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Une page se tourne mais de nouvelles restent à écrire.
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Résumé étendu

0.1 Introduction et objectifs

0.1.1 Introduction

Ces travaux de thèse s’inscrivent dans un projet de recherche piloté par le CEA.
Ce projet vise à développer un réacteur de génération IV. Il a aussi pour objectif
de développer des démonstrateurs et des méthodes numériques permettant de com-
prendre et de modéliser certains phénomènes physiques. Du fait de la technologie
du cœur du réacteur, le CEA a choisi le sodium liquide comme fluide réfrigérant.
Au sein de ce projet, le Laboratoire de Conception et d’Innovation Technologique
(LCIT) avait pour responsabilité la conception de l’échangeur de chaleur.

Figure 1: Option de conception de l’échangeur de chaleur sodium/gaz comprenant
le concept d’échangeur compact à micro-canaux

Une fois la chaleur prélevée dans le cœur par le circuit de sodium primaire, celle-
ci est transférée au circuit de sodium secondaire. Le circuit secondaire transfert
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Résumé étendu

quant à lui sa chaleur au circuit de gaz tertiaire. Ce dernier transfert thermique
est assuré par l’échangeur de chaleur sodium gaz. Le LCIT a choisi une technologie
d’échangeur compacte à micro-canaux. Ce type d’échangeur permet d’augmenter le
rendement thermique en augmentant la surface d’échange et en améliorant l’échange
thermique avec la paroi. Pour cela les flux de sodium et de gaz sont répartis dans
de nombreux canaux. Afin de distribuer et de collecter correctement le sodium dans
l’échangeur, un collecteur est placé à l’entrée de chaque module de l’échangeur.
L’ensemble de l’échangeur est placé dans une enceinte pressurisée où circule le gaz
du circuit tertiaire. Cette enceinte joue le rôle de collecteur du circuit tertiaire et
améliore la sécurité du système. La Figure 1 présente l’échangeur, un module et une
section d’un module d’échangeur.

Le collecteur de sodium est défini comme une coque épaisse. Il travaille sous une
pression externe de 180 bar et dans une ambiance chaude de 520◦C. Le collecteur
de sodium est fait d’acier inoxydable 316L(N). À cette température le 316L(N) a
un comportement élasto-visco-plastique. Du fait du chargement, de la température
et de la géométrie du collecteur, le CEA s’est interrogé sur la tenue et la stabilité
structurale de ce collecteur.

Ainsi l’objectif de ces travaux de thèse est d’étudier numériquement et
expérimentalement le flambage de coques épaisses dont le comportement est élasto-
visco-plastique. Ces travaux de recherche ont été réalisés en vue de définir des règles
de dimensionnement.

0.1.2 Le flambage

Le flambage est étudié dans de nombreux articles scientifiques. Il fut d’abord
étudié sur des structures fines dont le comportement est élastique du fait d’une
plus grande probabilité à flamber. Le lien entre flambage et perte d’unicité de la
solution fut alors établi. Un critère développé par Hill permit de prédire le flambage
de structure dont le comportement est élasto-plastique (cf. [Hill 1958]).

Lors d’essais sur des structures épaisses, il fut constaté que le point critique de
flambage pouvait dépendre de la formulation du modèle constitutif. En effet des
prédictions utilisant la théorie de la déformation plutôt qu’une théorie incrémentale
présentaient une meilleure corrélation avec des résultats d’essais. Ceci fut en par-
ticulier discuté par Hutchinson dans [Hutchinson 1974]. Il fut ainsi admis que
ce flambage précocement observé avec la théorie de la déformation était provoqué
par l’apparition d’un coin sur la surface de charge. Celui-ci pourrait alors être
prédit à l’aide d’une loi incrémentale complexe. Hutchinson conclut que toute
loi incrémentale complexe correspond à une loi simple suivant la théorie de la
déformation sur un certain intervalle de déformations.

Néanmoins, l’utilisation de lois de comportement basées sur la théorie de la
déformation se limite aux chargements proportionnels. Afin de lever cette limi-
tation, Christoffersen et Hutchinson développèrent une loi de comporte-
ment intégrant un coin sur la surface de charge et l’utilisation de la théorie de
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Introduction et objectifs

la déformation pour les chargements quasi-proportionnels. Celle-ci est détaillée dans
[Christoffersen et Hutchinson 1979]. Cette loi incrémentale permet de mettre
un cadre théorique autour du paradoxe discuté par Hutchinson. Cette théorie fut
appliquée avec succès à des structures épaisses au chargement non proportionnel (cf.
[Needleman et Tvergaard 1982] ou [Tvergaard 1983]).

Toutes ces observations et théories s’appliquent seulement à des structures dont
le comportement n’est pas dépendant du taux de déformation. Il faut attendre
l’hypothèse définie par Bodner, Naveh et Merzer dans [Bodner, Naveh et
Merzer 1991] pour trouver une méthode de prédiction du flambage appliquée aux
structures dont le comportement est dépendant du taux de déformation. Bodner,
Naveh et Merzer font l’hypothèse que le flambage est suffisamment soudain pour
que le taux de déformation ne puisse varier pendant le flambage. Ainsi il définit
un problème de plasticité instantané. Ce dernier permet d’appliquer, aux structures
dont le comportement est dépendant du taux de déformation, toutes les méthodes
déjà développées pour les structures dont le comportement est indépendant du taux
de déformation.

0.1.3 Objectifs scientifiques

Les objectifs de ces travaux de thèse sont donc :

• de développer une méthode prédictive appliquée au flambage de coques
épaisses soumises à un chargement non proportionnel et dont le comporte-
ment est dépendant du taux de déformation,

• observer le flambage de structures épaisses via des essais,

• comparer et évaluer la méthode prédictive vis-à-vis des résultats
expérimentaux.

Pour atteindre ces objectifs une stratégie a été développée. Elle est détaillée dans
la Figure 2.

Afin de réduire les contraintes expérimentales liées aux essais sur structures en
316L(N) à chaud, un matériau modèle dont le comportement à température am-
biante est similaire a été choisi. Le matériau modèle retenu est un matériau à base
étain, appelé SAC 305. Il a donc été nécessaire de développer un procédé de mise en
forme de ce matériau. Une fois mis en forme, le comportement mécanique du SAC
305 a pu être identifié via une méthode inverse.

À la suite de ces deux tâches préliminaires deux campagnes d’essais de flambage
ont été menées. La première porte sur le flambage de plaques épaisses en compres-
sion, la seconde sur le flambage de coques soumises à une pression externe.
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Résumé étendu

Figure 2: Stratégie de la thèse : étudier numériquement et expérimentalement le
flambage de coques épaisses dont le comportement est élasto-visco-plastique

0.2 Un critère adapté aux coques épaisses et au

comportement élasto-visco-plastique

Le critère développé s’appuie sur deux éléments : la théorie des coins de Chris-
toffersen et Hutchinson, et l’hypothèse de Bodner.

Le premier élément permet de dériver un module tangent prenant en compte l’as-
pect épais des coques étudiées et l’aspect chargement non proportionnel. Le second
élément permet quant à lui de dériver un module tangent en prenant en compte la
dépendance du comportement au taux de déformation.

La théorie des coins en élasto-visco-plasticité
La théorie des coins s’appuie sur une surface de charge comprenant un coin. Ce

coin est défini par un cône dont le sommet est orienté par le déviateur du tenseur
de contraintes. Pour un incrément de contrainte donné, trois situations distinctes
peuvent être définies en fonction de l’angle θ formé entre l’incrément de contraintes
et le déviateur du tenseur de contraintes. Si l’incrément de contraintes est quasi-
proportionnel, θ ≤ θ0, l’incrément de déformations plastiques est calculé en fonction
de la théorie de la déformation. Si θ ≥ θc, une décharge élastique est observée.
Lorsque θ0 < θ < θc, l’incrément de déformation plastique est calculé grâce à une
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Un critère adapté aux coques épaisses et au comportement élasto-visco-plastique

loi de comportement non-linaire dérivée du potentiel suivant :

W (σ̇,σ) = σ̇t (Le + h(θ)Lp) σ̇, (1)

avec Le la loi de comportement élastique inverse, et Lp la loi de comportement
plastique inverse dérivée de la théorie de la déformation. La fonction h est une
fonction continue de θ définie comme suit :

h =


1, θ ≤ θ0

0, θ ≥ θc
h(θ), autrement

 (2)

Ainsi, de même que pour l’incrément de contraintes plastiques, le module tangent
est calculé en fonction de θ. Si le chargement est quasi-proportionnel, le module
tangent est égal à celui de la théorie de la déformation. Si une décharge élastique
est observée, le module élastique est utilisé. Dans la zone de transition le module
tangent est un tenseur non-linéaire de θ qui est égal au module élastique si θ = θc,
ou qui est égal au module tangent de la théorie de la déformation si θ = θ0.

La théorie des coins a été adaptée ici au comportement élasto-visco-plastique
afin de prendre en compte de possibles décharges dans le domaine visco-plastique.
Ceci permet en particulier de bien appréhender le flambage en régime de fluage. En
cas de décharge dans le domaine visco-plastique, θ est remplacé par θ?, avec :

θ? =


θ, si on est sur la surface de charge
θ, si le point considéré est en charge : θ ≤ π/2
π − θ, si le point considéré décharge : θ > π/2

(3)

La Figure 3(b) permet aussi d’illustrer le fonctionnement de ce critère de
charge/décharge visco-plastique.

La condition de consistance instantanée de Bodner
L’Hypothèse de Bodner permet de définir une condition de consistance instan-

tanée, celle-ci est définie comme suit :

dṗ = d(g(f)) = g′(f)df = 0, (4)

où g est la loi de fluage et f est le critère d’écoulement de la loi de comportement.
À partir de cette condition de consistance instantanée, le module tangent peut

être dérivé pour n’importe quelles lois de comportement : incrémentales, basées sur
la théorie de la déformation ou sur la théorie des coins.

En utilisant les outils classiques de recherche de bifurcation, le premier point
de bifurcation peut être défini pour n’importe quelle structure. Dans notre cas nous
avons choisi d’utiliser la théorie de la déformation pour le calcul des charges et modes
de flambage des plaques en compression et la théorie des coins pour les coques en
pression externe.
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(a) (b)

Figure 3: (a) Charge quasi-proportionnelle dans le domaine visco-plastique selon la
théorie de coins ; (b) Décharge quasi-proportionnelle dans le domaine visco-plastique
selon la théorie de coins

Dans tous nos calculs de bifurcation, nous avons utilisé les données de contrainte
et de déformation issues d’un calcul incrémental utilisant une loi d’écoulement
incrémentale comme données d’entrée au calcul des modules tangents.

0.3 Identification d’une loi de comportement

Comme indiqué précédemment, la loi de comportement du matériau modèle a dû
être identifiée. Pour cela une méthode inverse appelée FEMU pour Finite Element
Model Updating a été utilisée, celle-ci est décrite dans [Avril et al. 2008]. Cette
méthode utilise des données expérimentales d’une part et un modèle élément fini
des essais d’autre part. Un algorithme vient mettre à jour la loi de comportement
jusqu’à ce que le modèle éléments finis converge sur les essais. Ainsi les paramètres
de la loi de comportement sont identifiés de façon inverse.

0.3.1 La loi de comportement du SAC 305

Une loi de comportement permettant de modéliser finement le comportement du
SAC 305 a été choisie. Elle est composée de trois variables d’écrouissage de type
Voce. Ceci permet de bien modéliser le comportement tangent du SAC 305. Une
loi d’écoulement visqueux de type Norton est utilisée pour modéliser la dépendance
au taux de déformation. La propriété d’orthotropie du cristal d’étain dans sa phase
bêta et des observations expérimentales ont mené à l’utilisation d’une surface de
charge anisotrope de type Hill. Celle-ci est utilisée pour modéliser le comportement
isotrope transverse du SAC 305 dans l’épaisseur des coques.
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Identification d’une loi de comportement

Le jeu d’équations 5 permet de définir la loi de comportement retenue.

σ = C εe,
ε = εe + εp,

ṗ =

(
F

K

)n
,

F = σeq −R(p),

R(p) = R0 +
3∑
i=1

Ri

(
1− e−bip

)
,

σeq =
√
σ : H : σ,

(5)

avec, σ tenseur des contraintes de Cauchy, ε le tenseur des déformations de Biot, εe
le tenseur des déformations élastiques et εp le tenseur des déformations inélastiques,
C le module d’élasticité isotrope, σeq la contrainte équivalente de Hill, H le tenseur
de Hill (utilisé pour l’isotropie transverse), p la déformation plastique équivalente,
R la variable d’écrouissage et ṗ le taux de déformation plastique équivalent.

Les paramètres matériau à identifier sont : R0, R1, b1, R2, b2, R3, b3, K, n, H
complètement défini par le coefficient de Lankford Rlank et C défini par le module
d’ Young et le coefficient de Poisson.

0.3.2 Essais et identification

Les paramètres de la loi précédemment présentée ont été identifiés par une
méthode inverse (FEMU). Cette identification à été réalisée à partir d’essais de trac-
tion pilotés en taux de déplacement. Ces essais ont été conduits sur des éprouvettes à
section utile évolutive. Ces dernières sont issues de quatre lots matière. La géométrie
de l’éprouvette de traction ainsi que son installation dans la machine de traction est
illustrée dans la Figure 4.

La forme de l’éprouvette a permi d’enrichir le jeu de données expérimentales. En
effet, grâce à la géométrie de l’éprouvette, différents taux de déformation peuvent
être observés à la surface de l’éprouvette. La simulation de ces essais et l’utilisation de
la méthode FEMU ont permis d’identifier les paramètres de la loi de comportement
pour chaque lot matière. Une étude de sensibilité des paramètres a aussi été menée
afin d’évaluer le caractère unique de la solution identifiée.

À partir de ce jeu de lois de comportement, une loi de référence basée sur l’étude
statistique des essais a été générée. Celle-ci est utilisée pour toutes les analyses
numériques.
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Figure 4: Présentation de l’éprouvette de traction montée dans la machine de
traction

0.4 Essais de flambage sur plaques en compres-

sion

Cette campagne d’essais de flambage sur des plaques en compression a eu pour
objectifs : d’étudier l’effet de la géométrie de la plaque sur le flambage ; mais
aussi d’évaluer l’effet du taux de déformation sur le comportement en flambage
des plaques.

Le Figure 5 montre un plaque montée dans le montage de mise en compression.

Figure 5: Présentation du montage de mise en compression et d’une plaque
déformée dans le montage.

Des plaques épaisses avec différentes géométries ont été testées. L’effet de la
géométrie sur les charges critiques, ainsi que sur les modes de flambage, a pu être
observé. Le modèle prédictif a montré une bonne corrélation avec les essais. De plus,
la proximité de deux modes a pu être observée. Cette observation a été possible
grâce à l’utilisation de la stéréo-corrélation d’images pour mesurer le déplacement
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Essais de flambage sur coques épaisses en pression externe

en 3D à la surface des éprouvettes. Cette proximité de mode était aussi observable
numériquement via le modèle prédictif développé.

D’autres plaques ont été testées avec des vitesses de sollicitation différentes. Ainsi
l’effet du taux de déformation sur les charges et temps critiques a pu être observé. Il
a pu être observée que le taux de déformation a peu d’effet sur le mode de flambage.
Une fois encore le modèle prédictif a montré de bons résultats vis-à-vis des essais.

Ces essais à différentes vitesses, ainsi qu’une analyse élément fini en post flambage
de plaques en compression sollicitées à différentes vitesses ont permis d’évaluer les
limites de l’hypothèse de Bodner. En effet, il a pu être constaté que l’hypothèse de
Bodner était inadaptée à la prédiction du flambage de structures sollicitées à trop
hautes vitesses.

Ce premier jeu d’essais a permis d’évaluer le modèle prédictif par rapport à des
résultats expérimentaux. Il a aussi permis de mettre en place un certain nombre
de méthodes expérimentales. Compte tenu des bons résultats obtenus lors de cette
campagne, tant d’un point de vue numérique qu’expérimental, la campagne d’essais
sur des coques complexes soumises à un chargement non proportionnel a pu être
envisagée avec confiance.

0.5 Essais de flambage sur coques épaisses en

pression externe

Cette nouvelle campagne d’essais est similaire dans la méthode à celle appliquée
aux plaques. L’instrumentation des essais y est similaire. Elle est principalement
organisée autour de la stéréo-corrélation d’images. Les éprouvettes testées avaient la
forme de demi-œufs. Cette forme peut être considérée comme la forme médiane entre
la sphère et le cylindre. La Figure 6 présente le montage d’essai et une éprouvette
flambée.

Compte tenu du temps de fabrication et du temps d’essai de chacune des
éprouvettes, une seule géométrie d’œuf a été testée. Une loi de pression, inverse-
ment exponentiel dans le temps, a été appliqué. Deux vitesses de sollicitation ont
pu être testées. En tout cinq œufs ont été fabriqués et testés.

Pour chaque œuf une plage de pressions et de temps encadrant l’instant le flam-
bage a été défini. La borne inférieure de cette plage est définie par un point équilibre
correspondant à une inversion du champ de déplacement au sommet de l’œuf. La
borne supérieur est définie par le point d’équilibre correspondant à la pression maxi-
male.

Le couplage des mesures de champs de déplacement par stéréo-corrélation
d’images avec une transformation de Fourier rapide, a permis d’approximer les modes
de flambage des oeufs testés. Comme pour les plaques, une proximité de deux modes
a pu être observée expérimentalement.

Une analyse sur les conditions aux limites, a aussi montré la faible dépendance
de cette structure aux imperfections.
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(a) (b)

Figure 6: (a) Montage d’essais de flambage en pression externe ; (b) Éprouvette de
flambage en pression externe déformée après flambage

Compte tenu du chargement et des conditions aux limites appliquées au demi-
oeuf, le chargement subi par la structure est non proportionnel. Ce type d’essais
permet d’évaluer la méthode prédictive vis-à-vis de la non-proportionnalité du char-
gement et de la dépendance du comportement matériau au taux de déformation. Le
modèle prédictif, basé sur la théorie des coins a montré un bonne corrélation avec
les résultats expérimentaux. Les prédictions du modèle corrèlent bien avec la plage
de flambage définie expérimentalement. De plus, les modes prédits correspondent
bien aux modes extraits du champ de déplacement.

Cette série d’essais plus complexes que ceux réalisés sur les plaques, montre la
pertinence du modèle prédictif développé pour des structures complexes. De même
que pour les plaques, les hypothèses sous-jacentes au développement du modèle
doivent être respectées, et en particulier l’hypothèse de Bodner.

0.6 Conclusion

Les travaux présentés dans ce manuscrit donnent de nouveaux outils au CEA per-
mettant de répondre à la problématique de ces travaux de thèse. La stabilité de struc-
tures industrielles épaisses et complexes dont le comportement est dépendant du
taux de déformation peut ainsi être étudiée. Certains pré-requis restent nécessaires,
comme une identification fine du comportement du matériau et en particulier sa
loi d’écrouissage tangente. De plus, la définition des paramètres de la théorie des
coins est nécessaire. En effet, ils peuvent faire varier de façon importante les valeurs
critiques prédites.

La méthode détaillée dans ce manuscrit ne peut se soustraire à un essai struc-
turel permettant de valider la conception et le dimensionnement d’une structure
industrielle complexe.

Lors de cette étude, une autre méthode prédictive plus rigoureuse, mais aussi
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Conclusion

plus difficile à implémenter dans un logiciel élément fini a été identifiée. Celle-ci
s’appuie sur une condition suffisante de stabilité pour des structures dont le com-
portement est dépendant du taux de déformation. Cette méthode développée par
Triantafyllidis, Massin et Leroy est détaillée dans [Triantafyllidis, Mas-
sin et Leroy 1997]. Afin de lever les limitations induites par l’hypothèse de Bodner,
en particulier sur la vitesse de sollicitation, une telle méthode pourrait être utilisée.
Cette nouvelle implémentation demanderait un travail de développement et de va-
lidation numérique conséquent.

Couplée à cette méthode rigoureuse, l’utilisation d’une surface de charge com-
plexe comprenant des coins pourrait aussi être investiguée. L’utilisation conjointe
de la condition suffisante de Triantafyllidis, Massin et Leroy et du surface
de charge complexe, définirait un modèle prédictif rigoureux. Néanmoins, un gros
travail de caractérisation de la surface de charge serait alors nécessaire. Les efforts
de développement et de caractérisation semblent difficilement envisageables dans le
cadre industriel. En ce sens, la méthode proposée dans ces travaux de thèse consti-
tue une approximation suffisante à l’échelle industrielle. Elle permet de donner une
bonne estimation des charges, des temps et des modes de flambages de structures
complexes dont le comportement est dépendant du taux de déformation.
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Introduction

Industrial context

The present work takes place in a research program driven by the CEA and
focused on the development of the fourth generation of nuclear reactors. This new
generation of reactors should increase the safety, reduce the amount of radioactive
waste and be able to recycle plutonium. This program is also oriented on the
building of technology demonstrators, the development of numerical tools and the
characterization of specific phenomena. The choice of the reactor technology led the
CEA to select the liquid sodium as coolant for the primary and secondary circuits.

Several concepts were studied to convert the heat energy from the core into
electricity. One of the main innovative options under investigation for forth gen-
eration reactors is the use of a Brayton cycle gas-power conversion system. This
system permits to avoid the energetic sodium-water interaction, which can occur
in steam generators in case of tube failure if a traditional Rankine cycle is used.
In this novel concept, steam generators would be replaced by a Sodium Gas Heat
Exchanger (SGHE). The heat is extracted from the core of the reactor, it is trans-
ported through the primary and secondary circuits and transferred to a pressurized
gas. It is then expanded within a turbine. This last one is linked to a generator.
The thermal cycle is illustrated in Figure 7.

Figure 7: Sodium fast reactor diagram of general principle

It is therefore important to maximize the heat transfer between the sodium cir-
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Introduction

cuit and the gas, in order to increase the efficiency of the whole system. This heat
transfer function is fulfilled by a sodium-gas heat exchanger. The design and techno-
logical innovation laboratory (LCIT) was in charge of the design of this component.

The LCIT based its design on the concept of compact microchannel heat ex-
changer. The main feature of this family of heat exchangers is to maximize the heat
transfer by increasing the exchange surface. This is done by dividing both fluid
fluxes into a large number of channels following a complex path. A section of the
heat exchanger shows the different channels and their exchange surfaces in Figure
8.

In addition this technology presents interesting advantages such as mechanical
strength (it can withdraw high pressures) and manufacturing technologies.

Figure 8: Design option of the sodium gas heat exchanger with the concept of
compact microchannel heat exchanger

Therefore, the uniformity of the heat transfer in the heat exchanger is directly
linked to the uniformity of the sodium distribution within the heat exchanger. The
uniformity of the temperature also improves the mechanical strength of the heat
exchanger by reducing the thermal stress. Sodium manifolds are mainly used for
this purpose. Nevertheless this specific component of the heat exchanger needs to
fulfil the following requirements:

• Insure the best distribution/collection of the sodium to/from the heat ex-
changer,

• Resist to mechanical loadings and in particular to an external pressure of
18 MPa,
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• Resist to thermal loadings and in particular to a heating rate or cooling rate
up to 2◦C.s−1, and an environmental temperature of 530◦C.

As a consequence, the manifold insuring the sodium distribution is subjected
to external pressure. From a mechanical point of view, this component can be
considered as a thick shell. Buckling was identified as a potential failure case for
ultimate loads. Because of the high temperature, as this component is made of
316L(N) stainless steel, its rate-dependency must be taken into account for the
buckling analysis.

From a design point of view, as it is part of a safety component, it will be
subjected to nuclear design requirements. Among them: the demonstration that
buckling failure is avoided.

Scientific background

This work is therefore focused on the buckling of thick shells whose material
presents a rate-dependency. The literature is very rich concerning the buckling of
structures. Some are more oriented on the numerical predictions of this phenomenon,
while others present experimental results. In some rare cases, experiments are com-
pared to numerical predictions. In particular, it has been shown that it is a global
failure mechanism, as it depends on the whole geometry of the structure, its loading
and boundary conditions, and its material behaviour.

Many approaches were defined to predict the buckling of solids, the most famous
and used one is Hill ’s uniqueness criterion. This last one was successfully applied
to predict buckling of elasto-plastic solids with the simplest incremental theory (the
Mises flow theory). Unfortunately, for some structures, the predictions did not cor-
relate with the experiments, especially for thick structures. Using any constitutive
law based on the deformation theory, better agreements of the predictions with the
experiments were observed. This buckling paradox was observed and discussed sev-
eral times in the literature and especially by Hutchinson [Hutchinson 1974]. Finally
the buckling prediction of thin or thick rate-independent solids is well documented
for both numerical and experimental investigations.

For the buckling of rate-dependent structures the literature is not as rich as for
rate-independent structures. The buckling of thin rate-dependent shells is almost
exclusively studied in the literature. Nevertheless the literature gives clues on the
numerical buckling prediction for rate-dependent shells.

To answer to the CEA interrogation on the structural stability of the sodium
manifold, a strategy was developed. This strategy aims to complete the existing
methods and data provided by the literature. It was developed to incrementally
study the numerical and experimental buckling behaviour of thick rate-dependent
shells subjected to non-proportional loadings. This strategy would finally provide
an experimentally validated predictive method to the CEA. This predictive method
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would allow the CEA to analyse the buckling behaviour of industrial components.
The strategy is presented in the next section.

Objectives and strategy

The main objectives of this work are to evaluate experimentally the buckling of
thick rate-dependent shells and to predict their buckling using a numerical model.
To reach these final objectives, an incremental strategy has been developed, as shown
in Figure 9.

Figure 9: Strategy of the thesis to predict and experiment the buckling of thick
elasto-visco-plastic shells

A global task is dedicated to the development of the numerical environment
required to study the buckling of thick shells. More importantly, one of the objectives
of this numerical task is to define a buckling criterion. This last one is used to predict
the buckling of thick rate dependent shells subjected to complex loadings. In parallel,
different experimental tasks are performed in order to generate the different sets of
data to be compared to the numerical models.

As already said, the original component is made of stainless steel 316L(N) and
it is used at high temperature (530◦C). Using the same alloy under similar tempera-
ture conditions would generate important constraints on the experiments and their
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instrumentations. Therefore a model material presenting a rate-dependency at room
temperature was preferred. Nevertheless these types of materials are not common.
Two preliminary tasks are focused on the manufacturing of the specimens and the
mechanical characterization of the alloy (cf. Figure 9 first and second items). One
preliminary task aims to develop a robust and repeatable manufacturing process.
The other intends to finely characterize the mechanical behaviour of the alloy with
its associated manufacturing process.

