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Abstract

Reduced-order model for blood flow in the large arteries
Applications to cardiovascular pathologies

Understanding and predicting the hemodynamics of cardiovascular pathologies is
crucial to improve the management and diagnosis of such diseases. Mathematical
blood flow models are a suited alternative to classical approaches such as invasive
measurements, data analysis methods, and medical imaging techniques. To be used
as predictive tools for patient-specific studies, blood flow models need to be computed
in real medical time, typically the diagnosis time. Three-dimensional models that
simulate the interaction between the fluid and the mechanics of the arterial wall
provide really precise data, however, they require important computational resources.
Reduced-order models allow determining the pressure and flow fields with a low
computational cost and in regions of the arterial network inaccessible to visualization
techniques and invasive measurements. The goal of this thesis is therefore to derive a
hierarchy of reduced-order models, from simple to complex, that we apply to study
different pathologies.

After detailing the derivation of the models, the resolution methods, and testing
the hypotheses, we focus on applying them to several scenarios, suggested by our
physician collaborators. Each model is suited for a particular medical situation
depending on the scale of the problem. We first investigate vascular stenoses, defined
as a narrowing of the lumen of a vessel, that can lead to important modifications of
the hemodynamics. This pathology can appear in different locations of the network:
in the aorta for instance, as in Aortic Coarctation, a congenital disease found in
children. In this case, the measurement of pressure is essential to determine the
treatment strategy. We, therefore, use all the reduced-order models to compute the
pressure in the stenosis and compare it with invasive data to validate our approach.
Stenoses can also appear after the creation of an arteriovenous fistula, a connection
between an artery and a vein to speed-up the blood filtration for patients with
kidney failure. We use the simplest models to reproduce and predict the distribution
of blood in the system and when a venous stenosis develops. When stenoses become
too severe, a surgical intervention is necessary. We thus explore the impact of aortic-
cross-clamping during stenoses repair surgeries. Clamping consists of momentarily
stopping the circulation to prevent blood from flowing in the operation zone. This
procedure provokes modifications in the vascular properties that we investigate with
reduced-order models. Finally, we study one last pathology pulmonary hypertension
in order to evaluate different mechanical properties and classify the pathologies
according to these properties.

Keywords: Cardiovascular pathologies, blood flow, reduced-order models, arterial network.

3



4



Résumé

Modèles réduits d’écoulement sanguin dans les grandes artères
Applications aux pathologies cardiovasculaires

Comprendre et prédire l’hémodynamique impliquée dans les pathologies cardio-
vasculaires est essentiel pour améliorer la gestion et le diagnostic de ces maladies.
Les modèles d’écoulement sanguins sont une alternative intéressante aux approches
classiques comme les examens invasifs et les techniques d’imagerie médicale. Pour
être utilisés comme des outils prédictifs pour des simulations patient-spécifique, les
modèles doivent avoir un temps de calcul réduit, de l’ordre de celui du diagnostic
médical. Les modèles complexes tri-dimensionnels qui considèrent les interactions
entre le fluide et la structure du tissue artériel fournissent des données très précises.
Néanmoins, ils nécessitent un coût, à la fois numérique et paramétrique, trop
important pour être utilisés dans de grands réseaux vasculaires. Les modèles dits
réduits permettent, eux, de déterminer les champs de pression et vitesse avec un coût
de calcul faible et à des emplacements du réseau artériel inaccessible aux techniques
de visualisation ou aux méthodes de mesure classiques. Cette thèse se concentre donc
sur ces modèles réduits et nous dérivons une hiérarchie de modèles, du plus simple
au plus complexe, que nous appliquons pour étudier différentes pathologies.

Après avoir détaillé la dérivation des modèles, leurs méthodes de résolution et avoir
testé les hypothèses, nous nous intéressons à les appliquer dans plusieurs scénarios,
proposés par nos collaborateurs médecins. Chaque modèle est adéquat pour une situ-
ation médicale particulière, en fonction du degré de complexité et de l’échelle du prob-
lème. Tout d’abord, nous étudions la sténose vasculaire, un rétrécissement du diamètre
d’un vaisseau, qui entraine des modifications importantes de l’hémodynamique. Cette
pathologie peut apparaître à différents endroits du réseau : dans l’aorte comme lors
de la Coarctation Aortique, une maladie congénitale trouvée chez l’enfant. Dans ce
cas, la mesure de la pression est essentielle pour déterminer la méthode de traitement.
Nous utilisons donc tous les modèles à notre disposition pour calculer la pression dans
la sténose et comparons avec des mesures invasives pour valider notre approche. Les
sténoses peuvent également apparaître après la création d’une fistule artério-veineuse,
une connexion entre une artère et une veine du bras pour accélérer la filtration du
sang pour les patients avec une insuffisance rénale. Nous utilisons les modèles les
plus simples pour reproduire et prédire la distribution du sang dans ce système et
lorsqu’une sténose veineuse se développe. Lorsque les sténoses sont trop sévères, une
opération chirurgicale est nécessaire. Nous nous intéressons donc à l’impact du clam-
page aortique lors de chirurgies réparatrices de sténose. Le clampage consiste à couper
la circulation momentanément afin d’opérer dans une zone où le sang ne s’écoule pas.
Cette procédure provoque des modifications des propriétés vasculaires, que nous étu-
dions avec des modèles réduits. Enfin, nous nous intéressons à une dernière pathologie,
l’hypertension pulmonaire afin d’évaluer des propriétés mécaniques du réseau vascu-
laire pulmonaire et discriminer les differentes pathologies.

Keywords: Pathologies cardiovasculaires, écoulement sanguin, modèles réduits, réseau
artériel.
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Nomenclature

Dimensionless numbers

Re Reynolds number

Ma Mach number

Sh Shapiro number

α Womersley number

Fluid properties

ρ Fluid density

µ Fluid dynamic viscosity

ν Fluid kinematic viscosity

τ Shear stress

γ̇ Shear rate

Flow variables of the 1D model

A Cross-section

Q Flow rate

p Pressure

U Velocity

τw Wall Shear Stress

Cf Friction coefficient

Rt Reflection coefficient

Z0 Impedance

c Wave velocity

λ Wavelength

ψ Shape factor

W1,2 Riemann invariants

Properties of the 0D models

Rp Proximal resistance

Rd Distal resistance

Rtot Total resistance
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C Compliance

I Inductance

τ Diastolic time-constant

Tc Heart period

Tej Ejection period

Vs Systolic volume

Geometrical properties

R0 Reference radius

D0 Reference diameter

A0 Reference cross-section

h Wall thickness

L Length

Rst Stenosis radius

Ast Stenosis cross-section

β Degree of constriction of stenosis

Lst Stenosis length

Mechanical properties

ε Strain tensor

u Displacement field

F Deformation gradient

σ Cauchy stress tensor

Ψ Strain density function

P Piola Kirchhoff stress tensor

J Jacobian of the deformation tensor

E Young’s modulus

νw Poisson coefficient

λw Lamé coefficient

µw Lamé coefficient

K Elastic coefficient

Kν Viscoelastic coefficient
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Cν Linearized viscoelastic coefficient

φ Wall viscosity coefficient

Numerical parameters

∆t Time step

∆x Space step in the x-direction

∆y Space step in the y-direction

Nr Number of rings in the Multi-Ring model

Nx Number of cells in the x-direction

Optimization parameters

J Cost function

P Set of parameters to estimate

B Hessian matrix

Statistical parameters

δ Mean

σ Standard deviation

N Sample size

ρ Pearson’s correlation coefficient

R2 Correlation coefficient
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1 Introduction

1.1 A bit of history

In the fourth century B. C., the Greek philosopher Aristotle identified the heart as the most
important, first organ of the body to form and center of vitality in the body. In the second
century A. D., Claudius Galenus (Claude Galien in french) reaffirmed some of the known
concepts about the heart but contradicted others in matter of detailed anatomy, such as
Aristotle’s claim that the heart was the origin of the nerves [1].

Galien’s theory states that there are three main systems in the body: the brain and nerves,
the heart and arteries, and the liver and veins. He was indeed the first to identify the physio-
logical difference between veins and arteries. According to Galien’s theory, the venous blood
formed in the liver, traveled through the veins and the entire body to deliver nourishment to
maintain tissues. Blood would come into contact with air in the lungs and go to the heart.
The blood did not return to the liver or the heart but would instead be consumed by the
body. Sometimes the liver produced too much blood which led to illness cured at the time
by bloodletting to restore the equilibrium by drawing off the excess fluid.

For almost fifteen centuries, the knowledge about physiology and anatomy only relied on
Galien’s theory. Opinions about these long-existing theories started to be challenged in the
thirteenth century by the Egyptian doctor Ibn al-Nafis who described the pulmonary circu-
lation [2]. Despite promising work, it did not echo internationally and thus did not influence
Medieval and Renaissance medicine.

At the beginning of the Renaissance, experimental investigations started to develop in
particular with Leonardo Da Vinci who first dissected cadavers and began to view the heart
based on mechanical principles (Figure 1.1). Around this time, Vesalius became the undis-
puted master of anatomy with his very influential books "De Humani Corporis Fabrica Libri
Septem" (On the fabric of the human body in seven books) [3]. He, however, did not refute
Galien’s assertions on blood circulation.

It is only in the mid-seventeenth century that William Harvey revolutionized the ideas
of the cardiovascular system with his book "Exercitatio Anatomica de Motu Cordis et San-
guinis in Animalibus" (An Anatomical Exercise on the Motion of the Heart and Blood in
Living Beings) [4], considered as the founding of modern physiology. From repeated dissec-
tions of human cadavers and animal species, he thoroughly demonstrated that the blood flows
through the heart and lungs, from which it is sent to the rest of the organism. He showed
that the blood goes to the tissues thanks to their porosity and that it comes back from the
extremities to the center of the body in the right atrium to form a closed-loop system. He
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also described the heart as a muscular hydraulic pump that ensures the continuity of flow
thanks to pulsatility.

Figure 1.1 – Drawing of the heart and coronaries from Leonardo Da Vinci taken from
"Oeuvre anatomique" (Anatomic work), a book constituted of drawings of different part of
the human body. Image found here.

Although medicine had been around for centuries B.C., it is at the end of the nineteenth
century that the first surgical acts emerged. In 1896, the doctor Ludwig Rehn successfully
closed a heart stab wound by means of a direct suture, which marked the beginning of heart
surgery [5]. Three other surgeons became leaders of experimental cardiac surgery before World
War I and provided the base for its further clinical application. After that, arose multiple
successes in cardiac surgery with operations on the pericardium, pulmonary embolectomy,
removal of aneurysms, and many others.

The clinical achievements of the end of the nineteenth century were remarkable however
there was still no accurate mean of measuring arterial blood pressure other than by opera-
tion [6]. Indeed, the pressure had been known as a crucial indicator as changes in pressure had
been linked to the pathogenesis of many Cardiovascular diseases (CVDs). Karl von Vierordt
was the first to introduce the sphygmograph in 1854 (Figure 1.2 left), a measurement tool
to record the pulse pressure of blood. The French physician Etienne-Jules Marey consider-
ably improved the technique of graphic recording and the accuracy of establishing the blood
pressure in patients in 1863 (Figure 1.2 right). In 1896 the Riva-Rocci cuff was introduced.
Since then, extensive efforts have been made to improve the assessment of blood pressure
non-invasively which remains to this day a pressing issue in cardiovascular medicine.
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Figure 1.2 – Sphygmograph: measurement tool to record the pulse, the principle is to apply
a counter pressure to overcome the arterial pressure Left: Karl von Vierordt’ sphygmograph.
Right: Etienne-Jules Marey’s sphygmograph. Images from [6].

The main discoveries discussed here were carried by men however, historically women have
occupied important roles in medicine and care-taking. Merit-Ptah was the earliest woman in
the history of science in the Early Dynastic Period (∼ 3,000 years B.C.). Agnodice was the
first female physician to practice legally in the 4th century B.C. in Greece. Metrodora was
also a Greek physician of this period, regarded as the first medical writer. Her book "On the
Diseases and Cures of Women" was the oldest medical book written by a woman and covered
all areas of medicine related to women, developing various therapies and surgical techniques
that were revolutionary in her time.

During the Middle Ages, convents were important places of education for women that
provided opportunities for women to contribute to scholarly research. For instance, Hilde-
gard of Bingen was a German abbess in the 11th century and wrote about various scientific
subjects such as medicine, botany, and natural history [7, 8] (Figure 1.3 left). She is consid-
ered the first German female physician. Among many unfounded belief-based practices, she
gave intuitive statements that will prove true later, particularly on human physiology and
blood circulation. Another important female figure of the Middle Age was Trota of Salerno
(Figure 1.3 right), a physician who collected many of her empirical practices in writing. Part
of her work was incorporated into the so-called Trotula compendium of writings on women’s
medicine and cosmetics.

Figure 1.3 – Representation of two important female figures of the Middle Ages in the
history of medicine. Left: Hildegard of Bingen (11-12th century), image found here. Right:
Trota of Salerno (12-13th century), image found here.
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In the following, we summarize some key elements about current knowledge of cardio-
vascular physiology (Section 1.2) before presenting a brief literature review of the numerical
models in the study of blood flows.

1.2 Cardiovascular physiology

The cardiovascular system is a closed-loop circuit composed of three main blocks (Figure
1.5) the heart, which pumps the blood, and distributes it into two networks of vessels, the
systemic and the pulmonary, that convey blood to the body and drain it from the body tis-
sues to the heart. In the following, we briefly describe the mechanical function of the cardiac
pump (Section 1.2.1), the pulmonary circulation, and the systemic circulation (Section 1.2.2).

1.2.1 The cardiac pump

The heart is a muscular organ composed of two synchronized pumps each divided into two
chambers, ventricles and atria. The cavities have the following role: the upper left (LA) and
right (RA) atria collect the blood from the veins and lower left (LV) and right (RV) ventricles
contract to propel the blood into the systemic and pulmonary veins (Figure 1.4). The right
side collects de-oxygenated blood (represented in blue in Figure 1.4) from the systemic veins,
the superior and inferior vena cava, and perfuses the lung through the pulmonary arteries.
The left side collects oxygenated blood (represented in red in Figure 1.4) from the pulmonary
veins and perfuses the rest of the body through the aorta which is the main artery of the
systemic circulation.

Each chamber is separated by a valve: the mitral valve between the LV and the LA, the
aortic valve between the LV and the aorta, and the corresponding valves in the right heart
are the tricuspid valve between the RA and RV and the pulmonary valve between the RV
and the root of the main pulmonary artery.

The cardiac cycle is a two-stage pumping process, the systole and the diastole (Figure
1.6), that occur over a period of about 1 s corresponding to 60 Beat Per Minute (BPM).
These two stages can be defined in several manners, that are similar, depending if we con-
sider the trigger to be electrical or mechanical. Systole can be defined as the contraction of
the heart to pump the blood, diastole as the relaxation of the heart to refill with blood. The
four main phases of the ventricular activity can be defined by the state of the inlet and outlet
valves. Indeed, the role of the valves is to regulate the blood pressure between the cavities
and vessels and prevent backflow.
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Figure 1.6 – Cardiac cycle events. Diagram found here.

1.2.2 The systemic and pulmonary circulations

Both blood circuits, systemic and pulmonary, are composed of three types of vessels: arteries,
capillaries, and veins (Table 1.1). The role of the pulmonary circuit is to oxygenate the blood
leaving the right heart and return oxygenated blood in the left heart whereas the systemic
circuit delivers the oxygen and nutrients to the tissues and removes carbon dioxide (Figure
1.5). Despite similar topologies, the pulmonary circulation is a low pressure and low resis-
tance system unlike the systemic circulation (Figure 1.7).

The arteries can be discriminated in three categories according to their size: the large ar-
teries, the small arteries, and the arterioles. The large arteries are also called elastic arteries
because the wall has a large number of collagen and elastin filaments (Figure 2.1). The main
large artery, the aorta, is connected to the left ventricle. When the heart ejects blood, the
elastic arteries dilate and regulate the pressure in the network, i.e. the variations of pressure
in the arteries are much smaller than the variations in the heart. These arteries then divide
into smaller arteries and arterioles who themselves divide into millions of smaller capillar-
ies constituting the capillary bed. This microcirculation, present in all organs, muscles, and
tissues, carries the exchange of oxygen and nutrients. The small capillaries then merge into
venules and connect progressively into veins to deliver the deoxygenated blood to the heart at
low-pressure. The pressure at this level drops to almost zero. Compared to arteries, veins have
some different features: first, there are valves in some veins to keep the flow uni-directional,
second the venous wall is very collapsible due to the low pressure difference, and third, the
wall is thinner, and the elasticity much smaller. One of the main differences between arteries
and veins is the pressure inside the vessels as well as the pulsatility, that almost does not
exist in the veins unlike in the arteries (Figure 1.7). The flow of blood in the veins is partly
governed by physical activity. In terms of mechanics, the large arteries and veins are differ-
entiated from other vessels by their size and the predominance of inertial effects over viscous
effects in the flow of blood in them, characterized by relatively large values of the Reynolds
number (Re ≈ 1000, see Table 2.3). In the capillaries, the viscous effects dominate and the
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Table 1.1 – Characteristic values of diameter, occurence, and mean pressure of the human
systemic vessels adapted from [9].

Vessel Diameter (mm) Number of vessels Mean pressure (kPa)
Aorta 25 1 12.5

Large arteries 1-10 50 12
Small arteries 0.5-1 103 12

Arteriole 0.01-0.5 104 7
Capillary 0.006-0.01 106 3
Venule 0.01-0.5 104 1.5
Vein 0.5-15 103 1

Vena cava 30 2 0.5

flow can be governed by the Poiseuille equation.
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Figure 1.7 – Systemic and pulmonary blood pressure and pulsatility depending on the
vessels. Blue corresponds to the veins and red corresponds to the arteries. Diagram inspired
by the textbook Anatomy & Physiology, OpenStax College.

The flow in the cardiovascular system is driven by the stages of the cardiac cycle [10]
(Figure 1.6). During systole, blood is ejected which causes a dilation of the elastic arterial
wall, during diastole, the vessel wall relaxes. This dilation-relaxation process propagates a
pressure wave at a finite, but large, velocity along the arteries. These waves give rise to reflec-
tions whenever there is a discontinuity in the geometrical or elastic properties of the arteries.
Bifurcations and high resistance regions create reflections that propagate back towards the
heart. These backward waves are themselves reflected by the bifurcations giving rise to a very
complex pattern of reflected and re-reflected waves that determine the complex local pressure
and velocity waveforms in the arteries [11].
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Because most CVDs originate from arteries, we choose to restrict our study to the arterial
circulation of the cardiovascular system. Closed-loop models, including heart and veins, have
been studied in the literature [12–14]. In this thesis, we mainly study the arterial systemic
circulation (Chapter 6, 7, 8) considering the challenges proposed by our clinician collabora-
tors, however, we also investigate the pulmonary circulation in Chapter 9.

In this section, we summarized only the main elements of the cardiovascular system but
it is much more complex and involves interactions with biology and chemistry. More detail
can be found in textbooks such as [9, 10,15–17].

1.3 Motivation

Over the last decades, clinicians have made tremendous improvements in the understanding
of physiology and the management of CVDs. However, they remain to this day the number
1 cause of death globally, taking an estimated 17.9 million lives each year, according to the
World Health Organization. CVDs are responsible for more than half of the mortality in
developed countries. In France, they are the first cause of death for women and take about
140,000 lives each year (54% of women) against for instance ∼ 30,000 for the Covid-19 (54%
of men) according to Santé publique France.

These cardiovascular pathologies include, among others, heart failure, stroke, atheroscle-
rosis, and aneurysm which can appear in various locations of the system and have lethal
consequences. They are usually slowly progressing diseases that can remain asymptomatic
until their last stages which makes them even more dangerous. People with CVDs or who are
at high cardiovascular risk (due to the presence of one or more risk factors such as hyperten-
sion, diabetes, or already established disease) need early detection and management.

Clinicians have developed a wide variety of treatment strategies to prevent the progression
of diseases. The principal diagnosis tools for CVDs are catheterization, an invasive pressure
measurement technique and imaging such as Magnetic Resonance Imaging (MRI), Echocar-
diography, or Computed Tomography (CT) that are non-invasive tools [17]. However, the de-
velopment of CVDs is a complex multiphysics and multiscale process involving a combination
of biological, chemical, and mechanical factors. All of these factors cannot be apprehended
all together using only non-invasive measurements and topological considerations. Indeed,
the invasive measurements must nowadays be carefully justified for medical care purposes
as they often present risks and side-effects. Therefore and thanks to advances in computer
sciences, clinicians have considered relevant the idea of mathematical models to represent
the hemodynamics at different vascular scales to complement other forms of measurements.
There is now a widespread recognition that mathematical models can provide an additional
understanding of the mechanisms involved in CVDs.

One way of obtaining information on the cardiovascular system is by studying the pres-
sure and flow waveforms. Pulse waves of pressure and flow rate in the arterial system can be
correctly captured by reduced-order models of blood flow. By analyzing and modeling flow
waveforms, we can deduce important vascular features even in regions of the network inacces-
sible to visualization techniques or given easily-obtained routine hemodynamic information.
These models are attractive because of the good compromise between modeling complexity
and computational resources.
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1.4 Mathematical models

Understanding and predicting the wave dynamics in the network of vessels is crucial in hemo-
dynamics and mathematical models are of great clinical relevance. The mathematical model-
ing of the various functions of the cardiovascular system is an incredibly challenging problem
because of the difference in space and time scale of the mechanisms involved. It is then useful
to identify a hierarchy of models, each suited for a different type of investigation or different
parts of the system.

In the following, we present a brief literature review on the different blood flow models,
experimental and numerical, inspired by [9, 15, 18]. We however only focus on mechanical
approaches which mean that we discard the biologic exchanges, the chemical interactions,
and all other phenomena that are not mechanical.

1.4.1 In vitro models

Etienne-Jules Marey contributed to the understanding of the pulse wave propagation with
his sphygmograph (Figure 1.2 right) that allowed him to accurately measure and analyze
the waves. To complement these measured data, he developed in vitro models of the heart
(Figure 1.8 left) and the arterial circulation (Figure 1.8 right) to provide new insights on the
mechanical principles of the cardiovascular system.

Since then, in vitro circulation models have been used to reproduce in vivo conditions as
in [19] in which the authors built a 1:1 scale model of the heart and the 28 main arteries.
In [20], the authors also built a 9-artery network to study the propagation and reflection of
the pulse waves and the effects of viscosity and viscoelasticity1. A similar approach is car-
ried in [21,22] in a 37-artery network, and the results are compared to numerical blood flow
models. Numerous experimental studies focused on modeling the detailed flow field in areas
sensitive to arterial diseases such as arterial bifurcations [20,23–25].

These in vitro models allow reproducing data in unavailable locations of the arterial
network and are particularly useful to validate numerical blood flow models that we present
in the following.

1.4.2 Three-dimensional Navier-Stokes models

Any numerical model of blood flow in the arteries is based on Fluid-Structure Interaction
(FSI) methods where the fluid dynamics and flexible wall movement equations are coupled. In
these models, blood flow is governed by the three-dimensional (3D) incompressible Navier-
Stokes equations. In this approach, the wall deformation usually obeys a visco-elastic law
relating strain et stress even though the arterial wall mechanics is far more complex [26].
The system coupling the fluid and solid equations has been solved with many different FSI
resolution methods [27–30].

1. during a stay at Doshisha University in Japan, we studied how to build these models.
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Figure 1.8 – Two experimental machines of the cardiovascular system built by Etienne-Jules
Marey from [31]. Left: machine modeling the heart contraction from "Du mouvement dans
les fonctions de la vie". Right: machine modeling the blood flow in the systemic circulation
from "Travaux du laboratoire Marey".

Some studies also introduce turbulence models in the 3D Navier-Stokes equations, for
instance k-ε or LES models, to correctly capture the flow in the heart [32], in particular after
the aortic valve, and in the ascending aorta [33] and because it may appear in a variety of
pathophysiological effects [34] such as stenoses [35] or aneurysms [36].

The 3D approach enables a complete description of all relevant scales but is usually re-
stricted to small regions of the systemic circulatory system [37,38] for instance bifurcations,
aneurysms, or stenoses. Based on medical imaging, a 3D FSI patient-specific simulation of
the large arteries of the whole body was performed [39]. While this simulation provides many
details of the flow field in a patient-specific geometry, it is very expensive to compute. More-
over, it requires a large number of parameters, which cannot necessarily be measured but
highly influences the results of the simulation.

Despite the work proposed in [39], 3D blood flow models remain difficult to apply in an
extended network of vessels. The computational and modeling costs of the 3D approach are
high, making it inadequate for real-time medical applications. Multiscale approaches have
developed and consist of coupling a 3D model to simpler reduced-order models that describe
the pulse wave propagation in the rest of the vascular tree. These reduced-order models, such
as zero-dimensional (0D) and one-dimensional (1D) models, are cost-effective alternatives to
3D FSI models.
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1.4.3 Two-dimensional models

Two-dimensional (2D) models are not the most common when it comes to modeling blood
flow. In the case of arteries, we can consider the vessel as an axisymmetric tube and solve
the 2D axisymmetric Navier-Stokes equations as in [40].

1.4.4 Simplified two-dimensional models

The long-wavelength hypothesis is appropriate in the case of arteries and allows simplify-
ing the 2D equations. This assumption leads to the Reduced Navier-Stokes Prandtl (RNSP)
equations which are a rich dynamic system of equations able to describe many asymptotic
flow regimes in rigid tubes [41–43]. This model has mostly been computed in steady condi-
tions in stenoses [41,44].

Recently, some interest has been drawn to simplified 2D models with the development of
a new approach based on the multi-layer model for the shallow water equations [45]. This
model, called the Multi-Ring model, introduced by Ghigo in 2017 [46], solves the RNSP
equations in an artery divided in rings. It has only been used in few studies to compute the
pressure drop in a stenosis [47, 48], i.e. a constriction of the lumen of an artery, with more
accuracy than the classical 1D model.

1.4.5 One-dimensional models

The 1D equations are the next level of simplifications and are obtained by averaging the long-
wavelength Navier-Stokes equations over the cross-section of the artery. In the integration
process, only the radial dependency is lost, therefore, they account for pulse wave propaga-
tion and reflection in the arterial network which are important phenomena for understanding
cardiovascular hemodynamics [15].

Euler introduced the 1D equations for the conservation of mass and the continuity of mo-
mentum in 1775 in his essay "Principia pro motu sanguinis per arterias determinando" (On
the flow of blood in the arteries) [49] with the intent of describing blood flow in the human
arteries. He was however unable to solve the equations and thus did not recognize the wave
characteristics of the system. Riemann did not directly work on arterial mechanics or waves
in elastic tubes, but he made an important contribution to the subject when he published the
method of characteristics and a general solution for hyperbolic systems of partial differential
equations in 1860. Since then, the advances in computer science allowed solving the equations
numerically and efficiently using a wide variety of numerical methods [50–54].

We find in the literature variations of the 1D model, detailed in [55], in particular on: 1)
the incorporation of a Left Ventricle (LV) model studying the ventricular-vascular coupling
effects, 2) the completeness of the systemic arterial tree (9-artery to 107-artery networks)
including the venous circulation, 3) a detailed description of the cerebral, coronary, and pul-
monary arteries, 4) the inclusion of the wall hyperelastic or viscoelastic properties, 5) the
approximation of the Wall Shear Stress (WSS), 6) the boundary conditions. Indeed, to ob-
tain physiological waveforms from the 1D model, the boundary conditions have to be realistic
to reproduce the influence of the capillary bed [56–58], the heart mechanics [54, 59] and ve-
nous circulation [14] must be taken into account, and the flow in the bifurcations must be
accurate [60,61].
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The 1D models have been extensively applied to the main systemic arteries [22,55,62–67]
(Figure 1.9a), the entire cardiovascular system [14,54], the cerebral arteries [68–70], the pul-
monary circulation [71]. The 1D model has been used in many different medical configurations
for instance to study the influence of stenoses or aneurysms [48, 50, 53], to model or predict
surgical outcome [67, 72], in humans [11], and animals [73]. In time, the goal is to integrate
the numerical prediction of the 1D model in routine clinical practice to provide information
on pressure and flow waveforms and vascular features that cannot be obtained otherwise.

(a) (b)

Figure 1.9 – (a) A one-dimensional (1D) representation of the arterial systemic circulation
from [52]. Frequently, the outlet of the 1D arteries is a 0D Windkessel model. (b) A zero-
dimensional (0D) representation of the arterial systemic circulation from [74] as an electrical
circuit analogy. Each block represents an artery and is modeled by a 0D Winkdessel model.

1.4.6 Zero-dimensional models

The 0D models, also called lumped parameter models, are the simplest approach to describe
blood flow. They are derived by averaging the blood flow equations over all spatial dimensions
and can be interpreted as an electrical analogy where voltage is assimilated to pressure and
current to flow rate. In this integration process, the axial and radial dependencies are lost
hence the 0D models can only describe the relationship between the inlet and outlet pressure
and flow rate. In this electrical analogy, the models are composed of resistors, capacitors, and
inductors each modeling the resistive, compliant, and inertial effects.

The first and universal model is the Windkessel model [75], introduced by Frank [76] in
his paper of 1899 "Die Grundform des Arteriellen Pulses" (The basis of arterial pulses). He
considered the arteries as a single compliant compartment and used the conservation of mass
to analyze their change of volume during diastole. The Windkessel model theory is particu-
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larly successful to describe the pressure variations during diastole but fails to reproduce the
systolic pressure. The other drawback of the Windkessel model and 0D models in general, is
that, conversely to 1D models, they discard the wave propagation and reflections which play
an important role during systole and are crucial to understanding hemodynamics. They how-
ever provide valuable information for medical diagnosis at low computational and modeling
cost [67,77].

To overcome the limitations, 0D models of one artery, similar to the Windkessel were
introduced and connected together to form an electrical analogy of the systemic arterial net-
work (Figure 1.9b) [74, 78, 79] composed of resistors, capacitors, and inductors. This model
was able to reproduce the behavior observed in an in vivo system.

The 0D models have also been applied [80, 81] to describe the flow of blood in the
heart [14, 59, 65, 82] and other organs [12], and to create models of the cerebral arterial
network [69]. The most important use of the 0D models is to characterize the microcircula-
tion at the outlet of 3D FSI models [29,83] and 1D network models [22,58,72].

1.5 Aims and outline of the thesis
Considerable efforts have been made on developing high-performance and efficient resolution
algorithms for all reduced-order models presented below such that now, they can be com-
puted within minutes, a relevant order of magnitude for medical diagnosis. The models have
also been extensively tested and validated against analytic, linear, and asymptotic solutions,
in vitro and in vivo measurements.

Generally, all the models have their advantages and drawbacks. The Multi-Ring and the
steady RNSP models are good compromises between complexity, computational resources,
and precision. The 1D model is indisputably successful when it comes to predicting pressure
and flow waveforms. The 0D models are relevant to identify global and constant vascular fea-
tures or as boundary conditions models. Each model is suited for particular medical scenarios
depending on the clinical issue and the scale of the results we are seeking. The goal of this
thesis is thus to use the appropriate reduced-order models to provide a diagnosis, predictive
or decision-making tool for clinicians in different medical scenarios.

One of the remaining challenges when using mathematical models of the cardiovascular
system regardless of the scale is their dependence on a wide range of parameters whether
they are model or physiological parameters. The goal of carrying patient-specific computa-
tions cannot be attained without this patient-specific information. Therefore, in this thesis,
we focus on using efficient techniques of parameter estimation to identify properties of the
cardiovascular system and thus make patient-specific diagnosis or prediction.

The following manuscript is divided into two parts. Part I, that includes Chapters 2 to
5, focuses on the modeling, theoretical and methodological aspects used in the second part.
Part II deals with the medical applications of the models and methods described in the first
part.

• Chapter 2 deals with the derivation of the blood flow equations to obtain four reduced-
order models used in the following chapters. We detail the assumptions on the arterial

29



wall behavior, on the fluid rheology, flow symmetries, and closure hypotheses to obtain
a hierarchy of combined fluid-solid reduced-order models. We derive two laws for the
arterial wall: an elastic and a visco-elastic law, and four models for the fluid: the steady
RNSP model, the Multi-Ring model, the 1D model, and the 0D model.

• Chapter 3 presents hyperelastic arterial wall models. Similarly to Chapter 2, we derive
three hyperelastic laws to characterize the arterial wall mechanics from the literature.
We then propose to combine them to the 1D model of Chapter 2 and compare the wave
propagation in an artery with the classic elastic model of Chapter 2.

• Chapter 4 focuses on the methods used in this thesis. As the models are non-linear and
do not have analytic solutions, we solve them numerically using appropriate resolution
schemes that we detail in this chapter. We also present optimization methods: we re-
view the methods of the literature and detail the ones used in the medical applications
of Part II to estimate the model parameters.

• Chapter 5 consists of testing the model hypotheses against analytic solutions and
experimental data. First, we compare the models to analytic solutions from the lit-
erature: the entry effect and the Womersley solution. Second, we carry experimental
measurements in artificial arteries to validate the Multi-Ring and 1D models in two
configurations: a network of nine artificial arteries and an artery with a stenosis, i.e. a
narrowing of the cross-section.

• Chapter 6 describes how we use the reduced-order models to assess non-invasively
the pressure drop across a stenosis using 4D Flow MRI. We present the measurement
techniques that are: the invasive catheterization to validate the models, and the 4D
Flow MRI to obtain the geometrical and flow properties of the stenosis. We model an
idealized stenosis using the steady RNSP, the Multi-Ring, the 1D, and the 0D model
and compare the model against the invasive data.

• Chapter 7 presents a 0D network model of the arm to study the impact of the creation
of an Arterio-Venous Fistula (AVF) which is a connection between an artery and a vein
performed to purify the blood in case of renal insufficiency. The procedure can lead to
the formation of stenoses and thus we investigate the evolution of the AVF using the
0D network model and the 1D model.

• Chapter 8 presents a comparison between experimental data and reduced models to
study the impact of aortic cross-clamping during surgery on the vascular mechanics.
We study and compare the 1D model, the 0D Windkessel model, and arterial waveform
analysis to identify the changes in the vascular parameters during this procedure.

• Chapter 9 describes the study of pulmonary hypertension. We present the invasive
Swan-Ganz catheter and the non-invasive measurements in different locations of the
pulmonary network. We review and develop a pulmonary valve model that we combine
with the 1D model. Similarly to Chapter 8, we also use the 0D Windkessel model to
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evaluate the resistance, compliance and diastolic time-constant in patients with pul-
monary hypertension.

• Chapter 10 summarizes the main result of the thesis and discusses the short and long-
term perspectives of the present work.

The manuscript also includes supplementary material in the Appendices that include:

• Appendix A describes the Kálmán filter algorithm which can be used a parameter
estimation strategy that we test on the damped harmonic oscillator equation.

• Appendix B presents supplementary results of the experimental measurements car-
ried in the artificial arteries presented in Chapter 5.

• Appendix C gives additional information about the statistical analysis and the full
parameter estimation results of each patient for the study of aortic cross-clamping of
Chapter 8.

31



32



Part I

Modeling and theory

Understanding and predicting the hemodynamics and mechanisms involved
in cardiovascular pathologies is of great clinical relevance. Mathematical blood
flow models constitute a suited alternative to invasive measurements, data anal-
ysis methods, and medical imaging techniques. To be used as predictive tools for
patient-specific studies, blood flow models need to be computed in real medical
time, typically the diagnosis time. A series of assumptions on the flow symme-
tries, the rheological properties of blood or the arterial wall and the geometry of
the arteries allow deriving reduced-order models that can be solved numerically
in a few minutes. Currently, the classical arterial wall models do not account for
the non-linear behavior of the arterial wall and thus requires a novel hyperelastic
approach. The main drawback of the mathematical models in general is their de-
pendence on a large number of parameters, weather they are physical or modeling
parameters, that usually cannot be assessed through routine clinical monitoring
or procedures, hence the interest of optimization methods to estimate patient-
specific parameters. As stated above, all these blood flow models are based on
a series of hypotheses and numerical approximations, validation against analytic
solutions and experimental measurements is necessary.
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2 Blood Flow Models

Mathematical blood flow modeling is now considered as a relevant alterna-
tive to invasive measurements to study cardiovascular pathologies. Reduced-order
models allow computing the flow in real medical time but the underlying hypothe-
ses must be carefully justified. We start by detailing the assumptions on the ar-
terial wall behavior and geometry to obtain two wall models, first an elastic and
second a viscoelastic model. We then discuss the hypotheses on the fluid rheology,
flow symmetries, and closure hypotheses to obtain step by step the 2D axisym-
metric Navier-Stokes equations, the RNSP model, the Multi-Ring model, the 1D
model, and finally the 0D model. We also present the order of magnitudes of all
the variables involved in blood flow in the centimeter, gram, second (CGS) unit
system. None of these models are original however, the derivation step by step in
this way is uncommon.

Keywords: Navier-Stokes Equations, Reduced Navier-Stokes Prandtl model, Multi-Ring
model, one-dimensional model, zero-dimensional model, arterial wall.
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2.1 Introduction

In Chapter 1, we reviewed the different existing models for studying blood flows in the arter-
ies and presented the main limits of the complex models. The purpose of the present chapter
is to derive synthetically the reduced-order models used in this work from the conservation
laws of mechanics.

From continuum mechanics and geometrical assumptions, we describe a simplified arterial
wall model in Section 2.2. In Section 2.3, we assume a few weak hypotheses on the behavior
of blood flow in the large arteries to obtain four reduced-order models of different levels of
complexity. The analysis is led with a purely mechanical approach thus we discard the ther-
mal, chemical, and biological phenomena.

We also present the orders of magnitude of the variables of interest. We use the centime-
ter, gram, second (CGS) unit system, frequently used to describe the cardiovascular system:
the characteristic length scale of the large artery is about 1 − 20 cm, the time scale is the
heartbeat, typically 60 Beat Per Minute (BPM), corresponding to 1 s per beat and finally
the blood density is about 1 g/cm3. The choice of CGS units is in fact a hidden adimension-
alization because space and time are of the order of one of these units.

2.2 Derivation of the linear solid equations

We follow [84] to derive a simplified model of the arterial wall. We start by detailing the
hypotheses on the geometry and mechanical behavior of the wall in Section 2.2.1. In Section
2.2.2, we derive an elastic model of the arterial wall mechanics. And later in Section 2.2.3, we
add a viscoelastic component to the previous law to obtain a Kelvin-Voigt viscoelastic model
of the arterial wall.

2.2.1 Simplifying hypotheses for arterial walls

Material hypotheses

The arterial wall is composed of three layers. The inner layer is called the intima, com-
posed of endothelial cells, the medium layer, the media, is composed of smooth muscle cells
and fibers and the outer layer of collagen fibers each separated by elastic membranes, as
represented in Figure 2.1.

We choose to describe the arterial wall as a homogeneous, isotropic, and isothermal ma-
terial. The arterial wall does not actually respond to any of these criteria, however these
assumptions are necessary for the study of reduced-order models.

Axisymmetric cylinder

We model the artery as a thin, long axisymmetric cylinder of length L and reference ra-
dius R0 as represented in Figure 2.2. This is a crude approximation considering the structure
of blood vessels and the presence of external tissues.
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Figure 2.1 – Drawing of the three layers of the arterial wall. Image found here.

Thin wall

The thickness of the arterial wall is of the order of 0.05 cm, approximately 10 times smaller
than the typical radius of large arteries. We therefore assume that the arterial wall is thin,
i.e. h

R0
� 1.

L

h

R0

p

pext

�!n

�!n

Figure 2.2 – Schematic representation of a part of the thin arterial wall of length L, radius
R0, and thickness h. pext and p represent respectively the external and internal pressure
applied to the wall.

Small displacement

We consider that the wall displacement is small, which is a weak hypothesis in physiolog-
ical conditions, and thus assume that the strain tensor ε writes as
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ε = 1
2
(
∇u +∇uT

)
, (2.1)

with u the wall displacement (not to be confused with the velocity that we refer to as
V = (ur, uθ, ux)). As the displacement in the axial direction is very small compared to the
length of the artery, we consider that the axial strain is negligible i.e. εxx = 0.

In the following, we first investigate the purely elastic case and then add a viscoelastic
component.

2.2.2 Purely elastic arterial wall

Considering the artery as a linear elastic material (Figure 2.3a), the Cauchy stress tensor σ
and the strain tensor ε are related through Hooke’s law

σ = λwtr(ε)I + 2µwε, (2.2)

where λw and µw are the Lamé coefficients of the wall. The strain stress relation (2.2) can
also be written as

ε = −νw
E

tr(σ)I + 1 + νw
E

σ (2.3)

where E is Young’s modulus and νw the Poisson coefficient. Assuming a quasi-static equilib-
rium, we obtain the following momentum equation

div(σ) = 0. (2.4)

We also assume that the pressure is the only significant component of the stress applied to
the internal and external sides of the artery consequently we add the two following boundary
conditions

{
σ·n = −pn in r = R

σ·n = −pextn in r = R+ h,

(2.5a)
(2.5b)

where p and pext are respectively the internal and external pressures (Figure 2.2). Combining
Hooke’s law (2.2) with the momentum equation (2.4) and the previous hypotheses, we obtain

(λw + 2µw)∇(div(u))− µwrot(rot(u)) = 0. (2.6)

The classical approach to solve Equation (2.6) which respects symmetries is to choose a
kinematically admissible displacement field of the following form

u = rf(r)er + g(x)ex, (2.7)

which allows obtaining the expression of the Cauchy stress tensor σ. Using the thin wall
assumption, the following Taylor expansion

r = R0

(
1 + h

R0
r̄

)
with r̄ = O(1)

R = R0

(
1 + h

R0
R̄

)
with R̄ = O(1)

(2.8a)

(2.8b)
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and keeping the O(1) terms, we can derive these relations into
σrr = p

(
(r̄ − R̄− 1)− pext

p
(r̄ − R̄)

)
σθθ = pR0

h

(
1− pext

p

) (2.9a)

(2.9b)

which indicates that σrr � σθθ since h� R0. We use Hooke’s law (2.2) to link σ and ε which
gives 

εθθ = 1
E

(σθθ − νwσxx),

εxx = 0 = 1
E

(σxx − νwσθθ).

(2.10a)

(2.10b)

and finally leads to
σθθ = E

1− ν2
w

εθθ, (2.11)

which is a linear relation between stress and deformation through the Young’s modulus E.

Combining Equations (2.9b) and (2.11), we obtain

R0
h

(p− pext) = E

1− ν2
w

εθθ. (2.12)

We note that εθθ = ur
r
, which in r = R gives εθθ = R−R0

R
, and leads to the well-known

elastic relation

p− pext = E

1− ν2
w

h

R2
0
(R−R0), (2.13)

which is usually written as a function of the cross-section A and the reference cross-section
A0

p− pext = K
(√

A−
√
A0
)
, (2.14)

with K the parameter characterizing the rigidity of the arterial wall

K = E

1− ν2
w

√
πh

A0
. (2.15)

In Equation (2.14), the reference cross-section A0 can depend on the x-position and thus

p(x, t)− pext = K(x)
(√

A(x, t)−
√
A0(x)

)
, (2.16)

where the parameterK can thus also depend on the x-position. We often assume that pext = 0
for simplicity.

Equation (2.16) describes the arterial wall as an elastic spring as represented in Figure
2.3a. However, this elastic approach cannot reproduce the mechanical behavior of such a
complex material as the arterial wall [73]. Therefore, in the following section, we present a
more realistic model of the arterial wall by adding a time-dependence response of the wall.
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2.2.3 Viscoelastic arterial wall

As the arterial wall displays both an elastic and a viscous behavior [85, 86], we take into
account the wall viscosity. We include the viscoelastic behavior of the arterial wall adding a
linear Kelvin-Voigt model [16, 22, 86] defined by an elastic spring assembled in parallel with
a dashpot, as represented in Figure 2.3b. Equation (2.12) becomes

(1− ν2
w)R0

h
(p− pext) = Eεθθ + φε̇θθ, (2.17)

with φ the viscoelastic coefficient. The difference between the internal and external pressure
is now also balanced by the time-derivative of the deformation ε̇θθ. This model [22] allows
deriving a new state law linking the pressure and the cross-section as

p− pext = K
(√

A−
√
A0
)

+Kν
∂A

∂t
, (2.18)

with Kν the following viscoelastic coefficient

Kν = φ

1− ν2
w

√
πh

2
√
A0

1
A
. (2.19)

Note that, unlike the elastic coefficient K from Equation (2.15), the coefficient Kν is non-
linear as it also depends on the cross-section A.

(a) (b)

Figure 2.3 – Schematic representation of the arterial wall model. (a) Elastic model with an
elastic spring proportional to E, (b) Kelvin Voigt viscoelastic model composed of an elastic
spring proportional to E and a dashpot proportional to φ.

This kind of model was used in multiple studies, for instance [13, 51, 63, 67], as the level
of complexity is still manageable compared to the elastic model of Equation (2.16) and gives
more physiological predictions when comparing against experimental data [73]. In this chap-
ter, we derived the relations with a linear approximation, we will see in Chapter 3 how to
rigorously introduce non-linear terms.

