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“And so, finally, I suppose, he would be able to look upon the sun itself and see its true nature, not by reflections in

water or phantasms of it in an alien setting, but in and by itself in its own place.”

Plato, Republic
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UNIVERSITÉ GRENOBLE ALPES

Abstract
Grenoble-INP

Laboratoire des matériaux et de génie physique

Doctor of Philosophy

Shedding light on the electronic structure of Mn+1AXn nanolamellar carbides

by Damir PINEK

The Mn+1AXn, or “MAX” phases, where M is an early transition metal, A belongs to group 13-16 of the peri-

odic table and X is C or N, are a class of nano-layered compounds that have sparked a strong interest from

the material science community for their unique combinations of metal-like and ceramic-like properties.

They are also precursors for MXENES, a whole family of two dimensional carbides obtained by exfoliation

of 3D MAX phases and notably sought for energy storage developments. Up to 155 MAX phases have been

discovered so far. Despite the attractiveness of MAX phases for a wide range of applications, the origins

of several of their fundamental features are still under debate, notably regarding the relationships between

their electronic structure, anisotropies and transport properties.

Herein this manuscript, we present the methodology we followed to grow MAX phase single crystals and

experimentally determine the morphology of the electronic states (e.g. Band structure and Fermi surface) of

Cr2AlC, V2AlC and Ti3SiC2. The output of angle resolved photoemission spectroscopy experiments carried

out on single crystals are compared with density functional theory calculations. Band renormalization from

electron-phonon coupling and influence of spin orbit coupling are outlined. The respective anisotropies

of the Fermi surfaces are discussed with respect to the transport coefficients of each phase. The deriva-

tion of rigid band models that describe the electronic structure of M2AC -or “211” MAX phases- is then

developed. Finally, band structure and Fermi surface mappings of Ti2SnC and of MAX phases magnetic

derivatives -iMAX and 4473 phases- are briefly introduced, as well as the prospect of a potential exploration

of (MxN1-x)2AX solid solutions for tuning the position of the Fermi level in order to reach topological nodes

within the band structure of 211 MAX phases .

HTTP://WWW.UNIVERSITY.COM
http://faculty.university.com
http://department.university.com
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Explorer la structure électronique des 
carbures nanolamellaires Mn+1AXn, 

résumé en Français 

 
Les phases Mn+1AXn ou phases “MAX” -avec M un métal de transition, A un élément 
des groupes 13 à 16 du tableau périodique et X soit C ou N- forment une classe de 
composés nanolamellaires qui a suscité un fort intérêt scientifique pour leur 
unique combinaison de propriétés métalliques et de propriétés issues des 
céramiques. Il s’agit également des précurseurs des MXENES, une famille de 
matériaux bidimensionnels obtenus par exfoliation des phases MAX 
tridimensionnelles qui génèrent un fort engouement pour des applications 
potentielles dans le domaine du stockage d’énergie.  Environ 150 phases MAX ont 
été découvertes à ce jour, mais malgré le potentiel applicatif de ces composés, 
l’origine d’un certain nombre de leurs propriétés fondamentales reste une 
question ouverte. On ne trouve qu’un nombre relativement faible d'études où 
l’origine des propriétés électroniques et thermoélectriques des phases MAX est 
discutée vis-à-vis de mesures directes de leur structure électronique.  Nous 
donnons ci-dessous une liste non exhaustive de quelques questions qui se posaient 
avant le début de ce travail de thèse: 

 
- Dans quelle mesure les structures de bandes expérimentales et les surfaces de 
Fermi des phases MAX différeraient elles des spectres théoriques? 
 
- Quelle serait l'influence des corrélations électroniques, des interactions 
magnétiques, du couplage spin orbite ou encore du couplage électron-phonon sur 
structure électronique de phase MAX? 
 
- A quel point l’anisotropie structurelle de ces composés nanolamellaires influe-t-
elle sur leur structure électronique ? Comment peut-on la mettre en évidence avec 
des spectres de photoémission expérimentaux? 
 
- Connaissant la morphologie de leurs états électroniques proches du niveau de 
Fermi, peut-on facilement construire un modèle qui décrirait le transport 
électronique dans les phases MAX plus rigoureusement que des modèles de Drude 
à deux bandes qui ont été utilisés auparavant? 
 
- Est-il possible de trouver un point commun fondamental entre les structures 
électroniques des différentes phases MAX? 
 
Pour tenter d'apporter des réponses à ces questions, la méthodologie suivante a 
été appliquée: 



 
- (i) Des monocristaux de dimensions macroscopiques (1 mm2-1 à 2 cm2) ont été 
synthétisés au LMGP à Grenoble pour plusieurs phases,  par procédé de croissance 
en solution liquide à haute température. 
- (ii) Ces échantillons monocristallins ont été amenés à divers lignes synchrotron 
afin d'effectuer des mesures de spectroscopie de photoémission résolue en angle  
(ARPES), à AichiSR, UVSOR BL5U et BL7U au Japon ainsi que sur la ligne Soleil 
Cassiopée en France. 
 
- (iii) Des calculs de théorie de la fonctionnelle de densité (DFT) ont été réalisés à 
Grenoble et ont été comparés aux résultats des expériences ARPES. 
 
Avant ce travail, l’absence de larges monocristaux de phases MAX a été un frein 
significatif à la détermination expérimentale de leur structure de bande et surface 
de Fermi. En effet, les méthodes permettant de mesurer expérimentalement ces 
dernières, comme par exemple l’ARPES, nécessitent des monocristaux purs et de 
très haute qualité. 
Ainsi, un des succès majeur de notre approche, combinant calculs DFT et 
spectroscopie ARPES sur monocristaux, a été la première observation 
expérimentale de la Surface de Fermi et structure de bande d'une phase MAX: 
Cr2AlC. V2AlC et Ti3SiC2 ont suivi, et l’excellent accord trouvé entre les expériences 
et la théorie a permis de fournir une description détaillée et sans équivoque des  
états électroniques des phases MAX et de leur morphologie. Dans une certaine 
mesure, on pourrait affirmer que cette approche a permis d’au moins partiellement 
répondre aux questions mentionnées ci-dessus.  
 Avant de détailler le contenu des différents chapitres de cette thèse, les résultats 
principaux obtenus pour chaque phase sont brièvement présenté : 
- La surface de Fermi de Cr2AlC s'avère être composée d’une combinaison complexe 
de tubes d’électrons et de trous tous quasi-bidimensionnels.  L’anisotropie obtenue 
pour la surface totale est cohérente avec le résultat de mesures de magnéto-
transport sur monocristaux. Une renormalisation d’une des bandes au voisinage 
de K survient au niveau de Fermi et semble suivre les prédictions que l’on 
attendrait pour un système ou le couplage électron-phonon aurait une influence. 
 
 Malgré les précédentes études affirmant que l'état fondamental de Cr2AlC serait 
Antiferromagnétique, des calculs DFT non magnétiques ont permis de retrouver la 
plupart des caractéristiques des bandes expérimentales et aucune signature claire 
d’un ordre ou d’une transition antiferromagnétique n'a été mise en évidence par 
les mesures de diffraction neutron sur poudre que nous avons effectué. Les lignes 
de Fermi issues du calcul DFT ont été utilisées pour calculer différents coefficients 
d’Onsager dans le plan via l’équation de Boltzmann et en choisissant une 
approximation pertinente des mécanismes de relaxation et du comportement du 
temps de relaxation en température. 
La dépendance expérimentale en température des composantes dans le plan de la 
résistivité de la constante de Hall a ensuite pu être déterminée pour ce système à 



plusieurs bandes, ainsi que la densité électronique associée. Ces résultats ont  
permis de démontrer l'insuffisance du modèle de Drude à deux bandes pour 
décrire le transport électronique dans les phases MAX. 
 
- Nos analyses ARPES et DFT ont révélé que la structure électronique de V2AlC 
proche du niveau de Fermi était sensiblement plus tridimensionnelle que celle de 
Cr2AlC. L’influence du dit kz-broadening a été déterminée avec succès et est venue 
en appui à l'évaluation du caractère tridimensionnel de la structure électronique 
de ce matériau. Une analyse approximative des anisotropies de la surface de Fermi 
et des vitesses de Fermi a indiqué que nos résultats n’allaient pas dans le sens 
d’autres mesures d'anisotropie réalisées sur des monocristaux de V2AlC, et pour 
lesquels l’anisotropie de transport s'est avéré être un ordre de grandeur plus élevé 
que pour Cr2AlC.  
 
Des états de surface volatiles ont été observés pour la première fois sur une phase 
MAX, centrés sur les points M de la zone de Brillouin de V2AlC. Une ligne nodale 
« Gappée » a également été mise en évidence dans la structure de la bande V2AlC, 
autour de 0,27-0,29 eV sous le niveau de Fermi. 
 
-Des calculs DFT pour Ti3SiC2 ont reproduit avec succès les mapping de surface de 
Fermi et structure de bande obtenus avec l’ARPES. Après avoir corrigé la position 
du niveau de Fermi de quelques meV, la surface de Fermi obtenue semblé être 
légèrement différente des études antérieures. 
On obtient toujours un mélange de bandes de trous et d'électrons au niveau de 
Fermi, avec la surface de Fermi de la bande 50 qui apparaît clairement responsable 
de la délocalisation des états électroniques selon l'axe c. Le niveau d'accord entre 
l'ARPES et la DFT nous a permis d’étudier plus en détail la structure électronique 
de ce composé, notamment les effets du couplage spin orbite. Des inversions de 
bande et des croisements de bandes présentant des dispersions linéaires ont été 
repérés au niveau de Fermi. Nos calculs DFT ont montré que des « Gap » s’ouvrent 
au niveau de ces croisements lorsque le couplage spin-orbite est pris en compte. 
Ainsi, Ti3SiC2 pourrait être un hôte potentiel de certains phénomènes de transports 
exotiques tels que la conversion courant de charge en courant de pur spin via les 
mécanismes de l’effet Hall de spin intrinsèque. 
 
 
En suivant les résultats énumérés ci-dessus, il serait aisé d’avancer que les phases 
MAX montrent un panel de diverses structures électroniques et surfaces de Fermi 
différentes. Est-ce-à dire que celles-ci seraient totalement disjointes ?  
 Malgré les différences observées entre les surfaces de Fermi de Cr2AlC, V2AlC, 
Ti3SiC2 et d'autres phases MAX, nous avons également mis en évidence quelques 
caractéristiques remarquables partagées par tous ces composés: 
 



- Tout comme cela a été indiqué dans de nombreuses études antérieures, nous 
avons vérifié que les orbitales d des atomes M dominaient la structure électronique 
de Cr2AlC, V2AlC et Ti3SiC2 près de leurs niveaux de Fermi respectifs. 
 
- Il suffit de 5 modèles de bandes rigides différents pour décrire la structure 
électronique de la plupart des phases MAX 211 (ou M2AX), ce qui permet de 
construire une classification de ces phases qui comprendrait cinq sous-familles. 
Changer la nature de l'élément M permet de modifier la position de EF et ainsi de 
naviguer à travers une seule "structure de bande rigide". 
 
- L'applicabilité des modèles de bandes rigides ainsi que le succès du calcul DFT 
"standard" pour la description des états électroniques des phases MAX suggèrent 
que, pour ces composés, les corrélations électroniques ne jouent pas un rôle 
majeur. 
 
De ces considérations, il apparaît que malgré leur apparente diversité, les 
structures électroniques de diverses phases MAX partagent certains traits 
fondamentaux. Dans le cas des phases MAX 211, on pourrait même affirmer que 
l’applicabilité des modèles de bandes rigides implique une certaine unicité au sein 
des sous-familles de phases MAX. 
 

Un bref résumé des définitions et propriétés des phases MAX et de leurs dérivés 
est donné au chapitre deux, suivi d’un rappel de quelques fondamentaux de 
physique du solide. Les principes de base des techniques de croissance cristalline, 
de la spectroscopie de photoémission résolue en angle (ARPES) et la théorie 
fonctionnelle de la densité (DFT) sont résumés dans le troisième chapitre de 
ce manuscrit. Ensuite, les résultats de la plupart des travaux de recherche effectués 
au cours de cette thèse de doctorat sont présentés dans les autres chapitres de 
cette thèse.  
 
Cr2AlC est au centre du chapitre 4, et beaucoup d'attention à la comparaison entre 
les expériences et calculs y est accordée. L'influence potentielle du couplage 
électron-phonon et du magnétisme est examinée, et les coefficients de 
magnétotransport Cr2AlC sont dérivés  à partir de la morphologie de sa surface de 
Fermi.  
 
Au chapitre 5, on constate que la structure des bandes expérimentales et les cartes 
de surface de Fermi de V2AlC correspondent remarquablement bien aux calculs. 
L'anisotropie de la surface de Fermi de V2AlC est discutée et est comparée au cas 
de Cr2AlC. Des états de surface sont mis en évidence dans les spectres 
expérimentaux. 
 
 Le chapitre 6 est consacré à une description de la structure électronique de toutes 
les phases 211, basée sur ledit modèle de bande rigide. Une tentative de construire 
une classification des phases MAX y est exposée. De nombreuses phases semblent 



posséder une «structure de bande rigide» similaire et, de manière surprenante,  
des « nœuds topologiques », par ex. les croisements de bandes linéaires et une 
ligne nodale de Dirac, sont mis en évidence au sein de ces structures de bandes 
rigides. 
 
 Enfin, le chapitre 7 traite de l’étude des spectres électroniques de Ti3SiC2. Une 
cartographie ARPES haute résolution a permis de sonder les caractéristiques fines 
de la structure de bande Ti3SiC2 et de sa surface de Fermi. Une nouvelle 
interprétation de la valeur quasi nulle du coefficient Seebeck de Ti3SiC2 est donnée 
et l’impact du couplage spin orbite sur certaines bandes est considéré. 
 
Finalement, après une courte conclusion sur les résultats expérimentaux et 
théoriques obtenus pendant la durée de cette thèse,  d’autres composés nano-
lamellaires dérivés des phases MAX – les phases iMAX et 4473- sont rapidement 
présentées.  Les propriétés magnétiques ainsi que le comportement Kondo de 
Mo4Ce4Al7C3 sont abordés. La perspective de l’exploration des solutions solides 
(MxN1-x)2AX pour pouvoir contrôler la position du niveau de Fermi des phases MAX 
211 - afin d’atteindre de potentiel nœuds topologiques- est également discutée. 
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Chapter 1

Introduction

Materials, solids, crystals, metals, insulators! These are concepts referring to physical objects which are

parts of our everyday environment as beings inhabiting planet earth. As trivial as this may sound, it is

undeniable that the human’s capacity to understand and control the properties of such objects or systems

has become quite advanced. An incredible number of materials have been engineered by man over the

centuries, going from alloys of elemental metals as ancient as bronze or steel to organic polymers synthesized

from petroleum byproducts, and recently to bidimensional systems such as graphene. Going to a more

fundamental level, superconducting materials -through which electric current is transported without any

resistive losses- have been discovered at the beginning of the past century. Another impressive development

is how the electronic conductivity of semiconductors such as silicon -which is used as a building block for

nearly all daily electronic devices- can be tailored up to a far-fetched precision.

Beyond the impressive level of mastery over material synthesis that has been achieved over history, un-

derstanding what makes the nature of a solid material as a system has been a fundamental problem which

was decisively answered relatively late in the history of science. This question would deserve to be discussed

much more systematically than it is within the scope of this manuscript. One can argue that the first signifi-

cant attempt of an answer was formulated more than 2000 years ago by the greek philosopher Democritos. He

is thought to be the first to claim that all physical bodies are constituted of indivisible ‘bricks’ of matter, the

Atomoi or atoms. A journey 2000 years ahead proves how formidable his intuition was. The great scientific

revolution of the early 20th century provided evidence for the existence of atoms and their constituents: the

nucleus and the electrons. It also brought about the birth of quantum mechanics, possibly the most impor-

tant theory in Physics, which describes most systems at the microscopic scale. Particles such as electron are

no longer localized but rather described by wavefunctions. The work of the pioneers of quantum physics

such as Bohr, Sommerfeld, Heisenberg, Dirac, Bloch, Brillouin and many more led to the development of a

quantum theory of solids which later became known as Solid State physics. Up to the present day, it probably

gives the most accurate answers to the question of the physical nature of solid materials.

Keeping aside the case of amorphous materials which are inherently disordered, a crystalline solid can

be seen as an almost infinite collection of atoms where the nuclei remain (quasi) static and arranged in space
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in a somehow ordered and periodic manner, while the electrons wavefunctions are more or less delocalized

depending on the material considered and on the electron native atomic shell. A given ordering of atoms

will be stable under specific thermodynamic conditions. Electrons that are shared between atoms –notably

forming various kind of bonds- will play a most important role in setting the energy of the system and

dictating its stability and overall properties.

All the information regarding the state of the electrons in a solid and their various interactions is encom-

passed within the electronic structure, a mathematical object that underline many of the electronic properties

of the solid.

The following thesis is an attempt to shed some light on the electronic structure of a specific class of

materials: the Mn+1AXn nanolamellar carbides, or MAX phases. Discovered in the 1960s and extensively

studied since the late 1990s, MAX phases form a large family of more than 155 compounds which share

the same crystal structure and a common set of properties. Their nanolamellar structure leads to a peculiar

blend of metallic and ceramic properties. We seeked to explore the morphology of the electronic states of

these compounds through the means of photoelectron spectroscopy performed on single crystals and ab initio

calculations.

This manuscript consists of 8 separate chapters. Chapter 2 is a short bibliographic review of MAX phases and

their derivatives, ranging from their basic properties to their applications. Chapter 3 details the synthesis,

spectroscopic and computational methods we used. Chapter 4 to 7 focus either on the electronic structure

of a specific compound (chapters 4, 5 and 7) or on whole subclasses of MAX phases (chapter 6). Finally, the

conclusions of the thesis and perspectives are given in chapter 8
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Chapter 2

MAX phases: A class of peculiar

transition metal carbides

2.1 A brief overview of MAX phases

The acronym M. A .X. refers to a class of nanolamellar carbides (nitrides) that all share the same chemical

formula: Mn+1AXn, where M is a transition metal, A belong to the group 13 to 16 (mostly 13 and 14) and X

can be either C or N [1, 2]. The M2AX’s are labelled as (211) phases, the M3AX2’s (312), the M4AX3’s (413)

and so forth. Their respective crystal structure is given in figure 2.1.

MAX phases exhibit a unique blend of metallic and ceramic like properties that makes them particularly

attractive for applications in extreme conditions [1, 2]. The origin of many of these properties can be un-

derstood from their electronic structure, e.g. the morphology of their electronic states in quasi-momentum

space [3]. One of their most ubiquitous feature is how large this family of compound becomes when varying

the M or A elements while keeping the structure the same [4].

There are more than 80 different MAX compounds that have been discovered by today, and even more

when considering the MAX derived materials such as MAX solid solution, iMAXs, oMAX or even the MAB

phases [7] (see figure 2.2) . One should also note that it is possible to exploit the MAX nanolamellar structure

to synthetize bidimensional compounds called MXENES [8]. But before we delve deeper into the basic

properties of MAX phases and their derivatives, we believe it is necessary to give some insight on how these

compounds were discovered and how they became a major topic of research within materials science.

2.1.1 Chronology

The story of MAX phases begins in the 1960s, in Vienna, when the compounds that were later to be named

MAX were discovered for the first time [9]. Nowotny and his coworkers synthetized many new carbides

and nitrides [10], and some among them happened to share a common chemical formula, M2AX. At first,

they were labelled as H phases. Then, apart from the first synthesis’s of the future 312 phases Ti3SiC2 and



4 Chapter 2. MAX phases: A class of peculiar transition metal carbides

FIGURE 2.1: Unit cells of Mn+1AXn phases, for n=1,2,3, respectively from V2AlC [5], Ti3SiC2 [2]
and Nb4SiC3 [6]. One should notice that the Mn+1Xn layers get larger as n increases, but they
keep being separated by monoatomic A atoms planes. Polymorphisms of (312) and (413) are

ignored in these schematics

Ti3GeC2 to be carried out in 1967, the H phases were mostly forgotten and their properties mainly ignored.

In the case of Ti3SiC2, it can be attributed to the lack of pure, high quality bulk samples [1], thus not allowing

for an accurate determination of many of its physical properties.

The interest for these materials arose from slumber about 30 years after their initial discovery, in a dy-

namic initiated by the group of Michel Barsoum in 1996 [11]. Using reactive hot pressing sintering at high

temperature (1600°C) from Ti, SiC and graphite powders, they managed to synthetize dense, single phase

polycrystalline samples of Ti3SiC2[12]. From there, they could assess the basic properties of this material:

a room temperature electrical conductivity about twice as high as pure Ti, a thermal conductivity and heat

capacity of respectively 43 W/m K and 110 J/mol K, apparent resilience to thermal shock , machinability

close to graphite and the list goes on [2, 11, 13, 14]. What drove impetus towards Ti3SiC2 was not one single

characteristic, but rather its whole combination of properties and how they were related to its nanolamellar

structure [13]. From there, and as Ti3SiC2 structural kinship to the 211 or H phases came to be recognized,



2.1. A brief overview of MAX phases 5

FIGURE 2.2: A periodic table of MAX phases, where M and A refers to the building blocks to
pristine MAX phases, solid solutions and other derivatives

synthesis and characterization of the latter was the next natural step to perform. By the end of the decade,

phases such as Ti2AlC, Ti2AlN, Ti3GeC2, Hf2SnC and V2AlC were synthetized by hot press sintering [2, 15].

As they exhibited the same structure and a similar blend of properties as Ti3SiC2, it was held as a consensus

that the ‘(312)’ and ‘(211)’ belong to a same group of compounds, different to most other ceramics or metals.

But these materials really acquired the denomination ‘MAX’ when the firsts 413 were discovered, be-

tween 1999 (Ti4AlN3) and 2009 (Ti4GaC3) [16, 17, 18, 19]. Higher order phases have been hinted at [20, 21],

as well as other MAX derivatives such as 513 or 725 [1, 22]. The general formula Mn+1AXn was acknowl-

edged before the acronym MAX started to be used widely.

Regarding MAX phases synthesis, the most widely used technics has been reactive hot pressing sintering

to process bulk samples from elemental powders [12, 11, 13, 15, 23]. Alternative synthesis methods exist,

such as self-propagating high-temperature synthesis [24, 25], plasma spark sintering [26, 27] or solid liquid

reaction synthesis [28, 29]. Growth technics such as PVD are also extensively used to grow MAX thin films

[4, 22, 30, 31, 32, 33, 34]. Nearly single crystalline quality can be reached through PVD, while the samples

obtained by most bulk synthesis technics are found to be highly polycristalline. In 2011, Mercier et.al syn-

thetized the first Ti3SiC2 bulk single crystals by high temperature solution growth [35]. This process will be

detailed in the third chapter of this manuscript.
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FIGURE 2.3: (a)Nanolayered structure of MAX phases, with M, A and X monoatomic planes.
(b)top surface of Cr2AlC crystals mechanically scratched using a scalpel blade and the thumb

of my supervisor on top of a physics book.

2.1.2 A remarkable combination of properties

Ternary Mn+1AXn carbides and nitrides all crystallize in the P63/mmc space group, with two formulas per

unit cell. X atoms are located at the center of octahedral sites with M atoms on the edges of these octahedrons,

while A atoms are located within somewhat larger prisms [1]. There exist different MAX polymorphs: one

single polymorphs for the 211’s, two and 3 polymorphs for the 413’s. In all cases, the M-X blocks show a

characteristic zig zag pattern along the [1120] planes whereas the A atoms always remain in the mirror planes

(see figure 2.1). In most phases, M-X bonds are stronger than the M-A bonds. While some of MAX phases

properties can be related to their MX counterparts, others are inherent to their nanolamellar structure [2] (see

figure 2.3). For both family of materials, bondings are a mixture of metallic, covalent and ionic [3]. As for

their MX counterpart [36, 37], MAXs are metals and density of states at the Fermi level is far from negligible

and is dominated by the d orbitals of the M atoms. It is the reason why these two families of compounds

are good conductors of electricity and heat. To be more specific, MAX phases are actually superior to MXs

in term of electrical conductivity [1]. For example, the conductivity of pure V2AlC is about a few fractions of

ten the conductivity of copper [38].

Yet, MAXs show a significantly higher degree of anisotropy than MXs. Their c/a ratios range from about

4.45 for typical 211s to 5.75 for 312s and 7.2 for 413s [5, 2, 6], while c/a values for MX compounds are gener-

ally of the order of one, with most of the MX exhibiting fairly isotropic Rock salt (sodium chloride) structures

[36, 37, 39]. MAXs strong anisotropy is to be linked to their layered nature and, as we will see throughout

this manuscript, the relationships between the anisotropies of observables such as electrical resistivity or

thermopower and structural anisotropies are not always simple [40]. Electrical transport and anisotropies as
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well as their relation to the electronic structure of MAX phases will be discussed further in 2.3 and through-

out chapter 4, 5 and chapter 7. MAX phases good electric conductivity is mainly responsible for their thermal

conductivity. In general, the thermal conductivity of most material can be separated in two contribution [40]:

K = Kel + Kphon (2.1)

The phonon contribution to most MAX phase thermal conductivity was found to be negligible compared

to the electronic one [38]. This has been attributed to the rattler effect e.g. in our case the strong vibrations

of the A atom of most MAX phases which act like scattering centers for phonons [41, 42] (with the notable

exception of MAX phases containing lighter A element, which are weaker scattering centers). Regarding

thermal stability, MAX phases are found to be kinetically stable up to temperature of the order of 1500 to

1800°C [1]. They do not melt congruently but peritectically decompose as follows:

Mn+1 AXn −→ Mn+1Xn + A (2.2)

The formation of the MX transition metal counterpart of MAX phases can be correlated to the relative

strengths of the covalent bounds between M and X atoms compared to the one between A and M atoms.

When it comes to the actual thermodynamic stability of MAX phases, they would occupy a very narrow

window within the compositional parameter space of (A,M,X) ternary diagram at a given temperature [1,

43]. This point is of crucial importance for the growth of single crystals, as we will see in section 3.1.2. When

it comes to chemical stability, MAX phases reacts very little with their surrounding and if a reaction is to

occur, it will preferably involve the A element [44, 45, 46]. Very stringent solutions would be needed to

dissolve a MAX phase. For example, nearly pure HCl would merely clean the surface of a Cr2AlC single

crystal. Yet, a chemical route to selectively get rid of the A atomic plane and transform MAX phases into

bidimensionnal MXENES does exist [47] and will be discussed in section 2.2.1.

MAX phases possess excellent high temperature mechanical properties and a high degree of damage tol-

erance while they possess many ceramic like properties [1, 48, 49, 50, 51]. It can be related to their nanolay-

ered structure, with alternate atomic planes with weaker M-A and very strong M-X covalent bonds. How-

ever, for these properties to be useful at high temperature, an oxide layer needs to be formed at the surface

of the material. Al based MAX phases are very interesting in that regard, as they form a protective layer

of Al2O3 above 800°C which is then stable up to 3000°C in the case of Ti2AlC [52, 53, 54]. Overall, MAX

phases exhibit a blend of chemical and physical properties that place them at the interface between metal

and ceramics. These are summarized in figure 2.4.



8 Chapter 2. MAX phases: A class of peculiar transition metal carbides

FIGURE 2.4: MAX phases basic properties, at the interface between metal and ceramics

2.1.3 Applications

As aforementioned, MAX phases all have a high degree of damage tolerance, a high degree of chemical

resilience, a relatively low thermal expansion coefficient (as expected of ceramics) while their thermal and

electrical conductivities are typical of good metals. They are mechanically stiff and can withstand extreme

thermal shock while being relatively soft and readily machinable. Due to this remarkable combination of

metal and ceramics properties, they are sought for a number of applications . These mainly concern extreme

conditions, at high temperature or high pressure. Most of them can be found in the reference book of Michel

Barsoum [1] as well as from other sources with only a few selected here [55, 56, 57]. Ti2AlC, Ti3SiC2 and

Cr2AlC are the most promising candidates for applications. Ti2AlC in particular, can withstanding up to

10000 thermal cycles at 1350°C due to the insulating Al2O3 oxide layer that forms at its surface. They could

potentially replace graphite for many of its high temperature applicationa, such as heating elements or ther-

mal shields. Their machinability as well as their thermal properties are definitely an advantages, but they

cannot be used at temperature in the 2000°C range or higher, where graphite is one of the only affordable

material to be used. MAX phases good metallic properties combined with the high temperature, mechani-

cal and chemical stresses they can withstand make them a potential material to replace noble metals within

system that would have to overcome rather harsh conditions. The Swedish start up Impact Coatings, for ex-

ample, seeks to replace gold electrical contact by MAX phases. They also produce MAX phases based bipolar

plates for Fuel cells [58]. The remarkable damage tolerance and tribological properties of Ti3SiC2 and Ti2AlC

have lead them to be used to build the pantographs prototypes of Chinese high speed trains [7]. Cr2AlC is
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also considered for aeronautic applications. MAX phases oxidation resistance are also considered to be put

to use in another field: Nuclear cladding. Ti3AlC2, Ti2AlC or other MAX phases can be sprayed onto the

Zircaloy crust protecting the nuclear fuel [59]. The additional Al2O3 layer at the surface of the MAX phase

would then keep the Zircaloy protected from oxidation by steamed water within the primary circuit of the

nuclear reactor. If the Zircaloy were to be oxidized, significant quantity of H2 would be released, potentially

provoking an explosion similar to the one that destroyed the reactors 1, 2 and 3 of the Fukushima Daishi

power plan in 2011.

MAX phases overall show great promises for future applications, even if the projects listed above are

currently at the development stage. One important point to consider for a potential industrial willing to

invest in MAX phase based products would of course be the price of such compounds. As for now, MAX

phases are available commercially and distributed by many suppliers of materials for research or industrial

applications (See Alibaba.com, for example). For most cases, MAX phases are synthetized by hot press

sintering from powder of elemental compounds and binaries. Taking into account the market demands,

prices of commercialized MAX powder is presently in the order of 500 euros per kg, which is way more

expensive than other high temperature ceramics such as SiC or Si3N4. From now, we will shift our focus

from the potential applicability of MAX phases research to the understanding of the fundamental features of

these materials, which is the main scope of this manuscript.

2.2 MAX phases derivatives

We will now present a taxonomy of the derivatives of the Mn+1AXn layered transition metal carbides. MAB

phases as well as out of plane ordered oMAX will not be considered within this section. Despite the grow-

ing scientific interest on these compounds, we decided to restrain ourselves to compounds that are closely

related to the topic of this manuscript or that are of the uttermost importance for the specific field of MAX

phases.

2.2.1 From MAX to MXENES

Dimensionality is certainly one among the key parameters that have been tuned by physicists to explore new

states of matter in the late 20th and early 21th century, notably with the development of quantum dots (0D)

[60, 61], nanowires and nanotubes (1D) [62, 63, 64]. A central concept for the development of such systems is

quantum confinement, e.g. potential barrier or constriction over one or several direction leading to an uplift

of the degeneracies of the energy levels up to a point when only a single level is occupied. It has in particular

led to the development of bidimensional electron gases within the quantum well found at the interface of

As/GaAs heterojunctions, for example (2D)[65].
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FIGURE 2.5: MXENES synthesis scheme in solution. MAX phase powder is used as a precursor.
After being introduced into a 50 percent HF solution and sonicated/ centrifugated for 2 to 72
hours, one obtains stagnant MXENES flakes in solution. MXENES main terminations types

Tx’s are indicated.

But the perhaps most iconic system in that regard is Graphene, discovered in 2004 by mechanical exfoli-

ation of graphite [66, 67]. Truly two dimensional and, to list a few of its properties, with electrons confined

in one dimension while being a poor metal in the other two [68], with an exceptionally large mean free path

and linear dispersions crossing at the Fermi level [69, 70], e.g. dirac points, Graphene has become one of the

flagships of nanoscience and condensed matter physics. The discovery of many ‘single layer’ bidimensional

systems followed and about ten classes of 2D crystals have been synthetized up to date [71, 72, 73, 74, 75] :

Transition metal dichalcogenides (MoS2, MoSe2, WS2, VSe2, TiS2,... ) and trichalcogenides (TiTe3, MnPS3,...

), Hexagonal boron-nitrides, 2D oxides (TiO2, Ti3O7, Nb3O8, MnO2, V2O5,...), phosphorenes,. . . . Most of

these have a bulk parent compound than can be processed to synthetize the targeted 2D system, by either

mechanical exfoliation (Similarly to the Graphene case, using scotch tape to remove layers from the bulk

material until one gets a single layer) or chemical exfoliation in solution [76].

In 2011, processing Ti3AlC2 in hydrofluoric acid (HF) , Naguib et.al managed to exfoliate their polycrys-

talline powder [47] and to extract the Al atoms from the MAX compound, thus isolating the MX planes from

a MAX phase and obtaining a new 2D material: Ti3Si2

Quickly later, other MAX phases were exfoliated and the byproduct of these exfoliations were to be

called MXENES, emphasizing their kinship to MAX phases and the bidimensional nature they share with

graphene. About 30 different MXENES have been synthetized up to now [77, 78, 4, 79]. Their chemical

formula is Mn+1Xn and their structure is the same as MAX phases M-X layer (see figure 2.5). Depending on

the concentration of HF used, on the time duration the powder is left in solution, on the centrifugation or

sonication technique after or during the HF treatment or on the intercalation method used, one may obtain

single layers or most often stacks of several MXENES layers. The MXENES flakes obtained in solutions are

generally relatively small, polycrystalline and accordion like shaped [78, 4, 79].
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The reactions accounting for the transformations of MAX phases to MXenes within HF solutions are the

following:

Mn+1 AXn + 3HF −→ Mn+1Xn + AF3 + (3/2)H2 (2.3)

Mn+1Xn + 2H2O −→ Mn+1Xn(OH)2 + H2 (2.4)

Mn+1Xn + 2HF −→ Mn+1Xn(F)2 + H2 (2.5)

As laid out from reactions 2 and 3, MXENES will systematically be functionalized so that the actual sys-

tem one obtains would be Mn+1XnTx, where Tx refers to a specific termination [78, 79]. Tx can be either

(OH)2 and (F)2 as above, but also (H)2 or (=O)2 (-Cl is also reported) (see figure 2.5). The predicted electronic

properties of MXENES will drastically change depending on the nature of the termination [80, 81]. Mn+1Xn

MXENES without termination are predicted to be metallic with a density of states at the Fermi level N(EF)

greater than MAX phase , with the d orbitals still dominating conduction states [79, 80]. Based on DFT cal-

culations only, OH and F terminated Ti3C2 MXENES are predicted to see small gaps of respectively 0.05 and

0.1 eV to open at EF, but the value of these gaps is predicted to depend upon the orientation of the termina-

tion [78]. If it were not enough to emphasize on the influence of termination on the electronic structure of

MXENES, (O) terminated MXENES shall possess gaps going from 0.24 eV for Ti2CO2 to 1.8 eV for Sc2CO2.

So MXENES can either be metallic or semiconducting depending on the termination group attached to them.