Then, two buckling test campaigns were performed. The first one was focused
on the buckling of thick plates subjected to in-plane compression (cf. Figure 9 third
item). This choice was motivated for two reasons. First, a plate subjected to in-
plane loading is one of the simplest shapes to study experimentally and numerically.
Moreover, the manufacturing of plates is also very simple. In addition, thick plates
present an interesting buckling behaviour, as they are subjected to the so called
”buckling paradox”, as discussed in [Wang and Aung 2007]. This type of experiments
was also chosen in order to evaluate both numerical and experimental methods on
simple shell geometry. The objectives of this first type of experiment are:

• to define the adequate instrumentation in order to compare the numerical
results to the experimental ones,

• to perform buckling experiments on thick rate-dependent plates,

• to evaluate the numerical buckling prediction model against the experimental
buckling behaviour of thick plates.

The second buckling test campaign was focused on the extension of the prelim-
inary results obtained with plates to more complex shells. Hemi-egg shells were
tested under external pressure (cf. Figure 9, fourth item). The numerical model
to predict buckling was generalized to complex shells subjected to complex load-
ings. The same instrumentation as for the plate buckling experiments was used.
This second buckling test campaign would allow to reach the main objectives of this
work.

In this work a great attention was given to the comparison of the experiments
with the different numerical results. All experimental results were enriched by nu-
merical analysis of the experiments. Therefore numerical and experimental results
are presented together.

The results obtained with the model material can be generalized to any other
elasto-visco-plastic material, in order to apply the present work to any thick rate-
dependent shells.

Document organization

This thesis is organized in 5 chapters:
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Introduction

• In Chapter 1, we present a state of the art concerning the model material and
associated constitutive models, and the buckling of shell structures.

• In Chapter 2, we introduce the manufacturing process and the material char-
acterization method. We also presents the buckling criterion developed in this
work and the experimental procedures.

• In Chapter 3, we show the results of the material characterization process.

• In Chapter 4, we present the experimental and numerical results obtained on
thick plates subjected to in-plane loading.

• Finally, in Chapter 5, we discuss the numerical and experimental results ob-
tained on thick hemi-egg shells subjected to external pressure.
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Chapter 1

State of the art

This chapter presents the available data and existing methods to
study the buckling of shells. Experimental and numerical aspects

are considered.
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1. State of the art

In this chapter, a state of the art of the different items identified previously
is presented. The model material is introduced first. Then, a brief description of
the general method to define constitutive models and to identify their parameters
is presented. The last section of this chapter is dedicated to a state of the art on
buckling prediction and existing work on elasto-visco-plastic buckling.

1.1 A model material

In order to reduce the experimental constraints, a model material creeping at
room temperature was chosen instead of the stainless steel alloy 316L(N). This
representative material is one grade of the ”SAC” alloy family. All grades of this
family are mainly made of Tin (Sn) and two additional components, Silver (Ag) and
Copper (Cu). They are also called Sn-Ag-Cu alloys. This family of material was
selected as it is well documented in the literature (cf. [Dompierre 2011; Kim, Huh,
and Suganuma 2002; Kim et al. 2009; Wei and Wang 2012]). The main properties
of the SAC alloys are presented in the next section. Then, the properties of the
selected alloy are presented, as well as its casting capabilities.

1.1.1 SAC alloys

This alloy family is mainly used in solder joints. As mentioned above, the SAC
alloys are mainly made of Tin (Sn), for more than 95% of their mass. The two
additional elements (Silver and Copper) are used in order to create inter-metallics,
linking the Tin dendritic structures together. These inter-metallic elements improve
the mechanical properties as well as the fluid properties when the alloy is in its
liquid phase.

The Tin element presents three different crystal phases, as shown in Figure 1.1.
In the temperature range corresponding to the room temperature, the Tin crystal
takes its β phase. This phase shows natural orthotropic properties. This specific
point is considered for the definition of the constitutive mode.

This alloy family presents an eutectic composition, which is Sn 95.5% - Ag 3.8%
- Cu 0.7%. This particular eutectic composition induces a solidus temperature
equal to the liquidus one. It also reduces the density of shrinkage defects during
solidification of the alloy and increases the homogeneity of the inter-metallic (cf.
[Dompierre 2011]).

Close to the eutectic composition, a uniform solidification should be observed.
Nevertheless supercooling phenomenon can be observed during the solidification of
the alloy (cf. [Bath 2007]), up to 34◦C under the fusion temperature. This is
mainly due to the dendritic microstructure of Tin. Indeed, when a SAC alloy is
solidifying, inter-metallics are solidifying first. They generate initiation points for
the formation of the Tin dendrites. In the inter-dendritic space, binary (Sn-Ag or
Sn-Cu) or tertiary (Sn-Ag-Cu) eutectic phases are forming. A grain is composed of
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A model material

Figure 1.1: Crystal structures and allotropic forms of Tin [Dompierre 2011]

the Tin dendrite and its inter-dendritic phase.

These first properties of SAC alloys have an important impact on its mechanical
and physical properties. It is especially important for the manufacturing process.

1.1.2 SAC 305 mechanical behaviour

Unfortunately the eutectic composition is rare in the commercial world and more
expensive. A close eutectic composition is often used instead. This close eutectic
composition is well documented in the literature. Its commercial name is SAC 305 or
Sn 3.0 Ag 0.5 Cu, for 96.5% Sn, 3.0% Ag and 0.5% Cu. Its main physical properties
are presented in Table 1.1.

Density [kg.m−3] 7400
Liquidus Temperature [̊ C] 220
Solidus Temperature [̊ C] 217
Specific heat [J.g−1.K−1] 0,23

Thermal conductivity [W.m−1.K−1] 63
Coefficient of linear thermal expansion [10−6.K−1] 21,6

Table 1.1: Physical properties of SAC 305 alloy (cf. [Sawamura and Igarashi 2005])

In this section the main mechanical and physical properties of the alloy are
presented. Moreover the main environmental parameters impacting either its mi-
crostructure or its mechanical properties are also presented.
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1. State of the art

1.1.2.1 Environmental parameters

Two parameters affect the mechanical properties of the SAC 305 alloy, either
during its casting or during its storage; the cooling rate and the storage temperature.

Cooling rate

As presented in the previous section, the microstructural solidifying mechanism
can generate supercooling phenomena. Depending on the cooling rate, the number
of solidifying initiation points can be very different. A high cooling rate generates
many small inter-metallics (cf. [Kim, Huh, and Suganuma 2002]). The number of
initiation points is directly correlated to the number of dendritic structures formed
and therefore to the grain sizes. The higher the cooling rate is, the finer the mi-
crostructure. As shown in Figure 1.2, the microstructure is very fine for a cooling
rate equal to 100◦C.s−1 and very coarse for a cooling rate equal to 0.14◦C.s−1.

Figure 1.2: Effect of the cooling rate on the SAC 305 microstructure; cooling rate:
(a) 0.14◦C.s−1, (b) 1.7◦C.s−1, (c) 100◦C.s−1 [Wei and Wang 2012]

As the microstructure is affected, the mechanical properties are too, as shown
in [Kim, Huh, and Suganuma 2002]. As an example, Kim, Huh, and Suganuma
gives an average yield stress of 36.7 MPa for specimens which were rapidly cooled
(8.3◦C.s−1), while specimens moderately cooled (0.4◦C.s−1) show an average yield
stress of 32.8 MPa. This difference is quite important. The cooling rate at solidifi-
cation is discussed in Section 2.1.
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A model material

Thermal ageing

The other important parameter is the storage temperature. It was extensively
studied by [Dompierre 2011]. Because of the rapid solidification, the solid alloy is
found in a metastable state after solidification. At the end, it tends to recover a
stable state. This is called ageing. During this time, the grains grow and the inter-
metallics group together. The storage temperature can accelerate this process. As
the grain size changes, the mechanical properties can be impacted.

Dompierre presented in his work (cf. [Dompierre 2011]) the impact of the storage
temperature on the hardness with respect to the storage time. The results are
presented in Figure 1.3.

Figure 1.3: Ageing effect in time on Vickers hardness for different storage temper-
atures [Dompierre 2011]

One can see that at room temperature, the ageing time corresponding to a 5%
decrease of the hardness is higher than 10000 hours. In other words, the ageing of
the SAC 305 alloy is not an issue if the material is stored at room temperature.

Both environmental parameters (the cooling rate and the storage temperature)
define constraints on the manufacturing and storage of the test specimens. The
manufacturing process is discussed in Chapter 2, nevertheless the cooling rate will
need to be high enough in order to obtain a clean and fine microstructure. On
the ageing matter, the specimen will have to be tested in a reasonable time after
manufacturing, as 10000 hours correspond to 14 months. Moreover the specimens
were in a room where the temperature was controlled. The storage temperature did
not exceed 25◦C and did not get below 13◦C (α / β Tin transition temperature).
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1. State of the art

1.1.2.2 Mechanical behaviour

The mechanical behaviour of the SAC 305 alloy was largely studied in the litera-
ture (cf. [Bai, Chen, and Gao 2009; Che et al. 2010; Cuddalorepatta and Dasgupta
2007; Dompierre 2011]). As this alloy has a low melting point, it presents an elasto-
visco-plastic behaviour at room temperature, as demonstrated experimentally and
shown in Figure 1.4 from [Bai, Chen, and Gao 2009]. Its strength increases with an
increase of strain rate.

(a) (b)

Figure 1.4: (a) Effect of the strain rate on the SAC 305 strength [Bai, Chen, and
Gao 2009]; (b) Effect of the alloy temperature on the SAC 305 strength [Bai, Chen,
and Gao 2009]

Two parameters have an important effect on the mechanical properties of the
SAC 305 alloy, the strain rate (as the alloy has an elasto-visco-plastic behaviour),
and its temperature, as shown in Figure 1.4(b) from [Bai, Chen, and Gao 2009].
Its strength is reduced by an increase of temperature. The alloy temperature also
modifies the Young’s modulus as demonstrated in [Dompierre 2011].

The effect of the temperature is often characterized by the activation energy
Q. This quantity is introduced in the creep law in order to scale the strain rate
according to the temperature of the alloy. For the SAC 305 alloy Bai, Chen, and
Gao estimated the activation energy to 50460 J.mol−1.

As mentioned previously, it is important to remember that the microstructre
of the SAC 305 alloy is very dependent of the solidification process. Therefore
the mechanical properties of the SAC 305 are also dependent on the solidification
process. The mechanical properties of the SAC 305 found in the literature cannot be
directly used, as either the solidification process is not well described or the volume
of SAC 305 manufactured is too small (often the size of a solder joint).

Nevertheless the literature gives a long list of constitutive laws used to model the
experimental behaviour of the SAC 305. [Dompierre 2011] summarized most of the
experimental/numerical studies performed in order to characterize the SAC alloys.
Some of these models are listed below:
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A model material

• Anand model,

• Chaboche model,

• Power law.

These models will be presented in Section 1.2 of Chapter 2. Their benefits and
issues according to the present work will also be discussed.

Nevertheless from the information collected in the literature, it is mandatory to
characterize the mechanical behaviour of the SAC 305 with respect to the solidifi-
cation process and the ingots dimensions.

1.1.3 SAC 305 casting process

As the solidification process is particularly important and especially its kinetics,
the specimen manufacturing process needs to be investigated. In some studies the
casting process is also documented, as [Che et al. 2010; Huh, Kim, and Suganuma
2001; Kim, Huh, and Suganuma 2002; Molnar et al. 2014]. In most cases, the
mould is pre-heated to more than 300◦C as well as the alloy. In some studies, like
[Molnar et al. 2014], the mould and its content are kept for few minutes at a reduced
temperature just above the SAC 305 melting solidus temperature.

The cooling phase is not often detailed, except in [Kim, Huh, and Suganuma
2002] and [Wei and Wang 2012] where the cooling rates are mentioned. Wei and
Wang also mentioned the cooling means, furnace-cooling, air-cooling and water cool-
ing.

After the cooling phase some authors mention a heat treatment in order to
remove residual stresses.

The main manufacturing data are summarized in Table 1.2.

Wei and
Wang

Molnar
et al.

Kim, Huh,
and

Suganuma
Mould material no mould n/d Steel

Melting temperature [̊ C] 300 350 300

Mould pre-heating temperature [̊ C] n/d 230 n/d

Cooling rates [̊ C.s−1] 0.14;1.7;100 n/d 0.012;0.043;8.3

Heat treatment temperature [̊ C] n/d n/d 100

Heat treatment time [min] n/d n/d 30

Table 1.2: Summary of SAC 305 casting process characteristics, n/d: not defined

This different information will be really useful to define the manufacturing pro-
cess of our specimens.
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1. State of the art

1.2 Definition of a constitutive model

In this section, the theoretical framework to define and identify a constitutive
model will be presented.

Before going deeper in the mathematical definition of the different constitutive
laws already used to model the SAC 305, a brief description of the creeping phe-
nomenon is presented.

1.2.1 The creeping phenomenon

The creeping phenomenon is strongly linked to the alloy temperature and its
melting temperature. The most convenient way to observe the creeping behaviour of
an alloy is to perform a creep test. Post processing the deformation of the specimen
with respect to the testing time allows to identify three phases, as shown in Figure
1.5.

Figure 1.5: Identification of the three creep phases on a creep test

• The primary creep: corresponds to a phase where the strain increases
quickly. The strain rate decreases rapidly with respect to the time. It cor-
responds to the initiation and the propagation of the dislocations within the
material microstructure. This phase is highly dependent on the hardening law
of the material.

• The secondary creep: corresponds to a phase where the strain grows regu-
larly. The strain rate is constant or almost constant with respect to the time.
The dislocations coalesce to form cellular structures. The dislocation density
stays stable. This phase is dependent on the creep law (flow rule).
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Definition of a constitutive model

• The tertiary phase: leads to the failure of the specimen. The strain increases
rapidly as well as the strain rate. Cavities appear within the material, grow
and fuse together until failure of the specimen. The last phase is strongly
linked to the damaging of the material (damage law).

This brief description allows to identify the effect of the different variables of
the constitutive law during the different phases. As the buckling phenomenon often
appears before any damage of the structure, the damaging of the material will be
neglected in this work.

While a creep test is convenient to identify the three creep phases and to identify
the secondary creep law, it may be very cumbersome to define accurately the hard-
ening law. Several classical tensile tests at different strain rates are more efficient
to identify both hardening law and creep law, as shown in Figure 1.6.

Figure 1.6: Illustration of the link between tensile tests performed at different
strain rates and the creep law

This type of experiments is used latter to identify the parameters of the consti-
tutive law. This last one only models the primary and secondary creep.

1.2.2 Theoretical framework of elasto-visco-plastic consti-
tutive models

We constrain ourselves to the small strain assumption, which leads to the additive
decomposition of the strain tensor:

ε = εe + εin, (1.1)

with ε the strain tensor, εe the elastic strain tensor and εin the inelastic strain
tensor.
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1. State of the art

According to [Lemaitre et al. 2009], the following ingredients are needed to define
a rate dependent constitutive law:

• a thermodynamic potential (Ψ),

• a set of state variables (ε, T ),

• a set of internal variables (Vk, εin),

• a dissipative potential (φ) and the associated flow rules,

• a yield criterion (f) associated to a stress norm (J).

The internal variables can group the kinematic and the isotropic hardening vari-
ables and in some cases the damage variables. The dissipative potential defines the
flow rules and the viscous behaviour. The yield criterion defines the fully elastic
domain as well as the flow direction for associative flows.

The thermodynamic foundation of the present theory can be found in [Lemaitre
et al. 2009].

According to [Lemaitre et al. 2009], the dual dissipative potential φ∗ of φ can be
defined as an equipotential function in the stress space, as follows:

φ∗ = Ω (σ, T ) . (1.2)

Ω can be subdivided into a function of equipotential in the stress space respon-
sible of the plastic deformation Ωp and a recovery potential Ωr, as follows:

Ω = Ωp + Ωr. (1.3)

In this work, the recovery effects are neglected, therefore Ω = Ωp. According to
[Lemaitre et al. 2009], Ω can be written as a function of a stress norm, the internal
variables, and the temperature:

Ω = Ω (J (σ −X)−R,X, R,Ak) , (1.4)

where R is the isotropic hardening variable, X is the kinematic hardening variable,
and the Ak are additional thermodynamic forces associated to the other internal
variables Vk (as damage variables).

The plastic flow rule can finally be written as:

ε̇p =
∂Ω

∂σ
,

=
∂Ω

∂J
· ∂J
∂σ

,

=
∂Ω

∂J
n.

(1.5)
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Definition of a constitutive model

where n is the flow direction and ∂Ω
∂J

corresponds to the creep law. ∂Ω
∂J

is also equal
to the equivalent plastic strain rate ṗ.

In the case of the SAC 305 many models were used in order to characterize its
behaviour. The next three paragraphs present the dissipative dual potential Ω of a
basic creep constitutive model and two classical laws used to model the SAC 305
behaviour.

Norton creep law
The Norton model is the simplest one. It only considers isotropic hardening

variable and a Norton creep law. Ω is defined as:

Ω =
K

N + 1

〈
J −R
K

〉N+1

, (1.6)

where J is a stress norm, R is the isotropic hardening variable (law) and K and N
are material parameters. N is the slope of the creep law in a log-log diagram (σ -
ε̇).

Therefore, the flow rule can be defined by:

ṗ =

〈
J −R
K

〉N
,

Ṙ =
∂R

∂p
ṗ.

(1.7)

This model is particularly efficient for monotonic loading, as any isotropic hard-
ening law can be coupled to the classical Norton creep law. Its identification is also
very convenient.

In order to take into account the effect of the temperature, an exponential func-
tion of the temperature is added to the previous expression:

ṗ =

〈
J −R
K?

〉N
,

K? = K

[
exp

(
Q

R · T

)]1/N
(1.8)

with Q the activation energy already mentioned, R the universal gas constant and
T the temperature in K (Kelvin).

In case of a non-linear creep law, an exponential function can be introduced to
Equation 1.7 with same formalism:

Ω =
exp

(
α0〈J −R〉N+1

)
α0(N + 1)KN

,

ṗ =

〈
J −R
K

〉N
exp

(
α0〈J −R〉N+1

)
,

(1.9)
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1. State of the art

with α0, K and N material parameters.
This model is the most simple and flexible one for monotonic loads.

Anand model
The Anand model was largely used in the literature to model the SAC 305

behaviour.
The flow rule is defined as follows:

ṗ = K

(
sinh

(
ξ
J

s

))1/m

,

ṡ = h0

∣∣∣1− s

s∗

∣∣∣a · sign
(

1− s

s∗

)
ṗ,

s∗ = ŝ

(
ṗ

K

)n
,

(1.10)

where K, ξ, m, h0, a, ŝ and n are material parameters defining both hardening and
creep laws.

The hardening is introduced through the s variable. As shown in [Bai, Chen,
and Gao 2009], this model fits globally the SAC 305 behaviour, but the hardening
law does not fit well all experimental data. In fact the tangential hardening law is
not suitable for the SAC 305 behaviour. Moreover, there is not much freedom to fit
the hardening tangential law, as it is more or less a power law.

Elasto-visco-plastic Chaboche model
Finally the elasto-visco-plastic Chaboche constitutive model includes kinematic

and isotropic hardening variables. It is well adapted to model the cyclic behaviour
of the SAC 305 alloy. Classically the isotropic hardening is modelled by a Voce type
hardening variable, defined as follows:

Ṙ = b(Q−R)ṗ, (1.11)

with b and Q material parameters.
As many kinematic variables as needed can be used. Their evolutions are defined

as follows for isotropic material:

Ẋk = 2/3Ckε̇
p − γkXkṗ, (1.12)

with Ck and γk material parameters.
The dual dissipative equipotential is defined by a Norton dissipative equipotential

including the kinematic stress tensor X:

Ω =
K

N + 1

〈
J(σ −X)−R

K

〉N+1

. (1.13)
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The buckling phenomenon

Equally, the flow rule is defined by:

ṗ =

〈
J(σ −X)−R

K

〉N
,

α̇k = ε̇p − 3/2
γk
Ck
Xkṗ,

Ṙ = b(Q−R)ṗ,

(1.14)

where αk is the kinematic hardening variable tensors.

This model is one of the most complex models. Its complexity increases its
accuracy and makes it a good candidate to model the SAC 305 behaviour. Moreover
with its several hardening parameters it allows to fit well the tangential hardening
law. This point is particularly important for buckling analysis.

In Chapter 2 the model used in the present work is detailed. This model cor-
responds to a modified Chaboche constitutive model with several Voce hardening
variables and no kinematic hardening variables. Due to the several Voce harden-
ing variables, this constitutive law can model efficiently a large number of material
subjected to monotonic loading.

The next section of this chapter is focused on the buckling phenomenon and its
prediction.

1.3 The buckling phenomenon

The buckling phenomenon is a challenging topic in mechanics. It leads to the
failure of structures. It is often sudden, in opposition to other failure modes, as the
damaging of materials or crack propagation. Moreover it is a global failure mode as
the entire structure is involved. Therefore it depends on the structure geometry, its
loading, its boundary conditions and more importantly the constitutive law of its
material.

The buckling phenomenon can either lead to the global change of the structure
(often called geometrical instability) or to a local change of the structure (locali-
sation). In both cases the stiffness of the structure is affected and cannot fulfil its
initial function. Same techniques are used to detect both buckling phenomena.

The geometrical instabilities are more often observed on thin walled structures,
as tubes, plates or thin shells, while localisation issues is more often observed on thick
ones. In some cases, thick or moderately thick structures can present geometrical
instability issues. In the next subsections the buckling phenomenon is presented.
First the general concepts are presented. Then the plastic buckling and the predicted
methods associated are described. Finally a brief state of the art of existing works
on elasto-visco-plastic buckling is presented.
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1. State of the art

1.3.1 Introduction to buckling

As mentioned above it exists two types of buckling. We distinguish the limit
point buckling from the bifurcation buckling as depicted in Figure 1.7.

(a) (b)

Figure 1.7: (a) limit point buckling; (b) bifurcation buckling

In the first case the solution stays unique, the structure follows its trivial branch
defined by the load F and the displacement u until reaching a maximum point (Fc,
uc), called limit point. From this point, the stiffness is greatly affected and does not
resist anymore to the load applied. The load starts decreasing without losing the
uniqueness of the solution. This is often associated to imperfect structures or very
thick ones. To detect the limit load a simple arc-length strategy can be used for all
kind of elasto-plastic materials.

The bifurcation buckling is different in the uniqueness character of the solution.
As in the previous case, the structure starts following its trivial branch until reaching
a critical point where the uniqueness of the solution is lost. Several branches can
emerge from this critical point (Fc, uc), the trivial one and the bifurcated ones.
We are interested in this type of buckling in the present work. The bifurcation
buckling was first studied on elastic structures through the second derivative of the
potential energy. The Lejeune-Dirichlet theorem defines an equilibrium, defined by
the displacement u and the load λ, as stable if the potential energy reaches a strict
minimum, i.e.:

∀∂u kinematically admissible ∂2P (u, λ) > 0 (1.15)

with P , the potential energy.

In elasticity, the loss of stability also coincides with the bifurcation. This is
not the case for inelastic behaviours (cf. [Benbagdad 1992]). Another criterion was
developed by Hill for elasto-plastic materials. It is introduced later in this chapter.

In the following subsection some classical bifurcation buckling behaviours are
presented, before introducing a classical bifurcation criterion.
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1.3.1.1 Some classical buckling behaviours of shells

Some structures are more likely to buckle than others. It obviously depends on
the load applied, the boundary conditions and the material properties. Nevertheless
the geometry of a shell structure can affect the buckling load and more importantly
its buckling mode.

As an example, cylinders subjected to external pressure present interesting buck-
ling mode according to their geometrical properties. Montague performed several
buckling experiments on cylinders subjected to external pressure. The results of
the test campaign are presented in [Montague 1969]. Montague observed different
buckling modes according to the cylinder geometry, as shown in Figure 1.8.

Figure 1.8: Typical lobar buckling mode shape for three cylinders with different
geometries [Montague 1969]

More importantly, he shows that in some cases the buckling modes are so close
that the structure buckles on several modes at the same time. A perturbed buckling
mode can be observed, corresponding to the linear combination of the different
buckling modes excited, as shown in Figure 1.9. In Figure 1.9, the buckling mode
shape should be identical to the one presented in Figure 1.8 for the specimen with a
L/D ratio equal to 1.1 and a D/t ratio equal to 56. Because of the mode proximity,
each mode perturbs each others.

The effect of the geometry on the buckling behaviour is a well-known result.
In addition the mode proximity is a key element in order to evaluate a buckling
criterion. The point is discussed several times in this work.

The other element which has a major impact on the buckling behaviour is any
kind of imperfection. This topic was extensively studied in the literature as in
[Yeh and Kyriakides 1986] on the collapse of tubes subjected to external pressure,
or in [Gusic, Combescure, and Jullien 2000] dealing with thickness imperfections.
The geometrical imperfections are often preferred to loading ones as it is easier to
implement in numerical models. Loading imperfections were also studied through
loading interactions, as in [Kyriakides and Shaw 1982]. Imperfections can affect
both the buckling load and the buckling mode. Moreover, when the modes are
close, a geometrical imperfection can drive the structure to bifurcate on a mode
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1. State of the art

Figure 1.9: Buckling mode combination due to mode proximity [Montague 1969]

more compatible with the imperfection, as in Section 11.5 of [Kyriakides and Corona
2007].

These first observations show several points to look at in order to evaluate a
buckling criterion and the buckling behaviour of any structure. In order to identify
the critical point and the buckling mode, a bifurcation criterion is required. The
most common bifurcation criterion used was developed by Hill in [Hill 1958], it is
presented hereafter.

1.3.1.2 The Hill criterion

Hill proposed a theory to define the uniqueness of an equilibrium point for elasto-
plastic material (cf. [Hill 1958]).

The equilibrium of a mechanical system D delimited by ∂D is defined by:

divσ = 0
σ̇ = Ct ε̇

}
∀P in D,

σ̇ ·N = Ṫ

u̇ = U̇

}
∀P in ∂D,

(1.16)

where σ is the Cauchy stress tensor, σ̇ is the Cauchy stress rate, Ct is the tangential
constitutive law, N is the normal to ∂D in P , Ṫ is the load rate vector on ∂D, U̇
is the velocity on ∂D, ε̇ is the strain rate tensor and u̇ is the velocity within D.

Ct =

{
Ce the elastic modulus if elastic loading or unloading occurs,
Cp the elasto-plastic modulus if plastic loading occurs.

(1.17)

Hill defined his theory under the small strain assumption, for associative ma-
terials following a normality rule. He assumes that if two velocity fields and their
associated stress rate tensors (u̇1, σ̇1) and (u̇2, σ̇2) are solutions of the equilibrium,
the solution to the equilibrium is unique if:
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The buckling phenomenon

∫
V

∆σ̇ : ∆ε̇+ σ : ĖQ(∆v)dV > 0, with : ∆. = (.)1 − (.)2, (1.18)

and,

ĖQ
ij (v) =

∂vk
∂xi

∂vk
∂xj

. (1.19)

with v the velocity fields.
One of the displacement fields is therefore not kinematically admissible. This

criterion is derived from the strict convexity of the potential energy with respect to
any kinematically admissible displacement perturbation, as described in [Benbagdad
1992].

