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Le but de cette thèse est d'étudier une classe importante d'algèbres de Lie non réductives, que sont les contractions paraboliques (des contractions d'algèbres de Lie réductives). Plus précisément, nous étudions l'algèbre des semi-invariants symétriques associée à de telles contractions paraboliques. Notre étude se base sur des résultats importants de Panyushev et Yakimova, concernant la polynomialité de l'algèbre des invariants symétriques (en types A et C) de ces contractions paraboliques.

Algèbres d'invariants et de semi-invariants

Commençons par définir les algèbres d'invariants et de semi-invariants. Soit K un corps de caractéristique 0 algébriquement clos, (k, [ , ]) une algèbre de Lie de dimension finie sur K et k * son espace vectoriel dual. On définit l'indice ind k comme la plus petite dimension du noyau de φ f pour f ∈ k * , où φ f est la forme bilinéaire définie par φ f : (x, y) → f ([x, y]). La représentation adjointe de k sur lui-même est la représentation d'algèbre de Lie naturelle définie à partir du crochet de Lie ad(g)(h) = g • h = [g, h] pour tous g, h ∈ k. On étend cette représentation en une unique représentation, que l'on note toujours ad, de k sur l'algèbre symétrique S(k) telle que ad(g) est une dérivation sur S(k) pour tout g ∈ k.

On s'intéresse aux algèbres des invariants Y(k) et des semi-invariants Sy(k), qui sont des sousalgèbres de S(k). L'algèbre des invariants Y(k) est l'algèbre formée de l'ensemble des invariants (dits encore invariants symétriques), c'est-à-dire tous les éléments de S(k) annulés par tous les ad(g), g ∈ k. L'algèbre des semi-invariants Sy(k) est l'algèbre engendrée par tous les semiinvariants (dits encore semi-invariants symétriques), c'est-à-dire les éléments de S(k) qui sont vecteurs propres pour tous les ad(g), g ∈ k. Si s est un semi-invariant (non nul), il existe alors λ ∈ k * tel que ad(g)(s) = λ(g)s pour tout g ∈ k, et on appelle λ le poids de s. On peut munir S(k) d'un crochet de Poisson { , } qui étend le crochet de Lie sur k, de sorte que l'algèbre associative S(k) devient une algèbre de Poisson. Les algèbres Y(k) et Sy(k) correspondent alors au centre et au semi-centre de cette algèbre de Poisson. Leurs dimensions de Gelfand-Kirillov GKdim Y(k) et GKdim Sy(k) sont les degrés de transcendance des corps des fractions associés. Par un théorème de Rosenlicht, on a GKdim Y(k) ≤ ind k [START_REF] Rosenlicht | A remark on quotient spaces[END_REF], avec l'égalité si Y(k) = Sy(k) (voir [11, Chap. I, Sec. B, 5.12]). En théorie des invariants associée à des algèbres de Lie, une des questions cruciales relative aux algèbres Y(k) et Sy(k) est la polynomialité, c'est-à-dire déterminer si oui ou non ces algèbres sont isomorphes à des algèbres de polynômes.

Géométriquement, plaçons-nous dans le cas où k est l'algèbre de Lie d'un groupe algébrique connexe K. L'algèbre Y(k) s'identifie alors à l'algèbre K[k * ] K des fonctions polynomiales sur k * invariantes par l'action coadjointe de K. Si Y(k) est de type fini, la variété associée à cette algèbre est alors Specm Y(k) = k * K. La polynomialité de l'algèbre Y(k) implique alors que k * K est un espace affine. De manière analogue aux algèbres, on peut également définir le corps des invariants C(k), qui est un sous-corps de Frac(S(k)), le corps des fractions de S(k). Si C(k) est une extension transcendante pure de K, alors géométriquement, cela revient à affirmer que k * K est une variété rationnelle. Si C(k) = Frac(Y(k)), alors la polynomialité de Y(k) entraine clairement la rationalité de C(k). En revanche, la réciproque n'est pas vérifiée : Dixmier a exhibé un contre-exemple dans lequel Y(k) n'est pas polynomiale et n'est même pas de type fini mais C(k) = Frac(Y(k)) est bien une extension transcendante pure de K [6, 4.4.8 et 4.9.20].

Le premier résultat important de polynomialité d'algèbre d'invariants est celui de Chevalley [START_REF] Dixmier | Algèbres enveloppantes[END_REF]. Ce résultat affirme que si g est une algèbre de Lie réductive, c'est-à-dire le produit d'une algèbre de Lie semi-simple par une algèbre de Lie abélienne, alors Y(g) est polynomiale. Dans le cas où g est semi-simple, la preuve repose sur un isomorphisme entre l'algèbre des invariants Y(g) Y(g * ) et l'algèbre S(h * ) W , où h est une sous-algèbre de Cartan de g et W est le groupe de Weyl du système de racines associé à (g, h). En particulier, W peut être vu comme un sous-groupe fini de GL(h * ) engendré par des réflexions. Chevalley identifie alors S(h * ) W à une algèbre de polynômes par un résultat d'algèbre commutative (voir [35, théorème 31.1.6] pour une exposition). Un résultat de Kostant [START_REF] Kostant | Lie group representations on polynomial rings[END_REF] donne une autre interprétation à ce résultat. Il affirme qu'il existe un sous-espace affine V de g * tel que le morphisme Y(g) K[g * ] G → K[V] de restriction à V est un isomorphisme de Y(g) sur l'algèbre K[V] des fonctions polynomiales sur V. De tels isomorphismes sont appelés "sections de Kostant-Weierstrass" 1 .

Si k = g e est le centralisateur d'un élément nilpotent e pour une algèbre de Lie g simple, Premet, Panyushev et Yakimova ont montré la polynomialité de Y(g e ) lorsque g est de type A ou C [START_REF] Panyushev | On symmetric invariants of centralisers in reductive Lie algebras[END_REF]. Leur démonstration repose sur le théorème suivant de Panyushev [28, théorème 1.2]. Théorème 1. Soit k une algèbre de Lie. Supposons que k vérifie la propriété de codimension 2, et que GKdim Y(k) = ind k. Soit l = ind k, et soient f 1 , . . . , f l des éléments homogènes algébriquement indépendants de Y(k). Alors [START_REF] Bar-Natan | An Unexpected Cyclic Symmetry of Iu n[END_REF] 

l i=1 deg f i ≥ (dim k + ind k)/2, (2) si l i=1 deg f i = (dim k + ind k)/2, alors Y(k) = K[f 1 , . . . , f l ].
On définit la propriété de codimension 2 comme suit :

Définition. Soit k une algèbre de Lie. Pour tout f ∈ k * , on dit que f est régulier dans k * si le noyau de la forme bilinéaire2 φ f est de dimension minimale. Sinon, on dit que f est singulier dans k * .

On dit alors que k vérifie la propriété de codimension 2 si l'ensemble k * sing des éléments singuliers dans k * est de codimension au moins 2 dans k * .

Ainsi la question de la polynomialité de Y(k) dans le cas k = g e a été longuement étudiée, et c'est dans ce cadre que plusieurs cas de non-polynomialité ont été trouvés. Lorsque e est un vecteur de plus haut poids pour g simple de type E 8 , alors on a Y(g e ) Sy(p) pour une certaine sous-algèbre parabolique p de g et Yakimova a montré que cette algèbre n'était pas polynomiale [START_REF] Yakimova | A counterexample to Premet's and Joseph's conjectures[END_REF]. Charbonnel et Moreau ont prolongé l'étude en donnant des conditions nécessaires et suffisantes à la polynomialité de Y(g e ). Si Y(g e ) est polynomiale, ils montrent également que S(g e ) est un Y(g e )-module libre. Ils utilisent alors ces conditions pour étudier la polynomialité de Y(g e ) en fonction de l'élément e ∈ g dans les cas où g est simple de type B ou D. Par exemple, ils trouvent un cas où Y(g e ) n'est pas polynomiale, lorsque g est de type D 7 [5, §7.3].

Les résultats de polynomialité d'algèbres de semi-invariants Sy(k) sont plus parcellaires. Leur étude peut passer par l'étude de la troncation canonique de k. Pour une algèbre de Lie k quelconque, on appelle troncation canonique de k, que l'on note k Λ , la plus grande sous-algèbre de Lie de k sur laquelle s'annulent tous les poids de semi-invariants. Fauquant-Millet et Joseph3 ont montré dans un cadre assez général4 que l'on a Sy(k) = Y(k Λ ) = Sy(k Λ ) [START_REF] Fauquant-Millet | La somme des faux degrés-un mystère en théorie des invariants[END_REF]Appendice B.2]. Ainsi l'étude de polynomialité d'une algèbre de semi-invariants revient à étudier la polynomialité d'une algèbre d'invariants. Par exemple, si g est une algèbre de Lie réductive, on a g Λ = g, de sorte que Sy(g) = Y(g), ainsi Sy(g) est polynomiale. Joseph [START_REF] Joseph | A preparation theorem for the prime spectrum of a semisimple Lie algebra[END_REF] a montré que dans le cas d'une sous-algèbre de Borel b d'une algèbre de Lie simple g, l'algèbre des semi-invariants Sy(b) est polynomiale engendrée par rg g générateurs (rg g est le rang de g) calculés explicitement. Dans le cas où p est une sous-algèbre biparabolique en type A ou C, Joseph et Fauquant-Millet [START_REF] Fauquant-Millet | Semi-centre de l'algèbre enveloppante d'une sousalgèbre parabolique d'une algèbre de Lie semi-simple[END_REF] ont montré la polynomialité de Sy(p) en encadrant le caractère formel de Sy(p) par deux bornes dont ils montrent l'égalité notamment en types A et C. En types A et C, ils parviennent à calculer les poids et les degrés de générateurs homogènes. En type A, Joseph a également exhibé des sections de Kostant-Weierstrass pour Y(p Λ ) = Sy(p) [START_REF] Joseph | Slices for biparabolic coadjoint actions in type A[END_REF].

Contractions paraboliques

On s'intéresse dans cette thèse à une classe particulière d'algèbres de Lie dites contractions paraboliques, qui sont des contractions d'algèbres de Lie réductives. Ces algèbres ont été introduites par E. Feigin, dans le cas d'une contraction par une sous-algèbre de Borel [START_REF] Feigin | G M a -degeneration of flag varieties[END_REF], puis par Panyushev et Yakimova pour une sous-algèbre parabolique quelconque [START_REF] Panyushev | Parabolic contractions of semisimple Lie algebras and their invariants[END_REF]. Soit g une algèbre de Lie réductive et p une sous-algèbre parabolique de g. On note n le radical nilpotent de p et n -le radical nilpotent de la sous-algèbre parabolique opposée de p de sorte que, si l est un facteur de Levi de p on a g = n ⊕ l ⊕ n -. On a alors p = n ⊕ l d'où g = p ⊕ n -. On définit q = p (n -) a la contraction parabolique de g par p. Ici, (n -) a est l'espace vectoriel n -vu comme une sousalgèbre de Lie abélienne 5 de q ainsi qu'un p-module par l'identification n - g / p. On peut voir cette algèbre de Lie comme une contraction d'Inönu-Wigner 6 de g. Pour tout t = 0, soit c t : g → g l'automorphisme de K-espace vectoriel défini par ∀p ∈ p, ∀n ∈ n -, c t (p + n) = p + tn.

On définit alors g (t) l'algèbre de Lie égale à g comme espace vectoriel, et de crochet de Lie défini par ∀q, q ∈ g (t) , [q, q ] g (t) = c -1 t ([c t (q), c t (q )] g ). La limite, lorsque t tend vers 0, des algèbres de Lie7 g (t) donne la contraction parabolique q.

À partir de ces contractions paraboliques, Feigin définit des dégénérescences de variétés de drapeaux et étudie combinatoirement en détail de telles variétés. Ces dégénérescences permettent par exemple d'obtenir un lien combinatoire avec la suite des nombres de Genocchi [START_REF] Feigin | The median Genocchi numbers, q-analogues and continued fractions[END_REF]. D'autres algèbres de Lie étudiées peuvent s'apparenter dans certains cas particuliers à des contractions paraboliques. Les algèbres de Lie de la forme a a * avec a une algèbre de Lie, sont des cas particuliers de doubles de Drinfeld (voir [START_REF] Drinfel | Quantum groups[END_REF], [START_REF] Etingof | Lectures on Quantum Groups[END_REF] ou [20, §3.2]). Lorsque a = b est une sous-algèbre de Borel, l'algèbre de Lie b b * quotientée par son centre8 est isomorphe à une contraction parabolique par une sous-algèbre de Borel. Postérieurement aux résultats présentés dans ce présent rapport, Bar-Natan et Van der Veen en type A [START_REF] Bar-Natan | An Unexpected Cyclic Symmetry of Iu n[END_REF], puis Bulois et Ressayre pour une sous-algèbre de Borel de type quelconque [START_REF] Bulois | On the automorphisms of the Drinfel'd double of a Borel Lie subalgebra[END_REF] étudient les automorphismes d'une telle algèbre. Pour cela, Bulois et Ressayre réinterprètent ces algèbres à l'aide des algèbres de Kac-Moody.

En type A, une contraction parabolique par une sous-algèbre de Borel peut être également vue comme l'algèbre de Lie associée à un schéma cyclique de Brauer, introduit par Knutson et Zinn-Justin [24, 1.1 et 2.1]. Le schéma cyclique de Brauer est défini comme l'ensemble E des matrices M de taille n × n telles que M • M = 0, où • est un produit associatif défini par déformation du produit usuel sur les matrices. La structure d'algèbre de Lie sur E associée au produit associatif • en fait alors une contraction parabolique par une sous-algèbre de Borel en type A.

Panyushev et Yakimova ont également étudié d'autres types de contractions, notamment les Z 2 -contractions (voir par exemple [START_REF] Yakimova | Symmetric invariants of Z 2 -contractions and other semi-direct products[END_REF] et [START_REF] Panyushev | On the coadjoint representation of Z 2 -contractions of reductive Lie algebras[END_REF]), qui sont du type g 0 g 1 où g = g 0 ⊕ g 1 est une Z 2 -graduation d'une algèbre de Lie réductive g. De manière plus générale, Panyushev et Yakimova ont pour but de classifier toutes les algèbres de Lie de la forme g V avec g une algèbre de Lie simple et V une représentation de dimension finie de g telles que l'algèbre des invariants associée est polynomiale (voir par exemple [START_REF] Panyushev | Semi-Direct Products Involving Sp 2n or Spin n with Free Algebras of Symmetric Invariants[END_REF]).

Algèbres d'invariants et de semi-invariants associées à des contractions paraboliques

Cette thèse se place dans la continuité des travaux de Panyushev et Yakimova concernant l'étude de Y(q) [START_REF] Panyushev | Parabolic contractions of semisimple Lie algebras and their invariants[END_REF] lorsque q est une contraction parabolique et en reprend les résultats essentiels. D'après Panyushev et Yakimova ([31,[START_REF] Bar-Natan | An Unexpected Cyclic Symmetry of Iu n[END_REF]) pour une contraction parabolique q, il existe un groupe algébrique connexe Q tel que q en soit l'algèbre de Lie. Dans [START_REF] Panyushev | Parabolic contractions of semisimple Lie algebras and their invariants[END_REF], ils étudient la polynomialité des algèbres d'invariants K[q] Q et K[q * ] Q . Par un raisonnement de géométrie algébrique 9 , Panyushev et Yakimova montrent aisément que K[q] Q est une algèbre polynomiale. Pour toute contraction parabolique q par une sous-algèbre de Borel, ils montrent également [START_REF] Panyushev | A remarkable contraction of semisimple Lie algebras[END_REF] que K[q * ] Q Y(q) est polynomiale (cela utilise des propriétés spécifiques au radical nilpotent d'une sous-algèbre de Borel). En revanche, l'étude de l'algèbre Y(q) K[q * ] Q de manière générale est plus complexe. On pose q une contraction parabolique d'une algèbre de Lie semi-simple g par une sous-algèbre parabolique p et G, P des groupes algébriques connexes tels que g, p sont les algèbres de Lie respectivement de G, P . À partir de générateurs homogènes F 1 , . . . , F n algébriquement indépendants de l'algèbre Y(g), Panyushev et Yakimova construisent des éléments F • 1 , . . . , F • n de Y(q) obtenus par dégénérescence des F 1 , . . . , F n via les c t . Ces F • 1 , . . . , F • n engendrent librement Y(q) dans le cas d'une contraction par une sous-algèbre de Borel ; ils sont également les candidats potentiels à librement engendrer Y(q) dans le cas général. Pour montrer ce dernier point dans le cas d'une sous-algèbre parabolique quelconque, ils reprennent l'idée de sections de Kostant-Weierstrass en l'adaptant aux cas de contractions paraboliques et construisent une injection 10 ψ de Y(q) vers une certaine algèbre S(g e ) P e , où e est un élément nilpotent de g. Les invariants F • 1 , . . . F • n ∈ Y(q) ⊂ K[q * ] peuvent alors être vus dans cette dernière algèbre, et on note e F m = ψ(F • m ). Les e F m appartiennent en fait à S(g e ) G e = Y(g e ). Dans les cas des types A et C, Panyushev et Yakimova montrent que S(g e ) P e = Y(g e ) et que les e F m forment une famille algébriquement indépendante qui engendre Y(g e ) (via l'étude avec Premet [START_REF] Panyushev | On symmetric invariants of centralisers in reductive Lie algebras[END_REF] mentionnée précédemment). De plus, dans ces cas, l'application de restriction ψ précédente, qui était injective, devient un isomorphisme d'algèbres de Y(q) sur Y(g e ). Avec ces derniers résultats, ils parviennent à conclure que Y(q) est polynomiale et engendrée par F • 1 , . . . F • n . Yakimova s'est également intéressée à la polynomialité de Sy(q) où q est une contraction parabolique par une sous-algèbre de Borel. Elle conclut dans ce cas à la polynomialité de Sy(q) [38, §5.1]. Sa démonstration reprend la famille F • 1 , . . . , F • n qui engendre librement Y(q). Elle remarque que F • n admet une décomposition en facteurs irréductibles 11 avec des facteurs de degré 1, c'est-à-dire dans q ⊂ S(q). En remplaçant ainsi F • n dans la famille F • 1 , . . . , F • n par ses facteurs irréductibles, elle obtient une certaine famille F, dont elle montre qu'elle engendre librement Sy(q). Dans cette thèse, on reprend l'idée de décomposer un invariant en facteurs irréductibles puis de remplacer l'invariant par ses facteurs irréductibles. L'idée est d'obtenir une famille F dont on espère qu'elle engendre librement l'algèbre des semi-invariants. En revanche, pour démontrer que F engendre bien l'algèbre des semi-invariants, l'approche que nous avons choisie diverge de celle de Yakimova. En effet, un point clé de la démonstration de Yakimova est le calcul explicite de ce que l'on appelle un semi-invariant fondamental. Son calcul est spécifique au cas du Borel et utilise le fait que la troncation canonique de q est ici égale à l'algèbre de Lie dérivée q , de sorte que Sy(q) = Y(q ). Or si q est une contraction parabolique quelconque en type A, les inclusions q ⊂ q Λ ⊂ q sont dans bien des cas des inclusions strictes 12 . Une adaptation des arguments de Yakimova dans un cadre plus général nous semble difficile.

Aussi, une démonstration passant par le théorème 1 de Panyushev a été envisagée, en prenant 9 essentiellement grâce à une variante du lemme d'Igusa 10 qui est une application de restriction 11 qui sont nécessairement des semi-invariants 12 pour q une contraction parabolique de gl n , on calculera précisément q Λ à la section 3.3 k = q Λ 13 . Une hypothèse cruciale de ce théorème est la propriété de codimension 2. Celle-ci est vérifiée si et seulement si le semi-invariant fondamental associé est constant [START_REF] Joseph | Polynomiality of invariants, unimodularity and adapted pairs[END_REF]. Or dans le cas où q est une contraction par une sous-algèbre de Borel b, avec q = q Λ , Yakimova [38, théorème 5.5] montre que, hormis le cas du type A, le semi-invariant fondamental de q = q Λ n'est pas constant, donc l'algèbre de Lie q Λ ne vérifie pas la propriété de codimension 2. Une démonstration passant par le théorème 1 ne pourra donc pas se généraliser en dehors du type A.

Résultats principaux

Présentons un résumé des résultats de ce rapport. Le résultat principal de cette thèse est celui-ci : Théorème principal. Soit q une contraction parabolique d'une algèbre de Lie simple g par une sous-algèbre parabolique p.

( * ) Si g est soit de type A, -soit de type C et telle que les facteurs de Levi de p sont de type A, 14alors Sy(q) est polynomiale.

( * * ) Il existe une contraction parabolique q, avec g de type C et telle que les facteurs de Levi de p ne sont pas de type A, pour laquelle Sy(q) n'est pas polynomiale.

Contractions paraboliques de gl n

Pour montrer la polynomialité dans les cas ( * ), on se base sur l'étude des contractions paraboliques de l'ensemble gl n des matrices de taille n. Si q est une contraction parabolique de gl n , la polynomialité de Sy(q) se démontre en trois étapes :

• Étape 1 : exhiber une famille particulière F algébriquement indépendante de Sy(q),

• Étape 2 : montrer que F est une base de transcendance de Sy(q),

• Étape 3 : conclure que Sy(q) = K[F].

Étape 1 : Tout facteur de semi-invariant est encore un semi-invariant. Ainsi, de la même manière que Yakimova dans le cas du Borel, on trouve des semi-invariants propres (c'est-à-dire de poids non nul) en factorisant des invariants connus. Si F m ∈ S(gl n ) est la somme des mineurs principaux de taille m, alors F 1 , . . . , F n engendre librement Y(gl n ) et F • 1 , . . . , F • n engendre librement Y(q) 15 , où l'on note f • la composante de f de degré maximal en n -. Dans un premier temps, on factorise donc les F • m (section 3.2). Soit l un facteur de Levi associé à q. L'algèbre l est isomorphe à un certain produit gl i 1 × . . . × gl is . On dit que chaque gl i k est un bloc de l, de sorte que s est le nombre de blocs de l. Deux blocs gl i k et gl i k sont dits isomorphes si i k = i k . On note également i max = max k i k la taille du plus gros bloc. Pour tout m ∈ 1, n , • s'il existe i ∈ {i 1 , . . . , i s } tel que m = k min(i k , i), alors on pose r m le nombre de blocs de l qui sont de taille i, autrement dit r m = Card({k

| i k = i}),
• sinon, on pose r m = 1.

Théorème (voir théorème 3.2.2). Pour tout m ∈ 1, n , l'invariant F • m est produit de r m facteurs homogènes non constants, notés F m,1 , . . . , F m,rm . Ces facteurs sont des semi-invariants et vérifient de plus :

(1) pour tout t ∈ 1, r m -1 , F m,t ∈ S(n -),

(2) notant L m := λ m,1 , . . . , λ m,rm la famille des poids de F m,1 , . . . , F m,rm , on a λ m,1 

+ . . . + λ m,rm = 0 et L m est de rang r m -1, (3) 
• à m fixé, l'ensemble des poids λ m,t des f m,t pour t ∈ 1, r m forme une famille de rang r m -1,
• les espaces vectoriels Vect ((λ m,t ) 1≤t≤rm ) pour m ∈ 1, d sont en somme directe.

Alors les (f m,t ) 1≤m≤d, 1≤t≤rm sont algébriquement indépendants.

Étape 2 : L'étape suivante est de montrer que F est une base de transcendance de Sy(q). Pour cela, on montre que la dimension de Gelfand-Kirillov GKdim K[F] de l'algèbre polynomiale K[F], engendrée par F, est égale à la dimension de Gelfand-Kirillov de Sy(q). Comme GKdim K[F] est le degré de transcendance du corps des fractions de K[F], par l'algébrique indépendance de F, c'est également le cardinal de F. Il suffit alors de montrer que GKdim Sy(q) = Card(F). On a déjà GKdim Sy(q) = GKdim Y(q Λ ) = ind q Λ . Ensuite, on calcule ind q Λ , qui est donné par le théorème suivant :

Théorème (voir théorème 3.3.1). Soit s le nombre de blocs d'un facteur de Levi l associé à q et p le nombre de classes d'isomorphisme de blocs de l. Autrement dit, l est de la forme

l gl i 1 × . . . × gl is avec Card({i 1 , . . . , i s }) = p. On a dim q Λ = n 2 -(s -p) et ind q Λ = Card(F) = GKdim(K[F]) = n + (s -p).
Pour montrer ce dernier théorème, on utilise une égalité de Ooms et van den Bergh [START_REF] Ooms | A degree inequality for Lie algebras with a regular Poisson semi-center[END_REF]Proposition 3.1] dim q + ind q = dim q Λ + ind q Λ .

On a dim q = dim g = n 2 et Panyushev et Yakimova ont montré que ind q = rg g = n [31, Théorème 3.1]. On sait que ind q Λ = GKdim Sy(q) ≥ GKdim K[F] = Card F = n + (s -p).
Pour conclure pour le théorème, on montre alors que dim q Λ ≥ n 2 -(s -p) :

• on part de l'inclusion vraie pour toute algèbre de Lie q ⊕ z(q) ⊂ q Λ (où z(q) est le centre de q) qui fournit un sous-espace vectoriel de q Λ de dimension n 2 -s + 1,

• puisque les F • m appartiennent à Sy(q) ⊂ S(q Λ ), on trouve les p -1 dimensions restantes en calculant certains facteurs dans h Λ (où h Λ := h ∩ q Λ avec h une sous-algèbre de Cartan de gl n ) de termes de certains F • m bien choisis (section 3.3).

Étape 3 : Il reste alors à montrer que les F m,t engendrent bien Sy(q) (section 3.4). On montre d'abord un premier théorème applicable a priori en dehors du contexte des contractions paraboliques. 

f m = rm t=1 (f m,t ) νm,t (♣)
avec ν m,t ∈ N * , on suppose pour tout m que l'on est dans au moins un des deux cas suivants :

• la décomposition (♣) est triviale, c'est-à-dire r m = 1 et ν m,1 = 1, autrement dit f m = f m,1 ,
• la décomposition (♣) est la décomposition de f m en éléments irréductibles dans S(k).

On note f l'ensemble des f m,t . Si GKdim Sy(k) = GKdim K[f ], alors l'ensemble des poids 16 de Sy(k) est un groupe et Sy(k) est engendrée par Y(k) et les éléments de f . En particulier, si les

f m engendrent Y(k), alors Sy(k) = K[f ].
On va montrer que les contractions paraboliques q dans les cas ( * ) du théorème principal vont vérifier les hypothèses du théorème ci-dessus, donc en particulier que l'ensemble des poids de Sy(q) est un groupe. Ceci est particulier aux contractions paraboliques car une telle propriété n'est pas vraie en général. Par exemple pour une sous-algèbre parabolique p propre d'une algèbre de Lie g semi-simple, l'ensemble des poids de Sy(p) n'est pas un groupe (voir [13, (II) tout f ∈ f × est indivisible dans le semi-groupe multiplicatif Sy(k), 18(III) pour tout f ∈ f × , il existe une K-algèbre factorielle A f et un morphisme de K-algèbres

f m = rm t=1 (f m,t ) νm,t
ϑ f : Sy(k) → A f tel que ϑ f (f ) n'est pas inversible dans A f et est premier avec ϑ f (g) pour tout g ∈ f × \ {f }.
alors les f m,t dans f × sont irréductibles dans S(k).

Pour conclure que Sy(q) = K[F] dans le cas d'une contraction parabolique q de gl n avec nos semi-invariants F m,t construits à l'étape 1, on montre que les hypothèses (I), (II) et (III) sont vérifiées.

Pour l'hypothèse (II), on montre que les semi-invariants F m,t pour r m ≥ 2 sont indivisibles en remarquant qu'ils sont de degré partiel 1 en certains éléments e v,w de la base canonique de gl n .

On rappelle que les algèbres S(k

) et K[k * ] sont isomorphes. De même, si A est une K-algèbre, les A-algèbres A ⊗ K S(k) et A[A ⊗ K k * ] sont naturellement isomorphes, ce qui donne un sens à f (q) ∈ A où f ∈ A ⊗ K S(k) et q ∈ A ⊗ K k * .
Pour les hypothèses (I) et (III), on démontre en fait des hypothèses (I') et (III') plus fortes, mais plus adaptées à notre cas :

(I') il existe g 1 , . . . , g d qui engendrent librement Y(k) et q ∈ K[X 1 , . . . , X d ] ⊗ k * tel que pour tout m ∈ 1, d , on a g m (q) = X m , (III') pour tout m ∈ 1, d tel que r m ≥ 2 et t ∈ 1, r m , il existe q m,t ∈ K[X] ⊗ k * tel que deg X f m,t (q m,t ) ≥ 1 et f µ,τ (q m,t ) ∈ K × pour (µ, τ ) = (m, t). Avec (I'), le morphisme ϑ dans (I) est alors f ∈ S(k) → f (q) ∈ K[X 1 , . . . , X d ] Y(k). L'hy- pothèse (III') est une reformulation de (III) avec A f = K[X].
On remarque au passage que l'hypothèse (I') implique l'existence d'une section de Kostant-Weierstrass pour Y(q). Les démonstrations de (I'), où les g 1 , . . . , g d sont les F 

A = K[X 1 , . . . , X n ]. À q ∈ A ⊗ gl *
n fixé, on associe un cheminement G(q) de poids appartenant à A appelé graphe de q. Le cheminement G(q) est tel que l'arête de x vers y dans G(q) est de poids e x,y (q). Les F • m sont sommes de termes de la forme ± l∈J e l,σ(l) avec J un sous-ensemble de 1, n et σ une permutation des éléments de l'ensemble J. Ainsi pour calculer F • m (q), il suffit de • déterminer dans G(q) les sous-graphes circuits de longueur m, c'est-à-dire les unions de circuits de G(q) à sommets disjoints dont toutes les arêtes sont de poids non nul, et qui totalisent m sommets,

• montrer que ces sous-graphes sont bien associés à des monômes de F • m , c'est-à-dire vérifier qu'ils ont bien le bon degré en n -.

Pour le point (I'), on choisit alors q tel que G(q) est de la forme suivante :

v 1 v 2 v 3 X 1 1 1 X 2 X 3 . . . 1 v n-1 1 v n 1 X n-1 X n avec {v 1 , . . . , v n } = 1, n . À m ∈ 1,
n fixé, ce cheminement admet un unique sous-graphe circuits de longueur m, qui est le circuit suivant :

v 1 v 2 v 3 1 1 . . . 1 v m-1 1 v m 1 X m que l'on fait correspondre à un unique monôme S m de F m . Avec de bons choix de la suite (v 1 , . . . , v n ), c'est-à-dire de l'ordre des v i , le monôme S m est un monôme de F • m pour tout m, de sorte que F • m (q) = S m (q) = X m . Pour le point (III'), à m, t fixés, on spécialise ce q en X m = X et X µ = 1 pour µ = m, de sorte que F • m (q) = X et F µ,τ (q) ∈ K × pour µ = m. Pour un bon choix de (v 1 , . . . , v n ) parmi ceux qui vérifient le point (I'), on a F m,t (q) ∈ K × X et F µ,τ (q) ∈ K × pour (µ, τ ) = (m, t).
Les hypothèses (I'), (II) et (III') étant vérifiées, on a bien Sy(q) = K[F] et F engendre donc librement Sy(q) en type gl n .

Contractions paraboliques en types A et C

Pour montrer la partie ( * ) du théorème principal, on étudie la polynomialité de Sy( q) lorsque q est une contraction parabolique de g = sl n ou g = sp n (chapitre 4) en remarquant que q est nécessairement une sous-algèbre de Lie d'une contraction parabolique q de gl n . Pour cela, une idée est de projeter sur q les résultats que l'on a sur q. Soit pr : S(q) → S( q) une projection telle que l'application linéaire sous-jacente pr : q → q soit un morphisme de q-modules. Dans les cas que l'on considère, on a pr(F • m ) = pr(F m ) • = rm t=1 pr(F m,t ). En type A (section 4.1), on a g = sl n l'algèbre de Lie du groupe spécial linéaire, c'est-à-dire l'ensemble des matrices de taille n de trace nulle. On considère la projection pr : S(gl n ) → S(sl n ) induite par la décomposition gl n = sl n ⊕ K id. Dans ce cas, on a pr(F • 1 ) = pr(id) = 0, mais les pr(F • m ) pour m ∈ 2, n engendrent librement Y( q) par [START_REF] Panyushev | Parabolic contractions of semisimple Lie algebras and their invariants[END_REF]. Le poids de pr(F m,t ) est le poids de F m,t restreint à sl n , et on montre que les pr(F m,t ) sont algébriquement indépendants à nouveau grâce au théorème 3.2.17. On voit facilement que les pr(F m,t ) forment une base de transcendance de Sy( q). Enfin, si x ∈ Sy( q), alors x ∈ Sy(q) puisque K id = z(q), ainsi x = pr(x) est un polynôme en les F m,t , donc en les pr(F m,t ).

En type C, on a n pair et g = sp n l'algèbre de Lie du groupe symplectique 19 . On considère la projection pr : S(gl n ) → S(sp n ) induite par la décomposition

gl n = sp n ⊕ sp ⊥ n ⊕ K id où sp ⊥
n ⊂ sl n est l'orthogonal de sp n pour la forme de Killing de sl n . Dans ce cas, on a pr(F • m ) = 0 pour tout m impair, mais les pr(F • m ) pour m ∈ 1, n pair engendrent librement Y( q) par [START_REF] Panyushev | Parabolic contractions of semisimple Lie algebras and their invariants[END_REF]. Si l'on se place dans le cas ( * ) du théorème principal, c'est-à-dire dans le cas où le facteur de Levi associé à la contraction q n'a pas de facteur de type C, alors les facteurs de Levi l associés à la contraction parabolique q de gl n sont de la forme l gl i 1 × . . . × gl is avec s pair (section 4.3). Dans ce cas, la démonstration de la polynomialité de Sy( q) reprend globalement le même schéma de preuve qu'en type gl n . Dans q, la décomposition F • m = rm t=1 F m,t est non triviale, c'est-à-dire telle que r m ≥ 2, seulement si m est pair. On obtient alors des décompositions de la forme pr(F • m ) = ± bm t=1 f sm,t m,t , où certaines puissances s m,t ≥ 2 apparaissent en regroupant les facteurs colinéaires après projection. On peut à nouveau utiliser le théorème 3.2.17 pour montrer que la famille de semi-invariants deux à deux non-colinéaires f = (f m,t ) m,t que l'on obtient est algébriquement indépendante. Cette famille est de cardinal n/2 + s/2 = ind q + s/2. Ainsi dim q Λ ≥ dim q = dim q -s/2 et ind q Λ ≥ ind q + s/2. Par l'équation de Ooms et Van den Bergh (3.15), on a donc les égalités, de sorte que la famille f forme une base de transcendance de Sy( q). Pour montrer que Sy( q) = K[f ], on montre encore les hypothèses (I), (II), et (III) du théorème 3.4.13, en reprenant les hypothèses (I') et (III') mentionnées précédemment pour montrer (I) et (III).

Pour l'hypothèse (II), on montre que pour la plupart des f m,t , leur poids λ m,t est indivisible dans l'ensemble des poids Λ de Sy( q), c'est-à-dire que λ m,t / ∈ aΛ pour a ≥ 2. En fait, puisque Λ ⊂ k Z k où les k sont les poids fondamentaux de sp n , il suffit de vérifier que λ m,t est irréductible dans k Z k . Il existe des poids λ m,t qui ne vérifient pas cette dernière propriété et dans ces cas particuliers, on vérifie l'indivisibilité des semi-invariants directement en montrant qu'ils sont de degré 1 en certains éléments d'une base de sp n .

Pour l'hypothèse (I'), on réutilise la notion de graphe de q, que l'on modifie légèrement en type

C. Soit A = K[X 1 , . . . , X n/2 ]. À q ∈ A ⊗ sp *
n fixé, on associe un cheminement G(q) de poids dans A appelé graphe de q, tel que l'arête de x vers y est de poids pr(e x,y )(q). Cette définition implique une certaine symétrie dans les graphes de q, dans le sens où s'il existe une arête x → y de poids non nul dans le graphe de q, l'arête n + 1 -y → n + 1 -x est également de poids non nul 20 . On exhibe alors comme en type gl n un élément q tel que son graphe G(q) admet un unique sous-graphe circuits à m sommets, qui est en fait un circuit. Le dit graphe a la forme suivante :

v n v n-1 v n-2 . . . . . . v n/2+2 v n/2+1 v 1 v 2 v 3 v n/2-1 v n/2 1 X 1 X 2 X 3 X n/2-1 X n/2 avec {v 1 , . . . , v n } = 1, n .
Pour le point (III'), il n'existe pas suffisamment de suites (v 1 , . . . , v n ) qui conviennent au point (I'), donc on ne peut pas procéder comme pour une contraction parabolique de gl n en adaptant simplement le q obtenu au point (I'). On choisit d'abord un certain q ∈ q * , pour lequel G(q ) est un graphe circuits union disjointe de circuits C 1 , . . . , C l . On note S 1 , . . . , S l les monômes associés, et de ce choix de q on tire S j (q ) = 1 pour tout j et pr(F • µ )(q ) = i j=1 S j (q ) = 1 pour tout µ (pair) tel que r µ ≥ 2, où i est tel que µ = k min(i k , i). Fixons m, t. Pour vérifier l'hypothèse (III'), l'idée est de modifier q en multipliant un terme de q par X. Si q est le q modifié, on a alors S i (q) = X p avec p ∈ {1, 2} et S j (q) = 1 pour j = i, et donc pr(F • m )(q) = X p . Or avec cette seule opération, on obtient également pr(F • µ )(q) = X p pour µ > m tel que r µ ≥ 2, ce qui ne concorde pas avec l'hypothèse (III'), à moins que i = i max := max i k , c'est-à-dire la plus grande taille de bloc de l. Si i = i max , pour éviter cela, on modifie un peu plus q et la structure des circuits C i et C i+1 dans le graphe circuits G(q ), pour cette fois, obtenir q qui vérifie deg X pr(

F • m )(q) ≥ 1 et deg X pr(F • µ )(q) = 0 pour µ = m tel que r µ ≥ 2.
En choisissant soigneusement sur quelles arêtes effectuer la modification, on fait en sorte que q vérifie la condition (III').

Plaçons-nous maintenant dans le cas où le facteur de Levi associé à la contraction q a un facteur de type C, c'est-à-dire dans le cas où les facteurs de Levi l associés à la contraction parabolique q de gl n sont de la forme l = gl i 1 × . . . × gl is avec s impair. Dans ce cas, il peut exister dans gl n des décompositions non triviales F • m = rm t=1 F m,t avec m impair. Or pour m impair, pr(F m ) = 0 d'où pr(F • m ) = 0 et il existe des cas avec m impair où pr(F m,t ) = 0 pour certains t. Dans ces cas, si l'on ne considère que les pr(F m,t ) pour m pair, la famille f qu'ils forment n'est pas une base de transcendance de Sy(q) : il "manque" des éléments. Prenons un exemple (section 4.3) et considérons q la contraction parabolique de gl 8 définie par le diagramme suivant 21 :

est isomorphe à l'algèbre K[X 1 , X 2 , X 3 , X 4 , X 5 , X 6 , X 7 ]/(X 6 X 7 + 1 4 X 2 2 -X 2 4 X 5 ) qui n'est pas polynomiale.
Les phénomènes menant à ce contre-exemple ne sont pas isolés. On présente à la section 5 quelques conjectures dans ce sens.

Quelques pistes pour des contractions paraboliques en d'autres types

On discute à la section 5.2 les limites de l'approche que nous avons menée et quelques pistes possibles pour étudier des cas en d'autres types. Le schéma de preuve de polynomialité ou de non-polynomialité de l'algèbre des semi-invariants associée à une contraction parabolique q présenté ici repose a minima sur la connaissance d'une famille génératrice minimale de Y(q). Une telle famille est donnée notamment en types A et C par Panyushev et Yakimova [START_REF] Panyushev | Parabolic contractions of semisimple Lie algebras and their invariants[END_REF]. En types B et D ainsi qu'en types exceptionnels, la méconnaissance d'une telle famille de manière générale rend difficile une telle étude. De plus, certaines propriétés des contractions paraboliques qui sont vraies en types A et C ne le sont plus nécessairement en types B ou D. Par exemple, il est possible que pr(F m ) • = pr(F • m ) c'est-à-dire pr(F • m ) = 0 alors que pr(F m ) • = 0, ce qui complique la combinatoire pour trouver des semi-invariants. À l'inverse, dans certains cas pour lesquels l'approche de Panyushev et Yakimova a échoué, on peut espérer trouver une base de transcendance d'invariants en étudiant des semi-invariants connus. Par exemple, on peut utiliser la proposition suivante qui donne les semi-invariants de degré 1 pour une contraction parabolique. Proposition (voir proposition 5.2.1). Soit q = p n -une contraction parabolique d'une algèbre simple g associée à une certaine sous-algèbre de Cartan, une certaine base π du système de racines R associé et un certain sous-ensemble π π. On note θ la plus grande racine de R. Soit e ∈ q non nul. Alors e est un semi-invariant (de degré 1) de S(q) si et seulement si e ∈ g β , avec β ∈ (-π \ -π ) ∪ {θ} tel que le sommet associé à -β dans le diagramme de Dynkin étendu de R n'est relié à aucun sommet associé à un élément de π .

