provides a normalized score (called

raw score) which restricts the syllable activation to the range [0, 1]. The raw score is

defined as

raw score =
classd −min(classd)

max(classd)−min(classd)
, (5.1)

where classd represents the syllable activation vector provided by the classifier for one
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syllable given as input. We will refer to (1) as softmax score and to (2) as raw score.

5.2.4 Learning algorithm

The model aims to learn nA = N different syllables. As mentioned in Section 5.2.2,

the motor function G allows multiple motor configurations to produce the same sensory

output. To deal with the redundancy of the motor control function, the goal is not

represented by a motor target. Rather, it is a perceptual target. That is,

Aitf −→ 1 for1 ≤ i ≤ nA = N, (5.2)

where Aitf represents the sensory response relative to syllable i at time tf (i.e., the last

epoch of training), and N is the number of classes of the repertoire.

Learning is driven by the Hebbian learning rule

∆Wt ∝ ηMtAt, (5.3)

where Wt represents the synaptic weight, η the learning rate, Mt the motor pattern at

time t and At the sensory response at time t. The synaptic weights Wt=t0 are initialized

as random uniform values and vary according with Equation 5.3 until time t = tf . We

did not introduce a normalization in the learning rule: this choice is motivated by the

fact that the motor space we consider in this model can not be normalized (otherwise,

this would change the relationship between the motor command and the sensory output).

The motor space is explored using random exploration.

5.2.5 Simulation details

We chose a set of nA = 16 syllables as target set. This is the same repertoire as the

one used in Chapter 4 to train the 3-dimensional GAN which serves as a motor control

function and the classifier which serves as a sensory response function. At each time step

t, a random motor vector Mt is given as input to the motor control function G. Mt is

a 3-dimensional vector taking random values in U [−1, 1]. The motor control function

G produces a syllable, which is given to the classifier as input and used to compute
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the sensory response (i.e., the perceptual representation). For simplicity, we generated a

priori a set of 5k motor vectors, the waveforms of the corresponding syllables, and the

corresponding sensory response (both using the softmax and the raw score).

The synaptic weights W ∈ M16×3 are initialized as Wt0 ∈ [−0.001, 0.001]. We kept

fixed the initial weights and the motor vector and we compared (1) the performance of the

model when classifier-REAL and classifier-EXT are used as sensory response functions,

(2) the performance of the model when different sensory responses (i.e., softmax score

and raw score) are used to encode the probability of a syllable to belong to each class

of the repertoire, and (3) the influence of using different learning rates (η = 0.01 versus

η = 0.1). For each condition, we stop the learning at time t = tf = 1500.

5.3 Results

5.3.1 Motor exploration

At each time t the model performs a random motor exploration Mt which enables the

generations of a sound and, consequently, the sensory response to this sound is computed

through the sensory function. Depending on how we compute the sensory response (either

using the softmax score or the raw score defined by Equation 5.1), we obtain different

activations in the perceptual layer. Please note that the architecture of the motor control

function allows a sensory activation bigger than zero also at the beginning of the learning

(when the synaptic connections are weak and close to 0). This is due to the fact that there

is not a ”neutral position” in the latent space: at any point of the space, the generator

can produce a syllable that will activate (at least slightly) one class of the classifier.

When softmax score is used to model the sensory response, the majority of motor

explorations performed (from the beginning of the learning until time tf = 1500) show a

very low sensory response (most of the time). The distribution of the sensory response does

not show intermediate values between 0 and 1 both when classifier-REAL (Figure 5.2a)

and classifier-EXT (Figure 5.3a) are used as sensory response function.
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On the contrary, if the sensory function is computed as a normalized raw score (de-

fined by Equation 5.1, the distribution of the sensory responses (relative to the motor

explorations performed during learning) becomes more homogeneous. The usage of the

raw score instead of the softmax score, allows a smoother perceptual encoding both when

classifier-REAL (Figure 5.2b) and classifier-EXT (Figure 5.3b) are used as sensory re-

sponse function. Figure 5.4 summarizes how many motor explorations obtained a sensory

response in the range [0.9, 1] over 1500 motor explorations performed during learning.
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(a) Soft-max distribution obtained with classifier-REAL .