If both displacement fields are kinematically admissible,∫
V

∆σ̇ : ∆ε̇+ σ : ĖQ(∆v)dV = 0, (1.20)

the solution is therefore not unique.
Hill shows in [Hill 1958] the following inequality:∫

D
∆σ̇ : ∆ε̇dV ≥

∫
D

∆ε̇ : Ct∆ε̇dV. (1.21)

This leads to:
∆u̇ : (Kt +Kσ) ∆u̇ = 0, (1.22)

with Kt is the stiffness tensor of problem and Kσ the geometric stiffness tensor.
The uniqueness of the solution is therefore reduced to an eigenvalue problem on

the stiffness tensors Kt and Kσ:

[(Kt +Kσ)− λ I] · U = 0. (1.23)

The critical point is reached when the smallest eigen-value λ1 is equal to 0.
As long as min(λi) > 0 the solution is unique. This is a sufficient condition of
uniqueness as long as the bifurcation is not tangential, the solid does not experience
elastic unloading at buckling and the loads do not change orientations between the
initial and the current configuration. This condition is true as long as every point
of D is loaded in a manner that any point of the plastic domain Dp does not unload
elastically on the bifurcated branch.

For moving loads, such as pressure, an additional stiffness matrix (Knl) associ-
ated to the change of the loading orientation needs to be added in the eigen-values
analysis:

[(Kt +Kσ +Knl)− λ I] · U = 0. (1.24)

The next section discusses the application of the Hill bifurcation criterion to
elasto-plastic solids and a paradox observed on some structures.
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1.3.2 The buckling paradox in plasticity

The last method was successfully applied to many types of structure using the
Mises flow theory to describe the plastic flow rule. Its efficiency is well known on
thin structures (see [Yeh and Kyriakides 1986] or [Bardi and Kyriakides 2006]). Nev-
ertheless, some thick structures, as plates, buckle before reaching Hill ’s bifurcation
load. A more accurate estimation of the bifurcation point was achieved using any de-
formation theory (as Hencky ’s deformation theory) to define the tangent operator of
the constitutive law as seen in Figure 1.10. This last method gives better correlation
with experiments than the classical Hill ’s method as demonstrated in [Hutchinson
1974] [Kyriakides and Corona 2007] or [Kyriakides, Bardi, and Paquette 2005].

Figure 1.10: Comparison of tests and theories for torsional buckling of a cruciform
column [Hutchinson and Budiansky 1976]

Hutchinson shows in [Hutchinson 1974] that the predictions using any defor-
mation theory coincide with the predictions using complex flow theories such as
the slip theory from [Batdorf and Budiansky 1949] for nearly proportional load-
ings. In addition Hutchinson states that as in the complex flow theories mentioned
in [Hutchinson 1974], corners develop on the yield surface at bifurcation or prior
bifurcation. It follows that any deformation theory coincides with a flow theory
allowing the development of corners on the yield surface for nearly proportional
loadings. Unfortunately, this equivalence is often only valid in a reduced strain
range. Discussions about the real development of corners are still open. Moreover
the experimental observation of a corner on the yield surface is very complicated.

Some authors explain that the delay of Hill ’s method in predicting buckling is
caused by a high imperfection sensitivity of the structure (cf. [Onat and Drucker
1953]). This is not always the case, as it depends on the geometry of the structure.
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The buckling phenomenon

A difference between predictions using the simplest incremental theory (the Mises
flow theory) and the simplest deformation theory (Hencky ’s deformation theory) is
especially observed on thick structures such as thick plates. Wang and Aung devel-
oped a model in [Wang and Aung 2007] in order to define the first critical equilib-
rium of thick plates subjected to compressive loading. As an example, Figure 1.11,
extracted form [Wang and Aung 2007], presents three predictions using Hencky ’s
deformation theory (DT), the Mises flow theory (IT) and an elastic prediction with
respect to the thickness ratio b/h (width over thickness). Figure 1.11 illustrates the
buckling predictions on a square plate subjected to an in-plane equi-biaxial stress
state. As shown, for thick plates the deformation theory gives a lower critical stress
than the incremental one. Both theories converge when the thickness ratio increases
or when the plate becomes thin.

Figure 1.11: Normalized buckling stress versus b/h ratio for a fully clamped square
plate subjected to an in-plane equi-biaxial loading (dashed curves thin plate theory,
plain curves Reissner-Midlin plate theory). [Wang and Aung 2007]

Any deformation theory seems to be the best solution to predict efficiently the
buckling of thick elasto-plastic structures, as illustrated with the cruciform beam in
Figure 1.10. Nevertheless, any deformation theory is limited to structures subjected
to proportional loading (cf. [Christoffersen and Hutchinson 1979]). This consider-
ably restrains their domains of application to simple structures subjected to simple
loadings. In this matter Christoffersen and Hutchinson, proposed an extension of
the J2 deformation theory to non-proportional loading paths. This constitutive
model called J2 corner theory is presented in [Christoffersen and Hutchinson 1979].
It coincides with the J2 deformation theory for quasi proportional loading.

This incremental theory based on the deformation theory was developed in order
to define an accurate theoretical framework to the buckling paradox. Therefore the
theory is appropriate to treat non-proportional loading. Moreover it gives buck-
ling predictions close to the ones derived with the deformation theory, for nearly
proportional loadings.
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Its formulation is based on a potential depending of the stress rate orientation
as follows:

W (σ̇,σ) = σ̇t (Le + h(θ)Lp) σ̇, (1.25)

with θ the stress rate orientation with respect to the deviatoric stress direction, Le is
the elastic moduli inverse and Lp is the inverse of the J2 deformation theory plastic
moduli, and:

h(θ) =


1 if: θ ≤ θ0

h(θ) if: θ0 < θ < θc
0 if: θ ≥ θc

, (1.26)

with θ0 the angle delimiting the quasi proportional range, and θc the angle defining
the elastic unloading range as shown in Figure 1.12.

Figure 1.12: Description of the three loading zones around the corner of the yield
surface (black curves are associated to the corner theory with two different sets of
parameters θ0 and θc).

It was first developed to perform both buckling and post buckling analysis using
the same constitutive model, and especially a constitutive model close to the J2
deformation theory. It includes a non-smooth yield surface, with a corner positioned
by the deviatoric stress tensor. The corner theory was successfully applied to the
well-known cruciform column in [Needleman and Tvergaard 1982] and to elasto-
plastic axially compressed cylinders in [Tvergaard 1983].

Furthermore, Tvergaard explains in [Tvergaard 1983] that the critical load pre-
dicted by the corner theory is rather an upper bound, as the stiffness in the transition
zone (θ0 < θ < θc) is progressively equal to the elastic moduli. Nevertheless it showed
good results in predicting buckling of structures subjected to non-proportional load-
ing as shown in [Tvergaard 1983; Tvergaard and Needleman 2000], especially when
compared to the simplest incremental theory. Indeed for non-proportional loading
the deformation theory would give unrealistic buckling load, because of the disagree-
ment of its formulation with the real stress state. The simplest incremental theory
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would still give an overestimation of the buckling load. This two points are shown
in Figure 1.13 from [Needleman and Tvergaard 1982].

Figure 1.13: Comparison of theories for the torsional buckling of a cruciform
column with imperfection [Needleman and Tvergaard 1982]

This paradox and its extension to non-proportional loading paths are also inves-
tigated in this work. Moreover the operator associated to these theories are detailed
in Chapter 2 and extended to elasto-visco-plastic materials.

1.3.3 Elasto-visco-plastic buckling

In the previous sections, the existing methods to predict buckling and their
domain of use, have been presented for elasto-plastic material or rate-independent
material. In this study we are interested in materials presenting a rate dependency.

The rate dependency of the material can have several effects on the mechanical
behaviour of the structure as well as its buckling. The possible initial imperfection
can be magnified because of the rate dependency. Moreover the stiffness of the
structure is also affected by the strain rate. It has also been shown that Hill ’s
criterion cannot be used directly in the inelastic range to predict buckling of rate
dependent solids.

Many approaches were proposed in the literature to predict the bifurcation buck-
ling of rate dependent structures. Many are imperfection dependent, the analysis
of the bifurcated solutions are used to define the critical values. These methods are
often time consuming and imply to well know the type and the amplitude of the im-
perfection experienced by the structure. Among all approaches, two were preferred
as they are based on bifurcation criteria. One was defined by [Bodner, Naveh, and
Merzer 1991], the other was defined by [Triantafyllidis, Massin, and Leroy 1997].
Both are briefly presented thereafter.

The Triantafyllidis sufficient condition
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1. State of the art

The method developed in [Triantafyllidis, Massin, and Leroy 1997] is a rigorous
one. It gives a sufficient condition of bifurcation for rate-dependent solids. As its
implementation in a FE software is complex, this method is not used in this work.
Therefore its mathematical formulation is not presented here. Details of its for-
mulation can be found in [Triantafyllidis, Massin, and Leroy 1997]. Two examples
were treated numerically with this method, the Shanley’s column by [Massin, Tri-
antafyllidis, and Leroy 1999] and uniaxial plane strain test by [Nestorović, Leroy,
and Triantafyllidis 2000].

As this thesis is more oriented on the experimental buckling and because of the
complexity to implement in a FE software the Triantafyllidis, Massin, and Leroy
sufficient condition, this approach was not selected in the work.

The Bodner hypothesis

Several attempts to define a simple creep buckling criterion are discussed by
Bodner, Naveh, and Merzer in [Bodner, Naveh, and Merzer 1991]. Bodner proposed
an approach based on an effective tangent modulus.

This method consists in defining an instantaneous plasticity problem. The in-
stantaneous plasticity problem is defined through the assumption of a constant strain
rate (in time) at buckling initiation. This method is inexact, but it allows to predict
a lower bound bifurcation point for rate-dependent solids. The lower bound charac-
ter is due to the neglected possible change of strain rate at buckling initiation. This
method is particularly efficient when the strain rate is small enough (quasi static
problems).

In particular, an effective or instantaneous consistency condition can be defined:

dṗ = 0. (1.27)

Using Bodner ’s hypothesis, the existing methods to analyse the stability of rate-
independent materials can be applied. The stability of the instantaneous plasticity
problem is analysed. This method was applied numerically to different geometries by
[Paley and Aboudi 1991], [Bodner and Naveh 1988], [Mikkelsen 1993] or [Mikkelsen
2001].

This approach is particularly simple to implement in a FE software. As men-
tioned above, this approach gives an estimation of the bifurcation point, therefore
its results have to be analysed carefully.

It is also important to notice that both approaches have only been compared to
numerical results. In [Mikkelsen 1993], Bodner ’s critical values are compared to the
numerical results from post-buckling analysis with different imperfection amplitudes.
In some cases Bodner ’s critical values are not anymore a lower bound of the buckling
load of the imperfect structure. This could be explained by the buckling paradox in
the visco-plastic domain.
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This paradox was investigated once for rate dependent material in [Eslami and
Shariyat 1997]. The prediction method used in [Eslami and Shariyat 1997] is close
to the one proposed by Bodner, Naveh, and Merzer.

In Chapter 2, a model to predict the buckling of elasto-visco-plastic structures
is proposed, including Bodner ’s hypothesis and elements to consider thick shells,
non-proportional loadings and the buckling paradox observed in plasticity.

1.3.4 Experimental elasto-visco-plastic buckling of shells

From an experimental point of view, the creep or visco-plastic buckling is not
well documented. Many articles in the literature rather deal with numerical ap-
proaches and buckling prediction criteria than buckling experiments. Nevertheless
some authors like [Hoff 1976], [Combescure and Jullien 2017] or [Gerard and Gilbert
1958] present experimental data on creep buckling.

The main interest of these articles is to describe how the mechanical behaviour
and especially the rate dependency affects the buckling behaviour of the structure.
Moreover it gives information on the experimental means as well as on the post
processing methods used.

The experiments presented in [Gerard and Gilbert 1958] are the most relevant
ones, as they consider thick tubes subjected to a compressive load or a torsional
load. The experiments are performed as creep tests. The load applied is constant
over time. Only the time to buckling defines the critical point. 3003-0 aluminium
tubes at 343 ◦C are tested. First, the mechanisms of the creep buckling behaviour
can be observed, as the strain rate dependency of critical stress presented in Figure
1.14 from [Gerard and Gilbert 1958]. Indeed the lower is the strain rate (associated
to the critical time) the lower is the buckling stress. Unfortunately, little information
is given about the buckling mode and the potential effect of the creep behaviour on
the buckling mode. The same philosophy is followed by [Hoff 1976] on thin cylinders
and plates.

The most complete set of experimental results on creep buckling can be found in
[Combescure and Jullien 2017]. An important part of this article treats the shape
and evolution of the buckling mode with respect to time as shown in Figure 1.15.
More importantly a Fourier approach is followed to define the nature of the buckling
mode, and their contribution to the final buckling mode. Moreover in [Combescure
and Jullien 2017], a detection criterion based on the non-trivial velocity field is given.
The non-trivial velocity increases faster before collapse of the shell.

The main conclusion from this test campaign is related to the initial imperfection.
Indeed the component of the initial imperfection corresponding to the buckling mode
seems to increase slowly during the test until the critical point. Its increase becomes
exponential from the critical point.

More than the valuable results presented, the important information to notice
from this test campaign is about the experimental means associated to the experi-
mental buckling analysis. The post processing of the experimental data and espe-
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(a) (b)

Figure 1.14: (a) Experimental critical compressive stress data with respect to the
critical time (white bullet); (b) Experimental critical torsional shear stress data with
respect to the critical time (white bullet) [Gerard and Gilbert 1958]

cially the displacement fields give valuable information on the buckling behaviour
of the structure. The finite element simulation of each experiment also allows to
better analyse the buckling behaviour of the tested structure.

A specific section in Chapter 2 is dedicated to the definition of the experiments
and the instrumentation for the buckling experiments.

To conclude, only few authors treat the subject of the thesis (the elasto-visco-
plastic buckling of thick shells). Among the published articles, one is of interest
(cf. [Gerard and Gilbert 1958]), but it only gives reduced information on major
critical variables (i.e. critical loads, times, strains, etc.). More importantly no
information is given on the buckling modes, the buckling initiation and the buckling
mode evolution with respect to the time. Other experiments found in the literature
are further documented, but they are focused on thin shells. Moreover the selected
specimen shapes are generally subjected to proportional loading paths. It facilitates
the usage of simple bifurcation criteria and does not allow to generalize the methods
and observations to complex structures, such as the sodium manifold considered in
this work.
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Figure 1.15: Evolution of creep radial displacement along the circumference of the
shell (A/e radial displacement amplitude over cylinder thickness). [Combescure and
Jullien 2017]

1.4 Conclusion

In this chapter the different available data as well as existing methods to study
the buckling of shell structures has been presented. Some concern the experimental
environment, others the numerical one.

From the data available on the representative material, we identified a need
to characterize the material behaviour. Moreover existing publications show con-
straints on the manufacturing and the storage of the test specimens. These con-
straints will be taken into account to define the manufacturing process as well as
the experimental procedures. In the next chapter the detailed strategy to manu-
facture the test specimens and to identify the material behaviour associated to the
manufacturing process are presented.

On the same topic, several material constitutive models were tested in the past to
characterize the SAC 305 mechanical behaviour. Their main properties have been
presented in this chapter. An additional behaviour has been added in this work
because of the natural orthotropic behaviour of the Tin crystal. An anisotropic
yield criterion is used. The selected material constitutive model and the method of
characterization are presented in the next chapter.

Two aspects of the buckling behaviour are treated in this work. First the numer-
ical modelling of an elasto-visco-plastic thick shell bifurcation problem is a major
issue. Then the experimental methods needed to observe and characterize the buck-
ling behaviour of some specific shells have to be considered with attention in order
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to obtain valuable results.
Concerning the numerical aspects, this chapter showed that some aspects of our

problem are missing in the literature. Indeed, thick shell buckling was treated in the
literature but the existing studies are limited to elasto-plastic materials. The elasto-
visco-plastic bifurcation buckling of shells is often limited to thin shells. Moreover,
the existing data generally concerns structures experiencing proportional loading.
Concerning the numerical modelling of an elasto-visco-plastic thick shell buckling
problem, the main idea of this work is to assemble all the elements discussed in
this chapter into a single model. This model would consider the thick shell aspects,
the elasto-visco-plastic behaviour of the material and the non-proportionality of the
load path. These element are considered through an extension of the corner theory
to elasto-visco-plastic materials and the application of Bodner ’s hypothesis. This
model is detailed in the next chapter. It will be evaluated against experimental
results in Chapters 4 and 5.

Finally the experimental environment is also a major issue to get more valuable
experimental results. As for the numerical modelling, experiments on thin shells
were preferred in the literature. In the past, the authors were mainly interested in the
values of the critical load, strain, stress or time. The analysis of the buckling mode
was often omitted or studied approximately. The latest experimental means allow
to study this particular property of shell buckling (as Digital Image Correlation).
The analyses of the experimental buckling initiation and an accurate analysis of
the buckling mode can allow to improve the confidence in the bifurcation criterion.
For all experiments, a special attention was given to the instrumentation used to
measure the deformation of the test specimens.

The next chapter addresses the points developed in this conclusion in order to
create numerical and experimental frameworks for the analysis of the bifurcation
buckling of elasto-visco-plastic thick shells.
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Chapter 2

Methods

This chapter presents the different developments performed to
answer to the thesis subject. Some developments are experimental
procedures, and others numerical methods. In addition, bridging
tools were developed in order to connect experimental data with

numerical results.
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2. Methods

As presented in the introduction, this work covers several topics, from the spec-
imens casting to the buckling experiments. In this chapter the different tools or
methods developed in this thesis are presented. Two main tasks were driven in par-
allel, one was focused on experimenting the buckling, and the other was dedicated to
its numerical prediction. The developments of both tasks are respectively presented
in Section 2.4 for the buckling experiments and in Section 2.3 for the numerical
buckling predictions. In order to compare experiments with numerical modelling,
several satellite tasks were required.

These satellite tasks are focused on the manufacturing of the specimens, the
identification of the material law with a FEMU approach, and the analysis of the
experimental deformed shape and buckling modes using 3D Digital Image Corre-
lation (DIC) and FE modelling methods. All satellite methods are described in
Sections 2.1, 2.2 and 2.5. Figure 2.1 summarizes the different developments per-
formed and their interactions with each others.

It was chosen to present the different tasks in a chronological manner. First
the manufacturing process of the specimens is introduced, and then the method to
identify the material behaviour is described. Following these two first satellite tasks,
the methods to study the buckling of thick shells are presented. It is followed by the
experimental approaches developed to experiment buckling of thick shells. Finally
a specific interface linking DIC data to FE analysis is presented.

Figure 2.1: Development tasks and their interactions

2.1 Specimens manufacturing process

As mentioned in Chapter 1, a model material was selected in order to study the
elasto-visco-plastic buckling of thick shells. This model material has an elasto-visco-
plastic behaviour at room temperature. This specific property allows to remove any
constraints for the thermal loading during the experiments.

This material is used to manufacture all specimens. The design of each type of
specimen is detailed in the relevant sections (cf. Sections 2.2.1, 2.4.1 and 2.4.2). This
section presents the manufacturing process, with a special attention to its casting
phase.

The manufacturing process is identical for all specimens. The specimens are
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machined from an ingot to their final shape by conventional milling methods. The
ingots are obtained using a gravity casting process.

As already mentioned in Section 1.1.3 of Chapter 1, the casting process has a
great impact on the material properties. Its characteristics are presented thereafter.
The objective of the casting process is to obtain a close to shape ingot, with a sane
microstructure. A repeatable process is also mandatory in order to minimize the
material discrepancy due to the process. The casting process can be sub-divided
into 5 phases:

• Heating of the alloy and the mould to 280◦C for at least 3h,

• Gravity casting of the alloy in the mould at ambient temperature,

• Rest for 1h at 250◦C (in order to obtain a homogeneous temperature field in
the mould),

• Water quench of the mould and its content,

• Heat treatment for stress relieve, 1h at 100◦C.

Figure 2.2 illustrates the whole casting process.

Figure 2.2: Illustration of the casting process

This controlled process guaranties a sane microstructure and a low material
discrepancy. The most critical phase is the water quench, as its parameters can affect
the cooling rate. As already mentioned in Chapter 1, this alloy is very dependent
on the cooling rate during solidification. To reach our objectives, the water quench
needs to be carefully defined and controlled.
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The cooling rate has two major effects. A high cooling rate decreases the grain
size and improves the mechanical properties. On the other hand, for massive com-
ponents the efficiency of the riser is reduced with high cooling rates. High cooling
rates increases the probability of porosity in the ingot bulk.

Moreover the cooling rate needs to be as much homogeneous as possible in the
ingot during the solidification. Indeed, a homogeneous cooling rate guaranties the
homogeneity of the material properties and reduces the porosity density and the size
of the porosities.

Two moulds were designed and manufactured to produce the different ingots.
The tensile specimens and the plate buckling specimens were extracted from ingots
cast in a steel mould presented in Figure 2.3(a). Another mould was used to cast the
ingots of the specimens used for the pressurized buckling tests (cf. Section 2.4.2). A
specific aluminium mould was manufactured for this purpose (presented in Figure
2.3(b)). Both have the same wall thickness, 5 mm.

(a) (b)

Figure 2.3: (a) Steel mould used to cast tensile and compressive specimens; (b)
Aluminium mould used to cast externally pressured specimens

The water quench parameters associated to both moulds have been defined to
achieve equivalent cooling rate, the detailed study is described in Appendix B. The
water quench parameters are presented in Table 2.1.

Mould material Mould thickness Quench temperature
n/a [mm] [◦C]

Steel 5 20
Aluminium 5 40

Table 2.1: Quench temperatures and mould design parameters selected

The main difficulty is to maintain a constant quench temperature, as it can vary
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Specimens manufacturing process

by a few degrees. The material properties can be affected by this experimental
variation. This issue is discussed later in Chapter 3.

The actual quench temperature were measured they are summarized in Table
2.2.

Following the casting process, two tensile or plate buckling specimens can be
extracted from the ingot cast in the steel mould. Only one specimen is extracted
from the aluminium mould.

Table 2.2 summarizes all the specimens produced, their ingot, their manufactur-
ing group, and their dates of casting and testing.

Specimen Ingot
Group

ID
Quench
T ◦ [◦C]

Date of
casting

Date of
testing

Type of testing

TT/11
TTB 1

G1

20 10/2018 11/2018

Tensile testing

TT/12 20 10/2018 11/2018
TT/21

TTB 2
20 10/2018 11/2018

TT/22 20 10/2018 11/2018
TT/31

TTB 3
20 10/2018 11/2018

TT/32 20 10/2018 11/2018
TT/41

TTB 4
20 10/2018 11/2018

TT/42 20 10/2018 11/2018
BTC1/01

PB 0

G2

22 03/2019 04/2019
BTC1/02 22 03/2019 04/2019
BTC1/11

PB 1
22 03/2019 04/2019 Plate buckling

BTC1/12 22 03/2019 04/2019 BTC 1
BTC1/21

PB 2
22 03/2019 04/2019

BTC1/22 22 03/2019 04/2019
BTC2/31

PB 3
G3

28 07/2019 07/2019
BTC2/32 28 07/2019 07/2019 Plate buckling
BTC2/41

PB 4
28 07/2019 07/2019 BTC 2

BTC2/42 28 07/2019 07/2019

O/001 G4 25 08/2019 03/2020

O/002

G5

20 11/2019 08/2020
O/003 40 06/2020 08/2020 Pressurized egg
O/004 40 06/2020 08/2020 buckling
O/005 40 07/2020 09/2020
O/006 40 07/2020 09/2020

Table 2.2: Produced specimens and their manufacturing history
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2.2 Material constitutive law calibration: FEMU

processing

Figure 2.4: FEMU method data flow

The buckling behaviour of any structure is highly dependent on the constitutive
law of its material. An inverse method was implemented to identify the mechanical
behaviour of the SAC 305 alloy. This method is named FEMU for Finite Element
Model Updating. This method is based on the update of the material parameters
of a finite element model until convergence of the model with experimental data, as
described in [Avril et al. 2008]. This identification is based on experimental data,
a finite element model, the constitutive law chosen and an optimisation algorithm.
The different elements and the flow of data are presented in Figure 2.4. The two
main components of this approach are the tensile test procedure and the selected
constitutive model. They are presented thereafter.

The details of the FEMU process used are presented in Appendix D.

2.2.1 Tensile tests

As mentioned in the previous chapter, the material chosen is rate-dependent
at room temperature. It is intended to identify an elasto-visco-plastic constitutive
law. In order to reduce the number of tests without reducing the robustness of
our identification, a specific specimen was designed. As presented in Figure 2.5, the
specimen shape presents a variable effective area along its principal direction. When
a tensile load is applied to the specimen, a heterogeneous strain rate gradient can
be observed on the specimen. A unique tensile test provides experimental data for
a strain rate range.
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Material constitutive law calibration: FEMU processing

Figure 2.5: Tensile specimen drawing (in mm)

The tensile specimens were manufactured from four different batches according
to the manufacturing process presented previously.

The tensile tests were performed on a 20 kN Instron electro-mechanical testing
machine. Figure 2.6 presents a picture of the experimental set-up. The test specimen
is clamped at each end in self-tightening grips. The specimen is aligned with the
testing machine axial direction.

A 16 MPx camera with a 200 mm lens focusing on the center of the specimen is
used for 2D-DIC means. The camera is positioned in order to use most of the camera
sensor. The region of interest (ROI) on the specimen is included in a rectangle of
30x80mm2. The camera frequency is set in order to obtain a mean strain increment
of 2.0× 10−5 mm.mm−1 between two pictures.

Figure 2.6: Tensile experimental set-up and speckle pattern

Tensile tests are driven in rate displacement mode. Two displacement rates were
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tested, the lowest was 3.3 × 10−3 mm.s−1, which covers a strain rate range from
1.0× 10−5 s−1 to 1.0× 10−4 s−1 and the highest was 10 times faster.

In-plane displacement fields were measured by 2D-DIC. For this reason, the
specimen was painted with a random speckle pattern characterized by a Gaussian
distribution of its gray level. The gray level is coded on 8 bits, each pixel takes a
value between 0 and 255. The Gaussian distribution is defined by its mean value,
133 and its standard deviation 48. Each black pattern measures between 2 and 20
px.