Dans l'exemple [31, remarque 4.6] en type D 6 avec π = {α 3 , α 4 , α 5 }, la famille pr(F 2 ) • , . . ., pr(F 10 ) • , f • (avec f une racine carrée de pr(F 12 )) n'est pas algébriquement indépendante et est donc "trop petite". En observant les semi-invariants de degré 1, on remarque que pr(F 4 ) • appartient à l'idéal de S(q) engendré par des semi-invariants x 1 , x 2 de degré 1. En poussant les calculs on obtient pr(F 4 )

• = x 1 y 1 +x 2 y 2 +x 1 x 2 y 1,2 , où y 1 , y 2 , y 1,2 sont des semi-invariants et x 1 y 1 , x 2 y 2 , x 1 x 2 y 1,2 sont
des invariants de même degré et degré en n -que pr(F 4 ) • . On peut espérer avec ces trois invariants obtenir une famille "plus grande" voire algébriquement indépendante.

Le travail de cette thèse peut être relié à d'autres articles récemment publiés. Rappelons que l'on décrit explicitement les générateurs de Sy(q) lorsque Sy(q) est polynomial (avec leur poids et leur degré) en type A et en type C avec un facteur de Levi de type A. Cela semble également donner une écriture explicite des générateurs de l'algèbre polynomiale S(n -) p . Cette question a été évoquée par Joseph et Fittouhi (voir [16,§2.2.3]). Toujours selon Joseph et Fittouhi, le nombre de ces générateurs est aussi égal au nombre de variétés orbitales d'hypersurface dans le radical nilpotent n de la sous-algèbre parabolique p (voir [16, §2.3.4]). Ces variétés orbitales d'hypersurface ont été décrites en type A par Joseph et Melnikov [START_REF] Joseph | Quantization of Hypersurface Orbital Varieties in sl n[END_REF] et par Perelman [START_REF] Perelman | Quantization of hypersurface orbital varieties in simple Lie algebras of classical types[END_REF] pour les autres types classiques.

Introduction in English

The goal of this PhD thesis is to study an important class of non-reductive Lie algebras called parabolic contractions (which are deformations of reductive Lie algebras). More precisely, we study the symmetric algebra of semi-invariants associated with such parabolic contractions. Our study relies on crucial results from Panyushev and Yakimova about the polynomiality of the symmetric algebra of invariants (in types A and C) associated with these parabolic contractions.

Algebras of invariants and semi-invariants

First we define algebras of invariants and semi-invariants. Let K be an algebraically closed field with characteristic zero, (k, [ , ]) a finite-dimensional Lie algebra over K and k * its dual vector space. Define the index ind k as the smallest dimension of the kernel of φ f for f ∈ k * , where φ f is the bilinear form defined by φ f : (x, y) → f ([x, y]). The adjoint representation of k on itself is the natural Lie algebra representation defined from its Lie bracket ad(g)(h) = g • h = [g, h] for all g, h ∈ k. Extend this representation to a unique representation, which is still denoted by ad, from k to the symmetric algebra S(k) of k such that ad(g) is a derivation on S(k) for all g ∈ k.

We focus on the algebra of invariants Y(k) and the algebra of semi-invariants Sy(k), which are subalgebras of S(k). The algebra of invariants Y(k) is the algebra of all invariants (or symmetric invariants), i.e. all elements of S(k) in the kernel of every ad(g), g ∈ k. The algebra of semi-invariants Sy(k) is the algebra generated by all semi-invariants (or symmetric semiinvariants), i.e. the elements of S(k) which are eigenvectors of every ad(g), g ∈ k. Let s be a non-zero semi-invariant, then there exists λ ∈ k * such that ad(g)(s) = λ(g)s for every g ∈ k.

Call λ the weight of s. Endow S(k) with a Poisson bracket { , } extending the Lie bracket on k, such that the associative algebra S(k) becomes a Poisson algebra. The algebras Y(k) and Sy(k) are respectively the centre and the semi-centre of this Poisson algebra. Their Gelfand-Kirillov dimensions GKdim Y(k) and GKdim Sy(k) coincide with the transcendence degrees of their associated fields of fractions. By a theorem of Rosenlicht, we get GKdim Y(k) ≤ ind k [START_REF] Rosenlicht | A remark on quotient spaces[END_REF], with equality when Y(k) = Sy(k) (see [11, Chap. I, Sec. B, 5.12]). In invariant theory associated with Lie algebras, one of the crucial questions related to the algebras Y(k) and Sy(k) is the polynomiality, i.e. determining whether these algebras are isomorphic to some algebras of polynomials.

Geometrically, let us consider the case when k is the Lie algebra of a connected algebraic group K. The algebra Y(k) identifies with the algebra K[k * ] K of polynomial functions on k * which are invariant under the coadjoint action of K. If Y(k) has finite type, the variety associated with the algebra of invariants is then Specm Y(k) = k * K. The polynomiality of Y(k) then implies that k * K is an affine space. Similarly to algebras, one can also define the field of invariants C(k), which is a subfield of the fraction field Frac(S(k)) of S(k). If C(k) is a purely transcendental extension of K, then geometrically, k * K is a rational variety. If C(k) = Frac(Y(k)), then the polynomiality of Y(k) clearly implies the rationality of C(k). However, the converse is not true: Dixmier has given a counterexample in which Y(k) is not polynomial and even not finitely generated but C(k) = Frac(Y(k)) is indeed rational [6, 4.4.8 and 4.9.20].

The first well-known result of polynomiality of algebra of invariants is due to Chevalley [START_REF] Dixmier | Algèbres enveloppantes[END_REF]. It states that if g is a reductive Lie algebra, i.e. the product of a semisimple and an abelian Lie algebra, then Y(g) is polynomial. In the case where g is semisimple, the proof relies on an isomorphism between the algebra of invariants Y(g) Y(g * ) and the algebra S(h * ) W , where h is a Cartan subalgebra of g and W is the Weyl group associated with the root system of (g, h). In particular, W can be seen as a finite subgroup of GL(h * ) generated by reflections. Chevalley then identifies S(h * ) W with a polynomial algebra thanks to a result of commutative algebra (see [35, theorem 31.1.6] for more details). A result of Kostant [START_REF] Kostant | Lie group representations on polynomial rings[END_REF] gives another interpretation of this result. According to it, there exists an affine subspace V of g * such that the restriction morphism Y(g)

K[g * ] G → K[V] to V is an isomorphism from Y(g) to the algebra K[V]
of polynomial functions on V. Such isomorphisms are called "Kostant-Weierstrass sections" 23 .

If k = g e is the centraliser of a nilpotent element e of a simple Lie algebra g, Premet, Panyushev and Yakimova have shown the polynomiality of Y(g e ) when g is simple of type A or C [START_REF] Panyushev | On symmetric invariants of centralisers in reductive Lie algebras[END_REF]. Their proof relies on the following theorem of Panyushev [28, theorem 1.2].

Theorem 1. Let k be a finite-dimensional Lie algebra. Assume that k verifies the codimension 2 property, and GKdim Y(k) = ind k. Let l = ind k, and f 1 , . . . , f l be algebraically independent homogeneous elements of Y(k). Then [START_REF] Bar-Natan | An Unexpected Cyclic Symmetry of Iu n[END_REF] 

l i=1 deg f i ≥ (dim k + ind k)/2, (2) if l i=1 deg f i = (dim k + ind k)/2, then Y(k) = K[f 1 , . . . , f l ].
Here the codimension 2 property is defined via the following:

Définition. Let k be a Lie algebra. For every f ∈ k * , we say that f is regular in k * if the kernel of the bilinear form24 φ f has minimal dimension. Otherwise, we say that f is singular in k * .

We say that k verifies the codimension 2 property if the set of singular elements k * sing in k * has codimension at least 2 in k * .

Thus the question of the polynomiality of Y(k) when k = g e has been thoroughly studied, and several cases of non-polynomiality have been discovered in this case. If e is a highest root vector for g simple of type E 8 , then one has Y(g e ) Sy(p) for a certain parabolic subalgebra p of g and Yakimova has shown that this algebra was not polynomial [START_REF] Yakimova | A counterexample to Premet's and Joseph's conjectures[END_REF]. Charbonnel and Moreau extended this study by giving a necessary and sufficient condition for the polynomiality of Y(g e ). If Y(g e ) is polynomial, they also showed that S(g e ) is a free Y(g e )-module. They then use these conditions to study the polynomiality of Y(g e ) depending on the element e ∈ g when g is simple of type B or D. For example they find a case where Y(g e ) is not polynomial, when g is of type D 7 [5, §7.3].

Polynomiality results concerning the algebra of semi-invariants Sy(k) are more fragmented. These algebras can be studied via the canonical truncation of k. For a Lie algebra k, the canonical truncation k Λ of k is the largest Lie subalgebra of k which vanishes on all weights of Sy(k). Fauquant-Millet and Joseph 25 showed in a quite general frame 26 

that Sy(k) = Y(k Λ ) = Sy(k Λ ) [12, Appendice B.2]
. Thus, studying the polynomiality of an algebra of semi-invariants reduces to, in a certain sense, the study of the polynomiality of an algebra of invariants . For example, if g is a reductive Lie algebra, one has g Λ = g, so that Sy(g) = Y(g), thus Sy(g) is polynomial. Joseph [START_REF] Joseph | A preparation theorem for the prime spectrum of a semisimple Lie algebra[END_REF] showed that in the case of a Borel subalgebra b of a simple Lie algebra g, the algebra of semi-invariants Sy(b) is polynomial and generated by rk g generators (rk g being the rank of g) which are explicitly computed. In the case where p is a biparabolic Lie subalgebra in type A or C, Joseph and Fauquant-Millet [START_REF] Fauquant-Millet | Semi-centre de l'algèbre enveloppante d'une sousalgèbre parabolique d'une algèbre de Lie semi-simple[END_REF] showed the polynomiality of Sy(p) by finding an upper bound and a lower bound to the formal character of Sy(p) and by showing the bounds are equal notably in types A and C. In types A and C, they successfully computed the weights and degrees of homogeneous generators. In type A, Joseph also exhibited Kostant-Weierstrass sections for Y(p Λ ) = Sy(p) [START_REF] Joseph | Slices for biparabolic coadjoint actions in type A[END_REF].

Parabolic contractions

In this PhD thesis, we focus on a particular class of Lie algebras called parabolic contractions, which are deformations of reductive Lie algebras. These algebras have been introduced by E. Feigin, in the case of a contraction by a Borel subalgebra [START_REF] Feigin | G M a -degeneration of flag varieties[END_REF], and Panyushev and Yakimova for all parabolic subalgebras [START_REF] Panyushev | Parabolic contractions of semisimple Lie algebras and their invariants[END_REF]. Let g be a reductive Lie algebra and p a parabolic subalgebra of g. Denote by n the nilradical of p and n -the nilradical of the opposite parabolic subalgebra of p so that, if l is a Levi factor of p, one has g = n ⊕ l ⊕ n -. Then p = n ⊕ l thus g = p ⊕ n -. Define q = p (n -) a the parabolic contraction of g by p. Here, (n -) a is the vector subspace n - seen as an abelian ideal27 of q as well as a p-module with the identification n -g / p. One can see this Lie algebra as an Inönu-Wigner contraction28 of g. For every t = 0, let c t : g → g be the automorphism of K-vector space defined by

∀p ∈ p, ∀n ∈ n -, c t (p + n) = p + tn.
Define then g (t) the Lie algebra equal to g as vector space, with its Lie bracket defined as

∀q, q ∈ g (t) , [q, q ] g (t) = c -1 t ([c t (q), c t (q )] g ).
The limit, when t goes to 0, of the Lie algebras29 g (t) gives the parabolic contraction q.

25 following Borho, Gabriel and Rentschler in the nilpotent case

From these parabolic contractions, Feigin defines flag variety degenerations and studies them combinatorially in detail. With these degenerations, he gets a combinatorial link with the sequence of Genocchi numbers [START_REF] Feigin | The median Genocchi numbers, q-analogues and continued fractions[END_REF].

Other previously studied Lie algebras are similar to some parabolic contractions in particular cases. Lie algebras of the form a a * with a a Lie algebra, are particular cases of Drinfeld doubles (see [START_REF] Drinfel | Quantum groups[END_REF], [START_REF] Etingof | Lectures on Quantum Groups[END_REF] or [20, §3.2]). When a = b is a Borel subalgebra, the quotient of the Lie algebra b b * by its centre 30 is isomorphic to a parabolic contraction by a Borel subalgebra. After the results presented in this dissertation, Bar-Natan and Van der Veen in type A [START_REF] Bar-Natan | An Unexpected Cyclic Symmetry of Iu n[END_REF], then Bulois and Ressayre for a Borel subalgebra in all types [START_REF] Bulois | On the automorphisms of the Drinfel'd double of a Borel Lie subalgebra[END_REF] study the automorphisms of such algebras. For this, Bulois and Ressayre redefine these algebras in the setting of Kac-Moody algebras.

In type A, a parabolic contraction by a Borel subalgebra can be seen as the Lie algebra associated with a Brauer cyclic scheme, introduced by Knutson and Zinn-Justin [24, 1.1 and 2.1]. The Brauer cyclic scheme is defined as the set E of all matrices M with size n × n such that M •M = 0, where • is an associative product which deforms the usual product on matrices. The Lie algebra structure on E associated with the associative product • gives rise to a parabolic contraction by a Borel subalgebra in type A.

Panyushev and Yakimova have also studied other types of contractions, e.g., Z 2 -contractions (see for instance [START_REF] Yakimova | Symmetric invariants of Z 2 -contractions and other semi-direct products[END_REF] and [START_REF] Panyushev | On the coadjoint representation of Z 2 -contractions of reductive Lie algebras[END_REF]), of the form g 0 g 1 where g = g 0 ⊕ g 1 is a Z 2 -grading of a reductive Lie algebra g. More generally, Panyushev and Yakimova are aiming at classifying all Lie algebras of the form g V with g a simple Lie algebra and V a finite-dimensional representation of g such that the associated algebra of invariants is polynomial (e.g., see [START_REF] Panyushev | Semi-Direct Products Involving Sp 2n or Spin n with Free Algebras of Symmetric Invariants[END_REF]).

Algebras of invariants and semi-invariants associated with parabolic contractions

This PhD thesis lies in the continuity of the work of Panyushev and Yakimova concerning the study of Y(q) [START_REF] Panyushev | Parabolic contractions of semisimple Lie algebras and their invariants[END_REF] where q is a parabolic contraction and we use their essential results. According to Panyushev and Yakimova ([31,[START_REF] Bar-Natan | An Unexpected Cyclic Symmetry of Iu n[END_REF]) for a parabolic contraction q, there exists a connected algebraic group Q such that q is its Lie algebra. In [START_REF] Panyushev | Parabolic contractions of semisimple Lie algebras and their invariants[END_REF], they study the polynomiality of the algebras of invariants K[q] Q and K[q * ] Q . Using algebraic geometry31 , Panyushev and Yakimova easily show that K[q] Q is a polynomial algebra. For every parabolic contraction q by a Borel subalgebra, they also show [START_REF] Panyushev | A remarkable contraction of semisimple Lie algebras[END_REF] that K[q * ] Q Y(q) is polynomial (using properties which are specific to the nilradical of a Borel subalgebra). However, studying the algebra Y(q) K[q * ] Q more generally is more involved. Set q a parabolic contraction of a semisimple Lie algebra g by a parabolic subalgebra p and G, P connected algebraic groups such that g, p are the Lie algebras respectively of G, P . From algebraically independent homogeneous generators F 1 , . . . , F n of the algebra Y(g), Panyushev and Yakimova construct some elements F • 1 , . . . , F • n of Y(q) by degenerating F 1 , . . . , F n via c t . These F • 1 , . . . , F • n freely generate Y(q) in the case of a contraction by a Borel subalgebra ; they also are potential candidates to freely generate Y(q) in the general case. To show this last point in the case of any parabolic subalgebra, they use the idea of Kostant-Weierstrass sections and adapt it to the parabolic contractions case. They construct an injection 32 ψ from Y(q) to a certain algebra S(g e ) P e , where e is a nilpotent element of g. The invariants F

• 1 , . . . F • n ∈ Y(q) ⊂ K[q * ]
can then be seen in the algebra S(g e ) P e by setting e F m = ψ(F • m ). In fact, the elements e F m belong to S(g e ) G e = Y(g e ). In types A and C, Panyushev and Yakimova showed that S(g e ) P e = Y(g e ) and that the e F m are algebraically independent and generate Y(g e ) (via their study with Premet [START_REF] Panyushev | On symmetric invariants of centralisers in reductive Lie algebras[END_REF] previously mentioned). Furthermore, in these cases, the restriction map ψ, which was injective, becomes an isomorphism of algebras between Y(q) and Y(g e ). With these latest results, they successfully show that Y(q) is polynomial and generated by F • 1 , . . . F • n . Yakimova has also considered the question of the polynomiality of Sy(q) where q is a parabolic contraction by a Borel subalgebra. In this case, she shows the polynomiality of Sy(q) [38, §5.1]. The proof again uses the family of free generators F • 1 , . . . , F • n of Y(q). She notes emarks that F • n has a unique factorisation as a product of irreducible elements 33 of degree 1, i.e. in q ⊂ S(q). Thus, by replacing F • n in the family F • 1 , . . . , F • n by its irreducible factors, she gets a certain family F, and shows that it freely generates Sy(q). In this thesis, we take this idea of decomposing an invariant into a product of irreducible elements then replacing the invariant with its irreducible factors. The idea is to get a family F which would hopefully freely generate the algebra of semi-invariants . However, to show that F does generate the algebra of semi-invariants, our approach differs from the one of Yakimova. In fact, one of the key points of Yakimova's proof is the explicit computation of what is called a fundamental semi-invariant. This computation is specific to the Borel case and uses the fact that in this specific case, the canonical truncation q Λ is equal to the derived Lie algebra q , so that Sy(q) = Y(q ). Yet if q is any parabolic contraction in type A, the inclusions q ⊆ q Λ ⊆ q are in many cases proper 34 . We think that adapting Yakimova's arguments in a more general setting may be difficult. Also, we considered a proof using Panyushev's theorem 1, with k = q Λ 35 . In this theorem, a crucial hypothesis is the codimension 2 property. This property is verified if and only if the associated fundamental semi-invariant is scalar [START_REF] Joseph | Polynomiality of invariants, unimodularity and adapted pairs[END_REF]. Yet in the case when q is a contraction by a Borel subalgebra b, for which q = q Λ , Yakimova [38, theorem 5.5] shows that, except in type A, the fundamental semi-invariant associated with q Λ is not scalar, so the Lie algebra q Λ does not satisfy the codimension 2 property. Thus a proof using theorem 1 cannot be generalised outside type A.

Main results

We give an outline of the results of this dissertation. Our main result is the following: Main theorem. Let q be a parabolic contraction of a simple Lie algebra g by a parabolic subalgebra p.

( * ) If g is 32 which is a restriction map 33 which are then semi-invariants 34 for q a parabolic contraction of gl n , we compute precisely q Λ in section 3.3 35 remember that Sy(q) = Y(q Λ ) -either of type A, -or of type C with a Levi factor of p of type A, 36then Sy(q) is polynomial.

( * * ) There exists a parabolic contraction q, with g of type C and such that the Levi factor of p is not of type A, for which Sy(q) is not polynomial.

Parabolic contractions of gl n

To show the polynomiality in the ( * ) cases, we rely on the study on the parabolic contractions of gl n , which is the Lie algebra of all matrices with size n. If q is a parabolic contraction of gl n , the polynomiality of Sy(q) is shown in three steps:

• Step 1: finding a specific algebraically independent family F of Sy(q),

• Step 2: showing that F is a transcendence basis of Sy(q),

• Step 3: conclude that Sy(q) = K[F].

Step 1: Any factor of a semi-invariant is still a semi-invariant. Thus, in the same way as Yakimova in the Borel case, we find proper semi-invariants (i.e. with a non-zero weight) by factorising some known invariants. If F m ∈ S(gl n ) is the sum of the principal minors of size m, then F 1 , . . . , F n freely generate Y(gl n ) and F • 1 , . . . , F • n freely generate Y(q) 37 , where f • is the component of f with maximal degree in n -. So firstly, we factorise the F • m (section 3.2). Let l be a Levi factor associated with q. The algebra l is isomorphic to a certain product gl i 1 × . . . × gl is . We say that each gl i k is a block of l, so that s is the number of blocks of l. Two blocks gl i k and gl i k are said to be isomorphic if i k = i k . Also set i max = max k i k the size of the biggest block. For every m ∈ 1, n ,

• if there exists i ∈ {i 1 , . . . , i s } such that m = k min(i k , i), then set r m as the number of blocks of l with size i, i.e. r m = Card({k

| i k = i}),
• otherwise, set r m = 1.

Theorem (see theorem 3.2.2). For every m ∈ 1, n , the invariant F • m is a product of r m nonconstant homogeneous factors, denoted by F m,1 , . . . , F m,rm . These factors are semi-invariants and also verify the following properties: [START_REF] Bar-Natan | An Unexpected Cyclic Symmetry of Iu n[END_REF] 

for all t ∈ 1, r m -1 , F m,t ∈ S(n -),
(2) setting L m := λ m,1 , . . . , λ m,rm for the weights of F m,1 , . . . , F m,rm , one has λ m,1 + . . . + λ m,rm = 0 and L m has rank r m -1,

(3) the vector spaces Vect((λ m,t ) t ) for m ∈ 1, n are in direct sum, [START_REF] Bulois | On the automorphisms of the Drinfel'd double of a Borel Lie subalgebra[END_REF] the family F of all F m,t is algebraically independent.

With this theorem, we get non-trivial factors of F • m if r m ≥ 2, with their weights and their degrees. The decomposition of F • m in the above theorem together with (1) is obtained by a combinatorial study of the invariants F • m (subsection 3.1). We show (2) and (3) by explicitly computing the weights of the semi-invariants F m,t (subsection 3.2.2). This computation also induces (4) with the following general theorem: Theorem (see theorem 3.2.17). Let k be a finite-dimensional Lie algebra. Let d ≥ 1 and (f m ) 1≤m≤d be a family of algebraically independent elements of Y(k). Assume that for every m ∈ 1, d , the invariant f m decomposes into a product of semi-invariants f m = rm t=1 f sm,t m,t with r m ≥ 1, and s m,t ≥ 1 some (setwise) coprime numbers. Also assume that the semi-invariants f m,t verify the following:

• for a fixed m, the family of weights λ m,t of f m,t for t ∈ 1, r m has rank r m -1,

• the sum of the vector spaces Vect ((λ m,t ) 1≤t≤rm ) for m ∈ 1, d is a direct sum.

Then the (f m,t ) 1≤m≤d, 1≤t≤rm are algebraically independent.

Step 2: The next step is to show that F is a transcendence basis of Sy(q). For that purpose, we show that the Gelfand-Kirillov dimension GKdim K[F] of the polynomial algebra K[F] generated by F, is equal to the Gelfand-Kirillov dimension of Sy(q). Since GKdim K[F] is the transcendence degree of the field of fractions of K[F], and since F is algebraically independent, then GKdim K[F] is also the cardinality of F. Thus it is sufficient to show that GKdim Sy(q) = Card(F). We already have GKdim Sy(q) = GKdim Y(q Λ ) = ind q Λ . Then, we compute ind q Λ , which is given by the following theorem: Theorem (see theorem 3.3.1). Let s be the number of blocks of a Levi factor l associated with q and p the number of isomorphism classes of blocks of l. That is, l verifies l gl i 1 × . . . × gl is with Card({i 1 , . . . , i s }) = p. Then

dim q Λ = n 2 -(s -p) and ind q Λ = Card(F) = GKdim(K[F]) = n + (s -p).
To show the above theorem, we use an equality proved by Ooms and van den Bergh [27, Proposition 3.1] dim q + ind q = dim q Λ + ind q Λ .

One has dim q = dim g = n 2 , and Panyushev and Yakimova have shown that ind

q = rg g = n [31, Theorem 3.1]. Also ind q Λ = GKdim Sy(q) ≥ GKdim K[F] = Card F = n + (s -p).
To conclude, we then show that dim q Λ ≥ n 2 -(s -p):

• we start with the inclusion q ⊕ z(q) ⊂ q Λ (where z(q) is the centre of q) which is true for any Lie algebra, this inclusion gives us a vector subspace of q Λ with dimension n 2 -s + 1,

• since the invariants F • m belong to Sy(q) ⊂ S(q Λ ), the p -1 remaining dimensions are given by computing some factors in h Λ (where h Λ := h ∩ q Λ with h a Cartan subalgebra of gl n ) of some terms for well-chosen F • m (section 3.3).

Step 3: It suffices then to show that the F m,t generate Sy(q) (section 3.4). We first show a theorem which can be applied outside the frame of parabolic contractions. 

Theorem

f m = rm t=1 (f m,t ) νm,t (♣)
with ν m,t ∈ N * , assume that for each m, we are in one of the two following cases:

• the decomposition (♣) is trivial, i.e. r m = 1 and ν m,1 = 1, that is f m = f m,1 ,
• the décomposition (♣) is the decomposition of f m as a product of irreducible elements in S(k).

Let f be the set of all f m,t . If GKdim Sy(k) = GKdim K[f ], then the set of weights 38 of Sy(k) is a group and Sy(k) is generated by Y(k) and the elements of f . In particular, if the elements

f m generate Y(k), then Sy(k) = K[f ].
We will show that parabolic contractions q in the ( * ) cases of the main theorem verify the hypotheses from the above theorem, so that in particular, the set of weights of Sy(q) is a group. This is specific to parabolic contractions since such property is not true in general. For instance, for a proper parabolic subalgebra p of a semi-simple Lie algebra g, the set of weights of Sy(p) is not a group (see [13, lemma 4.2.4]).

Under the hypotheses of this theorem, we see that the decomposition of f m is trivial if and only if r m = 1. Moreover, if m is such that r m ≥ 2, then we see that for all t, f m,t is a semiinvariant 39 and has non-zero weight. However in our case, when we obtain a decomposition of F • m = rm t=1 F m,t with r m ≥ 2, we do not know a priori whether all F m,t are indeed irreducible. To show this, we use the more technical following result.

Theorem (see theorem 3.4.13). Let k be a finite-dimensional Lie algebra. Assume that Y(k) is a UFD. Let (f m ) 1≤m≤d be a family of invariants which are irreducible in Y(k), and for every m, assume that f m has a decomposition as

f m = rm t=1 (f m,t ) νm,t with ν m,t ∈ N * . Set f the set of all f m,t and f × the set of f m,t for which r m ≥ 2. Assume that GKdim K[f ] = GKdim Sy(k).
Assume further that the following three hypotheses are satisfied: 38 which is a semi-group in the general case 39 it is a factor of an invariant so a semi-invariant, see proposition 2.2.13 (I) there exists a homomorphism of K-algebras ϑ : S

(k) → Y(k) such that ϑ | Y(k) is an isomor- phism. (II) each f ∈ f × is indivisible in the multiplicative semi-group Sy(k), 40
(III) for each f ∈ f × , there exists a K-algebra A f , which is a UFD, and a K-algebra homomorphism

ϑ f : Sy(k) → A f such that ϑ f (f ) is not invertible in A f and such that ϑ f (f ) is coprime to every ϑ f (g) for all g ∈ f × \ {f }. then the f m,t in f × are irreducible in S(k).
To conclude that Sy(q) = K[F] in the case of a parabolic contraction q of gl n with the semiinvariants F m,t we constructed in step 1, we show that the three hypotheses (I), (II) and (III) are satisfied.

For the hypothesis (II), we show that the semi-invariants F m,t for r m ≥ 2 are indivisible by noting that they have degree 1 in some e v,w where (e v,w ) 1≤v,w≤n is the canonical basis of gl n .

Recall that the algebras S(k) and K[k * ] are isomorphic. In the same way, if A is a Kalgebra, the A-algebras A ⊗ K S(k) and A[A ⊗ K k * ] are naturally isomorphic, which allows to write f (q) ∈ A where f ∈ A ⊗ K S(k) and q ∈ A ⊗ K k * . For hypotheses (I) and (III), in fact we show some stronger hypotheses (I') and (III'), which are more adapted to our case:

(I') there exists g 1 , . . . , g d which freely generate Y(k) and q ∈ K[X 1 , . . . , X d ] ⊗ k * such that for every m ∈ 1, d , one has g m (q) = X m , (III') for all m ∈ 1, d such that r m ≥ 2 and t ∈ 1, r m , there exists q m,t ∈ K[X] ⊗ k * such that deg X f m,t (q m,t ) ≥ 1 and f µ,τ (q m,t ) ∈ K × for (µ, τ ) = (m, t). With (I'), the homomorphism ϑ in (I) is f ∈ S(k) → f (q) ∈ K[X 1 , . . . , X d ] Y(k). The hypothesis (III') is a reformulation of (III) with A f = K[X]
. Note that hypothesis (I') implies the existence of a Kostant-Weierstrass section for Y(q). Proofs of (I'), with the g 1 , . . . , g d being the F • 1 , . . . , F • n , and of (III') are combinatorial and use weighted digraphs41 we call pathways. A pathway is a weighted digraph with set of vertices 1, n and for which there is exactly one arrow going from any vertex x to any vertex y. When we graphically represent a pathway, we only represent arrows with non-zero weights.

Let A = K[X 1 , . . . , X n ]. Fix q ∈ A ⊗ gl * n .
We define a pathway G(q) associated with q with weights belonging to A which we call the graph of q. The pathway G(q) is such that the arrow going from x to y in G(q) has weight e x,y (q). The F • m are sums of terms of the form ± l∈J e l,σ(l) with J a subset of 1, n and σ a permutation of the set J. Thus to compute F • m (q), it suffices to • determine the dicyclic subgraphs of G(q) with length m, i.e. unions of directed cycles in G(q) with disjoint sets of vertices such that the arrows of all considered cycles have a non-zero weight, with the total subgraph having m vertices,

• show that these dicyclic subgraphs are associated with monomials of F • m , i.e. verify that they have the right degree in n -.

For (I'), we choose q such that G(q) is represented graphically as follows:

v 1 v 2 v 3 X 1 1 1 X 2 X 3 . . . 1 v n-1 1 v n 1 X n-1 X n with {v 1 , . . . , v n } = 1, n . If we fix m ∈ 1, n ,
this pathway has a unique dicyclic subgraph of length m, which is the following directed cycle:

v 1 v 2 v 3 1 1 . . . 1 v m-1 1 v m 1 X m
This cycle corresponds to a unique monomial S m of F m . With a good choice of the sequence (v 1 , . . . , v n ), i.e. of the order of the v i , then the monomial S m is a monomial of F • m for every m, so that F • m (q) = S m (q) = X m . For (III'), fix m, t. We take q as constructed above and set X m = X and

X µ = 1 for µ = m, so that F • m (q) = X and F µ,τ (q) ∈ K × for µ = m. With a good choice of the sequence (v 1 , . . . , v n ) among those that satisfy point (I'), we get F m,t (q) ∈ K × X and F µ,τ (q) ∈ K × for (µ, τ ) = (m, t).
With hypotheses (I'), (II) and (III') satisfied, we eventually have Sy(q) = K[F] so F freely generate Sy(q) in type gl n .

Parabolic contractions in type A and C

To show the polynomiality in cases ( * ) of the main theorem, we study the polynomiality of Sy( q) when q is a parabolic contraction of g = sl n or g = sp n (chapter 4). Note that q is a Lie subalgebra of a parabolic contraction q of gl n . To study the polynomiality, an idea is to project on q the results we got on q. Let pr : S(q) → S( q) be a projection such that its restriction pr : q → q is a q-module homomorphism. In the cases we consider here, one has pr(F

• m ) = pr(F m ) • = rm t=1 pr(F m,t ).
In type A (section 4.1), one has g = sl n the Lie algebra of the special linear group, i.e. the set of all matrices of size n with trace zero. We consider the projection pr : S(gl n ) → S(sl n ) coming from the decomposition gl n = sl n ⊕ K id. In this case, we get pr(F • 1 ) = pr(id) = 0, and the pr(F • m ) for m ∈ 2, n freely generate Y( q) according to [START_REF] Panyushev | Parabolic contractions of semisimple Lie algebras and their invariants[END_REF]. The weight of pr(F m,t ) is the weight of F m,t restricted to sl n , and we show that the pr(F m,t ) are again algebraically independent making use of the theorem 3.2.17. We then easily see that the set of pr(F m,t ) provides a transcendence basis of Sy( q). Finally, if x ∈ Sy( q), then x ∈ Sy(q) since K id = z(q), thus x = pr(x) is a polynomial in the F m,t , so it is also a polynomial in the pr(F m,t ).

In type C, the integer n is even and we take g = sp n the Lie algebra of the symplectic group42 . Consider the projection pr : S(gl n ) → S(sp n ) coming from the decomposition gl n = sp n ⊕ sp ⊥ n ⊕ K id where sp ⊥ n ⊂ sl n is the orthogonal of sp n with respect to the Killing form of sl n . In this case, we get pr(F • m ) = 0 for every odd integer m, but the pr(F • m ) for even m ∈ 1, n freely generate Y( q) according to [START_REF] Panyushev | Parabolic contractions of semisimple Lie algebras and their invariants[END_REF].

In the ( * ) case of the main theorem, i.e. when the Levi factor associated with the contraction q has no factor of type C, then the Levi factors l associated with the parabolic contraction q of gl n can be written as l gl i 1 × . . . × gl is with s even (section 4.3). In this case, the proof of the polynomiality of Sy( q) mainly follows the pattern of the type gl n . In q, the decomposition

F • m = rm t=1 F m,t is non-trivial, i.e. such that r m ≥ 2, only if m is even. We then get decompositions pr(F • m ) = ± bm t=1 f sm,t m,t
, where some powers s m,t ≥ 2 appear by gathering the factors that become colinear after projection. Again, we can use theorem 3.2.17 to show that the family f = (f m,t ) m,t of pairwise non colinear semi-invariants is algebraically independent. This family has cardinality n/2 + s/2 = ind q + s/2. Thus dim q Λ ≥ dim q = dim q -s/2 and ind q Λ ≥ ind q + s/2. With Ooms and Van den Bergh's equality (3.15), these inequalities become equalities, so that the family f becomes a trascendence basis of Sy( q). To show that Sy( q) = K[f ], we once again show that the hypotheses (I), (II), and (III) from theorem 3.4.13 are verified, and again, we use the hypotheses (I') and (III') previously mentioned to show (I) and (III).

For (II), we show that most of f m,t 's weights, say λ m,t , are indivisible in the set of weights Λ of Sy( q), i.e. λ m,t / ∈ aΛ for a ≥ 2. In fact, since Λ ⊂ k Z k with k being the fundamental weights of sp n , it is enough to prove that λ m,t is indivisible in k Z k . However, there remain some weights λ m,t which do not verify this last property. In these particular cases, we verify the semi-invariants indivisibility directly by proving that they have degree 1 in certain elements of a basis of sp n .

For (I'), we reuse the notion of pathway, which we modify slightly in type

C. Let A = K[X 1 , . . . , X n/2 ]. Fix q ∈ A ⊗ sp * n .
Define a pathway G(q) with weights in A called the graph of q, such that the arrow from x to y has weight pr(e x,y )(q). This definition implies that all graphs in type C have a symmetry, in that an arrow x → y with non-zero weight in the graph of q implies an arrow n + 1 -y → n + 1 -x with non-zero weight43 . As in type gl n , we then construct an element q such that its graph G(q) has a unique dicyclic subgraph of length m, which is in fact a directed cycle. Said graph has the following representation:

v n v n-1 v n-2 . . . . . . v n/2+2 v n/2+1 v 1 v 2 v 3 v n/2-1 v n/2 1 X 1 X 2 X 3 X n/2-1 X n/2 with {v 1 , . . . , v n } = 1, n .
For (III'), there are not enough sequences (v 1 , . . . , v n ) satisfying (I'), so we cannot proceed as for a parabolic contraction of gl n by simply adapting the q constructed in (I'). Instead we first choose q ∈ q * , such that G(q ) is a dicyclic graph, i.e. a disjoint union of cycles C 1 , . . . , C l . Set S 1 , . . . , S l the associated monomials, and from this choice of cycles we get S j (q ) = 1 for all j and pr(F • µ )(q ) = i j=1 S j (q ) = 1 for every (even) µ verifying r µ ≥ 2, where i is such that µ = k min(i k , i). Fix m, t. To verify (III'), the idea is to modify q by multiplying a term of q by X. If we note q the modified q , we then have S i (q) = X p with p ∈ {1, 2} and S j (q) = 1 for j = i, and so pr(F • m )(q) = X p . Yet we also get pr(F • µ )(q) = X p for µ > m such that r µ ≥ 2, which does not coincide with (III'), unless i = i max := max(i k ) i.e. the maximal size of blocks for the Levi factor l. To avoid this when i = i max , we modify q further and the structure of the cycles C i and C i+1 in the dicyclic graph G(q ), to obtain q which satisfies deg

X pr(F • m )(q) ≥ 1 et deg X pr(F • µ )(q) = 0 for µ = m such that r µ ≥ 2.
By carefully choosing the edges on which we make this modification, the newly constructed q satisfies (III'). Now we prove part ( * * ) of the main theorem. Consider the case where the Levi factor associated with the contraction q has a type C factor, i.e. the case where the Levi factors l associated with the parabolic contraction q of gl n can be written l = gl i 1 × . . . × gl is with s odd. In this case, non-trivial decompositions F • m = rm t=1 F m,t in gl n can occur for some odd m. However, for an odd m, one gets pr(F m ) = 0 thus pr(F • m ) = 0 and there are cases with m odd where pr(F m,t ) = 0 for certain t. In these cases, if we only consider the set of pr(F m,t ) for even m, the resulting family f is not a transcendence basis of Sy( q): some elements are "missing". Take the following example (section 4.3) and consider q the parabolic contraction of gl 8 defined by the following diagram 44 : n - p 44 the full line separates elements ex,y in p from those in n -, and the ex,y between the full line and the dashed line form a basis of a Levi factor l Set q = pr(q) the corresponding parabolic contraction of sp 8 . In this case, we get a decomposition

F • 8 = F 8,1 F 8,2 F 8,3 projecting to pr(F • 8 ) = pr(F 8,1 ) 2 pr(F 8,2
) as well as a decomposition F • 5 = F 5,1 F 5,2 . Projecting the latter decomposition gives pr(F • 5 ) = pr(F 5,1 ) = 0, however pr(F 5,2 ) = pr(e 1,8 ) = 0. Yet pr(F 5,2 ) is not proportional to any pr(F m,t ) with m even. To apply the same pattern of proof as in the previous cases, we would like to find pr(F 5,2 ) as a factor of an invariant, i.e. here a polynomial in pr(F

• 2 ), pr(F • 4 ), pr(F • 6 ), pr(F • 8 
). We find that pr(F 5,2 ) divides pr(F • 8 ) -1 4 pr(F • 4 ) 2 , and we set pr(F

• 8 ) -1 4 pr(F • 4 ) 2 = F pr(F 5,2
). We then show that the family pr(F • 2 ), pr(F • 6 ), pr(F 8,1 ), pr(F 8,2 ), F , pr(F 5,2 ) is algebraically independent by computing their weights, and using the same kind of proof as in the previous cases. We then show that the family pr(F

• 2 ), pr(F • 4 ), pr(F • 6 ), pr(F 8,1
), pr(F 8,2 ), F , pr(F 5,2 ) generates the algebra Sy( q) by verifying hypotheses (I'), (II) et (III) 45 

. Since F pr(F 5,2 ) + 1 4 pr(F • 4 ) 2 = pr(F 8,1 ) 2 pr(F 8,2 ), the algebra Sy( q) = K[pr(F • 2 ), pr(F • 4 ), pr(F • 6 ), pr(F 8,1 ), pr(F 8,2 ), F , pr(F 5,2 )] is isomorphic to the algebra K[X 1 , X 2 , X 3 , X 4 , X 5 , X 6 , X 7 ]/(X 6 X 7 + 1 4 X 2 2 -X 2 4 X 5 ) which is not polynomial.
The phenomenon yielding this counterexample is not isolated. We present in chapter 5 some conjectures in this direction.