(b) Raw score distibution obtained with classifier-REAL.
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Figure 5.2: Motor exploration: classifier-REAL. Distribution of the sensory re-
sponses obtained at each time t from the random motor exploration when
the normalization of the activation is obtained as a softmax score (a) and a
raw score (b). The distribution of the sensory repsonse obtained using the
softmax score concentrates around 0 and, eventually, shows values close to 1
(over 1500 motor explorations, ∼ 1000 are close to 0). The distribution of
the sensory response obtained using the raw score (defined by Equation 5.1)
is more homegeneous, especially for small values (smaller than 0.5). Here,
nA = 16, nM = 3, Wt0 ∈ [−0.001, 0.001], tf = 1500, η = 0.01 and classifier-
REAL is used as the first layer of the sensory response function.
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(a) Soft-max distribution obtained with classifier-EXT .

(b) Raw score distibution obtained with classifier-EXT. 
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Figure 5.3: Motor exploration: classifier-EXT . Distribution of the sensory re-
sponses obtained at each time t from the random motor exploration when
the normalization of the activation is obtained as a softmax score (a) and a
raw score (b). The distribution of the sensory repsonse obtained using the
softmax score concentrates around 0 and, eventually, shows values close to 1
(over 1500 motor explorations, ∼ 1000 are close to 0). The distribution of
the sensory response obtained using the raw score (defined by Equation 5.1)
is more homegeneous, especially for small values (smaller than 0.5). Here,
nA = 16, nM = 3, Wt0 ∈ [−0.001, 0.001], tf = 1500, η = 0.01 and classifier-
EXT is used as the first layer of the sensory response function.
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Figure 5.4: Sensory response relative to the motor exploration.. Total amount
(out of 1500) of motor exploration having either a softmax score (first and
third lines) or a raw score (second and fourth lines) higher than 0.9 per class
of syllables in the repertoire. The sensory activation vector has been obtained
either using classifier-REAL (first and second lines) or classifier-EXT (third
and fourth lines).

5.3.2 Influence of the learning rate

A learning rate of η = 0.1 (red lines in Figures 5.5 and 5.6) can induce faster changes

in the synaptic weights (i. e., in Wt) with respect to η = 0.01 (blue lines in Figures 5.5

and 5.6). One can see that a bigger learning rate induces a faster learning and thus

a sharper increase (and an eventual decrease) of the perceptual activation of a given

syllable. This is independent on which sensory response function we use (classifier-REAL

or classifier-EXT ) or which normalization we implement (the softmax score or the raw

score). Instead, different ways to compute the sensory response normalization (softmax

score versus raw score) result in different learning curves. A softmax score results in a

highly non-linear learning curve: the sensory response stays low for several time steps after

the beginning of the learning, and increases sharply after a number of time steps which

differs from syllable to syllable (Figure 5.5). Afterward, the sensory response remains

high and stable for a limited time before a new decay begins after a certain time tcritic. A

faster decay is observed for η = 0.1 (red lines in Figure 5.5).
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(a) Sensory response over time obtained from classifier-REAL.
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(b) Sensory response over time obtained from classifier-EXT.

Figure 5.5: Learning rate effect on the softmax score. Sensory response evolu-
tion for η = 0.1 (red lines) and η = 0.01 (blue lines) when either classifier-
REAL (a) or classifier-EXT (b) is used as the first layer of the sensory re-
sponse function. The sensory response remains generally low until it sharply
increases until a value of 1. The stability drops after a certain time. A higher
learning rate results in faster learning dynamics. Here, nA = 16, nM = 3,
Wt0 ∈ [−0.001, 0.001], tf = 1500.
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(a) Sensory response over time obtained from classifier-REAL.

(b) Sensory response over time obtained from classifier-EXT.
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Figure 5.6: Learning rate effect on the raw score.. Sensory response evolution for
η = 0.1 (red lines) and η = 0.01 (blue lines) when either classifier-REAL (a)
or classifier-EXT (b) is used as sensory response function. For almost all the
syllables, the sensory response gradually increases until a value of 1. Some
syllables still show a sharp increase (e.g., syllable M in panel (a) or syllable
R in panel (b)). The stability drops after a certain time. A higher learning
rate results in faster learning dynamics. The sharpness is more pronounced
for a bigger learning rate. Here, nA = 16, nM = 3, Wseed = 0.001, tf = 1500
and classifier-EXT is used as the first layer of the sensory response function.
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Such decay is due to the fact that the learning is driven by a simple Hebbian learning

rule which is not expected to converge because it will never stop updating the weights

