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C’era una volta.... 
— Un re! — diranno subito i miei piccoli lettori. 

— No, ragazzi, avete sbagliato. C’era una volta un pezzo di legno. 

Il était une fois.... 
- Un roi ! - diront immédiatement mes petits lecteurs. 

- Non, les enfants, vous vous trompez. Il était une fois un morceau de bois.

Once upon a time, there was.... 
- A king! - my little readers will immediately say. 

- No, kids, you are mistaken. Once upon a time, there was a piece of wood.

Carlo Collodi, le avventure di Pinocchio 
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Abstract

Perennial plant dieback is an increasing and complex phenomenon. Perennial plants experience 
many interacting stressing events leading to final plant mortality. These interactions, and how 
they may change regarding climatic conditions and plant physiological status, are key in under-
standing the dieback process. Although dieback events are increasing worldwide, the knowl-
edge on the dieback mechanisms are scarce, given the many technical challenges in studying 
complex interactions. In this thesis, we studied the interaction between two stresses frequently 
experienced by grapevines, one of the most important perennial crops: drought and esca (a 
vascular disease). Esca is a disease in which there are many competing hypotheses regarding 
its pathogenesis. One of the main hypothesis is that leaf symptoms and plant death are caused 
by hydraulic failure in xylem vessels. For this reason, drought is thought to contribute syner-
gistically with esca to grapevine dieback. In this context, this thesis has primarily explored the 
hydraulic failure hypothesis during esca pathogenesis. We found that during leaf symptom ex-
pression both leaves and stems suffer from hydraulic failure causing (on average) 69% loss of 
hydraulic conductance in midribs, 55% in petioles, and 30% in stems. Differing from classical 
air embolism during drought, we observed that hydraulic failure during esca was caused by 
the presence of plant-derived vascular occlusions (i.e. tyloses and gels) produced at a distance 
from the pathogen niche in the trunk. After this discovering, we explored the interaction be-
tween esca and drought, subjecting naturally infected plants to drought. We found that drought 
totally inhibits esca leaf symptoms, as none of the plants under water deficit (at ΨPD ≈ -1MPa 
for three months) expressed leaf symptoms in two consecutive seasons. At the same time, in 
order to understand the interaction between esca and drought, we recorded the whole-plant 
water relations and carbon economy of grapevine under both stresses. We highlight the distinct 
physiology behind these two stresses, indicating that esca and drought present different under-
lying mechanisms, and induce different plant responses and physiological consequences. Esca 
(and subsequent stomatal conductance decline) does not result from decreases in water poten-
tial, and generates different gas exchange and non-structural carbohydrate seasonal dynamics 
compared to drought. Finally, we observed that esca affected the recorded plant physiology 
only seasonally, and not over the long-term. This thesis highlights the importance in finding the 
physiological thresholds triggering the different interactions during plant dieback. Together, 
the results open new scientific and agronomical perspectives on plant-pathogen-environment 
interactions and vineyard sustainability.
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Résumé

Au cours de leur vie les plantes pérennes sont confrontées à plusieurs stress en interaction qui 
les entrainent dans un processus de dépérissement. Ces interactions, et leurs changements par 
rapport aux conditions climatiques et à l’état physiologique de la plante, sont fondamentales 
pour la compréhension du processus de dépérissement. Malgré l’augmentation des évènements 
de dépérissement à l’échelle mondiale, les connaissances sur ces mécanismes restent limitées, 
étant données les difficultés techniques rencontrées dans l’étude des interactions complexes. 
Dans cette thèse nous avons étudié l’interaction entre deux stress fréquemment vécus par la 
vigne : la sècheresse et une maladie vasculaire, le mal d’esca. L’esca est une maladie qui sou-
lève plusieurs hypothèses sur sa pathogénèse. Une des principales hypothèses est que les symp-
tômes foliaires et la mort de ceps de vigne soient causés par un dysfonctionnement hydraulique 
dans les vaisseaux du xylème. Pour cette raison, la sècheresse pourrait contribuer en synergie 
avec l’esca au dépérissement de la vigne. Compte tenu de ce contexte, nous avons tout d’abord 
exploré l’hypothèse de dysfonctionnement hydraulique pendant la pathogenèse de l’esca. Nous 
avons mis en évidence que pendant l’expression des symptômes foliaires plusieurs organes 
sont atteints par un dysfonctionnement hydraulique qui cause en moyenne une perte de conduc-
tivité hydraulique de 69% sur les nervures centrales des feuilles, 55% sur les pétioles et 30% 
sur les tiges. Contrairement à l’embolie gazeuse classiquement observée pendant la sècheresse, 
le dysfonctionnement hydraulique pendant l’esca est causé par la présence d’occlusions vas-
culaires (thylloses et gels) produites par la plante. Après cette découverte, nous avons exploré 
l’interaction entre l’esca et la sècheresse, en imposant une contrainte hydrique aux plantes 
naturellement infectées. Nous avons découvert que la sécheresse inhibait complètement l’ex-
pression des symptômes d’esca, étant donné qu’aucune plante en stress hydrique (à ΨPD ≈ 
-1MPa pour trois mois) n’a montré de symptômes foliaires pendant deux saisons consécutives. 
Nous avons également étudié les relations hydriques et carbonées, à l’échelle de la plante 
entière au cours de ces expérimentations. Nos résultats soulignent un fonctionnement phy-
siologique distinct lorsque la vigne est soumise à une sécheresse ou exprime des symptômes 
d’esca. L’esca (et la baisse de la conductance stomatique associée) n’est pas causé par une 
chute de potentiel hydrique, et génère des dynamiques saisonnières différentes de la sécheresse 
au regard des échanges gazeux et des teneurs en carbohydrates non-structuraux. Cette thèse 
souligne l’importance d’identifier les seuils physiologiques sous-jacents aux différentes inte-
ractions entre facteurs pendant le processus de dépérissement des plantes. Dans l’ensemble, ces 
résultats ouvrent des nouvelles perspectives scientifiques et agronomiques pour les interactions 
plante-pathogène-environnement et pour la durabilité des vignobles.
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CHAPTER 1

Research Context, Hypotheses, and Study Framework

Résumé: Le dépérissement des plantes pérennes est une problématique très importante au-
jourd’hui. On observe une augmentation de la mortalité des plantes pérennes que ce soit dans 
des écosystèmes naturels ou agricoles. Le dépérissement est un processus complexe, car une 
plante pérenne passe par différents stress avant la mort. Même lorsque celle-ci est rapide (en 
cas de feu ou de tempête), les facteurs visibles de mortalité sont seulement les dernières d’une 
longue liste d’évènement stressants. L’interaction entre plusieurs stress pourrait donc être la 
clé de la compréhension du dépérissement de plantes pérennes. Cependant, le phénomène est 
bien plus difficile à étudier lorsque l’on prend en compte le fait que les interactions entre stress 
sont conditionnées par la réponse physiologique des plantes, et les conditions environnemen-
tales ; et d’autant plus lorsque le changement climatique continue à modifier le cadre d’étude. 
Dans cette thèse, nous avons étudié deux stress qui sont fréquemment rencontrés au champ : 
la sécheresse et les maladies vasculaires. Différentes hypothèses, expliquant la mortalité des 
plantes, voient ces stress en synergie pendant le dépérissement, soit par des mécanismes liés 
au transport de l’eau (les deux pouvant entrainer un dysfonctionnement hydraulique), soit par 
des mécanismes liés au métabolisme carboné (les deux pouvant entrainer un appauvrissement 
en carbohydrates). Dans les vignobles européens, il est observé depuis une vingtaine d’années, 
une baisse de production liée à une augmentation d’évènements de mortalité des pieds de 
vigne. Nous nous sommes intéressés ici au dépérissement du vignoble, en regardant de près 
les relations entre le fonctionnement hydraulique, l’anatomie du xylème, et la pathogenèse de 
l’esca (une maladie vasculaire). Dans un premier temps (Chapitres 2 à 4) nous avons testé l’hy-
pothèse de la présence d’un dysfonctionnement hydraulique pendant l’expression des symp-
tômes foliaires liés à l’esca. Cette hypothèse, proposant que la mortalité des vignes pendant 
l’esca soit due à un déséquilibre entre la demande et l’offre de l’eau transportée, n’a jamais été 
testée pendant la formation des symptômes foliaires. Dans un second temps (Chapitre 5) nous 
avons soumis à une contrainte hydrique (moyenne-intense) des plantes naturellement infectées 
par l’esca en notant, pendant deux saisons consécutives, l’incidence de la maladie, les relations 
hydriques des plantes (potentiels hydriques et échanges gazeuses) et le métabolisme carboné 
(quantification des chlorophylles et des carbohydrates non-structuraux).
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1. Research context: perennial plant dieback

1.1. Evidences and definition
Perennial plants are one of the most important component in natural and agricultural ecosys-
tems, both from ecological and economical aspects (Attiwill and Adams, 1993, Costanza et al., 
1997). Perennial plant mortality events could unbalance natural and agricultural equilibrium as 
they help maintaining soil fertility, guarding against erosion (Ewel, 1999), as well as sustaining 
biodiversity richness and abundance (Malézieux et al., 2009). Moreover, perennial plants are 
one of the main agents in atmospheric carbon sequestration (Montagnini and Nair, 2004). In 
the context of climate change, perennial plant mortality events are increasing worldwide (Al-
len et al., 2010, Anderegg et al., 2016), and affect a large spectrum of perennial species (see 
examples in Table 1). Moreover, the causes (from biotic to abiotic) can be various, sometimes 
acting in sequence or in combination (Table 1). In this context, many studies have documented 
the existence of dieback events, resulting in yield decreases and in mortality of perennial plants 
(or just a part of them, such as leaves and stems, Table 1). In the plant pathology manual writ-
ten by George Agrios (2004), the term “dieback” is found in the list of disease symptoms, and 
defined as the “extensive necrosis of twigs beginning at their tips and advancing toward their 
basis”. More generally, the term “dieback” is used to describe crown defoliation and mortality 
of twigs, branches and trunks in perennial plants (as done in the studies in Table 1). Moreover, 
dieback can also be seen as a synonym of tree decline, implying a long-term physiological 
weakening (e.g. Facelli et al., 2009, Pellizzari et al., 2016), closely associated with the term 
die-off (Anderegg et al., 2012) and plant death (O’Brien et al., 2017). 

1.2. Mechanisms and causal factors of perennial plant dieback
When perennial plants die, the causal factors are frequently numerous and interacting. Even 
during sudden and spectacular events (e.g. wildfires and hurricanes), the detectable causal fac-
tors of plant mortality represent just the last of a long list (Franklin et al., 1987, McDowell et 
al., 2008). The interaction between these factors, and in which order they cause disorders are 
fundamental in the understanding and prediction of perennial plant mortality. These interac-
tions have been conceptualized in the “decline disease spiral diagram” (Manion, 1991). This 
framework organized the factors in different categories: (i) predisposing factors, such as poor 
soil conditions, or air and water pollution which can reduce the trees ability to respond to at-
tacks; (ii) inciting factors such as seasonal drought, chronic pathogen infestations, or competi-
tion with other plants, which start the visible tree decline; and (iii) contributing factors, such as 
acute pathogen attacks, frost, intense drought or secondary pathogen colonization, which final-
ly lead to plant death. Manion visually represented his theory as a spiral because trees fall from 
vigor to death passing through many different stressing events and because the stressing fac-
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Reference Plant forest/
crop Causal factor Country

Miller and Hiemstra, 1987 Fraxinus excelsior forest unknown Nederland

Renaud and Mauffette, 1991 Acer saccharum crop unknown Canada

Aleemullah and Walsh, 1996 Carica papaya crop unknown Australia

Facelli et al., 2009 Pistacio vera crop vascular disease Australia

Raimondo et al., 2010 Citrus aurantium crop vascular disease Italy

Worrall, 2010 Alnus incana forest non-identified biotic U.S.

Safrankova et al., 2013 Bruxus spp. forest fungi Czech Repu-
blic

Jacobsen et al., 2012 Brunia noduliflora forest unknown South Africa

Bertsch et al., 2013 Vitis vinifera crop trunk disease Europe

Eskalen et al., 2013 many species forest vascular disease U.S.

Urbez-Torres et al., 2013 Olea europaea crop fungi complex U.S.

Elmer et al., 2013 many species forest multi-stress U.S.

Kreuzwieser and Rennenberg, 
2014 many species forest waterlogging worldwide

Davison, 2014 Banksia forest vascular disease and 
abiotic stress Australia

Goberville et al., 2016 Fraxinus excelsior forest fungi and environ-
ment Europe

Pellizzari et al., 2016 Abies alba forest long-term drought 
events Spain

Alvindia and Gallema, 2017 Theobroma cacao crop vascular disease Philippines

Roseli Correa et al., 2017 Eucalyptus forest multi-stress Australia

Tulik et al., 2017 Fraxinus excelsior forest multi-stress Poland

Schulz et al., 2018 Pinus strobus forest bacterial cankers U.S.

Pandey et al., 2018 Aquilaria malaccensis crop vascular disease India

Savi et al., 2019a Pinus nigra forest drought Italy

Lachenbruch and Zhao, 2019 Corylus avellana crop bacterial cankers U.S.

Lopez-Moral et al., 2020 Pistacio vera crop trunk disease Spain

Rossi et al., 2020 Rhizophora mangle forest multi-stress Bahamas

Table 1. Examples of studies on dieback events affecting perennial plant species (forest or crop) in different part of the world. The 
list is non-exhaustive and only one example per species and geographical repartition was chosen
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tors can move on the spiral (from predisposing to inciting and contributing factors) depending 
on their chronic or acute form, on their intensity, and on which moment they affect the plant. 
Moreover, in recent times, by the use of genomic technologies we learned that the distinction 
between pathogenic and non-pathogenic microorganisms is questionable (Méthot and Alizon, 
2014), as the virulence of microorganisms is given by the interaction between host and para-
site genotypes and phenotypes under varying environment. In view of this, perennial species 
are preferably considered as holobiont (i.e. sum of different species) in which the microbiome 
equilibrium, altogether with plant physiological status and environmental conditions, dictate 
the general plant decline or survival (Bettenfeld et al., 2020). For example, it has been observed 
that in some cases drought conditions predispose plants to pathogen attack, and, in other cases, 
pathogen and drought combine their effect during plant decline (Desprez-Loustau et al., 2006). 
Finally, the underlying physiological mechanisms are numerous and interconnected with the 
stressing factors, and their role during plant decline is not fully understood (McDowell et al., 
2008, Oliva et al., 2014, Pellizzari et al., 2016). If this background could already seems com-
plicated, climate change is constantly modifying the impacts of the environment on pathogens, 
plants, and their interactions, resulting in accelerated plant mortality (Allen et al., 2010).

1.3. A complex and difficult phenomenon to study 
When plant pathologists study perennial plant dieback, they frequently refer to field notations 
(such as disease incidence or insect presence) coupled to climatic record datasets (e.g. Souza 
et al., 2013, Li et al., 2017). This approach seems to be the only one to precisely quantify the 
contribution of each different predisposing, inciting and contributing factors to plant decline. 
However, the plant physiological state is rarely measured during these surveys, impeding a 
clear interpretation on how climatic and environmental conditions affect plants, pathogens, and 
more generally, the dieback progression. Indeed, the key in the understanding in some (if not 
all) abiotic-biotic stress interactions could be the detection of the plant physiological thresh-
olds at which the different interactions take place. Just because are the physiological turnovers 
that impose the different plant responses to stresses (such as production of defense compounds 
or organ abscission), and it is only through physiological measures that we can establish the 
different steps before plant death. This lack of information on dieback phenomena is probably 
given because many measures are impracticable in the field, or need destructive methodolo-
gies. Finally, field surveys needs long-term studies (often more than 10 or 20 years) in many 
different sampling sites. Oppositely, controlled conditions (greenhouses and laboratories) offer 
many advantages (e.g. availability of plant material and controlled climatic conditions), but 
they will never fully represent field conditions.   

In this context, there is a need to realize integrative studies to understand, and hopefully con-
trast, the different causes and mechanisms inducing plant death. As integrative studies, we 
intend the measurement of plant physiological status, the different environmental and climatic 
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conditions, and the biotic agents that participate to perennial plant dieback. We also intend the 
detection of plant physiological thresholds triggering the different responses that will help un-
derstand when the plant life is irreparably compromised, and when climatic parameters effec-
tively affect plants in natura. In this thesis we will focus our attention on two recurrent stresses 
during perennial plant dieback (drought and vascular disease), researching the physiological 
mechanisms that result in their synergistic (or antagonistic) interaction.

1.4. Drought and vascular diseases during dieback
Plant dieback is visually observed in nature as the loss of leaves of the entire crown or just a 
part of it. Intuitively, we can identify a central role of plant water transport in dieback events, 
as the result is the crown desiccation. Indeed, the plant hydraulic system is at the core of the 
hypothetical processes leading to plant mortality during two main factors often encountered in 
plant dieback: drought and vascular disease. Drought is one of the main environmental stresses 
threatening perennial plants worldwide (Choat et al., 2012). Moreover, current climate change 
is increasing the frequency and intensity of drought events (Brodribb et al., 2020). At the same 
time, vascular diseases are one of the major biotic stresses menacing perennial plant vitality 
(Pearce, 1996). During perennial plant dieback, many authors found both drought (e.g. Allen 
et al., 2010, Rodriguez-Calcerrada et al., 2016, Savi et al., 2019a) and vascular diseases (e.g. 
Facelli et al., 2009, Raimondo et al., 2010, Eskalen et al., 2013) as recurrent causal factors. 
Moreover, many studies suggest a synergistic interaction (Yadeta and Thomma, 2013, Oliva et 
al., 2014) between these stresses, because they affect the same plant tissue, the xylem, enhanc-
ing the interest in their coupled consequences.

2. The hypotheses behind perennial plant dieback

2.1. The hypothetical mechanisms of mortality during drought
Drought might cause plant mortality by intervening in two major physiological processes, 
plant-water relations and carbon balance (Fig. 1). Plant-water relations are primarily affected 
when the difference in water potential between air and soil is so high that the water column 
inside the plant breaks, producing cavitation events, air embolism spreading, and final plant 
desiccation. The carbon balance is affected by the reduced photosynthetic activity (mostly by 
stomatal closure and leaf shedding), and by the changes in source-sink relations (mostly by re-
serve consumption for root growth). These mechanisms (described in details in the Theoretical 
framework paragraph 5.3) are the theoretical basis behind the two main hypotheses of plant 
death during drought: hydraulic failure and carbon starvation (McDowell et al., 2008, Fig. 1).

On one side, hydraulic failure is defined as the disruption of water flow inside the plant by air 
during cavitation events (Tyree and Sperry, 1989). Hydraulic failure is measurable (as a loss 
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of hydraulic conductivity) and gives clear indicators in plant survival to drought. In particular, 
authors identified the highest water potential at which we do not observe stem recovering, 
corresponding to a loss of 50% of stem hydraulic conductance in conifers (P50, Brodribb et al., 
2010) and 88% in angiosperms (P88, Urli et al., 2013).

On the other side, the carbon starvation hypothesis states that during drought plants could die 
by insufficient non-structural carbohydrates (NSC, Hartmann, 2015). This theory is based on 
the main evidence that leaf assimilation is reduced during drought (see Fig. 10C in the Theoret-
ical framework paragraph 5.3), and the assumption that without transpiration, phloem transport 
should be reduced (Sala et al., 2010). Oppositely to hydraulic failure, carbon starvation might 
be a myth as it has never been measured. Some authors observed a decrease in total NSC in 
plants under drought (Tommasella et al., 2017, Savi et al., 2019a), and a significantly lower 
NSC content compared to controls is present in 60% of drought studies (in the meta-analysis 
of Adams et al., 2017). However, a total absence of NSC in woody organs will unlikely be 
observed as starch has also a structural function (Taiz and Zeiger, 2003). Therefore, how many 
NSC reserves are truly available for plants and how they are consumed during drought is still 
an open question.

Finally, in the case of perennial species, some questions remain on their long-term survival. 
Especially because authors determine if plants are able to recover after drought right after 
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occur if drought intensity is sufficient to push a plant past its threshold for irreversible desiccation before carbon 
starvation occurs Adapted from McDowell et al. (2008).
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the end of the stressing period (Adams et al., 2017). Consequently, even in case of extensive 
hydraulic failure during drought, doubts remain on the fact that some species could generate 
new xylem and regrow the following season. At the same time, studies are missing on repeated 
drought events (over several years); in order to understand if perennial plants could really die 
from carbon starvation over the long-term.  

  

2.2. The hypothetical mechanisms of plant mortality during vascular disease
The mechanisms behind plant death during vascular diseases are less understood compared to 
drought. Vascular pathogens (see the Theoretical framework paragraph 5.4 for more details), 
once inside the host, physically spread and develop inside the xylem vessels, and they could 
theoretically cause plant death by hydraulic failure or by the action of toxic metabolites (i.e. 
hydraulic failure and toxin hypotheses, Fig. 2). 

The hydraulic failure hypothesis state that during vascular pathogenesis, plant death is given 
by impairment between water demand and supply. Xylem hydraulic failure has been associated 
with pathogen development inside the vessels (Yadeta and Thomma, 2013). However, during 
vascular diseases, the nature of hydraulic failure is not fully understood, as not only air (as 
during drought) could cause xylem dysfunctions. The physical presence of pathogens could 
reduce the water flow; pathogens could cause air entrance inside the xylem vessels, leading to 
cavitation events (as observed by Perez-Donoso et al., 2016, during Pierce’s disease); or the 
presence of plant-derived vascular occlusions, produced to compartmentalize the pathogens 
(CODIT model, Shigo, 1984), could cause non-gaseous embolism (Sun et al., 2013, Venturas 
et al., 2014). Even if during vascular diseases the nature of hydraulic failure is not fully qual-
itatively appreciated, some studies tried to quantify it, finding that following pathogen inoc-
ulations the stem hydraulic conductivity was reduced (Parke et al., 2007, Beier et al., 2017, 
Lachenbruch and Zhao, 2019, Mensah et al., 2020). 

The toxin hypothesis state that plant death is mainly caused by the production of toxic me-

Toxin transport Hydraulic failure

The pathogen 
colonize the xylem

Carbon economy
modifications

Leaf symptoms Plant death Figure 2. Major hypotheses explaining death 
during vascular diseases. Once the pathogen 
has colonized the xylem vessels, it could pro-
voke: (1) a transport of toxins (or other elic-
itors) through the transpiration stream (red 
arrow); or by (2) hydraulic failure (by any 
combination of air embolism, physical pres-
ence, or stimulation of plant-derived vascular 
occlusions) leading to an impairment in wa-
ter demand and supply (green arrow). Both 
mechanisms could cause (3) changes in the 
plant carbon economy, possibly accelerating 
plant death. Finally, altogether or exclusively, 
these hypothetical mechanisms could cause 
leaf symptom expression and plant death 
(black arrows). 
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tabolites by the pathogen, that imply a general destruction of tissues. Indeed, other than the 
structural consequences in the vessels, vascular pathogens also produce toxic metabolites that 
interfere with plant physiological functioning (Van Alfen, 1989). These toxins are delivered by 
the pathogens to destroy the physical barriers (i.e. tyloses and gels) produced by the plant and 
the neighbor-vessel parenchyma cells (Pearce, 1996); if released in functional xylem vessels, 
toxins could become systemic and cause symptoms at a distance from pathogens. Consequent-
ly, it has been hypothesized that the major symptoms related to vascular pathogens (i.e. wood 
necrosis and leaf wilting or scorching) and ultimately plant death are caused by the production 
of toxins. 

These two hypothetical mechanisms have been suggested to explain leaf symptoms during vas-
cular disease. Prior to leaf symptom appearance, many authors recorded a decrease in stomatal 
conductance, carbon assimilation, and quantum yield of photosystem II (Magnin-Robert et al., 
2011, Castillo-Argaez et al., 2020). However, it is not clear whether hydraulic failure decrease 
gs mechanistically by a decrease in the transported water volume (Bowden et al., 1990, Castil-
lo-Argaez et al., 2020), or by pathogen-derived toxins that could interfere with leaf functioning 
(Sun et al., 2017, Fallon et al., 2020).

Vascular pathogens also interfere with the carbon economy, consuming NSC reserves, and the-
oretically accelerate plant death, other than by toxins or hydraulic failure, by carbon starvation 
(McDowell et al., 2008, Yadeta & Thomma, 2013, Oliva et al, 2014). Directly, pathogen con-
sume carbon metabolites for their survival, and could cause reduced phloem transport (in case 
of hydraulic failure); indirectly, pathogens cause a shift in plant carbon metabolism to defense 
compounds production and a reduced photosynthetic activity during leaf symptom expression. 

The demonstration of these different hypotheses need to overcome several practical problemat-
ics: (i) The evident necessity of long-term study, or at least the use of naturally infected plants, 
which should test the physiological response in models as close as possible to field condi-
tions. (ii) The practical problem to quantify hydraulic failure. Actually, X-ray microCT is the 
only technique to visualize and quantify hydraulic failure in vivo, avoiding experimental bias 
(Brodersen et al., 2013, Torres-Ruiz et al., 2015). However, it is an expensive technique (usu-
ally Synchrotron-based) and it is space limited as (nowadays) to obtain a sufficient resolution 
to quantify the effective functionality of single vessels we can scan only a restrict volume 
(~1cm3). (iii) The chemical challenge of detecting pathogen-derived molecules; as they could 
be present in very small amounts and/or be effective in a very short period (for example, they 
could be already metabolized after the visualization of leaf symptoms).
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2.3. The hypothetical interactions between drought and vascular diseases, syner-
gism or antagonism? 

It has been hypothesized that drought and vascular pathogens could interact during perennial 
plant dieback (Fig. 3); this hypothesis is based on the experimental evidence that they primarily 
affect the same plant tissue, the xylem. 

Both stresses induce many similar physiological changes: decrease in leaf gas exchange, NSC 
consumption, a decrease in hydraulic conductivity (by hydraulic failure), and wilting of leaves. 
Therefore, drought and vascular pathogens could hypothetically contribute to plant death in 
synergy (Fig. 3A), for example by inducing xylem hydraulic failure, coupling drought-induced 
air embolism to pathogen-induced hydraulic failure, as proposed by Yadeta and Thomma 
(2013). In addition, drought and vascular disease could contribute together to plant death by 
coupling the decreased photosynthetic activity and carbon reserve mobilization during drought 
to phytotoxic activities, direct carbon consumption by pathogens, and leaf symptoms during 
vascular diseases, as proposed by Oliva et al. (2014).

Oppositely, it has been hypothesized that drought and vascular diseases could antagonistically 
interact (Fig. 3B). In this case, drought could decrease or contain vascular pathogenesis; other-
wise, vascular pathogens could increase plant resistance to drought. Consequently, the resulted 
plant mortality would be attributed at only drought or vascular pathogen, as the impact of one 
of the two stresses would be drastically reduced (if not suppressed). Decreasing the transpira-
tion rates, drought could induce a subsequent decrease in toxin transport by the transpiration 
stream. Moreover, drought could directly have a negative impact on pathogen development that 
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Figure 3. Possible interactions between drought and vascular diseases. The grey area represent the zone of plant 
death (from light grey and dashed borders for vascular disease, to dark grey and solid borders for drought). Co-
lors correspond to different mechanisms inducing plant death by hydraulic failure (solid and dashed green lines), 
carbon starvation (solid red lines), or toxin transport (red dashed lines). The double-headed arrows represent 
synergystic interactions between stresses, while sing-headed arrows antagonistic interactions. (A) Synergistic 
interaction hypotheses. Drought and vascular diseases could interact by enhancing the incidence of hydraulic 
failure (vertical arrow) by coupling vascular occlusions to air embolism. Otherwise, they could increase plant 
death (horizontal arrow) by coupling the C decrease during drought to pathogen toxic activities. (B) Antagonistic 
interaction hypotheses. Drought could negatively affects pathogen development by decrease toxin and pathogen 
spread by a decrease in transpiration, or by enhancing the plant defenses by stimulating antioxidant compound 
synthesis. At the same time, pathogen could stimulate the formation of new xylem tissue more resistant to air 
embolism spreading. Adapted from McDowell et al. (2008).
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are not able to survive at very low water potentials. Drought could also enhance the synthesis of 
antioxidant compounds inducing a faster plant defense against pathogens (as in Arango-Velez 
et al., 2016). Finally, vascular pathogens could stimulate the synthesis of new xylem vessels 
resulting in enhanced resistance to xylem embolism (as in Reusche et al., 2012).

Studies conducted with simultaneous drought and vascular pathogens contrast in their results, 
indicating (in different plant-pathogen-drought intensity combinations) that they could interact 
synergistically (Croisé et al., 2001, Silva-Lima et al., 2019), antagonistically (Pennypacker et 
al., 1991, Reusche et al., 2012, Arango-Velez et al., 2016), or neutrally (Lopisso et al., 2017). 
In different plant-pathogen associations, authors found that mild drought enhanced the host 
resistance (resulting in drought-vascular pathogen antagonism, e.g. Salle et al., 2008, Penny-
packer et al., 1991), while severe drought for several weeks increased pathogen development 
after inoculation (resulting in drought-vascular pathogen synergy, Croisé et al., 2001, Gao et 
al., 2017). In this last case, we could hypothesize that when drought is intense enough to induce 
cavitation events could facilitate pathogen development; otherwise, mild drought conditions 
could reduce disease incidence maybe by slowing down the toxins spread by reducing the 
transpiration rates, or by inducing the synthesis of antioxidant compounds. In view of this, the 
physiological thresholds revealing different phases in pathogen-drought interactions needs to 
be deeply investigated to fully understand perennial plant dieback. 

Suggesting another central role for plant physiological status during drought-pathogen inter-
actions, Arango-Velez et al. (2016) added a new variable to their study, the tree age, finding 
that drought reduced pathogen lesion length in pine seedlings, while it increased the lesion in 
mature trees. This finding enhance the importance of the model choice when we want to apply 
our results in in the field. The plant physiological state could also be important when the order 
of the stressing events applied is varying. In the “decline disease spiral diagram” (Manion, 
1991) we could hypothesize that pathogens could predispose plants to drought sensibility, or 
drought incite the pathogen aggressiveness accelerating the disease process. Finally, studying 
the long-term physiological status in perennial plants could help us to detect the thresholds in 
which successive and repeated diseases and drought events aimed to plant death. 

2.4. Xylem anatomy, a crucial trait in plant resistance to drought and vascular 
diseases

As just reviewed, plant hydraulic functioning is at the core of the main hypotheses of plant 
mortality both during drought and vascular diseases. Therefore, xylem anatomy could strong-
ly influence the plant susceptibility (or resistance) to one or both stresses and play a key role 
during the dieback process. For a detailed description of the main anatomical traits distinguish-
ing xylem vessels in angiosperms see Fig. 9 in the Theoretical framework (Paragraph 5.1.).

During drought, perforation plates and pit membranes in and around xylem vessels can main-
tain (after a cavitation event) the air inside a single vessel element. However when the water 
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potential is reaching critical thresholds, gas will eventually be able to pass through the pit 
membranes and let the air spread into the neighbor xylem vessels (Choat et al., 2008). The 
breaking of just one pit membrane should be sufficient to air to spread in neighbor vessels, and 
larger pits are more sensible to rupture than thinner pits. Consequently, the maximum pit mem-
brane size determine the xylem sensibility to air seeding (Choat et al., 2008). 

During vascular diseases, the main anatomical traits influencing the resistance to vascular 
pathogen are the xylem vessel diameter (more precisely the density of wide vessels, Venturas 
et al., 2014, Pouzoulet et al., 2017, 2020), and pit size and distribution (Martín et al., 2009). 
Theoretically if a vessel has a bigger diameter, pathogens would have more chances to escape 
vascular occlusion (by tyloses) and continue their progression in the vasculature, if a vessel 
presents small diameter, plants could occlude it faster and compartmentalize the pathogens 
in a restricted zone (see Theoretical framework 5.4). Moreover, vessel width and length are 
positively correlated (Tyree and Zimmermann, 2002); consequently, in wider vessels patho-
gens should encounter less perforation plates along their path, facilitating their movement. 
Likewise, a higher pit size and density could increase fungal spore dispersion within neighbor 
vessels (Martín et al., 2009). 

Finally, the xylem anatomy could also influence vascular pathogens-drought interactions. The-
oretically, we could imagine that because during drought plant growth is reduced, the new xy-
lem is exclusively formed by small vessels, more resistant to pathogen development. Likewise, 
pathogen growth could induce xylem hyperplasia (production of numerous small vessels), and 
subsequent resistance to drought-induced embolism. In this context, there is a need in charac-
terize the effective role of xylem anatomy under the combined action of drought and vascular 
pathogen.

3. Grapevine, the European dieback crisis 

3.1. Evidences, definition, and mechanisms
Grapevine (Vitis vinifera) is one of the most economically important perennial crops world-
wide, especially in Europe (OIV report, 2020). Since the early 2000s, European vineyards are 
experiencing a decrease in grape yield (Riou et al., 2016). This yield loss, closely related to 
vine age, has not been ascribed to specific stressing factors. Consequently, in recent times the 
term dieback has been associated with the yield loss and plant mortality and ascribed to multi-
ple stresses acting simultaneously or in sequence (Riou et al., 2016). In the picture of grapevine 
dieback (Fig. 4), we can observe that, multiple factors may act in concert: the environmental 
conditions at the base, the biotic agents and the cultural practices that, side-by-side, reduce 
plant vitality, and finally, the plant physiological response in the background. Climate change 
can influence all the factors contributing to plant dieback, and it represents the frame of the 
picture (Fig. 4). Since 30 years, winegrowers are observing a shift in many phenological phases 
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(including bud-break, veraison, and fruit maturity, van Leeuwen and Darriet, 2016). Even if 
drought will unlikely attain grapevine lethal thresholds in the short term (confirmed by 20 years 
monitoring of Ψstem in California and Bordeaux, Charrier et al., 2018); changes in climatic con-
ditions are modifying yield quality and quantity (e.g. increasing wine pH and alcohol degree, 
van Leeuwen and Darriet, 2016). Consequently, it has been predicted, even with a “low” global 
warming scenario (+ 2 °C), that current winegrowing regions could lose from 20 to 60% of 
surface, depending on the cultivar diversity (Morales-Castilla et al., 2020). 

At the bottom of the picture, we observe the environmental conditions (especially climate and 
soil conditions, and geographical position Fig. 4). Other than changes related to the global 
warming, we also need to consider that grapevines are frequently cultivated in hostiles envi-
ronments: draining (and frequently dry) soils, hot summers (e.g. southern Europe), sometimes 

Biotic
agents Cultural

practices

Environmental
conditions

Plant physiology

Climate change

Figure 4. Grapevine dieback picture. The dead/unproductive vine is surrounded by multiple interacting factors. 
Inside the frame of climate change, the environmental conditions are drawn at the base of the picture. The cultural 
practices and the biotic agents, side-by-side, play a major role in the decreasing of plant vitality. Finally, the plant 
physiology, cover the whole background interacting with the different factors.
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in altitudes (e.g. in northern Italy, or Alsace). These conditions are strictly related to the notion 
of “terroir” (i.e. the ensemble of variety, soil, climate and practices that differentiate a wine 
region from another, van Leeuwen and Seguin, 2006). Moreover, frequent and mild water 
deficit conditions are related to higher wine quality (especially for red cultivars, van Leeuwen 
and Darriet, 2016). Finally, we can notice that the most rentable vines are frequently planted 
where there are sufficient resources (especially water and minerals) to maintain plant life and 
fruit productions, but not enough to have a well vigorous liana. 

On the left-hand side of the picture, there are the biotic agents (Fig. 4). Grapevines are constant-
ly submitted to continuous attacks from different biotic agents. The biotic pressure in Europe-
an vineyards has seen a drastic increase concomitantly with the second industrial revolution 
(XIX century), when the progression of world trade market has caused the importation (from 
the U.S.) of powdery and downy mildews, and Phylloxera. In France, it has been estimated 
that vineyards are one of the cultures that receive the most abundant phytosanitary treatments, 
despite their relative low surface (Butault et al., 2011). Indeed, powdery and downy mildews, 
together with Botrytis cinerea (and other grape molds), numerous viruses, and the insects Eu-
poecilia ambiguella, Lobesia botrana, and Scaphoideus titanus (vector of flavescence dorée), 
and other secondary agents, oblige winegrowers to a strict and continue health control to assure 
grape production. Among the biotic agents that still do not have an efficient sanitary control, 
we found the grapevine trunk diseases (GTD), caused by a complex microbiome in the woody 
organs. GTD can affect young plants (e.g. Petri and black foot diseases), which are frequently 
related to contaminations during grafting, and bad soil management in nurseries (Gramaje et 
al., 2018). GTD can also affect mature plants (more than 7 years-old): mainly esca and eutyp-
iose diseases (Bertsch et al., 2013). While a rigorous chemical control during plant vegetative 
reproduction can reduce the GTD impact on young plants, it is not the case in old vines (even 
if chemical treatments after winter pruning can reduce Eutypiose incidence, Gramaje et al., 
2018). This is probably due to the fact that pathogens develop deep in the woody organs (where 
chemical products can hardly penetrate), and that pathogens employ several years before the 
plants express visual symptoms, and when this happens is frequently too late to organize any 
safety strategy (Gramaje et al., 2018). GTD impact is increasing in the last 20 years in Europe, 
and this might be partly due to prohibition of the only chemical product used against esca (sodi-
um arsenite, Songy et al., 2019), and to the increased vineyard mechanization, which increased 
the winter pruning damage (Gramaje et al., 2018). 

Indeed, in the picture of grapevine dieback we observe, on the right-hand side of the vine, the 
cultural practices (Fig. 4). It has been demonstrated that the winter pruning (necessary to obtain 
high and regular yields), can affect negatively the plant physiology, and positively the GTD 
development (Gramaje et al., 2018, Lecomte et al., 2018). Moreover, the increase in vineyard 
mechanization and industrialization is related to an accelerated grapevine dieback. For exam-
ple, an excessive fruit production (especially during the first years after plantation), reduce the 
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plant lifetime (Carbonneau, 2015). 

In the background of grapevine dieback, we observe plant physiology (Fig. 4). Indeed, if many 
studies have focused on how singular stresses influence plant physiology (e.g. reviews in Fon-
taine et al., 2016 for GTD and Gambetta et al., 2020 for drought), few tried to understand the 
physiological response to combined stresses (e.g. Savi et al., 2019b, Songy et al., 2019), and 
none studied the underlying physiological mechanisms behind the complex process of grape-
vine dieback. The field monitoring usually implemented to correlate the disease incidence to 
climatic conditions (e.g. Marchi et al., 2006, Serra et al., 2018, Kraus et al., 2019, for esca) are 
rarely (or never) associated with measurements of the physiological status of the plants (for 
example, transpiration rates and water potential) impeding the understanding on how climatic 
conditions effectively influence the plant functioning and mortality processes. We know that 
these kind of integrated studies are extremely challenging and demand long-term monitoring 
in the fields of many different factors and parameters. However, if we are to understand the 
sequence of events that lead to grapevine dieback, the picture has to be looked into its entirety, 
because one single stressing factor would unlikely be the only responsible to grapevine (or 
perennial plants in general) dieback. In this thesis, we focused our attention on two factors 
contributing to grapevine dieback: esca (a vascular GTD) and drought, because their presence 
is frequently recorded in the field and because they could synergistically interact during the 
dieback process.

3.2. Esca, a complex disease
Esca is a grapevine trunk disease; its presence is endemic in Europe, and probably it has always 
existed together with Vitis vinifera (Mugnai et al., 1999). From the first scientific description 
of esca (Viala, 1926) to the recent fungal characterization (Morales-Cruz et al., 2018, Brown 
et al., 2020), esca definition (and even its name) has changed (Mondello et al., 2018), creat-
ing long debates in the scientific community. However, at present time, the major traits that 
define esca disease are broadly recognized. Esca (we will simply name it “esca” in this thesis) 
is characterized by internal necrosis in the perennial trunk (Lecomte et al., 2012, Bruez et al., 
2014, Morales-Cruz et al., 2018). A black necrosis, where the vascular fungi Phaeomoniella 
chlamydospora (Pch) and Phaeoacremonium minimum (Pmin) are detected in high abundance 
(Fig. 5G, Morales-Cruz et al., 2018), a white necrosis where the Basidiomycota Fomitiporia 
spp. are isolated (Fom, Fig. 5C, Fischer, 2002), and a brown stripe on the external vasculature 
which causing mechanisms and agents are still uncertain (Fig. 5F, Lecomte et al., 2012). The 
role played by the fungi of the Botryosphaeriaceae family is still uncertain (many authors 
distinguish esca from Botryosphaeriaceae dieback, or BDA, Bertsch et al., 2013, Bruez et 
al., 2014, even if the observed symptoms are very similar, if not equal, Lecomte et al., 2012), 
so does the role played by bacteria (Bruez et al., 2015, 2020; Haidar et al., 2015). Given the 
mode of action of the three more recurrent fungi in in trunk necrosis (Pch, Pmin, and Fom), it 
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is assumed that the vascular pathogens (Pch and Pmin) firstly colonize the functional healthy 
wood (they are also detected in non-necrotized tissue, Bruez et al., 2014, 2020, and in young 
vines, Gramaje et al., 2015). Fom species (among other Basidiomycota) colonize tissues al-
ready dead (they are detected in white rot tissue only, Bruez et al., 2020). Esca also presents 
two distinct foliar symptoms: a tiger-stripe symptom, characterized by a yellowing or scorch-
ing (depending on symptom intensity) between the main ribs that remain green (Fig. 5A, D 
and 6), and apoplexy, when the crown desiccates in one to three days (Fig. 5B, H). Esca leaf 
symptoms (both tiger-stripe and apoplexy), as well as the brown stripe along the vasculature, 
cannot be reproduced under controlled conditions (i.e. after pathogen inoculations), they are 
only observed in vineyards. Consequently, the underlying mechanisms behind these symptoms 
are still unknown. Moreover, leaf symptom presence has been shown to be randomly distribut-
ed in space and time. In space, because esca leaf symptoms are usually dispatched all over the 
vineyard (suggesting limited esca transmission from neighbor plants, Surico et al., 2000, Li et 

Figure 5. External and internal symptoms related to esca or Botryosphaeriaceae dieback. (A) Tiger-stripe symp-
toms with scorched and yellow area. (B) Apoplectic (severe) form characterized by dieback of one or more shoots 
and leaf drop. (C) Trunk-cross section with white rot (D) Tiger-stripe symptoms with scorched area only. (E) 
Cluster desiccation. (F) Brown stripe in the external vasculature of trunk. (G) Sectorial black necrosis. (H) Final 
plant desiccation. From Bertsch et al. (2013).

D
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al., 2017). In time, because its sudden appearance is not regular over different seasons, even 
if hot and rainy conditions seems to increase esca incidence (Marchi et al., 2006, Serra et al., 
2018, Kraus et al., 2019), and because symptomatic plants can appear asymptomatic the fol-
lowing seasons (Li et al., 2017). In this uncertainty, some patterns and characteristics have led 
scientists to state different hypotheses on esca leaf symptom formation (reviewed in Claverie 
et al., 2020). It is assumed (without any published evidence of the absence of the esca-related 
pathogens in leaves) that leaf symptoms appear at a distance from the pathogens (that have 
been detected on >1-year-old perennial organs). In symptomatic leaves, different studies have 
observed a decrease in transpiration, CO2 assimilation, and chlorophyll fluorescence (Petit et 
al., 2006, Magnin-Robert et al., 2011). In addition, a defense response prior (or during) symp-
tom expression in leaves is supported by transcriptomic (Magnin-Robert et al., 2011, Martín 
et al., 2019), proteomic (Valtaud et al., 2009, Calzarano et al., 2016, Goufo et al., 2019), and 
lipidomic (Goufo and Cortez, 2020) approaches, and NSC quantifications, which detect a de-
crease in starch content and an accumulation in soluble monomers (Petit et al., 2006, Valtaud 

Figure 6. Esca leaf symptom evolution in three different leaves of one single V. vinifera cv Sauvignon blanc plant. 
(A-E) We can observe that small yellow dots are already present soon in the season (A, mid-July), and that pro-
gressively expand, occupying more and more space, the scorched area arrive later (D, 4 August) and then progress 
inside the yellow area (E, 6 August). (F-J) In this leaf (n.b. from the same plant and season), the yellowing is less 
present, and the scorched area occupy directly the interveinal space since the beginning of August. (K-M) In this 
third leaf, the yellow and scorched areas share different zone of the interveinal space. These pictures, illustrating 
the diversity in esca leaf symptoms within one plant, were taken during our 2018 greenhouse experiment.
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et al., 2011). Finally, esca leaf symptoms are associated with the development of tyloses in 
stems (Fleurat-Lessard et al., 2013). Since (i) Pch and Pmin (the two recurrent pathogens in 
trunk necrosis from esca symptomatic plants, Morales-Cruz et al., 2018, Brown et al., 2020) 
develop in xylem vessels (Pouzoulet et al., 2014); (ii) the visual symptoms are strikingly sim-
ilar to vascular diseases (compare Fig. 5 and 6 to Fig. 13 and 14, in Theoretical framework); 
and (iii) the impact on the plant physiology is similar between esca and other vascular diseases, 
we treated esca as a vascular disease in this thesis. However, we are well aware that some tech-
nical impediments (especially the reproduction of leaf symptoms and the possible role of other 
pathogens such as the Botryosphaeriaceae), leave our assumption as still hypothetical, and not 
totally demonstrated. 