Some tracks for parabolic contractions in other types

We discuss in section 5.2 the limits of our approach and some possible tracks to study some cases in other types. The pattern to prove the polynomiality (or not) of the algebra of semiinvariants associated with a parabolic contraction q which we presented here is at least based on the knowledge of a minimal generating family of Y(q). Such family is given in types A and C by Panyushev and Yakimova [START_REF] Panyushev | Parabolic contractions of semisimple Lie algebras and their invariants[END_REF]. In types B and D as well as in exceptional types, this type of study is much harder because we do not know such family. Moreover, some properties of parabolic contractions which are true in types A and C may not be true anymore in types B or D. For instance, one may have pr(F m ) • = pr(F • m ) i.e. pr(F • m ) = 0 while pr(F m ) • = 0, which makes the combinatorial study of the semi-invariants considerably harder.

Conversely, in some cases where the approach of Panyushev and Yakimova failed, we can hope to find a trascendence basis of the algebra of invariants by studying known semi-invariants. For instance, we can use the following proposition which gives the semi-invariants with degree 1 for a parabolic contraction. Proposition (see proposition 5.2.1). Let q = p n -be a parabolic contraction of a simple Lie algebra g associated with a certain Cartan subalgebra, a certain basis π of the associated root system R and a certain subset π π. Set θ the highest root of R. Let e ∈ q be non zero. Then e is a semi-invariant (of degree 1) of S(q) if and only if e ∈ g β , with β ∈ (-π \ -π ) ∪ {θ} such that the vertex associated with -β in the extended Dynkin diagram of R is not linked to any vertex associated with an element of π .

In the example [31, remark 4.6] in type D 6 with π = {α 3 , α 4 , α 5 }, the family pr(F 2 ) • , . . ., pr(F 10 ) • , f • (with f a square root of pr(F 12 )) is not algebraically independent thus is "too small". By studying the semi-invariants of degree 1, we remark that pr(F 4 ) • is in the ideal of S(q) generated by some semi-invariants x 1 , x 2 of degree 1. More explicitly, we get pr(F 4 ) • = x 1 y 1 +x 2 y 2 +x 1 x 2 y 1,2 , where y 1 , y 2 , y 1,2 are semi-invariants and x 1 y 1 , x 2 y 2 , x 1 x 2 y 1,2 are invariants with the same degree and degree in n -as pr(F 4 ) • . With these three invariants, we can hope to get a "wider" family, maybe even an algebraically independent one.

The work of this thesis can be linked to other recently published articles. Recall that we explicitly describe the generators of Sy(q) when Sy(q) is polynomial (with their weights and their degrees) in type A and in type C with a Levi factor of type A. This also seems to give an explicit formula for the generators of the polynomial algebra S(n -) p . This question has been mentioned by Fittouhi and Joseph (see [16, §2.2.3]). Also, according to Joseph and Fittouhi, the number of these generators is equal to the number of hypersurface orbital varieties in the nilradical n of the parabolic subalgebra p (see [16, §2.3.4]). These hypersurface orbital varieties have been described in type A by Joseph and Melnikov [START_REF] Joseph | Quantization of Hypersurface Orbital Varieties in sl n[END_REF] and by Perelman [START_REF] Perelman | Quantization of hypersurface orbital varieties in simple Lie algebras of classical types[END_REF] for the other classical types.

Chapitre 2

Notations, premières définitions 2.1 Notations, définitions générales

On rappelle que K est un corps de caractéristique 0 algébriquement clos. Tous les espaces vectoriels et algèbres considérés ont pour corps de base K. Soit N = {0, 1, 2, . . .} l'ensemble des entiers naturels, Z l'ensemble des entiers relatifs, Q l'ensemble des nombres rationnels. On note

N * = N \{0}. Pour tous a < b dans Z, on note a, b l'ensemble des entiers k tels que a ≤ k ≤ b.
Si a > b, on pose par convention a, b = ∅. Pour un ensemble J fini, on notera son cardinal |J| ou Card(J). On note S(J) l'ensemble des permutations de J, et pour tout k ∈ N * , S k := S 1,k . On note δ le symbole de Kronecker, c'est-à-dire pour tous u, v dans un ensemble E, δ u,v vaut 1 si u = v et 0 sinon. Si R est un anneau, on note R × l'ensemble des éléments inversibles de R.

Pour V un K-espace vectoriel de dimension finie on note dim V la dimension de V , et pour a, b ∈ V , on note a ∝ b s'il existe c ∈ K × tel que a = cb. On note V * le dual de V et S(V ) l'algèbre symétrique de V , qui est une algèbre de polynômes de dim V générateurs. On munit S(V ) de sa structure d'algèbre graduée. Si V 1 et V 2 sont des sous-espaces vectoriels supplémentaires de

V , on note V 1 ⊕ V 2 la somme directe de V 1 et V 2 ainsi que pr V 1 ,V 2 la projection de V sur V 1 parallèlement à V 2 . Si X est un semi-groupe abélien, on dit que x ∈ X est un élément indivisible (ou non divisible) de X si pour tout entier k ≥ 2, on a x / ∈ kX := {kx | x ∈ X }. Si Y est une variété algébrique, on note K[Y ] l'algèbre des fonctions régulières sur Y .
Soit n ∈ N * . Soit g := gl n l'ensemble des matrices de taille n × n à coefficients dans K muni d'une structure d'algèbre de Lie avec le crochet [x, y] = xy -yx (où ici le produit xy est le produit matriciel) pour tous x, y ∈ gl n . On note également g le sous-espace vectoriel de g formé des matrices de diagonale nulle. On fixe I := 1, n , (e p,q ) p,q∈I la base canonique de gl n et (e * p,q ) p,q∈I la base duale de gl * n associée. Pour tous J, J ⊂ I, on note g J,J le sous-espace vectoriel de g = gl n engendré par les e p,q avec p ∈ J, q ∈ J . On note aussi g J := g J,J . Si V est un sous-espace vectoriel de g, on notera V J,J := V ∩ g J,J (et de même que précédemment, V J := V J,J ). Pour J, J ⊂ I de même cardinal, on écrit ∆ J,J ∈ S(gl n ) le mineur associé aux coefficients de ligne J et de colonne J , autrement dit :

∆ J,J = σ∈Bij(J,J ) ε(σ) j∈J e j,σ(j)
(le produit est cette fois-ci le produit tensoriel dans S(gl n )) où Bij(J, J ) est l'ensemble des bijections de J dans J et pour tout σ ∈ Bij(J, J ), on note ε(σ) = ε(σ) = (-1) inv(σ) où inv(σ) est le nombre d'inversions de σ. On note également ∆ J := ∆ J,J . Un mineur principal est un mineur de la forme ∆ J , pour J ⊂ I. On note alors

F j = |J|=j ∆ J .
(2.1)

Soit B une K-algèbre associative, commutative intègre et unitaire, on appelle monôme en

a 1 , . . . , a d ∈ B \{0} une expression de la forme k a r 1 1 . . . a r d d , avec k ∈ K × et r i ∈ N pour tout 1 ≤ i ≤ d. Si P est un polynôme en les a 1 , . . . , a d , qui s'écrit P = r 1 ,...,r d k r 1 ,...,r d a r 1 1 . . . a r d d , on appellera monôme de P (en les a 1 , . . . , a d ) un k (r i ) i a r 1 1 . . . a r d d avec k r 1 ,...,r d = 0. On note également K[a 1 , . . . , a d ] la K-algèbre engendrée par a 1 , . . . , a d .
Soit A une K-algèbre associative commutative unitaire intègre de type fini. La dimension de Gelfand-Kirillov de A, notée GKdim A coïncide avec le degré de transcendance sur K du corps des fractions de A. C'est en particulier le cardinal maximal d'une famille algébriquement indépendante de A. Si a = (a 1 , . . . , a d ) est une famille finie algébriquement indépendante d'éléments de A, la famille a est une base de transcendance de A si d = GKdim A. De manière équivalente, la famille a est une base de transcendance de A si a est algébriquement indépendante et pour tout

x ∈ A, la famille (a 1 , . . . , a d , x) est algébriquement liée. La famille a = (a 1 , . . . , a d ) engendre librement A si a est algébriquement indépendante et A = K[a 1 , . . . , a d ].
En particulier, toute famille engendrant librement A est une base de transcendance de A. On dit qu'une algèbre est polynomiale lorsqu'elle est isomorphe à une algèbre de polynômes, c'est-à-dire lorsqu'elle admet un sous-ensemble fini qui l'engendre librement.

Rappels sur les algèbres de Lie, contractions paraboliques, algèbres d'invariants et de semi-invariants

a φ b comme étant l'espace vectoriel a ⊕ b muni du crochet de Lie défini par :

∀a, a ∈ a, ∀b, b ∈ b, [a + b, a + b ] = [a, a ] + [b, b ] + φ(a)(b ) -φ(a )(b)
En particulier, b est un idéal de a φ b. On note souvent a b pour a φ b lorsqu'il n'y a pas d'ambiguïté sur le morphisme φ.

Contractions paraboliques

Définition 2.2.3. Soit g = g ⊕ z(g) une algèbre de Lie réductive de crochet de Lie [ , ] g , et h := h ss ⊕ z(g) une sous-algèbre de Cartan de g. Soit R le système de racines associé à (g , h ss ), et π une base de R.

Pour tout β ∈ R, on note g β = {x ∈ g : ∀h ∈ h, [h, x] g = β(h)x}. On note R = R + R -la décomposition de R en racines positives et négatives induite par π. Soit π ⊂ π.
On note R π le sous-système de racines de R engendré par π , et R π = R + π R - π la décomposition en racines positives et négatives induite par π . Soit p = β∈R + R - π g β ⊕ h. On dit que p est la sous-algèbre parabolique associée à h, π et π . On appelle sous-algèbre parabolique de g une sous-algèbre de Lie de g ainsi définie pour certains choix de h et π . Soit

n + = β∈R + \R + π g β et n -= β∈R -\R - π g β . On a g = p ⊕ n -. Soit (n -) a l'espace vectoriel n -muni d'une structure
d'algèbre de Lie abélienne. On définit alors q := p (n -) a la contraction parabolique de g par p, où le produit semi-direct découle du morphisme φ : p → Der (n -) a End n -défini par

φ(p)(n) = p n = [p, n] q = pr n -,p ([p, n] g ), p ∈ p, n ∈ n -.
Pour des raisons pratiques, on omettra souvent l'exposant ( ) a de l'algèbre de Lie (n -) a et on notera simplement cette algèbre de Lie n -. Pour tous p 1 , p 2 ∈ p, n 1 , n 2 ∈ n -, on a donc :

[p 1 , p 2 ] q = [p 1 , p 2 ] g , [p 1 , n 1 ] q = pr n -,p ([p 1 , n 1 ] g ) , [n 1 , n 2 ] q = 0.
On remarque en particulier que pour tout h ∈ h et tout x ∈ g, on a [h, x] q = [h, x] g . On appelle contraction parabolique de g toute construction d'un tel q pour tout choix de sous-algèbre parabolique p, c'est-à-dire à conjugaison près, pour tout choix de π ⊂ π.

Remarque 2.2.4. L'algèbre de Lie q n'est en général pas réductive. La sous-algèbre n -est un idéal abélien de q. Les espaces vectoriels q et g sont égaux et ont la même structure de h-module.

Un calcul simple donne q = p n -.

Propriété 2.2.5 (Panyushev,Yakimova [31]). Une contraction parabolique q d'une algèbre réductive g est algébrique, c'est-à-dire l'algèbre de Lie d'un groupe algébrique Q.

Théorème 2.2.6 (Panyushev, Yakimova [START_REF] Panyushev | Parabolic contractions of semisimple Lie algebras and their invariants[END_REF]). Pour toute contraction parabolique q d'une algèbre de Lie réductive g, l'indice de q est égal au rang de g.

On définit certains cas particuliers importants de contractions paraboliques.

Définition 2.2.7. On prend g = gl n et h ⊂ g l'ensemble des matrices diagonales, qui est une sous-algèbre de Cartan de g. On a gl n = sl n := {x ∈ gl n | tr(x) = 0} (où tr(x) désigne la trace de x) et z(gl n ) = K id (où id est la matrice identité). On note h A := h ∩ g (qu'on a noté h ss dans la définition 2.2.3). Pour tout ∈ 1, n -1 , soit h = e , -e +1, +1 et ∈ (h A ) * le poids fondamental associé à h , c'est-à-dire que la base ( ) est la base de (h A ) * duale de la base (h ) de h A . On étend alors ces poids fondamentaux à des éléments de g * en posant pour tout , ( ) | g⊕K id = 0 où g est l'ensemble des matrices de diagonale nulle. Par convention, on pose également 0 = n = 0. On note ( i ) i∈ 1,n la base de h * duale de la base (e i,i ) i∈ 1,n de h,

et pour i ∈ 1, n -1 , on note α i = i -i+1 . On considère la base π = {α 1 , . . . , α n-1 } de R.
Soit π ⊂ π. Soit p la sous-algèbre parabolique associée à h, π et π . On appelle sous-algèbre parabolique standard une sous-algèbre parabolique définie dans ces conditions. On appelle également contraction parabolique standard de g une contraction parabolique de g par une sous-algèbre parabolique standard.

Propriété 2.2.8. Toute contraction parabolique de g = gl n est la conjuguée d'une contraction parabolique standard de g.

Jusqu'à la fin du chapitre 4, p désignera une sous-algèbre parabolique standard et q une contraction parabolique de g par p, et on reprendra souvent les notations de la définition 2.2.7. On choisit la sous-algèbre parabolique p propre, autrement dit π = π. En particulier, on a n ≥ 2.

Algèbres d'invariants et de semi-invariants

On reprend k une algèbre de Lie quelconque de dimension finie. L'action adjointe de k s'étend en une unique action d'algèbre de Lie de k sur son algèbre symétrique S(k). On note q • f si q ∈ k et f ∈ S(k) pour désigner cette action. On rappelle que cette action d'algèbre de Lie est caractérisée par les points suivants :

• pour q, f ∈ k, on a q • f = [q, f ],
• pour tout q ∈ k, l'application f ∈ S(k) → q • f est une dérivation de S(k).

Désormais, lorsqu'il n'y a pas de précision, si q 1 , q 2 ∈ k, le produit q 1 q 2 sera le produit dans l'algèbre commutative S(k), à ne pas confondre avec un éventuel produit associatif dans le cas où k est une sous-algèbre de Lie de g = gl n . Définition 2.2.9. On définit l'algèbre des invariants de S(k) comme la sous-algèbre Y Remarque 2.2.12. Si q est une contraction parabolique définie comme à la définition 2.2.3, alors Λ(q) ⊂ (h ss ) * (la notation h ss a été introduite dans la définition 2.2.3).

(k) ⊂ S(k) définie Y(k) = {s ∈ S(k) | ∀q ∈ k, q • s = 0}. Un élément de Y(k) est appelé invariant de S(k). Définition-Propriété 2.2.10. Pour λ ∈ k * , soit S(k) λ = {s ∈ S(k) | ∀q ∈ k, q • s = λ(q)s}. On appelle semi-invariant de S(k) un élément f non nul appartenant à S(k) λ pour un certain λ ∈ k * ,
La proposition suivante a été montrée par Moeglin ([26]). Proposition 2.2.13. Soit f ∈ S(k) un semi-invariant non nul, alors tout facteur de f est un semi-invariant.

On donne une démonstration élémentaire pour le lecteur.

Démonstration. On peut supposer que f est non constant. Par factorialité de S(k), f s'écrit

f = d u=1 f pu u ,
avec les f u ∈ S(k) irréductibles premiers entre eux deux à deux, et p u ∈ N * . Comme tout produit de semi-invariants est un semi-invariant par la propriété 2.2.11, il suffit de montrer que chaque f u est un semi-invariant et donc de montrer que :

(1) si g, h sont non nuls et premiers entre eux et gh est un semi-invariant, alors g et h sont des semi-invariants,

(2) si g p , avec p ∈ N * et g = 0, est un semi-invariant, alors g est un semi-invariant.

Pour (1), supposons gh de poids λ alors pour tout q ∈ k,

q • (gh) = λ(q) gh = (q • g) h + g (q • h). Ainsi (λ(q) g -q • g) h = g (q • h). Puisque g et h sont premiers entre eux, h divise q • h. Or deg(q•h) ≤ deg(h) donc il existe µ ∈ k * tel que q•h = µ(q) h et on obtient alors q•g = (λ-µ)(q) g.
Pour (2), supposons g p de poids λ, alors pour tout q ∈ q q • g p = λ(q)g p = p (q • g) g p-1 , d'où q • g = λ(q) p g. 

Troncation canonique et ad-algébricité

)s = [x, y] • s = (x • (y • s)) -(y • (x • s)) = (λ(x)λ(y) -λ(y)λ(x))s = 0. Si x ∈ z(k), on a λ(x)s = x • s = 0 donc λ(x) = 0.
La définition suivante est tirée de [35, 24.8 

(k) = Y(k Λ ) = Sy(k Λ ).
En particulier, dans le cas où q est une contraction parabolique d'une algèbre de Lie réductive, q est ad-algebrique (par [20, §2.4.5], voir également [11, chap. I, Sec. B, 6.3]). On a donc Sy(q) = Sy(q Λ ) = Y(q Λ ). De plus, par un résultat de Chevalley et Dixmier [7, lemme 7], qui est un cas particulier d'un théorème de Rosenlicht [START_REF] Rosenlicht | A remark on quotient spaces[END_REF], on a degtr Frac(Y(q Λ )) ≤ degtr (Frac(S(q Λ ))) q Λ = ind q Λ . Comme Y(q Λ ) = Sy(q Λ ), on a (voir [11, Chap. I, Sec. B, 5.12]) Théorème 2.3.5. GKdim Sy(q) = GKdim Y(q Λ ) = ind q Λ . Chapitre 3

Polynomialité de l'algèbre des semi-invariants associée à une contraction parabolique de gl n

On rappelle que q = p n -est une contraction parabolique standard de gl n .

Propriétés relatives à une contraction parabolique

Dans cette section, on développe une combinatoire sur la contraction parabolique qui permettra d'exhiber des semi-invariants comme facteurs d'invariants symétriques.

Combinatoire de la contraction parabolique

Sous les notations de la section 2.1 et la définition 2.2.7, on introduit les notations suivantes qui seront utiles pour la suite.

Notation 3.1.1. On rappelle que g = gl n et I = 1, n avec n ≥ 2. • On pose π \ π = {α ι 1 , . . . , α ι s-1 } avec s ≥ 2, et I p = {0 = ι 0 < ι 1 < . . . < ι s-1 < ι s = n}. Pour tout k ∈ 1, s , on note I k = ι k-1 +1, ι k . On obtient alors une partition I = I 1 . . . I s , telle que l := g I 1 × . . . × g Is est un facteur de Levi de p. Soit i k = Card I k = ι k -ι k-1 , de sorte que n = i 1 + . . . + i s et g I k gl i k ; on note également i max := max 1≤k≤s (i k ). On note µ 1 + . . . + µ imax = n la partition duale de (i k ). Pour tout x ∈ 1, n , on note k(x) l'unique indice de 1, s tel que x ∈ I k(x) et i(x) = Card(I k(x) ). Pour tout i ∈ N, on pose K(i) = {k ∈ 1, s | i k ≥ i}. Les K(i), 1 ≤ i ≤ i max ont pour cardinal µ i et forment une suite décroissante (pour l'inclusion) de parties de 1, s . On note κ i = {k i,1 < . . . < k i,ρ i } l'ensemble des k tels que i k = i, c'est-à-dire κ i = K(i) \ K(i + 1).
• Pour tout J ⊂ I, l'algèbre p J = p ∩ g J est une sous-algèbre parabolique de g J . On note alors J k = J ∩ I k pour tout k, de sorte que J = J 1 . . . J s . On appelle partition de J (associée à p J ) cette partition, et les J k sont les parts de cette partition. On pose

j k = Card J k , d'où Card J = j 1 + . . . + j s . Si L ⊂ 1, s , on note J L := k∈L J k . • Pour tout i ∈ 0, i max , on note ρ i = Card κ i = Card({k ∈ 1, s | i k = i}) et m i = imax =1 ρ min(i, ) = s k=1 min(i, i k ).
On pose I l'ensemble des i tels que ρ i ≥ 1. Soit M k l'ensemble des m i tels que ρ i ≥ k. La famille des M k forme une suite décroissante de sous-ensembles de 0, n . On a en particulier 

-M 0 l'ensemble des m i pour i ∈ 0, i max , -M 1 l'ensemble des m i pour i ∈ I, -M 2 l'ensemble des m i avec i ∈ I et ρ i ≥ 2.
n - p g I 1 g I 2 g I 3 g I 4 g I 5
L'algèbre de Lie l = gl 4 × gl 1 × gl 4 × gl 2 × gl 1 est un facteur de Levi de p. On a alors

I = {1, 2, 4} et (i 1 , i 2 , i 3 , i 4 , i 5 ) = (4, 1, 4, 2, 1). Ainsi la partition duale est (µ 1 , µ 2 , µ 3 , µ 4 ) = (5, 3, 2, 2), d'où m 1 = 5, m 2 = 8 et m 4 = 12. Remarquons que 3 / ∈ I, et donc que m 3 = 10 n'est pas dans M 1 . On a K(0) = K(1) = {1, 2, 3, 4, 5}, K(2) = {1, 3, 4}, K(3) = K(4) = {1, 3}, et κ 1 = {2, 5}, κ 2 = {4}, κ 4 = {1, 3}.
On représente p comme suit :

4 1 4 2 1
Le nombres de cases de la ligne k est égal à i k . Par exemple, on représente i 1 = 4 par les quatre cases de la première ligne. On obtient une bijection entre les sous-algèbres paraboliques standards p de gl n et de tels diagrammes à n cases. On lit alors l'élément µ i de la partition duale en comptant le nombre de cases sur la i ème colonne.

On peut aussi représenter tous les J ⊂ I. Prenons par exemple J = {2, 3, 6, 7, 9, 10}. On a J 1 = {2, 3}, J 2 = ∅, J 3 = {6, 7, 9}, J 4 = {10}, J 5 = ∅. On représente J en remplissant la ligne k du tableau par les éléments de J k , de la gauche vers la droite. Dans notre exemple, cela donne (1) On a ρ 0 = m 0 = 0,

m 1 = s et m imax = n. Pour tout i, l'entier ρ i est non nul si et seulement si il existe k tel que Card(I k ) = i. (2) L'application i ∈ 0, i max → m i ∈ M 0 est bijective croissante. En particulier, |I| = |M 1 |. (3) Pour tout i, on a |K(i)| = m i -m i-1 , (4) Pour tout i ∈ 1, i max , on a m i -m i-1 = Card({k | i k ≥ i }) > 0. Ainsi pour tout i ∈ 1, i max -1 , on a m i+1 -m i = m i -m i-1 si i / ∈ I, m i+1 -m i < m i -m i-1 si i ∈ I. En particulier, la suite (m i -m i-1 ) est décroissante. (5) Si m ∈ M 1 , alors m -1 / ∈ M 0 , sauf dans le cas où m = m imax = n et n / ∈ M 2 , (6) Pour tout i, on a K(i + 1) = K(i) \ κ i .
Preuve de [START_REF] Charbonnel | The symmetric invariants of centralizers and Slodowy grading[END_REF].

Si m ∈ M 1 et m = n, alors m = m i avec i ∈ I \ {i max }. Donc par le point (4), on a m i -m i-1 > m i+1 -m i ≥ 1, d'où m i -m i-1 ≥ 2. En particulier, par le point (2), m i -1 = m -1 / ∈ M 0 . Si i = i max et n = m imax ∈ M 2 , alors on a également m i -m i-1 = Card({k | i k ≥ i }) ≥ 2 par définition de M 2 . Notation 3.1.5. Soient x, y ∈ 1, n . On définit alors • une relation d'équivalence par x ∼ y si k(x) = k(y), on note également x y si k(x) = k(y),
• un préordre x y si k(x) ≤ k(y), on note également x ≺ y si k(x) < k(y) ; on pourra également noter la relation dans l'autre sens. Propriété 3.1.6. Soient x, y ∈ 1, n . On a x ≤ y ⇒ x y et x ≺ y ⇒ x < y, les réciproques de ces implications étant fausses en général. Propriété 3.1.7. Soit p, q ∈ 1, n . Alors e p,q appartient à n -(respectivement à p) si et seulement si p q (respectivement p q).

Degrés en n -des F j et mineurs de taille j de degré maximal en n -

On rappelle que pour tout j ∈ 1, n , on note F j la somme des mineurs principaux de taille j (voir équation (2.1)). Ces F j pour j ∈ 1, n engendrent librement Y(gl n ) et vont jouer un rôle crucial dans la description de l'algèbre des invariants symétriques Y(q) (voir proposition 3.1.28). Définition 3.1.8.

• Soit N un sous-espace vectoriel de gl n engendré par des éléments de la base canonique (e i,j ) 1≤i,j≤n . Pour un monôme de la forme a e i 1 ,j 1 . . . e ir,jr ∈ S(gl n ) avec a ∈ K × , son degré en N , noté deg N (a e i 1 ,j 1 . . . e ir,jr ), est le nombre de k tels que e i k ,j k est dans N (on pose par convention deg N (0) = -∞). On pose deg ev,w pour deg K ev,w . Si F ∈ S(q) est une somme de tels monômes linéairement indépendants, le degré deg N (F ) de F en N est défini comme le maximum des degrés en N de ses monômes. On dit que F est homogène en N lorsque tous ses monômes sont de même degré en N . On dit que F est bihomogène en N lorsque F est homogène pour le degré total sur S(q) et homogène en N .

• Pour F ∈ S(q), on note F • ∈ S(q) la composante de plus haut degré en n -de F , c'est-à-dire la somme de ses monômes de degré maximal en n -.

• Pour F ∈ S(q) bihomogène en n -, on appelle bidegré (en Propriété 3.1.9.

p et n -) de F le couple (deg p F, deg n -F ),
(1) Soient F, F ∈ S(q) bihomogènes en n -. Les conditions suivantes sont alors équivalentes :

(a) bideg F = bideg F , (b) (deg F, deg n -F ) = (deg F , deg n -F ), (c) (deg F, deg p F ) = (deg F , deg p F ).
(2) Pour tous

F 1 , F 2 ∈ S(q), on a (F 1 F 2 ) • = F • 1 F • 2 .
Dans toute la suite, on va chercher à calculer les F • j . Cela nécessite de connaître les degrés en n -des F j . Pour les calculer, on a besoin de déterminer les degrés en n -des mineurs principaux. Lemme 3.1.10. On se place sous les notations de 3.1.1. Soit J ⊂ I. On rappelle que ∆ J = σ∈S J ε(σ) ∈J e ,σ( ) . Alors le degré en n -de ∆ J est égal à |J| -max(j k ).

Remarque 3.1.11. Comme les l∈J e l,σ(l) σ∈S J sont linéairement indépendants, on a

deg n -∆ J = max σ∈S J   deg n -   l∈J e l,σ(l)     .
Autrement dit, le degré en n -de ∆ J est le maximum sur l'ensemble des σ ∈ S J du nombre de e l,σ(l) dans n -.

Exemple 3.1.12. On reprend l'exemple 3.1.2 et le sous-ensemble J ⊂ I représenté par le diagramme suivant. On a |J| = 6, et max k j k correspond à la dernière colonne dont au moins une case est remplie (lorsqu'on observe les colonnes du diagramme de la gauche vers la droite), ici il s'agit de la 3 ème colonne. Ainsi deg n -∆ J = 6 -3 = 3.

Notation 3.1.13. Soit J ⊂ I, j = Card(J). Soit θ J l'unique bijection strictement croissante de J dans 1, j . Cette bijection induit un isomorphisme d'algèbres de Lie Θ J : g J → gl j .

Preuve du lemme 3.1.10. Comme deg n -∆ J = deg n - J ∆ J , il suffit de travailler sur g J . La bijection θ J et l'isomorphisme Θ J permettent alors de se ramener au cas où J = 1, j . Sans perdre de généralité, on supposera donc dans la suite que J = I. En particulier, ∆ J =: ∆ est simplement le déterminant sur g, j = n et pour tout k, on a

j k = i k . Soit k 0 ∈ κ imax (c'est-à-dire tel que i k 0 = i max ). Le déterminant ∆ est donné par : ∆ = σ∈Sn ε(σ) e 1,σ(1) . . . e n,σ(n) .
Chaque e p,q appartient soit à p, soit à n -. En particulier, par la propriété 3.1.7, tout élément de la forme e p,q avec p -q = i max est dans n -; en effet, p > q donc p q, et tout

I k est de la forme a k , b k avec b k -a k = i k -1 ≤ i max -1, donc p q.
Ainsi les éléments e imax+1,1 , . . . , e n,n-imax sont bien dans n -. Puisque les termes e 1,n-imax+1 , . . . , e imax,n ne sont pas dans n -(ils sont de la forme e p,q avec p < q), le monôme e imax+1,1 . . . e n,n-imax e 1,n-imax+1 . . . e imax,n , qui (au signe près) est un monôme de ∆, est de degré n -i max en n -.

Montrons maintenant que ce degré est maximal sur les monômes de ∆. Soit σ ∈ S n . Le produit e 1,σ(1) . . . e n,σ(n) est (au signe près) un monôme de ∆. Supposons que e l,σ(l) , e l ,σ(l ) ∈ n - avec l < l et σ(l) > σ(l ). Alors on a l > l σ(l) > σ(l ). Ainsi, avec les propriétés 3.1.6 et 3.1.7, en prenant τ = (σ(l) σ(l )), on a également e l,τ σ(l) , e l ,τ σ(l ) ∈ n -. Ceci implique par récurrence qu'il existe σ ∈ S n vérifiant les deux conditions suivantes :

• le monôme e 1,σ (1) . . . e n,σ (n) est de même degré en n -que e 1,σ(1) . . . e n,σ(n) ,

• si e l 1 ,σ (l 1 ) , . . . , e l d ,σ (l d ) avec l 1 < . . . < l d est l'ensemble des e l,σ (l) dans n -, alors l'application σ |{l 1 ,...,l d } est strictement croissante.

On considère de tels l 1 < . 

(l t ) ∈ k 0 -1 k=1 I k . Alors, par croissance de σ , on a {σ (l 1 ), . . . , σ (l t )} ⊂ k 0 -1 k=1 I k . En prenant les cardinaux, on obtient t ≤ k 0 -1 k=1 i k . Finalement, d = t + (d -t) ≤ k 0 -1 k=1 i k + s k=k 0 +1 i k = n -i k 0 = n -i max .
Remarque 

F 1 = 0 et pour tout j ∈ 1, n -1 , deg n -F j+1 = deg n -F j si j = m i , i ∈ 0, i max -1 , deg n -F j + 1 sinon. (3.1)
Démonstration. On note i l'unique entier de 1, i max tel que m i-1 < j ≤ m i . Pour le deuxième point, on a F 1 = id de degré 0 en n -(puisque h ∩ n -= {0}), donc la relation de récurrence est une conséquence du premier point. Par la remarque 3.1.14, il s'agit de montrer que pour tout J de cardinal j, on a max (j k ) ≥ i et qu'il existe J pour lequel l'égalité est vérifiée (voir 3.1.17).

Soit J ⊂ I de cardinal j. Si max(j k ) < i, alors pour tout k, on a

j k ≤ i -1. Comme par définition, j k ≤ i k , on a j k ≤ min(i -1, i k ). Ainsi j = s k=1 j k ≤ s k=1 min(i -1, i k ) = m i-1 < j, ( 3.2) 
ce qui est absurde.

Définition-Propriété 3.1.17. Soit i l'unique entier de

1, i max tel que m i-1 < j ≤ m i . On a j -m i-1 ≤ Card({k ∈ 1, s | i k ≥ i}). Soit K ⊂ {k ∈ 1, s | i k ≥ i} de cardinal j -m i-1 .
Soit alors un sous-ensemble J ⊂ I défini par les choix de J k suivants :

• si k / ∈ K, on choisit J k ⊂ I k de cardinal min(i -1, i k ), • si k ∈ K, on choisit J k ⊂ I k de cardinal i.
On note J (j) l'ensemble des J ⊂ I ainsi définis, pour tous choix de K et de

J k pour k ∈ 1, s . Pour tout J ∈ J (j), on a Card(J) = j et max(j k ) = i. En particulier, pour tout J ∈ J (j), on a deg n -∆ J = deg n -F j = j -i.
Exemple 3.1.18. Si l'on reprend l'exemple de la contraction parabolique introduite en 3.1.2 avec j = 7, puisque (m 0 , m 1 , m 2 , m 3 , m 4 ) = (0, 5, 8, 10, 12), on a m 1 < j ≤ m 2 donc i = 2. Ainsi, on choisit K ⊂ {1, 3, 4} de cardinal 7 -5 = 2. L'ensemble J (7) correspond en fait à l'ensemble des J ⊂ I de cardinal 7 dont le diagramme a la première colonne entièrement remplie et 2 cases (qui correspondent aux lignes indicées par l'ensemble K) sont remplies sur la deuxième colonne. Autrement dit, J (7) correspond à tous les J qui sont de l'un des trois types suivants :

4 1 4 2 1 4 1 4 2 1 4 1 4 2 1
Démonstration de la définition-propriété 3.1.17.

• On a j -

m i-1 ≤ Card({k ∈ 1, s | i k ≥ i}). En effet, par hypothèse sur i, on a 0 < j -m i-1 ≤ m i -m i-1 = Card({k ∈ 1, s | i k ≥ i})
par la propriété 3.1.4.

• Pour tout J ∈ J (j), on a Card(J) = j. En effet,

Card(J) = s k=1 j k = k∈K i + k / ∈K min(i -1, i k ) = k∈K 1 + k∈K (i -1) + k / ∈K min(i -1, i k ) = Card(K) + k∈K min(i -1, i k ) + k / ∈K min(i -1, i k ) = Card(K) + s k=1 min(i -1, i k ) = (j -m i-1 ) + m i-1 = j.
Par construction, pour de tels J, on a alors max(j k ) = i.

Ceci conclut donc la démonstration du corollaire 3.1.16.

Exemple 3.1.19. Appliquons la définition-propriété 3.1.17 à deux cas particuliers.

• Pour m = m i ∈ M 0 non nul, on a m -deg n -F m = i (corollaire 3.1.16). Comme m - m i-1 = Card({k | i k ≥ i}) (propriété 3.1.4), l'ensemble J est dans J (m) si et seulement si j k = min(i, i k ) pour tout k ∈ 1, s . • Supposons que m = m i ∈ M 0 \ {n}. On a m + 1 -deg n -F m+1 = i + 1 (corollaire 3.1.16).
Dans ce cas, l'ensemble J ⊂ I appartient à J (m + 1) si et seulement si les conditions suivantes sont vérifiées (définition 3.1.17) :

il existe un unique k J tel que

j k J = i + 1 ≤ i k J , -pour tout k = k J , j k = min(i, i k ). Corollaire 3.1.20. Soit i ∈ 1, i max et m := m i .
(1) Soit J ⊂ I de cardinal m. On a max(j k ) ≥ i. Alors l'ensemble J est dans J (m) si et seulement si max(j k ) = i.

(2) Si J ∈ J (m + 1), alors pour tout l ∈ J k J (notation de l'exemple 3.1.19), on a J \ {l} ∈ J (m). Inversement, si J ∈ J (m), m = n, alors pour tout l ∈ I \ J, J {l} ∈ J (m + 1).

Démonstration. Le point (2) est clair. Montrons le point [START_REF] Bar-Natan | An Unexpected Cyclic Symmetry of Iu n[END_REF]. Comme dans la démonstration du corollaire 3.1.16 (voir équation 3.2), on montre que max(j k ) ≥ i. Si J ∈ J (m), alors max(j k ) = i par construction. Il reste à montrer la réciproque. Si max(j k ) = i, on a j k ≤ i pour tout k. Comme

J k ⊂ I k , on a j k ≤ i k , d'où j k ≤ min(i, i k ). Puisque k j k = m = k min(i, i k ), ceci implique que j k = min(i, i k ) pour tout k, c'est-à-dire J ∈ J (m) (exemple 3.1.19).
Notation 3.1.21. Soit k ∈ 1, s , et j ∈ 1, n . On note J (j) k , ou plutôt J k quand il n'y aura pas d'ambiguïté sur j, l'ensemble des J k = J ∩ I k pour J ∈ J (j). En particulier, par l'exemple Il s'agit également du seul type de sous-ensembles J ⊂ I de cardinal 8 qui vérifie max(j k ) = 2.

3.1.19, pour tout m = m i ∈ M 0 , on a J (m) k = {J k ⊂ I k | |J k | = min(i, i k )} pour tout k ∈ 1, s , et on a une bijection s k=1 J (m) k -→ J (m) (J k ) 1≤k≤s -→ s k=1 J k Exemple 3.
Ceci implique que pour J ∈ J (8), le choix des indices pour les cases d'une certaine ligne (donc d'un certain J k ) ne dépend pas du choix fait sur les autres lignes (donc des autres J k ), puisque les cardinaux des J k sont fixés.

Au contraire, dans un cas où l'on regarde J (j) avec j / ∈ M 0 , par exemple J (9), il existe plusieurs types de diagramme possibles pour J : 

Les F •

m engendrent librement Y(q) Définition 3.1.23. Soit q = p n -une contraction parabolique standard de gl n . Soit p A = p ∩ sl n (on a n -⊂ sl n ). On pose alors q A = p A n -. L'algèbre de Lie q A est la contraction parabolique standard de sl n associée à q. Son crochet de Lie

[ , ] q A vérifie [x, y] q A = [x, y] q pour tous x, y ∈ q A .
Comme dans gl n , toute contraction parabolique de sl n est la conjuguée d'une contraction parabolique standard de sl n . Dans la suite, on posera toujours q A la contraction parabolique standard de sl n associée à q. Définition 3.1.24. Soit pr A : gl n → sl n la projection sur sl n parallèlement à K id. La projection pr A s'étend en un unique morphisme d'algèbres graduées pr A : S(gl n ) → S(sl n ), qui est la projection sur S(sl n ) parallèlement à S(gl n ) id. On note aussi F j := pr A (F j ) pour tout j ∈ 2, n . Propriété 3.1.25. La projection pr A vue de q dans q A (qui sont égales respectivement à gl n et sl n comme espaces vectoriels) est un morphisme de q A -modules.

Démonstration. Soient q 1 ∈ q A et q 2 = pr A (q 2 ) + x id ∈ q, avec x ∈ K. On a

pr A ([q 1 , q 2 ] q ) = pr A ([q 1 , pr A (q 2 )] q + x[q 1 , id] q ) = pr A ([q 1 , pr A (q 2 )] q ) = [q 1 , pr A (q 2 )] q A Propriété 3.1.26. Pour tout j ∈ 2, n , on a F • j := pr A (F j ) • = pr A (F • j ).
Démonstration. On pose = F • j . En projetant l'équation (3.3), on obtient

F j = d k=0 F (k) j , ( 3.3 
F j := pr A (F j ) = d k=0 pr A F (k) j .
Pour tout s ∈ S(q) non nul bihomogène en n -, on a soit deg n -pr A (s) = deg n -s, soit pr A (s) = 0. Il s'agit donc de montrer que pr A F (d) j

= pr A F • j = 0. Autrement dit, il s'agit de montrer que F • j / ∈ S(gl n ) id. Puisque pr A stabilise S(gl n ) h et est l'identité sur S( g), où g est l'ensemble des matrices de diagonale nulle, il suffit de montrer que F • j a une composante dans S( g). Comme les monômes de F j , a fortiori de F • j sont linéairement indépendants, il suffit de montrer qu'il existe un monôme de F • j qui est dans S( g). Or, si ∆ J est un mineur de taille j de degré maximal en n -, on peut exhiber un monôme de ∆ J qui soit dans S( g), de la même manière que dans la démonstration du lemme 3.1.10. Théorème 3.1.27 (Panyushev, Yakimova).