Here, we demonstrated with a mechanical approach how to derive the relation (2.18) by
the linear approximation, however the coefficients K and Kν are ad hoc and do not have real
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Table 2.1 – Orders of magnitude of the "solid" variables defined Section 2.2. E: Young’s
modulus in g·cm−1·s−2, νw: Poisson coefficient, R0: artery radius in cm, h: arterial wall thick-
ness in cm, K: elastic coefficient defined in Equation (2.15) in g·cm−2·s−2, Kν : viscoelastic
coefficient defined in Equation (2.19) in g·cm−3·s−1.

E νw R0 h K Kν

0.4 - 1.6 ·107 0.5 0.5 0.1 1·106 2·104

physiological meaning. In fact, the vessels are surrounded by tissues that also interact with
the arteries and contribute to the values of these coefficients.

The orders of magnitude of the parameters introduced in this section are reported in
Table 2.1.

Now we investigate the models for the flow inside the artery.

2.3 Derivation of the fluid equations

We present here four reduced-order models for blood flow modeling that will be used in the
next chapters: the steady Reduced Navier-Stokes Prandtl (RNSP) model, the unsteady RNSP
named the Multi-Ring model, the one-dimensional (1D) model, and the zero-dimensional
(0D) model. All these models derive from the Navier-Stokes equations with some typical
hypotheses for the large arteries that we describe in Section 2.3.1. From these assumptions,
in Section 2.3.2, we simplify the fluid equations into a two-dimensional (2D) model called the
RNSP model. In Section 2.3.3, we average the RNSP model to obtain a 2D hybrid model
named the Multi-Ring model. In Section 2.3.4, we derive the classical 1D model, and finally
in Section 2.3.6, we average the previous one to obtain the simplest 0D model. We introduce
here a hierarchy of models from complicated to simple with introduction step by step of the
simplifications.

2.3.1 Simplifying hypotheses for blood flows in arteries

Laminar flow

We assume that the flow in the large arteries is laminar. The Reynolds number based on
the mean velocity is well below 2000 in the majority of arteries in normal conditions (Table
2.3). However, in the aorta, the peak Reynolds number through the aortic valve can reach
10,000 [87], which is characteristic of a turbulent flow. The k-ε turbulence model, which is
one of the most common in fluid mechanics, is not relevant in this case, large eddy simulation
(LES) models may improve the large peak flow description [32].

Homogeneous Newtonian fluid

Blood is a complex fluid constituted of three types of blood cells (erythrocytes, leuko-
cytes, and platelets) suspended in plasma [88]. Plasma usually behaves like a Newtonian fluid
of dynamic viscosity µ = 1.2·10−2 g·cm−1·s−1. The erythrocytes, or Red Blood Cell (RBC),
occupy about 45% (level of hematocrit = 0.45) of the blood volume and thus dominate the
rheological behavior of the blood. The dimension of a RBC is of the order of a few µm. The
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leucocytes, also called white blood cells, are far less numerous than the RBCs and thus have a
marginal influence on the properties of blood. Finally, platelets are 10 times less frequent than
the RBC. Each constituent of the blood contributes to its apparent viscosity in particular the
shear rate, the hematocrit, the temperature, and the plasma viscosity [89]. Overall, in the
large arteries, the cells are about four orders of magnitude smaller than the average vessel size.

White blood cells

Red blood cells

Platelet

⇠ 0.8 cm

⇠ 8 µm

⇠ 15 µm

⇠ 2 µm

Artery

Figure 2.4 – Composition of blood and typical dimensions of blood cells. Image found here.

Figure 2.5 – Casson diagram from [90] based on experimental measurements of blood at
different levels of hematocrit (a normal level of hematocrit in healthy humans is 45%). The
diagram represents the shear stress τ as a function of the shear rate γ̇ (Equation (2.20)).

Because of the blood composition, many studies have investigated blood as a non-Newtonian
fluid that exhibits shear-thinning, viscoelastic, and thixotropic behaviors [91]. Experimental
measurements show that blood follows the Casson law [10, 90] that links the shear stress τ
to the shear rate γ̇ through

τ1/2 = τ
1/2
0 + f(γ̇1/2) (2.20)

as represented in Figure 2.5.
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Considering blood as a non-Newtonian fluid is indeed relevant in recirculation areas such
as stenosis or aneurysm in which low shear regimes are reached, however in most healthy
large arteries, the average shear rate is high enough (γ̇ > 10 s−1) to consider blood as a ho-
mogeneous and Newtonian fluid with constant viscosity. Indeed, from Figure 2.5, we observe
that for γ̇ > 10 s−1, the shear stress is linear, the slope is thus the viscosity of blood µ of
about 3− 5·10−2 g·cm−1·s−1.

Incompressible flow

The compressibility of a flow is characterized by the Mach number Ma that measures
the ratio between the velocity of the flow and the velocity of sound in the fluid. A flow is
incompressible if Ma < 0.3. Because the velocity in the arteries rarely exceeds a few meters
per second, the velocity of sound in the water ≈ 1500 m/s, the Mach number is small and
we can consider that blood flow is incompressible. The motion of blood in arteries with all
the previous approximations is thus governed by the three-dimensional (3D) incompressible
Navier-Stokes equations


∇ ·V = 0,

ρ

(
∂V
∂t

+ (V · ∇)V
)

= −∇p+ µ∇2V,

(2.21a)

(2.21b)

where V is the fluid velocity vector, p the fluid pressure, ρ the density and µ the dynamic
viscosity. Typical values for blood are reported in Table 2.4

Long-wavelength

In the large arteries, the wavelength of the pulse wave is much larger than the character-
istic diameter. Indeed, the Moens Korteweg celerity c is of order 102 cm/s [92, 93] (Section
2.3.5), the heart period Tc is around 1 s. The axial wavelength of the pulse wave is then
λ = cTc ≈ 102 cm, which is much larger than 1 cm, the characteristic diameter of a large
artery.

Axisymmetric flow

Following the geometrical simplifications proposed in Section 2.2, we consider that the
flow is axisymmetric and thus use the cylindrical coordinate system V = (ur, uθ, ux). This
assumption leads to ∂/∂θ = 0 and we can also assume that the tangential velocity uθ is
negligible to simplify Equations (2.21) into



1
r

∂rur
∂r

+ ∂ux
∂x

= 0,

∂ur
∂t

+ ur
∂ur
∂r

+ ux
∂ur
∂x

= −1
ρ

∂p

∂r
+ ν

(
1
r

∂

∂r

(
r
∂ur
∂r

)
− ur
r2 + ∂2ur

∂x2

)
,

∂ux
∂t

+ ur
∂ux
∂r

+ ux
∂ux
∂x

= −1
ρ

∂p

∂x
+ ν

(
1
r

∂

∂r

(
r
∂ux
∂r

)
+ ∂2ux

∂x2

)
,

(2.22a)

(2.22b)

(2.22c)

where ν is the kinematic viscosity of blood.
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2.3.2 The Reduced-Navier-Stokes Prandtl

We reduce the system of Equations (2.22) by evaluating the importance of each of the terms
and introduce the dimensionless variables of Table 2.2.

Table 2.2 – Dimensionless variables to adimensionalize Equation (2.22).

t = Tct̄

r = R0r̄

x = λx̄ with λ = cTc

ur = Urūr

ux = Uxūx

p = p0 + Πp̄

We define a small parameter, called the long wave parameter, ελ = R0
λ
� 1 that measures

the ratio between the characteristic radius and the wavelength. We adimensionalize the system
(2.22) as



[
Ur
ελUx

] 1
r̄

∂r̄ūr
∂r̄

+ ∂ūx
∂x̄

= 0,

∂ūr
∂t̄

+
[
Ur
ελc

]
ūr
∂ūr
∂r̄

+
[
Ux
c

]
ūx
∂ūr
∂x̄

= −
[ Π
ρελUrc

]
∂p̄

∂r̄

+
[
νTc
R2

0

](1
r̄

∂

∂r̄

(
r̄
∂ūr
∂r̄

)
− ūr
r̄2 +

[
ε2λ

] ∂2ūr
∂x̄2

)
,

∂ūx
∂t̄

+
[
Ur
ελc

]
ūr
∂ūx
∂r

+
[
Ux
c

]
ūx
∂ūx
∂x̄

= −
[ Π
ρUxc

]
∂p̄

∂x̄

+
[
νTc
R2

0

](1
r̄

∂

∂r̄

(
r̄
∂ūx
∂r̄

)
+
[
ε2λ

] ∂2ūx
∂x̄2

)
.

(2.23a)

(2.23b)

(2.23c)

According to the principle of least degeneracy [94], we keep the leading order terms in
Equations (2.23) and in particular in the mass conservation Equation (2.23a), we keep both
terms which gives

Ur = ελUx, (2.24)

and considering the long-wavelength hypothesis ελ � 1, we obtain that the radial velocity
is much smaller than the axial velocity Ur � Ux. The principle of least degeneracy [94] also
states that the pressure gradient must balance the inertial terms in Equation (2.23c) which
leads to Π = ρUxc.

The typical mechanical approach to deal with the type of equations (2.23) is to define
dimensionless parameters to compare the importance of each term. Thus we define the Shapiro
number Sh

Sh = Ux
c
, (2.25)

that characterizes the importance of nonlinear effects. As Ux is generally comprised between 0
and 100 cm/s in the large arteries, the typical range for the Shapiro number is between 0 and
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1. It highlights that the non-linear effects are small compared to the pressure and unsteady
terms. It can be seen as the equivalent of the Mach number for blood flows.

We also introduce the Womersley number α that describes the competition between un-
steady and viscous effects

α = R0

√
ω

ν
(2.26)

with ω = 2π/Tc. With the values reported in Table 2.3, we obtain a Womersley number
between 0 and 10 in the large arteries. The values of the Womersley number show that in the
aorta the inertial effects dominate compared to the viscous effects unlike in the capillaries
where the viscosity controls the flow. So for low values of the Womersley number we observe
a quasi-static Poiseuille profile. In average arteries, both effects are important as α has an
intermediate value.

The Womersley and Shapiro numbers allow rewriting the Equations (2.23) as



1
r̄

∂r̄ūr
∂r̄

+ ∂ūx
∂x̄

= 0,
∂ūr
∂t̄

+ Sh

(
ūr
∂ūr
∂r̄

+ ūx
∂ūr
∂x̄

)
= − 1

ε2λ

∂p̄

∂r̄

+ 1
α2

(
1
r̄

∂

∂r̄

(
r̄
∂ūr
∂r̄

)
− ūr
r̄2 +

[
ε2λ

] ∂2ūr
∂x̄2

)
,

∂ūx
∂t̄

+ Sh

(
ūr
∂ūx
∂r

+ ūx
∂ūx
∂x̄

)
= −∂p̄

∂x̄

+ 1
α2

(
1
r̄

∂

∂r̄

(
r̄
∂ūx
∂r̄

)
+
[
ε2λ

] ∂2ūx
∂x̄2

)
.

(2.27a)

(2.27b)

(2.27c)

Equations (2.27b) can be simplified by keeping only the O(1) terms since the small pa-
rameter ελ appears in front of the pressure term. Similarly, we reduce (2.27c) with ελ � 1
which finally gives

1
r̄

∂r̄ūr
∂r̄

+ ∂ūx
∂x̄

= 0,

0 = −∂p̄
∂r̄
,

∂ūx
∂t̄

+ Sh

(
ūr
∂ūx
∂r

+ ūx
∂ūx
∂x̄

)
= −∂p̄

∂x̄
+ 1
α2

(1
r̄

∂

∂r

(
r̄
∂ūx
∂r̄

))
.

(2.28a)

(2.28b)

(2.28c)

The set of Equations (2.28) is called the dimensionless Reduced Navier-Stokes Prandtl
equations (RNSP) [41] and was originally derived by Prandtl in [95]. The system can also be
found in the literature in the following form with dimensions:

1
r

∂rur
∂r

+ ∂ux
∂x

= 0,

0 = −1
ρ

∂p

∂r
,

∂ux
∂t

+ ur
∂ux
∂r

+ ux
∂ux
∂x

= −1
ρ

∂p

∂x
+ ν

(1
r

∂

∂r

(
r
∂ux
∂r

))
.

(2.29a)

(2.29b)

(2.29c)
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Table 2.3 – Womersley and Reynolds numbers depending on the location in the arterial
network. R0: radius in cm, α: Womersley number (dimensionless), Re: Reynolds number
(dimensionless).

R0 α Re

aorta 1 10 4000
large arteries 0.4 4 1000
small arteries 0.1 1 100
arterioles 0.01 0.1 0.5
capillaries 0.001 0.01 0.03

We add the material interface and axisymmetric boundary conditions



ur = 0 in r = 0,
∂ux
∂r

= 0 in r = 0,

ur = ∂R

∂t
in r = R,

ux = 0 in r = R.

(2.30a)

(2.30b)

(2.30c)

(2.30d)

From the RNSP equations (2.29), we can decline two particular models. The first one
consists of removing the unsteady term from the x-momentum Equation (2.29c) supposing a
rigid wall similarly to [41], which we refer to as the steady RNSP model. The second consists
of coupling Equations (2.29) with an elastic arterial wall, for instance with Equation (2.18),
similarly to [46], which we refer to as the Multi-Ring model.

2.3.3 Multi-Ring model

The full reduced model for long wave approximation of the flow is the RNSP model, that
we can couple to the elastic wall. The equations for the flow are then the incompressibility
Equation (2.29a), the constant pressure across the flow (2.29b), the longitudinal momentum
conservation Equation (2.29c) plus the no-slip boundary conditions (2.30c) and (2.30d), and
the symmetry at the center boundary conditions (2.30a) and (2.30b). Finally, the Equations
for the solid are (2.18). As we will discuss in Section 2.3.4, once integrated over the cross-
section, this system gives the 1D model with no extra hypotheses.

But the problem of the numerical resolution of System (2.29)-(2.30) + the arterial wall
model (2.18) is not so simple. A first resolution has been proposed by Ling and Atabeck [96]
with some approximations, and another one is proposed later in [43]. The recent Multi-Ring
model derived in [46] to introduce the elasticity of the arterial wall is a consistent numerical
approximation of this system with an interpretation in "rings". The model was inspired by
the Multilayer model [45] for the Saint-Venant equations in shallow water flows (see [97] for
details and bibliography).

The flow is solved by decomposing the fluid domain into concentric rings. Each ring n
is characterized by a width hn = Rn+ 1

2
− Rn− 1

2
. The cross-section of each ring An and the
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average flow rate in the ring Qn are defined as


An =

∫ 2π

0

∫ R
n+ 1

2

R
n− 1

2

rdrdθ,

Qn =
∫ 2π

0

∫ R
n+ 1

2

R
n− 1

2

uxrdrdθ.

(2.31a)

(2.31b)

We can write the Equations (2.29) in terms of the averaged quantities An and Qn on each
ring n


∂An
∂t

+ ∂Qn
∂x

= Gn+ 1
2
−Gn− 1

2
,

∂Qn
∂t

+ ∂

∂x

[
ψn

Q2
n

lnA

]
+ An

ρ

∂p

∂x
= SM,n + Sf,n.

(2.32)

The parameter ψn is the nonlinear shape factor

ψn = An
Q2
n

∫ R
n+ 1

2

R
n− 1

2

2πru2
xdr. (2.33)

We assume that ψn = 1 under the hypothesis that the velocity profile is piece-wise con-
stant in each ring n. This assumption is reasonable if the number of rings Nr is sufficiently
large. The parameter ln is the proportion of the total cross-section A occupied by the ring n
such that An = lnA. The term Gn+ 1

2
(respectively Gn− 1

2
) in Equation (2.32) represents the

radial mass exchange at the interface of Rn+ 1
2
(respectively Rn− 1

2
)

Gn+ 1
2

= ∂

∂t

(
πR2

n+ 1
2

)
+ ux,n+ 1

2

∂

∂x

(
πR2

n+ 1
2

)
− 2πRn+ 1

2
ur,n+ 1

2
. (2.34)

The source term SM,n characterizes the momentum associated to the radial mass ex-
changes in the ring n

SM,n = ux,n+ 1
2
Gn+ 1

2
− ux,n− 1

2
Gn− 1

2
. (2.35)

Finally the source term Sf,n describes the viscous dissipation

Sf,n = 2πν

r ∂ux
∂r

∣∣∣∣
R

n+ 1
2

− r ∂ux
∂r

∣∣∣∣
R

n− 1
2

 . (2.36)
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Qn+1
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Qn�1

Figure 2.6 – Schematic representation of the Multi-Ring model. An and Qn represent
respectively the cross-section of ring n and the flow rate in ring n.

The set of Equations (2.32) is expressed in terms of cross-section and flow rate however,
we require a third equation to close the system. In Section 2.2, we derived an arterial wall
model that links the pressure to the cross-section. By coupling the system of Equation (2.32)
with the pressure law (Equation(2.16)) we take into account the elasticity of the arterial wall
and write the final closed-form conservative system as

∂A

∂t
+ ∂FA

∂x
= 0,

∂Qn
∂t

+ ∂FQn

∂x
= SM,n + Sf,n + lnST for n = 1, ..., Nr,

(2.37a)

(2.37b)

with FA the mass flux and FQ the momentum flux defined as
FA =

Nr∑
i=0

Qi,

FQn = ψn
Q2
n

lnA
+ ln

K

3ρA
3
2 ,

(2.38a)

(2.38b)

and the source term ST that accounts for the geometrical and mechanical source terms and
coming from the fact that the elastic coefficient K and the reference cross-section A0 both
depend on the x-position

ST = A

ρ

(
∂

∂x

(
K
√
A0
)
− 2

3
√
A
∂K

∂x

)
. (2.39)
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2.3.4 One-dimensional model

The 1D equations result from averaging the RNSP equations (2.29) over the cross-section of
the artery

∫ 2π

0

∫ R

0



1
r

∂rur
∂r

+ ∂ux
∂x

= 0

0 = −1
ρ

∂p

∂r
,

∂ux
∂t

+ ur
∂ux
∂r

+ ux
∂ux
∂x

= −1
ρ

∂p

∂x
+ ν

(1
r

∂

∂r

(
r
∂ux
∂r

))

 rdrdθ. (2.40)

This averaging process gives the 1D mass and momentum equations derived in detail
in [98] 

∂A

∂t
+ ∂Q

∂x
= 0,

∂Q

∂t
+ ∂

∂x

(
ψ
Q2

A

)
+ A

ρ

∂p

∂x
= 2πR0

ρ
τw,

(2.41a)

(2.41b)

where 
A = 2π

∫ R0

0
rdr,

Q = 2π
∫ R0

0
uxrdr.

(2.42a)

(2.42b)

A

Q

x = 0 x = L

Figure 2.7 – Schematic representation of the 1D model. A and Q represent respectively the
cross-section and the flow rate.

The coefficient ψ is the nonlinear shape factor similarly to Equation (2.33) with n = 1.
The Wall Shear Stress (WSS) τw in Equation (2.41b) is

τw = µ
∂ux
∂r

∣∣∣∣
r=R0

. (2.43)

In the averaging process, we naturally lose information about the velocity profile and so
we need an additional assumption to compute the WSS. A one-dimensional closure hypothesis
from [99] suggests that the axial velocity can be of the following form
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ux = Φ
(
r

R0

)
U, (2.44)

where U = Q/A and Φ is the velocity profile shape leading to the following expression of the
shape factor

ψ = 2
∫ R

0

r

R
Φ2dr. (2.45)

The classical approach consists of assuming a power-law for Φ [99], for instance

Φ = ξ + 2
ξ

(
1−

(
r

R0

)ξ)
. (2.46)

In [43], more complicated closure hypotheses issued from the Womersley solution are
proposed. Equation (2.46) allows calculating the shape factor ψ which gives

ψ = 1 + 1
1 + ξ

. (2.47)

Combining Equation (2.43) with (2.44), leads to

τw = µ
U

R0
(−ξ − 2), (2.48)

which allows rewriting the right hand side of Equation (2.41) as

2πR0
ρ

µ
U

R0
(−ξ − 2) = −Cf

Q

A
. (2.49)

where we introduce the friction coefficient

Cf = 2πν(ξ + 2). (2.50)

The value ξ = 9 from [100], corresponding to a flat velocity profile, is commonly used
for 1D blood flows [22, 72, 101]. In the case of a Poiseuille velocity profile, ξ = 2 as in [48].
The shape factor is comprised between 1 and 4/3 and we thus assume for simplicity that
ψ = 1, following the literature. By replacing the WSS term by the friction coefficient term in
Equations (2.41), the 1D equations can be written as

∂A

∂t
+ ∂Q

∂x
= 0,

∂Q

∂t
+ ∂

∂x

(
Q2

A

)
+ A

ρ

∂p

∂x
= −Cf

Q

A
.

(2.51a)

(2.51b)

Similarly to Equation (2.32), we require a third equation to close and solve this system.
By coupling (2.51) with the elastic pressure law (2.14) we can write the 1D system in the
following conservative form

∂A

∂t
+ ∂Q

∂x
= 0,

∂Q

∂t
+ ∂

∂x

(
Q2

A
+ K

3ρA
3/2
)

= −Cf
Q

A
.

(2.52a)

(2.52b)

Note that we can also couple Equations (2.51) to (2.16) accounting for the fact that K
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and A0 depend on x, which makes appear a source term as in Equation (2.39). Using the
viscoelastic pressure law Equation (2.18), we have a more general form


∂A

∂t
+ ∂Q

∂x
= 0,

∂Q

∂t
+ ∂

∂x

(
Q2

A
+ K

3ρA
3/2
)

= −Cf
Q

A
+ A

ρ

∂

∂x

(
Kν

∂Q

∂x

)
.

(2.53a)

(2.53b)

in which we used (2.53a) to substitute ∂A
∂t

by −∂Q
∂x

.

Unlike the elastic coefficient K, the viscoelastic coefficient Kν depends on the variable A
thus we decide to linearize Kν around the reference cross-section which finally gives


∂A

∂t
+ ∂Q

∂x
= 0,

∂Q

∂t
+ ∂

∂x

(
Q2

A
+ K

3ρA
3/2
)

= −Cf
Q

A
+ Cν

∂2Q

∂x2 ,

(2.54a)

(2.54b)

with

Cν = φ

ρ(1− ν2
w)

√
πh

2
√
A0
, (2.55)

the linearized viscoelastic coefficient.

Note that the 1D Equations (2.52) can also be interpreted as a particular case of the
Multi-Ring model with only one ring, i.e. n = 1 in Equations (2.37), with the assumption on
the velocity profile and the WSS.

In Figures 2.8, we show the difference between the purely elastic model of Equation (2.16)
and the viscoelastic model of Equation (2.18) by showing the propagation of a pressure pulse
in an artery. We observe in Figure 2.8b that the pulse is attenuated and diffused compared
to Figure 2.8a. Indeed, the viscoelastic term in the 1D equations (2.54) can be seen as an
analogy with the 1D diffusion equation

∂Q

∂t
= k

∂2Q

∂x2 , (2.56)

with k the analog of Cν in Equation (2.54).
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Figure 2.8 – Difference between the (a) elastic and (b) viscoelastic effects using the 1D
model. ( ) is at time t = 1.1 s, ( ) at time t = 3.1 s, and ( ) at time t = 5.1 s

2.3.5 One-dimensional wave equation

In this section, we demonstrate a very important characteristic of the 1D equations, which is
that the system accounts for the propagation of the pulse waves. Indeed, with a linear approx-
imation of the 1D system (2.51), we recover the wave equation, also called the ∂’Alembert
equation. If we discard the friction term assuming Cf � 1 and linearize the system assuming
Q� 1 to remove the non-linear term Q2/A, the Equations (2.51) become

∂A

∂t
+ ∂Q

∂x
= 0,

∂Q

∂t
+ A

ρ

∂p

∂x
= 0.

(2.57a)

(2.57b)

We write ∂p
∂x

as dp
dA

∂A

∂x
which gives

∂A

∂t
+ ∂Q

∂x
= 0,

∂Q

∂t
+ c2∂A

∂x
= 0,

(2.58a)

(2.58b)

in which we define the wave velocity c as

c =
√
A

ρ

dp
dA, (2.59)

called the Moens-Korteweg wave velocity [92,93]. We then differentiate Equation (2.58a) with
respect to t, Equation (2.58b) with respect to x, combine them and we finally obtain the 1D
wave equation

∂2A

∂t2
= c2∂

2A

∂x2 . (2.60)

In the case of the elastic pressure law (2.14), the Moens-Korteweg wave velocity takes the
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following form

c =
√
K

2ρ
√
A. (2.61)

2.3.6 Zero-dimensional model

To obtain the 0D equations, we linearize the Equations (2.51) with the elastic pressure law
(2.14) around the reference cross-section A0, similarly to the simplifications of the previous
section but keeping the friction term. It gives

∂A

∂p

∂p

∂t
+ ∂Q

∂x
= 0,

ρ

A0

∂Q

∂t
+ ∂p

∂x
= −ρCfQ.

(2.62a)

(2.62b)

We integrate the Equations (2.62) over the length of the artery, i.e. between x = 0 and
x = L which leads to 

2
√
A0
K

dp̂
dt + Q(x = L)−Q(x = 0)

L
= 0,

ρ

A0

dQ̂
dt + p(x = L)− p(x = 0)

L
= −ρCf Q̂,

(2.63a)

(2.63b)

where 
p̂ = 1

L

∫ L

0
pdx,

Q̂ = 1
L

∫ L

0
Qdx,

(2.64a)

(2.64b)

following [63], we finally assume that

{
p̂ = p(x = 0),
Q̂ = Q(x = L).

(2.65a)
(2.65b)

Combining Equations (2.63a) and (2.63b) with the previous assumptions, we obtain the
following 0D model

(
1 +RfC

d·
dt + CI

d2·
dt2

)
p(x = 0)− p(x = L) =

(
Rf + I

d·
dt

)
Q(x = 0), (2.66)

with 

Rf = ρLCf
A2

0
,

C = 2L
√
A0

K
,

I = ρL

A0
,

(2.67a)

(2.67b)

(2.67c)

where Rf is the viscous resistance, C the vessel compliance, and I the flow inertia. The typ-
ical orders of magnitude of these parameters are reported in Table 2.4.
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Q(x = 0) Q(x = L)

p(x = 0) p(x = L)

I

C

Rf

Figure 2.9 – Electrical representation of the 0D blood flow model of Equation (2.66). Rf is
the viscous resistance (Equation (2.67a)), C the vessel compliance (Equation (2.67b)), I the
flow inertia (Equation (2.67c)), p the pressure, and Q the flow rate.

This model can be seen as an electrical analogy and can also be called lumped parameter
models. It is the simplest approach to describe blood flow. In this representation, the arterial
network can then be interpreted as an electrical circuit constituted of resistors, capacitors,
and inductors, as represented in Figure 2.9, where voltage is assimilated to pressure and cur-
rent to flow rate. Resistors represent frictional forces due to viscosity, capacitors model the
compliant effects of arteries, and inductors account for the inertial phenomena.

The 0D models have not only been used for blood flow in the large arteries as in [77] but
also to model the blood flow in the heart [14,59,65,82] and other organs [12], to create models
of the cerebral arterial network [69], of the entire arterial network [74,79] and to characterize
the microcirculation at the outlet of 3D Fluid-Structure Interaction (FSI) models [29,83] and
1D network models [22,55,58,72]. Indeed, the 0D models are unable to account for the wave
propagation because of the averaging process and the nonlinear flow effects because of the
linearization. They are mostly used as boundary conditions for 3D or 1D models to represent
the response of the distal vascular bed. The general form of Equation (2.66) can be simplified
into a resistance outflow model by removing all the unsteady terms

p(x = 0)− p(x = L) = RfQ(x = 0), (2.68)

as represented in Figure 2.10 with Rf defined in Equation (2.67a) called the Poiseuille or
hydraulic resistance that is often found as

Rf = 8µL
πR4

0
. (2.69)

This boundary condition model considers the vascular bed as purely resistive and neglects
any compliant and inertial effect which is equivalent to assuming that each distal capillary is
governed by a Poiseuillan flow in a rigid artery. This outflow boundary condition is equivalent
to a reflection boundary condition [63],

Rt = Rf − Z0
Rf + Z0

, (2.70)

where Rt is the reflection coefficient comprised between 0 and 1 and Z0 the impedance of the
terminal vessel defined as
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Table 2.4 – Orders of magnitude of the "fluid" variables defined Section 2.3. ρ: fluid density
in g/cm3, µ: fluid dynamic viscosity in g·cm−1·s−1, R0: artery radius in cm, L: artery length
in cm, λ: wavelength in cm, Tc: heart period in s, c: wave velocity in cm/s, Sh: Shapiro
number, α: Womersley number, Cf : friction coefficient in cm2/s, Cν : viscoelastic coefficient
in cm2/s, Rf : resistance in g·cm−4·s−1, C: compliance in g−1·cm4·s2, I: inertance in g·cm−4.

ρ µ R0 L λ Tc c Sh α Cf Cν Rf C I

1 4·102 0.5 10 102 1 102 0-1 0-25 2 104 102-103 10−4-10−3 10

Z0 = ρc

A0
. (2.71)

with c the Moens-Korteweg wave velocity [92,93] defined in Equation (2.59).

Q(x = 0) Q(x = L)

p(x = 0) p(x = L)

Rf

Figure 2.10 – Electrical representation of the 0D blood flow model of Equation (2.68). Rf
is the viscous resistance (Equation (2.67a) and (2.69)), p the pressure, and Q the flow rate.

This model mainly accounts for the reflection of the incoming pulse waves, one of the
most important phenomena when studying hemodynamics [9] and is, therefore, frequently
used as an outflow boundary condition of a 1D model [66, 67]. Extensions from this model
such as the Windkessel model, described in detail in Section 8.4.1, have been developed and
also used as boundary conditions.

2.4 Conclusion

In this chapter, we presented all of the necessary hypotheses to derive two state laws to
characterize arterial wall mechanics. We first derived the purely elastic arterial wall law
(Equation (2.16)) and then added the viscoelastic component to obtain the second arterial
wall law (Equation (2.18)) using the linear approximation. In Chapter 3, we will introduce
the non-linear terms rigorously.

In Section 2.3, we developed the main hypotheses in the case of blood flows in the large
arteries. From these hypotheses, we derived a hierarchy of models starting from the 3D Navier-
Stokes equations. We simplified them into the 2D RNSP Equations (2.29). By averaging these
equations on concentric rings and coupling them with the arterial wall law, we obtained the
Multi-Ring model. Further simplifications led to the main model of this manuscript which is
the 1D model and finally, we presented two examples of 0D models, obtained by averaging
the 1D equations over the length of the artery.
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The models presented in this chapter are the base of all of the following work, the objective
being to use them in different medical scenarios.
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3 Hyperelastic
arterial wall

The current models of the arterial wall used in the study of blood flow with
reduced-order models, described in the previous chapter, only account for the
linear elasticity of the wall. However, all investigators of the mechanical behavior
of the arterial tissue agree that it does not obey the general linear elasticity theory.
Therefore, this chapter focuses on deriving constitutive equations of hyperelastic
models from the literature to account for the non-linearity of the wall. We couple
these models to the 1D blood flow model derived in Chapter 2 and compare them
with the elastic approach.

Keywords: hyperelastic model, arterial wall, one-dimensional model, wave propagation,
large deformation.
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3.1 Introduction

The understanding of arterial wall mechanics is a crucial element in the study of hemody-
namic models. In particular, in reduced-order models, the interaction between the fluid and
the arterial structure is only accounted through a pressure law that characterizes the me-
chanics of the arterial wall. The choice of this law influences the propagation and reflection of
the wave in the arterial network which is one of the most important phenomena in hemody-
namics. It is also important to capture the accurate mechanical behavior of the arterial wall
as changes in the mechanical properties of the blood vessels are involved in the development
and rupture of aneurysms, among other pathologies.

Like most soft tissues, arterial wall mechanics does not follow the linear Hooke’s law [102]
which means that in most cases the stress-strain relation is non-linear. Unlike the typical
elastic models presented in Chapter 2, hyperelastic models account for the large strains.
The first hyperelastic models introduced in the literature were the Mooney-Rivlin [103–106]
and the Neo-Hookean [107, 108], that are polynomial models. Others have been developed
after such as exponential and logarithmic models, in particular the Fung model [26, 102].
Micromechanical-based models are also common to account for different behavior such as the
non-linearity due to the microstructure of tissues [109].

As mentioned previously, in the study of reduced-order models, a constitutive pressure
law for the wall mechanics is necessary to close and solve the system. In Chapter 2, we intro-
duced two state laws, an elastic and viscoelastic model. We are interested in the constitutive
equations used to model the hyperelastic behavior of the arterial wall. In Section 3.2, we
summarize the ideas to obtain the hyperelastic constitutive models. In Section 3.3, we derive
three of the classical polynomial hyperelastic models, the Neo-Hookean, the Mooney-Rivlin,
and the Varga model, assuming a few hypotheses on the symmetries and geometry of the ar-
terial wall, similarly to Section 2.2. Finally, in Section 3.4, we use these hyperelastic arterial
wall models in combination with the one-dimensional (1D) blood flow model introduced in
Section 2.3.4 and present a comparison with the elastic approach.

3.2 Constitutive modeling

3.2.1 Notations

We summarize the principles of continuum mechanics and point out the notations. When a
body deforms from an initial configuration Ω0 into a deformed configuration Ωt, a position
vector X in Ω0 maps into a position vector x in the deformed configuration Ωt. The position
X is a Lagrangian, or material, description of the body whereas x is the Eulerian, or spatial,
representation and we can write x = x(X, t). In the Lagrangian description, we denote the
displacement field u as

u(X, t) = x(X, t)−X. (3.1)

When moved from Ω0 to Ωt, the body is deformed according to the following quantity

F(X, t) = Grad x(X, t), (3.2)

called the deformation gradient. The determinant of the deformation gradient F, called the
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Jacobian, is J(X, t) = det F(X, t), which represents the volume ratio of the change in volume
between the reference configuration Ω0 and the current configuration Ωt.

We define the right Cauchy-Green tensor C as

C = FTF, (3.3)

and the Cauchy stress tensor σ that can be expressed in many forms and in particular

σ = J−1PFT , (3.4)

where P is the Piola Kirchhoff stress tensor.

3.2.2 General hyperelastic laws

A hyperelastic material postulates the existence of a Helmholtz free-energy function Ψ (also
noted W in the literature). If Ψ only depends on the deformation gradient F then Ψ is called
a strain density function. The Piola Kirchhoff stress tensor can thus be written as

P = ∂Ψ
∂F . (3.5)

Injecting (3.5) in Equation (3.4) leads to the relation between the stress tensor σ and the
deformation gradient F

σ = J−1∂Ψ
∂FFT , (3.6)

called the constitutive equation.

We consider the material as incompressible since biological soft tissues, such as arteries,
contain mostly water. The incompressibility constraint is J = 1 which leads to the following
form of the strain density function

Ψ = Ψ(F)− p(J − 1), (3.7)

where the hydro-static pressure p is a Lagrangian multiplier to force the incompressibility. By
differentiating Equation (3.7) with respect to the deformation gradient F and using the fact
that ∂J

∂F = JF−T , we obtain the constitutive relation for the Piola-Kirchhoff stress tensor

P = −pF−T + ∂Ψ(F)
∂F . (3.8)

By substituting P of Equation (3.8) in the Equation (3.4) we obtain the expression of the
constitutive equation

σ = −pI + ∂Ψ(F)
∂F FT . (3.9)

The strain energy function has to satisfy several constraints detailed in [26,110] that lead
to the equivalent form Ψ(F) = Ψ(C), with C the Cauchy-Green tensor. By considering that
the material is isotropic, i.e. the material property is the same in all directions, the strain
energy function can be expressed in terms of the principal isotropic invariants

Ψ(C) = Ψ(I1, I2, I3), (3.10)
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in which the invariants of C are
I1 = tr(C) = λ2

1 + λ2
2 + λ2

3,

I2 = 1
2
(
(trC)2 − tr(C2)

)
= λ2

1λ
2
2 + λ2

1λ
2
3 + λ2

2λ
2
3,

I3 = det C = λ2
1λ

2
2λ

2
3,

(3.11a)

(3.11b)

(3.11c)

expressed in terms of the principal stretches λ1, λ2 and λ3 where subscript 1 corresponds
to the θ-direction, 2 to the x-direction and 3 to the r-direction. Note that J = λ1λ2λ3 the
volume ratio is equal to 1 when the material is incompressible. Assuming incompressibility,
we can now write Ψ = Ψ(λ1, λ2, λ3), and the Cauchy stress tensor

σi = −p+ λi
∂Ψ
∂λi

, (3.12)

with i = 1, 2, 3.

As an example of Ψ, Ogden [111, 112] formulated the strain density function in terms of
the principal stretches λi, with i = 1, 2, 3 as

Ψ =
N∑
n=1

µn
αn

(λαn
1 + λαn

2 + λαn
3 − 3) , (3.13)

with the consistency condition

2µ =
N∑
n=1

µnαn, (3.14)

where µ is the shear modulus from the linear theory and αn are dimensionless constants
determined experimentally. Combining the Ogden formulation of the strain density function
Equation (3.13) with Equation (3.12), we can write a general expression of the Cauchy stress
tensor as

σi = −p+
N∑
n=1

µnλ
αn
i . (3.15)

To compute the pressure, we calculate the force balance between the pressure difference
∆p = p− pext and the stress σ1 as

∆p = 2H
R
σ1, (3.16)

with the definitions of the principal stretches{
H = λ3h,

R = λ1R0.

(3.17a)
(3.17b)

In the following, we introduce the main assumptions on the symmetries and geometry
in the case of arteries. It allows deriving the strain density functions of the Neo-Hookean,
Mooney-Rivlin, and Varga models in order to couple it with the 1D model.
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3.3 Hyperelastic models in the case of arteries

In the case of the large arteries, we can introduce two additional hypotheses similarly to
Section 2.2:

• the radial stress is negligible as the thickness of the arterial wall is small compared
to the other directions, i.e. h � R0 and we have σ3 = 0 (denotes σrr = 0 in Section
2.2). Introducing this assumption in Equation (3.15), we obtain an expression for the
Lagrange multiplier p.

• the axial displacement is small so that we consider that the stretch in the x-direction
λ2 is 1 (i.e. εxx = 0 in Section 2.2).

We now apply these assumptions to compute the stress, pressure and wave velocity in the
case of the Neo-Hookean, the Mooney-Rivlin and the Varga models.

The previous assumptions allow simplifying Equation (3.16) into

∆p = 2 h

R0

σ1
λ2

1
, (3.18)

in which we usually assume pext = 0, as in Section 2.2.

3.3.1 Neo-Hookean model

The strain density function of the Neo-Hookean model [107,108] is expressed in terms of the
principal invariant I1

Ψ = µ1
2 (I1 − 3), (3.19)

and is a particular case of the Ogden model (3.13) with N = 1 and α1 = 2

Ψ = µ1
2 (λ2

1 + λ2
2 + λ2

3 − 3). (3.20)

where µ1 = µ from the consistency condition of Equation (3.14).

From the assumption σ3 = 0, we calculate the Lagrangian multiplier p using Equation
(3.12) and the expression of the strain density function for the Neo-Hookean model (3.20)
which gives

p = µ1λ
2
3. (3.21)

It allows calculating σ1

σ1 = µ1(λ2
1 − (λ1λ2)−2), (3.22)

using λ1λ2λ3 = 1 to drop off λ3. Finally, we impose λ2 = 1 leading to

σ1 = µ1(λ2
1 − λ−2

1 ), (3.23)

represented in Figure 3.1.
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By injecting the expression of σ1 in Equation (3.18), we obtain the pressure

p = 2 h

R0
µ1(1− λ−4

1 ) (3.24)

which can also express as a function of the cross-section A = πR2 and A0 = πR2
0

p = 2 h

R0
µ1

(
1− A2

0
A2

)
, (3.25)

represented in Figure 3.2.

We now calculate the Moens-Korteweg wave celerity [92,93] using Equation (2.59) for the
Neo-Hookean model

c =
√

2h
ρR0

µ1
2A2

0
A2 , (3.26)

that we plot in Figure 3.3.

3.3.2 Mooney-Rivlin model

The strain density function of the Mooney-Rivlin model [103–106] has the following form

Ψ = µ1
2 (I1 − 3) + µ2

2 (I2 − 3), (3.27)

and can be seen as a special case of Ogden model (3.13) with N = 2, α1 = 2, α2 = −2

Ψ = µ1
2 (λ2

1 + λ2
2 + λ2

3 − 3) + µ2
2 (λ2

1 + λ2
2 + λ2

3 − 3). (3.28)

with µ1 − µ2 = µ from the consistency condition of Equation (3.14).

From the assumption σ3 = 0, we calculate the Lagrangian multiplier p using Equation
(3.12) and the expression of the strain density function for the Mooney-Rivlin model (3.28)
which gives

p = µ1λ
2
3 + µ2λ

−2
3 . (3.29)

It allows calculating σ1

σ1 = −µ1(λ1λ2)−2 − µ2(λ1λ2)2 + µ1λ
2
1 + µ2λ

−2
1 (3.30)

using λ1λ2λ3 = 1 to drop off λ3. Finally, we impose λ2 = 1 leading to

σ1 = (µ1 − µ2)(λ2
1 − λ−2

1 ), (3.31)

represented in Figure 3.1.

By injecting the expression of σ1 in Equation (3.18), we obtain the pressure

p = 2 h

R0
(µ1 − µ2)(1− λ−4

1 ), (3.32)
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which can also express as a function of the cross-section A = πR2 and A0 = πR2
0

p = 2 h

R0
(µ1 − µ2)

(
1− A2

0
A2

)
, (3.33)

represented in Figure 3.2.

We notice from Equations (3.31) and (3.33) that the Mooney-Rivlin model is the same
as the Neo-Hookean model with a different shear modulus, thus the Moens-Korteweg wave
celerity of the Mooney-Rivlin model is Equation (3.26) replacing µ1 by µ1 − µ2.

3.3.3 Varga model

Finally, in the Varga model [113], we set N = 1 and α1 = 1 in Equation (3.13) which gives

Ψ = µ1(λ1 + λ2 + λ3 − 3) (3.34)

with µ1 = 2µ from the consistency condition of Equation (3.14).

From the assumption σ3 = 0, we calculate the Lagrangian multiplier p using Equation
(3.12) and the expression of the strain density function for the Varga model (3.34) which
gives

p = µ1λ3. (3.35)

It allows calculating σ1

σ1 = −µ1(λ1λ2)−1 + µ1λ1 (3.36)
in which we use λ1λ2λ3 = 1 to drop off λ3. Finally, we impose λ2 = 1 leading to

σ1 = µ1(λ1 − λ−1
1 ), (3.37)

represented in Figure 3.1.

By injecting the expression of σ1 in Equation (3.18), we obtain the pressure

p = 2 h

R0
µ1(λ−1

1 − λ
−3
1 ), (3.38)

which can also express as a function of the cross-section A = πR2 and A0 = πR2
0

p = 2 h

R0
µ1

(√
A0√
A
− A0

√
A0

A
√
A

)
, (3.39)

represented in Figure 3.2.

We now calculate the Moens-Korteweg wave celerity [92,93] using Equation (2.59) for the
Varga model

c =
√

2h
ρR0

µ1

√
A0√
A

(3A0
A
− 1

2

)
, (3.40)

that we plot in Figure 3.3.
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Figure 3.1 show the Cauchy stress tensor σ1 as a function of the principal stretch λ1. We
observe that for all models, the stress increases with the stretch, which is not common for the
hyperelastic models, in particular the Neo-Hookean. However, considering the symmetries of
the problem (i.e. more precisely it is 1D) the hyperelastic relations between stress and stretch
are not softening (see Figure 6.3 in [26]).

1 2 3 4 5
λ1

0

5

10

15

σ
1

Elastic

Neo-Hooke

Mooney-Rivlin

Varga

Figure 3.1 – Cauchy stress σ1 as a function of the principal stretch λ1 for the elastic model
( ) of Section 2.2, the Neo-Hookean model ( ) of Equation (3.23), the Mooney-Rivlin
model ( ) of Equation (3.31) and the Varga model ( ) of Equation (3.37).
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Figure 3.2 – Pressure p as a function of the dimensionless cross-section A/A0 for the elastic
model ( ) of Section 2.2, the Neo-Hookean model ( ) of Equation (3.25), the Mooney-
Rivlin model ( ) of Equation (3.33) and the Varga model ( ) of Equation (3.39).
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Figure 3.3 – Moens Korteweg wave velocity c from Equation (2.59) as a function of the
dimensionless cross-section A/A0 for the elastic model ( ) of Section 2.2, the Neo-Hookean
model ( ) of Equation (3.26), the Mooney-Rivlin model ( ) and the Varga model ( )
of Equation (3.40).

Figures 3.2 shows the pressure p as a function of the cross-section ratio A/A0 for the four
state laws. We observe that, under large deformation, the pressure inside the artery reaches
a plateau and thus does not increase drastically, unlike the elastic model. This means that
the hyperelastic models have a "damping" behavior and can prevent shocks.

In Figure 3.3, we note that the dependence of the wave velocity on the cross-section ratio
A/A0 is very different for the elastic and hyperelastic models. Indeed, we observe that for the
elastic model, the wave velocity increases with the cross-section whereas, in all three hypere-
lastic models, the opposite occurs, i.e. the wave velocity decreases with the cross-section. We
recover in this figure the shock damping phenomenon of the hyperelastic models.