3.3. The hypotheses behind esca leaf symptoms, and the possible interaction with 
drought

The two different hypotheses on vascular pathogenesis described above (paragraph 2.2.) has 
been transposed for esca (Claverie et al., 2020). (i) The “toxin” hypothesis states that the patho-
gens (living in the woody perennial organs) can produce toxic metabolites inside the xylem 
vessels. The water flow then transport these metabolites up to the leaves, where they accumu-
late and generate leaf cellular death. (ii) The “hydraulic failure” hypothesis state that a decrease 
in xylem hydraulic conductivity (generated by air or nongaseous embolism) can generate leaf 
cell death by an impairment between water demand and supply. Hydraulic failure is still a 
hypothetical mechanism during esca as no studies have directly tested it so far. Some studies 
(reviewed in Fontaine et al., 2016) discarded its intervention on the main observation that in 
symptomatic leaves the genes classically related to drought are not overly expressed. This 
point of view closely associates hydraulic failure to a drought-like event, but in general, when 
hydraulic failure is observed during vascular pathogenesis, the underlying mechanisms are 
different from drought. We should acknowledge here that some technical impediments have 
delayed the test of the hydraulic failure hypothesis in the esca pathogenesis: the impossibility 
to reproduce esca leaf symptoms under controlled conditions (leaving us with the only option 
of using mature vines from the field), and the obligation to use in vivo observations (by X-ray 
or IMR technologies) to quantify xylem functionality that are still impossible in the field.

If esca affects grapevine hydraulic functioning, by any mechanisms, it could decrease xylem 
functionality and/or efficiency, possibly increasing plant susceptibility to drought. Alternative-
ly, we could hypothesize that vascular pathogens need nonfunctional vessels to develop and 
necrotize the tissues, benefiting from drought-induced cavitation. Finally, we could imagine 
that esca and drought-related embolism could synergistically contribute in reducing xylem hy-
draulic conductivity, desiccating organs, and accelerating plant death. These hypothetical con-
sequences in esca-related hydraulic failure, give us the suspicion that drought and esca could 
synergistically participate to grapevine dieback (as during vascular diseases in general, Fig. 
3A). Moreover, we are also missing a clear study on how esca is affecting the plant hydraulic 
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functioning seasonally and over the long-term, and on how the different hydraulic properties 
of the plant could accelerate or slow the disease process. Indeed, even if esca is considered a 
vascular disease, its effects on the vascular system remain largely unknown: both on functional 
and anatomical features. 

Drought and esca could also synergistically deteriorate grapevine carbon economy. Indeed, if 
carbon starvation has still not been observed during drought, the possible intervention of patho-
gens could accelerate decrease in non-structural carbohydrates. Moreover, even if vascular 
pathogens and drought could not result in synergy when applied together; both stresses should 
end in reduced photosynthetic activity and reserve accumulation. In this case, repeated events 
of esca leaf symptom and drought over the plant lifetime, could cause plant death by carbon 
starvation over the long-term.

Consequently, this thesis will first focus on exploring the hydraulic failure hypothesis during 
esca in leaves and stems of naturally infected plants. More specifically, we will test whether 
(and to what extent) esca induces a loss of hydraulic conductivity in symptomatic leaves and 
stems, and whether esca modifies the xylem anatomy over the long term. Second, this thesis 
will focus on whether esca and drought synergistically participate to grapevine dieback, and 
whether they induce similar or different plant water relations and carbon economy.

4. Thesis objectives

As just reviewed, the understanding of perennial plant dieback is still impeded by many knowl-
edge gaps. Dieback is a long-term process that involve many interacting factors and the extent 
and directions of these interactions are probably at the core of the major scientific issues of 
plant mortality. Moreover, we evidenced the central role of the hydraulic functioning and car-
bon economy during perennial plant dieback, especially when drought and vascular diseases 
are studied. In this thesis, we characterized the role of hydraulic failure in esca pathogenesis, 
and the interaction between vascular pathogens and drought during grapevine dieback. The 
readers should consider all the reported results as the interaction of given (and quantified) 
symptom severity, drought intensity, and timing (meant as length and moment) of events.

The general objective of this thesis is to characterize the relationships between grapevine hy-
draulic functioning, xylem anatomy, and esca pathogenesis. In this context, we explored the 
hydraulic integrity in leaves during esca leaf symptom expression (Chapter 2) and compared 
the leaf xylem anatomy between multiple induced-senescing process and varieties (Chapter 3). 
We then characterized stem hydraulic integrity during esca seasonally and over the long-term 
(Chapter 4). Finally, we observed the plant physiological response to the simultaneous effect of 
drought and esca, focusing on plant-water relations and carbon balance (Chapter 5). 
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We overcame to the esca-related technical problem by uprooting old (~30 years-old) vines 
from a vineyard identified by a plant-by-plant disease notation since 2012 (the experiments 
took place from 2017 to 2020) and characterized by a high esca incidence (44% of symptomat-
ic plants yearly on average, Table 2 in Experimental framework, paragraph 6.2.). These plants 
were transplanted into pots and they naturally expressed leaf symptoms in the greenhouse. 
Consequently, we were able to manipulate and transport these plants to different laboratories 
and study leaf symptom development in a controlled environment. 

The Chapters 2 to 4 of this thesis focused on the impact of esca (i.e. leaf symptom pres-
ence) on the hydraulic integrity of leaves and stems. We then submitted half of the plants to 
drought during two consecutive seasons (from June to October) to study the effect of drought 
on leaf symptom expression. At the same time, we characterized the whole-plant physiology 
(as plant-water relations and carbon economy) during esca and drought, in order to understand 
the physiological mechanisms behind their interaction.

The main scientific question addressed in the second chapter is: to what extent esca symptom-
atic leaves suffer from hydraulic failure? We hypothesized that, as well as during other vascular 
diseases, leaf hydraulic integrity would be compromised. In this chapter, we quantified and 
characterized hydraulic failure in control and symptomatic midribs and petioles through X-ray 
microCT and light microscopy; we quantified the presence of esca-related vascular pathogens 
in different organs.

The main scientific question addressed in the third chapter is: are vascular occlusions in grape-
vine leaves a general response during different induced-senescence processes? We hypothesized 
that in senescing leaves with visual symptoms similar to esca, the xylem anatomy would be 
similar. We compared the xylem anatomy in midribs collected from leaves presenting various 
symptoms (winter senescence, magnesium deficiency, esca symptomatic and control leaves). 
We further studied esca by comparing xylem anatomy of midribs collected from different va-
rieties and countries. Moreover, we tested the impact of esca on the functionality of the leaf 
lamina by embolism optical visualization. 

The main scientific question addressed in the fourth chapter is: what are the seasonal and 
long-term consequences of esca on stem hydraulic integrity? We hypothesized that esca would 
induce hydraulic failure in stems presenting symptomatic leaves and that, over the long term, 
it would affect the xylem anatomy. To answer this question we quantified and characterized 
hydraulic failure in control and symptomatic stems through X-ray microCT. Then we quanti-
fied specific and theoretical hydraulic conductivity all along one season (in order to detect the 
moment of hydraulic failure appearance relative to the onset of leaf symptoms) and comparing 
stems with different long-term disease record. 

The main scientific questions addressed in the fifth chapter are: are drought and esca syner-
gistic or antagonistic during grapevine dieback? To what extent plants submitted to drought or 
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esca present different physiological responses? We hypothesized that esca and drought would 
synergistically interact, amplifying esca leaf symptom development and plant susceptibility to 
drought. Moreover, we also expected that drought and esca induce similar physiological re-
sponses at leaf (by similar water potential regulation and leaf gas exchange) and at whole-plant 
(by similar whole-plant stomatal conductance and carbon balance) scales. In order to explore 
drought-esca interaction we submitted half of the plants to three months of water deficit (mod-
erate to severe) in two consecutive years. 

5. Theoretical framework

5.1. Plant-water relations and xylem tissue
To begin the photosynthetic process, leaves must open their stomata and let CO2 enter in the 
mesophyll. Unfortunately, the high difference in relative humidity between the atmosphere and 
the leaf, let huge amount of water directly flow into the atmosphere (this water loss is called 
transpiration, E). It has been estimated that for every gram of organic matter synthetized, the 
plant consume 500g of water (Taiz and Zeiger, 2003). In our physiological survey, we found 
that healthy well-watered leaves in grapevine release (on average) 167 mol of H2O every mol 
of absorbed CO2 (Chapter 5).  Consequently, to maintain an active photosynthesis, plants need 
to sustain a constant water flow up to the leaves. The cohesion-tension theory (Steudle, 2001) 
explains how plants are able to maintain a constant water flow through the stomata, even at 
height of more than 100m. The air water potential create a surface tension in the capillary me-
nisci inside the intercellular space in leaves. Thanks to the cohesion among water molecules, 
the tension is transmitted to the connected (adjacent) water molecules. Plants maintain a con-
tinuous water column that connect directly the water in the soil to the leaves (i.e. forming the 
soil-plant-atmosphere continuum, SPAC), that move acropetally thanks to the difference in 
water potential between the soil and the air (i.e. creating a tension). As the water flows through 

Figure 7. Cryo-SEM microscopy images of stomata on the abaxial side of Vitis vinifera leaves. (a) Slightly open 
stomata; H2O and CO2 molecules can flow in and out the leaf. (b) Closed stomata with cuticles open;  H2O and 
CO2 flow is strongly reduced. (c) Completely closed stomata;  H2O and CO2 flow is negligible. From Dayer et al. 
(2020a).
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transport water and mineral elements from the soil up to the roots, and its specialization help 
plants to avoid cavitation events. Xylem is formed by empty tubes (transporting water), which 
type and morphology depend on the genotype, arranged in vascular bundles with parenchyma 
cells and phloem (Fig. 8). Xylem anatomy can be highly diverse depending on the species 
(Tyree and Zimmermann, 2002). Conifers are known to present thin and short tracheids, while 
angiosperms usually present larger and longer vessels to ensure water transport and fibers to 
ensure structural support (Fig. 8A). In angiosperms, a reticulate network of many interconnect-
ed vessels composes the xylem tissue (one example in Fig. 9). These vessels are formed by 
different vessel elements (Fig. 9A), that can reach, in some species, meters in length (Tyree and 
Zimmermann, 2002). Vessels always end by a perforation plate (Fig. 9B), and contoured by 
vessel walls (Fig. 9C) which primary role is to prevent the spreading of air, in case a cavitation 
event embolize a vessel (Tyree and Sperry, 1989). Vessels are connected with other vessels or 

Figure 8. (A) Transverse sections of conifer vs angios-
perm xylem tissue. Conifer tracheids (here Pinus nigra) 
provide both transport and structural support. Angiosperm 
xylem (here Acer negundo) is more specialized. Water 
transport occurs in vessels (stained darker, V), whereas 
structural support is often provided by fibers (F). Scale 
bars are 50 μm. From Hacke and Sperry (2001). (B) Pho-
tomicrograph of a vascular bundle from a Vitis vinifera 
midrib. The different anatomical elements are indicated. 
Personal production.

the plant by a difference in water potential, 
we can apply the Ohm’s law for electric cir-
cuits, and estimate the hydraulic conductiv-
ity of the plant or just a part of it (i.e. its 
hydraulic properties, Box 1). Transpiration 
is controlled by stomata (Fig. 7), which are 
small apertures located on the green organs 
where the photosynthesis is active (especial-
ly leaves). Stomata respond continuously to 
different environmental stimuli to regulate 
plant transpiration. The main environmental 
factors that induce stomatal closure (or ap-
erture) are light conditions, vapor pressure 
deficit (VPD, an indicator of air humidity 
and temperature), and soil water content. 
When air temperature increase and/or rela-
tive humidity decrease, VPD become more 
intense, and air attracts water with higher 
tension. While in absence of light stomata 
simply close because photosynthesis is im-
possible, during VPD increase or soil water 
content decrease, stomatal closure intervene 
to impede the water column to reach too 
negative tensions and therefore, to produce 
a cavitation event, leading to xylem embo-
lism and plant desiccation (Martin-StPaul et 
al., 2017). Xylem is the vascular tissue that 
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Box 1. Ohm’s law application for plant water movement and the concept of hydraulic conduc-
tivity.

Ohm’s law analogy for plant transpiration correspond to: 
[1] F = ΔΨ / R

Where: F is the water flow that 
pass through the plant [g s-1], ΔΨ 
is the difference in water potential 
between air and soil [Mpa], R is the 
hydraulic resistance, dependent of 
physical and chemical properties of 
the flow pathway [Mpa s g-1], and 
corresponds to the inverse of the 
hydraulic conductance k. We can 
consider the soil-plant-atmosphere 
continuum (SPAC) as a series of hy-
draulic resistances (as in the figure 
on the left), and calculate the contri-
bution of each to the total hydraulic 
resistance as:
[2] R = Rroot + Rtrunk + Rleaf + Rstomata 

+ Rboundary level

If R is high, the water will flow with 
difficulty, if R is low, the water will 
flow easily (i.e. faster). The com-
parison of hydraulic resistances (or 

their inverse, k), is used in the literature to understand which part of the plant results in bottle-
neck for the water flow (Sperry et al., 1988). Commonly, studies compare different hydraulic 
conductivities kh [g m Mpa-1 s-1], calculated as:

[3] kh = k x l
Where: k is the hydraulic conductance (1/R), and l the length of the segment (e.g. stem or 
root) analyzed. Authors also use the specific hydraulic conductivity ks [g Mpa-1 s-1 m-1]:

[4] ks = kh / A
Where A correspond to the sapwood cross-sectional area [m²] of the segment analyzed.

ΔΨ

Transpiration

Absorption

Rroot

Rtrunk

Rleaf

Rstomata

Rboundary layer

Ψsoil = -0.05 Mpa

Ψstem = -0.4 Mpa

Ψleaf = -0.8 Mpa

Ψair = -50 Mpa

with parenchyma cells by pits (Fig. 9D). 
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5.2. Carbon balance and non-structural carbohydrates
Carbon (C) is the primary element that characterized life forms. Plants are able to transform 
the inorganic carbon (CO2) into organic carbon (sugars) through an elegant process called 
photosynthesis. Many studies focusing on the plant carbon balance, and on plant physiological 
status, analyze the non-structural carbohydrates (NSC, Hoch et al., 2003, Sala et al., 2012). 
These compounds can give a nice overview on the activities of the tissue (from one cell to 
whole plant) analyzed, even if the information will never be complete as the metabolic pathway 
is complex, and sometimes other C forms strongly participate to the carbon balance. Classi-
cally, NSC include glucose, fructose, sucrose, and starch. Glucose and fructose are the two 
monosaccharides at the base of (almost) any metabolic pathway, they are the final C form after 
photosynthesis, and their concentration is used to interpret the cellular activity. If one tissue 
(or cell) present higher content of glucose and fructose that usually means that the cells are 
stimulated to enhance the production of other metabolites (e.g. for growth or defense response, 
Roitsch and Gonzalez, 2004). 

Figure 10. Pressure-flow model. The source cell actively (ATP-dependent) load sucrose into the phloem sieve 
element (top-right), the decreased solute potential (Ψs) in the sieve element attract water from the neighbors 
xylem vessels. The water entrance (top blue arrow) increase the turgor pressure (Ψp) in the phloem element, and 
the solutes can move to the sink cell, which actively unload sucrose and restore a higher solute water potential. 
From Taiz and Zeiger (2003).
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The sucrose is the mobile C form; the plant uses sucrose to move C from C-source (especial-
ly leaves) to C-sink (fruits and perennial organs). In vascular plants, sucrose is transported 
through the phloem, the vascular tissue parallel to xylem. Following photosynthesis, glucose 
and fructose are combined together in sucrose molecules and loaded into the phloem tissue. 
The pressure-flow model theorizes how sugars can move from sources to sinks through the 
phloem tissue (Taiz and Zeiger, 2003, Fig. 10). It has been shown that phloem anatomy play an 
important role in sugar flow (Savage et al., 2017). Sieve elements can adapt their morphology 
in function of tree height, reducing sieve element hydraulic resistance when the distance rep-
resent a problem (Savage et al., 2017). Finally, starch is the reserve C form, it is found inside 
the vacuole and it is composed by long chain of glucose molecules. Consequently, quantifying 
glucose, fructose, sucrose, and starch, we can, with a good approximation, estimate the carbon 
cycles and balance inside the plants. Many authors used these analysis to explore the day/night 
cycles within organs (Dayer et al., 2016, Tixier et al., 2018, Gersony et al., 2020), or the C 
repartition among different organs (Tixier et al., 2018, 2020, Savi et al., 2019a), and theorized 
the response to multiple stresses (McDowell et al., 2008, Oliva et al., 2014). 

5.3. Drought and its consequences on plant physiology
One of the best indicator to understand how plants perceive drought is the measure of the wa-
ter potential (Ψ). Indeed, drought denote that less amount of water is available for the plant; 
the first direct implication is the increased difference in water potential between air and soil. 
Supposing that all vascular plants transport water mostly by the hydrostatic difference in water 
potential, give us the opportunity to compare different drought events at different intensities by 
one single measure: Ψ. 

Ψ is not uniform at different height of the SPAC (or different height of the plant, Box 1), and 
the Ψ gradient changes in function of soil and air conditions (Fig. 11, 12). Among other studies, 
Knipfer et al. (2020) evidenced that the relationship between PreDawn water potential (ΨPD) 
and MidDay water potential (ΨMD) changed as drought increased (Fig. 11A). ΨPD corresponds 
to Ψ in the soil: it is measured in leaves at night when the stomata are closed and the Ψ gradient 
between soil and leaves is close to zero (Améglio et al., 1999). ΨMD corresponds to the lowest 
Ψ that leaves are experiencing during the day, when the transpiration is at its maximum. We 
observe that when the plant is at well-watered conditions (ΨPD > -0.5 MPa, period I in Fig. 11A) 
ΨMD is highly variable (from 0 down to -1.5 MPa), this variation is exclusively driven by the 
VPD of the air. As the VPD increase, the ΨMD decrease (the leaf is experiencing lower water 
potentials), and the transpiration (E) rate increase (as in Fig. 12 for well-watered grapevines). 
As drought continue, ΨPD become more negative, and we observe (period II, Fig. 11A) that 
ΨMD remains constant. This phenomenon is given by the stomatal closure that reduces the gas 
exchange and impede the water column to reach too negative values. Indeed, the authors ob-
served that in period II, both stomatal conductance and CO2 assimilation are strongly reduced 
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(Fig. 11B, C). The stomatal closure, chemically imposed by the phytohormone abscisic acid 
(ABA, Assmann, 2003), is concomitant with (or caused by?) an accentuate sensibility to VPD 
in leaves (Charrier et al., 2018, Dayer et al., 2020b) and a decrease in root-soil interface con-
ductance (Carminati and Javaux, 2020). The slope in the regression curve between ΨPD and 
ΨMD can define the plant response to a moderate level of drought (Martínez-Vilalta et al., 2014). 
Authors have defined plants behavior as isohydric and anisohydric: an isohydric behavior will 
close the stomata as soon as drought starts (with a slope close to zero), an anisohydric behavior 
will let the transpiration continue even at low ΨPD (with a slope close to one, Martínez-Vilalta 
et al., 2014). Recent studies have now demonstrated that some species can adapt their behav-
ior from anisohydric to isohydric in function of different drought level (Charrier et al., 2018, 
Knipfer et al., 2020). This is what characterize period I and II in Fig. 11A: a first anisohydric 
behavior (the plant continue to transpire as ΨPD decreases), then an isohydric behavior (the 
plant close its stomata). Consequently, it has been hypothesized that the observed differences 
in aniso- and iso-hydric behavior between different cultivars of the same species (as observed 
by Schultz, 2003 in grapevine), is given by a different shift between period I and II, not by a 
constant behavior over all drought intensities (Charrier et al., 2018).

As drought continues, ΨPD decreases and plants enter in period III (Fig. 11A), here ΨPD is per-
fectly correlated with ΨMD (i.e. the stomata are completely closed and the increase in xylem 
tension is driven by the decrease in soil water content). In this phase, the plant is in a critical 
state, at these tensions the water column inside the xylem vessels could broke (by a cavitation 
event) and irreparably decrease the xylem hydraulic conductivity (inducing xylem hydraulic 
failure, Delzon and Cochard, 2014). Once a xylem vessel embolize by the rupture of water col-
umn, the air can rapidly spread and desiccate the plant. If generalized, this phenomenon could 
lead to plant death by hydraulic failure (see paragraph 2.1). When the level of embolism in 
stems reach critical level, plants are not able to recover. This threshold has been evaluate to the 

A B C

Figure 11.  Water potential and gas exchange during a slow dry down experiment in Juglans spp. (A) Relationship 
between Predawn Ψ (ΨPD) and Midday Ψ (ΨMD) [MPa], the black thick line indicate a model describing the differ-
ent phases of relationship, the vertical solid lines separate the three different phases. (B) Relationship between ΨPD 
and the stomatal conductance, gs [mol s-1 m-2]. (C) Relationship between ΨPD and the CO2 assimilation, A [µmol 
s-1 m-2]. From Knipfer et al. (2020).
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loss of 50% of stem hydraulic conductivity for conifers (P50, Brodribb et al., 2010), and 88% of 
stem hydraulic conductivity for angiosperms (P88, Urli et al., 2013). 

Some plants have also another mechanism (other than pit size, see paragraph 2.4) to avoid the 
air spreading during intense drought: the hydraulic segmentation (Tyree and Ewers, 1991). In 
those plants, the annual organs (i.e. leaves) are more sensible than perennial organs (i.e. stems 
or roots) to xylem embolism, thus the leaves would shed protecting the perennial organs from 
air embolism (Hochberg et al., 2015, Charrier et al., 2016). However, the anatomical character-
istics that could explain hydraulic segmentation are still unclear. Charrier et al. (2018) showed 
that grapevine stems in spring are more vulnerable to xylem embolism than stems in late sum-
mer, suggesting that the summer lignification could increase the embolism resistance. Interest-
ingly, a seasonal change in embolism vulnerability exists also in grapevine leaves (Sorek et al., 
2020). Sorek et al. (2020) demonstrated that “even mature xylem elements are ‘only mostly 
dead’”, and they can modify the thickness of pit membranes over the season, influencing their 
vulnerability to embolism. Finally, it is also known that embolism in stems begin in the mid-
dle of stems, and expand towards the bark (Brodersen et al., 2013), suggesting that primary 
xylem (i.e. the same found in petioles) is more sensible to embolism. Another indicator that 
is correlated with the leaf tolerance to drought is the turgor loss point (ΨTLP, Bartlett et al., 
2016). ΨTLP correspond to the leaf Ψ at which the leaf wilt and it is reached when the Ψleaf is 
equal to Ψosmotic inside the leaf cells (Brodribb and Holbrook, 2003). Before reaching ΨTLP, the 
outside-xylem hydraulic conductivity decrease (Scoffoni et al., 2017), and the stomata start to 
close (Brodribb and Holbrook, 2003). ΨTLP also indicate the starting point in leaf xylem hy-
draulic failure (Bartlett et al., 2016, Brodribb et al., 2016, Dayer et al., 2020b). Consequently, 
if plants are able to delay ΨTLP, they can also increase their sustainability. The only technique 
plants have to decrease ΨTLP is to decrease Ψosmotic by accumulating small compounds (also 
called osmolytes) inside leaf cells (comprehending fructose, Rodrigues et al., 1993). 

Other than hydraulic integrity, drought modifies the carbon balance in the plant. Indeed, when 

Figure 12. Daytime (08.00–20.00) whole-plant transpi-
ration rates (E, mmol m-2 s-1) depending on vapor pres-
sure deficit (VPD, kPa) in three grapevine cultivars 
(Grenache, Semillon, and Syrah) under well-watered 
conditions (ΨPD>-0.5 MPa). Light colored dots are 
single values registered across 15 days and dark colored 
dots represent the mean of 0.5 kPa ranges of VPD ± SE. 
From Dayer et al., 2020b.
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stomata close the photosynthetic activity is reduced (CO2 assimilation is reduced together with 
gs, Fig. 5C), and the carbon reserves are mobilized toward roots, mostly in order to explore 
other soil portions (Hagedorn et al., 2016). These observations were the starting point of the 
carbon starvation theory (described in the paragraph 2.1.of the Research context).

5.4. Vascular diseases and their consequences on plant physiology 
Either fungi or bacteria can cause vascular diseases. The different vascular pathologies are of-
ten described together by two main aspects: all the pathogens live, spread, and develop (most-
ly) inside the xylem vasculature and the pathologies result in similar symptoms. 

Fungal vascular diseases can be distinguished from other plant disorders by their particular 
visual symptoms. Leaves can present characteristic tiger-stripe symptoms (as for hop-Verticil-
lium pathosystem, Fig. 13 0-5), where the main veins remains green and the interveinal space 
first become yellow and then scorched. Leaves can just yellow in part (Fig. 13A, B), uniformly 
(Fig. 13c), or present different deformations (Fig. 13C). Finally, leaves can also totally wilt, 
and the crown defoliate. Inside the stems, the xylem vasculature appears dark (Fig. 13D) or 
brown (Fig. 13a, b). In woody species, wood necrosis is easily recognizable (Fig. 14). Inside 
xylem vessel lumina, we found tyloses and gels (Fig. 15A, C). When the vessel is completely 
occluded, thick tyloses occupy the whole lumen (Fig. 15B). 

The most popular fungal genera associated with vascular diseases are Ceratocystis, Ophiosto-
ma, Fusarium, and Verticillium (Agrios 2004), and we can add two commonly encountered in 
grapevine: Phaeomoniella and Phaeoacremonium. These pathogens can overwinter in soils 
and in plant debris, frequently they enter into the host directly from the roots: this is the case 
for Fusarium (Di Pietro et al., 2003) and Verticillium (Klosterman et al., 2009) pathologies. 
Fungi can also infect the host by insect vectors: for example, Coleoptera beetles transport 
Ophiostoma novo-ulmi during Dutch elm disease (Webber, 2004), Ceratocystis fagacearum 
during oak wilt (Hayslett et al., 2008), Ceratocystis fimbriata during mango wilt (Souza et al., 
2013). One study suggest the intervention of different arthropods in grapevine trunk diseases 
dispersal (Moyo et al., 2014). Otherwise, pathogens can directly colonize natural wounds in 
the aerial part of the plants: for example, Phaeomoniella and Phaeoacremonium in grape-
vine pruning wounds (Larignon and Gramaje, 2015). Once the host has been penetrated (by 
any mechanism), the fungi need to rapidly reach the xylem vessels, and successively develop. 
Vascular pathogens have a cohort of enzymes specialized in cell wall degradation (Van Alfen, 
1989), in order to move radially until reaching the xylem vessels. However, vascular pathogens 
are not able to digest lignin and suberin, and one successful strategy from the host could be 
to “lignified” the cells surrounding the pathogens (Beckman and Roberts, 1995). It has been 
documented that the majority of Verticillium penetrations fail at this step in the root endoder-
mis, which is rich in phenolic and anti-oxidant compounds (Beckman and Roberts, 1995). 
Consequently, it is broadly assumed that vascular pathogens prefer enter passively (by wounds 
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Figure 13. Examples of leaf symptoms during vascular pathogenesis. (0-5). Verticillium symptom evolution in 
Humulus lupulus (from Flajšman et al., 2017), from green (0) to almost complete defoliation (5). 0 corresponds 
to the inoculation day, and each picture was taken at a 7 days interval. (A-D) Verticillium symptoms in Brassica 
napus (from Lopisso et al., 2017). (A) One-sided leaf chlorosis at 28 days post-inoculation (DPI). (B) Interveinal 
chlorosis at 28 DPI. (C) Leaf deformation at 49 DPI. (D) Hypocotyl cross-section showing vascular discoloration 
at 49 DPI. (a-c) Fusarium symptoms in Solanum lycopersicum (from Ephytia, Blancard, INRAE) (a,b) Brown 
discoloration in xylem vasculature. (c) Leaf chlorosis.
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in roots and stems or by insect-vector mediated transmission) inside the plants, in order to be 
in direct contact with the xylem. 

Once inside the vessels, vascular fungi can move axially and colonize systemically the plant, 
in opposition, the plant try to slow and stop pathogen progression in the xylem (Fig. 16). Once 
the plant recognize a vascular pathogen inside the xylem vessel lumen, it might use different 
defense mechanisms (Fig. 16, left side). Around colonized parenchyma cells, a callose deposi-
tion can impede the pathogen to move into neighbor healthy cells; the secretion of antioxidant 
compounds (e.g. phenols) can help the destruction of pathogen mycelium. Finally, the strongest 
and microscopically visible response that is the production of tyloses (expansions of paren-
chyma cells) and gels inside the xylem vessel lumen that are produced in order to physically 
restrict pathogens in a certain area. If the defense mechanisms against pathogen fail (Fig. 16, 
right side), the pathogen will be able to colonize the successive vessel element and continue 

Figure 14. Trunk discolorations caused by Fusarium with galleries from the fungi-associated beetles in (A) Quer-
cus agrifolia. (B) Persea Americana. (C) Quercus robur. (D) Ricinus communis. From Eskalen et al. (2013).

Figure 15. Plant-derived vascular occlusions at SEM microscopy following Fusarium oxysporum inoculation 
in banana. (A) Tyloses (Ty) expanding from pit membranes (PM); vessel secondary wall (SW) is indicated. (B) 
Complete occlusion of a vessel lumen by the adherence of adjacent tyloses walls (arrowheads) 8 days after ino-
culation. (C) Presence of small tyloses (Ty) and gels within a vessel lumen 4 days after inoculation. From Van-
derMolen et al., 1987).

A B

C
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Figure 16. Theoretical model of vascular pathogen development. On the left side of the figure is schematized the 
different steps of plant-pathogen interaction when the plant efficiently stops the pathogen spread. On the right 
side of the figure is schematized the vessel colonization by vascular pathogens. Simplified from Beckmann and 
Roberts (1995), see text for details.
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its progression. Because the pathogens always move slower than the water flow (even in the 
most susceptible hosts), it has been hypothesized that fungi need to create spores and germinate 
every time they reach a perforation plate (Fig. 16, Beckman and Roberts, 1995), this could also 
explain the high resistance of conifers to vascular diseases (Van Alfen, 1989). Conifers present 
short tracheids, instead of long and large vessels (Fig. 8A), the high frequency of perforation 
plates should therefore reduce pathogen progression rate and help the plant to have an efficient 
response. 

The hypothesis of the physical restriction (or compartmentalization) of vascular pathogens is 
reminiscent of plant resistance model for wood decay pathogens (Shigo, 1984, Pearce, 1996, 
Fig. 17). In the compartmentalization of decay in trees (CODIT) model, the wood decay fungi 
are physically separated from the healthy wood by different layers of response zones (Fig. 17). 
Similarly, tyloses and gels during vascular diseases would physically restrict pathogens in dead 
tissues. Consequently, the amount of xylem vessels filled with tyloses and gels is often correlat-
ed with the plant resistance to pathogen infections (Jacobi and MacDonald, 1980, Ouellette et 
al., 1999, Clérivet et al., 2000, Et-Touil et al., 2005, Venturas et al., 2014, Park and Juzwik 
2014, Rioux et al., 2018). However, other studies have theorized that an excessive amount of 
tyloses and gels inside the xylem vessels could interfere with the water movement and cause 
plant death by hydraulic failure (detailed in Research context 2.2). 

Figure 17. Conceptual model of “compartmentalization of decay in trees” (CODIT). Originally conceptualized by 
Shigo 1984. Wood decay pathogens have colonized the center of the trunk (i.e. in advanced and intermediate de-
cay). The plant enhance its chemical and physical defenses in the reaction zone and in the transition zone in order 
to maintain the pathogens compartmentalized and physically distant from the healthy wood. From Pearce (1990).
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5.5. X-ray microcomputed tomography, in vivo visualizations of hydraulic integ-
rity

Since the first publication of the cohesion-tension theory (Dixon and Joly, 1894), many stud-
ies tried to discover how and at which moment cavitation events lead to irreversible loss of 
hydraulic conductivity. Nowadays, plant sensibility to hydraulic failure is mostly measured 
by the Cavitron technique (Cochard, 2002), or by ks / ksMAX comparisons (Sperry and Tyree, 
1988). These techniques are prone to different artifacts; especially the open vessel artifacts, for 
which long vessel species such as grapevine are extremely sensible (Wheeler et al., 2013), and 
plant response to wound, as both methodologies require to cut the plant at certain moments. 
Three techniques are now able to visualize the embolism spreading in vivo (i.e. without cutting 
the plant and avoiding at maximum experimental artifacts): X-ray microtomography (X-ray 
microCT, Brodersen et al., 2013), magnetic resonance imaging (MRI, Holbrook et al., 2001), 
and optical vulnerability (OV, Brodribb et al., 2016). Among the three, X-ray microCT present 
the advantages to visualize woody organs and to quantify with high resolution and in 3D the 
functionality vessel-by-vessel (which is impossible by OV), and to distinguish between air 
and non-gaseous embolism (as MRI evidence the functional vessels only). However, in other 
context MRI and OV can offer different advantages compared to X-ray microCT. In this thesis, 
we mostly used X-ray microCT to explore the in vivo hydraulic integrity of grapevines during 
esca leaf symptom expression.
All measures were done at beamline PSICHE (King et al., 2016), at Synchrotron (cyclic par-
ticle accelerator) SOLEIL (Paris-Saclay). The goal of our experiments was to quantitatively 
differentiate functional vessels filled with water and non-functional vessels filled with gaseous 
or nongaseous embolism in different organs. Entire stems were cut under water and immersed 
in an iohexol solution. Iohexol appears bright when excited with X-ray; in the final 3D vol-
umes, we were then able to distinguish functional, occluded and air-filled vessels (Fig. 19). As 
detailed in Chapter 2 and 4, we were able to quantify the loss of hydraulic conductivity given 
by native air embolism and by occlusion.

Figure 18. Detail from an X-ray microCT scan. The iohexol 
appear bright and the functional vessels are easily visible 
(white arrow). Air-filled vessels (black arrow) and occluded 
vessels (red arrow) are indicated. Personal production. 
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6. Experimental framework

6.1. Plant material: designing a new experimental setup to study esca
As presented in the introduction, esca leaf symptoms cannot be reproduced under controlled 
conditions. This technical impediment is one of the main lock restricting the researches on 
esca. In this thesis, we overcame to this technical problem by uprooting 30 years-old plants 
from a vineyard and transplanting them into pots. Thus, we were able to control the water re-
gime of each single plant and transport symptomatic plants at pleasure. The protocol (detailed 
in Chapter 2) includes: plant excavation in late winter, a water immersion overnight of the root 
system, and one month resting on heating tables. Finally, plants were inserted in 20-L pots in 
fine clay medium. During the whole experiment (excepted for short periods with only water), 
plants were watered with nutritive solution (0.1 mM NH4H2PO4, 0.187 mM NH4NO3, 0.255 
mM KNO3, 0.025 mM MgSO4, 0.002 mM Fe, and oligo-elements [B, Zn, Mn, Cu, and Mo]). 
In the greenhouse, plants were exposed to natural light conditions. All the vines used in this 
experiment came from the same experimental plot (“la parcelle Météo”), located at INRAE 
Nouvelle Aquitaine (44°47’24.8”N, 0°34’35.1”W). Vitis vinifera cv Sauvignon blanc, grafted 
onto 101-14 MGt, were planted in 1992 in 8 rows of 42 plants each at a density of 0.57 plants 

Year
Esca incidence (symptomatic plants/total plants) Mortality 

(plants)*pA pS TOT

2012 - - 64.8 % (193/298) 38

2013 23.8 % (25/105) 79.2 % (137/173) 58.3 % (162/278) 20

2014 13.7 % (11/80) 72 % (108/150) 51.7 % (119/230) 48

2015 8.7 % (6/69) 28.1 % (34/121) 21.1 % (40/190) 40

2016 3.4 % (2/59) 38.5 % (47/122) 27.1 % (49/181) 9

2017 12.3 % (7/57) 53.2 % (58/109) 39.2 % (65/166) 15

Mean ± SE 12.4 ± 3.4 % 54.2 ± 9.7 % 43.7 ± 7.1 %

Table 2. Esca incidence on V. vinifera cv Sauvignon blanc plot before the experiment. The plants are subdivided 
in previously asymptomatic (pA, plants that have never express esca leaf symptoms before the considered year), 
previously symptomatic (pS, plants that have express esca leaf symptoms at least once before the considered 
year). In 2012 there is no subdivision in pA/pS because there were no informations on which plants have already 
express esca leaf symptoms

*Comprehending non-sprouted plants, plant substitution, and plant sampling for other experiments
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m-2 (3 m between rows, 1 m between plants in a row). This plot was surveyed each year since 
2012 for esca leaf symptom development (following Lecomte et al., 2012 notation, Table 2). 
We were able, during the experiments, to divide plants by their disease historical record and 
evaluate the long-term impact of esca leaf symptoms on plant physiology. We separated pA 
plants (plants that never expressed leaf symptoms since 2012, previously asymptomatic) from 
pS plants (plants that expressed leaf symptoms at least once from 2012, previously symptom-
atic). Plants were uprooted in 2017 (n=4), 2018 (n=51) and 2019 (n=50).

6.2. Esca leaf symptom notation
The apparition and evolution of esca leaf symptoms was surveyed twice a week from June 
2018 to October 2019 on every plant. Single leaves could be noted as asymptomatic (green and 
apparently healthy), pre-symptomatic (presenting yellowing or small yellow spots between the 
veins, as in Fig. 6A, B, C, F, G, H, K, L), tiger-stripe (with the main veins green and the inter-
veinal space from yellow to scorch, as in Fig. 6 D, E, I, J, M), or apoplectic (wilted leaves). 
Entire plants were noted as pre-symptomatic, tiger-stripe symptomatic or apoplectic when at 
least 25% of the canopy were presenting these symptoms. For specific and accurate analysis 
(i.e. plants placed on scales for whole-plant transpiration estimates) a leaf-by-leaf count of 
symptoms were done every week in 2018 and every-other week in 2019. Some plants (n=5 in 
2018 and n=16 in 2019) were presenting pre-symptomatic leaves at the end of the season (i.e. 
without a clear distinction between green and tiger-stripe). Samples from these plants (note 
that they were always on well-watered conditions) were removed from the analysis. However, 
we considered these plants as asymptomatic for the disease historical record (i.e. a pA plant 
presenting intermediate symptoms was still considered pA for the following season).

6.3. Experiment timetable
The different experiments took place from September 2017 (with a synchrotron SOLEIL cam-
paign before the starting of the PhD thesis) to October 2019 as presented in Fig. 20. The exper-
iments, detailed in each different chapter, comprehend:
•	 X-ray microCT: at synchrotron SOLEIL, beamline PSICHE. To quantify in vivo the loss of 

hydraulic conductivity in midribs and stems (Chapters 2-4).
•	 Uprooting and transplanting the plants: at UMR SAVE, INRAE. To obtain naturally infect-

ed plants under controlled conditions (Chapters 2-5).
•	 qPCR vascular pathogen detection: at UMR EGFV and SAVE, INRAE. Using primers 

set already developed. To detect and quantify Pch and Pmin in different grapevine tissues 
(Chapters 2-5).

•	 Symptom notation: at UMR SAVE, INRAE. Necessary to conduct study on esca. (Chapters 
2-5).

•	 Water deficit maintenance: at UMR EGFV (platform Bord’ô) and SAVE, INRAE. Using 
pressure chambers, stem psychrometers and scales. To understand the interaction between 
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esca and drought (Chapter 5).
•	 Leaf anatomy sampling: at UMR SAVE, INRAE. Samples prepared at SAVE, cross-sec-

tions obtained using the Ultra-microtome Reichert Ultracut S at the Bordeaux Imaging 
Center (BIC “Imagerie végétale”). To understand the nature of hydraulic failure during 
esca, and compare it with other induced-senescing processes (Chapter 2, 3).

•	 Transpiration record: at UMR EGFV (platform Bord’ô) and SAVE, INRAE. At the whole-
plant and continuously (platform Bord’ô) and leaf scale (using a TARGAS). (Chapter 5).

•	 Leaf and stem NSC sampling: sampled at UMR EGFV (platform Bord’ô) and SAVE, IN-
RAE. Quantified at hit-me platform (UMR BFP, INRAE). To understand the carbon bal-
ance during stressing conditions (Chapter 5).

•	 Stem hydraulic conductivity measurements: at UMR SAVE, INRAE. Stem specific hydrau-
lic conductivity (ks) and theoretical specific hydraulic conductivity (kth). To understand the 
effect of esca and drought on stem hydraulic integrity (Chapter 4, 5).

•	 Ethylene quantification essay: sampled at UMR EGFV (platform Bord’ô) and SAVE, IN-
RAE. Quantified at ENSAT, Toulouse. To understand the role of ethylene during leaf symp-
tom expression (Box 1 Chapter 6, Discussion).

•	 Optical vulnerability technique: stems sampled at UMR SAVE, INRAE. Leaves analyzed 
at UMR BIOGECO, INRAE. To quantify the functionality of esca symptomatic leaf lamina 
(Chapter 3).

•	 Sampling for Ascomycota metagenomics: DNA extracted and purified at UMR SAVE, IN-
RAE. PCRs realized at SAVE. Sequenced at PGTB sequencing facility. To understand the 
changes in Ascomycota population in different organs in different stressing conditions (An-
nex 1).   

My personal participation at each different measure is detailed in the corresponded chapter. 



52

X-ray microCT campaigns
Uprooting plants
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Leaf NSC sampling
Stem NSC sampling
Stem hydraulic conductivity measurements 

Jan Feb Mar Apr Jun Jul Aug Sep Oct Nov Dec 2018

Water deficit maintenance

Jan Feb Mar Apr Jun Jul Aug Sep Oct Nov Dec 2019

qPCR vascular pathogen detection

2017Sep Oct Nov Dec
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Ethylene quantification essay 

Figure 19. Experimental timetable of the thesis from 2017 to 2019.



53



54

CHAPTER 2

Exploring the Hydraulic failure hypothesis of Esca Leaf 
Symptom Formation

Published in: Plant Physiology, November 2019, Volume 181, pages 1163–1174.

Résumé : Les pathogènes vasculaires sont à l’origine de plusieurs maladies chez les plantes 
pérennes et c’est sur feuilles que nous retrouvons un des symptômes les plus remarquables. 
L’esca est une maladie vasculaire qui entraine des impacts fortement négatifs sur la production 
de raisin et l’industrie du vin. Même si les mécanismes sous-jacents à la formation des symp-
tômes foliaires restent méconnus, deux hypothèses sont souvent citées par les scientifiques. La 
première hypothèse propose qu’une production des toxines par les pathogènes soit à l’origine 
de ces symptômes. La seconde propose que les symptômes soient dus à un dysfonctionnement 
hydraulique qui pourrait être causé par des embolies gazeuses, par la présence physique des 
pathogènes dans les vaisseaux de xylème, et/ou par la production par la plante de thylloses et de 
gels. Lors de cette étude, nous avons transplanté en pot des ceps de Sauvignon blanc âgés d’en-
viron 30 ans, naturellement infectés par l’esca. Ce système nous a permis d’explorer l’intégrité 
hydraulique des feuilles (dans les nervures centrales et les pétioles) par microtomographie à 
rayon-X et par microscopie optique. Nos résultats ont montré que les feuilles symptomatiques 
n’étaient pas associées à la présence d’embolie gazeuse dans les vaisseaux. Cependant, les 
feuilles symptomatiques présentaient des niveaux significativement importants des vaisseaux 
non-fonctionnels, obstrués par des embolies non-gazeuses (i.e. thylloses et gels), entrainant 
une perte de conductivité hydraulique de 69% sur nervures centrales et 55% sur pétioles en 
moyenne. Présente en pourcentages variables, cette perte de conductivité hydraulique n’était 
pas corrélée à la sévérité de la maladie sur les feuilles. Grâce à la PCR quantitative, nous avons 
quantifié la présence des deux pathogènes vasculaires associés à l’esca, sans en trouver dans les 
feuilles. Dans l’ensemble, ces résultats démontrent que le développement des symptômes est 
associé à une forte perturbation de l’intégrité vasculaire, stimulée à distance par les pathogènes, 
qui prolifèrent dans le tronc. Cette recherche ouvre de nouvelles perspectives sur l’expression 
des symptômes d’esca où les hypothèses du dysfonctionnement hydraulique et des toxines ne 
sont pas nécessairement en opposition.