(due to the absence of normalization). One can notice that a decay is also expected for

those syllables that are stable at 1 at tf = 1500: due to time constraints, it has not been

possible to perform longer simulations.
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Figure 5.7: Stability of syllable productions after learning. Mean spectrogram
obtained from all the sounds generated after learning (if a sound S produced
at a certain time ti is such that raw scoreSti ≥ 0.9, then we consider all the
sounds produced during learning from ti and until tf .). An empty box in
panel (b) means that for that class, for all the produced sounds, we obtain
raw scoreSt < 0.9, forallS, ∀t0 < t < tf . The learning rate is fixed at η = 0.01
and either classifier-REAL or classifier-EXT is used as the first layer of the
sensory response function. Here, nA = 16, nM = 3, Wt0 ∈ U [−0.001, 0.001],
tf = 1500. The raw score has been used to normalize the output of the
classifier.

Alternatively, the usage of a normalized raw score as the one defined by Equation 5.1

results in a less abrupt trend (Figure 5.6) with respect to the dynamics observed in Fig-

ure 5.5. A sharp increase still happens for some syllables (e.g., syllable M in Figure 5.6(a)

or syllable R in Figure 5.6(b)), but in general the sensory response evolution is more grad-

ual. Even if not shown, a decay is expected for those syllables that are stable at 1 at
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tf = 1500. Due to time constraints, it has not been possible to perform simulations longer

than 1500 time steps.

The sounds produced after learning (for each class of syllables, we consider the syllable

as learned when the raw score is stably higher than 0.9) is stable for any class of syllables

both when classifier-REAL (Figure 5.7a) and classifier-EXT (Figure 5.7b) is used as the

first layer of the sensory response function. Empty boxes in Figure 5.7b mean that for

syllable O and syllable J1 the raw score is never higher than 0.9 (see Figure 5.6).
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Figure 5.8: Relation between the motor exploration and the sensory response:
syllable B1 . Distribution of the sensory responses (raw score) obtained at
each time t from the random motor exploration relative to syllable B1 (blue
line in the upper panel). Sensory response (raw score) evolution over time for
η = 0.01 (red line in the middle panel). Evolution of the sensory production
corresponding to the raw score every 150 time steps (bottom panel). Here,
nA = 16, nM = 3, Wt0 ∈ [−0.001, 0.001], tf = 1500, and classifier-REAL is
used in the first layer of the sensory response function. The raw score is used
to normalize the output of the classifier.

During learning, a transition from one syllable to another in the sensory space occurs
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in parallel to the raw score dynamics (Figures 5.8(b-c) and 5.9). Syllables B1 and C

have been chosen as representative elements to show such a transition when, respectively,

classifier-REAL and classifier-EXT are used as first layer of the sensory response function.
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Figure 5.9: Relation between the motor exploration and the sensory response:
syllable C . Distribution of the sensory responses (raw score) obtained at
each time t from the random motor exploration relative to syllable C (blue
line in the upper panel). Sensory response (raw score) evolution over time for
η = 0.01 (red line in the middle panel). Evolution of the sensory production
corresponding to the raw score every 150 time steps (bottom panel). Here,
nA = 16, nM = 3, Wt0 ∈ [−0.001, 0.001], tf = 1500, and classifier-EXT is
used in the first layer of the sensory response function. The raw score is used
to normalize the output of the classifier.

5.4 Discussion

In this chapter, we built a vocal learning model with a full action-perception loop (as the

model suggested by Figure 2.1 in Chapter 2). We aim the model to learn a repertoire of

16 different classes of canary syllables. The motor space is the 3-dimensional latent space
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obtained from training WaveGAN (see Chapter 4). The motor control function is a gen-

erator model that enables the production of syllables resembling real recordings. Thus,

the sensory space encodes the actual syllables produced. The sensory response function

encodes the generated syllables in a rather low-dimensional space, i.e. the perceptual

space. We used a classifier as the one introduced in Section 4.3.4 of Chapter 4 as sensory

response function. The learning algorithm includes a random motor exploration strategy

and a simple Hebbian learning rule: it drives the learning of the inverse model between

the perceptual space and the motor space. We tested how the learning is influenced by

(1) different learning rates, (2) different sensory response functions (classifier-REAL ver-

sus classifier-EXT ), and (3) different sensory response definitions (softmax versus raw

score). We showed that a simple Hebbian learning rule allows the learning but does not

prevent divergence after a certain time step tcritic. The value of tcritic is syllable-specific

(Figure 5.5) and depends on the learning rate. A higher learning rate results in faster

learning dynamics and, thus, in an earlier tcritic. We compared two different ways to

compute the sensory response: the usage of a softmax function (to obtain the proba-

bility distribution) may result in sharp transitions dynamics (see Figure 5.5), whereas a

normalized raw score allows smoother transitions over time (see Figure 5.6).