Les F • j , 2 ≤ j ≤ n engendrent librement Y(q A ) ([31], théorème 5.1). Proposition 3.1.28. Les F • j , 1 ≤ j ≤ n engendrent librement Y(q).
Démonstration. Par une démonstration analogue à [START_REF] Panyushev | A remarkable contraction of semisimple Lie algebras[END_REF], théorème 1.1, on montre que les F • j , 1 ≤ j ≤ n sont bien dans Y(q). Comme K id ⊂ z(q), on a Y(q) = Y(q A ) ⊗ S(K id), ainsi id, F • 2 , . . . , F • n est une famille algébriquement indépendante de polynômes engendrant Y(q). On remarque que

F • 1 = id. Comme deg F • j = j, pour tout j ∈ 2, n , il existe P j ∈ K[X 1 , . . . , X j-1 ] tel que F • j = F • j + P j (id, F • 2 , F • 3 , . . . , F • j-1 ) id . (3.4) Si donc φ ∈ K[X 1 , . . . , X n ] est tel que φ(F • 1 , . . . , F • n ) = 0, en posant ψ = φ(X 1 , X 2 + P 2 (X 1 )X 1 , . . . , X n + P n (X 1 , . . . , X n-1 )X 1 ), on obtient ψ(id, F • 1 , . . . , F • n-1 ) = φ(F • 1 , . . . , F • n ) = 0, d'où ψ = 0.
On peut alors revenir de ψ à φ par un changement de variables, ainsi φ = 0, donc les F • j sont algébriquement indépendants. Avec l'équation (3.4), on montre par récurrence que les F • j sont des polynômes en les

F • k , k ≤ j, donc les F • j engendrent bien Y(q).

Une famille de semi-invariants algébriquement indépendants

On reprend les notations de 3.1.1.

Notation 3.2.1. On rappelle que i ∈ I → m i ∈ M 1 est bijective (voir propriété 3.1.4). Pour tout m ∈ 1, n , on définit alors r m par :

• r m = ρ i si m = m i ∈ M 1 ,
• r m = 1 sinon.

Dans cette section, on va montrer le théorème suivant : Théorème 3.2.2. Soit m ∈ 1, n . Alors F • m est (à une constante multiplicative non nulle près) produit de r := r m facteurs homogènes non constants, notés F m,1 , . . . , F m,r . Ces facteurs sont des semi-invariants de S(q) et vérifient de plus :

(1) pour tout t ∈ 1, r -1 , F m,t ∈ S(n -),

(2) notant L m := λ m,1 , . . . , λ m,r la famille des poids de F m,1 , . . . , F m,r , on a λ m,1 +. . .+λ m,r = 0 et L m est de rang r -1,

(3) les espaces vectoriels Vect((λ m,t ) t ) pour m ∈ 1, n sont en somme directe, (4) la famille F = (F m,t ) 1≤m≤n, 1≤t≤rm est algébriquement indépendante.

Les F m,t seront définis à l'équation (3.9), à la fin de la sous-section 3. 

= i max = 1, on a r = s = n et m = n. Pour tout t ∈ 1, n -1 , on a F n,t = e t+1,t , et F n,n = e 1,n . Pour tout t ∈ 1, n -1 , le semi-invariant F n,t est bien dans S(n -). Les F • 1 , F • 2 , . . . , F • n-1 , F n,1 , .
. . , F n,n forment une famille algébriquement indépendante. On retrouve bien la construction de Yakimova [38, §5.1] dans sa démonstration de la polynomialité de Sy(q).

• Si n est pair, on appelle cas de la racine centrale le cas où π = π \ {α n/2 }, autrement dit le cas représenté par le diagramme suivant :

n - g I 1 p g I 2
Dans ce cas, on a

I 1 = 1, n/2 et I 2 = n/2 + 1, n , d'où I = {n/2} et M 1 = {n}. On obtient F • n ∝ F n,1 F n,2 , où F n,1 = ∆ I 2 ,
I 1 est le déterminant du quadrant bas gauche et F n,2 = ∆ I 1 ,I 2 est le déterminant du quadrant haut droite. On n'exhibe pas de semi-invariant non invariant à partir des autres F • j .

Factorisation des F • m

Dans cette section, on fixe i ∈ I, r := ρ i , m := m i ; on note κ := κ i = {k 1 < . . . < k r } (voir notation 3.1.1).

Notation 3.2.4. On rappelle que θ J est défini en 3.1.13. On note T = 1, m . Pour tous J, J ∈ J (m), et pour tout k, par 3.1.21, on a θ J (J k ) = θ J (J k ). On note alors T k := θ J (J k ) pour n'importe quel J ∈ J (m). Ceci implique en particulier que si J, J ∈ J (m) vérifient

J k = J k , alors (θ J ) |J k = (θ J ) |J k .
Grâce aux résultats de la section 3.1, on a une formule plus précise pour

F • m . Proposition 3.2.5. On a deg n -F m = m -i, et F • m = J∈J (m) ∆ • J .
Démonstration. On rappelle que F m = J tq |J|=m ∆ J (équation (2.1)). Le lemme 3.1.10 montre que deg n -∆ J = m -max(j k ) et par le corollaire 3.1.20 [START_REF] Bar-Natan | An Unexpected Cyclic Symmetry of Iu n[END_REF], max(j k ) ≥ i, où l'égalité est vérifiée si et seulement si J ∈ J (m). On conclut par la remarque 3.1.14.

Proposition 3.2.6. Soit J ∈ J (m). Soit σ ∈ S(J) tel que l∈J e l,σ(l) soit un monôme de degré

m -i en n -. Alors pour tout t ∈ 1, r -1 , on a σ(J kt+1,k t+1 ) = J kt,k t+1 -1 et e l,σ(l) ∈ n -pour tout l ∈ J kt+1,k t+1 .
Démonstration. Si r = 1, la proposition est vide. On suppose donc dans la suite que r ≥ 2.

Pour tout k, on a j k = min(i k , i), donc j k = i pour tout k ∈ κ. Soit t ∈ 1, r -1 et q res = p res n - res la contraction parabolique de g J définie par p res = p J ⊕ n -

J k t ,k t+1 = p J + g J k t ,k t+1 et n - res = ep,q∈g J \ p res K e p,q
, de sorte que la partition associée à cette contraction parabolique est

J 1 . . . J kt-1 J kt,k t+1 J k t+1 +1 . . . J s .
En particulier, les espaces vectoriels q res et q J sont égaux.

g J1 g J k t g J k t+1 g Js g J k t ,k t+1 g J g J k t +1,k t+1 ,J k t ,k t+1 -1 n - res n - J k t ,k t+1
On a alors n - J = n -

J k t ,k t+1 ⊕ n - res , et de plus, tout e u,v appartenant à n - J est soit dans n - J k t ,k t+1 , soit dans n - res . Ainsi deg n - l∈J e l,σ(l) = deg n - J k t ,k t+1 l∈J e l,σ(l) + deg n - res l∈J e l,σ(l) .
Notons J l'ensemble des l ∈ J kt,k t+1 tels que σ(l) ∈ J kt,k t+1 . Alors

deg n - J k t ,k t+1 l∈J e l,σ(l) = deg n - J k t ,k t+1 l∈J e l,σ(l) .
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Le produit l∈J e l,σ(l) est lui-même un facteur d'un produit l∈J k t ,k t+1 e l,σ (l) pour un certain

σ ∈ S(J kt,k t+1 ), d'où deg n - J k t ,k t+1 l∈J e l,σ(l) ≤ deg n - J k t ,k t+1 l∈J k t ,k t+1 e l,σ (l) ≤ deg n -∆ J k t ,k t+1 .
par la remarque 3.1.11. Ainsi par le lemme 3.1.10 (on rappelle que j kt = j k t+1 = i et par construction,

j k ≤ i pour tout k), deg n - J k t ,k t+1 l∈J e l,σ(l) ≤ deg n -∆ J k t ,k t+1 = Card(J kt,k t+1 ) -i.
De même, par le lemme 3.1.10, on a deg n - res l∈J e l,σ(l) ≤ m-Card(J kt,k t+1 ). Le terme l∈J e l,σ(l) étant supposé de degré maximal en n -égal à m -i, on a donc deg n -

J k t ,k t+1 l∈J e l,σ(l) = Card l ∈ J | e l,σ(l) ∈ n - J k t ,k t+1 = Card(J kt,k t+1 ) -i, deg n - res l∈J e l,σ(l) = Card l ∈ J | e l,σ(l) ∈ n - res = m -Card(J kt,k t+1 ).
On a n - • J = J (1) . . . J (r-1) J (r) où J (t) := J kt+1,k t+1 pour 1 ≤ t ≤ r -1 et J (r) := J \ r-1 t=1 J (t) = J 1,k 1 kr+1,s ; pour tout t ∈ 1, r , on note j (t) := Card J (t) et T (t) := θ J J (t) (voir notation 3.2.4),

J k t ,k t+1 ⊂ g J k t +1,k t+1 ,J k t ,k t+1 -1 et Card(J kt+1,k t+1 ) = Card(J kt,k t+1 -1 ) = Card(J kt,k t+1 )- i. Alors on a l ∈ J | e l,σ(l) ∈ n - J k t ,k t+1 ⊂ J kt+1,k t+1 , d'où l'égalité par égalité des cardinaux. Ainsi pour tout l ∈ J kt+1,k t+1 , on a σ(l) ∈ J kt,k t+1 -1 . Autrement dit, σ J kt+1,k t+1 ⊂ J kt,k t+1 -1 ,
• J = J [1] . . . J

[r-1] J [r] où J [t] := J kt,k t+1 -1 pour 1 ≤ t ≤ r-1 et J [r] := J \ r-1 t=1 J [t] = J 1,k 1 -1 kr,s ; pour tout t ∈ 1, r , on note j [t] = Card J [t] et T [t] := θ J J [t] .
Si J ∈ J (m), par définition de κ, pour tout t ∈ 1, r , on a j (t) = j [t] .

Preuve de la proposition 3.2.7. Notons S J le sous-ensemble de S(J) tel que

∆ • J = σ∈S J ε(σ) l∈J e l,σ(l)
c'est-à-dire l'ensemble des σ ∈ S(J) tel que deg n -l∈J e l,σ(l) = deg n -∆ J . On a montré avec les propositions 3.2.5 et 3.2.6 que la permutation σ est dans S J si et seulement si toutes les conditions suivantes sont vérifiées :

(C1) pour tout t ∈ 1, r , σ J (t) = J [t] , (C2) pour tout t ∈ 1, r -1 et pour tout l ∈ J (t) , e l, σ(l) ∈ n -, (C3) Card l ∈ J (r) | e l, σ(l) ∈ n -= m -i -t∈ 1,r-1 j (t) = j (r) -i. Soit l'application σ ∈ S J -→ σ |J (t) 1≤t≤r ∈ S (1) J × . . . × S (r-1) J × S (r) J , où S (t)
J est l'ensemble des bijections de J (t) dans J [t] vérifiant (C2) si t < r et (C3) si t = r. Par (C1), cette application est bijective. Soit η ∈ S m définie par :

• η |T [t] = T (t) pour tout t ∈ 1, r , • η est croissante sur chacun des T [t] , et η := θ -1 J ηθ J ∈ S(J). Alors pour tout σ ∈ S m et pour tout t ∈ 1, r , on a (η • σ) |J (t) = η •σ |J (t) qui est une permutation de J (t) , d'où ε(η •σ) = ε(η •σ |J (1) ) . . . ε(η •σ |J (r) ). Finalement, on obtient ε(σ) = ε(η ) ε(η • σ |J (1) ) . . . ε(η • σ |J (r) ) = ε(η) ε(σ |J (1) ) . . . ε(σ |J (r) )
(on rappelle que ε(σ) a été défini à la section 2.1 pour une bijection quelconque entre sousensembles de N). Ainsi : 

∆ • J = σ∈S J ε(σ) l∈J e l,σ(l) = ε(η) (σ 1 ,...,σr)∈S (1) J ×...×S (r) J r t=1   ε(σ t ) l∈J (t) e l, σt(l) ,   et donc ∆ • J = ε(η) r t=1    σt∈S (t) J ε(σ t ) l∈J (t) e l, σt(l)    . ( 3 
a y i = d i=1 y i ∈E i a y i (3.6)
En utilisant les notations de la sous-section 2.1, l'égalité (3.5) se simplifie en

∆ • J = ε(η) r t=1 ∆ • J (t) ,J [t] , (3.7) 
où l'on a donc ∆

• J (t) ,J [t] = σt∈S (t) J ε(σ t ) l∈J (t)
e l, σt(l) .

(3.8)

Par la condition (C2), on a ∆ • J (t) ,J [t] ∈ S(n -) pour t < r. Remarque 3.2.9. On présente une manière plus visuelle de voir pourquoi ∆ • J (t) ,J [t] , de degré j (t) (équation (3.8)), est dans S(n -) pour t < r. Par définition, pour tout k

∈ k t + 1, k t+1 -1 , on a |J k | ≤ i = |J kt | = |J k t+1 |. Pour t < r, le sous-espace g J (t) ,J [t] est alors de la forme suivante n - J (t) ,J [t] p J (t) ,J [t]
Le produit dans S(q) des e u,v "diagonaux" (la diagonale vue dans g J (t) ,J [t] , tracée dans la figure précédente) est dans S(n -), et donc les monômes de ∆ J (t) ,J [t] de degré maximal en n -sont en fait dans S(n -). Le facteur ∆ 

F • m = J∈J (m) ∆ • J = (J k )∈ k J k ∆ • J = ε(η) (J k )∈ k J k r t=1 ∆ • J (t) ,J [t]
(on continue de noter

J = k J k ). Pour tout J ∈ J (m) et k ∈ κ (voir notation 3.1.1), on a j k = i k = i, ainsi pour k ∈ κ, l'ensemble J k = {I k } n'a qu'un élément. L'ensemble J ∈ J (m)
est donc uniquement déterminé par les J k , k / ∈ κ. Si pour k ∈ κ, on note toujours J k = I k dans la somme, alors J k n'est plus une variable et on a

F • m = ε(η) (J k )∈ k / ∈κ J k r t=1 ∆ • J (t) ,J [t] . 54 On a 1, s \ κ = r-1 t=1 k t + 1, k t+1 ( 1, k 1 -1 k r + 1, s ). Pour tout t ∈ 1, r -1 , les ensembles J (t) et J [t] ne dépendent que des choix de J k ∈ J k pour k ∈ k t + 1, k t+1 -1 .
De la même manière, les ensembles J (r) et J [r] ne dépendent que des choix de

J k ∈ J k pour k ∈ 1, k 1 -1 k r + 1, s .
Par l'équation (3.6), on peut donc écrire :

F • m = ε(η) r t=1 (J k )∈ k∈K t J k ∆ • J (t) ,J [t] où K t = k t + 1, k t+1 -1 si t < r 1, k 1 -1 k r + 1, s si t = r . On pose alors pour 1 ≤ t ≤ r F m,t := (J k )∈ k∈K t J k ∆ • J (t) ,J [t] . (3.9)
On a alors

F • m = c m r t=1 F m,t , avec c m = ε(η) ∈ K × (η dépend de m).
Les F m,t sont bien des semi-invariants non constants (par linéaire indépendance des ∆ 

F • 5 ∝ F 5,1 F 5,2 , F • 8 ∝ F 8,1 , F • 12 ∝ F 12,1 F 12,

Poids des semi-invariants F m,t

Pour i ∈ I, on a posé m := m i , r := ρ i et λ m,t le poids du semi-invariant F m,t pour tout t ∈ 1, r . On rappelle également que Λ := Λ(q) est l'ensemble des poids de semi-invariants de S(q). Notation 3.2.13. Pour m ∈ 1, n \ M 1 , on note λ m,1 = 0, de sorte que pour tout m ∈ 1, n et t ∈ 1, r m , le semi-invariant F m,t soit de poids λ m,t .

Par la proposition 2.2.13, les F m,t sont des semi-invariants. Calculons leurs poids. Si r = 1, il n'y a qu'un seul facteur (qui est F m,r ) qui est donc un invariant (donc de poids nul), il suffit donc de s'intéresser au cas r = ρ i ≥ 2. Comme F • m est un invariant, on a r t=1 λ m,t = 0, donc il suffit de s'intéresser aux poids λ m,t pour 1 ≤ t ≤ r -1.

On rappelle que I p = {0 = ι 0 < ι 1 < . . . < ι s-1 < ι s = n} est la partition de la sous-algèbre parabolique p, vérifiant I k = ι k-1 + 1, ι k , et que κ = κ i = {k 1 < . . . < k r } est l'ensemble des k tels que i k = i (notation 3.1.1). On rappelle également que les k pour 1 ≤ k ≤ n -1 sont les poids fondamentaux et que l'on a posé 0 = n = 0. Lemme 3.2.14. On a Λ ⊂ ι∈Ip Z ι .

Démonstration. Par la propriété 3.1.3, on a

q ⊕ z(q) =   p =q K e p,q ⊕ ι / ∈Ip K h ι   ⊕ K id .
Par la propriété 2.3.2, on a également q ⊕ z(q) ⊂ q Λ . Ainsi pour tout λ ∈ Λ, on a λ(q ⊕ z(q)) = 0. Autrement dit, λ ∈ ι∈Ip K ι . Or pour tout e u,v et pour tout 

ι ∈ I p \ {0, n}, on a h ι • e u,v = [h ι , e u,v ] q ∈ Z e u,
F m,t := (J k )∈ k∈K t J k ∆ • J (t) ,J [t] . Alors h ι k • F m,t = (J k )∈ k∈K t J k h ι k • ∆ • J (t) ,J [t] . Fixons J k ∈ J (m) k pour tout k ∈ K t = k t + 1, k t+1 -1 . Alors (par l'équation (3.8)) h ι k • ∆ • J (t) ,J [t] = h ι k •    σt∈S (t) J ε(σ t ) l∈J (t) e l, σt(l)    = σt∈S (t) J ε(σ t ) l∈J (t) h ι k • e l, σt(l) l ∈J (t) \{l}
e l , σt(l ) .

Rappelons que q et g sont isomorphes en tant que h-modules. On a donc :

h ι k • e l, σt(l) = δ ι k ,l -δ ι k ,σt(l) -δ ι k +1,l + δ ι k +1,σt(l) e l, σt(l) . Donc l∈J (t) h ι k • e l, σt(l) l ∈J (t) \{l} e l , σt(l ) = δ l∈J (t)
e l, σt(l) ,

où δ = l∈J (t) δ ι k ,l -δ ι k ,σt(l) -δ ι k +1,l + δ ι k +1,σt(l) = δ ι k ∈J (t) -δ ι k ∈J [t] -δ ι k +1∈J (t) + δ ι k +1∈J [t] = δ ι k ∈J k t +1,k t+1 -δ ι k ∈J k t ,k t+1 -1 -δ ι k +1∈J k t +1,k t+1 + δ ι k +1∈J k t ,k t+1 -1 = δ ι k ∈J k t+1 -δ ι k ∈J k t -δ ι k +1∈J k t+1 + δ ι k +1∈J k t .
Or pour tout u, k u ∈ κ, donc J ku = I ku , d'où Montrons maintenant les points (2) et (3) du théorème 3.2.2. Supposons que r-1 t=1 x t λ m,t = 0 avec x t ∈ K et posons x 0 = x r = 0. On a donc r-1 t=1 x t (w kt -w k t+1 ) = 0, c'est-à-dire r t=1 (x t -x t-1 )w kt = 0.

δ = δ ι k ∈I k t+1 -δ ι k ∈I k t -δ ι k +1∈I k t+1 + δ ι k +1∈I k t = δ k,k t+1 -δ k,kt -δ k,k t+1 -1 + δ k,kt
Comme la famille des w k est de rang s -1 et vérifie s k=1 w k = 0, on a x 1 -

x 0 = x 2 -x 1 = . . . = x r-1 -x r-2 = x r -x r-1
, ce qui implique que tous les x t sont nuls. En particulier, les λ m,t sont linéairement indépendants, ce qui montre (2) du théorème 3.2.2.

Pour tout j ∈ 1, i max , soit λ j ∈ Vect((λ m j ,t ) t ). Supposons que j λ j = 0 et montrons que tous les λ j sont nuls. Pour tout j ∈ 1, i max , on a Vect((λ m j ,t ) t ) = Vect((w k j,t -w k j,t+1 ) t<ρ j ) ⊂ Vect((w k j,t ) t ), où l'on rappelle que k j,t est le k t correspondant à κ j . Pour tout j, on peut donc écrire λ j = t x j,t w k j,t , et on a donc j,t

x j,t w k j,t = 0.

(3.12)

De plus, l'ensemble des w k j,t pour j ∈ 1, i max et t ∈ 1, ρ j est l'ensemble des w k pour k ∈ 1, s (car j κ j = 1, s ). Ainsi l'équation (3.12) se réécrit k x k w k = 0, où x k = x j,t si k = k j,t (tout k ∈ 1, s s'écrit de manière unique k = k j,t pour un certain (j, t)).

Comme les w k forment une famille de rang s -1 telle que k w k = 0, tous les x k sont égaux, et donc pour tout j, on obtient λ j ∈ K t w k j,t . Or pour tout j, on a K t w k j,t ∩ Vect((w k j,tw k j,t+1 ) t<ρ j ) = 0 . En effet,

• si l'ensemble des w k j,t pour t ∈ 1, ρ j est l'ensemble des w k pour k ∈ 1, s (c'est-à-dire, si κ j = 1, s ), alors t w k j,t = k w k = 0,

• sinon, l'ensemble des w k j,t pour t ∈ 1, ρ j est strictement inclus dans l'ensemble des w k pour k ∈ 1, s , et donc la famille des w k j,t pour t ∈ 1, ρ j est linéairement indépendante donc t w k j,t / ∈ Vect((w k j,t -w k j,t+1 ) t<ρ j ).

Ainsi λ j = 0 pour tout j et les Vect((λ m j ,t ) t ) sont bien en somme directe. On a donc le point (3) du théorème 3.2.2.

Indépendance algébrique

On montre (4) du théorème 3.2.2, c'est-à-dire l'indépendance algébrique des F m,t par le théorème suivant. 

Dimension de Gelfand-Kirillov

On a montré que la famille F de la définition 3.2.11 (voir l'équation (3.9)) est une famille algébriquement indépendante de semi-invariants. Par la proposition 2.3.5, on sait que ind q Λ = GKdim Y(q Λ ) ≥ Card(F), où Le but de cette section est de montrer le théorème suivant : Théorème 3.3.1. Soit F la famille des semi-invariants de la définition 3.2.11 (voir équation (3.9)). Alors

Card(F) = Card( 1, n \ M 1 ) + i∈I ρ i = n -Card(M 1 ) + i∈I ρ i . Comme ρ i = Card({k ∈ 1, s | i k = i}) et I et M 1 sont en bijection, on a ind q Λ ≥ n + (s -p), ( 3 
• dim q Λ = n 2 -(s -p), • ind q Λ = Card(F) = n + (s -p).
Ainsi avec le théorème 3.2.2 (4), la famille F forme une base de transcendance dans Sy(q). En particulier, si K[F] est l'algèbre (polynomiale) engendrée par F, alors l'extension Sy(q) ⊃ K[F] est algébrique.

Pour montrer que ind q Λ = Card(F), on utilise le résultat suivant de Ooms et van den Bergh [START_REF] Ooms | A degree inequality for Lie algebras with a regular Poisson semi-center[END_REF]Proposition 3.1] dim q + ind q = dim q Λ + ind q Λ . (3.15)

Dans le cas de la contraction parabolique, on a dim q = dim g = n 2 , et par un résultat de Panyushev et Yakimova ( [START_REF] Panyushev | Parabolic contractions of semisimple Lie algebras and their invariants[END_REF], théorème 3.1), on sait que ind q = ind g = n.

Remarque 3.3.2. Par construction des semi-invariants comme facteurs des F • m , la famille F vérifie

f ∈F deg f = n m=1 deg F • m = n m=1 deg F m = dim q + ind q 2 = dim q Λ + ind q Λ 2 .
Ainsi F vérifie bien la condition sur les degrés du théorème 1. On ne sait pas conclure avec le théorème 1 car on n'a pas trouvé de moyen de vérifier la propriété de codimension 2 pour q Λ .

On rappelle (preuve du lemme 3.2.14) que

q =   p =q K e p,q ⊕ ι / ∈Ip K h ι  
est de dimension n 2 -s. On rappelle que q ⊕ K z(q) ⊂ q Λ (propriété 2.3.2). Cette inclusion n'est toutefois pas une égalité en général. Pour obtenir plus d'éléments de q Λ , on va une nouvelle fois utiliser les F • j . Pour tout j ∈ 1, n , puisque F • j est un invariant de S(q), on a F • j ∈ Y(q) ⊂ Sy(q) = Y(q Λ ) ⊂ S(q Λ ) par le théorème 2.3.4. Soit g le sous-espace vectoriel de g formé des matrices de diagonale nulle. On a q Λ = g ⊕ h Λ où h Λ := h ∩ q Λ . Ainsi, on a les isomorphismes d'algèbres S(q) S( g) ⊗ K S(h) et S(q Λ ) S( g) ⊗ K S(h Λ ). On utilise alors le résultat d'algèbre tensorielle suivant.

Propriété 3.3.3. Soit F ∈ S(q Λ ). Si F s'écrit i u i v i , où u i ∈ S( g), v i ∈ S(h), avec les u i linéairement indépendants, alors pour tout i, v i ∈ S(h Λ ) ⊂ S(q Λ ).
On fixe alors m := m i ∈ M 1 tel que i = i max (voir notation 3.1.1). On omettra dans la suite les indices i. Lemme 3.3.4. Si J ∈ J (m), alors ∆ • J ∈ S( g).

Démonstration. On a deg n -F m = m -i (voir la proposition 3.2.5). Soit J ∈ J (m). Supposons par l'absurde que ∆ • J / ∈ S( g), c'est-à-dire qu'il existe σ ∈ S(J) avec un point fixe l tel que l∈J e l,σ(l) soit un monôme de degré maximal m -i en n -. Alors l∈J\{l } e l,σ(l) est également de degré m -i en n -, et c'est (au signe près) un monôme de ∆ J\{l } , qui est lui-même un terme

de F m-1 . Ainsi m -i = deg n - l∈J e l,σ(l) ≤ deg n -F m-1 . Or, comme m -1 / ∈ M 0 (propriété 3.1.4), on a deg n -F m-1 = m-i-1 par l'égalité (3.1) du corollaire 3.1.16, ce qui est absurde. Proposition 3.3.5. Soit J l'ensemble des J ⊂ I de cardinal m + 1 tels que deg n -∆ J = deg n -F m+1 , de sorte que F • m+1 = J ∈J ∆ • J .
Par la propriété 3.1.17, on a J (m + 1) ⊂ J (l'inclusion est en fait stricte).

(1) Pour tout J ∈ J , on a deg h ∆ (3.1), on a deg n -F m+1 = m -i. Si J ∈ J , on a donc max(j k ) = i + 1 par le lemme 3.1.10, et on distingue alors deux cas.

Si J ∈ J est tel qu'il existe k 0 = k 0 tels que j k 0 = j k 0 = i + 1, alors ∆ • J ∈ S( g). En effet, supposons comme précédemment que ε(σ) l∈J e l,σ(l) soit un monôme de ∆ J tel que σ admette un point fixe l . On a donc deg n - l∈J e l,σ(l) ≤ deg n -∆ J\{l } . Mais au moins un des deux sousensembles J k 0 ou J k 0 est une part de la partition de J \ {l }, et ces deux sous-ensembles sont de cardinal i + 1. Par le lemme 3.1.10, on a alors deg

n -∆ J\{l } = (m + 1 -1) -(i + 1) = m -i -1.
Le monôme l∈J e l,σ(l) n'est donc pas de degré maximal m -i en n -et n'apparaît pas dans ∆ • J . Sinon, on a J ∈ J (m + 1). Supposons que ε(σ) l∈J e l,σ(l) est un monôme de ∆

• J de degré ≥ 1 en h, c'est-à-dire que σ a un point fixe l . Comme deg n -∆ • J = deg n -F m+1 = m -i, on a deg n - l∈J e l,σ(l) = m -i. Or ε(σ) l∈J e l,σ(l) = ε(σ |J\{l } )e l ,l l∈J\{l } e l,σ(l) est un monôme de e l ,l ∆ J\{l } , ce qui implique que deg n -∆ J\{l } ≥ m -i. Comme ∆ J\{l } est un terme de F m , on a également deg n -∆ J\{l } ≤ deg n -F m = m -i,
et donc d'après ce qui précède, on a l'égalité. Ceci implique, d'après le lemme 3.1.10, que la partition de J \ {l } a sa plus grande part de cardinal i, ce qui implique que l ∈ J k J , donc que J \ {l } ∈ J (m) (corollaire 3.1.20 (2)). Alors par le lemme 3.3.4, on a ∆ • J\{l } ∈ S( g). Finalement, ε(σ) l∈J e l,σ(l) est un monôme de e l ,l ∆ • J\{l } et est de degré 1 en h.

On note B m+1 et C m+1 la somme des monômes de F • m+1 de degré respectivement 0 et 1 en h. Puisque g ⊂ q Λ , on a B m+1 ∈ S(q Λ ), de plus on rappelle que F • m+1 = B m+1 + C m+1 ∈ S(q Λ ). Ainsi C m+1 ∈ S(q Λ ).

Proposition 3.3.6. Pour tout i ∈ I, on note id

(i) = k | Card(I k )=i id g I k avec id g I k = l∈I k e l,l . Alors q ⊕ i∈I K id (i) ⊂ q Λ .
Démonstration. On a, d'après la proposition précédente :

C m+1 = J∈J (m+1) l∈J k J e l,l ∆ • J\{l} .
D'après le corollaire 3.1.20 (2), l'application

{(J , l ) | J ∈ J (m + 1), l ∈ J k J } → {(J, l) | J ∈ J (m), l ∈ I \ J} (J , l ) → (J \ {l }, l )
est une bijection. La somme se réécrit donc :

C m+1 = J∈J (m)   l∈I\J e l,l   ∆ • J .
Par le lemme 3.3.4, les ∆ • J , J ∈ J (m) sont dans S( g) et linéairement indépendants car ∆ • J ∈ σ∈S(J) K j∈J e j,σ(j) . D'après la propriété 3.3.3, pour tout J ∈ J (m), le terme l∈I\J e l,l est donc dans S(h Λ ), et donc a fortiori dans q Λ . Du fait que J (m) := {I \ J | J ∈ J (m)} est aussi l'ensemble des J ⊂ I tels que Card(J k ) = max(i k -i, 0), le terme s k=1 l∈J k e l,l appartient à q Λ pour tout J ∈ J (m).

Pour tout k ∈ 1, s , on définit tr I k comme l'application trace sur la sous-algèbre g I k ⊂ q, que l'on étend à une forme linéaire sur q (en posant tr I k (e v,w ) = 0 si e v,w / ∈ g I k ). Comme g I k gl i k , on a sl i k g I k ⊂ q . Ainsi, pour q ∈ g I k ⊂ q, on a q ∈ q si et seulement si tr I k (q) = 0. Modulo q , on a donc

l∈J k e l,l ≡ |J k | |I k | id g I k , où |J k | |I k | = max(i k -i,0) i k , et donc modulo q , on a s k=1 l∈J k e l,l ≡ s k=1 max(i k -i, 0) i k id g I k ≡ j∈I k∈ 1,s i k =j max(j -i, 0) j id g I k ≡ j∈I max(j -i, 0) j k∈ 1,s i k =j id g I k ≡ j∈I max(j -i, 0) j id (j) .
En considérant tous les termes j∈I max(j-i,0) j id (j) pour i ∈ I \ {i max }, on obtient un système linéaire triangulaire inversible en les id (j) , pour j ∈ I \ {min I}, ainsi les id (i) pour i ∈ I \ {min I} sont dans q Λ . Comme i∈I id (i) = id ∈ z(q) ⊂ q Λ , le terme id (min I) est également dans q Λ .

Montrons enfin que les id (i) , i ∈ I forment une famille linéairement indépendante et que le sous-espace vectoriel qu'ils engendrent est en somme directe avec q . Soient x i ∈ K pour tout i ∈ I et q ∈ q tels que i∈I x i id (i) +q = 0. D'après ce qui précède, pour tout q ∈ q , on a tr

I k (q) = 0 pour tout k ∈ 1, s . Soit donc i ∈ I et k ∈ 1, s tel que i k = |I k | = i. On a donc tr I k i∈I x i id (i) +q = 0, donc x i k i k = 0, d'où x i = x i k = 0, et ceci pour tout i ∈ I, ce qui conclut.
Exemple 3.3.7. On reprend l'exemple 3.1.2. Dans cet exemple, on obtient trois vecteurs id (1) , id (2) et id (4) donnés par les diagrammes respectifs suivants :

1 1 1 1 1 1 1 1 1 1 1 1 On a finalement dim q Λ ≥ dim q + p = n 2 -(s -p).
Or on a (équation (3.14)) ind q Λ ≥ n + (s -p) d'où dim q Λ + ind q Λ ≥ n 2 + n. Comme (équation (3.15)) dim q Λ + ind q Λ = dim q + ind q = n 2 + n, les inégalités précédentes sont en fait des égalités, ce qui implique le théorème 3.3.1.

Théorème de polynomialité de semi-centre et application

On a une famille F de semi-invariants algébriquement indépendants de Sy(q), qui semble être une bonne candidate pour engendrer Sy(q). Dans cette section, on donne des théorèmes généraux pour montrer qu'une certaine famille de semi-invariants f ⊂ Sy(k) (où k est une algèbre de Lie quelconque) engendre Sy(k). On appliquera ensuite ces théorèmes à notre famille F. On appliquera également ces mêmes théorèmes aux autres cas que l'on traitera (notamment en type C).

Théorème de polynomialité de semi-centre

Soit k une algèbre de Lie. Dans cette sous-section, on considère (f m ) 1≤m≤d une famille d'invariants de S(k) et une famille de semi-invariants de S(k) non constants 

f := {f m,t | 1 ≤ m ≤ d, 1 ≤ t ≤ r m } avec r m ∈ N * pour
:= {m ∈ 1, d | r m ≥ 2}. On a f × = {f m,t | m ∈ M 2 , 1 ≤ t ≤ r m }.
(K[f ]) = GKdim Sy(k). Soit x un semi-invariant de S(k). Alors il existe a ∈ N * et s z ∈ N pour tout z ∈ f × tels que x a z∈f × z sz ∈ Y(k).
Démonstration. Soit x un semi-invariant de S(k) que l'on peut supposer de poids non nul. Puisque GKdim(K[f ]) = GKdim Sy(k), il existe un polynôme P ∈ K[f ][X] non nul tel que P (x) = 0. Quitte à diviser par une certaine puissance de X, on peut supposer que X ne divise pas P . Autrement dit, il existe un entier c et des polynômes P i ((f m,t ) m,t ) ∈ K[f ] avec P 0 ((f m,t ) m,t ) = 0 tels que :

c k=0 P k ((f m,t ) m,t )x k = 0.
Il existe alors a ≥ 1 tel que P a ((f m,t ) m,t ) = 0. Comme dans la preuve du théorème 3.2.17, on peut supposer qu'il existe un poids λ tel que pour tout k ∈ 0, c , pour tout monôme S k de P k ((f m,t ) m,t ), le semi-invariant S k x k est de poids λ. En particulier, chaque P k ((f m,t ) m,t ) est un semi-invariant et P 0 ((f m,t ) m,t ) est de poids λ, d'où λ ∈ Λ(f ). Puisque Λ(f ) est un groupe (lemme 3.4.2), quitte à multiplier par un certain monôme en les f ∈ f , on peut supposer que λ = 0. Si f ∈f f s f est (à une constante multiplicative non nulle près) un monôme quelconque de P a , alors x a f ∈f f s f est un invariant. Ainsi x a f ∈f × f s f est encore un semi-invariant (proposition 2.2.13) et est de poids nul donc est un invariant. 

f m = rm t=1 (f m,t ) νm,t (♣)
avec ν m,t ∈ N * , on suppose pour tout m que l'on est dans au moins un des deux cas suivants :

• la décomposition (♣) est triviale, c'est-à-dire r m = 1 et ν m,1 = 1, autrement dit f m = f m,1 ,
• la décomposition (♣) est la décomposition de f m en éléments irréductibles dans S(k).

On note f l'ensemble des f m,t . Sous les hypothèses suivantes : 

(k), f ∈ Y(k), f × = f f une partition de f × , a ∈ N * et s z ∈ N pour tout z ∈ f × tels que x a z∈f z sz =   z∈f z sz   f.
(3.17)

Alors il existe f ∈ Y(k) et t z ∈ N pour tout z ∈ f × tels que x a =   z∈f × z tz   f .
Démonstration. Pour toute sous-algèbre de type fini A de S(k), on note Specm(A) le spectre maximal de A, que l'on peut identifier avec un sous-ensemble algébrique affine de k * (voir [35, 11.6.3]

). Pour f ∈ Y(k), on note V (f ) := {q ∈ Specm Y(k) | f (q) = 0} le lieu d'annulation de f . Pour f ∈ S(k), on note également V (f ) := {q ∈ Specm S(k) k * | f (q) = 0}.
On note i : Y(k) → S(k) l'inclusion canonique. Le morphisme i est alors une section du morphisme ϑ de l'hypothèse (I), dans le sens où ϑ•i est un isomorphisme. Soit alors i * = Specm(i) : Specm S(k) k * → Specm Y(k) qui est un morphisme dominant. Lemme 3.4.11. Si V est une hypersurface de Specm S(k), alors i * (V) est une sous-variété de codimension au plus un de Specm(Y(k)).

Remarque 3.4.12. Plus généralement, si V est une sous-variété de Specm S(k) k * de codimension l, alors i * (V) est une sous-variété de Specm Y(k) de codimension au plus l.

Démonstration. On peut supposer V irréductible. Dans cette preuve, on utilise plusieurs fois le résultat classique de géométrie algébrique donné par [35, 15.5]. Soit i * V : V → i * (V) définie par la restriction de i * à V. Par définition, i * V est dominante. Soient y et y V deux points généraux respectivement de Specm Y(k) et de i * (V). On a dim i

* (V) = dim V -dim i * V -1 (y V ) ≥ dim V -dim i * -1 (y V ).
Pour conclure, on va montrer que toutes les fibres de i * ont même dimension, de sorte que

dim i * (V) ≥ dim V -dim i * -1 (y V ) = dim k * -1 -dim i * -1 (y) = dim Specm Y(k) -1
Par l'hypothèse (I), on a un morphisme ϑ : S(k) → Y(k) dont le dual ϑ * = Specm(ϑ) : Specm Y(k) → k * est une section de i * , dans le sens où i * • ϑ * est un isomorphisme. Soit K = ker ϑ le noyau de ϑ, alors Y(k) est isomorphe à S(k)/K et donc ϑ * correspond à l'immersion fermée ϑ * : Z → Specm S(k), où Z := V (K) Specm Y(k). Puisque ϑ * est une section de i * , pour toute fibre F de i * , l'ensemble F ∩ Z est un point. En notant codim pour la codimension dans k * , on a donc (voir [17, I, Prop. 7.1] pour l'inégalité)

dim k * = codim F ∩ Z ≤ codim F + codim Z = codim F + dim k * -dim Specm Y(k), et donc dim F ≤ dim k * -dim Specm Y(k)
. D'un autre côté, toute fibre F de i * est de dimension supérieure à la dimension d'une fibre générale de i * , qui est de dimension dim k * -dim Specm Y(k) (le morphisme i * est dominant), ce qui donne l'égalité.

On reprend la preuve du lemme 3.4.10. Si tous les s z dans (3.17) pour z ∈ f sont nuls, le lemme est bien vérifié. Supposons alors que z∈f s z ≥ 1. Soit g = f µ,τ ∈ f tel que dans l'équation (3.17), on a s g ≥ 1. Alors g divise z∈f z sz f . Comme les éléments de f × sont supposés irréductibles,

g divise f = i(f ). Pour tout q ∈ k * , on a donc g(q) = 0 ⇒ i(f )(q) = 0. On obtient ainsi i * (V (g)) ⊂ V (f ) d'où i * (V (g)) ⊂ V (f ).
Or par le lemme 3.4.11, i * (V (g)) est de codimension au plus 1 dans Specm(Y(k)). De plus, si ξ ∈ V (g), alors [35, 14.2.3 et 14.3.3]).

f µ (i * (ξ)) = i(f µ )(ξ) = f µ (ξ) ∝ τ f ν µ,τ µ,τ (ξ) = 0 (car f µ,τ (ξ) = 0). Autrement dit, i * (V (g)) ⊂ V (f µ ). Or V (f µ ) est une hypersurface irréductible de Specm Y(k) (car f µ est irréductible dans Y(k)) donc i * (V (g)) = V (f µ ). Ainsi V (f µ ) ⊂ V (f ), donc le radical f Y(k) de l'idéal f Y(k) est inclus dans f µ Y(k). Puisque Y(k) est supposée factorielle et f µ est irréductible, l'idéal f µ Y(k) est premier donc f µ Y(k) = f µ Y(k) (voir
Finalement f ∈ f Y(k) ⊂ f µ Y(k), d'où f µ divise f dans Y(k). Il existe donc f ∈ Y(k) tel que x a z∈f z sz = z∈f z sz f µ f ,
que l'on peut simplifier avec l'égalité (♣) en une égalité de la forme :

x a z∈h z tz = z∈h z tz f avec une partition f × = h h vérifiant • h ⊂ f et t z ≤ s z pour tout z ∈ h ,
• et de plus, soit h f , soit il existe au moins un z ∈ h tel que t z < s z , ainsi z∈h t z < z∈f s z . On conclut alors par récurrence sur z∈f s z .