55

Exploring the Hydraulic Failure Hypothesis of Esca Leaf
Symptom Formation1[OPEN]

Giovanni Bortolami,a Gregory A. Gambetta,b Sylvain Delzon,c Laurent J. Lamarque,c Jérôme Pouzoulet,b

Eric Badel,d Régis Burlett,c Guillaume Charrier,d Hervé Cochard,d Silvina Dayer,b Steven Jansen,e

Andrew King,f Pascal Lecomte,a Frederic Lens,g José M. Torres-Ruiz,d and Chloé E.L. Delmasa,2,3

aSAVE, INRA, BSA, ISVV, 33882 Villenave d’Ornon, France
bEGFV, Bordeaux-Sciences Agro, INRA, Université Bordeaux, ISVV, 33882 Villenave d’Ornon, France
cBIOGECO, INRA, Université Bordeaux, 33610 Cestas, France
dUniversité Clermont Auvergne, INRA, PIAF, F-63000 Clermont-Ferrand, France
eInstitute of Systematic Botany and Ecology, Ulm University, D-89081 Ulm, Germany
fSynchrotron SOLEIL, L’Orme de Merisiers, Saint Aubin-BP48, 91192 Gif-sur-Yvette cedex, France
gNaturalis Biodiversity Center, Leiden University, 2300RA Leiden, The Netherlands

ORCID IDs: 0000-0001-7528-9644 (G.B.); 0000-0002-8838-5050 (G.A.G.); 0000-0003-3442-1711 (S.D.); 0000-0002-1430-5193 (L.J.L.);
0000-0001-8589-3474 (J.P.); 0000-0003-2282-7554 (E.B.); 0000-0001-8289-5757 (R.B.); 0000-0001-8722-8822 (G.C.); 0000-0002-2727-7072 (H.C.);
0000-0002-4476-5334 (S.J.); 0000-0002-0479-0295 (P.L.); 0000-0002-5001-0149 (F.L.); 0000-0003-1367-7056 (J.M.T.-R.); 0000-0003-3568-605X
(C.E.L.D.).

Vascular pathogens cause disease in a large spectrum of perennial plants, with leaf scorch being one of the most conspicuous
symptoms. Esca in grapevine (Vitis vinifera) is a vascular disease with huge negative effects on grape yield and the wine
industry. One prominent hypothesis suggests that vascular disease leaf scorch is caused by fungal pathogen-derived elicitors
and toxins. Another hypothesis suggests that leaf scorch is caused by hydraulic failure due to air embolism, the pathogen itself,
and/or plant-derived tyloses and gels. In this study, we transplanted mature, naturally infected esca symptomatic vines from
the field into pots, allowing us to explore xylem integrity in leaves (i.e. leaf midveins and petioles) using synchrotron-based
in vivo x-ray microcomputed tomography and light microscopy. Our results demonstrated that symptomatic leaves are not
associated with air embolism. In contrast, symptomatic leaves presented significantly more nonfunctional vessels resulting from
the presence of nongaseous embolisms (i.e. tyloses and gels) than control leaves, but there was no significant correlation with
disease severity. Using quantitative PCR, we determined that two vascular pathogen species associated with esca necrosis in the
trunk were not found in leaves where occlusions were observed. Together, these results demonstrate that symptom development
is associated with the disruption of vessel integrity and suggest that symptoms are elicited at a distance from the trunk where
fungal infections occur. These findings open new perspectives on esca symptom expression where the hydraulic failure and
elicitor/toxin hypotheses are not necessarily mutually exclusive.

Maintaining the integrity of the plant vascular sys-
tem is crucial for plant health and productivity. Xylem
tissue transportswater andmineral nutrients and forms
a complex reticulate network of many interconnected
vessels (Zimmermann, 1983). This complex network of
vessels hosts a large breadth of endophytic microor-
ganisms, most of which live harmlessly within the plant
(Fisher et al., 1993; Oses et al., 2008; Qi et al., 2012).
However, some organisms in the vessel lumina can be
(or become) pathogenic, and this class of pathogens is
referred to as vascular pathogens (Pearce, 1996). Vas-
cular pathogens are highly diverse, and their patholo-
gies depend on the specific pathogen-host interaction.
They cause diseases in a wide taxonomic range of plant
species.
Plant vascular disorders are sometimes identified by

conspicuous leaf scorch symptoms, which are strik-
ingly similar and typically begin with necrosis at the
leaf margin. The exact mechanisms driving these leaf
symptoms remain largely unknown, and there are two

long-standing and unresolved working hypotheses
(Fradin and Thomma, 2006; Surico et al., 2006;
McElrone et al., 2010; Sun et al., 2013; Yadeta and
Thomma, 2013; Oliva et al., 2014; Pouzoulet et al.,
2014). The first hypothesis proposes that symptoms
result from the transport of pathogen-derived elicitors
or toxins through the transpiration stream. The second
proposes that symptoms result from hydraulic failure
resulting from any combination of air embolism, oc-
clusion of xylem vessels from the pathogen itself, and/
or occlusion of xylem vessels by plant-derived tyloses
and gels.
Esca disease in grapevine (Vitis vinifera) is one case

where the conflict between these two hypotheses of leaf
symptom formation remains unresolved (Surico et al.,
2006; Pouzoulet et al., 2014). Esca is characterized by
three main symptoms: leaf scorch, trunk necrosis, and a
colored stripe along the vasculature (Lecomte et al.,
2012). Esca belongs to a complex of diseases referred
to as grapevine trunk diseases, which cause defoliation,
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berry loss, and vine death (Bertsch et al., 2013;
Mondello et al., 2018; Gramaje et al., 2018). This disease
has been recognized for thousands of years and has
been increasingly the focus of research over the past
two decades, as it is believed to be one of the main
causes of grape production decline, especially in
Europe, the United States (California), and South Africa
(Cloete et al., 2015; Guerin-Dubrana et al., 2019). The
fungi most strongly associated with esca wood necrosis
in the trunk have been identified (Larignon and Dubos,
1997; Mugnai et al., 1999; Fischer 2006; White et al.,
2011; Bruez et al., 2014; Morales-Cruz et al., 2018).
While the disease was formerly associated with the
presence of soft rot (caused by basidiomycetes such as
Fomitiporia mediterranea), studies have identified two
vascular pathogens, Phaeomoniella chlamydospora and
Phaeoacremonium minimum, which are detected in trunk
necrotic tissues of esca symptomatic vines (Feliciano
et al., 2004; Massonnet et al., 2018; Morales-Cruz
et al., 2018). Esca leaf symptoms are only observed on
mature vines (more than 7 years old) in the field
(Mondello et al., 2018) and cannot be reliably repro-
duced by inoculating vines with the causal fungi
(Surico et al., 2006; Bruno et al., 2007), despite testing
various methodologies (Reis et al., 2019). This suggests
that leaf scorch symptoms are the result of complex
host-pathogen-environment interactions (Fischer and
Peighami-Ashnaei, 2019). Neither the elicitor/toxin
nor the hydraulic failure hypothesis of esca pathogen-
esis has been experimentally confirmed. It is generally
accepted that the fungi responsible for esca wood ne-
crosis are not present in leaves and that leaf symptoms
are a consequence of fungal activities in the perennial
organs (i.e. trunk). However, to our knowledge, leaves
and current-year stems have never been investigated in

detail to see if the key pathogens detected in necrotic
regions of the perennial wood also occur in these
organs.

In this study, we created an experimental system for
the study of esca disease by transplanting mature,
naturally infected esca symptomatic vines from the
field into large pots. This allowed us to test the hy-
draulic failure hypothesis by exploring vessel integrity
(presence of air embolism, occlusion, and the pathogens
themselves) in leaves using noninvasive, in vivo
imaging via x-ray microcomputed tomography
(microCT), light microscopy, and quantitative PCR
(qPCR). MicroCT avoids artifacts caused by traditional
invasive techniques (Torres-Ruiz et al., 2015) and al-
lows for the visualization of vessel content and func-
tionality in esca symptomatic leaf petioles and midribs.
We assessed the presence of two of the main pathogens
associated with esca, P. chlamydospora and P. minimum,
using qPCR in annual stems, leaves, and multiyear
branches. These two species are tracheomycotic agents
and could thus, in theory, disperse systemically via the
sap flow from the trunk (Pouzoulet et al., 2014). This
study provides new perspectives regarding the patho-
genesis of esca leaf symptom formation.

RESULTS

Vessel Occlusion and the Percentage Loss of Conductivity
in Symptomatic and Asymptomatic Leaves

Midrib and petiole vascular bundles of symptomatic
and asymptomatic leaves were imaged in three di-
mensions using microCT (Fig. 1; Supplemental Figs. S1
and S2). These analyses allowed for the identification of
embolized and occluded xylem vessels and the quan-
tification of the percentage loss of theoretical hydraulic
conductivity (PLC). The level of native air embolism
was very low, ranging from 2.8% to 9.7%, for both
asymptomatic and symptomatic midribs (Fig. 1, A and
C) and petioles (Supplemental Fig. S1, A and D). There
were no significant differences in the levels of native air
embolism between symptomatic and asymptomatic
leaves in petioles or midribs (Table 1; Fig. 2).

After exposing the xylem vessels to air by cutting the
leaf or petiole just above (,2 mm) the scanned area,
some proportion of vessels did not embolize immedi-
ately and apparently remained water filled (Fig. 1, B
and D; Supplemental Figs. S1, B and E, red arrows, S2,
C and D). These vessels were considered occluded. The
average PLC in asymptomatic midribs due to occluded
vessels was 12.4% 6 3.2%, while symptomatic midribs
showed significantly higher values, 68.8% 6 6.4% (Ta-
ble 1; Fig. 3). This is also the case for petioles, where
asymptomatic leaves exhibited a PLC of only 1.9% 6
1.8%, while PLC in symptomatic leaves was 55.3% 6
9% (Table 1; Fig. 3). Detailed information on the con-
tributions of different kinds of vessels to the theoretical
hydraulic conductivity is presented in Supplemental
Table S1.
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The Nature of the Xylem Vessel Occlusions

We investigated the nature of the vessel occlusions
causing the high percentage of nonfunctional vessels
in esca symptomatic leaves using microCT and light
microscopy. MicroCT was conducted both with and
without the contrasting agent iohexol, which has been
utilized previously to track the transpiration pathway
and determine vessel functionality (as described by
Pratt and Jacobsen [2018]). The subsequent robust (ex-
amining more than 200 cross sections per microCT
volume) and detailed (examining both cross and lon-
gitudinal sections) examinations of the microCT vol-
umes in symptomatic leaves revealed that the nature of

the vessel occlusions is complex (Fig. 4). Occlusions can
be larger, spanning the entire diameter of the vessel
(Fig. 4A, red arrowheads), or smaller, occupying only a
portion of the vessel (Fig. 4A, yellow arrowheads).
Longitudinal sections of iohexol-fed symptomatic
leaves revealed that the transpiration pathway can pass
in between occlusions and through vessel connections
(Fig. 4A, white arrowhead) but never diffuse in sur-
rounding tissues. In asymptomatic samples fed with
iohexol, occlusions expanding in iohexol-filled vessels
were not observed (Supplemental Fig. S3). Some par-
tially occluded vessels did not become air filled upon
cutting (Fig. 4, B and C), and occlusions were also vis-
ible (although they were more obscure) in entirely oc-
cluded, nonfunctional vessels that did not fill with air
after cutting (Fig. 4D, red arrowheads). When partially
occluded vessels embolized after cutting, occlusions
were easily visualized (Fig. 4E, red arrowheads). In
these cases, the contact angle between these occlusions
and the vessel wall was quantified and was always
higher than 100°, with the highest frequency between
120° and 150° (Fig. 4F). Partially occluded vessels made
up a small percentage of the total calculated PLC, rep-
resenting 8.1% 6 3.7% for symptomatic midribs and
1.3% 6 0.6% for symptomatic petioles, while in
asymptomatic leaves, partially occluded vessels were
never observed (Supplemental Table S1). A negligible
percentage of partially occluded vessels was observed
within the native embolized vessels (i.e. air filled prior
to cutting the samples), corresponding to 0.3% 6 0.2%

Figure 1. Two-dimensional reconstructions of
cross sections frommicroCT volumes of grapevine
leaves. Esca asymptomatic (A and B) and esca
symptomatic (C and D) leaf midribs of grapevine
plants are shown. After a first scan on intact leaves
(A and C), the samples were cut (B and D) just
above the scanned area to embolize the vessels
and then scanned again. Air-filled (e.g. black ar-
rowheads), water-filled (e.g. white arrowheads),
and occluded (e.g. red arrowheads) vessels were
counted and their cross-sectional diameters
quantified to determine the PLC. The PLC repre-
sented by either native embolism (A and C) or
occluded vessels (B andD) is given in parentheses.
Bars 5 100 mm.

Table 1. Effects of esca leaf symptom (asymptomatic or symptomatic),
organ (midrib or petiole), and their interaction on the calculated PLC
due to native embolism (Native PLC) and on the calculated PLC due to
occlusions (Occlusion PLC)

The plant was entered as a random effect in the models. Statistically
significant results (P, 0.05) are shown in boldface. See the text for the
model specificity for each trait.

Response Variable Explanatory Variables F P

Native PLC (n 5 35) Leaf symptom 1.06 0.36
Organ 0.37 0.61
Interaction 2.53 0.25

Occlusion PLC (n 5 35) Leaf symptom 14.32 0.02
Organ 1.99 0.29
Interaction 0.61 0.52
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in symptomatic midribs and 0.4% 6 0.2% in sympto-
matic petioles (Supplemental Table S1).

The presence of these occlusions was likewise
identified by light microscopy observations on
symptomatic leaves (Fig. 5). To identify the chemical
nature of the occlusions, cross sections were stained
with four different dyes: Toluidine Blue O (Fig. 5A)
in blue and periodic acid-Schiff reaction (Fig. 5B) in
red indicate the presence of polysaccharides and
polyphenols; Ruthenium Red (Fig. 5C) staining in
pink for non-methyl-esterified pectins and Lacmoid
Blue (Fig. 5D) showing the presence of callose in
gray-pink shades. Quantifying the number of oc-
cluded vessels in histology cross sections of
midribs, we found an average of 19.7% 6 11.6% of
vessels with occlusions in symptomatic leaves,
while just 0.4% 6 0.1% of vessels contained occlu-
sions in asymptomatic leaves (Supplemental Table
S2; Supplemental Fig. S4).

Relationship between Leaf Symptoms and Occlusion

Leaf symptom severity, quantified by the percentage
of green tissue (in pixels) of each leaf, ranged from
6.1% to 93.9% for symptomatic leaves. In asymp-
tomatic leaves, green tissue always accounted for
100%. We found no significant relationship between
the percentage of green tissue (i.e. symptom severity)
and PLC due to occluded vessels in symptomatic
leaves (F1,17 5 1.43, P 5 0.25; Fig. 6). Additionally,
there was no significant relationship between the
percentage of green tissue and PLC when analyzed
by plant or by organ (F3,17 5 0.31, P 5 0.81; F1,17 5
0.80, P 5 0.38, respectively).

Fungi Detection

The two vascular pathogens, P. chlamydospora and
P. minimum, were not detected in leaves or lignified
shoots. In 2-year-old cordons, their presence was
detected in some samples but not others, regardless of
whether the vines were symptomatic or asymptomatic
(Table 2). However, P. chlamydospora and P. minimum
DNA was detected in 100% of trunks (from 23 vines)
sampled in the same field plot. The average quantity of
P. chlamydospora and P. minimum DNA in the trunks
was 3.6 6 0.7 and 3.7 6 0.9 log fg ng21 dry tissue,
respectively.

DISCUSSION

To date, no study has investigated leaf xylem water
transport and vessel integrity during vascular patho-
genesis using real-time, noninvasive visualizations.
Transplanting esca symptomatic vines (identified from
years of survey) from the field to pots allowed the
transport of the plants, enabling the use of synchrotron-
based microCT to explore the relationship between
vessel integrity and esca leaf symptom formation in
intact vines at high resolution and in three dimensions.
We demonstrate that gaseous embolism was not asso-
ciated with esca leaf symptoms. Instead, most of the
vessels in symptomatic leaves contained nongaseous
embolisms formed by gels and/or tyloses, hindering
water transport and possibly leading to hydraulic fail-
ure. Nevertheless, there was no positive correlation
between the severity of esca leaf symptoms and the loss
of theoretical hydraulic conductivity resulting from
these vascular occlusions. The two common vascular

Figure 3. Mean occlusion PLC in midribs and petioles of esca asymp-
tomatic (blue) and esca symptomatic (red) leaves of grapevine plants
using microCT imaging. PLC was calculated from the diameter of oc-
cluded vessels, based on the total theoretical hydraulic conductivity of
each sample. Error bars represent SE, and different letters represent
statistically significant differences (least-squares mean differences of
fixed effects, P , 0.05; n 5 sample size).

Figure 2. Mean native PLC in midribs and petioles of esca asymp-
tomatic (blue) and esca symptomatic (red) leaves of grapevine plants
using microCT imaging. PLC was calculated from the diameter of air-
filled vessels in intact leaves, based on the total theoretical hydraulic
conductivity of each sample. Error bars represent SE, and different letters
represent statistically significant differences (least-squares mean differ-
ences of fixed effects, P , 0.05; n 5 sample size).
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pathogens related to esca were undetected in the vine’s
distal organs (i.e. annual stems and leaves), con-
firming that the symptoms and vascular occlusions
occur at a distance from the pathogen niche localized
in the trunk. Overall, these observations generate
new perspectives regarding the nature and cause of
esca leaf symptoms.

Native Embolism in Leaves

Vascular wilt diseases have been associated with
significant levels of air embolism at the leaf level during
oak (Quercus spp.) bacterial leaf scorch (McElrone et al.,
2008) and at the stem level during pine (Pinus spp.) wilt
and Pierce’s disease (Umebayashi et al., 2011; Kuroda,
2012; Pérez-Donoso et al., 2016). In these cases, the
formation of air embolism was speculated to result
from the cell wall-degrading enzymatic activity of the
pathogens (presumably to facilitate pathogen coloni-
zation through the vascular network). In our study,
there were extremely low levels of native gaseous

embolism in both esca symptomatic and asymptomatic
leaves (petioles and midribs), demonstrating that
symptom formation was not associated with the pres-
ence of air-filled vessels.

Leaf Xylem Occlusion: The Presence of Tyloses and Gels in
Symptomatic Leaves

Under certain circumstances, xylem vessels can be
occluded by tyloses (outgrowths from adjacent paren-
chyma cells through vessel pits; Zimmermann, 1979; De
Micco et al., 2016) and/or gels (i.e. gums) composed of
polysaccharides and pectins, which are secreted by
parenchyma cells or directly by tyloses (Rioux et al.,
1998). Tylose and/or gel formation is a general de-
fense response of the plant against different biotic or
abiotic stresses (Bonsen and Kučera, 1990; Beckman
and Roberts, 1995; Sun et al., 2008). In this study,
microCT imaging of leaf xylem vessels (both in petioles
and midribs) revealed that all symptomatic leaves had

Figure 4. Two-dimensional reconstruc-
tions from microCT volumes of esca
symptomatic leaves of grapevine. A to C,
Iohexol-fed midrib viewed in a longitudi-
nal section (A) and cross sections (B and C).
For clarity and orientation, the same three
vessels are color coded, and dotted lines
represent the locations of the sections rel-
ative to each other. The contrasting agent
iohexol appears bright white and allows for
the identification of the water-transport
pathway. The iohexol signal can even be
seen in partially occluded vessels (e.g.
white arrowhead). Occlusions (i.e. gels or
tyloses) can span the entire diameter of the
vessel (red arrowheads) or only a portion
(yellow arrowheads). After a first scan on
intact leaves (A and B), the sample was cut
(C) just above the scanned area and scan-
ned again. D, Longitudinal section of a
midrib with completely occluded vessels.
The presence of occlusions is visible (al-
though obscure) inside the vessel lumen
(red arrowheads). E, Longitudinal section of
an air-filled midrib (after cutting) with
clearly visible occlusions (red arrowheads).
F, Frequency distribution of the contact
angles between the occlusions and the
vessel wall (sample size 5 190). Bars 5
100 mm.
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occluded vessels, although the loss of theoretical hy-
draulic conductance resulting from these occlusions
was highly variable between leaves. Using reconstruc-
tions of 3D microCT volumes (Fig. 4) and light mi-
croscopy (Fig. 5), we determined that the occlusions in

esca symptomatic leaves were due to both tyloses and
gels. Numerous studies investigating vascular diseases
have utilized artificial inoculation of the causal patho-
gen and observed the presence of vessel occlusions as-
sociated with decreases in hydraulic conductivity in
either leaves or stems (Newbanks, 1983; Choat et al.,
2009; Collins et al., 2009; Pouzoulet et al., 2017). The
artificial inoculation in these studies resulted in high
levels of the pathogen at the same location as the ob-
served vascular occlusions. During esca pathogenesis
in naturally infected vines, xylem occlusions were ob-
served in 2-year-old symptomatic branches and in
roots, and the pathogens were detected at the same
locations (Gómez et al., 2016). In this study, the two
vascular pathogen species associated with esca trunk
necroses, P. chlamydospora and P. minimum, were not
detected in current-year stems and leaves by a highly
sensitive qPCR assay. This result was expected but had
never been formally tested in the past according to the
published literature. Thus, the vascular occlusions ob-
served in leaves appeared to occur at some distance
from the trunk, where the necroses are usually ob-
served and both of the fungal species were detected
(Bruez et al., 2014, 2016; Massonnet et al., 2018;
Morales-Cruz et al., 2018), suggesting that vascular
occlusions are caused by something other than the
fungi themselves.

Light microscopy and histochemical analyses
showed that occlusions are associated with the pro-
duction of different compounds in symptomatic

Figure 5. Light microscopy images of cross
sections of esca symptomatic midribs of
grapevine. Cross sections were stained with
Toluidine Blue O (A), periodic acid-Schiff re-
action (B), Ruthenium Red (C), and Lacmoid
Blue (D). Red arrowheads indicate the pres-
ence of gels filling entirely the vessel lumen,
while black arrowheads indicate the presence
of tyloses in vessel lumina. Bars 5 100 mm.

Figure 6. Relationship between the esca symptom severity (expressed
as percentage of green tissue per leaf) and the theoretical loss of hy-
draulic conductivity due to occluded vessels (occlusion PLC) in midribs
and petioles of grapevine. Points are grouped by plant: A1 and A2 (blue,
asymptomatic) and S1 to S4 (red, symptomatic). The relationship be-
tween PLC and green tissue is not significant among symptomatic
samples (red points, P 5 0.25).
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leaves: polysaccharides, including pectins and callose.
Grapevine is known to accumulate polyphenolic com-
pounds during P. chlamydospora and Phaeoacremonium
spp. infections (Del Rio et al., 2001; Martin et al., 2009)
and in esca symptomatic leaves (Valtaud et al., 2009,
2011; Martín et al., 2019). Also, it is well documented
that gels are composed of pectins (Rioux et al., 1998)
and that parenchyma cells and tyloses accumulate
pectin during vessel occlusion (Clérivet et al., 2000). In
their review, Beckman and Roberts (1995) proposed a
strong role of callose in tomato (Solanum lycopersicum)
resistance to Verticillium spp., whereby callose xylem
occlusions limit the spread of the pathogen. In this
study, the presence of tyloses and gels (of any chemical
nature) not colocalized with pathogens suggests that
parenchyma cells play an important and active role
during esca pathogenesis, expanding into the vessel
lumen, secreting extracellular compounds, and even-
tually occluding the vessel.
Occlusions were clearly visible in partially occluded

vessels that embolized after cutting, and the contact
angle between the outside wall of occlusions and the
inner vessel wall ranged mostly from 120° to 150°
(Fig. 4, E and F). This result suggests that these occlu-
sions are tyloses, as water droplets expanding into the
vessels present lower contact angles (McCully et al.,
2014).

Leaf Xylem Occlusion Occurs in Water-Filled Vessels

There are two main theories regarding the underly-
ing mechanisms triggering vascular occlusion. Some
studies have hypothesized the occlusions are always
initiated by gaseous embolism and require the presence
of air inside the vessel to stimulate the expansion of
tyloses and/or the synthesis of gels (Zimmermann,
1978; Canny, 1997). Other studies suggest that gase-
ous embolism is not required and instead occlusion
formation is stimulated by the plant hormone ethylene
(Pérez-Donoso et al., 2007; Sun et al., 2007). Observa-
tions of samples fed with iohexol (Fig. 4A) demon-
strated that occlusions were formed in water-filled
vessels, suggesting that gaseous embolism is not
necessary to induce occlusion formation in esca symp-
tomatic leaves. In grapevine, similar occlusions in
water-filled vessels were identified via microCT in

grape berry pedicels associated with the onset of rip-
ening (Knipfer et al., 2015).
The reconstruction of longitudinal sections of these

vessels also demonstrated that the flow pathway can be
extremely reticulate, moving between adjacent vessels
and around occluded portions. Complex flow path-
ways such as these have been suggested previously by
microCT-based flow modeling in grape (Lee et al.,
2013), but this is the first direct empirical evidence
supporting these models. In grape berry pedicels, par-
tial occlusions are formed at the onset of ripening, yet
despite a loss of conduit functionality, the pedicel hy-
draulic conductivity remained significantly high, sug-
gesting a similar reticulate flow pathway in that context
(Knipfer et al., 2015). The presence of partially occluded
vessels that still conduct water around occluded por-
tions confirms that occlusions were formed in func-
tional water-filled vessels but creates difficulties with
regard to interpreting images in cross section to deter-
mine vessel functionality. However, partially occluded
vessels were found in very low percentage (1% in pet-
ioles and 8% in midribs; Supplemental Table S1), so
they would not affect the loss of hydraulic conductivity
estimated using microCT. In this study, we show ex-
amples of vessels that, when observed in a single cross
section, appeared to be fully functional because of the
clear iohexol signal (Fig. 4, B and C). However, when
more comprehensive analyses of the volume are made
(e.g. here with more than 200 cross sections per
microCT volume), it became apparent that the iohexol
signal was sometimes found in between occlusions
(Fig. 4A). Therefore, quantifying occlusions from a
limited number of cross sectional images could lead to
an underestimation of the number of occluded vessels
(Pérez-Donoso et al., 2016). This is well illustrated in
our study, where the percentage of occluded vessels in
midribs of symptomatic leaves was underestimated
(only 19.7%) when examining a limited number of light
microscopy images compared with microCT image
analyses. Even more problematic for magnetic reso-
nance imaging and microCT studies without the use of
a mobile contrasting agent like iohexol, neither imaging
technology appears capable of clearly distinguishing
between functional, water-filled vessels and nonfunc-
tional vessels filled by tyloses and/or gels. Only the use
of robust volume analyses, in conjunction with con-
trasting agents, such as iohexol, can identify occlusions

Table 2. Quantification by qPCR of P. chlamydospora and P. minimum (log fg ng21 dry tissue)

A high quantity of the DNA of the two pathogens was confirmed in 100% of the trunks of symptomatic
plants sampled from the same vineyard (n 5 23; see text for details). Values represent means 6 SE in
different organs; n 5 sample size. For esca leaf symptom, S 5 symptomatic and A 5 asymptomatic.

Pathogen n Esca Petiole First Internode Fifth Internode Multiyear Branches

P. chlamydospora 6 S 0 0 0 1.05 6 0.58 (3/6)a

P. chlamydospora 6 A 0 0 0 1.13 6 0.38 (4/6)a

P. minimum 6 S 0 0 0 1.48 6 0.75 (3/6)a

P. minimum 6 A 0 0 0 0.59 6 0.37 (2/6)a

aNumber of samples positive for the pathogen.
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in apparentlywater-filled vessels. The presence of visible
occlusions after cutting the sample (Fig. 4E) complicates
the interpretation regarding the effective functionality of
the vessels. These partially occluded vessels represented
only a maximum of 8% of the total conductivity
(Supplemental Table S1) and should not significantly
impact the overall PLC calculation. However, we can
speculate that embolisms form even in these partially
occluded vessels because (1) the vessel was still partially
functional with space between the visible occlusion and
the vessel wall (Fig. 4E) yet the resolution of the scanwas
not sufficient enough to visualize this space, (2) thewater
flow can avoid occlusions by passing through pits be-
tween vessels, or (3) grapevine leaves are able to secrete
gels and tyloses in a very short period (i.e. during the few
minutes between the cut and the end of the scan). Since
we never observed occlusions remaining in air-filled
vessels in asymptomatic samples, this third possibility
also implies that symptomatic leaves are significantly
more susceptible to occlusion than asymptomatic ones.

Leaf Symptoms, Occlusion, and Hypotheses on the
Pathogenesis of Esca

Our results showed that there was no significant
correlation between the level of leaf necrosis and the
level of occluded vessels in symptomatic leaf midribs
and petioles. Similarly, it has been shown that during
Pierce’s disease in grapevine, leaf symptoms are not
correlated with the presence of the bacterial pathogen
(Gambetta et al., 2007). Although many symptomatic
leaves exhibited high levels of occlusion, many did not,
and even leaves with high levels of scorched area can
exhibit low levels of occlusion. The absence of any re-
lationship between these variables could suggest that
there is no causal relationship between xylem occlu-
sions and esca leaf symptoms. However, it could have
equally resulted because of the positions of our obser-
vations in relation to the way leaf necrosis proceeds.
This study may have missed even more significant
levels of vascular occlusion localized just at the front of
the leaf necrosis (secondary order veins). In addition,
we demonstrated that P. chlamydospora and P. minimum
were not detected in the tissues of current-year petioles
and stems but only in some of the 2-year-old branches

sampled and always in the trunks of symptomatic
plants. Altogether, these results demonstrate that symp-
tom development was associated with vascular occlu-
sions that are likely elicited at a distance from the
pathogen niche localized in the trunk.

Hypotheses on the pathogenesis of esca largely fall
into two broad categories: (1) the hydraulic failure hy-
pothesis, where air embolism or vessel occlusion would
disrupt the flow of sap in the xylem and lead to leaf
desiccation; and (2) the elicitor-toxin hypothesis, where
elicitors/toxins produced by the pathogenic fungi or
plant-derived signals move into the vine’s transpiration
stream, inducing symptoms at a distance. The hy-
draulic failure hypothesis has never been properly
tested, but observed decreases in stomatal conductance
and photosynthesis in esca symptomatic leaves have
been interpreted as supporting this hypothesis (Petit
et al., 2006; Andreini et al., 2009; Magnin-Robert et al.,
2011). Some studies call this into question because
water stress-related genes are not overexpressed during
esca symptom formation (Letousey et al., 2010;
Fontaine et al., 2016). The elicitor/toxin hypothesis is
supported by numerous works that aimed to identify
phytotoxins and effectors secreted by fungal pathogens
associatedwith esca and their potential contributions in
disease etiology (Abou-Mansour et al., 2004; Bruno and
Sparapano, 2006; Bruno et al., 2007; Luini et al., 2010;
Masi et al., 2018). Other evidence is provided by the accu-
mulation of antioxidant compounds prior to symptom ex-
pression in leaves (Valtaudet al., 2009;Magnin-Robert et al.,
2011, 2016). Esca pathogenesis could also involve plant-
derived signals (e.g. hormones, defense molecules, etc.)
triggering and/or accelerating leaf senescence (Häffner
et al., 2015). Although esca leaf symptoms often take a
form that differs from natural senescence, the role of the
senescence program in esca pathogenesis should be
more thoroughly studied in the future. Natural leaf
senescence includes many of the same changes (Salleo
et al., 2002; Brodribb and Holbrook, 2003) that occur in
esca symptomatic leaves: xylem vessel occlusion, de-
creases in stomatal conductance and photosynthesis,
chlorosis, and eventually shedding. Some authors have
also suggested a role for the senescence program in
Pierce’s disease pathogenesis (Choat et al., 2009).

The results presented here are consistent with the
hypothesis that esca pathogens are restricted to the

Table 3. Disease history of the grapevine ‘Sauvignon blanc’ plants used in this study

Symptom frequency over time indicates the number of years with symptoms over the 6 or 5 years before
transplantation.

Plant
Year of

Transplantation

Symptom Frequency over Time

(No. of Years)

Duration of Leaf Symptoms (Weeks) prior to the

Moment of the Experiment

A1 2018 0/6 0
A2 2018 0/6 0
S1 2018 4/6 2
S2 2018 6/6 4
S3 2018 5/6 6
S4 2017 5/5 5
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trunk and/or multiyear branches and that elicitors
and/or toxins (for review, see Andolfi et al., 2011) be-
come systematic in the plant via the transpiration
stream, accumulate in the canopy, and trigger a cascade
of events that lead to visual symptoms. These events
include the production of tyloses and gels by the plant
that occlude vessels, suggesting that the elicitor/toxin
and hydraulic failure hypotheses are not necessarily
mutually exclusive. This is also congruent with the
observation of necrosis/oxidation along the vascula-
ture that is spatially associated with leaf symptoms
(Lecomte et al., 2012). The precise timing and direct
impact of vessel occlusion relative to symptom forma-
tion remains unclear, so this study cannot determine
whether occlusions lead to hydraulic failure and symp-
tom formation or whether the observed vessel occlusion
is simply a result of an early induced senescence process.
Future research should be aimed at exploring this se-
quence of events leading to leaf scorch symptoms in
naturally infected esca symptomatic vines in the field.

MATERIALS AND METHODS

Plant Material

Grapevine (Vitis vinifera ‘Sauvignon blanc’) plants aged 27 years old were
transplanted from the field into pots from a vineyard at Institut National de la
Recherche Agronomique (INRA) Aquitaine (44°47924.899N, 0°34935.199W). The
transplantation was the only method allowing the study of natural esca
symptom development on mature plants outside the field (greenhouse and
synchrotron) and to bring the plants from Bordeaux (INRA) to Paris (syn-
chrotron SOLEIL). The experimental plot included 343 plants organized in eight
rows surveyed each season before transplantation for esca leaf symptom ex-
pression during the previous 5 to 6 years following Lecomte et al. (2012) leaf
scorch symptom description. Esca incidence in this vineyard was very high, as
77% of the plants (n 5 343 plants) presented trunk and/or leaf symptoms the
summer before the plants were uprooted. The presence of two vascular fungi
associated with esca (Phaeomoniella chlamydospora and Phaeoacremonium mini-
mum) in this plot was confirmed by using qPCR on the trunk of 23 symptomatic
vines randomly sampled (methodology described below). To reduce stressful
events, the plants were excavated during dormancy before bud burst in late
winter from the field by digging around the woody root system and attempting
to preserve as many of the large woody roots as possible. Following excavation,
the root systemwas immersed under water overnight, and then powderedwith
indole-3-butyric acid to promote rooting. To equilibrate the vigor of the plants
and their leaf-root ratio, three to five buds per arm (one per side) were left. The
plants were potted in 20-L pots in fine clay medium (Klasmann Deilmann
substrate 4:264) and placed indoors for 2 months on heating plates (30°C) to
encourage root development before they were transferred to a greenhouse and
irrigated to capacity every other day under natural light. Plants were irrigated
with nutritive solution (0.1 mM NH4H2PO4, 0.187 mM NH4NO3, 0.255 mM

KNO3, 0.025 mM MgSO4, 0.002 mM Fe, and oligo-elements [B, Zn, Mn, Cu, and
Mo]) to prevent mineral deficiencies.

Plantsweregrowninagreenhouseandexposed tonatural light.Temperature
and air relative humidity were monitored every 30 min: average daily values
corresponded to 26°C 6 4°C (SE) and 64% 6 13% (SE), respectively. Leaf pre-
dawn water potential was monitored regularly to ensure that the plants were
never water stressed (leaf predawn water potential close to 0 MPa). The plants
were surveyed weekly for esca leaf symptom development from May to Sep-
tember. The plants were noted as symptomatic when at least 50% of the canopy
was presenting the tiger-stripe leaf symptom, characteristic for esca (see ex-
amples of leaf symptoms in Supplemental Fig. S5A and entire plants in
Supplemental Fig. S5B). Six plants were selected (Table 3) and transferred to the
microCT PSICHE (Pressure Structure Imaging by Contrast at High Energy)
beamline (SOLEIL synchrotron facility, Saclay, France): two control asymp-
tomatic plants that had never expressed symptoms either during the year of the
experiment or the past 5 years, and four symptomatic plants with differences in

the timing of the first leaf symptom expression (6, 5, 4, and 2 weeks before the
experiment). Leaf symptoms (Supplemental Fig. S5) were typical esca leaf
symptoms for cv Sauvignon blanc and were similar to the symptoms we ob-
served in the experimental vineyard from which the plants came. All sympto-
matic plants had expressed esca symptoms for at least three different seasons in
the past (Table 3). Asymptomatic leaves were always sampled only from the
control plants A1 and A2.

MicroCT

Synchrotron-based microCT was used to visualize the contents of vessels in
the esca symptomatic and asymptomatic leaf midribs and petioles. The PSICHE
beamline at the SOLEIL synchrotron facility that is dedicated to x-ray diffrac-
tion under extreme conditions (pressure-temperature) and to high energy ab-
sorption contrast tomography (20–50 keV) was used (King et al., 2016). During
the first campaign, in September 2017, one 26-year-old plant presenting char-
acteristic tiger-stripe leaf symptoms was scanned with the microCT PSICHE
beamline (King et al., 2016). In the second campaign, in September 2018, five
different plants of the same age (two asymptomatic and three symptomatic)
were brought to the same facility. Intact shoots (.1.5 m in length) were cut at
the base under water at least 1 m away from the scanned leaves. Leaves were
scanned using a high-flux (3 3 1011 photons mm22) 25-keV monochromatic
x-ray beam. Midribs (n 5 21) and petioles (n 5 15) were scanned in sympto-
matic and asymptomatic leaves (from one to five leaves per plant), then cut just
above the scanned area and scanned again. The projections were recorded with
a Hamamatsu Orca Flash sCMOS camera equipped with a 250-mm-thick LuAG
scintillator for petioles and with a 90-mm-thick LuAG scintillator for midribs.
The complete tomographic scan included 1500 projections, and each projection
lasted 50 ms for petioles and 200 ms for midribs. Thus, the total exposure time
was 75 s for petioles and 300 s for midribs. Tomographic reconstructions were
performed using PyHST2 software (Mirone et al., 2014) using the Paganin
method (Paganin et al., 2002), resulting in 32-bit volume reconstructions of
2,048 3 2,048 3 1,024 voxels for petioles and 2,048 3 2,048 3 2,048 voxels for
midribs. The final spatial resolution was 2.87693 mm3 per voxel for petioles and
0.86013 mm3 for midribs.

Iohexol Contrasting Agent

A subset of 10 shoots were fed with the contrasting agent iohexol. Five
symptomatic shoots (from two plants: S1 and S2 described in Table 3) and five
asymptomatic shoots (from two plants: A1 and A2 described in Table 3) were
cut at the base under water and immediately transferred to a solution con-
taining the contrasting agent iohexol (150 mM) to visualize functionality (i.e.
vessels that were effectively transporting sap; Pratt and Jacobsen, 2018). In
asymptomatic plants, five midribs (from three different shoots) and three pet-
ioles (from two different shoots), and in symptomatic plants, five midribs (from
three different shoots) and four petioles (from three different shoots), were
scanned. These shoots were exposed to sunlight outdoors for at least half a day
to permit the contrasting agent to reach the leaves through transpiration. The
capacity and rapidity of iohexol to move was first checked by cutting leaves
under water, submerging them directly in iohexol solution, and scanning sev-
eral times each 10 min. Its capacity to move up to the shoots was then checked
by scanning leaves at the top. These results were not coupledwith the ones from
intact leaf scans. In this case, scans were performed at two different energies,
just below and just above the iodine K-edge of 33.2 keV. At 33.1 keV, the con-
trasting agent presents little contrast, while it presents strong contrast at 33.3
keV. The leaves (17 of 35 total samples) were then analyzed in the beamline as
described for the other samples above.

Image Analysis

Leaf Symptoms

Scanned leaveswere photographed, and the green areawas calculated using
the G. Landini plug-in threshold_color v1.15 (http://www.mecourse.com/
landinig/software/software.html) in ImageJ software (http://rsb.info.nih.
gov/ij), differentiating four color regions: red, yellow, pale green, and green.
The number of pixels for each region was summed to determine the leaf area
corresponding to each color region. To obtain a scale of symptom severity, the
percentage of green leaf area (relative to total leaf area) was calculated for
each leaf.
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Analysis of MicroCT Images

All samples (including those stained with iohexol) were analyzed in the
following manner. The geometrical diameter of air-filled and non-air-filled
vessels was measured on cross sections taken from the central slice of the
microCT scanned volume using ImageJ software. For iohexol-fed samples, an
example of vessel identification is included in Supplemental Figure S6. The
theoretical hydraulic conductivity of each vessel was calculated using the
Hagen-Poiseuille equation:

Kh 5
p 3 �4 3 r
� �

1283 hð Þ ð1Þ

where Kh is the theoretical hydraulic conductivity (m4 MPa21 s21), ø is the
geometrical diameter of the vessel (m), r is the density of water (kg m23), and h

the viscosity of water (1.002 mPa s21 at 20°C). The percentage of native em-
bolism was calculated in the first scan, before cutting the leaf, using the fol-
lowing equation:

Native PLC %ð Þ 51003
S Khair filled vesselsð Þ

S Khall vesselsð Þ ð2Þ

After a first scan, the samples were cut with a clean razor blade just above the
scanned area and scanned again. Cut open vessels will embolize because the
xylem sap is under negative pressure. Leaf water potential (CL) measured on an
adjacent leaf just after the scan indicated sufficient tension in the xylem sap to
embolize in all leaves measured (n 5 17 leaves, CL 5 20.46 MPa on average).
Under control conditions, nearly all the xylem vessels became air filled upon
cutting (e.g. black vessels in Fig. 1B; Supplemental Fig. S1B). To estimate the loss
of conductivity caused by occluded vessels (Eq. 3 below), the Kh of apparent
water-filled vessels was calculated in the central cross section of the entire
microCT volume after cutting. Vessels that did not become completely air filled
after cutting were considered occluded (i.e. having the same gray level after
cutting as water-filled conduits before cutting). To adjust PLC (Eq. 3 presented
below) by those vessels that appeared water filled or air filled only at specific
points along the length of the vessel, the presence of apparent water-filled
vessels and droplets was checked in at least 200 cross sectional slices in each
volume, corresponding to 160 mm for midribs and 570 mm for petioles. If a
particular vessel appeared water filled in any of the 200 slices examined, this
vessel was classified as partially occluded and added to the PLC given by
occlusions:

Occlusion PLC %ð Þ51003
S Khoccluded vessels 1 S Khpartially occluded vessels
� �

S Khall vesselsð Þ
ð3Þ

Contact Angles

To gain insight into the nature of occlusion, the contact angle between each
droplet and the inner vesselwallwasmeasuredusing ImageJ followingMcCully
et al. (2014). First longitudinal slices were reconstructed from each microCT
volume. Then the contact angles between each observed droplet and the vessel
wall were measured in partially occluded, air-filled vessels (n 5 190 droplets
from 65 partially occluded vessels in two different samples).

Light Microscopy

Ten-millimeter sections frommidribs and petioles of three esca symptomatic
and three asymptomatic leaves were cut and fixed in a solution containing
0.64% (v/v) paraformaldehyde, 50% (v/v) ethanol, 5% (v/v) acetic acid, and
44.36% (v/v) water. Samples were then dehydrated using a graded series of
ethanol (50%, 70%, 85%, 95%, 100%, 100%, and 100% [v/v] for 30min each) and
embedded using a graded series of LR White resin (Agar Scientific; 33%, 50%,
and 66% [v/v] LR White in ethanol solutions for 120 min each and 100% [v/v]
LRWhite three times overnight). Two- to 2.5-mm-thick transverse sections were
cut using an Ultracut S microtome (Reichert) equipped with a glass knife. As
described by Neghliz et al. (2016), the cross section was stained with different
dyes. To investigate anatomical features, lignin, phenolic compound, and pol-
ysaccharide cross sections were stained with 0.05% (w/v) Toluidine Blue O.
Sections to be examined for polysaccharides were stained with periodic acid-
Schiff reagent. Pectins were detected by staining sections overnight with 1%
(w/v) Ruthenium Red. Callose was revealed by staining sections overnight

with 1% (w/v) Lacmoid Blue in 3% (v/v) acetic acid. Stained sections were
dried and photographed with a RTKE camera (Spot) mounted on an Axiophot
microscope (Zeiss) at the Bordeaux Imaging Center, a member of the France Bio
Imaging national infrastructure (ANR-10-INBS-04). In midribs, the image of the
entire cross section was analyzed to quantify the percentage of occluded vessels
(by tyloses, gels, or both) in 55 sections for symptomatic and 56 sections for
asymptomatic midribs obtained from six different leaves (three symptomatic
and three asymptomatic). Occlusions were classified as tyloses if tylose cell
walls (formed during tylosis development) were visualized within the vessel
lumen (Fig. 5B) or as gels if cell walls were not visualized and the vessel lumen
appeared totally filled (Fig. 5A, red arrowheads). Tyloses and gels can also be
observedwithin the same vessel (Fig. 5D). In some cases, tyloses and gels can be
difficult to distinguish if tyloses filled the entire vessel lumenwith awall closely
attached to the inner vessel wall, or if the tylose wall was lignified. However,
this uncertainty would not change the total number of occluded vessels ob-
served in this study.