One important point to mention is that experimentally produced MXENES are shown to exhibit a com-

bination of multiple types of terminations at the same time [78, 82], while, due to computational complexity,

only one termination type is generally taken into account by DFT calculations. Also, most of DFT calcula-

tions have been performed on unterminated multilayers of MXENES with a very high distance set between

each layers so as to reproduce the properties of a single flake while the majority of experimentally produced

MXENES are stacked multilayered systems with a lesser distance between layers, with each of them some-

times featuring different termination types. It thus questions the current compatibility of DFT based studies

on MXENES with experimental results currently available. Also, the bandgap values are not necessarily cor-

rect. Indeed, one of the famous shortcomings of Density Functional Theory is precisely its failure to assess

the bandgaps of semiconductors [83].

So far, and despite the impressive number of publications related to MXENES that are being published

each year, transport or electronic structure measurements on a monolayer, single crystalline MXENE flake

are still hard to find within the litterature [84]. Producing such sample is a highly difficult task, due to the

fact that the M-A bonds, though weaker than the M-X bonds, are way stronger than in most compounds
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that are parents to a class of bidimensional materials [79]. Also, chemical exfoliation generally leads to many

defects within MXENES samples, as well as a poor crystalline quality [78]. Yet, a new mechanical exfoliation

route for MAX phase has recently been developed [85]. Relatively large high quality flakes were obtained,

with some thick to less than half the unit cell of the starting MAX phases. The obtained layered system yet

conserves the A element and cannot be called MXENE but MAXENE [85].

Overall, within less than 10 years after their discovery, MXENES have become a very prolific topic of

research. They show great promises for energy storage [86], biomedical applications [87, 88], transparent

electrodes [89] and electromagnetic shielding [90]. One can mention that some MXENES are potential hosts

for exotic states of matter. Topological features have been recently hinted on MoHf2C2O2 from calcula-

tions [91], and the quest for potentially magnetic MXENES is also ongoing [92]. But, and though we briefly

discussed a few the MXENES properties, the center of this manuscript is the understanding of the bulk elec-

tronic properties of MAX phases, not of their bidimensional counterparts. Therefore, MXENES will not be

extensively mentioned hereafter.

2.2.2 Solid solutions

Going back to the Mn+1AXn carbides, it is worth mentioning the possibility to tune the ratio between different

M, A or X element in order to tailor the properties of a given phase. The most straightforward approach is to

have a given proportion x (0<x<1) of one of the site, that shall be set as M atom site for the sake of clarity, to be

occupied by an atom of another type N. We will then have a solid of chemical formula (M1-xNx)n+1AXn with

the N atoms randomly distributed over a fraction x of the M sites. Such a system is hence a solid solution of

MAX phase. A site or X site solid solutions also exist.

It is noteworthy to mention that, for most MAX phases solid solutions, randomly changing the occupation

of a site to another atom shall not alter the symmetry e.g the P63/mmc space group of the system [4].

Similarly to ‘standard’ MAX phases, solid solutions have been widely produced by isostatic hot press

sintering and other conventional powder metallurgy techniques, but involving the 4 (or more) targeted el-

ements of the solid solution [23, 93, 94, 95]. Some phases can also be produced as thin films or thin films

derivatives grown by methods such as PVD or CVD [96, 97].

211 MAX phases make for the largest number of solid solutions, with a very large number of (M1-xNx)2AlC

compounds (M=V, Cr, Nb, Ti and N=V, Ti, Mn, Zr, Fe and Sc) [1, 7, 98, 99]. M atoms solid solutions with In,

Ge and Ga as fixed A atoms also exist [100, 101]. Insertion of magnetic elements such as Mn or Fe have al-

lowed some 211 MAX to develop magnetic properties. For example, clear ferromagnetic features were found

to thin film of (Mo,Mn)2GaC and (Cr, Mn)2GaC at relatively high temperature [102, 103], while Cr2GaC and

Mo2GaC do not seem to exhibit such clear behavior. (Cr,Fe)2AlC as well as (V,Mn)2AlC are also magnetic

solid solutions that were discovered recently [104, 105].
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Numerous A element solid solutions are reported as well [1, 7, 106]. For example, heavy atoms have

been incorporated with phases such as Zr2(Al1-xAx)C, A=Bi, Sb and Pb [107, 108]. Regarding the X site,

syntheses of Ti3Al(C0.5N0.5)2 and Ti2Al(C,N) have been reported, performed by milling, cold compaction

and annealing of Ti, TiC , Al and AlN powders [109, 110, 111]. It is important to note that for all solid

solutions as well as ‘Pure’ 211, 312 and 413 MAX phases can show significant substochiometry. It is especially

true for Ti2Al(C1-xNx) which shows 20 percent of vacancies on the X site. It is not surprising when looking at

the MX monocarbides and mononitrides vacancies range, with TiC actually going from TiC0.5 to TiC0.98 [34].

About 45 solid solutions of 211, 312 and 413 MAX phases have been reported. One interesting recent

discovery is Ti3(Al1-xCux)C2, were Cu incorporation leads to the loss of MAX hexagonal symmetry [112].

The space group of this solid solution turn out to be C2/c monoclinic rather than P63/mmc . Interestingly,

C2/c turns out to be the same space group as in plane ordered MAX phases (iMAX) that were recently

discovered.

2.2.3 In plane and Out of plane ordered MAX phases

So far, we only described MAX phase based solid solutions where the the fourth (or fifth) extra atoms to

be added are randomly distributed across either M, A or X sites. Quaternary ordered MAX phases based

compounds yet do exist, and they can be separated into two different subclasses: out of plane ordered MAX

phases (oMAX) and in plane ordered MAX phases (iMAX).

oMAX crystal structure is very similar to pristine MAX phase, and both share the same P63/mmc hexago-

nal space group. In the case of 312 oMAX, one of the M site is occupied by another metallic element following

the formula: (M’2/3M”1/3)3AX2. A comparison of Ti3AlC2 and Ti2MoAlC2 oMAX unit cells is given in figure

2.6a. The first oMAX to be discovered was Cr2TiAlC2 in 2014 [113] and so far they have been only syn-

thetized by standard ceramic synthesis processes (typically through powder mixing and heating). It must be

noted that the ordering within oMAX is not perfect, as some atoms M” can occupy M’ sites and vice et versa

[95]. High concentration of C vacancies have also been found, similarly to solid solutions and higher order

compounds [34, 114]. Up to now, only a few oMAX’s have been synthetized [113, 95, 115], but way more are

predicted to be stable at ambient temperature[116].

oMAX are also the precursor of a new kind of MXENES: (M’2/3M”1/3)X2, which are, unsurprisingly,

obtained by chemical exfoliation of oMAX powders [117]. These MXene have attracted the attention of the-

oreticians, and some of them are predicted to be potential hosts for spin quantum hall effect [91]. Yet, coum-

pounds such as (Mo2/3N1/3)3C202 (N=Ti, Zr or Hf)have never been synthetized and their actual stability has

yet to be demonstrated.

In 2017, a 3D laminate sharing a structure closely related to 211 MAX phase was discovered for the first

time [118] in Linkoping: (Mo2/3Sc1/3)2AlC. It was the first of a serie of (M’2/3M”1/3)2AlC iMAX family of

compounds to be synthetized. Here, M’, M” and C atoms constitute a plane similar to the MX plane of MAX
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FIGURE 2.6: (a) MAX and oMAX crystal structure of Ti3AlC2 (left) and Ti2MoAlC2 (right). Unit
cell of (b) monoclinic (Mo2/3Dy1/3)2AlC and (c) triclinic Mo4Ce4Al7C3. (d) the Ce1 and Ce2
sites within Mo4Ce4Al7C3 and their environments are highlighted. (e-g) MAX, iMAX and 4473
nanolamellar structure are compared over an equivalent supercell. The relationship between

MAX M-X layers and the layers constituting other phases is made explicit.

phases. The M’ are arranged in a honeycomb lattice while the M” are located at the center of each hexagon

(Thus resulting in a 2:1 ratio). Al atoms are arranged within one plane, as for standard MAX phases. But

where MAX phases Al atoms would follow an hexagonal pattern, iMAX’s Al atoms form here a kagome like

lattice.

Contrary to oMAX’s, iMAX phase do not share MAX phases hexagonal structure. They crystallize

into 3 different polymorphs whose spacegroups are monoclinics C2/c, C2/m, and Cmcm [119]. A C2/c

iMAX unit cell is shown in figure 2.6b. Typical lattice parameters values are 5.5 Angstrom for a=b and 14

Angstrom for c. The c/a ratio is thus almost two times smaller than for corresponding 211 MAX phase.

Going back to (Mo2/3Sc1/3)2AlC, selective chemical etching in HF solution of both Sc and Al allowed to syn-

thetized Mo1.33C MXene [118], a 2D material with ordered vacancies located at the sites where the Sc atoms
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were located within MoScAlC. Prediction and synthesis of other iMAX phases such as (Cr2/3Y1/3)2AlC,

(Cr2/3Ti1/3)2AlC or (Cr2/3Zr1/3)2AlC quickly followed [119, 120, 121].

Not only additional transition metals can be incorporated within MAX phase formula to form an iMAX,

but also rare earth element. (Mo2/3RE1/3)2AlC compounds also exist (RE= Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho,

Er, Tm and Lu). These have been firsthand synthetized by the MAX phase group of Linkoping, in powder

form and through pressureless sintering [122]. Bulk single crystals of (Mo2/3RE1/3)2AlC (RE = Nd, Gd, Dy,

Ho, Er) have also been grown through liquid solution growth [123]. The growth of these iMAX single crystals

was performed at LMGP in parallel to the other scientific results that make for the content of this manuscript

and as a part of a larger scientific collaboration involving several academic actors . More details on MAX

phases single crystal growth and its particular challenges will be given in section 3.1.

The presence of localized 4f orbitals in the M-X plane leads to strong electronic correlations , way stronger

than what is expected from the sole d orbitals of MAX phases transition metals. It is also the case of a large

number of Lanthanides (or Actinides) based lamellar or non-lamellar compounds [124, 125, 126, 127, 128,

129]. Many of them are labelled as heavy fermion [130], with the notable examples of CeAl3 and CeCu6. In

these compounds, the presence of unfilled 4f shells leads to an extremely high value of the electronic density

of states at the Fermi level, which can be related to a renormalized effective mass up to three order of magni-

tude higher than the electron rest mass [130, 131]. Unconventionnal superconducting phase [132, 133], Kondo

insulator phase [134], or quantum critical point [135, 136] can be found within the phase diagrams of specific

Heavy Fermion compounds. Complex magnetic orders are also common for such compounds, where the

interactions are in most cases antiferromagnetic [130, 136]. As a matter a fact, Bulk magnetization measure-

ments at low temperature on single crystals allowed us to evidence various magnetic phase transition for

iMAX compounds that we grew [137]. A Curie temperature of 14.9 K was found for (Mo2/3Dy1/3)2AlC, with

an antiferromagnetic phase below the transition. (Mo2/3Gd1/3)2AlC seemingly becomes antiferromagnetic

below Tc=26K. In contrast, (Mo2/3Ho1/3)2AlC shows ferrimagnetic order below T=8.2K. The exact magnetic

structure of these three compounds has yet to be determined by neutron diffraction.

When attempting to grow single crystals of Cerium based iMAX (discovered in Linkoping in powder

form), we instead obtained single crystals of another rare earth based nanolamellar compound: Mo4Ce4Al7C3,

also called 4473 phase [138]. Its structure is very similar to iMAXs, expect that if one compares a supercell of

211 MAX phase and iMAX (see figure 2.6d-f), one of the M-X plane would be replaced by a Ce-Al plane. The

structure ends up being less symmetrical than iMAXs as Mo4Ce4Al7C3 space group is triclinic P-1 (figure

2.6c). The Cerium atoms occupy two different sites Ce1 and Ce2 with very different surroundings (See figure

2.6). While the Ce1 in the MX conductive plane has the same surroundings as rare earth atoms in iMAX’s,

the Ce2 site closest neighbors are Aluminium atoms from the kagomé-like layer above the Ce-Al layer as

well as other Cerium atoms from the same Ce-Al plane. This is of the utmost importance for understanding

the differences between iMAX and 4473 properties. In contrast with iMAX phases, Mo4Ce4Al7C3 is found
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to exhibit ferromagnetism below 10.5 K, as well as mixed-valence states [138]. Cerium is well known for its

two possible oxidation states, Ce3+ (4f1) and Ce4+ (4f0). In a Ce mixed valence system, in at least one Ce site,

the electronic configuration shall oscillate between Ce3+ and Ce4+ while the average ratio between these two

would be fixed [139]. For a given compound, the oxidation or valence states would be imposed by cerium

atoms environment and the local crystal fields.

In the case of Mo4Ce4Al7C3, XMCD and XANES absorption spectroscopies allowed to demonstrate that

the Ce1 atoms belonging to the metallic plane exhibit mixed valence state while the Ce2 are seemingly the

ones carrying a non-zero magnetic moment and would be responsible for the ferromagnetic nature of this

compound. We also very recently evidenced Kondo lattice behaviour in this material that would coexist

with a ferromagnetic order at low temperature [140], but this stands beyond the scope of this manuscript

(More informations on magnetism, Kondo effect and mixed valence states in Mo4Ce4Al7C3 are provided in

[140]). Overall, in plane and out of plane ordered MAX phases show great promises for the search of new

magnetic and high electronic correlation within the MAX phase family. iMAX might also be the first stone

for the discovery of a new class of rare earth based highly correlated iMXenes, if such a system is indeed

stable.

2.3 The electronic structure of MAX phases

Bringing new insights to the understanding of MAX phases electronic structure has truly been the main

scientific output of this doctoral thesis. Yet, before we come to literally state the questions we have attemtped

to answer during the past four years, we believe that it is necessary to review some very basic concepts of

solid state physics that are central to this work. We will later come to a short review of the preexisting

literature on MAX phases electronic structure, and how to relate the near Fermi level electronic structure of

MAX phases to their macroscopic properties.

2.3.1 A short summary of electronic structure and band theory

The knowledge of the quantum states of electrons is key to the understanding of a large number of prop-

erties of systems made of atoms, whether it might be a single atom, a molecule, a periodic arrangement of

atoms forming a crystalline solid, a gas made of scarce and randomly distributed atoms (or molecules) or a

disordered liquid. We define here the ensemble of electronic quantum states of a system as well as their mor-

phology in phase space (a four dimensional space hereby defined by energy and the three components of a

momentum variable) as the electronic structure of this system, also referred to as its electronic spectra. From

now, we will be giving shortened and oversimplified narrative inspired by the fundamentals of Solid states

physics and quantum mechanics. The reader can refer to foundational text books as the ones from Ashcroft

and Mermin or Kittel [40, 141, 142]. To exemplify the concept of electronic structure, we will consider a very
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simple system: the Hydrogen atom. Neglecting any fine and hyperfine structure terms, the hydrogen atom

HamiltonianH stands within the Hydrogen atom Schrodinger equation as:

Hφ = (Ekinφ + Vφ) = (
−h̄2∇2

2me
+
−e2

r
)φ = Eφ (2.6)

Here, φ is the electron wavefunction, Ekin = −h̄2∇2

2me
the kinetic energy operator, V = −e2

r the central

coulombian potential and me the electron rest mass. After separating the angular and radial part of the

Hamiltonian and diagonalizing both, one obtains a set degenerate energy eigenvalues associated with the

radial component of the electron wavefunction:

En = − Ei
n2 (2.7)

Where Ei= -13.6 eV is the ionization energy of the Hydrogen atom and n is an integer called the principal

quantum number. This infinite set of energy level stands for the electronic structure of the sole hydrogen

atom. Considering additional terms of the Hamiltonian into the potential V will lift the orbital degeneracies

and lead to a slightly different electronic structure. Through perturbation theory, one can eventually take

into account effects such as spin orbit coupling and other relativistic effects as well as the hyperfine coupling

between electrons and nucleus spins.

Now, getting closer to the case of an actual material, if one consider an infinite set of atoms forming

a periodically arranged solid, the electronic structure of this system will naturally show a higher degree

of complexity than the energy levels of a single atom. The Hamiltonian of a given solid consituted of N

electrons in a Bravais lattice would be:

Hφ =
N

∑
i=1

(
−h̄2∇2

i
2me

φ− e2 ∑
R

Z
|| ri − R ||φ) +

1
2 ∑

i 6=j

e2

|| ri − rj ||
φ (2.8)

Where ~R is a real space vector which follows the lattice periodicity and ~ri are the vectors associated to

the position of the electrons. There is naturally no hope in trying to solve this problem analytically. But

regardless of the complexity of the Hamiltonian, we can still write it as :

Hφ = (Ekinφ + Vcryφ) (2.9)

Ekin is the kinetic energy associated to the many body electronic wavefunction and Vcry encompasses

all the atomic potentials as well as all electron-electron interactions and other terms. There is one common

characteristic to the potential distribution of any crystalline system: it follows the periodicity of the lattice

(ignoring magnetic superstructure or incommensurate magnetic order!):

Vcry(x + R) = Vcry(x) (2.10)
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FIGURE 2.7: (a) Schematic of the energy levels of Hydrogen atom. (b) TiC BS computed as
computed by GGA DFT calculations. (c) First BZ of cc TiC (d).

This later imposes the eigenstates of the Hamiltonian ψ to follow Bloch theorem:

ψ(~x + ~R) = eik.Rψ(x) (2.11)

Here~k stands for the wavevector as a parameter associated to this eigenstate. Cantoning to real space

is not fitting for studying the properties of these Bloch eigenstates, nor the electronic structure of a solid.

One needs to look at the dual to the real space lattice: The reciprocal space or also refered to as k space or

’wavevector’ space . It is defined by its unit vectors ~a∗, ~b∗, ~c∗ that are themselves derived from the real space

unit vector~a,~b,~c for a crystalline solid with fixed lattice parameters and a specific space group:

~a∗ = 2π
~b×~c

~a · (~b×~c)
(2.12)

~b∗ = 2π
~c×~a

~a · (~b×~c)
(2.13)

~c∗ = 2π
~a×~b

~a · (~b×~c)
(2.14)

The energy level of the periodic solid will show a dependency on the electron wavevector En(k), with a

periodicity in k space imposed by the periodicity of the solid.

We will thus obtain n k dependent eigenvalues graphs En(k) which are labelled as Bands. Here, n is called

the band index and plays a similar role as the principal quantum number for atomic physics. It allows to

classify bands by the minimum energy value they exhibit. The ensemble of all the bands of the energy spectra
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is called the Band Structure (BS) of the solid. Studying a band structure along the whole infinite reciprocal

space proves to be useless. There exists one specific Wigner Seitz unit cell of reciprocal space called the first

Brillouin zone (BZ). It can be showed that the periodicity of the band structure in three dimensional k space

is the same as the BZ so that one can only trace the bands within this restricted volume (a detailed example

of a band structure is given in figure 2.7b, for the case of TiC). By convention, the band structure is generally

plotted over specific symmetry axes of the BZ that will depend on the space group of the system. Indeed, the

symmetry of the Brillouin zone is naturally dual to the one of the Wigner Seitz cell of the real space lattice.

An example of a BZ main symmetry axis nomenclature is given in figure 2.7c for cubic centered (cc) TiC.

As in the case of the energy level of an atom associated to certain orbitals, at each k point of a band a

given combination from each initial atomic orbitals will form a k dependent eigenvector ψn(k):

ψn(k) =
Norb

∑
i=1

cn,i(k)Oi (2.15)

The ratio cn,i between the different orbitals will change as one follows the coordinates of the band through

the BZ. It will be referred to as the orbital character of a band. It means that one can distinguish the orbital

contribution to each band within the solid by projecting the eigenstate ψn at an (E,k) coordinate unto the

considered orbital Oi:

cn,i = 〈ψn(k), Oi〉 (2.16)

Looking at specific directions or k point does not allow one to have access to ‘global’ properties of a

material. For this one needs to integrate quantities over the quantum state of the electron, in energy and

over the first BZ in k space. One very important tool for handling such operations is the Density of States

(DOS) which is defined as the number of electronic states per volume unit and energy unit. It can be related

to other mathematical objects: the Isoenergy Surfaces. For a three dimensional system, an isoenergy surface

of energy E=Eis can be defined as the ensemble of all k points of all bands En(k) crossing the constant energy

segment E=Eis within the first BZ (See figure 2.8). It thus not only defines the morphology of all the electronic

states at E=Eis, but integrating this isoenergy surface will give access to the number of states available at

E=Eis, thus to the density of states at E=Eis. While the band structure of a solid appears as a collection of

discrete k dependant quantum states, the energy dependence of the density of state makes them appear as

continuous (see figure 2.8). Not all the levels are of course occupied. As electrons are fermions, they obey

the Fermi Dirac distribution

f (E) =
1

1− e
(E−EF)

kBT

(2.17)
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FIGURE 2.8: (a) BS of Cu from Phys.Review 129, 1 (1963) [143]. Copper electronic structure was
calculated through diagonalizing the Hamiltonian with the slater APW method and by taking
the Chodorow potential for Cu (b) Cu Fermi surface as computed by GGA DFT calculations
(c) DOS of Cu from Phys.Review 129, 1 (1963) plotted in the same energy range as (a) and

highlighting the relation between Cu DOS and BS.

The total density of electron in the solid is then given by:

N =
∫ +∞

0
f (E)g(E)dE (2.18)

Where EF is the socalled Fermi level or Fermi Energy separating occupied and unoccupied energy bands

and g is the density of states of the system. At 0K, the Fermi-Dirac distribution becomes identical to a

heavyside function and all the energy bands above EF are unoccupied. At 300K, f only differs slightly from

a heavyside function so that the bands above EF are nearly unoccupied. The isoenergy surface at the Fermi

level is called the Fermi Surface and it is a central concept for understanding the many properties of a metal

from a solid state physics perspective.

As an important reminder, we will give a very simplified picture of how the position of the Fermi level

within the electronic structure of a material determines whether one gets a metal or a semiconductor. If the

Fermi level of a given material happens to cross one or several existing bands, then this material would be a

metal with a potent conductivity. Indeed, unoccupied states would be available at an infinitesimal distance
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from the lastly occupied level for electrons to be excited in or for holes to be inserted within the Fermi sea e.g.

the continuum of states below EF. Electronic transport can then be met through mobile electrons and holes. If

EF does not cross any band, then the material would be a semiconductor or an electronic insulator. It would

require a significant temperature or a significant external perturbation for electrons to cross the energy gap

between the last occupied bands and the first unoccupied bands above. A rigorous demonstration based on

the semi-classical analog of the Liouville theorem [40] would prove that a band completely filled or empty

would stay inert even in presence of a magnetic field or an electric field varying over space or time. Electric

conduction would then arise due to electrons (or holes) in partially filled (or partially empty) bands.

As it will be illustrated with the specific case of MAX throughout this manuscript, the electronic structure

at or near the Fermi level are determinant to most of the properties of materials, metals in particular. One

shall still remember that the description of the electronic structure we gave above is solely based on Band

Theory which, and though it remains valid for most of the existing metals, insulators and semiconductors

alike, fails to describe some classes of highly correlated systems (iMAX and 4473 phases typically fall in that

category ). But as MAX phases are relatively standard metals, the portrait of Bands Theory we gave above is

sufficient to decipher their electronic structure.

2.3.2 Trends within the electronic structure of MAX phases

Until 2017, MAX phases electronic structure has been mainly studied by the means of DFT calculations and

experimental probes such as X ray absorption spectroscopy (XAS) [144], X ray emission spectroscopy [145,

146, 147], electron energy loss spectroscopy (EELS) [144] and X ray photoemission spectroscopy (XPS) [148,

149]. DFT calculations have brought knowledge on the density of states of most of MAX compounds, and

the spectroscopic studies mentioned above were mainly aimed at understanding their bonding mechanisms

through the study of their electronic structure. Comparative analysis of experimental and theoretical results

have allowed to establish clear trends within the electronic structure of MAX phases:

-Nearly all MAX phase densities of states are dominated by the transition metal d orbitals near the Fermi

level. Similarly to the ‘global’ density of states, one can compute Partial densities of states (pDOS) by project-

ing the quantum states obtained by calculations unto the set of all orbitals of a specific atom (Atomic partial

DOS) or unto one orbital (orbital partial DOS). DOS and partial density of states (pDOS )of Ti3SiC2 from [150]

are given in figure 2.9, as well as Cr2AlC and Ti2AlC pDOSs from [151]. The shape of the near EF spectra of

the DOS is identical to the M atom pDOS (in the area where Ti d orbitals ought to stand) for Ti3SiC2, Cr2AlC

or Ti2AlC or Ti2 cases. Most of other phases exhibit similar near EF profiles, therefore demonstrating the

prominent role of the M atoms influence in the near Fermi level electronic structure. The prominence of d or-

bitals on the near EF electronic spectra is also a characteristic of the MX binary counterparts to MAX phases.

It must be noted that a reasonable yet imperfect agreement between experimental spectra and calculation

can be obtained when it comes to comparing the DOSs and XPS results [149, 152].
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FIGURE 2.9: (a)Ti3SiC2 DOS and atomic pDOSs by DFT calculations, from Zhou et.Al [150].
The domains where given orbital contribution dominate are highlighted. M atom, Al and C

pDOSs of (b) Cr2AlC and (c) Ti2AlC from [151]

-The strength and relative energy of various bonds within MAX phases has been be elucidated both

experimentally and computationally . If one looks back at the different pDOS of Ti3SiC2 (Figure 2.9a), one

can decompose them into four domains : the 0-1 eV below EF domain, where the Ti d orbitals dominate. In

the 1-5 eV range, Ti 3d, Si 3p and C 2p orbitals are the main contributors to the bands. In 5-9 eV range, the

main contribution comes from Si 3s orbital and C 2s in the 9-12eV range. This is to be correlated to X ray

emission spectra of Ti2AlC [146]. M 3d to A 3p bonds would be relatively weak with an associated peak

around 1 eV below Ef while M 3d – C 2p and M 3d - C 2s are found to be stronger and at way lower energies,

respectively 2.6 and 10 eV below EF.

Though BS calculations of MAX phases are to be found in the literature, only theoretical DOSs have been

compared to experimental results, which means that the actual morphology of their electronic states has not

been confirmed experimentally before. Yet, the morphology of electronic states near the Fermi level, and

more specifically the shape of the Fermi surface, is at the very root of electronic transport in most metals [40]
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and MAX phases do not escape that rule.

As a quick reminder, let us recall that one can derive the Fermi velocity, or the group velocity of electrons

from a given band and at the Fermi level, directly from the band structure as :

vF =
1
h̄
(

∂E
∂k

)k=kF (2.19)

Were kF is the value of the wavevector at EF . Another parameter that can be extracted from the band

structure is the effective mass of the electron m∗. It is a renormalized mass that would act as the mass that

an electron in a band at a given (E,k) coordinate would bear if portrayed as a free electron, but with all the

effect of the potential condensed in m∗ . Depending on the shape of each bands, local effective masses can

be higher or smaller than the rest mass of the electron m0=9.0110-31 kg. Effective masses can be deduced

directly from the local curvature of the bands:

1
m∗

=
1
h̄2

∂2E
∂2k

(2.20)

Considering the first order out equilibrium term of the distribution function when applying an external

electric field, one obtains the following formula for the electronic conductivity [40] :

σ = e2 ∑
n
(
∫ dk

4π2 τn(εn = ε(k))v2
n(k)(

−∂ f
∂ε

)εn=ε(k))E=EF (2.21)

Where the term ( ∂ f
∂ε ) can be taken as a Dirac distribution centered at the Fermi energy so that we obtain

integrals over the Fermi surface. This is but among the many relations that express the fundamental link

between transport and the electronic quantum states of metals. Other Onsager coefficients such as the Hall

coefficient or the thermal conductivity can be directly related to integrals over the Fermi surface and Fermi

velocity maps within the first BZ.

Now how does this apply to the MAX phases? The vast majority of the MAX phases are characterized

by extremely small Hall coefficients RH , which sometimes change sign with increasing T, small magnetore-

sistances, and for some phases vanishingly small Seebeck coefficients over extended T ranges [1]. The nearly

zero values of RH has been interpreted as a proof that MAX phases are compensated conductors. Electronic

transport within Max phases have indeed mainly been described in the frame of an isotropic two bands

Drude model, with [1]:

σ = e(nνn + pνp) (2.22)

RH =
pν2

p − nν2
n

e(nνn + pνp)2 (2.23)
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FIGURE 2.10: Fermi surface of Nb2GeC (from Shein I et.Al, Physica B. 2013 [153]), Ti2GeC,
Cr2AlC, Ti2AlC, V2AlC and Cr2GeC all computed by DFT calculations. Apart from Nb2GeC.

All of them were computed with the PBE functional embedded within wien2K

∇ρB
ρB

=
npνnνp(νn + νp)2

(nνn + pνp)2 B2 (2.24)

From the small value of RH , it was assumed in the frame of this two band model that n=p and νn = νp,

thus implying that MAX phases would be compensated metals.

A simple two band based Drude model might decently well render the main features of a semi-conductor

where the only parts of the bands that contribute to transport are the bottom of the conduction band for

electron and the top of the valence band for holes, and where both will exhibit nearly isotropic parabolic

dispersion near their respective minimum and maximum. In contrast, such a model does not bode well

with metals where the Fermi level is located deep within the bands and often comes to cross more than two
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electron or hole bands alike [154]. Also considering the intricate and highly anisotropic shapes of the MAX

phase Fermi surfaces that have been computed thus far, it is highly unlikely for the electronic states to be

isotropic or free electron like. A strong anisotropy makes sense here because of MAX phase layered structure

.

For Ti2GeC, 6 bands are present at the Fermi level [154] , with four hole tube like FSs and two electron

pockets centered in K (shown on figure 2.10) A pocket referring to a Fermi surface encompassing a close

volume, in opposition to open volumes like tubes. With the lack of applicability of this model, one can

question whether MAX phases can be considered as isotropic compensated metals.

One can as well wonder if the available data measured on highly polycrystalline samples can be straight-

forwardly related to the intrinsic electronic structure of MAX phases. It is a question of even greater impor-

tance when it comes to anisotropy. Determination of anisotropy ratios ρc/ρa,b of a layered system seems like

an impossible task when working with a disordered, imperfect polycrystalline sample issued from ceramic

sintering processes. Values of resistivity anisotropies of Ti2GeC measured on thin film of high quality are

yet found in the literature [155] and the ratio between out of plane and in plane resistivity would be about

2, but the very short dimensions over the c axis of the obtained thin films makes this value questionable.

It also conflicts with the published band structure of Ti2GeC [156], from which this material is described

to be nearly two dimensional and thus highly anisotropic . A more accurate picture of transport could be

established if high quality macroscopically sized Bulk single crystals were at disposal. Measurements on

such systems would hold closer to the intrinsic resistivity, hall constant or magnetoresistance of the material.

Bulk single crystals of MAX phases such as Ti3SiC2, Cr2AlC or V2AlC have been synthetized from 2011 in

Grenoble [35, 157, 158]. Hall bar measurements on V2AlC and Cr2AlC single crystals revealed resistivity

values about 10 times smaller than polycrystalline samples and the newfound anisotropy ratios are about a

few hundreds for Cr2AlC and one order of magnitude higher for V2AlC [159].

2.3.3 Leitmotiv of this doctoral thesis

The review above summarizes the scientific context in which this PhD was set. Despite the large corpus of

scientific work on MAX phase, there is a relatively scarce number of studies where the actual origins of their

electric and thermoelectric properties are discussed and interpreted in the light of a very direct measurement

of their electronic structure. Before this work started, a handful number of questions remained untamed, of

which we will be giving a non-exhaustive list below:

- How different would be experimental MAX phases band structures and Fermi surfaces from calculated

spectra?

- What would be the influence of electronic correlations, magnetism, spin orbit coupling or even electron

phonon coupling on MAX phase electronic structure?
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- How anisotropic the experimental spectra would be respectively to the layered structure of MAX phases?

- From the knowledge of the morphology of their electronic states near the Fermi level, can we easily build a

model that describes MAX phases transport in a more meaningful manner than a two band Drude model?

- Is it possible to find a fundamental unicity within all MAX phases electronic structures?

As an attempt to bring answers to these questions, the subsequent methodology was applied:

-(i) Macroscopically large single crystals (1mm2- 1 to 2 cm2) were grown at LMGP Grenoble by Liquid Solu-

tion Growth.

-(ii) Single crystalline sample were brought to various synchrotron lines in order to perform Angle resolved

photoemission spectroscopy (ARPES) experiments ( =AichiSR , UVSOR BL5U and BL7U lines in Japan as

well as Soleil Cassiopée line in France).

-(iii) DFT calculations were carried out in Grenoble, and results were compared to the output of ARPES ex-

periments.

The lack of availability of large single crystals prevented the actual experimental determination of MAX

band structure and Fermi surface before this work. Existing methods allowing for their experimental deter-

minations such as Angle resolved photoemission spectroscopy and De Haas van Haafen oscillations indeed

require pure, high quality bulk single crystals.

The basic principles of our Crystal Growth techniques, of Angle resolved photoemission spectroscopy

(ARPES) and Density Functional Theory (DFT) calculations are summarized in the third chapter of this

manuscript. Then, the outcome of most of the research work performed during this PhD thesis is given

in the other chapters and we will see how one could at least partially answer to the questions listed above.

Cr2AlC is the focus of chapter 4, with a lot of attention given to the level of resemblance between experiments

and calculations. The potential influence of electron-phonon coupling and magnetism is looked upon, and

Cr2AlC magnetotransport coefficients are derived from the shape of its Fermi surface. In Chapter 5, V2AlC

experimental band structure and Fermi surface maps are found to match calculations to a remarkable level.

The anisotropy of this Fermi surface is discussed and the situation is compared to the case of Cr2AlC. Volatile

surface states are evidenced within the experimental spectra. Chapter 6 is devoted to a description of all 211

phases electronic structures based on the socalled Rigid Band Model as an attempt to build up a consistent

classification of MAX phases. Many phases are shown to exhibit similar ‘rigid band structure‘ and, surpris-

ingly, topological features, e.g. linear band crossings, such as a Dirac nodal line, are evidenced. Finally,

chapter 7 deals with the experimental and theoretical electronic spectra of Ti3SiC2. High resolution ARPES

mapping have allowed us to probe fine features of the Ti3SiC2 band structure and Fermi surface. A new

interpretation for the nearly 0 Seebeck coefficient of Ti3SiC2 is given and the role of spin orbit coupling on

the bands is considered.
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Chapter 3

Materials and Methods

3.1 MAX phase single crystals

3.1.1 Crystal growth techniques

Many bulk crystal growth techniques rely on reaching thermodynamic conditions where the species one

wants to grow is close to equilibrium with another phase (For example a liquid a or gaseous phase. To be

more precise, one needs to reach a metastable supersaturation state). One would typically target a composi-

tion within a binary or ternary diagram at a given T. Then, one has to vary the kinetic, slowly departing out

of equilibrium so that crystallization conditions are met and nucleation centers start to form and eventually

aggregate before the growth continues. As a heuristic tool to predict which compound would form or not as

a result of the growth process, one makes use of binary or ternary diagrams.

There are four main classes of crystal growth techniques for synthesizing bulk inorganic single crystals.