On peut maintenant conclure pour la preuve du théorème 3.4.6. Soit x un semi-invariant de S(k), que l'on suppose irréductible dans S(k). Par le lemme 3.4.4, il existe a

∈ N * , f ∈ Y(k) (non nul) et s g ∈ N pour tout g ∈ f × tels que x a g∈f × g sg = f. (3.18)
Par le lemme 3.4.10, il existe donc f ∈ Y(k) et t z ∈ N pour tout z ∈ f × tels que

x a = z∈f × z tz f .
Si pour tout z ∈ f × , on a t z = 0, alors x a est un semi-invariant de poids nul donc x est lui-même un semi-invariant de poids nul donc un invariant. Sinon il existe un t z , z ∈ f × , non nul. Alors z divise x a d'où z ∝ x (puisque z est supposé irréductible dans S(k)).

Par la proposition 2.2.13, tout semi-invariant est produit de semi-invariants irréductibles dans S(k), et tout élément de Sy(k) est somme de semi-invariants, ainsi Sy(k) est bien engendrée par Y(k) et les éléments de f . Lorsque l'on a des décompositions f m ∝ rm t=1 (f m,t ) νm,t , appliquer le théorème 3.4.6 nécessite de montrer l'irréductibilité de certains f m,t . Or ce dernier point est difficile à démontrer a priori. Ainsi, dans les cas qui nous intéresseront ici, on utilisera plutôt le théorème suivant. 

(III) pour tout f ∈ f × , il existe une K-algèbre factorielle A f et un morphisme de K-algèbres ϑ f : Sy(k) → A f tel que ϑ f (f ) n'est pas inversible dans A f et est premier avec ϑ f (g) pour tout g ∈ f × \ {f }.
Alors les f m,t dans f × sont irréductibles dans S(k). En particulier, d'après le théorème 3.4.6, si de plus

(d) les f m engendrent Y(k), alors Sy(k) = K[f ].
Démonstration. Soit Λ := Λ(k) le semi-groupe des poids de Sy(k). Soit f = f m,t ∈ f × et x un facteur irréductible de f . Appliquons le lemme 3.4.4 à x.

Il existe donc a ∈ N * et s z ∈ N pour tout z ∈ f × tels que x a g∈f × g sg ∈ Y(k).
Soit ϑ un morphisme vérifiant l'hypothèse (I). Tout g ∈ f × s'écrit g = f µ,τ pour µ, τ avec µ ∈ M 2 (par le lemme 3.4.3). Alors par l'équation (3.16),

g = f µ,τ divise f µ donc ϑ(g) divise ϑ(f µ ). Comme f µ est irréductible dans Y(k) et ϑ | Y(k) est un isomorphisme, l'élément ϑ(f µ ) est irréductible dans Y(k), donc ϑ(g) est constant ou ϑ(g) ∝ ϑ(f µ ). Le même argument s'applique à x (x divise f m,t donc f m ). Ainsi il existe s µ ∈ N pour tout µ ∈ M 2 tels que ϑ   x a g∈f × g sg   = ϑ(x) a g∈f × ϑ(g) sg ∝ µ∈M 2 ϑ(f µ ) sµ = ϑ   µ∈M 2 f sµ µ   .
Comme ϑ | Y(k) est un isomorphisme, avec les équations (3.16), on obtient une équation de la forme :

x a g∈f × g sg ∝ g∈f × g s g avec s g ∈ N pour tout g ∈ f × . En simplifiant cette équation, il existe alors une partition f × = f f et des entiers u g ≥ 0 pour tout g ∈ f × tels que x a g∈f g ug ∝ g∈f g ug . (3.19)
Par l'hypothèse (III), on a pour tout h ∈ f × ,

ϑ h (x) a g∈f ϑ h (g) ug ∝ g∈f ϑ h (g) ug .
Supposons que f ∈ f , alors

• pour tout h ∈ f , on a ϑ h (h) u h qui divise g∈f ϑ h (g) ug . Puisque ϑ h (h) est non inversible et premier avec les ϑ h (g), g ∈ f × \ {h}, cela implique que u h = 0, • de même, pour tout h ∈ f , on a ϑ h (h) u h qui divise ϑ h (x) a g∈f ϑ h (g) ug . Or ϑ h (h) est non inversible et -ϑ h (h) est premier avec les ϑ h (g), g ∈ f (car f ⊂ f × \ {h}), -ϑ h (h) est premier avec ϑ h (f ) (puisque h = f ), et donc ϑ h (h) est premier avec ϑ h (x) (puisque ϑ h (x) divise ϑ h (f )). Ainsi ϑ h (h) est premier avec ϑ h (x) a g∈f ϑ h (g) ug donc u h = 0.
Finalement, l'équation (3.19) devient x a ∝ 1, d'où x ∈ K × , ce qui est absurde car on a supposé que x était irréductible (donc non constant).

On a donc f ∈ f . Alors de la même manière que précédemment, on montre que pour tout h ∈ f × \ {f }, on a u h = 0. On ne peut cependant pas conclure pour f . L'équation (3.19) devient alors

x a ∝ f u f .

De même que précédemment, si u f = 0, on aboutit à une absurdité. On a donc u f > 0, d'où f divise x a . Puisque x est supposé irréductible, on a alors f ∝ x b pour un certain b ∈ N * . Par l'hypothèse (II), on a alors b = 1, donc x ∝ f .

On vient donc de montrer que tout facteur irréductible x de f était associé à f . Le semiinvariant f est donc irréductible.

Ainsi, lorsqu'on voudra montrer que Sy(k) est engendrée par certains f m,t , on appliquera le théorème 3.4.13. Remarque 3.4.14. Dans les cas qui suivront, on appliquera le théorème 3.4.13 dans le cadre suivant : En particulier, pour tous x 1 , . . . , x k ∈ k et tout q ∈ k * , on a (x 1 . . . x k )(q) = q(x 1 ) . . . q(x k ).

• L'isomorphisme canonique de K-espace vectoriels f ∈ k → [q ∈ k * → q(f )] ∈ (k * ) * se
• Si A est une K-algèbre, on pourra voir dans la suite un élément y ∈ S(k) 

K[k * ] comme un élément de A[A ⊗ K k * ] c'est-à-dire
(I') il existe g 1 , . . . , g d qui engendrent librement Y(k) et q ∈ k * K[X 1 ,...,X d ] tel que pour tout m ∈ 1, d , on a g m (q) ∝ X m , (III') pour tout m ∈ 1, d tel que r m ≥ 2 et t ∈ 1, r m , il existe q m,t ∈ k * K[X] tel que deg X f m,t (q m,t ) ≥ 1 et f µ,τ (q m,t ) ∈ K × pour (µ, τ ) = (m, t).

Alors les hypothèses (I') et (III') impliquent respectivement les hypothèses (I) et (III) du théorème 3.4.13.

Les g 1 , . . . , g d de l'hypothèse (I') seront souvent les f 1 , . . . , f d introduits au début de cette sous-section, mais pas toujours.

Démonstration. (I') Sous l'hypothèse (I'), comme Y(k) est librement engendrée par les g

m , 1 ≤ m ≤ d , l'application S(k) -→ K[X 1 , . . . , X d ] f -→ f (q)
restreinte à Y(k) est un isomorphisme. Il suffit alors de composer cette application avec un isomorphisme K[X 1 , . . . , X d ] → Y(k) pour obtenir un morphisme ϑ voulu.

(III') Sous l'hypothèse (III'), l'application

ϑ fm,t : Sy(k) -→ K[X] f -→ f (q m,t )
vérifie l'hypothèse (III).

Les hypothèses (I') et (III') ont des interprétations plus géométriques. Cependant, on montrera ces propriétés telles quelles dans la suite.

Remarque 3.4.16.

• Plaçons-nous dans l'hypothèse (I'). Alors q ∈ k * K[X 1 ,...,X d ] implique par évaluation une fonction polynomiale q : (x 1 , . . . ,

x d ) ∈ K d → q(x 1 , . . . , x d ) ∈ k * , notons Q son image et Q sa fermeture (pour la topologie de Zariski). Soit q * : f ∈ K[Q] → f • q ∈ K[K d ]
l'application duale. Supposons que q * est un isomorphisme. Cette hypothèse est vérifiée par exemple si q est une fonction polynomiale de degré 1 injective, de sorte que Q = Q est un espace affine de dimension d . Cette dernière hypothèse sera notamment vérifiée pour les deux q que l'on exhibe aux sous-sections 3.4.3 et 4.3.4. Soit l'application de restriction

res Q : f ∈ Y(k) -→ f |Q ∈ K[Q].
Par l'hypothèse (I'), l'application q * • res Q est un isomorphisme, et donc res Q est un isomorphisme. On dit que le morphisme res Q est une "tranche" pour Y(k). Si Q est un espace affine, on parle de section de Kostant-Weierstrass.

• Plaçons-nous dans l'hypothèse (III'). Fixons m, t. Soit x une racine de f m,t (q m,t ). Alors en évaluant q m,t en x, on obtient un élément q ∈ k * tel que f m,t (q) = 0 et f m ,t (q) = 0 pour (m , t ) = (m, t). Autrement dit, si pour toute f ∈ S(k)

K[k * ], on note V(f ) = {q ∈ k * | f (q ) = 0}, alors V(f m,t ) n'est pas inclus dans l'union des V(f m ,t ) pour (m , t ) = (m, t).

Cheminement associé à une forme linéaire sur un sous-module de M n (A)

Soit A une K-algèbre polynomiale. On introduit une combinatoire pour étudier les f (q) avec f ∈ S(q) et q ∈ q * A . À la manière des graphes de probabilités et des matrices de transitions, dans cette sous-section, on associe un graphe orienté pondéré à toute forme A-linéaire q : M → A où M est un sous-A-module de M n (A).

Cheminements : définitions, premières propriétés

Définition 3.4.17. On appelle A-cheminement (ou cheminement) un graphe orienté et pondéré par des éléments de A, de sommets I, tel que pour tous x, y ∈ I, il existe une et une seule arête de x vers y. On dira que x est la base de l'arête et y le but de l'arête. Définition 3.4.18. Soit G un cheminement.

• On appelle support de G et on note supp G l'ensemble des x ∈ I qui sont la base ou le but d'une arête de G de poids non nul.

• Deux cheminements G et G sont dits compatibles si leurs supports sont disjoints, et incompatibles sinon. • si l'arête de x vers y est de poids a, on représentera cette arête de la façon suivante :

x a → y, • pour tout a ∈ A \{0}, on note x (a) → y si l'on a x ka → y avec k ∈ K × ,
• on note x → y si l'on a x • Pour tous x, y ∈ I, soit a x,y (respectivement a x,y ) le poids de l'arête de x vers y dans G (respectivement G ). On appelle somme de G et G , et on note G + G , le cheminement tel que pour tous x, y ∈ I, l'arête de x vers y est de poids a x,y + a x,y .

• Le cheminement G est un sous-cheminement de G si G est un sous-graphe de G.

• Le cheminement G est un circuit si G est un circuit (c'est-à-dire un graphe cyclique orienté, de poids non nuls quelconques),

• Le cheminement G est un graphe circuits si G est une union de circuits à supports disjoints (d'arêtes de poids non nuls quelconques) ou, de manière équivalente, si G est une somme de circuits compatibles.

• Un sous-graphe circuits (respectivement un sous-circuit) de G est un sous-cheminement de G qui est également un graphe circuits (respectivement un circuit). Les trois sous-circuits de ce graphe sont

1 2 1 4 1 -Y 1 2 4 3 2X -1 Y -Y
Un sous-graphe circuits de G + G est une somme de certains de ses sous-circuits compatibles. Comme ses trois sous-circuits sont deux à deux incompatibles, les sous-graphes circuits de G + G sont exactement ses sous-circuits. Propriété 3.4.23. Pour tout J ⊂ 1, n , on a une bijection entre S(J) et l'ensemble des graphes circuits de support J à équivalence près.

Démonstration. La bijection consiste à associer à une permutation σ ∈ S(J) le graphe G σ dont les arêtes de poids non nul sont les l 1 → σ(l) pour tout l ∈ J.

Cheminement associé à q

Soit M un sous-A-module de l'ensemble M n (A) des matrices carrées n × n à coefficients dans A. La famille (e v,w ) 1≤v,w≤n forme une base canonique du A-module M n (A) et (e * v,w ) 1≤v,w≤n est sa base duale. On note Hom(M, A) l'ensemble des applications A-linéaires de M dans A. Soit pr une application A-linéaire de M n (A) dans M . Définition 3.4.24. Pour tout q ∈ Hom(M, A), on définit G(q) un cheminement associé à q (ainsi que M et pr) appelé graphe de q, tel que l'arête de x vers y a pour poids q(pr(e x,y )).

Si M = M n (A) et pr = id, on dira que G(q) est le graphe de q en type gl n . Si M = sp n (A) et pr = pr C (que l'on définit à la section 4.2), on dira que G(q) est le graphe de q en type C. Exemple 3.4.25. En type gl n , pour q = ae *

x,y , a ∈ A \{0}, le cheminement G(q) a une seule arête de poids non nul : x a → y. Propriété 3.4.26. Si q, q ∈ Hom(M, A), alors G(q + q ) = G(q) + G(q ). Pour tout sous-cheminement H de G(q), on a S H (q) = x * →y ∈H q(pr(e x,y )) = 0, où q(pr(e x,y )) ∈ A \{0} est le poids de l'arête de x vers y dans G(q). Remarque 3.4.29. Si H est un sous-cheminement de G(q), la notion de type de H-monôme est indépendante du type de G(q). Plus précisément, si G(q) est un graphe en type C, on pourra définir un H-monôme en type gl n , et vice versa. 

S G (q) = 2 × (-Y ) × 2X × (-1) × 1 = 4XY. Pour gl n , on a F m = J⊂I |J|=m σ∈S(J) ε(σ) l∈J e l,σ(l) .
Cette expression nous incite alors à étudier les termes du type l∈J pr(e l,σ(l) ), et plus précisément pour pouvoir vérifier les hypothèses (I) et (III) du théorème 3.4.13, leur valeur en q. Proposition 3.4.31. Soit S ∈ S(M ) et q ∈ Hom(M, A). Les affirmations suivantes sont équivalentes :

• S est de la forme l∈J pr(e l,σ(l) ) avec J ⊂ 1, n , σ ∈ S(J) et S(q) = 0,

• S = S H avec H un sous-graphe circuits de G(q). Démonstration. Montrons les points suivants.

(1) Si H est un graphe circuits, alors S H est de la forme l∈J pr(e l,σ(l) ) avec J ⊂ 1, n et σ ∈ S(J).

(2) Pour tout S = l∈J pr(e l,σ(l) ) avec J ⊂ 1, n et σ ∈ S(J), et tout q ∈ Hom(M, A), on a S(q) = 0 si et seulement si S = S H pour un certain sous-graphe circuits H de G(q).

Le point (1) est une conséquence directe de la propriété 3.4.23 (J est le support de H). Le sens réciproque du point (2) résulte de la propriété 3.4.28. Pour le sens direct, si S(q) = 0, alors pour tout l ∈ J, on a q(pr(e l,σ(l) )) = 0, donc il existe une arête entre l et σ(l). Le sous-cheminement H de G(q) de support J et d'arêtes non nulles l'ensemble des arêtes de l vers σ(l) pour l ∈ J forme un sous-graphe circuits de G(q), tel que S H = S.

Montrons maintenant la proposition. Soit S de la forme l∈J pr(e l,σ(l) ) avec J ⊂ 1, n et σ ∈ S(J) tel que S(q) = 0. Alors par (2), on a S = S H pour un certain sous-graphe circuits H de G(q). Inversement, si S = S H pour un certain sous-graphe circuits H de G(q), alors par (1), S est bien de la forme l∈J pr(e l,σ(l) ) avec J ⊂ 1, n et σ ∈ S(J), et donc en réappliquant (2), on a S(q) = 0. La proposition 3.4.31 affirme donc qu'étudier les monômes S de la forme l∈J pr(e l,σ(l) ) avec J ⊂ 1, n et σ ∈ S(J) tels que S(q) = 0 revient à étudier les sous-graphes circuits de G(q). Remarque 3.4.32. La réciproque de (1) dans la démonstration de 3.4.31 est fausse en général. Soit M le sous-A-module de M 2 (A) défini par M = A e 1,1 ⊕ A e 2,2 et pr l'application A-linéaire de M 2 (A) dans M définie par pr(e 1,1 ) = pr(e 1,2 ) = e 1,1 et pr(e 2,1 ) = pr(e 2,2 ) = e 2,2 . Soit q = e * 1,1 + e * 2,2 . Le graphe G(q) est alors

1 2 1 1 1 1
Le sous-cheminement H représenté comme suit 76 1 2 1 1 n'est pas un sous-graphe circuits et donne S H = pr(e 1,1 ) pr(e 2,1 ) = pr(e 1,1 ) pr(e 2,2 ), ce qui donne un contre-exemple à la réciproque de (1).

Application du théorème 3.4.13 à k = q en type gl n

Par le théorème 3.2.2, dans le cas d'une contraction parabolique standard q en type gl n , l'ensemble F des F m,t forme une famille d'éléments algébriquement indépendants. On veut donc conclure à la polynomialité de Sy(k) lorsque k = q en appliquant le théorème 3. 

Il reste donc à vérifier les hypothèses (I), (II) et (III).

Hypothèse (II)

Tous les F • m sont des sommes de monômes de la forme l∈J e l,σ(l) avec J ⊂ I et σ ∈ S(J). En particulier, aucun monôme de F • m ne contient de terme e v,w au carré. Autrement dit, pour tous v, w, on a deg ev,w F • m ≤ 1, et on a l'égalité si et seulement si e v,w apparaît dans un monôme de F • m . Pour un tel e v,w vérifiant ces conditions équivalentes, on a deg ev,w F m,t ≤ 1, et on a l'égalité si et seulement si e v,w apparaît dans un monôme de F m,t . Par relation sur les degrés partiels, ceci implique que F m,t ne peut pas être une puissance a ème dans S(q) pour a ≥ 2, et est donc indivisible dans S(q). Remarque 3.4.33. Soit F un semi-invariant de Sy(q) de poids λ. Si λ est indivisible dans le semi-groupe additif Λ(q) (voir notations de la section 2.2.3), alors F est indivisible dans le semigroupe multiplicatif S(q). On rappelle que par le lemme 3.2.14, on a Λ(q) ⊂ ∈Ip Z . Pour montrer qu'un poids λ est indivisible dans Λ(q), il suffit donc de montrer qu'il est indivisible dans ∈Ip Z . Dans notre cas, les poids des F m,t sont presque tous indivisibles dans ∈Ip Z . Il existe cependant une exception : le cas de la racine centrale, c'est-à-dire n pair et π \π = {α n/2 }. Dans ce cas particulier, on rappelle que (exemple 3.2.3)

F n,1 = ∆ I 2 ,I 1 et F n,2 = ∆ I 1 ,I 2 sont de poids respectifs -2 n/2 et 2 n/2 ; pour m = n, on a r m = 1 et F m,1 = F • m donc λ m,1 = 0. Or F n,1 et F n,2
sont deux polynômes déterminants sur gl n , donc irréductibles d'où indivisibles dans le semi-groupe multiplicatif S(q).

Hypothèses (I) et (III)

Dans notre cas, on va montrer que k = q vérifie les hypothèses (I') et (III') de la proposition 3.4.15, avec Après cette étape (1-c), tout sommet k est pondéré par l'entier

g m = f m = F • m et f m,t = F m,
p 1,k = |I k \ (I k ∩ {v 1 })|, et k p 1,k = n -1.
• On définit alors ce processus par récurrence, de sorte qu'à l'étape u, (u-a) depuis t u-1 , on avance dans le graphe C suivant l'orientation jusqu'au prochain sommet t u tel que p u-1,tu > 0 (si t u = t u-1 , alors on doit parcourir tout le graphe C suivant l'orientation), puis (u-b) on choisit v u dans I tu \(I tu ∩{v 1 , . . . , v u-1 }), qui est un ensemble de cardinal p u-1,tu > 0, puis (u-c) on diminue de 1 le poids du sommet t u .

Après l'étape (u-c), tout sommet k est pondéré par l'entier

p u,k = |I k \ (I k ∩ {v 1 , . . . , v u })|, et k p u,k = n -u.
• On continue ce procédé jusqu'à la fin de l'étape n, c'est-à-dire après l'étape (n-c) où la somme des poids est nulle, donc tous les poids des sommets sont nuls. On construit alors une suite (v 1 , . . . , v 12 ) en choisissant et cochant un élément de la ligne t 1 , puis en choisissant et cochant un élément de la ligne inférieure non déjà coché, et ainsi de suite. S'il n'y a plus de case non cochée sur une ligne, on passe à la ligne suivante. Si on était sur la dernière ligne, on revient à la première ligne. Ici une suite possible est (10, 12,

On définit alors q ∈ K[X 1 , . . . , X n ] ⊗ K q * de manière similaire aux matrices compagnons :

q = n =1 X e * v 1 ,v + n-1 =1 e * v +1 ,v . (3.21) 
Exemple 3.4.35. Dans notre exemple, avec la suite (v ) choisie précédemment, on obtient q donné par la matrice suivante :

X 1 1 X 2 1 X 3 1 X 4 1 X 5 1 X 6 1 X 7 1 X 8 1 X 9 1 X 10 1 X 11 1 X 12
L'élément q est choisi de sorte que son graphe G(q) en type gl n est :

v 1 v 2 v 3 X 1 1 1 X 2 X 3 . . . 1 v n-1 1 v n 1 X n-1 X n
On remarque que pour chaque m ∈ 1, n , le cheminement G(q) admet un seul sous-graphe circuits à m sommets, qui est

v 1 v 2 v 3 1 1 . . . 1 v m-1 1 v m 1 X m
Appelons ce cheminement G m et S m := S Gm le G m -monôme en type gl n . Par la proposition 3.4.31, à une constante multiplicative non nulle près, le monôme S m est le seul monôme de F m tel que S m (q) = 0. Par la propriété 3.4.28, on a F m (q) = (-1) m+1 S m (q) ∝ X m .

(

Pour conclure pour le point (I'), il reste à montrer que (-1) m+1 S m est en fait un monôme de

F • m , et donc pour cela, à montrer que S m = e v 1 ,vm e vm,v m-1 . . . e v 2 ,v 1 vérifie deg n -S m = deg n -F m .
Pour m = 1, on a F 1 = id de degré 0 en n -, et e v 1 ,v 1 est également de degré 0 en n -. On va alors montrer que la suite deg n -S m vérifie la même relation de récurrence que deg

n -F m (équation (3.1) du corollaire 3.1.16). Pour tout m ∈ 1, n -1 , on a deg n -S m+1 = deg n -S m + deg n -e v 1 ,v m+1 + deg n -e v m+1 ,vm -deg n -e v 1 ,vm . Si v m ≺ v m+1 ≺ v 1 (voir notation 3.1.5), alors par la propriété 3.1.7, on a e v 1 ,v m+1 , e v m+1 ,vm , e v 1 ,vm ∈ n -. Alors deg n -S m+1 = deg n -S m + 1. On a comme ceci six cas à étudier : (1) v m ≺ v m+1 ≺ v 1 , (2) v m+1 v m ≺ v 1 , (3) v m+1 ≺ v 1 v m , (4) v m ≺ v 1 v m+1 ,
y a m 2 -m 1 tels sommets (propriété 3.1.4 (3)), on se sera arrêté à tous ces sommets à la fin de l'étape m 1 + (m 2 -m 1 ) = m 2 . À la fin de cette étape, on se trouve au sommet t m 2 , qui est le dernier sommet avant t 1 tel que p 0,tm 2 ≥ 2, et on a p m 2 ,k = max(0, p 0,k -2) pour tout k. Ainsi, c'est à l'étape m 2 + 1 que l'on va repasser pour la troisième fois par t 1 . Comme p m 2 ,t 1 peut être nul, on ne s'arrêtera pas nécessairement au sommet t 1 , mais on a

t 1 ∈]t m 2 t m 2 +1 ].
On continue par récurrence ce raisonnement jusqu'à m imax = n. Ainsi les seuls entiers m ∈ 1, n tels que t 1 ∈]t m t m+1 ] sont les entiers de la forme m i avec 1 ≤ i ≤ i max -1, ce qui donne (b) ⇔ (c).

On conclut donc pour le point (I').

Pour (III'), on rappelle que f

× = {F m,t | m ∈ M 2 , 1 ≤ t ≤ r m } (lemme 3.4.3). Posons m, t avec m ∈ M 2 et t ∈ 1, r m . On a F • m ∝ rm u=1 F m,u .
Notons q m,t un q de la forme de l'équation (3.21) tel que le paramètre ξ (dont dépend la suite (v k ) k ) est choisi dans k t +1, k t+1 , c'est-à-dire I ξ ⊂ I (t) (voir notation 3.2.8). On rappelle l'expression de F m,u (équation (3.9)) :

F m,t = (J k )∈ k∈K t J k ∆ • J (t) ,J [t] .
On a donc (voir notation 3.2.8) Puisqu'il existe un unique monôme S de F • m tel que S(q m,t ) = 0, il existe un unique monôme S u de F m,u tel que S u (q m,t ) = 0 pour tout u. Ainsi pour tout u ∈ 1, r m , on a F m,u (q m,t ) ∝

F m,u ∈ S g I (u) ,I [u] . (3.23) 
v∈J∩I (t) e v,σ(v) (q m,t ) où J = {v 1 , . . . , v m } et σ = (v m v m-1 . . . v 1 )
. Par construction de q m,t , on a alors e v 1 ,vm (q m,t ) = X m , et pour tout > 1, e v ,v -1 (q m,t ) = 1. Comme par hypothèse, v 1 a été pris dans I (t) et que les

I (u) sont disjoints, on a F m,t (q m,t ) ∝ X m et pour tout u = t, on a F m,u (q m,t ) ∝ 1.
On rappelle que pour tout µ, on a

F • µ (q m,t ) ∝ X µ . ( 3.24) 
Notons alors q m,t ∈ q * K[X] la spécialisation de q m,t en

X µ = 1 pour tout µ = m et X m = X. On a alors F m,t (q m,t ) ∝ X, F m,u (q m,t ) ∝ 1 pour tout u = t, et pour tout (µ, τ ) avec µ = m, le polynôme F µ,τ (q m,t ) divise F µ (q m,t ) ∈ K × , donc F µ,τ (q m,t ) ∈ K × . Ainsi q m,
t vérifie l'hypothèse (III') de la proposition 3.4.15.

Les hypothèses (I), (II) et (III) sont donc vérifiées et on obtient Théorème 3.4.38. Soit q une contraction parabolique standard de gl n , associée à un facteur de Levi l = g I 1 × . . . × g Is . Alors

• la troncation canonique q Λ est égale à q ⊕ i K id (i) , où id (i) = |I k |=i id g I k ,

• l'indice de q Λ est ind q Λ = n + s -p, où p est le nombre de classes d'isomorphisme des blocs g I k dans l,

• l'algèbre des semi-invariants Sy(q) = Y(q Λ ) est polynomiale et librement engendrée par les semi-invariants F m,t , 1 ≤ m ≤ n, 1 ≤ t ≤ r m (voir théorème 3.2.2). En particulier, l'ensemble des poids Λ(q) de Sy(q) est un groupe.

Remarque 3.4.39. On vient de montrer que l'algèbre Sy(q) est librement engendrée par les F m,t . On a déjà montré par le théorème 3.4.13 que tous les F m,t tels que r m ≥ 2 sont irréductibles. En fait, tous les F m,t sont irréductibles : si x est un facteur irréductible non constant de F m,t , alors x est un semi-invariant, donc un polynôme en les F µ,τ , qui divise F m,t . Par algébrique indépendance des F µ,τ , le semi-invariant x est donc associé à F m,t . Pour tout m ∈ 1, n , l'équation (3.10)

F • m = c m rm t=1 F m,t
est donc la décomposition en produit d'éléments irréductibles de F • m .

Chapitre 4

Étude de la polynomialité en type A et C

Polynomialité en type A

L'étude précédente sur g = gl n permet de conclure assez facilement pour le type A, c'est-à-dire le cas où l'algèbre de Lie semi-simple est g A := sl n .

Dans cette section et uniquement dans cette section, on notera pr la projection pr A de la définition 3.1.24. On rappelle que si q = p n -est une contraction parabolique standard sur gl n , on a défini la contraction parabolique q A = p A n -en type A avec p A = pr(p). Une telle contraction parabolique est appelée contraction parabolique standard de sl n . Toute contraction parabolique en type A est la conjuguée d'une telle contraction parabolique. Théorème 4.1.1. Soit q A = p A n -une contraction parabolique standard en type A. Soit F la famille des F m,t de la définition 3.2.11.

Alors Sy(q

A ) est polynomiale et pr(F) := {pr(f ) | f ∈ F \ {F 1,1 }} engendre librement Sy(q A ). Remarque 4.1.2. • On a F 1,1 = id donc pr(F 1,1 ) = 0, c'est pourquoi on exclut F 1,1 de pr(F). • En type A, on a deg n -pr(F m ) = deg n -F m pour tout m, c'est-à-dire pr(F m ) • = pr(F • m ) (voir propriété 3.1.26). Démonstration. Les F • m = pr(F • m ) engendrent librement Y(q A ) (théorème 3.1.27). En appliquant pr à F • m ∝ rm t=1 F m,t (équation (3.10)), on obtient F • m ∝ rm t=1
pr(F m,t ), et le poids de pr(F m,t ) est le poids de F m,t restreint à sl n . On vérifie alors aisément que les pr(F m,t ) sont algébriquement indépendants par le théorème 3.2.17.

Si x ∈ Sy(q A ), alors x ∈ Sy(q) puisque K id ⊂ z(q), ainsi x est un polynôme en les F m,t par le théorème 3.4.38. On conclut alors en appliquant pr.

Remarque 4.1.3. Puisque q = q A × K id, on peut reprendre l'étude pour q et on trouve facilement que :

• la troncation canonique q A Λ est égale à q ⊕ i<imax K pr(id (i) ) (on rappelle que les id (i) pour i ∈ I forment une famille libre dans q Λ et que i∈I id (i) = id),

• l'indice de q A Λ est ind q A Λ = ind q Λ -1, • l'ensemble des poids Λ(q A ) de Sy(q A ) est Λ(q A ) = pr(Λ(q)) := {λ | g A | λ ∈ Λ(q)} et est un groupe.

Généralités en type C

L'algèbre de Lie q est toujours une contraction parabolique de gl n par une sous-algèbre parabolique standard p.

Notation 4.2.1. On définit l'involution γ ∈ S n par γ(k) = n + 1 -k. Si L ⊂ 1, n , on notera également L γ = γ(L) := {γ(l) | l ∈ L}. Si M ∈ gl n , on note M γ la matrice symétrique de M par rapport à l'antidiagonale (c'est-à-dire M γ i,j = M j γ ,i γ ), et si V ⊂ gl n , on note V γ = {M γ | M ∈ V }. L'application K-linéaire M ∈ gl n → M γ ∈
gl n s'étend naturellement en un morphisme d'algèbres de S(gl n ) (et donc de S(q)) dans lui-même. On note f γ l'image de f ∈ S(gl n ) par ce morphisme. Notation 4.2.2. On reprend globalement les conventions de [3, chap. VIII]. On suppose ici que n est pair et on pose n = 2n . On définit sp n comme l'ensemble des matrices de la forme

M 1 M 2 M 3 -M γ 1 avec M 1 , M 2 , M 3 des matrices n × n telles que M γ 2 = M 2 et M γ 3 = M 3 .
L'espace vectoriel sp n est de dimension n(n + 1)/2. On appellera abusivement la base canonique de sp n une base de sp n constituée des e u,v -e v γ ,u γ pour 1 ≤ u, v ≤ n , des e u,v + e v γ ,u γ pour (u, v) / ∈ 1, n 2 tels que u + v ≤ n, et des e u,u γ pour 1 ≤ u ≤ n. On complète la représentation graphique de gl n :

gl + n gl - n gl + n gl - n où gl + n (respectivement gl - n ) est le sous-espace vectoriel de gl n engendré par l'ensemble des e u,v tels que (1 ≤ u ≤ n et n + 1 ≤ v ≤ n) ou (n + 1 ≤ u ≤ n et 1 ≤ v ≤ n ) (respectivement 1 ≤ u, v ≤ n ou n + 1 ≤ u, v ≤ n).
Définition 4.2.3. On reprend les notations combinatoires d'une contraction parabolique de gl n (définition 2.2.7). Soit q = p n -une contraction parabolique standard de gl n . On dit que q est une contraction parabolique standard symétrique (ou CPSS) si le sous-ensemble π ⊂ π associé à q est symétrique, dans le sens où pour tout i ∈ 1, n -1 , on a α i ∈ π ⇔ α n-i ∈ π . De manière équivalente, q est symétrique si et seulement si p γ = p et (n -) γ = n -. Définition 4.2.4. Soit q = p n -une contraction parabolique standard symétrique de gl n . Soient p C = p ∩ sp n et (n -) C = n -∩ sp n . On a sp n = p C ⊕(n -) C (comme q est symétrique, tout vecteur de la base canonique de sp n est soit dans p, soit dans n -). On pose alors q C = p C (n -) C . L'algèbre de Lie q C est une contraction parabolique de sp n , que l'on appelle contraction parabolique standard de sp n . Toute contraction parabolique en type C est la conjuguée d'une telle contraction. Son crochet de Lie [ , ] q C vérifie [x, y] q C = [x, y] q pour tous x, y ∈ q C . On dit également que q est une contraction parabolique standard de gl n au-dessus de q C . Définition 4.2.5. Soit pr C = pr sp n ,sp ⊥ n ⊕ K id la projection de gl n sur sp n parallèlement à sp ⊥ n ⊕ K id, où sp ⊥ n est l'orthogonal de sp n ⊂ sl n pour la forme de Killing de sl n . Jusqu'à la fin de ce chapitre, on note pr pour pr C . La projection pr induit un morphisme d'algèbres S(gl n ) → S(sp n ) que par abus, on note toujours pr. Remarque 4.2.6. Les sous-espaces vectoriels gl ± n sont les sous-espaces vectoriels engendrés par les e u,v tels que pr(e γ u,v ) = ± pr(e u,v ).

Précisons comment la combinatoire de la contraction parabolique standard symétrique q de gl n (définition 2.2.7) se projette en type C. Soit h C := pr(h) l'ensemble des matrices diagonales de sp n , qui forment une sous-algèbre de Cartan de sp n . On note

R C := {β | sp n | β ∈ R} le système de racines associé. Pour tout i ∈ 1, n , on note C i = i| sp n les poids fondamentaux. Pour tout i ∈ n + 1, n -1 , on a i| sp n = n-i | sp n = C n-i . Pour i ∈ 1, n , on note C i = i| sp n et α C i = α i| sp n . Pour i ∈ 1, n -1 , on a α C i = C i -C i+1 , et α C n = 2 C n . On considère la base π C = {β | sp n | β ∈ π} = α C 1 , . . . , α C n de R C . Soit (π C ) = {β | sp n | β ∈ π }. Alors p C est la sous-algèbre parabolique associée à h C , π C et (π C ) .
Dans toute la suite, on pose q une CPSS au-dessus d'une contraction parabolique standard q C de sp n . Propriété 4.2.7. La projection pr vue de q dans q C (qui sont égales respectivement à gl n et sp n comme espaces vectoriels) est un morphisme de q C -modules.

Démonstration. On note q ⊥ = sp ⊥ n ⊕ K id. Soient q 1 ∈ q C et q 2 = pr(q 2 ) + q ⊥ 2 ∈ q avec q ⊥ 2 ∈ q ⊥ . Par définition de q ⊥ , on a [q 1 , q ⊥ 2 ] g ∈ q ⊥ . En utilisant la définition 2.2.3 du crochet de Lie sur q, on obtient [q 1 , q ⊥ 2 ] q ∈ q ⊥ (on pourra définir p ⊥ := p ∩ q ⊥ et (n -) ⊥ := n -∩ q ⊥ , de sorte que

p = p C ⊕ p ⊥ , n -= (n -) C ⊕ (n -) ⊥ et q ⊥ = p ⊥ ⊕(n -) ⊥ ). Ainsi pr([q 1 , q 2 ] q ) = pr([q 1 , pr(q 2 )] q + [q 1 , q ⊥ 2 ] q ) = pr([q 1 , pr(q 2 )] q ) = [q 1 , pr(q 2 )] q C .
En type C, les monômes d'un polynôme de S(q C ) et les degrés en (n -) C et p C sont définis et sous-entendus par rapport à la base canonique décrite plus haut. Aussi, le bidegré d'un élément

F ∈ S(sp n ) bihomogène en (n -) C est le couple (deg p C F, deg (n -) C F ).
Propriété 4.2.8. La projection pr "préserve les bidegrés" dans le sens où si s est un élément bihomogène en n -de S(q) (isomorphe à S(gl n ) comme algèbre), alors soit bideg p C ,(n -) C pr(s) = bideg p,n -s, soit pr(s) = 0. En particulier, pour tout f ∈ S(q), on a deg Propriété 4.2.9. Soit F un semi-invariant de q de poids λ. Alors pr(F ) est un semi-invariant de q C , de poids λ | q C . Démonstration. On a une décomposition de S(gl n ) comme somme de q C -modules : S(q) = S(q C ) ⊕ q ⊥ ⊗ S(q) . La projection pr : S(q) → S(q C ) est alors une projection parallèlement à q ⊥ ⊗ S(q). Pour tout q ∈ q C , on a donc q • pr(F ) = pr(q • F ) = pr(λ(q)F ) = λ(q) pr(F ) par la propriété 4.2.7.

Comme en type A, on reprend l'étude de l'algèbre des invariants de Panyushev et Yakimova [START_REF] Panyushev | Parabolic contractions of semisimple Lie algebras and their invariants[END_REF] : Théorème 4.2.10. Pour toute contraction parabolique q C de sp n , l'algèbre des invariants Y(q C ) est polynomiale et librement engendrée par les

f m := pr(F 2m ) • , 1 ≤ m ≤ n .
On va donc étudier les projetés des semi-invariants F m,t du théorème 3.2.2 par la projection pr. Dans toute la suite, on notera abusivement e *

x,y pour la forme linéaire restreinte à sp n . Lemme 4.2.11. Pour tous u, u , v, v ∈ 1, n , on a pr(e u,v )(e * u ,v ) = 0 si et seulement si (u , v ) ∈ {(u, v), (v γ , u γ )}.

De même, on a K pr(e u,v ) = K pr(e u ,v ) si et seulement si (u , v ) ∈ {(u, v), (v γ , u γ )}.

Démonstration. Le point crucial est de voir que pour tous u, v, on a pr(e u,v ) = 1 2 (e u,v + ε e v γ ,u γ ), où ε = ±1 si e u,v ∈ gl ± n .

On rappelle que les graphes de forme linéaire sont définis à la sous-section 3.4.2.

Corollaire 4.2.12. Pour tous x, y ∈ 1, n , pour q = e * x,y , le graphe G(q) est :

• si y = x γ , composé d'une seule arête x → y,

• si y = x γ , composé de deux arêtes x → y et y γ → x γ .

Soit m ∈ 1, n pair et E m l'ensemble des monômes S de F m , c'est-à-dire l'ensemble des ε(σ) l∈J e l,σ(l) pour J ⊂ I de cardinal m et σ ∈ S(J). On note aussi E m l'ensemble des pr(S) avec S un monôme de F m . On considère l'application pr : E m -→ E m . Remarque 4.2.13. L'application pr : E m -→ E m est surjective (par définition). Cependant, si S ∈ E m est un monôme de F m , alors pr(S) ∈ E m n'est pas nécessairement un monôme de pr(F m ). Cela tient à la non injectivité de pr sur E m , autrement dit au fait que l'ensemble des monômes S 1 , . . . , S d ∈ E m tels que pr(S k ) ∝ pr(S) peut avoir plus d'un élément, et donc qu'il est possible que k pr(S k ) = 0, ce qui implique que pr(S) ne soit pas un monôme de pr(F m ). Proposition 4.2.14. Si S ∈ E m est symétrique, c'est-à-dire S γ = S alors pour tout T ∈ E m , on a pr(T ) ∝ pr(S) =⇒ T = S. En particulier, si S est un monôme symétrique de F m , alors pr(S) est un monôme de pr(F m ).