Fungal Detection

The presence of P. chlamydospora and P. minimum was assessed in different
parts of asymptomatic and symptomatic plants. Plants were sampled directly
from the same field plot as described above. In mid-August 2018, a survey of
leaf esca symptomswas conducted, and six asymptomatic and six symptomatic
vines were selected at random. Four different samples were collected for each
plant: (1) petioles of three leaves located in the first 50 cm of the shoot; sections
of the (2) first and (3) fifth internodes of the third shoot on the 2-year-old cane;
and (4) a section of the 2-year-old branch just basal to the third shoot (i.e. canes
trained across in the Guyot system). These organs were focused on as they
are typically not used to detect esca pathogens, which have mainly been
observed in the trunk. However, to control the presence of these fungi in the
trunk, 23 symptomatic plants were randomly sampled from the same plot
by drilling 1 cm at the same height in each trunk. All samples were collected
using ethyl alcohol-sterilized pruning shears and placed immediately in
liquid nitrogen. DNA extraction and qPCR analysis were conducted as
previously described by Pouzoulet et al. (2013, 2017) using the primer sets
PchQF/R and PalQF/R. Briefly, samples were lyophilized for 48 h. After
the bark and pith were removed from the samples (except for petioles)
using a sterile scalpel, samples were ground and DNA was extracted as
described by Pouzoulet et al. (2013). Quantification of P. chlamydospora and
P. minimum DNA by qPCR (SYBR Green assays) was conducted as de-
scribed by Pouzoulet et al. (2017). Pathogen DNA quantity was normalized
by the amount of total DNA used as template, and the mean of three
technical replicates was used for further analysis.

Statistical Analysis

The effects of leaf symptom (asymptomatic or symptomatic), organ (midrib
orpetiole), and their interaction on the calculatednativePLCandon thePLCdue
tooccludedvesselswere testedusingPROCGLIMMIX inSAS software (SAS9.4;
SAS Institute). The plant was entered into models as a random effect, since
different leaves were sometimes scanned from the same plant (from one to five
per plant). Proportional data (ranging from 0 to 1, dividing all PLC data by 100)
was analyzed tofit a logit link function andbinomial distribution as appropriate.
We computed pairwise least-squaresmean differences offixed effects. The effect
of symptom severity (expressed as the percentage of green tissue) among
symptomatic leaves on PLC was tested as described above including the plant
and organ as covariables (fixed effects) in the model.

Supplemental Data

The following supplemental materials are available.

Supplemental Figure S1. Two-dimensional reconstructions of cross sec-
tions from microCT volumes and optical microscopy cross sections of
grapevine leaf petioles.

Supplemental Figure S2. Two-dimensional reconstructions of longitudinal
and cross sections from microCT volumes of grapevine leaf midribs.

Supplemental Figure S3. Two-dimensional reconstructions of longitudinal
and cross sections from microCT volumes for esca asymptomatic leaf
midribs scanned on iohexol-fed grapevine shoots.
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Supplemental Figure S4. Light microscopy images of cross sections of esca
asymptomatic midribs of grapevine.

Supplemental Figure S5. Images of asymptomatic control and esca symp-
tomatic plants of grapevine cv Sauvignon blanc.

Supplemental Figure S6. Method used for vessel segmentation in iohexol-
fed grapevine petioles.

Supplemental Table S1. Calculated theoretical conductivity from microCT
volumes.

Supplemental Table S2. Quantification of not-filled and occluded vessels
in a histological photomicrograph of grapevine midribs.
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Supplemental Figure S1 (A-F). Two-dimensional reconstructions of cross sections from 
microCT volumes and optical microscopy cross sections. Esca asymptomatic (A-C) and esca 
symptomatic (D-F) leaf petioles of V. vinifera. After a first scan on intact leaves (A, D) the 
samples were cut (B, E) just above the scanned area to embolize the vessels and then scanned 
again. Air-filled (e.g. black arrows), water-filled (e.g. white arrows), and occluded (e.g. red 
arrows) vessels were counted and their cross-sectional diameters quantified to determine the 
percentage loss of conductivity (PLC). The PLC represented by either native embolism (A, D) 
or occluded vessels (B, E) is given in parentheses. Light microscopy cross sections (C, F) were 
stained with periodic-acid Schiff’s reactive. Scale bar = 1mm.   
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Supplemental Figure S2. Two-dimensional reconstructions of longitudinal (A-D) and cross 
(insets, i) sections from microCT volumes. Esca asymptomatic (A, B) and esca symptomatic 
(C, D) leaf midribs of V. vinifera plants. The scans were taken before (A, C) and after (B, D) 
cutting the sample. The dotted lines represent the location of the sections relative to each other. 
Water-filled (e.g. white arrows), air-filled (e.g. black arrows), occluded vessels (e.g. red-
arrows) are evidenced. 
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Supplemental Figure S3. Two-dimensional reconstructions of longitudinal (A, C) and cross 
(B, D) sections from microCT volumes for esca asymptomatic leaf midribs scanned on iohexol 
fed V. vinifera shoots. The dotted lines represent the location of the sections relative to each 
other. The scans were taken before (A, B) and after (C, D) cutting the sample. Iohexol 
evidences the functional vessels, in bright white, while air-filled vessels appear in black.  



70

 
 
Supplemental Figure S4. Light microscopy images of cross sections of esca asymptomatic 
midribs of V. vinifera. Cross-sections were stained with toluidine blue O (A), periodic-acid 
Schiff’s reactive (B), ruthenium red (C), and lacmoid blue (D). Scale bars = 100µm. 
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Supplemental Figure S5. Pictures of asymptomatic control and esca symptomatic plants of V. 
vinifera cv. Sauvignon blanc. (A) examples of leaves: A1, A2 asymptomatic plants, S1-S4 
symptomatic plants. Details on disease history and duration of esca leaf symptom in weeks is 
given in Table 1. (B) Pictures of one asymptomatic (plant A2) and one symptomatic (plant S3) 
entire V. vinifera plants. 
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Supplemental Figure S6. Method used for vessel segmentation in iohexol fed petioles. The 
insets show a detail before (i) and after (ii) image segmentation (using imagej software) to 
measure the diameter of each single vessel. The high contrast given by iohexol at 33.3 keV can 
impede the clear differentiation of vessels ends (A, inset Ai), the samples was then re-scanned 
at 33.1 keV (B before cut, C after cut), to provide an optimal segmentation (insets Bi and Bii, 
Ci and Cii). Scale bars: A, B, and C = 1000µm; all insets i and ii = 100µm. 
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Supplemental Table S1 Calculated theoretical conductivity (% Kh) from microCT volumes. 
Intact V. vinifera leaves and after cutting the sample just above the scanned area. Values 
represent means ± standard error, n=sample size. 
  

Esca Organ n 

Intact After cut 

Air-filled 
(% Kh)1 

Water-filled 
(% Kh) 

Partially- 
occluded 
(% Kh) 

Air-filled 
(% Kh) 

Occluded 
(% Kh)2 

Partially- 
occluded 
(% Kh) 

Asymptomatic Midrib 8 9.68 ± 3.66 90.32 ± 3.66 0 87.61 ± 3.24 12.39 ± 3.24 0 

Asymptomatic Petiole 4 6.12 ± 4.11 93.88 ± 4.11 0 98.12 ± 1.81 1.88 ± 1.81 0 

Symptomatic Midrib 13 2.77 ± 1.14 96.93 ± 1.14 0.29 ± 0.16 31.22 ± 6.42 60.7 ± 6.80 8.07 ± 3.65 

Symptomatic Petiole 10 7.97 ± 3.14 91.6  ± 3.1 0.42 ± 0.24 44.71 ± 8.97 54.02 ± 8.72 1.27 ± 0.61 
1 Values correspond to Native PLC, Figure 2 
2 Values correspond to Occlusion PLC, Figure 3 

 
 
 
 
 
Supplemental Table S2 Quantification of not-filled and occluded vessels in histological 
photomicrograph of V. vinifera midribs. not-filled=% of vessels not presenting tyloses nor gels; 
tyloses=% of vessels presenting one or more tyloses; gel=% of vessels presenting gel filling 
the whole vessel section; tyloses & gel=% of vessels presenting tyloses and gel at the same 
time; occluded total=% of vessels presenting tyloses, gel, or both. Values represent means ± 
standard error, n=number of cross sections. 
  

Esca n 
not-filled  

(%) 
tyloses 

(%) 
gel  
(%) 

tyloses 
& gel (%) 

occluded 
total (%) 

Symptomatic 55 80.3 ± 1.6 17.1 ± 1.3 1.2 ± 0.2 1.4 ± 0.3 19.7 ± 1.6 

Asymptomatic 56 99.6 ± 0.1 0.4 ± 0.1 0.04 ± 0.1 0.02 ± 0.02 0.4 ± 0.1 
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CHAPTER 3

Similar Symptoms Do Not Induce Similar Changes in 
Grapevine Leaf Xylem Anatomy, Comparisons between 

Senescing Processes and Climatic Regions

Résumé : L’anatomie du xylème peut apparaitre très différente si les plantes sont soumises à 
des contraintes biotiques ou abiotiques. Les occlusions vasculaires sont un des principaux traits 
anatomiques qui influencent la résistance ou la sensibilité des plantes aux différents stress. 
Ces occlusions ont été étudiées par le passé sur les organes pérennes de plusieurs espèces lors 
de différents processus de senescence induite. Cependant, leur présence et fonction au sein 
des feuilles restent méconnues. Chez la vigne, plusieurs processus de senescence présentent 
des symptômes visuellement similaires, mais nous ne savons pas encore si leurs mécanismes 
physiologiques le sont également, ni comment l’anatomie du xylème foliaire en est affectée. 
Dans cette étude, nous avons quantifié les occlusions vasculaires dans les nervures centrales de 
feuilles présentant différents symptômes (esca, déficience en magnésium, et senescence d’au-
tomne). Nous avons trouvé que l’esca entraine un processus de senescence unique, avec des 
occlusions présentes en moyenne dans 28% des vaisseaux, là où les autres feuilles symptoma-
tiques (et les feuilles contrôles) n’en présentent que dans 3%. Par la suite, nous avons appro-
fondi les connaissances sur la senescence induite par l’esca en comparant des feuilles issues de 
différents pays (Californie, France, Italie et Espagne) et variétés (Sauvignon blanc et Castet), et 
mis en évidence que les deux paramètres peuvent affecter le niveau d’occlusion dans les vais-
seaux. Pour identifier le moment d’apparition des occlusions dans les vaisseaux, nous avons 
suivi des plantes (symptomatiques d’esca et contrôles) au cours d’une saison, trouvant que les 
occlusions peuvent (bien que rarement) apparaitre sans l’expression visuel des symptômes. 
Enfin, nous avons étudié la fonctionnalité des vaisseaux du xylème par une méthode optique 
sur des portions de limbe des feuilles, en trouvant que la propagation de l’embolie gazeuse dans 
les feuilles symptomatiques présente un comportement non-uniforme (comparé aux contrôles), 
probablement dû à la présence d’occlusions. Ces résultats ouvrent de nouvelles perspectives 
sur le rôle des occlusions vasculaires pendant la senescence sur feuilles, en suggérant que leur 
formation pourrait être stimulée seulement sous certaines conditions, avec des fonctions et 

conséquences très spécifiques pour la survie des plantes et des feuilles.    
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ABSTRACT

Xylem anatomy can differently respond to environmental or biotic stresses. Vascular occlusion 
is one of the main functional anatomical traits, influencing plant resistance and susceptibility 
to different stresses. While occlusion presence has been studied in xylem from woody organs 
during different induced senescence processes, their presence and function in leaves remain 
obscure. In grapevine, many senescence processes present similar visual symptoms. However, 
we still do not know whether the underlying physiological mechanisms are similar as well, 
and whether leaf anatomy is affected in similar ways. In this study, we quantified vascular 
occlusions in midribs from different symptomatic leaves (i.e. esca, magnesium deficiency, and 
autumn senescence). We found that esca leaf symptom formation is a unique senescence pro-
cess, presenting vascular occlusions in 28% of xylem vessels (on average), while the other 
senescing leaves (as well as the asymptomatic controls) presented occlusion in approximately 
3% of vessels. Therefore, we extended our investigations of esca leaf senescence to different 
countries (California, France, Italy, and Spain) and varieties (Sauvignon blanc and Castet), 
finding that both parameters can affect occlusion level. We followed plants over the course of 
the season, finding that vascular occlusions can rarely appear without esca visual symptoms. 
Finally, we investigated the functionality of xylem vessels by optical visualization of embolism 
in intact leaf lamina, finding that air embolism spreading in symptomatic leaves has a different 
and non-uniform behavior, probably given by the presence of occlusions, compared to controls. 
These results open new perspectives on the role of vascular occlusions during leaf senescence, 
suggesting that they could be stimulated only during certain conditions with specific function 
and consequences in leaf (and plant) survival.

INTRODUCTION

Xylem vascular occlusions are considered as a functional anatomical trait responding to a 
broad range of environmental and biotic factors (De Micco et al., 2016). Their nature compris-
es gels (or gums), formed by amorphous extracellular materials (such as pectin, callose, or oth-
er polysaccharide chains, Rioux et al., 1998), and tyloses, which are expansions of parenchyma 
cells inside the vessel lumen (Zimmermann, 1979). Their presence has been detected during 
many different induced senescence processes, such as tissue ageing (Dute et al., 1999, Salleo 
et al., 2002), wound response (Sun et al., 2007, 2008), flooding (Davison and Tay, 1985), and 
vascular diseases (Pouzoulet et al., 2019, Mensah et al., 2020). In general, vascular occlu-
sions are formed to hydraulically isolate some regions of the plant, contributing to wound or 
pathogen compartmentalization (Pearce, 1996), or help woody organs in decay resistance and 
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mechanical support during heartwood formation (De Micco et al., 2016). Their role is largely 
studied in woody perennial organs, where occlusions are associated with decrease in hydraulic 
conductivity under diverse induced senescence processes (e.g. McElrone et al., 2010, Deyett et 
al., 2019, Mensah et al., 2020). Vascular occlusions (especially tyloses) have been shown in a 
strict relationship with plant resistance to different vascular pathogens in stems (e.g. Venturas 
et al., 2014; Park and Juzwik 2014; Rioux et al., 2018). Moreover, many theoretical articles 
have hypothesized that an excessive production of vascular occlusions during disease would 
lead to lethal impairment in plant water transport (Fradin and Thomma, 2006, Yadeta and 
Thomma, 2013, Oliva et al., 2014). 

In leaves xylem occlusions have been studied only during induced senescence by Xylella spp. 
infections (Fritschi et al., 2008, Choat et al., 2009) and winter (Salleo et al., 2002), and their 
functions and consequences on leaf physiology are not clear. Recently, we have associated vas-
cular occlusions with in vivo quantification of xylem hydraulic failure in midribs and petioles 
during esca leaf symptoms (Bortolami et al., 2019), enhancing the interest in the physiological 
role of vascular occlusions during leaf senescence. Finally, probably because vascular occlu-
sions are frequently observed late during the senescence process (Chaffey and Pearson, 1985), 
they were not even mentioned in reviews on leaf senescence (Lim et al. 2007, Schippers et al., 
2015). In this context, there is a need in improving the knowledge on xylem vascular occlu-
sions (especially in leaves), the consequences they have on plant physiology, and the underly-
ing mechanisms of their formation. 

In this study, we compared grapevine midrib vascular occlusion presence during different 
symptom development and induced senesce processes (esca, magnesium deficiency, and au-
tumn senescence). We hypothesized that similar visual leaf symptoms observed following 
these environmental factors (i.e. discolorations between the major veins) would induce equal 
responses in the xylem anatomy. As Vitis vinifera cv Sauvignon blanc presented significant 
levels of vascular occlusions in midribs during esca leaf senescence (Bortolami et al., 2019), 
this model was taken as reference to compare occlusion production in different climatic regions 
and cultivars. We then followed esca leaf symptom appearance in specific plants, to follow the 
progression between vascular occlusions and esca leaf symptom development. Finally, by the 
use of non-invasive visualization of embolism, we quantified the residual xylem functionality 
in esca symptomatic leaf lamina.
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Figure 1. Pictures of different induced-senescence processes from a white (Chenin blanc, A, C, E, G) and a red 
(Castet, B, D, F, H) V. vinifera cultivar. A, B, control (asymptomatic) leaves in August. C, D, esca symptomatic 
leaves in August. E, F, magnesium deficient leaves in August. G, H, autumn senescent leaves in October. 
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MATERIALS AND METHODS

Plant material and sampling*

To quantify the occlusions during different stresses, we sampled plants in the Vitadapt ex-
perimental plot (van Leeuwen et al., 2019) planted in 2009 in the Bordeaux region (France, 
44°47’23.8”N 0°34’39.7”W). Ten control leaves were sampled in August 2018 from eight dif-
ferent plants (V. vinifera grafted onto SO4 cv Castet n=5, Chenin blanc n=1, Sangiovese n=1, 
and Sauvignon blanc n=3). Thirteen esca symptomatic leaves were sampled from nine different 
plants (V. vinifera cv Castet n=5, Chenin blanc n=1, Mourvedre n=1, Sangiovese n=1, Sauvi-
gnon blanc n=5). Four magnesium deficient leaves were sampled in August and October 2018 
from five different plants (V. vinifera cv Castet n=2, Mourvedre n=1, and Sauvignon blanc 
n=1). Twenty-three autumn senescent leaves were sampled in October 2018 from eleven dif-
ferent plants (V. vinifera cv Castet n=5, Chenin blanc n=4, Mourvedre n=8, Sangiovese n=1, 
and Sauvignon blanc n=5).

Esca leaf symptoms were identified by tiger-stripe scorched symptoms, as described in Le-
comte et al. (2012). We identified magnesium deficiency symptoms in plants with tiger-stripe 
discolorations (yellow or red depending on grape color) in the lower part of the canopy and 
without the presence of scorched area. We identified autumn senescence in leaves with total or 
partial discoloration, sometimes with tiger-stripe patterns. Examples of the sampled induced 
senescence leaf symptoms are presented in Fig. 1 for a white (Chenin blanc) and a red (Castet) 
V. vinifera cultivar.

To further explore leaf xylem anatomy during esca, symptomatic and control leaves were sam-
pled from different countries (France, Italy, Spain, and California in the United States). In 
France, eighteen leaves were sampled in august 2018 from twelve different plants (six control 
and six esca symptomatic) V. vinifera cv Castet and Sauvignon blanc, planted in 2006, grafted 
onto SO4 at Vitadapt experimental plot. In Italy, seven leaves were sampled in June 2019 from 
five different plants (three control and two esca symptomatic) V. vinifera cv Sauvignon blanc 

(Carassai, Ascoli Piceno, central-eastern Italy,  43°02’18.07’’N 13°39’39.41’’E). In Spain 
(42°26’07.4”N 2°30’48.5”W), eight leaves were sampled in late August 2019 from six differ-
ent plants (three control and three esca symptomatic) V. vinifera cv Castet, grafted onto 110R, 
planted in 2013. In California (39°00’15.1”N 122°51’08.3”W), sixteen leaves were sampled in 
August 2020 from six different plants (three control and three esca symptomatic) V. vinifera cv 
Sauvignon blanc, planted in 2000, grafted onto 5C.

To explore the evolution of occlusion formation over time during esca pathogenesis, we sam-
pled leaves from a unique experimental setup described in Bortolami et al. (2019). Briefly, 30 
years-old V. vinifera cv Sauvignon blanc vines, grafted onto 101-14 MGt, were uprooted from 
the field in February 2018 and transferred into 20L pots. We sampled, over the experimen-
*The presented results are only preliminary. More samples will complete the dataset; in particular, the compari-
sons for esca leaf symptoms will include more varieties from the presented geographic regions.
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tal season 2018, twenty-eight leaves (eight control leaves, eight asymptomatic leaves before 
symptom expression, six asymptomatic leaves in symptomatic plants, and six symptomatic 
leaves showing typical esca tiger stripe symptoms) from ten different plants (three control, and 
four esca symptomatic). In September 2017 and 2018 we brought control and symptomatic 
plants to synchrotron SOLEIL (PSICHE beamline), and scanned leaf midribs with X-ray mi-
croCT as described in Bortolami et al. (2019). The same midribs analyzed in Bortolami et al. 
(2019) are reported here, with the only difference that in this study we quantified the percentage 
of occluded vessels (in number) not the theoretical loss of hydraulic conductivity.

Light microscopy and occlusion quantification

Prior to resin embedding, samples had a slightly different treatment if sampled in France, or 
in California, Italy, and Spain. In France, one-centimeter sections of midribs were cut at one 
centimeter from the petiole point and directly put in FAA solution, 0.64% paraformaldehyde, 
50% ethanol, 5% acetic acid, and 44.36% water (v/v). After one to three days in the FAA solu-
tion on the shaker at 90rpm, samples were dehydrated using a graded series of alcohol (80%, 
100%, 100% for 30’ each) and stocked at 4 °C until analysis. In California, Italy, and Spain, 
one-centimeter sections were cut at one centimeter from the petiole point, directly put in 80% 
alcohol, mailed to France and stored at 4 °C until analysis. After one night in the FAA solution, 
samples were dehydrated using the same graded series (80%, 100%, 100% v/v for 30’ each). 
All samples (from any country) were then embedded using a graded series of LR White resin 
(Agar scientific, 33%, 50%, and 66% LR White v/v in ethanol solution for 120’ each, and 100% 
three times for 7 hours each). Finally, samples were polymerized in capsules at 60 °C for 24-48 
hours. Transverse sections of 1.8 to 2 µm thickness were cut using an Ultracut S microtome 
(Reichert) equipped with a glass knife at the Bordeaux Imaging Center, a member of the France 
Bio Imaging national infrastructure (ANR-10-INBS-04). Cross sections were stained with 
0.05% (w/v) Toluidine Blue O, able to marker vascular occlusions (Bortolami et al., 2019). 
Stained sections were dried and photographed with a DS-Fi3 camera (Nikon, France) mounted 
on a stereo microscope SMZ1270 (Nikon, France).

Xylem vessels were identified in each entire cross-section using imagej (Schneider et al., 2012) 
and categorized as empty vessels or occluded vessels (presenting gel or tyloses) as presented 
in Fig. 2. In addition, we observed a deposition of crystals in vessels of 93% of the samples 
and thus quantified their presence. For each sample, one cross-section was analyzed for vessel 
occlusion quantification. To confirm that vascular occlusion were equally distributed within 
the same sample (i.e. in the one-centimeter segment), we quantified vascular occlusions in 
three cross-sections from twenty-nine midribs, finding that there were no significant differenc-
es within samples (F55,12498=0.97, P=0.54, treating repetition, samples, and their interaction as 
fixed effects in independent linear models with binomial distribution for absence or presence 
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of occlusion in each vessel in SAS proc GLIMMIX).

Non-invasive optical determination of xylem functionality

Leaf embolism formation and propagation were evaluated in four leaves from three different 
control (asymptomatic) plants and in eleven leaves from four different esca symptomatic plants 
using the optical vulnerability (OV) technique (Brodribb et al., 2016). The analysis took place 
in two weeks (from September 3rd to September 16th, 2019) plants (V. vinifera cv Sauvignon 
blanc) uprooted in February 2019 from the same plot for the leaf midrib analysis (INRAE, 
Bordeaux). To quantify embolism propagation in leaf lamina, we monitored changes in light 
transmission through the xylem (Brodribb et al., 2016). In the early morning, stems were cut 
under water, put inside dark plastic bags with humid paper and rapidly transported to the lab. 
Once at the lab, the abaxial side of intact leaves was fixed on a scanner (Perfection V800 Pho-
to, EPSON, Suna, Japan) using a transparent glass and adhesive tape. Brightness and contrast 
as well as leaf scanned area were adjusted to optimize visualization of embolisms. 991 ± 90 
mm2 (average ± SE) of each leaf was automatically scanned every 5 min throughout plant 
dehydration using a computer automation software (AutoIt 3). Simultaneous measurements 
of stem water potential (Ψstem) were made every 30’ using psychrometers (ICT Internationale, 
Armidale, NSW, Australia) properly installed on the stem. The stack of images captured at the 
end of the experiment comprised between 1800 and 2000 scans per leaf and they were analyzed 
using ImageJ software and following instructions from http://www.opensourceov.org. Briefly, 
total embolism was quantified by subtracting pixel differences between consecutive images 
(i.e. pixel values that did not change resulted in a value of zero). In these series, white pixels 
represented leaf embolism. Noise was removed using the Imagej outlier removal, and pixel 
threshold was used to extract embolism from any background noise remaining. The embolism 
area per image was calculated as the sum of non-zero pixels on the total scanned surface (mm²) 
or on green leaf surface only (mm², excluding the symptomatic tissue). We considered the veins 
that embolized as functional (i.e. containing water under tension), while the remaining veins 
were considered as non-functional (i.e. containing any combination of air, occlusion, or static 
water). On each leaf used for OV measurements, we determined the percentage of green on the 
scanned area with ImageJ software. On RGB pictures, we detected the HUE green ranges (in 
color threshold) in control-asymptomatic leaves. We used these ranges to select and quantify 
the green pixels in each scanned area. The percentage of green pixels on the green area was 
then used to calculate the green surface (mm²) on each scanned area. 

Statistical analysis

We investigated whether induced senescence processes are affecting the probability of occlu-
sions production in xylem vessels using different chi-square tests of independence. We investi-

http://www.opensourceov.org
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gated whether esca symptomatic and control leaves presented different response in embolized 
surface during decreasing ΨStem using generalized linear mixed model with the plant treated as 
random effect of the interaction between symptom presence and ΨStem. All statistical tests were 
done using SAS software (SAS 9.4; SAS Institute). 

RESULTS

Anatomical diversity of vascular occlusions and presence of crystals

In each sample, we quantified different types of vessels (Fig. 2). By the use of Toluidine blue O 
dye, we identified the nature of vascular occlusions, which comprehends gels (i.e. amorphous 
extracellular material, mainly composed by pectins and polysaccharides, Neghliz et al., 2016, 

B C D

A

Figure 2. Different types of xylem vessels in V. vinifera midribs. (A) Entire cross-section of midrib from an esca 
symptomatic leaf containing occluded vessels. (B-D) Detail of vascular bundles. Vessels were classified as empty 
(i.e. apparently functional) if no structures were detected in their lumen (blue arrowheads, B-D). Vessels with 
crystal depositions were noted when druse crystals were covering the vessel surface (yellow arrowheads, C, D), or 
when prismatic crystals were identified (white arrowhead, C). Vessels were noted as occluded when we identified 
gel pockets and tyloses (red arrowhead, B, D. Scale bars = 100µm.
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Bortolami et al., 2019) and tyloses (i.e. expansions of the neighbour-vessels parenchyma cells, 
Zimmermann, 1979, Zhao et al., 2019). The presence of crystals (both druse and prismatic) 
inside some vessel lumen was surprising (Fig. 2). The fact that crystals are more associated 
with occlusion-free samples (Fig. S1) and that xylem vessels in control asymptomatic midribs 
were almost totally functional under X-ray scans (data from Bortolami et al., 2019) and optical 
visualizations (Fig. 6), let us suppose that crystals are associated with functional vessels (i.e. 
transporting water), not with occluded ones (see discussion for details). Consequently, to eval-
uate the impact of different stresses on xylem anatomy, we reported here only the percentages 
of occlusions, and not of crystals, in different experiments and comparisons.

Vascular occlusions in presence of different induced senescence processes

To explore how different induced senescence processes affected leaf xylem vasculature, we 
compared midribs from controls, esca symptomatic, magnesium deficient, and autumn senes-
cent leaves (Fig. 3). We found that midribs form control leaves presented 3.9 ± 1% of occluded 
vessels (average ± SE, Fig. 3). Esca symptomatic leaves presented the highest level with 28.5 ± 
5% of occluded vessels. Magnesium deficient leaves presented the lowest content of occluded 
vessels (0.53 ± 0.5%), while autumn senescent leaves presented contents similar to controls 
(3.4 ± 1%). However, two autumn senescent midribs presented a percentage of occluded ves-

Figure 3. Occluded vessels in V. vinifera midribs during 
different senescence processes. Colors correspond to 
midribs from: control (blue, n=14), esca symptomatic 
(red, n=13), magnesium deficiency (grey, n=4) and au-
tumn senescence (brown, n=23) leaves. Boxes and bars 
show the median, quartiles and extreme values, circles 
within boxes correspond to means, and circles outside 
boxes to outlier values. The probability in found occlud-
ed vessels among the induced senescence categories 
were significantly different (X²=1186.01, P<0.0001). 

sels over 15% (outliers in Fig. 3). 

Vascular occlusions in esca symptomatic 
leaves from different cultivars and coun-
tries*

We quantified the percentage of occluded 
vessels in esca symptomatic and control 
(asymptomatic) leaf midribs from four dif-
ferent countries (France, Italy, California, 
and Spain) in two varieties: Castet (CT, 
red) and Sauvignon blanc (SB, white). Our 
results show that, in general, symptomatic 
leaves presented a significantly higher pres-
ence of occlusions compared to controls in 
every country and variety (Table 1). Com-
paring esca leaf symptoms between variet-
ies (all countries combined), we observed 
a difference between CT and SB (X²=72.9 

*The presented results are only preliminary. More samples will complete the dataset; in particular, the compari-
sons for esca leaf symptoms will include more varieties from the presented geographic regions.
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P<0.0001, Fig. 4). Midribs from control plants presented low percentages of occluded vessels 
(2.2 ± 1%, average ± SE Fig. 4). CT esca symptomatic leaves presented an intermediate level of 
occluded vessels (14.4 ± 3%, Fig. 4), while SB esca symptomatic leaves presented the highest 
average percentage of occluded vessels (25.9 ± 5%, Fig. 4). For CT esca symptomatic midribs, 
we quantified similar percentage of occluded vessels in France and Spain (X²=0.27 P=0.6, Fig 
4i), while a significant effect of the geographical provenience (France, Italy, and California) 
was found in SB esca symptomatic midribs (X²=176.4 P<0.0001, Fig 4ii).

Vascular occlusion evolution during esca symptom appearance

During one experimental season, we followed ten plants from July (doy=186) to September 
2018 (doy=262, Fig. 5). Four of these plants expressed esca leaf symptoms, and three without 
symptoms were used as control. We found that, using optical microscopy, control plants always 
presented low levels of occlusions inside their midribs, as well as the majority of asymptomatic 
leaves both before and after symptom appearance (<10% of vessels, Fig. 5). Four out of six 
symptomatic leaves presented high content of occlusions (>20%), as well as one leaf before 
symptom appearance, and one asymptomatic leaf in symptomatic plants (Fig. 5). Scanning 
midribs with X-ray microCT, we found higher average occluded vessels (compared to optical 
microscopy) both in control and symptomatic midribs (15.2 ± 4% and 62.7 ± 7%, average ± SE 
for control and symptomatic leaves respectively, Fig.5).

Using a non-invasive optical vulnerability technique, we were able to test the vulnerability to 
embolism in control and esca symptomatic leaf lamina (Fig. 6, 7). At the end of dehydration, 
at -6 MPa, when no supplemental embolism was detected, we sum all the embolism formation 
events in each different sample (red vessels, Fig. 6). As expected, almost all the veins embo-
lized in control leaves (Fig. 6 A-D), while esca symptomatic leaves presented wide portions 
of lamina where the veins did not embolize (Fig. 6 E-M), and two symptomatic leaves did 
not show any embolism (Fig. 6 N, O). We can observe that in most symptomatic leaves the 
primary veins readily embolize. Moreover, embolism is observed in correspondence of darker 
(i.e. green) zones (Fig. 6 E-M). Plotting the embolism expansion versus the decrease in stem 

Country – Variety Sample size
(Control - Esca)

X² P

France – Sauvignon blanc (3 - 5) 223.97 <0.0001
France – Castet (5 - 5) 55.90 <0.0001

Italy – Sauvignon blanc (3 - 4) 217.20 <0.0001
California – Sauvignon 

blanc
(8 - 8) 136.11 <0.0001

Spain – Castet (3 - 5) 101.95 <0.0001

Table 1. Effect of esca leaf symptoms on the probability to present occluded vessels. Different chi-square tests 
of independence were done between control and esca symptomatic leaves for each different country and variety.
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water potential, we found that control leaves presented a final embolized surface of 25.1 ± 7 x 
100 pixels mm-2 (average ± SE, Fig. 7A) on the entire scanned surface. In symptomatic leaves 
only 5.2 ± 2 x 100 pixels mm-2 (Fig. 7A) presented embolism on the entire scanned surface. 
When only the green surface of the leaves was considered (Fig. 7B), control leaves presented 
the same embolized surface evolution (they were completely green), while symptomatic leaves 
presented a final embolized surface of 13.0 ± 4 x 100 pixels mm-2 (Fig. 7B). In control leaves, 
embolism events were detected between -1.9 and -3.3 MPa (Fig. 7A, B), while in symptomatic 
leaves these events appeared in a larger spectrum of ΨStem (i.e. between -1.3 and -4.9 MPa, Fig. 
7A, B). Finally, it is worth noting that in 82% (nine out of eleven) symptomatic leaves, when 
the whole scanned surface is considered, and in 54% (six out of eleven) symptomatic leaves, 
when only the green scanned surface is considered, the final embolized surface did not reach 
the half of the embolized surface of control leaves (Fig. 7).

Control CT (Symp) SB (Symp)

i - CT (Symp) ii - SB (Symp)

Figure 4*. Occluded vessels [%] in different varieties and countries in V. vinifera midribs in presence and absence 
of esca leaf symptoms. In the main figure boxes represent the percentage of occluded vessels in control (blue, all 
varieties and countries combined), Castet esca symptomatic (dark red, all countries combined), and Sauvignon 
blanc esca symptomatic (light red, all countries combined) leaves. (i) Occluded vessel comparison between coun-
tries in Castet esca symptomatic leaves. (ii) Occluded vessel comparison among countries in Sauvignon blanc 
esca symptomatic leaves. Boxes and bars show the median, quartiles and extreme values, circles within boxes 
correspond to means, and circles outside boxes to outlier values. Sample sizes and statistical differences between 
control and esca symptomatic for each different country and variety are presented in Table 1. 

*The presented results are only preliminary. More samples will complete the dataset; in particular, the compari-
sons for esca leaf symptoms will include more varieties from the presented geographic regions.
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DISCUSSION*

In this study, we underlie the uniqueness of esca leaf symptoms compared to other induced se-
nescence processes. We demonstrated that only esca symptomatic leaves presented significant 
percentages of occluded vessels in their midribs compared to leaves under magnesium defi-
ciency or autumn senescence. We investigated esca leaf symptoms in detail and demonstrated 
that the percentage of occlusion: (i) could vary among varieties and geographic distribution 
within varieties; and (ii) did not evolve over the season in symptomatic leaves. Finally, by the 
optical vulnerability (OV) technique, we observed that the non-functional vessels covered large 
portions of symptomatic leaf lamina, suggesting higher percentages of vascular occlusions in 
secondary and most peripheral veins, as the mid veins presented the highest concentration of 
xylem functionality .

Crystals in xylem vessels, reality or artifact?

We regularly observed crystals inside xylem vessels. In the literature, when crystals are ob-
served in leaves, authors usually refer to oxalate calcium, which is formed to regulate calcium 
bulk pressure, defense to herbivores, or metal detoxification (Franceschi and Nakata, 2005). 
Oxalate calcium crystals are found in leaves from different species (Somavilla et al., 2014) and 
this is also the case for grapevine (Jáuregui-Zúñiga et al., 2003, Şeker et al., 2016). However, 
to our knowledge, calcium oxalate was observed in parenchyma cells, never inside xylem ves-
sels. One study found crystals in xylem vessels contaminated by fungi (Chattaway, 1952, in 
different woody species). More recently, Sun et al. (2013) found prismatic crystals in grapevine 
stems (in ~3% of vessels) following Xylella inoculations. In our case, we found crystals (both 
prismatic and druse) in 15% of vessels (on average) in midribs independently from leaf health 

*The presented results are only preliminary. More samples will complete the dataset; in particular, the compari-
sons for esca leaf symptoms will include more varieties from the presented geographic regions.

Control A-before SA-afterOptical microscopy:
Control SX-ray microCT:

Figure 5. Evolution of occluded vessels [%] over 
the season (July to September) in V. vinifera cv 
Sauvignon blanc midribs. Symbols correspond 
to single leaves from well-watered control plants 
(blue, n=7), asymptomatic leaves before esca 
symptom appearance (dark green, n=7), asympto-
matic leaves (light green, n=6) and esca symptoma-
tic (red, n=6) leaves from well-watered esca plants. 
Circles correspond to measures by optical micros-
copy, diamond to X-ray microCT scans (data from 
Bortolami et al., 2019). In X-ray microCT quanti-
fication, symbols correspond to means and bars to 
± SE (n=8 in control and n=13 in esca leaves). A 
significant effect of symptom was observed on the 
probability to present occluded vessels: X²=217.20, 
P<0.0001, including points from optical microsco-
py only.
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status, thus we considered them as non-influential to xylem water transport. Moreover, druse 
oxalate calcium crystals were present asymptomatic leaves, while were absent in presence of 
esca leaf symptoms (Clazarano et al., 2014). However, other studies should investigate the 
chemical nature of these crystals, to identify their role in plant physiology and conclusively 
exclude that we (and other authors) are not observing artifacts resulting from sample manipu-
lations (e.g. fixation, impregnation, or inclusion protocols).

Esca, a unique induced senescence process

Comparing different induced senescence processes, we observed the uniqueness of esca leaf 
symptoms. Both magnesium deficiency and autumn senescence present many similarities 
with esca (including the visual symptom of leaf chlorosis and a decrease in stomatal conduc-
tance and carbon assimilation, Salleo et al., 2002, Brodribb and Holbrook, 2003 for autumn, 
and Tränkner et al., 2016, Rogiers et al., 2020 for Mg deficiency). The absence of occlusions 
during magnesium deficiency suggests that the observed reduction in leaf gas exchange is 
related to a dysfunction in photosynthetic process, not to a decrease in water supply. During 
autumn senescence, the absence of vascular occlusion was somehow unexpected, as occlusions 
are frequently detected during this process (Chattaway, 1949, Salleo et al., 2002, De Micco et 
al., 2016). Vascular occlusions may affect only the petioles (and maybe only the stem-petiole 
junction) which were not studied here, in correspondence of the abscission point during leaf 
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Figure 7. Embolism formation in leaf lamina from V. vinifera cv Sauvignon blanc from control (blue) and esca 
symptomatic (red) leaves during dehydration. (A) Sum of embolized pixels on the total (green and symptomatic) 
scanned surface over decreasing xylem pressure. A significant effect of symptom presence was found: F2,456=219.05 
P<0.0001. (B) Sum of embolized pixels on the green scanned surface over decreasing xylem pressure. A signif-
icant effect of symptom presence was found: F2,456=128.80 P<0.0001. Lines represent the average evolution of 
embolized surface (100 pixels every mm²) during decreasing xylem pressure (MPa). The bands represent the SE 
for each group. The black horizontal line represent the level of embolized pixels corresponding to 50% the final 
embolized surface (on average) for control leaves.
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shedding. Indeed, during autumn the hydraulic conductivity decreased in petioles, not in leaf 
lamina (Salleo et al., 2002). This difference in the spatial distribution of occlusions could sug-
gest that the observed similarities are given by different underlying mechanisms. In the most 
prominent hypothesis of esca leaf symptom formation, toxins are transmitted from the patho-
gens (in the trunk) up to the leaves through the vascular system (Claverie et al., 2020). Thus, 
the presence of occlusions along the vasculature could be consistent with this hypothesis (i.e. 
when a pathogen-derived molecule enters in contact with a parenchyma cell, it could directly 
trigger the expansion of tyloses). In contrast, during autumn senescence the hormones trigger-
ing the senescence process are synthesized in situ (Schippers et al., 2015), suggesting a more 
local response in the vasculature (for example, only on the abscission point in petioles). 

Exploring the vascular occlusions and functionality during esca leaf symptoms

Comparing esca symptomatic leaves among cultivars (Castet and Sauvignon blanc) and coun-
tries (France, Spain, Italy, California in the USA), we found tyloses and gels in the majori-
ty of the symptomatic leaves analyzed. It has been previously demonstrated that Sauvignon 
blanc vines (greenhouse grown) suffer from occlusion driven hydraulic failure during esca leaf 
symptom expression (Bortolami et al., 2019). Here, we demonstrated that occlusions (and sub-
sequent hydraulic failure) can also be present in the field, and this phenomenon is not partic-
ular to one specific climate or cultivar. However, the higher percentage of occluded vessels in 
Sauvignon blanc compared with Castet is of note and suggests differences between genotypes 
regarding the extent of vascular occlusion. This is consistent with the fact that during other vas-
cular diseases occlusions can be associated both with plant resistance and sensibility to disease 
symptoms. In the first case, occlusions efficiently compartmentalize pathogens in a restricted 
volume (Clérivet et al., 2000, Rioux et al., 2018, Pouzoulet et al., 2020); in the second case, 
occlusions interfere with water movement, with detrimental consequences for the plant (Sun 
et al., 2013, Mensah et al., 2020). It is known that grapevine varieties present a different sen-
sibility to esca (Romanazzi et al., 2009, Guerin-Dubrana et al., 2019). Consequently, are the 
occlusion quantification positively or negatively correlated with varietal sensibility? Should 
we consider these occlusions as beneficial or harmful for the plant? As vascular pathogens are 
detected far away from the leaves (i.e. in trunks, Bortolami et al., 2019), we are more inclined 
to hypothesize a harmful effect of occlusions for affected grapevines, and that hydraulic failure 
would exacerbate symptoms. However, we need more studies to confirm this hypothesis and 
relate the presence of occlusion with a direct measure of in vivo water flow.

Following symptomatic plants over the season, we observed that only two among twelve sam-
ples presented some occlusions without the visual symptom (light and dark green dots above 
10% in Fig. 5). At the same time, we also observed that sometimes (two times on six samples) 
visual symptoms could also be accompanied with low presence of occlusions (red dots in Fig. 
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5). We could explain this variability by the fact that we analyzed 2µm thick cross-sections 
on midribs that can be 20cm long likely leading to an underestimation of the occlusion pres-
ence. The comparison with the optical embolism visualization supports this hypothesis, as the 
primary veins are not uniformly functional (or non-functional) along their length. From opti-
cal visualizations, we considered as functional each vein that presented embolism formation 
during dehydration (i.e. containing water under tension), and observed that the midribs are the 
most functional parts in symptomatic leaves (Fig. 6). We could then conclude that hydraulic 
failure given by occlusions may have a  stronger impact on the total leaf hydraulic conductivity 
than what was previously estimated by X-ray scans in midribs (Bortolami et al., 2019). More-
over, even when only the remaining green asymptomatic part of the leaves was considered, 
we quantified that the relative embolized surface was lower in symptomatic leaves compared 
to controls, reinforcing the hypothesis that vascular occlusions strongly affect the leaf xylem 
functionality during esca. Finally, as in symptomatic leaves we also detected embolism events 
at very low ΨStem (i.e. below -3 MPa), we could hypothesize that secondary veins are hydrau-
lically disconnected from the rest of the plant even if they did not present vascular occlusions. 
We probably observed these late embolism events because occlusions isolated some water 
pockets in the most peripheral parts of the leaves.