We derived the hyperelastic models with specific assumptions for the arterial wall, now we
combine these models to the 1D equations (2.51). We compare them with the elastic approach
described in Section 2.2. As the only difference between the Neo-Hookean and Mooney-Rivlin
models is the shear modulus, we only study the first one in the following.

3.4 Comparison between the elastic and hyperelastic models

Anticipating Chapter 4 on the resolution methods of the 1D equations, we compute the system
(2.51) in combination with the Neo-Hookean and Varga hyperelastic wall models presented
in Section 3.3. We solve the model in an artery of length L = 10 cm divided into Nx = 1000
cells with a time-step ∆t = 10−5 s. We impose the following inlet boundary condition

A(x, t = 0) = 1 +A0 exp(−8(x− 5)2)) (3.41)

with A0 the amplitude of the initial condition.
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We solve the 1D Equation (2.51) coupled to the pressure laws (2.14), (3.25), and (3.39)
for the elastic, Neo-Hookean, and Varga models respectively. We put the system (2.51) +
pressure law in the conservative form and compare the influence of the pressure law on the
propagation of a pulse in an artery.

The main difference between the elastic and hyperelastic models resides in the large defor-
mations. Under this condition, i.e. when the amplitude A0 of the initial condition is large, a
discontinuity or shock appears when computing the elastic model. In Figures 3.4, we show the
cross-section A (Figures 3.4a and 3.4b) and the flow rate Q (Figures 3.4c and 3.4d) depend-
ing on the value of A0. We observe that the shock appears when A0 is large and that both
the Neo-Hookean and the Varga model smooth the shock, as expected by hyperelastic models.
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Figure 3.4 – Cross-section A and flow rate Q as a function of the x-position with different
values of the amplitude A0 of the initial condition at t = 1.6 s. We represent (a) the cross-
section A and (b) the flow rate Q with an amplitude of the initial condition A0 = 10−3, (c)
the cross-section A and (c) the flow rate Q with an amplitude of the initial condition A0 = 1.
( ) corresponds to the elastic model, ( ) corresponds to the Neo-Hookean model, and
( ) corresponds to the Varga model. N.B: in (a) and (c) the two hyperelastic models are
superimposed.

On one hand, we notice that the velocity of the pulse is different between the models with
a small amplitude A0. Indeed, the Moens-Korteweg wave velocity [92,93], defined in Equation
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(2.59), is larger for the hyperlastic models than the elastic one as predicted by Figure 3.3.
Note that the Neo-Hooke and Varga waves are superimposed in Figures 3.4a and 3.4c, as the
wave velocity of both models is of similar magnitude for small deformations (Figure 3.3).

On the other hand, we observe in Figures 3.4b and 3.4d that the pulses of the hypere-
lastic and elastic models travel at the same velocity with a large amplitude A0. In Figure
3.3, we observe that when the deformation becomes large (A/A0 = 2), the velocity of the
hyperelastic and elastic models is the same, which is why when A0 = 1, we obtain the same
velocity for all models. If we further increase A0, the wave travels faster with the elastic than
the hyperelastic models.

We also observe in Figure 3.4 that in all models the attenuation of the pulses is larger
when A0 is large, but we impose the same friction coefficient Cf , and plot the data at the
same time step. We note that the amplitude of the pulse is almost the same in the elastic
and hyperelastic models for a small amplitude A0 (Figure 3.4a) which is not the case for a
large amplitude (Figure 3.4b). In Figure 3.5, we compare the pulses of the Neo-Hookean and
elastic models with friction, i.e. Cf = 0 in Equation (2.51), and without friction, Cf 6= 0 in
Equation (2.51). From these figures we deduce that the friction does not differ with a large
A0, it is the non-linearity of the model that attenuates the pulse. Moreover, the hyperelastic
models dissipate the pulse faster than the elastic one, which is actually satisfying since the
hyperelastic models are expected to smooth the elastic behaviors in large deformations.
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Figure 3.5 – Cross-section A as a function of the x-position at t = 1.6 s with (a) A0 = 10−3

and (b) A0 = 1 computed with the elastic model ( ) and the Neo-Hookean model ( )
with friction (in black) and without friction (in blue).

To summarize, the amplitude of the initial condition is the only parameter that creates
a shock in the elastic models, shock that is smoothed by both the Neo-Hookean and Varga
models.

3.5 Conclusion

In this chapter, we derived rigorously three hyperelastic models from the literature (the Neo-
Hookean, the Mooney-Rivlin, and the Varga models) to couple to the 1D equations (2.51)
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described in Section 2.3.4. We studied the propagation of the wave in an artery with these dif-
ferent models by comparing the elastic approach introduced in Section 2.2 to the hyperelastic
models. By varying the parameters of the models, we observed that the amplitude of the inlet
boundary condition was the only parameter creating such shock. We also noted that under
large deformations, the hyperelastic models, in particular the Neo-Hookean model, smoothed
the shocks.

The hyperelastic models provide a more accurate description of the arterial wall. This
approach allows considering large deformations of the arterial tissue, that cannot be cor-
rectly captured by a linear model. The problem is that we do not have experimental data
to validate the hyperelastic approach in conditions where the non-linear elasticity of the ar-
terial wall plays a major role. Indeed, no shocks are usually observed in arteries in normal
physiological conditions but shock-like phenomena may arise in veins during walking and
running for instance [51]. However, in other biological tissues such as the breast, brain, liver,
or kidneys, the hyperelastic models are relevant [109].

For these reasons, we choose to only restrict our study to linear elasticity of the arterial
wall, as described in Chapter 2. The validation of these models in a relevant medical scenario
however remains a perspective of the present work.
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4 Numerical methods

This chapter focuses on the numerical methodologies associated with the
reduced-order models presented in Chapter 2. All these models are non-linear
and do not have analytic solutions thus the equations have to be solved numeri-
cally with appropriate resolution schemes that we briefly introduce here. Despite
accurate resolution schemes, predicting patient-specific hemodynamics can only
be relevant if the geometric, mechanical, and model properties correspond to the
reality. Optimization methods are the solution to estimate patient-specific param-
eters, thus we review a few of these methods from the literature and introduce
the ones we use in Part II.

Keywords: finite volume, finite difference, parameter estimation, gradient-based method.
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4.1 Introduction

In Chapter 2 we presented the four different models that we use in the medical applications of
Part II: the two variations of the Reduced Navier-Stokes Prandtl (RNSP) (the steady RNSP
and the Multi-Ring), the one-dimensional (1D), and zero-dimensional (0D) models. All these
models are non-linear and cannot be solved analytically. We therefore propose appropriate
methods to obtain a numerical approximation of the solution of the equations presented in
Chapter 2.

Several resolution schemes can be considered for solving flow models. For the full three-
dimensional (3D) or the two-dimensional (2D) axisymmetric Navier-Stokes equations, soft-
wares are available for instance FreeFem++ or Sim Vascular that uses finite elements, Basilisk
or Ansys Fluent that use finite volumes. We find two types of methods in the literature for
the steady RNSP: finite elements [114] or finite differences [41]. As it was inspired by the
multilayer model for shallow water equations [45] solved with a finite volume approach in the
original article, the Multi-Ring model is usually solved with this same approach [46,47]. For
the 1D model, there is an extensive literature on the numerical schemes, for instance, finite
differences [20, 55], finite elements [37, 115, 116], discontinuous Galerkin [54, 117], and finite
volume methods [50, 53]. The 0D models, as they only depend on time, are usually solved
with finite differences [67,77].

To summarize, all models can generally be solved with either finite element, finite vol-
ume, or finite difference methods. In Section 4.2, we briefly derive the numerical resolution
algorithms of the four models that we choose, which are mostly finite difference and volume
approaches.

The models of Chapter 2 also depend on parameters varying in a large range of values.
They have been estimated in the literature in particular scenarios but do not have a generic
value for healthy and pathological conditions. Some parameters can be observed or measured.
For instance, the blood flow rate in a compliant artery can be obtained with imaging tech-
niques such as Magnetic Resonance Imaging (MRI), the topology and geometric properties of
the arteries can be assessed via Doppler measurements or Magnetic Resonance Angiography
(MRA). However, while these measurements are usually limited to a few locations in space,
mechanical properties of arteries, such as Young’s modulus and wall thickness, are often un-
known or were only measured ex vivo. In practice, available clinical data are often indirect
observations of the hemodynamic measurements of interest. We can also add to the unknowns
the model parameters that do not necessarily have a physical meaning but are mandatory
for numerical computations such as the boundary conditions, resistance or reflection coeffi-
cient for instance. This is where strategies of parameter estimation become necessary: these
methods allow assessing relevant model parameters based on measured data to make patient-
specific computations. Parameter estimation can also be considered as a diagnostic tool to
follow the evolution of a disease in a minimally invasive way [77]. In Section 4.3, we briefly
review the literature of optimization techniques and present a few in more detail that will be
useful in Part II.

4.2 Numerical methods

In the following, we present the discretization algorithms used to compute first the 2D ax-
isymmetric Navier-Stokes equations used as a target solution in Chapter 5, the steady RNSP
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model, the Multi-Ring model, the 1D model, and the 0D model presented in Chapter 2.

4.2.1 Two-dimensional Axisymmetric Navier-Stokes

We solve the 2D axisymmetric Navier-Stokes Equations (2.22) with the software Basilisk that
uses a finite volume discretization with a projection method. More detail can be found here.

This model is used in Chapter 5 (Section 5.2.1).

4.2.2 Steady RNSP model

The steady RNSP equations are solved using a finite difference approach, similarly to refer-
ences [41, 43]. We divide the 2D spatial domain into cells of size ∆r ×∆x with (ur, ux)(ri =
i∆r, xj = j∆x) for i ∈ {0, ...Ni} and j ∈ {0, ...Nj}. The resolution scheme consists of the
following steps:

1. we prescribe the pressure term
(
−∂p
∂x

)guess
in Equation (2.29c);

2. we calculate the velocity u∗
xi,j

using the momentum Equation (2.29c) with an implicit
discretization. We use a second-order centered finite difference scheme in the r-direction
and a first-order uncentered finite difference scheme in the x-direction. We write the
system as a tridiagonal system and solve it using Thomas algorithm [118];

3. we calculate the velocity u∗
ri,j

using the mass conservation Equation (2.29a) with first
order uncentered finite difference schemes in r- and x-directions.

The boundary condition (2.30d) is generally not satisfied with these three steps and thus
we iterate on the value of the pressure gradient

(
−∂p
∂x

)guess
until all boundary conditions

(2.30) are respected and then go to the next step (i+ 1, j + 1). To find the optimal pressure
gradient, we compute Newton’s algorithm 1, described in detail in Section 4.3.1.

This model is used in Chapter 5 and Chapter 6.

4.2.3 Multi-Ring model

The Multi-Ring model is solved by a finite volume approach [46, 47]. We rewrite the system
of Equations (2.37) in the general vectorial form

∂U

∂t
+ ∂F (U)

∂x
= SM (U) + Sf (U) + ST (U), (4.1)

with

U =


A

Q1
...

QNr

 , F =


FA

FQ1
...

FQNr

 , (4.2)

defined in Equation (2.38)1 and the source terms defined in Section 2.3.3 .

1. the flux F should not be confused with the deformation gradient F defined in Chapter 3.
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We divide the time domain with a constant time step ∆t, and define the time tn = n×∆t
for n ∈ {0, ...NT }. The spatial domain is discretized in Nx cells with a constant space step
∆x = xi+ 1

2
− xi− 1

2
for i ∈ {1, ...Nx}, as represented in Figure 4.1. The radial direction is

discretized in Nr rings.

We solve the problem by splitting the Equations (4.1) into two subproblems detailed in
the following.

Convective subproblem

The convective subproblem that only accounts for the transport, the mass exchange and
the mechanical, and geometrical source terms is discretized as

U∗ −Un

∆t + ∂F (Un)
∂x

= SM (Un) + ST (Un). (4.3)

We integrate in space and time the Equation (4.3) and obtain the following explicit finite
volume scheme

U∗i = Un
i −

∆t
∆x

(
F n
i+ 1

2
− F n

i−1
2

)
+ ∆t

(
SnM,i + SnT,i

)
, (4.4)

with

Un
i = 1

∆x

∫
Ci

Undx, (4.5)

and

F n
i+ 1

2
= 1

∆t

∫ t∗

tn
Fx

i+ 1
2

dt. (4.6)

We compute the flux F with a kinetic approach as in [46] and in [45] for the similar
multilayer shallow-water model.

Friction subproblem

The friction subproblem deals with the viscous source term of Equation (4.1)

Un+1 −U∗

∆t = Sf (Un+1). (4.7)

We use an implicit finite difference scheme to ensure the stability of the solution. Similarly
to the steady RNSP model, we rewrite the viscous subproblem as a tridiagonal system that
we solve using the Thomas algorithm [118].

We combine the two subproblems to go from tn to tn+1 as

Un (4.3)−−−→ U∗ (4.7)−−−→ Un+1. (4.8)

Boundary conditions

We define inlet and outlet ghost cells Cin and Cout in which we impose the boundary
conditions, as represented in Figure 4.1. Following the methodology proposed in [119] for the
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similar shallow water equations and in [56] for the 1D blood flow equations, we impose only
one boundary condition, Anin or Qnin in the inlet ghost cell Cin and one boundary condition,
Anout or Qnout in the outlet ghost cell Cout. To determine the remaining component of Un

in,
respectively Un

out, we use the incoming W2 and outgoing W1 Riemann invariants
W1 = Q

A
− 4c,

W2 = Q

A
+ 4c,

(4.9a)

(4.9b)

where c is the wave velocity defined in Equation (2.59).

The vectors Un
in and Un

out are solved using a Newton’s algorithm 1 in a limited number
of iterations (Nitmax ∼ 5), described in more detail in Section 4.3.1.

x = 0 x = L

Ci

xi = i�x

�x

xi� 1
2

xi+ 1
2

Cin CoutC1 CNx

Figure 4.1 – Schematic representation of the longitudinal discretization with a finite volume
approach for the Multi-Ring and 1D models.

Initial conditions

In most computations, we impose the following initial conditions
{
Qn(x, t = 0) = 0, for n = 1, ..., Nr,

A(x, t = 0) = A0.

(4.10a)
(4.10b)

This model is used in Chapter 5, Chapter 6, and Appendix B.

4.2.4 One-dimensional model

We also choose a finite volume approach [50] to solve the 1D model (2.54). Similarly to the
Multi-Ring model, we can rewrite the system in its conservative vectorial form

∂U

∂t
+ ∂F (U)

∂x
= Sf (U) + Sν(U) (4.11)

with

U =
[
A

Q

]
, F =

[
FA

FQ

]
(4.12)
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where the fluxes are defined in Equation (2.38) in the case of the Multi-Ring model
FA = Q

FQ = Q2

A
+ K

3ρA
3
2

(4.13)

and the source terms are

Sf =

 0

−Cf
Q

A

 , Sν =

 0

Cν
∂2Q

∂x2

 . (4.14)

We use the same discretization as in the Multi-Ring model for the time and spatial do-
mains, represented in Figure 4.1.

We note that, by neglecting the viscous and viscoelastic effects, i.e. the source terms Sf
and Sν , the Equation (4.11) is hyperbolic. Indeed the system has two real distinct eigenvalues
λ1,2 = Q

A
± c. On the contrary, the viscoelastic source term has a parabolic structure. Thus

we decompose the system (4.11) into three subproblems as follows.

Hyperbolic subproblem

We first consider the homogeneous part of Equation (4.11) which is the hyperbolic sub-
problem that only accounts for the transport as

∂U

∂t
+ ∂F

∂x
= 0 (4.15)

To solve Equation (4.15), we use the same method as the Multi-Ring model for the con-
vective subproblem (4.3). We compute the flux using a kinetic approach [50, 120, 121] with
a second-order monotonic upwind scheme for conservation law (MUSCL) reconstruction [53]
and a second-order Adam-Bashforth (AB2) time integration scheme. We impose the bound-
ary conditions when solving this subproblem and give more detail in the following.

Parabolic subproblem

The parabolic subproblem describes the viscoelastic effects as

∂U

∂t
= Sν . (4.16)

Following [51], we choose a semi-implicit unconditionally stable second-order Cranck-
Nicholson finite difference scheme to solve Equation (4.16).

Friction subproblem

Finally, the friction subproblem that accounts for the friction source term is

∂U

∂t
= Sf . (4.17)

As the friction subproblem does not involve spatial discretization, we simply use the same
second-order Adam-Bashforth as the one used for the hyperbolic problem.
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Following [51,122], to update the solution from tn to tn+1, we combine the three splitted
solutions from the previous problems as Ani

(4.15)−−−→ An+1
i

Qni
(4.15)−−−→ Q∗

i

(4.16)−−−→ Q∗∗
i

(4.17)−−−→ Qn+1
i

(4.18)

Boundary conditions

Boundary conditions are treated similarly to the Multi-Ring model with the Riemann
invariants (4.9) and must be imposed when solving the hyperbolic system (4.15).

Initial conditions

We impose the same initial conditions (4.10) with n = 1 as the Multi-Ring model.

Junctions

Unlike the Multi-Ring model code, the 1D model can solve the flow in a network of
arteries. The network is a combination of junctions between Np parent and Nd daughter
arteries. In a junction, the flow is highly 3D [123] but can still be represented by 1D junction
models. We find two types of models of junction in the literature: the point junction and the
control-volume junction. The first consists of assuming that a junction is a single point [124]
where the general conservation laws apply, i.e. continuity of mass and pressure. Some models
like [61] also consider a pressure loss in the junction, which we do not consider as they only
have secondary effects on the pulse wave propagation [22]. The junction equations are the
following 

Np∑
p=1

Qp −
Nd∑
d=1

Qd = 0,

pp = pd + ∆ploss

(4.19a)

(4.19b)

for (p, d) ∈ {1, ...Np} × {1, ...Nd} , with ∆ploss = 0 and the total pressure is

p = 1
2ρ
(
Q

A

)2
+K

(√
A−

√
A0
)
. (4.20)

We solve the junction equations similarly to the boundary conditions imposing the incom-
ing in the daughter and outgoing Riemann invariants in the parent arteries as in Equation
(4.9) {

W2(Un
out)p = W2(Un

Nx
)p,

W1(Un
in)d = W1(Un

1 )d.
(4.21a)
(4.21b)

The second type of junction model [60] consists of defining a junction volume parametrized
by a length, a cross-section, and a wall rigidity. In the control volume junction model, we
impose the 1D mass conservation integrated over the length of the junction and add Neu-
mann boundary conditions on the flow rate of the parent and daughter arteries to impose no
spatial variation of the flow rate in the volume.
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We consider the first type of junction model as it is more common in the literature. Nev-
ertheless, the volume junction approach has many advantages, in particular it provides more
physical results.

This model is used in Chapter 3, Chapter 5, Chapter 6, Chapter 7, Chapter 8, and Chapter
9.

4.2.5 Zero-dimensional model

The 0D models are simply described by first or second-order ordinary differential equations
in time and thus only require a time discretization ∆t and tn = n×∆t for n ∈ {0, ...NT }. The
most common and efficient method to solve this type of model is to use a finite differences
approach. For instance, we can discretize Equation (2.66) with an explicit Euler scheme as
follows

pn0 +RfC
pn+1

0 − pn0
∆t + CI

pn+1
0 − 2pn0 + pn−1

0
∆t2 − pnL = RfQ

n
0 + I

Qn+1
0 −Qn0

∆t , (4.22)

where pn0 = p(x = 0, t = tn), pnL = p(x = L, t = tn), and Qn0 = Q(x = 0, t = tn). Equation
(4.22) can be solved in p or in Q depending on the unknown.

This model or a similar 0D model are used in Chapter 6, Chapter 7, Chapter 8, and
Chapter 9.

All of the models described in this Section depend on a certain number of parameters that
are often difficult to assess experimentally. To make patient-specific computations, it is thus
necessary to estimate the values of these parameters. In the following section, we introduce
a panel of optimization methods to estimate the model parameters.

4.3 Optimization methods

In order to enhance the experimental data acquired from routine monitoring studies, we often
choose optimization strategies based on experimental measurements to identify model param-
eters that are otherwise difficult to obtain [67, 125–127]. It is necessary and very common if
one wants to make patient-specific predictions in a minimally invasive way [77].

Optimization techniques consist of finding a combination of parameter values that gives
the minimum of an objective cost function while satisfying constraints if existing. In general,
optimization problems have several optima, i.e. local minima, which increases the difficulty
of finding the global one (Figure 4.2. The algorithms are usually classified as either local
methods such as gradient-based algorithms described in Section 4.3.1 or global methods such
as stochastic algorithms described in Section 4.3.2.

For the following, we define J the cost function to minimize and P the set of parameters
that minimizes this function.
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Figure 4.2 – Schematic representation of a cost function and its local and global optima.

4.3.1 Local optimization methods

Lots of local optimization algorithms are gradient-based since they were proved to be very
efficient in terms of the number of iterations to reach the optimum. These techniques are also
designed to solve problems with a large number of variables. However, the major drawback
to these methods is that they can only find a local optimum depending on the initial guess
of parameters.

Gradient-based optimization methods consist of finding the zero of the gradient of the
cost function J to minimize. The typical algorithms are two-steps processes: the first step is
to calculate the gradient to find the search direction which leads to the second step where
we move in the search direction until the convergence criterion is reached. In most optimiza-
tion problems, the gradient cannot be calculated analytically and requires the use of finite
differences. It typically provides an approximation with an accuracy depending on the step
size. A smaller step size is a better approximation which can be very costly. One of the most
classical gradient-based method is Newton’s method presented in the following.

Newton’s method

Newton’s method is a classical gradient-based optimization algorithm for non-linear un-
constrained problems, derived from Taylor’s expansion. This method requires the calculation
of the Hessian matrix B that contains the second-order derivatives of the cost function J.
The steps are described in Algorithm 1.

initialization P0, B0 ;
while (Pk+1 − Pk < ε) or (k ≤ Nitmax) do

Pk+1 = Pk −B−1
k ∇J(Pk) ;

k ← k + 1 ;
end

Algorithm 1: Newton’s algorithm.

The method has a quadratic rate of convergence which makes this algorithm very pow-
erful, however the cost to calculate the Hessian matrix Bk at each step is very high which
makes this technique highly unusable in most cases. Despite the difficulty to assess the Hes-

77



sian matrix, Newton’s method is deterministic and can thus have a slow rate of convergence
or does not converge at all in case of a poor initial estimate.

This method is used every time we solve the steady RNSP, Multi-Ring, and 1D models.

BFGS method

The BFGS method, from the initials of the original authors Broyden [128], Fletcher [129],
Goldfarb [130], Shanno [131] is also a gradient-based method for non-linear unconstrained
problems. Compared to Newton’s descent, it has the major advantage of having low com-
puter memory requirements. The BFGS method is designed to avoid constructing the Hessian
matrix B and uses instead an approximation of the inverse of the second derivative of the
function to minimize J by analyzing the gradient. This approximation allows using quasi-
Newton’s method to find the minimum in the parameter space. The steps are described in
Algorithm 2.

initialization P0, B0 = I ;

while (J(Pk)− J(Pk+1))
max (|J(Pk)|, |J(Pk+1)|, 1) ≤ ε do

find pk solving Bkpk = −∇J(Pk) where pk is the direction of the descent ;
find the optimal time step αk by a line search to loosely minimize J(Pk + αkpk) ;
update the solution Pk+1 = Pk + αkpk = Pk + sk ;
calculate yk = ∇J(Pk+1)−∇J(Pk) ;

update the Hessian matrix Bk+1 = Bk + ykyk
T

ykT sk
− Bksksk

TBk
skTBksk

. ;

k ← k + 1 ;
end

Algorithm 2: BFGS algorithm.

Starting from the identity matrix to initialize the Hessian matrix is the same as running
Newton’s descent on the first step. The algorithm will further refine the approximation of the
Hessian at the next step without having to calculate it analytically.

The L-BFGS-B algorithm, that we mostly used in Part II, is an extension of the BFGS
method using a limited amount of computer memory and that allows bound constraints.

As mentioned previously, the disadvantage of the local optimization method is when we
deal with the existence of several local minima (Figure 4.2). Global optimization provides a
solution to this problem.

4.3.2 Global optimization methods

The methods presented in Section 4.3.1 are deterministic which means that the solution de-
pends on the initial guess P0. Thus if the initial guess is not relatively close to the optimum,
the algorithm could not converge to the general solution. Global optimization methods, that
can also be deterministic, ensure that the optimal values are global. They are usually clas-
sified into three categories: the deterministic methods such as the Branch and Bound, the
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stochastic methods such as Monte-Carlo, and the heuristics and meta-heuristics methods
such as the simulated annealing.

We start by introducing the general ideas behind stochastic or random-based methods
and then describe in more detail the Basin-Hopping method that is used in the medical ap-
plication Part II.

Random-based methods

The stochastic global optimization methods usually rely on repeated random sampling
which allows solving problems that are a priori deterministic. No information on the deriva-
tives of the cost function being optimized is required, which provides memory for searching
over the whole parameter space.

This category of methods involves a four-step process [132]: first, evaluating the objective
function J on a random set of points, second keeping the points that pass the randomized
evaluation criteria, third tightening the evaluation criteria, and finally repeating until the
convergence criteria are met.

Basin Hopping

The Basin Hopping algorithm [133,134] is a very effective stochastic algorithm that looks
for the global minimum of the cost function J by creating a random perturbation of the
parameters P at each optimization step. It is particularly useful when the function has many
minima separated by large barriers. It is a three-phase method: the first phase consists of
perturbing the set of parameters depending on the value of cost function, second running a
local minimization using a chosen method (in our case, the L-BFGS-B method), and finally
accepting or rejecting the new set of parameters by calculating the cost function value. Usu-
ally, the acceptance test is the Metropolis criterion of standard Monte Carlo algorithms [135].
Overall, it provides the optimal values of the model parameters P, in a prescribed parameter
space, as the global optima of the cost-function J.

This method, in combination with the L-BFGS-B method, is used in Chapter 6, Chapter
8, and Chapter 9.

4.3.3 Other methods

Considering the importance of parameter estimation in medical studies, many other meth-
ods have been developed for that purpose, that we choose not to detail here, for instance,
retropropagation [43], adjoint-based methods [136, 137], quasi-Newton methods [138] or the
Fletcher-Reeves method [139], also known as the conjugate gradient method.

Filtering approaches such as Kálmán filters are often used for data assimilation to estimate
parameters from incomplete or noisy data sets. It is a common strategy in the study of blood
flows and has been applied to 0D models [140, 141], 1D models [126, 127, 142], 3D Fluid-
Structure Interaction (FSI) models [143,144] on synthetic or patient data. Most studies that
use Kálmán filters look for the elastic properties of the arterial vessels [126,144] or the values
of terminal boundary condition coefficients [56,125]. We give more detail about this method
and run a test on the damped harmonic oscillator equation in Appendix A.
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4.4 Conclusion
In this chapter, we detailed the numerical resolution schemes used to solve the four reduced-
order models proposed in Chapter 2. Coming from a fluid mechanics background, we mostly
use finite difference and finite volume methods however, benchmark studies showed that all
methods give the same results when convergence is satisfied [51,52].

We discussed the interest of optimization methods to estimate model and hemodynamical
parameters and thus make patient-specific modeling. We reviewed several optimization meth-
ods of the literature and detailed Newton’s method for numerical resolution purposes and
the combination of the global stochastic algorithm Basin-Hopping with the limited memory
gradient-based L-BFGS-B method.
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5 Tests of the model
hypotheses

Despite accurate numerical resolution schemes, the predictions of the reduced-
order models of Chapter 2 need to be tested against appropriate known solutions.
This chapter focuses on testing the hypotheses of the steady RNSP, the Multi-
Ring, and the 1D models in different scenarios. We compare the models against
analytic solutions from the literature and from a computation of the 2D axisym-
metric Navier-Stokes equations in steady and unsteady conditions. We also pro-
pose experiments to validate the 1D and Multi-Ring models in laboratory con-
ditions. The first experiment consists of building a network of artificial arteries.
The second consists of placing a stenosis, i.e. a narrowing of the cross-section,
in an artificial artery. In both experiments, we study the pulse wave propagation
and reflections measured with either a pressure sensor or a PIV set-up.

Keywords: entry effect, Womersley solution, experiments in artificial arteries.

The experimental work was carried during a 3-weeks research internship as part of a collabo-
ration between the Institut Jean le Rond d’Alembert of Sorbonne Université in Paris (France)
and the Laboratory of Ultrasonic Electronics of Doshisha University in Kyoto (Japan).
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5.1 Introduction

In Chapter 2, we introduced four reduced-order models to compute blood flow in arteries.
The main drawback of this reduced modeling approach is that the more reduced the model,
the more information it loses. Therefore it is necessary to do model verifications against ana-
lytic solutions or experimental data to evaluate the validity of the models and the underlying
hypotheses.

Many studies have tested the hypotheses of the one-dimensional (1D) model by com-
paring it with asymptotic solution [41, 43, 44], experimental models [20], ex vivo [73] or in
vitro measurements [21,22,57], in silico three-dimensional (3D) models [145] and real invasive
data [13,55,67,71,72,146,147]. As it is a recent development, only two studies have dedicated
to the validation of the Multi-Ring model against analytic solutions [46] and 3D computa-
tions [47].

In this chapter, we carry a model comparison against analytic solutions and experiments
in artificial arteries. We start in Section 5.2 by testing the hypotheses of the Multi-Ring
model by comparing its numerical predictions to analytic solution. First, we study the entry
effect which is the development of the boundary layer in a straight rigid tube. We compare
the steady Reduced Navier-Stokes Prandtl (RNSP) and the Multi-Ring model to the ana-
lytic solution and to a computation of the two-dimensional (2D) axisymmetric Navier-Stokes
equations. Second, we present the Womersley solution [42] in a straight elastic tube and we
compute the Multi-Ring model to test it in unsteady conditions. In Section 5.3, we compare
the 1D and Multi-Ring models with experiments in artificial arteries made from silicon tubes.
We study in Section 5.3.3 an arterial network composed of an assembly of these silicon tubes.
The second experiment described in Section 5.3.4 consists of pressure and Particle Image
Velocimetry (PIV) measurements in a stenosed silicon tube.

5.2 Analytic cases

We propose two classical configurations, numerical and theoretical to test the hypotheses of
the steady RNSP and Multi-Ring models presented in Chapter 2 when possible. The first test
case is the development of the boundary layer of a flow entering a straight rigid channel where
the reduced models (steady RNSP model, Multi-Ring model, and Poiseuille solution) are
compared to a complete 2D axisymmetric simulation of the Navier-Stokes equations (2.22).
The second is the Womersley solution which is an analytic solution of the RNSP equations
in unsteady flows, using the Multi-Ring model.

5.2.1 The entry effect

The first comparison case is the entry effect, represented in Figure 5.1. We investigate the flow
entering a straight rigid channel of radius R0 and length L and we expect that the velocity
profile goes from a flat to a fully developed Poiseuille profile. The transition is due to the
development of a boundary layer which develops and merges into a Poiseuille profile.

We obtain the Poiseuille equations by simplifying the RNSP Equations (2.29) assuming
that the flow is steady, fully developed, and laminar. Using the no-slip boundary condition
at the wall r = R0 and the fact that the velocity ux must be bounded at the center r = 0,
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we can solve the x-momentum Equation (2.29c) and obtain the following velocity

ux(r) = 1
4µ

dp
dx(r2 −R2

0), (5.1)

which we refer to as the Poiseuille velocity profile. We calculate the volumic flow rate by
integrating the velocity (5.1) over the cross-section of the tube

Q =
∫ 2π

0

∫ R0

0
ux(r)rdrdθ = −πR

4
0

8µ
dp
dx. (5.2)

Replacing Q by A0U0 = πR2
0U0, where U0 is the magnitude of the input velocity in

Equation (5.2) and integrating, we obtain the pressure p(x) along the tube

p(x) = − 8ρU2
0

R0ReR
(x− L), (5.3)

where ReR is the Reynolds number based on the radius defined as

ReR = ρU0R0
µ

. (5.4)

We define the Poiseuille resistance Rf that links the pressure drop ∆P = p(x = 0)−p(x =
L) across a tube to the flow rate Q as

Rf = 8µL
πR4

0
. (5.5)

Note that this is actually the hydraulic expression of the resistance of the zero-dimensional
(0D) outflow model (2.68) presented in Section 2.3.6, defined in Equation (2.69), that links
the pressure drop to the flow rate Q.

Finally we can calculate analytically the Wall Shear Stress (WSS) τw thanks to Equation
(2.43)

τw = 4µU0
R0

, (5.6)

which is Equation (2.48) with ξ = 2, the value that corresponds to a Poiseuille velocity profile.

boundary layer

x

Figure 5.1 – Developing and fully developed flows in a channel. The flow is fully developed
after the two boundary layers have merged.

We compare the flow velocity and pressure with the steady RNSP, the Multi-Ring, and
the Poiseuille solution in a straight rigid tube. We compute the full 2D axisymmetric Navier-
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Stokes Equations (2.22) with the software Basilisk presented in Section 4.2.1. We use this
exact solution as a target for the other models. The properties of the test case are reported
in Table 5.1 and the numerical parameters in Table 5.3.

Table 5.1 – Characteristic scales of the entry effect problem. R0: reference radius in cm, L:
artery length in cm, ReR: Reynolds number defined in Equation (5.4), U0: input velocity in
cm/s, ρ: density in g/cm3, µ: dynamic viscosity in g·cm−1·s−1, K: elastic coefficient defined
in Equation (2.15) in g·cm−2·s−2.

R0 L ReR U0 ρ µ = ρU0R0
ReR

K

1 25 100 100 1 1 1e7

In Figures 5.2, we plot the dimensionless pressure and velocity at the center-line for the
different models. We remark that the numerical results are similar. As expected, we observe
in Figure 5.2a that the dimensionless center velocity goes from 1, which is the magnitude of
the flat profile, to 2 the maximum of the Poiseuille profile. In Figure 5.2b, we show the dimen-
sionless center pressure loss computed with the different models. The models all fit the 2D
axisymmetric Navier-Stokes target computation, and when the boundary layer is fully devel-
oped, all models fit the analytic solution for the pressure loss in an rigid tube (Equation (5.3)).

(a) (b)

Figure 5.2 – Dimensionless (a) velocity and (b) pressure at the center-line as a function of
x-position. Comparison of ( ) the 2D axisymetric Navier-Stokes solution, (�) the steady
RNSP model, (4) the Multi-Ring model, and ( ) the Poiseuille solution for the entry effect.

In Figures 5.3, we plot the velocity profile at different x-positions in the artery by com-
paring the 2D axisymmetric Navier-Stokes computation to the steady RNSP model (Figure
5.3a) or the Multi-Ring model (Figure 5.3b). We observe that the models reproduce accu-
rately the development of the velocity profile starting from a flat profile at x = 0 cm to the
Poiseuille solution at the end of the tube. We observe a slight difference between the Multi-
Ring model and the 2D axisymmetric Navier-Stokes in Figure 5.3b due to the axial resolution.

This test case verifies the predictions of the steady RNSP and the Multi-Ring results
against the analytic Poiseuille solution and the 2D axisymmetric Navier-Stokes equations in
steady conditions. We now test the hypotheses of the Multi-Ring model in an unsteady case.
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Figure 5.3 – Velocity profile comparison between the 2D Navier-Stokes solution (solid line)
and (a) the steady RNSP model (�), (b) the Multi-Ring model (4) at x = 0 ( ), x = 1
( ), x = 2 ( ), x = 5 ( ), x = 10 ( ) and x = 22 cm ( ).

5.2.2 The Womersley problem

The second test case is the analytic solution of the Womersley velocity profile in a straight
elastic tube [42] that depends on the Womersley number α = R0

√
ω/ν defined in Equation

(2.26). This is the solution of the unsteady RNSP equations (2.28) where we assume that the
flow is linear and periodic. We search for a harmonic solution of the axial velocity ux and the
pressure p as ux = ûxe

i(ωt−kx),

p = p0 + p̂ei(ωt−kx),

(5.7a)
(5.7b)

where we set p0 = 0 for simplicity. Injecting these harmonic solution in Equation (2.28c), we
recover the classical Womersley equation

∂2ûx
∂r2 + 1

r

∂ûx
∂r
− iα2

R2 ûx = − iω
µc
p̂. (5.8)

The solution of Equation (5.8) is (5.7a) with

ûx = p̂

ρc

1−
J0

(
i3/2α

r

R0

)
J0
(
i3/2α

)
 , (5.9)

with c = ω/k the wave velocity, J0 the Bessel function, and α the Womersley number. From
Equation (5.9), we can compute the flow rate Q and the WSS τw

Q = Q̂ei(ωt−kx) with Q̂ = πR2
0
p̂

ρc
(1− F10(α))

τw = τ̂we
i(ωt−kx), with τ̂w = i

να2

2R0

p̂

ρc
F10(α),

(5.10a)

(5.10b)
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Table 5.2 – Characteristic parameters of the Womersley velocity profile. R0: initial radius
in cm, L: tube length in cm, ρ: density in g/cm3, µ: dynamic viscosity in g·cm−1·s−1, K:
elastic coefficient defined in Equation (2.15) in g·cm−2·s−2, R̂: inlet boundary condition in
cm, Rt: reflection coefficient, Tc: period in s, tf : final time of the simulation in s, α: Womersley
number.

R0 L ρ µ K R̂ Rt Tc tf α

1 200 1 2π ρ
Tc

R2
0

α2 104 10−3 0 0.5 12Tc {5,20}

Table 5.3 – Numerical parameters of the Multi-Ring model for the Womersley velocity
profile. Nx: number of cells, Nr: number of rings, dt: time step in s.

Nx Nr dt

1600 32 2·10−6

where F10(α) = 2
i3/2α

J1(i3/2α)
J0(i3/2α)

.

To compute the Womersley velocity profile, we impose the following sinusoidal pressure
at the inlet

p(x = 0, t) = p̂ sin
(

2π t

Tc

)
, (5.11)

with the amplitude p̂ =
√
πKR̂ and a reflection coefficient Rt equal to 0 at the outlet. We

compute the Multi-Ring model in a straight elastic tube with the properties reported in Table
5.2 and the numerical parameters in Table 5.3.

In Figures 5.4, we compare the velocity profiles at different times using the Multi-Ring
model and the analytic solution (5.7a) for a small Womersley number α = 5 (Figure 5.4a) and
for a large Womersley number α = 20 (Figure 5.4b). We observe that the Multi-Ring model
reproduces accurately the analytic solution (5.7a). For α = 5, the viscous effects dominate
over the unsteady effects, and we thus obtain a slightly deformed oscillating Poiseuille profile.
On the other hand, for α = 20, the boundary layer is very small as the viscous effects are
small. We obtain a flatter velocity profile which tends to look like the slip condition at the wall.

This approach allows calculating the center pressure p, the center velocity ux(r = 0) but
also the flow rate Q and the WSS τw. We show the comparison of the Multi-Ring model with
the analytic solutions in Figures 5.5 for the flow rate Q (Figures 5.5a and 5.5b) and the WSS
τw (Figure 5.5c and 5.5d) as a function of the dimensionless position along the artery for one
specific time. We obtain a very satisfying agreement as the model reproduces the exponential
decrease for both Womersley numbers. This second test case allows verifying the hypotheses
of the Multi-Ring model under unsteady flow with an elastic arterial wall.

In Section 5.2.1, we compared the steady RNSP and the Multi-Ring model with an an-
alytic case and the reference 2D axisymmetric Navier-Stokes solution in steady conditions
with a rigid wall. In this section, we proposed a validation of the Multi-Ring hypotheses in
unsteady conditions and of the elastic arterial wall model. In the following section, we test
the hypotheses of the 1D model against experiments in artificial arteries.
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(a) α = 5 (b) α = 20

Figure 5.4 – Womersley velocity profiles in an elastic tube for (a) α = 5 and (b) α = 20.
Comparison between (4) the Multi-Ring model and ( ) the analytic solution (5.7a). 4
is t = 0.3TC + 11Tc, 4 is t = 0.5TC + 11Tc, and 4 is t = 0.7TC + 11Tc.

(a) α = 5 (b) α = 20

(c) α = 5 (d) α = 20

Figure 5.5 – Center flow rate Q and WSS τw comparison between the Multi-Ring model
(4) and the analytic solutions ( ) of Equation (5.10) for α = 5 (a) and (c) and α = 20 (b)
and (d) at t = 0.3Tc + 11Tc.
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5.3 Experiments

The following experimental work was carried during a 3-weeks research internship at the
Laboratory of Ultrasonic Electronics of Doshisha University in Kyoto (Japan).

We are now interested in testing the reduced-order models by comparing them with
experiments in artificial arteries. The set-up and fabrication of the artificial arteries are
described in Section 5.3.1 and 5.3.2. We explore two different experimental set-ups: the first
consists of assembling the artificial arteries into a network of 9 tubes (Section 5.3.3). We
compute the 1D model and verify that its prediction reproduces the measured pressure wave.
The second experiment consists of placing a stenosis, i.e. a narrowing of the lumen of the
tube, in an artificial artery and compare the velocity measured with PIV with the 1D and
Multi-Ring models (Section 5.3.4).

5.3.1 Fabrication of the tubes

We fabricate the tubes using a mixture of two types of silicon gels Momentive Performance
TSE3061 and TSE3450. We ensure that the mixture is homogeneous without any air bubble.
We pour the mixture between a plastic tube and a stainless rod such that the thickness of the
silicone tube is 0.2 cm, as represented in Figure 5.6. We let the mixture solidify overnight.
We break the plastic tube and remove the silicon tube from the stainless rod.

To ensure the consistency of the tubes’ fabrication, the length of one single tube should
not exceed 20 cm. Young’s modulus of each tube is supposedly 150 kPa (value provided by
the supplier) however we do not perform tensile tests to verify this value.

Silicon mixture
Inner diameter

Stainless rod

Plastic tube

Outer diameter

⇠ 20 cm

2 mm

Figure 5.6 – Fabrication process of the artificial artery tube models.

5.3.2 Experimental set-up

The experimental set-up consists of a flow pump filled with water plugged into the artificial
arteries as shown in Figure 5.7. We use a TOMITA Engineering piston pump as the input
of the set-up. The pump imposes a half-sine input flow rate with an amplitude of 100 cm3/s
and an ejection time of 0.3 s. We close the set-up with stainless rods to avoid leaks.

The tubes are pre-filled with water with an inner pressure of approximately 2 kPa. We
measure the pressure using a Keyence AP-10S pressure sensor.
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Water

Pressure sensor
Stainless rod

Pump

Silicon tubes

Figure 5.7 – Experimental set up to measure the pressure in the artificial arteries.

5.3.3 The clamping experiment

The first experiment, which we refer to as the clamping experiment, consists of assembling
the artificial arteries to form an arterial network. We clamp an artery of the network to verify
that the model reproduces the reflections that occur after the occlusion of one tube. In the
following, we present the experiment, the numerical model, the comparison of the two, and
finally the measurement of Young’s modulus of the tubes.

Experiment

We connect nines tubes to form a minimal arterial network modeling the nine main ar-
teries of the human systemic circulation, similarly to [20], as represented in Figure 5.8, with
the properties reported in Table 5.4. The tubes are assembled into a network by gluing one
tube to the next with the silicone mixture. Each terminal tube is occluded with a stainless
rod which imposes a total reflection (Rt = 1) of the pressure wave. We place the pressure
sensor at the position indicated in Figure 5.8. To model an abdominal clamping, we place
the clamp at the end of tube 7.

Table 5.4 – Geometric properties of the 9-artery network model adjusted from [20, 66, 72].
L: length of each tube in cm, D0: diameter of each tube in cm, h: arterial wall thickness in
cm, Rt: reflection coefficient.

N◦ Name L D0 h Rt

1 Aorta arch A 5 1.8 0.2 —
2 Right subclavian radial artery 75 0.8 0.2 1
3 Aorta arch B 2.2 1.6 0.2 —
4 Left carotid artery 36 0.8 0.2 1
5 Aorta arch C 3.7 1.4 0.2 —
6 Left subclavian radial artery 69 0.8 0.2 1
7 Aorta 35 1.2 0.2 —
8 Right femoral artery 97 1.05 0.2 1
9 Left femoral artery 97 1.05 0.2 1
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Silicon tubes
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Clamp here

Figure 5.8 – 9-artery network made of artificial arteries with a topology adapted from
[20,66,72]. The pump is placed at the entry of tube 1, the pressure sensor at 60 cm from the
beginning of tube 2. The clamp is placed at the end of tube 7.

Numerical model

We use the 1D model described in detail in Section 2.3.4 with the viscoelastic pressure law
(2.18) to compare to the experimental pressure measurements. The numerical 1D network has
the same properties as the artificial network (Table 5.4). Initially, we assume that Young’s
modulus E is 1.5·106 g·cm−1·s−2 (which corresponds to 150 kPa and Cν = 1000 cm2/s [20].