They are summarized schematically in figure 3.1 but also briefly outlined below:

-Growth from congruent liquid phase -often referred to as melt growth- which comprises the most com-

monly used methods to grow single crystals. Not all materials can be grown using these methods, since

congruent melting is one of their key requirements and only a few materials exhibit such a congruent melt-

ing point (when going through congruent melting, the composition of the liquid remains the same as the

native compound, as illustrated in figure 3.2). Among melt growth techniques, the Czochralski method is

probably the most widespread as it allows to grow 300-mm diameter, nearly defect-free, bulk single crys-

talline of silicon that are later cut and used as the building blocks of modern micro-electronic technologies

[160, 161]. Essentially, the driving force for crystallization is the controlled pulling of a single crystalline

seed inserted within the melt [162] . Other elementary compounds such as germanium [163] can be grown

through this process, as well as more complex or exotic compounds as YbNi4P2 [164] which exhibits non

Fermi liquid behavior at very low temperature [164, 165].

- Vapor phase growth allows the production of single crystals at temperatures lower than the other avail-

able techniques, although higher temperatures are needed for specific compounds like SiC . It can also deal
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FIGURE 3.1: Summary of the four main classes of crystal growth methods and a non exhaustive
list of the technics that can be derived from them. Molten solution growth, also called high
temperature solution growth, is highlighted as the technic used to grow incongruent MAX

phase bulk single crystals.

with compounds which do not feature a congruent melting point. High crystal quality can hardly be reached

through methods such as sublimation, e.g. physical or chemical vapor transport growth [166, 167, 168] . A

source material is sublimated at a temperature T1 and is transported in gaseous form to a single crystalline

seed at temperature T2 onto which the gas particles crystallize. Sublimation is notably used at an indus-

trial scale to grow high quality silicon carbide single crystals [169]. However, the low growth rates of these

techniques compromise their ability to grow bulk sized crystals for most materials. In contrast, vapor phase

growth methods -such as chemical vapor deposition and molecular beam epitaxy- are widely used to grow

single crystalline thin films of various materials with an impressive degree of cristallinity [170].

-Solid state growth is less of a common technique than the three others despite the considerable reduction

of fabrication costs it allows and the less stringent synthesis condition it permits . Through these methods,

one can convert a polycrystalline sample into a single crystal by sintering a single crystalline seed of the

desired material together with a larger polycrystalline sample of that same material. The temperature is

set below the melting point of the material. The underlying processes of the polycrystal to single crystal

conversion are still under debate [171]. Only a relatively small number of materials can be synthetized in

single crystal form by these methods and the tyical size of the crystals grown in laboratory conditions is

limited to a few centimeters [172].
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- Solution growth is the standard crystal growth technique when the material one aims to synthetize

in single crystalline form does not melt congruently (as illustrated by the binary diagrams in figure 3.2).

The single crystalline phase would solidify directly from a liquid phase it stands in equilibrium with. To

achieve the growth, one then needs to reach supersaturation of the targeted solid phase in solution [168, 173].

This can be achieved by different methods: the solution can be slowly cooled down if the solubility of the

compound decreases with decreasing temperature. Alternatively, it is possible to directly purge or remove

the solution once the crystals are formed, for example by evaporation at constant temperature. Another route

is to apply a temperature gradient to the solution. In that case, the growth may arise in the region of lower

temperature while the crystals as well as all the input materials will be dissolved in the melt within the higher

temperature region. Depending on the material to be grown, solution growth can take place at low or high

temperature, at high pressure, and in aqueous environments for the case of hydrothermal growth (Notably

exploited for the growth of synthetic quartz single crystals [173]). High temperature solution growth is

often performed with an additional solvent, also called a flux, added to the solution so as to increase the

solubility of targeted elements into the solution. For the case of metallic compounds, we often refer to this

high temperature solution growth as molten metal solution growth.

We will now extensively describe how this technique is applied to the growth of single crystals of various

Mn+1 AXn nanolamellar carbides, that are indeed non-congruent ternary compounds.

3.1.2 High temperature liquid solution growth

A full description of the growth of MAX phase single crystal protocols will now be given through the exam-

ples of Cr2AlC, V2AlC, Ti3SiC2 and Ti2SnC:

1. We firstly choose a point in compositional space within an area of the M,A,C ternary diagram where

we have an equilibrium between the ternary MAX phase and the liquid melt (see figure 3.2). We also need to

make sure that other ternary or binary compounds will not predominantly form, thus restricting the work-

able composition ranges to very narrow windows. One dispenses a given quantity of processed M and A

elements, either from powder or pre-formed pellets, with a ratio between the two elements that follows the

chosen coordinates within the phase diagram. If the ternary diagram is not known ,as for example for the Ti,

Sn, C system, one can only rely on the binary diagrams and guess a starting composition for growth where

one will not see too much competition with other phases. The Ti to Sn ratio would later be optimized to

obtain large single crystals, after many trial experiments.

Once properly weighted, all the precursors are put within either a graphite or an alumina crucible (see

figure 3.3). Which crucible to choose will be of crucial importance once high temperatures are reached. The

targeted carbon content, not mentioned thus far, will not be set by putting a given amount of graphite pow-

der or blocks inside the crucible, as for M and A. It will instead be incorporated within the molten metallic
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FIGURE 3.2: Ternary diagrams of Cr-Al-C at 1673K (a) and V-Al-C at 1773K (b). the compo-
sitions respectively associated to Cr2AlC and V2AlC are given. The compositions points to
choose for crystal growth have to be located within the triangle areas where one has an equi-
libirum between the ternary MAX phase and a liquid phase. They are annoted as red dots for
Cr2AlC and V2AlC. Binary diagrams of Sn-Ti (c) and Al-Ho (d), used to plan the growth of
Ti2SnC and (Ho1/3Mo2/3)2AlC. A Peritectic , an Eutectic and a congruent points are indicated

by the letters P, E and C.

solution at high temperature, as we will see in the second step of the growth process (either by dipping a

graphite rod within the melted metallic solution or by partial dissolution of the inner borders of a graphite

crucible).

2. Before being introduced into the growth reactor, the alumina or graphite crucible is placed within a set of

thermal shields as illustrated in figure 3.4. Pieces of zirconia pellets are introduced within the thermal shield

in order to absorb oxygen that may be expelled once elemental pellets of M and A elements begin to melt.

The block containing the crucible is placed at the center of an induction coil inside a reactor (figure 3.5).

The growth reactor is the corner stone of the whole synthesis process. Two reactors with similar designs

and working conditions were used to grow crystals for this work, one of which is illustrated in figure 3.5a.

When a growth experiment is running, a very high current is applied to the coil inside the reactor, thus

generating a relatively high magnetic field. This will in turn generate induction currents within the outer

graphite shell inserted within the coil and thus heat up the crucible and its environment through the Joule
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FIGURE 3.3: Shape and dimensions of typical Graphite (a) and Alumina (b) crucibles used for
the growth.

effect. The input electrical power is controlled by a high-throughput power source. In order to generate very

high currents, one applies an alternative current to an RLC system where the inductance corresponds to the

coil inside the reactor. By fixing the frequency to the circuit resonance frequency, one achieves significantly

higher-amplitude alternative current in the coil, and thus a more rapid heating effect. One does not have

to provide the full instantaneous power from the generator, which would be impossible, but just the part

which is dissipated to produce heat, whereas most of the instantaneous power is provided by the charging-

discharging of the capacitor into the coil. To prevent damage to the inner growth chamber when heating, the

coil as well as the whole enclosure of the reactor are cooled by a water circuit.

All growth experiments are performed under argon atmosphere with a pressure of 1 bar within the cham-

ber. A typical crystal growth run starts after introducing the graphite blocks containing the crucible within

the reactor chamber (see figure 3.6). After pumping and introducing argon gas, we apply 3.4 kW to the coil

through a high power generator. Such conditions enable a temperature as high as 1000 °C in the interior of

the crucible. The temperature is measured by an infrared pyrometer set to measure graphite surfaces (see

figure 3.4). Once a temperature of 1000 °C is reached, a closed loop feedback control is set and the applied

power would be regulated by the temperature measured by the pyrometer so that the temperature would

slowly increase to reach the targeted plateau where the next step of the growth process will be set (both the

pyrometer and the generator are controlled by a microcontroller which is itself connected to a computer ter-

minal where the growth commands are set by the user). Temperature must increase slowly, over 2-5 hours,

in order to prevent possible damages to the crucible or even to the chamber. It can take some time for the

whole crucible and thermal shield blocks to thermalize.

Once the temperature plateau is attained and a stable metallic liquid is obtained (see figure 3.6), the input

power is generally held constant for a few hours so that the carbon source can be dissolved into the solution

(see below) . The magnetic field generated by the coil (as well as a temperature gradient within the crucible)

causes the molten metal to experience magneto-convection , thus ensuring a certain degree of homogeneity
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FIGURE 3.4: A typical crucible kit to be introduced within the growth reactor chamber. During
the growth, a pyrometer will point towards the inner graphite crucible for temperature mea-
surement. When using alimina as a main crucible, the outer graphite crucible will serve as a

target for the pyrometer.

within the melted solution. The choice of the crucible is a sensitive parameter depending on the phase one

wants to grow. The most straightforward choice would be a graphite crucible. Graphite itself is in some

sense one of the most refractory materials in existence, with Tsublim higher than 3600°C at ambient pressure

[174]. It is thus one of the only materials that can be considered be considered for working at the highest

temperatures. Also, one can take advantage of carbon solubility to use the graphite crucible as an in situ

source of carbon at high temperature. We proceed with this technique for the growth of either Ti3SiC2 or

Ti2SnC. But problems arise when dealing with aluminum based MAX phase. Somewhere between 1200°C

and 1400 °C, liquid aluminum that would have already melted at 660°C reacts with the graphite crucible,

leading to the formation of Al4C3, the destruction of the crucible, and eventually a leak of liquid metal within
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FIGURE 3.5: ’Memere’ reactor setup, going from outer elements (a) to the whole reactor (b) and
the inner chamber where the crucible kit is inserted (c,d).
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the reactor chamber.

Fortunately, rather than graphite, it is also possible to use other types of crucibles such as those composed

of alumina. Alumina cannot survive temperature higher than about 1700°C as Tmelt
Al2O3

= 1800C. But one can

use it to grow most Al based 211 MAX phases. The source of carbon would then come from a graphite rod

dipped inside the molten metal solution when reaching the temperature plateau (see figure 3.6 ). Another

challenge that arises when dealing with Al-based MAX phase is liquid aluminium and vapor pressure that

tends to become highly non-negligible at high temperature. It may lead to a strong Al evaporation that might

darken the glass window through which the pyrometer is targeting the graphite surface, thus deteriorating

the reliability of the temperature measurement .

FIGURE 3.6: Main steps of high temperature solution growth performed at LMGP. The temper-
ature increase generally lasts 2-5 hours before reaching a plateau which is maintained about 30

minutes to 2 hours. The cool down lasts from 2 to 6 days depending on the experiment.

3. Finally, the applied power is slowly decreased from about 10-15 kW at very high temperature to a

power corresponding to a targeted temperature for ending the growth. After that, the generator is turned

off, the crucible can be recovered and any crystal that have formed can be extracted from the flux. All steps

of this process are outlined schematically in figure 3.6. Cooling usually lasts from 2 to 6 days, depending

on the phase grown and the crystal size one wants to obtain. It is probably the most important step of the

process since the actual growth of the single crystals arise during the cooling step of the process, if of course

the basic thermodynamic parameters, e.g. the upper temperature plateau and the composition in M, A and

C, are properly fixed. The choice of temperature at which the growth is stopped can be crucial if the MAX
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FIGURE 3.7: Two cuts of graphite crucibles after high temperature solution growth experi-
ments. In (a), Ti2SnC single crystals flakes are visible at the top of the solidified melt. In (b),
Ti3SiC2 single crystals are found within the solidified melt, thus indicating they would not

specifically form at the liquid surface.

phase one aims to synthetize undergo a peritectic transformation at intermediate temperature. For example,

V2AlC would peritectically decompose within the 1100-1200°C range. Stopping slightly above the peritectic

temperature avoids the decomposition and single crystals will stay intact within the remaining flux.

If, after several trial experiments, the kinetic parameters of the growth happen to be well optimized, nu-

cleation will occur during the cooling and the single crystalline nucleation centers will grow to macroscopic

size. Since no single crystalline seeds are introduced in the melt, we can assume that primary nucleation

spontaneously occurs during cooling down. Crystals of Ti2SnC and Ti3SiC2 embedded within their flux are

shown in figure 3.7. From the geometry of the crystals, the growth is found to be highly anisotropic and

highly favored in the a,b directions. Due to the the layered structure of MAX phases [35, 157, 158, 175],

the shape of the seeds will not be spherical but planar. It will subsequently favor the formation of thin

flake-shaped single crystals with nearly "layer by layer" terrace growth over c axis [175].

Pictures of representatives examples of crystals grown with this procedure are shown in figure 3.8 , with

the c axis being perpendicular to the crystal plane. They are about 100 µm to 1 mm thick with a surface of

about 5mm× 5mm for V2AlC and Ti2SnC and as large as a few square-centimeters for Cr2AlC.

3.1.3 MAX phase single crystals, derivatives, and characterization techniques

From the flux or the ‘growth’ cake that contains MAX phase single crystals as well as many other byproducts

formed during the solidification of the melt it is possible to extract the single crystals either by waiting for

most of the unstable compounds to disaggregate, or by dipping the flux into 50 percent pure HCl wherein
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all unwanted compounds that otherwise would have formed competitively to the MAX phase would be

dissolved . Only the chemically resilient MAX single crystals would remain, as seen in figure 3.9.

MAX phases, iMAXs and derivatives grown during the course of this PhD are listed below:

- Cr2AlC is grown with a molar fraction of chromium going from 0.3 to 0.35, a fraction of alminium of 0.55 to

0.6 and a fraction of carbon of about 0.07 (though the exact amount of incorporated carbon added to solution

is hard to determine). An alumina crucible is used and the carbon source is a rod that is dipped into the

solution after reaching a temperature plateau of 1670°C. The depth that the rod is dipped into the solution

is mechanically controlled and connected to a microcontroller so that one can approximately monitor how

much will be dissolved into the solution, knowing graphite density and the dimensions of the rod. The

duration of the temperature plateau is typically about an hour before starting the cool down.

-V2AlC is grown with an Al ratio of 0.75 to V. Similarly to the case of Cr2AlC, we use an alumina crucible

to prevent the destructive reaction of melted alumina with the graphite crucible, and carbon is incorporated

by dipping a mechanically controlled rod into the melted solution at the temperature plateau of roughly

1700°C.

- Ti2SnC is grown with a Ti to Si ratio of 0.5. A initial temperature plateau of 1800°C is maintained during 30

min in order to increase the carbon solubility in the melt. Then, we ramp up to another plateau at 1600°C for

30-60 min before starting the actual cool down. Due to the absence of aluminium within the melt, a graphite

crucible is used. Here, the crucible is the sole source of carbon.

-Ti3SiC2 is grown with a ratio of 0.34 Ti to 0.66 Si. The temperature plateau is set to about 1650°C. Due to the

absence of alumina in the melt, one can also use the graphite crucible as a source of carbon. Residual TiSi2

droplets appear to solidify on the top of Ti3SiC2 crystals during the growth. These can be removed when

cleaving.

- The case of iMAXs, exemplified by (Ho1/3Mo2/3)2AlC, is far more complex than their ternary counterparts.

Working within an unknown fourth dimensional quaternary phase diagram makes it very difficult to choose

a starting composition for the growth. Our approach is to have enough aluminium content to allow for the

dissolution of Molybdenum in solution while avoiding the area of Ho-Al phase diagram where a congruent

point is located. The following composition allowed us to grow single crystals up to a scale of roughly

1mm: XHo = 0.7, XMo = 0.1 and XAl = 0.2. Not only aluminium but also holmium melts before reaching

the critical 1200°C range, and we witnessed that in the case of an Al-Ho melt, no reaction leading to the

destruction of carbon crucibles would occur, so it could be used for the growth of this phase as well as other

rare earth based iMAXs. We reach a temperature plateau of 1800°C that lasts about 2 hours before starting

the cool down. The output of the growth is a ‘colored cake’ that contains a few iMAX single crystals and

many other binaries/ternaries. After a few days in hydrated atmosphere, the resulting flux decomposes and

we can then retrieve the (Ho1/3Mo2/3)2AlC crystals among the remaining poweder. The other compounds

identified within the cake are the following: HoAl2, Ho2O3 and HoC2.
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FIGURE 3.8: Mo4Ce4Al7C3(a), Ti3SiC2(b), Ti2SnC (c), (Ho1/3Mo2/3)2 (d), V2AlC (e) and Cr2AlC
(f) single crystals. The area of Cr2AlC single crystal highlighted in (f) match to figure 20.a. It

corresponds to one of the many dendrites at the surface of these crystals
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FIGURE 3.9: Two possible pathways for extracting the single crystals from the solidified melt:
After one to two weeks, most of the unwanted compound would decompose into powder but
the more stable MAX phase single crystals. If the ’growth cake’ is directly put in highly con-
centrated HCl solution, one can take advantage of the high chemical resilience of MAX phase
single crystals to recover them faster as the rest of the solidified melt will be quickly dissolved.

-Mo4Ce4Al7C3 is grown with a Ce fraction of 0.44, an Al fraction of 0.44 and 0.12 for Mo. A procedure

similar to that for iMAX phases is followed. One must notice that, in contrast to other rare earth materials,

blocks of elemental cerium are relatively affordable. It makes it possible to perform a significant number of

growth experiments for this compound while the growth of Ho, Dy or Gd-based iMAX has to be considered

with greater care considering the raw material price (about 1000 euros for 100g of elemental Ho). As for

(Ho1/3Mo2/3)2AlC, it must be emphasized that growing single crystals of a complex quaternary compound,

for which not even ternary diagrams are known, is generally far more challenging than the growth of ternary

compounds even when ternary diagrams are not known. Contrary to the case of MAX and iMAX phase, HCl

cannot be used to dissolve the flux without damaging the crystal. We just wait a few days before the resulting

flux decomposes within a highly hydrated atmosphere. Additional phases found within the powder are:

Cerium oxides, Cerium carbide, Ce2C, CeAl2, Al4C3, Al8Mo3 and MoC.

Once again, single crystals are shown in figure 3.8. We basically characterize samples by first observing

them with an optical microscope, then we confirm the chemistry of the compound through Raman and EDX

analysis before analyzing their crystallinity through X-ray laue transmission and phi scan or pole figure

analysis. The setups are summarized below.

Observation of the single crystalline samples with an optical microscope already yields a decent amount

of information about the crystal growth process. For the case of Cr2AlC, adjacent single crystals are found to

grow very close to one another, one crystal touching another as the growth goes on. The competition between
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FIGURE 3.10: (a) Zoom over a dendrite on Cr2AlC surface, a morphologic trait characteristic
of surface instabilities arising during growth (as extensively described in [157]). (b) Cr2AlC

growth terraces observed by scanning electron microscopy

bordering nucleations centers leads to a characteristic morphologic defect at the surfacer of these crystals, the

so-called dendritic structures (see figure 3.10). Such features arise from surface instability induced during

the growth, for example one single crystal touching the surface of another as in the case of the product of

Cr2AlC growth shown in figure 3.7 . Growth terraces are also observed at the surface of all MAX phases

single crystals. The overall surface morphology of MAX phase single crystals was highly detailed in the

pioneering work of Mercier et.al on as grown Ti3SiC2 [35].

Following optical microscopy, chemical identification of the crystals is performed by the combined use

of several techniques:

-Micro-Raman measurement were performed at room temperature on several crystals using a He-Ne laser as

the exciting line (λ=632.8 nm) of a Jobin Yvon/Horiba LabRam spectrometer equipped with a liquid nitrogen-

cooled CCD detector. The experimental spectra, as well as the characteristic peak of each elements are com-

pared to the literature for the expected phase [35, 123].

-The chemical composition of the crystals were analysed by energy dispersive X-ray spectroscopy (EDS) us-

ing a BRUKER silicon drift detector (SDD) mounted on a Quanta 250 FEI field emission gun (FEG) scanning

electron microscope (SEM) operated at 10 to 15 keV.

Finally, X-ray diffraction allows the extraction of more information about the crystal structure and the de-

gree of crystallinity of the as-grown samples. X-ray Laue transmission permits a preliminary confirmation

of whether the crystals are indeed single crystals or rather polycrystals. Laue patterns were collected with a

Philips PW1730 source with a Tungsten anode at 50kV and 35mA. Tungsten X-ray source allows to obtain a

very white source for Tungsten brehmstrallung radiation. This image plate was read with a Fuji BAS1800II

scanner.
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FIGURE 3.11: (a) Laue pattern of a sample of very low quality. (b) Laue pattern of a 10cm large
Cr2AlC crystal used for Neutron inelastic scattering experiments at the Institut Laue Langevin
[176]. The symmetry of the system and its orientation can be determined using the Orient

Express software(c).

MAX phase single crystals would exhibit characteristic hexagonal patterns for their laue images, as high-

lighted in figure 3.11, while polycrystals laue would show a blurred, unclear image. iMAX phases shows

more complex laue patterns due to their lower degree of symmetry. If the laue pattern does not appear clean

enough, then the crystal will not be used for further photoemission experiments (figure 3.11a). If the Laue

pattern image is clear enough, one can use software to simulate Laue patterns taking the space group, lat-

tice parameters, experimental conditions and the experimentally determined Laue pattern as an input. The

simulated laue which matches that of the experiments allows us to recover the crystal vectors directions,

knowing that c-axis is perpendicular to the surface. One can then reorientate the single crystals for further

experiments. φ scan and pole figure analysis are achieved by X-ray diffraction, using a Siemens- Bruker

D5000 diffractometer (Cu, Kα1 radiation). The X-ray source is a copper anode, and diffraction at the Cu Kα1

and Kα2 lines is measured. The data is collected in the 2θ range 10°-115°, with a step size of 0.05°, and a

duration of 2s per step. The pole figures are recorded using a four-circle goniometer (Schultz geometry),

featuring an incident beam with a diameter of 1 mm, a nickel filter for attenuating the Cu Kβ radiation, and

a point scintillation detector. The full width at half maximum (FWHM) of the diffraction peaks obtained

in phi scan mode is a measure of the crystalline quality of a sample. When performing a phi scan of MAX

phase in the 202̄3 plane, the FWHM of the peaks are in the 0.25-0.5° range, which is significantly bigger than

the industry standard of 0.05-0.1 FWHM for semiconductors. We attribute this value to imperfections at the

surface and to residual defects within the bulk of the single crystals.

3.2 Angle resolved photoemission spectroscopy

Photoemission spectroscopy techniques are invaluable tools for probing the electronic states of matter. They

are based on the photoelectric effect, discovered by Einstein in 1905 [177], and later put to application by Kai

Siegbahn in the 1950s [178] for the development of the first X-ray photoelectron spectroscopy (XPS) experi-

ments. Both discoveries were awarded Nobel prices. The basic principle of a photoemission experiment is
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FIGURE 3.12: Illustration of the relation between the electronic structure of a given
sample(EB = E− EF) to the energy distribution of photoelectron extracted by electromagnetic
radiation hν. Only the occupied states are being probed (apart for a small energy range of
thermally activated states sligthly above EF) and a broadening of the core states arise from
photoemission final state effects and from a limited experimental energy resolution. This figure

is taken from Damascelli review [180]

to irradiate a sample of the material one wants to probe by electromagnetic radiation (generally X-rays) of

energy hν sufficiently high to extract electrons occupying the energy bands below the Fermi energy. Once

out of the crystal, these photo-electrons will propagate as free electrons until they eventually reach an elec-

tron analyzer that permits to measure their kinetic energy Ekin. One will obtain a certain electron intensity vs

kinetic energy distribution for the emitted photoelectrons. The (simplified) energy conservation throughout

the photoemission process in the solid can be written as [179]:

Ekin = hν− φ + (E− EF) (3.1)

Where φ is the workfunction of the solid and the difference E− EF is often referred to as binding energy. It

means that knowing hν and Ekin, one can determine the intrinsic energy spectra of a system. The measured

kinetic energy distribution of the photoelectron shall be, at the first approximation, related to the electronic

density of states of the solid below the Fermi energy, as illustrated by figure 3.12.

Bands above EF cannot be probed by the means of standard direct photoelectron spectroscopy as they
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FIGURE 3.13: Basic illustration of an ARPES experiment. The in plane and out of plane compo-
nent of the wavevectors are given in the lower right of the figure.

are unoccupied. Inverse photoemission spectroscopy (IPES) is used to probe unoccupoed energy states [179],

but such experiments are more complex and remain out of the scope of this manuscript. The relationship

between the measured spectra and the intrinsic electronic band structure of a solid is naturally more subtle

than this straightforward description and it will be discussed with more care in section 3.2.3. Not only is it

possible to probe the photoelectron energies, but their wavevectors can also be probed and this is the purpose

of angle-resolved photoemission spectroscopy (ARPES). We will now present in greater detail the principles

of a standard ARPES experiment as well as the underlying processes that arise when the photoelectrons are

extracted from the surface of a single crystalline sample. It must be specified that while XPS does not require

a single crystalline sample, one of the constraining criteria for ARPES experiments is to work with properly

aligned single crystals. Note that there are many more photoemission techniques derived from XPS [179,

181], but describing them all is beyond the scope of this manuscript

—————————–

3.2.1 Elementary portrait of a photoemission experiment

As its name suggests, angle-resolved photoemission spectroscopy allows not only the observation of elec-

tronic spectra in energy space but also to explore these spectra through the angular degree of freedom of the

emitted photoelectrons.

To understand the latter, one first needs to look at the kinematics of the photoelectron and to the momen-

tum conservation laws at the crystal-vacuum interface.
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FIGURE 3.14: During the photoemission process, electrons are excited from their initial block
states to the so-called final states, above the vacuum level. Electron wavefunctions in these
states are damped planwewaves that will cross a potential barrier V0 at the surface of the solid

to be expelled to vacuum. From Moser [182].

Let us consider a generic crystal-vacuum interface, with x and y axis defining the horizontal plane of

the sample and z the direction perpendicular to the interface (see figure 3.13). Regardless of the finite state

effects that will be discussed further, it follows from the translational symmetry over the x,y plane that the

kx, ky component of the momentum must be conserved when the electron is extracted from the solid [180].

Then, if we define k as the wavevector of an electron occupying a band of the solid at an energy E, and K the

wavevector of the photoelectron once extracted in vaccum and with an energy Ekin = h̄2K2

2m , we have:


Kx = kx

Ky = ky

k|| = K||

 (3.2)

for k|| = kx + ky
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If one recalls the propagation of an electron through a potential barrier V(r):

V(r) =

 0 if r > 0

−V0 if r < 0

 (3.3)

In the case of ARPES, V0 represents the energy loss of the electron when crossing the crystal-vacuum

interface as highlighted in figure 3.14 . Prior to being transported out of the solid, the future photoelectrons

are brought up to an excited state above the vacuum level of the solid, known as the final state (see figure

3.14). As a first approximation, and since electrons in this state are much less tightly bound to the solid, we

consider the final state dispersion to be parabolic, also neglecting electron-electron interactions. Then, one

can show that, due to the very small value momentum of the photons, the electrons momentum is mainly

conserved when they go from their initial bulk state to their final state within the solid [180, 183, 184]:

k ≈ kfinal (3.4)

where kfinal is the wavevector of the electron occupying the final state while, as mentionned above, k is

the wavevector of the electron in the bulk inital state. Due to the conservation of the in-plane momentum

component in equation (3.5), the energy loss arising when crossing the interface must only impact the out of

plane component of the momentum, labelled k⊥. One then finds the relation:

h̄2(k f inal
⊥ )2

2m
≈ h̄2(K⊥)2

2m
+ V0 (3.5)

Essentially, the out of plane component of the moment is not conserved through the photoemission pro-

cess. This fact is often described by stating that k⊥ is not a good quantum number [182, 184].

Electrons that are emitted through photoelectric effect escape in vacuum in all directions before being later

collected with an electron energy analyzer tuned to discriminate the emission angles of incoming electrons,

roughly described in section 3.2.2. The emission angles are typically labelled as θk and ζk, respectively,

though we will henceforth be neglecting the latter. By considering the polar decomposition of the wavevec-

tor of the emitted free photoelectrons K, as well as (2.4) and (2.5), one would obtain both components of the

initial state wavevector k [182]:

k|| =
1
h̄

√
2mEkinsin(θk) (3.6)

k⊥ ≈
1
h̄

√
(2mEkincos2(θk) + V0) (3.7)

This implies that with an electron analyzer capable of recording both the angular coordinates and the

kinetic energy spectrum of the emitted photoelectrons, one can have access to their prior energies and

wavevector inside the crystal and thus experimentally reconstruct the band structure of a material. This
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FIGURE 3.15: Output of a "snapshot" ARPES Ekin, θk BS mapping of V2AlC for a single crystal
properly oriented over ΓK

is the fundamental goal of an ARPES measurement, and the key here is the direct relationship between the

electron wavevectors and the emission angles of the photoelectron. Yet, and as stated above, several condi-

tions need to be met to ensure that a measured ARPES spectra as in figure 3.15 does indeed correspond to

the intrinsic band structure of the solid. These conditions will be listed in section 3.2.3. We will now briefly

describe the different element of an ARPES setup as well as the procedures to perform band structure and

Fermi surface mappings.

3.2.2 Setup of an ARPES experiment

The essential elements of ARPES setups for the experiments that were performed on MAX phase single crys-

tals are portrayed in figure 3.16 and outlined as follows :

- The chamber within which the experiment takes place is under ultra high vacuum (10−9 Pa) in order to

prevent incoming X-rays or the photoelectron to interact with anything but the sample or the detector. Prior

to each experiment, MAX phase single crystals are cut with a diamond wire saw and cleaved in the form of

parallelepipeds with an area of 3 × 3mm and a thickness around 500µm. Samples are then cleaved again in

situ within the chamber for the ARPES experiments in ultrahigh vacuum and at temperatures from around

8 K to 13K for experiments on MAX phases, depending on the synchrotron beam line where the experiment

takes place.

- The X-ray source (though ARPES can also be performed in the UV range) is a beam of monochromatized ra-

diation supplied either by a gasdischarge lamp, a laser, or by a synchrotron beamline incident on the sample

(which must be a properly aligned single crystal in order to perform angle or, equivalently, momentum-

resolved measurements).

The main advantage of using synchrotron radiation is first the larger accessible ranges of energy fre-

quency it possesses [181, 179, 184]. Higher brilliance and a greater control over the polarization of the beam
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FIGURE 3.16: (a) Schematic of a 3mm × 3mm single crystal mounted on a sample holder and
glued with a copper pin used for cleaving under ultra high vacuum. (b) SOLEIL cassiopée
Beamline and (c) hemispherical multi-channel electron energy analyzer allowing to record

snapshots (Ekin, θk) maps.

are other elements that favor synchrotron sources for ARPES experiments. All of the measurements on

MAX phases described within this manuscript were performed at various synchrotron sources: AichiSR and

UVSOR in Japan and/or SOLEIL in France. A picture of SOLEIL Cassiopée line is given in figure 3.16.

-Among the available photoelectron detectors, hemispherical multi-channel electron energy analyzers have

become the most widespread in synchrotron ARPES lines. The following description is highly inspired

by the review of Damascelli et.al [184]. The central piece of the analyzer is the deflector [185] which con-

sists of two concentric hemispheres of radiuses R1 and R2 (See figure 2.16) kept at a potential difference V;

so that only electrons reaching the entrance slit with a kinetic energy within a range centered at Epass =

eV/(R1/R2 − R2/R1) will pass through this hemispherical capacitor, and then reach the detector where the
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FIGURE 3.17: Band structure mapping of a Cr2AlC single crystal oriented over ΓK and its de-
compositions into a set of MDCs. The bands are defined as the curves that follow the respective
maxima of the MDCs. ARPES band structure maps can also be decomposed as a multitude of

EDCs, each associated with a given angle (or momentum)

intensity is recorded. It is thus possible to discriminate the photoelectrons by their energy. An electrostatic

lens located ahead of the deflector is used to slightly decelerate and focus the photoelectrons onto the en-

trance slit without altering their energy spread. The most recent detectors feature a set of two micro-channel

plates and a phosphor plate, coupled to a CCD camera for data recording. In this case, the electrons are

dispersed along one of the axes of the phosphor plate as a function of their kinetic energy after travelling

through the hemispherical capacitor, and are thus all measured in parallel. Furthermore, position-sensitive

electron detectors can be operated in angle-resolved mode, which provides energy-momentum information

not only at a single angle or k-point but along an extended cut in k-space. In particular, photoelectrons

within an angular window in the order of θk within roughly -15° to 15° along the direction defined by the

analyzer entrance slit are focused on different x positions on the detector (figure 3.16). It is thus possible to

measure a snapshot of kinetic energy versus angle map in one single measurement.

These snapshots can be seen either as a combination of multiple angular distribution curves (ADC) or mo-

mentum distribution curves (MDC, that one gets after converting angular units to wavevectors) obtained for

several energies or as a combination of energy distribution curves (EDC) obtained at different angles (see

figure 3.17). From the application of (3.6), (3.7) and (3.1), and knowing the work function of the material, one

can convert the maps in angle and kinetic energy to reveal the E(k) band structure. The direction of recip-

rocal space being probed is then a function of the single crystal orientation. The sample can be azimuthally

rotated or tilted in order to probe different directions within the BZ and the rotations are controlled by several

goniometers.

Recording a large number of BSs obtained for a large range of sample tilts and combining them gives
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access to a continuous set of isoenergy surfaces over several BZ (see figure 3.18), from the minimum of the

recorded energy range to the Fermi energy and its associated isoenergy surface, the Fermi surface.

But, as a first approximation, these mappings can be seen as in plane 2D cuts of a 3 dimensional-isoenergy

surface or Fermi surface at a given k⊥ value, naturally labelled as kz. This kz value would be fixed by (3.1)

and (3.7) as [184]:

k⊥ ≈
1
h̄

√
2m(hν− φ + (E− EF))cos2(θk) + V0) (3.8)

Thus the kz for which one probes an in-plane band structure or Fermi surface is fixed by the energy hν

of the X-ray source. On can perform an out-of-plane mapping of the Fermi surface by performing many BS

snapshots for a single orientation and several hν values [186, 187] . By considering the overall symmetry of

the resulting out-of-plane FS map, it is possible to deduce the whereabouts of the Γ or A plane and then fix

the hν value in order to be in a chosen plane within the first BZ for further experiments. Yet, and whether it

is for BS, in plane or out of plane FSs, the complexity of experimental ARPES data makes them difficult to

interpret without the input of an electronic structure obtained from theoretical calculations. It is even more

crucial when considering that there are several physical phenomena that may more or less strongly alter the

ARPES spectra from the actual band structure of the solid. Some of the underlying assumption assuring the

direct correspondence between (θk, Ekin) of the photoelectrons (figure 3.15) and the intrinsic band structure

of the material are unfortunately not always valid.

FIGURE 3.18: The construction of Cr2AlC FS from a set of ARPES band structure snapshots is
shown. The single crystal here oriented over ΓM is rotated of a given angular step multiple
times and a snapshot of the BS is taken at each of these steps. Combining all these BSs gives a
(E, kx, ky) in-plane map of the ARPES spectra, thus giving access to all the in-plane isoenergy

surfaces within the experimental energy range, including the FS.
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3.2.3 Limitation of ARPES

Two fundamental assertions have to be valid in order to ensure the applicability of the ARPES analysis

scheme given above.