Démonstration. Remarquons déjà que S est symétrique si et seulement si S ∝ l∈J e l,σ(l) avec J ⊂ 1, n symétrique (c'est-à-dire tel que J γ = J) et σ ∈ S(J) tel que σ • γ • σ = γ. En effet, par définition de la symétrie de S, pour tout x, y ∈ I, e x,y divise S si et seulement si e y γ ,x γ divise S. Ainsi, si x, y ∈ J, alors x γ , y γ ∈ J et si y = σ(x), alors x γ = σ(y γ ).

Supposons alors que pr(T ) ∝ pr(S). On écrit S ∝ l∈J e l,σ(l) avec J ⊂ 1, n symétrique de cardinal m et σ ∈ S(J) tel que σ • γ • σ = γ, et T ∝ l ∈J pr(e l ,σ (l ) ) avec J ⊂ 1, n de cardinal m et σ ∈ S(J ). On a alors l∈J pr(e l,σ(l) ) ∝ l ∈J pr(e l ,σ (l ) ).

Soit l ∈ J . Alors il existe l ∈ J tel que pr(e l,σ(l) ) ∝ pr(e l ,σ (l ) ), et donc par le lemme 4.2.11, soit (l , σ (l )) = (l, σ(l)), soit (l , σ (l )) = (σ(l) γ , l γ ). D'abord, on a soit l = l, soit l = σ(l) γ , et donc comme J est symétrique, on a en particulier l ∈ J. Ainsi J ⊂ J et donc J = J par égalité des cardinaux. 

Ensuite, on a soit σ

(l ) = σ(l) = σ(l ), soit σ (l ) = l γ = σ -1 (σ(l)) γ = σ -1 (l γ ) γ = σ(l ) (car σ • γ • σ = γ). Ainsi σ (l ) = σ(l ), donc σ = σ ce qui conclut.

Cas où le facteur de Levi est de type A

On rappelle que n = n/2. Soit q C une contraction parabolique standard de sp n telle que α C n / ∈ (π C ) . Soit q la CPSS au-dessus de q C . Dans ce cas, on a e n γ ,n = e n +1,n ∈ (n -) C , de sorte que l'algèbre de Lie q admet un facteur de Levi l de la forme l = g I 1 × . . . × g Is , où l'on a I s+1-k = I γ k pour tout k ∈ 1, s , et où s est pair. On note s = 2s . Remarque 4.3.1. Réciproquement, si q admet un facteur de Levi d'une telle forme, la contraction q C en type C déduite de q vérifie α C n / ∈ (π C ) .

On a alors l C := pr(l) gl i 1 × . . . × gl i s qui est un facteur de Levi de q C . Notation-Propriété 4.3.2. On reprend pour q toutes les notations de 3.1.1.

• 

n - p g I1 g I2 g I3 g I4 g I5 g I6 g I7 g I8

Semi-invariants

On pose maintenant i ∈ I, m = m i , r = ρ i , m = m/2 et r = ρ i = r/2. D'après l'équation (3.9), on a

F • m ∝ F m,1 . . . F m,r avec F m,t = J k ∈J k ∀k∈Kt ∆ • J (t) ,J [t] , où K t = k t + 1, k t+1 -1 si t < r 1, k 1 -1 k r + 1, s si t = r . De I s+1-k = I γ k pour tout k ∈ 1, s et k r+1-t =
s + 1 -k t pour tout t, on tire I (t) γ = I [r-t] pour tout t < r et I (r) γ = I [r] par définition des J (t) , J [t] (notation 3.2.8).

Proposition 4.3.4. Pour tout t ∈ 1, r -1 , on a pr(F m,r-t ) = (-1) deg Fm,t pr(F m,t ).

Démonstration. Comme α C n / ∈ (π C ) , on a F m,t ∈ S(gl - n ) pour tout t ∈ 1, r -1 . Pour tout k ∈ K t = k t + 1, k t+1 -1 , pour tout choix de J k ∈ J k , son symétrique J γ k est un choix possible de J l ∈ J l pour l = s + 1 -k ∈ K r-t = k r-t + 1, k r-t+1 -1 = s + 1 -K t , et la correspondance est bijective. n - p g J k t g J k t+1 g J s g J s +1 g J k r-t g J k r+1-t g J (r-t) ,J [r-t] g J (t) ,J [t]
Ainsi, comme l'illustre le diagramme ci-dessus, on a ∆ 

• Soient i ∈ I, m = m i ∈ M, r = ρ i , m = m/2 ∈ M et r = r m = ρ i = r/2. On note f m ,t = pr(F 2m ,t ) pour t ∈ 1,
f m = c m   r -1 t=1 f 2 m ,t   × f m ,r × f m ,r +1 , ( 4.2) 
avec f m ,t ∈ S((n -) C ) pour tout t ≤ r par le théorème 3.2.2).

• Pour tout m ∈ 1, n \ M , on note c m = 1, f m ,1 := f m et r m = 0. On note alors f la famille de semi-invariants de Sy(q C ) composée de l'ensemble des f m ,t pour 1

≤ m ≤ n et 1 ≤ t ≤ r m + 1.
On obtient Card(f ) = n m =1 (r m + 1) = n + s .

Poids

On reprend les notations de la sous-section 3.2.2. Soit 

w C k = C ι k-1 -C ι k pour 1 ≤ k ≤ s . Proposition 4.3.7. À m = m i ∈ M fixé, pour tout t ∈ 1, r m + 1 , le semi-invariant f m ,t est de poids λ C m ,t =      w C kt -w C k t+1 si t < r m , 2w C kt si t = r m , -2w C k 1 si t = r m + 1 . Si m / ∈ M ,
n - p C 1 C 3 C 5 C 6 C 5 C 3 C 1 91 On a alors • e C 0 = 0, e C 1 = C 1 , e C 2 = C 3 , e C 3 = C 5 et e C 4 = C 6 , • w C 1 = -C 1 , w C 2 = C 1 -C 3 , w C 3 = C 3 -C 5 et w C 4 = C 5 -C 6 , • λ C 8,1 = w C 1 -w C 4 , λ C 8,2 = 2w C 4 , λ C 12,1 = w C 2 -w C 3 et λ C 12,2 = 2w C 3 .
Montrons alors que quelque soit

κ = {k 1 < . . . < k r } ⊂ 1, s , la famille des λ C m ,t = w C kt -w C k t+1 , 1 ≤ t ≤ r -1 et λ C m ,r = 2w k r est libre. Supposons que r t=1 x t λ C m ,t = 0 avec x t ∈ K et posons x 0 = 0. On a donc r -1 t=1 x t (w C kt -w C k t+1 ) + 2x r w C k r = 0, c'est-à-dire r -1 t=1 (x t -x t-1 )w C kt + (2x r -x r -1 )w C k r = 0.
Comme la famille des w C k est libre on a donc x 1 - 

x 0 = x 2 -x 1 = . . . = x r -1 -x r -2 = 2x r - x r -1 = 0,

Troncation canonique

L'algèbre dérivée (q C ) de

q C est (q C ) = q C ⊕ l∈ 1,n -1 l / ∈Ip K pr(h l ),
où q C est le sous-espace vectoriel des matrices de sp n de diagonale nulle. Ainsi (q C ) est de dimension dim q C -s .

Or (q C ) ⊂ q C Λ (propriété 2.3.2) donc dim q C Λ ≥ dim(q C ) = dim q C -s et ind q C Λ ≥ n + s = ind q C +s
. Mais alors par (3.15), on a les égalités, de sorte que Proposition 4.3.10. On a q C Λ = (q C ) . Ceci implique que la famille des f m ,t , m ∈ 1, n , t ∈ 1, r m + 1 est une base de transcendance de Sy(q C ).

Application du théorème 3.4.13 à k = q C

On sait que l'ensemble f des f m ,t forme une base de transcendance de Sy(q C ). On veut donc conclure à la polynomialité lorsque k = q C est une contraction parabolique de sp n en appliquant le théorème 3.4.13 avec f l'ensemble des f m ,t . On vérifie d'abord les hypothèses (a), (b), (c) et (d) :

(a) L'algèbre Y(q C ) est polynomiale (théorème 4.2.10) donc en particulier factorielle.

(b) On a GKdim Sy(q C ) = ind q C Λ (théorème 2.3.5). Comme l'ensemble f des f m ,t est de cardinal ind q C Λ (proposition 4.3.10), on a GKdim Sy(q

C ) = GKdim K[f ]. (c,d) Les f m = pr(F • 2m ) pour tout m ∈ 1, n engendrent librement l'algèbre Y(q C ) donc sont irréductibles dans Y(q C ).
Il reste donc à vérifier les hypothèses (I), (II) et (III) du théorème 3.4.13.

Hypothèse (I)

Pour montrer les hypothèses (I) et (III), on va comme précédemment montrer que les hypothèses (I') et (III') (de la proposition 3.4.15) sont vérifiées. On prendra ici g m = f m = pr(F • 2m ) et f m ,t défini comme précédemment pour tous m , t. Notation 4.3.11. On définit alors une partition I = imax i=1 I(i) telle que pour tout i ∈ 1, i max :

• I(i) γ = I(i),

• pour tout k ∈ 1, s , |I(i) ∩ I k | = 1 si k ∈ K(i) 0 sinon . On a |I(i)| = |K(i)| = m i -m i-1 . Pour tout i, on note aussi I(i) -:= I(i) ∩ 1, n et I(i) + := I(i) ∩ n + 1, 2n .
On pose alors la suite (v l ) 1≤l≤n définie par les deux points suivants :

• pour tout i ∈ 1, i max , l'ensemble des v l avec l ∈ m i-1 + 1, m i est l'ensemble I(i) -si i est impair et I(i) + si i est pair, • la suite (v l ) m i-1 < l ≤ m i est strictement croissante.
On pose alors

q = n j=1 X j e * v γ j ,v j + e * v 1 ,v γ 1 + n j=2 e * v j ,v j-1 .
Exemple 4.3.12. Reprenons l'exemple 4.3.3. Le diagramme de la CPSS donne

1 2 2 1 1 2 2 1
Tous les diagrammes de CPSS sont nécessairement symétriques, et lorsque le facteur de Levi est de type A, le diagramme admet un nombre pair de lignes.

Comme dans l'exemple 3.4.34, pour tout k, on remplit la ligne k avec les éléments de I k , mais contrairement au type gl n , on demande ici une condition supplémentaire :

• si on inscrit un entier k sur une case, alors on doit inscrire l'entier k γ sur la case symétrique.

Un exemple d'un tel remplissage est celui-ci : puis en lisant les indices de haut en bas et de gauche à droite. Ici on obtient (v l ) l = [START_REF] Bar-Natan | An Unexpected Cyclic Symmetry of Iu n[END_REF][START_REF] Bourbaki | Groupes et algèbres de Lie. en. 2 e éd. Éléments de Mathématique[END_REF][START_REF] Charbonnel | The symmetric invariants of centralizers and Slodowy grading[END_REF][START_REF] Dixmier | Algèbres enveloppantes[END_REF][START_REF] Drinfel | Quantum groups[END_REF][START_REF] Fauquant-Millet | About the polynomiality of some invariant algebras of Lie algebras[END_REF].

En type C, on voit un élément e * u,v dans (q C ) * par restriction, il admet une décomposition dans la base canonique de (q C ) * (la base duale de la base canonique de q C ). Dans l'exemple, on représente alors q par une matrice via l'isomorphisme q C → (q C ) * donné par la base canonique de q C . 1

-1 1 -1 1 -1 1 1 1 -1 X 1 X 2 X 3 X 4 X 5 X 6 1
Dans le cas général, le graphe G(q) en type C est alors de la forme (voir le corollaire 4.2.12)

v γ 1 v γ 2 v γ 3 . . . . . . v γ n -1 v γ n v 1 v 2 v 3 v n -1 v n 1 X 1 X 2 X 3 X n -1 X n
On se référera dans la suite aux définitions générales introduites dans la sous-partie 3.4.2. Les sous-graphes circuits de G(q) sont les graphes de la forme

v γ 1 v γ 2 v γ 3 . . . . . . v γ m-1 v γ m v 1 v 2 v 3 v m-1 v m 1 X m
pour m ∈ 1, n . On note H 2m ce sous-graphe circuits, S 2m := S H 2m le H 2m -monôme en type gl n (voir définition 3.4.28), et S C 2m := pr(S 2m ) le H 2m -monôme en type C. On a S 2m (q) ∝ X m .

Le sous-graphe H 2m est symétrique au sens où si l'on a une arête de x vers y, alors on a une arête de y γ vers x γ . Ceci implique que S 2m est symétrique. Ainsi par la proposition 4.2.14, à une constante multiplicative non nulle près, S C 2m est un monôme de pr(F 2m ) en les pr(e x,y ) et, par la proposition 3.4.31, le seul monôme S de pr(F 2m ) tel que S(q) = 0. On a donc pr(F 2m )(q) ∝ S C 2m (q) ∝ X m . Pour conclure quant à l'hypothèse (I'), il faut maintenant vérifier que S C 2m est (à une constante multiplicative non nulle près) un monôme de pr(F 

(v k ) m i-1 +1≤k≤m i , on a v m < v m+1 et v m v m+1 (car l'ensemble des v k avec m i-1 + 1 ≤ k ≤ m i est inclus dans I(i) et |I(i) ∩ I k | ≤ 1 pour tout k). Ainsi v m ≺ v m+1 , d'où deg n -e v m+1 ,vm = 1.
De plus, v m et v m+1 sont soit tous les deux dans I(i) -, soit tous les deux dans

I(i) + , de sorte que v m γ v m si et seulement si v m+1 γ v m+1 . Finalement, deg n -S 2m+2 = deg n -S 2m + 2. Si 2m est égal à un m i , 1 ≤ i < i max , alors m et m + 1 n'appartiennent pas à un même intervalle m j-1 + 1, m j , de sorte que soit v m ∈ I(i) + et v m+1 ∈ I(i + 1) -, soit v m ∈ I(i) -et v m+1 ∈ I(i + 1) + .
Dans le premier cas, on a :

• v m+1 ≺ v m , donc deg n -e v m+1 ,vm = 0, • v γ m+1 v m+1 , donc deg n -e v γ m+1 ,v m+1 = 1, • v γ m ≺ v m , donc deg n -e v γ m ,vm = 0.
Dans le second cas, on a :

• v m+1 v m , donc deg n -e v m+1 ,vm = 1, • v γ m+1 ≺ v m+1 , donc deg n -e v γ m+1 ,v m+1 = 0, • v γ m v m , donc deg n -e v γ
m ,vm = 1. Dans ces deux cas, on obtient deg n -S 2m+2 = deg n -S 2m + 1. Ainsi, S 2m et F 2m ont même degré en n -, ce qui conclut pour l'hypothèse (I').

Hypothèse (III)

Contrairement au type gl n où le q que l'on a exhibé pour l'hypothèse (I') pouvait facilement être adapté pour l'hypothèse (III'), ici ce n'est pas le cas, puisque pour le q ci-dessus, on ne contrôle pas quels t vérifient f m ,t (q) / ∈ K × .

On reprend les définitions et notations utilisées pour l'hypothèse (I). Pour tout i ∈ 1, i max , on définit

q i :=    m i -1 l=m i-1 +1 e * v l+1 ,v l    + e * v m i-1 +1 ,v γ m i-1 +1 + e * v γ m i ,v m i .
Le graphe G(q i ) en type C est de la forme (voir le corollaire 4.2.12)

v γ m i-1 +1 v γ m i-1 +2 v γ m i-1 +3 . . . . . . v γ m i -1 v γ m i v m i-1 +1 v m i-1 +2 v m i-1 +3 v m i -1 v m i
et est donc un circuit (voir définition 3.4.21). Soit T i le G(q i )-monôme en type gl n et T i = pr(T i ) le G(q i )-monôme en type C. Par la suite, on pourra noter G(q i ) sous la forme < i où le i signale qu'il s'agit du graphe G(q i ).

Propriété 4.3.13. Le monôme T i est de la forme l∈I(i) pr(e l,σ(l) ) avec σ ∈ S(I(i)), et vérifie T i (q i ) ∈ K × . Parmi les facteurs pr(e l,σ(l) ) :

• exactement deux (e v m i-1 +1 ,v γ m i-1 +1 et e v γ m i ,v m i
) sont tels que σ(l) = l γ (autrement dit sont sur l'antidiagonale). Suivant la parité de i, l'un est tel que σ(l) > l (et est donc sur la partie supérieure de l'antidiagonale, donc dans p C ) et l'autre est tel que σ(l) < l (et est donc sur la partie inférieure de l'antidiagonale, donc dans (n -) C ),

• tous les autres facteurs vont par paire de la forme pr(e l,σ(l) ) et pr(e σ(l) γ ,l γ ) avec l + σ(l) < n + 1 ; ils sont tous dans (n -) C ,

• tous les facteurs pr(e l,σ(l) ) dans (n -) C sont tels que σ(l) et l sont deux termes consécutifs (pour l'ordre croissant) de l'ensemble I(i).

Si pr(e l,σ(l) ) est un facteur de T i , alors l'un des deux termes e * l,σ(l) ou e * σ(l) γ ,l γ est un terme de q i . On définit alors q = imax i=1 q i qui a donc pour graphe en type C la somme des graphes compatibles G(q i ), 1 ≤ i ≤ i max . Le graphe G(q ) est un graphe circuits. Ainsi G(q ) correspond à la somme de ces deux circuits. On a également 

T 1 ∝ (e
• m ) on a S(q ) = 0 ⇔ S ∝ i j=1 T j . En particulier, on a f m i (q ) ∝ i j=1 T j (q ) ∈ K × .
Cette proposition n'est pas essentielle pour obtenir l'hypothèse (III') en tant que telle, mais sa démonstration servira de modèle dans les multiples cas que l'on exhibera plus tard.

Démonstration. On montre le sens direct en plusieurs étapes :

(1) Déterminer l'ensemble des S ∈ S(gl n ) qui sont des monômes de F m pour un certain m et qui vérifient pr(S)(q ) = 0.

Par la proposition 3.4.31, les monômes S de la forme ε(σ) l∈J pr(e l,σ(l) ) avec J ⊂ I, σ ∈ S(J) tels que S(q ) = 0 sont les monômes S tels que S ∝ S H avec H un sous-graphe circuits de G(q ) (voir définition 3.4.21), c'est-à-dire, étant donné la forme de G(q ), les monômes S tels que S ∝ j∈K T j avec K ⊂ 1, i max .

( 

Rappelons que deg pr(F

• m ) = m i et deg p pr(F • m ) = i (proposition 3.2.5). On cherche donc K ⊂ 1, i max tel que j∈K (m j -m j-1 ) = m i |K| = i .
Remarquons déjà que K = 1, i vérifie ces conditions. Ensuite, soit K ⊂ 1, i max de cardinal i différent de 1, i . Par la propriété 3.1.4, la suite (m j -m j-1 ) 1≤j≤imax est décroissante, et pour tout

j > i, on a m j -m j-1 < m i -m i-1 . Comme K = 1, i , puisque |K| = i, on a K ∩ i + 1, i max = ∅, et donc j∈K (m j -m j-1 ) < i j=1 (m j -m j-1 ) = m i . Ainsi K = 1,
i est bien le seul sous-ensemble de 1, i max qui satisfait simultanément les deux conditions ci-dessus.

Si S est un monôme de pr(F • m ), alors S ∝ pr(S) avec S un monôme de F • m . Avec les points (1) et (2), si S(q ) = 0, alors S ∝ i j=1 T j . Réciproquement, si S ∝ i j=1 T j , comme S := i j=1 T j est symétrique, par la proposition 4.2.14, S est bien un monôme de pr(F m ), qui est de degré maximal en (n -) C par le point (2), donc est un monôme de pr(F • m ). De plus S(q ) = 0 par le point (1).

Rappelons que pour tout i ∈ I, on a f m i (q ) ∝ i j=1 T j (q ) ∈ K × . Fixons i ∈ I, m = m i ∈ M , m = 2m , r = r m , r = 2r et t ∈ 1, r + 1 . Pour montrer (III'), une première idée est de multiplier un terme de q i convenable par X, de sorte que si q est la forme linéaire modifiée, on a f m ,t (q) ∝ X p avec p ∈ {1, 2} et pour τ = t, f m ,τ (q) ∈ K × . Par la proposition 4.3.15, pour j < i on a également f m j (q) ∈ K × , donc f m j ,τ (q) ∈ K × pour tout τ . Avec cette seule modification, si i < i max on a f m j (q) ∝ X p pour j > i, ce qui n'est pas le résultat voulu, car on souhaiterait que f m j (q) ∝ 1 pour j > i. Si i = i max , la condition j > i est vide et ce problème ne se pose pas.

Dans le cas où i < i max , on va donc introduire des modifications supplémentaires sur q et donc sur son graphe G(q ) (en type C) pour faire en sorte que f m j (q) ∈ K × pour j > i (on ne gardera pas nécessairement l'hypothèse f m ,t (q) ∝ X p , on se contentera de deg X f m ,t (q) > 0). Lorsque cette modification sera faite, comme dans la preuve de la proposition 4.3.15, on va • déterminer l'ensemble des monômes S qui sont des monômes de F m pour un certain m et qui vérifient pr(S)(q) = 0, c'est-à-dire identifier les sous-graphes circuits H de G(q),

• parmi ces monômes, déterminer ceux qui sont des monômes de F • m à m = m i fixé, c'est-àdire identifier quels sous-graphes circuits H vérifient deg S H = m et deg p S H = i, et pour ces sous-graphes circuits H, calculer S H (q).

On rappelle que pour tout

u ∈ 1, r , on a F m,u ∈ S g I (u) ,I [u] (équation (3.23)), d'où f m ,u = pr(F m,u ) ∈ S pr(g I (u) ,I [u] ) et f m ,r +1 = pr(F m,r ) ∈ S pr(g I (r) ,I [r]
) . Or on a pr(g On modifie alors q i et q i+1 , et on note q (respectivement q i , q i+1 ) le q (respectivement q i , q i+1 ) modifié. Pour tous j / ∈ {i, i + 1}, on note également q j = q j . Cas 1 : Si i = i max , comme on l'a évoqué précédemment, on multiplie simplement le terme p v,w e * v,w de q i par X. En termes de graphes, on passe de G(q ) à G(q) en multipliant par X les poids des arêtes v → w et w γ → v γ (qui sont éventuellement une seule et même arête). Alors pour tout i ∈ 1, i max , le seul monôme S de pr(F • m i ) tel que S(q) = 0 vérifie S ∝ i j=1 S G(q j ) . Pour tout m = m i ∈ M \ {n}, on a alors pr(F est un facteur de y t , le seul facteur de pr(F • n ) qui appliqué en q est de degré non nul en X est le terme f m imax ,t . On a donc f m imax ,t (q) ∝ X p avec p ∈ {1, 2} et f m imax ,u (q) ∝ 1 pour u = t. De plus, pour tout µ ∈ 1, n -1 , f µ ,τ (q) divise pr(F • 2µ )(q) ∈ K × . Ainsi l'hypothèse (III') est vérifiée. Dans tous les cas suivants, on supposera que i = i max . On modifiera q i et q i+1 ; on pourra leur retirer et ajouter des termes. Les graphes G(q i ) et G(q i+1 ) qui en résultent ne seront pas équivalents à G(q i ) et G(q i+1 ). Il faudra alors vérifier que l'hypothèse (III') est satisfaite, donc calculer pr(F • m )(q) pour tout m ∈ M, et donc déterminer pour tout m ∈ M quels monômes S C de pr(F • m ) vérifient S C (q) = 0 et calculer ces S C (q), c'est-à-dire avoir un "analogue" de la proposition 4.3.15 pour q. Dans les deux cas, q est obtenu en remplaçant dans q les termes p 

I (u) ,I [u] ) ⊂ g I (u) ,I [u] + g I (r-u) ,I [r-u] pour u ∈ 1, r -1 et pr(g I (u) ,I [u] ) ⊂ g I (u) ,I [u] pour u ∈ {r , r}. Les g I (u) ,I [u] + g I (r-u) ,I [r-u] pour u ∈ 1,
I (u) et I [u] sont de la forme I (u) = b k=a+1 I k et I [u] = b-1 k=a I k où a < b vérifient |I a | = |I b | = i. Puisque I(i) est défini de telle sorte que I(i) ∩ I k = ∅ si et seulement si |I k | ≥ i, on a I(i) ∩ I b = ∅. Soit alors v ∈ I(i) ∩ I b , et pr(e v,
• m )(q) ∝ i j=1 S G(q j ) (q) ∈ K × et pr(F • n )(q) ∝ imax j=1 S G(q j ) (q) ∝ X p avec p ∈ {1,
v,v γ e * v,v γ + p x,x γ e * x,x γ par les termes p v,v γ Xe * v,v γ + e * v,

Cas (2.a)

On passe alors du graphe G(q ) au graphe G(q) en effectuant les modifications suivantes : Identifions les sous-graphes circuits H de G(q). Identifions d'abord les sous-circuits de G(q). En dehors des circuits G(q j ) pour j / ∈ {i, i + 1}, on a ces deux sous-circuits incompatibles :

=⇒ i i + 1 v v γ (X) x γ x i i + 1 v v γ
i i + 1 v v γ x γ x i i + 1 v v γ (X)
Le premier est équivalent à G(q i ), on le notera G 1 . On note le second G 2 . Ils sont de bidegré respectifs (1,

|I(i)| -1) et (2, |I(i)| + |I(i + 1)| -2).
Un sous-graphe circuits de G(q) est donc de la forme suivante

H = j∈D 1 G(q j ) + k∈D 2 G k , avec D 1 ⊂ 1, i max \ {i, i + 1} et D 2 {1, 2}.
Identifions quels sous-graphes circuits H vérifient deg S H = m et deg p S H = i. On a bideg G 1 = bideg G(q i ) et bideg G 2 = bideg G(q i ) + bideg G(q i+1 ). Définissons une fonction Υ qui associe à chaque sous-circuit de H un sous-graphe circuits de G(q ) de même bidegré :

• pour j / ∈ {i, i + 1}, on pose Υ(G(q j )) = G(q j ),

• Υ(G 1 ) = G(q i ),

• Υ(G 2 ) = G(q i ) + G(q i+1 ).

Puisque H ne peut contenir à la fois G 1 et G 2 , tous les Υ(G) pour G un sous-circuit de H sont compatibles deux à deux, ainsi la somme j∈D 1 Υ(G(q j )) + j∈D 2 Υ(G j ) est bien un sousgraphe circuits de G(q ), qui est de même bidegré que H. Autrement dit, étudier le bidegré de H revient à étudier le bidegré d'un certain sous-graphe circuits de G(q ), ce qui a déjà été fait précédemment (démonstration de la proposition 4.3.15 (2)). Avec cette considération, on obtient alors à m i ∈ M fixé,

• si i < i, alors le seul sous-graphe circuits H tel que deg

S H = m i et deg p S H = i est j∈ 1,i G(q j ), • si i = i, alors le seul sous-graphe circuits H tel que deg S H = m i et deg p S H = i est i-1 j=1 G(q j ) + G 1 ,
• si i ≥ i + 1, alors le seul sous-graphe circuits H tel que deg

S H = m i et deg p S H = i est j∈ 1,i-1 i+2,i G(q j ) + G 2 .
On montre alors grâce aux propriétés 3.4.28 et 3.4.31 que pour tout i = i, la quantité pr(F m i )(q) est un polynôme de degré nul en X, et pr(F m i )(q) ∝ X. Comme dans le cas i = i max , puisque seul le coefficient en e * v,v γ est non constant et que pr(e v,v γ ) est un facteur de y t lui-même un monôme de f m i ,t , le seul facteur de pr(F • m i ) qui appliqué en q est de degré ≥ 1 en X est le terme

f m i ,t . Ainsi on a deg X f m i ,t (q) = 1 et deg X f m i ,u (q) = 0 pour u = t. Pour tout µ = m i , on a également deg X f µ,τ = 0.

Cas (2.b)

La démonstration est identique au cas (2.a), seuls les vecteurs de p sont différents. On passe alors du graphe G(q ) au graphe G(q) en effectuant les modifications suivantes : Identifions les sous-graphes circuits H de G(q). Identifions d'abord les sous-circuits de G(q). En dehors des circuits G(q j ) pour j / ∈ {i, i + 1}, on a ces trois sous-circuits :

=⇒

i i + 1 v v γ (X) x γ x i i + 1 v v γ x γ x 1 12 
i i + 1 w γ v γ v w x x γ ⇒ i i + 1 w γ v γ v w (X) (X) x x γ
i i + 1 w γ v γ v w γ (X) (X) i i + 1 v γ v x x γ i i + 1 w γ w
Le premier circuit est équivalent à G(q i ), on le notera G 1 . On note les deux autres respectivement G 2 et G 3 . Le graphe G 1 est incompatible avec les graphes G 2 et G 3 (les graphes G 2 et G 3 sont compatibles). Un sous-graphe circuits de G(q) est donc de la forme

j∈D 1 G(q j ) + k∈D 2 G k , avec D 1 ⊂ 1, i max \ {i, i + 1} et D 2 ⊂ {1} ou D 2 ⊂ {2, 3}.

Identifions quels sous-graphes circuits H vérifient deg S

H = m et deg p S H = i. On a bideg G 1 = bideg G(q i ) et bideg(G 2 + G 3 ) = bideg G(q i ) + bideg G(q i+1 ). Alors comme dans le cas précédent, à m i ∈ M fixé, • pour i < i, le sous-graphe H i = j∈ 1,i G(q j ) vérifie bideg S H i = bideg pr(F m i ), • pour i = i, le sous-graphe H i = i-1 j=1 G(q j ) + G 1 vérifie bideg S H i = bideg pr(F m i ), • pour i ≥ i + 1 le sous-graphe j∈ 1,i-1 i+2,i G(q j ) + G 2 + G 3 vérifie bideg S H i = bideg pr(F m i ).
mais contrairement au cas précédent, il n'y a pas unicité. Autrement dit, il peut exister d'autres sous-graphes circuits donnant une égalité de bidegré. Cela vient du fait que cette fois-ci, le sousgraphe circuits incompatible avec G 1 est une somme de deux circuits compatibles et non plus un seul circuit.
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Remarquons que tous les circuits de G(q) ont chacun au moins une arête propre, c'est-àdire une arête dont le poids dans ce circuit est non nul et le poids dans tout autre circuit de G(q) est nul. Plus précisément,

• toute arête de tout circuit G(q j ) avec j ∈ 1, i -1 i + 2, i max est une arête propre,

• les arêtes v (X)

→ w et w γ (X) → v γ de G 1 sont propres,

• les arêtes v → x γ , x → v γ , ainsi que la suite d'arêtes x γ x de G 2 sont propres,

• l'arête w γ → w de G 3 est propre.

Soit z := {z 1 , . . . , z i-1 , z 2 , z 3 , z i+2 , . . . , z imax } un ensemble d'indéterminées. On choisit c 1 * → c 2 une arête propre de G(q j ) pour j ∈ 1, i-1 i+2, i max (respectivement de G j pour j ∈ {2, 3}). On multiplie le coefficient (non nul) de e * c 1 ,c 2 dans q par z j (respectivement par z j ).

On a alors S G(q j ) (q) ∝ z p j j pour tout j ∈ 1, i -1 i + 2, i max et S G j (q) ∝ (z j ) p j pour j ∈ {2, 3}, où p j , p j ∈ {1, 2} (à e * c 1 ,c 2 peuvent correspondre deux arêtes). Les S C (q) pour C parcourant l'ensemble des sous-graphes circuits de G(q) sont linéairement indépendants comme polynômes en X et en les éléments de z. Pour C un sous-graphe circuits de G(q), on a deg X S C (q) > 0 si et seulement si G 1 est un sous-circuit de C. On calcule alors les pr(F • m i )(q). Si i = i, alors il existe un unique sous-graphe circuits dont G 1 est un sous-circuit qui vérifie les propriétés de bidegré : il s'agit de

G = i-1 j=1 G(q j ) + G 1 . On a S G (q) ∝ i-1 j=1 z p j j X 2 .
Ainsi, si H est un autre sous-graphe circuits de G(q) vérifiant les égalités de bidegré, alors deg X S H (q) = 0. Par conséquent, pr(F • m i )(q) est de la forme i-1 j=1 z j X 2 + P (z) avec P (z) un polynôme en les éléments de z. Comme précédemment, puisque e * v,w est le seul terme dont le coefficient est de degré ≥ 1 en X et que pr(e v,w ) ∝ pr(e w γ ,v γ ) est un terme de y t lui-même un monôme de f m i ,t , le seul facteur de pr(F • m i ) qui appliqué en q est de degré ≥ 1 en X est le facteur f m i ,t . Ainsi on a bien deg X f m i ,t (q) > 0 et f m i ,u (q) ∈ K × pour u = t.

Si i = i, alors il n'existe pas de sous-graphe circuits dont G 1 est un sous-circuit qui vérifie les propriétés de bidegré. En effet, si un tel sous-graphe circuits C existe, C ne peut pas contenir les graphes G 2 et G 3 (par incompatibilité avec G 1 ). Comme G(q j ) est équivalent à G(q j ) pour j ∈ 1, i max \ {i, i + 1} et G 1 est équivalent à G(q i ), le cheminement C est donc équivalent à un sous-graphe circuits C de G(q ), qui vérifie l'égalité de bidegré. D'après la preuve de la proposition 4.3.15, on a alors C = i j=1 G(q j ). On distingue alors deux cas :

• si i < i, alors G(q i ) n'est pas un sous-cheminement de C , donc G 1 n'est pas un souscheminement de C, ce qui est absurde,

• si i > i, alors G(q i+1 ) est un sous-cheminement de C , ce qui est absurde car il n'y a pas de circuit équivalent à G(q i+1 ) dans G(q).

Ainsi, si H est un sous-graphe circuits de G(q) vérifiant les égalités de bidegré, alors S H (q) est un monôme uniquement en les éléments de z. Comme les S C (q) pour C un sous-graphe circuits de G(q) sont linéairement indépendants par construction, la quantité pr(F • m i )(q) est un polynôme P i (z) non nul.

Pour conclure quant à l'hypothèse (III'), on évalue alors (z 1 , . . . , z

i-1 , z 2 , z 3 , z i+2 , . . . , z imax ) en (b 1 , . . . , b i-1 , b 2 , b 3 , b i+2 , . . . , b imax ) ∈ K imax qui n'appartient • ni à V(z j ) pour tout 1 ≤ j ≤ i -1 (pour que pr(F • m i )(q) = 0), • ni à V(P j ) pour tout j ∈ 1, i max \ {i} (pour que pr(F • m j )(q) = 0 pour j = i), où V(Q) ⊂ K imax est le lieu d'annulation de Q ∈ K[z].
Remarque 4.3.25. Récapitulons les points cruciaux de la modification : on modifie q i et q i+1 dans q de sorte que dans le graphe G(q), on a trois nouveaux sous-circuits

G 1 , G 2 , G 3 tels que • supp G 1 ∪ supp G 2 ∪ supp G 3 = supp G(q i ) ∪ supp G(q i+1 ),
• G 1 est équivalent à G(q i ) et tous les poids des arêtes de G 1 sont égaux à ceux des arêtes de G(q i ), excepté ceux des arêtes v → w et w γ → v γ (qui peuvent être la même arête) qui sont multipliés par X,

• les circuits G 2 , G 3 -ne sont pas équivalents à G(q i+1 ) dans G(q), -sont incompatibles avec G 1 ,
ont leur somme ayant le même bidegré que G(q i ) + G(q i+1 ),

• chacun des trois circuits G 1 , G 2 , G 3 a des arêtes propres, et les arêtes v → w et w γ → v γ sont propres pour G 1 .

et ces propriétés suffisent à conclure pour l'hypothèse (III'). Il suffira de montrer ces propriétés dans les autres cas. On passe alors du graphe G(q ) au graphe G(q) en effectuant les modifications suivantes :

Cas

i i + 1 w γ v γ v w
x γ y γ y x

⇒ i i + 1 w γ v γ v w (X) (X)
x γ y γ y x • Premièrement, on ne peut pas avoir w ≺ y ≺ v. En effet, on a K(i + 1) ⊂ K(i) et, par la propriété 4.3.13, K(i) ∩ k(w) + 1, k(v) -1 = ∅.

• Il reste donc à vérifier que l'on ne peut pas avoir y w. S'il existe y ∈ I(i + 1) tel que y w, alors il existe z ∈ I(i + 1) tel que y w ≺ v z (il suffit de prendre z = y γ , on a z ≥ n + 1 et y ≤ n ). Quitte alors à augmenter y et diminuer z, grâce au premier point, on peut supposer que y et z sont deux termes consécutifs pour l'ordre croissant de I(i + 1), et donc que pr(e z,y ) est un facteur de T i+1 , ce qui est absurde par hypothèse.

Considérons donc, d'après la propriété 4.3.13, le facteur de la forme e x,x γ de T i+1 avec x γ > x (c'est-à-dire le terme sur la partie haute de l'antidiagonale). On a donc w v x x γ . On remplace alors p v,w e * v,w + p x,x γ e * x,x γ par p v,w Xe * v,w + e * x,w + e * v,v γ . Exemple 4.3.28. Un exemple de ce cas dans l'exemple 4.3.3 est le cas où pr(e v,w ) = pr(e 3,1 ) et pr(e x,x γ ) = e 2,11 .

On passe de G(q ) à G(q) en effectuant les modifications suivantes : Si e v,w apparaissait dans f m ,r +1 , puisque f m ,r +1 ∈ S(g I (r) ,I [r] ), on aurait v ∈ I (r) = I 1,k 1 kr+1,s , donc k(v) ∈ 1, k 1 k r + 1, s , ce qui est en contradiction avec les inégalités précédentes.

i i + 1 v w w γ v γ x x γ ⇒ i i + 1 v w w γ v γ (X) (X)
3.4.13 correspond aux invariants f 1 , f 2 , f 3 , f 4 introduits dans cette section, et on construit q de manière similaire au cas α C n / ∈ (π C ) du type C comme suit :

1 1 -1 1 -1 1 1 X 1 X 2 X 3 X 4
de sorte que son graphe G(q) (voir sous-section 3.4.2) est

8 7 5 3 1 2 4 6 1 X 1 X 2 X 3 X 4

Hypothèse (III)

Dans notre cas, on a f × = {f 4,1 , f 4,2 , f 5,1 , f 5,2 }. Comme dans les cas précédents, on va exhiber les morphismes ϑ f : Sy(q C ) → K[X] sous la forme g → g(q f ) avec q f ∈ (q C ) * K[X] , mais contrairement aux cas précédents, on ne demandera pas de condition restrictive sur les degrés des ϑ f (h) pour h ∈ f × . On se contentera de vérifier que ϑ f (f ) est bien non constant et premier avec les ϑ f (h), h = f . On définit q par q = e * 1,7 Les monômes correspondants ont bien les bons bidegrés. Posons S := S G 1 (q ) = S G 2 (q ) ∈ K × et T = S G 3 (q ) ∈ K × , par la proposition 3.4.31, on a :

(i) f 2 (q ) = -(2S G 1 + S G 3 )(q ) = -(2S + T ), (ii) f 4 (q ) = (S G 1 +G 2 )(q ) = S 2 . d'où (f 4 -1 4 f 2 2 )(q ) = S 2 -1 4 (2S + T ) 2 = T S -T 4
Comme dans le cas α C n / ∈ (π C ) , pour obtenir q, on multiplie un terme convenable de q par X.

(1) : Pour (m, t) = (4, 1), on transforme q en q en multipliant le coefficient en (e * 4,2 ) | sp 8 = (e 4,2 -e 7,5 ) * de q par X. Pour passer du graphe G(q ) au graphe G(q), on multiplie alors les poids des arêtes 4 → 2 et 7 → 5 par X. De la même manière que dans les calculs (i) et (ii), on obtient alors f 4 (q) = (SX) 2 et (f 4 -

1 4 f 2 2 )(q) = T SX -T 4 .
Les polynômes (SX) 2 et T SX -T 4 sont premiers entre eux. Puisque seul le coefficient de (e 4,2 -e 7,5 ) * de q est de degré > 0 en X, on a nécessairement f 4,2 (q) ∈ K × et f 2 4,1 (q) ∝ X 2 par la propriété 4.4.1, c'est-à-dire f 4,1 (q) ∝ X, et donc nécessairement premier avec f 5,1 (q) et f 5,2 (q) qui divisent T SX -T 4 .