The boundary conditions are the following: at the inlet of the network (tube 1), we im-
pose the experimental input signal of the pump. At the end of each terminal tube, we impose
reflection coefficients Rt of 1 to model the occlusion by the stainless rods. We model the
clamping process by applying a total reflection at the end of tube 7, corresponding to a com-
plete occlusion of the tube. To compare with the experimental measurement, we compute the
pressure numerically at the position of the pressure sensor, i.e. 60 cm from the beginning of
tube 2.

In the following, we refer to the pre-clamp configuration as the case before placing the
clamp at the end of tube 7 (the flow occurs in the nine arteries), the post-clamp configu-
ration is after we place the clamp at the end of tube 7 (the flow occurs in only seven arteries).

Comparison between experimental and numerical pressure waves

In Figures 5.9, we compare the pressure measured with the pressure sensor and computed
with the 1D model for the pre-clamp (Figure 5.9a) and the post-clamp (Figure 5.9b) con-
figurations. We use the a priori values of Young’s modulus E = 1.5·106 g·cm−1·s−2 and a
viscoelastic coefficient Cν of 1000 cm2/s, as in [20]. In these figures, we observe the propaga-
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tion, the reflections, and the superposition of all the waves of the pressure pulse sent by the
pump. The mean pressure increases from the pre-clamp to the the post-clamp configuration.

When comparing the experimental and numerical pressure waves of Figure 5.9a, the value
of the viscoelastic coefficient seems appropriate: the attenuation of the reflection waves follows
the experimental data. However, the value of Cν does not match the post-clamp configuration
as shown in Figure 5.9b. We observe that the diffusion of the pulse is too important in the
numerical simulation with respect to the data.

In the pre-clamp configuration, the simulated pressure peaks are late compared to the
experimental pressure peaks which means that the stiffness should be higher for the waves to
propagate faster. However, we observe something different in the post-clamp configuration:
the two first pressure pulses are late which supports the fact that the elasticity should be
higher for the waves propagating faster. Nonetheless, the third numerical pulse is perfectly
synchronized with the experimental one, and from the fourth pulse, the numerical pulse wave
is ahead of the experimental one, which suggests a lower elasticity.

We obtain a correlation coefficient R2 of 0.62 for the pre-clamp configuration and 0.85 for
the post-clamp configuration.

(a) Pre-clamp (b) Post-clamp

Figure 5.9 – Comparison between the 1D model ( ) and the experimental measurements
for (a) the pre-clamp (+) and (b) the post-clamp configuration (+) using the expected value
of Young’s modulus of 1.5·106 g·cm−1·s−2 and a typical value of the viscoelastic coefficient
Cν = 1000 cm2/s. The correlation coefficient is (a) R2 = 0.62 for the pre-clamp configuration
(b) and R2 = 0.85 for the post-clamp configuration.

To get a deeper understanding of the phenomena, we run another simulation increasing
Young’s modulus from 150 to 1.65·106 g·cm−1·s−2 and represent the numerical result in Fig-
ure 5.10. The agreement between experimental and numerical pressure waves is better for the
pre-clamp configuration (Figure 5.10a) when increasing Young’s modulus, we obtain a cor-
relation coefficient R2 of 0.84. For the post-clamp configuration, the two first pressure peaks
are now synchronized too, as shown in Figure 5.10b. However, even though the attenuation of
the waves is well captured by the 1D model in the pre-clamp configuration, the attenuation
is still too high for the post-clamp configuration. We obtain a correlation coefficient R2 of 0.90.
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So far, we can conclude that our 1D wall model is missing an element that could be
for instance a non-linear elasticity (Chapter 3). We now try identifying the actual Young’s
modulus by measuring it experimentally. We prove numerically that the technique fails to
identify a single value of the wall elasticity because of the non-linearity of the wall.

(a) Pre-clamp (b) Post-clamp

Figure 5.10 – Comparison between the 1D model ( ) and the experimental measurements
for (a) the pre-clamp (+) and (b) the post-clamp (+) configuration using a Young’s modulus
of 1.65·106 g·cm−1·s−2 and a typical value of the viscoelastic coefficient Cν = 1000 cm2/s.
The correlation coefficient is (a) R2 = 0.85 for the pre-clamp configuration (b) and R2 = 0.90
for the post-clamp configuration.

Measurement of Young’s modulus

In order to assess the value of Young’s modulus, we carry elasticity measurements because
tensile test is unavailable as it would require to cut each silicone tube. The method consists
of calculating the wave velocity in each tube to obtain Young’s modulus value through the
Moens Korteweg relation (5.13) [92, 93]. The distance between the two measurement points
divided by the time difference allows calculating the wave velocity (5.12) as

c = ∆L
∆t , (5.12)

with ∆L the distance between the measurement points and ∆t the time for the wave to travel
from the first to the second measurement point. From Equations (2.15) and (2.59), we obtain
the following expression for Young’s modulus

E = ρD0c
2(1− ν2

w)
h

, (5.13)

with ρ the water density, D0 = 2R0 the tube diameter (Table 5.8), c the wave velocity (5.12),
νw the Poisson coefficient, and h the tube wall thickness (Table 5.8).

For the experimental measurement of the wave velocity c, we extend the tubes to prevent
any reflection to superimpose with the incident wave. We carry these measurements in the
arms and legs. We place the pressure sensor at different locations as represented in Figure
5.11 and 5.13 for the measurement of Young’s modulus in the arm and leg respectively. The
locations of the measurement points are reported in Table 5.5 and 5.9 for the arm and leg
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respectively.

For the numerical model, we reproduce this set-up and compute the pressure at the same
locations to assess the wave velocity c. We impose an a priori value of Young’s modulus E
to verify if this technique can identify this value of E. We measure the time difference and
wave velocity with three different techniques that correspond to several locations of the first
pulse of pressure:

• The first measurement (�) is at the peak of the pressure pulse: we calculate the max-
imum of the first pressure pulse for each of the three measurement points, the time
difference between each pulse and the wave velocity with Equation (5.12).

• The second measurement (4) is taking the maximum of the first pressure pulse minus
the minimum of the first pressure pulse divided by two.

• The last measurement (©) of the wave velocity is by adding 20% of the maximum of
the first pressure pulse to the minimum of the first pressure pulse.

In the following, we present the experimental results of Young’s modulus measurements
in the arm and leg and show numerically that this technique fails to identify one value of the
elastic coefficient in both the arm and the leg.

Measurement of Young’s modulus in the arm

In Table 5.6, we report the five experimental measurements of Young’s modulus in the
arm. In Tables 5.7 and 5.8, we report the numerical values of Young’s modulus obtained with
the numerical method for two different values of the viscoelastic coefficient Cν = 500 and
5000 cm2/s respectively. In Figures 5.12, we show the pressure wave in the arm at the three
measurement points to show how we measure the wave velocity for Cν = 500 cm2/s in Figure
5.12a and Cν = 5000 cm2/s in Figure 5.12b.

For the arm, the mean experimental value of Young’s modulus is 1.174±0.17·106 g·cm−1·s−2,
corresponding to a 22% difference with respect to the supplier’s value of 1.5 g·cm−1·s−2. The
mean numerical value is 1.62± 0.06·106 g·cm−1·s−2 for Cν = 500 cm2/s (8% difference) and
1.76± 0.15·106 g·cm−1·s−2 for Cν = 5000 cm2/s (17% difference).

We observe that in both experimental and numerical methods, the value of Young’s mod-
ulus varies a lot from one measurement to another, depending on the location of the mea-
surement point and on the chosen technique. There is indeed a large deviation in Young’s
modulus measured by the experimental and numerical method, neither the experimental nor
the numerical model provides a reliable value.
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Table 5.5 – Modification of the properties of Table 5.4 and position of the measurements
points. The lengths indicated for the measurements points are the distances from the begin-
ning of the tube.

N◦ Name L (cm) MP1 (cm) MP2 (cm) MP3 (cm)
2 Right subclavian radial artery 200 40 60 80

MP2
MP1

MP3

1
2

3

4

5

6

7

8 9

Figure 5.11 – Drawing of the 9-artery network for the measurement of the arm elasticity.
The crosses represent the points of measurements as reported in Table 5.5.

Table 5.6 – Five experimental measurements of Young’s modulus in the arm, expressed in
106 g·cm−1·s−2.

Measurement n◦ 1 2 3 4 5
Young’s modulus 1.45 1.30 1.09 1.04 0.99

Table 5.7 – Young’s modulus numerical measurements in the arm in 106 g·cm−1·s−2 with
Cν = 500 cm2/s.

between MP1 and MP2 between MP2 and MP3 between MP1 and MP3
� 1.71 1.71 1.71
4 1.53 1.59 1.56
© 1.59 1.59 1.59
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Table 5.8 – Young’s modulus numerical measurements in the arm in 106 g·cm−1·s−2 with
Cν = 5000 cm2/s .

between MP1 and MP2 between MP2 and MP3 between MP1 and MP3
� 1.71 1.65 1.67
4 1.58 1.70 1.65
© 1.92 2.00 1.96

(a) Cν = 500 cm2/s
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(b) Cν = 5000 cm2/s
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Figure 5.12 – Pressure wave in the arm (tube 2) as a function of time from which we
measured the wave velocity. ( ) is the pressure wave at the measurement point 1 (MP1),
( ) is the pressure wave at the measurement point 2 (MP2), and ( ) is the pressure
wave at the measurement point 3 (MP3). (�), (4), and (©) correspond respectively to
first, second and third measurement method. (a) corresponds to a low viscoelastic coefficient
Cν = 500 cm2/s , and (b) correspond to a high viscoelastic coefficient Cν = 5000 cm2/s.

Measurement of Young’s modulus in the leg

In Table 5.10, we report the five experimental measurements of Young’s modulus in the
leg. In Tables 5.11 and 5.12, we report the numerical values of Young’s modulus for two dif-
ferent values of the viscoelastic coefficient Cν = 500 and 5000 cm2/s respectively. In Figures
5.14, we show the pressure wave in the arm at the three measurement points to show how
we measure the wave velocity for Cν = 500 cm2/s in Figure 5.14a and Cν = 5000 cm2/s in
Figure 5.14b.

For the leg, the mean experimental value of Young’s modulus is 1.692±0.19·106 g·cm−1·s−2,
corresponding to a 13% difference with respect to the supplier’s value of 1.5 g·cm−1·s−2. The
mean numerical value is 1.24± 0.05·106 g·cm−1·s−2 for Cν = 500 cm2/s (17% difference) and
1.37± 0.12·106 g·cm−1·s−2 for Cν = 5000 cm2/s (8% difference).

Similarly to the measurements in the arm, we observe that neither the experimental nor
numerical method provide one reliable value of Young’s modulus.
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Table 5.9 – Modification of the properties of Table 5.4 and position of the measurements
points. The lengths indicated for the measurements points are the distances from the begin-
ning of the tube.

N◦ Name L (cm) MP1 (cm) MP2 (cm) MP3 (cm)
9 Left femoral artery 200 40 60 80

1
2

3

4

5

6

7

8 9

MP2

MP1

MP3

Figure 5.13 – Drawing of the 9-artery network for the measurement of the leg elasticity.
The crosses represent the points of measurements as reported in Table 5.9.

Table 5.10 – Five experimental measurements of Young’s modulus in the leg, expressed in
106 g·cm−1·s−2.

Measurement n◦ 1 2 3 4 5
Young’s modulus 1.99 1.82 1.66 1.50 1.49

Table 5.11 – Young’s modulus numerical measurements in the leg in 106 g·cm−1·s−2 with
Cν = 500 cm2/s.

between MP1 and MP2 between MP2 and MP3 between MP1 and MP3
� 1.33 1.29 1.31
4 1.21 1.17 1.19
© 1.21 1.21 1.21
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Table 5.12 – Young’s modulus numerical measurements in the leg in 106 g·cm−1·s−2 with
Cν = 5000 cm2/s.

between MP1 and MP2 between MP2 and MP3 between MP1 and MP3
� 1.29 1.21 1.24
4 1.33 1.33 1.33
© 1.53 1.53 1.53

(a) Cν = 500 cm2/s
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(b) Cν = 5000 cm2/s
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Figure 5.14 – Pressure wave in the leg (tube 9) as a function of time from which we measured
the wave velocity. ( ) is the pressure wave at the measurement point 1 (MP1), ( ) is the
pressure wave at the measurement point 2 (MP2), and ( ) is the pressure wave at the
measurement point 3 (MP3). (�), (4), and (©) correspond respectively to first, second and
third measurement method. (a) corresponds to a low viscoelastic coefficient Cν = 500 cm2/s,
and (b) correspond to a high viscoelastic coefficient Cν = 5000 cm2/s.

Discussion

In this section, we showed the comparison between experimental measurements and nu-
merical predictions of the 1D model of the pressure in a 9-artery network. We first noticed
that the expected value (i.e. the supplier’s value) of Young’s modulus did not allow fitting
the experimental pressure waves. We therefore carried an experiment to measure elasticity
but showed that this technique was inappropriate.

Although we could not properly identify a value of Young’s modulus, the 1D model gave
a good prediction of the pressure wave in the full and clamped network. Indeed, the time de-
lays and amplitudes of the waves were not accurately reproduced but the general morphology
and reflections of the model predictions were very similar to the experimental data. The cor-
relation coefficients between the experimental and numerical pressure waves were satisfying
(R2 > 0.85).

Regarding the elasticity measurements, we note that the five experimental measurements
in the arm were systematically underestimating the expected value of Young’s modulus
whereas the opposite happened in the leg, i.e. Young’s modulus was overestimated in the
leg measurement compared to its expected value. The numerical method showed the oppo-
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site trend: overestimating in the arm measurement, underestimating in the leg measurement.
Both experimentally and numerically, we obtained a difference between the supplier value
and the estimated value of less than 20% (between 8 and 17%). The exact value of Young’s
modulus could only be verified with tensile tests on the tubes.

The tubes were fabricated with the same material and a controlled method. It means
that the differences between the tubes’ elasticities cannot come from the fabrication. The
assembly of the tubes to form the network was however not a controlled specific method as
it consisted of gluing the tubes with one another. The assembly process does not ensure the
reproducibility of the process which is a very important factor in experimental work.

Overall, these arguments highlight three main conclusions. First, the hypotheses of the
elasticity measurement technique were not appropriate and thus the technique failed to iden-
tify a single value of Young’s modulus. Indeed it assumed that the material had a purely
elastic behavior but we showed that the viscoelasticity was a necessary component to ac-
count for the attenuation of the pressure waves in the network. Second, the fabrication of the
tubes was not the cause of the differences in Young’s modulus but the assembly of the tubes
could create undesirable reflections influencing the pressure wave propagation. Finally, the 1D
model reproduced well the morphology and reflections of the pressure wave, the correlation
coefficient values were satisfying.

5.3.4 The stenosis experiment

The second experiment to test the numerical models consists of studying the flow in a steno-
sis, i.e. a constriction in the tube. We fabricate a very long tube with a mild narrowing in
the middle of the tube. We measure the pressure far from the stenosis and the velocity at
three locations around it with a PIV set-up. We compare these experimental data with the
numerical results of the 1D and the Multi-Ring models.

Experimental set-up

We fabricate a very long tube of about 500 cm by assembling tubes of 20 cm, follow-
ing the process described in Section 5.6. The wavelength of the pulse wave is approximately
200 cm/s and thus a long tube prevents reflections from perturbing the incident flow in the
stenosis. The stenosis, of length Lst = 4 cm and of constricted diameter Dst = 0.4 cm is
placed approximately in the middle of the tube as represented in Figure 5.15. The pressure
sensor is located 27 cm from the beginning of the tube.

We carry PIV measurements to obtain the velocity at the entry, at the neck, and at the
exit of the stenosis. PIV is a flow visualization process that consists of seeding the fluid with
particle tracers which are assumed to follow the flow dynamics without perturbing it. We
choose nylon particles of 50 µm of diameter and density ρ = 1.03 gram/cm3. The particles
are illuminated by a laser sheet of wavelength 532 nm and output 20 mW. The flow is filmed
with a high-speed camera at a frequency of 2000 FPS (Figure 5.15).

Results

In Figures 5.16, we show the center-line velocity as a function of time at the entry cor-
responding to x = 253 cm (Figure 5.16a), at the neck x = 255 cm (Figure 5.16b), and at
the exit (Figure 5.16c) of the stenosis x = 257 cm. The first peak in Figures 5.16 represent
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the incident wave, imposed by the input pump. The second peak corresponds to the reflected
wave at the end of the tube.

We observe in Figure 5.16a that the 1D model and the Multi-Ring model reproduce ac-
curately the first two peaks of the velocity. The third peak is attenuated in the experimental
velocity compared to the Multi-Ring and 1D models. In Figures 5.16b and 5.16c, the second
velocity peak has a lower amplitude in the experimental data than in the numerical simula-
tions. In Figure 5.16c, the third peak has the same magnitude and shape in both numerical
and experimental data.

Pump

Stainless rod

Pressure sensor

Laser

Particle suspension

Lens

243 cm245 cm

0.8 cm

0.4 cm

27 cm

4 cm

20 cm

High speed camera

Figure 5.15 – Experimental set-up constituted of the artificial artery with the arterial
stenosis model, the input flow pump, the pressure sensor and the PIV set-up.

The difference between the measured and simulated data is due to the asymmetry of
the measured velocity profile, as can be seen in Figures 5.17. More detail about the velocity
profiles measured with PIV and the comparison with the Multi-Ring model can be found in
Appendix B.

(a) x = 253 cm (b) x = 255 cm (c) x = 257 cm

Figure 5.16 – Center velocity as a function of time et (a) the entry, (b) the neck, (c) the
exit of the stenosis for the experimental PIV measurement ( ), the 1D model ( ) and the
Multi-Ring ( ) model.
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Figure 5.17 – Velocity profiles measured with PIV at four different times at the exit of the
stenosis x = 257 cm.

Discussion

Because the peaks are perfectly synchronized and attenuated compared to the measure-
ment at the entry of the stenosis, we can confirm that the mechanical properties, Young’s
modulus E and the viscoelastic coefficient Cν , have the correct values.

The change in water volume depending on the location where it is measured suggests
that there may be leaks in the experimental system. However, we obtain a very satisfying
agreement between the models and the PIV center-line velocity at the entry of the stenosis
which allows validating the models in this experimental case.

Note that the PIV set-up allows assessing the velocity profile at the entry, the neck, and
the exit of the stenosis that we show in Appendix B.

5.4 Conclusion

In Section 5.2, we tested the model hypotheses of the steady RNSP and the Multi-Ring mod-
els against two analytic solutions, one in steady flow with a rigid wall and one in unsteady
flow with an elastic wall. We obtained for both cases a very satisfying agreement between
the analytic solutions, the 2D axisymmetric Navier-Stokes solution taken as a target, and the
reduced numerical models.

In Section 5.3, we proposed two experiments to test the 1D model and the Multi-Ring
model. First, we compared experimental pressure measurements in a network of artificial ar-
teries to the numerical prediction of the 1D model. We showed that the 1D model reproduced
the shape of the measured pressure wave but not the exact amplitudes and time delays of the
wave reflections. Therefore, we tried estimating experimentally the elastic wall properties by
measuring the wave velocity. The wall properties were incorrectly estimated and there was a
difference between the supplier’s value and the estimated value of 20% or less.

The second experiment consisted of measuring the flow velocity with a PIV set-up and
comparing the center-line velocity with the 1D and Multi-Ring models. We obtained a qual-
itatively good agreement between the measurements and the numerical predictions in terms
of magnitude and morphology. This second result highlights the fact that the value of the
mechanical properties (viscoelastic coefficient and Young’s modulus) were accurate. Nonethe-
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less, we found that there was a loss of fluid in the experimental set up which explains why
the quantitative agreement between the numerical and experimental models was not so high.

Regarding the two experiments, we can conclude that Young’s modulus of the tube might
be the expected value of 150 kPa, which could be only be confirmed by tensile tests of each
tube. Indeed, it is probably the uncontrolled assembly process that perturbs the entire wave
propagation in the network and affects Young’s modulus estimation which could explain the
lack of agreement in the clamping experiment.

Overall, the comparison with analytic solutions and with two experiments in multiple
different conditions suggest that the hypotheses and the numerical resolution of the steady
RNSP, the Multi-Ring, and the 1D model are valid.

This first part dealt with the theoretical and modeling aspects of the thesis. We derived
two state laws from the linear approximation to characterize the simplified behavior of the
arterial wall. We detailed the hypotheses on the flow symmetries, the rheological properties
of blood and the arterial wall, and the geometry of the arteries. From these assumptions,
we derived several reduced-order models. Then, we improved the description of the arterial
wall by rigorously deriving three polynomial hyperelastic model of the arterial wall. Next,
we introduced the resolution methods as well as the optimization strategies to estimate the
parameters of the models. Finally, we tested the hypotheses of these reduced-order models
against analytic solution and experimental data. This part focused on the theoretical and
methodological aspects necessary to the second part in which we use all these models and
methods to study different cardiovascular pathologies.
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Part II

Biomedical applications

Stenosis, defined by a reduction of the lumen of the arteries, is a frequent
anomaly in the cardiovascular system and can occur in many different situations.
This pathology can appear in different locations of the network: in the aorta for
instance, as in Aortic Coarctation, a congenital disease found in children. In this
case, the measurement of pressure is essential to determine the treatment strategy.
The creation of an Arterio-Venous Fistula (AVF), a necessary procedure in case
of kidney insufficiency, can also lead to arterial or venous stenoses. In all cases,
stenoses have significant consequences on the flow distribution. When too severe,
stenoses can require vascular repair surgeries, for instance in the case of peripheral
artery disease. These surgeries usually involve aortic cross-clamping, a procedure
performed in over a quarter of million patients yearly, hence the necessity to un-
derstand its impact on the vascular mechanics. The reduced modeling approach is
also relevant in a variety of other medical scenarios for instance pulmonary hyper-
tension that requires a classification regarding parameters that cannot be directly
measured in clinical configurations. All these medical conditions require quick
decisions and thus complex modeling cannot provide the relevant information in
real-time. The use of reduced-models is therefore considered as a good alternative
to bring insights on the underlying mechanisms involved in these pathologies.
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6 Pressure drop in
stenoses

Stenosis, defined by a partial or full obstruction of the arteries, is a frequent
anomaly in the cardiovascular system. The pressure drop across a stenosis indi-
cates the severity of the pathology, however there is currently no non-invasive
method to obtain this pressure drop. We therefore resort to reduced-order models
to compute the trans-stenotic pressure drop in idealized geometries. In particu-
lar, we use he steady RNSP model, the Multi-Ring model, the 1D model, and an
algebraic 0D model. To validate these models in this clinical scenario, we obtain
invasive trans-stenotic pressure drop and use 4D flow MRI to extract the anatomy
and flow velocity during routine medical care with data from Necker Hospital. We
compare these models against the invasive measurements and study the influence
of the geometry, wall elasticity and flow parameters.

Keywords: reduced-order models, pressure drop, arterial stenoses.
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6.1 Introduction

Aortic CoArctation (CoA) is a congenital heart disease that appears in young children and
that accounts for 5 to 8% of all congenital heart diseases [148]. CoA is defined as a partial
narrowing of an arterial segment called stenosis and is frequently located either in the area
where the ductus arteriosus inserts or in the ascending aorta.

In clinical studies, measurements of the blood pressure drop across a stenosis give signif-
icant indications regarding the severity of the pathology. For medical decision making, the
patient needs to undergo invasive heart catheterization, as recommended by the American
College of Cardiology [149], with its risks and side effects. Clinical guidelines recommend an
intervention if the systolic trans-stenotic pressure gradient exceeds 20 mmHg, measured by
catheterization as it is the clinical goal standard despite its invasiveness.

In contrast, the European Society of Cardiology advocates the use of alternative non-
invasive methods based on imaging techniques to estimate the trans-stenotic pressure drop.
In particular, they recommend Doppler echocardiography however this method tends to sys-
tematically overestimate the pressure drop. The method is based on the simplified Bernoulli
equation ∆p = 4V 2

max
1 [150] which is highly unrealistic in this medical scenario and leaves out

many parameters such as the anatomy of the stenosis. Various modifications to the Doppler
calculations have attempted to improve its accuracy. Young and Tsai [151,152] were the first
to enrich the Bernoulli principle for arterial constrictions which was then followed by many
comparisons with in vitro and in vivo models [153,154]. Other studies added for instance the
influence of pre-coarctation velocity, the distal diastolic continuation of flow, and the effect of
pressure recovery [155,156]. Doppler remains highly operator-dependent and small errors on
the maximal velocity lead to large errors on the trans-stenotic pressure drop as it is a function
of the quadratic velocity, which makes the use of this technique unusable for medical diagnosis.

More recently, 4D Magnetic Resonance Imaging (MRI) [157,158] was proposed as a non-
invasive image-based alternative to catheterization and Doppler. It provides anatomic infor-
mation of the aorta as well as a three-dimensional (3D) time-resolved blood flow velocity map-
ping. An increasing number of studies have assessed the reliability of 4D flow MRI [159,160].
The comparison with invasive measurements of the trans-stenotic pressure drop has shown
an overall good agreement [161–164]. Although MRI is not operator-dependent, 4D flow mea-
surements present errors particularly due to the low spatial and temporal resolutions (around
5 voxels per diameter). Moreover, its application to clinical routine remains challenging as
the current models behind the 4D MRI-based estimation of the trans-stenotic pressure drop
requires high computing resources.

Reduced modeling is therefore a relevant option for computing blood flow in stenosed
vessels, and deducing pressure data. In this chapter, we propose to use the reduced-order
models presented in Chapter 2 to evaluate the trans-stenotic pressure drop in large arteries.
To validate the non-invasive trans-stenotic pressure drop computed with the reduced-order

1. this expression is empirical and indeed not homogeneous but is frequently used in clinical studies.
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models, we use invasive catheterization data and 4D flow MRI. The objective is to make
combined patient-specific / idealized computations. It means that we model the artery as an
axisymmetric tube with a degree of constriction, a length of stenosis, and an input velocity
extracted from patient-specific data.

The chapter is organized as follows: in Section 6.2, we introduce the data acquisition
through the catheterization and 4D flow MRI measurements, the patient population, and a
sample size estimation to evaluate the number of necessary patients in the study to validate
the models. Then, in Section 6.3, we briefly review the literature on model-based non-invasive
measurements of the trans-stenotic pressure drop and recall the models we use in this study.
In Section 6.4, we analyze the models in steady conditions by computing the flow in an
idealized stenosis to highlight the relevant models, then compare the trans-stenotic pressure
drop with the invasive measurements. In Section 6.5, we carry a more theoretical analysis of
the trans-stenotic pressure drop by comparing the models in unsteady conditions.

6.2 Data acquisition
In this section, we detail how the catheter measurements and 4D flow MRI are performed,
present the patient population, and describe the sample size estimation process.

6.2.1 Measurements

Invasive arterial catheterization is performed at Necker Hospital using calibrated fluid-filled
catheters. We measure the peak-to-peak gradient across the stenosis, i.e. before and after the
stenosis, which is the current clinical reference standard for assessing CoA [149].

4D flow MRI [157] with the 1.5-T system (Signa CV/i; GE Healthcare, Milwaukee, WI,
USA, Necker Hospital in Paris) or angiography if the method is available provides the ge-
ometric properties of the stenosis and the velocity mapping of the vessel. For one patient
the settings are as follows, we obtain 20 time frames over the cardiac cycle, which led to a
temporal resolution of 49 ms/frame. The total scan time is 14 min. We set the maximum
velocity magnitude to 333 cm/s. The voxel measures 1.96× 2.75× 1.30 mm3.

After the MRI acquisition, the images are uploaded to the software Arterys (from which
we extracted Figures 6.1). From the software, we measure the upstream diameter, the min-
imal diameter, and the length of the constriction. The software also provides the velocity
upstream of the stenosis. In Figure 6.1, we show images from the 4D flow MRI sequence at
3 different times. Each figure represents the flow velocity mapping in different orientations.
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(a) frame 3/20 (b) frame 5/20 (c) frame 7/20

0 100 200 300

Figure 6.1 – Example of a few images of the 4D Flow MRI sequence extracted from the
software Arterys for one patient with a stenosis in the ascending aorta. (a) corresponds to
the frame 3/20, (b) to the frame 5/20, and (c) to the frame 7/20. The color map indicates
the magnitude of the velocity in cm/s.

6.2.2 Patient population

This is a retrospective analysis in which we include patients who underwent both cardiac
catheterization and a 4D Flow MRI study. We exclude patients who have (a) a stent that
prevents visualizing the geometry of the stenosis unless 3D anatomy can be assessed with
a contrast-enhanced CMR angiography, (b) a stenosis at the root of an artery junction (for
instance at the junction of the left and right pulmonary arteries).

In the following, we carry a sample size estimation to evaluate the number of patients
required in the study to validate the approach.

6.2.3 Sample size estimation

We describe how to choose the sample size, i.e. the number of patients required in the study,
to validate the models by estimating the 95% Limits of Agreement (LoA). The method we
present consists of assessing the agreement between two methods of clinical measurements
and is described in [165] in which the authors give a formula for the Confidence Interval (CI)
interval for the 95% LoA. The two methods we compare here are the numerical, referred as
method A (Section 6.3), and the invasive method, method B (Section 6.2.1), to measure the
pressure drop across a vascular stenosis.

To assess the agreement between methods A and B, we define δ the mean difference
between the measurements of the two methods A and B as

δ = |µ(A)− µ(B)|, (6.1)

where µ(A), respectively µ(B) is the mean of A, respectively B. The mean difference δ
corresponds to the blue solid line in Figure 6.2. The 95% LoA is δ ± 2σ and corresponds to
the red and green solid lines in Figure 6.2, where σ is the Standard Deviation (SD) of the
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difference between the measurements of the two methods. The standard error of the mean
difference between the measurements of the two methods sem(δ) is defined as

sem(δ) =

√
σ2

N
, (6.2)

which corresponds to the blue dashed lines in Figure 6.2, with N the sample size. Similarly,
the standard error of the 95% LoA sem(δ ± 2σ) is

sem(δ ± 2σ) =

√
3σ2

N
, (6.3)

and corresponds to the red and green dotted lines in Figure 6.2.
D
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Figure 6.2 – Bland Altman plot to assess the agreement between two methods. ( ) cor-
responds to the mean difference between the measurements of the two methods, ( ) corre-
sponds to the standard error of the mean difference, ( ) and ( ) correspond respectively
to the upper and lower 95% LoA, ( ) and ( ) correspond respectively to the standard
error of the the upper and lower 95% LoA.

The classical approach to calculate the sample size consists of using a study from the liter-
ature that compares similar methods to assess similar quantities. Therefore, we use [153] that
compares a numerical model and invasive measurements of the pressure drop across induced
vascular stenoses in dogs. We check with a Shapiro-Wilk normality test that the data follows
a normal distribution. We calculate δ and σ from [153] with the classical values α = 0.05 and
β = 0.2 2 and obtain the results reported in Table 6.1.

By inverting Equation (6.2), we can calculate N the number of necessary patients in
the study depending on sem(δ) the standard error of the mean difference between the two
methods, reported in Table 6.2. Therefore, if we are accepting a standard error of the mean
difference between the two methods of 2 mmHg, we only require three patients to validate our
numerical models. It will give us a standard error of the 95% LoA of 3.464 mmHg. We choose
this value of the standard error of the mean difference between the two methods as the typical
error on the invasive measurements is of the same order of magnitude. Note that a larger

2. α corresponds to the acceptable probability for rejecting the null hypothesis while it is true. β is the
opposite; the probability of of accepting the null hypothesis when it’s false.
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Table 6.1 – Calculations from [153]. δ: mean difference between the measurements of the
two methods, σ: SD of the difference between the measurements of the two methods, δ± 2σ:
95% LoA.

δ σ δ + 2σ δ − 2σ
1.331 mmHg 2.929 mmHg 4.26 mmHg -1.598 mmHg

Table 6.2 – Estimation of the sample size depending on standard error of the mean difference
between the measurements of the two methods that we are willing to accept. sem(δ): the
standard error of the mean difference between the measurements of the two methods, N :
sample size, sem(δ ± 2σ): the standard error of the 95% LoA.

sem(δ) 0.5 mmHg 1 mmHg 2 mmHg
N 35 9 3

sem(δ ± 2σ) 0.866 mmHg 1.732 mmHg 3.464 mmHg

sample size (for instance N = 9) would lead to a validation of the models with more accuracy.

In the following, we present the numerical models, introduced in Chapter 2, that we
compare with the invasive measurements to develop a non-invasive method to measure the
trans-stenotic pressure drop.

6.3 Blood flow modeling

There exists a variety of models, experimental [151] and numerical [48], that investigate the
flow in constrictions for medical [166] or theoretical purposes [41,44]. Some studies explore the
mechanics involved in the development and growth of stenoses. For instance, the Wall Shear
Stress (WSS) [167] is known to be affected in aneurysm rupture, development of atheroscle-
rosis, and other pathologies. The influence of pulsatility, turbulence [35] or deformability [27]
have also been greatly investigated.

Other studies are more interested in patient-specific computations of the pressure drop
across stenoses. Indeed, the improvement of the high-resolution medical imaging field has
allowed image-based Computational Fluid Dynamics (CFD) to develop [168]. Extracting the
anatomy enables to simulate velocity and pressure fields in patient-specific geometries as
in [47, 169]. The 3D models to compute the trans-stenotic pressure drop have been inten-
sively studied in the literature as they enable the highest precision, they however require
high computational resources. As our main goal is to provide a time-efficient alternative to
catheterization for the assessment of the trans-stenotic pressure drop, we discard the 3D
Fluid-Structure Interaction (FSI) models.

Since the 3D approach is inappropriate for medical diagnosis, many investigators have
identified the relevant parameters involved in the trans-stenotic pressure drop to reduce the
3D computation to an algebraic formula [47, 48, 166]. These algebraic models are generaliza-
tions of Bernoulli’s principle, or a balance of mechanical energy, and were each derived in
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specific scenarios [152, 154, 170–172]. Similarly, the one-dimensional (1D) model is used in
combination with an algebraic model [170,171] or other approaches [173–175] to account for
the trans-stenotic pressure drop.

The most used algebraic model is proposed by Young and Tsai in [152] for the pressure
drop assessment in a vascular stenosis

∆P = Kvµ

D0
U(t) +KuρLst

dU(t)
dt + Kt

2

((
A0
Ast

)2
− 1

)
ρ|U(t)|U(t), (6.4)

where ∆P is the pressure drop across the length of the stenosis Lst, D0 the diameter, A0 the
reference cross-section, Ast the cross-section at the throat of the stenosis, Kv, Ku and Kt are
empirical coefficients. The velocity U(t) is the instantaneous input velocity and | · | stands for
the absolute value.

The first term captures the Poiseuille viscous loss depending on the coefficient Kv. The
second term represents the inertial effect of blood flow in a constriction with an inertial
coefficient Ku. The third term accounts for the non-linear effects depending on the coefficient
Kt. In the literature [152], the typical values of these coefficients are

Kv = 32La
D0

(
A0
Ast

)2
,

Ku = 1,
Kt = 1.52,

(6.5a)

(6.5b)
(6.5c)

with La = 0.83Lst + 1.64Dst a correction of the stenosis length Lst, with Dst the diameter of
the stenosis [154].

Note that the non-linear term ((A0/Ast)2 − 1) in [47,151,152,154,172] and other studies
that use this type of algebraic formula is actually (A0/Ast−1)2. However from the conservation
of mass and Bernoulli’s equation p+1/2ρU2 = cst, Equation 6.4 seems more straight forward
and obvious. We also note that if we discard the second and third terms of the right-hand-side
we recover the 0D model of Equation 2.68 that links the pressure drop ∆P to the flow rate
Q = A0U(t) with

Rf = Kvµ

D0A0
. (6.6)

In this chapter, we are interested in the following models, introduced in Chapter 2:

• the steady Reduced Navier-Stokes Prandtl (RNSP) model of Equation (2.29),

• the Multi-Ring model of Equation (2.37),

• the 1D model of Equation (2.52),

• the zero-dimensional (0D) or algebraic model of Equation (6.4).

We use these models in steady conditions in Section 6.4 and in unsteady condition in
Section 6.5. In each case, we use the appropriate models, for instance, as we solve the RNSP
equations (2.29) assuming steadiness, we only use this model for the steady model compar-
isons of Section 6.4.
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For the 1D model, we use the elastic arterial wall model introduced in Section 2.2.2 so we
solve the system of Equations (2.52). Indeed, visco-elasticity is an important parameter when
studying the pulse wave propagation and reflections. However, we are here interested in a
steady quantity that is the trans-stenotic pressure drop so we assume that viscoelasticity does
not play a crucial role. We set ξ = 2 in Equation (2.50) to compute the friction coefficient of
the 1D model.

For the algebraic model of Equation (6.4), we initially use the empirical coefficients (6.5)
from [151,154] in Section 6.4 and then estimate these coefficients in Section 6.5.

In the following, we compute the flow in a rigid wall idealized stenosis in steady conditions
to compare the steady RNSP, the Multi-Ring, and the 1D models.

6.4 Comparison of the models: steady case

6.4.1 Geometry of the stenosed artery

The configuration is an idealized stenosed artery of length L, reference radius R0, stenosis
length Lst and degree of constriction of the stenosis β, as shown in Figure 6.3. At the inlet
of the vessel, we impose a steady input flow, i.e. at x = 0, U(t) = U0. At the outlet of the
vessel, we impose a zero pressure, i.e. at x = L, p = 0. The properties of the configuration
are reported in Table 6.3. The shape of the radius of the artery R(x) is

R(x) = R0

(
1 + β exp

(
−(x− xst)2

xl

))
, (6.7)

where xst is the axial position of the throat of the stenosis and xl is related to the length of
the stenosis Lst.

The pressure drop ∆P calculated in Section 6.4.3, represented in Figure 6.3 is the differ-
ence between the upstream and downstream pressure.

x

R0

✓
1 + � exp

✓
� (x � xst)

2

xl

◆◆

U(t)

L

Lst

R0

�P

Rst = R0(1 + �)

Figure 6.3 – Geometry of the idealized rigid stenosed artery of length L, radius R0, stenosis
length Lst and stenosis degree β (β < 0). The shape of the radius of the wall is Equation
(6.7), with xst the position of the throat of the stenosis, and xl related to Lst. The pressure
drop over the length of the stenosis is ∆P .
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Table 6.3 – Properties of the idealized rigid stenosed artery. R0: reference radius in cm,
β: degree of constriction of the stenosis, L: artery length in cm, Lst: stenosis length in cm,
ReR: Reynolds number based on the radius, U0: input velocity in cm/s, ρ: fluid density in
g/cm3, µ: dynamic viscosity in g·cm−1·s−1, K: elastic coefficient defined in Equation (2.15)
in g·cm−2·s−2.

R0 β L Lst ReR U0 ρ µ K

1 -0.4 40 10 100 100 1 ρU0R0
ReR
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6.4.2 Comparison of the flow field

We compare the steady RNSP, Multi-Ring and 1D models in the rigid stenosed artery against
the Poiseuille center pressure (5.3), center velocity (5.1), and WSS (5.6) as shown in Figures
6.4a, 6.4b, and 6.4c respectively.

We observe in Figure 6.4a that the center pressure drop between the beginning and the
throat of the stenosis is similar in all models. However, the center pressure downstream of
the stenosis is different in the 1D model compared to the steady RNSP and the Multi-Ring.
Indeed, the 1D model does not account for the recirculation near the walls and the jet for-
mation in the center of the artery after the stenosis, as can also be seen in Figure 6.4b.

One of the assumptions of the 1D model is the shape of the velocity profile as described
in Section 2.3.4. Therefore, the downstream flow is by definition not impacted by the con-
striction in the 1D model, as opposed to the steady RNSP and Multi-Ring models, that are
two-dimensional (2D) models. We observe in Figure 6.4a that the steady RNSP and Multi-
Ring models account for the jet and recirculation after the stenosis, which is confirmed by
Figure 6.5 in which we show the velocity profiles at different positions along the artery.

Figure 6.4c shows that the WSS computed with the Multi-Ring and steady RNSP models
is maximal at the throat of the stenosis, a result that causes a lot of discrepancies in the lit-
erature. Indeed, it has been shown that the WSS plays an important role in the development
of atherosclerosis [167]. Downstream of the constriction, the WSS becomes negative before
going back to the Poiseuille value, which characterizes a backflow near the walls downstream
of the stenosis. To compute the friction in the 1D model we assume a Poiseuille profile, i.e.
ξ = 2 in Equation (2.50), so the WSS computed with the 1D model is the Poiseuille WSS (5.6).

We verify the presence of this back-flow by plotting the velocity profile in the steno-
sis using the Multi-Ring model. The shape of the velocity profile changes when entering
the constriction (Figure 6.5d): the magnitude increases and the profile becomes plug-like3.
The magnitude of the profile is maximal at the throat of the stenosis (Figure 6.5e), i.e. at
x = 10 cm from the entrance. After the throat (Figure 6.5f and 6.5g), we observe the forma-
tion of a jet in the center. Far from the stenosis (Figure 6.5h), the velocity profile is no longer
affected by the constriction and goes back to the initial entry Poiseuille velocity profile of
Figure 6.5a.

3. We recover the plug-like behavior in the PIV measurements in a stenosis carried in Chapter 5, shown
in Appendix B (see Figure B.2).
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(a) (b)

(c)

Figure 6.4 – Dimensionless (a) center pressure, (b) center velocity, and (c) WSS along the
stenosis represented in Figure 6.3 with the properties of Table 6.3. ( ) corresponds to the
steady RNSP model, (4) to the Multi-Ring model, (©) to the 1D model and ( ) to the
Poiseuille pressure along a straight tube. ( ) represents the radius R(x) of the artery.
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Figure 6.5 – Velocity profiles at different locations in the rigid stenosed artery, represented
on Figure 6.3 with the properties of Table 6.3, computed with the Multi-Ring model (4) and
the steady RNSP model ( ).

The models used here allow computing the velocity and pressure fields in the entire do-
main. The relevant indicator for medical diagnosis is the pressure drop ∆P evaluated across
the length of the stenosis [149]. In the following section, we compute the pressure drop in the
same idealized stenosis with the algebraic model from [151], the 1D model, the Multi-Ring
model, and the steady RNSP model.

6.4.3 Comparison of the pressure drop

We compare in Figure 6.6 the different algebraic formulation to compute the pressure drop
across a stenosis: the original formula from Young and Tsai [151], the formula of Equation
(6.4), the classical Bernouilli formula, and the empirical formula ∆P = 4U2, often used in
clinical studies. We observe that there is not a strong difference between the original formula
from [151] and Equation (6.4). The Bernouilli formula underestimates the pressure drop as it
does not account for the Poiseuille pressure loss in a straight rigid tube. Finally, ∆P = 4U2

does not account for the degree of constriction, which is known to be a significant parameter
in the pressure drop across a stenosis.

We compare the four reduced-order models to the invasive data introduced in Section 6.2.
The characteristics are reported in Table 6.4: R0, β, Lst, and U0 come from 4D flow MRI,
∆P comes from catheterization. We also compare the models with in vivo pressure drop
measurements in animals from [153].

In Figure 6.7, we show the dimensionless upstream to downstream pressure drop computed
with our four models as a function of the degree of stenosis β. The comparison between the
models and the invasive measurements shows that the steady RNSP and Multi-Ring model
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Figure 6.6 – Comparison of the different algebraic models for the pressure drop as a func-
tion of the degree of constriction expressed in % (i.e. −100β, β < 0). ( ) corresponds to
the original model from Young and Tsai [151], ( ) corresponds to Equation (6.4), ( ) cor-
responds to Bernouilli’s formula, and ( ) corresponds to the empirical 4U2 formula often
used in clinical studies.

Table 6.4 – Characteristics of the invasive pressure drop data measured with arterial
catheter and 4D flow MRI. R0: arterial radius in cm, β: degree of constriction of the stenosis,
Lst: stenosis length in cm, U0: velocity in cm/s, HR: heart rate in BPM, ∆P : pressure drop
between upstream and downstream of the stenosis in mmHg.

n◦ R0 β Lst U0 HR ∆P
IM1 0.55 -0.28 3 115 61 20
IM2 0.55 -0.47 3.65 79 92 30

are the most accurate to predict the pressure drop. The 1D model gives a lower estimation
whereas the Multi-Ring model gives an upper estimation. However, the 1D model remains a
relevant first approximation for mild stenoses (less than 30%).

Similarly, in Figure 6.7, the comparison with in vivo measurements from [153] shows that
the steady RNSP and Multi-Ring are the most accurate models to estimate the pressure drop
across the stenosis. However, we can also observe that for mild stenosis, the 1D model gives
a reasonable agreement with the in vivo measurements. Even if the 1D model might under-
estimate the pressure drop, it is a better starting point than the current algebraic formula
with the empirical coefficients of the literature.