CONCLUSION

In this study, we showed that esca leaf symptoms provoke anatomical changes that are unique 
to this induced senescence process. Indeed, no vascular occlusions were detected during mag-
nesium deficiency or autumn senescence. This result reinforced the particularity of esca over 
other induced senescence, enhancing the scientific interest to understand the underlying phys-
iological (and pathological) mechanisms that result in esca pathogenesis. This work confirms 
that vascular occlusions during esca are associated with hydraulic failure in the leaf lamina. 
Moreover, the different varietal susceptibility in presenting occlusions during esca, could open 
new perspectives on the role of these structures in varietal sensibility to the disease.  
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CHAPTER 4

Seasonal and Long-Term Consequences of Esca on Grape-
vine Stem Xylem Integrity
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Résumé : Le dysfonctionnement hydraulique a été largement étudié dans le contexte du 
dépérissement des plantes en condition de sécheresse, mais son rôle durant les interactions 
avec les stress biotiques reste méconnu. L’esca, une maladie de la vigne, entraine chez les 
feuilles symptomatiques des niveaux significatifs de dysfonctionnement hydraulique irréver-
sible, mais l’intégrité hydraulique des organes pérennes sur le long et le court terme reste mé-
connue. Nous avons étudié l’effet saisonnier et long-terme de l’esca sur l’intégrité hydraulique 
des tiges de plantes naturellement infectées. Nous avons couplé des mesures directes (ks) et in-
directes (kth) de conductivité hydraulique, avec l’observation des occlusions vasculaires (thyl-
loses), la détection de pathogènes, et des visualisations in vivo par rayons-X. Nous avons mis 
en évidence la présence de thylloses avec pour conséquence une perte de ks dans toutes les tiges 
avec symptômes sévères (apoplexie) et dans plus de 60% des tiges présentant des symptômes 
modérés (tigrés). Cependant, aucune thyllose n’a été observée sur tiges asymptomatiques. Les 
observations in vivo ont démontré que les thylloses sont observées seulement avec l’apparition 
visible des symptômes, entrainant une perte au-delà de 50% de perte de conductance hydrau-
lique (PLC) dans 40% des tiges symptomatiques, sans relation avec l’âge du symptôme. En-
fin, l’impact de l’esca sur l’intégrité du xylème a été observé seulement au cours de la saison 
d’expression des symptômes, mais pas sur le long-terme. Cette étude démontre comment et à 
quel niveau une maladie vasculaire comme l’esca, qui affecte l’intégrité du xylème, pourrait 
amplifier la mortalité des plantes par dysfonctionnement hydraulique.   
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ABSTRACT
Hydraulic failure has been extensively studied during drought-induced plant dieback, but its 
role in plant-pathogen interactions is under debate. During esca, a grapevine (Vitis vinifera) 
disease, symptomatic leaves are prone to irreversible hydraulic dysfunctions but little is known 
about the hydraulic integrity of perennial organs over the short- and long-term. We investigated 
the effects of esca on stem hydraulic integrity in naturally infected plants within a single season 
and across season(s). We coupled direct (ks) and indirect (kth) hydraulic conductivity measure-
ments, and tylose and vascular pathogen detection with in vivo X-ray microtomography visu-
alizations. We found xylem occlusions (tyloses), and subsequent loss of stem ks, in all of the 
shoots with severe symptoms (apoplexy) and in more than 60% of the shoots with moderate 
symptoms (tiger-stripe), and no tyloses in shoots that were currently asymptomatic. In vivo stem 
observations demonstrated that tyloses were observed only when leaf symptoms appeared, and 
resulted in more than 50% PLC in 40% of symptomatic stems, unrelated to symptom age. The 
impact of esca on xylem integrity was only seasonal and no long-term impact of disease history 
was recorded. Our study demonstrated how and to what extent a vascular disease such as esca, 
affecting xylem integrity, could amplify plant mortality by hydraulic failure.

Key words: Esca, hydraulic failure, plant dieback, tyloses, vascular pathogens, Vitis vinifera 
L., X-ray microCT, xylem anatomy
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INTRODUCTION

In agricultural and forest ecosystems, perennial plant dieback causes decreases in plant pro-
ductivity and longevity (Aleemullah and Walsh, 1996, Eskalen et al., 2013, Urbez-Torres et 
al., 2013, Alvindia and Gallema, 2017). Plant dieback is a complex process where different 
biotic and/or abiotic stress factors interact and contribute to leaf and crown wilting and ulti-
mately plant death (Desprez-Lostau et al., 2006, Anderegg et al., 2013, Cailleret et al., 2017, 
Bettenfeld et al., 2020). Drought-mediated plant dieback has been extensively studied, and in 
this case hydraulic failure has been identified as the primary cause of plant death (Anderegg 
et al., 2016). Hydraulic failure results from an interruption of the ascendant water flow by air 
embolism or xylem occlusion (Zimmermann, 1979, Tyree and Sperry, 1989). Vascular patho-
gens, which infect the xylem network (Yadeta and Thomma, 2013), are also important drivers 
of pathogen-mediated plant dieback (Goberville et al., 2016, Pandey et al., 2018; Fallon et al., 
2020).

Vascular pathogens induce wood necrosis, leaf symptoms, and crown defoliation (Beckmann 
and Roberts, 1995, Pearce, 1996). Their biology and toxic metabolite production has been 
well studied, in particular using controlled phytotoxicity assays (Andolfi et al., 2011, Akpanin-
yang and Opara, 2017). However, the possible role of hydraulic failure during pathogen-me-
diated plant dieback has been poorly investigated, and the underlying physiological mecha-
nisms inducing leaf symptoms are not clear yet (Fradin and Thomma, 2006, McDowell et al., 
2008). Moreover, the long-term impact (over seasons) and relationships between pathogens, 
leaf symptom presence, and the hydraulic functioning of the plant are still unknown. During 
vascular pathogenesis, both air (Pérez-Donoso et al., 2016) and nongaseous (Sun et al., 2013, 
Czemmel et al., 2015, Pouzoulet et al., 2019) embolism have been observed. For example, air 
embolism is thought to accelerate pathogen progression during Pierce’s disease (Pérez-Donoso 
et al., 2016), and nongaseous embolism is associated with occlusion of the xylem conduits by 
the plant that could slow the disease process while interfering with xylem water transport (Sun 
et al., 2013, Pouzoulet et al., 2019).

Xylem occlusion, usually through the production of tyloses and gels, is one of the first plant de-
fense mechanisms against vascular pathogens (Pearce, 1996). Xylem parenchyma cells secrete 
gels and expand into the vessel lumen, forming tyloses, physically blocking pathogen progres-
sion (Zimmermann, 1979). Xylem anatomy plays an important role, both for vascular patho-
gen development (Martin et al., 2009, Martín et al., 2013, Venturas et al., 2014, Pouzoulet et 
al., 2017, 2020) and for tylose formation (Bonsen and Kucera, 1990, De Micco et al., 2016, 
Pouzoulet et al., 2019). If effective, this occlusion mechanism allows the plant to compartmen-
talize the infected zone and to generate new tissue around it (CODIT model, Pearce, 1996). 
Because tyloses can potentially interfere with the hydraulic functioning of the plant, they could 
exacerbate disease symptoms (Talboys, 1972). Tyloses are usually observed in close proximity 
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to pathogens, as shown in artificial inoculation studies (Czemmel et al., 2015, Rioux et al., 
2018, among others). However, pathogens frequently proliferate in perennial organs without 
physically reaching the leaves, thus leaf symptoms are often induced at a distance (Beckmann 
and Roberts, 1995). A recent study shows that tyloses can be present in symptomatic leaves at 
a distance from the pathogen niches resulting in decreased leaf hydraulic conductivity (Bortol-
ami et al., 2019).

Over the last decades, grapevine (Vitis vinifera L.) mortality and yield loss have been report-
ed in European, American, and South African vineyards due to esca trunk disease (Cloete et 
al., 2015, Guerin-Dubrana et al., 2019). Esca, a vascular disease caused by the infection of 
multiple fungal pathogens, affects mostly mature grapevines (more than seven-years-old), and 
symptoms include trunk necrosis and leaf symptoms, consisting of “tiger-stripe” necrosis and 
leaf wilting (Lecomte et al., 2012, Claverie et al., 2020), which are not regularly expressed 
season-to-season even within individual vines (Guerin-Dubrana et al., 2013, Li et al., 2017). 
While the pathogens responsible for esca-induced trunk necrosis have been identified (Mo-
rales-Cruz et al., 2018, Brown et al., 2020), the underlying mechanisms of leaf and fruit symp-
toms, and plant death are still poorly understood. Bortolami et al. (2019) demonstrated that the 
two vascular pathogens related to esca (Phaeomoniella chlamydospora and Phaeoacremonium 
minimum) were never detected in leaves or in stems of the current year, but always in the trunk 
(independently from leaf symptom presence). They further showed that esca symptomatic 
leaves presented significant losses in hydraulic conductivity due to the occlusion of the xylem 
conduits by tyloses. Together, these results reveal that esca impacts leaf hydraulic functioning, 
but whether or not there is a corresponding failure in perennial organs, and the exact timing of 
this phenomenon, are still unknown. As stems and branches are the direct connections between 
the pathogen niche in the trunk and the observed symptoms in the leaves, the study of stem 
xylem integrity is crucial in the understanding of esca impact on grapevine physiology in the 
current year and across seasons.

In this study, we investigated stem xylem integrity in grapevine during esca leaf symptom 
formation asking the following questions: (i) Can esca lead to hydraulic failure in perennial or-
gans? (ii) Does stem hydraulic failure occur prior to or after leaf symptom expression, and does 
it depend on xylem anatomy? (iii) Do long-term symptomatic plants present different xylem 
anatomy and levels of hydraulic failure from long-term asymptomatic plants? To answer these 
questions, we transplanted 28-years-old grapevines (Vitis vinifera L. cv Sauvignon blanc) from 
the field into pots to transport, manipulate, and study naturally esca-infected vines. We coupled 
in vivo visualizations of stem xylem functionality (using synchrotron-based X-ray microcom-
puted tomography) with stem specific hydraulic conductivity measurements (ks), theoretical 
hydraulic conductivity estimates (kth), optical observations of vessel occlusions, and pathogen 
detection during symptom appearance, while comparing plants with different symptom history 
record.
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MATERIALS AND METHODS

Plant material

Vitis vinifera cv. Sauvignon blanc grafted onto 101-14 MGt were uprooted in winter 2017, 
2018, and 2019 from a vineyard planted in 1992 located at INRAE Bordeaux-Nouvelle Aqui-
taine (44°47’24.8”N, 0°34’35.1”W) and transferred into pots. Following plant excavation, the 
root system (around 0.125 m3) was immersed under water overnight, and powered with in-
dole-3-butyric acid. The plants were potted in 20l pots in fine clay medium (Klasmann Deil-
mann substrate 4:264) and placed on heating plates at 30 °C for two months. Plants were then 
moved to a greenhouse, under natural light conditions, and watered with nutritive solutions 
(0.1 mM NH4H2PO4, 0.187 mM NH4NO3, 0.255 mM KNO3, 0.025 mM MgSO4, 0.002 mM Fe, 
and oligo-elements [B, Zn, Mn, Cu, and Mo]) until the end of experiment. Since the plantation 
these plants have been trained with a double Guyot system. This training system requires a per-
manent main trunk and one cane on each side of the trunk which is left every year to carry the 
buds that will produce the stems of the year. During the growing season, the stems of the cur-
rent year were trimmed at 1.5-2m, the secondary stems and inflorescences were removed just 
after bud-break. Each of these plants has been surveyed each year in the field since 2012 for 
esca leaf symptom expression following Lecomte et al. (2012), and has been classified yearly 
as leaf-symptomatic or asymptomatic. Plants were then classified by their long-term symp-
tomatology record: plants asymptomatic from 2012 to 2018 (pA, previously asymptomatic), 
and plants that have expressed symptoms at least once between 2012 and 2018 (pS, previously 
symptomatic). 

Esca symptom notation

The evolution of esca leaf symptoms was surveyed twice a week from June to October 2019 
on every plant (n=58, Fig. 1). As presented in Fig. 1A, esca symptoms were scored at the stem 
and whole plant scales. The stems of the current year collected for analyses (both hydraulic 
measurements or microCT observations) could be noted as: asymptomatic (green leaves and 
apparently healthy), pre-symptomatic (leaves presenting yellowing or small yellow spots be-
tween the veins), tiger-stripe (typical pattern of esca leaf symptoms), or apoplectic (leaves 
passing from green to wilted in a couple of days). Along the experimentation, entire plants 
could be noted as asymptomatic (control) or symptomatic (when at least 25% of the canopy 
was presenting tiger-stripe leaf symptoms). At the end of the experiment (week 40, October 
2019) each plant was classified as symptomatic or asymptomatic (control). We were then able 
to group each stem measured into six different groups (Fig. 1A): one group of stems from 
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Figure 1. Representation of esca symptom notation during the experimental season. (A) Single 
stems could be noted as esca asymptomatic, pre-symptomatic, tiger-stripe, or apoplectic. Whole 
plants have been noted as control (asymptomatic from June to October) or symptomatic (with ti-
ger-stripe symptoms at the end of the season). (B) Proportion of plants in each symptom category 
over the experimental season (n=58). The blue area corresponds to control plants, green area to 
esca symptomatic plants before symptom appearance, and red area to esca symptomatic plants.
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control plants (asymptomatic from June to October) and five groups of stems from symptom-
atic plants: two before symptom appearance (asymptomatic and pre-symptomatic stems); and 
three after symptom appearance (asymptomatic, tiger-stripe, and apoplectic stems). To clearly 
differentiate asymptomatic stems collected from symptomatic plants and asymptomatic stems 
collected from asymptomatic plants, we considered plants (and their stems) that didn’t show 
leaf symptoms during the experiment as control plants (or stems). We investigated whether 
symptom expression (final symptom notation in October 2019, see Fig. 1) differed between 
plants with contrasted long-term symptom history (previously asymptomatic vs previously 
symptomatic, Table 1) using a Chi-square test of independence.

X-ray microCT observation

Synchrotron-based microCT was used to visualize the content of vessels and their functionality 
in esca tiger-stripe and control stems. Three symptomatic plants (presenting tiger-stripe symp-
toms for 8, 7, and 3 weeks), and one asymptomatic-control plant were brought to the PSICHE 
beamline (King et al., 2016) at SOLEIL synchrotron facility in September 2019. Stems of the 
current year (ca. 2 m long) were cut under water and transferred into a solution containing 
75mM of contrasting agent iohexol. The iohexol solution absorbs X-rays very strongly and 
appears bright white in X-ray scans above the iodine K-edge at 33.2 keV, and, once it has been 
taken up by the transpiration stream, the effective functionality of each vessel can be confirmed 
(Pratt and Jacobsen, 2018; Bortolami et al., 2019). These stems were moved and left outdoor 
to transpire the solution for at least half a day. The stems were then transferred to the beamline 
stage and scanned twice in less than 5 minutes using two different energies of a high-flux (3 
x 1011 photons mm-2) monochromatic X-ray beam: 33.1 keV and 33.3 keV. The projections 
were recorded with a sCMOS camera equipped with a 250-mm-thick LuAG scintillator (Orca 
Flash, Hamamatsu, Japan). The complete tomographic scan included 1500 projections, and 
each projection lasted 50 ms. Tomographic reconstructions were performed using PyHST2 
software (Mirone et al., 2014) using the Paganin method (Paganin et al., 2002), resulting in 
32-bit volume reconstructions of 2048 x 2048 x 1024 voxels. The final spatial resolution was 
2.8769 µm3 voxel-1.

Image analysis of microCT scans

The contrast agent iohexol allowed us to distinguish in intact scans the effective function-
ality of each vessel. In the absence of iohexol, X-ray microCT scans are used to distinguish 
air-filled vessels (appearing black, corresponding to native PLC) from sap-filled vessels (ap-
pearing grey). The addition of iohexol in the xylem sap allows to distinguish the functional 
vessels (they appear bright white when they transport the sap), from the non-functional ones 
(i.e. occluded vessels remaining grey, corresponding to occlusion PLC). We could also observe 
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partially occluded vessels (i.e. vessels with simultaneous presence of air and occlusions, or sap 
and occlusions). This specific case was observed by checking the presence of any occlusion 
in at least 200 slices in each volume. Partially occluded vessels were considered as occluded, 
some examples are presented in Fig. S1. The equivalent-circle diameter of air-filled, occluded, 
and functional (iohexol-filled) vessels was measured on the cross sections from the central slice 
of the microCT scanned volume using Imagej software (Schneider et al., 2012). In the high 
energy scans recorded at 33.3 keV X-ray beam, iohexol appears bright white but its contrast 
can sometimes impede the clear limit of the vessel lumen. Therefore, all vessel diameters were 
recorded on the scan recorded at low energy (33.1 keV X-ray beam), then the distinction of 
occluded from iohexol-filled vessels was done on the high energy scan (as done by Bortolami 
et al., 2019). The theoretical hydraulic conductivity of each vessel (kvessel) [kg m MPa-1 s-1] was 
calculated using the Hagen-Poiseuille equation [1]:

[1] 𝑘𝑘𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = (𝜋𝜋 × Ø4  ×  𝜌𝜌)
(128 ×  𝜂𝜂)  

Where: Ø is the equivalent circle diameter [m], ρ the density of water [998.2 kg m-3 at 20°C], 
and η the viscosity of water [1.002 x 10-9 MPa s at 20°C]. The percentage loss of hydraulic 
conductivity given by native air embolism (native PLC) was calculated [2] by the ratio between 
the hydraulic conductivity of air-filled vessels and the whole-stem hydraulic conductivity:

[2] Native PLC (%)  = 100 × 
(∑ 𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎−𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑣𝑣𝑓𝑓𝑣𝑣𝑣𝑣𝑓𝑓𝑓𝑓𝑣𝑣) 

(∑ 𝑘𝑘all vessels)  

 
The percentage loss of hydraulic conductivity given by occlusions (occlusion PLC) was cal-
culated [3] by the ratio between occluded (plus partially occluded) vessels and the whole-stem 
hydraulic conductivity:

[3] Occlusion PLC (%)  = 100 × 
(∑ 𝑘𝑘occluded vessels   + ∑ 𝑘𝑘partially occluded vessels) 

(∑ 𝑘𝑘all vessels)  

 The total percentage loss of hydraulic conductivity (total PLC) was obtained by summing 
native PLC with occlusion PLC in each sample. As the first ring of xylem vessels (i.e. protox-
ylem) was always non-functional (>90% PLC), both in control and tiger-stripe stems, it was 
removed from the analysis.

We investigated whether native PLC, and occlusion PLC differed between control and esca 
tiger-stripe plants, using two independent generalized mixed linear models where plants were 
treated as a random effect. Proportional data (ranging from 0 to 1, dividing all PLC values by 
100) was analyzed to fit a logit link function and binomial distribution as appropriate.
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Monitoring stem hydraulic properties over time

Xylem integrity was monitored over time by measuring hydraulic properties in stems produced 
on the year of the experiment and collected on control and symptomatic plants along the season 
and during esca development. Specific hydraulic conductivity (ks) was measured on internodes 
sampled in the center of the collected stem by the gravity method (Sperry et al., 1988), and 
compared to its theoretical analog (kth) calculated from xylem anatomical observations on the 
same internode or on the one below (see the method described below). When there are ob-
served differences in ks among stems, comparisons with theoretical maximums (kth) can show 
if lower ks values result from anatomical differences (i.e. different vessel size distributions) or 
by hydraulic failure (in the case of similar vessel size and density). If ks varies in unity with kth, 
differences in ks might result from anatomical differences (e.g. smaller ks are related to smaller 
vessels), otherwise ks variations are the consequence of hydraulic failure. Each method to mea-
sure ks, kth, and to observe tyloses is described below.

Sampling started on June 19th and finished on September 13th 2019 for a total of 10 sampling 
dates, 39 stems of the current year from 23 control-asymptomatic plants, and 49 stems of the 
current year from 17 symptomatic plants. We randomly sampled control plants and esca symp-
tomatic plants all along the season through the evolution of esca symptoms, obtaining measure-
ments from 14 weeks before until 10 weeks after symptom appearance. To explore the contri-
bution of the experimental design to data analysis, we tested the effect of the year of uprooting 
(2018 and 2019), the position of the analyzed internode, and the week of the measurement (i.e. 
evolution during the season) on ks and kth in control plants using separate generalized linear 
mixed model with normal distributions and the plant treated as a random variable (Table S1). A 
significant impact of the year of uproot was found for ks and kth values in control plants (Table 
S1). This could have resulted from the more favorable conditions (i.e. climatic stability and nu-
trient availability) for the greenhouse grown vines (note that plants uprooted in 2017 were only 
esca symptomatic and were not included in this analysis). However, once ks and kth are plotted 
together (Fig. S2), all the values lie on the same regression line without generating outlier 
values (smaller ks values correspond to smaller kth values independently of the uprooting year).

Stem specific hydraulic conductivity (ks)

ks measurements were performed on one internode per stem, located in the center of the collect-
ed >1.5m long stem, following Torres-Ruiz et al. (2012) gravity method. In the early morning, 
each stem was cut at the base under water to avoid air entrance in the stem, maintained under 
water and brought to the laboratory. Hydraulic conductivity measurements were always done 
before noon, in order to minimize the delay (never more than four hours) from the cut to the 
measure. In the laboratory, a representative internode between the 4th to the 10th internode from 
the base (i.e. in the center of the stem) was cut underwater with a clean razor blade, the ends 
wrapped in tape, and the internode was connected to a pipe system. A flow of 20 mM KCl 
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solution passed through the sample from a reservoir to a precision electronic balance (AS220.
R2, RADWAG, Radom, PL) recording the weight every 5 seconds using the WinWedge v3 
5.0 software (TAL Technologies, Philadelphia, PA, USA). The solution was passed through 
the stem at four increasing pressures (ranging from 0.001 to 0.005 MPa), controlled by raising 
the source height. The average flow for each pressure step was determined after stabilization 
at a steady-state as the average of 10-15 measures. Hydraulic conductance, k [kg s-1 MPa-1] 

[4] 𝑘𝑘𝑆𝑆 = (𝑘𝑘 × 𝑙𝑙)
𝐴𝐴  

[5] 𝐴𝐴 = ((𝑑𝑑1
2 )

2
×  𝜋𝜋)  − ((𝑑𝑑2

2 )
2

×  𝜋𝜋) 

 was obtained by the slope generated by the flow and the corresponding pressure. The linear 
relationship between flow and pressure obtained were always characterized by R2>0.97. Stem 
specific hydraulic conductivity, ks [kg s-1 MPa-1 m-1], was by the equations [4] and [5]:

Where: k is the hydraulic conductance, l is the length of the sample, A is the xylem area, d1 is 
the external diameter of the debarked stem, and d2 is the diameter of the central pith.

Stem theoretical hydraulic conductivity (kth), vessel anatomy, and tylose observation

Just before hydraulic conductivity (ks) measurements, the lower internode was stored at 4 °C in 
80% ethanol for analysis of xylem anatomy. When possible, the same internode of ks measure-
ments was used for anatomical analysis and kth estimations, otherwise the stored internode was 
used for the following protocol. 50 µm thick slices were obtained using a GSL-1 microtome 
(Gärtner et al., 2014). Slices were stained using a 0.5% safranin solution during 5 minutes, and 
then washed three to four times in ethanol (100%). They were quickly soaked in xylene and 
mounted on microscope slides with Permount Mounting Medium (Electron Microscopy Sci-
ence, Hatfield, PA, USA). Images were captured with a stereo microscope SMZ1270 (Nikon, 

[6] 𝑘𝑘𝑡𝑡ℎ =
∑ 𝑘𝑘𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

𝐴𝐴  

France) mounted with a DS-Fi3 camera (Nikon, France). The theoretical conductivity of each 
vessel (kvessel) [kg m MPa-1 s-1] was calculated using the Hagen-Poiseuille equation [1]. kth of the 
stem [kg s-1 m-1 MPa-1] was then calculated, equation [6], by summing every kvessel in the xylem 
area (A) [m²]:

In the entire cross section of each sample, the physical presence (or absence) of tyloses in ves-
sel lumina was visually assessed. 

Regarding the statistical analysis, stems were grouped in six different categories following 
their esca symptomatology (as presented in Fig. 1A). We investigated whether ks, kth, and total 
vessel density differed among these different categories, and how ks, kth, and total vessel density 
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differed between stems with and without tyloses (independently from leaf symptom presence), 
using independent mixed linear general models. The symptom / tylose category and the year 
of uprooting (since it had a significant impact on ks and kth in control plants, Table S1) were 
entered as fixed effects, with the plant treated as a random effect since different stems were 
sometimes analyzed from the same plant (88 analyzed stems on 40 different plants). Total 
density and densities for each vessel diameter class were log-transformed prior to analysis to 
fit normality requirements. For the classes with no vessels (e.g. samples without vessel diame-
ters above 160 µm), a minimal density of 0.0001 was assigned prior to log transformation. We 
investigated whether the frequency of symptomatic stems presenting tyloses changed with the 
symptom age (i.e. weeks between first symptom detection and ks measurements on the same 
plant) with a Chi-square test. The relationships between stem ks and kth were tested using linear 
regression models. Finally, we investigated whether ks and kth in control stems differed between 
plants with different symptom history records using independent mixed linear general models 
with the plant treated as a random effect.

Fungal detection

Detection and quantification of Phaeomoniella chlamydospora and Phaeoacremonium mini-
mum were performed using qPCR in a subsample of stems of the current year (n = 28) and pe-
rennial trunks (n = 20 plants) from the same symptomatic and control plants used for hydraulic 
and anatomical measurements. All along the season, basal internodes, from the same stems 
sampled for ks and kth measurements, were directly placed in liquid nitrogen and stored at -80 
°C. At the end of the experiment, a subset of plants was cut at the base for trunk sampling. A 
2 cm high section was cut with a sterilized hand saw. The bark was removed and the different 
tissues of each section (necrotic and apparently healthy wood) were separately collected using 
ethyl alcohol-sterilized shears in a sterile environment, and immediately placed in liquid ni-
trogen. All samples were ground in liquid nitrogen using a tissue lyser (Tissuelyser II, Qiagen, 
Germantown, MD, USA). DNA was extracted from 60mg of ground tissue using the Invisorb 
Spin Plant Mini Kit (Invitek GmbH, Berlin, Germany)according to the manufacturer’s instruc-
tions. . Detection and quantification of P. chlamydospora and P. minimum (previously named 
P. aleophilum) DNA by qPCR (SYBR Green assays) was conducted using the primer sets Pch-
QF (5’-CTCTGGTGTGTAAGTTCAATCGACTC-3’)/PchQR (5’-CCATTGTAGCTGTTC-
CAGATCAG-3’) and PalQF(5’-CCGGTGGGGTTTTTACGTCTACAG-3’)/ PalQR(5’-CGT-
CATCCAAGATGCCGAATAAAG-3’) (Pouzoulet et al. 2013). The qPCR reactions proceeded 
in a final volume of 25 µl, and the reaction mixtures containing 2 µL of DNA template, 12.5 
µl of 2X SYBRGreen Quantitect Master Mix (Qiagen, Venlo, Netherlands), and each primer 
at a final concentration of 0.4 µM. Experiments were conducted with a Mx3005P Real-Time 
PCR cycler using MxPro qPCR software (Agilent Technologies). The cycling program, as de-
scribed in Pouzoulet et al. (2017), consisted of an initial denaturation step at 95°C for 15 min, 
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and 40 cycles of 15 s at 95°C (for denaturation) followed by 45 s at 62°C (for both annealing 
and extension). A melting analysis of 40 min from 60 to 95° was performed to verify reaction’s 
specificity and the absence of byproducts. Preparation and use of standard solutions for the 
absolute quantification of fungal DNA was realized following Pouzoulet et al. (2013) using 
ten-fold dilutions of fungal DNA extracts obtained from axenic cultures. Reaction efficiencies 
ranging from 90% and 95% with an R2 > 0.99 (n=15) were obtained for both PchQF/R and 
PalQF/R primer sets. The average amount of DNA was determined based on three technical 
replicates (standards and plates) with a detection threshold superior to 95% (i.e. at least three 
positive amplification out of three replicates) or otherwise discarded (i.e. pathogen DNA was 
considered absent). Pathogen DNA quantity (average value of three technical replicates, fg/
µl) was normalized by the amount of total DNA (ng/µl), measured using a Qubit fluorometer. 
The results from each trunk sample (i.e. necrotic or apparently healthy wood) were averaged 
together in order to obtain one quantification per plant. We investigated whether the amount of 
fungal DNA (both for P. chlamydospora and for P. minimum) in trunks differed between symp-
tomatic and control plants, and between control plants with different symptom history records, 
using generalized linear mixed model with a poisson distribution and a log likelihood function.

Statistical analysis

All data management and statistical tests were done in SAS software (SAS 9.4; SAS Institute). 
We used PROC GLIMMIX for generalized linear mixed models, PROC GLM for generalized 
linear models, PROC REG for regression analyses and PROC FREQ for frequency analyses 
(Chi-square test of independence). The normality of the response variables was tested using 
a Kolmogorov-Smirnov test (PROC UNIVARIATE) prior to analyses. Data were log-trans-
formed (total density) or appropriate distributions (binomial, poisson) were fitted when appro-
priate.
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RESULTS

Esca leaf symptom expression within and across seasons 

Esca leaf symptoms were recorded in 20 out of the 58 plants followed in this study (35%, Fig. 
1, Table 1). The number of symptomatic plants increased gradually with time, from the first 
symptom appearance in early June to the last in late September (Fig. 1). There was no effect of 
the plant history (previously asymptomatic pA, or previously symptomatic pS) on 2019 symp-
tom expression (n=58, X2=0.27, P=0.60). On 20 pA plants, six (30%) expressed leaf symptoms 
in 2019 (Table 1). On 38 pS plants, fourteen (37%) showed symptoms in 2019 (Table 1). 
However, pS plants expressed symptoms from June to the end of September, while pA plants 
showed leaf symptoms only in September.

In vivo observations of esca symptomatic stems

Xylem vessels of control and tiger-stripe stems were observed using three dimensional X-ray 
microCT scans in iohexol-fed samples (Fig. 2, 3, Table S2). As shown in Fig. 2, functional 
and non-functional vessels can be discriminated through the use of iohexol (functional vessels 
appear bright white, non functional vessels appear either black if air-filled or grey if occluded). 
We observed almost totally functional stems in all asymptomatic stems (<20% total PLC, Fig. 
2A-C), and 40% of tiger-stripe stems (e.g. Fig. 2D-G). Higher levels of PLC (>20% total PLC, 
Fig H-M) were observed in the remaining tiger-stripe stems, with 40% of tiger-stripe stems 
exhibiting over 50% total PLC (Fig. 2J-M). When the two components of PLC were disen-
tangled, we observed that the level of native PLC remained low both in control (6.5 ± 2.6%) 
and in tiger-stripe (12.2 ± 2.9%) stems (Fig. 3A). Occlusion PLC values were virtually zero 
in control stems (0.7 ± 0.02%) while in tiger-stripe stems the mean occlusion PLC values was 
27.5 ± 8.2% (Fig. 3B). Nevertheless, the variability of occlusion PLC across tiger-stripe stems 
was very high, the values ranging from 0.3% to 72.9% (Fig. 2D-M, and 3B), and occlusion 

Table 1. Esca leaf symptom observations over the experimental season on Vitis vinifera cv Sauvignon blanc. 

           Symptom nota-
tion before 2019

Symptom notation in 
2019

All plants Previously asymp-
tomatic (pA)

Previously symp-
tomatic (pS)

Esca-symptomatic 35 % (20/58) 30 % (6/20) 37 % (14/38)
Control-asymptomatic 65 % (38/58) 70 % (14/20) 63 % (24/38)

Plants are grouped by their symptom history: previously asymptomatic (pA, plants that have never expressed leaf 
symptoms between 2012 and 2018) and previously symptomatic (pS, plants that have expressed leaf symptoms 
at least once since 2012). Ratios present the number of plants in each symptom category (esca-symptomatic or 
control-asymptomatic) over the total number of plants of the category.
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Total PLC = 6.2% Total PLC = 12.2% Total PLC = 4.6%B C DA Total PLC = 3.4%

Total PLC = 13.4% Total PLC = 18.8% Total PLC = 26.7%F G HE Total PLC = 11.4%

Total PLC = 54.0% Total PLC = 60.5% Total PLC = 82.3%J K LI Total PLC = 34.9%

Total PLC = 91.1%M
Figure 2. Two-dimensional reconstruction of cross-sections from X-ray microCT 
volumes of grapevine stems. Each panel represents a cross section of different stems 
for control (A-C) and esca symptomatic (D-M) plants. Iohexol appears white bright 
in functional vessels; air-filled vessels (i.e. native PLC) appear black; occluded ves-
sels (i.e. occlusion PLC) appear grey. Total PLC (i.e. native PLC plus occlusion 
PLC) values are given for the presented samples. Scale bars = 1000µm.

PLC was not correlated to symptom age (n=10, F2,7=0.19, P=0.83). Consequently, no statistical 
differences in native or occlusion PLC were found between control and tiger-stripe stems (Fig. 
3). When higher occlusion PLC was measured (Fig. 2H-M), occluded vessels could be orga-
nized either on one side of the stem (Fig 2J-L) or randomly distributed across the section (Fig 
2H, 2I, 2M). In 90% of symptomatic stems, we observed that the most external vessels were 
functional. Occlusions were present equally in all vessel diameter classes (Fig. S3).

Tylose development, stem specific (ks) and theoretical (kth) hydraulic conductivity during 
esca leaf symptom formation 

Tyloses were identified in the xylem vessels of certain tiger-stripe stems and throughout the 
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Figure 3. (A) Mean values of native PLC in control 
(blue) and esca tiger-stripe (red) stems of grapevine 
plants using X-ray microCT imaging. Differences were 
not significant (n=13, F1,9=0.07, P=0.79). (B) Mean 
values of occlusion PLC in control (blue) and esca ti-
ger-stripe (red) stems of grapevine plants using X-ray 
microCT imaging. Differences were not significant 
(n=13, F1,9=0.33, P=0.58). Boxes and bars show the me-
dian, quartiles and extreme values, circles show mean 
values. N represents the sample size (number of analyzed 
stems) for each group.
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temporal development of esca leaf symp-
toms, from the appearance of symptoms to 11 
weeks after. All apoplectic stems and 62.5% 
(15 of 24 analyzed stems) of esca tiger-stripe 
stems presented tyloses, while all other stems 
(control, asymptomatic or pre-symptomatic) 
did not contain these occlusions, even until 
one week before symptom development. In 
esca tiger-stripe stems, tyloses were not re-
lated to specific plants, or to symptom age 
(i.e. on the same plant at the same moment, 
different symptomatic stems could present 
tyloses, or not, n=24, X2=7.47, P=0.38).

Overall, no significant impact of esca symp-
toms was observed on ks (Fig. 4A), even if ti-
ger-stripe stems were divided between those 
with and without tyloses. Control stems pre-
sented a mean (± SE) ks of 24.97 ± 1.72 kg 
s-1 MPa-1 m-1; all the stems without tyloses 
measured on symptomatic plants showed the 
same range of values as control stems (Fig 
4A, Table 2): 26.04 ± 4.71 for asymptomatic 
before symptoms appearance, 30.32 ± 4.26 
for pre-symptomatic stems, 19.80 ± 5.18 for 
asymptomatic stems after symptom appear-
ance on the plant, and 21.29 ± 5.40 for ti-
ger-stripe stems without tyloses. Stems with 
tyloses (tiger-stripe and apoplectic stems) 
presented the lowest average ks values (11.27 
± 2.86 and 2.47 ± 1.45 kg s-1 MPa-1 m-1 for 
tiger-stripe and apoplectic, respectively). Re-

garding kth, no significant impact of esca symptoms was found (Fig. 4C, Table 2), all the values 
were in the same range, with average values ranging from 70.44 (for tiger-stripe stems with 
tyloses) to 87.88 (for pre-symptomatic stems) kg s-1 MPa-1 m-1.

In order to further investigate the impact of esca on stem hydraulics, we explored the relation-
ship between individual stem ks and kth in each symptom category (Fig. 4B, S4, Table 2). Sig-
nificant relationships were found between ks and kth in all groups except in asymptomatic stems 
after symptom appearance and symptomatic stems with the physical presence of tyloses (Fig. 
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Figure 4. Relationships between specific stem hydraulic conductivity (ks), theoretical stem hydraulic conductivity 
(kth), and vessel density in control and esca symptomatic grapevine plants. (A) ks values for control (blue); asymp-
tomatic (dark green) and pre-symptomatic (yellow) stems in plants before symptom appearance; asymptomatic 
(light green), tiger-stripe (red), and apoplectic (grey) stems in plants after symptom appearance, differences were 
not significant (n=88, F5,45=1.30 P=0.28). Boxes and bars show the median, quartiles and extreme values, circles 
within boxes correspond to means, and circles outside boxes to outlier values. (B) Relationships between ks and 
kth. Symbols represent the absence (circles) or presence (triangles) of tyloses in xylem vessels. Colors represent 
esca symptomatology (as in panel A). The dashed line represents the regression for stems in which no tyloses 
were observed in xylem vessels, and the solid line represents the regression for samples with tyloses. R² for the 
regression lines are indicated (see Table 2 and Fig. S4 for detailed analyses). (C) kth values for the different stem 
categories as presented in panel a. Differences were not significant (n=88, F5,45=0.58, P=0.71). (D) Relationships 
between mean values of xylem vessel density and their diameters. Differences in total vessel density and in 
vessel size distributions were not significant (n=88, F6,45=0.77, P=0.60; n=792 (88 samples for 9 vessel classes), 
F48,693=1.19, P=0.18). Colors and markers are the same as panel B.
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Table 2. Values for specific stem hydraulic conductivity (ks), theoretical stem hydraulic conductivity (kth) and equations of regression 
lines between ks and kth for control and esca symptomatic stems. 

Tyloses Esca ks 
[kg s-1 m-1 MPa-1]

kth 
[kg s-1 m-1 MPa-1]

n 
(stem - 
plant)

Regression

Absence

Control 24.97 ± 1.72 78.36 ± 4.51 39 - 23 ks = 0.3 x kth + 1.6
R²=0.61 P<0.0001

Asymptomatic 
before symp-
toms

26.04 ± 4.71 74.75 ± 11.80 6 - 6 ks = 0.36 x kth - 0.94
R²=0.82 P=0.013

Pre-symptom-
atic

30.32 ± 4.26 87.88 ± 8.54 11 - 7 ks = 0.37 x kth - 1.9
R²=0.54 P=0.010

Asymptomatic 
after symptoms

19.80 ± 5.18 72.58 ± 12.64 5 - 2 ks = 0.33 x kth - 4
R²=0.64 P=0.104

Esca 
(tiger-stripe) 

21.29 ± 5.40 72.85 ± 10.41 9 - 5 ks = 0.45 x kth - 11.26
R²=0.74 P=0.003

Presence

Esca 
(tiger-stripe) 

11.27 ± 2.86 70.44 ± 7.81 15 - 5 ks = 0.17 x kth -0.84
R²=0.22 P=0.077

Esca 
(apoplectic)

2.47 ± 1.45 74.80 ± 33.48 3 - 2 ks = 0.04 x kth - 0.2
R²=0.68 P=0.385

Absence All 25.06 ± 1.46 78.42 ± 3.37 70 - 37 ks = 0.34 x kth - 1.90
R²=0.63 P<0.0001

Presence All 9.81 ± 2.51 71.16 ± 8.00 18 - 7 ks = 0.12 x kth - 1.28
R²=0.15 P=0.117

Values represent mean ± SE. n = sample size, (including the number of analyzed stems and- number of analyzed plants, respectively). 
See text and Fig. 4 for statistical analysis. A detailed esca symptom notation is provided in Fig. 1A. Bivariate plots of each regression 
are presented in Fig. S4.

S4, Table 2). The slopes of regression curves between ks and kth did not vary among groups in 
the absence of tyloses (slope values ranged between 0.3 and 0.4, Table 2) while it was close to 
0 in the presence of tyloses (0.17 for tiger-stripe and 0.04 for apoplectic stems). When ks and kth 

are compared in the presence or absence of tyloses, we observed that ks was significantly lower 
when tyloses were present (9.81 ± 2.51 kg s-1 MPa-1 m-1 in the presence of tyloses vs 25.06 ± 
1.46 kg s-1 MPa-1 m-1 in the absence of tyloses, Table 2, n=88, F1,49=7.11, P=0.01) while kth did 
not significantly differ. Stems without tyloses presented a strong correlation between ks and kth, 
while in the presence of tyloses this relationship was not significant (Table 2, Fig. 4B).

Total vessel density did not significantly differ between stem symptomatology (comparing all 
the seven categories presented in Table 2), even when vessel density was partitioned by vessel 
diameter classes (Fig. 4D).

Finally, we tested the impact of disease history (comparing pA and pS plants) on the hydraulic 
conductivity and xylem anatomy in control plants. There were no differences between long-
term symptomatic (pS) and long-term asymptomatic (pA) plants in stem ks, stem kth, or total 
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Table 3. Long-term impact of symptom presence (i.e. comparing plants with different disease history record) in control 
plants on specific stem hydraulic conductivity (ks), theoretical stem hydraulic conductivity (kth), stem total vessel density, and 
amount of Phaeomoniella chlamydospora and Phaeoacremonium minimum DNA in trunks of plants without foliar symptoms.

Previously asymp-
tomatic (pA)

Previously asymp-
tomatic (pS)

Type III Tests of
Fixed Effects (pA vs pS)

ks
 [kg s-1 m-1 MPa-1] 23.76 ± 2.30 26.54 ± 2.61 n=39, F1,16=1.19, P=0.29

kth [kg s-1 m-1 MPa-1] 72.22 ± 4.85 86.30 ± 7.98 n=39, F1,16=3.01, P=0.10
total vessel density 

[count mm-2] 57.28 ± 4.03 52.61 ± 3.25 n=39, F1,16=0.72, P=0.41

P. chlamydospora
[pg ng-1] 6.14 ± 1.90 10.15 ± 3.41 n=13, F1,11=5900.06, P<0.0001

P. minimum
[pg ng-1] 9.27 ± 6.97 26.40 ± 13.83 n=13, F1,11=51014, P<0.0001

Values represent means ± SE. Pathogen quantification was estimated as: pg fungal DNA ng-1 total DNA. Statistical tests used 
are individual generalized linear mixed models to compare pA vs pS plants (fixed effect) with the individual plants entered as 
a random effect in the models and the year of uprooting as a co-variable (fixed effect). Statistically significant results (P<0.05) 
are shown in bold.

vessel density (Table 3). 

Fungal detection

The two vascular pathogens associated with esca (Phaeomoniella chlamydospora and Phaeo-
acremonium minimum) were never detected in stems of the current year while they were sys-
tematically detected in the perennial trunk of both control and symptomatic plants (Table 4). In 
trunks, a significantly higher quantity of fungal DNA was detected in tiger-stripe symptomatic 
plants than in controls (Table 4). We found 2.14- and 1.64-fold more of P. chlamydospora and 
P. minimum DNA in symptomatic trunks relative to controls. In control plants, different symp-
tom history records impacted the quantity of fungal DNA detected by qPCR, for Phaeomoniel-
la chlamydospora, and for Phaeoacremonium minimum. We found 1.65- and 2.84-fold more P. 
chlamydospora and P. minimum DNA in previously symptomatic trunks relative to previously 
asymptomatic trunks (Table 3).

DISCUSSION

Our results regarding the impact of esca on stem xylem integrity show that the presence of 
plant-derived tyloses induced hydraulic failure in 60% of symptomatic stems of the current 
year. Tyloses were only observed in symptomatic stems, and resulted in more than 50% PLC 
in 40% of the stems, unrelated to symptom age. We demonstrated that the presence of leaf 
symptoms during previous seasons had no impact on the likelihood of symptom appearance in 
the current year, or on stem hydraulic conductivity and xylem anatomy. Vascular fungi were 
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Table 4. Quantification by qPCR of Phaeomoniella chlamydospora and Phaeoacremonium minimum DNA in 
stems and trunks of different esca symptomatology. 

Organ Esca n P. chlamydospora [pg ng-

1]
P. minimum [pg ng-1]

Stem

Control 8 0 0

Pre-symptomatic 3 0 0

Asymptomatic 
(after symptoms)

3 0 0

Tiger-stripe 
(without tyloses)

4 0 0

Tiger-stripe
(with tyloses)

8 0 0

Apoplectic 2 0 0

Trunk
Control 13 7.37 ± 1.67 (12/13)* 14.54 ± 6.51 (12/13)*

Symptomatic 7 15.80 ± 3.12 (7/7)* 23.90 ± 8.82 (7/7)*

* Number of samples positive for the pathogen over the total number of analyzed samples.
Pathogen quantification was estimated as: pg fungal DNA per ng total DNA.Values represent means ± SE, n = 
sample size. Trunks of symptomatic plants presented higher amount of both P. chlamydospora and P. minimum, 
compared to control (n=20, F1,18=29806.11.25, P<0.0001 and n=20, F1,18=21925.4, P<0.0001, respectively). See 
text for statistical methods.

never detected in the same organs as the tyloses (stems of the current year), and although they 
were present in trunks of both tiger-stripe and control plants, tiger-stripe plants showed higher 
quantities of fungal DNA. Among control plants that did not express symptoms in the year of 
the study, we found higher quantities of fungal DNA in trunks of those plants with a long-term 
history of symptom formation. Albeit xylem occlusions were not observed in the totality of 
tiger-stripe stems, they could amplify yield loss plant mortality, especially in the context of 
climate change as they impair water transport in a majority of symptomatic stems.