2.2.2 Material constitutive law

The constitutive law of the SAC 305 alloy is modelled with a unified elasto-visco-
plastic model. The creep behaviour is model with a Norton law and the hardening
with three Voce hardening parameters. The SAC 305 isotropic transverse behaviour
is modelled with Hill ’s yield criterion. It was chosen to keep elasticity isotropic.
The constitutive law is defined by the following set of equations:

σ = C εe,
ε = εe + εp,

ṗ =

(
F

K

)n
,

F = σeq −R(p),

R(p) = R0 +
3∑
i=1

Ri

(
1− e−bip

)
,

σeq =
√
σ : H : σ,

(2.1)

with, σ the Cauchy stress tensor, ε the Biot strain tensor, εe the elastic strain
tensor and εp the plastic strain tensor, C the isotropic elastic linear operator, σeq
Hill ’s equivalent stress defining the yield surface, H the Hill tensor (used here for
transverse anisotropy), p the equivalent plastic strain, R the hardening variable and
ṗ the equivalent strain rate.

In the general case Hill ’s tensor is defined by:

H =


F +H −F −H 0 0 0
−F G+ F −G 0 0 0
−H −G H +G 0 0 0

0 0 0 L 0 0
0 0 0 0 M 0
0 0 0 0 0 N

 , (2.2)
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with:

F = 0.5

(
1

R2
11

+
1

R2
22

− 1

R2
33

)
G = 0.5

(
1

R2
11

+
1

R2
33

− 1

R2
22

)
H = 0.5

(
1

R2
22

+
1

R2
33

− 1

R2
11

)
L =

3

2

(
1

R2
12

)
M =

3

2

(
1

R2
23

)
N =

3

2

(
1

R2
13

)

(2.3)

In case of transverse isotropy Hill ’s tensor is completely defined by the Lankford
coefficient Rlank:

R11 = 1 R12 = 1
R22 = 1 R13 = 1

R33 =
√

Rlank+1
2

R23 = 1

(2.4)

and:

RLank = εyy/εzz, (2.5)

with y the width direction of the specimen and z its thickness direction.
The material parameters to be identified are R0, R1, b1, R2, b2, R3, b3, K, n,

Rlank and C defined by Young’s modulus and the Poisson ratio. Many parameters
needs to be defined, the associated identification process is therefore complex. The
complexity of the constitutive law allows to better model the SAC 305 behaviour
and especially its tangential behaviour. This is particularly important for inelastic
buckling analysis.

2.3 Buckling prediction of thick shell structures

This section presents the approach followed to predict buckling of thick shell
structure. Based on state of the art methods for visco-plastic materials and thick
plastic structures, a numerical method was developed. First the method was applied
to plates subjected to in-plane compressive load through an analytical model. It
was then generalized to any structure through its implementation in a finite element
model. Whatever modelling approach chosen, the method is built on the definition
of the tangential constitutive law, characterized by Ct.

First the tangent constitutive law will be derived according to different theories,
its implementation to an analytical model will be presented then. Finally the finite
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element modelling approach and the implementation of the tangential constitutive
law in Cast3M are presented.

2.3.1 Derivation of a tangent constitutive law

The tangent constitutive law is an important parameter for the stability analysis,
as previously discussed. The tangent operator links the stress increment to the
strain increment, with respect to the state and internal variables. The derivation
of the tangent operator for the selected constitutive law is presented thereafter for
three different approaches. The first one considers the flow rule developed by Reuss
and Von Mises, while the second uses Hencky ’s deformation theory. The third
one is an extension of Hencky ’s deformation theory to non-proportional loadings.
Reuss/Mises theory can be applied to any load cases while Hencky ’s deformation
theory is limited to proportional loads, where principal strain directions cannot
rotate in the material coordinate system during loading.

As discussed in Chapter 1, two methods can be followed to perform the stabil-
ity analysis of elasto-visco-plastic structures. Either we choose to use the sufficient
condition of stability developed by Triantafyllidis, Massin, and Leroy or the Bod-
ner, Naveh, and Merzer hypothesis for rate dependent materials. In this work, we
oriented our choice to the Bodner, Naveh, and Merzer hypothesis. This approach is
relatively simple to implement in a FE software compared to Triantafyllidis, Massin,
and Leroy sufficient condition. This choice will be discussed in Chapter 4.

The use of Bodner, Naveh, and Merzer hypothesis allows to write an instanta-
neous plastic problem by neglecting the strain rate variation at bifurcation. This is
expressed by:

dṗ = d(g(f)) = g′(f)df = 0, (2.6)

where g is the creep law, f the yield criterion and ṗ the equivalent inelastic strain
rate.

This expression can be defined as an instantaneous consistency equation. With
this instantaneous consistency equation, an instantaneous tangent operator can be
derived for either plastic theory.

The tangent operator derived from Reuss/Mises flow theory is presented first,
the tangent operator derived from Hencky ’s deformation theory comes then. An ex-
tension proposed by Christoffersen and Hutchinson of Hencky ’s deformation theory
to non-proportional loadings is also presented. Finally their impacts on the stability
analysis are presented and discussed.

2.3.1.1 Reuss/Mises flow theory

This theory was initiated by Levy and Von Mises for plastic material and ex-
tended to elaso-plastic material by Prandlt and Reuss (cf. [Hill 1998]). It is based
on a proportional relation between the plastic strain increment and the stress incre-
ment. The so called flow rule defines this relation:
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ε̇p = ṗ
∂f

∂σ
. (2.7)

Using the constitutive law presented in Section 2.2.2, Equation 2.7 becomes:

ε̇p = ṗ
H : σ

σeq
. (2.8)

The consistency equation can be rearranged as follows:

ṗ =
1

R′(p)
n, with: n =

1

σeq
H : σ. (2.9)

The plastic increment can then be expressed with respect to ε̇ by introducing
the elastic law and the flow rule in Equation 2.9, as follows:

ṗ =
ntC ε̇

R′(p) + ntC n
. (2.10)

Finally, using the strain decomposition, the elastic law and the flow rule, we
obtain:

σ̇ = C (ε̇− ε̇p) ,
= C (ε̇− ṗn) ,

=

[
C − P ⊗ P

R′(p) + ntC n

]
ε̇, with: P = C n.

(2.11)

The tangent operator Ct is defined by:

Ct =

[
C − P ⊗ P

R′(p) + ntC n

]
. (2.12)

Often, only its current value is considered in the stability analysis. Non-linear
effects of the constitutive law are neglected around the equilibrium tested.

2.3.1.2 Hencky ’s deformation theory

The deformation theory was largely used with success for stability analysis. In
this case the plastic strain is proportional to the deviatoric stress tensor. The flow
rule is defined as follow:

εp = p
Hσ

σeq
. (2.13)

Its variational expression is then written as:

ε̇p =
σ̇eq
σeq

(
ṗ

σ̇eq
− p

σeq

)
Hσ + p

H σ̇

σeq
. (2.14)
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Using the additive decomposition of the strain tensor, we can write:

σ̇ = C · (ε̇− ε̇p) ,

= C ·
(
ε̇−

[
σ̇eq
σeq

(
ṗ

σ̇eq
− p

σeq

)
Hσ + p

H σ̇

σeq

])
.

(2.15)

Finally combining Equations 2.6 and 2.15, we obtain:

ε̇ =

[
C−1 +

p

σeq
H +

(
ṗ

σ̇eq
− p

σeq

)
Hσ ⊗Hσ

σ2
eq

]
σ̇, (2.16)

and therefore:

Ct =

[
C−1 +

p

σeq
H +

(
ṗ

σ̇eq
− p

σeq

)
Hσ ⊗Hσ

σ2
eq

]−1

. (2.17)

In this work we apply Hencky ’s deformation theory to plate buckling, as the
plate subjected to in-plane loading experiences a proportional loading.

2.3.1.3 Corner theory

Hencky ’s deformation theory has shown excellent correlation with experiments
for thick plastic solids as shown in [Hutchinson 1974]. Nevertheless it is only ap-
plicable to proportional loading because of its flow rule formulation. As mentioned
in Chapter 1, an extension of this theory for structures with more complex load
paths was proposed by Christoffersen and Hutchinson through the corner theory for
elasto-plastic solids. Details can be found in [Christoffersen and Hutchinson 1979].
This theory is based on the definition of a potential, depending on the stress rate
orientation, as follows:

W (σ̇,σ) = σ̇t (Le + h(θ)Lp) σ̇. (2.18)

Le is the inverse elastic moduli, while Christoffersen and Hutchinson define Lp as
the plastic moduli of the deformation theory, defined by:

Lp =
p

σeq
H +

(
ṗ

σ̇eq
− p

σeq

)
Hσ ⊗Hσ

σ2
eq

. (2.19)

h(θ) is a convex function of θ and θ is a smooth function of σ̇ and σ.
In order to understand the role of θ and h, the definition of the non-smooth yield

surface is needed. Christoffersen and Hutchinson define the yield surface as a cone
oriented by the deviatoric stress tensor in the stress rate space as shown in Figure
2.7.

θ is the angle formed by the stress rate and the deviatoric stress tensor. If σ̇ is
tangent to the cone, no plastic strain is generated by this stress rate, the material
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Figure 2.7: Shape of the yield surface for the corner theory, definition of the θ angle.
In this configuration, the structure is in a quasi-proportional loading configuration.

follows the elastic law. If the stress rate, σ̇, is almost aligned with the deviatoric
stress tensor, loading is quasi proportional, the deformation theory flow rule applies.
Christoffersen and Hutchinson define two limit values of θ, θc and θ0 respectively
defining the beginning of the elastic unloading area and the quasi proportional load-
ing area. Christoffersen and Hutchinson also demonstrate the following constraint
on θ0:

θ0 ≤ θc −
π

2
. (2.20)

This geometric observation specifies h(θ) as follows:

h =

{
1, θ ≤ θ0

0, θ ≥ θc

}
(2.21)

θ is defined by:

cos θ =
(LpUσ) : σ̇

(σ̇tLpσ̇)1/2
(2.22)
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with:

Uσ =
Hσ

(σtH LpHσ)1/2
(2.23)

Christoffersen and Hutchinson propose the following expression for h:

h(θ) = cos2

(
π

2

θ − θ0

θc − θ0

)
, if: θ0 < θ < θc. (2.24)

θc and θ0 can be considered as the parameters defining the yield surface shape.
If θc = π

2
, a smooth yield surface is defined. If θ0 = 0, the yield surface vanishes and

the tangent operator becomes non-linear.
Finally the tangent operator can be defined as follows:

Ct =


[Le + Lp]

−1 θ ≤ θ0,[
Le + h(θ)

(
[1− k(θ) cot θ]Lp + k(θ)

sin θ cos θ
Uε ⊗ Uε

)]−1

θ0 < θ < θc,

C θ ≥ θc,


(2.25)

with:

Lp =
p

σeq
H +

(
ṗ

σ̇eq
− p

σeq

)
Hσ ⊗Hσ

σ2
eq

,

Uε = LpUσ,

k(θ) = −1

2

h′(θ)

h(θ)
.

(2.26)

An unloading criterion for elasto-visco-plastic materials

The corner theory was formulated for elasto-plastic materials. An extension to
elasto-visco-plastic materials is proposed here. Indeed, in order to consider visco-
plastic unloading the variable θ? is defined as follows:

θ? =


θ if: σeq −R(p) = 0
θ if: σeq −R(p) > 0 and θ ≤ π/2
π − θ if: σeq −R(p) > 0 and θ > π/2

(2.27)

For elasto-visco-plastic materials, θ? is used instead of θ in all previously pre-
sented equations defining the corner theory model. θ? plays the role of a load-
ing/unloading criterion.

Figure 2.8 depicts the loading and unloading mechanism defined through θ?.
A symmetric loading/unloading strategy is adopted in the visco-plastic range,

as shown in Figure 2.8. A quasi proportional unloading cone is defined. It is
symmetrical to the quasi proportional loading cone with respect to the plane whose
normal is the stress deviatoric.
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(a) (b)

Figure 2.8: (a) Visco-plastic loading mechanism using the corner theory yield
surface; (b) Visco-plastic unloading mechanism using the corner theory yield surface

If θ? < θ0 at the considered point, this last one is loading or unloading quasi
proportionally. The deformation theory is applied in both quasi-proportional loading
and unloading cones.

If the point considered is on the yield surface, it follows the elasto-plastic corner
theory.

This unloading criterion is mandatory so that the corner theory is compatible
with the constitutive model selected, otherwise the unloading would be elastic. An
elastic unloading would increase the stiffness of the structure and delay or even cancel
the buckling of the structure in some loading conditions, as presented thereafter.

In Figure 2.9(a) the effect of the visco-plastic unloading criterion introduced
to the corner theory is illustrated through the creep buckling of a clamped hemi-
egg shell subjected to an external pressure evolution up to Pinf = 4.1 MPa. The
evolution of the eigen pressures is depicted with respect to the time. Three eigen
pressures are plotted, in blue the eigen pressure corresponding to the corner theory
with the unloading criterion introduced here, in red the eigen pressure corresponding
to the corner theory with an elastic unloading criterion and in magenta the eigen
pressure defined with the deformation theory. In addition the applied pressure was
plotted with respect to time in black. The bifurcation points are depicted with plain
triangles.

As shown in Figure 2.9(a), the visco-plastic unloading criterion allows to detect
a bifurcation while none is detected with the elastic unloading. An elastic unloading
increases the stiffness of the shell structure and delays or cancels the bifurcation on
the perfect structure. Moreover the bifurcation time predicted with the modified
corner theory is close to the one predicted with the deformation theory as expected.

This new unloading criterion is especially important for creep buckling cases. The
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(a)

(b)

Figure 2.9: (a) Comparison of the eigen pressure from corner theory (CT) for both
unloading criteria with the eigen pressure from the deformation theory (DT) in the
creep regime, (b) Comparison of the eigen pressure from corner theory (CT) for
both unloading criteria with the eigen pressure from the deformation theory (DT)
in the elasto-visco-plastic regime. Results from a FE simulation with the material
parameters from 3.5, and θ0 = 10◦ and θc = 110◦.

results of the same analysis as presented in Figure 2.9(a) are depicted in Figure 2.9(b)
with a pressure equal evolution up to Pinf = 5.0 MPa. In this case no difference is
observed between the eigen pressure defined according to both unloading criterion.
In this second load case, no unloading is experienced by the structure. Therefore
the unloading criterion does not affect the results.

It is important to notice that for quasi-proportional loadings, Hencky ’s defor-
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mation theory and the corner theory are strictly equivalent. This is the key point
of this theory. Moreover, using the deformation theory on load paths not strictly
proportional is not theoretically right.

The advantage of the corner theory is to use Hencky ’s deformation theory tangent
operator for quasi-proportional loadings and a nonlinear tangent operator depend-
ing on θ for non-proportional loading. This allows to use a theory close to the
deformation theory on structures subjected to non-proportional loadings, where the
deformation theory cannot be used. The corner theory is used to predict the buckling
of hemi-egg shells subjected to external pressure in this work, as a non-proportional
loading is expected.

As already said, the corner theory yield stress depends of two parameters, θc
and θ0 defining respectively the inelastic loading range and the quasi-proportional
loading range. Both parameters are identified in Chapter 5.

For all analysis in this work, the pre-buckling and post-buckling branches are
computed using the Mises flow theory. The stress data from the pre-buckling branch
is then used as an input to derive the tangent constitutive law with Hencky ’s defor-
mation theory or the corner theory and then to compute the bifurcation variables
and modes. The corner theory could have been used for both the constitutive law
integration and the tangent law derivation, with a lot more effort for small benefits
as seen in [Tvergaard and Needleman 2000]. The main difference between the Mises
flow theory and the corner theory is in the definition of the plastic increment.

The Mises flow theory tends to underestimate the plastic strain increment, while
the corner theory overestimates the plastic strain increment. In order to reduce the
difference between strain data used as input and the strain data associated to the
corner theory, we restrict ourselves to a reasonable value of θc,i.e. θc < 130◦. This
last value is recommended by Christoffersen and Hutchinson in [Christoffersen and
Hutchinson 1979]. This is done in order to be close to the yield surface used for the
constitutive law integration.

2.3.2 Analytical buckling prediction of thick plate subjected
to in-plane compressive loads

The tangent operators derived previously could be directly used in a FE software
with the conventional bifurcation tools. Nevertheless a FE model is time consuming
for a parametric analysis especially for a simple geometry as a plate. In order to
investigate in details the buckling of thick plates, an analytical model was developed.

The model is used to predict the critical values and the associated modes charac-
terizing the buckling behaviour plates. The plate material behaviour was defined in
Section 2.2. As an elasto-visco-plastic material is used, the strain and stress history
needs to be defined before any stability analysis. The mechanical equilibrium is
solved first, then its stability is tested using Hencky ’s deformation theory.
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2. Methods

Mechanical equilibrium and integration

The equilibrium is defined by the boundary conditions, the loading history and
the material constitutive law. Plate edges can be constrained. Edges can be free,
simply supported or clamped independently as long as the model is well constrained.
Figure 2.10 illustrates the mechanical problem to solve.

Figure 2.10: Definition of the plate buckling problem; F , S and C for free, simply
supported and clamped; Mx and My the moments around x and y axis respectively;
Rx and Ry the loads along x and y axis respectively

Two types of load case can be defined. Either one normal displacement (ux or
uy) and the in-plane stress ratio σxx/σyy is known (the second in-plane displace-
ment is unknown) (Figure 2.10 right) or both normal in-plane displacements are
known (Figure 2.10 left). The spatial stress distribution is considered as homoge-
nous (∇σ = 0).

The Reissner-Mindlin plate theory is used to define plate kinematics. The set
of Equations 2.28 defines the relation between strain components and displacement
fields:

ε̇xx =
∂u̇x
∂x

+ z
∂φ̇x
∂x

ε̇yy =
∂u̇y
∂y

+ z
∂φ̇y
∂y

γ̇xy = z

(
∂φ̇x
∂y

+
∂φ̇y
∂x

)
γ̇xz = φ̇x +

∂ẇ

∂x

γ̇yz = φ̇y +
∂ẇ

∂y

(2.28)

Bending of the plate is defined by one displacement field w (the out of plane
displacement) and two rotation fields φx and φy around y and x respectively (as
described in Appendix C).
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Buckling prediction of thick shell structures

Because of the rate dependency of the material, an integration algorithm is used
to define the stress state according to loading history. The Mises flow theory is
used for the constitutive law integration. A classical radial return mapping integra-
tion algorithm is implemented. This integration algorithm is based on an existing
algorithms presented in [Simo and Hughes 1998]. The integration algorithm was
generalized to anisotropic material and additive elasto-visco-plasticity. Plane stress
formulation is used, as this hypothesis is verified during the pre-buckling phase.
Other stress tensor components follow an elastic law.

The algorithm is defined with the assumption of small strain increment; additive
decomposition of the strain tensor is still valid,

ε = εe + εp. (2.29)

The strain and stress tensors are defined by:

ε =

 εxx
εyy
γxy

 ,σ =

 σxx
σyy
σxy

 , (2.30)

with εzz = − ν
1−ν (εexx + εeyy)− (εpxx + εpyy) and σzz = 0.

Under plane stress conditions, the elastic modulus is defined by:

C =
E

1− ν2

 1 ν 0
ν 1 0
0 0 1−ν

2

 with σ = C · εe. (2.31)

Under plane stress assumption, Hill ’s anisotropic yield criterion is defined by:

σeq =
√
σt ·H · σ, (2.32)

where:

H =

 F +H −F 0
−F G+ F 0
0 0 L

 . (2.33)

The flow rule is defined by:

ε̇p = ṗ · Hσ

σeq
, (2.34)

where p is the plastic parameter.
Hardening parameters R and creep law are defined by:

R = R(p),

ṗ = g(F ) =

(
F

K

)n
, with F = σeq −R(p).

(2.35)
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2. Methods

Finally the radial return mapping integration algorithm is used to compute the
stress increment according to previous stress/strain state and actual strain state.

For the elasto-visco-plastic integration algorithm the diagonalization of C ·H is
required, Q and T are then defined:

(C ·H) ·Q = Q · T (2.36)

The radial return mapping integration algorithm is detailed in Algorithm 1.

Algorithm 1 Radial mapping algorithm

Input: [εn+1, εpn, σn, pn]

σtrialn+1 = C · (εn+1 − εpn)

ηtrialn+1 = Q−1 · σtrialn+1

f trialn+1 = σeq(σ
trial
n+1 )−R(pn)

if f trialn+1 ≤ 0 then

(·)n+1 = (·)trialn+1

else

Q̂i,j = δi,j
1

1+fn+1

f̂1(fn+1) = ηtrialn+1
t
Q̂(fn+1)Q−1HQQ̂(fn+1)ηtrialn+1

f̂2(fn+1) =

(
R

(
pn + fn+1

√
f̂1(fn+1)

)
+ g−1

(
fn+1

√
f̂1(fn+1)
∆t

))2

f̂(fn+1) =
(
f̂1(fn+1)− f̂2(fn+1)

)2

find: fn+1, f̂(fn+1) = 0

Θ =
(
C−1 + fn+1H

)−1

σn+1 = ΘC−1σtrialn+1

pn+1 = pn + fn+1f̂1(fn+1)

εpn+1 = εpn+1 + fn+1Hσn+1

end if

Return

As the stress is homogenous within the plate, the mechanical equilibrium is
defined by the stress state.

Buckling prediction
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Buckling prediction of thick shell structures

For plates subjected to in-plane compressive loading, Chakrabarty defines the
stability condition in [Chakrabarty 2000] as follows:∫

Π dV > 0, (2.37)

with:

Π = Πi + Πe,

Πi = σ̇t · ε̇,

Πe = −σxx
(
∂ẇ

∂x

)2

− σyy
(
∂ẇ

∂y

)2

− 2σxy

(
∂ẇ

∂x

∂ẇ

∂y

)
.

(2.38)

The singular solutions of Equation 2.37 are identified using Ritz’s method de-
scribed by [Wang and Aung 2007]. Bending displacement and rotation fields are
approximated by Ritz polynomial functions:

w(x, y) =

p∑
q=0

q∑
i=0

cmφ
w
m,

φx(x, y) =

p∑
q=0

q∑
i=0

dmφ
x
m,

φy(x, y) =

p∑
q=0

q∑
i=0

emφ
y
m,

(2.39)

with:

φwm(x, y) = φwb (x/a)i(y/b)q−i,

φxm(x, y) = φxb (x/a)i(y/b)q−i,

φym(x, y) = φyb(x/a)i(y/b)q−i.

(2.40)

In Equation 2.39, p is the degree of the polynomial functions. cm, dm and em are
the coefficients of the polynomial functions. φwb , φxb and φyb are functions enforcing
boundary conditions on the plate edges. m is defined by:

m = (q + 1) · (q + 2)/2− i (2.41)

Singular solutions of Equation 2.37 are obtained by minimizing the total potential
energy Π according to w, φx and φy. According to Ritz, they respect the following
expression: [

∂Π

∂cm
,
∂Π

∂dm
,
∂Π

∂em

]
= [0, 0, 0]. (2.42)

This last equation can be written as a linear problem:
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2. Methods

[K] ·

 cm
dm
em

 = 0. (2.43)

K contains the plate geometry, the material behaviour with the tangent operator,
the boundary conditions as well as the loading conditions. For a given equilibrium,
the modal analysis of K gives a set of eigenvalues and eigenvectors. Eigenvectors
define the singular solutions of Equation 2.37 while the eigenvalues define their
stability. An equilibrium is defined stable if the smallest eigenvalue is positive. On
the opposite, if the smallest eigenvalue is negative the equilibrium is unstable. A
critical or bifurcation point is defined by an eigenvalue equal to 0.

Testing the stability of every point on the equilibrium path allows to define every
critical point and their associated buckling mode. The first critical point is reached
when the smallest eigenvalue is 0, second critical point when the second smallest is
0 and so on. For this case of plate buckling, Hencky ’s deformation theory is used
to derive the tangent constitutive law. Indeed the plate experiences a proportional
loading. This model is used in Chapter 4 to define the buckling predictions. The
given predictions are compared to the FE post buckling analysis results and the
experimental ones in Chapter 4.

Details of the present analytical prediction method can be found in [Wang and
Aung 2007].

2.3.3 Buckling prediction of finite element shell structures

Analytical models are very efficient with simple structures, but very difficult to
develop for complex ones. Finite element models are more flexible to model complex
structures. In this section two topics are discussed. First the shell element chosen
to model thick shell structures is presented briefly. Then the implementation of the
bifurcation analysis tools in Cast3M is presented.

2.3.3.1 SHB8PS for anisotropic visco-plasticity

In this work, a great attention was given to the simulation/experiment link. In
order to model closely the buckling experiments, a solid shell element was chosen.
It is called SHB8PS, its formulation is detailed in [Abed-Meraim and Combescure
2009]. This shell element was selected for two reasons: it models closely the volume
of the shell; it only considers displacement degrees of freedom compared to other
shell elements.

These two properties make it a good candidate to model with fidelity the buckling
experiments. With its 3D geometric representation, the measured displacement
fields can be directly compared to the displacement fields measured on one face of
the shell specimens.
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Buckling prediction of thick shell structures

Unfortunately this shell element was not completely implemented in Cast3M. Its
implementation in Cast3M for elasto-visco-plastic buckling analysis was performed
during this thesis with the following characteristics:

• It is formulated for large displacements and small strain increments using an
updated Lagrangian formulation.

• Inelastic anisotropy can be considered.

• A large range of inelastic behaviour can be chosen thanks to the coupling of
Cast3M with Mfront (cf. [Helfer et al. 2013]) for the constitutive law integra-
tion.

The details of its initial formulation and the developments performed can be
found in Appendix C.

2.3.3.2 Buckling predictions

In this section the method applied to predict the buckling of complex shell struc-
tures from finite element analysis is presented.

Bifurcation analysis
As presented in Chapter 1, the bifurcation problem can be reduced to an eigen-

value problem involving the stiffness matrix of the structure studied. The difficulty
is concentrated on the construction of the stiffness matrix. The stiffness matrix
integrates the material constitutive law, the boundary conditions, and the linear
and nonlinear loads. The stiffness matrix can be divided into four sub-matrixes as
follows:

KT = KMAT +KGEOM +KBC +KNL, (2.44)

with KBC corresponding to the Lagrange multiplier matrix, KNL the matrix asso-
ciated to the non-linear load such as the following pressure, KGEOM the geometric
stiffness matrix is defined by:

KGEOM =

∫
Ωe

σ : εQ(δu,∆u)dΩ, (2.45)

and:

KMAT =

∫
Ωe

εtCt ε dΩ, (2.46)

The detailed expression of KGEOM for the SHB8PS element can be found in
[Abed-Meraim and Combescure 2009]. In plasticity Ct is ideally the consistent
tangent constitutive law. Otherwise any of the tangent operator derived in Section
2.3.1 can be used, as long as the stress and strain state are compatible with the
hypothesis used to derive the tangent constitutive law.
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2. Methods

KNL and KGEOM are therefore linked to the applied load. The stability analysis
of an equilibrium is performed trough the analysis of the eigenvalue of the stiffness
matrix. The eigenvalue problem can be defined in two different ways:

CASE 1: det [KT − λI] = 0

CASE 2: det [KMAT +KBC + λ (KGEOM +KNL)] = 0
(2.47)

In the first case the equilibrium is stable as long as the smallest eigenvalue is
positive. This general expression from the generalized standard materials expression,
was given through a variational approach of a minimisation problem as shown in
[Benbagdad 1992]. In the second case the equilibrium is stable as long as the smallest
eigenvalue is larger than 1. This case was defined through the Rayleigh ratio as
mentioned in [Benbagdad 1992]. Both cases give equivalent results, as when the
critical eigenvalue is reached, the global stiffness matrix is singular.