Several modelers have proposed dynamic systems to model the motor control function

in songbirds: in such case, the motor space describes the time-dependent motor articu-

lations parameters which control the dynamics of the syrinx (e.g., air pressure, syringeal

labial tension) (Doya and Sejnowski, 1998; Fiete et al., 2007; Amador et al., 2013; Alonso

et al., 2015). Such dynamical systems have been used also in vocal development study to

model the vocal production in marmoset (Teramoto et al., 2017).

As mentioned in Section 5.2.2, this brings to have a redundant motor space where

multiple motor configurations correspond to the same syllable production (in terms of

classes). Moreover, the motor space (properly called GAN latent space) has a high density

of good productions (sounds highly activating one syllable in the perceptual layer).. On

the one hand, the generator model learns well how to produce syllables resembling the

training data (based on a clean dataset). On the other hand, the classifier has high
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accuracy when it comes to assigning each syllable to a syllable class. This results almost

always in a “good” assignment (to one class of the repertoire and not to an unknown

class X ). To force the motor space to be less dense of “good” syllables one could either

(1) modify the training dataset by introducing artificially modified syllables (e.g., by

adding some noise or syllable interpolations1) or (2) do not use the generator model at

convergence but rather stop its training earlier (to have a higher percentage of “bad”

productions). Further investigations of the motor space (latent space) are needed to

understand (1) how it is structured and what is its topology (where each class of syllables

is located in the 3-dimensional space), and (2) if the particular topology would give a hint

for a particular exploration strategy.

A simple Hebbian learning rule allows the learning to reach the “targetted” perceptual

goals but does not include stopping criteria. The introduction of a reinforcement signal

could help the learning to stabilize after having reached the region of the motor space

region that enables the production of the correct perceptual goal. The results obtained

in this chapter aim to be expanded (1) by choosing a longer time tf to stop the learn-

ing, (2) by exploring different strategies of exploration (e.g., goal-directed) and (3) by

modifying the learning rule (e.g., combining Hebbian learning rule with Reinforcement

Learning).

1Using interpolations of syllable generated from a previous generator model of a GAN.
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Conclusions and perspectives

A deep understanding and comparison of the existing models in the literature of vocal

learning has been simplified by using a common schema (Figures 2.1 and 2.2 of Chapter 2).

The schema helps to unravel the models in their components and uncover the common

structure they share. While the learning architecture remains an important component

of a vocal learning model, the review of the literature highlighted how also the motor

control model and the sensory response model play crucial roles in the definition of a

complete vocal learning model. Having such a scenario in mind, and adding the knowl-

edge of behavioral studies and neuroanatomical structure of the brain areas involved in

vocal learning, it becomes easier to understand the objective of each study, the biological

limitations, and the computational choices of each author.

Before approaching a complete vocal learning model including sound production, a

simple theoretical model served as a first case study to understand how to build a bio-

inspired vocal learning model. The model introduced in Chapter 3 does not enable sound

production and is defined by a simple one-layer perceptron (Figure 3.1). On the one

side, the motor area corresponds to the brain areas involved in the motor apparatus

control. On the other side, the auditory area represents the brain areas where sensory

stimuli are encoded. The theoretical inverse model learns the connections between the

two populations driven by a normalized Hebbian learning rule. Such a normalization in

the learning rule has been introduced to prevent the explosion of synaptic weights, i.e.,

to model the limit in the number of synapsis that a neuron can do in nature (Abbott and

Nelson, 2000). Moreover, the introduction of a non-linear sensory response to the model
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has been chosen to model sparse and nonlinear auditory response in the brain (Hahnloser

and Kotowicz, 2010). The influence of the model parameters on the learning speed and

accuracy highlights perspectives and limitations. On the one hand, the influence of the

tuning selectivity on the learning speed and accuracy represents a trade-off that can be

solved by introducing an evolutionary tuning selectivity (i.e., changing over time). On the

other hand, the fact that the motor dimension drastically influences the learning speed

points out a computational limitation of the model.