(2) : Pour (m, t) = (4, 2), on effectue le même type de transformation mais en multipliant par exemple le coefficient en (e 3,1 -e 8,6 ) * de q par X (propriété 4.4.1). Le raisonnement est similaire.

(3) : Pour (m, t) = (5, 1), on peut en fait reprendre un des q construits au-dessus. En effet, puisque f 5,2 = e 1,8 , dans les deux cas ci-dessus, on a f 5,2 (q) ∈ K × , donc f 5,1 (q) est associé à T SX -T 4 , qui est premier avec (SX) 2 .

(4) : Pour (m, t) = (5, 2), il faut multiplier par X le coefficient en e * 1,8 de q , et on a alors f 4 (q) = S 2 et (f 4 -1 4 f 2 2 )(q) = T X S -T X 4 . Puisque l'on a f 5,2 (q) = X par construction, f 5,2 (q) est bien premier avec f 4,1 (q) et f 4,2 (q) qui sont constants et on a (f 5,1 )(q) = -1 4 T 2 X + ST qui est bien premier avec X.

Conclusion

On obtient donc le théorème suivant : et q C = pr C (q) la contraction de sp 8 associée. L'algèbre des semi-invariants Sy(q C ) n'est pas polynomiale et engendrée par f 1 , f 2 , f 3 , f 4,1 , f 4,2 , f 5,1 , f 5,2 . Plus précisément, Sy(q C ) est isomorphe à l'algèbre

K[X 1 , X 2 , X 3 , X 4,1 , X 4,2 , X 4,1 , X 4,2 ] X 4,1 X 4,2 + 1 4 X 2 2 -X 2 4,1 X 4,2
.

semi-invariant g. Avec le même schéma de preuve que précédemment, on montre que la famille (pr(F • 2 ), g, e 1,n , pr(F • 6 ), . . . , pr(F • n )) engendre librement Sy(q C ). Le point crucial qui a fait échouer la polynomialité dans le contre-exemple est le fait que l'on ait simultanément m = 5 impair dans M 2 et 2m -2 = 8 dans M 2 . Ainsi, dans le cas général, on pense obtenir deux décompositions du type 

Limites de l'approche en type différent de A et C

En type autre que A et C, il n'existe plus de théorème général donnant la polynomialité de Y(q). On pourrait toutefois espérer comprendre les cas de non-polynomialité en s'intéressant aux semi-invariants obtenus comme facteurs d'invariants connus dans ces deux types.

Aussi, on ne peut plus simplement étudier les projections sur so n des semi-invariants en type gl n . Cela vient du fait que l'on n'a plus nécessairement pr(F m ) • = pr(F • m ) pour tout m. Par exemple, en type D, il arrive que

deg (n -) D pr(F m ) < deg n -F m .

Le cas inconclusif de Panyushev et Yakimova

Panyushev et Yakimova montrent la polynomialité de Y(q) lorsque q est une contraction parabolique en type A ou C. Dans leur article, ils exhibent également un cas où leur approche ne permet pas de conclure [31, remarque 4.6]. Reprenons leur cas dans la perspective d'y chercher des semi-invariants.

On reprend les conventions de [3, chapitre 8]. Pour tout n, on définit so n comme l'ensemble des matrices M de taille n × n antisymétriques par rapport à l'antidiagonale, autrement dit, telles que M γ = -M . Le type D correspond à so n avec n pair. Comme en type C, on définit en type D une projection pr D : gl n → so n qui est la projection par rapport à K id ⊕ so ⊥ n où so ⊥ n est l'orthogonal de so n pour la forme de Killing sur sl n . Dans cette sous-section, on notera pr pour pr D . Dans l'exemple de Panyushev et Yakimova, on se place en type D 6 , et on regarde la contraction parabolique q D de so 12 image par pr de la contraction parabolique q de gl 12 donnée par le diagramme suivant : Par [3, Chap. VIII], l'algèbre des invariants Y(so 12 ) est polynomiale et engendrée par pr(F 2 ), pr(F 4 ), pr(F 6 ), pr(F 8 ), pr(F 10 ) et f , où f est une racine carrée de pr(F 12 ). Panyushev et Yakimova ont étudié la famille pr(F 2 ) • , pr(F 4 ) • , pr(F 6 ) • , pr(F 8 ) • , pr(F 10 ) • , f • et ont conclu dans ce cas que la famille était algébriquement liée dans Y(q D ). Comme ils ont montré que ind q D = rg so 12 = 6, cette famille ne peut pas non plus engendrer Y(q D ).

On peut tout de même essayer de tirer des semi-invariants de cette famille. En type A, on a une décomposition F • 12 = F 12,1 F 12,2 ce qui en projetant, donne une projection de la forme pr(F • 12 ) = x 2 3 y 2 3 où pr(F 12,1 ) = x 2 3 et pr(F 12,2 ) = y 2 3 . Comme ind q D Λ -ind q D = dim q Ddim q D Λ ≤ dim q Ddim(q D ) = 3, il manque soit des éléments dans q D Λ , soit des semi-invariants. On peut obtenir des semi-invariants indépendamment de l'étude des pr(F 2 ) • , pr(F 4 ) • , pr(F 6 ) • , pr(F 8 ) • , pr(F 10 ) • , f • . Proposition 5.2.1. Soit q = p n -une contraction parabolique d'une algèbre simple g associé à une certaine sous-algèbre de Cartan, une certaine base π du système de racines R associé et un certain sous-ensemble π π. On note θ la plus grande racine de R. Soit e ∈ q \{0}. Alors e est un semi-invariant (de degré 1) de S(q) si et seulement si e ∈ g -β où β ∈ (π \ π ) ∪ {-θ} est telle que le sommet associé à β dans le diagramme de Dynkin étendu de R n'est relié à aucun sommet associé à un élément de π .

Démonstration. On rappelle que par définition du crochet de Lie sur q, on a pour tous p 1 , p 2 ∈ p, n 1 , n 2 ∈ n -:

[p 1 , p 2 ] q = [p 1 , p 2 ] g , [p 1 , n 1 ] q = pr n -,p ([p 1 , n 1 ] g ) , [n 1 , n 2 ] q = 0.

Le sous-espace vectoriel α∈π -π g α ⊕ g -θ ⊕ h engendre l'algèbre de Lie q : en effet, n - appartient à l'algèbre de Lie engendrée par ( α∈π g α ) ⊕ g -θ et p appartient à l'algèbre de Lie engendrée par α∈π -π g α ⊕ h. Soit β ∈ (-π \ -π ) ∪ {θ}. Alors e ∈ g β est un semi-invariant et seulement si [g β , g β ] q = 0 pour β ∈ π -π {-θ}. Si β = θ, alors • pour tout β ∈ π, on a [g β , g β ] g = 0, d'où [g β , g β ] q = 0,

• pour β = -θ, on a [g β , g β ] g ⊂ g 0 = h ⊂ p, ainsi [g β , g β ] q = 0,

• pour tout β ∈ -π , on a g β , g β ∈ p donc [g β , g β ] q = [g β , g β ] g . Par conséquent, [g β , g β ] q = 0 si et seulement si les sommets du diagramme de Dynkin étendu associés à -β et -β ne sont pas reliés.

Si β ∈ -π \-π , on raisonne de même. On a donc montré que dans le cas où β ∈ (-π \-π )∪{θ}, l'élément e ∈ g β est un semi-invariant si et seulement si tous les sommets reliés au sommet du diagramme de Dynkin étendu associé à -β sont associés à des éléments de π \ π . Il reste à montrer que si x ∈ q est un semi-invariant, alors x ∈ g β avec β ∈ (-π \ -π ) ∪ {θ}.

On peut déjà remarquer que si x ∈ q est un semi-invariant, alors x ∈ g β pour un certain β ∈ R {0} (l'action de h sur q est diagonalisable et les sous-espaces propres sont les g β ). On peut supposer que x = 0. Soit R = R + R -la décomposition de R en racines positives et négatives, R π le système de racines engendré par π et R π = R + π R - π la décomposition de R π en racines positives et négatives.

On a β = 0 puisque pour tout h ∈ h, on a [q, h] q = [g, h] g K h. 

Si β ∈ (R + R - π ) \ {θ}, alors g β ⊂ p et il existe β ∈ R + R - π tel que β + β ∈ R + R - π , d'où [g β , g β ] q = [g β , g β ] g = g β+β = 0. Si β ∈ (R -\R - π )\(-π\-π ), alors g β ⊂ n -et il existe β ∈ R + R - π tel que β +β ∈ R -\R - π , d'où [g β , g β ] q = [g β , g β ] g = g β+β = 0.

Index des notations

1 Introduction(

 1 , définitions générales . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Rappels sur les algèbres de Lie, contractions paraboliques, algèbres d'invariants et de semi-invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2.1 Rappels sur les algèbres de Lie . . . . . . . . . . . . . . . . . . . . . . . . 2.2.2 Contractions paraboliques . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2.3 Algèbres d'invariants et de semi-invariants . . . . . . . . . . . . . . . . . . 2.3 Troncation canonique et ad-algébricité . . . . . . . . . . . . . . . . . . . . . . . . 3 Polynomialité de l'algèbre des semi-invariants associée à une contraction parabolique de gl n 3.1 Propriétés relatives à une contraction parabolique . . . . . . . . . . . . . . . . . . 3.1.1 Combinatoire de la contraction parabolique . . . . . . . . . . . . . . . . . 3.1.2 Degrés en n -des F j et mineurs de taille j de degré maximal en n -. . . . 3.1.3 Les F • m engendrent librement Y(q) . . . . . . . . . . . . . . . . . . . . . . 3.2 Une famille de semi-invariants algébriquement indépendants . . . . . . . . . . . . 3.2.1 Factorisation des F • m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.2 Poids des semi-invariants F m,t . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.3 Indépendance algébrique . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 Dimension de Gelfand-Kirillov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4 Théorème de polynomialité de semi-centre et application . . . . . . . . . . . . . . Chapitre English version of the introduction from page 19)

  de f m dans S(k), avec ν m,t ∈ N * pour tout m, t. On note f l'ensemble des f m,t et f × l'ensemble des f m,t pour lesquels r m ≥ 2. On suppose que GKdim K[f ] = GKdim Sy(k). Si les trois hypothèses suivantes sont vérifiées : (I) il existe un morphisme de K-algèbres ϑ : S(k) → Y(k) tel que ϑ | Y(k) est un isomorphisme.

  et on dit que λ est le poids de f . On note Λ(k) (ou Λ s'il n'y a pas d'ambiguïté sur l'algèbre de Lie k) l'ensemble des poids de semi-invariants de S(k) (ou par abus, l'ensemble des poids deS(k)), c'est-à-dire Λ(k) := {λ ∈ k * | S(k) λ = 0}.L'espace vectoriel Sy(k) := λ∈Λ S(k) λ est alors une algèbre, appelée algèbre des semi-invariants de S(k). La démonstration vient du point suivant : Propriété 2.2.11. Pour tous µ, ν ∈ k * , on a S(k) µ S(k) ν ⊂ S(k) µ+ν . En particulier, Λ admet une structure de semi-groupe. On a Y(k) = S(k) 0 ⊂ Sy(k), de sorte que Sy(k) ainsi que tous les S(k) µ sont des Y(k)-modules.

Exemple 3 . 1 . 2 .

 312 En type gl n , pour illustrer les différentes constructions, on se basera sur l'exemple suivant : on prend n = 12, et π = {α 1 , α 2 , α 3 , α 6 , α 7 , α 8 , α 10 }, de sorte que I 1 = {1, 2, 3, 4}, I 2 = {5}, I 3 = {6, 7, 8, 9}, I 4 = {10, 11} et I 5 = {12}. On schématise cet exemple comme suit :

  désigner l'ensemble de tous les J ⊂ I dont la représentation remplit toutes les cases hachurées, et seulement les cases hachurées. Par exemple, le sous-ensemble J précédent est dans cet ensemble.Les propriétés élémentaires suivantes seront utiles pour la suite. Propriété 3.1.3. On a q = u =v K e u,v ⊕ ι / ∈Ip K h ι et z(q) = K id. Propriété 3.1.4.

  donc pour J ∈ J (9), le nombre d'indices pour la troisième ligne dépend du choix du nombre d'indices de la première ligne. Par exemple :

  de F j de degré k en n -et on suppose que F

Proposition 3 . 2 . 7 .Notation 3 . 2 . 8 .

 327328 et on a égalité par injectivité de σ et égalité des cardinaux. Pour tout J ∈ J (m), ∆ • J est produit de r facteurs homogènes non constants. Pour tout J ⊂ I, on définit deux partitions :

Définition 3 . 2 . 11 .Exemple 3 . 2 . 12 .

 32113212 Si m = m i ∈ M 1 , on note r m := ρ i . Pour m ∈ 1, n \ M 1 , on note r m = 1 et c m = 1, de sorte que pour tout m ∈ 1, n , on a F • m = c m rm t=1 F m,t . (3.10) On note alors F la famille composée de l'ensemble des F m,t pour 1 ≤ m ≤ n et 1 ≤ t ≤ r m . Dans le cas de l'exemple 3.1.2, où l gl 4 × gl 1 × gl 4 × gl 2 × gl 1 , on a I = {1, 2, 4} et M 1 = {5, 8, 12}. On obtient donc

2 ,

 2 où le nombre de facteurs de F • m i est le nombre d'occurrences de gl i dans l. Par exemple, le semi-invariant F 5,1 est la somme des ∆ • {a,b,12},{5,a,b} pour a ∈ I 3 et b ∈ I 4 , et F 12,1 = ∆ • 5,9 , 1,5 .

- 1 parExemple 3 . 2 . 16 .

 13216 définition des ι k (voir notation 3.1.1). Ainsi δ ne dépend en fait pas des choix de J k et F m,t est de poids λ m,t = w kt -w k t+1 . Posons e k = ι k , avec e 0 = e s = 0. La famille des e k , 1 ≤ k ≤ s -1 est libre. La famille des w k = e k-1 -e k , 1 ≤ k ≤ s est donc de rang s -1, et vérifie k w k = 0. Dans l'exemple 3.1.2, les poids appartiennent au réseau Z 4 ⊕ Z 5 ⊕ Z 9 ⊕ Z 11 que l'on représentera sur le diagramme matriciel comme suit : • e 0 = 0, e 1 = 4 , e 2 = 5 , e 3 = 9 et e 4 = 11 , e 5 = 0, • w 1 = -4 , w 2 = 4 -5 , w 3 = 5 -9 , w 4 = 9 -11 , w 5 = 11 , • λ 5,1 = w 2 -w 5 et λ 12,1 = w 1 -w 3 ; on rappelle que m = 5 (respectivement m = 12) est associé à i = 1 (respectivement à i = 4).

. 14 )

 14 où on rappelle que s est le nombre de blocs d'un facteur de Levi de p et p = Card(I), c'est-à-dire le nombre de classes d'isomorphismes de blocs d'un facteur de Levi de p, d'où p ≤ s.

Lemme 3 . 4 . 4 .

 344 Démonstration. L'inclusion ⊂ est claire : si m / ∈ M 2 , alors r m = 1 et comme f m est supposé irréductible dans Y(k), on a f m,1 = f m qui est de poids nul. Pour l'autre inclusion, comme les éléments de f sont non constants, un f m,t avec m ∈ M 2 est nécessairement un facteur non constant de f m . Puisque f m est irréductible dans Y(k), le semi-invariant f m,t n'est pas un invariant, donc est de poids non nul. Si x est un semi-invariant de S(k), on voudra montrer (sous certaines hypothèses) que x ∈ K[f ]. Pour ce faire, le lemme suivant est fondamental. On suppose que GKdim

Corollaire 3 . 4 . 5 .Théorème 3 . 4 . 6 .

 345346 On reprend les hypothèses du lemme 3.4.4. Alors l'ensemble des poids Λ(k) de Sy(k) est un groupe. Démonstration. Soit x un semi-invariant (non nul) de S(k). Alors par le lemme 3.4.4, il existe a ∈ N * et s z ∈ N pour tout z ∈ f × tels que x a z∈f × z sz ∈ Y(k). Ainsi, il existe un semi-invariant y (non nul) de S(k) tel que xy ∈ Y(k). Ainsi, si x est de poids λ, on a un semi-invariant y de poids -λ. On a alors le théorème suivant. Soit k une algèbre de Lie. Soit (f m ) 1≤m≤d une famille d'invariants de Y(k). Étant donné pour tout m ∈ 1, d une décomposition de f m dans S(k) de la forme

Proposition 3 . 4 . 8 .

 348 (a) Y(k) est une algèbre factorielle, (b) GKdim Sy(k) = GKdim K[f ], (c) les f m sont irréductibles dans Y(k), (I) il existe un morphisme de K-algèbres ϑ : S(k) → Y(k) tel que ϑ | Y(k) est un isomorphisme, alors l'ensemble des poids de Sy(k) est un groupe et Sy(k) est engendrée par Y(k) et les éléments de f . En particulier, si (d) les f m engendrent Y(k), alors Sy(k) = K[f ]. Remarque 3.4.7. • Dans les cas que l'on étudie par la suite, les hypothèses (a), (c) et (d) découleront de l'étude de Panyushev et Yakimova [31] et l'hypothèse (b) de l'étude précédente (notamment le théorème 3.3.1). Les hypothèses (I), (II) et (III) (où (II) et (III) apparaissent au théorème 3.4.13) demandent une étude plus poussée. • L'hypothèse (I) implique que Y(k) est une algèbre de type fini. L'hypothèse de factorialité de Y(k) de ce théorème implique en fait des propriétés fortes sur l'ensemble des poids Λ(k), par exemple la proposition suivante. Supposons que Y(k) soit une algèbre factorielle. Soit λ ∈ Λ(k) \ {0} le poids d'un semi-invariant x irréductible dans S(k). Alors l'un des deux Y(k)-modules S(k) λ ou S(k) -λ est libre de rang ≤ 1. Démonstration. Si S(k) λ ou S(k) -λ est réduit à 0, la proposition est satisfaite. Sinon, soient x , y, y des semi-invariants non nuls de poids respectifs λ, -λ, -λ. On peut choisir y de sorte que si s ∈ Y(k) divise y, alors s ∈ K. On a (xy)(x y ) = (xy )(x y). L'invariant xy est irréductible dans Y(k). En effet, si s, t ∈ Y(k) sont tels que xy = st, alors comme x est irréductible dans S(k), x divise s ou t, et donc y est divisible par t ou par s. Par hypothèse, on a donc t ou s dans K. L'invariant xy divise alors (xy )(x y) dans Y(k), donc divise xy ou x y. Si xy divise xy dans Y(k), alors il existe s ∈ Y(k) tel que y = sy ; si xy divise x y dans Y(k), alors il existe s ∈ Y(k) tel que x = sx. Autrement dit, on a S(k) λ = Y(k)x ou S(k) -λ = Y(k)y. Remarque 3.4.9. On dit que z, z ∈ S(k) sont Y(k)-libres si pour tous s, s ∈ Y(k) tels que sz + s z = 0, on a s = s = 0. Supposons qu'il existe un poids λ non nul et des semi-invariants x, x de poids λ qui sont Y(k)-libres, ainsi que des semi-invariants y, y de poids -λ qui sont également Y(k)-libres. Par contraposée de la proposition 3.4.8, si l'un des semi-invariants x, x , y, y est irréductible dans S(k), alors Y(k) n'est pas factorielle, et donc en particulier n'est pas polynomiale. Preuve du théorème 3.4.6. On note f × l'ensemble des f m,t de poids non nul. Par le lemme 3.4.3, f × est l'ensemble des f m,t avec m tel que r m ≥ 2. Lemme 3.4.10. Sous les hypothèses du théorème 3.4.6, soit x ∈ Sy

Théorème 3 . 4 . 13 .

 3413 On reprend les hypothèses et notations du début de cette sous-section. On suppose que (a) Y(k) est factorielle, (b) GKdim K[f ] = GKdim Sy(k), (c) les f m sont irréductibles dans Y(k), (I) il existe un morphisme de K-algèbres ϑ : S(k) → Y(k) tel que ϑ | Y(k) est un isomorphisme. (II) tout f ∈ f × est indivisible dans le semi-groupe multiplicatif Sy(k) (c'est-à-dire que pour tout a ≥ 2, f n'est pas une puissance a ème dans Sy(k)),

  prolonge en un unique isomorphisme d'algèbres entre S(k) et l'algèbre K[k * ] des fonctions polynomiales sur k * . On identifiera dans la suite un élément de S(k) avec son image dans K[k * ].

Proposition 3 . 4 . 15 .

 3415 une fonction polynomiale sur le A-module k * A := A ⊗ K k * en identifiant y et id ⊗y. On reprend les hypothèses et notations du début de cette sous-section. Considérons les hypothèses suivantes :

Exemple 3 . 4 . 20 . 1 YDéfinition 3 . 4 . 21 .

 342013421 x y si l'on a x → x 1 → x 2 → . . . → x l → y avec l ∈ N quelconque, • on note x * → y si l'on a x a → y avec a ∈ A \{0}. Soit G et G deux cheminements de sommets 1, 4 dont les graphes non triviaux induits sont représentés respectivement comme suit : On a supp(G) = {1, 2, 4} et supp(G ) = {2, 3, 4}. Les deux cheminements sont donc incompatibles. Suivant les notations de la définition 3.4.19, on pourra les représenter de manière simplifiée comme suit Soient G et G deux cheminements. • On dit que G et G sont équivalents si G et G ont les mêmes arêtes (pas nécessairement avec les mêmes poids).

Exemple 3 . 4 . 22 .

 3422 On reprend les graphes G et G de l'exemple 3.4.20. Leur somme G + G est représentée comme suit (on remarque notamment l'absence d'arête de 2

Exemple 3 . 4 . 27 . 1 , 1 -Définition-Propriété 3 . 4 . 28 .

 3427113428 Si l'on reprend le cheminement G de l'exemple 3.4gl 4 , ce cheminement est le graphe de la forme linéaire q ∈ (gl * 4 ) K[X,Y ] définie par q = 2e * Pour tout cheminement H, on définit dans l'algèbre symétrique S(M ) le monôme S H = x * →y ∈H pr(e x,y ). On appelle S H le H-monôme associé à M et pr. Un H-monôme en type gl n est un H-monôme associé à M = M n (A) et pr = id ; un H-monôme en type C est un H-monôme associé à M = sp n (A) et pr = pr C (voir section 4.2).

Exemple 3 . 4 . 30 .

 3430 Si l'on continue sur l'exemple 3.4.27, le G-monôme en type gl 4 est S G = e 1,1 e 1,4 e 2,1 e 2,4 e 4,1 , et en reprenant le q de l'équation (3.20), on obtient

  4.13 avec f = F, où les égalités de la forme (3.16) sont ici les égalités (3.10). On vérifie d'abord les hypothèses (a), (b), (c) et (d) : (a) L'algèbre Y(q) est polynomiale (proposition 3.1.28) donc en particulier factorielle. (b) Par le théorème 3.3.1, on a GKdim Sy(q) = ind q Λ = Card F. Comme l'ensemble F des F m,t forme une famille d'éléments algébriquement indépendants (théorème 3.2.2 (4)), on a GKdim Sy(q) = GKdim K[F]. (c,d) Les f m = F • m engendrent librement Y(q) (proposition 3.1.28) donc en particulier, sont irréductibles dans Y(q).

3 s

 3 t pour tous m, t. Fixons ξ ∈ 1, s . On considère le graphe orienté non pondéré cyclique C suivant (que l'on ne considère pas comme un cheminement) : 1 2 On pondère cette fois-ci les sommets de ce graphe : le sommet k est pondéré par l'entier p 0,k := i k = |I k |. La somme des poids est k i k = n. On définit alors des suites (v m ) 1≤m≤n , (t m ) 1≤m≤n et (p m,k ) 1≤m≤n,1≤k≤s comme suit. • À l'étape 1, (1-a) on se pose au sommet t 1 := ξ du graphe C, puis (1-b) on choisit v 1 ∈ I t 1 , puis (1-c) on diminue de 1 le poids du sommet t 1 .

L'application m ∈ 1 ,Exemple 3 . 4 . 34 .

 13434 n → v m ∈ I est bijective. En particulier, {v 1 , . . . , v n } = I. Dans l'exemple 3.1.2, supposons ξ = t 1 = 4. On reprend les schémas de l'exemple 3.1.22. La représentation de I comme sous-ensemble de I est :

Lemme 3 . 4 . 37 .

 3437 Puisque les g I (u) ,I [u] sont en somme directe (les I (u) étant deux à deux disjoints), on obtient le lemme suivant : Soit J ⊂ I et σ ∈ S(J) tels que l∈J e l,σ(l) est (au signe près) un monôme de F • m . On a l∈J e l,σ(l) = rm u=1 l∈J (u) e l,σ(l) . Alors pour tout u, le facteur l∈J (u) e l,σ(l) est (au signe près) un monôme de F m,u .

  (n -) C pr(f ) ≤ deg n -f . Démonstration. Cette propriété vient du fait que pr(p) = p C et pr(n -) = (n -) C . On utilise alors cette projection et nos connaissances en type gl n pour étudier le type C.

Lemme 4 . 2 . 15 .

 4215 Pour tout m ∈ 1, n pair, il existe un monôme symétrique S de F • m .Démonstration. Comme m est pair, il existe J ∈ J (m) (définition 3.1.17) qui est symétrique : en effet, pour tous k, k tels que k = s + 1 -k, par symétrie de q, on a I k = I γ k et on peut choisir J k et J k de sorte que J k = J γ k . Par la proposition 3.1.17, si degn -F m = m -i, alors max k |J k | = i. Si J = {a 1 < . . . < a m }, comme pour tout l ∈ 1, m -i on a a l+i ≥ a l ,par la propriété 3.1.6, on obtient a l+i a l (voir définition 3.1.5) ; de plus, on ne peut pas avoir a l+i ∼ a l car sinon a l ∼ a l+1 ∼ . . . ∼ a l+i ce qui contredit le fait que max k |J k | = i, donc a l+i a l . Finalement le terme e a 1 ,a m-i+1 . . . e a i ,am e a i+1 ,a 1 . . . e am,a m-i est un terme symétrique de degré m -i en n -(car a m+1-l = a γ l pour tout l). D'après la proposition 4.2.14, si S est un monôme symétrique de F • m , alors pr(S) est un monôme de pr(F m ). Par la propriété 4.2.8, on obtient ainsi deg(n -) C pr(S) ≤ deg (n -) C pr(F m ) ≤ deg n -F m = deg n -S.Or pr(S) est un monôme non nul, donc bihomogène en (n -) C , donc toujours par la propriété 4.2.8, on a deg(n -) C pr(S) = deg n -S, d'où deg (n -) C pr(F m ) = deg n -F m . Ainsi on a : pr(F m ) • = pr(F • m ). (4.1) Pour tout m ∈ 1, n , on note désormais f m := pr(F 2m ) • = pr(F • 2m ). Remarque 4.2.16. Pour m impair, on a pr(F • m ) = pr(F m ) • = 0 car pr(F m ) = 0 (voir [3]).

Exemple 4 . 3 . 3 .

 433 Pour illustrer les raisonnements de cette section, on se placera dans le cas d'une CPSS où n = 12, s = 8, I 1 = {1}, I 2 = {2, 3}, I 3 = {4, 5}, I 4 = {6} et I k = I γ 9-k pour 5 ≤ k ≤ 8. On a i max = 2, ρ 1 = 4, ρ 2 = 4, m 1 = 8 et m 2 = 12. On représente ce cas schématiquement comme suit :

c m r - 1 t=1 (- 1 )

 11 r et f m ,r +1 = pr(F m,r ). On pose également c m := deg Fm,t (équation (3.10)). On a alors

  I(i) est alors l'ensemble des indices situés sur la colonne i, ici on obtient I(1) = {1, 3, 5, 6, 7, 8, 10, 12} et I(2) = {2, 4, 9, 11}. On construit alors la suite (v l ) en prenant pour chaque colonne alternativement la première ou la deuxième moitié des cases,

)

  Parmi ces monômes, déterminer ceux qui sont des monômes de F • m à m = m i ∈ M fixé. Pour cela, il s'agit de calculer les bidegrés de ces monômes. On calculera en fait leurs degrés et leurs degrés en p. D'après la propriété 4.3.13, on a deg T j = |I(j)| = m j -m j-1 et deg p T j = 1, ce qui donne deg j∈K T j = j∈K (m j -m j-1 ) et deg p j∈K T j = |K|.

Notation 4 . 3 . 17 .

 4317 w ) le facteur irréductible de T i correspondant. Ce facteur appartient à (n -) C car u ≤ r . Alors par définition de T i , l'indice w appartient à I c avec c = max{k < b | I(i) ∩ I k = ∅} = max{k < b | |I k | ≥ i} (propriété 4.3.13). Comme |I a | = i, on a c ≥ a, et donc I c ⊂ I [u] . Ainsi pr(e v,w ) divise nécessairement y u . On rappelle que i et t sont fixés. On considère un facteur pr(e v,w ) commun à T i et y t . Comme pr(e w γ ,v γ ) = ± pr(e v,w ), on peut supposer que v+w ≤ n+1. Par la dernière phrase de la propriété 4.3.13, le terme e * v,w est au signe près un terme de q . Les e * a,b avec a + b ≤ n + 1 forment une base de (q C ) * . Si a + b ≤ n + 1, on note p a,b le coefficient de e * a,b dans q . Si a+b > n+1, il existe a,b ∈ {±1} tel que e * a,b = a,b e * b γ ,a γ avec b γ + a γ ≤ n + 1. On pose donc p a,b = a,b p b γ ,a γ . Ainsi, pour tous a, b, on a p a,b ∈ {-1, 0, 1}, et si p a,b = 0, le terme p a,b e * a,b est un terme de q .

Exemple 4 . 3 . 18 .

 4318 Dans l'exemple 4.3.3, si pr(e v,w ) = e 9,4 , alors la modification donne le graphe G(q) suivant :

Définition 4 . 3 . 19 .•Cas 2 :

 43192 On utilise les notations de la définition 3.4.19. Dans les graphes qui suivront, on notera des arêtes sous la forme x y et x y pour signifier que l'arête représente un élément pr(e x,y ) dans p (respectivement qu'exactement une des arêtes impliquées dans la suite d'arêtes représente un élément de p). Une arête (respectivement une arête pointillée) qui ne sera pas sous cette forme représentera un élément de (n -) C (respectivement une suite d'éléments de (n -) C ). • On parlera parfois de degré ou de bidegré d'un graphe G pour signifier le degré ou le bidegré de S G . Si w = v γ , alors par la propriété 4.3.13, (2.a) soit w < v (c'est-à-dire e v,w ∈ (n -) C ), dans ce cas, on définit x, y de sorte que pr(e x,y ) soit l'unique facteur de T i+1 tel que y = x γ et y < x, (2.b) soit w > v (c'est-à-dire e v,w ∈ p), dans ce cas, on définit x, y de sorte que pr(e x,y ) soit l'unique facteur de T i+1 tel que y = x γ et y > x.

x γ . Exemple 4 . 3 . 20 .

 4320 Dans l'exemple 4.3.3, • le sous-cas (2.a) correspond à pr(e v,w ) = e 7,6 , et alors pr(e x,y ) = e 9,4 , • le sous-cas (2.b) correspond à pr(e v,w ) = e 1,12 , et alors pr(e x,y ) = e 2,11 .

x γ x Exemple 4 . 3 . 21 .

 4321 Avec l'exemple 4.3.20 dans le sous-cas (2.a), on obtient le graphe G(q)

Exemple 4 . 3 . 23 .

 4323 Si w = v γ , alors par la propriété 4.3.13, on a pr(e v,w ) ∈ (n -) C , et donc v w (propriété 3.1.7). Comme par hypothèse v + w ≤ n + 1, on a v, w ∈ I(i) -. Cas (3.a) : Supposons qu'il existe un facteur pr(e x,y ) de T i+1 tel que y w ≺ v x. Alors e x,y ∈ (n -) C . On distingue encore deux cas. Cas (3.a.i) : Si y = x γ , alors on remplace p v,w e * v,w +p x,x γ e * x,x γ par p v,w Xe * v,w +e * v,x γ +e * w γ ,w . Un exemple de ce cas dans l'exemple 4.3.3 est le cas où pr(e v,w ) = pr(e 6,5 ) et pr(e x,y ) = e 9,4 .

Exemple 4 . 3 . 24 .

 4324 Avec l'exemple 4.3.23, on obtient le graphe G(q)

( 3 .

 3 a.ii) : Si y = x γ , alors on remplace p v,w e * v,w + p x,y e * x,y par p v,w Xe * v,w + e * v,y + e * x,w . Exemple 4.3.26. Un exemple de ce cas dans l'exemple 4.3.3 est le cas où pr(e v,w ) = pr(e 5,3 ) et pr(e x,y ) = pr(e 4,2 ).

Exemple 4 . 3 . 27 .

 4327 Avec l'exemple 4.3.26, on obtient le graphe G(q) peut vérifier que les circuits G 1 , G 2 , G 3 respectivement définis par de la remarque 4.3.25.Cas (3.b) : Dans le cas où on n'a y w ≺ vx pour aucun facteur pr(e x,y ) de T i+1 , montrons que pour tout y ∈ I(i + 1), on a v y. On rappelle que v, w ∈ I(i) - Soit y ∈ I(i + 1). On reprend les notations 3.1.1.

x x γ Exemple 4 . 3 . 29 .si t = r + 1 ,

 43291 Avec l'exemple 4.3.28, on obtient le graphe G(q) vérifier que les circuits G 1 , G 2 , G 3 respectivement définis par Soit m = m i ∈ M . On pose r = r m , m = 2m ∈ M et r = 2r . On rappelle (proposition 4.3.7) que pour tout t ∈ 1, r + 1 , on aavec w C k = C ι k-1 -C ι k et C l ∈ (sp n ) * les poids fondamentaux. Comme en type gl n , si Λ C est l'ensemble des poids de Sy(q C ), alors Λ C ⊂ n =1 Z C. ainsi tous les λ C m ,t , t < r sont indivisibles dans Λ C , de sorte que leurs semi-invariants associés f m ,t sont bien indivisibles dans Sy(q C ). Restent les cas où t = r et t= r + 1, qui correspondent à f m ,r = pr(F m,r ) et f m ,r +1 = pr(F m,r ).Notons D le sous-espace vectoriel de gl n des matrices antidiagonales, engendré par les e v,v γ . On a en fait D ⊂ sp n . Pour tout e v,v γ ∈ D, l'invariant F m est de degré au plus 1 en e v,v γ , donc F • m aussi (c'est une somme de certains monômes de F m ). Or pour tout v, w, on a e v,w ∈ D ⇔ pr(e v,w ) ∈ D. Ainsi pour tout e v,v γ ∈ D, la projection pr(F • m ) est de degré au plus 1 en e v,v γ , et donc les f m ,t aussi (ce sont des facteurs de pr(F • m )).

Propriété 4 . 3 . 30 .

 4330 Le semi-invariant f m ,t est de degré 1 en un élément e v,v γ ∈ D si et seulement si t ∈ {r , r + 1}.Démonstration. On rappelle que F m,t ∈ S(g I (t) ,I[t] ). Si F m,t est de degré 1 en des éléments deD, alors D ∩ g I (t) ,I [t] = ∅. Mais alors I (t) γ ∩ I [t] = ∅. Or si t < r, on a I (t) γ = I [r-t], doncI (t) γ ∩ I [t] = I [r-t] ∩ I [t]. Comme les I[t] sont disjoints, l'ensemble I [r-t] ∩ I[t] est non vide si et seulement si t = r/2 = r . Si t = r, on a I (r) γ = I[r] , doncI (t) γ ∩ I [t] = ∅. Ainsi t ∈{r , r}. Autrement dit, avec la notation 4.3.6, si f m ,t est de degré 1 en des éléments de D, alors t ∈ {r , r + 1}.Prenons T i , qui est un facteur d'un monôme de pr(F • m ) si m = m i (proposition 4.3.15). D'après la propriété 4.3.13, il existe exactement deux facteurs irréductibles de T i qui sont sur l'antidiagonale, dont un dans p C et l'un dans (n -) C . D'après ce qui précède et le lemme 3.4.37, ils apparaissent donc dans un monôme de f m ,r ou f m ,r +1 . Pour conclure, on va montrer que l'un des facteurs apparaît dans f m ,r et l'autre dans f m ,r +1 . Le facteur dans p C apparaît nécessairement dans f m ,r +1 car f m ,r = pr(F m,r ) ∈ S((n -) C ). Par la propriété 4.3.13, le facteur dans (n -) C est du type pr(e v,w ) (avec w = v γ ) où w, v sont deux termes consécutifs pour l'ordre croissant deI(i). Autrement dit, on a k(w) < k(v) avec k(w), k(v) ∈ K(i) et k(w) + 1, k(v) -1 ∩ K(i) = ∅, c'est-à-dire |I k | < i pour tout k ∈ k(w) + 1, k(v) -1 . Or, comme i ∈ I, il existe c ∈ κ i , c'est-à-dire tel que |I c | = i. Comme k(w) ≤ s < s + 1 ≤ k(v),par symétrie, il existe donc d, d tels que d ≤ k(w) < k(v) ≤ d et d, d ∈ κ i . En particulier, on a k 1 < k(v) ≤ k r (où l'on rappelle que κ i = {k 1 < . . . < k r } en omettant les indices i).

Théorème 4 . 4 . 7 .

 447 On considère la contraction parabolique standard q de gl 8 définie par π = {α 2 , α 4 , α 6 }, autrement dit, la contraction parabolique associée au diagramme suivant :

1 ) 2 =Conjecture 2 .Conjecture 3 .

 1223 pr(F • 2m-2 ) = f 2 2m-2,1 . . . f 2 2m-2,r m-1 -1 f 2m-2,r m-1 f 2m-2,r m-1 +1 , g s 1 2m-2,1 . . . g sm 2m-2,r m +1 , où s k ∈ N * et les espaces de poids sont en somme directe. De manière générale, dans tous les cas que l'on a considérés, on a constaté le fait suivant : Si m ∈ M 2 est impair, alors il existe une décomposition f = r m +1 k=1 g s k k avec les g k non constants et non liés deux à deux, où f= pr(F • 2m-2 ) -1 4 pr(F • m-1 ) 2 si 2m -2 ≤ n pr(F • m-1 ) si 2m -2 > n .Cette conjecture peut faire apparaître un problème du type du contre-exemple de la soussection 4.4 dans le cas où m ∈ M 2 est impair et 2m-2 ∈ M 2 . En revanche, si m ∈ M 2 est impair, alors m -1 /∈ M 1 (propriété 3.1.4 (5)), ce qui ne pose donc pas le même type de problème. On conjecture alors : En type C, l'algèbre Sy(q C ) des semi-invariants n'est pas polynomiale si et seulement si il existe m ∈ M 2 impair tel que 2m -2 ∈ M 2 .

2 g I 3 g I 4 g I 5 g I 6

 2346 Dans ce cas, on a pr(F • 6 ) = 0 (car e 1,12 divise F • 6 et la projection des éléments antidiagonaux est nulle) et deg (n -) D pr(F 6 ) = 4 (alors que deg n -F 6 = 5). En revanche, pour m ∈ {2, 4, 8, 10, 12}, on a bien deg (n -) D pr(F m ) = deg n -F m .