In vivo xylem integrity observations and hydraulic vulnerability segmentation 

Using direct X-ray microCT imaging in esca symptomatic stems, we found that hydraulic 
conductivity loss was almost entirely associated with the presence of tyloses. Different studies 
have investigated the link between vascular pathogen development and hydraulic conductiv-
ity in stems (Collins et al., 2009; Lachenbruch and Zhao, 2019; Mensah et al., 2020). During 
biotic stresses, air embolisms have been shown to decrease hydraulic conductivity during bac-
terial leaf scorch disease (McElrone et al., 2003; 2008), Pierce’s disease (Pérez-Donoso et 
al., 2016), and Pine wilt disease (Yazaki et al., 2018). In the case of fungal wilt diseases, the 
hydraulic conductivity loss was associated with nongaseous embolism (i.e. tyloses) at the point 
of pathogen inoculation (Guerard et al., 2000; Sallé et al., 2008; Beier et al., 2017; Mensah et 
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al., 2020), or with canker presence in naturally infected stems (Lachenbruch and Zhao, 2019). 

Using iohexol we were able to visually observe the exact spatial organization of functional 
vessels. Interestingly, in some symptomatic samples we found functional vessels surrounding 
the non-functional xylem (Fig. 2J-L), suggesting that the plant was able to preserve the more 
external vessels from occlusions or to form new functional vessels after the loss of conduc-
tivity. Moreover, the sectoriality of the occlusions observed in Fig. 2J-L was reminiscent of 
the sectoriality observed in the distributions of trunk necrosis, especially on the brown stripe 
necrosis appearing along the vasculature (Lecomte et al., 2012).

Comparing these results with our precedent study using the same technique in leaves, we 
showed that esca symptomatic leaves presented higher levels of occlusion PLC (61 ± 7% in 
midribs, and 54 ± 9% in petioles, data from Bortolami et al., 2019) compared to stems (27 ± 8 
%, occlusion PLC), suggesting hydraulic vulnerability segmentation (although PLC in leaves 
and stems were measured in different plants and years). The hydraulic segmentation theory 
relies on the fact that annual organs (i.e. leaves) are more vulnerable than perennial organs (i.e. 
stems) to drought induced air embolism (Tyree and Ewers, 1991). Grapevine is well known for 
exhibiting strong hydraulic vulnerability segmentation (Charrier et al., 2016; Hochberg et al., 
2016; 2017). This is thought to be adaptive, where the higher vulnerability in leaves and peti-
oles favors embolism formation and leaf shedding prior to embolism formation in stems, thus 
protecting the perennial organs. Our observations during esca pathogenesis demonstrate that, 
analogous to the hydraulic vulnerability segmentation theory, leaves appear more vulnerable 
to the formation of nongaseous embolism as well, which could mitigate the risk of hydraulic 
failure in perennial organs. From another perspective, the difference may not be a direct effect 
of the specific organ’s vulnerability to nongaseous embolism, but a consequence of a difference 
in the accumulation of putative toxins and/or elicitors. Indeed, we confirmed here that esca leaf 
symptoms occur at a distance from the pathogen niche because vascular pathogens were never 
detected in stems of the current year, suggesting that the plant may transport a signal (i.e. toxins 
or elicitors) from the infected trunk up to the leaves. If the signal accumulates in leaves in a 
higher amount than it does in the stems (water potentials are more negative in leaves compared 
to stems), and stimulates occlusion formation, stems would then be secondarily affected.

Hydraulic conductivity, tyloses, and vessel anatomy

Tyloses could have different impacts, both positive and negative, during wilt disease patho-
genesis: (i) tyloses contribute to pathogen resistance as they aim to seal off vessel lumens and 
impede pathogens spread throughout the host (CODIT model, Shigo, 1984). This is the case 
regarding the susceptibility of different species or varieties to specific pathogens (Jacobi and 
MacDonald, 1980; Ouellette et al., 1999; Clérivet et al., 2000; Et-Touil et al., 2005; Venturas 
et al., 2014; Park and Juzwik 2014; Rioux et al., 2018), in particular to Phaeomoniella chlam-
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ydospora, one of the pathogen associated with esca (Pouzoulet et al., 2017; 2020). (ii) In other 
studies, it has been shown that tyloses can exacerbate symptoms (Talboys, 1972): they cause 
a reduction in stem hydraulic conductivity, sometimes associated with a reduction in stomatal 
conductance in leaves and, in the most severe cases, wilting (Parke et al., 2007; Beier et al., 
2017; Lachenbruch and Zhao, 2019, Mensah et al., 2020 during fungi development; Sun et al., 
2013; Deyett et al., 2019 during Pierce’s disease). Our results suggest that during esca tyloses 
might lead to symptom exacerbation. Esca has also been suggested to lead to a general reduc-
tion in xylem water transport and stomatal conductance (Ouadi et al., 2019), and tyloses could 
be a major contributor to these phenomena as during winter senescence (Salleo et al., 2002; 
Sun et al., 2008). However, when symptomatic stems have no tyloses (∼37% of the stems with 
tiger-stripe symptoms), esca leaf symptom formation seems to arise from within the leaf itself, 
and may not result from upstream hydraulic failure. Although tyloses were never detected in 
asymptomatic stems prior to the onset of leaf symptoms, the time sequence of tylose and leaf 
symptom development has still to be determined. Since both the microCT and anatomical ob-
servations visualize relatively narrow regions of the stems, tylose presence could have been 
underestimated (i.e. if there was additional tylose development up or downstream of the stem 
sections visualized). However, it should be pointed out that if significant underestimation were 
present we would expect some loss of conductivity even in internode sections from which we 
observed no tyloses in the sampled cross sections. At least when considering a single internode 
our direct hydraulic conductivity measurements do not support the hypothesis that tyloses were 
underestimated (Fig. 4B). 

Xylem is the battleground between vascular pathogens and the plant’s defense response (Ya-
deta and Thomma, 2013). Even if xylem vessel anatomy is less investigated, it could have a 
crucial role in plant resistance and response to vascular pathogens. For example, during Dutch 
elm wilt disease (due to Ophiostoma spp.) the most sensitive species and varieties present wid-
er xylem vessels (Elgersma, 1970; Mcnabb et al., 1970; Solla and Gil 2002; Pita et al., 2018). 
Smaller vessels could occlude faster, sustaining a more efficient pathogen restriction (Venturas 
et al., 2014). Our results on xylem vessel anatomy suggest that stems with tyloses tend to pres-
ent higher densities of small vessels, even if we did not observe any differences in total kth val-
ues and microCT scans showed that occlusions appear randomly in every vessel size class (Fig. 
S3). It could be possible that tylose formation might be interfering with stem water relations 
reducing the carbohydrates available for plant growth, producing smaller vessels in stems of 
symptomatic plants. In contrast, artificial inoculations showed that xylem vessel diameter had 
a strong impact on esca-related vascular pathogen development (Pouzoulet et al., 2017; 2020), 
and in the kinetic of vessel occlusion in grapevine stems (Pouzoulet et al., 2019). The relation-
ships between esca leaf symptoms, xylem anatomy, and tylose presence should be studied in 
detail in trunks, where vascular pathogens are present, and among different grapevine varieties 
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and rootstocks as they are known to show different susceptibility to symptom expression.

Long-term consequences of esca on leaf symptom expression and stem hydraulic integrity

In field surveys, esca leaf symptoms are often randomly distributed spatially throughout vine-
yards and are not consistent from season to season in individual vines (Mugnai et al., 1999; 
Surico et al., 2000; Marchi et al., 2006; Guerin-Dubrana et al., 2013; Li et al., 2017). However, 
esca-related vine death is strongly related to leaf symptoms as death is usually observed fol-
lowing a year with symptom expression (Guerin-Dubrana et al., 2013). In agreement with these 
field studies, we observed similar percentages of symptomatic plants between those that had 
already expressed esca symptoms in the past (from one to seven consecutive years, pS plants), 
and those that had never expressed symptoms over the past seven years (pA plants). However, 
we also found that pS plants expressed symptoms earlier in the season than pA plants, sug-
gesting that symptoms might require more time to develop in pA plants. We did not find any 
significant differences in ks and kth values between plants with contrasted long-term symptom 
history. This result suggests that esca leaf symptoms may have xylem anatomical consequenc-
es within the year of expression by the production of tyloses, but not across seasons. More-
over, we showed that DNA pathogen amount (Phaeoacremonium minimum and Phaeomoniella 
chlamydospora) depends on the symptom expression in the season of sampling, and on the 
long-term symptom history. Altogether, these results suggest that a higher amount of vascular 
fungi in the trunk represents a higher risk in reproducing leaf symptoms, and consequently, a 
higher risk of plant death.

Hydraulic failure and esca leaf symptom pathogenesis

Our results showed that, even if esca-related stem occlusion was extremely variable, 40% of 
the microCT analyzed stems presented a total PLC greater than 50%. Under drought conditions 
alone, studies suggest that grapevines are not able to recover in the current season from PLC 
greater than 50% in stems (Charrier et al., 2018). Thus, to what extent these levels of esca-in-
duced hydraulic failure compromise future vine performance, and/or increase the likelihood of 
developing esca leaf symptoms in the future remains an open question.

We showed that, similarly to visual leaf symptoms, tyloses in stems were generated at a dis-
tance from the pathogen niche in the trunk. Comparing our results with Bortolami et al. (2019), 
we show that the PLC due to the occlusions (hydraulic failure) observed using microCT in 
leaves was on average twice higher than the PLC observed in stems in the present work. We 
could hypothesize that, following pathogen activities in the trunk, a signal passing through the 
xylem network and stimulating tyloses, first accumulates in leaves and then affects the stems. 
However, the exact signal and action remain unknown, as we showed that the presence of ty-
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loses depended upon given symptomatic stems rather than symptomatic plants (i.e. two stems 
in the same plant, with same tiger-stripe symptoms, sampled at the same moment, could or 
could not present tyloses).

We showed that there were no differences in symptom expression, nor in the stem hydrau-
lic properties, regarding the long-term symptom history. We can conclude that the processes 
that generate tiger-stripe symptoms are largely restricted to the current year of the symptom 
expression. However, in plants expressing symptoms for the first time according to our dis-
ease record, these processes could require more time, as they showed symptoms only late in 
the season. The presence of occlusion, leading to hydraulic failure in stems, could exacerbate 
leaf symptom expression in the following seasons, possibly contributing to death. We could 
speculate that a stem expressing extensive hydraulic failure could be more prone to express 
symptoms in the following year or, in the worst cases, to die. If the level of hydraulic failure 
could affect the stem mortality in the following year, the choice of stems with a complete ab-
sence of failure during the winter pruning could reduce the impact of esca in vineyards. The 
pruning practices are known to impact the course of infection and leaf symptom development 
and it has been shown that trunk renewal could be an effective management practice to prevent 
grapevine trunk diseases in the vineyard (Travadon et al. 2016, Kaplan et al. 2016, Gramaje 
et al. 2018). In addition, the presence of occlusions could also amplify plant susceptibility to 
drought-induced hydraulic failure, enhancing the risk of plant mortality in the field as suggest-
ed by McDowell et al. (2008). It could be speculated that a decrease in soil water potential or 
a high evaporative demand, concomitant to esca-induced hydraulic failure, could embolize the 
remaining functional xylem vessels stopping the water flow and desiccating plant tissues (this 
could be the case in apoplectic plants for example). In perspective, future studies should in-
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vestigate the link between pathogen activities and occlusion development, especially in trunks, 
and the subsequent hydraulic failure consequences on whole plant physiology.

SUPPORTING INFORMATION

The following Supporting Information is available for this article:

Figure S1. Two-dimensional reconstruction of longitudinal cross sections from X-ray microCT 
volumes of grapevine stems.

Figure S2. Relationship between ks and kth in control plants.

Figure S3. Vessel density and percentage of occluded vessels in tiger-stripe stems for different 
vessel diameter classes.

Figure S4. Relationships between ks and kth in each stem symptom category.

Table S1. Effect of year of uprooting, internode analyzed, and sampling date on ks and kth in 
control stems.

Table S2. Calculated theoretical hydraulic conductivity (kth %), and hydraulic conductivity loss 
(PLC %) from X-ray microCT volumes of intact grapevine stems.
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Supporting information for: 

Seasonal and long-term consequences of esca on grapevine stem xylem integrity. 

 

 

Fig. S1. Two-dimensional reconstruction of longitudinal cross sections from X-ray microCT 
volumes of grapevine stems, examples of apparently air-filled (A, B; red arrowheads), and 
apparently functional (C, D; blue arrowheads) vessels. Tyloses can only partially occlude the 
vessels (A, C, D, yellow arrowheads), or only the tylose walls are present without cellular 
content (B, yellow arrowheads). If only transversal cross sections (e.g. green lines) are 
analyzed, those vessels could be mistakenly considered as non-occluded. Scale bars = 200µm. 
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Fig. S2. Relationship between ks and kth in control plants. Blue dots represent plants uprooted 
in 2018 and red dots represent plants uprooted in 2019. 
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Fig. S3. Mean vessel density (black circles) in tiger-stripe stems for different vessel diameter 
classes and mean percentage of occluded vessels (grey circles) in each class from X-ray 
microCT imaging analysis. Error bars represent standard errors
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Fig. S4. Relationships between ks and kth. Blue symbols represent measurements in control 
stems; dark green symbols represent asymptomatic stems in plants before symptom appearance; 
yellow symbols represent pre-symptomatic stems in plants before symptom appearance; light 
green symbols represent asymptomatic stems in plants after symptom appearance; red circles 
and dashed red line tiger-stripe stems without tyloses; red triangles and solid red line tiger-
stripe stems with tyloses; grey symbols represent apoplectic stems. Sample sizes, R² and 
equations of regression lines are presented in Table 2. 
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Table S1. Effect of year of uprooting, internode analyzed, and sampling date on ks and kth in 
control stems (n=39 stems from 23 plants) . 

 

Fixed effects ks (n=39) kth (n=39) 

Year of uprooting F1,16 = 10.31 

P = 0.006 

F1,16 = 9.38 

P = 0.007 

Internode F4,12 = 2.15 

P = 0.14 

F4,12 = 2.22 

P = 0.13 

Sampling date F7,9 = 1.77 

P = 0.21 

F7,9 = 1.53 

P = 0.27 

Individual generalized linear mixed models with the individual plants entered as a random 
effect in the models. Statistically significant results (P<0.05) are shown in bold. 

 

 

 

Table S2. Calculated theoretical hydraulic conductivity (kth %), and hydraulic conductivity loss 
(PLC %) from X-ray microCT volumes of intact grapevine stems. 

Stems n Functional kth Native PLC Occlusion PLC 

Control 3 92.75 ± 2.60 6.54 ± 2.61 0.71 ± 0.02 

Esca (tiger-stripe) 10 60.22 ± 9.70 12.25 ± 2.87 27.53 ± 8.24 

Values are means ± standard error, n = sample size (stems) 
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CHAPTER 5

Grapevines under Drought Do Not Express Esca Leaf 
Symptoms: the Physiology behind Drought and Vascular 

Pathogen Antagonism

Résumé : Dans le contexte du changement climatique, la mortalité des plantes pérennes est 
en train d’augmenter que ce soit dans les écosystèmes naturels ou agricoles. Cependant, la 
compréhension des mécanismes sous-jacents au processus de mortalité reste encore limitée, 
d’un côté par les interactions complexes entre facteurs biotiques et abiotiques, et de l’autre 
côté par les limites techniques imposées dans l’étude de ces interactions. Ici nous avons étudié 
l’interaction entre deux principaux facteurs qui causent le dépérissement des plantes pérennes, 
la sécheresse et les maladies vasculaires (plus spécifiquement, l’esca), dans le cas d’une 
des cultures les plus importantes économiquement au monde, la vigne. Nous avons mis en 
évidence que la sécheresse a complètement inhibé l’expression des symptômes foliaires d’esca. 
Pour mieux comprendre l’antagonisme observé entre sècheresse et esca, nous avons observé 
la réponse physiologique des plantes soumises à la sécheresse ou à l’esca, en quantifiant les 
relations hydriques des plantes (les potentiels hydriques et la conductance stomatique) et la 
balance carbonée (assimilation de CO2, et quantification des chlorophylles et carbohydrates 
non-structuraux, NSC). Nos résultats soulignent la physiologie distincte derrière ces stress, en 
montrant que l’esca (et le déclin consécutif de la conductance stomatique) n’est pas lié à une 
baisse de potentiel hydrique, et qu’il génère différentes dynamiques saisonnières d’échanges 
gazeux et de NSC comparée à la sècheresse. 
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ABSTRACT

In the context of climate change, plant mortality is increasing worldwide in both natural and 
agro-ecosystems. However, our understanding of the responsible underlying processes is limit-
ed by the complex interactions between abiotic and biotic factors and the technical challenges 
that limit investigations on these interactions. Here we studied the interaction between two 
main drivers of mortality, drought and vascular disease (esca), in one of the world’s most 
economically valuable fruit crops, grapevine. We found that drought totally inhibited esca 
leaf symptom expression. In order to understand the observed antagonism between drought 
and esca, we disentangled the plant physiological response to the two stresses by quantifying 
whole-plant water relations (i.e. water potential and stomatal conductance) and carbon balance 
(i.e. CO2 assimilation, chlorophyll and non-structural carbohydrates, NSC). Our results high-
light the distinct physiology behind these two stress responses, indicating that esca (and sub-
sequent stomatal conductance decline) does not result from decreases in water potential, and 
generates different gas exchange and NSC seasonal dynamics compared to drought. 
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INTRODUCTION

For many plant pathogens it is still largely unknown if their interactions with abiotic stresses 
are synergistic, antagonistic, or neutral. These interactions are particularly crucial in the case of 
vascular diseases and drought (McDowell et al., 2008, Yadeta and Thomma, 2013, Oliva et al., 
2014). Both affect the same plant tissue, the xylem vascular network, which is responsible for 
the movement of water and nutrients throughout the plant. A strong synergy when combining 
drought and vascular disease could accelerate plant death (McDowell et al., 2008, Oliva et al., 
2014), and has strong implications in the context of climate change where a global increase of 
drought and associated plant mortality is expected (Allen et al., 2010).

Grapevine, one of the most economically valuable crops in the world (Alston and Sambucci, 
2019), is being threatened by future climate change scenarios (Morales-Castilla et al., 2020). 
Since the early 2000s old world vineyards have exhibited increasing yield losses, and although 
the causes are not completely understood, an increased incidence of trunk diseases has been 
identified as one of the main contributors (Mondello et al., 2019, Claverie et al., 2020). One 
of the most prominent of these diseases is esca, a vascular disease associated with a loss in 
fruit quality and quantity, and increased vine mortality (Bertsch et al., 2013, Fischer and Ash-
naei, 2019). Drought events also cause yield decline, and when severe and/or too long, grape-
vine mortality (Chaves et al. 2010, van Leeuven and Darriet, 2016). Due to their climatic and 
edaphic environment, most of the world’s wine regions are exposed to a high risk of drought, 
as irrigation is not a sustainable long-term solution and rainfall is often not sufficient to supply 
grapevine evapotranspiration (e.g. in the mediterranean area, Fraga et al., 2013, Costa et al., 
2016). Because both drought and esca are associated with xylem hydraulic failure (Gambetta 
et al. 2020, Bortolami et al. 2019, 2020), and theoretically, with non-structural carbohydrates 
consumption (McDowell et al., 2008, Oliva et al. 2014, Claverie et al., 2020), these stresses 
could synergize and amplify the current vineyard decline. Therefore, there are real and urgent 
concerns regarding the outcome of the interaction between drought events and vascular patho-
genesis in grapevine.

On many recorded parameters, plant responses to vascular disease and drought appear similar 
and include decreases in leaf gas exchange (Magnin-Robert et al., 2011, Castillo-Argaez et al., 
2020, Knipfer et al., 2020), losses of hydraulic conductivity (Choat et al., 2012, Bortolami et 
al., 2020, Mensah et al., 2020), wilting (i.e. decreases in cell turgor) and scorching of leaves 
(Lecomte et al., 2012, Bartlett et al., 2016, Flajšman et al., 2017). Because they induce similar 
plant responses, it could be assumed that their interactions would be synergistic. However, we 
lack the detailed whole-plant physiology studies necessary to determine if this is true. This is 
probably because studying disease-drought interaction can be extremely challenging. Some 
vascular diseases, including esca, cannot be reproduced through the artificial inoculation of 
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plants. Thus studies rely on naturally-infected, field experimentation where the disease history 
of specific plants is largely unknown and applying well-controlled water deficits (as well as 
controlling other environmental factors) is either difficult or impossible.

The main objective of this study was to understand the interaction between esca and drought, 
finding which whole-plant physiological thresholds would trigger their synergism (or antag-
onism). We overcame the technical barriers by transplanting control and naturally infected 
plants with known disease histories from the field into pots, to precisely manipulate their wa-
tering regime and study the combined effect of esca and drought. We maintained half of the 
plants under a water deficit at a predawn water potential (ΨPD) ≈ -1MPa during three months 
in two consecutive seasons, which simulated a moderate to severe level of drought (Char-
rier et al., 2018). During these periods we quantified plant-water relations (water potential, 
whole-plant and leaf- stomatal conductance), carbon balance (CO2 assimilation, chlorophyll 
fluorescence and non-structural carbohydrates NSC quantification in leaves and stems), and 
the development of esca symptoms. Our results showed that alone esca and drought induced 
distinct whole-plant physiological responses; once combined the two stresses strongly interact, 
antagonistically, opening new perspectives on the plant-pathogen-environment relationships 
impacting vineyard sustainability.

RESULTS

Drought inhibits the formation of esca leaf symptoms

During vascular diseases, water deficit conditions can amplify (Croisé et al., 2001, Silva-Lima 
et al., 2019), hinder (Pennypacker et al., 1991, Arango-Velez et al., 2016), or have no effect 
(Lopisso et al., 2017) on vascular pathogens. However, most of the studies examining the im-
pact of water deficit on fungal infections cannot be easily interpreted because water potential 
values were rarely recorded, thus in these cases it is impossible to assess to what extent plants 
(and pathogens) were experiencing drought conditions. In this study, we uprooted mature (30 
years-old) naturally infected plants from the field after a long term disease monitoring. We then 
divided plants by their symptom history record: plants that never expressed esca leaf symptoms 
(previously asymptomatic, pA) and plants that expressed esca leaf symptoms at least once 
since 2012 (previously symptomatic, pS). From July to October (2018 and 2019), we subjected 
half of the plants to water deficit, targeting a moderate to severe level of stress (ΨPD ≈ -1MPa), 
while the well-watered plants maintained high ΨPD (close to 0 MPa), independently of their 
disease status (Fig. 1a). The same plants were subjected to water deficit each year. In both 
years, we observed that ~30% (on average) of well-watered (WW) plants developed esca leaf 
symptoms while water deficit totally inhibited esca leaf symptom development as none of the 
droughted plants developed leaf symptoms in either year (Table 1). More specifically, in 2018 
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14% of the previously asymptomatic plants (WW-pA) and 50% of the previously symptomatic 
plants (WW-pS) expressed esca leaf symptoms (Table 1). In 2019, 33% of WW-pA and 31% 
of WW-pS plants expressed esca leaf symptoms. In contrast, the totality of plants subjected to 
water deficit (WD) remained asymptomatic during the two years, independently of the disease 
status during the previous seasons (pA or pS; Table 1). Given the observed frequencies of 
symptom development in the WW-pA and WW-pS plants over the two years the likelihood of 
having no plants express symptoms during the two years is less than 1 in 100 million. Thus, our 
confidence that the drought effect is real is extremely high. Moreover, esca symptom incidence 
found in WW plants are similar to field observations in the parcel from which the plants were 
transplanted. For the period 2013-2017 we found an average (± SE) esca incidence of 39.5 ± 
7%; more specifically, 12.4 ± 3% for pA plants (i.e. plants that expressed esca for the first time 
each year) and 54.2 ± 10% for pS plants (plants that already expressed esca). To better under-
stand how and why esca and drought express their antagonism, we explored how plant-water 
relations and carbon balance changed under drought or esca at the whole plant scale.

 

Water potential regulation during esca pathogenesis was similar to control well-watered 
conditions, not to drought

During vascular pathogenesis, it has been found that Verticillium infection caused a decrease 
in minimum water potential (Bowden et al., 1990), inducing a drought-like event. However, 
water potential regulation has never been investigated during esca leaf symptom development. 
Applying the theoretical hydraulic model in plant water movement (Tyree and Sperry, 1988), 
we hypothesized that the loss in hydraulic conductivity observed during esca (Bortolami et 

Watering regime Well-watered (WW) Water deficit (WD)

Historical esca record pA pS pA pS

Presence esca leaf symp-
toms in 2018 14 % (2/14) 50 % (6/12) 0 % (0/13) 0 % (0/12)

Presence esca leaf symp-
toms in 2019 33 % (4/12) 31 %  (4/13) 0 % (0/13) 0 % (0/13)

Table 1. Effect of the watering regime and past disease historical record on esca leaf symptom 
development in Vitis vinifera cv Sauvignon blanc.

Plants are grouped by their watering regime: well-watered plants (WW), weekly mean ΨPD > -0.3 MPa; water 
deficit plants (WD) weekly mean ΨPD < -0.5 MPa from July to October, and by their disease historical record: 
plants that never expressed symptoms since 2012 (previously asymptomatic, pA), and plants that have expressed 
at least once since 2012 (previously symptomatic, pS). Ratios present the number of symptomatic plants in each 
category over the total number of plants of the category in each of the two different years.
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Figure 1. Leaf water potential (Ψ) monitoring in 2018 and 2019 in Vitis vinifera cv Sauvignon blanc. (a) Mean ± 
SE predawn water potential (ΨPD) values over the experimental periods, expressed in week of year from mid-June 
(week 25) to the beginning of October (week 40). Symbols and lines represent the year: circles and solid lines for 
2018, diamonds and dashed lines for 2019. Colors represent the different stress applied: blue for control, red for 
esca symptomatic, and yellow for plants under water deficit (WD). (b) Relationship between ΨPD and midday wa-
ter potential ΨMD over the two years, colors and symbols are the same as panel A. The black line indicates the 1:1 
regression. A significant effect of the disease or water regime status was found for ΨPD (F2,559=230.55, P<0.0001), 
and ΨMD (F2,456=126.16, P<0.0001), using the same tests as in Supplementary Table 1.

al., 2019, 2020) would induce an increase in xylem tension (i.e. decrease in minimum water 
potential) in symptomatic plants, in order to maintain the same transpiration rate in leaves. Our 
results showed that midday leaf water potential (ΨMD) was not significantly different between 
well-watered control and esca symptomatic plants (Ψ were always measured in asymptomatic 
leaves) over two consecutive years (with average values of ΨMD = -0.98 ± 0.03 MPa and -0.94 
± 0.02 MPa respectively, Fig 1B), and was significantly lower after applying water deficit (ΨMD 
= -1.67 ± 0.02 MPa, on average, Fig 1B). This indicates that, contrary to what we expected, 
esca symptomatic plants were able to regulate their water potential similarly to controls, de-
spite the presence of hydraulic dysfunctions in leaves and stems. However, in four out of 111 
ΨPD measurements symptomatic plants presented ΨPD < -0.5 MPa, and in many cases when we 
measured Ψ in symptomatic leaves values were not reliable as gel, not water, was observed 
exuding from petioles. This suggests that in some (rare) cases the disease could lead to water 
transport impairment (i.e. the demand exceeded the supply). In these cases, we suspected that 
the occlusions inside xylem vessels induced a hydraulic disconnection between the soil (at 
field capacity) and the leaf. Given that esca has been shown to decrease leaf transpiration rates 
(Petit et al., 2006, Magnin-Robert et al., 2011), we hypothesized that changes in stomatal con-
ductance and/or leaf canopy surface contribute to the maintenance of a sufficient water supply 
resulting in water potential values similar to control plants.
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Drought and esca caused different dynamics in whole-plant and leaf gas exchange

During drought, stomatal closure results from decreases in xylem water potential and an accu-
mulation of abscisic acid in leaves (McAdam and Brodribb, 2015). This mechanism prevents 
plants from excessive water loss and xylem embolism (Martin-StPaul et al., 2017). A decrease 
in leaf gas exchange has been observed also during vascular diseases (Magnin-Robert et al., 
2011, Castillo-Argaez et al., 2020, among others), but the underlying mechanisms are still 
unknown. Currently, there are two prevailing hypotheses: (i) pathogen and/or plant derived 
vascular occlusions decrease hydraulic conductivity inducing stomatal closure (Bowden et al., 
1990, Castillo-Argaez et al., 2020); or (ii) pathogen-derived toxins and/or elicitors cause cel-
lular death, loss in photosynthetic efficiency, and a subsequent decrease in gas exchange (Sun 
et al., 2017, Fallon et al., 2020). To test how grapevines control their stomatal conductance 
and transpiration during esca leaf symptom development, and compare this with water deficit, 
we placed 20 plants in a mini-lysimeter greenhouse in order to continuously measure transpi-
ration and determine whole-plant stomatal conductance (Gs, Fig. 2a, 2b). We also measured 
gas exchange (Fig. 2di-iii), quantum yield of photosystem II (Fig. 2div), and chlorophyll content 
(Supplementary Fig. 1) at the leaf level. 

For two consecutive years, we observed two distinct recurrent patterns of whole-plant Gs in 
stressed plants, one for plants under water-deficit, the other for plants presenting esca leaf 
symptoms (Fig. 2a, note that day 0 is specific for each plant and corresponds to the first day 
of water regime change during drought, or to the day in which the first symptomatic leaf ap-
peared during esca pathogenesis). During each experimental period in the two years, control 
well-watered plants maintained an average Gs value of 141.18 mmol m-2 s-1 over the two years 
(Fig. 2a). The seasonal Gs dynamic in control plants is presented in Supplementary Fig. 2. We 
observed, as expected, that before imposing a different watering regime, plants presented Gs 
similar to controls (average value ± SE of 160.2 ± 2.7 mmol m-2 s-1, Fig. 2a, period I). Once the 
watering regime changed until 12 days after, total Gs decreased, reaching a minimum average 
of 17.7 mmol m-2 s-1 (Fig. 2a, period II). After, Gs stabilized around the average value of 28.7 
mmol m-2 s-1 (i.e. five times lower relative to control plants Fig. 2a, period III). In esca symp-
tomatic plants, we observed that Gs followed (for every plant) the same pattern relative to the 
onset of symptom appearance. Before leaf symptom development (when the plant is apparently 
healthy and asymptomatic: period I), the level of Gs remained similar than in control plants 
(average value of 166.4 ± 1.4 mmol m-2 s-1, Fig. 2a). Concomitantly with the onset of symp-
toms and until 12 days after, total Gs decreased (period II, Fig. 2a). Average Gs during period 
II for plants exhibiting symptoms was greater than water deficit plants, attaining a minimum 
daily average of 70.8 mmol m-2 s-1. However, four out of ten plants reached Gs values similar 
to plants under water deficit (≈30 mmol m-2 s-1, Fig. 2a). Later (i.e. after 13 days from the first 
leaf symptom appearance, period III), Gs recovered raising to an average value of 103.8 ± 
2.2 mmol m-2 s-1. Similarly to Gs dynamics, we found that whole-plant maximal transpiration 
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Figure 2. Whole-plant and leaf physiology during esca and water deficit in Vitis vinifera cv Sauvignon blanc: 
whole-plant stomatal conductance (a-c), leaf gas exchange and maximum quantum yield of photosystem II (d). 
(a) Evolution of the whole plant stomatal conductance Gs (mmol m-2 s-1) relative to the beginning of stress in 
weeks (i.e. week 0 indicate the first apparition of leaf symptoms, or the day we changed the watering regime). 
Colors represent the different stress: blue for control, red for esca leaf symptoms and yellow for water deficit. The 
light blue line represents the average value of Gs in control plants over the two seasons. Dots represent hourly 
whole-plant Gs for each stressed plant, the thick (red and yellow) lines represent the five-day moving average of 
Gs values for symptomatic and water deficit plants. The vertical dotted lines separate three different time periods 
of esca symptom and water deficit development (see text for details). (b) Relationship between midday water po-
tential (ΨMD) and the maximum hourly Gs recorded on the same day (GsMAX) for different stresses. Colors are the 
same as in Fig. 2A. (c) Evolution in the green canopy area relative to the beginning of stress during esca (red line) 
and water deficit (yellow line). Lines represent the average value, and the shaded band the standard error. (ci) Re-
lationship between Gs and green surface during period II for esca symptomatic plants. Dots represent hourly Gs, 
dark dots average Gs value in a 5% window of green surface (e.g. the first dark dot represents average Gs between 
100% and 95% of green surface, the second between 95% and 90%). Red line represents the linear regression of 
average value. (di) Leaf stomatal conductance (gs, mmol m-2 s-1). (dii) Net CO2 leaf assimilation (A, µmol m-2 s-1). 
(diii) Water Use Efficiency (WUE=A/gs, µmol mmol-1). (div) Maximum quantum yield of photosystem II (PSII=Fv/
Fm) for control (blue), esca asymptomatic (both before and after symptoms, green), symptomatic (red), and water 
deficit (ΨPD < -0.5 MPa, yellow) leaves. Bars represent means, error bars SE, letters indicate statistical significance 
from independent mixed linear general models with Tukey post-hoc comparisons (Supplementary Table 1).
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(EMAX) were independent from VPD only in water deficit and esca symptomatic plants in peri-
od II, while the VPD sensibility for esca plants was similar to controls during period I and III 
(Supplementary Fig. 3). 

During water deficit, we observed that the reduction of Gs in periods II and III corresponded 
to the decrease in soil water potential. Likewise, whole-plant GsMAX  (i.e. hourly maximum Gs 
value of the day) decreased with decreases in ΨMD under water deficit (P<0.0001, R²=0.40, 
Fig. 2b), especially below -1 MPa. However, esca exhibited the opposite response with GsMAX 
increasing with decreasing ΨMD (measured on asymptomatic leaves, P<0.0001, R²=0.41, Fig. 
2b). This result indicates that in well-watered esca plants, even when ΨMD reaches fairly neg-
ative values (i.e. -1 MPa and below), non-symptomatic leaves are receiving an ample water 
supply to sustain gas exchange and do not regulate their stomatal conductance.

During esca, the Gs drop in period II corresponded strongly with a decrease in the functional 
canopy (Fig. 2c, 2ci). We showed that during period II, the green canopy surface area decreased 
linearly over time (Fig. 2c), and this decrease was strongly correlated with the decrease in Gs 
(P<0.0001, R²=0.65, Fig 2ci). The following Gs and VPD sensibility recovery (period III) was 
probably due to the growth (and activity) of new asymptomatic leaves at the top of symptomat-
ic shoots (one example in Supplementary Fig. 4), as we observed an increase of green canopy 
(Fig. 2c), and total leaf surface (after day 230 in Supplementary Fig. 5).

At the leaf-level, asymptomatic leaves from esca plants (both before and after symptom ap-
pearance) and from control plants presented a significantly higher stomatal conductance (gs) 
(112.09 ± 6.2 mmol m-2 s-1 and 93.2 ± 4.5 mmol m-2 s-1, on average ± SE, respectively), fol-
lowed by esca symptomatic (60.9 ± 5 mmol m-2 s-1), and water deficit (38.4 ± 3.3 mmol m-2 s-1) 
leaves (Fig. 2di, Supplementary Table 1). For net CO2 assimilation (A, Fig. 2dii, Supplementary 
Table 1), control leaves and asymptomatic leaves from esca plants presented similar values (6.6 
± 0.3, and 6.5 ± 0.4 µmol m-2 s-1 respectively), while A was significantly lower in symptomatic 
and water deficit leaves (1.93 ± 0.3, and 2.21 ± 0.2 µmol m-2 s-1). Although A and gs were re-
duced during both esca leaf symptom development and water deficit, the quantity of assimilat-
ed CO2 relative to the H2O loss was different. Consequently, water use efficiency (WUE) during 
water deficit (0.08 ± 0.016 µmol mmol-1) was similar to control, and esca asymptomatic, while 
significantly higher than symptomatic leaves (0.03 ± 0.004 µmol mmol-1, Fig. 2diii, Supplemen-
tary Table 1). The measurement of quantum yield of photosystem II (Fig. 2div, Supplementary 
Table 1) confirmed that esca symptomatic leaves are the only leaves with reduced photosyn-
thetic activity. Specifically, all leaves presented PSII (Fv/Fm) values around 0.8 (the optimum 
value for healthy leaves, Schreiber et al., 1996), except for esca symptomatic leaves (0.69 ± 
0.08, average ± SE, Fig. 2div). Finally, confirming that photosynthesis is more affected in esca 
symptomatic than in water deficit leaves, we observed that the total chlorophyll content, alto-
gether with the ratio between chlorophyll a and b, was significantly lower in esca symptomatic 
leaves (Supplementary Fig. 1). Esca and water deficit both significantly affected whole-plant 
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Gs, but with very different seasonal dynamics, and gas exchange and photosynthetic activity at 
the leaf level. Given these differences, we explored the consequences on non-structural carbo-
hydrate production and storage.

 

Non-structural carbohydrates (NSC) storage and balance during esca and water deficit

Pathogens and drought often cause imbalance in carbon status by variously affecting photosyn-
thesis and growth (McDowell et al., 2008). Thus, at the start of the stress period or when stress 
is moderate, photosynthesis is usually less affected than growth, which leads to the accumula-
tion of sugars (Muller et al., 2009). However, when the stress is prolonged or becomes severe, 
photosynthesis is in turn inhibited, eventually causing the depletion of stored non-structural 
carbohydrates (NSC), thereby accelerating plant decline. Also vascular pathogens could reduce 
the photosynthetic activity by causing cellular/leaf death, actively consume NSC for their sur-
vival, induce C-expensive plant defenses, and indirectly interfere with phloem transport when 
they generate xylem hydraulic failure (Oliva et al., 2014). In order to understand how esca 
and water deficit affect the carbon (im)balance, NSC were quantified in annual organs (leaves) 
during summer 2018 and 2019 and in perennial organs (stems) in winter and summer 2019 
(Fig. 3, 4, Supplementary Fig. 6, 7, Tables 2, 3). 

Strikingly, none of the treatments induced severe carbon depletion as the NSC levels were 
always relatively high. However, in these plants, clusters were removed right after bud-break, 
and their absence could have influenced the relative high NSC content in our samples. In 2018, 
we observed that all leaves (from control, symptomatic or water deficit plants) presented the 
same content of total NSC (around 130 µmol gFW-1, Fig. 3a, Supplementary Table 2). Oppo-
sitely, in 2019 total NSC content in leaves was significantly affected by esca and water deficit 
(Fig. 3b, Supplementary Table 2). For esca, only asymptomatic leaves presented significantly 
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Figure 3. Total non-structural carbohydrates (NSC) content in µmol gFW-1 over the two years for control (blue), 
esca asymptomatic (both before and after symptoms, green), esca symptomatic (red), and water deficit (ΨPD<-
0.5MPa, yellow) leaves and stems. (a) Mean NSC content in leaves in 2018. (b) Mean NSC content in leaves in 
2019. (c) Mean NSC content in stems in 2019. Bars represent means and error bars standard error, letters indicate 
statistical significance from independent mixed linear general models with Tukey post-hoc comparisons (Supple-
mentary Tables 2, 3).



140

[µ
m

ol
 g

FW
-1

]

a

a

c

a

b

a

a a
b

ab
c

b

a

a

bb a a

b

a
a a

b
c

aab

c
bc

a

b

b

b

a b
aba

a a a
b

a
b

c

b

a

a
a

b

WD
Esca (S)
Esca (As)
Control

a Leaves 2018 b Leaves 2019 c Stems 2019
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control (blue), esca asymptomatic (both before and after symptoms, green), esca symptomatic (red), and water 
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in 2019. (c) Mean content in stems in 2019. Bars represent means and error bars standard error, letters indicate 
statistical significance from independent mixed linear general models with Tukey post-hoc comparisons. Different 
statistical tests were done for each different sugar (see Supplementary Tables 2, 3 for details).

lower NSC content compared to controls (Fig. 3b), while plants under the second year of water 
deficit presented leaves with the significantly lowest NSC content (0.3 times compared to con-
trols on average, Fig. 3b). In 2019, control stems presented a significantly higher NSC content 
(186.6 ± 10 µmol gFW-1 on average), compared to the other stems (Fig. 3c, Supplementary 
Table 3). In 2019 we observed an opposite NSC distribution between leaves and stems (Fig. 3b, 
3c) depending on the stress: control and esca symptomatic plants presented higher NSC content 
in leaves than in stems, while during water deficit (2nd year) NSC content was higher in stems 
than leaves. This result could indicate that esca and water deficit differently affect primary me-
tabolism and carbohydrate storage dynamics. 

Partitioning the different carbohydrates, we observed different dynamics for esca and water 
deficit (Fig. 4, Supplementary Fig. 6, 7, Tables 2, 3). During the experimental periods in each 
of the two years, the carbohydrate content in asymptomatic leaves from esca plants did not 
significantly differ from that of control leaves, except for starch in 2019 (Fig. 4a, 4b, Supple-
mentary Table 2), confirming that asymptomatic leaves have a physiological functioning very 
close to control plants. Esca symptomatic and water deficit leaves accumulated high levels of 
glucose and fructose during both years (two to five times higher compared to controls, except 
for glucose during water deficit in 2019, Fig. 4a, 4b, Supplementary Table 2). The accumula-
tion of hexoses and/or the increased ratio of hexoses to sucrose, often observed in plants infect-
ed with pathogens but also under drought, has been attributed to increased invertase activity, 
particularly the cell wall isoform (Berger et al. 2007; Medici et al., 2014). Sucrose content was 
significantly lower for esca symptomatic leaves (0.5 times compared to controls both years), 
while it was similar (or slightly lower) to control during water deficit (Fig. 4a, 4b), suggesting 
that phloem transport (sucrose is the mobile NSC form) was compromised only during esca, 
and not during water deficit. Starch was significantly lower during both stresses (0.5 times 
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lower on average); especially during the second year of water deficit (0.1 times compared 
to controls, corresponding to 9 ± 2.4 µmol gFW-1), indicating that carbon reserves were con-
sumed (or not produced) in response to stress. In stems, we observed differences in fructose 
content with significantly higher levels during water deficit (1.5 times relative to control, Fig. 
4c, Supplementary Table 3), suggesting that the growth inhibition leads to hexose accumula-
tion also in perennial organs. Sucrose was significantly lower in esca symptomatic stems (0.3 
times relative to control, Fig. 4c), indicating that reduced phloem transport was also observed 
in stems. During esca and water deficit, stems exhibited glucose and starch contents similar 
(or slightly different) to controls, showing that reserve accumulation is still active during these 
stressing conditions (Fig. 4c). Finally, it is worth noting that in the NSC quantification during 
winter 2018-2019 dormancy (i.e. between the two experimental seasons) in stems, none of the 
quantified metabolites were significantly different compared to controls (Supplementary Fig. 
7, Table 3).

The long-term esca leaf symptom history did not impact plant physiological response to 
drought

We observed that drought inhibits esca leaf symptom expression (Table 1). We then explored 
whether plant response to drought differed between plants with contrasting disease histories 
(pA-pS), and whether they presented different physiological profiles. As presented in Supple-
mentary Table 4, we found that the disease’s historical record had no significant effect on any 
of the recorded variables (water potential, whole-plant and leaf gas exchange, and NSC). This 
result suggests that esca do not alter long-term plant susceptibility to drought. Bortolami et al 
(2020) observed that plants with different disease histories presented similar hydraulic integri-
ty; here we confirmed that esca leaf symptom development affects the plant physiology mainly 
during the year of expression and not over the long-term. These findings can partially explain 
why esca symptomatic plants can frequently appear asymptomatic during the successive sea-
sons (as observed in field surveys, Guerin-Dubrana et al., 2013, Li et al., 2017). 

DISCUSSION

Increasing plant mortality is one of the major issues threatening perennial forestry and agricul-
tural ecosystems. The impact of biotic-abiotic stress interactions on plant physiology certainly 
plays a crucial role in the extent of this mortality. Here, we studied the interaction between 
drought and vascular disease and the subsequent physiological consequences in grapevine. 
Esca (a vascular disease) and drought are two stresses that frequently coexist in vineyards. 
Even though anecdotal importance has been ascribed to hot periods during esca leaf symptom 
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appearance (Marchi et al., 2006, Serra et al., 2018, Kraus et al., 2019), the underlying plant 
physiological status has still never been detailed during these events, leaving many doubts on 
how drought and esca interact. 