The definition of a complete vocal learning model presupposes the definition of a mo-

tor control model enabling sound production (Chapter 2). Chapter 4 draws on generative

neural networks and proposed the generator part of WaveGAN (Donahue et al., 2018)

(Generative Adversarial Network (GAN)) as a generative model for canary songs. The

generator is capable of producing good outputs, i.e., resembling the training data (Fig-

ure 4.5) even when dealing with a low-dimensional latent space (Figure 4.7). Moreover,

the 3-dimensional latent space used as input space for the generator turned out to be

smooth when exploring the transition from one syllable to another (Figure 4.16). Chap-

ter 4 also contains two salient methods. The proposed classifier can classify the real and

the generated syllables as belonging to one particular class of the training data. The

recently introduced representation method Uniform Manifold Approximation and Projec-

tion (UMAP) that allows the representation of a complex dataset in a two hyperparameter

space where clusters and connections between clusters can be analyzed.

The fact that the generator part of WaveGAN works with a smooth low-dimensional

input space suggests that it could be used as a motor control function in a vocal learning

model. Chapter 5 introduces a vocal learning model with a full action-perception loop

(Figure 2.1). That is a model containing a motor space, a sensory space, and a perceptual

space connected by a motor control function, a sensory response function, and a learning

architecture (Figure 5.1). The model aims to learn each of the syllables present in the

target set independently. The motor control function is a generator model obtained from a

3-dimensional WaveGAN. The model classifier-REAL proposed in Chapter 4 is used as a

sensory response: it provides the probability of each generation of belonging to each class
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of the target set. The connections between the motor space and the perceptual space

(represented by the probability vector described previously) are initially weak and the

learning is driven by a simple Hebbian learning rule. As for the simple model described in

Chapter 3, the motor space is uniformly explored and no goal-directed exploration takes

place.

Positioning the work

The following paragraphs focus on the limitations, advantages, and perspectives of the

approach presented in this thesis. Moreover, it places this thesis in the context of vocal

learning in terms of goal, hypothesis and methods, and relates it to other published studies

aiming at modeling vocal learning.

Motor control

Speech production models that aims to be bio-inspired take into account the anatomical

configuration of the vocal production apparatus. For instance, models based on the

structure of the vocal folds and the vocal tract (Titze, 1989; Titze and Martin, 1998;

Fant, 2012). The former realizes the production of the sound thanks to the combination

of the output of the vocal folds vibration and of the noise. While for birds the investigation

is complicated given their small size, models able to reproduce vocal folds oscillations have

been proposed for humans (Ishizaka and Flanagan, 1972; Birkholz, 2011; Amador et al.,

2013; Mindlin, 2013). The vocal tract acts as a filter for the sound produced by the

vocal folds: it modifies it by balancing its frequency components. The vocal tract, and in

particular the air pressure dynamics, has been often modeled using Ordinary Differential

Equations (ODEs) (Westerman and Miranda, 2002; Maeda, 1989). Several synthesizer

attempts to model the non-linear structure of the vocal tract and introduces a high number

of parameter to describe all the involved muscles (e.g., tongue, jaw). For instance, this

is the case of Vocal Linear Articulatory Model (VLAM) (Maeda, 1990), Vocal Tract Lab
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(VTL) (Birkholz et al., 2006; Birkholz, Accessed Sept. 2019) and Directions Into Velocities

of Articulators (DIVA) (Guenther et al., 2006a; Tourville and Guenther, 2011). Similarly,

the vocal tract dynamics in birds have been modeled using ODEs (Amador et al., 2013;

Gardner et al., 2001). These models enable the production of sounds resembling the real

ones for speech and, to a limited extent, birds. Moreover, they might be slow to simulate.

For this reason, usually, only a few parameters influence the vocal production (they are

time-dependent), while the remaining parameters are kept fix over time.

The brain seems unable to control each motor parameter independently but it uses

a complex gesture-dependent control scheme to drive the vocal output (Elemans et al.,

2015; Srivastava et al., 2015). There is a lack of experimental evidence regarding how

the vocal production pathway develops in juvenile birds. At the beginning of their life,

juveniles do not have developed motor control. Later, each RA stimulation enables the

production of vocalizations in adult zebra finches and canaries (Vicario and Simpson,

1995).

Recently, artificial neural networks have been explored as a possible way to describe

the non-linear multi-layer structure of the brain (Yamins et al., 2014; Ponce et al., 2019).