CASE 1, if: λ = 0⇒ U tKTU = 0 and U 6= 0

CASE 2, if: λ = 1⇒ U t [KMAT +KBC +KGEOM +KNL]U = 0

⇔ U tKTU = 0 and U 6= 0

(2.48)

For the bifurcation equilibrium, the mechanical variables, as the stress, the strain,
the load or the displacement are defined as critical. They define the border between
the stable domain and the unstable one.

To analyse the stability of a structure, the trivial branch is first computed using
an updated Lagrangian formulation in small strain. The stability of the equilibriums
is tested a posteriori. Either all equilibriums are tested or the bifurcation is found
using a dichotomy approach. There is as many eigenvalues as degrees of freedom in
the stiffness matrix. Only the first eigenvalues are required as they are more likely
to appear. The eigenvalue analysis also generates the eigen-modes associated to the
set of eigenvalues.

The eigen-modes give the shape of the buckling modes of the structure. They
also allow to initiate the bifurcated branch. The bifurcated branch can be followed
by perturbing the bifurcation equilibrium with respect to the buckling mode. An
arc length method is then used to compute the bifurcated branch. This following
path method allows to identify the nature of the bifurcation, and more importantly
the possible successive bifurcation.

This method is particularly efficient for elasto-plastic material. For an elasto-
visco-plastic material the bifurcation point is defined using Bodner ’s hypothesis.
The bifurcated branches can be approached keeping the same assumption of instan-
taneous elasto-plastic material.

Imperfection analysis
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Buckling experiments

Another method can be used to approach the bifurcation equilibrium. When
buckling experiments are performed, it is almost impossible to obtain perfect struc-
tures. This observation is applied to numerical models by introducing an imperfec-
tion to the perfect model. The imperfection can be geometric, modifying the initial
shape of the structure; or it can be associated to the loading.

This method allows to approach the bifurcation equilibrium through several sim-
ulations with different imperfection amplitudes. The real benefit of this method is
to estimate the imperfection sensitivity of the structure with respect to its buckling
behaviour.

The different methods to predict the buckling of thick shells were presented, from
the derivation of the tangential constitutive law to the bifurcation analysis, either
with an analytical model or a FE one. These methods will be compared to the
results of two buckling test campaigns. The testing procedure associated to these
test campaigns are presented thereafter.

2.4 Buckling experiments

This section details the experimental set-ups as well as the specimens designed
to experiment buckling on thick shell structures. One of the final objectives of this
work is to assess the buckling of thick shell structures subjected to external pressure.
Two different structures were selected. They both present an interest in the study
of thick shell elasto-visco-plastic buckling.

Thick plates subjected to in-plane compressive load present an interest, as their
buckling do not follow the classical flow theory. This particular point was mentioned
by [Hutchinson 1974]. This first set of experiments allows to validate the numerical
methods developed above, on a well-documented structure for elasto-plastic mate-
rials subjected to proportional loadings.

The second set of experiments concerns the buckling of thick shell structures
subjected to external pressure. They can be presented as an extension to non-
proportional loadings of the first set of experiments. The experimental set-up and
the shape of the specimen were developed especially for this work.

2.4.1 Thick plate under in-plane compressive load

Numbers of authors studied the buckling of plate subjected to in-plane com-
pressive load. The existing experimental studies are often limited to elasto-plastic
materials when thick shells are studied [Hutchinson 1974; Yeh and Kyriakides 1986],
while elasto-visco-plastic buckling of plate is limited to thin plates in the literature
(cf. [Paley and Aboudi 1991]). The experiments performed in this work aim to
validate the previously presented theory to elasto-visco-plastic thick plates.

The specimen geometry is characterized by its effective length a, its width b
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2. Methods

Figure 2.11: Plate buckling specimen drawings, dimension in mm

and its thickness h. The specimen geometry includes two grip zones. Figure 2.4.1
presents the geometry of the plate buckling specimen. The plate can also be charac-
terized by its aspect ratio a/b and its thickness ratio b/h. Plates can be considered
as thick when b/h ≤ 10. Moreover if the plate is too thick, localization can be ob-
served instead of buckling. It was chosen to limit the thickness ratio to 10 in order
to observe buckling collapse of the plate.

2.4.1.1 Test rig and instrumentation

(a) (b)

Figure 2.12: (a) Experimental set-up for plate buckling; (b) Experimental set-up
in the testing machine, with a buckled specimen

The experimental set-up used for buckling tests is presented in Figure 2.12(a).
Each ends of the specimen is clamped in self-tightening grips. Grips design allows
transverse sliding of the specimen. The grips are guided by two columns. The lower
grip is positioned on a rigid plate (part of the testing machine) and aligned with
the vertical axis of the testing machine. The compressive load is applied through a
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Buckling experiments

20 kN electro-mechanical testing machine which can be operated in displacement or
load control. A point load is applied to the upper grip using a hemispherical punch.
The testing machine displacement and the load applied are recorded during tests.

(a)

(b) (c) (d)

Figure 2.13: (a) Positions and coupling of the cameras for DIC (considering test
rig environment); (b - d) Pictures of the three cameras from left to right, C1, C0

and C2

Instrumentation of the testing machine is completed by three 12 Mpx cameras
with 200 mm lenses. A random speckle pattern is applied to the surface of the
specimen. The speckle pattern is characterized by the same properties as previously
mentioned (cf. Section 2.2.1). 3D DIC is used to measure the displacement fields on
the surface of the buckling specimen. Cameras are positioned in a manner to cover
the entire surface of the plate as shown in Figure 2.13.

To cover the whole width of the specimen, three cameras are positioned at 20◦

of their nearest neighbour. Cameras are coupled with each other to identify the
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2. Methods

displacement fields on the surface of the specimen with three 3D-DIC operations.

2.4.1.2 Test Conditions

Plates with aspect ratio of 1.00 and 1.33 are tested, while their thickness ratio
varies from 15 to 10. All specimens have an effective length a of 40 mm.

During buckling experiments, the testing machine is turned on displacement
rate control mode. Three displacement rates were tested, 2.0× 10−2 mm.s−1,
2.0× 10−3 mm.s−1 and 4.0× 10−4 mm.s−1. The plate specimens were extracted
from five ingots. The test as well as the ingots casting were performed in two
campaigns.

Table 2.3 summarizes the geometry of the buckling specimens tested and their
testing conditions.

Specimen ID a/b b/h Speed
[mm.s−1]

Ingot # BTC #

BT1/01 1.00 10 2.10−3 0 1
BT1/02 1.33 10 2.10−3 0 1
BT1/11 1.00 13 2.10−3 1 1
BT1/12 1.33 10 2.10−3 1 1
BT1/21 1.00 10 2.10−3 2 1
BT1/22 1.33 15 2.10−3 2 1
BT2/31 1.33 10 2.10−2 3 2
BT2/32 1.33 10 4.10−4 3 2
BT2/41 1.33 10 2.10−2 4 2
BT2/42 1.33 10 4.10−4 4 2

Table 2.3: Summary of plate geometries and testing conditions

The results of these tests are discussed and compared to the buckling predictions
in Chapter 4.

2.4.2 Thick shell under external pressure

The second set of experiments intends to study the buckling of thick shells sub-
jected to external pressure. Many experiments can be found in the literature on
either cylindrical or spherical shells (cf. [Galletly et al. 1987; Kyriakides and Shaw
1982; Montague 1969; Yeh and Kyriakides 1986]). Most of them were performed
on thin or moderately thick elasto-plastic shells. Only few works deals with elasto-
visco-plastic materials, as [Combescure and Jullien 2017] or [Sammari and Jullien
1995]. In this work we intend to experiment buckling of moderately thick elasto-
visco-plastic shells under external pressure.
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Buckling experiments

2.4.2.1 Specimen design

(a) (b)

Figure 2.14: (a) Egg geometry; (b) Egg specimen after machining

The shape of the specimen was defined from [Zhang et al. 2017]. It is a hemi-egg
defined by its major axis or length L, its minor axis or width B and its thickness
h, as shown in Figure 2.14(a). The shape of the egg is defined by Zhang et al. as
follows:

for x ∈ [0, L] : R(x) =

√
L

2
n+1x

2n
n+1 − x2, (2.49)

with:

n = 1.057

(
L

B

)2.372

. (2.50)

This shape is interesting as it is a mixed shape between a cylinder and a sphere.
When L/B = 1 we have a spherical egg, when L/B →∞ the egg tends to be a long
cylinder. B/L ratio is called the aspect ratio. As every axi-symmetrical geometry,
its thickness ratio can be defined by the R/h ratio. Shells can be considered as
thick when the R/h ratio is lower than 10. Figure 2.15 presents eggs geometry with
different aspect ratio.

Figure 2.15: Examples of several egg shapes.

The basic egg shape was modified in order to be machinable. Each ends of the
egg is closed by a spherical surface. Moreover a flange has been added to the egg in
order to position the specimen in the test rig, as shown in Figure 2.14(b). Because
of the manufacturing lead time and constraints, a single egg geometry was tested.
The egg geometry selected is defined by a major axis length L of 220 mm, an aspect
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2. Methods

Figure 2.16: Thickness ratio R/h along major axis of the selected egg shape.

ratio B/L of 0.3 and a thickness h of 3 mm. Figure 2.16 presents the thickness ratio
obtained with the selected egg shape.

This configuration gives a moderately thick shell in addition to a close cylinder
shape. The property of moderately thick shell is defined for shell for a R/h ratio
(radius over thickness ratio) between 10 and 20. This slender shape improves the
strength of the structure. This favours the appearance of inelastic buckling instead
of elastic buckling or localisation.

2.4.2.2 Test rig

The test rig used was specially developed to test the buckling strength of shells
subjected to external pressure. It was already used in [Sammari and Jullien 1995].
The test rig is composed of a pressured tank (filled with oil) and closed by the
specimen (in blue in Figure 2.17). The tank is pressurized by a syringe. The
pressure is controlled through the displacement of the syringe piston. A 250 bars
pressure sensor measures the pressure within the tank. Figure 2.17 presents the test
rig pressurisation concept as well as a picture of the installation.

Sealing is an important issue for pressurized systems. As the specimen is part of
the sealing system, special components were designed and manufactured to insure
optimal sealing performances of the rig. The assembly used to close the pressurized
tank is presented in Figure 2.18.

The specimen is positioned between two specimen holders (in green in Figure
2.18), an O-ring ensures sealing between the specimen and the upper specimen
holder. This sub-assembly is then assembled to the tank thanks to 17 screws, tight-
ened to 200 N.m as shown in Figure 2.18. In addition a film in elastomer covers the
upper surface of the specimen to prevent any leakage due to material failure after
buckling.
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Buckling experiments

Figure 2.17: Test rig pressurisation concept

Figure 2.18: Test rig assembly with the specimen

2.4.2.3 DIC instrumentation

The displacement fields on the inner surface of the egg is measured by 3D-DIC
means thanks to three cameras. The specimen inner surface is covered by a speckle
pattern as already presented (cf. 2.2.1). To obtain a depth of field large enough the
cameras needed to be positioned far from the specimen. Moreover, the likelihood of
a leakage at buckling forbids the presence of cameras below the pressurized tank. It
was chosen to use mirrors as shown in Figure 2.19(a).

The three cameras are positioned in order to fulfil the following constraints:
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2. Methods

• Maximize the depth of field,

• Maximize the optical sensor coverage,

• Correlate a large area of the specimen,

• The mirrors and cameras must fit in the test rig environmental.

(a) (b)

Figure 2.19: (a) Concept of indirect image acquisition; (b) Integration of the
optical set-up in the test rig environment

Finally, three 12 Mpx cameras with 200 mm lenses were used with three
100 x 100 mm2 mirrors. Table 2.4 summarises the optical characteristics of each
camera.

Camera ID focal [mm] N P [m] ∆P [mm]
Resolution

[MPx]
Cam/00 200 16 1.6 20.5 12
Cam/01 200 16 1.6 20.5 12
Cam/02 200 16 1.6 20.5 12

Table 2.4: Summary of camera properties; N corresponds to opening index, P is
the distance between the object and the lens; and ∆P the depth of field.

With three cameras the total coverage angle (cf. Figure 2.19(a)) is equal to 140◦

against 110◦ with only two. These additional 30◦ insure a better observation of the
buckling mode.

Figure 2.19(b) also presents the integration of the optical set-up in the test rig
environment.
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Buckling experiments

2.4.2.4 Testing conditions

In this section we present the approach followed to define the loading strategy.
First the test rig was not designed to be controlled safely in pressure control mode.
Only the syringe displacement rate can be controlled. To overcome this issue, a
pressure versus syringe displacement law was defined experimentally. To define this
law the egg specimen was replaced by an aluminium plate. Figure 2.20(a) presents
the pressure / displacement law obtained.

(a) (b)

Figure 2.20: (a) Relation between the syringe displacement and the tank pressure;
(b) Parametric pressure history applied to egg shell

We chose to apply an exponential pressure history saturating for a defined pres-
sure. The pressure history is defined by the following equation:

P (t) = Pinf

(
1− e−

t
tref

)
. (2.51)

The kinematic of the load is defined through the parameter tref , while the am-
plitude is defined by Pinf , the saturating pressure. The law is also plotted in Figure
2.20(b). The definition of tref and Pinf is discussed in Chapter 5. Six egg shells
with the same geometries were tested according to the test conditions presented in
Table 2.5. The first egg (O/001) tested was only used to evaluate the experimental
procedure.
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2. Methods

Specimen ID L [mm] B/L h [mm] Pinf [MPa] tref [s]

O/001 220 0.3 3.0 5.0 100
O/002 220 0.3 3.0 5.0 100
O/003 220 0.3 3.0 5.0 100
O/004 220 0.3 3.0 5.0 100
O/005 220 0.3 3.0 5.0 1000
O/006 220 0.3 3.0 5.0 1000

Table 2.5: Summary of egg geometries and testing conditions (defined in Chapter
5)

2.5 From 3D-DIC to FE modelling

In this section the process to link 3D-DIC data to the FE modelling of each
experiment is presented. For all buckling experiments 3D-DIC processing was used
(cf. [Réthoré 2018]). The principle is to use at least two cameras in order to measure
the 3D displacement fields on a surface of the specimen (called ROI for Region of
Interest). For both types of buckling experiments, three cameras were used. This
choice was driven by the need to observe the largest ROI on the specimen.

For both structures, the method to define the measured 3D displacement fields
is globally the same. First the calibration is performed with all three cameras. This
first point is important as a single optical coordinate system is defined. Then, the
3D-DIC processing of the images is done for a selection of camera couples. This
is performed using the FE-DIC global approach software Ufreckles (cf. [Réthoré
2018]). From the 3D-DIC processing the following elements are obtained:

• The topology of the ROI corresponding to all camera couples,

• The measurement error on all three components of the displacement fields (Ux,
Uy and Uz),

• The 3D displacement fields in the optical coordinate system for all camera
couples.

These outputs are very useful, but not convenient to be compared to FE data. In
order to make both types of data compatible with each other, the following process
is defined:

(1) Projection of all DIC topologies on the theoretical shape,

(2) Evaluation of the topological error,

(3) Definition of a common mesh (DIC and FE) covering the largest ROI on the
theoretical shape,
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From 3D-DIC to FE modelling

(4) Definition of a coordinate system attached to the tested specimen,

(5) Interpolation of all DIC displacement fields on the common mesh with poly-
nomial functions of moderately high degree or splines.

Using this method, the DIC data are transported to a common coordinate system
and a common mesh attached to tested specimen. The mesh is then used for the
Finite Element Analysis (FEA) of the experiment.

As the DIC data are finally defined on a single mesh and in a common coordinate
system, the FE model used to analyse the experiments can be built. It is important
to notice that, at this step the mesh is a surface mesh. The mesh is therefore
thickened according to the specimen thickness and using SHB8PS elements. The
displacement fields are also propagated in the thickness direction using the Kirchhoff-
Love plate kinematic.

In both cases, for plates subjected to compressive loading or thick shells subjected
to external pressure, the same approaches are used with some small specificities
presented thereafter.

FE modelling of plate buckling experiments
The boundary conditions are applied through the experimental displacement

field to the constrained edges of the FE mesh. The FE model is therefore loaded
through the enforcement of the boundary conditions. Figure 2.21 presents the global
method used to build the FE model for this type of experiment.

Figure 2.21: DIC to FE process for plate buckling experiments

FE modelling of the buckling experiments on thick shell subjected to
external pressure

In this case, the experimental displacement fields are applied to the FE mesh
boundaries as well. The FE mesh only considers a portion of the entire egg, as the
cameras does not cover the whole egg. They are applied differently according to
their positions:
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2. Methods

• On the lower skin (observed experimentally), all membrane displacement fields
(u1, u2) are applied to the edges of the lower skin,

• On the upper skin, only the normal in-plane component of the membrane
displacement fields is applied to the edges of the upper skin,

• In order to consider the higher stiffness at both ends of the egg-shell, the
out-of-plane displacement field is also applied to each ends of the lower skin.

Figure 2.22(a) illustrates the enforcement of the boundary conditions on the FE
mesh of the ROI.

(a) (b)

Figure 2.22: (a) Enforcement of experimental boundary conditions on the FE
mesh, subscript l for lower skin and u for upper skin; (b) the FE mesh is equal
to the DIC mesh with a mesh row removed on each edge, experimental pressure is
applied on the FE mesh.

Only a reduced part of the specimen is covered by the cameras. In addition, the
measured pressure is applied to the shell external skin as shown in Figure 2.22(b).
Using this modelling method, the numerical out of plane displacement field can be
extracted, analysed and compared to the experimental one with respect to the time
and the measured pressure.

The FE-DIC method presented here is used to enrich the experimental data, as
the evaluation of the loading imperfections or the evaluation of the experimental
stress state. It is also used to create the FE model used to characterize the yield
stress of each buckling experiment.

2.6 Conclusion

In this chapter the different methods to study experimentally or numerically the
buckling of thick shells were presented. First the method to identify the material
law was presented. This FEMU based method includes a strong link between exper-
imental data and the parameters to be identified. Then buckling modelling methods
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Conclusion

and a buckling prediction method were presented. In particular we can notice the
buckling prediction model developed for thick elasto-visco-plastic structures, which
uses the corner theory adapted to elasto-visco-plastic anisotropic materials. Finally
the experimental procedures to experiment buckling on thick plates and thick shells
were introduced. A special attention was also given to the experimental/numerical
link in order to validate experimentally the buckling prediction method with respect
to the critical values and buckling modes.

All methods were presented with respect to a set of assumptions. In the next
chapters, discussions about these hypotheses and their validities are discussed. The
buckling paradox and Bodner ’s hypothesis will be especially discussed regarding the
buckling predictions.

As already mentioned in the introduction, an incremental approach was chosen in
order to study the buckling of thick shells. In the next chapters, the results concern-
ing the identification of the constitutive law are presented first. Then the validity
of the buckling prediction method against thick plate buckling experiments is dis-
cussed. Finally the buckling prediction method is compared to buckling experiments
on thick egg shells subjected to external pressure. This last case of study groups all
the issues identified in Chapter 1, an elasto-visco-plastic material behaviour, a thick
shell geometry and a non-proportional loading.
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2. Methods
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Chapter 3

FEMU based identification of the
SAC 305 elasto-visco-plastic

behaviour

The chapter presents the identification of the elasto-visco-plastic
behaviour of the SAC 305 alloy using a FEMU based approach.
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3. FEMU based identification of the SAC 305 elasto-visco-plastic behaviour

This chapter presents the results of the finite element model updating (FEMU)
approach used to identify the homogenized elasto-visco-plastic behaviour of the SAC
305 alloy. The chapter discusses first, the post-processing of the test data and more
specifically the regularization of the measured strain fields due to the coarse mi-
crostructure. Then a special attention is given to the reliability of the identification
in terms of parameters sensitivity, uniqueness of the solution and consideration of
material discrepancies.

The reference law of the SAC 305 alloy used in this work was defined through
a FEMU approach based on tensile tests on four different material batches. This
chapter also presents the statistical approach followed to generate this reference law.

3.1 Experimental results

Figure 3.1: Tensile test data from the testing machine load cell and displacement
sensor

The test campaign used to identify the reference law includes eight tensile tests.
The tensile specimens were extracted from four material batches, as shown in Table
2.2. They were tested according to the testing conditions described in Chapter 2
Section 2.2.1. The tensile load and displacement were measured and synchronized
with the camera. Raw results are drawn for each batch and each displacement rate
tested in Figure 3.1.

In Figure 3.1, each colour designates a material batch. Each curve depicts the
normalized load vs. normalized displacement history of a single specimen. First,
the viscous effect is well visible as two groups of curves can be distinguished. They
correspond to the two displacement rates tested (plain curve and dashed curve).
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Experimental results

Material discrepancy is also observed within each group of curves. As a reminder,
Table 3.1 presents the testing conditions of each tensile test.

Specimen ID Batch TTB # Displacement rate
[mm.s−1]

Testing temperature
[◦C]

TT/11 1 3.30 10−3 20
TT/12 1 3.30 10−2 20
TT/21 2 3.30 10−3 20
TT/22 2 3.30 10−2 20
TT/31 3 3.30 10−3 20
TT/32 3 3.30 10−2 20
TT/41 4 3.30 10−3 20
TT/42 4 3.30 10−2 20

Table 3.1: Summary of testing condition for all tensile test specimens

3.1.1 Effect of the microstructure on the strain fields

The in-plane displacement fields on the surface of the specimen were measured
by 2D-DIC using the global FE DIC code Ufreckles (cf. [Réthoré 2018]) as detailed
in Section D.1 of Appendix D.

The uncertainty analysis on the measured fields can be found in Appendix E. It
shows that the displacement uncertainty is lower 1 µm, which is more than correct
for this type of test.

The strain fields derived from the displacements present some localization issues.
The scale of the strain heterogeneity coincides with the coarse microstructure of the
material, as shown in Figure 3.2. An ”orange skin” effect is observed on the surface
of the specimen.

The macroscopic constitutive law chosen cannot take into account such micro-
scale phenomena. A non-local approach was chosen to derive and to regularize the
strain fields. The non-local approach is beneficial in the FEMU approach, as it
regularizes the strain field singularities. It also improves the convergence of the
FEMU algorithm. The regularization method used is detailed in Section D.3 of
Appendix D. A comparison of the regularized strain with the non-regularized strain
is presented in Figure 3.3. As shown, the non-regularized strain field presents strain
hot spots localized on grain boundaries when the regularized field presents a smooth
profile.

Moreover, the identified constitutive law is used in a strain range far from the
ductile failure strain. The ”orange skin” effect would therefore be negligible in all
simulations and especially in pre-buckling phase.
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3. FEMU based identification of the SAC 305 elasto-visco-plastic behaviour

Figure 3.2: Comparison of the strain field with the material ”orange skin” effect
at the end of a tensile test

Figure 3.3: Equivalent strain field computed with a non-local approach (left) and
a standard method (right). Specimen TT/32

3.1.2 Strain rate distribution on the specimen surface

Post processing the strain fields also allows to define the experimental strain rate
experienced by the specimen as well as its spatial distribution. The experimental
equivalent strain rate is defined as follows:

ε̇ =

√
2
3
∆ε : ∆ε

∆t
(3.1)

Figure 3.4 presents an example of the strain rate spatial distribution. It also
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Experimental results

depicts the extraction areas used on all specimens to characterize the strain rate
distribution along the axial direction of the specimen.

Figure 3.4: Spatial distribution of the experimental strain rate for specimen TT/21,
at maximum load

Table 3.2 summarises the average strain rate in the areas mentioned in Figure
3.4. The strain rate is defined for all specimens at the maximum load.

A large strain rate range can be observed on all specimens, as shown in Figure 3.4
and Table 3.2. The strain rate value is divided by two for a point 10 mm away from
the specimen center. This heterogeneous strain rate fields enriches each experiment
in order to obtain a more robust identification process.
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3. FEMU based identification of the SAC 305 elasto-visco-plastic behaviour

Specimen ID
Batch

TTB #

Displacement
rate

[mm.s−1]

ε̇ zone 0
[s−1]

ε̇ zone 1
[s−1]

ε̇ zone 2
[s−1]

TT/11 1 3.30 10−3 1.17 10−4 3.64 10−5 3.21 10−5

TT/12 1 3.30 10−2 1.04 10−3 8.24 10−4 6.36 10−4

TT/21 2 3.30 10−3 9.83 10−5 7.06 10−5 1.00 10−4

TT/22 2 3.30 10−2 1.12 10−3 6.97 10−4 5.45 10−4

TT/31 3 3.30 10−3 1.53 10−4 7.98 10−5 7.50 10−5

TT/32 3 3.30 10−2 1.24 10−3 8.19 10−4 5.71 10−4

TT/41 4 3.30 10−3 1.06 10−4 6.52 10−5 5.51 10−5

TT/42 4 3.30 10−2 1.09 10−3 1.10 10−3 6.93 10−4

Table 3.2: Summary of experimental strain rates at maximum load and at different
locations for all tensile test specimens

3.2 FEMU Algorithm results

As a reminder the constitutive material law identified is defined as follows:

σ = C εe,
ε = εe + εp,

ṗ =

(
F

K

)n
,

F = σeq −R(p),

R(p) = R0 +
3∑
i=1

Ri

(
1− e−bip

)
,

σeq =
√
σ : H : σ,

(3.2)

with, σ the Cauchy stress tensor, ε the Biot strain tensor, εe the elastic strain
tensor and εp the plastic strain tensor, C the isotropic elastic linear operator, σeq
the Hill equivalent stress defining the yield surface, H the Hill tensor (used here for
transverse anisotropy), p the equivalent plastic strain, R the hardening variable and
ṗ the equivalent strain rate.

The material parameters to be identified are R0, R1, b1, R2, b2, R3, b3, K, n, H
defined by the Lankford ratio Rlank and C defined by Young’s modulus and Poisson’s
ratio.

As already mentioned the FEMU approach was selected because of the com-
plexity of the constitutive law chosen and its large number of parameters. The
experimental data generated through the tensile tests could not allow to define a
unique set of material parameters. In particular, the number of parameters and
the sensitivity of some parameters do not allow to define a unique solution. The
sensitivity of each parameter and their relations with each others are detailed in
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FEMU Algorithm results

Appendix E.