- The sudden approximation must be verified for the material studied. Its significance can be expressed

by the equivalent statements: "the ejected electron escapes fast enough not to interact with the photo-hole

generated within the bulk during the photoemission process" [183] or "the photoelectron must not inter-

act with the remaining N-1 electron within the bulk" [184]. These conditions depend on the characteristic

electron-electron interaction scattering time τee and on the escape time of the photoelectron τescape, with:

τescape ≈
λescape√

2Ekin
m

(3.9)

Where λescape is the escape depth of the photoelectron. For the sudden approximation to be met, one requires

τescape << τee, which means:

Ekin >>
1
2

m(
λescape

τee
)2 (3.10)

This condition is met for most systems that are not exhibiting strong electron-electron interactions and

for hν values that are not too low. They are certainly met in the case of most MAX phases -MAX phases are

not strongly correlated materials- and for which ARPES experiments took place at energies in the 70-120 eV

range. It is yet different for the case of iMAXs and 4473 mentioned above where the influence of 4f orbitals

may lead to strong electron-electron interactions.

- The three-step model of photoemission allows to significantly simplify the interpretation of a set of

ARPES data . It basically states that the whole photoemission process is made up of 3 distinct steps (see

figure 3.19):

.1:Optical excitation of the electron inside the solid, from their initial i to their final state f , above the vacuum

level (see figure 3.14).

.2:Transport of the photoelectron to the surface.

.3:Escape of the photoelectron into the vacuum.

In reality, all these steps happen simultaneously in a single step, but a one-step photoemission model would

prove to be too complex to be used for a tractable ARPES analysis [180], while for most systems, the three-

steps model gives a reasonable description of the whole photoemission process [179].

If both the sudden approximation and the three step model are justified for a given material, it is possible

to formally derive the photoelectron intensity, following here the description given by Damascelli et.al for a

given N electrons system [184]. Let us start by considering the Fermi golden rule that gives the probability

rate of transitions from one of many N electrons initial states ψN
i to one of the many possible N electrons



50 Chapter 3. Materials and Methods

final states ψN
f [180, 184, 182]

w f ,i =
2π

h̄
| < ψN

f |Hrad|ψN
i > |2δ(E f − Ei − hν) (3.11)

Where Hrad = e
mc A.p is the hamiltonian for the dipolar electron-photon interaction (here treated as a

perturbation), A the vector potential of the electromagnetic field, and p the momentum of the electron. One

can then write the photoelectron intensity as [180, 184, 182]:

I(k, E) = ∑
f ,i

w f ,i (3.12)

I(k, E) =
2π

h̄ ∑
f ,i
| < ψN

f |Hrad|ψN
i > |2δ(E f − Ei − hν) (3.13)

As the sudden approximation applies, it is possible to factorize the N electrons wavefunction final state

as a product of the wavefuction of the emitted photoelectron that behaves as a plane wave in vacuum and

the final state for the remaining N-1 electrons in the solid [180, 184]:

ψN
f = Aφk

f ψN−1
f (3.14)

where A is an antismmetry operator that ensures Pauli principle is respected by this product, φk
f is the free

FIGURE 3.19: Outline of the three step model of photoemission, with (1) the optical excitation
of the electron inside the solid, from their initial i to their final state f , (2) propagation of the
final state electrons to the interface and (3) expulsion of the photoelectrons to vaccum. This

figure is taken from Damascelli et.al. [180]
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photoelectron wavefunction and ψN−1
f is the final state wavefunction for the remaining N-1 electrons in the

solid. As ψN−1
f is now an excited state, it can be later decomposed within a basis of ψN−1

b eigenstates for the

system with N-1 electron [180, 184]:

ψN−1
f = ∑

b
lbψN−1

b (3.15)

One also has E f = Ekin + EN−1
b for the final state decomposition. Then, if one approximates the initial state

as a slater determinant, one can now factorize ψN
i as the product of a single one-electron orbital state φk

i and

ψN−1
i the wavefuction of the other N-1 electrons [180, 184]:

ψN
i = Aφk

i ψN−1
i (3.16)

From there, one can write [180, 184]:

I(k, E) =
2π

h̄ ∑
f ,i
| < φk

f |Hrad|φk
i > |2 ∑

b
lb| < ψN−1

b |ψN−1
i > |2δ(Ekin + EN−1

b − Ei − hν) (3.17)

with Mk,E
f ,i =< φk

f |Hrad|φk
i > the one electron dipolar matrix element for the orbital state φk

i and |cb,i| =
√

lb < ψN−1
b |ψN−1

i >

I(k, E) =
2π

h̄ ∑
f ,i
|Mk,E

f ,i |
2 ∑

b
|cb,i|2δ(Ekin + EN−1

b − Ei − hν) (3.18)

If one takes into account the Fermi-Dirac distribution (as only the state below the Fermi energy can be ob-

served through photoemission) one can rewrite the photoemission intensity for all transitions:

I(k, E) =
2π

h̄ ∑
f ,i
|Mk,E

f ,i |
2 f (E)A f ,i(k, E) (3.19)

Where A f ,i is part of the one particle spectral functions that account for the deviation of the electronic struc-

ture from the independant particle picture [179, 183] . Removing one electron from a strongly correlated

system may have a non-negligible effect on its band structure. Despite its complexity, a simplified read of

the spectral function can be given as follows: If one deals with a system where electronic correlation are not

too large, the A f ,i will be the Dirac distributions that follow the band dispersions of the various initial states,

thus giving back nearly discrete bands when sweeping over k-space. If not, the A f ,i will be functions that

spread in energy and momentum, imposing an intrinsic broadening of the bands from the final states. In

that case, the observed ARPES spectra can be seen as a renormalization of the initial state band structure.

For the simpler case of a one sole initial state band, the one electron spectral function holds the information
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FIGURE 3.20: Kinetic energy dependence of the ‘universal’ MFP for excited electrons in solids,
from [191]

regarding interactions in presence . According to Green’s function formalism, it can be written as [184, 188] :

A(k, E) = − 1
π

∑
′′
(k, E)

[E− ε(k)−∑
′
]2 + [∑

′′
(k, E)]2

(3.20)

So, if no other effect such as kz broadening (described in chapter 5 and 7) is present, the FWHM of

an EDC of the ARPES spectra gives ∑
′′
(k, E), the imaginary part of the self energy, which is an image of

the interaction at a given (E, k) coordinate [184, 187, 189, 190]. We will make use of this formula when

deciphering the influence of electron-phonon coupling on Cr2AlC spectrum in chapter 4.

The matrix elements Mk
f ,i will be very important for the various MAX phase photoemission studies de-

scribed here. They contain the effect of polarization on ARPES experiments and the local orbital information

[182]. They also dictate in-plane momentum conservation and out-of-plane kz broadening [182, 187]. Within

chapters 4, 5 and 7, we will rather focus on a quantity derived from these: the photoemission cross section,

which encompasses most of the orbital effect to be observed within ARPES spectra.

Another crucial parameter to take into account is the photoelectron mean free path (MFP). The larger

it gets, the more photoelectron are extracted from the bulk to vacuum, thus ensuring the obtained ARPES

mappings correspond to the electronic structure of the bulk solid. Having a smaller MFP means that the

contribution of potential surface states will be more important to the ARPES spectra.

The so-called ‘universal curve’ [179, 191] describes the dependence of the MFP on the energy of the

source hν. It is given in figure 3.20. A minimum is located in the 70-120 eV range, precisely where the

ARPES experiment described within this manuscript took place. It makes for a mean free path of about 1

nm, roughly one 211 MAX phase unit cell, thus a non-negligible surface contribution. The effects described
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here as well as the complexity of an ARPES data analysis to be performed and interpreted emphasize the

importance of pairing this experimental technique with band structure calculations [181, 179, 183]. Among

ab initio calculation techniques, Density Functional theory frameworks have been widely used over the past

30 years and it is the class of calculation that was performed in order to understand in greater detail the

ARPES spectra of MAX phases.

3.3 Density functional theory

As mentioned earlier, one of the pillars of materials science and condensed matter physics is the many body

problem of electrons in a solid (2.8), and with it comes the understanding of the many features of interacting

electrons and nuclei as well as the emergent phenomena arising from such interactions [40, 192]. Over the

past 50 years, the constant increase in performance and availability of computer workstations and clusters

have rendered the resolution of complex and intricate physical problems such as (2.8) possible for many

systems . Calculations that required the most powerful cluster in the 1980s can now be performed routinely

from almost any location. However, technological advances were not the only requirements to render the

solvability of systems made of a large number of atoms numerically accessible. The constant development

of quantum mechanical methods for simplifying and diagonalizing the many body Hamiltonian of solid

state physics was also central to these advances . Among the first and foremost important computational

methods were the self consistent Hartree-Fock (HF) methods based on the Hartree Fock Hamiltonian [193,

194, 195]. It was formulated to take into account correlations from Pauli’s exclusion principle, starting from

antisymmetric N electrons wavefunction constructed with Slater determinant of individual orbitals [196].

The HF Hamiltonian can be read as:

HHF = [−1
2
∇2 + Vext(r) + Vhartree(r)−VX(r)] (3.21)

With Vext the nuclei lattice coulomb potential, Vhartree the coulombian electron interaction potential and VX

the exchange potential describing electron-electron interaction arising when taking into account the Pauli

exclusion principle. Despite its success in capturing the essential features of elementary metals [197], semi-

conductors [198, 199] and more complex materials [200, 201], and thus leading to the determination of their

electronic structure, charge densities and more, pure HF methods remain scarcely used in modern computa-

tional physics for material science. The strongest argument against them is purely practical as the computa-

tion times they require are extremely high compared to other available ab initio techniques (from 1000 times

slower). Another argument is that HF methods cannot fully portray electronic correlations [192].

Density Functional Theory (DFT) -whose most famed contributors are Kohn, Sham and Hohenberg - stands

as one of the direct successors to HF methods. DFT is currently among the most widely used computational
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method in solid state physics, chemistry and material science. More than 12000 DFT studies were published

in scientific journal as of 2016 [202]. Furthermore, the total number of DFT publications was at this time

found to double every 5-6 years since 2000. It is a powerful self-consistent method for constructing and solv-

ing an approximate many body Hamiltonian that captures surprisingly well the essential characteristics of

an extremely large number of systems, from bulk solids to interface, bidimensional systems and molecules

[192]. DFT is routinely used to calculate various properties such as density of states, band structure, Fermi

surface, Phonon structure, phase stability, magnetic ordering, optical properties and more [192]. We will now

succinctly review the fundamental principles of Density Functional Theory as well as its shortcomings before

describing the specificity of the DFT code used to numerically determine MAX phases electronic structure:

WIEN2K.

—————————–

3.3.1 Fundamentals of DFT

Density Functional Theory is grounded on one fundamental theorem from Hohenberg and Kohn. It states

two propositions [203]:

-The total energy of a system of many electrons in an external potential (in our case the Couloumbian poten-

tials from the nuclei) is given as an exact functional of the ground state electron density ρ:

E = E[ρ] (3.22)

-The ground state of the system is given by the ground state density that corresponds to an absolute mini-

mum of the functional above. All other ground state properties will be directly related to the electron density

that minimizes E.

The Hohenberg-Kohn theorem does not provide any clue as to the expression of the energy functional for

the electron density. Therefore, the effeciency of DFT relies on the approximation taken to build an efficient

energy functional [204]. The unknown E is written as a sum of terms which includes the kinetic energy

functional Ts for the many body electron density, the Coulomb interaction between electrons and nuclei Eei,

the nuclei nuclei interaction Eii (A term generally ignored for basic calculations) and a Hartree term EH that

stands for the coulombian part of the electron-electron interaction :

E[ρ] = Ts[ρ] + Eei[ρ] + EH [ρ] + Eii[ρ] + Exc[ρ] (3.23)

Another unknown functional Exc is added and represents the non-coulombian, non-local and many body

electron-electron interaction contribution. Exc is labelled as the exchange-correlation functional. Contrary to

this functional, the Hartree functional dependance to the electron density is well known:
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EH [ρ] =
e2

2

∫
ρ(r)ρ(r

′
)

|r− r′ |
d3rd3r

′
(3.24)

Several approximations exist for the exchange and correlation functional [205]. The simplest one is the LDA

(local density approximation) which gives:

Exc[ρ] =
∫

ρ(r)εxc(ρ(r))d3r (3.25)

where εxc is taken here as a sole function of the local charge density. The most elementary LDA functionals

take the HF energy for a uniform electron gas as εxc [206]. Today’s most commonly used approximation

for the exchange-correlation functional is the general gradient approximation (GGA). One then has a depen-

dency of εxc on the gradient of the density, loosening a part of the "local" character of LDA:

εxc = εxc(ρ(r), ∆ρ(r)) (3.26)

There are several GGA functional which are widely used throughout the literature of DFT studies of mate-

rials, such as Perdew–Burke–Ernzerhof (PBE) [207] or Wu Cohen GGA’s [208]. More advanced functionals

such as meta GGA’s or hybrid functional that include a HF exchange-correlation term are also used (a pop-

ular one being HSE06), but they will not be mentioned further within this manuscript.

From the minimization of the functional (3.23), and writing the many body electron density as a sum over

occupied orbitals, one obtains the following set of equation known as Kohn-Sham (KS) equations [209]:

HKS ϕi(r) = [T + Vei(r) + VH(r) + Vxc(r)]ϕi(r) = εi ϕi(r) (3.27)

where the potential depend on the electronic density, and with the density taken as a sum over occupied

orbitals:

ρ(r) = ∑
occ.states.

ϕ∗i (r)ϕi(r) (3.28)

The trick here is that this set of independant equations stands for one hamiltonian whose eigenvectors

are called the Kohn-Sham (KS) orbitals. They are not the eigenvalues of the real hamiltonian of the system

but are another set of functions that give the ground state electron density ρ(r) that minimizes the energy

functional of the system through (3.22). Here T is the kinetic energy operator, VH the Hartree potential and

Vxc the exchange and correlation potential. These last two are given as:

VH(r) = e2
∫

ρ(r
′
)

|r− r′ |
d3r

′
(3.29)

Vxc(r) =
δExc[ρ]

δρ(r)
(3.30)
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Rather than having a complex functional minimization to deal with with, the problem becomes signifi-

cantly simpler as one only has to diagonalize a set of Schrodinger-like equations. From Bloch theorem, and

as the charge density follows the periodicity of the lattice, one can demonstrate [210] that one only needs to

solve the system (3.27) within a restricted fraction of the Brillouin zone called the irreducible Brillouin zone

(IBZ).

An important step before solving (3.27) is the choice of a basis set (ηi,α) for the diagonalization:

ϕi(r) = ∑
α

ci,α(ηα) (3.31)

There are several possible bases one can take for the decomposition of KS orbitals [210], such as a plane

wave basis, the Linear Augmented Planewaves (LAPW) basis or the APW+LO’s described in more detail

in section 3.3.3. Each of them has its own advantages and shortcoomings. Various DFT codes are based on

different basis sets.

Then, defining the overlap matrix S in the chosen basis set, one gets the equation to solve for the KS

hamiltonian HKS [210]:

(HKS − εiS)ci = 0 (3.32)

This equation is then solved for each k-point of the IBZ and from the ci, one can get the KS orbitals ϕi and

then the electron density from equation (3.28). The Kohn-Sham orbitals have to be summed up to the last

occupied state. For this, one need to determine the Fermi energy of the system. It can be done numerically

for a calculation at 0K by considering that the integrations of all the bands up to EF must be equal to the total

number of electrons [210].

To ensure the obtained density is actually a minimum of the approximate functional defined by (3.23) , a

self consistency cycle has to be set [192]. It is given in figure 3.20 and it outlines as follow:

Before the DFT cycle is being launched, a number of initial parameters are set such as the density of

k-points chosen within the IBZ, the exchange-correlation functional to be used (for most cases, GGA PBE)

and more. The input of the DFT cycle is essentially an electron density, from which all the potential terms

of KS equations are computed. The secular equation is then solved for all the k points within the IBZ and

the KS orbitals are computed. After that, one compute the Fermi Energy. Finally, one calculates the new

electron density from the KS orbitals as well as the total energy for the nth loop of the SCF cycle. Then, if

the ∆E difference between the energies at the nth and for the previous cycle is smaller than a fixed value ε

(typically of the order of 0.1 to 0.01 meV), the calculation is stopped and all the DFT calculations parameters

are saved. If convergence is not met, a mixture of the nth and the previous density is taken as a new input

electron density for the next cycle.

Following Rayleigh-Ritz variational principle, the DFT self-consistency cycle, also referred to as self con-

sistency field (SCF) allows one to recover the ground state electron density as well as the corresponding
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FIGURE 3.21: All the main steps of DFT calculation cycles, with the first input for the electron
density generally extracted from a .cif or a structure file containing atomic position within the
unit cell of the material to be studied. Typical levels of energy convergence we choose are in

the 0.1-0.01 eV range

energy and Kohn-sham Hamiltonian and orbitals, all along with many other observables which include the

’KS band structures’ given by the k dependence of the eigenvalues of HKS.

3.3.2 Shortcomings of DFT calculations

An absolute numerical method that would perfectly model any physical phenomenon does not exist and of

course DFT calculations do not escape this rule. They indeed harbor intrinsic limits and a few are outlined

below :

-Hohenberg-Kohn theorem states that the electron density which minimizes the energy functional is the

ground state density of the system. Yet it is important to state that the densities obtained by practical DFT cal-

culations are not exact as the real functional to which Hohenberg-Kohn theorem applies is not known [204].

Furthermore, it gives no guarantee that excited states further away from the Hohenberg-Kohm ground state

shall be correct. It is of great importance for semi-conductors, where the bands above EF do not enter within

the sum that gives the ground state electron density in the SCF calculations. Thus, the position of these ex-

cited states in energy and their morphology in k-space are not necessarily correct. As a matter of fact, one of

the most spectacular failure of standard DFT comes with semiconductors and insulators. LDA predicts most

semiconductors bandgaps to be 40 percent smaller than their real values [211]. For example ZnO bandgaps
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calculated by LDA and GGA DFT fall in a range of 0.23-2.26 eV while ZnO experimental bandgap is equal to

roughly 3.3 eV [212]. The difference between experimental bandgaps and DFT will strongly depends on the

choice of the exchange correlation functional. One should also note that as excited states are not necessarily

well modelled by standard DFT methods, the same problem should arise when modelling optical properties

of semiconductors. Many advanced exchange correlations functionals or even advanced DFT based meth-

ods such as time dependant DFT [213] or even the more sophisticated DFT+GW [214, 215] lead to significant

improvements when dealing with the modelling of excited states as well as more complex phenomena.

-The KS orbitals and the dispersions of their respective eigenvalues are the bands featured on the plots

of DFT band structures. But the KS orbitals are not the true eigenstate of the system and thus, similarly

to what is mentioned above, there is no formal guarantee that the obtained DFT bands will match the real

electronic structure as one goes away from the Fermi level, either below or above [192, 204]. Yet, DFT calcu-

lations have shown great successes in modelling the valence and conduction bands of many metals [204, 210].

- Strong and localized correlations from localized f or in some cases d states are often beyond the scope of

standard DFT calculations [216]. Rare earth based compounds and transition metal Mott insulators typically

fall into that category and the nature of interactions in these system is totally different from the homogenous

electron gas like behaviour upon which LDA or GGA DFT are based [204]. To rigorously circumvent such

shortcomings, one needs to go one level of abstraction ahead of DFT with Density Mean Field Theory cal-

culations [217], though these calculations are significantly more complex and impose very high calculations

times. A more pragmatical approach, though less "physically accurate", is to incorporate on site correlation

within DFT calculations. One adds an Hubbard like on site repulsion term [218] to the KS Hamiltonian:

EU =
U
2 ∑

i 6=j
ninj (3.33)

Where the i = (l, ml), j = (l
′
, m
′
l) are the orbital and magnetic quantum numbers for the relevant atomic

shells (here, we only consider the non spin polarized expression of U) and ni the relevant orbital occupa-

tions. Therefore, U potential will be orbital dependent and will only affect a relevant set of orbitals chosen

by the user of the DFT code. The value of U is also a parameter to be set by the user. This method is called

DFT+U and it has allowed to obtain good approximations of the correct ground states of many correlated

systems [218, 219]. It must be noted that the U value may or may not hold a signification for a given mate-

rial. The choice of U is left to the judgement of the user. Adding an unphysically too large U will favor an

unphysical insulating state over a metallic one for some moderately correlated metallic system [210], while

standard GGA would give a more accurate ground state. One of the biggest drawback of DFT+U is that the

choice of U which would give a better fit between experiment and theory may very well be empirical and
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deviate from any physical considerations .

- DFT can effectively cope with magnetism and resolve ferromagnetic, antiferromagnetic or even ground

states featuring non collinear magnetism [192]. These calculations go beyond the scope of this manuscript as

merely no magnetic DFT calculations are presented within the upcoming chapters.

-Standard DFT calculations are performed for T=0K and more advanced technics [192, 213] allow to take

into account the influence of temperature on the ground state.

3.3.3 WIEN2K, APW+lo and applications to MAX phase electronic structure

WIEN2K is a DFT code as well as a plateform to compute various observables from the outputs of calcula-

tions [220]. It was developped in Vienna by the group of Peter Blaha, and software license is available for

purchase and can be used for either academic or industrial use [220, 221, 222]. There are several other sim-

ilar DFT plateforms available, such as VASP , quantum espresso or Abinit. WIEN2k is the code that was

used to obtain all the theoretical results on MAX phase described within this manuscript -Band structures,

Fermi surfaces, charge transfers and so on- so its basic structure deserves to be outlined. We will overly

simplistically describe it, in order not to delve too far from the main scope of this work.

What differentiates WIEN2k from other available softwares is its basis for the KS orbital decomposition:

the Augmented Plane Waves (APW) + Local Orbitals (lo) [223]. Another of its specificities is that, contrary

to VASP and other codes [224], the KS potentials in WIEN2k are fully computed at all SCF cycles, thus being

referred to as a full potential code. WIEN2k is also an all electron code, which means that all electrons, from

the 1s to the last occupied orbitals, are considered within the calculations. Other codes may include the

influence of inner electron shell within an effective pseudopotential [225].

The electron density ρ, the KS potential υKS == υei(r) + υH(r) + υxc(r) as well as the basis set onto

which KS orbitals are decomposed are all defined within two different areas [210]: The atomic spheres (Si),

where i is an index for different atoms of atomic numbers Zi, and the interstitial area I between them. These

two zones are sketched in figure 3.21 for 3 different atoms in one unit cell. The spheres of radius RMT vary

depending on the atomic number Zi. The choice of RMT values is left to the user, though some standard

values are recommanded by WIEN2K.

The electron density and KS potential are defined differently within these two domains, though continu-

ity conditions are set at the frontier between I and ∪iSi [222]:

ρ(r) =

 ∑Si ,L,M ρSi ,L,M(r)ZSi ,L,M(r) , r ∈ ∪Si

∑K ρKeiK.r , r ∈ I

 (3.34)
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FIGURE 3.22: Example of three different atomic region S1, S2 and S3 respectively corresponding
of atoms of increasing atomic numbers Z1, Z2 and Z3. The interstitial I region where APWs are

defined as planewave decomposition stands between all the atomic spheres.

υKS(r) =

 ∑Si ,L,M υKS
Si ,L,M(r)ZSi ,L,M(r) , r ∈ ∪Si

∑K υKS
K eiK.r , r ∈ I

 (3.35)

Within the spheres, ρ and υKS are decomposed within the lattice harmonics basis ZSi ,L,M (a combination

of adapted spherical harmonics) times radial components ρSi ,L,M and υSi ,L,M. Outside the spheres, in the

interstital region, they are expanded as Fourier series in reciprocal space, K being a reciprocal space vector.

This decomposition of the potential and density comes very handy knowing that the APW basis elements

φAPW
k+K will also be defined within the two domains defined above [222] :

φAPW
k+K (r) =

 ∑l,m Bk+K
Si ,l,m

uSi ,l(r, ESi ,l)Yl,m(r) , r ∈ Si

1√
Ω

ei(k+K).r , r ∈ I

 (3.36)

Whew k lies within the first BZ, uSi ,l are radial atomic functions of energies ESi ,l and Yl,m spherical harmonics.

BSi ,l,m coefficients are chosen in so as to have a continous matching between the interstitial and atomic part

of φAPW
k+K at the boundary. The obvious advantage of this basis set is that it follows simultaneaously a free

electron like behaviour in the interstitial region as well as an orbital,"tight-binding like" behaviour in the

atomic sphere region, which makes them more adaptative than other basis sets [210, 222]. Yet they show

a significant drawback that renders them unpractible for DFT calculations if used on their own. The ESi ,l

energies do not depend on k-points coordinate that should vary as one sweep accros the band, thus the

atomic part of the APW lacks the variational freedom to modify the atomic part of the wavefunction as E

evolves during the SCF cycle. It is also impossible to get the energy bands from a single calculation as their

radial decompositions are fixed in energy.
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To overcome this difficulties, local orbitals called lo’s are added to the APW basis [222, 223]:

φlo
Si ,l,m(r) =

 [Blo
Si ,l,m

uSi ,l(r, ESi ,l) + Clo
Si ,l,m

u̇Si ,l(r, ESi ,l ]Yl,m(r) , r ∈ Si

0 , r ∈ I

 (3.37)

The term u̇Si ,l(r, ESi ,l ] is a first energy derivative of a radial function, and it allows the eigenvalues to

evolve within a continuum of energy values different than the discrete ESi ,l’s.

The combination of APWs and lo’s permits to significantly reduce the number of basis elements com-

pared to other basis sets previously used with WIEN2k. The number of cycle needed before reaching con-

vergence is then reduced [222].

APW+lo are yet not efficient at treating semi core states, i.e. states of intermediate energies that are not

completely localized on an atomic site [222]. To circumvent this issue, other local orbitals called LO, φLO
Si ,l,m

are added to the APW+lo basis set:

φLO
Si ,l,m

(r) =

 [BLO
Si ,l,m

uSi ,l(r, ESi ,l) + CLO
Si ,l,m

uSi ,l(r, ESi ,l)
LO]Yl,m(r) , r ∈ Si

0 , r ∈ I

 (3.38)

Basic WIEN2k routines fix automatically the ESi,l values before combining APW+lo’s to build the KS

orbital decomposition.

The basic input of a WIEN2k is a structure file, typically generated from a .cif file,i.e. a file that contains

the atomic positions of each atom within the unit cell of the material for which the ground state will be

computed. It allows to set the input density for the first SCF cycle through a program called -initlapw.

The WIEN2k SCF cycle consists of a complex workflow build up from different programs. The main

steps are outlined as follows [222]:

-lapw0: Computes the Hartree and exchange correlation potential from the density.

- lapw1: Diagonalizes the KS hamoltonian to obtain the valence and semi-core eigenvalues and eigenvectors

at all requested k-points

-lapw2: Calculates the Fermi energy and the valence electron density

- lcore: Calculates the core levels eigenvalues and the core electron density

- mixer: Adds up the core and valence densities, compute the total energy and later mixes the total density

with densities from previous iterations.

Convergence critera can be set on the total energy, but also on the charge or other quantities. Convergence

in atomic position, force minimization and structure relaxation can also be performed in parrallel to the SCF

cycle but these aspects will not be discussed within this manuscript.

Additional steps can be added to the SCF of WIEN2k if one performs a DFT+U calculation or if one takes

spin orbit coupling into account.
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Band Structures and Fermi surfaces are calculated from the KS Hamiltonian after the DFT convergence is

reached. A klist file, or set of k-point coordinates corresponding either to a line cut through the BZ for a band

structure or to a mesh of the IBZ for fermi surface plot, is generated prior to the calculation. Then from the

final KS hamiltonian, one performs once again lapw1 and lapw2. A program labelled as Spaghetti generates

the band structure file as a readable .text file ready for a plot. FSs 3D plots are generated through a complex

program called Xcrysden, which will not be detailled further within this chapter.

Particular operations, parameters and other details related to each specific MAX phase are specified

whenever necessary in all upcoming chapters.

The last point to be briefly discussed in this section is the treatment of spin orbit coupling in WIEN2k.

Spin orbit coupling (SOC) is expressed as a coupling between the electrostatic field and the spin of the

electrons [142]:

HSO =
1

2m0c
(∇V(r)× p).S (3.39)

where p is the momentum operator for the electron, V is the overall electronic potential and S = ( h̄
2 )œ

the spin operator.

But this term is actually among the firsts of a serie expansion of the Dirac Hamiltonian. As a reminding

note, the Dirac equation is the relativistic version of Schrodinger equation for the electron [226]. Its solutions

are not wavefuctions but 2 dimensional spinors [227]. It is possible to set up a DFT scheme based on Dirac

equation to take into account spin orbit coupling or other relativistic effects that may become of importance

for heavy elements and for specific materials. In this "Dirac DFT" calculation scheme [210, 222], one con-

sider that the Dirac equation holds within the atomic spheres Si, while relativistic effects are ignored in the

interstitial region [222].

From there, we have an eigenvalue problem for which all relativistic terms are included within the main

Kohn-sham potential of a DFT scheme without altering much the overall procedures [222]. These terms are

taken into account for core states calculations [222].

The spin orbit term, on the other hand, will be treated differently, as it leads to a lift of degeneracy of the

two components of the spinor, the up and down spin states.

For a set of n KS eigenvectors without SOC, one has to resolve a n× n matricial secular equation . Adding

spin orbit coupling for each of the orbitals leads to a degeneracy lifting and one obtains a 2n × 2n secular

equation for which computation time is significantly increased [210]. In WIEN2k, the program that deals

with SOC is lapwso. It only sets SOC for shells defined by the code user (3d for the case of "simple" MAX

phases). After a first non relativistic diagonalization lapw1, another diagonalization is launched , but with a

larger matrix where relativistic orbitals (relativistic version of the Kohn-sham orbital) and SOC hamiltonian

terms are only considered for the shell of interest. One doubles the number of matrix elements only for a
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subpart of the secular Hamiltonian and the computation time is not critcally altered. After this step, the

relativistic eigenfunctions are reexpanded within APW+lo basis and the SCF cycle moves forward.

We so far described all the method we employed to get an insight into MAX phase electronic structure. High

temperature solution growth is used to synthetize MAX phase single crystals, Angle resolved spectrosopy

to determine their electronic spectra in (E, k) space and finally DFT calculations performed with WIEN2k

code to numerically resolve MAX phase electronic ground states and compute their band structures and

Fermi surfaces. Each of the next chapters will be devoted to one of the main scientific outputs of this work

regarding MAX phase electronic structure.
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Chapter 4

Cr2AlC: Electronic states and

magneto-transport

This chapter treats solely of Cr2AlC and is highly inspired by the following references [228, 229]. The author

of this thesis made significant contributions to these two articles.

Cr2AlC is quite a peculiar case among 211 MAX phases. It exhibits a substantially higher resistivity than

most other phases [159], and even more surprisingly, it follows a magnetotransport scaling law [154], which

is in general observed in highly correlated electron systems such as high Tc cuprates [230] and pnictides in

their normal state [231] or heavy Fermion compounds [232].

In order to decipher such a behaviour, it is needed to get an insight on the BS and FS of this phase, if

possible from both experiments and calculations. Additionally, one needs to confirm that the strong transport

anisotropy measured from Cr2AlC single crystals are consistent with its electronic structure.

There has been a certain level of controversy over the nature of Cr2AlC ground state. While it has been

predicted to be antiferromagnetic (AFM) at low temperature [233, 234], other studies suggest that it would

remain paramagnetic [234, 235]. No clear experimental confirmation of an AFM transition has been given

yet, but it was hinted that a magnetic transition takes place at 73.5 K [236].

From trial experiments at the High magnetic field laboratory in Grenoble, it appears that available Cr2AlC

single crystals do not exhibit de Haas–van Alphen or Shubnikov–de Haas oscillations at magnetic fields below

12 T and at low temperature. Therefore, ARPES remains the only method available for the experimental

assessment of the band structure and the FS.

As in some previous work [182, 237, 238] “matrix element effect” or photoionization cross sections effect

allows us to confirm the local orbital character of the observable bands close to the Fermi level, as predicted

by DFT calculations. We also measure a quasi-2D dispersion for both hole and electron bands, and prove

that the electronic states close to the Fermi level are dominated by the d-orbital contribution of the transition-

metal atoms, as predicted for all MAX phases.

There is a remarkable agreement between the ARPES data and calculations. However, some discrepancies
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are found with the presence of an additional FS tube appearing around Γ and some band renormalization

effects for other bands. Physical effects that possibly lead to these discrepancies are briefly described.

Another surprising result is how well spinless GGA reproduce the experimental bands, without taking

into account any antiferromagnetic ordering (depsite controvesies over the magnetic nature of the Cr2AlC

ground state). Neutron diffraction experiments performed on Cr2AlC powders did not give clear signs of

antiferromagnetic transition.

Finally we show that a realistic analytic approximation of the DFT Fermi surface allows one to recover

the main features of the in-plane magnetotransport (temperature variations of the Hall coefficient, in-plane

resistivity and magnetoresistance). The temperature variations of electric transport coefficients are explained

by the combined contribution of electron and hole bands, taking into account the local curvature of the FS

and an appropriate temperature variation of the relaxation times for each band.

4.1 Specificity of Cr2AlC analysis

4.1.1 Experimental details and computational outputs

Single crystals of Cr2AlC were prepared by high temperature solution growth following the procedure de-

tailed in chapter 3. The growth process involves a slow cooling step, allowing us to reduce the number of

growing crystals in the solution by Ostwald ripening. Typical Cr2AlC platelets have an area of several square

centimeters and a thickness around 1 mm. They were cut with a diamond wire saw and cleaved in the form

of parallelepipeds with an area of 3 × 3mm and a thickness around 500µm. Samples were then cleaved again

in situ for the ARPES experiments, which were carried out either at the UVSOR or Aichi lines in ultrahigh

vacuum and at temperatures around 8 K. Photon energy was ranging from 50 to 100 eV. Linearly polarized

x-ray light was used for the two setup configurations described in figure 4.1, which we defined as the S-pol

mode [figure 4.1a] or the P-pol mode [figure 4.1b], respectively. All angles and axes are described in Fig. 4.1.

The angle between the light beam and the detector was set to 45°. The polarization vector was lying in the

horizontal plane(defined in figure 4.1).

All calculations were performed with the full potential LAPW+lo method implemented within WIEN2K

and described in section 3.3.3. The nonpolarized PBE GGA functional was chosen. The RKM cutoff param-

eter -the product of the smallest atomic radius within the unit cell with the maximum K value taken for the

calculation- is fixed at 7.5. For computation, we took the standard Cr2AlC hexagonal unit cell from [239]

containing eight atoms for computation . It is the standard 211 MAX phase unit cell described in chapter

2 (figure 2.1), for M=Cr and A=Al. The integration of the BZ was performed with a very dense k-mesh.

Following the Monkhorst-pack scheme, we took a 73 × 73 × 14 mesh for the IBZ. The Fermi surfaces were

plotted using XCRYSDEN [240]. The choice of a very dense k-mesh is justified by the disappearance of arte-

facts on the Fermi surface that arise when using a high number of points. Only a linear interpolation was
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FIGURE 4.1: (a) Schematics of the ARPES experimental setup configuration in the S-pol mode
and (b) configuration in the P-pol mode. In both configurations the light beam and polarization
stay horizontal, and the x, y, and z axis are attached to the sample; z is always normal to the
sample. In (a) the y axis stays vertical and the sample is rotated around it, so that the x and
z axis move with respect to the light beam and the detector slit. The detector slit is vertical.
θy is the angle between the line defined by the emitted electron beam detected in the middle
of the detector slit and the z axis. θx is the angle between the same line and an electron beam
line detected in another, given part of the slit. In (b) the sample is rotated around the x axis
so that both the y and z axis move with respect to the light beam and slit. The detector slit is
horizontal. θx is now describing the sample rotation and θy the angle between the mid-position
line and an arbitrary one in the detector slit. θk is the angle between the emitted electron beam

and the normal to the sample (z axis).

needed to get the FS plots in figure 4.3. Orbital characters of the bands were obtained with the spaghetti

PRIMA code.