In the original work from Donahue et al. (2018), the aim of the authors is to verify whether

or not WaveGAN is able to reproduce realistic speech and birdsong (from wild recordings).

In Chapter 4, WaveGAN has been trained on a dataset of recordings from an adult canary.

The restriction of the dataset to only one canary reduces the variability with respect of

using a set of wild recordings coming from different species. Moreover, it takes into

account that, usually, canaries learn from their conspecific tutor. The goal of the thesis is

to describe the sensorimotor phase of learning, which allows the bird to go from producing

subsong to produce crystallized syllables (similar to the tutor’s syllables). The training of

WaveGAN has been done using adult recordings. Indeed, the vocal learning model should

be able to learn adult songs (i.e., crystallized songs) and, in principle, a model trained

on recordings from a different learning phase (e.g., subsongs from juveniles) would not be

able to produce adult-like syllables. Moreover, juvenile’ songs show a higher variability

reflecting in a high variability. Whether or not WaveGAN can deal and converge with
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juveniles data remains unknown. A key characteristic of WaveGAN, and of GANs in

general, is the redundancy of the latent space. When using such a model as motor control

function in a vocal learning model, this means that multiple motor configurations produce

the same sensory output (i.e., the same sound). Regardless, a deeper comparison between

a vocal learning model where the motor function is implemented using WaveGAN and

one in which it is implemented using an ODE model based on the avian organ (e.g., the

work from Amador et al. (2013)) remains needed.

Learning architecture

While reward-driven learning is associated with trial-and-error processes, associative

learning is associated with the co-activation of neural populations. Hebbian learning

is likely the mechanism for associative learning, while RL needs an additional reward

signal, provided by neuromodulators.

Several modelers used a gradient-based RL algorithm to explain vocal learning in hu-

mans (Howard and Messum, 2007; Warlaumont and Finnegan, 2016; Howard and Birkholz,

2019) and birds (Doya and Sejnowski, 2000; Fiete et al., 2007; Troyer and Doupe, 2000).

The hypothesis that the auditory feedback reinforces actions is tested by Howard and

Messum (2007), Warlaumont and Finnegan (2016) and Howard and Birkholz (2019):

the estimated auditory salience determines whether or not to reward the model. Alter-

natively, the existence of internal models is suggested by one-shot learning in humans.

Hebbian-inspired learning rules have been proposed to drive learning when the learning

architecture is based on internal models (Troyer and Doupe, 2000; Westerman and Mi-

randa, 2002; Oudeyer, 2005; Kröger et al., 2009). Internal models (inverse and forward)

usually modifies the simple Hebbian learning rule in order to make the model biologically

plausible and allow convergence of the learning (Hahnloser and Ganguli, 2013).

A simple Hebbian learning rule can drive the learning at early stages but is not ex-

pected to converge. Alternatively, some normalization rules can assert convergence under

certain conditions (Hahnloser and Ganguli, 2013). Similarly, the model proposed in Chap-
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ter 3 defines an inverse model driven by a normalized Hebbian learning rule. Interestinlgy,

a normalization over auditory neurons works better than a normalization over motor neu-

rons: this might be connected to the fact that the target of the model is perceptual, thus

corresponds to the auditory dimension of the synaptic weights. Chapter 3 provides a

perspective on how the learning is influenced by the auditory selectivity and by the size

of the network. A higher selectivity and a higher motor dimension introduce sparsity in

the target, and thus makes it more difficult to learn.

Chapter 5 relies on a simple Hebbian learning rule to learn the connections between

the perceptual and the motor space (see Figure 5.1) in a complete vocal learning model.

A 3-dimensional generator model of WaveGAN is used as a motor control function. This

means that (1) the model enables sound production and (2) the sound depends on 3 motor

parameters. As mentioned above, such a motor control function leads to a redundant

motor space. As a consequence, a reflection about how to define the target of the learning

is needed. The solution proposed in Chapter 5 considers a perceptual target instead of a

motor target. That is, each time a new sound is produced by the model and is processed

by the sensory response function, it is awarded by a perceptual score. The model proposed

in Chapter 5 can be extended and completed by introducing reinforcement learning (RL).

The idea is to keep a simple Hebbian learning rule at the early stages of learning and

introduce a goal-directed strategy when the perceptual target is closer. A combination

of Hebbian learning and RL has been previously proposed by Troyer and Doupe (2000)

and the perceptual score described above could be used to determine whether or not

the model receives a reward or not (similarly to how auditory salience has been used

with humans (Howard and Messum, 2007; Warlaumont and Finnegan, 2016; Howard and

Birkholz, 2019).