From this sensitivity analysis, four groups of parameters can be defined, the
hardening group containing the Ri coefficients, the bi exponents and R0, the creep
group containing R0, K and n, the geometrical group with Rlank and ν, and finally
the elastic group with E and ν. The hardening group mainly affects the tangential
hardening law. The creep law is defined through the creep group. The two other
groups have a lower impact on the convergence of the algorithm.

The method was applied to the tensile tests identified as TT/ in order to defined
the reference law. A lighter process was applied to the buckling specimens BTC /
and O/00 in order to only identify the yield stress. This point is discussed at the
end of this chapter.

In this section the main results of the FEMU algorithm are presented, the quality
of the results and the method to select the final material law are also discussed. The
detailed results are presented in Appendix E.

3.2.1 From the Pareto front to the solution

A noticeable result from this analysis is the link between the creep law coefficients
and the Pareto front obtained through the FEMU process.

As mentioned in Appendix D, a random multi-start strategy was followed. This
strategy allows to build the Pareto front of the optimisation process. The Pareto
front defines the set of optimal solutions minimizing the objective function. Usually
the Pareto front is drawn with respect to the objective function components, i.e.
||RF ||, ||Rεxx|| and ||Rεyy ||, respectively the residual load, the residual axial strain
and the residual transverse strain. In this work, we observed that all the solutions
converge to a pseudo Pareto front completely defined by the viscous parameters K
and n, as shown in Figure 3.5.

As both viscous parameters are related, a 2D visualization of the Pareto front
involving ||RF ||, ||Rε|| and n can be plotted in Figure 3.6. The set of parameters
selected on the Pareto front depends almost exclusively of the viscous parameters.

In Figures 3.5 and 3.6 each point depicts an increment of the algorithm.

In Figure 3.5, the colour of each point corresponds to its convergence state.
If the point is blue the solution is not converged. If it is red, the algorithm has
converged on this point. The different paths of convergence can be followed with
the colour of each point (from blue to red). The Pareto front is visualized thanks
to the concentration of red points in Figure 3.5.

In Figure 3.6, the colour of each point corresponds to the value of the creep
exponent n.

Figures 3.5 and 3.6 show that the Pareto front is almost exclusively defined by
the creep law parameters. The selection of the creep law parameters is equivalent
to the selection of the solution. This is detailed in the next subsection.
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3. FEMU based identification of the SAC 305 elasto-visco-plastic behaviour

Figure 3.5: Pareto front in terms of viscous material parameters, all four batches

3.2.2 Selection of a solution

The strategy followed to select a set of material parameters on the Pareto front
consists in selecting the set of parameters with the lowest residual and the smallest
creep law discrepancy between all batches. Therefore the creep exponent n should
respect the following constraint:

∀i;n ∈ [nmin, nmax] =

[
min
i

(
max
j

(nconvij )

)
,max

i

(
min
j

(nconvij )

)]
, (3.3)

where i indicates the batch number, j the jth start of the algorithm for batch i. Fi-
nally subscript conv corresponds to all sets of parameters obtained after convergence
of the algorithm.

This leads to:

∀i, n ∈ [2.6, 3.2] . (3.4)

This range is depicted for each batch in Figure 3.5. Finally for each batch, the set
with the smallest residual and n ∈ [2.6, 3.2] is selected. All four sets of parameters
are presented in Table 3.3.

First, all four batches have similar hardening, elastic and anisotropic parameters.
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FEMU Algorithm results

Figure 3.6: Pareto front, components of the residual vector with respect to the
creep exponent

It shows that a unique convergence can be reached if the creep law is well defined.
This also shows that the strain rate range is too small to define accurately the creep
law, as there is a clear link between the parameters K and n in Table 3.3. Moreover,
as the material behaviour includes a fully elastic domain, the following expression
needs to be considered to compare the creep exponent n with literature data:

∂ṗ

∂σeq
=

n

K

(
σeq −R0

K

)n−1

. (3.5)

Introducing the creep and yield parameters in Equation 3.5, we obtain a local
creep exponent between 6.3 and 7.6. Those data can be compared advantageously
with creep exponents presented in [Bai, Chen, and Gao 2009; Dompierre 2011],
respectively 9 and 6.

The selected parameters are discussed in the next section through a detailed
analysis of the simulation of each tensile experiment. Numerical load histories and
strain fields are compared to the experimental data.
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3. FEMU based identification of the SAC 305 elasto-visco-plastic behaviour

Parameters TTB #1 TTB #2 TTB #3 TTB #4 Mean Units

R0 14.4 14.6 14.6 18 15.5 MPa
R1 9.4 10.2 7.1 6.1 8.5 MPa
b1 327.2 493.6 349.3 397.7 395.2 n/a
R2 5.7 5.2 4.5 5.7 5.2 MPa
b2 20.5 30.7 31.8 32.7 28.8 n/a
R3 9.8 7.6 9.6 7.9 8.3 MPa
b3 3064 2370 1916 1177 2134.2 n/a
K 100.6 167 122.2 167.1 133.8 MPa.s1/n

n 3.2 2.7 3 2.6 2.9 n/a
RLank 1.82 2.05 1.59 1.68 1.18 n/a
E 41941 41318 41466 41326 41513 MPa
ν 0.36 0.35 0.36 0.33 0.35 n/a

Table 3.3: Summary of the constitutive law parameters identified from the tensile
test campaign

3.3 FE results vs. Experimental results

The selected sets of parameters are then applied to their respective FE models
with the adequate testing conditions. The strain fields from the FEA are compared
to the experimental strain fields. The numerical tensile load is also compared to the
experimental one. An example of this post processing is presented in Figure 3.7.

Figure 3.7: FE simulation vs. experiment TT/31
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A constitutive law for the SAC 305

In Figure 3.7, the load history from the post identification FEA (in blue in
Figure 3.7) fits well to the experimental load history (in red in Figure 3.7). A good
agreement is observed between the numerical load curve and the experimental one,
especially in the plastic region.

The strain fields obtained from the FE analysis are compared to the experimental
strain fields for four time steps in Figure 3.7. For all four time steps, both numerical
strain fields (εxx and εyy) are compared to the experimental ones. In Figure 3.7 the
upper boxes depict the numerical and experimental εxx strain fields and lower ones
the εyy strain fields.

The spatial distribution of the FE strain fields corresponds well to the experimen-
tal ones as shown in Figure 3.7. The plastic region as well as the strain amplitude
extracted from the FEA on both components (εxx and εyy) are comparable to the
experimental ones.

The difference observed is due to the localisation of the experimental strain on
rare material defects due to cast induced porosities or grain boundaries. This can
be observed in Figure 3.7 where strain hotspots can be observed on the edges of the
specimen. This phenomenon does not correspond to a structural localization issue,
even if it looks like it. Indeed, in Figure 3.7, the strain localization is visible even
before reaching the maximum load.

The results of other specimens are similar to the ones presented for specimen
TT/31. A good correlation of the strain fields and tensile load is observed between
FEA and the whole set of experiments. It is detailed in Appendix E. Therefore the
identified laws well model the mechanical behaviour of the SAC 305 alloy.

In the rest of this document, we refer to the material law identified as reference
law. This reference law is defined according to a statistical analysis of all tensile
tests as well as the manufacturing process parameters. The next section details how
the reference material law is defined.

3.4 A constitutive law for the SAC 305

The buckling analysis is strongly dependant of the constitutive model used. In
order to compare our buckling predictions to the different experiments performed, a
reference constitutive model was defined. This reference law is defined with respect
to the identified laws previously presented. As discrepancy was observed on the
tensile test data as well as on the identified parameters, a statistical approach was
followed in order to define a reference law. The reference law is defined through a
mean reference law, and statistical descriptions of the hardening variable (excluding
the yield stress) and the creep law.
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3. FEMU based identification of the SAC 305 elasto-visco-plastic behaviour

3.4.1 Statistical analysis of the hardening law

As mentioned in Chapter 2, the cooling rate has a strong impact on the SAC
305 material properties. The cooling rate mainly impacts the yield stress as shown
in [Kim, Huh, and Suganuma 2002], without modifying neither the hardening nor
the viscous behaviour. As the cooling rate is difficult to control or measure, the

yield stress R
Gi
0 is identified for each group of batches. A group of batches contains

several batches cast at the same time or under the same conditions (cf. Table 2.2).
During this thesis, five groups of batches were cast. Every stress data mentioned
thereafter are defined as follows:

σ̂ = σ −RGi
0 . (3.6)

where R
Gi
0 is the mean yield stress of a batches group i.

(a) (b)

Figure 3.8: (a) Strategy to derive the reference hardening law (b) Envelope at
95% probability with 90% of confidence of the hardening variable and the different
identified laws.

This statement excludes the mean yield stress parameters from the statistical
analysis, but not its discrepancy. As shown in the sensitivity analysis (cf. Appendix
E, the Young modulus E is not well identified, therefore its mean value is used.
Equally, only the average values of ν and Rlank are considered as their identification
is not accurate enough. These last parameters have a negligible impact on the
buckling behaviour compared to the hardening variables in particular.

First the reference hardening law is defined. The hardening variable R̂ is com-
puted for a defined set of equivalent plastic strains pi and for all material batches.
The hardening variable R̂ is defined by:

112

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI005/these.pdf 
© [N. Jacquet], [2021], INSA Lyon, tous droits réservés



A constitutive law for the SAC 305

R̂Batchj(pi) = (RBatch
0 −RG

0 ) +
3∑

k=1

R
Batchj
k (1− e−b

Batchj
k pi). (3.7)

Each batch includes two test specimens, therefore eight specimens are considered.
A Gaussian distribution of the hardening variable R̂ is defined for each equivalent
plastic strain selected with respect to the batch number, as shown in Figure 3.8(a).
The normality of the distribution is also tested. The parameters of the distribution
are defined with 90% confidence. The upper and lower bounds of the stress distribu-
tion are defined at 95% probability. This method gives an envelope of the hardening
variable as shown in Figures 3.8(a) and 3.8(b).

Figure 3.8(b) shows the identified laws, the average law and the maximum and
minimum envelope boundaries with 95% probability and 90% confidence. It can be
observed that the hardening laws are more or less parallel with each other’s. One can
see that the tangential law are extremely similar for all batches. The discrepancy
on the tangential law is neglected here.

Both limits well envelope all batches. The 95/90 approach is conservative, but
it well describes the discrepancy observed. A reduced domain of the Gaussian curve
can be used for the buckling predictions.

3.4.2 Statistical analysis of the creep law

The same method as for the hardening law is used for the equivalent creep stress,
as shown in Figures 3.9(a) and 3.9(b).

(a) (b)

Figure 3.9: (a) Strategy to derive the reference creep law, (b) Envelope at 95%
probability with 90% of confidence of the creep equivalent stress and the different
identified laws
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3. FEMU based identification of the SAC 305 elasto-visco-plastic behaviour

A different behaviour is observed on the creep laws. The envelope defined con-
tains a rotation point as shown in Figure 3.9(b). The different creep laws rotate
around this point. At this specific point the equivalent creep stress discrepancy can
be observed and defined.

The rotation angle range is defined through the Norton exponent n discrepancy,
while the equivalent creep stress discrepancy is defined through the discrepancy of
Kṗ

1/n
r for a fixed value of n at the rotation point. The rotation point is defined by the

equivalent plastic strain rate ṗr. The rotation point is defined for ṗr = 2.3 10−4 s−1

as shown in Figure 3.9(b).
The equivalent creep stress σv at ṗr can be statistically analysed using the fol-

lowing relation:

σv = Kiṗ
1/ni
r = K̂iṗ

1/n
r , (3.8)

with ni and Ki respectively the Norton exponent and coefficient of batch i, n the
average Norton exponent and K̂i the Norton equivalent coefficient for n.

This rotation issue is mostly due to numerical issues in the identification process.
This was previously discussed and shown in Figure 3.5.

The creep coefficient K of the reference law is linked to n and K̂ by the following
expression:

K · ṗ1/n
r = K̂ · ṗ1/n

r . (3.9)

Figure 3.9(b) shows the identified creep laws, the average creep law and the
maximum and minimum envelope boundaries with 95% probability and 90% con-
fidence. Both limits well envelope all batches. As for the hardening variable, the
95/90 approach is conservative and a reduced domain of the Gaussian curve can be
used for the buckling predictions.

3.4.3 A statistical reference law

Based on both statistical analyses, a set of constitutive laws can then be ran-
domly defined and used for the numerical buckling analysis of shells. The buckling
results obtained would then need to be analysed statistically as well.

Using a set of statistical parameters (αi with i from 1 to 3), a set of material
parameters can be defined with their associated probabilities. The statistical pa-
rameters α1, α2 and α3 are respectively used to define the hardening law, the Norton
n exponent and the Norton equivalent coefficient K̂.

Table 3.4 presents the results of the statistical analysis of the hardening law and
the creep parameters. As an example Figures 3.10(a) and 3.10(b) present a set of
ten randomly defined material laws as well as the 95/90 envelope and the average
law.

The Voce parameters can then be defined for each randomly generated law in
order to fit R̂ with respect to p. The statistical description and the mean reference
curve are used for every numerical analysis.
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A constitutive law for the SAC 305

(a) (b)

Figure 3.10: (a) Envelope at 95% probability with 90% of confidence of the hard-
ening variable and random hardening laws, (b) Envelope at 95% probability with
90% of confidence of the creep equivalent stress and random creep laws

Parameters Mean StD Max95/90 Min95/90 Units

R̂(0.005) 16.4 0.7 18.9 13.9 MPa

R̂(0.010) 18.0 0.7 20.8 15.3 MPa

R̂(0.020) 19.2 0.8 22.1 16.3 MPa

R̂(0.050) 20.9 0.9 24.2 17.5 MPa

R̂(0.100) 21.8 1.1 25.9 17.7 MPa
n 2.9 0.2 3.9 2.1 n/a

K̂ 133.8 5.3 154.4 115.8 MPa.s1/n

E 41513 n/a n/a n/a MPa
RLank 1.8 n/a n/a n/a n/a
ν 0.35 n/a n/a n/a n/a

Table 3.4: Summary of the statistical study of the reference law from the tensile
test campaign

The probability range used for the buckling predictions is mentioned when dif-
ferent from the 95/90 approach.

The parameters of the mean constitutive law are summarized in Table 3.5. The
mean reference law is preferred in all numerical analysis.
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3. FEMU based identification of the SAC 305 elasto-visco-plastic behaviour

Parameters Mean Units

R0 15.5 MPa
R1 8.5 MPa
b1 395.2 n/a
R2 5.2 MPa
b2 28.8 n/a
R3 8.3 MPa
b3 2134.2 n/a
K 133.8 MPa.s1/n

n 2.9 n/a
RLank 1.18 n/a
E 41513 MPa
ν 0.35 n/a

Table 3.5: Parameters of the mean reference law

3.4.4 Effect of the temperature

The model presented does not take into account the effect of the temperature on
the mechanical properties. This choice is justified, as the yield stress is identified
for each specimen. Moreover all experiments in this work are performed under
isothermal conditions.

The identification of the yield stress for all specimens integrates the possible
effect of the cooling rate on the strength of the material (discussed in the next
paragraph), as well as the offset of the Norton creep law due to the difference of
temperature between the tensile test and the other experiments.

As shown in Chapter 2, the effective viscous yield stress Rv
0 can be defined as

follows:

Rv
0 = R0 +Kṗ1/n,

K = K?

[
exp

(
Q

R · T

)]1/n

,
(3.10)

with Q the activation energy of the SAC 305, R the universal gas constant and T
the temperature of the alloy in Kelvin.

When the temperature is different between two tests, the effect of the tempera-
ture can be integrated to the yield stress offset, as shown in Figure 3.11.

Nevertheless the testing temperature was measured and is given for all experi-
ments in the next chapters.

116

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI005/these.pdf 
© [N. Jacquet], [2021], INSA Lyon, tous droits réservés



Conclusion

Figure 3.11: Effect of the temperature T ◦ and the yield stress R0 on the effective
viscous yield stress Rv

0

3.4.5 Effect of the cooling rate

The only element affecting the material law is the cooling rate during the water
quench (cf. [Kim, Huh, and Suganuma 2002]). Neither the hardening nor the creep
law are affected by the cooling rate. Only the yield stress is modified. For each group
of batches the yield stress needs to be assessed numerically in the pre-buckling phase.
Table 3.6 summarizes the yield stress for each group of batches.

Group
ID

R0 ∆R0 Unit
Quench
Temp.

Specimens

G1 15.4 0.0 MPa 20◦C TT/.. (Tensile testing)
G2 14.0 -1.4 MPa 22◦C BTC1/.. (Plate buckling )
G3 9.9 -5.5 MPa 28◦C BTC2/.. (Plate buckling)
G4 n/a n/a MPa 20◦C O/001 (Thick shell buckling - pre-test)
G5 10.2 -5.2 MPa 40◦C O/002 to O/006 (Thick shell buckling)

Table 3.6: Summary of yield stress for the different groups of material batch

Some differences can be observed in the yield stress between all groups. This is
explained by either the mould used (aluminium mould and hot quench water for G4
and G5) or the quench temperature for G3, G2 and G1.

3.5 Conclusion

This chapter presented the different elements allowing to define a constitutive
law for the SAC 305 alloy. This law is strongly related to the manufacturing process
detailed in Chapter 2. In this chapter, the tensile test results and the results from
the FEMU algorithm were presented. The identified laws were compared to the
experiments and a good correlation was observed. Despite the care taken in the
manufacturing of the specimen, the discrepancy of the tensile test results cannot
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3. FEMU based identification of the SAC 305 elasto-visco-plastic behaviour

be neglected. Finally a reference material law including a statistical description
of the parameters as well as the effect of the manufacturing process was detailed.
The constitutive model is then used as a baseline for every FE analysis or buckling
analysis. The mean material is preferred for all numerical analysis unless mentioned
otherwise.
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Chapter 4

Validation of the buckling
prediction method for thick plates
subjected to in-plane compressive

loadings

The experimental and numerical methods to study the buckling of
thick shells are evaluated in this Chapter. Buckling experiments as

well as numerical analysis are performed on simple shell
structures defined by plates. In this chapter the buckling prediction

method is evaluated for proportional loadings and thick shells.
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Experimental results

In this chapter, the numerical method to predict buckling of thick plates is evalu-
ated against the experimental results. In a first section the experimental results are
analysed in order to identify the boundary conditions, the loading and the geomet-
rical imperfections. An experimental buckling detection criterion is also defined. It
is applied to the experiments to define the experimental critical values. Finally the
experiments are analysed and the buckling prediction method is evaluated against
the experiments with respect to two parameters, the plate geometry and the strain
rate.

4.1 Experimental results

All buckling tests were performed in two test campaigns following the testing
conditions listed in Tables 2.3 and 2.2. In a first test campaign (BTC #1), we were
interested in the effect of plate geometry on its buckling behaviour, while in a second
one (BTC #2), the effect of strain rate was investigated. To ease data comparison
between all test campaigns, the load data is normalized according to the following
expression in the rest of this chapter, as already mentioned in Chapter 3.

σ =
F

A0

−RBTC #i

0 , (4.1)

with F the experimental load, A0 the initial specimen area and R
BTC #i

0 the mean
yield strength corresponding to the buckling test campaign #i.

All plate buckling experiments were performed according to the experimental
procedure detailed in Section 2.4.1 of Chapter 2. For all plate buckling experiments
the load history and the pictures from the three cameras are acquired. The pictures
are post processed according to the procedure detailed in Section 2.5 of Chapter 2.

An example of testing results is presented in Figure 4.1. The plate deflection is
plotted for various times and loads during testing. The coloured plots correspond
to the out of plane displacement field. Despite the explicit 3D illustrations of the
plate deformed shapes presented in Figure 4.1, a 2D cut of the plate deformed
configuration is more convenient to describe the buckling modes. An example of 2D
cuts of the plate at the center lines are presented in Figure 4.2.

The center lines are defined as the axial (y = b/2) and the transverse (x = 0)
center lines respectively defined by c1 and c2 labels in Figure 4.2. The center lines
deflection graphs (Figure 4.2b and Figure 4.2c) allow us to identify two geometric
properties of the buckling modes. In the x direction, an Euler beam type mode can
be observed, while in the y direction a ”U shape” type mode is observed.

4.1.1 Boundary conditions and associated imperfections

As classically known, the buckling behaviour of a structure depends on its bound-
ary conditions. Therefore, before any discussion or analysis, the boundary conditions
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4. Validation of the buckling prediction method for thick plates subjected to
in-plane compressive loadings

Figure 4.1: Experimental plate deflection evolution during buckling experiment
(BT1/01)

need to be studied. Using the DIC post-processing procedure, the displacement fields
close to the grips can be analysed. Figure 4.3 presents the positions of the two lines
used to characterize the boundary conditions of the plate buckling specimen.

An example of post processed displacement fields on the DIC mesh boundaries is
presented in Figures 4.4(a) and 4.4(b). The evolutions in time of the displacement
and rotation fields presented in Figure 4.4(a) and Figure 4.4(b) are defined by:

∆Ux = Uup
x − U low

x ,

Uy =
(
Uup
y + U low

y

)
/2,

∆Uz = Uup
z − U low

z ,

φ̂y =
(
φupy − φlowy

)
/2,

φx =
(
φupx + φlowx

)
/2,

(4.2)

with the subscript up corresponding to the upper grip and low to the lower one. The
rotation fields φx and φy are computed using the Kirchhoff-Love plate kinematic.

As shown in Figures 4.4(a) and 4.4(b), the boundary conditions present some
imperfections. The spatial distribution of ∆Ux is not symmetric. The axial dis-
placement (Ux) increases faster on one side of the plate than on the other side. The
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Experimental results

Figure 4.2: Evolution in time of the experimental out of plane displacement field
on both center lines x = 0 and y = b/2 of the plate (Specimen BT1/01: plate
dimensions a = b = 40mm and h = 4mm)

Figure 4.3: Positions of the extraction lines used to characterize the boundary
conditions.

same behaviour is observed for ∆Uz. Moreover ∆Uz is not equal to 0. A plate
misalignment appears from the beginning of the experiments despite the guiding
system used.

The averaged rotation field, φ̂y, increases from the beginning of the experiment.
Its value is constant with respect to the plate width, except at the end of the
experiment (mostly due to the buckling mode). φx is almost constant with respect
to time, except at the end of the experiment (mostly due to the buckling mode)

These observations made on the boundary conditions of specimen BT1/01 were
also observed on the other specimens.

Each source of imperfection has a different impact on the buckling behaviour
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4. Validation of the buckling prediction method for thick plates subjected to
in-plane compressive loadings

(a) (b)

Figure 4.4: (a) Displacement fields characterizing the loading conditions of plate

BT1/01. From top to bottom: ∆Ux, Uy and ∆Uz; (b) Rotation fields characterizing

the loading conditions of plate BT1/01. From top to bottom: φ̂y and φx

and its initiation. Two types of imperfection can be identified from the previous
observations: the plate misalignment (from ∆Uz) and the plate bending (from φ̂y).
Those two types of imperfection affect differently the buckling behaviour of the
plate.

Using an analogy with the buckling of a clamped beam axially compressed, the
misalignment imperfection may be rather related to the second mode and its bending
to the first mode as shown in Figure 4.5.

Figure 4.5: Effect of imperfection on buckling (clamped beam of length a)

The deformed shape due to the imperfection on φ̂y is closer to the experimental
buckled shape than the deformed shape due to the misalignment ∆Uz. Therefore,
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Experimental results

the buckling of the tested plates seems to be mostly due to the imperfection on φ̂y.

The bending quantity φ̂y is used later to define a buckling initiation criterion.

4.1.2 Experimental buckling initiation criterion

For plates subjected to compressive load, the tangential singularity at the bi-
furcation point is not always satisfied. This property is often demonstrated in the
literature (cf. [Hutchinson and Budiansky 1976] and [Wang, Xiang, and Chakrabarty
2001]) by comparing the Mises flow theory with Hencky ’s deformation theory (DT)
in the buckling prediction. The collapsing load is therefore not sufficient to estimate
accurately the critical variables.

4.1.2.1 Post buckling analysis of thick plates

The tangential bifurcation is illustrated here with a FE post bifurcation analysis.
This analysis is focused on the effect of the loading imperfection on the collapse of
the plate. A rectangular plate with an aspect ratio of 1.33 and a thickness ratio
of 10 is considered here. The plate is subjected to a uni-axial compressive load at
constant strain rate. The bending degrees of freedom of the plate (w, φx, φy) are
constrained at both ends.

A pure bending imperfection is introduced through the rotation φy at both ends
of the plate. The rotation field φy at each end of the plate is linear with respect
to the time. Its value is defined in order to obtain a plate deflection equal to a
percentage of the plate thickness at tf (end of the simulation). It is defined by:

φy =

(
R% · h

4

a

)
t

tf
, (4.3)

where R% is the imperfection amplitude, h the plate thickness, t the time, and tf
the total time.

Several imperfection amplitudes are tested numerically. The bifurcated solutions
(coloured curves in Figure 4.6a) correspond to a different imperfection amplitude.
They are compared to the perfect solution (black curve in Figure 4.6a).

First, we see that the collapsing load (i.e. the maximum load) is very dependent
on the imperfection amplitude. It does not converge to a unique value when the
imperfection amplitude tends to 0.

Moreover, the evolution of the plate out of plane displacement at the center (wO)
is analysed. wO is normalized by the plate deflection due to the loading imperfection
at collapse (UO

imper). Its evolution, with respect to the axial strain, is plotted in
Figure 4.6b for each imperfection amplitude. The equilibrium points corresponding
to wO = UO

imper are identified by crosses in Figure 4.6. UO
imper is defined at plate

collapse by:

UO
imper = (R% · h)

tcollapse
tf

. (4.4)
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4. Validation of the buckling prediction method for thick plates subjected to
in-plane compressive loadings

Figure 4.6: Buckling analysis of a square plate for various loading imperfection
amplitudes, comparison of post buckling solutions (FE) and the perfect solution
(analytical model); detection of buckling initiation depicted by crosses. (a) axial
stress vs. axial strain, (b) imperfection ratio vs. axial strain.

The identified equilibriums are compared to the bifurcation point computed with
the analytical model (black star in Figure 4.6a). The equilibrium points defined by
wO = UO

imper are close to the bifurcation point for all imperfection amplitudes tested.
This condition allows to estimate accurately the equilibrium corresponding to the
buckling initiation.

The doubling of the imperfection (i.e. wO = UO
imper) seems to be efficient to

detect the buckling initiation of thick elasto-visco-plastic plates. It is also used to
assess the experimental critical values.

4.1.2.2 Application to the experimental detection of buckling

The criterion corresponding to the doubling of the imperfection (wO = UO
imper)

is used to detect the buckling initiation on experiments.