We demonstrated that prolonged water deficit conditions (at ΨPD ≈ -1 MPa for three months) 
totally inhibited esca leaf symptom development. At the same time, plant disease history, i.e. 
esca leaf symptom expression over several years, had no impact on plant response to drought. 
Under the drought conditions applied plant transpiration was low while hydraulic integrity was 
preserved (Supplementary Fig. 3, 8), and we could speculate that transpiration is the key mech-
anism driving esca leaf symptom expression. The most prominent hypothesis of leaf symptom 
formation states that toxins (or elicitors) are transported from pathogens in the trunk up to 
the leaves by the transpiration stream (Claverie et al., 2020). Our findings tend to support the 
hypothesis where a decreased transpiration might result in decreased toxin transport. How-
ever, water deficit conditions also trigger other systemic responses that could interfere with 
pathogenicity and/or enhance plant defenses (e.g. accumulation in soluble sugars and phenolic 
compounds). 

The clear antagonism between esca and drought strengthen the importance of integrative stud-
ies (i.e. monitoring plant physiology under multiple stresses) to understand the role of climate 
in perennial plant decline. We underlay the necessity of finding the physiological thresholds 
triggering different plant responses to stress if we are to understand the impact of climate 
change in viticulture. Interpreting our results, we could expect that future climate change could 
lead either to a decrease in esca incidence if ΨPD reaches low values (around -1 Mpa), or an 
increase in esca incidence if the VPD increases but the soil remains at field capacity resulting in 
high transpiration. Moreover, other practices, such as irrigation, that can temporarily mitigate 
water deficit, could accelerate vine decline given by esca. In this context, improving cultural 
practices in the absence of a complete understanding of biotic-abiotic interactions and the dif-
ferent physiological thresholds aiming to plant death could lead to unforeseen outcomes.

Esca and drought primarily affect the same plant tissue: the xylem vasculature. This simple 
fact, coupled with other similarities between the phenology of these stresses, have led many 
authors to hypothesize that vascular pathogens and water deficit induce the same mechanisms 
prior to plant death (Bowden et al., 1990, Yadeta and Thomma, 2013). Our results largely 
reject this hypothesis, finding that the two stresses induced distinct physiological responses. 
We demonstrated in previous work that esca pathogenesis is associated with hydraulic failure 
caused by vascular occlusion (Bortolami et al., 2019, 2020), which contrasts with the cavita-
tion-induced hydraulic failure during drought (Tyree and Sperry, 1989). Here we showed that 
esca never caused any significant drop in water potential during our two-year study. This result 
can be explained by the observation of whole-plant stomatal conductance. Gs decreased during 
esca leaf symptoms (as during water deficit in period II, Fig. 2a) but it was directly correlated 
with the percentage of symptomatic leaves (% of the total plant canopy), not by a change in 
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soil (i.e. predawn) water potential as during drought. Consequently, as stomatal conductance 
decreased linearly with esca leaf symptom development, the remaining functional (i.e. non-oc-
cluded) xylem vessels sustain sufficient water transport to non-symptomatic leaves which func-
tion similar to controls. Interestingly, we observed that 2-3 weeks after the first apparition of 
leaf symptoms, on the top of symptomatic shoots, new asymptomatic shoots grew, and that 
Gs recovered to level close to control plants. Confirming this trend, we evidenced that at the 
whole-plant scale, transpiration sensibility to VPD was similar to water deficit conditions only 
during esca leaf symptom formation (i.e. in period II, Supplementary Fig. 3), and that asymp-
tomatic regrowth can restore normal whole-plant transpiration rates in period III. In vineyards, 
grapevines are often continuously trimmed during summer to control canopy size thus only one 
study reported asymptomatic regrowth in the field after extreme esca leaf symptom develop-
ment (Kraus et al., 2019). In the future new attention should be given on how the apparition of 
new asymptomatic leaves could restore (or mitigate) the negative effects of esca symptoms on 
berry quality and reserve synthesis. For example, our study showed that esca did not influence 
stem starch content in winter (Supplementary Fig. 7, contrasting from Petit et al., 2006), this 
could be due to the presence of new asymptomatic leaves that helped maintain starch reserves 
as in control plants.

Measurements at the leaf level showed that the photosynthetic apparatus is more compromised 
during esca than during drought. This result supports the hypothesis that during esca a more 
generalized cellular death (and not a direct stomatal control as during water deficit) reduces gas 
exchange and photosynthetic performance in leaves. However, these differences in photosyn-
thesis did not result in a reduced total NSC content in symptomatic leaves, which was strongly 
affected only during the second year of water deficit. Esca symptomatic leaves and stems con-
sistently exhibited lower sucrose concentrations (the main sugar transport form) suggesting 
that carbohydrate efflux from leaves would be reduced during esca. The presence of occluded 
xylem vessels in esca symptomatic plants, leading to hydraulic failure (Bortolami et al., 2019, 
2020), could affect the phloem transport. In water deficit stems, we did not observe any hy-
draulic failure during our water deficit experimentation (Supplementary Fig. 8), ΨPD never 
reached a critical threshold leading to cavitation (Charrier et al., 2018, Dayer et al., 2020), and 
sucrose concentration was less impacted. Finally, regardless of the differences at the leaf level 
highlighted above both esca and two seasons of water deficit resulted in decreased total NSC 
content in stems.

In this context, even if esca and drought were antagonistic when applied simultaneously and 
if esca had no long-term impact on drought susceptibility, both stresses negatively impacted 
perennial organs and plant physiological functioning (although in distinct ways). Consequent-
ly, drought and vascular disease could act synergistically over the longer term, contributing 
together to plant decline.
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MATERIALS AND METHODS

Plant material and esca symptom notation

Vitis vinifera cv. Sauvignon blanc, grafted onto 101-14 MGt, were planted in 1992 at INRAE 
Bordeaux-Nouvelle Aquitaine (44°47’24.8”N, 0°34’35.1”W). Following the protocol from 
Bortolami et al. (2019), plants (n=51) were uprooted in winter 2018 and transferred into 20-l 
pots, allowing environmental and physiological monitoring. In a subsample (n=10) of these 
plants the vascular pathogens related to esca were detected inside their trunk (Bortolami et al., 
2020). During the two experimental seasons (2018 and 2019) fruits and secondary shoots were 
removed just after bud break. In the greenhouse, plants were irrigated with nutritive solution 
(0.1 mM NH4H2PO4, 0.187 mM NH4NO3, 0.255 mM KNO3, 0.025 mM MgSO4, 0.002 mM 
Fe, and oligo-elements [B, Zn, Mn, Cu, and Mo]); climatic conditions were monitored every 
15’ using temperature and humidity probes (S-THB-M002, Onset, Bourne MA, USA) and 
global radiation sensors (S-LIx-M003, Onset, Bourne MA, USA) connected to a data logger 
(U300-NRC, Onset, Bourne MA, USA). From 2012, the development of esca leaf symptoms 
for all plants was monitored in the vineyard (2012-2017) and in the greenhouse (2018-2019) 
following Lecomte et al. (2012) to classify the plants as asymptomatic or esca-symptomatic 
every year. Before the experiment started (May 2018), each plant was classified by its disease 
historical record: plants that never expressed symptoms since 2012 (previously asymptomatic, 
pA), and plants that expressed symptoms at least once since 2012 (previously symptomatic, 
pS). During the two years of experimentation, the appearance of leaf symptom was checked 
twice a week (from June 2018 to October 2019) on every plant. Consequently each sample 
(leaf or stem) was classified by both a general disease status of the whole plant and the spe-
cific collected organ: samples from control plants (i.e. asymptomatic from June to October), 
asymptomatic samples from symptomatic plants (both before and after symptom appearance), 
and symptomatic (presenting tiger-stripe leaves) samples. One example of esca symptom ap-
pearance and evolution is presented in Supplementary Fig. 4.

Balance data analysis

From mid-June to October (in 2018 and 2019), a subset of plants (n=20) was placed in a 
mini-lysimeter greenhouse phenotyping platform (Bord’O platform, INRAE Bordeaux) where 
pots were continuously weighed on individual scales (CH15R11, OHAUS type CHAMP, 
Nänikon, Switzerland). The pots were placed into dark plastic bags, well fixed around the 
trunk, to prevent water loss by soil evaporation. The whole plant transpiration E [mmol s-1 m-2] 
was calculated as follow:

E = (∆w/AL) / 18000
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Where: Δw corresponds to the weight changes during every hour [g s-1], AL to the total leaf area 
of the plant [m²], and 18000 to the molecular weight of water [g mmol-1]. Δw was considered 
only when not aberrant (i.e. between 0 and -0.5 kg hour-1). Moreover, to avoid rarely recorded 
Δw, extreme outliers values (i.e. values three times lower than the lower quartile, or three times 
higher than the highest quartile) were removed for each day and plant. Total leaf area (AL) was 
estimated through the relationship obtained between the leaf midrib length and the leaf surface 
(measured with a leaf area meter, LI-3000, LI-COR, Lincoln, NE, USA) for ≈150 leaves. Leaf 
midribs were measured on all the leaves of each plant every week in 2018 and every-other 
week in 2019 and, in case of esca symptom presence, every leaf was noted as asymptomatic, 
esca-symptomatic, or from asymptomatic regrowth. In the majority of symptomatic plants, five 
to fifteen days after leaf symptoms appeared, new green shoots grew from the secondary buds: 
they were noted as “asymptomatic regrowth” (e.g. Supplementary Fig. 3). In order to obtain a 
daily constant change in leaf area, a linear increase (or decrease) was interpolated between each 
measure of leaf area. Likewise, a constant change in the percentage of symptomatic leaves was 
interpolated between each measure. The whole plant stomatal conductance Gs [mmol s-1 m-2] 
was calculated as follow:

Gs = KG(T) x (E/D)

Where: KG(T) correspond to the conductance coefficient (Ewers et al. 2001, kPa m3 kg-1), E to 
the transpiration, and D to the vapor pressure deficit [kPa] calculated using hr [%] and T [°C] 
from climatic records (Jones 2013). To avoid errors in Gs estimations, values were used for 
analysis only when D was >0.6 kPa (Ewers and Oren 2000) and light conditions were saturat-
ing for photosynthesis (>700 µmol m-2 s-1 photosynthetic photon flux density, PPFD).

Water deficit treatment and maintenance

At the beginning of the two seasons, every plant was watered at its maximum capacity and 
left to drain water excess for half a day. The resulting weight was taken as field capacity, and 
well-watered plants were irrigated to this weight every-other day. The average watering vol-
ume from the plants on the scales was used to water the remaining plants that were not on the 
balances. Water deficit was induced on 25 (over 51) plants for two consecutive seasons (the 
same plants were subjected to water deficit in 2018 and 2019 from July to October) and the 
other 26 plants were kept under well-watered conditions. At the beginning of the experimen-
tation in 2018, half of the water deficit plants had never expressed esca leaf symptoms since 
2012 (pA), while the other half expressed symptoms at least once in the past (pS). Similarly 14 
out of the 26 plants under the well-watered regime were previously asymptomatic (Table 1). 
Water deficit plants were maintained for a period of three months (from July to October 2018 
and 2019) at a target weekly average ΨPD between -0.6 and -1.7 MPa, with outliers below or 
above these thresholds representing 20% of the values (Supplementary Fig. 9). These condi-
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tions are sufficient to reduce plant transpiration without decreasing stem hydraulic conductivity 
in grapevine (Charrier et al., 2018). On the 1st of July 2018 and 2019, we stopped watering the 
plants. We then checked predawn water potential (ΨPD) with a Scholander pressure chamber 
(Precis 2000, Gradignan, France) on three up to five plants every-other day, and every day on 
two plants with stem psychrometers (ICT International, Armidale, NSW, Australia). Placed in 
a central internode of a stem of the current year, the psychrometers record the stem water po-
tential (ΨStem) every 30’. Once ΨPD reached an average of -1 MPa, we noted the exact weight for 
the 10 plants placed on the scales (see above). These plants were then watered with nutritive 
solution every three days (and at necessity when ΨPD dropped below -1.5 Mpa) at this weight 
until the end of the experiment (beginning of October). The average watering volume from 
these plants was used to water the remaining 15 plants that were not on the balances. During the 
whole experiment we watered water-stressed plants with 0.1 to 0.6 l every three days in pots 
with a pot capacity between 6 and 8 l (i.e. approximately from 1 to 10% of the field capacity). 

Hydraulic integrity and water potential analysis

To check the effect of water deficit on the hydraulic integrity of the perennial organs, in 2019 
we measured stem specific hydraulic conductivity (ks) and stem theoretical hydraulic conduc-
tivity (kth) in 73 different stems (39 control and 34 from water deficit plants) over 9 sampling 
dates as explained in Bortolami et al., 2020 (Supplementary Fig. 8). Water potential was mon-
itored in at least 25 plants per date (every week in 2018 and every-other week in 2019), from 
June to October in 2018 and 2019. We measured Ψ (both ΨPD and ΨMD) on 26 different dates, 
corresponding to 632 measures for control (asymptomatic well-watered) plants, 213 in esca 
symptomatic, and 650 for water deficit. Every water potential measurement was done on ma-
ture leaves with a Scholander pressure chamber. ΨPD was measured between 04:00 and 06:00 
a.m., ΨMD on well-exposed leaves between 01:00 and 03:00 p.m. Regarding esca symptomatic 
plants, water potentials were measured only on asymptomatic (green) leaves. The presence of 
gel and tyloses in the xylem vessels of symptomatic leaves (demonstrated by Bortolami et al. 
2019) made the detection of water potential with the pressure chamber difficult (and sometimes 
impossible). Sometimes gel (and not water) was rapidly exuded from the petioles at high Ψ (≈0 
MPa), sometimes it appeared at low Ψ (between -1 and -3 MPa), or did not appear at all (<-7 
MPa). However, in asymptomatic leaves gel was not detected during Ψ measurements, there-
fore the values should reflect the water status of the plant.  

Gas exchange analysis

Once a week from June to October 2019, maximal leaf gas exchange measurements were reg-
istered between 9:00 a.m. and 12:00 p.m. on mature well-exposed leaves using the TARGAS-1 
portable photosynthesis system (PP-systems, Amesbury, MA, USA). Optimal conditions of 
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photosynthetic active radiation (PAR) were set in the cuvette [1500 µmol m−2 s−1]. The fol-
lowing parameters were recorded on each leaf: stomatal conductance, gs [mmol s-1 m-2]; CO2 

assimilation, A [µmol s-1 m-2]; water use efficiency, WUE (= A/gs) [µmol CO2 mmol-1 H2O]. In 
some cases the level of CO2 absorbed (A) by the leaf was negative. In these cases A was close 
to 0 (between 0 and -1 µmol s-1 m-2, n=24, 16 water deficit and 8 esca symptomatic), or too neg-
ative (between -2 and -20 µmol s-1 m-2, n=20 esca symptomatic). We considered the first group 
of measures as a possible (but not quantifiable) leaf respiration, and the very low A values as 
artifacts given by the advanced leaf destruction during symptoms. Consequently, we manually 
changed all records in A=0 and WUE=0. However, other studies should confirmed the possi-
ble high respiration (i.e. CO2 rejection) rates during esca leaf symptoms. Measurements were 
performed on 50 plants, on 12 different dates, for a total of 290 measures (66 measures on 
control leaves, 65 on asymptomatic leaves on esca plants, 48 on esca symptomatic leaves, and 
111 on water deficit leaves). For symptomatic leaves, gas exchanges were measured on their 
green part. Plants under water deficit were considered for analysis only when ΨPD < -0.5 MPa, 
as plants with ΨPD > -0.3 Mpa (i.e. when every plant was still under well-watered conditions) 
presented values similar to control plants (F1,13=0.25, P=0.62 for A, F1,13=1.98, P=0.18 for gs).

Chlorophyll fluorescence measurements

Maximum quantum yield of photosystem II (Fv Fm-1) was measured in early morning (between 
9:00 and 11:00 a.m.) using a portable chlorophyll fluorometer (PAM2100, Walz, Germany). 
Measurements were carried out on two different dates in 2018 in 45 leaves (13 control, 8 esca 
asymptomatic, 6 esca symptomatic, and 18 water deficit). Disk shaped clips were attached on 
leaves the evening before the measurement in order to adapt the leaf to dark conditions. The 
minimal fluorescence at dark conditions (Fo) was recorded, then the maximal fluorescence 
(Fm) was measured at saturated light. Maximum quantum yield of photosystem II (PSII) was 
then calculated as:

PSII = Fv/Fm = (Fo-Fm)/Fm

Non-structural carbohydrates (NSC) and chlorophylls quantification

To quantify NSC over the course of the experimentation, leaves were sampled every week 
in 2018 on 24 random plants (half well-watered and half water deficit), on the same day and 
plants we measured ΨPD and ΨMD. In 2019, leaves and stems were sampled every-other week 
on 12 random plants (half well-watered and half water deficit). Thus, resulting in 25 sampling 
dates on 51 plants for a total of 509 samples, specifically, in 2018: 94 leaves from control 
plants, 66 esca asymptomatic, 26 esca symptomatic, and 132 water deficit; in 2019: 31 leaves 
and 32 stems from control plants, 20 leaves and 10 esca asymptomatic stems, 11 leaves and 6 
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esca symptomatic stems, and 33 leaves and 30 water deficit stems. All samples (stems or leaf 
blades) were collected in the early morning (between 07:00 and 10:00 a.m.) to avoid effects of 
NSC diel fluctuations, directly put in liquid nitrogen, and stored at -80 °C until analysis. For 
stems, one internode (including wood and bark) was sampled. For leaves, the whole blade (in-
cluding green and scorched areas for symptomatic leaves) was sampled. Frozen samples were 
ground with ball tissue lyser (GenoGrinder 2010, Spex Sample Prep, Rickmansworth, England 
at 30Hz for 45” for leaves, and Tissuelyser II, Qiagen, Germantown, MD, USA, for stems). 20 
± 2 mg of powder were weighted into 1.1 mL-micronic tubes (MP32033L, Micronic, Lelystad, 
Netherlands), adding approximately the same volume of polyvinylpolypyrrolidone (77627, 
Sigma Aldrich, Darmstadt, Germany), to precipitate polyphenols and avoid interaction with 
the enzymes used to measure NSC. Samples were randomized into 96-micronic racks (MPW-
51001BC, Micronic, Lelystad, Netherlands). Every rack contained: a maximum of 84 samples, 
six empty tubes (for extraction blank), and six tubes with a biological standard (obtained by 
mixing the powder from different samples). Assays were performed as described in Biais et al. 
(2014) using Starlet pipetting robot (Hamilton). After an ethanolic extraction, we divided (from 
every tube) the supernatant from the pellet. Determination of chlorophylls content was adapted 
from Arnon (1949). Immediately after extraction, 50 µL of supernatant was mixed with 120 µL 
98% ethanol and the absorbance was read at 645 and 665 nm in a microplate reader (SAFAS 
MP96, Monaco). Chlorophylls content, expressed as mg gFW-1, was calculated using the em-
pirical formulas:

Chlorophyll a = 5.21 x A665 - 2.07 x A645

Chlorophyll b = 9.29 x A645 - 2.74 x A665

which has been obtained by using commercial chlorophyll, and A645 and A665 corresponds to the 
two absorbances. Glucose, fructose, and sucrose, expressed as µmol gFW-1, were quantified in 
5 µl of ethanolic supernatant, and the absorbance read at 340 nm in MP96 microplate readers 
(Stitt et al. 1989). For the determination of starch, expressed as µmol gFW-1, the pellet was 
suspended in 0.1M NaOH and heated at 95°C for 20 min, neutralised with HCl and starch was 
then quantified from 5µl of supernatant and the absorbance read at 340 nm in MP96 microplate 
readers as in Hendriks et al. (2003).

Statistical analysis

The effect of esca leaf symptoms and water deficit was tested on water potential (ΨPD and 
ΨMD), leaf gas exchange (gs, A, WUE), the maximum quantum yield of photosystem II (PSII), 
chlorophyll content (a+b, and a/b), and NSC (glucose, fructose, sucrose, starch, and total NSC) 
content in leaves and stems, using independent mixed linear general models (one per each 
response variable, organ and experimental year). The treatment (control, esca asymptomatic, 
esca symptomatic and water deficit leaves) and the sampling date were entered as fixed effects 
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(covariables) and the plant was treated as a random effect since different leaves were sometimes 
analyzed from the same plant in proc GLIMMIX (SAS 9.4; SAS Institute), and logarithmic 
transformation were done when appropriate. Specific treatments were compared using Tukey 
post-hoc tests adjusted for multiple comparisons. The relationships between ΨMD on GsMAX 
during water deficit and esca, and between the green surface (using 5% interval average values) 
and Gs were calculated using linear regression models in proc REG (SAS 9.4; SAS Institute).
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Supplementary Figure 1. Chlorophyll content over the two years for control (blue), esca 
asymptomatic (green), esca symptomatic (red), and water stress (yellow) leaves over the two 
years. n=413. (a) Total chlorophylls (a+b, mg gFW-1), F3,357=4.58, P=0.0037. (b) Ratios between 
chlorophyll a and chlorophyll b. F3,357=17.47, P<0.0001. Bars represent means and error bars 
standard error, letters indicate statistical significance from independent mixed linear general 
models with Tukey post-hoc comparisons. In statistical tests, sampling date was treated as a 
fixed effect, plant as a random effect, and values from total chlorophylls were log transformed. 



151

 
 
Supplementary Figure 2. Whole-plant Gs over the experimental seasons for control plants. 
Symbols represent hourly Gs, lines average daily Gs. Dots and solid line represent Gs in 2018, 
diamonds and dashed line Gs in 2019. The black horizontal band represents the average value 
over the two years (i.e. correspondent to blue horizontal band in Fig. 2A). We can observe that 
at the end of the season (late September), Gs values tend to decrease, probably due to the onset 
of the winter senescence process.  
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Supplementary Figure 3. Relationships between VPD [kPa] and EMAX [mmol m-2 s-1] in water 
deficit and esca leaf symptomatic plants during the two years of experiment. Blue circles and 
line correspond to control plants, yellow circle and line to water deficit plants (after changing 
the watering regime), red circles and solid line to esca symptomatic plants in period I (before 
leaf symptom appearance), red triangles and dashed line to esca symptomatic plants in period 
II (during esca leaf symptom formation), and red diamonds and dash-dotted line to esca 
symptomatic plants in period III (during asymptomatic regrowth formation). The 
corresponding regression curves are presented.  
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Supplementary Figure 4. Esca leaf symptom evolution in one plant of V. vinifera cv 
Sauvignon blanc 
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Supplementary Figure 5. Example of leaf surface evolution for control (blue), esca 
symptomatic (red), and water stressed (yellow) plants in 2018. Lines represent mean values, 
while band the SE during the season. Leaf surface was measured every week, a model 
interpolated a linear increase (or decrease) of leaf surface between two successive measures. 
Control plants increase their leaf surface during the season, leaf surface on WS plants decreased 
after the imposition of water deficit (day 180), regarding esca symptomatic plants we can 
observe a decrease during symptom appearance (between day 210 and 225), and a regrowth 
after day 230. 
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Supplementary Figure 6. Seasonal dynamic for the different NSC in leaves in 2018, compared 
to ΨPD values measured on the same plants at the same date. Panels are organized by stress 
conditions: control plants (dark blue dots), esca symptomatic plants (dark green dots for 
asymptomatic leaves before symptom appearance, light green dots for asymptomatic leaves in 
symptomatic plants, and red dots for esca symptomatic leaves), and water deficit plants (yellow 
dots). Dots represent single metabolite quantification, and triangles (light blue), mean ΨPD of 
the day ± SE. 
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Supplementary Figure 7. NSC in µmol gFW-1 content in stems in winter 2018-2019, for 
control (blue, n=12), esca symptomatic (red, n=6), and plants after one year under water stress 
(yellow, n=25). Bars represent means and error bars SE. We used general linear mixed models 
to compare stressed and control plants and no statistical differences were found within any 
metabolite (Supplementary Table 3). 
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Supplementary Figure 8. Relationship between direct measurements of specific stem 
hydraulic conductivity (ks) and theoretical stem hydraulic conductivity (kth). Symbols represent 
values for control (blue) and water stressed (yellow) stems. 
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Supplementary Figure 9. Frequency of the recorded spectrum of ΨPD [MPa] over the two 
seasons in plants under water deficit (after changing the watering regime).  
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Supplementary Table 1. Effect of esca leaf symptoms and water deficit on leaf gas exchange 
and maximum quantum yield of photosystem II. We used independent mixed linear general 
models fitting a normal distribution. The treatment (control, esca asymptomatic, esca 
symptomatic and water deficit leaves) and the sampling date were entered as fixed effects 
(covariables) and the plant was treated as a random effect since different leaves were sometimes 
analyzed from the same plant. Statistical differences between specific treatments (Tukey 
comparisons) are presented in Fig. 2D. 
 

Response 
variable 

Stress treatment Sampling date 

DoF F P DoF F P 

gs 3,238 23.59 <0.0001 3,238 29.29 <0.0001 

A 3,238 50.39 <0.0001 3,238 53.51 <0.0001 

WUE 3,238 3.00 0.03 3,238 0.06 0.81 

 Psi II 3,17 3.86 0.02 Measured during the same week 
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Supplementary Table 2. Effect of esca leaf symptom and water deficit on NSC content in 
leaves. We used independent mixed linear general models fitting a normal distribution. The 
treatment (control, esca asymptomatic, esca symptomatic and water deficit leaves) and the 
sampling date were entered as fixed effects (covariables), and the plant was treated as a random 
effect since different leaves were sometimes analyzed from the same plant. Only starch content 
in 2018 was log transformed prior to statistical test to fit a normal distribution. Statistical 
differences between specific treatments (Tukey comparisons) are presented in Fig. 3, 4, and 
2018 weekly variation is presented in Supplementary Fig. 6. 
 

 
year 

Response 
variable 

Stress treatment Sampling date 

DoF F P DoF F P 

 
 

 
2018 

 

Glucose 3,271 26.5 <0.0001 3,268 9.63 0.002 

Fructose 3,271 23.07 <0.0001 3,268 1.15 0.60 

Sucrose 3,271 12.64 <0.0001 3,268 10.44 0.001 

Starch 3,271 9.51 <0.0001 3,268 13.80 0.0002 

Total NSC 3,271 1.41 0.24 3,268 15.52 0.0001 

 
 

 
2019 

Glucose 3,49 22.29 <0.0001 3,49 14.89 0.0003 

Fructose 3,49 38.51 <0.0001 3,49 1.20 0.27 

Sucrose 3,49 8.29 0.0001 3,49 61.61 <0.0001 

Starch 3,49 12.51 <0.0001 3,49 0.45 0.5 

Total NSC 3,49 11.02 <0.0001 3,49 1.21 0.28 
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Supplementary Table 3. Effect of esca leaf symptom and water deficit on NSC content in 
stems. We used independent mixed linear general models fitting a normal distribution. The 
treatment (control, esca asymptomatic, esca symptomatic and water deficit leaves) and the 
sampling date were entered as fixed effects (covariables), and the plant was treated as a random 
effect since different leaves were sometimes analyzed from the same plant. Statistical 
differences between specific treatments (Tukey comparisons) are presented in Fig. 3, 4, and 
Supplementary Fig. 7. 
 

year Response 
variable 

Stress treatment Sampling date 

DoF F P DoF F P 

Winter 
2018/2019 

 

Glucose 2,40 0.23 0.79 

Samples in winter were collected 
from all plants at the same date, the 

22nd of January 2019. In 
correspondence with winter 

pruning. 

Fructose 2,40 0.23 0.75 

Sucrose 2,40 2.29 0.11 

Starch 2,40 0.63 0.54 

Total NSC 2,40 1.14 0.33 

Summer 
2019 

Glucose 3,31 8.32 0.0003 3,31 109.24 <0.0001 

Fructose 3,31 10.53 <0.0001 3,31 7.88 0.0086 

Sucrose 3,31 28.34 <0.0001 3,31 41.34 <0.0001 

Starch 3,31 16.35 <0.0001 3,31 195.08 <0.0001 

Total NSC 3,31 13.26 <0.0001 3,31 146.21 <0.0001 

 

 
 
 
Supplementary Table 4. Effect of plant historical record (previously asymptomatic, pA, and 
previously symptomatic, pS) and its interaction with the sampling date on all recorded variables 
for plants under water deficit. We used independent mixed linear general models fitting a 
normal distribution. The historical record, the sampling date, and their interaction were entered 
as fixed effects (covariables) and the plant was treated as a random effect since different leaves 
were sometimes analyzed from the same plant. For whole-plant Gs, the day of year was treated 
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as a random effect as different hourly Gs could be recorded during the same day. For the 
metabolites in leaves (glucose, fructose, sucrose, starch, total NSC, and chlorophylls), the two 
sampling years were pooled together and the year of sampling treated as a fixed effect. The 
effect of the sampling date on the response variables is presented in Supplementary Tables 1, 
2, 3. 
 

Response variable 

Historical record  
(pA, pS) 

Historical record and  
Sampling date interaction 

DoF F P DoF F P 

Gs 1,7972 1.77 0.18 1,7972 1.75 0.19 

gs 1,84 0.01 0.93 1,84 0.02 0.90 

A 1,84 0.32 0.58 1,84 0.41 0.52 

WUE 1,84 0.18 0.67 1,84 0.18 0.67 

PSII 1,4 1.06 0.36 Measured on one single week 

Glucose in leaves 1,222 0.23 0.63 1,222 0.18 0.67 

Fructose in leaves 1,222 0.18 0.67 1,222 0.15 0.70 

Sucrose in leaves 1,222 2.13 0.15 1,222 2.47 0.12 

Starch in leaves 1,222 0.00 0.97 1,222 0.07 0.80 

Total NSC in leaves 1,222 0.36 0.55 1,222 0.18 0.67 

Chlorophylls (a+b) 1,222 0.02 0.90 1,222 0.04 0.85 

Chlorophylls (a/b) 1,222 0.92 0.34 1,222 1.10 0.29 

Glucose in stems 1,40 0.24 0.63 1,40 0.26 0.61 

Fructose in stems 1,40 0.01 0.96 1,40 0.09 0.77 

Sucrose in stems 1,40 1.22 0.28 1,40 1.18 0.28 

Starch in stems 1,40 0.01 0.98 1,40 0.02 0.90 

Total NSC in stems 1,40 0.03 0.87 1,40 0.09 0.77 
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CHAPTER 6

Discussions, Conclusions, and Perspectives

Résumé: Durant cette thèse nous avons analysé les relations entre le fonctionnement hydrau-
lique de la vigne, l’anatomie du xylème et la pathogenèse de l’esca. Cette étude a été animé 
par l’hypothèse que le fonctionnement hydraulique de la plante était au cœur du processus de 
dépérissement de la vigne, surtout lorsque l’esca et la sècheresse interagissent. Cependant des 
importantes lacunes empêchent la compréhension de l’esca. D’autant plus que même si l’esca 
est considérée comme une maladie vasculaire, ces effets sur le système vasculaire restent lar-
gement méconnus. Pour aborder ce défi scientifique, nous avons opté pour une approche inté-
grative. Nous avons commencé par les feuilles, en regardant à l’intérieur de leurs veines nous 
avons trouvé la présence (surprenante au début) d’occlusions dans les vaisseaux des feuilles 
symptomatiques (Chapitre 2). Nous avons comparé l’anatomie du xylème des feuilles symp-
tomatiques d’esca avec d’autres processus de senescence et découvert l’unicité des occlusions 
vasculaires reliés à l’esca (Chapitre 3). Ensuite, nous avons quantifié l’effet de l’esca sur l’inté-
grité hydraulique des tiges sur le court et le long terme, trouvant que l’esca affecte les organes 
pérennes (les tiges) seulement saisonnièrement (Chapitre 4). Finalement, nous avons soumis la 
moitié des plantes à une contrainte hydrique en regardant les interactions entre la sécheresse et 
l’esca (Chapitre 5). Après l’observation (encore une fois avec surprise) que les plantes en sè-
cheresse n’expriment jamais de symptômes foliaires d’esca, nous avons surveillé les relations 
hydriques et carbonées à l’échelle de la plante entière, trouvant que l’esca (et son conséquent 
décline de la conductance stomatique) ne résultent pas d’une chute du potentiel hydrique. Nous 
avons aussi découvert que, comparé à la sécheresse, l’esca génère différentes dynamiques sai-
sonnières des échanges gazeux et des carbohydrates non-structuraux. Dans l’ensemble, ces 
résultats ouvrent nombreuses perspectives dans différents champs de recherche. 
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In this thesis, we analyzed the relationships between grapevine hydraulic functioning, xylem 
anatomy, and esca pathogenesis. This study was driven by the hypothesis that the plant hy-
draulic functioning is at the core of grapevine dieback, especially when drought and vascular 
diseases interact. However, important knowledge gaps are impeding the understanding of esca, 
considering that during this vascular disease the impacts of esca on the vascular system re-
mained (almost) unknown. To address this scientific challenge, we used an integrative study. 
We started from the leaves, looking inside their vasculature, providing the evidence (surprising 
at first) of the presence of vascular occlusion, and their formation in functional vessels of esca 
symptomatic leaves (Chapter 2). We compared the xylem anatomy of esca symptomatic leaf 
midribs and other induced senescence process and discovered the uniqueness of vascular oc-
clusions in esca leaf symptoms (Chapter 3). We then quantified the effect of esca on stem hy-
draulic integrity on the short and long term, finding that esca affects grapevine perennial organs 
(i.e. stems) only seasonally (Chapter 4). Finally, we submitted half of the plants to drought, 
investigating the interaction between drought and esca (Chapter 5). After the observation (once 
again with surprise) that plants under drought never showed esca leaf symptoms, we moni-
tored the whole-plant water relations and carbon economy, finding that esca (and subsequent 
stomatal conductance decline) does not result from decreases in water potential, and generates 
different gas exchange and NSC seasonal dynamics compared to drought. Altogether, these 
results open many perspectives in different research fields.

6.1. Vascular occlusions, defining xylem hydraulic failure by nongaseous embolism
Classically, when studies have referred to hydraulic failure, they have considered air-induced 
embolism, produced during drought (Tyree and Sperry, 1989) or frost (Sevanto et al., 2012) 
events. Vascular occlusions have been associated with a multitude of processes (De Micco et 
al., 2016), but their presence has never been directly represented quantitatively as a loss of 
hydraulic conductivity, although many studies correlated occlusions with ks decrease (Gue-
rard et al., 2000, Sallé et al., 2008, Beier et al., 2017, Mensah et al., 2020). During vascular 
diseases, a role of hydraulic failure was suspected but never confirmed (Fradin and Thomma, 
2006, Yadeta and Thomma, 2013). During esca, the suspicion of hydraulic failure was mainly 
given by the strict relationship found between the winter pruning and bad grafting practices 
on symptom incidence (Gramaje et al., 2018, Lecomte et al., 2018), leading to the hypothesis 
that artificial modifications in xylem pathways would increase the plant sensibility to hydraulic 
failure. In this context, even if still hypothetical, esca-related hydraulic failure was thought 
as air-related (i.e. cavitation and air embolism), and this conjecture founded the basis on the 
hypothetical synergy between drought and esca. However, the presence and nature (i.e. air, vas-
cular occlusions, or obstruction by pathogens) of hydraulic failure were still unconfirmed. In 
this thesis, we observed occlusions primarily by tyloses and not by air inside the xylem vessels 
from esca symptomatic plants. We quantified their presence by different techniques, including 
X-ray microCT, optical visualization of leaf embolism, direct (ks) and indirect (kth) hydraulic 
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conductivity measurements, and light microscopy. 
These occlusions, formed by tyloses and gels, impede a normal water flow in the plant con-
firmed by the use of contrasting agent iohexol during X-ray scans, where we observed that 
tyloses are formed in functional vessels, and they are not a mere consequence following air 
cavitation. The occlusions were related to a decrease in plant hydraulic conductivity. By X-ray 
microCT we found that vascular occlusions caused (on average) a PLC of 69% in leaf midribs, 
55% in petioles, and 27% in stems. Comparing stem ks to its theoretical analog (kth) compari-
sons, we found that 60% of stems presented loss of hydraulic conductivity given by vascular 
occlusions. Finally, by the optical vulnerability (OV) technique, we found that 80% of leaves 
presented xylem functionality in less than half of the lamina surface.
These results support the conclusion that esca is related to hydraulic failure given by vascu-
lar occlusions. We define this failure as nongaseous embolism, as it decreases the hydraulic 
conductivity of the considered organ, but it is not formed by air (as previously hypothesized). 
In plant biology, no other authors used the term “nongaseous embolism” (webofknowledge.
com consulted the 25th of January 2021); however, we stressed here the importance that this 
phenomenon could have on plant physiology, especially during biotic stresses, during which 
relationships with the plant hydraulic system are largely unknown. 
During esca, the intensity of hydraulic failure is more related to the considered organ than to 
symptom severity. Indeed, we found relative high variability in the loss of hydraulic conductiv-
ity, as the standard error shift from the average occlusion PLC from 11% (in midribs) to 30% 
(in stems), and leaf lamina showed the highest variability at 38% around the average in OV 
(Chapter 2 Fig. 3, Chapter 3 Fig. 4, and Chapter 4 Fig. 2). This variability was found within 
the same plants (i.e. different leaves or stems from the same plants presented variable PLC) and 
even within the same organ (see how sectorial dysfunctions can affect just half section of stems 
in Chapter 4 Fig. 2j-l or a side of a leaf in Chapter 3 Fig. 4G). Despite this variability, the fact 
that esca lead to hydraulic failure caused by vascular occlusions is now undeniable. We also 
observed that the level of hydraulic failure is decreasing from distal to basal organs: from the 
more to the less affected we observed leaf lamina > midribs > petioles > stems.   

6.2. Hydraulic failure during esca, hypotheses on its formation
By which mechanisms the formation of vascular occlusion occurred, is now an open question. 
We found that appearance of esca leaf symptom is not related to a decrease in water potential 
(Chapter 5). Consequently, we can definitely exclude the intervention of air embolism (as 
during drought) prior to vascular occlusion formation. Moreover, this result reinforces the hy-
pothesis that esca and drought induce different processes and plant responses, and the loss of 
hydraulic conductivity has different underlying origins. 
Surely, we need to first consider the biotic agents as being responsible. Because Pmin and Pch 
develop in the xylem vessels (Pouzoulet et al., 2014) and are frequently found in esca symp-
tomatic plants (Morales-Cruz et al., 2018), they have been suggested as the best candidates as 
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potential causal agents. However, their absence where the occlusions were observed (Chapters 
2 and 4) are still delaying this interpretation. In this context, three major hypotheses could 
trigger the formation of nongaseous embolism and the subsequent hydraulic failure: (i) other 
(non-studied here) biotic agents, (ii) pathogen-derived or (iii) plant-derived molecules that 
move through the vasculature. 
In the first hypothesis, our attention should focus on distinct group of pathogens: fungi and 
bacteria. Among fungi, Botryosphaeriaceae could play a major role in esca pathogenesis be-
cause they are related to grapevine trunk diseases (Bertsch et al., 2013, Fontaine et al., 2016), 
they are isolated in the brown necrosis in the external vasculature in the trunk (altogether with 
Pch, Kuntzman et al., 2010), and they were recently observed inside the xylem vessels (Khat-
tab et al., 2021). From the Basidiomycota phylum, the Fomitiporia spp. which is associated 
with white rot (Fischer, 2006, Bruez et al., 2020) the most recurrent necrosis in symptomatic 
vines (Maher et al., 2012). Finally, bacteria can also cause vascular diseases in a large group of 
plants (Agrios, 2005), and their presence has been suggested as important in GTD development 
(Bruez et al., 2015, 2020, Haidar et al., 2015). 
The second hypothesis, which predicts that the vascular pathogens produce toxins (or other 
elicitors) that would stimulate the nongaseous embolism, could explain the pattern of (distal 
organs or most affected decreasing basally) hydraulic failure during esca. Indeed, if we imagine 
a molecule flow in the xylem, we would expect that these molecules would be quickly trans-
ported to the leaves, and start to accumulate inside the leaf lamina. Once inside the leaves, these 
molecules would start their toxic action, creating necrosis in the interveinal zone, where the 
stomata are present in high number, and the water flow ends. Consequently, the toxic molecules 
would less affect the major veins as they accumulate in lower quantity. The same process would 
be then produced in all the part of the plant and be related to the quantity of toxins that are lo-
cally present. In this hypothesis, the functional xylem that is physically closer to the pathogens 
would be the least affected by toxic activities as the water flow is still active and is able to dilute 
and transport the molecules far away from the pathogens. 
A third hypothesis on the formation of nongaseous embolism predicts that the plant, not patho-
gens, produces the triggering molecules. For example, the plant hormone ethylene stimulates 
the formation of vascular occlusions during Xylella infection (Perez-Donoso et al., 2006), and 
wound response (Sun et al., 2007) in grapevine. However, our preliminary results on ethylene 
quantification are suggesting that this hormone is not participating in esca senescence process 
(see Box 1 “preliminary results on ethylene quantifications during esca”). 
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Box 1. Preliminary results of the ethylene quantification during esca

Introduction

Ethylene is one of the main phytohormones regulating leaf senescence (Buchanan-Wollaston, 
1997). It has been associated with tylose development after wounding (Sun et al., 2007, Che-
Husin et al., 2018) or Xylella fastidiosa development (Perez-Donoso et al., 2006). Moreover, it 
has been detected after parasitic plant wounding (Texeira-Costa and Ceccantini, 2015), flood-
ing (Hunt et al., 1981), and vascular fungi development (Fukuda et al., 1994), which are all re-
lated with vascular occlusions. As we demonstrated the existence of vascular occlusions during 
esca leaf symptom development (see Chapters 2 to 4), we hypothesized that a production of 
ethylene in symptomatic leaves could trigger tylose production.   

Material and methods

Intact single leaves from control, esca symptomatic, and plants under water deficit (still at-
tached to the plant) were inserted in plastic boxes, sealed with tape at the borders and with ad-
hesive paste (Terostast-IX, Henkel, Dusseldorf, Germany) at the petiole level (as in Fig. B1.1). 
Sample sizes are detailed in Table B1.1. To avoid leaf burning the boxes were then covered 
with aluminum foils. The sampling has been realized in four different campaigns (between 
the 22th of July 2019 and the 20th of August 2019), leaves were left inside the boxes for 5 to 7 

Fig. B1.1. Experimental set-up for 
ethylene sampling during esca leaf 
symptom expression.

hours (from the morning to early afternoon) during the first 
three campaigns, and 24 hours for the last campaign. Using 
a syringe equipped with a very thin needle, we removed 1 ml 
from GC-MS tubes (2mm amber glass vials, locked with sil-
icone/PTFE caps, Interchim, Montluçon, France), and sub-
stitute with 1 ml of air sampled in boxes. The tubes were 
then sent to ENSAT (Toulouse) facilities and the headspace 
in each tube was analyzed the following day with a gas chro-
matograph using a 2m x 3mm 80/100 alumina column, an 
injector at 110 °C, N2 as vector gas in an isocratic oven tem-
perature at 70 °C, and a FID detector at 250 °C (Chen et al., 
2020). To prepare the blank samples, the air was sampled for 
every campaign in two places of the greenhouse and one out-
side the greenhouse; the maximum ethylene concentration of 
the air was used as blank. The ethylene production (ppb min-1 
l-1) was calculated as following: 

(EL – E0) / (t x v)
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Where: EL corresponds to the ethylene quantified in the sample (ppb), E0 corresponds to the 
maximum ethylene (out of the three blank samples) sampled in the air (ppb), t is the time be-
tween the sealing of the box and the sampling moment (min), and v correspond to the volume 
inside each box (l).

Results and discussion

All leaves presented very low values of ethylene production. Only control plants presented 
average values above ethylene concentration in the air (Table B1.1). This result suggest that 
ethylene is not produced in leaves during esca leaf symptom expression. We discarded the pos-
sibility of experimental bias (e.g. ethylene loss during transport or from boxes) as another ex-
periment in the same greenhouse, in the same period, and using the same methodology, showed 
significant level of ethylene production in different species and stressing conditions (R. Burlett, 
personal communication). However, ethylene could appear and stimulate vascular occlusion 
in very short periods during esca pathogenesis, or ethylene could be effective at quantities be-
low the limit of detection. Therefore, more research should be conducted  to definitely discard 
ethylene intervention in esca leaf symptom formation. For example, we could imagine directly 
treating plants with ethylene, or applying chemicals in order to affect the ethylene perception 
by the plant.   