In Table 6.5, we compare the invasive pressure drop from catheterization to the numerical
predictions of the algebraic, 1D, and Multi-Ring models. First, we can conclude once again
that the algebraic formula (6.4) with the coefficients (6.5) does not allow predicting the
pressure drop accurately. Second, we observe that the 1D model underestimates the value
of the real pressure drop but is already much better than the algebraic model. Finally, the
Multi-Ring model is very accurate for mild stenoses (IM1) and overestimates the pressure
drop for more severe stenoses (IM2).
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Table 6.5 – Comparison between the invasive measurement of the pressure drop and the
numerical predictions of the algebraic, 1D, and Multi-Rind models. All the pressure drop are
expressed in mmHg.

n◦ Invasive Algebraic model 1D model Multi-Ring model
IM1 20 46 12.5 19.5
IM2 30 115 18.5 40

Figure 6.7 – Comparison of the dimensionless pressure drop across the stenosis as a function
of the degree of constriction expressed in % (i.e. −100β, β < 0) for the algebraic model (6.4)
with the coefficients (6.5) from [151] ( ), the 1D model (©), the Multi-Ring model (4), the
steady RNSP model (�), in vivo measurements from [153] (♦), and arterial catheter invasive
measurements (♦) presented in Section 6.2.

To give other order of magnitudes, we compute the trans-stenotic pressure drop in the
idealized stenosis of Figure 6.3. We obtain ∆P = 16 mmHg for the 1D model and ∆P =
33 mmHg for the steady RNSP and Multi-Ring models, which seem to be reasonable values
within the physiological range. We compared this pressure drop with the algebraic formula
(6.4) using the values of the empirical coefficients (6.5) from [151] which gives ∆P = 89 mmHg
for the same configuration.

We showed in this section that the algebraic pressure drop computed with the coefficients
(6.5) was clearly out of the physical range. Therefore, in the following section, we compare the
1D and Multi-Ring models to an algebraic formula to improve the estimation of the empirical
coefficients with a parameter estimation process.

6.5 Comparison of the models: unsteady case
For the sake of simplicity, in Section 6.4, we compared the models using a steady input flow.
In this section, we investigate the unsteady effects on the pressure drop across a stenosis
using the 1D and the Multi-Ring models, as they are the only two approaches that account
for unsteadiness.
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We use the same geometry and properties of the stenosed artery as shown in Figure 6.3.
We now impose at the inlet of the vessel x = 0 an oscillating velocity U(t) = U0 sin(2πωt)
with U0 the amplitude of the input velocity and ω the frequency. At the outlet of the tube,
we still impose a zero pressure, i.e. at x = L, p = 0.

6.5.1 Parameter estimation method

To compare the 1D and Multi-Ring models with the algebraic formula (6.4), we need to
estimate the empirical coefficients Kv, Ku, and Kt. The objective is to study the dependence
of these parameters on the stenosis properties. We therefore define a cost function J that
measures the difference between the pressure drop of the model ∆Pmodel, either the 1D or
Multi-Ring model, and the algebraic pressure drop ∆Palg as

J(P) =
(∫ T

0
(∆Pmodel −∆Palg(P))2 dt

)1/2

(6.8)

with P = {Kv,Ku,Kt} the set of parameters to estimate. We minimize the cost function
J with respect to P using a Basin-Hopping algorithm running a L-BFGS-B descent at each
step, described in Section 4.3.2.

6.5.2 Estimation of the coefficients using the 1D and Multi-Ring models

We choose to estimate the empirical coefficients Kv, Ku and Kt as a function of several pa-
rameters: the geometrical parameters that are the cross-section ratio A0/Ast and the stenosis
length Lst, the wall rheology parameter K, defined in Equation (2.15), and the Reynolds
number ReR, defined in Equation (5.4). We represent respectively in Figures 6.8, 6.9, 6.10
the estimated value of the empirical coefficient Kv, Ku, and Kt depending on these four pa-
rameters using the 1D and Multi-Ring models. Note that when we estimate one parameter,
we fix the others.

In Figure 6.8a, we show the estimated value of the coefficient Kv as a function of the
cross-section ratio A0/Ast. We observe that for both the 1D and the Multi-Ring models the
coefficient Kv depends on the cross-section ratio in the same amplitude for the low ratios.
For higher cross-section ratios the coefficient Kv is higher with the 1D model. It explains why
when compared to the invasive measurements (Table 6.5), the 1D and Multi-Ring models
give similar results for a low ratio A0/Ast, i.e. a small degree of constriction.

We compare our estimation of the coefficientKv with two in vivo measurements from [154]
for two configurations that are similar to ours (reported in Table 6.6) in Figure 6.8a. On one
hand, the measurement with a low cross-section ratio gives a very good agreement, but on
the other hand, the measurement with a higher ratio does not. We have several explanations
for the differences. First, the geometry is different as the constriction in [154] is an abrupt
reduction of the radius as opposed to ours that is smooth. Second, they are investigating
steady flows, which may lead to differences if the unsteady effects are important. Finally, the
aspect ratio of Lst/D0 is smaller in their experiments than in our simulations.

In [154], the authors established an empirical expression for Kv (Equation (6.5a)) based
on experimental data, which we show in Figure 6.8a. We observe that the expression (6.5a)
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Table 6.6 – Estimation of the empirical coefficient Kv of Equation (6.4) from [154] for
comparison with Figure 6.8a. β: degree of constriction, Lst: stenosis length, D0: reference
diameter, Kv: empirical coefficient of Equation (6.4).

β Lst/D0 Kv Kt

point 1 -0.375 2 421 1.65
point 2 -0.5 2 1160 1.72

does not match out estimation of the parameter Kv with none of the models.

In Figure 6.8b, we show that the dependence of Kv on the length of the stenosis Lst is
linear for both models. The 1D and Multi-Ring estimation gives the same coefficient Kv for
low to medium ratios. We also compare with the expression (6.5a) and add for reference the
Poiseuille value of Kv in a straight tube that is 32Lst/D0. The Poiseuille expression under-
estimates the value of our coefficient, as the pressure drop in a straight tube is much smaller
than in a stenosed tube (Figure 6.4a). Overall, the comparison with these two expressions
stresses the linear dependence of Kv on the length of the stenosis.

Figure 6.8c shows that the wall elasticity does not influence the value of Kv as the co-
efficient does not vary significantly with K for both models. We however observe that the
optimal values of Kv are very different from one model to the other. In fact, the cost function
J (Equation (6.8)) is really small in both cases. A sensitivity analysis of the dependence of
Kv on K would be necessary to show that the cost function does not vary a lot with respect
to this parameter. When the elasticity of the wall becomes smaller, there is a slight increase
in Kv, but it does not correspond to the value of the wall elasticity of large arteries [66].

Finally, we observe that there is no dependence of Kv on the Reynolds number ReR as
shown in Figure 6.8d for none of the models.

To summarize, we showed that Kv is only a function of the geometric parameters: the
cross-section ratio A0/Ast and the length of the stenosis Lst. This conclusion was obtained
in [154] and more recently in [166].
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(a) (b)

(c) (d)

Figure 6.8 – Values of the coefficient Kv as a function of (a) the cross-section ratio A0/Ast,
(b) the length of the stenosis Lst, (c) the elasticity K, and (d) the Reynolds number based on
the radius ReR. The coefficient Kv is estimated from the 1D model (©) and the Multi-Ring
model (4) using the algebraic formula (6.4). We add on (a) in vivo measurements (♦) from
[153], and the theory of Equation (6.5a) from [154] ( ). We add on (b) the Poiseuille value
of Kv in a straight tube. Lst and K are in CGS units, the other quantities are dimensionless.

Figure 6.9a shows that Ku depends on the cross-section ratio A0/Ast for both the 1D
and Multi-Ring models. The tendency is not the same, the estimation with the 1D model is
linear, the one with the Multi-Ring model is not.

In Figure 6.9b, there is no obvious linear dependence of the coefficient Ku on the length
of the stenosis estimated with the 1D model. We observe the opposite with the Multi-Ring
model, Ku decreases with the increase in the length. When the length of the stenosis is really
large, we recover the same values. Indeed, the 1D model becomes more accurate for longer
stenoses.

Similarly to Figure 6.8c, Figure 6.9c shows that the value ofKu is not significantly affected
by a variation in elasticityK. However, unlike Figure 6.8d, Figure 6.9d shows thatKu depends
on the Reynolds number ReR, and for low Reynolds numbers, both models give the same
estimate of Ku. The variations in cross-section ratio and Reynolds number are however small
compared to the variations in the length of the stenosis.
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(a) (b)

(c) (d)

Figure 6.9 – Values of the coefficient Ku as a function of (a) the cross-section ratio A0/Ast,
(b) the length of the stenosis Lst, (c) the elasticity K, and (d) the Reynolds number based on
the radius ReR. The coefficient Ku is estimated from the 1D model (©) and the Multi-Ring
model (4) using the algebraic formula (6.4). Lst and K are in CGS units, the other quantities
are dimensionless.

The first observation for the third coefficient Kt is that the estimated value of Kt is always
close to zero when fitting the 1D model pressure drop but not zero when fitting the Multi-
Ring model pressure drop. Indeed, the non-linear effects are accounted with more accuracy
in the Multi-Ring model hence Kt 6= 0 in Equation (6.4). We show Kt as a function of the
four stenosis parameters in Figures 6.10.

In Figure 6.10a, we show the estimated value of the coefficient Kt as a function of the
cross-section ratio A0/Ast. We observe that Kt highly depends on the cross-section ratio. We
also show the two measurements from [154], reported in Table 6.6. Unlike for the coefficient
Kv, these measurements do not match our estimation of Kt for similar reasons as mentioned
previously. In Figure 6.10b, we observe that Kt does not vary with the length of the stenosis,
in Figure 6.10c, that Kt is almost 0 when varying the elastic coefficient K, and finally in
Figure 6.10d, Kt varies for small Reynolds number.

In this section, we estimated the three coefficient of the algebraic formula (6.4) that fit the
trans-stenotic pressure drop computed with the 1D and Multi-Ring models. We showed their
dependence on the stenosis parameters. In the following section, we present a comparison
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between the models and the algebraic formula with the estimated coefficients.

(a) (b)

(c) (d)

Figure 6.10 – Values of the coefficient Kt as a function of (a) the cross-section ratio A0/Ast,
(b) the length of the stenosis Lst, (c) the elasticity K and (d) the Reynolds number based
on the radius ReR. The coefficient Kt is estimated from the Multi-Ring model (4) using the
algebraic formula (6.4). We add the value of Kt in the inviscid fluid hypothesis (Bernoulli).
Lst and K are in CGS units, the other quantities are dimensionless.

6.5.3 Comparison between the 1D model and the Multi-Ring model

In Figures 6.11, we compare the pressure drop computed with the 1D model (Figure 6.11a)
or the Multi-Ring model (Figure 6.11b) and the algebraic pressure drop from Equation (6.4)
using the estimated optimal parameters Kv, Ku, and Kt reported in Table 6.7.

By comparing Figure 6.11a and 6.11b, we can see that the amplitude of the maximum
pressure drop is higher for the Multi-Ring model than for the 1D, similarly to Figure 6.4a
and 6.7. The Multi-Ring model is indeed more accurate as it accounts for the recirculation
and the jet formation downstream of the stenosis.

With only two terms in Equation (6.4), we reproduce the shape of the 1D pressure drop
between upstream and downstream of the stenosis under unsteady flow. By adding a non-
linear term to Equation (6.4), we retrieve the shape of the unsteady pressure drop across the
stenosis of the Multi-Ring model, with the same values for the other two coefficients.
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Table 6.7 – Empirical dimensionless coefficients Kv, Ku, and Kt of the algebraic model 6.4,
estimated with the parameter estimation of Section 6.5.1.

Kv Ku Kt

1D model 400 1.5 0
Multi-Ring model 400 1.5 0.7

(a) (b)

Figure 6.11 – Dimensionless pressure drop accross the stenosis as a function of the di-
mensionless instantaneous velocity. Comparison between the algebraic model (6.4) ( ) and
(a) the 1D model (©), (b) the Multi-Ring model (4) for an unsteady input velocity with
pulsation ω = 1 s−1. The properties of the stenosed artery are reported in Table 6.3 and the
parameters Kv, Ku and Kt of the algebraic model are reported in Table 6.7.

The algebraic model with the three empirical coefficients can reproduce the unsteady
pressure drop of our two models. This estimation of the three coefficients provides an imme-
diate estimation of the pressure drop without computing the 1D or the Multi-Ring model for
more accuracy.

6.6 Conclusion

In this study, we compared four reduced-order models (algebraic, 1D, Multi-Ring, steady
RNSP) to compute the pressure drop across a stenosis. We analyzed the flow field in an
idealized stenosis and highlighted that with a steady input flow, the steady RNSP, Multi-
Ring, and 1D model behaved similarly in terms of the shape of center pressure between the
beginning and the throat stenosis. We showed the limitation of the 1D model to estimate the
trans-stenotic pressure drop as the flow is not modified downstream of the stenosis. However,
the morphology of the center pressure between the beginning and the throat stenosis was
similar in the steady RNSP, the Multi-Ring, and the 1D models.

Then, we used invasive measurements carried in patients at Necker Hospital and in vivo
measurements from [154] to validate our approach. The data came from catheterization and
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4D flow MRI, and allowed carrying a combined idealized/patient-specific method. We showed
that the Multi-Ring model reproduced the measurements reasonably well, and the 1D model
was accurate for mild stenoses. We concluded that both models provided better estimations
of the pressure drop than the current algebraic model, with a reasonable computational cost.

Since the algebraic model (6.4) did not provide an accurate estimation of the trans-stenotic
pressure drop with the coefficient 6.5, we estimated the three coefficients of these models based
on the 1D and Multi-Ring models with a Basin-Hopping optimization method. We found that
the coefficient Kv characterizing the viscous loss only depended on the cross-section ratio and
the length of the stenosis. The coefficient Ku characterizing the inertial effects depended on
the cross-section ratio, on the length of the stenosis, and also on the Reynolds number. For
the last coefficient Kt, we observed that using the 1D model the non-linear term was negligi-
ble and that it depended mostly on the cross-section ratio. An important observation is that
none of the three empirical coefficients strongly depend on the wall elasticity K. It means
that either the wall elasticity does not play a significant role in the center pressure drop across
the stenosis, or that the cost function is not sensitive to this parameter.

With the new values of the coefficients of the algebraic model, we obtain an instantaneous
estimation of the trans-stenotic pressure drop only based on geometric (the cross-section ratio
and length of the stenosis) and flow properties (the Reynolds number) that can be provided
by 4D flow MRI.

The main drawback of this study was the number of invasive measurements. Based on a
previous similar study, we estimated the number of necessary patients to obtain a good agree-
ment between the invasive pressure drop and the model pressure drop. Three patients would
be the minimum to validate the approach. Note that patients who undergo both catheteriza-
tion and 4D flow MRI in the course of their medical care is quite rare. Therefore, the main
perspective of the present study, to make a patient-specific estimation of the pressure drop, is
to obtain more invasive pressure measurements with imaging from 4D flow MRI to compare
our models to.

The second drawback of this study is that 4D flow MRI does not have a good temporal and
spatial resolution. Therefore, the estimation of the geometric parameters is not really precise.
Also, the resolution does not allow visualizing the profile of the velocity across the stenosis.
This limitation prevents from improving the patient-specific management of the computation.

Finally, we carried a combined idealized/patient-specific approach in which we assumed
axisymmetry and a shape for the constriction. To make patient-specific predictions of the
pressure drop across a stenosis, we should compute the pressure in real geometries. This
would require some high-quality imaging with a segmentation algorithm to determine the
radius at each time and position of the artery. However, the reduced-order models that treat
the arteries as straight axisymmetric elastic tubes have proven reliable in the literature and
are a good starting point, if not better, compared to the current algebraic formulas.
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7 Arteriovenous
Fistula

The creation of a communication between an artery and a vein, called Arterio-
Venous Fistula (AVF), to speed up the blood purification during hemodialysis of
patients with renal insufficiency, induces significant rheological and mechanical
modifications in the vascular network. In particular, an AVF can lead to the
formation of stenosis that further perturbs the flow. Therefore, we investigate the
impact of the creation of an AVF with a zero-dimensional (0D) network model and
a one-dimensional (1D) model of the vascular system in the arm. We compare the
simulated distribution of flow rate in this vascular system with Doppler ultrasound
measurements in three configurations: before the creation of the AVF, after the
creation of the AVF and after a focal reduction due to a hyper flow rate. We also
explore the influence of a stenosis on the distribution of flow in the AVF with the
1D model. We highlight the importance of knowing the capillary resistance as it
is a decisive parameter in the models.

Keywords: Arterio-Venous Fistula, 0D network model, resistance, hyper flow rate.

The text in this chapter is greatly inspired by the following submitted article

• J Ventre, S Abou Taam, J M Fullana, P-Y Lagrée. Distribution of flow in an Arteri-
ovenous Fistula using reduced-order models. Submitted in Journal of Biomechanical
Engineering.
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7.1 Introduction

The kidney is a major organ of the human body whose function is to filter the blood and
remove wastes and extra fluid from the human body. In case of insufficiency of this organ,
various harmful substances accumulate and cause toxicity which can, in the end, be lethal.
Thus it is fundamental to compensate for the malfunction of the kidneys.

Hemodialysis is a blood purification technique that relies on a filtration process. A ma-
chine collects the blood and restores it after achieving extra-renal purification (i.e. of waste
products such as creatinine and urea).. It is a common practice in the treatment of renal
failure but requires a fast and safe vascular access to ensure a sufficient flow rate during
the filtration [176]. Hemodialysis relies on an essential technique, the Arterio-Venous Fistula
(AVF) [177] that can be either native (use of an artery and vein of the patient) or prosthetic
(unavailability of a vein leading to the use of a vascular prosthesis) [178]. An AVF is a junc-
tion between a main artery and a superficial vein in the arm.

The AVF creation is prone to develop in the near future as suggested by the last annual
report of the Réseau Épidémiologique et Information en Néphrologie [179]. Indeed, since 2011,
there was a significant increase in the number of elderlies (> 85 y.o.), overweighted people,
diabetics, or people with associated cardiovascular comorbidity. Moreover, there is a constant
increase of about 8% of patients under hemodialysis [180]. This evolution is a major chal-
lenge for physicians in charge of the hemodialysis process because the comorbidities greatly
affect the prognosis as well as the lifespan of the AVF. Finally, in Europe, we count more
than 90,000 procedures per year for revision or re-operation as more than half the AVFs fail
within 2 years [181]. This is why it is crucial to understand the hemodynamic and mechanical
parameters involved in the creation of an AVF to optimize its lifespan [182].

Many complications can occur after the creation of an AVF, for instance, after creating
the anastomosis, i.e. the suture of a vein on a donating artery, the vein can dilate under
the effect of an increase in flow rate and pressure, as the venous wall is thin and compliant.
On the contrary, the arterial wall is made of a lot of fibers and muscle cells which restrains
the dilation of the vessel. These two elements lead to hemodynamic modifications fed by the
progressive dilation of the vessels [183]. Although the complications are related to a physio-
logical adaptation of the human body, the hemodynamics modified after the creation of the
AVF plays a role in triggering these complications.

Among the complications, the most frequent is an arterial or venous stenosis that de-
creases the flow rate in the AVF, which in the continuity of Chapter 6 is the reason why we
investigate this procedure. A steal syndrome can appear and thus lead to ischemia, a lack of
tissue vascularization, ultimately resulting in necrosis. Another frequent complication is the
excessive increase in flow rate due to an increase of the diameter of the superficial vein or the
artery supplying the AVF. The patient can experience a hyper flow rate that often leads to
cardiac, hemorrhagic, and ischemic problems [184]. From a mechanical point of view, during
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the dilation of the artery or vein, the hemodynamic resistances decrease, which, in a system
with constant pressure, increases the blood flow. We are thus facing a self-maintained phe-
nomenon because the heart will adjust by increasing the blood flow. An increase in cardiac
work is well tolerated over the medium term but can lead to heart failure when increasing
too drastically, especially if the patient already has a weak heart [184]. Therefore the good
functioning of an AVF requires an early diagnosis of complications.

Despite empirical guidelines on the creation of an AVF [185], many parameters such as
the position, the length, the diameter, and the material of the prosthesis intervene and are
patient-specific hence the difficulty of understanding the mechanisms involved. The hemo-
dynamics in patient-specific fistula has thus been investigated in many 3D Fluid-Structure
Interaction (FSI) or Computational Fluid Dynamics (CFD) simulations [183,186–194] in nor-
mal or abnormal conditions. These studies provide insights into the hemodynamics and flow
distribution inside the AVF. They essentially highlight that the Wall Shear Stress (WSS)
is directly correlated to the vessel damages and plays an important role in the growth and
remodeling of the AVF [195,196].

Although such models are realists, they are rarely used in clinical practice as they require
a high computational cost and above all only account for small portions of the blood circula-
tion, usually centered around the anastomosis. A few studies thus investigate reduced-order
models to study the global hemodynamics associated with AVFs. For instance, in [197,198],
the models are zero-dimensional/one-dimensional (0D/1D) models with a 1D description of
the main vessels and the AVF and 0D Windkessel models of the rest of the systemic circula-
tion (heat, aorta...).

The complexity of the physiological phenomena of the creation of the AVF and body
adjustment cannot always be represented by a simple model. Thus we make a series of as-
sumptions on the hemodynamics and mechanical properties of the vascular system to build a
0D network model [74] that characterizes the AVF. We compare this model with patient data
extracted from the usual clinical practice of monitoring patients undergoing hemodialysis
with an AVF or modifying their AVF if it was already present. We then focus on the region
of the anastomosis to explore the influence of a venous stenosis on the distribution of flow in
the AVF with a 1D network model.

The goal of this chapter is to develop an AVF model able to reproduce the distribution of
flow in this vascular system and find an optimal configuration that prevents the appearance
of complications. In Section 7.2, we describe the steps of the creation of an AVF and the
evolution of and AVF in pathological conditions. Then, in Section 7.3, we present the patient
data carried during routine clinical practice. We follow in Section 7.4 with the numerical
models and show the results in Section 7.5.
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7.2 The life of an AVF

In this section, we detail the creation of an AVF and the possible evolution in case of com-
plications.

7.2.1 Creation of an AVF

The creation of a native AVF is based on a direct anastomosis between a donating artery of
the deep arterial network and a receiving vein that is part of the superficial venous network
that drains remotely into the deep venous network (Figure 7.1). It is the length of the su-
perficial vein that determines the area of puncture for the extraction and introduction of the
blood that must be sufficiently spaced to prevent recirculation.

(a)

capillaries

(b)

capillaries

Figure 7.1 – Schematic representation of the creation of a native AVF. (a) The flow in
the artery (in red) goes from left to right towards the capillaries that link the artery to the
vein (in blue). (b) The artery (in red) is sutured to the superficial vein (in blue) with a
lateroterminal anastomosis between the lateral face of the donating artery and the cut end
of the vein. The other end of the vein is sutured. The flow goes from upstream of the artery
and divides into the artery and the superficial vein.

When there is no superficial venous segment that can be used to create a native AVF, a
tubular prosthetic segment with a proximal anastomosis on the donating artery and a distal
anastomosis on the deep or superficial venous network can be used.

One of the criteria of the extra-renal purification is to have a sufficient blood flow to filter
the blood of the kidney failure patient in a sufficiently short time. The blood is extracted
through the AVF and reintroduced at least 5 cm further into the AVF to avoid a flow recir-
culation. The flow in the AVF depends on various anatomical parameters of the arterial and
venous networks but also on the hemodynamics, in particular, cardiac output. The vascular
surgeon performing the AVF takes into account these different parameters to choose the site
of creation of the arteriovenous anastomosis.
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The criteria to the creation are that the AVF must remain permeable, have a sufficient
flow rate, and at the same time not too high to avoid two pitfalls: heart failure and ischemia
of the hand. The guidelines [185] suggest that the diameter of the donating artery must be
greater than 0.2 cm and the diameter of the vein greater than 0.25 cm. The size of the anas-
tomosis should be adapted to the arterial flow rate and the respective size of the vessels and
should be neither too large nor too small, usually from 0.3 to 0.7 cm of diameter.

The hemodialysis machine adds a constraint as it cannot function at a flow rate lower than
500 mL/min. In a native fistula, the minimum accepted flow rate is 500 to 600 mL/min while
in a prosthetic fistula, the minimum flow rate must be around 650 to 800 mL/min [178,199].
The optimal flow rate for a native AVF therefore varies from 600 mL/min to 1200 mL/min
[200]. A flow rate greater than 2000 mL/min is considered as a hyper-flow [201], potentially
leading to heart failure [184].

7.2.2 Evolution of an AVF

The areas of hemodialysis are marked by the occurrence of stenoses in the arteries or veins,
dilations of the superficial vein or the donating artery, a low arterial flow downstream of the
anastomosis responsible for ischemia in the hand (digital flow rate < 30 mL/min), or a local
hyper flow rate resulting in cardiac insufficiency. In the case of hyper flow rate, the surgeons
use the banding technique [202], as shown in Figure 7.2 to reduce the flow rate and cardiac
output thus limiting the risks of heart failure [203]. It consists of surgically narrowing the
lumen of the superficial vein by creating a stenosis, which is also called diameter or focal
reduction.

(a)

capillaries

(b)

capillaries

Figure 7.2 – Schematic drawing of diameter (or focal) reduction of the superficial vein,
using the banding technique [202]. (a) The artery (in red) is sutured to the superficial vein
(in blue) with a lateroterminal anastomosis between the lateral face of the donating artery
and the cut end of the vein. The flow goes from upstream of the artery to downstream of the
artery and the superficial vein. (b) The banding is placed on the superficial vein to reduce
its cross-section thus reducing the flow rate in the vein.
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To summarize, the realization of AVFs is based on the following guidelines [185,204]: the
diameter of the donating artery must be greater than 0.2 cm, the vein diameter must be
greater than 0.25 cm, and the fistula diameter must be between 0.3 and 0.7 cm. We must
also take into account the risk of ischemia in the hand as the flow rate can be greatly reduced
because of the deviation of blood towards the AVF. Thus the flow in the hand should be the
humeral flow before the creation of the AVF. Finally, we must take into account the threshold
flow rate for the hemodialysis machine to function, which is 500 mL/min.

We are studying three different configurations.

• First, before the creation of the AVF, the non-pathological case: the blood flow comes
from the humeral artery which divides into the radial and ulnar arteries to supply the
capillary system of the hand. The return is through the venous system divided into a
deep and superficial vein, as represented in Figure 7.1a.

• Second, just after the creation of the AVF by connecting the radial artery to the super-
ficial venous system, as shown in Figure 7.1b. The flow goes either into the capillaries
through the arterial system supplying the capillary system in the hand or into the fis-
tula. A mechanism of diversion or steal can indeed appear if the fistula is not correctly
dimensioned.

• Third, a hyper-flow rate configuration, there is a need to reduce the diameter of the
vein to limit the flow in the fistula. This process is done by creating stenosis in the vein,
a focal reduction, as represented in Figure 7.2b.

7.3 Data acquisition
In this section, we present the Doppler ultrasound measurements and the patient population
we carry the study on.

7.3.1 Doppler ultrasound measurements

To determine the specific parameters of interest of the vessels for each patient, we choose to
carry an anatomic and hemodynamic study of the vessels in each of the configurations. We
use a morphological ultrasound with Doppler effect to obtain the hemodynamic data with a
General Electric Logiq V2 Doppler. We obtain the flow measurements, lengths, and diameters
of the arteries and veins.

As it is difficult to measure the flow using Doppler ultrasound in compliant veins, we
consider that in the non-pathological case, the distribution of blood flow is 90% for the deep
network and 10% for the superficial network.

7.3.2 Patient population

Two patients undergo Doppler ultrasound measurements as part of their medical care. We
study the hemodynamics in the arterial and venous network in the three different configura-
tions described in Section 7.2. For the first patient, we have Doppler data on the flows and
diameters in the arterial and venous networks before the creation of the AVF and after the
creation of the AVF. For the second patient, we have similar data but after the creation of
the AVF and after a focal reduction of the AVF due to a hyper-flow rate.
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The measured data are referred in Table 7.1 for the first patient before the creation of the
AVF, Table 7.2 for the first patient after the creation of the AVF, Table 7.3 for the second
patient after the creation of the AVF and Table 7.4 for the second patient after the focal
reduction.

7.4 Numerical models of an AVF

In this section, we present how we build the numerical AVF models to reproduce the distri-
bution of flow in the arterial and venous networks.

7.4.1 Zero-dimensional model

In Section 2.3.6, we presented the 0D models and in particular in Equation (2.68) we showed
the simplest model that is often used as a boundary condition for 1D [22, 58, 72] or 3D
models [29, 83]. This model states that in the case of a viscous fluid in a vessel of length L
and diameter D, we can assume a Poiseuille flow that links the flow rate Q to the pressure
jump between two points ∆P through

∆P = R(D,L)Q, (7.1)

where R(D,L) is the Poiseuille (or hydraulic) resistance defined in Equation (2.69) and de-
pends on the diameter and the length of the vessel as R(D,L) = 128µL/πD4.

This type of model is an electrical analogy as explained in Section 2.3.6. We assume that
each vessel of the arterial and venous networks can be represented by a resistance of the type
(2.69) that only requires geometric properties. With this basic tool, we can build a complex
network by assembling the resistances in parallel and in series [74], which is what we show in
the following section.

The 0D model gives only a first approximation of the problem considering the small
amount of data that the Doppler provides, but in fact, provides relevant orders of magnitude
of the blood flow in the veins and arteries. This data is part of the routine medical care that
makes this model usable in everyday clinical practice.

7.4.2 Construction of the 0D AVF network model

We build two different networks of resistances that can represent all the configurations that
we investigate in this study. The configuration before the AVF is shown in Figure 7.3 and the
configuration after the creation of the AVF, including after the focal reduction, is represented
in Figure 7.4. In the two figures we display: on the left a schematic representation of the main
arteries and veins in the arm and hand and on the right the equivalent electric network model.

To build the networks, we start from the humeral artery that divides into the radial
and ulnar arteries. The venous network decomposes into the superficial vein and the deep
vein. We model each element of the vascular system (artery, vein, capillaries, fistula) by a
resistor and can calculate the values of each resistance from the Doppler measurements of
the lengths and diameters. We calculate the resistance of the fistula using the diameter of
the anastomosis and assume that it has a length Lf = 2 cm. We model the capillary network
by a high resistance at the end of the arterial segments. to take into account the multiple
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existing bifurcations. We compute the flow in every branch of the circuit with Ohm’s law, or
in mechanical terms Equation (7.1), and Kirchhoff’s law or conservation of flow.

(a) (b)

RaH

RaR

RaU
RvpRc2

RvsRc1

Figure 7.3 – Drawing of the 0D numerical network model of the arteriovenous system in
the arm before the creation of the AVF. (a) Schematic representation of the main vessels in
the arm and hand, (b) equivalent electrical network. We represent each vessel (arteries and
veins) as well as the capillaries by a resistor.

(a) (b)

RaH
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RaU
RvpRc2
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1

Fistula

Rf

Figure 7.4 – Drawing of the numerical network model of the arteriovenous system in the arm
after the creation of the radio-cephalic AVF. (a) Schematic representation of the main vessels
in the arm and hand, (b) equivalent electrical network. We represent each vessel (arteries and
veins) as well as the capillaries by a resistor. We also represent the fistula by a resistor Rf
defined with the radius of the anastomosis and a length of Lf = 2 cm.

In the case before the creation of the AVF, we can calculate analytically the total resistance
Rtot of the network using the composition of resistances in series and parallel

Rtot = RaH + (RaR +Rc1) (RaU +Rc2)
RaR +Rc1 +RaU +Rc2

+
RvsRvp

Rvs +Rvp

, (7.2)
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where Ra,c,v represents respectively the arterial, capillary, or venous resistance with the initial
of the vessel.

7.4.3 One-dimensional model

To study locally the hemodynamics we propose the 1D model of the simplified system to
complete the 0D model. We solve the 1D equations (2.51) with the pressure law (2.16) in
a 3-vessel network composed of two arteries, the humeral and the radial, and one vein, the
superficial vein (Figure 7.5). It corresponds to the configuration after the creation of the AVF.

We use the same pressure law (2.16) for the artery and veins with a different Young’s
modulus E. We choose E based on the value of the Moens-Korteweg celerity (2.59) from Ta-
ble III and VIII of [14]. We use the geometric parameters of the first patient measured with
the Doppler (Table 7.2) reported in Table 7.5. The boundary conditions are the following:
we impose the humeral flow rate at the inlet, apply a resistance boundary condition at the
outlet of the radial artery and impose a zero pressure at the outlet of the superficial vein.

We define the venous stenosis as a reduction of the radius of the wall with the same shape
as in Chapter 6

R(x) = R0

(
1 + β exp

(
−(x− xst)2

xl

))
, (7.3)

where β is the degree of constriction (β < 0), xst is the axial position of the throat of the
stenosis, and xl is related to the length of the stenosis Lst.

Rcap

Figure 7.5 – Drawing of the 1D network model after the creation of the radio-cephalic AVF.
Properties of the vessels are reported in Table 7.5.

7.5 Results
In this section, we present the results obtained from the numerical model of Section 7.4.
We first investigate the influence of the capillary resistance in finding an optimal AVF, then
compare the numerical model with the patient data of Section 7.3, and finally study the
influence of a venous stenosis with the 1D model.

7.5.1 Results of the 0D model: capillary resistances

The capillary resistances play a crucial role in the numerical model. From a mechanical point
of view, after the creation of the AVF, if the capillary resistances are too high, no flow will
go into the deep vein. On the contrary, if the capillary resistances are too low, no flow will go
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into the fistula. As we have no access to this parameter, we study two cases, one with a low
capillary resistance and one with a high capillary resistance, to investigate which one gives
the most physiological result.

The arterial resistances are of order 103 g·cm−4·s−1. We choose the low capillary resis-
tance to be 10 times the order of magnitude of the arterial resistance (Rcap = 10Ra) and
similarly, and the high capillary resistance to be 50 times the order of magnitude of the ar-
terial resistance (Rcap = 50Ra).

Optimal fistula diameter

Figures 7.6 show the flow rate in the fistula (in red), i.e. in the superficial vein, and the
flow rate in the hand (in blue) as a function of the fistula diameter. The solid, dashed, and
dotted lines represent the flow constraints. The flow rate in the fistula must be between the
dashed and the dotted line to respect the functioning limit of the hemodialysis machine. The
flow rate in the hand must be above the solid line to avoid ischemia. The grey rectangle rep-
resents the range of the fistula diameter that respects these flow constraints. We studied the
case of a low capillary resistance in Figure 7.6a and of a high capillary resistance in Figure
7.6b.
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Figure 7.6 – Flow rate in the superficial vein and fistula (©) and in the hand (�) after the
creation of the AVF as a function of the fistula diameter. ( ) corresponds to the humeral
arterial flow, ( ) represents the minimum flow for the hemodialysis machine to function and
( ) corresponds to the minimum flow in the hand to avoid ischemia. The grey rectangle
represents the range of the fistula diameter that respects these constraints. (a) The capillary
resistances are 10 times the order of magnitude of the arterial resistances, (b) the capillary
resistances are 50 times the order of magnitude of the arterial resistances.

The 0D model provides a lower bound for the fistula diameter under which the hemodial-
ysis machine does not work. We obtain a minimal fistula diameter of 0.18 cm for the low
capillary resistance and 0.12 cm for the high capillary resistance. The guidelines suggest that
the anastomosis diameter should be between 0.3 and 0.7 cm. Our value is lower but remains
reasonable considering the simplicity of the model.

We notice that the model does not give an upper boundary for the fistula diameter. Indeed,
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because the length of the fistula is small (Lf = 2 cm), the resistance of the fistula Rf does not
play the most important role in the model. We can, therefore, conclude that the model cannot
provide a relevant and more precise range for the fistula diameter than the current guidelines.

As we showed that the diameter of the fistula does not play an important role, we inves-
tigate the influence of the superficial vein diameter on the distribution of flow.

Optimal diameter of the superficial vein

Figures 7.7 show the flow rate in the fistula (in red), i.e. in the superficial vein, and the
flow rate in the hand (in blue) as a function of the diameter of the superficial vein. Similarly
to Figure 7.6, the flow rate in the fistula must be between the dashed and the dotted line,
and the flow rate in the hand must be above the solid line. The grey rectangle represents the
range of the superficial vein diameter that respects the flow constraints. We studied the case
of a low capillary resistance in Figure 7.7a and a high capillary resistance in Figure 7.7b.

Similarly to Figure 7.6, the 0D model provides a lower bound for the diameter of the
superficial vein under which the hemodialysis machine does not work. We obtain a minimal
diameter of the superficial vein of 0.27 cm for the low capillary resistance and 0.18 cm for
the high capillary resistance. Both values seem in agreement with the guidelines.

However, varying the superficial vein diameter allows determining a maximal diameter of
the superficial vein that respects the flow constraints for the high capillary resistance, which
is 0.7 cm, which is completely in agreement with the guidelines. The model can thus pre-
dict the upper limit of the diameter of the superficial vein that prevents ischemia in the hand.
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(b) Rcap = 50Ra
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Figure 7.7 – Flow rate in the superficial vein and fistula (©) and in the hand (�) after the
creation of the AVF as a function of the diameter of the superficial vein. ( ) corresponds to
the humeral arterial flow, ( ) represents the minimum flow for the hemodialysis machine to
function and ( ) corresponds to the minimum flow in the hand to avoid ischemia. The grey
rectangle represents the range of the diameter of the superficial vein that respects these con-
straints. (a) The capillary resistances are 10 times higher than the typical arterial resistance
(b) the capillary resistances are 50 times higher than the typical arterial resistance.
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Discussion

The first result of this study is that the model cannot determine the optimal diameter of
the fistula which respects all the flow constraints, regardless of the capillary resistance. As
mentioned, the length of the fistula is too small for the fistula resistance to play the major
role in the distribution of flow. The parameter that influences the most on the distribution of
flow is the superficial vein diameter. By varying this parameter and assuming a high capillary
resistance, we can predict the bounds of the superficial vein diameter that respects the flow
constraints. If the superficial vein dilates over 0.7 cm, the blood supply in the hand will no
longer be sufficient. We also find that the vein diameter must be greater than 0.18 cm to
respect the flow constraints, which agrees with the orders of magnitude suggested by the
guidelines [185].

The estimation of the superficial vein diameter relies upon the approximation of a single
diameter over the entire superficial vein segment which is not relevant in the case of AVF in
which dilation and narrowing will occur. However, a simple calculation with the model allows
determining a maximum average superficial vein diameter that respects the flow constraints.

Nonetheless we observe that the value of the capillary resistance creates, in the model,
a decisive condition. The lack of measurement of this capillary resistance is a limitation in
this study. From Figures 7.7, we notice that the high capillary resistance gives results close
to the conditions found in clinical practice and can thus provide an acceptable approximation.

7.5.2 Comparison between Doppler and simulated flow rate using the 0D
model

In this section, we compare the Doppler measurements with the numerical model in the three
configurations detailed in Section 7.2. In the following, we use the large capillary resistance
as it provides the conditions found in clinical practice.

Creation of the fistula

In Table 7.1, we compare the Doppler flow rate to the simulated flow rate before the
creation of the fistula. The humeral flow rate is the input of our model. We recall that since
we do not have precise measurements of the flow in the veins, we consider that the deep
vein receives 90% of the arterial flow, and the superficial vein receives the remaining 10%.
We recover the same distribution of blood in each vessel with the model compared to the
Doppler measurements.

In Table 7.2, we show the results of the simulated flow rate after the creation of a fistula
with an anastomosis of 0.3 cm. The humeral flow rate increases a lot, which is the objective
of the creation of an AVF. We obtain a flow in the deep vein of 180 mL/min that comes from
the hand, which is sufficient to avoid ischemia. We obtain a flow rate of 1020 mL/min in the
fistula, which is within the constraints imposed by the hemodialysis machine.

The numerical findings show that the 0D model can reproduce the distribution of flow
in a non-pathological scenario by imposing the measured humeral blood flow rate. The 0D
model also confirms that the diameter of the fistula chosen by the surgeon is optimal as it
respects all the flow constraints, which was not assessed by the Doppler measurements.
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Table 7.1 – Parameters from Doppler and simulated results using the 0D network model
before the creation of the AVF. The capillary resistances are 50 times the order of magnitude
of the arterial resistances. D0: measured reference diameter in cm, L: measured length of the
vessel in cm. Flow rates are expressed in mL/min.

D0 L Doppler flow rate Simulated flow rate
Humeral artery 0.44 20 44 44
Radial artery 0.38 20 28 30.04
Ulnar artery 0.34 20 16 13.96
Deep vein 0.53 20 ∼ 90 % of humeral flow 39.9

Superficial vein 0.3 20 ∼ 10 % of humeral flow 4.1

Table 7.2 – Parameters from Doppler and simulated results using the 0D network model
after the creation of the AVF. The capillary resistances are 50 times the order of magnitude
of the arterial resistances. D0: measured reference diameter in cm, L: measured length of the
vessel in cm. Flow rates are expressed in mL/min.

D0 L Doppler flow rate Simulated flow rate
Humeral artery 0.44 20 1200 1200
Radial artery 0.38 20 1130
Ulnar artery 0.34 20 70
Deep vein 0.53 20 180

Superficial vein 0.3 18 1020
Fistula 0.3 2 1020

Focal reduction

We present the second patient that underwent focal reduction 3 years after the creation
of the AVF. The superficial vein downstream of the fistula increased in diameter drastically,
causing a hyper flow rate. This increase is not considered as an aneurysm, another patholog-
ical phenomenon, but is expected to appear after a period of maturation of the AVF. Indeed,
the superficial vein undergoes a higher pressure regime and thus adapts by increasing its
diameter.

In Table 7.3, we show the results of the model before the focal reduction. In this case,
the flow rate in the humeral artery is not the sum of the flow rate in the radial and ulnar
artery because of the imprecision of the Doppler measurement. Therefore we decide to take
as an input of the model, the sum of the radial and ulnar flow rates. The humeral flow rate
is 2700 mL/min which gives evidence of a hyper flow rate. The blood supply in the hand
is sufficient however, we find a flow rate of 2200 mL/min in the fistula, which is out of the
acceptable flow range. Therefore, there was a need for a focal reduction using the banding
technique [202], described in Section 7.2, to reduce the diameter of the superficial vein.

Table 7.4 shows the comparison between the Doppler flow rate and the simulated flow
rate after the focal reduction. By reducing the minimal diameter of the superficial vein from
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Table 7.3 – Parameters from Doppler and simulated results using the 0D network model
before focal reduction because of an hyper flow rate. The capillary resistances are 50 times
the order of magnitude of the arterial resistances. D0: measured reference diameter in cm, L:
measured length of the vessel in cm. Flow rates are expressed in mL/min.

D0 L Doppler flow rate Simulated flow rate
Humeral artery 0.78 20 3500 2700
Radial artery 0.7 20 2200 2351
Ulnar artery 0.4 20 440 348
Deep vein 0.4 20 358

Superficial vein 0.5 to 1.3 18 2341
Fistula 0.4 2 2341

Table 7.4 – Parameters from Doppler and simulated results using the 0D network model
after focal reduction because of an hyper flow rate. The capillary resistances are 50 times
the order of magnitude of the arterial resistances. D0: measured reference diameter in cm, L:
measured length of the vessel in cm. Flow rates are expressed in mL/min.

D0 L Doppler flow rate Simulated flow rate
Humeral artery 0.72 20 930 930
Radial artery 0.59 20 800 700
Ulnar artery 0.35 20 116 230
Deep vein 0.4 20 243

Superficial vein 0.25 to 1.2 18 687
Fistula 0.4 2 687

0.5 cm to 0.25 cm, we recover a normal flow rate of 930 mL/min in the humeral artery. It thus
leads to a flow reduction in the fistula of 687 mL/min. We also still obtain a non-ischemic
flow in the hand of 243 mL/min.

The numerical results confirm that the reduction of the minimal diameter of the superficial
vein respects the blood flow constraints. Indeed, as the humeral blood flow rate is the input
of our model, we cannot predict the success of the focal reduction procedure that results from
a physiological adjustment of the heart. We can only verify the success of the focal reduction
procedure by recovering the distribution of flow in the hand and the fistula, which was not
assessed with the Doppler measurements. It is interesting to remark that a simple calculation
from the 0D model can determine how much focal reduction is necessary to recover a normal
flow rate in the AVF.

The 0D model cannot anticipate the hyper flow ratebut can predict that a doubling in
the diameter of the superficial vein results in a 40% decrease of the total resistance, i.e.
an increase of the flow rate of 40%, in a system with constant pressure. However, a hyper
flow rate is an increase of about 200%. A purely mechanical approach is thus not sufficient to
explain such an increase, and the model cannot account for this physio-pathological behavior.
This condition might be triggered by the increase in diameter and then self-maintained by
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Table 7.5 – Geometric and material properties of the 1D model of an AVF. D0: measured
reference diameter in cm, L: measured length of the vessel in cm, E: Young’s modulus in
g·cm−1·s−2, Rcap: peripheral resistance in g·cm−4·s−1.

D0 L E Rcap

Humeral artery 0.44 20 0.3·107 —
Radial artery 0.38 20 0.3·107 1 or 5 ·104

Superficial vein 0.3 20 0.3·106 —

other chemical and biological phenomena.

7.5.3 One-dimensional results

We propose to study locally the influence of a stenosis on the distribution of blood flow in
the system using the 1D model. The stenosis can be either surgical or pathological. We place
a stenosis of length Lst = 2 cm in the superficial vein 3 cm from the anastomosis and vary
the degree of constriction β (Equation (7.3)).
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Figure 7.8 – Distribution of flow in % of humeral flow in the fistula (©) and in the hand (�)
using the 1D model depending on the degree of constriction of the stenosis expressed in %
of radius reduction (see Section 6.4.1 and Figure 6.7 for definition of degree of constriction),
the stenosis is placed 3 cm from the anastomosis and has a length Lst = 2 cm. The flow rate
is measured at the middle of the artery.