Cr2AlC BS has already been studied in [241], and the band structure is predicted to form electron bands

centered around Γ and smaller hole pockets centered at the M points. The FS was not computed in [241].

Repeating those calculations leads us to very similar results (figure 4.2). A difference with the treatment

expounded in [241] is that we chose a much denser k-mesh in order to improve the definition of the band

structure (figure 4.2) and compute the FSs (figure 4.3).

Cr2AlC is predicted to be quasi two dimensional, as shown in figure 4.3, where all FSs’ form open, bulged

tubes along kz ( kz is parallel to c ). Due to the presence of the Cr atoms, magnetic properties could be

expected and are indeed predicted in a previous work [233], which showed that an antiferromagnetic (AF)

state with magnetic vector (1/2,0,0) exhibits a slightly lower energy than the nonmagnetic configuration.

Even though our own calculations do not take magnetic interactions into account, their comparison with the

ARPES data of section 4.2.1 show that neglecting magnetism does not preclude a first-order, acceptable fit of

the experimental ARPES data. Also, as highlighted in section 4.2.2, our neutron diffraction data do not allow

to state whether a magnetic transition indeed occurs at low temperature.

A qualitative analysis of the orbital character of each band is given by the colored plots of the band

structure in figure 4.2. At the Fermi level EF and in the Γ plane (i.e., kz = 0), the hole pockets are dominated

by a dz2 character in the FS parts crossing the major axis of the ellipsoidal FS shape (see figure 4.2), and a

dxz + dyz character prevails in the parts crossing the minor axis. The situation is a bit more complex for the
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FIGURE 4.2: Cr2AlC band structure calculated from the WIEN2K software. EF is taken as the
energy origin. The main orbital character of each band is indicated by the color code defined

above the figure.

electron bands. The orbital character expected to be dominant for each band crossed by EF are summarized

by the schematics of figure 4.4, both for a FS cross section in the Γ and A planes. We shall put figure 4.4 to

good use in order to interpret ARPES datas.

FIGURE 4.3: Cr2AlC Fermi surfaces, as predicted from DFT calculations performed with
WIEN2k and XCRYSDEN software.
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FIGURE 4.4: (a) Predicted cross section of the FS in the Γ-plane (kz = 0). The yellow halo
schematically indicates which bands should give a substantial ARPES signal in the S-pol mode
if Γ = (θx = 0, θy = 0) . The halo is obtained by comparing the orbital characters indicated
in figure 4.2 with the photoionization cross sections estimated in figure 4.5; we make it appear
whenever there is a marked dz2 character, or when there is a dxz + dyz character and substantial
angle values. (b) FS cross section in the A-plane and P-pol mode. It is worth noting that a
general asymmetry in the ARPES signal should be obtained along the wave vector direction

parallel to θy.

4.1.2 Prevailing contributions to the ARPES spectra

Matrix elements effects can be encompassed within one quantity: The differential photoionization cross

section dσ
dΩ [237]. Since the photoionization cross section highly depends on the orbital character, predicting

the photoemission intensity requires one to get a minimum idea of their respective values as a function of

the experimental configuration. We calculated it in two ways. First, in the roughest approximation, we

just consider the orbital dependence from the inital state and assume a plane-wave final state so that the

photoionization differential cross section is approximated as [237]:

dσ

dΩ
∝ (Epol.k)2|Yl,m(θk, ϕk)|2 (4.1)

Epol being the light polarization vector, k the photoelectron wavevector, and Yl,m(θk, ϕk) the spherical har-

monic that makes for angular part of the orbital wave function. Secondly, we take into account more complex

matrix elements as detailed, e.g., in [237], accounting for the two angular momentum values allowed by the

dipole approximation for a photoelectron excited from a single orbital state. Staying at a rather qualitative

level, we summarize here only the predictions of the most basic approach and use the more complex expres-

sions established in [237] in one case only, for which going beyond the plane-wave final-state approximation

is revealed to be necessary (See section 4.2.1). We totally neglected the effect of the mean free path on the

cross section. Such effects are detailed in [182] and briefly mentioned in chapter 3. Figures 4.5a and 4.5b

show the variation of the differential cross section in the two ARPES configurations that were used (P-pol

and S-pol configurations, given in figure 4.1).
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FIGURE 4.5: (a)Orbital components of the photoionization differential cross section as a func-
tion of the angles, calculated in the P-pol (a) and S-pol (b) configurations and the simplest level
approximation. In (c), it iscalculated in the S-pol configuration but this using the more complex

closed-form expression of Ref. [182].

It is clear that the dz2 orbital always prevails for low θx and θy angles. When these angles exceed some

10�, other orbitals may also substantially contribute to the ARPES signal. As already reported, P polarization

induces a dissymmetry along the θy axis [182]. Comparing those plots to figures 4.2 and 4.4 allows us to

qualitatively predict which band regions should lead to a prominent ARPES signal, depending on the values

adopted for the θx and θy angles. It is worth noticing that taking into account the selection rules of the dipole

approximation induces a dissymmetry which can make some orbitals exhibit a substantial contribution to

the photoionization signal at vanishing angles, even if Eq. (4.1) would predict no contribution at all (see, e.g.,

the dxz orbitals in figure 4.5c).
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4.2 Results and discussions

4.2.1 Band structures and Fermi surfaces

Experimental FS cross projections have been obtained at two different energies and for two different polar-

ization modes [hν = 100eV and P-pol configuration at the UVSOR line, figure 4.6b, and hν = 50eV and S-pol

configuration at the AichiSR synchrotron, figure 4.6a]. Comparing these ARPES images to figures 4.3 and

4.4 clearly shows that there is a remarkable agreement between both. The FS parts expected to show a pre-

vailing dz2 character are all represented and both the theoretical and experimental shapes favorably match.

Figure 4.6a seems to be well described by figure 4.4a, and figure 4.6b seems to sit in between figures 4.4a and

4.4b, somewhat closer to 3.4b. This is therefore an interesting and direct experimental confirmation of two

past predictions from DFT: (i) the electrons at the Fermi surface of MAX phases mainly exhibit a d-orbital

character and (ii) their wave functions are localized at the transition-metal atom sites. As demonstrated in

chapter 3 using a nearly free approximation to describe the photoexcited electron in the final state inside the

solid, let us remind the relation (3.7) between the transverse wave vector of the electron and the polar angle

of the detected photo electron [180]:

k⊥ ≈
1
h̄

√
(2mEkincos2(θk) + V0) (4.2)

For the in-plane wavevector, one has once again (3.6)[180]:

k|| =
1
h̄

√
2mEkinsin(θk) (4.3)

An interesting point is that as long as θk is not too large, probing the FS with a given photon energy

roughly amounts to scanning a cross section of the FS at a constant value of kz, as indicated by Eq. (4.2).

Comparison of figures 4.6a and 4.6b to figures 4.4a and 4.4b thus indicates that most probably, the average

kz value in the first image is very close to define the Γ plane, and that of figure 4.6b is closer to an A-plane

cross section. Focusing on figure 4.6a and comparing its high-intensity regions with the yellow shaded

areas in figure 4.4a, one can observe all dz2 contributions predicted by the analysis in section 4.1, but also

the totality of the hole pocket FS projection. This should come as no surprise, since the hole pocket parts not

characterized by a prevailing dz2 contribution are predicted to have a dxz + dyz character, the photoionization

cross section of which becomes appreciable at larger angles (see Figure 4.5).

Recording the photon-energy-dependent ARPES trace in the (kx, kz) plane (i.e., in the ΓALM plane) also

demonstrates the lack of appreciable energy dispersion of the detected bands (figure 4.7), confirming ex-

perimentally the quasi-2D character of the Cr2AlC phase. This is in strong support of the large resistivity

anisotropy deduced from the magnetotransport measurements reported in [159].

The main difference between theory and experiments lies in the detection of an additional, small hole pocket
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in the center of the Brillouin zone (see figures 4.6 to 4.8). In figure 4.8a, it can be seen that this hole pocket

appears thanks to a shift of the upper band centered around Gamma, whose camelback structure slightly

crosses the Fermi level. Theory predicts that this band should remain unoccupied. As shown in figure 4.7,

this additional band is delocalized along c, too. If the observed band does correspond to the camelback

structure predicted to occur inside the central electron bands (compare figures 4.2 and 4.8), either because

the band itself is shifted or because EF is shifted across it, it should mainly exhibit a dxz + dyz character. As a

consequence, a naïve application of Eq. (4.1) should lead to no visible intensity as compared to the dz2 contri-

butions in other areas, because any other orbital contribution should be almost zero (see figure 4.5). A way to

explain this result is to go beyond the plane-wave final-state approximation, the one which led to equation

(4.1). taking into account the two allowed values of the photoelectron angular momentum (l′ = l + 1 or

l′ = l1) leads to expressions for the differential cross sections which were computed and detailed in [237].

Applying these closed-form expressions to our two configurations leads to asymmetries and shifts, the one

portrayed in 3.5c, which make the dxz contribution non-negligible, but still appreciably smaller than that of

the dz2. This is in agreement with the ARPES images of figure 4.6.

FIGURE 4.6: Fermi-surface images of Cr2AlC obtained by ARPES with S-pol configuration and
hν = 100eV photons (a) and with P-pol configuration and hν = 50eV photons (b), respectively.
Polarization directions are indicated with arrows. Yellow solid and dashed lines are outputs of
DFT calculations in ΓKM and AHL plane, respectively. ARPES measurement lines in figures
4.7, 4.8, and 4.9 are indicated with indices (hν-dep (S/P-pol), following figures 4.1 to 4.5). Ex-
perimentally observed Fermi surfaces in the S (P)-pol modes have been indicated as α (α′), β

(β′), and γ (γ′).
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FIGURE 4.7: kz dependence of MDC spectra at EF (a) and Fermi surface image (b) obtained by
photon-energy-dependent ARPES performed at the slices indicated in figure 4.6. (c) Interplane
Fermi surface calculated by DFT along ΓK− LH (gray solid lines) and ΓM− HA (gray dashed
lines), respectively. Quasi 2D topology of the calculated Fermi surface has been expected as
shown with yellow shaded lines. Though the observed Fermi surfaces show little kz depen-
dence at this k|| position, we have estimated the inner potential as V0 = 19eV in Eq. (4.2) from

the systematic intensity variations.

As detailed above, there is a good overall agreement between the expected and measured data. The most

striking discrepancy is the apparent shift of the Fermi level through the camelback band structure predicted

at the zone center. Although we cannot give a definitive explanation, it is worth noticing that the photon

energy range is the same as the one for which we expect a minimum in the photoexcited electron inelastic

mean free path. This implies that the photoexcited electrons come from no deeper than a very few layers from

the surface (See Chapter 3). As predicted and discussed both in chapter 2 and above within this section, the

electrons at EF are confined in the Cr2C planes, and Cr2AlC is quasi-2D compound. However, the electron

densities in each band and Fermi-level position are in part determined by some electron transfer from the Al

atoms.

This is a general feature of MAX phases and is obvious from the fact that, e.g., the carrier density and

even the band structure of MXene materials with the same M2X layers substantially depend on the nature of

the surface termination (See chapter 2). Yet the electrons at EF are confined in the M2X planes. This implies

that the Cr2C layer closest to the surface might be affected by surface effects. We can therefore suspect

that the surface could exert some influence on the ARPES signal. As a consequence, one cannot exclude

the possibility of a slight surface-induced Fermi-level shift due to band bending at the interface. It is worth

noticing that from the DFT calculations, a minimum of 130 meV is required for making the Γ camelback band

to cross EF. We note that if we directly compare the band structure obtained by ARPES to the theory exposed

in section 3.1 and to the DFT results obtained after shifting EF by 160 meV, the electron bands around EF are

indeed still more satisfactorily fitted than when using the rough DFT predictions, but then the discrepancy

with the hole bands noticeably increases. That the Fermi level is shifted with respect to DFT predictions

is also supported by an examination of bands at a lower energy. The set of bands starting from 1.3 to 0.9

eV from Gamma and rising when going towards K is also better fitted with the same Fermi-level shift. The
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FIGURE 4.8: Band structure images of Cr2AlC obtained by ARPES along no. 1, ΓK (a); no. 2,
ΓM (b); no. 3, ΓK(AH) (c); and no. 4, ΓM(AL)(d) slices indicated in figure 4.6, respectively.
MDCs at EF are indicated at the top of each image to estimate the kF points. White solid and

dashed lines are results of DFT calculation along ΓK, ΓM and AH, AL lines, respectively.

two lower bands of the set, which exhibit a dz2 character around Γ , exactly correspond to the high ARPES

intensity in that range after operating the Fermi-level shift. Besides, the observed ARPES splitting observed

for those bands when going towards ΓK also corresponds to the band variations in regions with a prevailing

dz2 character.

4.2.2 Electron-phonon coupling and absence of antiferromagnetic signature

The main remaining discrepancy is then an apparent overestimation of the band curvature of the hole pock-

ets by DFT and a general increase of the extracted effective masses in all bands as compared with the DFT

predicted values. The dispersion observed for the hole pockets around EF is definitely larger than the pre-

dicted one. It is worth noticing that: (i) any hole pocket exhibits a partial nesting with a neighboring one

upon a translation of vector (1/2 0 0), which is the magnetic vector predicted for AFM in Cr2AlC [233] (the
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FIGURE 4.9: (a) X-ray vs neutron diffraction diagram, recorded at the Institut Laue langevin by
Claire Collin from a powder of mashed, pure Cr2AlC single crystals. An additional peak on the
neutron spectra appears at 34°. It corresponds to an hypothetical (1/2, 0, 0) magnetic vector.
Yet, this peak does not shift nor disappear or evolve in any manner in a very large range of

temperature, from 10K to 550K. It may not correspond to any magnetic order (b).

hole pocket being isotropic in the Γ plane, nesting would be perfect [242]); (ii) besides, the particular scal-

ing law observed for magnetotransport might also indicate the presence of electron correlations [154]; and

(iii) since the d waves are quite confined on the Cr atoms, Mott-Hubbard-like interactions could also come

into the play. Each of these three effect might be responsible for a modification of the hole bands around

the M points, as compared with our DFT calculations. Besides, many-body effects associated to magnetic

or electron-phonon coupling are often responsible for substantial band renormalization effects. The spectral

function should incorporate those additional couplings, which modify accordingly the dispersion observed

from ARPES and introduce a self energy term, finite excitation lifetime and ARPES intensity bandwidth as

defined in chapter 3 [184, 243]. This is discussed below.

In order to discriminate among the possible scenarios for the band renormalization mentioned just above,

neutron scattering experiments were performed to investigate for possible magnetic structures that would

fulfill (i). As neutrons possess a spin, they interact with atoms not only through their charge but through

their spin degree of freedom. Thus neutron diffraction techniques can resolve diffractions peaks to be as-

sociated both with the regular unit cell as well as with the magnetic supercell [40]. Such experiments were

performed by Claire Colin on a powder made from grinded, pure Cr2AlC single crystals brought to the D1B

Two-Axis Powder Diffractometer of the Institut Laue Langevin. Both X-ray and neutron diffraction patterns

are respectively given in figure 4.9a. An additional peak appear on the neutron curve, at a coordinate of

2theta = 34. From a magnetic group analysis also performed by Claire Colin, this peak is found to be compat-

ible with a (1/2, 0, 0) magnetic vector for an AFM structure. But when sweeping the temperature from 10K

to 550K, recording neutron diffraction spectra for several temperatures as indicated in figure 4.9.b, neither

the amplitude, the width nor the position of the peak seemed to change. Also, no sharp variation were found

on the dependence of the measured unit cell parameters and volume with temperature (given in figure 4.10),
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FIGURE 4.10: Evolution of Cr2AlC lattice parameters a (a) and c (c) as well as the overall unit
cell volume (c) with temperature. No notable sign of a sudden variation in volume (to be linked

to a magnetic transition) is observed.

while an AFM magnetic ground state was found in previous calculations [233] and an magnetic transition

Tc= 73.5K was hinted by a previous experimental study on polycrystalline Cr2AlC samples [236]. One must

mention that elemental chromium is antiferromagnetic and it exhibits a complex ordering, featuring spin

density waves [242]. Considering the lack of a clear experimental signature of a magnetic ground state as

well as the good agreement between nonmagnetic DFT calculations and ARPES spectra, we presume that

AFM will likely not be the origin of the band renormalizations observed for Cr2AlC.

Going back to the electronic band structure of Cr2AlC, we computed a partial set of Fermi velocities and

effective masses, corresponding to the electron and hole bands crossing the Fermi level. In figure 4.11, they

are compared to the values extracted from the ARPES data following methods similar to those described

in [244] (figure 4.12). The Fermi velocities in the outer, Γ centered electron band (b41) and those of the

holes in the direction (b39,40) are respectively around 1.41× 105 and 9.15× 104ms1, as deduced from the

slope of the experimentally observed dispersion. The inner electron tube (b44) exhibits a Fermi velocity

around 1.9× 105ms1, closer to that of Cr (2.7× 105ms1 [242]). These values are much lower than those of

ordinary metals, and due to the d-orbital character of the carriers at the Fermi energy. Extracted masses of

the hole pockets and of the electrons of b41 are much heavier than predicted by theory, with, e.g., a hole

mass mh ≈ 3.21m0 for band 40, instead of a predicted value of 1.92m0. Band renormalization effects are also

observed in the momentum distribution curves (MDC) shown in figure 4.12.

Although it is difficult to put it on a precise quantitative basis, assessing whether phonons are responsible

for the observed band renormalization can be achieved as follows: First, we compute the electron-phonon

coupling constant as λ = (mrenorm
ARPES/mDFT) − 1 [245], where mrenorm

ARPES is the renormalized mass evaluated

close to EF , and mDFT the DFT values. Second, we compare those values to the averaged value deduced

from specific heat measurements versus temperature. (In the latter case a comparison was made between

the density of states at the Fermi energy D(EF) extracted from specific heat measurements and the predicted

DFT value, assuming that λ is a simple function of their ratio [1].) For the γ hole band along ΓM, we found

λ = 0.67. For the corresponding electron band b41 along ΓK we also found λ = 0.67. The inner α electron
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FIGURE 4.11: Fermi velocities and effective masses obtained by fitting the first and second
derivatives of the dispersion curve. The Fermi momenta kF ’s are defined by the distances from
the Γ(M) point with respect to the electron (hole) carriers. The observed effective masses as
well as the Fermi velocities of the α, β, and γ bands correspond to the DFT bands 44, 41 along
ΓK and 40 along the ΓM axis, respectively. All experimental bands display a significant mass

enhancement (1.14 to 1.7 times) relative to the DFT calculations.

band gives λ = 0.12. Specific heat measurements give a value around 1.45, but for a complex average over

all bands (see Fig. 4.18 in [1]). Notwithstanding the fact that all three methods are imprecise and rely on

the approximate (in this case) Debye model, finding the same order of magnitude in the three cases makes

electron-phonon coupling as a reasonable candidate in order to explain the observed band renormalization.

It is important to note that the MDC values are much smaller in the case of the α band than for the β and

γ bands, corroborating the conclusion drawn above that electron-phonon coupling should be prominent for

the two latter bands. Figure 4.12d displays the variation of the momentum dispersion curve as a function of

energy. As seen in figure 4.12d, and even if a direct relationship between the phonon density of states and

the MDC signal farther away from EF is not entirely obvious, the observed peaks or thresholds observed

close to EF roughly correspond to the regions where a high density of phonon modes is expected [yellow

areas in fgure 3.12d]. Besides, renormalizing the MDC by multiplying it by the Fermi velocity gives curves

lying close to one another around EF , also in agreement with the assumption that phonon-electron coupling

plays a significant role.

It is worth noticing that all data and references dealing with electron-phonon coupling in Cr2AlC agree

upon the fact that it is much stronger than for most other MAX phases [1], some similar Cr-based MAX
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FIGURE 4.12: (a–c) Detailed band dispersions at the holelike FS around the M point (a), the large
(b), and small (c) electron-like FSs around the point, respectively. Red solid and black dashed
lines are the peak positions of MDC spectra and the fitting curves based on a standard free-
electron model. (d) Comparison of the width of the MDC spectra obtained by the fitting with
Lorentz functions, which should correspond to the spectral function. Yellow shaded energy
ranges around 30 and 80 meV correspond to intervals where the calculated phonon density of

state is predicted to be high (from [239]).

compounds such as Cr2GeC omitted. This large coupling, combined with the fact that most carriers occupy

the bands with a lower Fermi velocity, explain the higher resistivity values of the Cr2AlC compound in the

phonon-controlled temperature range, as compared to most other MAX phases and many transition metals .

4.2.3 Modelling Cr2AlC in-plane magneto-transport

Omitting the effect of electron-phonon coupling, the FSs computed by DFT can be used to compute electronic

transport coefficients and charge carrier densities, owing for the relationship between the morphology of the

Fermi surface and Onsager coeficients such as electronic conductivity (given by equation (2.21)). Such anal-

ysis was performed by Thierry Ouisse using the as computed Cr2AlC DFT FSs as an input. These results are

detailed in [229]. The whole formalism and methodology used in [229] follow former work on the nearly

free electron description of Ti2AlC electronic structure [159]. We will briefly describe these results, their level

of consistency with magnetotransport experiments on bulk single crystals and, following the discussion in

section 2.1.3, illustrate how the two band Drude models erroneously describe electronic transport in MAX

phases (specifically for the Cr2AlC case). The model described here cannot describe the very specific vio-

lation of Kohler Rule recently observed for Cr2AlC, where magnetoresistance exhibits a scaling law in Hall

angle when varying Temperature, rather than a scaling law with magnetic field [154].

The first step of the model is to approximate the FSs from DFT as completely bidimensional ( As partially

justified in section 4.2.1.). It allows to replace the three dimensional FS by Fermi lines (FLs) corresponding to

the FS cut in the Γ plane. These lines are approximated by a sum of fully analytical functions given by Gielis

[246]:
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FIGURE 4.13: (a) Top view of the FS projection onto the Γ-plane as computed by DFT , onto
which is superimposed the fit of the Fermi lines in the Γ-plane using Eq. (4.4) (white solid
lines), (b) Fit of the Fermi lines in the Γ-plane using Eq. (4.4), (c) Fit of the Fermi lines in the
A-plane. (d) polar plot of the corresponding Fermi velocities in all bands. In (d) the color code
is the same as in (b), but for the hole pockets, which give rise to 3 equivalent but differently
oriented polar plots, 2 of them being represented by black solid lines and the third one by a

black dashed line.

kF(ϑ) = ξkM(|1
a

cos(
p
4
(ϑ + ϕ))|n2 + |1

b
sin(

p
4
(ϑ + ϕ))|n2)

− 1
n1 (4.4)

with kF the modulus of the Fermi wavevector, ϑ the polar angle, kM the wavevector modulus at the M point

and ξ, a, b, p, n1, n2 and n3 are fit parameters used to find an acceptable fit of the Fermi lines at Γ. The fits to

the in plane (Γ plane) FS from DFT are given in figure 4.13 (An A-plane FS cut was also approched by a set

of angular function and used to compute transport parameters, as seen in 3.13c. Little differences are found

between the obtained parameters for Γ and A-plane sets of FLs). In order to calculate energy derivatives

such as the Fermi velocities, one approximate the local near EF dependance of the energy on momentum as

[229]:

E = h̄v0k0
(k2cos2(ϑ) + k2sin2(ϑ))

2k2
F(ϑ)

(4.5)

Where v0 and k0 are respectfully the fermi velocity and Fermi wavevector along ΓM for electron bands

or ΓK for hole bands. Then, one can calculate the Fermi velocities map as vF = 1
h̄ (

∂E
∂k )E=EF (See figure 4.13d).

From there comes the second step of the analysis, relying on semi classical transport formalism.

When applying a magnetic field B parallel to z axis and an in plane electric field Eel along x axis, one get

the out of equilibrium distribution function from Boltzmann equation as [40]:

∆ f = −(1 + eτ

h̄
(v× B)

∂

∂k
)−1eτv.Eel

∂ f
∂E

(4.6)
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Which becomes, in the Jones Zener approximation [247]:

∆ f = −(1− eτ

h̄
(Bvy

∂

∂kx
− Bvx

∂

∂ky
) + order2)eτv.Eel

∂ f
∂E

(4.7)

with τ the relaxation time. The first term will account for the direct conductivity σXX while the second

term in v gives the transverse Hall conductivity σXY while higher order terms give rise to the magnetoresis-

tance [159].

One can extract σXX and σXY by calculating the integral that give the full current [154]:

j =
e

2π2

∫
v(k)∆ f d2k (4.8)

There, jx component gives σXX (and the magnetoresistance) while jy leads to σXY. These integrals can be

approximated as integrals along the Fermi lines [159].More detail on their computation are given in [248].

One then have the in plane resistivity ρab and Hall constant RH (by summing over the band indexes i)

[159]:

ρab =
∑i σXXi

(∑i σXXi)2 + (∑i σXYi)2
(4.9)

RH =
1
B

∑i σXYi

(∑i σXXi)2 + (∑i σXYi)2
(4.10)

All the dependancies on ϑ of the term within equations (4.7) and (4.8) are known but the relaxation time.

It is within the relaxtion time τ that most of the temperature dependance of σXX and σXY will lie. The

relaxation time is chosen as follows, taking into account impurity scattering prevailing at low T [40, 247],

phonon-limited Bloch-Gruneisen contribution at intermediate T [40, 247] and the standard phonon-limited

linear dependence [40, 247] at high T [229]:

1
τ
=

vF(ϑ)

λimp
+ (τph(

TA
T

+ (
TB
T
)5))−1 (4.11)

With λimp the impurity mean free path, τph a phonon-related characteristic time and TA and TB characteristic

temperatures that vary from band to band. These four parameters are used as fitting parameters in the

overal model and were adjusted to obtain the fit of the temperature dependence of experimental transport

parameters given in figure 4.14 [229].

In figure 4.14, the experimental data points are retrieved from [159]. It is worth noting that the approx-

imation procedure is not easily automated, because the fitting parameters are the entire T dependencies of

the relaxation times in each band (see reference [229], figure 2).

To obtain the all-important parameters, one first estimated λimp to be compatible with the saturation of ρ

at low T (visible in figure 4.14a).Remarkably, these values also give a satisfying approximation of RH (figure
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FIGURE 4.14: Temperature dependencies of, (a) ρ, (b) RH , (c) and MR for B=10T. Data points
are taken from [159], using the same set of experimental data. Solid and dotted lines are the fits

using the extremal Fermi line cross section respectively in the Γ and A planes.

4.14b). The second key ingredient is to select relaxation times τph, the temperature variations of which, that

render the relative balance between electron and hole contributions to vary with T [229]. We note that due to

the fitting procedure, we cannot ensure that no other set of relaxation time values could lead to a satisfying fit

of the experimental data. Yet, the agreement between model and experiment is good enough as to support

the validity of the model: not only the variations of ρ with T (figure 4.14a), but also the variations in RH

(figure 4.14b) and MR (figure 4.14c) with T. In our framework, the carrier densities ne and nh in the different

bands are constant with T, and the temperature dependencies of the transport parameters are entirely due

to variations of the relaxation times. The latter are obtained by summing the areas enclosed by the FLs in

k-space and are equal to ne = 2.54× 1022cm−3 and nh = 4.56× 1021cm−3, respectively [229].

Thus, these results illustrate that in the case of MAX phases, the parameters extracted by either the single

or double-band methods bear no relation with transport parameters.

4.3 Summary

Despite the discrepancies mentioned in section 4.2.1, the reasonable agreement obtained between ARPES

data and DFT calculations makes one confident in the fact that the FS deduced from the ARPES image in fig-

ure 4.6 does reflect most of the expected bulk FS properties and is not seriously affected by surface features.
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The FS is formed by a complex combination of hole and electron bands, as expected for all MAX phases. The

ARPES signal is in very good agreement with the expected orbital character of each band. The dispersion

of the most populated bands at EF is large, resulting in large effective masses and low Fermi velocities. It

could explain the relatively higher electrical resistivity values previously mentionned in the literature, as

compared with non-Cr-based MAX phases.

Using an approximation of the DFT FS shape and Boltzmann’s equation, we retrieved the temperature vari-

ations of RH and ρab determined by transport measurements on single crystals [159]. Our results illustrate

that the parameters extracted by either the single or double-band methods bear no relation to the real trans-

port parameters. A Fermi-level shift induces the population of an additional hole band, but our experiments

do not allow to determine whether this is due to a surface effect. The anomalous dispersion of the hole

bands and of the electron bands closest to them, as compared with the DFT bands, possibly result from a

substantial electron-phonon coupling-induced band renormalization. Renormalization effects arising from

AFM coupling are most likely to be ruled out due to the lack of a clear AFM signature on neutron diffraction

patterns measured over a very large range of temperature. This is consistent with the fact that spinless DFT

calculations alone proved to bring a satisfactory fit to the ARPES spectra.

Comparison with ARPES data obtained from other MAX phases should allow one to determine whether

the band renormalizations observed are specific to the case of Cr2AlC or would be observed in other MAX

phases. It should also allow one to verify whether if all MAX phases are identically quasi bidimensional, as

our ARPES measurements confirm it in the case of Cr2AlC, or delocalized in all three directions of space. It

thus brings us to the electronic structure of another MAX phase to be explored: the one of V2 AlC.
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Chapter 5

V2AlC: Near Fermi Fermi level bands,

out of plane dispersions, surface states

This chapter is dedicated to the electronic structure of another 211 MAX phase, V2AlC. It is based on another

article that the author of this manuscript published as first author [249].

In the course of chapter 3, we illustrated how Cr2AlC electronic structure quasi-2D nature was confirmed

by ARPES and DFT calculations [228]. While Cr2AlC (together with other Cr based MAX phase) lies aside

from other MAX phases for having a significantly higher resistivity [1, 38, 159] ,V2AlC is known to exhibit

a very low resistivity compared to most MAX phases [1, 38]. One must note that recent transport measure-

ments on both Cr2AlC and V2AlC single crystals found the latter’s transport anisotropy ρc
ρab

to be an order of

magnitude higher [159]. From this argument, V2AlC Fermi surface ought to show even less dispersion over

kz than its Cr2AlC counterparts.

It thus makes it a perfect candidate to test how far the conclusions of chapter 3 regarding Cr2AlC elec-

tronic structure can be generalized to other MAX phases.

Here, our ARPES analysis of V2AlC single crystals is outlined. The resulting BS and FS maps have been

systematically confronted to the output of DFT calculation. The scheme we followed is similar to the one for

Cr2AlC, described in chapter 3 [228].

We confirm that V2AlC features the same predominance of the d orbitals at EF . Unexpectedly, DFT

calculations seem to show that the V2AlC FS would be less 2D than that of Cr2AlC. We consistently observe

a rather large broadening of the ARPES signal in the areas of the BZ where DFT predicts the strongest

three-dimensionality. As it has been discussed for other materials [250, 251, 252], one can relate such large

broadening of the ARPES signal in some restricted reciprocal space areas to a non-negligible kz dependence

of the FS topology. We also provide experimental evidence of the existence of a volatile surface state, the

signature of which progressively disappears within hours after cleaving V2AlC samples in UHV. Once those

effects are taken into account, a remarkable agreement between the ARPES data and the theory is found.
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5.1 Preliminary analysis

5.1.1 Experimental and computational methods

V2AlC single crystals were prepared by a high-temperature solution growth following the procedure de-

tailed in chapter 3. Platelets have an area below 1 cm2 and a thickness going up to 50 µm. As mentioned

earlier, they were cut in 3× 3 mm squares by using a diamond wire saw and later cleaved in situ for ARPES

experiments performed at AichiSR on the BL7U line.

This line is equipped with a MBScientific A-1 electron analyzer (see section 3.2.2). Base pressure was

set below 3× 109 Pa. Temperature was set in the 10–20 K range (roughly 10 K for figures 5.4a and 5.8, and

20 K for the measurement of figures 5.4b and 5.5–5.7). Energy and angular resolution were set at E ≈ 35

meV and θ ≈ 0.38 , with an acceptance angle of ±16 for θx (pass 20). We probed a wider θy range by tilting

the sample holder relatively to the detector. Energy dependent ARPES was performed using photons with

energies from hν = 70¬150eV and hν = 85¬115 eV. Linearly polarized lightwas used in the so-called S-pol

mode, as described in detail in chapter 3 [228] (See figure 5.1). The angle between the light beam and the

detector was set to 45° .

All calculations were carried out with the full potential LAPW+lo method implemented within the WIEN2K

software (version 17.1). The non-spin-polarized PBE GGA functional was chosen [207]. Wave functions were

expanded up to a RKM cutoff parameter of 7.7 (As mentioned in section 4.1.1, RKM refers to the product of

the smallest ‘atomic sphere radius’ times the largest K vector of the APW expansion used [222]). We selected

the V2AlC unit cell from [5] for our computations. Similarly to [228], we took a very dense k-mesh in order

to map fine details of the FS without using interpolation of order higher than 1. We used a 93× 93× 17

Monkhorst-Pack meshing of the IBZ for the whole calculation. The FSs were calculated using X-CRYSDEN

[240]. An even denser mesh of 3200× 48 was used to get the 2D FSs cuts over ΓK and ΓM in figure 5.5.

Orbital character plots were obtained with the PRIMA.PY code .

5.1.2 Fermi surfaces, bands and orbital characters from DFT

A few studies already report V2AlC band structure DFT calculations [253, 254], but they do not show the FS.

When plotted only in the first BZ, the FS as given by X-CRYSDEN shows only two occupied bands at the

Fermi energy EF, in contrast to what was found for other MAX phases [154, 228]. Figure 5.1 shows the whole

FS calculated from DFT in the first BZ (figure 5.1a) and the band 39 and 40 FSs in a cell centered on the M (L)

point (figure 5.1b). Band 40 exhibits the following features: Electron tubes centered on and parallel to the

c axis, tripod tubes centered on K (H) points parallel to the c axis, and transverse tubes directed along AH

and perpendicular to the c axis. The two tubes directed along kz are connected through the tubes directed

along AH, making the whole structure fully connected and definitely three dimensional, even if the tubes
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FIGURE 5.1: (a) V2AlC FS calculated with WIEN2k, plotted in the first BZ (left figure) and in a
cell centered on A (right figure). Only one electron band and one hole band are crossing EF ,
and (b) shows the two bands separately. The overall morphology of the FS is rather complex,
band 40 exhibiting 3D features with tubes perpendicular to the c axis (directed over AH) and

tubes parallel to the c axis connected altogether.
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FIGURE 5.2: V2AlC band structure as calculated by the WIEN2k software. EF is chosen as the
origin of energy. Colors refer to the orbital character of each band.

perpendicular to the c plane remain much smaller than the ones parallel to c. In contrast, band 39 exhibits

quasi-2D features with tubes centered on M (L) points and a closed-loop-like feature between Γand M.