Sensory response

The sensory response attempts to model how the sensory space (usually a sound in vo-

cal learning) is perceived. The ability to perceive a continuous space (e.g. sound) as
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discretized (e. g., phonemes) exists both in humans and birds (Kuhl, 2000, 2004). The

auditory system enables the discrimination of songs, the recognition of the tutor, and

the evaluation of auditory feedback (Hahnloser and Kotowicz, 2010). Moreover, in birds,

neural selectivity develops during song ontogeny (Brainard and Doupe, 2002).

Computationally, the sensory response provides a perceptual representation of the

sound. In reinforcement learning (RL), the sensory response may also trigger the re-

ward. Usually, the sensory response function allows to the interpretation of the sound

in a low-dimensional space thanks to a multi-step process that leads to the perceptual

space representation. This is coherent with the evidence of highly non-linear and sparse

responses found in the auditory pathway (Hahnloser and Kotowicz, 2010). For example,

Philippsen et al. (2016) uses Principal Component Analysis (PCA) and Linear Discrim-

inant Analysis (LDA). Alternatively, the sensory response function can be based on the

sound features (Westerman and Miranda, 2002; Howard and Huckvale, 2005; Philippsen

et al., 2014).

The model proposed in Chapter 3 models the auditory pathway proposing a non-linear

auditory response similar to the one used by Westerman and Miranda (2002) and Oudeyer

(2005). In particular, the sensory response defined in Chapter 3 does not rely on any fea-

ture of the sound since there is no sound production in the proposed model. The complete

vocal learning model proposed in Chapter 4 introduces the generation of the sound and

the sensory response to process the sound. The sensory response function is an Echo State

Network (ESN), a type of artificial neural network designed to manipulate sequential data

and appropriate to solve the problem of sound classification. The sensory response en-

codes the sound in the perceptual space as a probability vector which discriminates the

class to which it belongs to.

Perspectives

As a general perspective on how this study can be extended, the following paragraphs

explore how the proposed methods could be the subject of further investigation. The
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classifier model proposed in Chapter 4 has been used to obtain a quantitative measure

of the generated data. In this sense, the trade-off between having an accurate classifier

and a too accurate classifier is a sensitive point. On the one hand, an accurate classifier

is useful to distinguish the syllables from one another. This classification is needed to

compare the syllables qualitatively and qualitatively2. On the other hand, a too accurate

classifier could learn how to differentiate a training sample from a generated sample before

learning how to classify them correctly. In this scenario, a good syllable could be classified

as an alternative syllable (as it was defined in Section 4.3.3 of Chapter 4) because the

classifier bases its decision on a binary choice real/generated. This was a sensible point

in Chapter 4, and is the reason why we chose a classifier with lower accuracy on the

real data because it was less prone to label generated syllables as “alternative syllables”.

Additionally, the classifier could help to detect errors in the selection of single syllables,

and it could be useful to identify to which class a phrase belongs to by using the selection

of the single syllables. Nevertheless, a percentage of manual work would still be needed

to select the training labeled dataset.

The methods proposed in Chapter 4 to evaluate the generator model aim to describe

the training and the generated data in a way they can be compared. To this end, we

used qualitative measures such as the mean spectrogram and the UMAP representation.

The latter serves as a bridge between a qualitative measure of the generated data and

a representation of an exploration of the latent space. This is an important point both

for the vocal learning model, when a low-dimensional motor space is required and for the

motor control function itself, where continuity in the motor space is biologically plausible.

To analyze better the capability of the models of reproducing good sounds, different motor

control models should be tested and their output should be compared using a common

representation.

WaveGAN, and in general generative models, could be able to serve as a motor control

function for different vocal learning models. That is, one could use the same generator

2The classification provided by the classifier is needed to grup the syllables and represent them using,
for example, the mean spectrogram or UMAP
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(trained with different datasets) to model the motor control function in a vocal learning

model trying to explain song learning in caries or speech development in humans. To

test this possibility, the same generative model should be trained on different datasets to

assess its capability of reproducing realistic outputs. Although there is the need to check

the ability of each component of the model to deal with different data, potentially the

model proposed in Chapter 5 can help explaining vocal learning in songbirds but open

also to other perspectives. For instance, the same model structure could be used for vocal

learning in humans or in artificial agents’ communication.
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