For the experiments, the imperfection at the center of the plate (UO
imper) is linked

to the imperfection on φ̂y by simple pure bending beam equations (as shown in Figure
4.5). The experimental bending imperfection is evaluated at collapse of the plate
(i.e. at the maximum load).

The discrepancy of the buckling detection is evaluated through the statistical
analysis of φy in y direction at both ends of the plate.

This method is used to assess the buckling initiation as well as its discrepancy.
As observed numerically, buckling initiates before collapse of the plate, as shown in
Figure 4.2 with the label Pcr.
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Effect of the plate geometry on its buckling behaviour

4.1.2.3 Experimental critical stresses and strains

Table 4.1 presents the critical values for each specimen defined with the previ-
ously defined criterion.

σcrit is the mean critical stress and εcrit the mean critical strain. Std−−− cor-
responds to the standard deviation of each value described previously. As a first
observation, the discrepancy on stress data is limited while the discrepancy on the
critical displacement and strain is in the same order of magnitude as the DIC pro-
cess accuracy (0.02 mm). The experimental critical values are discussed in the next
subsections.

Specimen U
O

imper
σcrit εcrit StDUOimper

StDσcrit StDεcrit Temperature

mm MPa % µm MPa % ◦C

BT1/01 0.24 22.3 1.67 0.04 0.2 0.17 20
BT1/02 0.12 22.1 0.83 0.02 0.1 0.04 20
BT1/11 0.08 20.5 0.95 0.02 0.1 0.07 20
BT1/12 0.10 20.5 1.05 0.01 0.1 0.03 20
BT1/21 0.21 21.6 1.58 0.05 0.2 0.15 20
BT1/22 0.07 16.4 0.53 0.01 0.1 0.02 20
BT2/31 0.15 26.6 1.12 0.03 0.1 0.04 20
BT2/32 0.08 19.7 0.69 0.02 0.2 0.06 20
BT2/41 0.17 24.6 0.80 0.01 0.1 0.03 20
BT2/42 0.10 19.5 1.10 0.01 0.1 0.02 20

Table 4.1: Summary of the experimental buckling initiation criterion and critical
values

4.2 Effect of the plate geometry on its buckling

behaviour

The effect of the plate geometry on the buckling behaviour is investigated in this
subsection. Our discussion will be supported by experimental results from BTC #1
as well as numerical analysis. The plate geometry is defined by its aspect ratio a/b
and its thickness ratio b/h. The strain rate is identical for all specimens tested in
BTC #1.

4.2.1 FE simulations of the experiments

All experiments were simulated by FEA, with the experimental conditions as
an input, as detailed in Section 2.5 of Chapter 2. The introduction of imperfect
experimental conditions in the FE model leads to the collapse of the plate. The
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4. Validation of the buckling prediction method for thick plates subjected to
in-plane compressive loadings

load history and the deformed shape extracted from the FE model are compared to
the experiments, as presented in Figure 4.7. In Figure 4.7, the red plain curve and
black dashed curves correspond respectively to the FE and the experimental load
histories. The box plots added to the FE load history curve illustrate the effect of
the material discrepancy (cf. Table 3.4) on the numerical load history. The iso-value
field plotted in background represents the evolution with respect to time of the out
of plane displacement deviation between the FE model and the experiment. The
out of plane displacement field is only extracted on the axial center line (y = b/2).

Figure 4.7: FEA vs. experiment for BT1/01 specimen, Evolution of compressive
load and chronograph of the out of plane displacement deviation on the middle line
(y = b/2) according to time and axial coordinate x

The FEA correlates well with the experiments on both load and out of plane
displacement histories, as shown in Figure 4.7. Both quantities (load and out of
plane displacement) start diverging close to the experimental plate collapse. Even
if the post buckling evolution can be slightly different, the pre-buckling and the
buckling initiation are identical between the FE model and the experiments.

The same behaviour is observed with other specimens from BTC #1. The FE
and experimental load histories are presented in Figure 4.8.

The FE simulations of the experiments tend to validate the relevancy of the iden-
tified constitutive law. The reference law reproduces well the structural instability.
The experimental buckling behaviour of thick plates and the buckling predictions
are discussed in details in the next subsections.

4.2.2 Comparison of the predicted and experimentally ob-
served critical values

As a reminder the predicted critical values were defined using Bodner ’s hypoth-
esis coupled with a tangent law derived with Hencky ’s deformation theory.

128

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI005/these.pdf 
© [N. Jacquet], [2021], INSA Lyon, tous droits réservés



Effect of the plate geometry on its buckling behaviour

Figure 4.8: FEA and experimental normalized load according to normalized dis-
placement, for all specimens from BTC #1 (plain curves: FE simulations and dashed
curves: experimental data)

Moreover, 30 randomly generated constitutive laws were used to model the ma-
terial discrepancy. The random constitutive laws were generated with respect to the
statistical description of the reference law (cf. Table 3.4).

The critical stress is normalized in order to better visualize the material discrep-
ancy. This normalisation includes the section dimensions h and b as well as the plate
bending rigidity D = Eh3/[12(1− ν2)].

The experimental normalized critical stresses as well as the critical strains are
compared to the analytical predictions in Figure 4.9. The buckling predictions and
the critical test data are plotted with respect to the geometrical properties of the
plates in Figure 4.9.

The experimental and predicted normalized critical stresses are presented on the
left plots in Figure 4.9, while right plots present the experimental and predicted
critical strains. The plain lines correspond to the analytical predictions of the effec-
tive normalized critical stress and strain with respect to the aspect ratio a/b. These
predictions are defined with the mean reference law. The dashed curves correspond
to the prediction of the minimum and maximum critical stress and strain at 95%
probability with 90% confidence. The shaded surfaces correspond to the second and
third quartiles of the predicted critical stress and strain. The experimental critical
values are depicted by box plots, including discrepancy in the buckling detection
(defined in Table 4.1).

First, while a limited discrepancy is observed on the experimental critical
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4. Validation of the buckling prediction method for thick plates subjected to
in-plane compressive loadings

Figure 4.9: Analytical buckling predictions vs. experimental effective normalized
critical stress (left) and critical strain (right), plotted according to the plate aspect
ratio and for each plate thickness ratio

stresses, a large discrepancy is observed on the predicted critical stress. The ex-
act contrary is observed for strain data.

For b/h = 15, the thinnest plate, the critical stress is out of the second and third
quartile range, but within the min/max envelope. The critical strain data of the
same plate (b/h = 15) is out of the min/max envelope. This poor correlation can be
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Effect of the plate geometry on its buckling behaviour

explained because of the imperfections and the thickness ratio. Indeed, thin plates
are often more sensitive to imperfections. Loading imperfections observed earlier
could have initiated the buckling earlier, explaining the poor correlation.

For other thickness ratio, the critical strain predictions are enveloped by the
experimental strain data. Errors between predictions and experiments can seem
important for some b/h ratio. Nevertheless these errors are around 0.1% strain,
which corresponds to a 0.04 mm displacement in the axial direction of the plate.
These errors have to be considered with respect to the DIC process used. The
DIC uncertainty was evaluated at 0.02 mm. Moreover the detection criterion is
also based on the imperfection amplitude. Depending on when the imperfection is
evaluated, it can affect the evaluation of the critical strain. Therefore the correlation
is considered as good on the strain data according to the instrumentation means.
The same correlation quality is observed on stress data. The box plots are within
the range defined by the second and third quartiles of the buckling predictions.

To conclude on the critical values, except for b/h = 15, all experimental critical
strains and stresses correlate well with the buckling predictions, as shown in Figure
4.9.

For the smallest plates (b/h = 13 and 15), only one experiment was performed.
Despite the good results observed on those plates, the generalization of the results
have to be considered carefully. Additional experiments would be required in order
to generalize these observations..

The effective critical stress and critical strain seem to decrease when the aspect
ratio increases. Moreover the effective critical stress increases with the thickness
ratio, and the critical strain decreases with the thickness ratio.

4.2.3 Analysis of the buckling modes

For each specimen, the buckling mode can be extracted from the experimental
and FE deformed shape. The buckling modes are extracted from a post buckling
deformed shape. They are extracted on both center lines. They are plotted for each
plate aspect ratio in Figure 4.10.

Figure 4.10: FEA vs. experimental buckling modes, plain curves: FE buckling
mode and dashed curves: experimental buckling mode.
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4. Validation of the buckling prediction method for thick plates subjected to
in-plane compressive loadings

In Figure 4.10, the plain curves are associated to the FE buckling modes and
the dashed curves to the experimental ones. Each colour corresponds to a different
plate geometry (defined by its aspect ratio and its thickness ratio) in Figure 4.10.

As already observed, the FEA correlate well with experiments (cf.Figure 4.8).
FE and experimental buckling modes also coincide as shown in Figure 4.10. The
effect of the plate geometry on the buckling mode can also be observed in Figure
4.10. On the y center line (x = 0), all modes are very similar and look like Euler
beam modes. On the x center line (y = b/2), symmetrical and asymmetrical modes
can be observed.

Thick square plates (a/b = 1 and b/h = 10) present a slight rotation on their
buckling modes (red curves in Figure 4.10) compared to other plate geometries. This
particular point is analysed in the next paragraph.

4.2.4 Mode proximity for thick plates (b/h = 10)

Eigen analysis
For this particular thickness ratio (b/h = 10), the critical stress and strain were

computed with the analytical model for the three first buckling modes with respect
to the plate aspect ratio. The results of this analysis are presented in Figure 4.11.
Red, green and blue curves correspond respectively to the evolution of the critical
values for the first, the second and the third modes. The shape of each mode is
presented on the right part of Figure 4.11. The third mode is only plotted from
a/b ≥ 0.95. Before this value the third eigenvalue corresponds to the fourth mode.

Figure 4.11: Evolution of critical stress and strain for the first three modes with
respect to plate aspect ratio (derived from the analytical model).

The first and the second mode share the same critical values for plates with a
low aspect ratio. A mode inversion can also be observed between the third and the
second mode in Figure 4.11 when a/b = 1.33. The first mode corresponds to the one
generally observed in the experiments. The second mode is its anti-symmetric shape.
The third one is a more energetic mode with two bumps. The difference between
the critical stresses of the first two modes is only 0.8 MPa for a square plate and
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Effect of the plate geometry on its buckling behaviour

1.9 MPa for a 1.33 aspect ratio plate. Equally, the difference on the critical strain
is 0.5% for a square plate and 1.0% for a 1.33 aspect ratio plate.

The first two modes are very close for a square plate. This proximity could gen-
erates a combination of the first two modes at bifurcation, either by simultaneous
buckling or successive bifurcations. In both cases, a loading or a geometrical imper-
fection can ease the apparition of the second mode in the post buckling deformed
shape. This point is investigated in the next paragraph.

Post buckling analysis and effect of imperfections

Using a FE model, two post buckling simulations were performed. Both simula-
tions are identical except on the nature of the initial geometric imperfection.

Case 1: A geometric imperfection derived from the first mode only is applied to
a perfect plate. Two plate aspect ratios are investigated, a square plate and a 1.33
aspect ratio plate.

Case 2: A geometric imperfection derived from the first two modes is applied
to a perfect plate. Two plate aspect ratios are investigated, a square plate and a
1.33 aspect ratio plate.

In both cases the plates have a thickness ratio equal to 10.

For both cases, the buckling modes are extracted on both center lines and pre-
sented in Figure 4.12. The buckling modes of the 1.33 aspect ratio plate are drawn
in Figure 4.12-2, while the buckling modes of the square plate are drawn in Figure
4.12-1.

Figure 4.12: (1) Post buckling modes obtained for a square plate; (2) Post buckling
modes obtained for a 1.33 aspect ratio plate (from FEA)

The buckling modes corresponding to Case 1 are drawn with plain lines. The
buckling modes corresponding to Case 2 are drawn with dashed lines in Figure 4.12.
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4. Validation of the buckling prediction method for thick plates subjected to
in-plane compressive loadings

As observed experimentally, the buckling mode of the square plate highly de-
pends on the nature of the imperfection. The second mode appears when the nature
of the imperfection favours its expression, as shown with the dashed curve in Figure
4.12-1. The buckling mode shapes of the 1.33 aspect ratio plate are almost not
affected by the second buckling mode as shown in Figure 4.12-2. The first and the
second modes are already too far away for the 1.33 aspect ratio plate.

Modes proximity can lead to successive bifurcations as observed experimentally
and numerically. This investigation shows the accuracy of the buckling predictions
as well as the FE model with respect to the experiments.

From this first discussion several observations can be made. The effect of the
plate geometry on the buckling behaviour has been observed. The aspect ratio as
well as the plate thickness ratio affects the critical values. Moreover the plate aspect
ratio has also an effect on the nature of the buckling mode. This phenomenon
was observed experimentally for square plate, where successive bifurcations or a
simultaneous buckling was observed. The nature of the imperfection can have an
important effect on the buckling mode when the first bifurcation points are close to
each others.

The strain rate was held constant for all specimens tested within BTC # 1 and
discussed in this section. The next section discusses the effect of the strain rate on
the buckling behaviour of thick plates.

4.3 Effect of the strain rate on the buckling of

thick plates

The effect of the strain rate on the buckling behaviour is investigated in this
section. Only the results of specimens with a/b = 1.33 and b/h = 10 from BTC #1
and #2 are used. The FE model and the analytical model are used to investigate
the effect of strain rate on the buckling behaviour.

Table 4.2 summarizes the testing conditions of the specimens used in this section.

Specimen ID a/b b/h V
[mm.s−1]

Ingot
#

BTC
#

V/Vref T◦ [◦C]

BT1/02 1.33 10 2.10−3 0 1 1 20
BT1/12 1.33 10 2.10−3 1 1 1 20
BT2/31 1.33 10 2.10−2 3 2 10 20
BT2/32 1.33 10 4.10−4 3 2 1/5 20
BT2/41 1.33 10 2.10−2 4 2 10 20
BT2/42 1.33 10 4.10−4 4 2 1/5 20

Table 4.2: Summary of plate geometries and testing conditions

The variation of the strain rate is characterized by the speed ratio V/Vref , where
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Effect of the strain rate on the buckling of thick plates

V is the displacement rate applied and Vref is the displacement rate applied to
specimens BT1/02 and BT1/12.

4.3.1 FE simulations of the experiments

As in the previous section the experiments are also simulated with the post
buckling FE model. The correlation with the FEA is still very good on load histories
as shown in Figures 4.13 for V/Vref = 0.2 and 10. The FE and the experimental
curves are close, especially in the pre-buckling phase. The buckling initiates at
similar times (or strains) in the FE simulations and the experiments. The correlation
on the displacement fields is similar to the one presented in Figure 4.7

Figure 4.13: FEA and experimental normalized load according to normalized dis-
placement, for all specimens from BTC #2 (plain curves: FE simulations and dashed
curves: experimental data)

4.3.2 Comparison of the predicted and experimentally ob-
served critical values

The experimental critical stresses and strains were also identified for each spec-
imen of BTC #2. The critical values, including buckling detection discrepancy, are
presented and compared to the buckling prediction in Figure 4.14. The buckling
predictions were computed with the analytical model. The same normalization as
in the previous section was used for the critical stress.

The box plots in Figure 4.14 correspond to test data. The mean buckling predic-
tion is plotted with respect to speed ratio (plain curve). As in the previous section
the minimum and maximum buckling predictions at 95% with 90% confidence are
depicted by dashed curves. Finally the second and third quartiles are plotted with
a shaded surface.

The critical stress increases with the strain rate while the critical strain seems
to stay constant in the speed range covered.

The predicted critical stresses correlate well with the experimental ones.
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4. Validation of the buckling prediction method for thick plates subjected to
in-plane compressive loadings

Figure 4.14: Experimental normalized critical stress and critical strain with respect
to speed ratio

Regarding the critical strains, even if the box plots seem to not comply well with
the predictions, the difference is around 0.1% of strain. As previously stated, this
difference corresponds to a 0.04 mm displacement in the axial direction. This is of
the same order of magnitude as the DIC error of measure.

To conclude the predicted critical values correlate well with the experimental
ones.

4.3.3 Analysis of the buckling modes

As for specimens from BTC #1 the buckling modes are extracted on both center
lines. They are plotted in Figure 4.15 for each speed ratio.

Figure 4.15: FEA vs. experimental buckling modes, plain curves: FE buckling
mode and dashed curves: experimental buckling mode.

First, a good correlation on the buckling modes is also observed between the
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Effect of the strain rate on the buckling of thick plates

FEA and the experiments. The buckling modes present identical shapes in Figure
4.15 for the three displacement rates tested. For the tested plate geometry and in
the strain rate range covered, the buckling mode does not seem to be affected by
the strain rate.

4.3.4 Validity of Bodner’s hypothesis

It is important to notice that the buckling prediction is correct as long as the
strain rate stays constant during buckling. This hypothesis is difficult to verify. In
this subsection we intend to investigate the validity of Bodner ’s hypothesis.

4.3.4.1 Critical values from a post buckling analysis for a large strain
rate range

In order to complete the experimental observations, a parametric analysis was
performed to investigate the strain rate effect in a larger strain rate range. The buck-
ling predictions from the analytical model were compared to the buckling detection
data obtained from a FE post buckling model.

The FE critical values were defined with respect to the buckling detection method
presented in subsection 4.1.2. A plate with an aspect ratio of 1.33 and a thickness
ratio of 10 was chosen. The speed ratio is the main parameter of this parametric
analysis. It varies from 0.01 to 100, which corresponds to a strain rate between
5.0 × 10−7 s−1 and 5.0 × 10−3 s−1. An initial imperfection is applied to the FE
model, it is derived from the first buckling mode.

The buckling detection discrepancy is directly linked to the density of proba-
bility applied to the geometric imperfection amplitude. This density of probability
is modelled by a lognormal distribution. This distribution is characterized by its
mean value (5% of the plate thickness) and its standard deviation (5% of the plate
thickness).

The results of the parametric analysis are presented in Figure 4.16. The plain
blue curve corresponds to the buckling predictions from the analytical model. The
red box plots depict the buckling initiation points detected from the FE post buckling
model with respect to the strain rate. In this paragraph, the green box plot of Figure
4.16 are not discussed.

Even if the critical strain values from the analytical predictions and the FE post
buckling model are close, the tendency is inverted. The critical strain detected with
the FE model increases when the strain rate increases. The critical strain predicted
with the analytical model decreases when the strain rate increases. This inverted
tendency can be easily explained by the change of strain rate at buckling initiation.

4.3.4.2 Effect of a rapid strain rate change at buckling

For elasto-visco-plastic materials, when the buckling initiates, the strain rate
increases, as for elasto-plastic materials. In elasto-plasticity, this strain rate increase
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4. Validation of the buckling prediction method for thick plates subjected to
in-plane compressive loadings

Figure 4.16: Buckling prediction vs. FE post buckling data, and test data, plate
geometry: a/b = 1.33 and b/h = 10.

is due to the loss of stiffness caused by the buckling mode shape.
For elasto-visco-plastic materials a rapid strain rate increase implies a rapid

increase of the tangent stiffness matrix. This tangent stiffness increase can delay
the buckling.

The time scale of the strain rate increase can be compared to the relaxation time
of the material. If the strain rate change occurs in a time scale greater than the
relaxation time, the effect on the tangential stiffness is negligible. On the contrary, if
the strain rate increase occurs in a very small time scale compared to the relaxation
time, the stiffness modification cannot be neglected.

A rapid change of strain rate can be introduced in the analytical model through
the instantaneous tangent modulus defined by the ratio σ̇eq/ṗ. A Taylor expansion
of σ̇eq with respect to ∆ṗ can be written as:

σ̇eq (ṗ+ ∆ṗ) = σ̇eq (ṗ) +
∂σ̇eq
∂ṗ

∆ṗ

= σ̇eq (ṗ) +
K

n
ṗ1/n−1∆ṗ

(4.5)

A new tangent modulus can be defined by:

σ̇eq (ṗ+ ∆ṗ)

ṗ+ ∆ṗ
= R′(p)

ṗ

ṗ+ ∆ṗ
+
K

n
ṗ1/n−1 ∆ṗ

ṗ+ ∆ṗ
(4.6)

This tangent modulus can be considered as the one caused by a rapid change
of strain rate at buckling initiation. ṗ defines the strain rate from the pre-buckling
loading, while ∆ṗ defines the change of strain rate at buckling. Figure 4.17 shows
how the critical strain is affected by the strain rate variation at buckling initiation.
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Effect of the strain rate on the buckling of thick plates

Figure 4.17: Effect of strain rate variation during buckling on critical strain.

As long as the strain rate change is small, the critical strain is the same as
predicted with Bodner ’s hypothesis. In this particular case, for a strain rate change
higher than 1%, a significant variation on the critical strain can be observed, as
shown in Figure 4.17.

Bodner ’s hypothesis seems suitable for small strain rate changes at buckling. For
high strain rate changes at buckling, Bodner ’s hypothesis is not accurate anymore.
The predictions defined with Bodner ’s hypothesis gives only a lower bound of the
bifurcation point.

It seems reasonable to assess that the highest is the strain rate the highest
is the strain rate change at buckling. This assumption can explain the inverted
tendency observed in Figure 4.16. This assumption also limits the usage of Bodner ’s
hypothesis to structure subjected to reasonable strain rates.

In addition, the difference between both predictions (analytical and post buckling
analysis) is of the same order of magnitude as the experimental discrepancy (between
green box plots) in Figure 4.16. Therefore the predictions defined with Bodner ’s
hypothesis seem relevant in a reasonable strain rate range.

The method implemented here allows to define an estimation of the critical
values. To predict more accurately the buckling of thick plates, the deformation
theory should be coupled to the methods described by [Triantafyllidis, Massin, and
Leroy 1997]. Nevertheless, according to the experiments and the FE modelling, for
reasonable strain rates, the present method predicts well the buckling of thick plates.
The buckling predictions comply with the experiments and the FEA on both critical
values and buckling modes, as shown previously in Figures 4.8, 4.13, 4.10, 4.15, 4.9
and 4.14.
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4. Validation of the buckling prediction method for thick plates subjected to
in-plane compressive loadings

4.4 Conclusion

This chapter presented an efficient method to assess the buckling of thick shells
with a rate-dependent behaviour. It also validates experimentally the approach
inspired from [Eslami and Shariyat 1997] as well as the analytical model proposed
by [Wang and Aung 2007] for the plastic buckling of thick plates.

The present work also shows the limitation of the Bodner ’s hypothesis to rea-
sonable strain rates. Higher strain rates should be investigated using the method
proposed by [Triantafyllidis, Massin, and Leroy 1997]. High strain rates also induce
potential dynamic effects and thermal effects out of the scope of the present work.

The prediction method gives a new experimentally validated tool to predict the
buckling of rate dependent thick plates. The generalisation of the method to complex
rate dependent thick shells is presented in the next chapter.
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Chapter 5

Validation of the buckling
prediction method for thick shells

subjected to external pressure

In this chapter, the buckling prediction method based on the corner
theory is evaluated against the experimental results obtained on

hemi-egg shells subjected to external pressure. This chapter
intends to validate the buckling prediction method to complex

shells subjected to non-proportional loadings.
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In the previous chapter the numerical and experimental methods to study the
buckling of thick shells were evaluated against the buckling behaviour of simple
structures, i.e. thick plates. The buckling predictions given by the deformation
theory correlates well with experiments. The limits of Bodner ’s hypothesis were
investigated as well. In order to reach our final objective, i.e. to predict the buckling
of complex thick shells subjected to non-proportional loadings, hemi-egg shells were
tested under external pressure. The experiments were instrumented as described in
Section 2.4.2 of Chapter 2. In this chapter the experimental results obtained on the
hemi-egg shells are analysed and compared to the buckling predictions given by the
corner theory.

First a numerical analysis intends to identify the corner theory parameters (θc
and θ0). Then the best experimental conditions to observe the buckling of hemi-egg
shells are defined.

In a second part the experimental data are investigated, including measurement
uncertainties and potential geometrical or loading imperfections. Two experimental
buckling detection criteria are also defined. The simulation of each experiment
through FEA is presented and discussed.

Finally, the validity of the prediction method is discussed and compared to other
prediction methods.

In this chapter, unless otherwise specified, the mean reference material law is
used for all numerical analysis (cf. 3.4).

The section of biggest radius is often mentioned in this Chapter, Figure 5.1(a)
presents its location along the egg major axis. Because of the shape of the hemi-
egg, a cylindrical coordinate system is often used in this chapter. This cylindrical
coordinate system is described in Figure 5.1(b).

(a) (b)

Figure 5.1: (a) Location of the section of biggest radius along the egg major
axis; (b) Cylindrical frame attached to the egg for the FFT post processing of the
displacement fields.
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5. Validation of the buckling prediction method for thick shells subjected to
external pressure

5.1 Calibration of the corner theory parameters

In this section we intend to calibrate the buckling prediction method through
the identification of the corner theory parameters, θc and θ0. θc and θ0 define
respectively the yield stress corner and the quasi-proportional cone as illustrated in
Figure 2.7 of Chapter 2. The calibration of θ0 and θc is done numerically through the
minimization of the difference between the predicted critical times and the detected
critical times from post buckling analysis. The detected critical times are defined
through post bifurcation analysis of imperfect hemi-egg shells. The post bifurcation
analysis is performed with a FE model, where the evolution of the bifurcated solution
is analysed. In order to cover a large strain rate range, two pressure rates (defined
by Pinf and tref ) are considered.

The trivial solution is presented and discussed first. Then the results of post
bifurcation analysis are presented and analysed. The detection criterion is then de-
fined, and the detected critical times are identified from post bifurcation simulations.
Finally the corner theory parameters are identified.

5.1.1 FE model of the hemi-egg shell

As already mentioned the analyses of the perfect or imperfect hemi-eggs are
performed with a FE model. This latter only considers the egg shape of the specimen
presented in Figure 2.14(b) (the flange is not modelled). The hemi-egg shell is
clamped on its border. The geometry of the perfect hemi-egg shell is defined in
Chapter 2.

As mentioned previously, two load histories are used, they are defined by Pinf =
4.5 MPa and tref = 100 or 10000 s, and:

P (t) = Pinf

(
1− e−

t
tref

)
. (5.1)

The value of Pinf was selected in order to be close to the limit between elasto-
visco-plastic buckling regime and creep buckling regime (constant load with respect
to time). In this region, the differences between all predictions defined with re-
spect to θc and θ0 are magnified. The simulations are run until P/Pinf = 0.999,
corresponding to t = −tref ln(0.001).

5.1.2 Analysis of the trivial solution

For each value of tref , the simulation is first run on the perfect hemi-egg shell.
Figure 5.2 presents the evolution of the FE deformed shape with respect to the time.