Figures 7.8 show the distribution of flow in the hand, i.e. in the radial artery, and in the
fistula, i.e. in the superficial vein, as a function of the degree of constriction of the stenosis.
Similarly to the 0D model, we study two cases: one with a low capillary resistance Rcap = 10Ra
(Figure 7.8a), and one with a high capillary resistance Rcap = 50Ra (Figure 7.8b). We first
observe that this parameter is crucial and influences the distribution of flow in the AVF also
in this model. Second, the reduction of flow in the fistula is not in the same amount depending
on the capillary resistance. For a low capillary resistance, we obtain a 20% reduction of the
flow in the fistula with a constriction of 70% compared to the non-pathological configuration.
In the case of the high capillary resistance, this reduction is only of less than 10%. Depending
on the humeral flow and the capillary resistance, the flow rate might be insufficient when the
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stenosis is too severe. We can also conclude that, in the 1D model, the capillary resistance
creates a decisive condition on the optimization of the AVF.

7.6 Conclusion

The number of clinical situations and the inter-individual variability in the surgical results
after the creation or modification of an AVF could benefit from a decision-making tool to
help the surgical strategy. We dedicated this study to develop simplified numerical models
of the vascular network of the upper limb when it is modified by the creation of an AVF,
for therapeutic purposes. We built the 0D network with resistances to model each vessel
(arteries, veins, capillaries) to study the distribution of flow in this system. We studied three
different configurations: the configuration prior to the creation of the AVF, the configuration
after the creation of the AVF, and the configuration after the development of a hyper flow
rate requiring a focal reduction.

First, we found that the simple 0D network model was unable to identify a value or a
range for the anastomosis diameter. The range of acceptable fistula diameter is highly depen-
dent on the capillary resistance which we do not measure and which is probably variable from
one individual to another. Second, we found that the model provided a range of acceptable
superficial vein diameter that respects the flow constraints, assuming a capillary resistance
50 times larger than the typical arterial resistance. The model allows determining a minimum
and a maximum average superficial vein diameter that optimizes the AVF.

Then, we compared the 0D model to the Doppler ultrasound measurement carried on two
patients during clinical routine practice. We showed that knowing the humeral flow rate and
topology was enough to reproduce the distribution of flow in all three configurations: before
the creation of the AVF (Table 7.1), after the creation of the AVF (Table 7.3), and after the
focal reduction (Table 7.4). The model provides the quantitative values of the distribution
of flow in the system when it was only assessed qualitatively during the clinical procedure.
Nonetheless, we showed that the model was not sufficient to explain the hyper flow rate that
occurs a few months to a few years after the creation of the AVF. A purely mechanical phe-
nomenon could not explain the hyper flow but could be the trigger and then fed by other
biological phenomena.

Finally, we used a 1D model to explore the distribution of flow when a venous stenosis
develops or is created in the AVF. The 1D model is undoubtedly an improvement compared
to the 0D model first because it accounts for the shape of the vessels and changes in radius.
It is crucial in the study of venous stenoses as many of the complications induced by the
creation of an AVF include changes in diameters in the fistula. It should however be noted
that the 1D model contains fewer vessels than the 0D model and is thus less detailed in the
distribution of flow, in particular in the hand.

In this study, we encountered a few limitations. The first was the lack of measurement
or even order of magnitude of the capillary resistance which was a decisive parameter in
both models. This parameter would greatly improve the models’ predictions. It would allow
making patient-specific decisions on the limits of the fistula diameter and of the diameter of
the superficial vein and would thus improve the prognosis of the AVF. The second limitation
was the model itself. It seems naturally essential to account for the remodeling of the arterial
and venous walls when studying AVFs. Remodeling in this vascular system is an important
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process that can explain many physio-pathological and mechanical developments that occur
after the creation of the AVF [187,195], including the hyper flow [184,203]. Our 0D model can
only reproduce phenomena that are purely mechanical, in particular narrowing or dilation of
the vessels and the trigger of the hyper flow rate.

As any reduced-order model, the 1D model also several limitations. It is well-known that
arteries and veins have different mechanical behaviors and thus using the same pressure law
is only valid at order zero. The development of a vein model and incorporating it in a 1D
closed-loop model as in [14] is a perspective to the present work and will be further discussed
in the conclusion chapter 10. The choice of the capillary resistance remains the same problem
as the 0D model and is still a decisive parameter in both models. The choice of the boundary
conditions at the outlet of the superficial vein is also a limitation of the 1D model as it may
influence the distribution of flow in the network. In Chapter 6, we showed that the Multi-Ring
model was the most accurate model to study the influence of stenoses. Therefore, creating a
network of vessels with the Multi-Ring model also represents an improvement to the present
models.

However, despite all these limitations, the 0D network model can reproduce and predict
the flow distribution in the AVF in different configurations given easily obtained non-invasive
geometric data. The 1D model also provides relevant information on the distribution of flow
and could be very useful in patient-specific modeling, provided a value of the capillary resis-
tance.
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8 Impact of aortic
cross-clamping

When the severity of a stenosis becomes too important, repair surgery is the
recommended intervention by clinical guidelines. Surgeries usually require cross-
clamping, a common strategy to prevent blood from flowing in the operation zone.
However, the immediate impact of aortic cross-clamping on the vascular proper-
ties during abdominal aortic aneurysm (AAA) repair or peripheral artery disease
surgeries is unknown and thus we developed two numerical models to investigate
it. To assess the validity of the models, we record continuous invasive pressure sig-
nals during surgeries, immediately before and after clamping. The first model is a
0D three-element Windkessel model which we couple to the Basin-Hopping param-
eter estimation algorithm to identify patient-specific parameters such as vascular
resistance and compliance. The second model is a 9-artery network corresponding
to an average human body in which we solve the 1D blood flow equations.

Keywords: aortic cross-clamping, zero-dimensional model, one-dimensional model, arterial
waveform analysis, parameter estimation.
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8.1 Introduction

Open surgery is currently the gold standard for Abdominal Aortic Aneurysm (AAA) [205] or
peripheral vascular diseases [206] such as stenosis repair surgery [72]. Most surgeries require
aortic cross-clamping, an external compression of the artery that prevents the blood from
flowing downstream thus providing a more stable operative field [207]. Yearly, it is performed
in over a quarter of a million patients worldwide [208]. However, there is clinical evidence that
suggests that the duration of aortic cross-clamping may be related to postoperative morbidity
and mortality [209, 210]. This procedure naturally produces perturbations in cardiovascular
hemodynamics [211,212] but the exact mechanisms involved are not completely clear.

Many experimental studies in animals [213] and humans [214] have reported the hemo-
dynamic changes caused by aortic clamping on gastrointestinal function [215], on cardiac
output [216–218], and renal perfusion [219]. Nevertheless, only changes produced 5 to 60
minutes after aortic clamping have been described, whereas immediate changes remain un-
known. Therefore, there is a gap in current knowledge as to which are the immediate changes
after aortic clamping, and what is the effect of clamping on the hemodynamics and vascular
properties. We believe it is crucial to understand the effects of clamping to minimize the risks
of complications.

Clinicians usually have access to only minimal, if any, information on the vascular prop-
erties of their patients. Therefore, we record continuous invasive arterial pressure during
peripheral vascular repair surgeries, before and after clamping of the abdominal aorta, mea-
surements that are part of routine clinical procedure.

Though some mechanical modeling studies have investigated the local stress distribu-
tion [220] that causes arterial tissue damage produced by traumatic surgical instruments [221],
to our knowledge, aortic cross-clamping has not been investigated using macroscopic blood
flow models. Numerical models of the arterial network can provide information on important
vascular features including compliance and resistance, given easily-obtained routine hemody-
namic information such as continuous arterial pressure signals. As the final objective of this
study is to predict the impact of the aortic clamping during surgery, we need to consider
adequate models for real-time medical applications. We choose to compute two numerical
models: a zero-dimensional (0D) Windkessel model, similar to the ones presented in Section
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2.3.6 and the one-dimensional (1D) model detailed in Section 2.3.4.

To enhance the measured data, we introduce a parameter estimation strategy, based on
the invasive measurements, to identify valuable information on vascular mechanics, otherwise
difficult to obtain in a minimally invasive way. Arterial waveform analysis also allows cal-
culating the diastolic time-constant of pressure waves [222–224]. We compare the numerical
predictions of the blood flow models to those of arterial waveform analysis and to the invasive
blood pressure measurements to investigate the immediate impact of aortic cross-clamping.
We show that both the 0D and 1D models provide helpful information for medical diagnosis,
at systemic and arterial scale respectively.

This chapter is organized as follows: in Section 8.2, we present the data acquisition method
by indicating how we perform the invasive pressure measurements and the patients that we
were enrolled. In section 8.3 we introduce the experimental method, the data analysis, and
statistical tools used to evaluate the agreement. In Section 8.4 we briefly present the 0D model,
the 1D model, and the parameter estimation method to compare the numerical models to
the invasive measurements. In Section 8.5, we show the comparison between the experimental
method and the 0D model on the cohort of patients. In Section 8.6, we focus on one patient
to compare the two numerical models and the patient data. Finally, we summarize the results
and give perspectives in Section 8.7.

8.2 Data acquisition

8.2.1 Invasive radial artery pressure measurements

We record arterial pressure signals of patients undergoing a repair intervention that required
aortic cross-clamping. We obtain the continuous and invasive pressure data with a fluid-filled
catheter from the right radial artery of the patients during the surgery. The use of invasive
arterial pressure measurements during this type of surgery is part of the surgical protocol
and, therefore, routine clinical practice. The recording of these pressure data does not modify
the signal used for clinical monitoring nor presents additional risks for the patient during the
surgery.

To carry these measurements, we use a disposable pressure transducer (TruWave, Edwards
Lifescience®) and record the pressure signals with an analog-digital converter with internal
hardware filters (low pass frequency set at 20 kHz, high pass frequency set at 0.05 Hz, MP150,
BIOPAC Systems Inc.). We use the AcqKnowledge software to interpolate arterial pressure
data at a frequency of 1000 Hz.

We record the pressure data in four different configurations: the pre-clamp configuration
as prior to aortic clamping (Figure 8.1a), the post-clamp configuration during which the
clamp is in place (Figure 8.1b), the pre-unclamp configuration which is right before removing
the clamp, and the post-unclamp, right after removing the clamp.
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Figure 8.1 – Schematic representation of the clamping procedure and data collection. The
fluid-filled catheter is positioned in the right radial artery, linked to a pressure transducer
and monitor that records the blood pressure signal. We represent (a) the situation before
clamping (pre-clamp) or after unclamping (post-unclamp) and (b) the abdominal clamping
(post-clamp and pre-unclamp), all of them during peripheral vascular repair surgery.

8.2.2 Patient population

This study enrolls adult patients undergoing peripheral vascular surgery involving abdominal
aortic clamping at the Hôpital Universitaire Pitié-Salpêtrière in Paris, France. We exclude
patients with a) an irregular heart rhythm, b) waveform diastolic values that do not fit a sin-
gle exponential decay, or c) a reduced left ventricular ejection fraction (<45%) measured by
echocardiography or cardiac magnetic resonance during routine preoperative workup. The in-
vasive arterial pressure measurements of 14 patients undergoing vascular surgery is measured;
3 patients are excluded (2 for having an irregular rhythm and 1 for having waveforms that do
not fit a single exponential decay). We end up with 11 patients in the final study, of which 9
have an infra-renal AAA disease and underwent open repair surgery with either an aortoaor-
tic tube graft (1 patient), an aorto-uni-iliac graft (2 patients) or an aorto-bi-iliac graft (6
patients). The remaining 2 patients have occlusive peripheral artery disease (a stenosis) and
underwent aortobifemoral bypass surgeries. All selected aortic clamps are infrarenal. Table
8.1 shows patients’ full clinical characteristics and Table 8.2 indicates patients’ comorbidities
and medication. Note that we have the information on the drugs injected to the patients but
we consider a purely mechanical approach and discard any chemical or biological interaction.

8.2.3 Mean beat

For each configuration, we choose a stable set of beats manually through a 20 to 40-second
interval immediately before and after each clamp/unclamp event. The beginning of each in-
dividual beat is automatically identified using local minimum pressure values. In order to
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Table 8.1 – Patient clinical characteristics. Absolute values are presented as mean ± stan-
dard deviation (SD). DB: diabetes mellitus, SMK: smoking status, HT: arterial hypertension,
DL: dyslipidemia, height in m, weight in kg.

Patient Age Sex DB SMK HT DL Height Weight
1 84 M × × X X 1.65 57
2 84 M × X X X 1.62 65
3 80 M × X X × 1.70 74
4 46 M × X X X 1.61 65
5 81 F × X X X 1.56 48
6 64 M × X × X 1.90 110
7 49 F × X × X 1.67 71
8 58 F × X × × 1.59 54
9 67 M X X X X 1.82 105
10 65 M × X X X 1.75 85
11 78 F × X × × 1.50 42

Total 69 ± 14 63.0% 9.1% 90.0% 63.6% 72.7% 1.67 ± 0.12 70.5 ± 21.9

obtain a mean beat, we average the signal by calculating the period of each beat, taking the
median period, and normalizing every beat to this median period so that 50% of the beats
are shortened and 50% lengthened by the normalization.

In the following, we describe the experimental model and statistical tools used to analyze
the pressure measurements.

8.3 Experimental method

8.3.1 Arterial waveform analysis

We analyze the pressure signals with the arterial waveform analysis, which we refer to as the
experimental method, using a custom algorithm developed in Matlab (R2018b, The Math-
Works, Inc., Natick, Massachusetts). This method is based on a two-element Windkessel
model [75] as it shows a single exponential decay during capacitor discharge defined by the
diastolic time-constant τ . We use this feature to automatically detect the onset of the diastole
for every cycle (Figure 8.2). Starting from the end of the beat (iteration number 0), we fit
the data with the model using 100 ms intervals with 1 ms backward steps. We evaluate the
exponential growth coefficient 1/τ and define the maximum rate of change δ(1/τ) of this
coefficient as the onset of the diastole (N in Figure 8.2). Once the onset of diastole is found,
we fit the pressure data from the entire diastolic period to a single exponential function to
obtain the final diastolic time-constant ( in Figure 8.2).

With the arterial waveform analysis, we calculate the diastolic time-constant for the 11
patients in the four configurations in two different manners: a) from each beat of the 20 to
40-second pressure signal which gives a median τ or b) from the mean beat which gives the
mean τ .
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Table 8.2 – Patient comorbidities and medication. CAD: coronary artery disease, HF: heart
failure, IC: intermittent claudication, BB: Beta-blockers, ACEI: angiotensin-converting en-
zyme inhibitors, ARBs: angiotensin II receptor antagonists, CCB: calcium channel blockers.

Patient CAD HF IC Aspirin Statins BB ACEI CCB Diuretics
ARBs

1 × × × X X × × X X

2 X × X X X X X × ×
3 X × X X X X X × X

4 × × × X X × X × ×
5 X × X X X X X × X

6 X × × X X X X × ×
7 × × X X X X X × X

8 × × X X X × X × ×
9 X × X X X X X × X

10 × × × X X × × X ×
11 × × × X X × X × ×

Total 45.5% 0% 54.5% 100% 100% 54.5% 81.8% 18.2% 45.5%
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standsforcurrent,andbothquantitiesarelinkedthrougha
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cuitisthefollowingtime-varyingordinarydifferential
equation:

pþR2C
dp
dt

¼ðR1þR2ÞQþR1R2C
dQ
dt

(1)

Equation(1)canbediscretizedwithaforwardEulerscheme,
wherethebloodpressureinthesystemicvascularcircuit(P)is
theunknownvariable.

pnþR2C
pnþ1%pn

Dt
¼ðR1þR2ÞQnþR1R2C

Qnþ1%Qn

Dt
(2)

TheunknownvariableofEquation(2)ispresentedaspnþ1

(i.e.,thebloodpressureattimetnþ1)andpn(i.e.,theblood
pressureattimetnbeforetnþ1),withDt¼tnþ1etnbeingthe
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Equation(1),theinletflowrate(Q(t))(i.e.,theflowofblood
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needstobeimposed.TheflowratesQnandQnþ1correspondto
theinletflowimposedattimestnandtnþ1,respectively.To
mimicabeatingheart,acommonsimplifiedstrategytomodel
theinletflowrateistousehalfasinesignal.19Asshownin
Figure2A,aninletflowrate(Q(t))suchasthiscanbedescribed
bytwoparameters:theamplitudeoftheinletflowrate(Q0)
andtheejectiontime(Tej).Theejectiontime(Tej)isdefinedas
thepercentageoftheoveralldurationofaheartperiod(T)in

Fig.1eArterialwaveformanalysis.Thex-axis(time)is
invertedastorepresenttheanalysissequence.Starting
fromtheendofthebeat(leftsideofthefigure),the
exponentialgrowthcoefficient(1/s)ofthearterialpressure
curve(dashed,blue)wasestimatedbyfitting100-
millisecondintervalswith1-millisecondbackwardsteps.
Theonsetofdiastole(redtriangle)wasobtainedfromthe
localmaximumofd(1/s)(dash-point,purple).Pressuredata
fromthediastolictimeintervalwerefittedtoasingle
exponentialfunction(dots,green)toobtainthefinaltime
constant(s).(Colorversionoffigureisavailableonline.)

Fig.2eZero-dimensionalWindkesselmodelwiththreecomponents(tworesistorsandonecapacitor)thataccountsforthe
systemicarterialnetwork.(A)Theinletflowrate(Q(t))dependsontheamplitudeoftheflowrate(Q0)andontheejection
time(Tej).(B)ElectricalanalogyoftheWindkesselmodel,whereR1andR2togetherrepresentthetotalresistanceandC
representsthecapacitance.(Colorversionoffigureisavailableonline.)
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entire diastolic period was fitted to a single exponential
function to obtain the final diastolic time constant (green

dotted line, Fig. 1). The time constant of the diastolic portion of
arterial pressure tracings was computed for both individual
beats and for the mean beat of each interval for each patient
under each condition.

Numerical model

Zero-dimensional (0D) models are the very first level of
modeling. These types of models are analogies of electrical

circuits, in which pressure stands for voltage and flow rate
stands for current, and both quantities are linked through a
time-varying ordinary differential equation. The circuit is
made up of an assembly of resistors and capacitors that have a
physical role: resistors represent the effect of viscous dissipa-
tion, whereas capacitors model the compliant effects of ar-
teries. Themostwidelyusedmodel for simulatingbloodflow is

known as the Windkessel model,22 which was originally
composed of only two elements, a resistor (R2) and a capacitor
(C ), being able to approximately predict the exponential decay
of arterial blood pressure during the diastole right after the
aortic valve closes (Fig. 2). Thismodelwas further improved by
adding another resistor (R1). The time constant (s) can be
calculated from these parameters considering s ¼ R2C.

The general governing equation of the two-element
Windkessel model that represents the systemic arterial cir-
cuit is the following time-varying ordinary differential
equation:

pþR2C
dp
dt

¼ðR1 þR2ÞQ þ R1R2C
dQ
dt

(1)

Equation (1) can be discretizedwith a forward Euler scheme,
where the blood pressure in the systemic vascular circuit (P) is
the unknown variable.

pn þR2C
pnþ1 % pn

Dt
¼ðR1 þR2ÞQn þ R1R2C

Qnþ1 % Qn

Dt
(2)

The unknown variable of Equation (2) is presented as pnþ1

(i.e., the blood pressure at time tnþ1) and pn (i.e., the blood
pressure at time tn before tnþ1), with Dt ¼ tnþ1 e tn being the
time step. Because pressure P(t) is the unknown variable in
Equation (1), the inlet flow rate (Q(t)) (i.e., the flow of blood
ejected by the left ventricle into the systemic arterial circuit)

needs to be imposed. The flow rates Qn and Qnþ1 correspond to
the inlet flow imposed at times tn and tnþ1, respectively. To
mimic a beating heart, a common simplified strategy tomodel
the inlet flow rate is to use half a sine signal.19 As shown in
Figure 2A, an inlet flow rate (Q(t)) such as this can be described
by two parameters: the amplitude of the inlet flow rate (Q0)
and the ejection time (Tej). The ejection time (Tej) is defined as
the percentage of the overall duration of a heart period (T ) in

Fig. 1 e Arterial waveform analysis. The x-axis (time) is
inverted as to represent the analysis sequence. Starting
from the end of the beat (left side of the figure), the
exponential growth coefficient (1/s) of the arterial pressure
curve (dashed, blue) was estimated by fitting 100-
millisecond intervals with 1-millisecond backward steps.
The onset of diastole (red triangle) was obtained from the
local maximum of d(1/s) (dash-point, purple). Pressure data
from the diastolic time interval were fitted to a single
exponential function (dots, green) to obtain the final time
constant (s). (Color version of figure is available online.)

Fig. 2 e Zero-dimensional Windkessel model with three components (two resistors and one capacitor) that accounts for the
systemic arterial network. (A) The inlet flow rate (Q(t)) depends on the amplitude of the flow rate (Q0) and on the ejection
time (Tej). (B) Electrical analogy of the Windkessel model, where R1 and R2 together represent the total resistance and C
represents the capacitance. (Color version of figure is available online.)
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entire diastolic period was fitted to a single exponential
function to obtain the final diastolic time constant (green

dotted line, Fig. 1). The time constant of the diastolic portion of
arterial pressure tracings was computed for both individual
beats and for the mean beat of each interval for each patient
under each condition.

Numerical model

Zero-dimensional (0D) models are the very first level of
modeling. These types of models are analogies of electrical

circuits, in which pressure stands for voltage and flow rate
stands for current, and both quantities are linked through a
time-varying ordinary differential equation. The circuit is
made up of an assembly of resistors and capacitors that have a
physical role: resistors represent the effect of viscous dissipa-
tion, whereas capacitors model the compliant effects of ar-
teries. Themostwidelyusedmodel for simulatingbloodflow is

known as the Windkessel model,22 which was originally
composed of only two elements, a resistor (R2) and a capacitor
(C ), being able to approximately predict the exponential decay
of arterial blood pressure during the diastole right after the
aortic valve closes (Fig. 2). Thismodelwas further improved by
adding another resistor (R1). The time constant (s) can be
calculated from these parameters considering s ¼ R2C.

The general governing equation of the two-element
Windkessel model that represents the systemic arterial cir-
cuit is the following time-varying ordinary differential
equation:

pþR2C
dp
dt

¼ðR1 þR2ÞQ þ R1R2C
dQ
dt

(1)

Equation (1) can be discretizedwith a forward Euler scheme,
where the blood pressure in the systemic vascular circuit (P) is
the unknown variable.
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¼ðR1 þR2ÞQn þ R1R2C
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(2)

The unknown variable of Equation (2) is presented as pnþ1

(i.e., the blood pressure at time tnþ1) and pn (i.e., the blood
pressure at time tn before tnþ1), with Dt ¼ tnþ1 e tn being the
time step. Because pressure P(t) is the unknown variable in
Equation (1), the inlet flow rate (Q(t)) (i.e., the flow of blood
ejected by the left ventricle into the systemic arterial circuit)

needs to be imposed. The flow rates Qn and Qnþ1 correspond to
the inlet flow imposed at times tn and tnþ1, respectively. To
mimic a beating heart, a common simplified strategy tomodel
the inlet flow rate is to use half a sine signal.19 As shown in
Figure 2A, an inlet flow rate (Q(t)) such as this can be described
by two parameters: the amplitude of the inlet flow rate (Q0)
and the ejection time (Tej). The ejection time (Tej) is defined as
the percentage of the overall duration of a heart period (T ) in

Fig. 1 e Arterial waveform analysis. The x-axis (time) is
inverted as to represent the analysis sequence. Starting
from the end of the beat (left side of the figure), the
exponential growth coefficient (1/s) of the arterial pressure
curve (dashed, blue) was estimated by fitting 100-
millisecond intervals with 1-millisecond backward steps.
The onset of diastole (red triangle) was obtained from the
local maximum of d(1/s) (dash-point, purple). Pressure data
from the diastolic time interval were fitted to a single
exponential function (dots, green) to obtain the final time
constant (s). (Color version of figure is available online.)

Fig. 2 e Zero-dimensional Windkessel model with three components (two resistors and one capacitor) that accounts for the
systemic arterial network. (A) The inlet flow rate (Q(t)) depends on the amplitude of the flow rate (Q0) and on the ejection
time (Tej). (B) Electrical analogy of the Windkessel model, where R1 and R2 together represent the total resistance and C
represents the capacitance. (Color version of figure is available online.)
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entire diastolic period was fitted to a single exponential
function to obtain the final diastolic time constant (green

dotted line, Fig. 1). The time constant of the diastolic portion of
arterial pressure tracings was computed for both individual
beats and for the mean beat of each interval for each patient
under each condition.

Numerical model

Zero-dimensional (0D) models are the very first level of
modeling. These types of models are analogies of electrical

circuits, in which pressure stands for voltage and flow rate
stands for current, and both quantities are linked through a
time-varying ordinary differential equation. The circuit is
made up of an assembly of resistors and capacitors that have a
physical role: resistors represent the effect of viscous dissipa-
tion, whereas capacitors model the compliant effects of ar-
teries. Themostwidelyusedmodel for simulatingbloodflow is

known as the Windkessel model,22 which was originally
composed of only two elements, a resistor (R2) and a capacitor
(C ), being able to approximately predict the exponential decay
of arterial blood pressure during the diastole right after the
aortic valve closes (Fig. 2). Thismodelwas further improved by
adding another resistor (R1). The time constant (s) can be
calculated from these parameters considering s ¼ R2C.

The general governing equation of the two-element
Windkessel model that represents the systemic arterial cir-
cuit is the following time-varying ordinary differential
equation:

pþR2C
dp
dt

¼ðR1 þR2ÞQ þ R1R2C
dQ
dt

(1)

Equation (1) can be discretizedwith a forward Euler scheme,
where the blood pressure in the systemic vascular circuit (P) is
the unknown variable.
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pressure at time tn before tnþ1), with Dt ¼ tnþ1 e tn being the
time step. Because pressure P(t) is the unknown variable in
Equation (1), the inlet flow rate (Q(t)) (i.e., the flow of blood
ejected by the left ventricle into the systemic arterial circuit)

needs to be imposed. The flow rates Qn and Qnþ1 correspond to
the inlet flow imposed at times tn and tnþ1, respectively. To
mimic a beating heart, a common simplified strategy tomodel
the inlet flow rate is to use half a sine signal.19 As shown in
Figure 2A, an inlet flow rate (Q(t)) such as this can be described
by two parameters: the amplitude of the inlet flow rate (Q0)
and the ejection time (Tej). The ejection time (Tej) is defined as
the percentage of the overall duration of a heart period (T ) in
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inverted as to represent the analysis sequence. Starting
from the end of the beat (left side of the figure), the
exponential growth coefficient (1/s) of the arterial pressure
curve (dashed, blue) was estimated by fitting 100-
millisecond intervals with 1-millisecond backward steps.
The onset of diastole (red triangle) was obtained from the
local maximum of d(1/s) (dash-point, purple). Pressure data
from the diastolic time interval were fitted to a single
exponential function (dots, green) to obtain the final time
constant (s). (Color version of figure is available online.)
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systemic arterial network. (A) The inlet flow rate (Q(t)) depends on the amplitude of the flow rate (Q0) and on the ejection
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entire diastolic period was fitted to a single exponential
function to obtain the final diastolic time constant (green

dotted line, Fig. 1). The time constant of the diastolic portion of
arterial pressure tracings was computed for both individual
beats and for the mean beat of each interval for each patient
under each condition.
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circuits, in which pressure stands for voltage and flow rate
stands for current, and both quantities are linked through a
time-varying ordinary differential equation. The circuit is
made up of an assembly of resistors and capacitors that have a
physical role: resistors represent the effect of viscous dissipa-
tion, whereas capacitors model the compliant effects of ar-
teries. Themostwidelyusedmodel for simulatingbloodflow is

known as the Windkessel model,22 which was originally
composed of only two elements, a resistor (R2) and a capacitor
(C ), being able to approximately predict the exponential decay
of arterial blood pressure during the diastole right after the
aortic valve closes (Fig. 2). Thismodelwas further improved by
adding another resistor (R1). The time constant (s) can be
calculated from these parameters considering s ¼ R2C.

The general governing equation of the two-element
Windkessel model that represents the systemic arterial cir-
cuit is the following time-varying ordinary differential
equation:
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¼ðR1 þR2ÞQ þ R1R2C
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dt

(1)

Equation (1) can be discretizedwith a forward Euler scheme,
where the blood pressure in the systemic vascular circuit (P) is
the unknown variable.
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time step. Because pressure P(t) is the unknown variable in
Equation (1), the inlet flow rate (Q(t)) (i.e., the flow of blood
ejected by the left ventricle into the systemic arterial circuit)

needs to be imposed. The flow rates Qn and Qnþ1 correspond to
the inlet flow imposed at times tn and tnþ1, respectively. To
mimic a beating heart, a common simplified strategy tomodel
the inlet flow rate is to use half a sine signal.19 As shown in
Figure 2A, an inlet flow rate (Q(t)) such as this can be described
by two parameters: the amplitude of the inlet flow rate (Q0)
and the ejection time (Tej). The ejection time (Tej) is defined as
the percentage of the overall duration of a heart period (T ) in

Fig. 1 e Arterial waveform analysis. The x-axis (time) is
inverted as to represent the analysis sequence. Starting
from the end of the beat (left side of the figure), the
exponential growth coefficient (1/s) of the arterial pressure
curve (dashed, blue) was estimated by fitting 100-
millisecond intervals with 1-millisecond backward steps.
The onset of diastole (red triangle) was obtained from the
local maximum of d(1/s) (dash-point, purple). Pressure data
from the diastolic time interval were fitted to a single
exponential function (dots, green) to obtain the final time
constant (s). (Color version of figure is available online.)
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systemic arterial network. (A) The inlet flow rate (Q(t)) depends on the amplitude of the flow rate (Q0) and on the ejection
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Figure 8.2 – Arterial waveform analysis to determine the onset of diastole and the diastolic
time-constant. The x-axis corresponds to time. Starting from the end of the beat (right side
of the figure), the exponential growth coefficient (1/τ) of the arterial pressure curve ( ) is
estimated by fitting 100 ms intervals with 1 ms backwards steps. The onset of diastole (N)
is obtained from the local maximum of δ(1/τ) ( ). Pressure data from the diastolic time
interval is fitted to a single exponential function ( ) to obtain the final time-constant (τ).
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Arterial waveform analysis is commonly used to calculate the time-constant of the dias-
tolic portion of pressure waves [222–224]. However, this method is unable to estimate by itself
the relative contribution of compliance (C) or resistance (R) to the time-constant (τ), i.e.
considering τ = RC. Using a numerical model of the arterial network allows these important
vascular features, compliance and resistance being estimated along with the time-constant.
Such a numerical model therefore offers an appropriate means of comparison with classic
waveform analysis, by comparing the estimated time-constants, while offering valuable in-
formation on vascular mechanical properties. We use, in addition to the waveform analysis,
two numerical models that can highlight the changes in vascular mechanics after aortic cross-
clamping and unclamping during vascular surgeries in adult patients. We present these two
models in Section 8.4.

8.3.2 Statistical analysis

A one-way analysis is conducted to assess the distribution of each covariate. We calculate
the mean and standard deviation (SD) for normally distributed variables and median and
interquartile range (IQR) for non-normally distributed variables. Categorical variables are
summarized with percentages in each category. Group comparisons involve two-tailed paired
T-tests for normally distributed variables, Wilcoxon signed-rank test for non-normally dis-
tributed variables, and chi-square or Fischer’s exact tests for categorical variables.

We assess correlation with Pearson’s correlation coefficient (ρ) for variables with a multi-
variate normal distribution and with Spearman’s correlation coefficient for variables with a
non-normal multivariate distribution.

We use Bland-Altman plots [165] to assess the agreement qualitatively in which we rep-
resent the difference between two measurements on the y-axis plotted against the average
of these measurements on the x-axis. The mean difference between the two measurements
is called the center of agreement and is represented by a central horizontal line on the plot.
The upper/lower Limits of Agreement (LoA) are ±1.96 SD of the mean difference. The gap
between the center of agreement and the x-axis (corresponding to zero differences) is called
the bias. More detail about Bland-Altman plots can be found in Section 6.2.3 and Figure 6.2.

We verify normality in the distribution of the differences formally using Shapiro-Wilk
tests. We consider that two-tailed tests were statistically significant at the standard 0.05
level and that a percentage bias (bias/mean waveform analysis time-constant) of 20% or less
is acceptable.

We perform the statistical analysis using R software version 1.0.136 (packages ggplot2,
BlandAltmanLeh, MVN). More detail about statistical tools and analysis can be found in
textbooks such as [225].
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8.4 Blood flow models
In this section, we briefly describe the 0D model, the 1D model, and the parameter estimation
method to compare with the data presented in Section 8.2.

8.4.1 Windkessel model

0D equation

(a)
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Figure 8.3 – (a) Electrical representation of the three-element Windkessel model describing
the entire systemic circulation. The pressure p(t) is linked to the flow rate Q(t), that models
the heart through Equation (8.1) where Rp is the proximal resistance, Rd is the distal resis-
tance and C is the compliance. (b) Inlet boundary condition of the 0D and 1D models: flow
rate Q(t) modeling the heart. For instance, we choose the amplitude Q0 = 375 cm3/s, the
ejection time Tej = 31.8% of the heart period Tc = 1.15 s, which is the data of patient 3.

The three-element Windkessel model [75], introduced by Frank [76], is a modified ver-
sion of the 0D blood flow Equations (2.66) obtained by averaging the blood flow equations
(2.21) over all spatial dimensions (see Section 2.3). In this representation, the arterial network
can then be interpreted as an electrical circuit constituted of resistors and capacitors. The
three-element Windkessel model is composed of one capacitor C and two resistors Rp and
Rd corresponding to the proximal and distal resistances respectively (Figure 8.3a). Resistors
represent frictional forces due to viscosity while capacitors model the compliant effects of
arteries. The Windkessel models are widely used in medical studies [67, 77, 226] because de-
spite their simplicity they have a low computational cost and provide valuable information
on the vascular system (vascular resistances and compliance) that are helpful for the medical
diagnosis.

The analytical representation of the Windkessel model in Figure 8.3a is given by the
following equation that links the pressure p(t) to the flow rate Q(t) ejected by the heart:(

1 +RdC
d·
dt

)
p(t) =

(
(Rp +Rd) +RpRdC

d·
dt

)
Q(t), (8.1)

which can be solved in p or in Q depending on the unknown.
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Boundary conditions

To minimize the number of model parameters, we choose to describe the flow rate Q(t)
ejected by the heart with a simple half-sine signal (Figure 8.3b). This heart model has proven
reliable in previous works [64,69], even though more complicated heart models can be found
in the literature [14,65,82]. The input flow rate follows

Q(t) =

 Q0 sin
(

πt

TejTc

)
if 0 < t < TejTc,

0 if TejTc ≤ t < Tc,

(8.2)

characterized by three parameters: the amplitude Q0 and the systolic ejection time Tej , dur-
ing which blood is injected in the system, and the heart period Tc. The first two parameters
Q0 and Tej are unknown whereas the heart period is prescribed by the patient data.

Numerical resolution scheme

To solve the equation (8.1) numerically, we use an explicit Euler time-integration scheme

pn +RdC
pn+1 − pn

∆t = (Rp +Rd)Qn +RpRdC
Qn+1 −Qn

∆t , (8.3)

where pn+1 is the unknown pressure at time tn+1 and Qn, Qn+1 the known flow rates at times
tn and tn+1 respectively, imposed through the inlet boundary condition (8.2). The time step
∆t = tn+1 − tn is of order 10−4 s and ∆t � RdC ' 1 s, the characteristic time of diastolic
exponential decrease.

8.4.2 One-dimensional model

1D equations

The 1D models have been used to describe blood flow in large arteries since, unlike 0D
models, they can model the spatial propagation of pulse waves, one of the most important
phenomena when studying large artery hemodynamics [9, 62, 63]. The 1D equations are ob-
tained from the 3D Navier-Stokes equations (2.21) assuming a few weak hypotheses, described
in Section 2.3.1. The details of the derivation can be found in Section 2.3.4.

We solve the 1D equations (2.51) coupled to the visco-elastic pressure law of Equation
(2.18). We thus solve the system (2.54) with the friction coefficient Cf set to 22πν [227], i.e.
ξ = 9, with ν = 5·10−2 cm2/s the kinematic viscosity of blood.

Boundary conditions

To model the systemic circulation in the pre-clamp configuration, we build a minimal
network composed of nine main arteries [20] (Figure 8.4a) where we solve the 1D equations
(2.54). At each bifurcation, we impose the conservation of mass and the continuity of pres-
sure [228] without taking into account pressure losses at the junctions [61]. The boundary
conditions are the following: at the inlet of the network (artery number 1) we impose the
same periodic flow input signal Q(t) as the 0D model (Equation (8.2)) and we apply resis-
tance boundary conditions ri at every terminal artery i to take into account the peripheral
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circulation in the capillaries [22, 66] (Table 8.8). The post-clamp configuration consists of
removing all distal arteries starting from the end of the abdominal aorta (artery 7). In prac-
tice, we apply a total reflection outlet boundary condition at the end of artery 7 (Rt = 1),
corresponding to a complete occlusion of the vessel (see Figure 8.4b).
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(b)

Q(t)
1

2
3

4

5
6

7

8 9

(c)

Measuring point

Resistance boundary
condition

Bifurcation

Total reflection

Figure 8.4 – Schematic representation of the 9-artery network. We represent (a) the config-
uration without the clamp (pre-clamp), (b) the configuration with the clamp (post-clamp),
where we model the occlusion of artery 7 with a total reflection boundary condition. The green
circles represent the bifurcations, the light blue squares represent the resistance boundary
conditions, the black square is the point of clamping modeled by a total reflection (Rt = 1),
and the orange cross is the pressure measurement point where we compare measured and
simulated pressure waves.

Properties of the network

Table 8.3 presents the arterial geometric (length L, reference cross-section A0, thickness
h) and material (Young’s modulus E) properties used in the numerical computations. We
adjust these properties from similar models of the literature [74, 79] to the chosen 9-artery
networks model to correspond to an average human body [20]. The resistance boundary con-
ditions are estimated automatically with the process described in Section 8.4.3 and reported
in the results section in Table 8.8.

Numerical resolution schemes

To solve the Equations (2.54), we use the finite volume method described in Section 4.2.4.
We divide the time domain with a constant time step ∆t = 10−4 s and introduce a spacial
mesh to discretize each artery with a constant step ∆x = 0.4 cm, that are typical values for
computation with enough precision.
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Table 8.3 – Geometric and material properties of the 9-artery network model [20,66,72]. L:
length in cm, A0: reference cross-section in cm2, h: arterial wall thickness in cm, E: Young’s
modulus in g·cm−1·s−2 (considered constant in each artery).

N◦ Name L A0 h E

1 Aorta arch A 4.0 7.07 0.16 0.7·107

2 Right subclavian radial artery 72.5 0.50 0.06 0.4 ·107

3 Aorta arch B 2.0 5.31 0.12 0.4·107

4 Left carotid artery 38.5 0.50 0.06 0.6·107

5 Aorta arch C 3.9 4.52 0.1 0.4 ·107

6 Left subclavian radial artery 69.1 0.50 0.06 0.4·107

7 Aorta 34.5 2.01 0.1 0.4·107

8 Right femoral artery 96.9 0.79 0.07 1.2·107

9 Left femoral artery 96.9 0.79 0.07 1.2·107

8.4.3 Parameter estimation

Typically, during the course of a clinical procedure, little is known about patient-specific
vascular properties. Parameter estimation is a powerful tool to identify these physiological
quantities. It can also allow following the evolution of a disease in a minimally invasive way.
A review of the parameter estimation methods can be found in Section 4.3.

We propose an optimization strategy designed to automatically estimate both 0D and
1D model parameters using the patient data. Figure 8.6 presents the 3-step algorithm of the
process in which:
(i) we estimate the 0D model parameters: the resistances (Rp and Rd), the compliance (C)
and the ejection time (Tej),
(ii) we estimate the resistance boundary conditions (ri) of the 1D model to match the total
resistance of the 1D model to the total resistance of the 0D model found in step (i),
(iii) we estimate the amplitude of the input flow rate (Q0) for both models using the 1D model.

(i) Estimation of the 0D model parameters
The objective of this first step is to estimate the 0D model parameters P = {Rp, Rd, C, Tej} for
each of the four configurations (pre-clamp, post-clamp, pre-unclamp, post-unclamp), solving
an inverse problem based on the patient data. We define a cost-function J that characterizes
the difference between the measured and simulated pressure waves, respectively Pmeasured(t)
and Psim(P, t). We minimize this cost-function J with respect to P, the set of parameters.
The cost-function is

Jpre/post(P, t) =
(∫ Tc

0
(Pmeasured(t)− Psim(P, t))2 dt

)1/2

. (8.4)

To calculate Pnum, we solve Equation (8.1) and impose an arbitrary value of Q0 such that
the Systolic Volume (SV) Vs, i.e. ventricular ejection volume over a heartbeat, is within the
typical range of 70 to 90 mL. We define the SV as the integral of the input flow rate Q(t)
over a heart period Tc. We impose the same SV Vs in all four configurations.
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For each configuration we determine the optimal set of parameters P using the Basin-
Hopping algorithm combined to the L-BFGS-B descent described in Section 4.3.1 and 4.3.2
from the Python SciPy library [229]. As it allows bound constraints, we require that all param-
eters have positive values and that the compliance remains in the interval C ∈

[
10−7, 10−1]

g−1·cm4·s2.

This algorithm provides the optimal values of the 0D model parameters P in all four con-
figurations, in the physiological parameter space, as the global optima of the cost-function J.

(ii) Estimation of the resistance boundary conditions of the 1D model
The objective of this second step is to estimate the resistance boundary conditions ri of
the 1D network. We propose a new parameter estimation problem to identify the resistance
boundary conditions ri such that the total resistance of the 1D model R̃tot,1D matched that of
the 0D model Rtot,0D = Rp +Rd found in step (i). Since the 0D total resistance is estimated
from real invasive data, it seems reasonable to assume that it is the total resistance of the
patient, which explains why we match the 1D resistance to the 0D resistance.

We can calculate analytically the total resistance of the 1D model for all configurations
assuming a 0D analogy of the 1D network, as represented in Figure 8.5. This total resistance
R̃tot,1D depends on the Poiseuille (or hydraulic) resistances Ri of each vessel [9] defined in
Equation 2.69. The values of the Poiseuille resistances Ri for each vessel of the 9-artery net-
work are fixed by the geometry (Table 8.3). The total resistance R̃tot,1D also depends on the
resistance boundary conditions ri of each terminal artery i.

We define a new cost function J in which we include both the pre- and post-clamp (respec-
tively unclamp) values of the total resistance so that the optimal set of ri preserves the ratio
between the pre- and post-clamp (respectively unclamp) 0D total resistances. As Ri � ri,
we only minimize J with respect to the resistance boundary conditions ri. We define a new
cost function J as

J(ri) = (R̃pretot,1D(Ri, ri)−Rpretot,0D)2 + (R̃posttot,1D(Ri, ri)−Rposttot,0D)2, (8.5)

where R̃pretot,1D (Figure 8.5a) and R̃posttot,1D (Figure 8.5b) are the 1D total resistances where the
superscript pre stands for pre-clamp or pre-unclamp and post for post-clamp or post-unclamp,
Rpretot,0D and Rposttot,0D are the 0D total resistances.

We use the Basin-Hopping algorithm combined to the L-BFGS-B gradient descent (Sec-
tion 4.3) to minimize the cost function J from Equation (8.5) and obtain the boundary
conditions ri of the 1D network.

(iii) Estimation of the amplitude of the input flow rate for both models
The last parameter we estimate is the amplitude of the input flow rate Q0. It is not possible
to estimate this parameter in step (i) since in Equation (8.1), when neglecting the compli-
ance, the pressure is linked to the flow rate through p = RtotQ. As we only have pressure
data, it is only possible to estimate either the resistance or the flow rate with the 0D model.
Indeed, the algorithm can always find a balance between these two quantities that would
minimize the cost function but that would not necessarily respectthe physiological values of
either of the parameters. The lack of data on the flow rate is a limitation of the present study.
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Figure 8.5 – Analogy of the 9-artery network with resistors. (a) The pre-clamp network
shown in Figure 8.4 that has a total resistance R̃pretot,1D, (b) the post-clamp network from
Figure 8.4b that has a total resistance R̃posttot,1D. The labels of resistors are identical to the
labels of arteries from the 1D network (Figure 8.4). The Poiseuille (or hydraulic) resistances
Ri, and the resistance boundary conditions ri are reported in Table 8.8.
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Figure 8.6 – Optimization algorithm described in Section 8.4.3 to estimate the patient-
specific parameters of the 0D and 1D models. The parameters of the 0D model are Ppre for
the pre-clamp configuration and Ppost for the post-clamp configuration and are composed
of the proximal resistance Rp, the distal resistance Rd, the compliance C and the ejection
time Tej . The flow rate Qpre0 (respectively Qpost0 ) corresponds to the amplitude of the input
flow rate Q(t) for the pre-clamp configuration (respectively post-clamp). The stroke volume
Vs is the integral of the flow rate Q(t) over one heart period Tc. The resistances ri are the
resistance boundary conditions of the 1D network (see Figure 8.5).