A qualitative analysis of the orbital character of each band is given by the colored band structure plots of

figure 5.2. Since in MAX phases the electronic properties of the electrons at EF are mainly determined by the

d orbitals of the M atoms [1], those are the only ones considered here. The Γ(A) centered tubes and the AH

transverse tubes of band 40 show a mixture of vanadium dz2 , dxy + dx2y2 , and dxz + dyz orbitals. The inner

part of the closed-loop feature of band 39 exhibits a strong dz2 character. All other bands have almost no dz2

contribution at EF .

Regarding matrix element effects, phrased here as the angular and orbital dependance of the photoion-

ization cross section, we followed the procedure we previously applied to the study of the Cr2AlC electronic

structure in chapter 3 [228]. As a first approximation, we only considered the d-orbital contribution to the

ARPES signal and assumed a plane-wave final state to extract the differential photoionization cross section

using the expression in equation (5.1).

As it is described in [228], dz2 orbitals are the ones mainly contributing to the photoemission intensity

at low angles. As our ARPES experiments were mainly performed for angles below 15°, we can expect

that we would have an ARPES signal mainly for areas where the DFT FSs show a pronounced dz2 orbital

character. From a calculation of the photoemission cross section going beyond the plane-wave final-state

approximation [228], one shows [182, 228, 237] that the dxz and dyz photoionization cross sections are not

totally negligible and may also contribute to the ARPES signal, especially near the edges of the first BZ and
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FIGURE 5.3: V2AlC FS cut over Γ (a) and A (b) planes, respectively, both issued from DFT
calculations. Yellow lines stand for band 39. Gray lines in (c) stand for band 40, and red lines
stand for the degenerate bands 39 and 40 in the A plane. (c) The projection of the full V2AlC FS
with a dz2 orbital character onto the horizontal plane. Areas with dxz + dyz character near the

BZ boundaries are also represented.

beyond.

From those considerations, we are able to predict the output of ARPES experiments directly from the

DFT FS. These expectations are summarized in figure 5.3, where we show a FS cut over the Γ (figure 5.3a)

and A (figure 5.3b) plane and a projection onto the first BZ of the areas of the FS with a dz2 character, plus

the one with a dxz + dyz character located near the edges of the first BZ (figure 5.3c). All colored areas and

lines appearing in figure 5.3c are expected to lead to a measurable ARPES signal.

5.2 Results and discussion

5.2.1 A three dimensional Fermi surface

As detailed below, our fairly simple DFT calculations with a standard GGA functional seem to give a very

decent fit of the ARPES data, the main features of the FS, and of the BS near EF being successfully repro-

duced (see figures 5.4–5.6). The ARPES cross section at EF has been obtained for a polarization in the S-pol

configuration and for an energy hν = 100 eV . The first striking feature of figure 5.4 is the wide broadening

of the FS. It does not fit either the DFT FS cut across the Γ (figure 5.3a) or A plane (figure 5.3b). Rather than

just exhibiting narrow Fermi lines as for Cr2AlC [228], the FS signal rather appears as a whole surface in the

(kx, ky) plane, and figure 5.3c seems indeed to reproduce the features of the experimental FS map of figure

5.4 in a very convincing way. As we mentioned before, figure 5.3c represents the FS projection onto a 2D

plane of the full, 3D FS that is expected to give a substantial contribution to the ARPES map. The good

matching between figures 5.4 and 5.3c, also shown in figure 5.4b, seems to corroborate two predictions from

DFT: (i) there is a non-negligible kz dispersion of the V2AlC electronic structure in two restricted regions, and

(ii) the d orbitals of the M atoms dominate electronic properties at EF , as predicted for most MAX phases. It

is worth noticing that the influence of kz dispersion on the broadening of the ARPES signal has already been
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FIGURE 5.4: FS images of V2AlC obtained by ARPES with S-pol configuration and hν = 100eV
photons. The image in (a) is the raw Fermi surface data for a high angular range in order to
display several BZs. Image in (b) shows the FS in wave-vector units over a single BZ, along
with a cut of the DFT FS across the Γ plane (dotted lines; the yellow one stands for band 39 and

the white one for band 40) and across the A plane (full white lines).

extensively described by several authors [250, 251], but it is sometimes ignored for the study of 2D and even

quasi-2D materials.

Damping of the photoelectron at the metal/vacuum interface and the finite value of the photoelectron

mean-free path are effects that might account for the kz broadening we observe [182, 250, 251, 252, 238, 184].

For the sake of further clarity, let us recall one last time the relationships between the electrons in plane

and out of plane wavevector components (k|| and k⊥) and the angle at which photoelectrons are detected θk:

k|| =
1
h̄

√
2mEkinsin(θk) (5.1)

k⊥ ≈
1
h̄

√
2m(hν− φ + |E− EF|)cos2(θk) + V0) (5.2)

We extracted a V0 value of 22.5 eV from the period of the E vs hν curve (see figure 5.6b) and took the

work function φ equal to 4.3 eV for our calculations. The validity of equation (5.1) does not depend on the

dimensionality of the electronic structure of the observed material. In contrast, equation (5.2) is in some

cases not straightforwardly applicable to materials exhibiting a three-dimensional electronic structure [250,

251, 252, 184].

Assuming a FS with merely no three-dimensional features, the probed kz component would then be a

univocal function of hν and one could be able to measure FS cuts for various kz values by playing with the
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FIGURE 5.5: AΓML (a, b) and AΓKH (c, d) ARPES photoemission maps and FS cuts from
WIEN2K. Purple lines stand for band 39 and green lines for band 40. An acceptable match-
ing between DFT and ARPES is found for ΓM, while photon-energy-dependent ARPES data
over ΓK (c) fails to reproduce features from DFT, therefore corroborating the three-dimensional

character of V2AlC electronic structure along this direction.

photon energy. ARPES and DFT AΓML and AΓKH cuts of the FSs are respectively given in figures 5.5a–5.5d.

DFT and ARPES match for the AΓML kz cut, where the 2 FSs predicted by theory clearly appear on the

experimental data. It therefore suggests that this part of the FS is quasi-2D. The enclosed loop structure we

observe with DFT in the Γ plane could match the wide dots we observe in the ARPES map (see figures 5.5a

and 5.5b). On the other hand, the lack of similarity between the AΓKH photoemission map and its DFT FS

cut counterpart confirm that here equation (5.2) is not straightforwardly applicable in order to determine the

kz dependence of the FS topology (see figures 5.5c and 5.5d). The overall ARPES signal for the AΓKH map

has roughly the same width as the maximum width of the DFT FS. We suggest that figure 5.5c would actually

correspond to the DFT out-of-plane FS cut of figure 5.5d being broadened up to a point for which the signal

of each FS tube perpendicular to the c axis (see figure 5.1) would sum up in order to form a continuous stripe

over kz. This argument comes in support of the 3D kz dispersion of the FS we inferred from figures 5.3 and

5.4.

To ensure the bulk origin of the observed interplane FSs, we determined the ARPES band structure along

the ΓA axis as shown in figure 5.6b. We observed a combination of intense (DFT calculation plot with solid

line) and weak (DFT calculation plot with dashed line) dispersive features from 0.6 to 0.9 eV with a 4π
c

periodicity along kz axis. A similar intensity variation with the same 4π
c periodicity also appears on the
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FIGURE 5.6: (a) Indicates which k⊥ value is probed at a given k|| value, for various values
of photon energy hν. 100 eV corresponds to a k⊥ wave-vector component lying between A
and Γ planes. (b) V2AlC band structure along ΓA. The good matching between ARPES data
and calculations shows that bulk electronic states are observed. V0 was extracted from the half

period of the band.

AΓML FS mapping. ARPES intensity variations with twice the periodicity of the expected band structure

have frequently been observed in layered materials, owing to the difference of the transfer integral between

the layers [255]. Thus, the ARPES band structure along the ΓA line shows a good correspondence with bulk

DFT calculations.

As detailed above, there is a good overall matching between FS calculations and experimental ARPES

data. Same conclusions are to be drawn for the band structure plots given in figure 5.7. DFT and ARPES

bands seem to fit pretty well near EF, both for ΓK(AH) and ΓM(AL) directions. Nearly all the DFT bands

presenting a dz2 character fit the ARPES signal, as well as the dxz + dyz ones for higher angles. A few discrep-

ancies between calculated bands and the ARPES signal are observed for lower energies. Due to kz broad-

ening, it is complicated to quantitatively assess these discrepancies. Furthermore, bands showing a strong

dxy + dx2−y2 should barely not be observable by ARPES with our experimental configuration, as detailed in

section 4.1.2.

5.2.2 Evanescent surface states revealed

In addition to the band structure results described above, we systematically observe a transient ARPES

signal visible immediately after cleavage, the intensity of which continuously decreases until it almost totally



5.2. Results and discussion 91

FIGURE 5.7: Band structure from ARPES over ΓM (a) and ΓK (b). Black lines are the output
of DFT calculations. Experimental and theoretical Fermi velocities and effective masses are

compared at the α and γ points.

vanishes, after several hours of exposure of the cleaved surface in UHV conditions. Figure 5.8a shows an

ARPES image of the FS measured immediately after crystal cleavage and with a low pixel resolution so as

to reduce the acquisition time (about 30 min). Figure 5.8c shows the band structure measured in the same

conditions along a line crossing two M points, as indicated by the blue dotted line in figure 5.8a. Figures

figure 5.8b and 5.8d are similar plots as in figure 5.8a and 5.8c, respectively. But, in contrast to the latter, they

were acquired about 7 h after cleavage, with a better pixel resolution and thus a longer acquisition time (2

h). Immediately after cleavage a pattern appears at all three M points corresponding to measuring angles

θy < 0. In contrast, for positive values of θy , the intensity of these points becomes hardly measurable. This

disappearance may be due to two different factors: on the one hand, positive θy values lead to a lowered

intensity, due to the asymmetric dependence of the photoionization cross section of the dz2 contributions on

θy (See figure 4.5 in chapter 4, which shows the dependence of the cross section versus angle, and where

the sign convention is reversed with respect to the one chosen in the present chapter). Figure 5.4 also gives

a nice illustration of this cross-section effect: the permanent patterns of the second BZ (upper region of the

ARPES image), obtained using positive θy values, show a marked decrease in intensity with respect to the

ones obtained in the first BZ and for negative values. (Also note that none of the band structure patterns

observed in figure 5.4 is subject to appreciable variations with time.) On the other hand, the disappearance

of the signal at the M points with θy > 0 could also be due to the instability of the pattern, assuming that it

is the manifestation of an unstable surface state.

Interestingly, figures 5.8b and 5.8d show that after several hours, all band structure patterns taking place

around the M points almost disappear, even for θy < 0. They start vanishing about an hour after cleav-

ing. This is a strong indication that those patterns are due to the existence of an unstable surface state. Its
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passivation after some time and/or the cross-section effect makes it difficult to observe it in the upper BZ,

but the three patterns observed after 30min at three M points demonstrates that it has a sixfold symmetry

and that it contributes to form a band conserving the original lattice periodicity. It is therefore reasonable to

attribute those patterns to the breaking of the d-orbital contributions of the unreconstructed V atoms, point-

ing perpendicularly to the cleavage surface and resulting in the formation of a surfacestate energy band. As

expected in such a frame, it is worth noticing that the surface state contribution to the bands visible in figure

5.8b around the M points is also the only one not predicted by DFT calculations. Unfortunately, our data do

not allow us to determine the nature of the passivation effect. A plausible origin might be oxidation of the

unreconstructed V atoms.

5.2.3 Fermi velocities and anisotropies

From the band structure, we could extract the Fermi velocities and the effective masses at α and γ (see figure

5.7 for the respective positions of these points). Those values were extracted from the ARPES data following

methods similar to what is described in [244] and in chapter 4 for Cr2AlC. We also computed Fermi velocities

and the effective masses from DFT calculations for various directions, and a summary of the DFT and the

ARPES data is given in figure 5.9.

From the experimental slope at the Fermi level, we found a Fermi velocity of 2.81× 105ms1for the main

tubular FS of band 39 over ΓM(AL) (α point), and 1.03 × 105ms1 for the central almost tubelike FS over

ΓK(AH) (γ point). They are of the same order of magnitude as the one found for Cr2AlC [228], and signif-

icantly lower than for “good,” ordinary metals. The discrepancy between DFT and ARPES is found to be

less than 10 percents, the value extracted from ARPES being smaller. We extracted an effective mass of 0.719

m0 at γ for band 40, again quite close to the one given by DFT calculations. It is 5–10 times smaller than

the Fermi level effective masses found for Cr2AlC [228]. The very good agreement between the transport

parameters extracted from DFT and ARPES gives confidence in the overall validity of this study. This again

has to be put in contrast to the case of Cr2AlC, where stronger evidence of a renormalization has been shown

[228], which is believed to be a consequence of a strong electron-phonon coupling.

It is interesting to note that previous specific heat measurements indicate that electron-phonon coupling

should be much more important for Cr2AlC than for V2AlC [1], a point which seems to be confirmed by our

ARPES measurements. It also indicates a certain variety of electronic behavior within the 211 MAX phase

family. One would note that the absence of band renormalization, probably accounting for a low electron-

phonon coupling, combined with the low in-plane effective mass values found for any DFT or ARPES band

of V2AlC (as compared to those of Cr2AlC [228]), is consistent with the V2AlC in plane resistivity ρab =

3.8108Ωm at 300K, about 2 times bigger than ρCu, which is known to be the lowest among the MAX phases

[159]. It is also worth noticing from figure 5.1a that the electron and hole bands are very closely nested

into one another, with a very small separation between them. One therefore expects very similar transport
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properties —relaxation time, Fermi velocities, etc.— for both electrons and holes. It is therefore not at all

surprising that if used for interpreting magnetotransport, a conventional two-band model gives equal carrier

concentrations and mobilities [38], and measurements lead to small Hall coefficients.

Considering the very good matching between DFT and ARPES data, one can try to extract semiquanti-

tative information about the V2AlC FS morphology directly from the DFT data. Although using a software

such as BOLTZTRAP would clearly give a better quantitative appreciation, we very roughly estimated the

order of magnitude of the conductivity anisotropy from the three dimensional FS topology (see figure 5.1)

and the Fermi velocities given in figure 5.9. For σab, the products of the surface areas parallel to the c axis to

FIGURE 5.8: (a) ARPES FS mapping measured during 30 min with a low angular resolution
and immediately after crystal cleavage. (b) FS mapping measured about 7 h after cleavage and
during about 2 h on the same sample as in (a). (c) Band structure along the direction given by
the blue dotted line in (a), and (d) band structure measured along the direction given by the
blue dotted line in (b). A surface state not predicted by bulk DFT is clearly visible in (a) and
(c). In (a) and (b), a small energy shift of 10 meV below EF was chosen in order to enhance the

signal due to the surface state, when present.
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FIGURE 5.9: Fermi velocities and effective masses at EF from DFT calculations and ARPES
experiment. The observed effective masses as well as the Fermi velocities at the α, γ (see Fig.
6) points are compared to DFT bands . We also give the Fermi velocity and effective mass for
various other FS parts: the transverse tube directed over AH (see figure 5.1), the triangular tube
centered on H and parallel to the c axis, and the tube centered on L and parallel to the c axis
(see figure 5.1). Two different values are given for the anisotropic band crossings (see figure

5.10), when one goes respectively from Γ to M and M to Γ.

the Fermi velocities normal to those surfaces were computed, then summed. For σc, the same method was

applied to the surface areas seemingly parallel to the ab plane. The FS areas significantly contributing to σc

are the six AH directed tubes of band 40 and the six enclosed looplike structures of band 39.

We then find a ratio σab/σc roughly comprised in the interval of 17–45. Despite the very crude character

of our estimation, it must be noted that our results are extremely far from the experimental anisotropy ratio

measured in [159], whose values were ranging from 6000 to 9000. Three factors can possibly explain this

apparent discrepancy:



5.2. Results and discussion 95

FIGURE 5.10: (a) Location of six linear band crossing points appearing roughly at 0.25ΓM,
evidenced on the DFT FS by increasing the energy by 10 meV above EF . [For the sake of clarity,
just the Dirac points have been kept in (a).] This shift reveals nearly punctual and anisotropic
electron pockets which are located in the FS loop shown in the inset of (a). Those features are
due to the presence of “double” band crossings also visible by plotting, e.g., the band structure

along ΓM, as achieved in (b). Another band crossing is apparent around 0.27 eV below EF.

(i) The relaxation time has no reason to be the same in the different tubular regions of the FS. (See, e.g.,

the interpretation produced in chapter 4 to assess the anisotropy of the electron-phonon coupling in the case

of Cr2AlC.) This might well increase the anisotropy by a substantial, additional factor.

(ii) The V2AlC crystals measured in [159] were possibly too thin for allowing one to get a precise, quan-

titative estimation of the anisotropy ratio using the device structure and correction method expounded in

[159].

(iii) The V2AlC crystals investigated in [159] exhibit inplane stacking faults or partial delaminations, which

could increase the resistivity value measured along c. (We note, however, that the x-ray diffraction patterns

of these crystals (see chapter 3) did not indicate any substantial delamination, which would induce in a Laue

pattern a noticeable spreading of the diffraction peaks, or even double peaks.)

Eventually, we briefly describe details observable nearby or at the closed-loop-like structure we obtain

from DFT on the FS of band 39, in the ΓM direction. The origin of this strange morphological detail is made

clear by the band structure plot over ΓM: A linear crossing-like structure appears at the Fermi level, where

we observe the loop structure in the FS. Bands 39 and 40 are involved in the crossing at the Fermi level, and

bands 40 and 41 in the one standing 20 meV above EF . If one plots an isoenergy surface for bands 41 at an

energy of around 30 meV above the Fermi level, one gets nearly punctual and anisotropic oval surfaces at the

crossing point over ΓM(see figure 5.10; the highest velocity is in the ab plane and in ΓM direction). Further
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investigations are needed to confirm the existence of this node, whether it might be considered as a socalled

topological node, a potential 3D counterpart to a Dirac point and its possible impact on magnetotransport.

5.3 Summary

We presented an in-depth study of V2AlC near Fermi level electronic structure. ARPES results are in excellent

agreement with the output of our computations. The V2AlC FS shows a noticable degree of anisotropy

but far lower than expected from previous transport measurement studies [159]. The renormalization of

the effective masses and velocities at the Fermi level appears to be quite small, in contrast with what we

previously observed for Cr2AlC [228]. This suggests that the electron-phonon coupling is weaker in V2AlC

than in Cr2AlC. Coming back to the conclusion of chapter 4, we can now state that the quasi bidimensional

nature of Cr2AlC is not shared with its counterpart V2AlC, nor the influence of electron-phonon coupling

Our results indicate that the hole and electron FSs are tightly nested into one another, possibly explaining

the almost perfectly compensated character of this semi-metal, as observed from magnetotransport measure-

ments [159]. We also reported the first observation of the electronic surface state of a MAX phase. Further

investigations are needed to address some of its properties, such as the nature of a passivation process which

makes the surface state to progressively disappear after several hours in UHV conditions. Despite the very

different morphology of the near Fermi level electronic structures of V2AlC and Cr2AlC, one can wonder

whether it is still possible to find a relation between them. Also, the puzzling linear band crossings spotted

near EF over ΓM ought be studied in greater detail.
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Chapter 6

A unified description of (211) MAX

phases based on rigid band models

As for chapter 5, the content of this chapter is mainly taken from another article [256] that was written by

the author of this thesis. On the contrary to the two previous chapter, that each covered one specific phase,

the present one takes a more global approach on MAX phase electronic structure and how the so-called rigid

band models can describe whole subclasses within the MAX phase family.

Rigid band models (RBM) are indeed useful for describing families of materials where varying a param-

eter does not appreciably modify the electronic band structure but results in an appreciable sweep of the

Fermi energy across the bands [257, 258, 259]. This parameter is typically a tunable atomic fraction of a given

chemical element, which either directly enters into the composition of an alloy or a compound (see, e.g., [257,

258, 259, 260, 261]) or which is used for intercalating a nanolamellar phase (see, e.g.,[262, 263, 264]). Alter-

natively, it was noticed long ago that simple transition metals belonging to the same or neighboring groups

could exhibit quite similar band structures, their electronic structure differing only by a shift in Fermi energy

(see, e.g., [265]). Finally (as in this work), changing a chemical element in a compound belonging to a given

family while keeping a similar band structure also justifies the use of a RBM [266, 267]. For the latter to be

applicable, the symmetry of the crystal structure must not only remain unchanged from one compound (or

composition) to the next but electronic correlations effects must also be small with respect to the electronic

structure [268, 269, 270]. In contrast, when the structure is maintained the same but a noticeable change

within the electronic structure is observed, the failure of the rigid band model is often viewed as a good

indication that electronic correlations or other many body effects play an important role (see, e.g., [268, 269,

270]).

The aim of the study we present throughout this chapter is to demonstrate the applicability of rigid

band models to the nanolamellar MAX phases. In particular, we focus on the subfamily of the 211 MAX

phases, which we described in chapter one (See figure 2.1 for their unit cell). The similarity between the

electronic structure of several 211 (and even 312) phases was noticed long ago: the calculated DOS profile
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of one compound, once correctly shifted in energy, could be roughly superimposed over the DOS of another

compound [1, 144, 151]. Here, we go one step further and combine DFT calculations to ARPES in order

to show that not only the DOS but also the topology of the bands in reciprocal space is also conserved.

All band structures are similar within a given A group and, quite remarkably, the Fermi surface of a given

MAX phase can be deduced from ARPES measurements conducted on another phase simply by selecting

the appropriate ARPES isoenergy surface. Additionally, the shift in energy required to obtain this agreement

reasonably matches the shift in EF predicted by DFT calculations. We will see that these results allow one

to build a unified description of the electronic structure of MAX phases. Such a unified description was not

obvious a priori, because the Fermi surfaces of different MAX phases can differ enormously (as predicted

and measured in [228, 249], and described in chapter 4 and 5). It turns out that this difference is mostly

accounted for by a simple shift in EF .

Applicability of the rigid band model to MAX phases offers interesting perspectives. As detailed below,

the band structure of those phases exhibits many band inversions, which result in the existence of several

nodes or band crossings at different energy levels (As the linear band crossing in section 5.2.3). This leads,

e.g., to the prediction of the presence of nodal lines and other topological nodes within MAX phase rigid

band structure.

Such topological features were studied very early in the history of quantum and solid-state physics [271].

However, they actually laid dormant in the literature until the last two decades. They then sparked a re-

newed and now very strong interest (see, e.g., [272, 273, 274] for recent reviews) due to the resulting elec-

tronic properties they may generate, e.g., protected surface states, or the specific responses to electromagnetic

excitations they may lead to [272]. These include Weyl, Dirac, and nodal line semi-metals [272, 273, 274], as

well as other systems featuring intricate band structure specificities (see, e.g., [275] for a hybrid parabolic

and Dirac-like dispersion at the degeneracy points or [276] for other semi-Dirac points, or [277] for surface

Dirac node arcs). In particular, nodal lines are now actively studied in a number of 3D materials and can

be divided into gapped and symmetry-protected lines, depending on whether spin-orbit coupling lifts the

degeneracy at the crossing point or not (see, e.g., [274]). In principle, gapped nodal lines positioned at EF

favor the existence of a strong spin Hall effect, a desired property for generating spin currents in spintronic

devices [274, 278, 279]. In the last section, we provide detailed theoretical and experimental evidence for

the existence of such topological features in the V2AlC phase (more precisely, a gapped nodal line slightly

below EF and a complex crossing point with some Dirac-like features at EF ). In MAX phases, such nodes

are always accompanied by the presence of other, more conventional bands, but the possibility to change EF

appreciably by just changing the M element should allow one to position EF at a given crossing point (this

is predicted, e.g., in the case of the “simple” phases V2AlC, Cr2AlC, and Ti2AlC). Combining conventional

bands to nodal lines is indeed not expected to prevent one from obtaining a strong spin Hall effect (see,

e.g., [279] and references therein). Hence, combining several M elements could possibly allow one to reach
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other interesting topological nodes experimentally. The 211 MAX phases thus form a family of semimetals

incorporating a variety of interesting topological features, which could reasonably be described by the use

of a restricted number of rigid band models.

6.1 Rigid band model of M2AlC MAX phases

6.1.1 Methodology

ARPES isoenergy surfaces and band structure mappings from Cr2AlC and V2AlC single crystals -corresponding

to figures 6.1 and 6.3- are issued from the same experimental run as the data presented in chapter 4 and 5.

Additional ARPES experiments were performed by Takahiro Ito at the Institute for Solid State Physics

(ISSP), University of Tokyo [280], at T = 35 K using a quasi-continuous-wave laser source (hν = 6.994 eV)

(figures 6.12b, 6.12d, and 6.13b). Here, circularly polarized light was used in order to partially circumvent

the low-photoionization cross section of some orbital contributions within the experimental range allowed

by the detector. Energy resolution was set at about 5 meV. All calculations were performed with the full

potential LAPW+lo method implemented within the WIEN2K software. The non-spin-polarized PBE GGA

functional [207] was chosen. The following phases were chosen for computational analysis in this work

(together with the references of the .cif files used for computations): Cr2AlC [239], V2AlC [5], Ti2AlC [10],

Nb2AlC [281], Ti2GaC [19], Ti2GeC [10], and Ti2SnC [10]. Wave functions were expanded up to a RKM

cutoff parameter of 9 to make sure convergence was reached for all phases. For the same reason, a very

dense 73× 73× 14 Monkhorst-Pack cell was used. The Fermi surfaces were as usual calculated using X-

CRYSDEN [240]. The level of convergence in energy was set to 0.001 mRy for Bader charge calculations with

the WIEN2k AIM code.

6.1.2 Electronic structure of M2AlC (M = Cr, V, Ti, Nb)

As outlined above, the combination of ARPES experiments performed on MAX-phase single crystals and

DFT calculations makes it possible to test the RBM beyond the mere assessment of the density of states [228,

249]. This methodology allows us to study how the topology of the bands in reciprocal space (i.e., the band

structure and the isoenergy surfaces) would evolve when going from one phase to another. We applied it to

first-hand ensure the efficiency of RBMs to picture M2AlC phases.

Before detailing the first step of our analysis, it is useful to briefly summarize briefly the results of chapter

4 and 5 [228, 249]: Regarding the ARPES spectra of Cr2AlC, it was found that most of the features of the

experimental FS were well reproduced by DFT calculations. It mainly consists of quasi two-dimensional

tubes directed along c∗. The most noticeable discrepancy was an additional pocket observed at the point

that accounts for a camel-back-like structure located just below EF . Some renormalization effects were
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also observed. V2AlC FS determined by ARPES showed an even better level of consistency with DFT but

was found to be much less bidimensional than Cr2AlC. For Cr2AlC as for V2AlC, all ARPES spectra were

found to be consistent with both the angular dependence of the photoionization cross section and the orbital

characters of the bands predicted by DFT.

Figure 6.1 displays a section, i.e., a 2D cut or a projection for a specific reciprocal space plane (here the

ΓKM plane), of the FS of three MAX phases (Cr2AlC, V2AlC, and Ti2AlC). For each image, the ARPES

intensity map and DFT results at ΓKM and AHL planes are plotted together. The specificity of all figures is

that we do not directly superimpose the DFT of one phase to the ARPES image of the same phase. For each

image, the DFT and the ARPES come from two different phases, but we apply to the DFT datas (or to the

ARPES) an overall energy shift which allows us to optimize the matching between the DFT and the ARPES

maps. In other words, if we start from the ARPES FS of a given phase, we find the appropriate energy shift

in the band structure of another phase, which is required to obtain the best fit of the ARPES image, and plot

the resulting DFT isoenergy surface. Alternatively, if we directly plot the DFT FS, then we probe the ARPES

isoenergy surface of another phase for an energy value which allows us to fit the DFT FS. The ARPES maps

are therefore plotted versus the FS or isoenergy sections over the Γ or A plane. Thus, the ARPES spectra of

several phases are directly compared, at and below EF , to DFT Fermi lines or isoenergy surface lines of other

phases.

In figure 6.1a, the measured Cr2AlC FS is compared to V2AlC isoenergy lines 0.6 eV above the V2AlC

Fermi level, computed by DFT. They match to a remarkable extent. Even more strikingly, the V2AlC isoen-

ergy surface shows a pocket centered at Γ, a feature which was actually missing from Cr2AlC DFT calcu-

lations but was spotted by ARPES in chapter 4 [228]. Similarly, in figure 6.1b one can verify that a Cr2AlC

ARPES isoenergy section at E = EF0.56 eV almost perfectly fits the V2AlC DFT Fermi surface (The additional

features around M are due to surface states appearing just after crystal cleavage, already observed and com-

mented on in chapter 4 [249]). This ARPES isoenergy surface has a form that shows not only well-defined

lines but also extended regions due to dispersion bands which are locally 3D, as expected for the V2AlC FS.

One can also check the very strong similarity existing between a direct ARPES measurement of the V2AlC FS

(figure 6.1c) and the shifted Cr2AlC ARPES image of figure 6.1b. (A 45-degree rotation needs to be applied

in order to take into account the difference in orientation of the two crystals for those two measurements.)

We summarize DFT FS results in figure 6.2, where V2AlC FS and isoenergy surfaces are plotted in 3D within

the first Brillouin zone (BZ). By shifting upwards by 0.6 eV with respect to the V2AlC Fermi energy, one

obtains an isoenergy surface identical to Cr2AlC FS, and by shifting downwards by approximately 1.14 eV,

one obtains the Ti2AlC FS.

The band structures (BSs) demonstrate a similar trend (see figures 6.3 and 6.4): the V2AlC BS is recovered

when shifting the Cr2AlC bands by roughly 0.6 eV downwards. It is worth noticing that despite their strong

resemblance, some discrepancies between shifted Cr2AlC and plain V2AlC DFT BSs remain [figures 6.3a and
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FIGURE 6.1: (a) Cr2AlC Fermi surface mapping from ARPES plotted together with V2AlC DFT
isoenergy lines 0.6 eV above EF. On (b), ARPES in-plane mapping of Cr2AlC at E = EF0.56
eV is compared with V2AlC DFT Fermi surface cuts. (c) V2AlC ARPES Fermi surface mapping.
When shifting the energy 1.12 eV below the V2AlC Fermi level, we obtain the in-plane mapping
in (d), which is plotted vs Ti2AlC DFT Fermi surface cuts. Dotted lines stand for isoenergy lines

over the Γ and A planes.
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6.3c]. Some bands mismatch by a few meV, up to 160 meV for the camel-back structure centered on Γ. These

differences actually correspond to what is observed between the ARPES BS of Cr2AlC and DFT calculations

[228]. This means that the shifted V2AlC band structure would actually be a better fit to Cr2AlC ARPES

BS than the output of previously presented Cr2AlC DFT calculations (see chapter 4). This is indeed what is

observed when directly comparing V2AlC DFT BS shifted by 0.6 eV upward to Cr2AlC ARPES BS mapping

over ΓM and ΓK (figures 6.4a and 6.4b). It also means that it is possible to navigate from V2AlC to Cr2AlC

electronic structure just by applying an appropriate energy shift of about 0.56–0.6 eV.

Let us now turn ourselves towards what is observed when we shift the V2AlC spectra below the Fermi

energy: For E = EF1.12 eV, we get the ARPES mapping shown in figure 6.1d, which is this time compared

to the Ti2AlC DFT FS. The two tubes centered on Γ (each of them actually stands for two different FSs that

are almost degenerate) are electronlike while the plate-like FSs centered on K are hole pockets. We obtain

a similar level of matching between the Ti2AlC DFT FS and shifted V2AlC ARPES image as for figures 6.1a

FIGURE 6.2: Overall relations between various M2AlC Fermi surfaces and the isoenergy sur-
faces of V2AlC. All energy shifts and isoenergy surfaces were computed by DFT calculations.
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FIGURE 6.3: V2AlC and -0.6 eV shifted Cr2AlC band structures from DFT calculations, plotted
together over ΓM (a) and ΓK (c). A 160-meV discrepancy is observed for the camel-back struc-
ture of Cr2AlC near Γ, though the bands shape is nearly like V2AlC. Similarly, Ti2AlC band
structure is plotted together with -1.16 eV shifted V2AlC bands (b, d). For all figures, the BZs

are scaled to that of V2AlC.

and 6.1b. When shifted by 1.14 eV downwards, the V2AlC DFT BS also happens to correspond to that of

Ti2AlC (figures 6.3c and 6.3d]. And once again, shifting the Ti2AlC DFT BS by +1.16 eV accurately renders

the ARPES BS map of V2AlC over ΓM and ΓK (figures 6.4c and 6.4d). The energy required to go from V2AlC

to Ti2AlC lies between 1.12 and 1.16 eV

These results clearly demonstrate that one can navigate across the electronic structure of the M2AlC

phases just by applying an appropriate energy shift. Figures 6.1 and 6.4 thus constitute a direct experimental

verification of the applicability of RBMs to MAX phases.

So far, we only verified the applicability of the RBM when navigating horizontally across the periodic

table, going from Ti to Cr, and not horizontally. Figure 6.5 summarizes the similarities found between the BSs

and FSs of V2AlC and Nb2AlC, all obtained from DFT calculations. (Our Nb2AlC crystals are presently too

small for being probed by conventional ARPES.) The BSs are plotted over ΓM (figure 6.5a), and the Nb2AlC

BS is renormalized to the volume of the V2AlC BZ. Both show very similar features, but the Nb2AlC band

structure seems to show sharper slopes than V2AlC. It is almost as if one could obtain the V2AlC BS from
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FIGURE 6.4: Cr2AlC band structure from ARPES vs V2AlC + 0.6 eV shifted band structure
from DFT (red dotted lines) over ΓM (a) and ΓK (b). V2AlC ARPES mapping over ΓM and ΓK
is also compared with Ti2AlC DFT BS, shifted by 1.16 eV. The energy shifts needed for the band

structure to match are nearly the same as in figure 6.1.

that of Nb2AlC by simply dilating the energy axis and expanding the wave-vector axis. The morphology of

their bands at EF seems quite similar (see figure 6.5b). Nb2AlC would then share a FS nearly identical to that

of V2AlC. This is reminiscent of the so-called jungle-gym Fermi surface [282] that describes the V, Nb, and

Ta elemental metals. Horizontally varying the M atom of MAX phases would leave the FS unchanged but

would homogeneously distort the bands.

6.2 Demonstration of the applicability of the rigid band models

6.2.1 Charge transfer and rigid energy shifts

The energy shifts required to go from one M2AlC phase to another one are large: 0.6 eV for the shift between

Cr2AlC and V2AlC, and about 1.14 eV between V2AlC and Ti2AlC. Such shifts are quite large, as compared

to the typical variation of the Fermi level that arises when doping a metal (adding a very high concentration

of dopants would move EF just by a few meV [40]) but of the same order of magnitude as those obtained

between some elemental transition metals, when they can be described by the RBM [265]. If the origin of

the changes in EF is quite obvious for a doped metallic system [40], a slightly more involved explanation

is needed to make sense of the energy shift values found in section 6.1.2 for the M2AlC phases, and the

corresponding analysis is described below.
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FIGURE 6.5: (a) The band structure of V2AlC is compared to Nb2AlC over ΓM. Their respective
Fermi surfaces are given in (b).