Control 
plants

Water Defi-
cit plants

Esca symptomatic plants Plants before esca 
leaf symptom ap-

pearance
Asymptomatic 

leaves 
Pre-symptomat-

ic leaves 
Tiger-stripe 

leaves 
 (13 leaves 

from 7 
plants)

(13 leaves 
from 10 
plants)

(19 leaves 
from 7 plants)

(12 leaves from 
9 plants)

(41 leaves 
from 10 
plants)

(11 leaves from 3 
plants)

0.010 ± 0.01
-0.018 ± 

0.007
-0.004 ± 0.006 -0.009 ± 0.007 -0.003 ± 0.005 -0.006 ± 0.006

Table B1.1. Ethylene production during esca leaf symptom expression. Plants are divided in control (asymptom-
atic) plants, plants under water deficit, plants presenting esca leaf symptoms, and plants asymptomatic during 
the sampling dates that will express esca leaf symptoms before the end of the season. The sample size of leaves 
and plants is indicated in parenthesis for each category. Values (ppb min-1 l-1) correspond to mean ± SE ethylene 
production.
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6.3. The link between nongaseous embolism and esca leaf symptom
In Chapter 5, we evidenced that esca leaf symptoms are not associated with a decrease in wa-
ter potential. This result stresses the different physiology behind drought and esca. We could 
reasonably conclude that, opposite to drought-induced air embolism, the nongaseous embolism 
(found in Chapters 3 to 4) would not be caused by a decrease in water potential. This consider-
ation, could be the starting point of a crucial scientific question: if the underlying mechanisms 
behind nongaseous and gaseous embolism are different, can we consider that they have the 
same consequences on the plant survival?      
During drought, once P50 (or P88 depending on the species) is reached plants are not able to re-
cover, even if in some species the long-term survival after P50 is still questioned (Adams et al., 
2017). During esca, we still do not know the lethal thresholds of nongaseous embolism because 
our hydraulic measurements were destructives (the stems were cut off the plants) and we were 
not able to associate the loss of hydraulic conductivity to recovery or a subsequent mortality 
outcome. Moreover, some results in this thesis could even question the effective importance of 
nongaseous embolism in plant physiology. 
The first observation that could question the consequences of nongaseous embolism is the 
presence of asymptomatic regrowth right after the appearance of leaf symptoms. Indeed, the 
observation that after symptom appearance (on average two weeks after) the plant was able to 
produce new asymptomatic tissues and to restore normal level of transpiration, suggest us that 
nongaseous embolism (and esca leaf symptom in general) cannot affect plant growth. In this 
context, we could hypothesize that the xylem tissue is “overbuilt” in grapevine (as found in 
many species, Brodersen et al., 2019), and the functionality loss of high proportion of vessels 
do not significantly affect plant functioning. However, we must remember that asymptomatic 
regrowth was not equally observed in all symptomatic plants and a correlation between level 
of nongaseous embolism in stems and symptom severity (as capacity of produce and maintain 
new stems) could exist. 
The second observation that could question the role of nongaseous embolism in leaf symptom 
appearance and subsequent leaf mortality is the gas exchange dynamic. In Chapter 5 (Fig. 
2d), we evidenced that WUE and PSII at the leaf level are low in esca symptomatic leaves but 
not under drought, suggesting that during esca the photosynthetic apparatus is more affected 
during esca compared to drought. We could then conclude that loss in gs (and whole-plant Gs) 
decrease would be associated to a general leaf senescence, not to a decrease in water supply by 
loss in hydraulic conductivity. However, whole-plant Gs and percentage of symptomatic leaves 
were strongly correlated (Chapter 5, Fig. 2c), and we know that nongaseous embolism appear 
simultaneously (or right after) the onset of leaf symptoms (Chapters 2 to 4). Consequently, 
at present time it is impossible to dissociate the leaf senescence to nongaseous embolism for-
mation, and conclude whether the decrease in gas exchange is caused by a decrease in xylem 
hydraulic conductivity or whether a more general senescence process induce leaf death and 
subsequent decrease in gas exchange and vascular occlusion.  
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However, these considerations are still hypothetical. In this thesis, we show that the water 
transport is compromised during esca, and in many cases, the xylem functionality is null or 
very low (independently from the organ analyzed). We correlated the presence of nongaseous 
embolism with symptom severity, as the totality of apoplectic stems presented vascular occlu-
sions (Chapter 4). Moreover, hydraulic failure is the trait that distinguished the majority of esca 
symptomatic leaves and stems (Chapters 2 to 4); even from other induced-senescence process 
(Chapter 3). Together these results suggest that, even if not at the base of plant death during 
esca, hydraulic failure plays an important role during the disease process. 
In this context, we could hypothesize two main processes during esca leaf symptom forma-
tion. The first, hypothesize that transport of toxins (or other molecules) directly cause the leaf 
symptoms and that hydraulic failure would be the mere consequences of an induced senescence 
process, where a portion of the canopy do not need water supply. In the second hypothesis, 
the leaf symptom would appear because different zone of the canopy are not well irrigated by 
hydraulic failure. We should stress that these two processes are not necessarily exclusive. From 
a third point of view, leaf senescence and nongaseous embolism form (almost) simultaneously. 
In that case, vascular occlusions would appear because leaves are dying, and leaves would 
start their senescence process because vessels are occluded. Finally, we still need to understand 
how nongaseous embolism affect vines over the long-term and if it affects plant susceptibility 
to drought (i.e. air embolism formation), which could be the real concern of this particular hy-
draulic failure mechanism. 

6.4. Esca leaf symptoms and hydraulic failure, a spatial and temporal limited phenome-
non
Our results presented in Chapters 4 and 5, suggest that esca leaf symptoms negatively affect 
grapevines only during the year of expression. The difference in the symptom history record 
(pA/pS plants) did not influence the stem hydraulic properties in control stems (Chapter 4 Ta-
ble 3), nor the response to water deficit (Chapter 5 Suppl. Table 4). This result suggests that the 
pathogens can influence the functional part of the plants only in specific periods and conditions. 
In our study, esca leaf symptom presence did not even influence the winter reserves (Chapter 
5 Suppl. Fig. 6). However, we should take into account the conditions that mainly differenti-
ate our greenhouse experiment from the field conditions; especially the absence of fruits, the 
irrigation with nutritive solution, and the presence of asymptomatic regrowth on the top of 
symptomatic stems. The absence of fruit (and a reduced crop load) in grapevine is known to 
increase whole-plant biomass and total NSC content (Dayer et al., 2013, Vaillant-Gaveau et al., 
2014). Nutritive solution could also change plant physiology, surely because it contains all the 
minerals that are not always available in the field, and because a foliar treatment with mineral 
nutrients showed to reduce esca leaf symptom incidence (Calzarano et al., 2014), suggesting an 
enhanced defense response. Finally, the presence of asymptomatic regrowth (which is usually 
trimmed in vineyards) could have change the source/sink relationships in disease process as 
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described below. Indeed, even if the asymptomatic regrowth has not been reported in esca field 
surveys, its presence in our experimental design is raising interesting hypotheses on the disease 
process and on how the vines could escape or avoid pathogen activities.
The asymptomatic regrowth suggests that the newly formed xylem was not affected by the 
pathogens. In many cases, we observed a sectoring of the disease: when the vascular occlusions 
are observed in just a part of the stem (Chapter 4 Fig. 2), or when we look at the brown necrosis 
along the vasculature (Lecomte et al., 2012, and Annex 1 of this thesis). This dysfunctional sec-
toring reflects the xylem organization in grapevine, as it has been shown that xylem vessels are 
only partially interconnected, and that specific roots are only and directly connected to specific 
part of the canopy (McElrone et al., 2021). Consequently, we could hypothesize that the newly 
formed xylem is able to connect the new asymptomatic regrowth avoiding the pathogen-in-
fluenced zone in the trunk. This asymptomatic regrowth could also help the plant to create 
new sources of energy to fight against pathogens. In this context, we could imagine that vines 
should efficiently combat vascular pathogen infections in no (or minimal) pruning training sys-
tems. They could isolate the pathogens by creating an efficient restriction zone (as in CODIT 
model, see Theoretical framework in Chapter 1), and then isolate the necrosis by just simply 
growing around it. Minimal pruning is a training system developed in Australia (Possingham, 
1996), and in the US (Reynolds and Wardle, 2001). However, this practice remains only exper-
imental in Europe (Schultz et al., 2000) because its effect on fruit quality remain uncertain or 
negative (Weyand and Shcultz, 2006), even if its use could decrease GTD incidence (Travadon 
et al., 2016). In vineyards, vines are pruned in winter, and constantly trimmed in summer. This 
situation could help pathogen develop in pruning wounds after winter, and decrease vine de-
fenses during summer. It has been shown that GTD incidence increased with intensive pruning 
(Gramaje et al., 2018, Lecomte et al., 2018). Because pruning is a common practice in peren-
nial crops, intense pruning could explain why these pathogens are less descripted in forestry 
ecosystems (Table 1), and when they are detected in forests, they frequently do not induce 
symptoms (i.e. they are classified as endophytes, Table 1).

6.5. The hypothetical underlying mechanisms behind drought and esca antagonism
As presented in Chapter 5, grapevines never expressed esca leaf symptoms when submitted 
to a prolonged water deficit of ΨPD ≈ -1MPa. This water deficit was intense enough to induced 
stomatal closure but not hydraulic failure. Consequently, we could hypothesize different mech-
anisms underlying the antagonism between esca and drought. (i) Drought could induce the 
formation of smaller xylem vessels, more resistant to pathogen development. (ii) Drought, 
by inducing a decrease in transpiration rates, could reduce the transport of toxic metabolites. 
(iii) Drought could induce a more efficient defense response in the trunk and/or in leaves. (iv) 
Drought could induce a shift in microbial population composition in grapevines and/or a shift 
in pathogen aggressiveness. 
We are almost able to discard the (i) hypothesis, as we did not observed vessel size distribution 
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or kth changes in stems from plant under drought (Chapter 5, Suppl. Fig. 7). Moreover, the 
drought was applied on the 1st of July once the stems have already grown in well-watered con-
ditions during spring. Consequently, even if the information on how water deficit would affect 
the xylem anatomy in trunks is still lacking, we can hypothesize that the majority of vessels 
(formed in spring) were similar in all the plants.
The (ii) hypothesis is in line with the more general “toxin hypothesis” on esca leaf symp-
tom formation. Indeed, if we hypothesize that a pathogen-derived molecule is causing the leaf 
symptoms, this molecule would arrive in lower amount when the transpiration is reduced (i.e. 
during moderate drought events). The role of transpiration on esca leaf symptoms was explored 
during a preliminary experiment in this thesis (see Box 2 “The magic bag”).
The (iii) hypothesis could also explain the drought-esca interaction. Drought is known to stim-
ulate the formation of antioxidant compounds (Gambetta et al., 2020), and in controlled con-
ditions polyphenols reduce esca-related pathogen growth (del Rio et al., 2004, Gomez et al., 
2016). Consequently, these compounds could have enhanced plant response to pathogen ac-
tivities. Moreover, we observed an accumulation in hexoses in leaves and stems during water 
deficit (Chapter 5 Fig. 5), this accumulation could imply that a faster synthesis of defense 
compounds (as hexoses are the primary molecules of the secondary metabolism (Morkunas 
and Ratajczak, 2014).
The (iv) hypothesis needs deeper studies on microbial population equilibrium in asymptom-
atic and symptomatic plants (se Bruez et al., 2020). Considering that perennial plant dieback 
could frequently result from a change in microbial (or microbiome) community (Bettenfeld et 
al., 2020), the role of the microbial population equilibrium is more than a simple hypothesis. 
Drought is known to influence soil and root fungal (Rasmussen et al., 2019) and bacterial 
(Naylor and Coleman-Derr, 2018) populations, and interact with pathogens during dieback in 
forestry (Desprez-Loustau et al., 2006). In our case study, it could be possible that microor-
ganisms that contrast the esca-related pathogens can easily develop during drought, or taking 
advantage of the decreased virulence of pathogens. We explored this hypothesis on the trunk 
ascomycete fungal community in a preliminary study using metagenomics (see Annex 1 “Pre-
liminary results on trunk necrosis extension and Ascomycota communities in grapevines under 
water deficit and esca”). 
Finally, it is worth noting that all the hypotheses (i to iv) are not necessarily exclusives and 
could contribute together to the drought-esca antagonism.
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Box 2. The magic bag 

Introduction

We demonstrated that grapevines under drought never showed esca leaf symptoms (Ch. 5). 
One of the main hypotheses on the underlying mechanisms behind esca and drought antago-
nism states that the reduced transpiration rate could reduce the transport of plant derived toxins 
(responsible for the visual symptoms). To test this hypothesis we randomly inserted intact 
leaves inside humid plastic bag at the beginning of the season (June) to reduce the transpiration 
rate on single leaves.

Material and methods   

At the beginning of the season (mid-June) we randomly inserted intact leaves (still attached to 
the plants) inside transparent plastic bag with humid paper towel. Among all the plants in this 
experiment (n=20) only one expressed esca leaf symptoms (first symptom notation on 19th of 
August). 

Results and discussion

On the 20th of August we opened the one bag left on the plant for three months. With great 
surprise, we noted that in the whole plant it was the only leaf completely green and without 
any sign of discoloration (Fig. B3.1). We hypothesized that the main affected parameter in the 
bagged leaf was the transpiration rate. We could then speculate that toxins, or any causal mol-
ecules, did not reach the leaves as they follow primarily the transpiration stream. This result 

Figure B2.1. (A) Entire plant, tiger-stripe symptoms are well visible. (B, C) Two symptomatic leaves on the same 
stem on which we installed the bag. (D) The asymptomatic leaf that passed three months inside the humid bag. 
Picture A was taken the 30th of August, while B, C, and D the 20th of August. 

open new perspectives on the role of transpi-
ration during esca leaf symptom expression. 
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6.6. Drought and esca, which role could play the observed antagonism in vineyards?
During field surveys, esca leaf symptoms are usually associated with hot and rainy periods 
(Marchi et al., 2006, Serra et al., 2018, Kraus et al., 2019). However, plant physiological 
thresholds (i.e. water potential or stomatal conductance) were not monitored along with the 
field studies on esca incidence (Mugnai et al., 1999, Surico et al., 2000, Redondo et al., 2001, 
Marchi et al., 2006, di Marco et al., 2011, Guerin-Dubrana et al., 2013, Li et al., 2017, Serra et 
al. 2018, Lecomte et al., 2018, Calzarano et al., 2018, Kraus et al., 2019), making interpreta-
tions on environmental impact on disease expression impossible. Here we demonstrated that a 
specific drought level resulted in a total absence of esca leaf symptoms. This tendency should 
ideally be confirmed in the field by measuring midday and predawn water potential and obtain 
essential information on the vine water status in vineyards over multiple years of varying esca 
incidence. In addition, a study comparing esca leaf symptom presence and incidence among 
different climatic regions is still missing and would be essential to understand the role of spe-
cific environmental conditions. On our side, we can observe that esca leaf symptoms surveys 
are mostly done in France, Germany and northern Italy vineyards, which could be considered 
as ones of the most humid viticulture regions in the world. 
In the thesis, we stressed plants at a specific target drought intensity of ΨPD ≈ -1MPa; conse-
quently, the impact of other drought levels (lower or higher target ΨPD) is still unknown. In the 
case of a more intense drought (i.e. ΨPD below -1MPa), we could speculate that the pathogen 
and drought interaction would lead to an accelerated mortality as during pine wilt disease, 
where the plants defenses (enhanced during moderate drought) seems to be erased during in-
tense drought (compare Salle et al., 2008 to Gao et al., 2017). However, we did not observe 
any long-term effect of the history of esca symptoms on the plant response to drought, indicat-
ing that drought always prevail on pathogens. Consequently, we could hypothesize that plants 
would equally die by drought, independently from the pathogen inoculum (or trunk necrosis 
extension). In contrast, the presence of vascular occlusions could suggest a possible synergy 
between drought and esca if intense drought is applied after formation of nongaseous embo-
lism. This is a realistic scenario given that esca leaf symptoms (in France) appear generally 
between June and July (Lecomte et al., 2012) and the most intense drought events in vineyards 
are observed in August (Choné et al., 2001, van Leeuwen et al., 2009). Intuitively, if a symp-
tomatic stem presents an average of 30% PLC, it would reach 88% PLC (i.e. mortality, Urli 
et al., 2013) at higher Ψ compared to control stems. In leaves, we showed that the majority of 
symptomatic leaves presented hydraulic dysfunctions in more than half of the hydraulic system 
(Chapter 2 for midribs and petioles and Chapter 3 for leaf lamina). In studies on grapevine 
drought resistance, the leaves that reach these losses of hydraulic conductivity are not able to 
recover (i.e. they are already dead, Dayer et al., 2020b).  
If drought induces ΨPD above -1MPa we could imagine that the infected plants, at certain 
drought intensities, will start to express leaf symptoms. However, grapevine drought response 
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is also likely dependent on the variety and rootstock, especially in stomatal response to moder-
ate drought intensity or VPD changes (Schultz, 2003, Charrier et al., 2018, Dayer et al., 2020b), 
while xylem embolism in stems seems to be uniform in a wide range of varieties (Charrier et 
al., 2018). Consequently, our comprehension on esca leaf symptom phenomenon should pass 
through the study of varietal-dependent responses as we only studied Sauvignon blanc in this 
thesis. For example, if the role of transpiration during esca highlighted here is confirmed in 
different varieties, we could predict leaf symptom expression depending on susceptibility to 
stomatal closure, which is known to be varietal-dependent (Levin et al., 2019).  

CONCLUSIONS 
In Chapter 5, we analyzed how drought and esca could affect the plant-water relations and 
carbon balance. We stressed the importance in finding the physiological thresholds that deter-
mine the impact of one or more stresses. As physiological thresholds, we are referring to both 
the applied stress intensities and the monitoring of the physiological consequences of these 
stresses. On one hand, the intensities were quantified recording ΨPD and esca leaf symptom se-
verity. On the other hand, the consequences were quantified measuring the temporal sequence 
of physiological events. 
We evidenced that esca is a water flow-driven process. The hydraulic failure incidence (by non-
gaseous embolism) decreased from distal to basal organs in esca symptomatic plants (Chapters 
2 to 4), as well as the general induced senescence process. At the same time, we demonstrated 
that esca (i.e. leaf symptom and related hydraulic failure) is not related to a decrease in water 
potential. The results on NSC quantification confirmed the tendencies from previous works 
(Petit et al., 2006, Valtaud et al., 2011), suggesting a local response to pathogen activities in 
leaves and more general consequences given by the presence of hydraulic failure. The com-
parative study between esca and drought, demonstrated that the initial transpiration decrease 
during esca leaf symptoms appeared similarly to drought but resulted from different under-
lying mechanisms, evidenced by differences in the photosynthetic performance, in the water 
potential gradient, and the presence of nongaseous embolism during esca. The accumulation of 
hexoses was similar between esca and drought, but the influence on starch and sucrose contents 
suggested a different metabolic behavior. Sucrose (which is the mobile NSC form) is affected 
during esca, probably because nongaseous embolism affect phloem transport, and starch is 
almost absent in leaves at the second year of water deficit, suggesting a cumulative effect on 
repeated drought events on NSC consumption. 
Evidencing that esca is a water flow-driven process could suggest how we could identify the 
physiological thresholds during symptom expression. Coupling our results with the field symp-
tom surveys, we would expect an increased symptom incidence when the VPD is high and 
the soil water is high enough to support maximal transpiration. If the central role of transpi-
ration during this process is confirmed, by comparing different varieties in different climatic 
conditions, we could forecast esca leaf symptom expression by coupling the probability of 
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re-expressing symptoms year after year (Guerin-Dubrana et al., 2013), with  ΨPD, air VPD 
conditions, and the transpiration rates.
Studying the NSC balance in plants under stress could help us to understand the long-term 
consequences of drought and esca. First, there was a surprising (almost total) absence of starch 
in leaves during the second year under drought. This result could suggest that when drought is 
long and repeated over several seasons, the carbon balance in the plant is drastically modified 
and might cause death by carbon starvation over the long-term (as hypothesized by McDowell 
et al., 2008), which still was not the observed in this study. Second, we observed a reduced 
total NSC content in perennial organs (stems), suggesting a reduced amount of reserves for bud 
growth in the next season. Of course, many other studies are needed to explore the NSC content 
in other sink organs (especially roots) to confirm this trend. However, this result is even more 
important when we think that new healthy xylem is fundamental for generate asymptomatic 
stems and leaves and compartmentalize the pathogens in the trunk. 
In this thesis we evidenced (as expected) that both stresses have a general negative influence 
on plant physiology. The observed antagonism between esca and drought does not rule out that 
the two stresses could synergistically contribute to plant decline. Drought could have strong 
long-term influence (as suggested by total NSC reduction, and hydraulic failure when drought 
is severe), and even if esca seems to negatively impact plant physiology only seasonally, all 
symptomatic plants presented high percentages of necrotic tissue inside their trunks (Annex 1), 
variable level of PLC in stems, and potentially high content of pathogen inoculum. Moreover, 
we need to consider that grapevines could be more sensible than recorded here. Simply because 
grapevines are cultivated to carry the grapes, and leaf mortality (or inefficiency) could be suf-
ficient to severely decrease yield quality and quantity, even when plant mortality is not ques-
tioned. Esca is known to decrease berry quality (Calzarano et al., 2004, Lorrain et al., 2012), 
as well as too intense and prolonged drought (van Leeuwen and Darriet, 2016). Consequently, 
other studies are needed to record the impact of our findings in field conditions, where grape-
vines are also subjected to many other stress factors.

PERSPECTIVES
In this thesis, our results opened many research perspectives, resumed in Fig. 1. First, other 
studies should investigate the open questions in esca pathogenesis presented in this discussion. 
Regarding the role that pathogen-derived molecules could have; the long-term consequences of 
extensive nongaseous embolism; and the exact sequence and nature of events behind the leaf 
(and trunk) esca symptoms. Second, field studies should confirm the trends highlighted here, 
in different climates and varieties. Once the main findings are confirmed and more deeply ex-
plored (mostly the role in transpiration and the esca/drought antagonism), our comprehension 
of the general dieback process could greatly advance. Finally, the detection of the precise phys-
iological thresholds inducing an interaction between the environmental conditions and esca, 
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as well as the long-term consequence of nongaseous embolism and its relations with pruning 
practices would help vineyard sustainability. 

Pathogen genus Publication Host genus Crop/forestry Symptom
Phaeomoniella Di Marco et al., 2003 Actinidia Crop Endophyte
Phaeomoniella Damm et al., 2010 Prunus Crop Wood necrosis
Phaeomoniella Alonso et al., 2011 Pinus Forestry Endophyte
Phaeomoniella Sanz-Ros et al., 2015 Pinus Forestry Endophyte
Phaeomoniella Schulz et al., 2018 Pinus Forestry Wood necrosis
Phaeoacremonium Di Marco et al., 2004 Actinidia Crop Wood decay
Phaeoacremonium Carlucci et al., 2013 Olea Crop Wood decay
Phaeoacremonium Lynch et al., 2013 Quercus Crop Trunk disease
Phaeoacremonium Premalatha et al.,  2013 Aquilaria Forestry Endophyte
Phaeoacremonium Olmo et al., 2014 Prunus Crop Wood decay
Phaeoacremonium Marin-Terrazas et al., 2014 Prunus Crop Branch dieback
Phaeoacremonium Spies et al., 2018 29 woody hosts Forestry/crop Various
Phaeoacremonium Panahandeh et al., 2019 Synzygium Crop Trunk disease
Phaeoacremonium Bartnik et al., 2020 Rosalia Forestry Beetle association
Phaeoacremonium Biedermann et al., 2020 Saccharum Crop Beetle association
Phaeoacremonium Espargham et al., 2020 Citrus Crop Trunk disease
Phaeoacremonium Lopez-Moral et al., 2020 Pistacia Crop Branch dieback
Phaeoacremonium Scortichini et al., 2020 Olea Crop Quick decline

Table 1. Description of the two esca-related vascular pathogens (by genus) in non-Vitis hosts. Two different re-
searches by keyword were done in webofknoledge.com (Phaeomoniella, NOT Vitis, NOT grapevine; and Phaeo-
acremonium, NOT Vitis, NOT grapevine). 
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Figure 1. Schematic representation of hypothetical (dashed arrows) processes during esca and drought interaction 
based on the major findings of this thesis. Trunk necrosis (brown) is at the base of the esca pathogenesis, and 
different pruning systems (green lines), discussed in Paragraph 6.4., could influence the necrosis extension and 
negative effects. From trunk necrosis to the leaf symptoms and the formation of nongaseous embolism, we hy-
pothesized three different processes (red lines, discussed in Paragraph 6.2.): the intervention of different pathogen 
communities (explored in Annex 1), the transport via the transpiration stream of toxins and plat-derived mole-
cules (briefly explored in Boxes 1 and 2), and we excluded (based on our findings) a drop in water potential. Leaf 
symptoms and nongaseous embolism (in blue, discussed in Paragraph 6.1.), could present different relationships 
(discussed in Paragraph 6.3.) resulting in seasonal and long-term consequences (in black, discussed in Para-
graphs 6.2. and 6.4.). Drought (in yellow), which consequences on grapevine dieback are discussed in Paragraph 
6.6., could influence the induction of esca leaf symptoms by (see Paragraph 6.5.) stimulating the production of 
antioxidant compounds by the plant (against other pathogens or molecules) or by reducing the transpiration rates 
(which could mostly influence the transport of toxins or other molecules).
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Annex 1

Preliminary Results on Necrosis Extension and Ascomycota Communities 
in Plants under Water Deficit and Expressing Esca Leaf Symptoms

Authors

G. Bortolami, J. Vallance, N. Ferrer, G.A. Gambetta, C.E.L. Delmas

Author contribution

G.B., J.V., G.A.G., C.E.L.D. planned the experiment

G.B. and N.F. sampled the tissues and grounded the samples

N.F. carried out the DNA extraction

J.V. compiled the OTU table from DNA sequences and wrote the corresponding methodolog-
ical section

G.B. analyzed the data

Introduction

As reviewed in Bettenfeld et al. (2020), woody perennial species can be considered as a holo-
biont, as they host many different microorganisms (such as viruses, bacteria, and fungi) inter-
acting neutrally, positively, or negatively with the plant. In Grapevine Trunk Diseases (GTD) 
a shift in microbial communities could set the starting point for accelerated mortality (Bertsch 
et al., 2013, Bruez et al., 2020). During esca pathogenesis many doubts remain on (i) which 
pathogens are responsible for the different disease symptoms (in perennial and annual organs) 
and the final plant death, and on (ii) which environmental changes could trigger a critical (or 
restoring) shift in microbial community. Indeed, changes in microbial community could induce 
the development of symptoms and/or the production of apparently healthy leaves and stems 
during the asymptomatic seasons.   

In this study, we used the same uprooted plants as in the other parts of this manuscript. We 
sampled different organs from 41 plants with different disease histories. In each sample, we an-
alyzed the Ascomycota communities by high-throughput sequencing (MiSeq technology). This 
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result being very preliminary, we will simply present some relative abundance data by genus 
for three different scientific questions: (1) What is the long-term impact of esca leaf symptoms 
on Ascomycota community in the grapevine trunk of asymptomatic plants? (2) What is the 
impact of seasonal drought or esca leaf symptoms on Ascomycota community in the trunk? (3) 
What are the main Ascomycota genera colonizing the brown stripe necrosis along the trunk?  

Material and methods

Plant material and replicates

The sampling was done between the 7th of October and the 14th of October 2019, in a subset 
of plants (n=41 V. vinifera cv. Sauvignon blanc) used in Chapter 5. Based on the treatments 
presented in Chapter 5, the plants could belong to three different groups with two possible 
treatments in each group: 1) the watering regime in 2018 and 2019: WW (well-watered for 
two years), and WD (water-deficit, presenting ΨPD ≈ -1MPa from July to October in 2018 and 
2019). 2) The symptom history record from 2012 to 2019: pA (had never expressed esca leaf 
symptoms since 2012, previously asymptomatic), and pS (had expressed at least once esca leaf 
symptoms since 2012, previously symptomatic). 3) Esca leaf symptom expression in 2019: 
Control (asymptomatic), and Esca (expressing tiger-stripe symptoms). 

As WD plants never expressed esca leaf symptoms (see Chapter 5), we sampled four differ-
ent types of plant: WD (n=10, water-deficit, previously symptomatic); Esca (n=9, well-wa-
tered, previously symptomatic, and expressing tiger-stripe symptoms in 2019); Control-pS 
(n=11, well-watered, previously symptomatic, and asymptomatic in 2019); Control-pA (n=10, 
well-watered, asymptomatic since 2012).

In these plants, we sampled four different organs for DNA extraction and sequencing: petioles 
(as a pool of different petioles), stems of the current year (one debarked internode from the 
middle of the stem), stems of the previous year (cane, one debarked internode), and trunks. For 
esca plants we differentiated asymptomatic and tiger-stripe petioles and stems of the current 
year. 

In trunks, we sampled a 2-cm high cross section at around 15 cm from the top of the trunk. We 
photographed the cross-sections (quantified the percentage surface of each type of necrosis as 
described below) and separated the tissues by their necrotic status: apparently healthy wood 
(healthy), black necrotic wood (black necrosis), white rot, and brown stripe. For white rot, if 
the necrotic tissues was insufficient for pathogen detections, we sampled white rot tissues from 
the neighbor trunk tissues. For brown stripe, we debarked the trunk and sampled the brown 
stripe (when present) at different height of the trunk. 
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We obtained a total of 234 samples composed of: 45 petioles, 43 stems (of the current year), 36 
canes, 110 from trunks (Table A1). 

Table A1. Sample size of different treatment and tissues sampled for Ascomycota community analysis.

Water Deficit pS
Control 

pA

Control 

pS

Esca 

pS

Petioles n = 10 n = 9 n = 10
Sympto n = 7

Asympto n = 9

Stem of the 
current year n = 10 n = 9 n = 11

Sympto n = 9

Asympto n = 4
Cane of the 

previous 
season

n = 9 n = 9 n = 10 n = 8

Trunk

Apparently healthy 

n = 10

Black necrosis n = 10

White rot n = 5

Apparently healthy 

n = 10 

Black necrosis n = 6

White rot n = 6

Apparently healthy 

n = 11

Black necrosis n = 10

White rot n = 8

Apparently healthy 

n = 9

Black necrosis n = 8

White rot n = 8

Brown stripe n = 7 

Trunk necrosis analysis

Before tissue sampling, trunk cross sections were photographed (as in Fig. A1A). Using Imagej 
software (Schneider et al., 2012), we separated three different (necrotic) tissues: apparently 
healthy, black necrosis, and white rot. We measured the area of each different tissue (in mm²) 
relative to the entire cross section.

DNA extraction and sequencing

All the samples were collected in sterile environment using sterile shears. For trunk samples, 
we cut with a sterile handsaw a 2 cm cross-section at 15 cm from the top of the trunk. With 
sterile shears, we removed the bark and separated the different necrosis in each cross-section. 
Each sample (petiole, stem, cane, or trunk) were directly put in liquid nitrogen and stored at -80 
°C. Samples were ground in liquid nitrogen with a one-ball mill (TissueLyser II, Qiagen). Ge-
nomic DNA was extracted from 60-mg aliquots of wood tissues using the Indvisorb Spin Plant 
mini Kit (Orgentec, France) following the manufacturer’s instructions. Empty tubes, i.e. with 
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nothing but extraction reagents, were included as negative control samples for DNA extraction. 
DNA extracts were then quantified with a spectrophotometer (DeNovix DS-11, CliniSciences) 
and homogenized at a concentration of 15 ng.µl-1.

The ITS2 region of the nuclear ribosomal repeat unit was then amplified using the pair of 
primers GTAAf/GTTAr (Morales-Cruz et al., 2018), specifically optimized/designed to pro-
file pathogenic ascomycete fungal communities associated with GTD. DNA was amplified 
by PCR in an Epgradient Mastercycler (Eppendorf) in a reaction mixture (25 µl final volume) 
consisting of 1 µl of DNA template (15 ng.µl-1), 10 µl of 2X Platinum Hot Start PCR Master 
Mix (Invitrogen), 0.5 µl of each primer (10 µM), 1.25 µl of 20X Bovine Serum Albumin (New 
England BioLabs), and 11.75 µl of DNAse/RNAse free sterile water. The cycling parameters 
were as follow: enzyme activation at 95°C for 2 min; 35 cycles of denaturation at 95°C for 
45 s, 60°C for 1 min, 72°C for 1 min 30 sec; and a final extension at 72°C for 10 min. Empty 
wells on PCR plates, i.e. mix without any DNA template, were used as negative PCR control 
samples. The PCR products were visualized using a 2% TBE gel electrophoresis (≈350bp) 
before being sent to the PGTB sequencing facility (Genome Transcriptome Facility of Bor-
deaux, Pierroton, France) for sequencing on an Illumina MiSeq platform (v3 chemistry, 2x300 
bp). PCR products purification, multiplex identifiers and sequencing adapters addition, library 
sequencing and sequence demultiplexing (with exact index search) were carried out by the 
sequencing service.

Sequence analysis and OTU table construction 

The FROGS pipeline (Find Rapidly OUT with Galaxy Solution) implemented on a galaxy in-
stance (https://vm-galaxy-prod.toulouse.inra.fr/galaxy/) was used for data processing (Escudié 
et al., 2018). In brief, paired reads were merged using FLASH (Magoč and Salzberg, 2011) 
with a maximum of 5% mismatch in the overlapped region. After denoising (i.e. reads with no 
expected length, between 280 and 400bp, and containing ambiguous bases, N, were discarded) 
and primer/adapters removal with CUTADAPT (Martin, 2011), the clustering was done using 
SWARM (Mahé et al., 2014) with an aggregation distance d = 3. SWARM is a robust and fast 
clustering method for amplicon-based studies without global threshold and independent of 
sequence order (Mahé et al., 2014). Chimeras were then removed using VSEARCH (Rognes 
et al., 2016) and low abundance sequences were filtered at 0.00005% (i.e. keep OTUs with at 
least 0.00005% of all sequences, adapted from Bokulich et al., 2013), discarding singletons 
from the datasets. The ITS2 region was extracted using ITSx (Bengtsson-Palme et al., 2013) 
before performing the taxonomic affiliation of the fungal OTUs using BLAST tools against the 
databases UNITE (v8.2_20200204 implemented in FROGS), trunkdiseaseID.org (http://www.
grapeipm.org/) and NCBI (nr/nt) nucleotide collection (https://blast.ncbi.nlm.nih.gov/Blast.
cgi). Finally, the maximum number of sequences of each OTU present in the negative controls 
(DNA extraction and PCRs) were subtracted from the sequence abundance of that OTU in the 
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experimental samples (Nguyen et al., 2015). The final OTU table had 257 samples and 275 
non-chimeric, non-singleton fungal OTUs, representing 4,811,621 quality sequences.

Note that this preliminary view of the results concern the trunk samples only. The statistical 
analyses have not been realized yet.

Results
(1) Trunk necrosis extension in plants expressing esca leaf symptoms or subjected to wa-
ter deficit
Trunk necrosis area (%) was measured on single trunk cross sections placed at 15 cm from the 
top of the trunk (i.e. the same used for Ascomycota metagenomic analysis). In control plants, 
we observed the same ratio between necrotic and apparently healthy tissues, independently 
from their symptom history (Fig. A1B). More specifically, apparently asymptomatic tissues 
represented (on average ± SE) 59.5 ± 5% and 56.2 ± 5% in control-pA and control-pS plants 
respectively, while black necrosis was present at 18.2 ±7% in control-pA and 23.0 ± 5% in 
control-pS cross sections, and white rot represented 22.3 ± 6% in control-pA, and 20.9 ± 5% in 
control-pS. In presence of esca leaf symptoms (Esca-pS, Fig. A1B), the three tissues presented 
(almost) equal ratios in trunk cross sections: 34.2 ± 6% for apparently healthy, 33.5 ± 5% for 
black necrosis, and 32.3 ± 6% for white rot. Under water deficit the % of cross sections for the 
apparently healthy tissue (49.7 ± 5%, Fig A1B) was similar to the % of black necrosis (38.0 ± 
5%), while the white rot was present in significantly lower percentages (12.2 ± 5%). 
Preliminary observations: The expression of esca leaf symptoms during the previous year 
seems (once again in this thesis) to have no effect on the percentage of necrotic tissue inside 
the trunk. It seems clear that both the expression of leaf symptoms during the year of sampling 
and the applied water deficit have influenced the extent (or the progression) of the necrosis. 
Necrosis surely has increased its area during the expression of leaf symptoms, while water defi-
cit seems to influence the ratio between black necrosis and white rot. Indeed, if the percentage 
of apparently healthy tissue is similar between control plants and plants under water deficit, 
black necrosis has a higher ratio compared to white rot. If we exclude that water deficit has 
reduced the percentage of white rot (the conversion from white rot to healthy tissue should be 
considered science fiction), we could imagine that water deficit conditions affect the expansion 
of white rot, while they did not affect the expansion of black necrosis. This preliminary obser-
vation could enhance the link between white rot and esca leaf symptoms expression previously 
observed (Maher et al., 2012).  
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Figure A1. Analysis of trunk necrosis extension in cross sections from the plants used for 
Ascomycota metagenomic analysis. (A) Example of segmentation (by Imagej software) of the 
different tissues quantified (apparently healthy, black necrosis, and white rot). (B) Quantifica-
tion of relative area (%) for each tissue in the considered cross-sections. Colors correspond to 
the kind of (necrotic) tissue: blue for apparently healthy, black for black necrosis, and cream 
for white rot. Bars are grouped by esca-water regime status: Control-pA, asymptomatic plants 
since 2012; Control-pS, plants that did not express esca leaf symptoms in 2019 (year of sam-
pling) but expressed esca symptoms at least once since 2012; Esca-pS, plants that expressed 
esca leaf symptoms at least once before and in 2019; WD-pS, plants under water deficit for 
two years and that expressed at least once esca leaf symptoms between 2012 and 2017. Bars 
represent means and error bars standard error, letters indicate statistical significance from in-
dependent linear general models with Tukey post-hoc comparisons, F11,114 = 7.78, P<0.0001.
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Figure A2. Ascomycota community composition characterized to the genus level (top 13 
taxa) in grapevine trunk from control plants expressing (pS) or not (pA) esca leaf symp-
toms between 2012 and 2018. Samples are categorized by their symptom history record 
(pA, pS), and by the wood health status (Black for necrotized wood, Healthy for appar-
ently healthy wood). Ascomycota genera are categorized by their function: dark grey for 
unidentified OTUs; light grey for genera with relative abundances <3%; red to orange for 
vascular pathogens; blue shades for Botryosphaeriaceae; brown for secondary pathogens 
(i.e. colonizing dead wood); green for other pathogenic fungi; and pink for fungi that might 
positively affect grapevine functions.

(2) What is the long-term impact of esca leaf symptoms expression on the Ascomycota 
community in the trunk?

To answer to this question, we sampled plants that did not express esca leaf symptoms during 
the sampling seasons (“Controls”, n=21). We divided these plants by their previous esca symp-
toms record: pA = plants that never expressed esca leaf symptoms from 2012 to 2019 (n=10); 
pS = plants that expressed esca leaf symptoms at least once between 2012 and 2018 (n=11). 
To better distinguish the Ascomycota populations within the trunk of these plants, we analyzed 
separately black necrosis and apparently healthy wood (Fig. A2). 

Preliminary observations: vascular pathogens such as Phaeoacremonium sp. appeared more 
present in necrotic black wood than in healthy wood; genera having small relative abundances 
were more frequent in apparently healthy wood; pS plants presented higher relative abundanc-
es of secondary pathogens and pA plants a higher relative abundance of Penicillium spp. 
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(3) What is the impact of a seasonal drought or esca leaf symptoms on the Ascomycota 
community in the trunk?

To answer this question, we sampled plants that expressed esca leaf symptoms at least once be-
tween 2012 and 2018 (pS) and categorized them by their water regime and current health status 
in 2019. WD = plants that were under water deficit from July to October and did not express 
esca leaf symptoms, n=10; Control = well-watered plants asymptomatic in 2019 (n=11); Esca = 
well-watered plants esca symptomatic in 2019 (n=10). We categorized the trunk tissues by the 
necrosis presence: Black = black necrosis; Healthy = apparently healthy wood; brown stripe = 
Brown stripe along the vasculature observed in symptomatic plants only (Fig. A3). 
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Preliminary observations: vascular pathogens (with a general majority of Phaeoacremonium 
spp.) appeared more abundant in the black necrotic wood. In plants under water deficit, high-
er ratios of secondary pathogens were observed compared to WW plants. Plants expressing 
esca leaf symptoms were highly colonized by Botryosphaeriaceae spp. (mostly found in the 
necrotic wood). A higher diversity (number of observed genera) was obtained in healthy wood 
samples, independently of the submitted stress. 

Figure A3. Ascomycota community composition characterized to the genus level (top 19 taxa) in grape-
vine wood of plants having expressed or not esca-leaf symptoms between and/or subjected to a water 
deficit. Samples are categorized by the submitted stress and wood health status. Ascomycota genera 
are categorized by their function: dark grey for unidentified OTUs; light grey for genera with relative 
abundances <3%; red to orange for vascular pathogens; blue shades for Botryosphaeriaceae; brown for 
secondary pathogens (i.e. colonizing dead wood); green for other pathogenic fungi; white cream shades 
for endophytic fungi; and pink for fungi that might positively affect grapevine functions. 
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(4) What are the main Ascomycota genera colonizing the brown stripe necrosis along the 
trunk?

Esca leaf symptoms were frequently associated with a particular necrosis along the trunk. This 
necrosis, which is visible once we debarked the trunk, is a brown-orange stripe along the xylem 
vasculature that seems to connect the most basal part of the trunk with the leaf symptoms. 

To answer to the question (3), we sampled the brown stripe necrosis from seven different plants 
(Fig. A4). 
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Figure A4. Ascomycota populations characterized to the genus level (top 20 taxa) in seven different 
brown stripe samples. Samples are categorized by plant number. Ascomycota genera are divided by 
their function: dark grey for unidentified OTUs; light grey for genera with relative abundances <3%; red 
to orange for vascular pathogens; blue shades for Botryosphaeriaceae; brown for secondary pathogens 
(i.e. colonizing dead wood); green for other pathogenic fungi; white cream shades for endophytic fungi; 
pink for fungi that might positively affect grapevine functions.

Preliminary observations: In four samples, the brown stripe was highly colonized (around 
80% relative abundance) by Botryosphaeriaceae species. In the other samples, the relative 
abundance of Cladosporium spp. (a pathogen normally encountered in external green tissues) 
was high. 

Conclusions and perspectives

These results, even if preliminary, open many research perspectives. From a first look on the 
plotted results, we can observe that vascular pathogens are more associated with black necrosis 
in the trunk than with esca leaf symptom expression of the year. In a second look we can ob-
serve that esca leaf symptoms seem to be associated to a strong presence of Botryosphaeriace-
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ae species. We did not report here the results on the white rot as this type of necrosis is mostly 
caused by Basidiomycota fungal species (i.e. Fomitiporia mediterranea, not studied here). 
However, it could be interesting to study Ascomycota associations in this necrosis. Moreover, 
the other tissues not presented in this part, could reveal interesting results. Ascomycota changes 
in annual organs (petioles and stems), as well as the population changes between trunks and 
one-year old canes could reveal which species are able to colonize which tissues, and if some 
genera are more associated to specific necrosis or organs. Diversity analyses will be undertaken 
to confirm the visual differences discussed in this part of the manuscript.
   

Table A2. References for most abundant Ascomycota Genera found in grapevine trunk tis-
sues.

Genus Function Reference

Phialophora endophyte Andrade-Linares and 
Philipp, 2013

Massarina endophyte Aptroot, 1998
Exophiala endophyte Maciá-Vincente et al., 2016
Rhinocladiella endophyte Teixeira et al., 2017
Nigrograna endophyte Kolarik, 2018
Biatriospora endophyte Kolarik et al., 2017
Penicillium enhance plant resistance Srinivasan et al., 2020
Neodevriesia pathogen Meng-Wang et al., 2017
Cladosporium pathogen Ogorek et al., 2012
Anthostoma pathogen Mirabolfathy et al., 2018
Nemania pathogen Edwards et al., 2003
Eutypa pathogen Larignon and Dubos, 1997
Neofusicoccum pathogen (Botryosphaeraiceae) Phillips et al., 2013
Diplodia pathogen (Botryosphaeraiceae) Phillips et al., 2013
Diaporthe pathogen (Botryosphaeraiceae) Phillips et al., 2013
Botryosphaeria pathogen (Botryosphaeraiceae) Phillips et al., 2013
Phaeomoniella pathogen (vascular) Pouzoulet et al., 2013
Phaeoacremonium pathogen (vascular) Pouzoulet et al., 2013
Pleomonodictys secondary pathogen Gams et al., 2018
Cryptocoryneum secondary pathogen Hashimoto et al., 2016
Achroceratosphaeria secondary pathogen Réblova et al., 2010

Pseudodiplococcium secondary pathogen Hernandez-Restrepo et al., 
2017

Monocillium secondary pathogen Ashrafi et al., 2017
Lecania secondary pathogen Reesenaesborg et al., 2007
Bacidia secondary pathogen Llop et al., 2007
Ascosphaera unknown
Cordyceps unknown
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