In step (i), we impose an arbitrary value for the amplitude of the input flow rate Q0.
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In this step, we estimate this last parameter Q0 for all four configurations, using the 1D
model with the constraint of a constant stroke volume, within the range of 70 to 90 mL. We
compute the 1D model in the "pre" configuration with the input flow rate characterized by
the estimated value of the ejection time Tej and the same arbitrary Qpre0 as the 0D model.
We use a gradient-based algorithm (see Section 4.3.1 for more detail) from the same SciPy
library [229] to find the optimal value of the amplitude of the input flow rate Qpre0 for this
configuration. Convergence is reached when the correlation between measured and simulated
pressure waves was superior to 0.95. Then we compute the stroke volume Vs, calculated the
Qpost0 so that the stroke volume is identical between both configurations, and finally compute
the 1D model for the "post" configuration. This last step provides values of Q0 for the 0D
and 1D models in all four configurations.

Since Q0 changed from step (i) to step (iii), the process is iterated to recalculate the
new 0D total resistance with the optimal value of Q0. We exit the loop when the 0D and 1D
models have the same total resistance, the same amplitude of the input flow rate, and the
same stroke volume between all configurations.

In the following, we present the result of the parameter estimation of the 0D model for the
four configurations which corresponds to step (i) and compare the results to the waveform
analysis described in Section 8.3.

8.5 Comparison between the waveform analysis and the 0D
model on the cohort

In Figure 8.7, we show the comparison between the pressure measurements of one patient
(patient 3) and the 0D model for all four configurations with the optimal set of parameters
found using step (i) of the parameter estimation process of Section 8.4.3. We observe a strong
correlation (R2 > 0.95) between the patient data and the 0D model which shows that the 0D
model can accurately reproduce the arterial pressure waveform in all configurations.

In the following, we quantify the agreement between the arterial waveform method and
the 0D model based on the diastolic time-constant (Section 8.5.1). Then, in Section 8.5.2, we
analyze the results of the 0D model in terms of resistance and compliance since the arterial
waveform analysis cannot separate the resistive and compliant effects.

8.5.1 Diastolic time-constant τ

Changes in the diastolic time-constant measured by the waveform analysis

We start by quantifying the changes in the median τ calculated over the 20 to 40-second
pressure signal with the experimental method.

In all individual patients the median time-constant decreases after clamping and increases
after unclamping. All the details of the calculation can be found in Table C.1 of Appendix
C. Aortic clamping induces a significant 10% reduction in the median diastolic time-constant
of arterial pressure waves. Before clamping the median time-constant is 2.12 s [IQR:1.54-
2.36], while after clamping it is 1.79 s [IQR:1.48-1.91], this difference is statistically signifi-
cant (p=0.0033). Aortic unclamping induces a significant 17% increase in the median time-
constant. Before unclamping the median time-constant is 1.77 s[IQR:1.52-1.99], while after
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clamping it is 1.90 s [IQR:1.73-2.32], this difference is also statistically significant (p=0.0033).
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Figure 8.7 – Arterial pressure waveform and comparison with the Windkessel model for one
representative patient (patient 3) undergoing aortic clamping and unclamping during vascular
surgery. (+) and (+) corresponds to the measured pressure wave of the pre-clamp and pre-
unclamp, respectively post-clamp and post-unclamp, configurations, ( ) corresponds to the
simulated pressure waves solving Equation (8.1).

Comparison between the absolute values of the diastolic time-constant

We now compare the diastolic time-constant calculated from the mean beat between the
arterial waveform analysis (the mean τ) and the 0D model. We calculate the time-constant
τ = RdC of the mean beat of each patient before and after each intervention with the esti-
mated parameters of the 0D model. We compare these values to the time-constant measured
from the mean beat by arterial waveform analysis. Both methods suggest that the time-
constant decreases after clamping and increases after unclamping as shown in Figure 8.8.

To assess quantitatively the agreement between the two methods, we use a correlation
plot, shown in Figure 8.9a for clamping and Figure 8.9c for unclamping. We find a positive
significant correlation between the values of the time-constant measured by both methods,
which is moderate (ρ=0.51; p=0.01486) during clamping and strong (ρ=0.77; p=<0.0001)
during unclamping.
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To compare both methods, we use Bland-Altman plot [165], shown in Figure 8.9b for
clamping and Figure 8.9d for unclamping. More detail about Bland-Altman plots can be
found in Section 6.2.3 and Figure 6.2. The plots show appropriate agreement between the
experimental and numerical values of the diastolic time-constant. In both settings, we find a
small bias (13.7% for clamping, 14.7% for unclamping). For nearly all cases the differences
between the two measurements are within the LoA, as reported in Table 8.4. However, there
is a possible systematic bias observed for high values of the diastolic time-constant during
aortic unclamping, where numerical values seem to overestimate waveform analysis values.
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Figure 8.8 – Ratio of the diastolic time-constant τ between (a) post-clamp and pre-clamp
and (b) post-unclamp and pre-unclamp. (×) represents the ratios estimated by the 0D model
and (+) the ratios estimated by the arterial waveform analysis. ( ) indicates the median
percentage change for the diastolic time-constant estimated by the 0D model.

Table 8.4 – Agreement results from Bland-Altman plots. CI: confidence intervals, LoA:
Limits of Agreement. Percentage changes are calculated regarding the mean time-constant
measured by arterial waveform analysis.

Estimate Clamping Unclamping Units
Bias -0.260 -0.302 s

95%CI bias -0.462 to -0.058 -0.514 to -0.09 s
Percentage bias 13.7 14.7 %
Upper LoA 0.632 0.635 s

95%CI Upper LoA 0.283 to 0.982 0.268 to 1.002 s
Lower LoA -1.152 -1.238 s

95%CI Lower LoA -1.502 to -0.803 -1.605 ro -0.871 s
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Figure 8.9 – Correlation plots between the absolute values of the diastolic time-constant
τ estimated by the 0D model and the arterial waveform analysis after (a) clamping and (c)
unclamping. Bland-Altman agreement plots between the two methods after (b) clamping
and (d) unclamping. ( ) represents the mean difference between the two methods, ( )
corresponds the upper and lower LoA (±1.96 SD of the mean difference).

Comparison between proportional changes in the diastolic time-constant

We calculate the overall proportional change in the diastolic time-constant after each
intervention for each method. Clamping produces a median 10% [IQR:8-21%] decrease in
the time-constant measured by arterial waveform analysis as compared to a median 16%
[IQR:7-19%] decrease in the time-constant measured by the numerical model; there are no
significant differences between these estimations (p=0.7646). Unclamping produces a median
18% [IQR:9-21%] increase in the time-constant measured by arterial waveform analysis as
compared to a median 21% [IQR:14-30%] decrease in the time-constant measured by the nu-
merical model; again there are no significant differences between these estimations (p=0.2061)
(Figure 8.8).
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Discussion

In this section, we indicated the immediate changes in the diastolic time-constant after
abdominal aortic clamping and unclamping during vascular surgery.

The first important finding in this study is that the diastolic time-constant of radial ar-
terial pressure waves before and after aortic cross-clamping and unclamping during vascular
surgeries in adult patients can be calculated with two different methods: the arterial wave-
form analysis and the 0D model of the arterial network. We find that the absolute values
of the diastolic time-constant differs in some patients when comparing both methods, thus
limiting the 0D model to make patient-specific estimations. Furthermore, there may be a
systematic overestimation when applying the numerical model to high values of the diastolic
time-constant during unclamping. However, the overall correlation and agreement between
measurements seem appropriate. The overall percentage changes in the diastolic time-constant
estimated by each method show no significant differences. Additionally, the subset in which
there is a possible systematic bias represents only 9% of all data. These results suggest that
though the 0D model may have limitations for making patient-specific predictions, it can
accurately identify the direction and magnitude of the proportional changes in the diastolic
time-constant, similarly to the arterial waveform analysis. In our study, we systematically
assess and quantify the correlation and agreement between the 0D model and pressure wave-
form analysis to measure the diastolic time-constant.

The second important finding in our study is that the diastolic time-constant decreases by
10-16% during clamping and increases by 18-21% during unclamping. These results comply
with the only previous study, to our knowledge, that reports changes in the arterial diastolic
time-constant during aortic clamping [230]. After abdominal aortic occlusion with a balloon
catheter during 2 minutes in 7 male dogs, Van den Bos et al. reports a significant 16.6% de-
crease in the diastolic time constant of arterial pressure waves [230]. This result is comparable
to ours in the location of the aortic clamping, the duration of the clamp, and in the magni-
tude of the reported change. In our study, we systematically find in all patients the decrease
in the diastolic time-constant during clamping and its increase during unclamping. Also, as
mentioned previously, we find a good agreement between both methods, experimental and
numerical, regarding the direction and the magnitude of proportional change. We conclude
that the 0D model of the arterial network can offer appropriate estimations of the immediate
changes in vascular mechanics after aortic clamping and unclamping. Therefore, we use the
0D model and the parameter estimation process to asses the changes in total resistance and
compliance after clamping and unclamping. In fact, the 0D model, unlike arterial waveform
analysis can separate the resistive and compliant effects in the diastolic time-constant.

8.5.2 Total vascular resistance and compliance

Proportional changes in total vascular resistance and compliance

The 0D model allows estimating the total resistance (Rtot = Rp + Rd) and compliance
(C) of the systemic arterial circuit. Therefore, we calculate the changes in these parameters
after clamping and unclamping. All the calculations for each patient in all four configurations
are reported in Table C.2 of Appendix C.
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After abdominal aortic clamping, we find a significant 16% increase in the total Mean
Vascular Resistance (Rtot) (from 1237.1 ± 250.2 g·cm−4·s−1 to 1435.0 ± 317.7 g·cm−4·s−1;
p=0.0019) and a significant 23% decrease in the mean Vascular Compliance (C) (from
2.25 ± 0.83·10−3 g−1·cm4·s2 to 1.73 ± 0.68·10−3 g−1·cm4·s2; p=0.0002), as shown in Fig-
ures 8.10a for Rtot and 8.10b for C.

After abdominal aortic unclamping, we find a significant 19% decrease in the total Mean
Vascular Resistance (Rtot) (from 1241.9 ± 243.1 g·cm−4·s−1 to 1003.8 ± 221.9 g·cm−4·s−1;
p=0.0007) and a significant 56% increase in the mean Vascular Compliance (C) (from 2.03±
0.75·10−3 g−1·cm4·s2 to 3.08± 1.35·10−3 g−1·cm4·s2; p=0.001952), as shown in Figures 8.11a
for Rtot and 8.11b for C.

(a) Resistance

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11
0.0

0.5

1.0

1.5

2.0

2.5

R
to
t,
p
o
st
/R

to
t,
p
r
e

16% increase

0D model

(b) Compliance

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11
0.0

0.5

1.0

1.5

2.0

2.5

C
to
t,
p
o
st
/C

to
t,
p
r
e

23% decrease

0D model

Figure 8.10 – Ratio of (a) the total resistance Rtot and (b) the total compliance Ctot
between post-clamp and pre-clamp estimated with the 0D model (×). ( ) indicates the
median percentage change estimated by the 0D model.
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Figure 8.11 – Ratio of (a) the total resistance Rtot and (b) the total compliance Ctot between
post-unclamp and pre-unclamp estimated with the 0D model (×). ( ) indicates the median
percentage change estimated by the 0D model.
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Discussion

The important finding in this section is that during abdominal aortic clamping, the total
vascular resistance (Rtot) increases and the compliance (C) decreases. During unclamping the
opposite events occur, added to a local vasodilation of ischemic areas due to the accumulation
of adenosine, lactate, and carbon dioxide during clamping [211]. This phenomenon possibly
explains why in our study the percentage changes in vascular resistance, and especially in
vascular compliance, are larger after unclamping than after clamping. Our results are in
agreement with previous studies on the hemodynamic changes of abdominal aortic clamping,
reported in Table 8.5. However, these previous studies have described hemodynamical changes
5 to 30 minutes after clamping using invasive methods such as transesophageal echocardiog-
raphy or pulmonary artery catheters.

Although we cannot discard the influence of biological regulatory phenomena, a simple
mechanical reasoning can explain our results. The changes in resistance and compliance after
clamping can be interpreted by considering that the 0D model sees the arterial network as an
assembly of resistive and compliant vessels connected in parallel. Since the total resistance
of a network is the inverse of the sum of the inverse of each vessel resistance, when removing
vessels from the circuit (i.e., when clamping), the total resistance should increase. Similarly,
as the total compliance is the sum of all vessel compliances, the total compliance should
decrease with clamping, which was reported by very few authors in the literature (Table
8.6). Same reasoning goes for unclamping. Though these results may be qualitatively antic-
ipated following this reasoning, the quantification of these changes is only possible through
parameter estimation using the Windkessel model. In addition, the study of the hemody-
namic impact of aortic clamping has usually focused on systemic arterial pressure and Mean
Vascular Resistance, but Vascular Compliance has not been reported since clinical attention
has been drawn on this parameter only recently [231].

In the following section, we show the comparison between the 0D, the 1D model, and the
measured data of one representative patient (patient 1).

8.6 Comparison between the models and the measured data
of one patient

8.6.1 Comparison between the 0D model and the measured data

In the section, we detail the results of one representative patients in terms of resistance,
compliance but also heart function using the 0D model.

Using the 0D model and the patient measurements of blood pressure we estimated the
patient-specific parameters P = {Rp, Rd, C, Tej} for the pre-clamp and post-clamp con-
figurations. These results, reported in Table 8.7, show a 10% increase in total resistance
Rtot = Rp + Rd and 20 % decrease in compliance C after clamping. Similar changes in the
vascular resistance with clamping are found in [216, 217, 230, 232] and globally in all our pa-
tients (Table C.2). We also note that the proximal resistance Rp represents about 15% of the
total resistance.

Table 8.7 also shows the changes in heart function, characterized by the three parameters
Q0, Tej , and Tc. The estimated ejection time Tej , which is a percentage of the heart period
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Table 8.5 – Review of the literature on the changes in Mean Vascular Resistance (MVR)
after clamping and unclamping.

Clamp Unclamp Cohort
MVR Time MVR Time Size Type Surgery

Politi ↗ 16% 30” ↘ 19% 30” 11 Human elective open
et al. [77] abdominal aortic

aneurysm repair
Montenij ↗ 16.8% 5’ ↘ 36.3% 10’ 22 Human elective open

abdominal aortic
et al. [217] aneurysm repair

Klotz ↗ 20% 1-5’ ↘ 26% 1-5’ 6 Human reconstructive
et al. [216] surgery because

of aneurysms
Attia ↗ 7.1% 1-3’ 5 Human

et al. [232]
Biais ↗ 44.5% 10’ 24 Pig

et al. [213]
Van Den Bos ↗ 22.7% 10’ 24 Pig
et al. [230]

Martin-Cancho ↘ 55.6% 5’ 18 Pig Laparotomy
et al. [219]

Martin-Cancho ↗ 38% 30’ ↘ 42.4% 30’ 18 Pig Laparotomy
et al. [219]

Martin-Cancho ↗ 39% 60’ ↘ 33.2% 60’ 18 Pig Laparotomy
et al. [219]

Table 8.6 – Review of the literature on the changes in Vascular Compliance (VC) after
clamping.

Clamp Cohort
VC Time Size Type

Politi ↘ 25% 30” 11 Human
et al. [77]

Attia ↘ 23.2% 1-3’ 5 Human
et al. [232]

Van Den Bos ↘ 17.1% 2’ 7 Dog
et al. [230]
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Tc, does not change significantly. However, the heart period Tc, which was prescribed by the
patient data, increases with clamping. Since we assume and thus impose a constant SV, we
estimate that the input flow rate Q0 decreased by 10% with clamping. The morphology of
diastole is well reproduced in patients that have a smooth curve as patient 1 (Figure 8.7).
However, for patient 3, the dicrotic notch is really present and thus the shape of the diastolic
portion of the pressure wave is not accurately reproduced by the 0D model.

We present in Figure 8.12 a comparison between the measured and the simulated pres-
sure signal. The simulated pressure wave results from solving the 0D equation (8.1) with the
optimal set of parameters P for the pre-clamp (Figure 8.12a) and post-clamp (Figure 8.12b),
obtained with the step (i) of the parameter estimation process. The 0D model gives an accu-
rate general description of the pressure curve in both configurations even though the systolic
pressure peak is not well reproduced. The correlation coefficients between the simulated and
the measured waves are R2 = 0.95 for the pre-clamp and R2 = 0.97 for the post-clamp.
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Figure 8.12 – Comparison between measured and simulated pressure signals using the 0D
model for a patient (patient 1) undergoing aortic clamping during vascular surgery. (a) Pre-
clamp configuration, (b) post-clamp configuration. (+) and (+) corresponds to the measured
pressure wave of the pre-clamp (respectively the post-clamp) configuration, ( ) corresponds
to the simulated pressure waves solving Equation (8.1). For the pre-clamp situation, the
correlation coefficient between the measured and simulated curve was R2 = 0.95 and for the
post-clamp situation R2 = 0.97.

Even though we find a high correlation between the simulated and the measured pres-
sure signal, we want to ensure that the values found with the algorithm minimized the cost
function in the physiological parameter space. We therefore evaluate the sensitivity of the
cost function J to the parameters of the 0D model. We represent in Figure 8.13 the cost
function Jpre for the pre-clamp configuration as a function of the total resistance Rtot and
the compliance C for a fixed ejection time Tej = 31.8% and a fixed ratio between Rp and
Rd set to 0.165. Figure 8.13 shows that the values reported in Table 8.7 minimize the cost
function J. The two black lines in Figure 8.13 represent the isovalues of the cost function J

that correspond respectively to a +10% and +20% increase of J with respect to its minimum
value. Within the 10% of J, we find a variation of 18% in Rtot and a variation of 48% in C.
This result shows that the cost function J is a lot more convex with respect to Rtot than C,
meaning that the model is more sensitive to a change in total resistance than in compliance.
Overall, this suggests that the value of C is less reliable.

164



Table 8.7 – Estimated parameters using the Windkessel model of Equation (8.1) for the
pre-clamp and post-clamp configurations in one representative patient. Rp: estimated prox-
imal resistance in g·cm−4·s−1, Rd: estimated distal resistance in g·cm−4·s−1, C: estimated
compliance in g−1·cm4·s2, Tej : estimated ejection time in percentage of the heart period,
Tc: heart period in s fixed by the data, Q0: estimated amplitude of flow rate in cm3/s, Vs:
calculated Systolic Volume (SV) in cm3.

Model parameters Heart function
Rp Rd C Tej Tc Q0 Vs

Pre-clamp 205 1240 1.29·10−3 31.8 1.15 375 87.2
Post-clamp 260 1313 1.04·10−3 32.1 1.283 340 89

Changes between pre/post + 27 % + 6 % - 20 % + 1 % + 12 % - 10 % —
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Figure 8.13 – Contour plot of the cost function J for Figure 8.12a as a function of the
model parameters Rtot and C expressed as percentage of the optimal values Ropttot and Copt

respectively (values reported in Table 8.7), with a fixed ratio between Rd and Rp of 0.165 and
a fixed ejection time Tej = 31.8% for the pre-clamp situation. (•) represents the minimum
of J estimated with the optimization process described in Section 8.4.3. ( ) represent the
isovalues of J at a +10 and +20 % increase of the minimum of the cost function J.

For the unclamping procedure, we come to the same conclusion. We obtain a high corre-
lation between the simulated and measured pressure waves, as represented in Figures 8.14:
R2 = 0.95 for the pre-unclamping configuration, and R2 = 0.97 for the post-unclamping. The
changes in total resistance, compliance and heart function are reported in details in Table
C.2.
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Figure 8.14 – Comparison between measured and simulated pressure signals using the 0D
model for a patient (patient 1) undergoing aortic unclamping during vascular surgery. (a)
Pre-unclamp configuration, (b) post-unclamp configuration. (+) and (+) corresponds to the
measured pressure wave of the pre-unclamp (respectively the post-unclamp) configuration,
( ) corresponds to the simulated pressure waves solving Equation (8.1). For the pre-clamp
situation, the correlation coefficient between the measured and simulated curve was R2 =
0.95 and for the post-clamp situation R2 = 0.97.

8.6.2 Comparison between the 1D model and the patient data

The algorithm presented in Section 8.4.3 allows estimating the values of the resistance bound-
ary conditions ri, reported in Table 8.8. The values of ri correspond to physiological values of
the peripheral resistances and are similar to those reported in the literature [22]. As described
in Section 8.4.3, the resistance boundary conditions ri of the 1D networks are estimated such
that the total resistance matched that of the 0D model. For this reason, there is the same 10%
increase in total resistance as the 0D model between the pre-clamp and post-clamp configura-
tions with the 1D model. We observe that both the pre-clamp and post-clamp configurations
are fitted without any change in the resistance boundary conditions which means that there
is no change in peripheral resistance with clamping. As we impose a constant stroke volume,
the post-clamp configuration is fitted with a 10% decrease of the amplitude of the input flow
rate compared to the pre-clamp configuration (see Table 8.7).

Similarly to the 0D model, we compare the measured and simulated pressure curves in
Figure 8.15. The simulated pressure wave results from solving the 1D equations (2.54) in the
9-artery network with the optimal resistance boundary conditions ri obtained with the step
(ii) of the parameter estimation process, presented in Section 8.4.3. The correlation coeffi-
cients between the simulated and the measure pressure waves are R2 = 0.96 for the pre-clamp
and R2 = 0.97 for the post-clamp configuration.

For similar reasons as the 0D model, the 1D model does not allow fitting properly the
systolic portion of the pressure curve. However, we observe that the morphology of the dias-
tolic portion is well reproduced as the 1D model recreates the presence and amplitude of the
dicrotic notch [11]. We indeed notice that the amplitude of the notch is attenuated between
the pre-clamp and post-clamp configurations, a phenomenon also seen in the simulated pres-
sure wave.
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Table 8.8 – Estimated resistance boundary conditions ri of each segment modeling the
peripheral circulation in the capillaries, imposed at the outlet of the 1D 9-artery network
for the pre-clamp and post-clamp. The values of ri were estimated automatically using the
results from the 0D model with the 3-step process presented in Section 8.4.3. ri: estimated
resistance boundary condition in g·cm−4·s−1 for the pre-clamp and post-clamp configurations,
Rt: reflection coefficient.

N◦ Name ri (pre-clamp) ri (post clamp)
1 Aorta arch A — —
2 Right subclavian radial artery 4.6·103 4.6·103

3 Aorta arch B — —
4 Left carotid artery 4.6·103 4.6·103

5 Aorta arch C — —
6 Left subclavian radial artery 4.6 ·103 4.6 ·103

7 Aorta — Rt = 1
8 Right femoral artery 30.3 ·103 —
9 Left femoral artery 30.3·103 —

(a) (b)

Figure 8.15 – Comparison between measured and simulated pressure waves using the 1D
model for a patient undergoing aortic clamping during vascular surgery. (a) Pre-clamp con-
figuration, (b) post-clamp configuration. (+) and (+) corresponds to the measured pressure
wave of the pre-clamp (respectively the post-clamp) configuration, ( ) corresponds to the
simulated pressure waves solving Equation (2.54). For the pre-clamp situation, the correlation
coefficient between the measured and simulated curve was R2 = 0.96 and for the post-clamp
situation R2 = 0.97.

We draw the same conclusions when studying the pre to post-unclamp configuration with
the 1D model. First, we observe a 20% decrease of the total resistance. Second, the 1D model
is able to reproduce the impact of unclamping by simply adding the legs to the network (Fig-
ures 8.16) without changes in the peripheral resistances, reported in Table 8.9. And third,
the 1D model cannot properly fit the systolic portion of the pressure curve because of the
lack of data on the CO.
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Table 8.9 – Estimated resistance boundary conditions ri of each segment modeling the
peripheral circulation in the capillaries, imposed at the outlet of the 1D 9-artery network for
the pre-unclamp and post-unclamp. The values of ri were estimated automatically using the
results from the 0D model with the 3-step process presented in Section 8.4.3. ri: estimated
resistance boundary condition in g·cm−4·s−1 for the pre-clamp and post-clamp configurations,
Rt: reflection coefficient.

N◦ Name ri (pre-unclamp) ri (post-unclamp)
1 Aorta arch A — —
2 Right subclavian radial artery 4.6·103 4.6·103

3 Aorta arch B — —
4 Left carotid artery 4.4·103 4.4·103

5 Aorta arch C — —
6 Left subclavian radial artery 4.6 ·103 4.6 ·103

7 Aorta Rt = 1 —
8 Right femoral artery — 14.1 ·103

9 Left femoral artery — 14.1 ·103

(a) (b)

Figure 8.16 – Comparison between measured and simulated pressure waves using the 1D
model for a patient undergoing aortic unclamping during vascular surgery. (a) Pre-unclamp
configuration, (b) post-unclamp configuration. (+) and (+) corresponds to the measured
pressure wave of the pre-clamp (respectively the post-clamp) configuration, ( ) corresponds
to the simulated pressure waves solving Equation (2.54). For the pre-unclamp situation, the
correlation coefficient between the measured and simulated curve was R2 = 0.96 and for the
post-unclamp situation R2 = 0.93.

8.6.3 Discussion

We showed that the 0D model gives an accurate description of the pressure waves in both
the pre-clamp and post-clamp configurations (Figure 8.12), but overall for all four configura-
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tions (Figure 8.14). The 0D model offers information on relevant global vascular parameters.
Even though lumped analysis may initially be considered outdated, these results indicate
that a simple and computationally efficient inverse method is enough to provide access to
patient-specific vascular properties. Nevertheless, an important limitation of the 0D model is
that it does not take into consideration wave propagation and reflection. These are currently
considered major phenomena in vascular physiology and pathophysiology [15], since arterial
stiffness studied through Pulse Wave Velocity (PWV) has shown to have a crucial role in the
pathogenesis of arterial hypertension and atherosclerosis [231]. In particular, the 0D model
has important limitations for describing the pressure wave during diastole (Figure 8.12) since
it only fits the diastolic regime with an exponential function.

A sensitivity analysis of the 0D model shows that the model is much more sensitive to
changes in total resistance than in compliance. This would suggest that the algorithm estima-
tion of the total resistance of the patient has a higher level of precision, while there is more
uncertainty surrounding the estimation of the compliance of the patient. Nonetheless, given
that most methods in the literature that estimate arterial compliance are based on two- or
three-element Windkessel models [233], it is reasonable to assume that this is currently the
state of the art for a minimally invasive estimation of vascular compliance.

Similarly to the 0D model, the 1D model gives an accurate description of the pressure
waves in both the pre-clamp and post-clamp configurations (Figure 8.15). However, as op-
posed to the 0D model, the 1D model accurately reproduces the diastolic part of the measured
pressure waves in both the pre-clamp and post-clamp configurations. In particular, the 1D
model captured the dicrotic notch [11], a small and brief increase in arterial pressure when
the aortic valve closes, as the model accounts for the propagation and reflection of the pulse
waves. The 1D model, as an assembly of tubes in which we solve the fluid equations with
only a few weak hypotheses, allows recovering the physical properties of the arterial pressure
wave that are not considered with the 0D model. We can thus consider that the 1D model is
an improvement of the 0D model and allows its validation by giving similar results.

The fitting of the pressure waves with the 1D model is achieved for both configurations
without changing the resistance boundary conditions. It suggests that numerical clamping,
i.e. imposing a total reflection at the end of the abdominal aorta, by itself can reproduce and
even predict the impact of surgical clamping on the pressure wave morphology. This result is
observed under the assumption that the peripheral resistances would not be affected by clamp-
ing because of the short acquisition time. We believe the hypothesis of constant peripheral
resistances after clamping would no longer be valid in the long-term due to neuro-hormonal
reactions that occur during longer time scales. In conclusion, determining the patient-specific
total resistance along with the distribution of peripheral resistances with the parameter esti-
mation process is sufficient for the 1D model to accurately reproduce the impact of clamping
on the pressure waveform.

One drawback of the 1D model study is that we use a very reduced arterial network, com-
posed of only nine arteries. Though limited in size, we believe that the network contains the
minimal number of arteries needed to describe an average human body. Larger networks (like
in [126]) increase the costs, the complexity of the problem and require more sophisticated
methods to estimate the resistance boundary conditions, as there are more terminal vessels.
In our case, the values from the 0D model are a good starting point for the 9-artery model.
Future work will focus on developing an efficient identification technique for a large number
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of parameters of the 1D model which would constitute a major improvement of this line of
research.

The main drawback of the two models and the overall method is that we do not have ac-
cess to measured information on continuous heart flow rate. This variable can be calculated in
critically ill patients with an invasive central vein catheter using the thermodilution method
or during cardiovascular surgeries in high-risk patients with transesophageal echocardiogra-
phy using continuous-wave Doppler assessment. In this study, neither method was available.
Hence, the peak systolic pressure cannot be described in either model because the shape of
the model input heart signal (Figure 8.3b) is simplified compared to the physiological heart
signal. Moreover, the amplitude of the input flow rate Q0 cannot be estimated automatically
with the 0D model because its value is linked to pressure through the total resistance that we
estimated. Nonetheless, we show that the models can assess the change in Q0 with clamping
when assuming that the SV is constant. This change in the amplitude of the input flow rate
might be a consequence of our assumption of a constant SV. Due to the lack of measured
comparative data, we cannot verify this assumption, which is a limitation of our study. De-
spite this limitation, we feel that a constant SV is a safe assumption to make for at least
three reasons. First, there is no clear prior evidence in the literature that suggests other-
wise. Measured data on changes in SV during clamping are available from several small-sized
clinical observational studies in adult patients undergoing cardiovascular surgeries. However,
some data suggest that SV decreases [213, 215, 218], while others suggest that it stays the
same [211, 217, 219]. These inconsistent findings are possibly due to differences in loading
conditions, surgery techniques, and patient comorbidities [211]. A second reason to support
our assumption of a constant SV is that, since we are interested in studying only the im-
mediate impact of clamping, changes in SV during this short time frame, if any, could be
considered as non-significant. Finally, if there are any significant changes due to clamping
during this short time frame, they would involve a decrease, not an increase, in SV. However,
since our patients all have a preserved left ventricular ejection fraction (i.e. a healthy heart),
the systolic function of the left ventricle, and therefore the SV, is not expected to decrease
during clamping. For these three reasons, we believe that, in spite of the lack of measured
data, a constant SV is a safe assumption to make.

8.7 Conclusion

The objective of this work was to investigate the immediate impact of clamping and unclamp-
ing during vascular surgery, as it has not previously been explored with macroscopic blood
flow models. We compared invasive measurements of pressure in the right radial artery for a
cohort of 11 patients undergoing AAA repair or peripheral vascular surgery with the arterial
waveform analysis method and the 0D model. We then focused on one patient to study and
compare two numerical models (0D and 1D) to the invasive pressure measurements. Both the
0D and 1D model gave a different level of knowledge on the changes that occur immediately
after clamping. We developed an inverse method based on patient data to identify patient-
specific parameters using a three-element Windkessel 0D model for the systemic circulation.
We highlighted two main changes in the vascular properties of the systemic circulation af-
ter clamping: on one hand, the total resistance increased by 16% and the total compliance
decreased by 23% after clamping, and on the other hand, the total resistance decreased by
19% and the total compliance increased by 56% after unclamping. We showed that the esti-
mated values of the resistance and compliance minimized the difference between the measured
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pressure wave and simulated pressure wave. This model allowed determining resistance and
compliance, which are useful parameters for interpreting a patient’s hemodynamic condition
in a critical care scenario, and which cannot be measured non-invasively.

Then we used a 1D model and developed a second parameter estimation technique to
identify the values of the resistance boundary conditions. We observed that the numerical
clamping can predict and reproduce the morphology of the measured curve without changes
in peripheral resistances. On the contrary, heart function adjusted slightly under the action
of clamping. We assumed that the SV would not change before and after the clamping event
because the data acquisition was carried out in a very short time range. This assumption
led to a 10% decrease in the amplitude of the input flow rate during clamping due to an
increase in the heart period. Any automatic parameter identification method for problems
with a large number of parameters would represent an improvement to the present work.

Overall, this study offers evidence supporting the use of numerical models to assess phys-
iological quantities that cannot be easily measured by physicians (VC) or that can only be
measured invasively by a central vein catheter (MVR) under a steady-state. This information
on immediate changes in the vascular parameters could be useful for intra-operative patient
monitoring and for assessing vascular prosthesis safety, thereby adding valuable information
for decision-making in critical care scenarios.

Despite the fact that the estimation of the diastolic time-constant does not bring essential
information for peripheral vascular surgeries, the assessment of this parameter is commonly
used to study pulmonary hypertension [222–224]. It is indeed useful to explore its value in
subgroups of patients with different types of pulmonary hypertension, which is why we in-
vestigate it in the following Chapter.
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9 Pulmonary
Hypertension

Pulmonary hypertension is a complex pathology that involves multiple clinical
conditions and can complicate many forms of heart failure. We carry invasive pres-
sure measurements from the right heart and pulmonary vascular network in one
patient with heart failure using a Swan-Ganz catheter. We first study the Wind-
kessel model of the pulmonary vascular network to evaluate the patient-specific
hemodynamics involved in heart failure and pulmonary hypertension, which are
difficult to assess through routine clinical studies. We then develop a 0D valve
model to couple to the 1D blood flow model representing the pulmonary vascu-
lar network and compare the invasive pressure measurements with the numerical
predictions of the 1D model.

Keywords: pulmonary hypertension, Swan-Ganz catheter, one-dimensional model, valve
model.
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9.1 Introduction

Pulmonary hypertension is a complex pathology that involves multiple clinical conditions and
can complicate many cardiovascular and respiratory diseases [234]. Pulmonary hypertension
is a rare condition, with less than 50 cases per million people. However, the consequences of
the disease for those affected are often really severe.

Pulmonary hypertension is defined as an increase in mean pulmonary arterial pressure
over 25 mmHg at rest, assessed by right heart catheterization. Right catheterization is a
requirement for the diagnostic confirmation of pulmonary arterial hypertension and chronic
pulmonary hypertension due to pulmonary embolism. Some specific indicators assessed by
catheterization such as the pressure in the heart cavities, the transpulmonary pressure gra-
dient, or the Systolic Volume (SV) allow classifying patients with pulmonary hypertension
into various subgroups that have clinical and therapeutic relevance [235, 236]. For instance,
a subgroup of these patients presents pre-capillary pulmonary hypertension, defined by a
Left Atrium (LA) pressure above 15 mmHg and a pulmonary vascular resistance of 3 Wood
units (≈ 240 g·cm−4·s−2). This condition has a distinct clinical prognosis and therapeutic
management as a group [237] that differs from patients with thromboembolism for instance.

In order to assess these classifying parameters, we carry right heart catheterization using
Swan-Ganz catheter to record the pressure in several locations of the heart and pulmonary
network. Similarly to the previous chapter, numerical models of the pulmonary network can
provide information on important vascular features including compliance and resistance, given
hemodynamic data obtained during medical care such as pressure and flow measurements.
One of the conclusions of Chapter 8 was to apply the zero-dimensional (0D) Windkessel
model to the pulmonary vascular network and assess the resistance, compliance, and diastolic
time-constant [77]. These parameters could have relevance in the classification of pathologies
associated with pulmonary hypertension [222–224]. Therefore in this chapter, we use the
Windkessel model to estimate the resistances, compliance, and diastolic time-constant of
both the pulmonary vascular network and the entire vascular network based on the invasive
pressure measurements.

Besides evaluating vascular features such as resistance or compliance, the long-term goal
of this study is to evaluate the influence of different pathological conditions, for instance
high Left Atrium (LA) pressure or pulmonary embolism, on the pulmonary artery pressure.
We thus use a one-dimensional (1D) model of the pulmonary vascular system [71] which we
couple to a 0D valve model to represent the pulmonary valve [59].

The objective of this study is then to compare the numerical predictions of the 0D and 1D
models with the invasive data in the pulmonary vascular network. It brings insights on the
mechanical characteristics of the pulmonary circulation that cannot be calculated directly
with the usual invasive diagnostic methods. The models also provide an alternative method
for calculating relevant indicators such as the compliance whose measurement precision is
questioned.

The chapter is organized as follows: in Section 9.2, we detail the clinical protocol to carry
the Swan-Ganz catheter measurements and obtain other data. In Section 9.3, we briefly
describe the 0D Windkessel model (presented in detail in the previous chapter), the 1D
model, and the pulmonary valve model. In Section 9.4, we present the results of the 0D and
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1D models and compare them to the measured data. We summarize our results and give
perspectives in Section 9.5.

9.2 Swan-Ganz catheter measurements

The experimental data come from right heart catheterization, which is an invasive diag-
nostic procedure to evaluate the hemodynamic state of patients with heart failure and the
pulmonary vascular resistances of patients with pulmonary hypertension. This is a cross-
sectional, observational, and analytical study, with prospective data collection, carried at
the Cardiovascular Institute of Buenos Aires (ICBA) that seeks to characterize the vascular
mechanics of patients undergoing right catheterization. This data acquisition is carried in
parallel with routine medical monitoring, without causing any harm to it or changes in the
data.

To carry these measurements we use a fluid-filled Swan Ganz catheter connected to a
disposable pressure transducer (TruWave, Edwards LifeScience) with an analog-to-digital
converter with internal filters (low-pass frequency set to 20 kHz; high-pass frequency set to
0.05 Hz, MP150 BIOPAC Systems Inc.). The AcqKnowledge program records 20 to 40 beats
of the blood pressure signal at a frequency of 1000 Hz. From the pressure sequence, we choose
a stable set of beats that we average to obtain a mean beat that we use for comparison with
the numerical models described in Section 9.3.

Right heart catheterization consists of measuring the pressure from the right heart and
pulmonary vascular network in five locations: Right Ventricle (RV), proximal and distal pul-
monary arteries, Left Atrium (LA) and right radial artery, as shown in Figure 9.1. The
proximal pulmonary artery pressure is recorded in the main pulmonary artery, the distal
pulmonary artery pressure is in the third generation of the pulmonary tree. To measure the
pressure in the LA (measurement 4 in Figure 9.1), we inflate a balloon at the location of the
distal measurement and record the pressure after this balloon. As all these measurements are
not taken simultaneously, we use the Electrocardiogram (EKG) to synchronize the pressure
data. We also carry thermodilution to obtain the Cardiac Output (CO) which allows calcu-
lating the Systolic Volume (SV) [238]. Computed Tomography (CT) scans allow visualization
of the pulmonary vascular tree to obtain the length, proximal and distal diameters of each
vessel of the first three generations. We also collect velocity data from the right ventricle
outflow tract using two-dimensional transthoracic Doppler echocardiography [239,240].

This study enrolls patients undergoing right catheterization for medical indication of any
cause. Patients with clinical instability, who are under treatment with inotropics, those with
a blood pressure curve that makes the analysis of the diastolic time-constant impossible for
technical reasons, and those with an irregular ventricular rhythm are excluded.

We represent in Figure 9.2 the measured pressure in the 4 locations of the pulmonary
network of a 70-years old female patient with acute heart failure due to stress cardiomyopa-
thy, presenting with type 2 pulmonary hypertension owing to left heart disease (following
2008 Dana Point pulmonary hypertension classification [237]). The measurements are taken
in the intensive care unit (ICU) with the patient sedated, intubated, and under mechanical
ventilation and receiving inotropic agents (low-medium dose of milrinone).

175



1

5

4
3

2

Radial artery

RA

RV

SVC

PA

LPA

RPA

PV

LA

LV

Right heart Pulmonary tree Left heart

Figure 9.1 – Schematic representation of the heart cavities and the pulmonary vascular
network indicating the locations of the Swan-Ganz pressure measurements. Measurement 1
is in the Right Ventricle (RV) called PV , measurement 2 is in the proximal pulmonary artery
(PA), measurement 3 is in the distal pulmonary artery which is in the third generation of the
pulmonary tree, measurement 4 is at the same location as measurement 3 but with a balloon
occluding the artery corresponding to the Left Atrium (LA) pressure also called the wedge
pressure PW , measurement 5 is in the right radial artery.

Figure 9.2 – Swan-Ganz pressure measurements in the pulmonary network. ( ) corre-
sponds to the Right Ventricle (RV) pressure (measurement 1), ( ) corresponds to the Left
Atrium (LA), or wedge, pressure (measurement 4), ( ) corresponds to the proximal pul-
monary artery pressure (measurement 2), and ( ) corresponds to the distal pulmonary
artery pressure (measurement 3). ( ) corresponds to the opening of the valve and ( )
corresponds to the closing of the valve.
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From Figure 9.2, we identify the opening and closing of the valve when there is less than
1.5 mmHg of difference between the ventricle and proximal pulmonary artery pressure. We
obtain that the valve opens at t = 0.12 s and closes at t = 0.29 s. From this data, we can
identify pre-capillary pulmonary hypertension, as the wedge pressure is above 15 mmHg.

9.3 Model and methods

9.3.1 Zero-dimensional model

We use the same 0D Windkessel model as in Chapter 8 described in Equation (8.1) to model
(a) the entire systemic circulation and (b) the pulmonary circulation. For the entire systemic
circulation we set the pressure p(t) of Equation (8.1) as the right radial artery pressure.
For the pulmonary circulation, we consider that p(t) is the difference between the pulmonary
artery pressure PPA, either the proximal or distal, and the wedge pressure PW , as represented
in Figure 9.3.

In both cases we use the Basin Hopping algorithm combined to the L-BFGS-B gradient
descent described in Section 4.3 to estimate the vascular resistances and compliance based on
(a) the radial artery pressure (measurement 5 in Figure 9.1) and (b) the pulmonary artery
pressure (measurement 2 and 3 in Figure 9.1).

C

Rp RdQ(t)
PPA PW

p(t)

Figure 9.3 – Electrical representation of the 0DWindkessel model of the pulmonary vascular
network. The pressure p(t) is the difference between the pulmonary artery pressure PPA and
the wedge pressure PW . The pressure p(t) is linked to the flow rate Q(t) that models the
heart, through Equation (8.1) where Rp is the proximal resistance, Rd is the distal resistance,
and C is the compliance.

9.3.2 One-dimensional model

We use the 1D model of Equation (2.54) to represent the pulmonary vascular network [71]
described in Section 2.3.4. The network consists of three generations of 1D branches and
resistances at the end of the terminal vessels to account for capillary circulation, as shown in
Figure 9.4. We assume that all the peripheral resistances have the same value.
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Table 9.1 – Geometric and material properties of the pulmonary artery network model
taken from [71] and CT scans. L: length in cm, D0: reference diameter in cm, h: arterial wall
thickness cm, K: elastic coefficient of Equation (2.15) in g·cm−2·s−2, R: peripheral resistance
in g·cm−4·s−1.

N◦ Name L D0 h K R
1 Pulmonary Artery 4.5 2.6 0.1 6.94 · 104 —
2 Left Pulmonary Artery 3 2 0.1 9.03 · 104 —
3 Right Pulmonary Artery 5.2 2.25 0.1 8.02 · 104 —
4 Left Interlobular Artery 1.3 1.4 0.1 1.29 · 105 7.5 ·102

5 Left Trunk Artery 1.8 1.5 0.1 1.20 · 105 7.5 ·102

6 Right Trunk Artery 1.5 1.2 0.1 1.50 · 105 7.5 ·102

7 Right Interlobular Artery 1.5 1.1 0.1 1.64 · 105 7.5 ·102

The geometric properties, reported in Table 9.1, come from CT scan measurements. We
impose the elastic coefficient K of each vessel by assuming that the compliance Eh/R0 is
constant based on [71], and we fix it at 12·104 g·cm−1·s−2.

For the boundary conditions, we develop a valve model (detailed in the following section)
that we input as the inlet boundary condition. We impose the LA pressure, also called the
wedge pressure PW , as the outlet boundary condition.
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pout = PW
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Figure 9.4 – Pulmonary vascular network model. The inlet boundary condition is the RV
pressure PV , the outlet boundary conditions are the LA pressure PW . The properties of the
network are reported in Table 9.1.

9.3.3 Pulmonary valve model

We couple the 1D Equations (2.54) to a pulmonary valve model. The functioning of the valve
is the following: if the RV pressure is lower than the pressure in the first pulmonary artery,
then the valve is closed, otherwise it is open. When the valve is open, there is a continuity
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of pressure between the RV and the first pulmonary artery. This phenomenon translates into
the following:

if pin < p0 then
closed valve model

else
pin = PV ,

(9.1)

where pin is the RV pressure, i.e. the inlet boundary condition, and p0 is the pressure in the
first pulmonary artery.

We find different types of valve models in the literature. The valve is usually modeled
as a pressure drop linked to the flow rate with one or more of the three following parame-
ters that characterize the unsteadiness, the non-linearity, and the resistive behavior of the
valve [241–245]. Some similar valve models can also be coupled to an equation on the dynam-
ics of the valve opening as in [59].