In figure 6.6, the M atom partial densities of states (pDOS) of Cr2AlC, V2AlC, and Ti2AlC are given. As

expected from section 6.1.2, one can recover one of the pDOS from another pDOS by applying the same

energy shifts as those required in figures 6.1–6.3. One can also integrate the pDOSs from the Fermi level of

V2AlC (Ti2AlC) to Cr2AlC (V2AlC) and obtain quantities homogeneous to a charge per unit cell. Dividing

the latter by the number of M atoms per unit cell (four), we obtain a quantity that would intuitively be

considered as the charge variation on the M site when going from one phase to another, which we will refer

to as δQMZ→MZ+1
DOS . To elaborate a proof of this identity, we also compute the charge variations on the M sites

by another method involving the computation of Bader charges [283]. We first compute the Bader charge of

the different atoms in the M2AlC, V2AlC unit cell. As a quick reminder, the Bader charge is defined as the

integral of the charge density across the so-called “Bader atom area,” which refers to the volume of space

within the charge density basin, centered on a given nucleus [283]. Both the charge density basin and the

Bader charge are calculated with the AIM code embedded within WIEN2k. The Bader charges of all the

atoms considered are then subtracted from their respective atomic numbers in order to obtain a quantity

that we call Bader charge transfer or ∆QBader. For a given atom Ω , the Bader charge transfer is thus be given

by the following expression:

∆QBader
Ω = ZΩ −

∫
Ω

ρ(r)dr (6.1)

where ZΩ stands for the atomic number of Ω, and ρ is the electron density of the system that is being

integrated over the charge density basin of the atom Ω . We compile those values for the M2AlC (M = Ti, V,
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FIGURE 6.6: Various M2AlC M atom partial DOSs, with M = Cr, V, Ti. DOSs are integrated from
the Fermi level of V2AlC (Ti2AlC) to Cr2AlC (V2AlC) to get quantities homogenous to a charge

per unit cell, which are later converted to a charge per M atom unit.

Cr, Nb) phases in figure 6.7 and 6.8.

We observe that we conserve the overall charge neutrality when summing up ∆QBader of all the elements

within a phase unit cell. In figure 6.7c, we plot the Pauling electronegativities of the M elements [284] against

the ∆QBader for those phases. A roughly linear relationship is revealed, thus demonstrating the consistency

of our charge-transfer analysis.
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FIGURE 6.7: Charge transfer, or the difference between the electronic charge of atoms within
MAX-phase unit cells (computed with the Bader method) and in vacuum, calculated for se-
lected M2AlC (a), M2GaC (b), and Ti2AC phases (d). In (c), a linear relationship is found
between the M atom charge transfer for the Al 211 phases and the respective Pauling elec-

tronegativity of the M elements.

From the charge transfer on the M atom site, we can compute the local charge variation on the M site

arising when changing the M element by one atomic number. It is given by the following expression:

δQMZ→MZ+1
Bader = 1 + (∆QBader

MZ+1 − ∆QBader
MZ ) (6.2)

where MZ+1 and MZ would, for example, stand for the vanadium and titanium atoms. All values of

∆QMZ+1 are tabulated in figure 6.8, together with the ∆QBader
MZ of the M elements and the δQMZ→MZ+1

DOS integrals

of the pDOSs within the energy intervals of δEMZ→MZ+1
DOS . The ∆QBader

MZ differs by less than 0.1 electrons/atom

from δQMZ→MZ+1
DOS (see figure 6.8). This means that the δQMZ→MZ+1

DOS integrals over the δEMZ→MZ+1
DOS energy

shifts intervals can be associated to the charge transferred from the M atom site when going, for example,

from Ti2AlC to V2AlC.

The energy shifts experimentally determined in section 6.1.2 can thus be understood both in terms of

charge transfer and as the occupation of the states of the rigid electronic structure in the δETi→V
DOS interval. This

opens up the possibility of tuning the position of the Fermi level on the M2AlC BS over a wide energy range

just by changing the nature of the atoms on the M sites. We note that the applicability of the rigid band model
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to M2AlC phases is far from obvious because of the implication of d orbitals in M2AlC’s electronic structure.

These could intuitively lead to non-negligible electronic correlations and to a dramatic failure of the RBM. But

the success of the RBM at describing M2AlC phases strongly suggests that electronic correlations do not play

a key role in the electronic structure of many 211 MAX phases (at least) in a given window around the Fermi

energy values, as long as the atomic number of the M atom remains small enough (i.e., 211 phases avoiding,

e.g., Ta, W, etc.) [268, 269, 270]. Here, an important word of caution must be offered to readers. In this study,

and as for the case of Cr2AlC in chapter 4, we did not need to account for magnetic ordering nor did we have

to use a DFT+U approach for the DFT calculations in order to produce good fits of the band structure and

FS as measured by ARPES. However, it must be clear that for some Cr-based compounds such as Cr2GaC,

a nonmagnetic configuration yields very inaccurate results for a range of other properties, notably, elastic

(see, e.g., a review of such results in [22] and references therein). And in the case of strongly magnetic MAX

phases or derivatives such as iMAXs or 4473 phases (see chapter 2), any property clearly requires taking

magnetism in the DFT approach explicitly into account. As a consequence, the RBM approach can in no case

be extended to other properties than band structure without a careful comparison of theory and experiment.

6.2.2 Global picture of 211 MAX phase rigid band models

Figure 6.9 is a summarizing picture of the rigid band model that describes M2AlC phases. The isoenergy

surfaces that correspond to Cr2AlC, V2AlC (Nb2AlC), and Ti2AlC Fermi surfaces are appointed to their

relative positions on the rigid band structure. All of them were computed by DFT. Note that several band

crossings are observed in figure 6.9, notably at the V2AlC Fermi level over ΓM (red line) and at the Ti2AlC

Fermi level over ΓK (green line); other crossing points also appear between these two energy positions. In

[249], a linear crossing has been predicted within the V2AlC BS, at EF. It originates from a band inversion

FIGURE 6.8: In column 1, the charge-transfer values from the Bader method for the M atoms of
M2AlC phases (M = Cr,V,Ti) are tabulated. In column 2, we give the charge variations on the M
site when going from one transition metal to another, also calculated with the Bader method.
Column 3 stands for the integrals of the M atom partial DOSs over the energy intervals of
column 4. These intervals are alternatively extracted from Fermi surface (column 5) or band

structure rigid energy shifts (column 6).



6.2. Demonstration of the applicability of the rigid band models 109

FIGURE 6.9: A summarizing picture of the rigid band model describing the M2AlC phase’s
electronic structure. Band crossings are observed at V2AlC and Ti2AlC Fermi levels. Crossings
that might account for 3D linear crossings or nodal lines are located in between those two

energy levels.

involving bands with a dx2y2 + dxy and a dxz + dyz orbital character, and some tiny weight from p orbital of

the Al bands. Similar Ti2AlC band crossings occurs at EF, as well as some nodal lines like features which

can be observed between the V2AlC and Ti2AlC Fermi levels (See section 6.3.1). The bands involved in those

band crossings exhibit a mixture of different M d orbitals, also with a small weight of px + py for some.

Here, we do not want to give an exhaustive description all of these nodes, as the next section is devoted to

provide both detailed theoretical and experimental data to show the existence of two such features (a nodal

line below EF and an apparent semi-Dirac-like band crossing at EF ) in the particular case of V2AlC. If the

rigid band approach is valid, alloying on the M site (with Ti or V) or controlling the vacancy concentration

would allow one to navigate between several such band crossings by applying simple rigid band shifts. The

applicability of the rigid band model could also guarantee that the bands would be conserved even if the

M sites were randomly occupied by different transition-metal atoms [260]. One should note that synthesis

of 211 phase solid solutions or ordered phases with several and differents Ms is already well described in

the literature, as it is well described within the section 2.2.2 of this manuscript and the references therein.

These results suggest that MAX phases could open up avenues for physicists to study gapped nodal lines

and other Dirac-like band crossings, as the possibility to tune the Fermi-level position on the M2AlC rigid

band structure would make a considerable number of band crossings experimentally accessible (see Fig 6.9).

Similar studies have been performed on doped semiconductors, where Dirac points were observed at higher

energy [285, 286].
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The applicability of the rigid band model to M2AlCs brings up many avenues for further research and

could be generalized to other 211 phases with different atoms on the A site. In figure 6.10, the BSs of Ti2AC

(A = Al, Ga, Ge) were computed over ΓM and ΓK (see figures 6.10a and 6.10b). Ti2AlC and Ti2GaC BSs are

very similar, sharing bands with the same features at all energies, and nearly no shifts are required for them

to match. A few minor discrepancies still remain, as some Ti2GaC bands are locally displaced upwards or

downwards from Ti2AlC by a few tens of meV. After renormalization of the band structures to the Ti2AlC

BZ, almost no discrepancies in momentum seem to appear between Ti2AlC and Ti2GaC bands. Their FSs are

also similar, with the same bands being involved at EF . The main discrepancy appears in the hole pocket

centered on K. For Ti2GaC, it has the shape of a torus centered on K, whereas it is more of a plain triangular

plate for Ti2AlC. The Bader charge transfers were calculated for all atoms involved in Ga-based 211 phases

(figure 6.7b), and they follow the same trend as the Al phases (figure 6.7a). In contrast, Ti2GeC BS diverges

from its counterparts. No meaningful energy shift linking it to Ti2AlC has been found. Even the number of

bands involved in its FS is different, as is its overall FS topology. One should note that both Ga and Al belong

to column IIIB of the periodic table, and their respective Ti2AC phases are described by nearly identical BS

and FS, while Ge belongs to column IVB and Ti2GeC show a BS very different from the two others. This

implies that M2GaC and M2AlC phases will likely be described by a very similar rigid band model, while a

very different one would be needed for any M2GeC phase. The following trends can then be intuited:

211 MAX phase for which the A element belongs to a single column of the periodic table will be described

by a single RBM, and keeping the same M element while changing A over this column will not lead to any

rigid energy shift. Only five rigid band models, one for each A element column, should then be needed to

describe all the existing 211 MAX phases [1]. The charge transfers for the Ti2AC’s (A = Al,Ga,Ge,Sn) have

been computed (figure 6.7d), and no significant difference in terms of charge transfer is observed between

them.

6.3 Investigating topological nodes within V2AlC rigid band structure

In this section we wish to illustrate the interest of using the rigid band model for guiding Fermi-level tuning

close to one of the particular topological features the model contains. We focus on two particular such points

or lines because, being located at or close to EF, they may be experimentally probed within the ARPES spectra

of V2AlC single crystals. However, it is worth noticing that the RBM is not limited to those two points, as it

contains other similar band crossings. V2AlC is predicted to exhibit a crossing point at EF (shown in figure

6.9 and hereafter designed as α) and a nodal line predicted by figure 6.9 to cross AΓML plane about 0.2 eV

below EF. Although the P63/mmc space group is nonsymmorphic, this particular nodal line does not lie

at a BZ boundary, so that is not symmetry protected against perturbations. This line is thus expected to be

gapped by spin-orbit coupling [274, 287]. For similar reasons, the crossing point with Dirac-like features is
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FIGURE 6.10: The band structure of several Ti2AC phases (A = Al, Ga, Ge) over ΓM (a) and ΓK
(b). The FSs of these compounds are plotted in (c), (d), and (e).

also expected to be splitted. Here we use DFT in order to estimate their value and assess whether they have

a strong impact on the Dirac-like dispersions evidenced at those particular band crossings. Besides, those

gaps are expected to depend on the element M involved in a particular phase, and below we give values

corresponding to only M = V.

6.3.1 Evidence of a nodal line within V2AlC ARPES and DFT spectra

Let us first focus on the nodal line (labeled as β at its intersection with ΓM). It can be theoretically evidenced

by plotting an isoenergy surface located slightly below the purple points observed in figure 6.9 along ΓM

and ΓK. The resulting plot is shown in figure 6.11b. In addition to conventional bands, one obtains a closed

loop with a slightly varying diameter. The latter variation is due to the fact that although the nodal line

lies exactly in the Γ plane, it slightly varies in energy in the (kx, ky) plane (see, e.g., its intersection points

along ΓM and ΓK appearing in figure 6.9). It is therefore convenient to visualize it in the (kx, ky, E) space,

as illustrated in figure 6.11a. Such a variation is not an exceptional finding and is, e.g., already described in

[277, 278, 279] for other materials. The line is located about 0.2–0.3 eV below EF .

Before showing experimental evidence for the existence of this line using ARPES data, it is worth de-

scribing the BS predicted by DFT, not only as a function of in-plane wave-vector coordinates kx and ky but
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also with kz as a parameter. In a 2D system devoid of any dispersion with kz, a given cut of the ARPES

signal along a particular in-plane direction in reciprocal space is formed of “simple” lines which directly cor-

respond to the band structure. However, and as mentioned in chapter 5, for given kx and ky values, energy

dispersion with kz gives rise to a signal broadened in energy, the well-known “kz-broadening” effect [250,

251]. The signal is dispersed over an area in the cut which is limited by the dispersion in kz over a Brillouin

zone. Roughly speaking, a well-defined line indicates that the corresponding band is 2D, and a broad region

is the sign that the band is 3D [250, 251]. It is thus important when plotting the DFT band structure along

a particular in-plane crystallographic direction, such as, e.g., ΓM, to plot a full set of dispersion lines corre-

sponding to values of kz ranging from 0 to a value equal to ΓA and not limited to, e.g., kz = 0 , as done in

figure 6.12. Figure 6.12a shows such a set along ΓM and figure 6.12c along a line intercepting the crossing

FIGURE 6.11: M2AlC nodal line features, as calculated from V2AlC electronic structure, are
plotted in (E, kx, ky) (a) and within V2AlC isoenergy surfaces at E = EF¬0.29 eV (b). A lin-
ear dispersion across the nodal line is found with GGA calculations and becomes 41.0 meV
gapped when including spin-orbit coupling (SOC) (c). A V2AlC ΓMLA ARPES isoenergy sur-
face mapping at around 0.21 eV below EF reveals kz broadened points in the ΓMK plane, at the

coordinate β where the nodal line is expected to lie (d).
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point α at EF already indicated in figure 5.9 but with a cut direction parallel to ky (figure 6.12c). In those two

figures, dispersion appearing as “bold” lines corresponds to quasi-2D bands (confined along z), and bands

where kz dispersion is appreciable now appear as defining domains. Those domains are bounded by the

curves corresponding to kz = 0 and kz = π/c. Although photoionization cross-section effects should also be

taken into account, figures 6.12a and 6.12c should reflect the overall appearance of ARPES images measured

along the same cuts.

As expected from Fig. 5.12a, the nodal line exhibits a strong dispersion in any direction perpendicular

to the line. In particular, and as shown in figure 6.11c, since around β the nodal line is locally parallel to ky,

it exhibits a linear dispersion both along kx and kz. This should result in the kz-broadening effect predicted

by figure 6.12a, defining an hourglass-shaped region below and above the line. Such an hourglass pattern is

easily recognized in the ARPES image of figure 6.12b. Well defined lines are not observed around the nodal

line, most probably due to kz broadening. The blurred hourglass shape visible in the ARPES cut is also well

bounded by the extremal dispersion lines predicted by DFT (located respectively in the Γ and A planes, and

also shown in figure 6.12a).

To prove the existence of the line requires more than an ARPES cut, and thus additional evidences are

given below. Figure 6.13a shows an isoenergy section at an energy value where most of the nodal line is

expected to lie. We find the theoretically predicted hexagonal shape, and similarity between figures 6.13a

and 6.11b is striking. Additional patterns appearing at the apices of the hexagon are due to the additional

bands predicted in figure 6.11b and to the fact that the nodal line slightly varies in energy (see figure 6.11a),

so that in those regions the isoenergy plane intersects the lower part of the “hourglass” instead of the crossing

point. In order to prove that the hexagon seen in figure 6.13a does not simply represent the energy intercept

of a regular band but corresponds to the intercept of the nodal line, we represent in figure 6.13b ARPES cuts

parallel to kx but intercepting points β, β1, or β2, defined in the zoomed part of figure 6.13a. As is obvious

from the three cuts of figure 6.13b and due to the fact that the nodal line runs parallel to ky, the ARPES

pattern remains almost unchanged. The “hourglass” is always present and lies at the same position. (Here

we note that the ARPES line corresponding to the rising band going to α is also almost independent of ky,

and this is the reason why its location is also constant, as for the nodal line; this is discussed below in the

section discussing the dispersion around α) DFT dispersion in kz is illustrated by the kz-broadening curves of

figure 6.13b, but it is also interesting to produce a direct kz variation by varying the incident photon energy,

as shown in figure 6.11d. Location of the DFT nodal line at kz = 0 is compatible with the data shown in figure

6.11d. What cannot be done experimentally is to get a quantitatively accurate estimation of the dispersion

line around kz, but combining the information given by figures 6.11, 6.12 and 6.13 clearly demonstrates the

experimental existence of the nodal line. Relativistic SOC DFT calculations predicts a value of 41 meV for

the gap in β (see figures 6.11c and 6.14). Positioning EF close to this line while maintaining its BS pristine

should result in spin polarization effects. From the DFT calculations, it is also worth noticing that in spite of
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FIGURE 6.12: kz projected band structure of V2AlC along ΓM, from DFT (a) and ARPES (b). kz
broadening is considered from kz = 0 to kz = π/c (red curves stand for extremal kz values).
The linear band crossing point at E = EF is labeled as α and that corresponding to the nodal
line as β. The kz projected band structure centered on α and perpendicular to ΓM from DFT
and ARPES measurements is plotted in (c) and (d). In (b) and (d), full and dashed gray lines

stand for the band structures in the ΓMK and ALH planes.
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the gap induced by spin-orbit coupling, dispersion becomes linear and “Dirac-like” roughly less than 2 meV

away from the top of the band.

6.3.2 Other node and effect of spin orbit coupling

Let us now address the bands morphology near point α, which exhibits Dirac-like dispersions in various

directions. kz-broadening not only affects the ARPES cuts of the nodal line but also the bands measured

around α, as predicted by figure 6.12c. DFT predictions along various particular directions are given in

figure 6.14. Three bands are present around α (bands 39, 40, and 41). When going from Γ to M and from the

bottom to the top of the energy window around α, these bands respectively form (i) a quasi-2D Dirac cone

before α and linear dispersions along kx and ky but massive dispersion along kz beyond α (see figures 6.12a

and 6.14); (ii) a quasi-1D line along kx (i.e., large effective masses and almost flat dispersion along ky and kz,

given in figures 6.14b and 5.14c); and (iii) a cone with Dirac-like dispersion along kx (figure 6.14a) and mixed

shapes along ky and kz (figures 6.14b and 6.14c). The structure around α is thus quite complex (and is indeed

much more involved than what we assumed in chapter 5 for V2AlC). Below we describe in more detail the

topology around this crossing point along with the experimental evidence that can be gained from ARPES.

Figure 6.12a shows the theoretical dispersion and predicted kz broadening along kx (i.e., along ΓM), and

figure 6.12c shows the same features, but now along the line parallel to ky intercepting α in reciprocal space.

ARPES cuts are shown in figures 6.12b and 6.12d, where extremal DFT lines are superimposed to the ARPES

cut. All lines forming the Dirac-like point are distinctly recognized along kx and ky, respectively, taking into

account effects already discussed for the nodal line. Let us first consider figure 6.12b. The left ascending part

is clearly visible as a line, because there is no predicted kz broadening in this part, and the band is quasi-2D

with Dirac-like dispersions along kx (figures 6.12a and 6.12b) and ky (figures 6.12c and 6.12d) but at the top

of the band, where the crossing point is split by spin-orbit coupling (see figure 6.12). In contrast, the right

descending part appears as a blurred region, which is easily explained by two features. On the one hand, and

in contrast to all other lines, the main orbital contribution of the “descending” part beyond α is dxz + dyz,

and it turns out that the available angle range of our experiment makes the photoionization cross section

of this part rather small. On the other hand, and most of all, beyond α (see figure 6.12a) there is a strong

dispersion along kz so that the ARPES cut is subject to the well-known kz-broadening effect in that part

[250, 251]. (In fact, beyond α and going towards M, the upper band seen in figure 6.14c crosses EF and goes

down as kx increases, so that it is responsible for the strong dispersion along kz in that part.) Experimental

dispersions are clearly visible along the line parallel to ky (figure 6.12d). It is thus clear from figure 6.12

that the crossing point is present where DFT predicts it to lie. The observed line broadening is once again

explained by kz broadening, and is well circumscribed by the domain predicted by figure 6.12c (The extremal

band lines defining the domain have also been superimposed in the ARPES cut of figure 6.12d). From the
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considerations above, the overall topology of the crossing point can be viewed as the complex result of the

intersections of quasi-1D, quasi-2D, and 3D bands, respectively.

Due to kz broadening, we could not accurately assess the experimental value of the spin-orbit splitting or

the band curvature. We did it using DFT calculation only. We found a gap of 20.7 meV at α, to be compared,

e.g., to the gap at around 70 meV found in the 3D Dirac semimetal Cd3As2 [288]. This small gap makes the

dispersion become linear, e.g., Dirac-like, roughly less than 10 meV below the top of the band (see figure

6.14). This is indeed somewhat “better” than what is found in an archetypal 3D material such as Cd3As2,

where, due to crystal field splitting, 3D Dirac electrons are expected only around 100 meV below EF [288].

Experimentally, the presence of, e.g., vacancies, could slightly empty the population of the lowest band

or fill the upper one. Although this still remains speculative, the presence of a few holes in this valence

FIGURE 6.13: V2AlC ARPES isoenergy surface mapping at E = EF0.21 eV, a few meV below β.
(b) ARPES band structure is plotted vs DFT band structure along three directions parallel to M

and respectively crossing the nodal line at β, β1, and β2.
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FIGURE 6.14: V2AlC band structure near α across kx , ky, and kz , with and without spin-orbit
coupling.

band could then explain the fact that when measuring magnetoresistance (MR) in similar crystals, we never

found a perfect parabolic dependence (V2AlC MR power exponent was around 1.4) [159]. In V2AlC, this

seemingly anomalous behavior could indeed be explained by the mixing of the parabolic contribution of the

“conventional” bands at EF with the linear contribution expected from a slightly populated band featuring

a linear crossing, as first theoretically considered in [289] and as observed later in many materials (see, e.g.,

[290]). In contrast, in the case of Cr2AlC, which is devoid of such topological features at EF , the MR was

found to be almost perfectly parabolic [159].

6.4 Summary

The applicability of the rigid band model to 211 MAX phases has been successfully assessed by means of

ARPES analysis and DFT calculations. Changing the M atom leads to rigid shifts of the Fermi level that

leave the bands almost unchanged. It also allows for a complete classification of 211 phases based on simple

criteria: all those that can be modeled by the same rigid band model would belong to a given subfamily of 211

MAX phase, which leads to the typology of five subfamilies from the five A element columns from which one

can obtain every known MAX phases. Such classification is compatible with others that were built upon a

different criterion, i.e., bond stiffness [291]. It is also expected that a similar classification would describe the

312 and 413 phases. One of the implications of a unified description of MAX phases by rigid band models

is the possibility to navigate through their electronic structure by playing with a single parameter (e.g., a

tunable atomic fraction of (M,N) elements in a given (MxN1-x)2AX solid solution or, still better, using totally

ordered phases combining M,N elements [7]). The presence of band inversions (see figure 6.9) that lead to



118 Chapter 6. A unified description of (211) MAX phases based on rigid band models

the existence of many crossings and topological nodes in the rigid band structure of M2AC (A = Al, Ga, In,

Tl) shows even greater promise. Tuning the atomic ratio of M elements in solid solutions could thus open the

possibility for MAX phases to be established as a promising arena for metal physicists exploring topological

properties of matter. To achieve this, one still has to experimentally prove that EF can be tuned close to the

existing topological nodes. As for other compound or elemental materials, those topological features coexist

in the same energy window with the contributions of more conventional bands (see, e.g., [279]) and thus

differ from the few unique systems such as, e.g., Cd3As2 [288], which simply displays a Dirac-like point at

EF . But this does not preclude the observation of some specific effects usually associated with such nodes,

e.g., the spin Hall effect or a linear MR component.

Here, our focus was set specifically on 211 MAX phases. One may still ask if similar features are observed

within 312 MAX phases electronic structures, especially regarding topological nodes and "Dirac-like" nodes.

We will adress these questions in the last chapter of this thesis, devoted to the study of 312 Ti3SiC2 single

crystals.

Also, as electronic correlation are found to be relatively weak for most 211 MAX phases, one can wonder

how their properties will change if one artificially "insert" source of correlation within these compounds.

This was our leitmotiv for the synthesis and exploration of rare earth based quaternary iMAX and 4473

phases, and we will outline a few of our results within the section at the end of this manuscript.
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Chapter 7

From Ti3SiC2 Fermi surface

determination to Ti3SiC2 thermopower

anisotropy

Drawn from an article first signed by the author of this thesis and published recently [292], this chapter is

focused on the exploration of the electronic structure of the compound that is likely the most widely studied

among MAX phases, 312 Ti3SiC2 [1].

Among the Mn+1AXn family, Ti3SiC2 has indeed occupied a central place as it was the first pure phase

to be thoroughly investigated by Barsoum and El Raghy [11], about 25 years after the early work of Nowotny

[10]. A method was only very recently developed in order to exfoliate Ti3SiC2 and obtain the bidimensional

Ti3C2 MXene [293], Ti3C2 also being the first MXene to be synthetized by chemical exfoliation of Ti3AlC2 in

2011 [47]. As detailed throughout chapter 1, many of MAX phases’ basic properties (e.g., electrical conduc-

tivity, thermoelectric coefficients, and mechanical properties) have already been extensively studied by both

experimental and computational means.

In the case of polycrystalline Ti3SiC2, thermopower was found negligible over a wide temperature range

[294], a fact later explained by a compensation of electron and hole-like contributions (although those contri-

butions take place out-of or in-plane, respectively, and are thus not compensated in single crystals, poly-

crystals average them over all random directions, thus leading to a net zero thermopower). For single

crystals, a substantial thermopower anisotropy was predicted [145, 295, 296], and later confirmed by in-

plane measurements performed on single-crystalline thin films [297]. A prominent role is played by highly

anisotropic intertwined pockets centered on the H point of the hexagonal BZ. For a many-band metallic sys-

tem like Ti3SiC2, and as discussed for Cr2AlC in chapter 3, the determination of FS and near Fermi level

band structure is necessary to be able to rigorously derive the conductivity and other Onsager coefficients

[pinek_unified_2019 , 40, 154]. The FS and band structure of Ti3SiC2 are featured in several ab initio studies

[145, 295, 296] [152, 156, 298] but little work has been done to experimentally measure them, mainly due to
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the lack of availability of bulk single crystals required for measuring either de Haas–van Alphen oscillations

or ARPES.

As presented within this chapter, Ti3SiC2 bulk single crystals were probed by ARPES. As for the electronic

structure of 211 MAX bulk single crystals detailed in the previous chapters, ARPES BS and FS mapping are

compared to the output of DFT calculations. This chapter reports on the first experimental study of the FS

and BS of a 312 MAX phase [292], aiming at bringing deeper insight into the complex morphology of Ti3SiC2

electronic states. In particular, we verify the existence and examine the shape and nature of the pockets

presumably responsible for the zero thermopower in polycrystalline Ti3SiC2. BS and FS ARPES maps show

remarkable agreement with theory. Complex three-dimensional (3D) features in reciprocal space seem to

link one H point centered platelike pocket to a tubular surface also centered on the KH axis, while the FSs

centered in Γ are found to be hole-like. kz-projected band structure analysis reveals that the electron FS

platelets centered in H are connected together through tiny open tubes exhibiting linear dispersion features.

The effect of spin-orbit coupling at those band crossings is studied in detail.

7.1 Experimental and computational details, basic outputs of DFT

7.1.1 ARPES and DFT setups for Ti3SiC2 analysis

Self-nucleated Ti3SiC2 single crystals were synthesized by high-temperature solution growth within an induction-

heated growth reactor, following a procedure detailed in chapter 2 and in [35]. The platelet dimensions reach

up to 1 cm2. Platelets are up to 200 µm thick, and are oriented toward (0001). Due to the growth process,

unwanted TiSi2 solid droplets are found on top of the freshly grown crystals. They result from incomplete

dewetting of the flux when the crystals are pulled out. However, this was not detrimental to ARPES, since

we studied surfaces after cleaving the crystals in UHV conditions.

Similarly to V2AlC and Cr2AlC, single crystals were cut in 3mm × 3mm squares before being cleaved,

within the UHV chamber of either the BL5U (BL7U) line at UVSOR-III (AichiSR) or the Cassiopée line at

SOLEIL, respectively equipped with a MBS A-1 and a SCIENTA R4000 analyzer. Base pressure reached

about 109 Pa for each line. Temperature was set at 20 K (10 K) for the measurements at BL5U (BL7U) (figures

7.3, 7.6 and 7.5a) and 13.4 K at Cassiopée (figures 7.4, 7.5b, 7.7, and 7.8). Energy resolution was of the order

of 10 meV. In order to obtain FS and BS mappings centered on M or K points, samples were tilted so that

the detector angular range was centered elsewhere than on Γ. Photon energy was set to 66.5 eV (figures

7.3 and 7.6) and 70 eV (figures 7.4 and 7.7). For ΓKHA ARPES mapping, hν was swept from 50 to 120 eV

(figure 7.5a) and from 60 to 75 eV (figure 7.5b). Linear horizontal (referred to here as S-pol for a vertically

aligned analyzer slit) and vertical (P-pol) polarized light [228, 299] were used in order to take advantage

of the orbital dependence of the photoionization cross section. The angle between the light beam and the

detector was always set to 45°. All calculations were performed with the full potential APW+lo (augmented
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plane wave+localized orbitals) method implemented within WIEN2k . As for all the calculations within this

manuscript, the standard spinless PBE GGA functional was chosen. Spin-orbit coupling was treated within

the full relativistic calculation frame of WIEN2k. Wave functions were expanded up to a more stringent

value of the RKM cutoff parameter of 9 to guarantee that convergence was reached . Similarly to the DFT

calculations presented in past chapters, a very dense 79× 79× 11 Monkhorst-Pack cell was used. The overall

level of convergence in energy was set to 0.01 mRy. The basic FS plots were computed using X-CRYSDEN.

7.1.2 DFT Fermi surfaces and thermopower

DFT calculations of Ti3SiC2 electronic structure are already quite well documented in the litterature [145,

295, 296] [152, 156, 298], but we still had to perform these calculations again because, (i) the best fit to

the experimentally determined FS requires slightly shifting the Fermi energy value, (ii) comparing theory

and experiment requires computations along uncommon directions or points (that were not present in the

literature for Ti3SiC2), and (iii) precise FS fitting also requires the use of large grids.

Assessing the electronic structure of a given solid through numerical calculations has become handful

when interpreting the results of photoemission experiments. The methodology described here is very close to

the one previously applied to Cr2AlC and V2AlC. As for all MAX phases, Ti3SiC2 crystallizes in the P63/mmc

space group, though its unit cell is different from the 211 phases (See figure 2.1) . Its FS is pictured in figure

7.1, as computed by DFT calculations. Its crystal structure is given in figure 7.2a. Here we note that in

order to obtain better agreement with experiment (discussed below), a rigid energy shift of about 2 mRy

(27 meV) is applied to all the isoenergy surfaces and band structures (see figure 7.1a). This value is close

to the one applied by Chaput et.al. [295] to obtain a thermopower consistent with experimental results. It is

worth noticing that due to the intricate topology of the intersecting bands around the K point, and although

such a shift does not drastically change the overall shape of the surfaces, it modifies the connectivity of the

various surfaces and, in particular, it changes the band indexation of some regions (see figure 7.1a; left FS is

unshifted whereas right FS is the closest to ARPES; left FS looks closer to results published by Chaput et.al.

[295]). This required shift could originate from numerical instabilities. It could also be partly attributed to

the final state effects which, as aforementioned in section 3.2.3 revealed in the next section, can intrinsically

limit the accuracy of ARPES analysis for three-dimensional systems.

Six bands cross the Fermi level, with bands 45–48 being hole bands. To get a clearer picture of the mor-

phology of all pockets, the all-band Fermi surface is plotted over a cell centered on the L point of the hexago-

nal BZ. The FSs of bands 45 and 46 are Γ centered, quasi-two-dimensional (2D) free-electron tubes, while the

FSs of bands 47 and 48 show a warping in kz and have an in-plane component in the shape of a six-pointed

star. The pockets of bands 49 and 50 are centered on H and are nested into one another. Band 50 shows a

very strong delocalized character along c, with an associated pocket looking like a thin triangular plate in

k-space. This implies that, as we saw for V2AlC in chapter 5, Ti3SiC2 is definitely more three dimensional
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FIGURE 7.1: (a) Isoenergy surface of Ti3SiC2 2 mRy (27 meV) above EF , computed by DFT
calculations. The latter shows a better agreement with experimental data than the actual DFT
Fermi surface. In (b), Ti3SiC2 all-band Fermi surface which is plotted over a cell that is centered
in the L point of the first BZ. (c) Individual bands are plotted within the first Brillouin zone.
Bands 45–48 are found to be hole bands while bands 49 and 50 are not as easily defined (see

section 7.2.2 and 7.2.3), but can be considered mainly as electron bands.

than many other MAX phases such as, e.g., Cr2AlC (see chapter 4). This will be discussed in further detail

in section 7.2.2. In contrast, all other bands are mainly delocalized in the (kx, ky) plane.

As explained in [296, 297], the peculiar thermopower properties of polycrystalline Ti3SiC2 were previ-

ously assigned to the prevailing influence of bands 49 and 50 [295]. From the point of view of thermoelectric

power, the carriers in band 50 were found to behave as electrons along c [295], and those of band 49 as holes.

The case of bands 49 and 50 is indeed quite involved, and one of our purpose here is to explain in more

detail the behavior of complex bands using simple arguments. This is where we shall rely once again on

both our ARPES data and DFT calculations. Although a complicated FS shape makes the “hole” concept one

of limited content, let us first list two common ways to define a band as “holelike” or “electronlike.”

Firstly, one can define a hole (electron) band as one for which a small increase in Fermi energy EF leads to

a decrease (increase) of the FS area, respectively. This definition rules magnetotransport, for the electron

velocities point inside (out of) the FS, leading to a positive (negative) Hall coefficient.

Alternatively, one can define a hole (electron) band as one for which the E(k) relation exhibits a negative

(positive) curvature in the vicinity of the Fermi level. The second definition rules the sign of the thermo-

electric power S, positive for holes and negative for electrons (with a negative curvature, electrons thermally

spreading in energy see their velocity decrease with increasing energy, so that electron diffusion takes place
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FIGURE 7.2: Ti3SiC2 BS projected onto Ti d orbitals, dominant at the Fermi level. The projection
is taken over the two Ti sites simultaneously.

from the colder to the hotter region, giving a positive value for S, which is the expected sign in the conven-

tional “hole” picture).