 = y 1 y 2 . ( 6 . 3 )= 4 ( 4 (

 26344 Ainsi β ∈ (-π \ -π ) ∪ {θ}, ce qui conclut la démonstration.Dans notre cas, le diagramme de Dynkin étendu est pr(e 2,11 ) = 0, le terme e 2,11 ∆ {1,a,b,11,12},{1,2,c,d,12} a sa projection nulle et on peut donc l'écarter. Il reste deux termes à considérer, qui sont -e 2,1 ∆ {1,a,b,11,12},{2,c,d,11,12} et e 2,12 ∆ {1,a,b,11,12},{1,2,c,d,11} . Il reste donc à calculer ∆ • {1,a,b,11,12},{2,c,d,11,12} (qui est de degré 3 en n -) et ∆ • {1,a,b,11,12},{1,2,c,d,11} (qui est de degré 4 en n -). On trouve (en développant selon la colonne numérotée 11) ∆ • {1,a,b,11,12},{2,c,d,11,12} = -e 12,11 ∆ {a,b},{2,12} ∆ {1,11},{c,d} -e 1,11 ∆ {a,b},{2,12} ∆ {11,12},{c,d} , ∆ • {1,a,b,11,12},{1,2,c,d,11} = e 12,11 ∆ {a,b},{1,2} ∆ {1,11},{c,d} + e 1,11 ∆ {a,b},{1,2} ∆ {11,12},{c,d} , d'où, en notant(a,b),(c,d) la somme sur l'ensemble des (a, b) ∈ 3, 6 2 et (c, d) ∈ 7, 10 2 , la formule pr(F • 8 ) = -x 2 1 pr   (a,b),(c,d) ∆ {a,b},{2,12} ∆ {1,11},{c,d} ∆ {c,d},{a,b} b),(c,d) ∆ {a,b},{1,2} ∆ {11,12},{c,d} ∆ {c,d},{a,b}   + x 1 x 2 pr   (a,b),(c,d) ∆ {a,b},{2,12} ∆ {11,12},{c,d} ∆ {c,d},{a,b}   + x 1 x 2 pr   (a,b),(c,d) ∆ {a,b},{1,2} ∆ {1,11},{c,d} ∆ {c,d},{a,b} b),(c,d) ∆ {a,b},{2,12} ∆ {11,12},{c,d} ∆ {c,d},{a,b} b),(c,d) ∆ {a,b},{1,2} ∆ {1,11},{c,d} ∆ {c,d},{a,b} b),(c,d) ∆ {a,b},{2,12} ∆ {1,11},{c,d} ∆ {c,d},{a,b} b),(c,d) ∆ {a,b},{1,2} ∆ {11,12},{c,d} ∆ {c,d},{a,b} b),(c,d) ∆ {a,b},{2,12} ∆ {11,12},{c,d} ∆ {c,d},{a,b}   . Pour conclure, il nous suffit de montrer que pr   (a,b),(c,d) ∆ {a,b},{2,12} ∆ {1,11},{c,d} ∆ {c,d},{a,b} b),(c,d) ∆ {a,b},{1,2} ∆ {11,12},{c,d} ∆ {c,d},{a,b} b),(c,d) ∆ {a,b},{2,12} ∆ {11,12},{c,d} ∆ {c,d},{a,b}  Pour l'égalité (6.1), si l'on développe le terme ∆ {a,b},{2,12} ∆ {1,11},{c,d} ∆ {c,d},{a,b} , on a 8 monômes qui apparaissent, et modulo un échange des variables a et b ou 1 des variables c et d, on a deux classes de monômes, dont des représentants sont e 1,c e c,a e a,2 e 11,d e d,b e b,12 et -e 1,c e c,a e a,12 e 11,d e d,b e b,2 . Quatre de ces monômes sont de la première classe et quatre des monômes sont de la deuxième classe. Après sommation, on obtient alors pr   (a,b),(c,d) ∆ {a,b},{2,12} ∆ {1,11},{c,d} ∆ {c,d},{a,b}   a,b),(c,d) pr(e 1,c ) pr(e c,a ) pr(e a,2 ) pr(e 11,d ) pr(e d,b ) pr(e b,12 ) a,b),(c,d) pr(e 1,c ) pr(e c,a ) pr(e a,12 ) pr(e 11,d ) pr(e d,b ) pr(e b,2 ).

  lemme 4.2.4]). Sous les hypothèses de ce théorème, on voit que la décomposition de f m est triviale si et seulement si r m = 1. De plus, si m vérifie r m ≥ 2, alors on remarque que pour tout t, f m,t est un semi-invariant 17 et est de poids non nul. Dans notre cas, si pour un certain m, on a une décomposition F • m = rm t=1 F m,t avec r m ≥ 2, on ne sait pas a priori si les F m,t sont bien irréductibles. Pour montrer cela, on utilise le résultat technique suivant.

Théorème (voir théorème 3.4.13). Soit k une algèbre de Lie de dimension finie. On suppose que Y(k) est une algèbre factorielle. Soit (f m ) 1≤m≤d une famille d'invariants irréductibles dans Y(k), et pour tout m, une décomposition

  Un cheminement est un graphe orienté pondéré d'ensemble de sommets 1, n pour lequel il existe une unique arête allant d'un sommet x à un sommet y. Lorsqu'on représente graphiquement un cheminement, on ne représente que les arêtes de poids non nul.

	Soit

• 1 , . . . , F • n , et de (III') sont combinatoires et utilisent des graphes orientés pondérés que l'on appelle cheminements.

  En particulier, une algèbre de Lie algébrique est ad-algébrique. On obtient alors le théorème suivant, présenté dans [12, Appendice B.2] dans une version un peu plus générale, qui généralise un résultat de Borho, Gabriel et Rentschler [2, Satz 6.1]. (Joseph, Millet). Soit k une algèbre de Lie de dimension finie. Si k est adalgébrique, alors Sy

	Théorème 2.3.4

.2]. Définition 2.3.3. L'algèbre de Lie k est ad-algébrique si l'algèbre de Lie ad k est algébrique, c'est-à-dire une sous-algèbre de Lie algébrique de gl(k).

  Pour tout j ∈ 1, n , l'entier j -deg n -F j est l'unique i ∈ 1, i max tel que m i-1 < j ≤ m i(voir le point (2) de la propriété3.1.4). La suite (deg n -F j ) 1≤j≤n vérifie alors la relation de récurrence suivante : on a deg n -

	4
	1
	4
	2
	1

3.1.14. Comme les (∆ J ) J⊂I,|J|=j sont linéairement indépendants, on a deg n -F j = max J⊂I,|J|=j

deg n -∆ J .

Ainsi, par le lemme 3.1.10,

deg n -F j = j -min J⊂I,|J|=j max k (j k ).

Exemple 3.1.15. On reprend le cas de la contraction parabolique introduite dans l'exemple 3.1.2. Pour j = 6, en reprenant l'approche de l'exemple 3.1.12, il s'agit de trouver quels J ⊂ I de cardinal 6 minimisent le nombre de colonnes sur lesquelles au moins une case est remplie. On constate alors qu'au moins 2 colonnes auront une case remplie et qu'il s'agit bien du minimum possible ; par exemple, les sous-ensembles J du type n'ont bien que 2 colonnes avec au moins une case remplie. Corollaire 3.1.16.

  2.1. Le point (1) est montré à la suite. Les points (2) et (3) sont montrés dans la sous-section 3.2.2. Le point (4) est montré dans la sous-section 3.2.3. • Dans le cas où p est une sous-algèbre de Borel, pour i

	Exemple 3.2.3.

  .5) Cette dernière égalité découle du fait général suivant : soit A un anneau associatif et commutatif, E 1 , . . . , E d des ensembles finis et pour tout y i ∈ E i avec i ∈ 1, d , soit a y i un élément de A, alors (y 1 ,...,y d )∈E 1 ×...×E d

	d
	i=1

Proposition 3.2.10. F •

  

• J (t) ,J

[t] 

est donc dans S(n -). m est produit de r facteurs homogènes non constants.

Démonstration. De ce qui précède, on obtient (voir les notations de la définition 3.1.17 et la notation 3.1.21) :

  Théorème 3.2.17. Soit k une algèbre de Lie. Soit d ≥ 1 et (f m ) 1≤m≤d une famille d'éléments algébriquement indépendants de Y(k). Supposons que pour tout m ∈ 1, d , l'invariant f m se décompose en un produit de semi-invariants f m ∝ rm t=1 f avec r m ≥ 1 et les s m,t ≥ 1 des entiers premiers entre eux (dans leur ensemble). On suppose de plus que les semi-invariants f m,t vérifient :• à m fixé, l'ensemble des poids λ m,t des f m,t pour t ∈ 1, r m forme une famille de rang r m -1.• les espaces vectoriels Vect ((λ m,t ) 1≤t≤rm ) pour m ∈ 1, d sont en somme directe. , et supposons qu'ils sont de même poids, disons λ ∈ Λ(f ). Pour tout m, on noteL m := Vect ((λ m,t ) 1≤t≤rm ). On a Vect(Λ(f )) = m L m . On considère alors la décomposition λ = λ m avec λ m ∈ L m . Les L m étanten somme directe, pour tout m, les poids de rm ). Ainsi il existe φ m ∈ Q tel que pour tout t, on a p m,t -p m,t = φ m s m,t . Puisque les s m,t sont premiers entre eux, on a nécessairement φ m ∈ Z. En particulier, l'ordre défini sur N rm par (x m,t ) t ≤ (y m,t ) t ⇔ ∀t, x m,t ≤ y m,t devient un ordre total sur P m := {(x m,t ) t ∈ N rm | rm t=1 x m,t λ m,t = λ m } et cet ensemble admet un minimum pour cet ordre. Notons (b m,t ) t ce minimum. Il ne dépend que de λ m et notamment pas du choix des p m,t et p m,t . Pour tout monôme rm t=1 (f m,t ) pm,t de poids λ m , il existe donc un unique ϕ m ∈ N tel que p m,t = ϕ m s m,t + b m,t pour tout t. L'application (p m,t ) t ∈ P m → ϕ m ∈ N est clairement bijective. Ainsi pour tout m, on a est nul. Pour conclure, il suffit de montrer que tous les k p sont nécessairement nuls. Par l'absurde, supposons qu'au moins un des k p est non nul. Comme les S(k) ν sont en somme directe, on peut supposer que tous les monômes deux à deux non colinéaires k p m,t f Autrement dit, à une constante multiplicative non nulle près, ils s'écrivent tous sous la forme de l'équation (3.13). L'application (p m,t ) m,t ∈ P 1 × . . . × P d → (ϕ m ) m ∈ N d est bijective et (b m,t ) m,t ne dépend pas des p m,t . Ainsi le facteur d ) bm,t est commun à tous ces monômes et peut être simplifié. Ils deviennent donc (à une constante multiplicative non nulle près) des monômes de la forme d m=1 f ϕm m deux à deux distincts. On obtient donc un polynôme P non trivial qui est nul en les f m , ce qui est absurde car les f m sont algébriquement indépendants.

	sm,t Supposons qu'un polynôme en les f m,t de la forme p=(pm,t)m,t k p m,t f m,t pm,t pm,t m,t ont le même poids λ. m,t Alors les (f m,t ) 1≤m≤d, 1≤t≤rm sont algébriquement indépendants. m=1 rm t=1 (f m,t
	Remarque 3.2.18. Les hypothèses du théorème sont vérifiées dans le cas que l'on étudie grâce à
	la proposition 3.1.28 et aux points (2) et (3) du théorème 3.2.2.
	sm,t					
	m,t rm	rm			
			(f m,t ) pm,t =	(f m,t ) ϕmsm,t+bm,t
		t=1	t=1			
			rm	ϕm rm
			=	(f m,t ) sm,t	(f m,t ) bm,t
			t=1	t=1
				rm		
			∝ (f m ) ϕm	(f m,t ) bm,t .
				t=1	
	et donc	d	rm	d	d	rm
			(f m,t ) pm,t ∝	f ϕm m	(f m,t ) bm,t .	(3.13)
		m=1	t=1	m=1	m=1	t=1

Démonstration. Soit Λ(f ) le semi-groupe engendré par les poids des f m,t . Considérons deux monômes en les f m,t respectivement d m=1 rm t=1 (f m,t ) pm,t et d m=1 rm t=1 (f m,t ) p m,t t=1 (f m,t ) pm,t et de rm t=1 (f m,t ) p m,t sont égaux à λ m . On fixe désormais m. On a donc rm t=1 p m,t λ m,t = rm t=1 p m,t λ m,t = λ m . Or la famille des λ m,t , 1 ≤ t ≤ r m est de rang r m -1 et vérifie rm t=1 s m,t λ m,t = 0 (car f m ∝ t f

  Pour tous m, t, on note λ m,t le poids de f m,t . Par l'équation(3.16), on a -λ m,t =

tout m, telles que pour tout m ∈ 1, d et t ∈ 1, r m , il existe des entiers ν m,t > 0 tels que

f m ∝ rm t=1 (f m,t )

νm,t . (3.16) On note K[f ] la sous-algèbre de Sy(k) engendrée par les éléments de f , et on souhaiterait déterminer à quelles conditions on a K[f ] = Sy(k). Soit Λ(f ) le semi-groupe des poids de K[f ]. On note aussi f × l'ensemble des éléments de f de poids non nul. Remarque 3.4.1. Quitte à retirer un f m de la liste, on peut d'abord supposer que les f m sont deux à deux non colinéaires. En revanche, on ne peut pas faire de même pour les f m,t . Toutefois, pour f, g ∈ f , quitte à multiplier f et g (et leurs invariants associés) par des constantes, on peut supposer que f ∝ g ⇒ f = g (en respectant toujours les hypothèses ci-dessus). On supposera donc ces hypothèses supplémentaires vérifiées dans la suite de cette sous-section. Lemme 3.4.2. Le semi-groupe Λ(f ) est un groupe. Démonstration. u =t ν m,u λ m,u + (ν m,t -1)λ m,t . Lemme 3.4.3. On suppose que les f m sont irréductibles dans Y(k). Soit M 2

•

  On appelle graphe non trivial induit par G que l'on note G le graphe orienté pondéré d'ensemble de sommets supp G, et d'ensemble d'arêtes toutes les arêtes de poids non nul de G, avec les mêmes poids.Autrement dit, le graphe non trivial induit par G est le graphe dans lequel on ne garde que les arêtes non nulles et les sommets pertinents. Soit G un cheminement. On appelle une "représentation graphique de G" une représentation graphique de son graphe non trivial induit. Pour x, y ∈ I, on introduit de plus les notations graphiques suivantes :

	Définition 3.4.19.

  Pour tout i ∈ 0, i max , les entiers ρ i et m i sont pairs. En particulier, M 1 = M 2 =: M et tous les éléments de M sont pairs. Pour tout i, on définit alorsρ i := ρ i /2 et m i := m i /2. On note M := {m/2 | m ∈ M}. En particulier, pour tout m = m i ∈ M, l'entier r m = ρ i est pair. Pour tout m ∈ M , on note alors r m := r 2m /2. • Pour tout i ∈ I, l'ensemble κ i = {k i,1 < . . . < k i,ρ i } est symétrique dans le sens où k i,ρ i +1-t = s + 1 -k i,t pour tout t. Comme précédemment, on omet souvent les indices i.

  • J (r-t) ,J [r-t] = (∆ • J (t) ,J [t]) γ sur gl n , de sorte que pr(F m,r-t ) = (-1) deg Fm,t pr(F m,t ).

	Exemple 4.3.5. Dans l'exemple 4.3.3, on a F • 8 ∝ F 8,1 F 8,2 F 8,3 F 8,4 et F • 12 ∝ F 12,1 F 12,2 F 12,3 F 12,4 . Pour tout m pair différent de 8 et 12, on a F • m = F m,1 . La projection donne alors pr(F 8,3 ) = -pr(F 8,1 ) et pr(F 12,3 ) = pr(∆ • {10,11},{8,9} ) = pr(∆ • {4,5},{2,3} ) = pr(F 12,1 ).
	Notation 4.3.6.

  ce qui implique que tous les x t sont nuls. En particulier, les λ C m ,t sont linéairement indépendants. Soient m i = m i dans M 1 . Alors l'ensemble des w C k qui apparaissent dans l'écriture des λ C m i ,t et l'ensemble des w C k qui apparaissent dans l'écriture des λ C m i ,t sont disjoints. Comme les w C k forment une famille libre, les espaces vectoriels Vect((λ C m i ,t ) t ) pour 1 ≤ i ≤ i max sont en somme directe. Par le théorème 3.2.17, les f m ,t , pour m ∈ 1, n , et t ∈ 1, r m + 1 sont algébriquement indépendants, de sorte que ind q C Λ ≥ n + i∈I ρ i = n + s .

	Corollaire 4.3.9.

  • 2m ). Par l'égalité (4.1), il suffit de montrer que deg n -S 2m = deg n -F 2m . Comme sur gl n , on va montrer que la suite deg n -S 2m vérifie la même relation de récurrence que deg n -F 2m , sachant que (voir équation (3.1))deg n -F 2m+2 = deg n -F 2m + 1 si 2m = m i , 1 ≤ i ≤ i max -1, deg n -F 2m + 2 sinon. Premièrement, on a deg n -S 2 = 1 = deg n -F 2 . En effet, puisque v 1 ∈ I(1) -, on a v 1 ≤ n , et donc comme on est dans le cas où α C n / ∈ (π C ) , on a v γ 1 v 1 (voir propriété 3.1.7). Ainsi e v 1 ,v γ 1 ∈ p et e v γ 1 ,v 1 ∈ n -. On a ensuite deg n -S 2m+2 = deg n -S 2m + deg n -e v m+1 ,vm + deg n -e v γ -S 2m+2 = deg n -S 2m + 2 deg n -e v m+1 ,vm + deg n -e v γ m+1 ,v m+1 -deg n -e v γ m,vm . Si 2m n'est pas égal à un m i , 1 ≤ i ≤ i max , alors m et m + 1 appartiennent à un même intervalle m i-1 + 1, m i pour un certain i (propriété 3.1.4 (2)). Ainsi par définition de la suite

	m ,v γ m+1
	+ deg n -e v γ m+1 ,v m+1 -deg n -e v γ m ,vm .
	Déjà, puisque γ est décroissante pour le préordre ≺ sur 1, n , on a deg n -e v γ m ,v γ m+1 = deg n -e v m+1 ,vm ,
	d'où
	deg n

  Exemple 4.3.14. Dans l'exemple 4.3.3 avec la suite (v l ) l définie en 4.3.12, on a

	q 1 = e * 3,1 + e * 5,3 + e * 6,5 + e * 7,6 + e * 1,12	et	q 2 = e * 11,9 + e * 9,4 + e * 2,11 .
	(les e * u,v sont vus comme des formes linéaires sur sp n ). Ces formes linéaires correspondent res-
	pectivement aux circuits suivants					
	1	3	5	6	2	4
	12	10	8	7	11	9

  3,1 -e 12,10 ) 2 (e 5,3 -e 10,8 ) 2 (e 6,5 -e 8,7 ) 2 e 7,6 e 1,12 et T 2 ∝ (e 4,2 -e 11,9 ) 2 e 9,4 e 2,11 .

Proposition 4.3.15. Pour tout m = m i ∈ M, le monôme i j=1 T j est à une constante multiplicative non nulle près un monôme de pr(F • m ) et pour tout monôme S de pr(F

  r et g I (r) ,I [r] sont en somme directe. Le produit i j=1 T j est à une constante multiplicative près un monôme de pr(F • m ) en les pr(e x,y ) (proposition 4.3.15). Ainsi de la même manière que dans le lemme 3.4.37, à une constante multiplicative près il existe y u monôme de f m ,u pour 1 ≤ u ≤ r + 1, tel que

	i	r -1
	T j =	y 2 u × y r × y r +1
	j=1	u=1
	(voir l'équation 4.2). À m fixé, les y u sont donc premiers entre eux deux à deux.

Proposition 4.3.16. Pour tout u ∈ 1, r + 1 , il existe un facteur pr(e v,w ) du monôme T i qui divise également le monôme y u . Démonstration. On suppose que u ∈ 1, r . Le raisonnement est similaire si u = r + 1. L'ensemble des facteurs irréductibles de T i qui divisent y u est l'ensemble des facteurs irréductibles pr(e v,w ) de T i avec e v,w ∈ g I (u) ,I [u] ⊕ g I (r-u) ,I [r-u] . On rappelle que (notation 3.2.8)

  + e * 1,8 + e * 2,1 + e * 3,1 + e * 4,2 + e * 5,3 + e * 7,2 . Son graphe G(q ) est de la forme :Puisque nos semi-invariants sont des facteurs de pr(F• 8 ) et pr(F • 8 ) -1 4 pr(F • 4 ) 2, on s'intéresse aux sous-graphes circuits de G(q ) de longueur 4 et 8. On vérifie que les seuls sous-graphes circuits de longueur 4 sont : on note G 1 , G 2 et G 3 . Les deux premiers sont compatibles, le troisième est incompatible avec les deux premiers. On a S G 1 = S G 2 . On vérifie également que le seul sous-graphe circuits de longueur 8 est G 1 + G 2 .

	7	5	6	8	8	7
	1	3	4	2	2	1
	que l'4 6	2 8	1 7	3 5	
		6	8	7	5	
		4	2	1	3	
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  + , I(i) -, 91 I k , J k , i k , j k , 39 I p , 39 J (t) , J[t] , j (t) , j[t] ,T (t) , T[t] , 51 J L , 40K(i), 39 K t , 54 L γ , M γ , V γ , f γ , 83 S = gl n , 33 g J,J , g J , V J,J , V J , 33 g β , 35 gl + n , gl - n , 83 k * A , 71 k Λ , 37 q A , 47 q C , p C , (n -) C , 84 h Λ , 60 id (i) , 62 i max , 39 ind k, 34 κ, k t , voir κ i , k i,t κ i , k i,t , 39 λ m,t , 55 a, b , 33 F, 54 I, 40 M, M , 87 M 0 , M 1 , M 2 , M k , k ∈ N, 40 f , K[f ], Λ(f ), f × , 64 F j , 47 G + G , 73 G(q), 73 J (j), 44 J (j) k , J k ,46 S H , 74 T, T k , 50 T i , T i , 94 π, π , 35 pr A , 47 pr C , 84 ρ i , m i , r m , 87 ρ i , 40 supp G, 72 sp n , 83 θ J , Θ J , 42 , 36

	k(x), i(x), 39
	k J , 45
	m i , 40
	p a,b , 97
	q • f , 36
	r m , 49
	x ∼ y, x y, x y, x ≺ y, 41
	y u , 97
	F • , 42
	F m , 34
	F m,t , 54
	I, 33
	I(i), I(i) (t) J , 52
	K[Y ], 33
	K[F], 60
	∆ J,J , ∆ J , 33
	GKdim A, 34
	Λ(k), Λ, 36
	Sy(k), 36
	S(V ), 33
	S(k) λ , 36
	Y(k), 36
	bideg F , 42
	deg N (F ), 42
	η, 52
	g C i , α C i , π C , (π C ) , 84
	g, 33
	G, 72
	a ∝ b, 33
	c m , 89
	c m , 54
	e p,q , e * p,q , 33, 85
	f m ,t , 89
	h , 36
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On rencontre souvent les désignations de "tranches de Kostant" ou de "sections de Weierstrass". On peut aussi désigner par ces termes le sous-espace affine V.

introduite plus tôt

reprenant Borho, Gabriel et Rentschler dans le cas nilpotent

en particulier si k est une algèbre de Lie ad-algébrique

Pour des raisons pratiques, on omettra dans la suite cette notation et on notera simplement cette algèbre de Lie n -.

pour une définition générale des contractions d'Inönu-Wigner, voir[START_REF] Inonu | On the Contraction of Groups and Their Representations[END_REF] ou[8, §2.3] 

Autrement dit, la limite, lorsque t tend vers 0, du crochet de Lie sur g (t) est le crochet de Lie sur q.

ici le centre de b b * est isomorphe à la sous-algèbre de Cartan associée à b *

on rappelle que Sy(q) = Y(q Λ )

On entend par "facteur de Levi de type A" un facteur ne faisant apparaître que des racines courtes. Par exemple, si le facteur de Levi ne fait apparaître que la racine longue, on ne considèrera pas ce facteur de Levi comme "de type A" bien qu'il soit a priori isomorphe à un produit de la forme sl2 × a avec a une algèbre de Lie abélienne.

On déduit ce point de l'étude des F • m en type A par Panyushev et Yakimova[START_REF] Panyushev | Parabolic contractions of semisimple Lie algebras and their invariants[END_REF] (voir la proposition 3.1.28).

qui en général est un semi-groupe

c'est un facteur d'un invariant donc un semi-invariant, voir la proposition 2.2.13

c'est-à-dire f n'est pas une puissance a ème dans Sy(k) pour tout a ≥ 2

On prend la définition de sp n donnée par [3, Chap. VIII].

Ce résultat provient de la construction de sp n donnée dans[START_REF] Bourbaki | Groupes et algèbres de Lie. en. 2 e éd. Éléments de Mathématique[END_REF], dans laquelle la sous-algèbre de Cartan de sp n est diagonale.

la ligne pleine sépare les ex,y dans p et ceux dans n -, et les ex,y entre la ligne pleine et la ligne en pointillés forment une base d'un facteur de Levi l

et non (III') qui ne peut pas être simplement montré ici

They are also often called "Kostant slices" or "Weierstrass sections". These terms can also designate the affine subspace V.

introduced earlier

in particular if k is an ad-algebraic Lie algebra

For practical reasons, we will omit this notation after this and simply note this Lie algebra n -.

for a general definition of Inönu-Wigner contractions, see[START_REF] Inonu | On the Contraction of Groups and Their Representations[END_REF] or[8, §2.3] 

In other words, the limit, when t goes to 0, of the Lie brackets on g (t) gives the Lie bracket on q.

here the centre of b b * is isomorphic to the Cartan subalgebra associated with b *

essentially some form of the Igusa lemma

By "Levi factor of type A", we mean a factor only associated with short roots. For example, if the Levi factor is associated only with the long root, we will not consider this factor as a "type A" Levi factor, even if it is isomorphic to a certain product sl2 × a with a an abelian Lie algebra.

This point can be deduced from the study of the F • m in type A by Panyushev and Yakimova[START_REF] Panyushev | Parabolic contractions of semisimple Lie algebras and their invariants[END_REF] (see proposition 3.1.28).

i.e. f is not an a th power in Sy(k) for any a ≥ 2

We denote by "digraph" a directed graph.

We take the definition of sp n given by[START_REF] Bourbaki | Groupes et algèbres de Lie. en. 2 e éd. Éléments de Mathématique[END_REF].

This fact comes from the construction of sp n given in[START_REF] Bourbaki | Groupes et algèbres de Lie. en. 2 e éd. Éléments de Mathématique[END_REF], where the Cartan subalgebra of sp n is diagonal.

instead of (III') which cannot be simply showed here

Toutes les algèbres de Lie considérées par la suite seront de dimension finie. Pour toute algèbre de Lie k, on note k = [k, k] l'algèbre de Lie dérivée de k et z(k) le centre de k. Dans toute cette section, on considère k une algèbre de Lie (de dimension finie). Comme dans[START_REF] Dixmier | Algèbres enveloppantes[END_REF], si r et s sont deux idéaux de k d'intersection nulle, on note r ⊕ s la somme des deux espaces vectoriels, et r × s l'algèbre de Lie produit.2.2.1 Rappels sur les algèbres de LieOn reprend quelques définitions de base de[START_REF] Dixmier | Algèbres enveloppantes[END_REF].Définition 2.2.1. Pour tout f ∈ k * , on définit la forme bilinéaire alternée φ f par φ f (x, y) = f ([x, y]) pour tous x, y ∈ k. Soit k (f ) ⊂ k le noyau de la forme bilinéaire φ f . On définit l'indice de k par ind k = min{dim k (f ) | f ∈ k * }.Définition 2.2.2. Soient a et b deux algèbres de Lie, et φ : a → Der b un morphisme d'algèbres de Lie entre a et l'algèbre de Lie des dérivations Der b de b. On définit le produit semi-direct

on détaille ce calcul en donnant les expressions exactes de x1, x2, y1, y2, y1,2 en annexe

calcul en annexe

Le "ou" n'est pas exclusif, on peut échanger les variables a et b en même temps qu'échanger les variables c et d.

Remerciements

Ainsi les semi-invariants f m,r et f m,r +1 sont de degré 1 en des éléments de l'antidiagonale (qui sont des vecteurs de la base canonique de sp n définie dans la partie 4.2), donc en particulier sont indivisibles par additivité des degrés partiels.

Les hypothèses (I), (II) et (III) du théorème 3.4.13 sont donc vérifiées. On obtient : Théorème 4.3.31. Soit q C une contraction parabolique standard de sp 2n = sp n telle que α C n / ∈ (π C ) . Soit q une contraction parabolique standard symétrique de gl n au-dessus de q C , associée à un facteur de Levi l = g I 1 × . . . × g Is . Alors

• la troncation canonique q C Λ de q C est q C Λ = (q C ) , • l'indice de q C Λ est ind q C Λ = (n + s)/2, • l'algèbre des semi-invariants Sy(q C ) = Y(q C Λ ) est polynomiale et librement engendrée par les semi-invariants pr(F 2m ,t ), m ∈ 1, n/2 et t ∈ 1, r m + 1 où les semi-invariants F m,t en type gl n sont ceux de la contraction parabolique standard symétrique q au-dessus de q C . En particulier, l'ensemble des poids Λ(q C ) de Sy(q C ) est un groupe.

Un cas de non-polynomialité lorsque le facteur de Levi n'est pas de type A

On considère la CPSS q (voir définition 4.2.3) de gl 8 définie par π = {α 2 , α 4 , α 6 }, autrement dit, la contraction parabolique associée au diagramme suivant :

et q C = pr(q) la contraction de sp 8 associée. On a alors (π C ) = {α C 2 , α C 4 }. On va tenter de suivre un cheminement analogue au type A et au type C où α C n / ∈ (π C ) . On verra qu'il faudra l'adapter au vu de quelques problèmes non rencontrés jusqu'ici.

Semi-invariants

Pour trouver les semi-invariants de q C en type C, on a regardé la contraction parabolique q au-dessus de q C , factorisé les invariants en semi-invariants, puis projeté ces semi-invariants, en retirant les termes qui se télescopent du fait de la projection.

Si l'on s'intéresse à notre cas, on a F

. Lorsque l'on veut projeter la première égalité, on obtient pr(F • 5 ) = 0 (d'après [3, chapitre 8]). On trouve bien pr(F 5,1 ) = 0, mais pr(F 5,2 ) = e 1,8 = 0. Autrement dit, en ne considérant que les projections des F • m , on perd la donnée du semi-invariant pr(F 

). 

On a également

Poids et troncation canonique

Comme la famille (f 1 , f 2 , f 3 , f 4 ) est algébriquement indépendante [START_REF] Panyushev | Parabolic contractions of semisimple Lie algebras and their invariants[END_REF], la famille (f

) est algébriquement indépendante, donc par le théorème 3.2.17 appliqué aux facteurs f 1 ,

), on obtient :

et on a les égalités par le résultat de Ooms et van den Bergh (équation (3.15)) Propriété 4.4.4. On a q C Λ = (q C ) et ind q C Λ = 6. Ainsi GKdim Sy(q C ) = 6 et donc par exemple, la famille {f 1 , f 3 , f 4,1 , f 4,2 , f 5,1 , f 5,2 } est une base de transcendance de Sy(q C ). Par l'égalité (4.3), la famille f 1 , f 2 , f 3 , f 4,1 , f 4,2 , f 5,1 , f 5,2 n'est pas algébriquement indépendante et la famille f 1 , f 3 , f 4,1 , f 4,2 , f 5,1 , f 5,2 est bien algébriquement indépendante, mais a priori ne semble pas engendrer l'algèbre (par exemple, elle ne semble pas engendrer f 2 ).

L'algèbre

] n'est pas polynomiale Proposition 4.4.5. On a un isomorphisme de K-algèbres

, on a bien une application surjective

). Il reste à montrer que l'application est bien bijective.

Soit 

sont nuls. On raisonne alors de la même manière que dans la démonstration du théorème 3.2.17. Supposons que R 1 et R 0 sont non nuls. On peut supposer que tous les monômes dans l'égalité (4.4), qui sont des semi-invariants, sont de même poids. Puisque le semi-groupe engendré par les poids de f 4,1 , f 4,2 , f 5,1 , f 5,2 est un groupe (on le vérifie à la main), on peut supposer que ce poids est nul. Ainsi on peut supposer que R 1 et R 0 sont des invariants. Or, puisque les poids de f 4,1 et de f 5,1 ne sont pas liés, un monôme en f 1 , f 3 , f 4,1 , f 4,2 , f 5,1 , f 5,2 de poids nul est nécessairement de la forme

n'est pas polynomiale.

Démonstration. On vérifie que sur la variété Specm

, le point 0 est singulier en calculant son espace tangent.

Les semi-invariants

, on applique encore une fois le théorème 3.4.13, cette fois-ci à (a) L'algèbre Y(q C ) est polynomiale [START_REF] Panyushev | Parabolic contractions of semisimple Lie algebras and their invariants[END_REF] donc en particulier factorielle.

forme une base de transcendance de Sy(q C ) (propriété 4.4.4), on a GKdim Sy(q

Il reste donc à vérifier les hypothèses (I), (II) et (III).

Hypothèse (II)

Pour f 4,2 , f 5,1 et f 5,2 , on raisonne comme dans le cas α C n / ∈ (π C ) , c'est-à-dire que l'on montre que ces semi-invariants sont de degré 1 en certains vecteurs e v,v γ appartenant à l'antidiagonale. Le monômepr(e 2,1 ) pr(e 8,7 ) pr(e 1,8 ) pr(e 3,6 ) est un monôme de f 4,2 (par la propriété 4.4.1) qui est de degré 1 en pr(e 1,8 ) = e 1,8 , où e 1,8 est un vecteur de la base canonique appartenant à l'antidiagonale. De même, pr(e 1,8 ) = e 1,8 est un terme de f 5,2 (en fait, f 5,2 = e 1,8 ). Enfin S = -pr(e 1,8 ) pr(e 8,6 ) pr(e 6,4 ) pr(e 4,2 ) pr(e 2,7 ) pr(e 7,5 ) pr(e 5,3 ) pr(e 3,1 ) est un monôme de f 4 = pr(F • 8 ) qui n'est pas un monôme de 1 4 f 2 2 . En effet, dans le cas contraire, S serait un produit de deux monômes de f 2 , et on vérifie manuellement qu'il n'existe pas de facteur de degré 4 de S de la forme l∈J pr(e l,σ(l) ) avec J ⊂ 1, 8 et σ ∈ S(J).

Ainsi S est un monôme de

pr(e 8, 6) pr(e 6,4 ) pr(e 4,2 ) pr(e 2,7 ) pr(e 7,5 ) pr(e 5,3 ) pr(e 3,1 ) est un facteur de f 5,1 , qui est bien de degré 1 en pr(e 2,7 ) = e 2,7 , où e 2,7 est un vecteur de la base canonique appartenant à l'antidiagonale.

Hypothèse (I)

Comme en type A et dans le cas α C n / ∈ (π C ) du type C, pour montrer l'hypothèse (I), on montre en fait l'hypothèse (I') de la proposition 3.4.15. Ici l'ensemble {g 1 , g 2 , g 3 , g 4 } de la proposition Chapitre 5

Considérations diverses

Conjectures en type C

Tout au long de l'étude en type C, plusieurs résultats récurrents sont apparus. Avec certains calculs dans d'autres cas que ceux étudiés, ces considérations amènent quelques conjectures.

Troncation canonique

Conjecture 1. Soit q C une contraction parabolique en type C. Alors q C Λ = (q C ) . En particulier, dans le cas d'une contraction parabolique standard, on a ind q C Λ = ind q C + Card (π C ) \ (π C ) .

On a montré ceci dans le cas α C n / ∈ (π C ) ainsi que dans le contre-exemple de la section 4.4. Il a fallu pour cela minorer ind q C Λ en exhibant une famille d'éléments algébriquement indépendants de Y(q C Λ ) = Sy(q C ) de cardinal suffisamment grand. Dans le cas général en type C, faute d'étude concluante, on ne dispose plus d'une telle famille, de sorte que l'on ne peut plus conclure que q C Λ = (q C ) .

Condition nécessaire et suffisante à la polynomialité

Empiriquement, sur tous les cas en type C que l'on a pu étudier, le seul obstacle à la polynomialité est celui du type du contre-exemple que l'on a exhibé en section 4.4. On pose q C une contraction parabolique standard en type C et q la CPSS au-dessus de q C (voir la définition 4.2.3).

Dans la CPSS q en type gl n , lorsque α C n ∈ (π C ) , il peut exister m ∈ M 2 impair, et donc une décomposition non triviale du type F • m = F m,1 . . . , F m,rm . Puisque pour tout J de cardinal impair, on a ∆ J γ = -∆ J , on obtient pr(F • m ) = 0. Comme dans le contre-exemple, il n'y a toutefois aucune raison que pr(F m,t ) = 0 pour tout t.

Il existe des cas où ce genre de considération n'empêche pas la polynomialité. Par exemple, prenons le facteur de Levi l de la forme l = gl {1} × gl 2,n-1 × gl {n} avec n pair ≥ 6. On a

,n pour un certain (les sommets grisés sont ceux représentant les éléments de π ) donc, par la proposition 5.2.1, les semi-invariants de degré 1 de S(q D ) sont associés soit à x 1 := pr(e 2,1 ) ∈ g -α 1 soit à x 2 := pr(e 1,11 ) ∈ g θ . On calcule alors les poids λ 1 , λ 2 et λ 3 de x 1 , x 2 et x 3 , qui sont linéairement indépendants. Si g 1 , . . . , g d est une famille algébriquement indépendante de Y(q D ), alors la famille g 1 , . . . , g d , x 1 , x 2 , x 3 est une famille algébriquement indépendante de Sy(q D ). On montre cela de manière similaire au théorème 3.2.17 : à un poids λ fixé, tous les monômes m en g 1 , . . . , g d , x 1 , x 2 , x 3 de poids λ auront leur partie

dépendent pas du monôme de poids λ considéré) ; cela vient du fait que le poids de

avec y 1 , y 2 , y 1,2 des semi-invariants irréductibles bihomogènes en (n -) D de bidegrés respectifs (1, 2), (0, 3), (0, 2) (voir définition 3.1.8) et de poids respectifs

4 := x 1 x 2 y 1,2 sont des invariants bihomogènes en (n -) D de même bidegré que pr(F 4 ) • .

Aussi, contrairement à tous les cas précédents, il existe λ tel que S(q D ) λ n'est pas un Y(q D )module libre de rang 1 (on prend λ = -λ 1 -λ 2 , on a les semi-invariants y 1 y 2 et y 1,2 ). Remarque 5.2.2. On ne peut pas appliquer la proposition 3.4.8 pour conclure à la non-factorialité (donc à la non-polynomialité) de Y(q D ) puisque les seuls semi-invariants de poids λ 1 + λ 2 que l'on connaisse sont dans Y(q D )x 1 x 2 .

On soupçonne que la famille pr(F

4 , pr(F 6 ) • , f • est candidate à engendrer librement Y(q D ), et que la famille pr(F • 2 ), x 1 , x 2 , y 1 , y 2 , y 1,2 , pr(F 6 ) • , x 3 , y 3 est une famille candidate à engendrer librement Sy(q D ). On a déjà calculé 2 que pr(F

.

Structure de l'ensemble des poids de Sy(q)

Il se trouve que dans toutes les contractions paraboliques que l'on a étudiées jusqu'ici, l'ensemble des poids est un groupe, ce qui amène la conjecture suivante :

Conjecture 4. Soit q une contraction parabolique et Λ le semi-groupe des poids de Sy(q). Alors Λ est un groupe.

Si cette conjecture est vérifiée, alors tout semi-invariant est bien un facteur d'un invariant (et la réciproque provient de la proposition 2.2.13).

Chapitre 6

Annexe

Calculs dans le cas inconclusif de Panyushev et Yakimova

On reprend les notations utilisées dans la sous-section 5.2 dans le cas inconclusif de Panyushev et Yakimova en type D 6 . On détaille ici les calculs montrant les résultats suivants annoncés dans la sous-section 5.2 : Proposition.

(1) On a pr(F 4 ) • = x 1 y 1 + x 2 y 2 + x 1 x 2 y 1,2 , avec y 1 , y 2 , y 1,2 des semi-invariants irréductibles bihomogènes en (n -) D de bidegrés respectifs (1, 2), (0, 3), (0, 2) (voir définition 3.1.8) et de poids respectifs -λ 1 , -λ 2 , -λ 1 -λ 2 .

(2) On a pr(F

Calcul de pr(F 4 ) •

On montre ici le point (1) de la proposition. On rappelle que

On commence par calculer pr(F • 4 ). Si pr(F • 4 ) = 0, alors pr(F 4 ) • = pr(F • 4 ). On va donc regarder les ∆ J avec J de cardinal 4 de degré maximal en n -et calculer leurs projections. D'après le corollaire 3.1.16 et le lemme 3.1.10, les ∆ J de degré maximal en n -sont ceux qui vérifient max k j k = 1. On a alors 15 types différents de mineurs à étudier : Remarquons que ces types peuvent être associés par paires via l'application d'anti-transposition s ∈ S(so n ) → s γ ∈ S(so n ). Par exemple, un mineur du type ∆ 1,2,a,b sera associé par antitransposition à un mineur du type ∆ a,b,11,12 . On obtient ainsi une bijection entre les mineurs du type ∆ 1,2,a,b et les mineurs du type ∆ a,b,11,12 . Ainsi, après projection, ces mineurs seront égaux. En procédant ainsi pour tous les types, il reste donc 4 types de mineurs : Les calculs pour les deux autres équations (6.2) et (6.3) sont similaires.