Conceptually, the most straight forward model consists of imposing a zero flow when the
inlet pressure pin is lower than the pressure p0 in the first pulmonary artery. More precise
approaches consist of modeling the valve with a 0D model, similar to the one of Equation
(2.66). The simplest one is by assuming a resistive behavior of the valve as in most models of
the literature [59, 241–245], which gives the following model, similar to the one of Equation
(2.68)

RvQ = pin − p0 (9.2)

with Rv a coefficient characterizing the resistance of the valve. Depending on the value of
R, the valve is fully, partly, or completely closed, which we investigate in Section 9.4.2.
Other model of the literature also include an inertance to the valve model which leads to the
following

RvQ+ I
dQ
dt = pin − p0 (9.3)

with I the coefficient characterizing the inertance of the valve. The expression of this coeffi-
cient is ρleff/Aeff (Equation (2.67c)), where leff is the inertial length and Aeff the effective
area of the valve.

9.4 Result

9.4.1 Result of the zero-dimensional model

In the following, we show the result of the parameter estimation of the Windkessel model on
the right radial artery pressure and the pulmonary artery pressure.

Right radial artery pressure

We use the Windkessel model to estimate the two vascular resistances Rp and Rd as well
as the compliance C from the right radial artery pressure. We impose Q0 and Tej using in-
vasive measurements of the CO and SV from thermodilution.

179



Table 9.2 – Estimation of the total resistance and compliance from the radial artery pressure
using the Windkessel model of Equation (8.1). Rp: proximal resistance in g·cm−4·s−1, Rd:
distal resistance in g·cm−4·s−1, C: compliance in g−1·cm4·s2, τ : diastolic time-constant in s
Tej : ejection time in percentage of heart period, Tc: heart period in s, Q0: amplitude of the
input flow rate in cm3/s, Vs: Systolic Volume (SV) in cm3.

Model parameters Calculation Heart function
Rp Rd C τ Tej Tc Q0 Vs

165 1538 2.48·10−3 3.81 42 0.52 286 39

The results of the parameter estimation are reported in Table 9.2. We obtain similar
orders of magnitude for the resistances and compliance as found in the case of patients un-
dergoing aortic cross-clamping during vascular surgery (Tables 8.7 and C.2). We notice that
the diastolic time-constant of this patient is higher than the values found in patients under-
going vascular surgeries.

We observe in Figure 9.5 that the Windkessel model fits the radial artery pressure with
high accuracy (correlation coefficient R2 = 0.98). The agreement between the measured and
simulated pressure of a patient with pulmonary hypertension is satisfying, similarly to the
same comparison in the case of a patient undergoing aortic cross-clamping during vascular
surgery (Figures 8.7 and 8.12).
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Figure 9.5 – Comparison between measured and simulated pressure waves in the right radial
artery using the 0D model. (+) corresponds to the measured pressure wave, ( ) corresponds
to the simulated pressure waves solving Equation (8.1).

As mentioned previously, the interest of the Windkessel model is to obtain information
on importation vascular features that cannot be obtained otherwise. The measurement of
the radial artery pressure is minimally invasive and gives access to the total resistance and
compliance, provided a measurement of the CO which is invasive. These parameters can
be relevant indicators to follow up the evolution of the disease or can allow classifying the
pathologies related to pulmonary hypertension.
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For now, we only study one patient which prevents us from discriminating pathologies
according to the values of resistance, compliance, or diastolic time-constant. We also cannot
relate these values to medication or comorbidities. However, in the near future, we will enroll
more patients in this study. It will allow using the model to estimate important vascular
indicators and thus separate the effects of each disease on the resistance, compliance, and
diastolic time-constant.

Pulmonary artery pressure

We do the same process as in the previous section but based on the proximal and distal
pulmonary artery pressure. The parameter estimation process provides values of the pul-
monary vascular resistances Rp and Rd and compliance C.

In Table 9.3, we report the optimal values of resistances and compliance found with the
Windkessel model estimated from the proximal and distal pulmonary artery pressure. We
compare them to the measured values of resistance and compliance. The measured pulmonary
vascular resistance, corresponding to Rp + Rd in the model, is calculated by dividing the
transpulmonary pressure gradient by the CO [246]. The transpulmonary pressure gradient is
the difference between the mean pulmonary artery pressure PPAm and the wedge pressure
PW [235]. The mean pulmonary artery pressure is

PPAm = 1
3PPAs + 2

3PPAd
, (9.4)

where PPAm,s,d
stand for the mean, the systolic, and the diastolic pressure in the pulmonary

artery. The systolic pressure is the maximum and the diastolic is the minimum value of the
pressure over a cardiac cycle. The pulmonary vascular compliance is calculated by dividing
the SV by the difference between the systolic and diastolic pulmonary artery pressure.

We observe in Table 9.3 that the Windkessel model tends to overestimate the values of
resistances and compliance compared to the measured values. The proximal parameters are
overestimated by 30-40%, the distal parameters by 15-30%. The orders of magnitude remain
however really close. The pulmonary vascular resistance is a classifying parameter suggested
by the guidelines [238] and the 0D model can assess it.

We note that the diastolic time-constant of the pulmonary artery pressure is much smaller
than the one based on the radial artery pressure. We remind that the diastolic time-constant
cannot be directly deduced from the invasive data as τ = RdC and the measurements only
provide a value of the total resistance, i.e. Rp + Rd. The diastolic time-constant could be a
decisive indicator of the type of pulmonary hypertension of the patient, however, as we only
study one patient it is still difficult to relate this parameter to pathologies.

In Figure 9.6, we compare the Windkessel model to the proximal and distal pulmonary
artery pressure waves. For the proximal pulmonary artery pressure, the agreement between
the measured and simulated pressure waves is R2 = 0.94, for the distal pulmonary artery
pressure, it is R2 = 0.90, which are high correlation coefficients. However, qualitatively, the
fit is not satisfying. We observe that for both the proximal and distal pressure, the diastolic
portion of the pressure curve does not have an exponential-like morphology and thus cannot
be correctly fitted by the Windkessel model. Although it provides a satisfying estimation of
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Table 9.3 – Estimation of total resistance and compliance from the pulmonary artery pres-
sure using the Windkessel model of Equation (8.1). Rp: proximal resistance in g·cm−4·s−1,
Rd: distal resistance in g·cm−4·s−1, C: compliance in g−1·cm4·s2, τ : diastolic time-constant
in s Tej : ejection time in percentage of heart period, Tc: heart period in s, Q0: amplitude of
the input flow rate in cm3/s, Vs: Systolic Volume (SV) in cm3.

Model parameters Calculation Heart function
Rp Rd C τ Tej Tc Q0 Vs

Proximal Simulated 28 167 4.04·10−3 0.67 54 0.52 215 38.5
Measured 148 2.48·10−3 — — 0.52 — 38.2

Distal Simulated 26 227 3.09 ·10−3 0.7 58 0.52 205 39.5
Measured 219 2.13·10−3 — — 0.52 — 38.2

the vascular resistance and compliance, the 0D model is not appropriate for analyzing the
pressure curve in the pulmonary circulation. Therefore, we use a 1D model of the pulmonary
circulation and present the results in the following section.
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Figure 9.6 – Comparison between measured and simulated pressure waves in (a) the proxi-
mal pulmonary artery (R2 = 0.94) and (b) the distal pulmonary artery (R2 = 0.90) using the
0D model. (+) corresponds to the measured pressure wave, ( ) corresponds to the simulated
pressure wave solving Equation (8.1).

9.4.2 Results of the one-dimensional model

We present in the following the tests of the valve model, the comparison with the invasive
data, and investigate the influence of different parameters on the pulmonary artery pressure
signal.

Test of the valve model

We first verify that the valve model is valid. In Figure 9.7, we show the flow rate in the
first pulmonary artery for two values of the resistance Rv of Equation (9.2): a small Rv in
Figure 9.7a and a large R in Figure 9.7b. With a small resistance, we observe that there is a

182



backflow which means that the blood can go backward after crossing the valve, which is not
what happens physiologically. When the resistance is large, we notice that the flow is blocked
(Q = 0) and that the model actually prevents backflow, i.e. the flow rate is never negative.

We also show the pressure in the first pulmonary artery for the two values of the resistance.
We observe that with a small resistance (Figure 9.7c), the valve is always open because the
pulmonary artery pressure is actually the ventricle pressure PV . On the contrary, when the
resistance is large (Figure 9.7d), the pulmonary artery pressure is different from the ventricle
pressure which indicates that the valve indeed closes and opens. We conclude that with a
large resistance, our valve model behaves as expected.

(a) Rv = 10 (b) Rv = 104

(c) Rv = 10 (d) Rv = 104

Figure 9.7 – Simulated (a) and (b) flow rate, (c) and (d) pressure in the first pulmonary
artery to test the valve model of Equation (9.2). (a) and (c) Rv = 10 g·cm−4·s−1, and (b)
and (d) Rv = 104 g·cm−4·s−1.

To confirm that the valve model works, we plot the imposed pressure (the ventricle pres-
sure PV ) and the pulmonary artery pressure in Figure 9.8. When the valve is open, the
pulmonary pressure is supposed to match the ventricle pressure, which is the case for any
valve, in particular the aortic valve as represented in Figure 1.6. We indeed observe in Figure
9.8 that the pressure in the pulmonary artery is the pressure in the ventricle (see Figure 9.2)
when the valve is open which is when the flow rate is positive. We also recognize the dicrotic
notch right after the valve closes [11].
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Figure 9.8 – Flow rate (in red) and pressure (in blue) in the pulmonary network. ( )
corresponds to the measured ventricle pressure PV that is imposed as a boundary condition
before the valve, ( ) corresponds to the simulated pulmonary artery pressure in the first
pulmonary artery, ( ) corresponds to the simulated flow rate in the first pulmonary artery,
(N) corresponds to the opening of the valve, (N) corresponds to the closing of the valve.

Comparison with the invasive data

As the valve model of Equation (9.2) is valid, we now compare the predictions of the 1D
model to the invasive data presented in Section 9.2. In Figure 9.8, we can identify the time of
opening and closing of the valve and compare it to the measured times. With the 1D model,
the valve opens at t = 0.10 s and closes at t = 0.28 s. The model predicts a valve opening
and closing 0.01 s too early compared to the experimental estimation. The duration of the
ejection, which is the time when the valve is open, is however the same.

In Figure 9.9, we show the measured and the simulated flow rate in the first pulmonary
artery. The amplitude, the width, and the morphology of the measured and simulated flow
rate are truly similar. The peaks are not synchronized, and we recover that the model predicts
an early opening and closing compared to the measured data.

Finally, in Figures 9.10 we compare the measured and simulated pressure waves in the
proximal (Figure 9.10a) and the distal (Figure 9.10b) pulmonary arteries. We observe that
the amplitude and mean pressure of the simulated curve matches those of the measured curve
in the proximal pulmonary artery. However, the morphology of the two signals is very differ-
ent: the numerical prediction of the 1D model is smoother than the data. The reflections are
not accounted for accurately with the model.

In Figure 9.10b, we represent the distal pulmonary artery pressure and we notice that
neither the mean pressure nor the morphology of the pressure are correct. The reflections are
not reproduced accurately by the 1D model either, the simulated signal is smoother. For that
reason, the simulated distal resistance does not correspond to the measured distal resistance,
as reported in Table 9.4.
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Figure 9.9 – Comparison between the measured and the simulated flow rate in the first
pulmonary artery using the 1D model. ( ) corresponds to the measured flow rate with
Doppler echocardiography, ( ) corresponds to the simulated flow rate solving Equation
(2.54) in the network with the properties reported in Table 9.1.

(a) Proximal (b) Distal

Figure 9.10 – Comparison between measured and simulated pressure waves in (a) the
proximal pulmonary artery and (b) the distal pulmonary artery using the 1D model. (+)
corresponds to the measured pressure wave, ( ) corresponds to the simulated pressure
waves solving Equation (2.54) in the network with the properties reported in Table 9.1.

We also notice that the mean pressure does not change drastically between the proximal
(first pulmonary artery) and the distal pulmonary artery (third generation) compared to
the measurements. Previous studies however show that the tappering of the vessels plays an
important role in increasing the mean pressure of the distal pulmonary arteries [71, 247]. It
would thus be relevant to take it into account to improve the fit of the data by the 1D model.
Overall, the 1D model does not reproduce correctly the changes in pressure that occur in the
pulmonary network.

In Table 9.4, we compare the measured and simulated properties of the network. We note
that the proximal resistance fits perfectly the data, but the distal resistance, the CO, and
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Table 9.4 – Comparison between the simulated and measure properties of the pulmonary
network using the 1D model. Rp: proximal resistance in g·cm−4·s−1, Rd: distal resistance in
g·cm−4·s−1, CO: Cardiac Output in mL/min, Vs: Systolic Volume (SV) in cm3.

Rp Rd CO Vs

Simulated 152 156 3.31 28.8
Measured 148 219 4.4 38

the Systolic Volume are underestimated by the 1D model.

As we do not manage to fit the pulmonary artery pressure accurately, we try relaxing a
few parameters of the model. For instance, we account for the veins in the pulmonary tree,
however it does not improve the fit, neither in terms of morphology nor in terms of mean
pressure. We try decreasing the elastic coefficient K of the third generation which slightly
improves the fit of the data. We also relax the hypothesis that all the peripheral resistances
have the same value which also improves the fit of the pulmonary artery pressure. Consid-
ering the large amount of geometric, mechanical, physiological, or model parameters, it is
challenging to find the optimal combination to fit accurately the data.

Influence of different pathologies on the pulmonary artery pressure

Besides evaluating vascular features such as resistance, compliance, and diastolic time-
constant for patient-specific predictions, the long-term goal of this study is to explore the
influence of different pathological conditions on the pulmonary artery pressure. In Figure
9.11, we investigate the influence of LA pressure on the proximal (Figure 9.11a) and distal
(Figure 9.11b) pulmonary artery pressure as in [71].

An increase in LA pressure mainly changes the duration of the valve opening thus de-
creasing the SV. As can be expected, an increase in the wedge pressure leads to an increase in
the mean pressure in the proximal and distal pulmonary arteries. We note from Figure 9.11b
that PW also influences the reflections in the pulmonary vascular network as the morphology,
in particular the peak, of the pressure changes slightly with PW .

Some patients with pulmonary hypertension also present a high vascular resistance, which
we study in Figure 9.12. The increase in peripheral resistance also tends to reduce the du-
ration of the valve opening, the SV, and the mean pressure. It also changes the propagation
and reflections of the wave in the distal pulmonary artery (Figure 9.12b). We also note that,
unlike an increase in wedge pressure, an increase in peripheral resistance tends to change the
morphology of diastole as the reflections are modified.

These preliminary results show great potential for the 1D model to reproduce and pre-
dict the hemodynamics of the pulmonary vascular network, qualitatively and quantitatively.
Moreover, our results comply with previous studies [16,71,247].
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(a) Proximal (b) Distal

Figure 9.11 – Effect of LA pressure on the morphology of (a) the proximal and (b) the distal
pulmonary artery pressure. ( ) corresponds to PW = 5mmHg, ( ) to PW = 10mmHg,
( ) to PW = 15mmHg, and ( ) to PW = 20mmHg.

(a) Proximal (b) Distal

Figure 9.12 – Effect of peripheral resistance on the morphology of (a) the proximal and (b)
the distal pulmonary artery pressure. . ( ) corresponds to R = 5·102 g·cm−4·s−1, ( ) to
R = 1·103 g·cm−4·s−1, ( ) to R = 5·103 g·cm−4·s−1, and ( ) to R = 1·104 g·cm−4·s−1.

9.5 Conclusion

In Section 9.4.1, we showed that similarly to Chapter 8, the 0D Windkessel model was ap-
propriate to estimate the resistance, compliance, and diastolic time-constant based on the
radial artery pressure. We are currently lacking other data sets to compare and classify the
pathologies according to these parameters. We then used the proximal and distal pulmonary
artery pressure to estimate the pulmonary resistance and compliance and obtained a good
agreement with the measured values. However, the fit of the pulmonary artery pressure sig-
nals was qualitatively poor.

To summarize, the 0D Windkessel model provides values of the resistance, compliance,
and diastolic time-constant that are relevant indicators in the case of pulmonary hypertension
and that allow classifying patients. Nonetheless, this model does not predict and reproduce
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the morphology of the pressure signals in the pulmonary tree.

In Section 9.4.2, we used the 1D model coupled to a simple resistive pulmonary valve
model. We first tested this valve model and showed it behaved as expected when the resis-
tance of the valve model was large. Once the valve model was validated, we compared the
simulated and measured data in the pulmonary network. The 1D model predicted that the
valve opened too early compared to the data but we obtained the same duration of ejection
(valve open). Despite this delay, the morphology and amplitude of the simulated flow rate in
the pulmonary network was really accurate. On the contrary, the prediction of the pressure
in the pulmonary arteries did not give a good agreement with the measured data.

The final goal of this study is to evaluate the impact of different pathologies on the pres-
sure signal in the pulmonary vascular network. Therefore, we studied the influence of high LA
pressure and high peripheral resistance. Overall, our preliminary results of the 1D model show
a great potential to reproduce and predict the mechanics involved in pulmonary hypertension.

As we do not have data or orders of magnitude of every single parameter of the model,
we had to make some assumptions. In particular, we assumed that the quantity Eh/R0 was
constant, that the thickness h was the same in all vessels, that the peripheral resistances
had the same values etc. We also assumed that the vessels were straight when other studies
showed that the tappering was important in the pulmonary vascular network. All these hy-
potheses can be questioned and thus represent limitations to our study. However, we showed
that some parameters were improving the fit of the pulmonary artery pressure such as the
elastic coefficient K or the peripheral resistances.

This is an on-going study and we only presented preliminary results. We expect to enroll
patients in the near future to attain the final goal. A large database would allow us to evaluate
the resistance, compliance, and diastolic time-constant of the systemic and pulmonary vascu-
lar networks in subgroups of patients non-invasively thanks to the numerical models. We could
also explore the impact of specific pathologies on the pressure waveforms using the 1D model.

In this chapter, we presented real invasive data from the heart cavities (RV and LA) that
provided precise information on the flow and pressure in the heart. It could allow building a
0D heart model as in [14] that we could couple to the 1D model. The data could bring values
of the parameters of the heart model with a parameter estimation method. The difficulty
would be to obtain data from a patient that does not have heart failure or whose heart is not
affected by pulmonary hypertension. Thus the estimated values of the 0D heart model could
be applied in non-pathological scenarios or in cases where the pathology does not come from
the heart.
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10 Conclusion

10.1 General conclusions

This thesis deals with the mathematical modeling and numerical resolution of blood flow in
the large arteries. Proposed as predictive tools, blood flow models need to be computed in
real medical time therefore we used reduced-order models. Reduced-order models have the
advantage of being good compromises between accuracy and computational cost.

The first part consists of the modeling and methodological aspects of the thesis. We de-
rived step by step four reduced-order models in Chapter 2 based on a series of assumptions
on the flow symmetries, the rheological properties of blood and the arterial wall, and the
geometry of the arteries. We characterized the behavior of the arterial wall with two state
laws using a linear approximation. We detailed the simplifications from the full incompress-
ible Navier-Stokes equations to obtain a simplified two-dimensional (2D) model called the
Reduced Navier-Stokes Prandtl (RNSP) model solved in steady condition with a rigid wall
(steady RNSP model) or in unsteady condition with an elastic wall (Multi-Ring model). We
then derived the one-dimensional (1D) model from the previous one and highlighted some
properties of the system such as the wave propagation. Finally, we simplified the previous 1D
model into the zero-dimensional (0D) model.

In Chapter 3, we improved the description of the arterial wall by rigorously deriving three
polynomial hyperelastic models, as arterial wall mechanics is known to play a crucial in blood
flow modeling. This approach allowed considering large deformations of the arterial wall that
cannot be correctly captured by the linear model. We combined these hyperelastic laws to
the 1D model and showed that the hyperelastic models smoothed the shock created by large
deformations of the arterial tissue. This approach could be pertinent in the study of precise
arterial pathologies or in veins however, experimental data was lacking to test in vivo the
accuracy of the hyperelastic models.

The numerical models need to be solved with accurate resolution schemes to be used as
predictive tools, which we presented in Chapter 4. The objective of this thesis was to study
the previous reduced-order models in different medical scenarios and compare them against
real invasive data from routine clinical procedures. The models can give access to vascular
indicators and the pressure and flow mapping provided optimization methods that identify
the model and physical parameters. We used this technique frequently in the application part
(Part II) of the thesis and therefore reviewed and detailed a few optimization techniques used
to estimate model parameters based on invasive data to make patient-specific predictions.

As stated above, all the models come from simplifications of the Navier-Stokes equations,
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testing the hypotheses is crucial, which we did against analytic solutions from the literature
for the steady RNSP and the Multi-ring model. Thanks to our collaboration with Pr. Mami
Matsukawa and her students Hiroto Shimizu and Fumiaki Iwase from Doshisha University in
Japan, we were able to compare the reduced-order models to experimental measurements in
artificial arteries. The first configuration was a network of artificial arteries made from sili-
con tubes in which we studied clamping. Qualitatively, the numerical predictions of the 1D
model were satisfying. The second experiment consisted of measuring the flow velocity with
Particle Image Velocimetry (PIV) and comparing the center-line velocity with the Multi-
Ring and 1D models. Again, we obtained a satisfying agreement between the models and
the measurements. The validity of the model’s hypotheses was assessed in multiple different
configurations, analytic or experimental.

The second part deals with the biomedical applications and was carried thanks to many
collaborations with physicians, each bringing us a problematic of their everyday clinical prac-
tice. In particular, we collaborated with Dr. Maria Teresa Politi (Facultad de Medicina,
Buenos Aires, Argentina), Dr. Juan Fernandez (British Hospital, Buenos Aires, Argentina)
as part of the ECOS-Sud project between France and Argentina. We also worked with Dr.
Julien Gaudric (Hôpital la Pitié Salpétrière, Paris, France), Dr. Salam Abou Taam (Hôpi-
tal Privé Claude Galien, Quincy-sous-Sénart, France), and Dr. Francesca Raimondi (Hôpital
Necker, Paris, France), which led us to study a variety of pathological conditions.

We addressed in Chapter 6 the clinical issue of the pressure drop in vascular stenoses.
The pressure drop in this situation is a crucial indicator to determine the treatment strategy
however the only way to measure it is by catheterization which is really invasive. The goal
was therefore to assess the pressure drop across a stenosis using non-invasive patient data
from 4D flow MRI with a hierarchy of models from 0D to 2D. We used all the models devel-
oped in Chapter 2 to study the influence of a stenosis on the flow, and compared them with
invasive catheterization data. We found that the Multi-Ring model was the most accurate
to reproduce the pressure drop, the 1D model gave a satisfying agreement for mild stenoses.
Finally, as the current 0D model was inaccurate, we estimated the empirical coefficients of
this model to provide an immediate computation of the pressure drop based on geometric
and rheological parameters that can be easily obtained from 4D flow MRI.

Then, we investigated the impact of the Arterio-Venous Fistula (AVF) in Chapter 7, a
connection between a vein and an artery to speed up the blood filtration process for kidney
failure patients. We considered two reduced-order models, a 0D network model composed
of resistors and a 1D model. We identified that the capillary resistance in both models was
a decisive parameter that prevented from finding an optimal configuration for the fistula.
We showed that the 0D model was able to reproduce and predict the flow distribution in
the AVF in different pathological configurations given easily obtained non-invasive geometric
data. Finally, we explored the distribution of flow when a venous stenosis develops in the
AVF with the 1D model.

Then, we explored the immediate impact of aortic cross-clamping and unclamping dur-
ing vascular surgery (Chapter 8), as it is a common procedure in stenoses repair surgeries
for instance. We used a 0D model, a 1D model, and arterial waveform analysis to compare
to invasive pressure data obtained during surgeries. With an optimization method and the
0D model, we showed that the total resistance was systematically increasing after clamping
and decreasing after unclamping, the total compliance was decreasing after clamping and
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increasing after unclamping, which we assessed quantitatively and in a very short time frame
after clamping/unclamping. We calculated the diastolic-time constant with arterial waveform
analysis and the 0D model and obtained a high agreement between both methods. We high-
lighted a decrease after clamping and an increase after unclamping, this result might not
be relevant in the case of clamping but might be a decisive indicator in other pathologies.
Finally, we showed that both the 0D and 1D model reproduced the measured pressure waves
with high accuracy.

The method of the diastolic time-constant used in Chapter 8 led us to study pathologies
related to pulmonary hypertension in Chapter 9. We modeled the pulmonary network with
the same 0D model as the previous chapter, and a 1D model coupled to a valve. We showed
that the 0D model predicted the values of resistance and compliance of the pulmonary net-
work by comparing them with invasive measurements. However, unlike the previous chapter,
the 0D model did not give a good agreement with the pressure wave measured in the pul-
monary arteries in terms of morphology and reflections. We thus used a 1D model coupled
to a valve model that reproduced accurately the behavior of the pulmonary valve. We com-
pared the numerical prediction of the 1D model to the invasive data which did not give a
good agreement. Finally, we studied the influence of different conditions associated with pul-
monary hypertension such as the increase in Left Atrium (LA) pressure or pulmonary vascular
resistance. The preliminary results showed great potential for the model to study the influ-
ence of pathological conditions on the pressure waveforms in the pulmonary vascular network.

All of these findings have their limitations, as any modeling approach by definition, de-
tailed at the end of each chapter. However all of the comparisons with measured data in
patients, in real clinical scenarios gave good hopes that reduced-order models could be pre-
dictive and decision-making tools to improve the medical diagnosis.

There are multiple perspectives for the work presented in this thesis as the study of CVDs
is still a wide and open subject. We divided them into two categories: the short-term per-
spectives that can be achieved in relatively quickly, and the long-term perspectives that are
either not pressing issues or time-consuming.

10.2 Short-term perspectives

The work presented in this thesis essentially deals with the application of blood flow models
to different medical scenarios. Two fundamental tools are currently missing in our models
to complete the description and understanding of the cardiovascular system. The first one
is a heart model. Most heart models found in the literature that are coupled to circulation
models are 0D as they require minimum computational power. This first perspective would
be in our opinion, the easiest to implement. In Chapter 3, we presented real invasive data
from the heart cavities (RV and LA) of patients with different degrees of diseases giving us
access to precise information on the flow and pressure in the heart. This data could provide
values of the parameters of the 0D model using a simple parameter estimation method. The
difficulty is usually to obtain data from healthy-ish patients such that the values of the 0D
heart model can be applied in non-pathological scenarios or in cases where the pathology
does not come from the heart. For instance, patients who have a heart transplant, or who
have a non-severe form of pulmonary hypertension can be considered as the reference. We
expect to have a large database for the study of pulmonary hypertension including the latter
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type of patients which would allow developing a 0D heart model.

The cardiovascular system is a closed-loop circuit and thus modeling only the arterial
part is insufficient. It is essential to model the venous circulation which is the second funda-
mental tool to add to our models. As described in Chapter 1, the venous system differs in
many aspects from the arterial one. In particular, the pressure and flow regime and the wall
rheology are different. Although it is a good first approximation, the venous system cannot
be modeled as simply as an arterial model with a different elastic coefficient. The presence of
valves and the absence of pulsatility are important parameters to account in models of the
venous circulation.

All the medical scenarios we studied in this thesis (arterial stenoses, Arterio-Venous Fis-
tula, aortic cross-clamping, and pulmonary hypertension) could benefit from a complete de-
scription of the cardiovascular system. However, a very precise model requires a large number
of parameters that cannot necessarily be measured. It brings us to the third short-term per-
spective which is the development of an efficient parameter algorithm. As described in Chap-
ter 4, parameter estimation methods allow making patient-specific predictions which are in
the end the goal of reduced-order blood flow modeling. It also provides relevant indicators
helping in the medical follow-up of a disease. Kálmán Filter, whether it is the ensemble or
unscented version, is currently the most used and relevant approach for parameter estimation
of reduced-order models such as the 0D and 1D models. In Appendix A, we started developing
the Ensemble Kálmán Filter approach but did not manage to test it on more complex models.

This thesis resulted from numerous interactions with physicians. We only studied an
extremely small part of cardiovascular pathologies and surgeries. Of course, many other con-
ditions could benefit from reduced-order modeling to deepen the understanding of the hemo-
dynamics involved. The collaborations with physicians should, therefore, be pursued as they
bring us their knowledge on physiology, and provide real data from patients. The interactions
could thus extend other medical scenarios or even fields of medicine to provide the advantage
of reduced-order models.

10.3 Long-term perspectives

Besides a closed-loop model, the 1D approach could benefit other types of improvements such
as a non-newtonian rheological law for blood. Accounting for the transport of drugs in the
vessels is also an active and interesting field of research in order to determine the optimal
point of drug injection to reach a specific target. This could potentially reduce the necessary
doses of antibiotics for instance and thus limit the resistance of bacteria. Growth and remod-
eling models are also meaningful as theses processes are involved in many scenarios such as
the development of Arterio-Venous Fistulas for instance.

We believe that the future of blood flow modeling for medical diagnosis does not rely on
a full-body 3D model as in [39] that is computationally expensive and gives rise to many
numerical difficulties. Even though we can expect the 3D models to become more efficient
in the near future, clinicians are usually interested in small regions of the arterial network
which do not typically require a 3D detailed flow mapping. The relevant strategy would be a
multi-scale adaptation technique of the reduced-order models that would increase the model
refinement depending on the studied medical scenario. For instance, studying an Abdominal
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Aortic Aneurysm would require a precise description of the flow and topology in and around
the aneurysm with a 3D approach, the rest of the arterial circulation would be modeled with
the 1D approach, and the less important parameters involved in AAA such as organs, veins,
pulmonary circulation would be described by 0D models. This adaptation strategy would
provide an efficient and accurate tool for physicians in a variety of clinical scenarios.

Other perspectives involve technical improvements such as implementing the Multi-Ring
model into a network, parallelizing the code, making it open source and user-friendly in order
to make it a real diagnosis and decision-helping tool for physicians.

In the very long term, a full-body model should be developed that would include all the
previous tools but also a description of the different organs and other tissues, the interaction
with the respiratory system, the chemical and biological exchanges between the tissues, etc.
However, this global human model raises many technical and modeling difficulties, computa-
tional resources, and also raises the problem of parameter estimation that must be resolved
before reaching this colossal objective.
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A Kálmán Filter

A.1 Introduction

As mentioned in Chapter 4, filtering approaches such as Kálmán filters are often used for
data assimilation to estimate parameters from incomplete or noisy data sets. It is a common
strategy for data assimilation and parameter estimation to study blood flow models and in
particular 0D models [140, 141], 1D models [126, 127, 142], 3D FSI models [143, 144, 248].
Most studies that use Kálmán filters try to retrieve the elastic properties of the arterial ves-
sels [126,144] or the values of terminal boundary condition coefficients [56,125] from synthetic
data to prove its interest in real medical scenarios.

Kálmán filter methods are usually classified as either Unscented Kálmán Filter (UKF),
Reduced Order Unscented Kálmán filter (ROUKF) or Ensemble Kálmán Filter (EnKF). In
this appendix, we are interested in the Ensemble Kálmán Filter method. We first derive the
algorithm in Section A.2, apply it to the damped harmonic oscillator equation and briefly
discuss the results and drawbacks of the method in Section A.3.

A.2 Algorithm

In this Section, we derive the Ensemble Kálmán filter algorithm. We assume that the system
can be written in the form

xk+1 = f(xk,uk) + wk (A.1)

with xk ∈ Rn the model state vector at time tk, uk ∈ Rm the set of model parameters, m the
number of model parameters and wk ∈ Rn the model error. The observations are linked to
the model state through

yk = h(xk) + vk (A.2)

with yk ∈ Rnobs the observations at time tk, nobs the number of observations and vk ∈ Rnobs
the observations error. The errors wk and vk are assumed to be uncorrelated Gaussian model
errors with Qk and Rk the model and observation error covariance matrices, respectively. We
generate a set of realization of the model state of size qens as Xf

k = (xf1
k , ...,x

fqens
k ) ∈ Rn×qens .

We define the mean of the model state on the ensemble xfk ∈ Rn as

xfk = 1
qens

qens∑
i=0

xfi
k . (A.3)
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We define the Kálmán gain as

Kk = Pf
xyk

(
Pf
yyk

)−1
(A.4)

with the covariance matrices

Pf
xyk

= 1
qens − 1

qens∑
i=0

[
xfi
k − xfk

] [
h(xfi

k )− h(xfk)
]T
, (A.5)

Pf
yyk

= 1
qens − 1

qens∑
i=0

[
h(xfi

k )− h(xfk)
] [
h(xfi

k )− h(xfk)
]T

+ Rk, (A.6)

where

h(xfk) = 1
qens

qens∑
i=0

h(xfi
k ). (A.7)

Finally, we update the model state as

xai
k = xfi

k + Kk

(
yik − h(xfi

k )
)

for i = 1, ..., qens. (A.8)

A.3 Application to parameter estimation

In this Section A.2, we choose to study the simple second-order differential equation of
damped harmonic oscillator

d2y

dt2 + k
dy
dt + ω2y = 0 (A.9)

with y the position, k the attenuation and ω the frequency. We use x = dy
dt to obtain the

following discretized system

xn+1 = (1− k∆t)xn − ω2∆tyn,
yn+1 = yn + ∆txn.

(A.10a)
(A.10b)

We write the system in the following form

xk+1 = Fxk, (A.11)

with the vector x containing the model states and the parameters we seek to estimate

x =


x

y

k

ω2

 (A.12)

and

F =


1− k∆t −ω2∆t 0 0

∆t 1 0 0
0 0 1 0
0 0 0 1

 . (A.13)
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We choose nobs = 1 and generate a synthetic observation using the model with know
values of the model parameters to estimate, the goal is to retrieve these values. We create
the observation data set with k0 = 0.05 s−2 and ω2

0 = 1.5 s−2 and solve the system (A.11)
with a time step ∆t = 5·10−2 s.

In Figures A.1, we present the estimated values of k and ω2 compared to the target
values. We show the values of the two parameters starting from the targeted parameters
k0 = 0.05 s−2 and ω2

0 = 1.5 s−2 in black, and starting from k = 0.04 s−2 and ω2 = 2 s−2

in blue. On one hand, we observe that starting from the accurate estimation of parameters
allows the algorithm to find the solution faster. On the other hand, we observe that the al-
gorithm does not manage to find the target values of the parameters after 4000 time steps if
the initial estimate is far from the target.

In Figure A.2a, we show the comparison between the velocity x estimated with the Kálmán
filter algorithm and the velocity computed with the model with the initial set of parameters
k0 and ω2

0 . In Figure A.2b, we plot the Root Mean Squared Error (RMSE) as a function
of time. We observe in Figure A.2a that after 2000 time steps the estimated state fits the
model. We also notice that the RMSE error decreases to 0 with time.

A.4 Conclusion
In this appendix we only tested the Ensemble Kálmán Filter in a really simple configuration,
applying it to the damped harmonic oscillator equation. Nonetheless, the Kálmán Filter as
a parameter estimation method gave satisfying results. The main drawback was that the
algorithm necessitated an initial estimate close to the target values, a large ensemble and a
long simulation to find the optima.

Combining this optimization method with the 1D model however constitutes an important
perspective of the present work as mentioned in the conclusion chapter 10.
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Figure A.1 – Mean estimation on the ensemble of the model parameters (a) k and (b) ω
as a function of time using the Ensemble Kálmán Filter algorithm with qens = 200. ( )
corresponds to the estimation of the parameters starting from the target values k = 0.05 s−1

and ω = 1.5 s−2. ( ) corresponds to the estimation of the starting from k = 0.04 s−1 and
ω = 2 s−2. ( ) corresponds to the target values.
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B PIV velocity
profiles

The experimental work was carried as part of a collaboration between the Institut Jean le
Rond d’Alembert of Sorbonne Université in Paris (France) and the Laboratory of Electronics
and Ultrasounds of Doshisha University in Kyoto (Japan).

B.1 Introduction

In Chapter 5 we presented a comparison of the Multi-Ring and 1D models against Particle
Image Velocimetry (PIV) measurements in an artificial artery in which we placed a stenosis,
i.e. a constriction in the tube. We compared the center velocity data with the models which
gave a good agreement. We show here the full velocity profiles at the entry, at the neck, and
at the exit of the stenosis measured with PIV and computed with the Multi-Ring model.

B.2 Results

We plot the velocity profiles measured with the PIV set-up, as described in Section 5.3.4, at
the entry (Figure B.1), at the neck (Figure B.2), and at the exit (Figure B.3) of the stenosis
at different times.

In Figure B.1, we compare the velocity profile measured with PIV with the velocity pro-
file computed with the Multi-Ring model. We first observe similar order of magnitudes, and
similar patterns, in particular at t = 0.2 s. Overall, the agreement between the measured
and the computed data is not satisfying at all. Similar conclusions can be drawn from Figure
B.3, the only similarities is at t = 0.2 s. We believe that the agreement between the Multi-
Ring model and the PIV measurements would be a lot higher if the time resolution was
better. Indeed, the slope of the velocity (Figure B.1a for instance) is really high and thus a
small delay between the Multi-Ring profile and the PIV profile could lead to large differences.

In Figure B.2, we only plot the measured velocity profile, as the agreement with is very
poor and thus irrelevant. We notice several similarities between the velocity profiles measure-
ment with PIV and computed with the steady RNSP and Multi-Ring models under steady
flow in Chapter 6 (Section 6.4). We recover here the flattening of the profile at the neck of
the stenosis as in Figures 6.5d and 6.5e and the presence of a jet at the exit of the stenosis
as in Figures 6.5f and 6.5g.

Overall, we observe that the profiles are not symmetric with respect to the center-line
r = 0, especially at the exit of the stenosis. If the particles are not sufficiently small or have
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a higher density than the fluid they cannot be considered as tracers because they influence
the fluid dynamics and thus the velocity measurement, which could be an explanation for the
asymmetric velocity profiles.

B.3 Conclusion
We noticed that the velocity profiles measured with PIV were not symmetric, which would
be expected considering the configuration. The comparison with the Multi-Ring model does
not provide a good agreement as the model is by definition symmetric. A problem of syn-
chronization of the model and data could lead to great differences in the velocity profiles at
the slope of the velocity is high. We however recover some similarities with the profile in a
stenosis in steady condition, found in Chapter 6.
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Figure B.1 – Velocity (a) at the center-line and (b)-(f) profiles for different times at the
entry of the stenosis measured with PIV. (b) corresponds to t = 0.1 s (•), (c) corresponds to
t = 0.2 s (•), (d) corresponds to t = 0.3 s (•), (e) corresponds to t = 0.4 s (•), (f) corresponds
to t = 0.5 s (•). (4) correspond to the Multi-Ring model and (•) to the PIV measurements.
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Figure B.2 – Velocity (a) at the center-line and (b)-(f) profiles for different times at the
neck of the stenosis measured with PIV. (b) corresponds to t = 0.1 s (•), (c) corresponds to
t = 0.2 s (•), (d) corresponds to t = 0.3 s (•), (e) corresponds to t = 0.4 s (•), (f) corresponds
to t = 0.5 s (•).
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Figure B.3 – Velocity (a) at the center-line and (b)-(f) profiles for different times at the
exit of the stenosis measured with PIV. (b) corresponds to t = 0.1 s (•), (c) corresponds to
t = 0.2 s (•), (d) corresponds to t = 0.3 s (•), (e) corresponds to t = 0.4 s (•), (f) corresponds
to t = 0.5 s (•). (4) correspond to the Multi-Ring model and (•) to the PIV measurements.
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C
Statistical analysis
and results of aortic
cross-clamping

We report in Table C.1 the statistical analysis of the pre- and post-clamp and unclamp pres-
sure waves with the arterial waveform analysis method for each patient described in Section
8.3.

We report in Table C.2 the estimated 0D model parameters for the pre- and post-clamp
and unclamp configurations for each patient described in Section 8.4.

Table C.1 – Detailed statistical analysis of the median time-constant (τ) of individual
beats from an interval before (Pre τ) and after (Post τ) aortic clamping and unclamping
in patients undergoing vascular surgery. IQR: interquartile range, % difference: perce ntage
difference between time-constant values before and after clamping/ unclamping. Wilcoxon
signed-rank test is used to compare the median values of the time-constant (τ) before and
after clamping (or unclamping).

Clamp Pre τ IQR Post τ IQR % difference p
1 1.83 1.96 -1.74 1.75 1.83 -1.66 -4.37 0.0422
2 1.52 1.61-1.44 1.48 1.39 -1.55 -2.63 0.0002
3 2.08 2.22-1.97 1.88 2.09 -1.78 -9.62 0.0024
4 2.22 2.64-1.93 2.02 2.21-1.85 -9.01 <0.0003
5 2.36 4.29-1.68 1.79 2.42-1.47 -24.15 <0.0001
6 1.50 1.57-1.45 1.26 1.40-1.18 -16 <0.0001
7 2.50 2.74-2.31 1.70 1.82-1.63 -32 <0.0001
8 1.54 1.66-1.47 1.28 1.37-1.23 -16.88 <0.0001
9 2.15 2.33-1.85 1.99 2.12-1.83 -7.44 0.0448
10 2.12 2.28-2.06 1.91 2.02-1.83 -9.91 0.0327
11 2.4 2.78-2.17 1.82 1.74-1.95 -24.17 0.0001

Unclamp Pre τ IQR Post τ IQR % difference p
1 1.75 1.81-1.68 1.83 1.95-1.74 4.57 0.0396
2 1.44 1.76-1.38 1.78 1.99-1.68 23.61 <0.0001
3 1.88 1.96-1.81 2.26 2.40-2.14 20.21 0.0001
4 1.77 1.87-1.63 1.90 2.04-1.75 7.34 0.0042
5 1.86 2.03-1.70 2.06 2.24-1.96 10.75 0.0112
6 1.95 2.01-1.87 2.13 2.24-2.00 9.01 <0.0001
7 1.70 1.79-1.65 1.83 1.89-1.71 7.47 0.0184
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8 1.37 1.47-1.30 1.66 1.89-1.35 21.19 <0.0001
9 1.99 2.20-1.88 2.32 2.50-2.04 16.62 0.0021
10 2.14 2.21-2.02 3.82 5.02-2.80 78.07 <0.0001
11 2.26 2.34-2.18 2.67 2.83-2.58 18.09 <0.0001

Table C.2 – Estimated parameters using the Windkessel model of Equation (8.1) for all
patients in the four configurations. Rp: proximal resistance in g·cm−4·s−1, Rd: distal resistance
in g·cm−4·s−1, C: compliance in 10−3 g−1·cm4·s2, Tej : ejection time in percentage of the heart
period, Tc: heart period in s, Q0: amplitude of flow rate in cm3/s, Vs: Systolic Volume (SV)
in cm3.

Model parameters Calculation Heart function
Rp Rd C τ Tej T Q0 Vs

Patient 1

Pre-clamp 204.7 1240.1 1.29 1.605 31.7 1.15 375 87.1
Post-clamp 260.1 1313.2 1.04 1.36 32.1 1.283 340 89
Pre-unclamp 260.2 1313.2 1.04 1.36 32.1 1.283 340 89
Post-unclamp 183.6 1106.3 1.47 1.625 31.8 1.107 395 88.6

Patient 2

Pre-clamp 149.1 1158.2 1.236 1.431 33.9 1.038 410 92
Post-clamp 182.2 1130.9 1.248 1.41 34.6 1.04 410 93.9
Pre-unclamp 158.1 1070.7 1.285 1.376 31.8 1.066 430 92.9
Post-unclamp 129.9 839.6 1.908 1.602 31.8 1.074 430 93.5
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Pre-clamp 170.9 1114.5 2.164 2.412 43.4 0.696 350 67.4
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Pre-unclamp 157.6 1146.4 2.194 2.513 41.8 0.688 370 67.7
Post-unclamp 141 1082.9 2.499 2.705 41.4 0.675 380 67.6

Patient 7

Pre-clamp 47.5 911.5 3.186 2.903 25 0.822 550 72
Post-clamp 161.5 1206 1.804 2.822 41.9 0.704 380 71.3
Pre-unclamp 50.2 978.6 1.804 1.765 24.5 0.702 640 70.2
Post-unclamp 55.8 845.1 2.616 2.211 27.9 0.669 610 72.5

Patient 8

Pre-clamp 172.1 1116.3 2.458 2.743 46.6 0.65 380 73.2
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Post-clamp 272.4 1284.5 1.424 54 0.679 315 73.6
Pre-unclamp 180.3 1147.5 1.676 1.923 53.2 0.67 325 73.8
Post-unclamp 95.7 632.3 3.689 2.332 47.9 0.54 445 73.3
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Post-unclamp 116.8 934.1 2.818 2.633 42.9 0.684 390 72.8

Patient 10

Pre-clamp 93.2 1472.8 1.442 2.123 37.9 0.916 390 86.3
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Pre-clamp 24.4 1070.9 2.801 3 20.9 0.71 900 85
Post-clamp 154.6 1170.3 2.019 2.362 46.5 0.73 400 86.5
Pre-unclamp 106 1140.3 2.569 2.929 42.7 0.707 450 86.6
Post-unclamp 65.5 795.5 5.044 4.012 39.7 0.698 490 86.5
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