Both definitions often coincide, for if the Fermi level lies reasonably close to the top or the bottom of a

band, and in the absence of band crossing, the existence of an energy extremum fixes the sign of the band

curvature in agreement with the FS expansion criterion. In our case, the latter is easily verified by increasing

EF slightly, which leads to an increase of the FS area for both bands 49 and 50. However, taking into account

the dispersion relations along particular directions shows that the picture is actually much more complex if

one wants to apply the second criterion. It may even turn out that depending on the k-point considered in

a given band, the electrons exhibit either a positive or a negative mass inside the same band. Applying the

second rule thus does not lead to so clear a classification, and requires investigation of the dispersion relation

along kx, ky, orkz directly at particular and suitably chosen points; this is achieved and explained at the end

of section 7.2.3.
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7.1.3 Orbital character of near Fermi level bands

Figure 7.2 shows the band structure of Ti3SiC2, where the orbital population of each band is highlighted

through a color contrast. Ti d orbitals are the only ones considered since they dominate the electronic struc-

ture of Ti3SiC2 near the Fermi level [1, 2, 3]. The orbital population of each band appears to be more mixed

than the V2AlC and Cr2AlC 211 phases. This can be accounted for by the presence of two different transition-

metal sites on 312 MAX phases, thus leading to a larger variety of possible hybridization of the different 3d

states. Owing to selection rules, the angular dependence of the photoionization cross sections of Ti 3d orbitals

should be similar to that of Cr in Cr2AlC, as given in figure 4.5 for both S-pol and P-pol configurations. One

needs only to invert the θx and θy variables indicated in chapters 4 and 5 to fit the experimental conditions

of the Cassiopée line, and to match the (kx, ky) denomination for most of the figures within this chapter. The

band showing a dz2 component would show the highest signal in the ARPES spectra at a low angle while

bands with other orbital character would be visible at a higher angle, closer to the BZ boundaries. Although

Si orbitals participate to a lesser extent in the states at EF , they are not discussed further here. Still they are

key for ensuring delocalization along c for Ti3SiC2 , and were, for instance, experimentally evidenced and

discussed in [297].

7.2 Results and discussion

7.2.1 ARPES in-plane and out-of-plane Fermi surface mapping

The above analysis is consistent with the integrated ARPES mappings in figure 7.3. Here we integrate the

isoenergy surfaces from EF to 100 meV below; the more intense signal we obtain by this averaging allows

us to analyze in detail the effect of polarization. One finds again the K-centered platelike pocket in figures

7.3a and 7.3b. Also, the fact that the relative intensity associated to the electron pocket of band 50 (mainly

populated by dxz and dyz near EF ) is relatively lower than the central star-shaped bands in S-pol mode

(figure 7.3a) and at a similar intensity level in P-pol. mode can be explained from the discussions in chapter

4 [228]: The dxz contribution to the photoionization cross section is substantially higher than the one of other

orbitals for high angle (near the BZ boundaries) in P-pol, while the contribution of dxy, dxz, and dyz orbitals

in S-pol at high angle are all non-negligible. At low angles, the dz2 star-shaped tube should be more intense

than the other part of the FS in the ARPES spectra, which correspond to what is observed in figure 7.3c,

with an asymmetry in intensity with respect to kx that is predicted by cross section calculation (See figure 4.5

and [228]). There is a good correspondence between experiment and theory, as highlighted in figure 7.4: An

extended FS mapping in the S-pol configuration, centered on the K (H) point, is compared with the projected

isoenergy surface of figure 7.1, plotted over several Brillouin zones. With such a high level of correspondence
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FIGURE 7.3: Integrated isoenergy surface mapping (with the energy window from EF to 100
meV) of highly tilted Ti3SiC2 single crystals (a), (b) and in S-pol. (a) and S pol. (b) configura-
tion. Tilting allows one to center the mapping on the edge of the BZ (on the M (L) point) and
changing the polarization configuration reveals bands of different orbital character, due to the
polarization and orbital dependence of the photoionization cross section. (c) Normal incidence

mapping in S pol. configuration, centered in Γ.

between the output DFT and ARPES mappings, it becomes possible to access detailed information regarding

the near Fermi level electronic structure of Ti3SiC2.

From DFT calculations, the FS of band 50 has the shape of very thin plates perpendicular to kz and

centered in H. These plates are connected through thin tubes parallel to c∗, one crossing the BZ through KH

and the three others located somewhat close to the KH axis. When considering kz broadening (discussed

in detail later on), the three-pointed star area that encompasses the tubes should be completely averaged

and give a slightly more important contribution to the ARPES spectra than the plate which is averaged over

only a single kz value. It thus explains why there is a contrast over the three-pointed star area on the ARPES

spectra of figure 7.4 (highlighted in brown in the projected DFT isoenergy surface), even if it shows the same

orbital character as the rest of the platelike hole pocket of band 50. It also demonstrates the three-dimensional

character of band 49 and 50 FSs, while the other bands’ FSs are mainly quasi-two-dimensional tubes.

Figure 7.5 shows the ΓKMLHA ARPES mapping, obtained by varying the incident photon energy hν.

Following the free electron-like approximation of the final state [179, 180, 184], the inner potential V0 was set

to 19.0 eV. In order to obtain the DFT isoenergy surface lines, many band structures over ΓK were computed,

for 88 kz values ranging from 0 to π/c. Then, for each of them, the wave vectors were selected for which each

band reaches the shifted Fermi level. All the FSs appear at thekx value predicted by theory even though, for

the higher hν values, the intensity of the overall spectra seems to be appreciably smaller. The ARPES signal

in figure 7.5a clearly shows the inner FS tubes with a quasi-2D character, their FS cross section roughly

appearing here as two vertical patterns almost symmetrically located around the ΓA axis, and extending

over all BZs. ARPES in figure 7.5b shows the bands 49 and 50, centered around K (H). Explaining the

detailed dependence of cross section effects on energy and angle is beyond the scope of this work, but the

observed asymmetry in the ARPES signal intensity in figure 7.5a mainly results from the S-pol configuration
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FIGURE 7.4: (a) Extended Fermi surface mapping centered in K (H) and in S pol configuration.
The central plate-like pocket exhibits a brighter three-pointed starlike pattern at its center. This
can explain the almost tubular features of this FS, connecting one plate to another. (b) kz-
projected FS over the same area of reciprocal space. The area where the FSs plates are connected

is highlighted in brown, and the three-pointed starlike pattern is recovered.

and dz2 orbital contribution (see, e.g., the photoionization cross sections computed and given by figure 4.5).

One should note that DFT makes bands 49 and 50 appear degenerate in the AHL plane. The fact that this

degeneracy does not appear in figures 7.1 and 7.4b (DFT) can be explained by the two different wave-vector

meshes used.

A total of 6000× 88 k-points in the ΓKMLHA plane was needed to get the FS in figure 7.5 while only

79 × 79 × 11 were used in the IBZ for figures 7.1 and 7.4b. Also, a first order XCRYSDEN interpolation

scheme [35] was applied, while no interpolation was needed for the very dense k-mesh used in figure 7.5.

7.2.2 Polarization dependence and kz-broadening

As further analyzed below, ARPES band structure analysis is also fully supported by DFT calculations and

finer details such as orbital character (figure 7.6), kz broadening (figure 7.7), or the effect of SOC (figure

6.8). When switching the polarization from S-pol (figure 7.6a) to P-pol mode (figure 7.6b) over ΓM, different

bands will appear on the ARPES spectra depending on their respective orbital character. The electronic

structure should be dominated by transition-metal d orbitals near EF [298, 152, 156] and then be overcome

by carbon 2p and silicon 3p orbitals near 1.5 to 2 eV below EF as going below a minimum of the DOS [298,
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152, 156]. Such a drop of 3d orbitals population is observed in figure 7.2, where the thinning of the color

bands corresponds to a fall of the weight of the d orbital in the orbital mix.

In S-pol configuration, the bands located in between EF and 2 eV are all visible and show nearly parabolic

dispersions. ARPES features corresponding to other bands are present at lower energy, but the spectra ap-

pear to be significantly more blurred. In P-pol configuration, the parabolic bands disappear and significantly

flatter dispersions are well defined at higher binding energies, one centered at 2 and the other at 3 eV. Thus,

the bands that appear in P-pol would match the expected 3p and 2p bands expected from Ti3SiC2 partial

density of states [298, 152, 156], while the S-pol configuration would reveal the bands with a predominant

Ti 3d character. Taking the difference between the two P-pol and S-pol spectra allows one to recover all the

bands predicted by DFT (figure 7.6c) while highlighting the differences of orbital weights. We applied this

scheme to obtain the band structure over other reciprocal space directions (figures 7.6d and 7.6e). One should

take note that the same 2mRy shift mentioned earlier on was applied to the DFT band structure. Another

detail to take note of is the presence of clear linear band crossings apparent over KM (figure 7.6e), about 0.6

eV below EF .

Ti3SiC2 band structure over ΓK happens to be more complex and intricate than the free parabolic and

flatter bands seen over ΓM near the Fermi level. In an ARPES plot such as that reported in figure 7.7, the

FIGURE 7.5: (a) ARPES out-of-plane Fermi surface over ΓAHK, close to the ΓA axis. The map-
ping is obtained from successive band structure plots, recorded with an incident beam energy
hν ranging from 50 to 120 eV, in S-pol. configuration. The dotted black lines represent isoen-
ergy lines computed by DFT. In (b), the out-of-plane Fermi surface was measured beyond the
ΓA axis, encompassing the KH and ML axes, with hν going from 60 to 75 eV and with the po-
larization always set to S-pol mode. In order to convert both maps from hν to kz units, the inner
potential V0 was set to 19.0 eV following the free-electron approximation of the final state as in
equation (4.2). This value allowed us to obtain the correct kz periodicity of lower-energy bands

on the ARPES band structure (as achieved in [249]).
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FIGURE 7.6: (a)–(c) Ti3SiC2 band structure mapping centered in M (L), plotted together with
DFT band structure along M (dotted lines). (a), (b), respectively depict ARPES spectra obtained
in S-pol and P-pol while (c) is the difference of the spectra obtained for these two polariza-
tions. (d), (e) are, respectively, the difference between S-pol and P-pol ARPES spectra over ΓM

(centered in Γ) (d) and KM (centered in M) (e).

ARPES signal of a given energy band, plotted as a function of kx (here directed along ΓK), is not restricted to

a single value of kz. This is the “kz broadening” effect we described in chapter 5, resulting in the formation

of full regions of the ARPES spectra with enhanced ARPES signal, not restricted to well-defined dispersion

lines as usually plotted in theoretical E(k) dispersion curves. As for other V2AlC materials, the case of

Ti3SiC2 actually exemplifies the importance of kz broadening for the interpretation of the ARPES spectra of

bulk materials. kz broadening is due either to the fact that energy bands are dispersive along kz, or to a

fundamental process in the photoelectron emission in three-dimensional systems that we did not describe

until now, and which arises from the damping of the electron in the photoemission final state toward the

interior of the solid [300, 186]. If the photoelectron escape length is of the order of magnitude or smaller
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FIGURE 7.7: (a) S-pol ARPES spectra over ΓKM (AHL) and spinless GGA band structure along
ΓKM (purple dotted lines). (b) kz-projected SOC relativistic GGA band structure over ΓKM

(purple lines) to AHL (light blue lines).

than the out-of-plane lattice parameter, the electrons probed will be confined in a relatively well-defined

volume of real space. The momentum component perpendicular to the surface will then be broadened, as a

consequence of the Heisenberg uncertainty principle [300].

First we summarize the strict impact of energy dispersion along kz: Let us fix kx and ky to a given value

so that we consider only the effect of kz. On the one hand, and as highlighed in chapter 3, for a given value

of kx, and in a given band, equation (3.7) for kz (it was labelled as k⊥ in that section):

kz ≈
1
h̄

√
(2mEkincos2(θk) + V0) (7.1)

Independently of cross section effects, this implies that for a given kx, the whole band contributes to the

ARPES signal, spanned over a full BZ along kz. The associated broadening can thus be predicted by plotting

a set of dispersion curves with kz as a parameter and varying over one BZ, as shown in figure 7.7b. This

analysis similar to the one performed for figure 6.12 in chapter 6.

On the other hand, considering the energy distribution curve of a single band and neglecting the con-

tribution of the finite excitation hole lifetime to the ARPES spectra [300], the kz-averaged intensity of the

ARPES signal I can be simplistically portrayed by:

I(E) ∝
∫ +∞

−∞
|Tf |2|M f i(kz, E)|2 × 2Im[k f

z ]

(kz − RE[k f
z ])2 + (Im[k f

z ])2
A(E)dkz (7.2)

where Tf denotes the final state surface transmission coefficient, M f i the photoexcitation matrix element,

A the energy-dependent part of the spectral function, and k f
z the kz component of the final state wave vector.

The real part of k f
z stands for the kz wave vector of the final state being probed while the imaginary part gives

the final state intrinsic broadening, which can be expressed as Im[k f
z ] ∝ 1

λ where λ is the photoelectron escape



130 Chapter 7. From Ti3SiC2 Fermi surface determination to Ti3SiC2 thermopower anisotropy

length or attenuation in the material [300]. Due to the usually short attenuation length λ, the measured final

state photoexcited electrons cannot travel within little more than a few unit cells of Ti3SiC2 before seeing their

wave function be completely damped or before they are transmitted to vacuum through the surface. This

intrinsic kz-broadening would be maintained when attempting to extract the E(kz) dispersion by further data

analysis. It should be noted that kz resolution can be greatly enhanced when working with higher photon

energy(soft x-ray ARPES).

As can be seen by comparing figures 7.7a and 7.7b, there is indeed a good match between the DFT pre-

dicted and ARPES domains. Said otherwise, in figure 7.7a, the DFT ΓK bands mostly encompass the exper-

imental band signature, so that what is seen is the whole kz-projected band structure of figure 7.7b, with an

electronic structure averaged over a BZ along c. This makes obvious that in figure 7.7a, the main effect is the

first described above (not the intrinsic one), and indicates that the quality of our ARPES data is sufficient to

allow us to obtain a satisfying insight into the electronic structure of bulk Ti3SiC2.

7.2.3 Fine structure and effect of spin orbit coupling

In figure 7.8a, we set side by side the ΓK(AH) ARPES spectra to the SOC GGA band structure over a very

narrow range of energies and wave vectors. DFT bands encompass a lobe before K. At K, the lobe closes into

a cusp point (gapped by SOC), also evidenced on the ARPES spectra. Above the K point, bands 49 and 48

form a sandclock-like shape and linearly cross about 0.75 eV below EF (figure 7.8a). SOC would then open

another 12meV gap, at the coordinates where the ARPES spectrum shows an intensity extinction.

From this observation, we suggest that spin-orbit coupling does have an effect on the electronic structure

of Ti3SiC2. As exposed in figure 7.8b, the shape of the bands responsible for the FSs three-pointed star

patterns centered in H is characteristic of a band inversion [301]. One of the linear crossings from the band

inversion is located in K [figures 7.8a–7.8c]. Its position does not change with kz. The other set of linear

crossings from the band inversion follows the h1 line, as kz varies from 0 to π/c(figures 7.8a–7.8c). At all

the other (kx, ky) coordinates within the three-pointed stars in figure 7.4 (and also along the lateral sides of

the band 50 FS platelet; see figure 7.1), bands 49 and 50 become degenerate when kz reaches the border of

the BZ (figure 7.8d). Ultimately, this degeneracy is slightly lifted by SOC, as discussed later on. Despite the

evidence of band inversion, the shape of the associate isoenergy surface (figure 7.1) does not seem to match

with the existence of a nodal line near the Fermi level, contrary to the case of V2AlC and M2AlC phases

where a nodal line was clearly evidenced.

Figure 7.4 already gives a direct observation of the fine structure of the energy band pockets around K and

H, and figure 7.8 gives additional information about the role played by bands 49 and 50. The EF position

required to get the best possible fit to figure 7.4 is superimposed to the dispersions along kz presented in

figures 7.8d–7.8f (respectively, with and without SOC) for three different points (h3 is located in the plateau

region of band 50 FS, and thus representative of its largest contribution to the thermopower; see figure 7.4).
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FIGURE 7.8: (a) ARPES spectra compared to SOC calculations over a restricted range of energies
and wave vectors. A 12-meV gap opens in the SOC band structure, at a band crossing between
K and M about 0.75 eV below EF , at coordinates where an extinction is observed in the ARPES
spectra. The cusp point of the lobe-shaped feature of bands 49 and 50 at the K point is consistent
with the ARPES signal. (b) kz projection of spinless GGA bands 49 (red) and 50 (green). Both
bands meet for kz = π/c (purple curve), and the band shape for kz = 0 is a clear signature
of band inversion (black curve). Band crossings in h1 and K (H) are found to be linear for the
whole range [0, π/c]. In (c), a 13.5 meV gaps opens in the whole wave-vector range of the

figure. The effect of spin-orbit coupling in particular kz directions is highlighted in (d)–(f).

To analyze the expected contribution to the thermopower, we may use the second criterion developped in

section 6.1.2. Fully supporting the thermopower theoretical calculations in [295], one sees that in the FS

triangular platelet region of band 50 (line h3), the intersection between EF and band 50 occurs at the bottom

of the band, where curvature is electronlike, explaining the negative contribution to the thermopower along

c [295] (figure 7.8f). Point h2 also shows an electronlike curvature (figure 7.8e). Interestingly, at point h1, the

full band remains below EF (figure 7.8d), which means that the top of the band starts to cross EF at some

point when going from h1 to h2 (see figures 7.8b and 7.8c), and is therefore hole-like, before turning electron-

like as one moves toward h2. However, the restricted area corresponding to a hole-like behavior is quite

small in front of the full plateau area, limited to the surrounding of one of the tiny tubes (somehow close to

HK axis) visible in the FS shown in figure 7.1, so that the net contribution of band 50 to the Szz thermopower

component must clearly be electronlike. It is interesting to note that without operating the small shift in EF
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required to fit the ARPES data, one could reach different conclusions. This is an indication that the small

shift in EF needed to fit the ARPES data is not due to intrinsic kz broadening, but is a real feature of the band

structure.

In the case of band 50, most of the FS area is formed of points like h3, forming the plateau-like shape

of the corresponding FS. Although bands 49 and 50 are degenerate along a closed line located in the AHL

plane (the lateral border of the FS platelet), in the plateau region of band 50, band 49 is located appreciably

below EF , and interactions between bands 49 and 50 due, e.g., to phonon-induced modifications of the

electronic dispersion as mentioned in [297], or to thermal spreading of the electrons of band 49 into band 50,

are not relevant here. The situation changes when examining the case of band 49. The contribution of band

49 to Szz can first be analyzed with the help of figure 7.9, and using the same reasoning as above. Figure

7.9a (respectively, figure 7.9b) shows the dispersion along kz for the lines h4 and h5 indicated on the energy

dispersion curves plotted versus kx in figure 7.9.c (see also figure 7.4), with kz as a parameter. As kx varies,

the top of band 49 starts to cross EF at point M1 (corresponding to kz in the AHL plane) and is continuously

shifted through EF until the bottom of the band crosses EF at point M2. As shown in figure 7.9b, for a point

h4 close to M1, the band is hole-like along kz but for the points closer to M2, it is electron-like. Therefore there

is also a competition between electron and hole-like behaviors, which, as computed by Chaput et.al. [295],

results in an overall holelike behavior. From figures 7.9a and 6.9b, the hole mass appears much smaller than

the electron mass (and its very existence is due to SOC).

Here, it is indeed not straightforward why, in spite of opposite contributions, the holelike behavior, lim-

ited to a very narrow part of the band, prevails and gives a positive contribution to Szz, as computed in

[295]. But there is more than this for, as obvious from figure 7.9, SOC does not lift the degeneracy between

bands 49 and 50 occurring in the AHL plane to an extent which would make thermal processes in the two

bands independent from one another. Close to M1 (and along an entire closed line), bands almost touch one

another and dispersion along kz is Dirac-like. Estimated band splitting (around 11 meV at M1) is smaller

than thermal fluctuations kBT in the whole 300–800 K range. It is therefore not accurate to compute ther-

mopower by just making use of the electronic structure in each band independently. The influence of T and

the phonons has to be explicitly taken into account through two different processes:

a direct modification of the electronic structure as discussed in [297], or thermal fluctuations coupling

band 49 to band 50. The contribution of band 50 to in-plane Sxx thermopower component is small, since just

a very small part of the FS is perpendicular to the (kx, ky) plane, and is electron-like. This is in full agreement

with the findings of Chaput et al. [295]. However, in contrast to their prediction of a positive contribution of

band 49 to Sxx, in figure 7.9 all dispersion curves along kx seem to exhibit either a positive curvature, or to

be quasi-linear, thus seemingly electron-like.

This might be putted it in line with the calculations in [295], where the hole-like contribution of band 49

seems to be curiously restricted to a very narrow range around EF , whereas any other energy region in the
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FIGURE 7.9: (a), (b) SOC Out-of-plane profile of band 49 for two specific (kx, ky) fixed coordi-
nates, h4 and h5. Both are close to the borders of the FS of band 49 over ΓK, respectively at M1
and M2. The local hole- or electronlike character at these k points is explored. The respective
positions of M1, M2, h4, and h5 in the ΓK kz-projected profile of band 49 (red) are given in (c)

(band 50 is in green).

band exhibit an electron-like signature. In light of our own results, maybe this finding could be revisited.

We note that a computationally accurate estimation of Sxx requires to sum up not only velocities over the FS,

which are derivatives of FS points, but also their derivatives, a thing not so easy to assess accurately over a

complicated FS shape.

The FS of band 50 encompasses a very thin volume of k-space (with a very small kz width), and a sig-

nificant part of this FS exhibits quasi-linear dispersion relationships and thus small effective masses. We are

in the conditions where the “high-field unitarity scattering limit” described by Abrikosov can be met [289].

Thus, magnetoresistance should show a non-negligible linear component at high magnetic field. This is typ-

ically observed in bismuth single crystals [302, 303], but it can also be observed in other compounds, such as
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transition-metal dichalcogenide WTe2 [304, 305, 306], where a significant part of the FS would not fulfill the

high-field unitary limit conditions while only a small pocket would. This suggests that peculiar transport

properties should be observed on Ti3SiC2 single crystals at high magnetic fields which, to our knowledge,

have not yet been reported (preliminary in-plane MR data obtained in 2017 during the Ph.D. studies of Lu

Shi from Ti3SiC2 single crystals displayed a substantial linear component, added to a parabolic one [307]).

When SOC is activated, gaps of about 13–14 meV open for the crossings over the whole area corresponding

to the three-pointed star, from 39 meV below to 24 meV above EF and from 1.0 to 1.5 A1 (figure 7.8c). It

implies that a non-negligible part of the BZ near the Fermi level shows a SOC degeneracy lift, especially the

crossings of band 49 and 50 due to band inversion. We are in the typical case where the intrinsic deflection

mechanism of the anomalous Hall effect [308], also at the origin of the spin Hall effect (SHE) [308], can be

significant. While the intrinsic spin Hall effect was shown to arise in gapped nodal line systems such as

β-tungsten [279] and some rutile oxides [278], Ti3SiC2 could as well be a worthy candidate for SHE, even if

no gapped nodes are observed at EF but large portions of the BZ corresponding to the FSs of band 49 and 50

exhibit band anticrossings. As for the linear magnetoresistance mentioned above, the possible generation of

pure spin current in MAX phases through intrinsic SHE has, to our knowledge, not been addressed yet.

7.3 Summary

Within this chapter, we presented a detailed analysis of Ti3SiC2 near Fermi level electronic structure. The

experimental spectra are found to be in good agreement with the computed FS and BS. A mixture of elec-

tron and hole bands contribute to the FS. From orbital character and polarization dependence analysis, Ti d

orbitals seem to dominate the electronic structure at the Fermi level, but Si and C p orbitals show a stronger

contribution at intermediate energy, starting from 1 eV below EF . kz-broadening is found to make a sig-

nificant contribution to the ARPES spectra, mainly due to the 3D character of several energy bands. The

interpretation of Ti3SiC2 near zero thermopower taking place in polycrystalline phases was revisited in light

of our results, which allowed us to rely upon a simple analysis of the calculated or measured dispersion

curves. Although it does not contradict the results of other studies, the contribution of one band is probably

more complex than initially thought [145, 295, 296, 297], and would certainly require taking into account

phonons, as already discussed in [297]. Band inversions near K points (from band 49 and band 50) lead to

the appearance of a complex three-pointed star feature within the first BZ, at the Fermi level, and SOC opens

gaps in a significant part of the intricate FSs of bands 49 and 50. A direct measurement of the FS’s around H,K

allowed us to verify experimentally an old but important finding, previously described in [145]: H-centered

pockets are fully delocalized along c, and confer to Ti3SiC2 a definitive 3D character, not always observed for

other quasi-2D MAX phases. Along with the conclusions of chapter 6, these results suggest the usefulness

of future investigations of MAX phase high-field magnetotransport and spintronic related properties.
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Chapter 8

Conclusion and prospects

8.1 Conclusion: Unity in diversity

As we have seen throughout this manuscript, Mn+1AXn phases form a very large class of materials that

show great promises for applications in extreme conditions and as precursors for the 2D MXENES. Hence-

forth, most of MAX phase basic properties have been studied in great detail over the past twenty years

[1]. Nevertheless, the microscopic origin of several features of MAX phases -including transport and ther-

mopower coefficients and their respective anisotropies, magnetic order as well as the relationships between

macroscopic properties and electronic structure- were still under debate before the beginning of my PhD

[159, 154]. The applicability of two bands models to describe MAX phase electronic transport was notably

questioned.

In 2017, we combined ARPES and DFT calculations to bring the first experimental determination of the

Fermi surface and Band structure of a MAX phase: Cr2AlC. V2AlC and Ti3SiC2 followed, and an overall

good agreement between experiments and theory was found for all of them. To some extent, one could

humbly say it shed light on some of the open questions mentioned above:

- Cr2AlC Fermi surface was found to be a complex combination of quasi-bidimensional electron and hole

FSs, and its anisotropy is consistent with the output of past magneto-transport measurements on single

crystals. Near EF band renormalization arises near the Fermi level and it appears to be in line with electron-

phonon coupling predictions. Despite claims that Cr2AlC ground state would be AFM, non magnetic DFT

calculations allowed to recover most of the features of the bands and no clear signature of AFM ordering

nor AFM transition were hinted by neutron powder diffraction. DFT Fermi lines were used to compute

in-plane transport coefficients through Boltzmann’s equation and an approximation of the relaxation time.

The experimental temperature dependence of the in-plane resistivity and Hall coefficient were recovered by

calculation for this many bands system, as well as the electron density. It allowed to demonstrate the inade-

quacy of the two bands Drude model to describe MAX phase electronic transport.

- In contrast to Cr2AlC, ARPES and DFT analysis revealed that V2AlC near Fermi level electronic structure
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was more three-dimensional. kz-broadening was successfully assessed and came in support to the assess-

ment of the three dimensional character of the electronic structure of this material. A rough analysis of

the Fermi surface and Fermi velocities anisotropies indicated that our results did not match past resistivity

anisotropy measurement on single crystals, for which ρc/ρab was found to be one order of magnitude higher

than Cr2AlC. A MAX phase volatile surface states were observed for the first time, centered at the M points

of the V2AlC BZ. A gapped nodal line within V2AlC band structure was also evidenced around 0.27-0.29 eV

below the Fermi level.

-Ti3SiC2 DFT FS and BS successfully reproduced the output of our ARPES mappings. After taking into ac-

count a few meV shift of the Fermi level, our FS appeared to be slightly different from past studies [296, 295].

It still exhibits a mixture of hole and electron bands at the Fermi level, with the FS of band 50 accounting

for the electron delocalization over c axis. The level of agreement between ARPES and DFT allowed us to

investigate finer detail in the electronic structure of this compound, notably SOC. Band inversion and linear

band crossings were spotted at the Fermi level. Our DFT calculation showed that these crossings are gapped

by SOC. That makes Ti3SiC2 a potential candidate for some exotic transport features such as charge current

to spin current conversion through intrinsic SHE.

Looking at the respective conclusions of each chapter of this thesis, one could state that MAX phases show

a panel of diverse electronic structures and Fermi surfaces. But despite the obvious differences between

the near Fermi level electronic structure Cr2AlC, V2AlC, Ti3SiC2 and other MAX phases, we also uncovered

some remarkable features shared by all these compounds:

- As stated in many past studies, we verified that the d orbitals of M atoms dominated the electronic

structure of Cr2AlC, V2AlC and Ti3SiC2 near their respective Fermi levels.

- 5 different rigid band models are needed to describe the electronic structure of most 211 MAX phase,

corresponding to the classification 211 which comprises five subfamilies. Varying the M element allows one

to tune EF and navigate through a single "rigid band structure".

- The applicability of rigid band models as well as the success of "standard" DFT calculation for modelling

the electronic states of MAX phase suggest that electronic correlations shall not play a major role for the

properties of these compounds.

From these consideration, it appears that despite their apparent diversity, the electronic structures of various

MAX phases do share some fundamental features. In the case of 211 MAX phases, one could even refer to

the applicability of rigid band models as a certain degree of unity within subfamilies of MAX phases.

Regarding all the work presented within this thesis, I was privileged to be involved at each step of the

process of scientific production: Single crystal growth, ARPES measurement, ARPES data analysis, DFT

calculations and of course the final process of scientific production: publication.

In total, I contributed to 3 scientific articles as a first author [249, 256, 292] , 2 as a second author [228, 229]

and I was involved in projects that lead the publication of 4 other articles [123, 138, 176, 140].
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FIGURE 8.1: Ti2SnC ARPES(a) and DFT (b) Fermi surface. Vertical and horizontal axis respec-
tively stand for ΓM and ΓK direction. (c) Band structure mapping over ΓM

Most of my first two years of PhD were focused on single crystal growth and I now realize how crucial

the availability of bulk single crystals was for our work. We could not have performed any experiment

mentioned in this manuscript with polycristalline samples synthetized by pressureless sintering. It probably

would not have been possible with available MAX phases thin films either. I also want to extend here the

importance of our collaboration with Assoc. Prof. Takahiro Ito, who and with whom we performed all the

ARPES experiment presented in this manuscript and who kindly taught me everything I know about this

technique. In addition to ARPES, DFT was an invaluable tool I used for understanding and interpreting

experimental spectra. I must admit I am still impressed at how DFT efficiently models many properties

of solid state systems and how remarkable was the agreement we obtained between as computed Fermi
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FIGURE 8.2: (a) Integrated spectra of a Mo4Ce4Al7C3 single crystal over a specific direction,
with hν = 122 eV. The intense flat band at 2.2 eV below EF corresponds to the 4 f0 final states,
while clear dispersive features close to EF are visible and coexist with the peak corresponding
to the 4 f 5/2

1 together with nondispersive 4 f 5/2
1 final states. (b) BZ of Mo4Ce4Al7C3. (c) Out-

of-plane ARPES mapping over ΓZ, obtained by varying hν from 100 to 137 eV, and compared
with DFT and DFT + U bands. The two dots refer to specific points of band 90 (located in Γ and
Z, respectively). (d) DFT + U band structure over ΓX and ZX. The effect of kz-broadening on
band 90 is highlighted by the yellow lines, thus indicating a significant kz delocalization of the

conduction band

surfaces and experimental ARPES mappings.

8.2 Prospects: New MAX phases, Solid solutions, Rare earth based iMAX

and derivatives

I will now briefly outline a few of our latest work and objectives which stand as a direct continuation of this

thesis.

-We mapped the Fermi surface and band structure of Ti2SnC during our last experimental run at SOLEIL

Cassiopée line. We obtained an apparent agreement between DFT FS and ARPES, as highlighted in figure

8.1. What might be a surface state similar to the one described in chapter 5 for V2AlC is observed in figure
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8.1c, within an energy interval of -0.7 eV to -1.5 eV and around M points, between 0.7 and 1.6 A−1. The very

straight parralel lines observed in the FSs surrounding the M point appear nested one into another. Similar

kind of nesting is often at the root of peculiar transport behavior at low temperature, involving for example

phonon-electron coupling if a phonon wavevector coincide with the distance between the nested sections

of the FSs (A famous example here is the phonon-mediated supraconductivity of YBa2Cu3O7 systems [309],

which features nesting patterns somewhat similar to Ti2SnC). Despite the fact that no supraconductive tran-

sition were observed at low T for polycristalline samples, measuring magneto-transport of Ti2SnC single

crystals at low temperature may nevertheless lead to interesting results.

-As outlined in chapter 6, synthetizing single crystalline MAX phase solid solutions (MxN1-x)2AX would al-

low us to continuously navigate throughout 211 MAX phase rigid band structure. One could reach the nodal

line located about 0.27 eV below V2AlC Fermi level. If one could succeed to do so, SHE and other anomalous

transport features may be observed for a MAX phase solid solution (See chapter 6). It is similar to what was

described for Ti3SiC2 in chapter 7. We have to mention that very recent spin-resolved ARPES experiments

performed at Pr. S.Shin laboratory at ISSP by Takahiro Ito revealed the existence of additional spin polarized

surface states bands in the vicinity of the V2AlC nodal line (these results are not published yet).

- One strategy to induce magnetic ordering and strongly correlated behaviour within a MAX phase would

be to incorporate heavy lanthanides atoms featuring partially filled f shell within MAX phase crystal struc-

ture. Such materials are the rare earth based iMAX and 4473 phases described in section 2.2.3. As we

stated in chapter 3, we successfuly grew bulk single crystals of (Mo2/3Ho1/3)2AlC, (Mo2/3Dy1/3)2AlC and

(Mo2/3Gd1/3)2AlC iMAXs as well as 4473 Mo4Ce4Al7C3. Rare earth based iMAXs present AFM-like transi-

tion at temperatures below 10K while Mo4Ce4Al7C3 becomes ferromagnetic at 10.5K.

The case of Mo4Ce4Al7C3 is special, as it also shows a mixed valence behaviour between the two Ce site

it possesses [138]. This has to be put in line with our recent work that indicated that this compound featured

an interplay between Kondo lattice behavior and ferromagnetism [140]: Ferromagnetic behavior originates

from the Ce atoms with 4 f1 electronic configuration lying within the Al plane while we first believed that

the Ce in the Mo-C conductive plane were solely responsible for the Kondo lattice behaviour of this material.

In a recent study [140], we performed a ARPES and DFT+U analysis to demonstrate that the conduction

electrons are delocalized over c axis, thus showing that the Ce atoms in the Al planes also participate in

the Kondo regime. These results are summarized in figure 8.2. We basically hinted that at least one of the

conduction bands must exhibit a kz dependence. It illustrates well the competition between ferromagnetic

and Kondo interactions within Mo4Ce4Al7C3.

ARPES experiments on (Mo2/3Ho1/3)2AlC single crystals were recently performed, but further analysis

is needed in order to decipher the morphology of the FSs and the band structure of this material (see figure

8.3).

As a final note, I believe that probing single crystals of MAX phase have allowed us to build a bridge
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FIGURE 8.3: (Mo2/3Ho1/3)2AlC Fermi surface mapping (a) recorded at 13.4K, above the AFM
transition of this compound. Here we kept the natural angular units and ploted a band struc-

ture map (b) over the direction corresponding to the white dashed line in (a)

between the Fermi surface (and band structure) of these compounds and some of their basic properties. It is

amusing to think that what I used to label as purely conceptual when I was a younger student now appears

to me as observables as concrete as the electrical conductivity or the specific heat of a material. In some sense,

I now see the vizualisation of ARPES or photoemission spectra as an aperture through which one can watch

the "real eigenstates" of the system, and DFT calculations as a binocular that allows one to get a clear image

of what is going on further away, to interpret the spectra in greater details. Photoemission spectroscopy and

DFT are both invaluable tools for condensed matter physics and material science, and I believe they still

have much to tell us about MAX phases and their derivatives.
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