First the top of the egg is deformed entirely due to the pressure. Then two lobes
appear and develop on the deformed shape between t/tref = 2 and 4 as shown in
Figure 5.2. The development of the two lobes corresponds to a limit point buckling
mode. This limit point buckling is due to the specimen shape and the boundary
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Calibration of the corner theory parameters

Figure 5.2: Evolution of the hemi-egg numerical deformed shape with respect to
time for a pressure profile defined by Pinf = 4.5 MPa and tref = 100 s

conditions. Any additional buckling mode will have to be studied by considering
this limit point buckling branch as the trivial one.

In order to estimate the non-proportionality of the loading path, the spatial
distribution of θ can be analysed according to pressure and time, as illustrated in
Figure 5.3. Each couple of iso-values corresponds to the upward and downward
views of the egg. The left view presents the value of θ on the upper skin and the
right one the value of θ on the lower skin.

One can see that the stress rate direction follows a quasi-proportional loading up
to t/tref = 2 (θ is lower than 30◦ almost everywhere). Because of the deformation
of the hemi-egg shell, the stress state becomes highly triaxial after t/tref = 2 and
the loading highly non-proportional.

The deformed shape is then post processed through a Fast Fourier Transforma-
tion (FFT). This FFT is carried out in order to analyse the displacement field. This
FFT is only performed on a circumferential line extracted from the inner surface of
the egg. This line is positioned at the section of biggest radius as shown in Figure
5.1(a).

The displacement fields are then transported to a polar frame, where z is defined
by the axial axis of the egg, r and φ respectively the radial and tangential direction
of the egg shell as shown in Figure 5.1(b).

From the simulation of the perfect hemi-egg shell, one can extract from the FFT
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5. Validation of the buckling prediction method for thick shells subjected to
external pressure

Figure 5.3: Numerical evolution in time of the stress rate direction θ on the upper
and lower skin for a pressure profile defined by Pinf = 4.5 MPa and tref = 100 s

analysis the five first harmonics of the radial displacement field. The evolution of
their modulus with respect to time is presented in Figure 5.4 (left). In Figure 5.4
(right) the shape of each harmonic is depicted. The first harmonic corresponds to
the trivial elastic deformation and the second one to the trivial plastic one. This
identification can be done by comparing the shape of the two first harmonics in
Figure 5.4 (right) to the evolution of the egg deformed shape in Figure 5.2. One can
assume that the other harmonics have a negligible effect on the trivial response of
the egg shell in the pre-buckling phase, as shown in Figure 5.4.

This FFT post processing is also used later in order to filter the displacement
field and to better visualize the singular solution. The first and the second harmonics
can be removed from the total displacement field on the bifurcated solution in order
to visualize the singular solution.

5.1.3 Analysis of bifurcated solutions

For the post buckling analysis, an initial geometric imperfection defined by a
linear combination of the fifteen first elastic buckling modes is applied to the perfect
hemi-egg shell. Its amplitude is defined as a percentage of the shell thickness. Figure
5.5 presents the shape of the imperfection generated. The imperfection amplitude
ranges from 0.5% to 10%.
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Calibration of the corner theory parameters

Figure 5.4: Harmonic modulus and shapes from the post processing of the perfect
shell simulation with a pressure profile defined by Pinf = 4.5 MPa and tref = 100 s

Figure 5.5: Normalized magnitude of the initial geometric imperfection applied to
the hemi-egg initial geometry

As for the simulation of the perfect hemi-egg shell, the displacement field can
be post processed by FFT. It is important to notice that the buckling mode is not
clearly visible on the post buckling deformed shape. A filter based on a FFT analysis
of the displacement field is applied in order to remove the main components of the
trivial elastic and plastic deformation.

On the bifurcated branch, the buckling mode is combined with the trivial solution
(i.e. mainly the 1st and 2nd harmonics). The symmetrical or asymmetrical properties
of the buckling mode localizes the strain to one of the two lobes of the 2nd harmonic
of the trivial displacement fields. The effective deformed shape often looks like a
single lobe observed on one side of the hemi-egg shell, as shown in Figure 5.6.
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5. Validation of the buckling prediction method for thick shells subjected to
external pressure

Figure 5.6: Post buckling deformed shape

This post buckling deformed shape does not correspond to the buckling mode.
When the trivial solution (i.e. mainly the 1st and 2nd harmonics) is removed from the
bifurcated one, the singular solution (i.e. the buckling mode) can be approximated.

5.1.4 Definition of a bifurcation detection criterion for post
bifurcation analysis

To define our buckling detection criterion the displacement field is approximated
by the five first harmonics from its FFT analysis. To detect the bifurcation on
egg shells, the same strategy as for plates is adopted. The detection criterion is
based on the analysis of the post buckling deformed shape. In this case the initial
imperfection is also analysed by FFT. The buckling detection criterion is defined as
follows:

{
|α| ≥ 1, buckling detected
|α| < 1, no buckling

, with: α(r, φ, z) =

∑5
i=1

(
U i
r − Û i

r

)
∑5

i=1 U
i
r

∣∣
imp

, (5.2)

where z is the axial coordinate of the section of biggest radius, U i
r is the radial

component of the ith harmonic of the bifurcated solution, Û i
r is the radial component

of the ith harmonic of the trivial solution and U i
r|imp is the radial component of the

ith harmonic of the imperfection.
This detection criterion is applied to both pressure rates and to all imperfection

amplitudes. The evolution of a local maximum of |α| with respect to the time ratio
is depicted in Figure 5.7. The point where α = 1 is depicted for each imperfection
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Calibration of the corner theory parameters

amplitude by a bullet in Figure 5.7. In addition, the singular solution (i.e. mainly the
combination of the 3rd, 4th and 5th harmonics) is plotted at the detected buckling
initiation for each imperfection amplitude. The followed peak of deformation is
located in the angular sector [60◦, 80◦]. It is identified by the label P in Figure 5.7.

(a)

(b)

Figure 5.7: (a) Evolution of the singular solution α with respect to time and
the imperfection amplitudes (left); approximation of the singular solution for each
imperfection amplitude (right) for tref = 100 s; (b) Evolution of the singular solution
α with respect to time and the imperfection amplitudes (left) approximation of the
singular solution for each imperfection amplitude (right) for tref = 10000 s
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5. Validation of the buckling prediction method for thick shells subjected to
external pressure

One can see that the detected critical times are very close to each others for both
pressure rates.

Asymmetric buckling modes can be extracted from the filtered displacement
field. They present two peaks and two valleys as shown in Figures 5.7(a) and 5.7(b).

For a pressure profile defined by tref = 100 s, the first bifurcation is detected
from a time ratio (t/tref ) equal to 3.86 and 2.40 for a pressure profile defined by
tref = 10000 s. The detected critical times are summarized in Table 5.1, and the
retained critical time ratio are highlighted with bold typography.

tref [s]
t/tref - 1st bifurcation

CT
Rimp

%

10% 5% 1% 0.5%

100 3.53 3.86 3.89 3.90 3.90
10000 2.55 2.39 2.47 2.50 2.60

Table 5.1: Predicted critical time ratio on a perfect geometry (with the (CT)
corner theory, θc = 112.5◦ and θ0 = 0.45(θc − π/2)) vs. detected buckling time
ratio according to the imperfection amplitude Rimp

% , bold values correspond to the
targeted critical time ratio

The retained critical values are used in the next paragraph in order to identify
θ0 and θc. The retained values are then called detected critical time ratios, t

100
c1

and

t
10000
c1

. The buckling modes extracted from the post bifurcated solution are then
compared to the ones predicted with the identified θc and θ0. This is done in order
to validate the identification process.

This mean surface imperfection based criterion will not be applied to the exper-
iments. First this criterion is based on the knowledge of the initial imperfection. In
our case the initial imperfection is too low to be well described by DIC measure-
ments. In second, it is also based on the knowledge of the trivial solution. The
trivial solution cannot be defined accurately for each experiment, because of the
boundary condition imperfections, the loading imperfection and so on.

5.1.5 Identification of θc and θ0

In order to identify the parameters of the corner theory, an optimisation process
is followed. The identified couple of parameters shall predict the bifurcation points
identified previously for both pressure profiles. A tolerance area for both parameters
will also be defined.

To find such parameters, a parametric analysis on θc and θ0 was performed. If a
high value of θ0 is chosen, the buckling predictions will correspond to the prediction
from Hencky ’s deformation theory. θc also affects the predictions, when θc tends to
π/2, the yield surface becomes smooth and the linear tangent operator tends to the
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Calibration of the corner theory parameters

Mises flow theory one. In order to avoid such effects, it was chosen to study both
parameters in the following ranges, θc ∈ [100◦, 130◦] and θ0 ∈ [0◦, (θc − π/2)/2].

As a reminder, the two pressure profiles defined by Pinf = 4.5 MPa and tref =
100 s or 10000 s are used. A bifurcation analysis using the corner theory is performed
in order to define the properties of the first three bifurcation points.

As an example Figure 5.8 depicts the evolution of the eigen pressures for the
first three modes with respect to the ratio t/tref (green, blue and red curves). The
bifurcation point is reached when the eigen pressure is equal to the actual pressure.
The shape of the first three buckling modes is also presented in Figure 5.8. The shape
of each mode is not affected by θc and θ0. Only the sorting can be modified. The
first critical pressure defined with the Mises flow theory and Hencky ’s deformation
theory are also shown for information in Figure 5.8. They are respectively depicted
with a black and a magenta curves. This two additional eigen pressures show how
the corner theory is bounded by the Mises flow theory and Hencky ’s deformation
theory.

Figure 5.8: Evolution of the eigen pressure according to the normalized time and
the three first buckling mode predicted with the corner theory for a pressure profile
defined by Pinf = 4.5 MPa and tref = 100 s

Figure 5.8 shows that the first two modes almost share the same eigenvalue. The
first two modes are quasi periodic modes. They share the same wave length (around
85◦ cf. Figure 5.8). They only differ on their phases. The first buckling mode is
asymmetric, while the second one is symmetric. As a matter of fact, the third mode
corresponds to the second bifurcation point. It is also a quasi periodic mode. Its
wave length is approximately equal to 60◦ with a symmetric shape.
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5. Validation of the buckling prediction method for thick shells subjected to
external pressure

From the parametric analysis, the critical time ratio of the first bifurcation point
t1&2
c /tref (first and second eigenvalue) was extracted and plotted with respect to θc

and θ0 in Figure 5.9 for both pressure profiles.

(a) (b)

Figure 5.9: (a) Evolution of the first (t1&2
c blue iso-values) critical time ratio with

respect to θc and θ0 for a pressure profile defined by Pinf = 4.5 MPa and tref = 100
s; (b) Evolution of the first (t1&2

c blue iso-values) critical time ratio with respect to
θc and θ0 for a pressure profile defined by Pinf = 4.5 MPa and tref = 10000 s

In Figure 5.9(a) the predictions of the first t1&2
c /tref critical time ratio for a

pressure profile defined by Pinf = 4.5 MPa and tref = 100 s are depicted with
respect to θc and θ0. The blue iso-values (plain and dashed) correspond to t1&2

c /tref .
The same strategy is followed in Figure 5.9(b) for a pressure profile defined by
Pinf = 4.5 MPa and tref = 10000 s. One can see that the critical time is reduced by
a combined increase of θc and θ0. This is true for both load cases.

Using an optimisation process the best couple of parameters was determined. In
this optimisation process we intend to find the couple of parameters predicting the
detected critical points of Table 5.1. The function to minimize is defined as follows:

f(θc, θ0) =

(
RtR

4

)0.5

with: R =

 t1&2
c (θc,θ0,Pinf=4.5,tref=100)

t
100
c1

− 1

t1&2
c (θc,θ0,Pinf=4.5,tref=10000)

t
10000
c1

− 1

 , (5.3)

with tc1 the detected critical times.
This function is plotted in Figure 5.10 with respect to θc and θ0 in the parametric

domain previously defined.
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Parametric analysis of the buckling of a hemi-egg shell

Figure 5.10: Iso-values of the minimized function used to define the best couple
of parameters of the Corner theory (mentioned with a star)

The minimum of f is reached for θc = 112.5◦ and θ0 = 0.45(θc − π/2), as shown
in Figure 5.10. In addition a tolerance area for the values of θc and θ0 is also defined
in Figure 5.10.

The mode shapes obtained with this couple of parameters correspond to the
ones presented in Figure 5.8. They can be compared advantageously with the ones
observed in the post buckling analysis (cf. Figure 5.7). They all present an asym-
metrical shape and similar wave length, same number of peaks and valleys. A good
agreement is observed between the first buckling mode predicted and the ones iden-
tified.

The critical values predicted for the first bifurcation points are also compared
to the detected ones in Table 5.1. This couple of parameters underestimates the
detected time for the load case defined by tref = 100 s and slightly overestimate the
one for the load case defined by tref = 10000 s.

The couple of parameters identified in this section is used for all buckling pre-
dictions presented in this chapter unless otherwise specified.

5.2 Parametric analysis of the buckling of a hemi-

egg shell

A second task was focused on the definition of the experimental loading condi-
tions in order to observe the buckling of hemi-egg shells. Two parameters charac-
terize the load history, the pressure P and the pressure rate Ṗ . In Section 2.4.2 of
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5. Validation of the buckling prediction method for thick shells subjected to
external pressure

Chapter 2, the theoretical loading history is defined by:

P (t) = Pinf

(
1− e−

t
tref

)
. (5.4)

The pressure amplitude is therefore defined by Pinf and the pressure rate amplitude
by Pinf/tref . The effect of the pressure and the pressure rate will then be investigated
in order to define the experimental conditions.

The main objective of this section is to define the best experimental conditions
to validate the buckling prediction method developed. A parametric bifurcation
analysis is used for this purpose. It takes Pinf (the saturation pressure), tref (the
reference time), Rimp

% (the initial imperfection amplitude) and ∆R0 (the yield stress
discrepancy) as inputs. This last is important as the different specimens can have
different yield stress because of the discrepancy in the cooling rate during their
manufacturing.

This parametric analysis is also used to generate numerical data to compare the
experiments with the numerical analysis. All bifurcation analyses are performed
with the corner theory and the parameters defined previously θc = 112.5◦ and θ0 =
0.45(θc − π/2).

Pinf tref Rimp
% ∆R0

[MPa] [s] [%] [MPa]

4.00 10 0 -7.5
4.25 20 0.1 -5.5
4.50 50 0.2 -2.5
4.75 100 0.5 0
5.00 200 1.0 2.5
5.25 500 2.0 5.0
5.50 1000 5.0
5.75 2000 10
6.00 5000 20

10000

Table 5.2: Summary of input parameter values

This parametric analysis follows a numerical experiment chart with four inputs.
Table 5.2 summarizes the different values taken by each parameter. Every combi-
nation is simulated. The outputs of the analysis are the critical pressure Pc and the
critical time tc.

The results of the parametric analysis are presented in Appendix F. From this
analysis, two important points are discussed here. First a projection method is
presented. It is used to compare the experimental critical values with the predictions
in a perfect space defined by (Pinf , tref and ∆R0). The parametric analysis is also
used to define the experimental conditions.
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Parametric analysis of the buckling of a hemi-egg shell

5.2.1 Projection of the experimental critical values in the
perfect space

To define the projection, two normalisation ratios are defined as follows:

rPc (Pinf , tref ,∆R0) = Pc (Pinf , tref ,∆R0) /P c

(
(P inf , tref ,∆R0

)
,

rtc (Pinf , tref ,∆R0) = tc (Pinf , tref ,∆R0) /tc
(
(P inf , tref ,∆R0

)
.

(5.5)

where Pc (Pinf , tref ,∆R0) is the critical pressure for a set of loading and material
parameters and P c

(
(P inf , tref ,∆R0

)
is the critical pressure for a set of reference

parameters (P inf , tref , ∆R0). The same convention is used for the critical time.
As an example, in Figure 5.11 (left), the normalisation ratio rPc is plotted with

respect to ∆R0 and tref , and with P inf = Pinf = 4.5 MPa, tref = tref and ∆R0 =
0 MPa. In Figure 5.11 (right) the normalisation ratio rPc is plotted with respect to
∆R0 and Pinf , and with P inf = Pinf , tref = tref = 100 s and ∆R0 = 0 MPa.

Figure 5.11: Iso-values of the predicted normalized critical pressure with respect
to tref with Pinf = 4.5 MPa (left) and with respect to Pinf with tref = 100 s (right).

Only rPc is drawn in Figure 5.11 as rtc is linked to P c through the pressure profile
expression:

Pc = Pinf (1− exp(−tc/tref )) . (5.6)

The abacuses in Figure 5.11 allow to define the equivalent perfect critical values
from experiments thanks to rPc and rtc . They are defined as follows:

P eq
c exp = P exp

c (Pinf , tref ,∆R0) /rPc ,

teqc exp = texpc (Pinf , tref ,∆R0) /rtc .
(5.7)
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5. Validation of the buckling prediction method for thick shells subjected to
external pressure

This projection is used in Section 5.3 to define the experimental critical values
for an equivalent perfect material.

5.2.2 Definition of the experimental conditions

It is important to experiment several pressure rates in order to observe different
strain rates among the hemi-egg shells tested. Moreover due to the possible material
imperfection it is better to apply a pressure profile with Pinf higher than 5.0 MPa, as
discussed in Appendix F. This is done in order to be sure to buckle in the elasto-visco-
plastic regime. We also want to be on the limit between of the two regimes (elasto-
visco-plastic and creep regimes). Therefore Pinf needs to be as low as possible. From
these observations two pressure profiles were defined. The fastest with Pinf = 5 MPa
and tref = 100 s and the slowest with Pinf = 5 MPa and tref = 1000 s.

For both sets of testing conditions, their characteristics and the expected critical
values are summarized in Table 5.3.

Case 1 2

tref [s] 100 1000
Pinf [MPa] 5 5

ṗmean [s−1] 1.22 × 10−5 1.80 × 10−6

ṗmax [s−1] 4.77 × 10−5 8.17 × 10−6

θmax [◦] 49 61

1st Mode

tc/tref [n/a] 2.258 1.929
Pc [MPa] 4.476 4.273

2nd Mode

tc/tref [n/a] 2.261 1.952
Pc [MPa] 4.478 4.289

Table 5.3: Summary of experimental conditions for both testing cases

One can notice that the first two bifurcation points almost coincide. Therefore,
both modes can be expected. Nevertheless, any asymmetrical imperfection will lead
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Experimental results vs. FE modelling

the structure to buckle on the asymmetrical buckling mode. Moreover the strain
rate difference between both cases is noticeable. Indeed for the fast load case the
mean plastic strain rate is almost seven times higher than the one of the slow load
case.

In the next sections of this chapter, the results of these two preliminary numerical
tasks are used in order to analyse the experimental results and to evaluate the
buckling prediction method.

5.3 Experimental results vs. FE modelling

This section is dedicated to the results obtained from the experiments performed
on the thick hemi-egg shells. Five specimens were tested (cf. 2.5).

As already said, these experiments were instrumented with three cameras in
order to measure the lower skin of the shell using DIC. The pressure histories and
the images acquired are analysed in order to characterize experimentally the buckling
of thick hemi-egg shells subjected to external pressure.

This section is organised in three subsections. The first one introduces the differ-
ent sources of uncertainty on the experimental measurements. The second subsection
presents the results for the analyses of the experiments, such as the experimental
critical values and their associated criteria or the buckling modes identified. Finally
the last subsection presents the results from the FE analysis of the experiments.

5.3.1 Experimental uncertainties

The experimental process was defined in Section 2.4.2 of Chapter 2. The mea-
surements obtained from the experiments are the pressure history and the images
from the three cameras.

5.3.1.1 Uncertainties on the applied pressure

As already mentioned, the rig was set in displacement control mode. A pres-
sure/displacement law was defined experimentally for each test in order to approach
the desired pressure profile (cf. Table 2.5). The actual pressure history was mea-
sured. Figure 5.12 illustrates a typical experimental pressure history and its four
phases. The four phases correspond to different test phases:

I The pressure is maintained at 0.2 MPa. Images are acquired to evaluate the
errors on the displacement fields (discussed later in this section).

II A manual pressure ramp from 0.2 MPa to 0.5 MPa is followed. The pressure is
then maintained at 0.5 MPa until the launch of the automatic test procedure.

III The automatic test procedure is launched. The pressure increases according
to the defined displacement/pressure law. This is the pre-buckling phase.
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5. Validation of the buckling prediction method for thick shells subjected to
external pressure

Figure 5.12: Typical pressure history measured and its four phases (Egg O/003)

IV The automatic test procedure is still running, a drop of pressure is observed.
This is the collapsing phase.

The position of the buckling initiation point is discussed later.
For each specimen, theoretical pressure profiles can be defined using the following

equation in phase III,

P (t) = Pinf
(
1− e−(texp−t0)/tref

)
, (5.8)

where texp is the experimental time and t0 the effective initial time of the pressure
profile identified.

For each specimen, three profiles are defined:

• the average pressure profile corresponding to the best fit of the experimental
pressure history by Equation 5.8,

• the minimum pressure profile defining the lower bound of the experimental
pressure history with Equation 5.8,

• the maximum pressure profile defining the upper bound of the experimental
pressure history with Equation 5.8.

Figure 5.13 depicts the measured pressure history and the three pressure profiles
identified for each specimen.

The identified parameters Pinf , tref and t0 are presented in Table 5.4 for each
specimen and each scenario (min, max and average).

The identified parameters are close to the ones targeted. Moreover the two
loading kinematics are well visible between specimens 2, 3 and 4 and specimens 5
and 6. These sets of parameters are used later for the validation of the buckling
prediction method.
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Figure 5.13: Pressure profiles identified for each specimen

O
/0

0#

Target Min. Mean. Max.
Pinf tref Pinf tref t0 Pinf tref t0 Pinf tref t0
MPa s MPa s s MPa s s MPa s s

2 5 100 4.71 53.4 162.3 4.70 52.4 160.9 4.67 50.7 159.2
3 5 100 5.02 89.7 70.8 5.01 90.4 66.9 4.96 89.5 61.2
4 5 100 4.67 104.4 54.9 4.58 100.6 51.6 4.55 100.4 47.2
5 5 1000 4.35 683.5 179.4 4.47 745.7 134.0 4.40 721.8 104.7
6 5 1000 4.35 691.9 142.4 4.40 722.6 108.7 4.35 707.8 81.1

Table 5.4: Identified pressure profile parameters

5.3.1.2 Uncertainties on the geometry and displacement fields measured

The images were post-processed using Ufreckles (cf. [Réthoré 2018]) to identify
the geometry of the lower skin of the hemi-egg shell and the displacement fields.
Three cameras are used for this purpose. The hemi-egg shell is divided in two
regions. The first one is covered by cameras 0 and 1 the other by cameras 0 and 2.

First the uncertainties on the egg geometry are presented before discussing the
uncertainties on the displacement fields.
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5. Validation of the buckling prediction method for thick shells subjected to
external pressure

Uncertainties on the specimen geometry
As for the plates, the topography of the specimen is obtained by DIC. Usually this

technology allows to define the geometrical imperfection of the specimen. Because of
the high curvature of the specimen, errors due to the DIC process itself and optical
issues are also introduced. Thanks to the chosen manufacturing process followed
and the experience acquired on the plate manufacturing, the shape imperfection are
assumed to be negligible, lower than 0.05 mm. Therefore it is assumed that most of
the errors on the egg topography are probably due to optical issues and to the DIC
process itself.

Figure 5.14: Optimal depth of field areas for the three cameras defined with the
camera lens diaphragm completely open; from left to right, camera 1, camera 0 and
camera 2

The main optical issue is due to the depth of field. Because of the high curva-
ture of the specimen, the depth of field is just slightly greater than the specimen
depth. The best areas for each camera are presented in Figure 5.14. Because of
this phenomenon, errors in the DIC process can be introduced on the border of the
measured area. This is also observable on the topology error maps in Figure 5.15.
They depict the error between the theoretical radius and the measured one, ∆R,
for each node of the DIC meshes. The same convention as defined in Figure 5.1(b)
is used to define the egg radius. One can see, that the error maps are closely linked
to the best depth of field areas presented in Figure 5.14. The errors are especially
magnified on the borders of the ROIs.

Moreover, in some areas of high curvature, the mesh and the speckle pattern are
deformed. This can also impact the quality of the DIC process. This phenomenon
can be observed in Figure 5.16.

Nevertheless, the topological errors can be normalized by the theoretical radius
as in Figure 5.17. The topological errors are then lower than 3% of the radius
measured.

To conclude, even if errors are introduced in the DIC process and the optical
means, the measured geometry well agrees with the theoretical one. Table 5.5 sum-
marizes the statistical parameters of the measurement errors on the topology for
both camera couples. The standard deviation (StD) of the error field is the most
valuable information as it defines the range of the error field. With a standard de-
viation between 0.2% and 0.6% for all specimens, it corresponds to a relative error
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Experimental results vs. FE modelling

(a) (b)

Figure 5.15: (a) Absolute error map on the area analysed with the images of
camera 0 and 1; (b) Absolute error map on the area analysed with the images of
camera 0 and 2 (Egg O/003)

(a) (b)

Figure 5.16: (a) Mesh on the area analysed with the images of camera 0 and 1
(Camera 0); (b) Mesh on the area analysed with the images of camera 0 and 1
(Camera 1) (Egg O/005)

range between +/- 1% and +/-3%. Moreover in the region where the buckling mode
develops (i.e. between x = 100 mm and x = 140 mm), the errors observed are even
lower. The amplitude of error is very good.

One can see that the measurement uncertainties are too big too identify the
nature of any initial imperfection. As the manufacturing mean surface imperfections
are expected to be lower than 0.05 mm.
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5. Validation of the buckling prediction method for thick shells subjected to
external pressure

(a) (b)

Figure 5.17: (a) Relative error map on the area analysed with the images of camera
0 and 1; (b) Relative error map on the area analysed with the images of camera 0
and 2 (Egg O/003)

O
/0

0#

Cameras 0 and 1 Cameras 0 and 2
Mean StD Mean StD Mean StD Mean StD

mm mm % % mm mm % %

2 0.014 0.079 0.06 0.30 -0.016 0.079 -0.05 0.29
3 0.003 0.094 0.01 0.34 -0.008 0.092 -0.02 0.34
4 0.073 0.140 0.27 0.52 -0.079 0.150 -0.29 0.56
5 0.038 0.057 0.14 0.21 -0.045 0.120 -0.17 0.47
6 0.050 0.075 0.19 0.27 -0.055 0.067 -0.20 0.25

Table 5.5: Statistical parameters of the topological error field

Uncertainties on the displacement fields measured

The next step intends to estimate the error introduced by the instrumentation
chain into the displacement field identified by DIC. At the beginning of each ex-
periments (phase I) at least 20 images of the undeformed egg are acquired by each
camera in order to assess the accuracy of the measurement method. In theory, the
displacement field identified should be zero. The accuracy of the method is de-
fined by the amplitude of the displacement noise measured. Figure 5.18 presents for
specimen O/003 the mean value and the standard deviation of the displacement am-
plitude on the first 20 images for each couple of cameras. One can see that the mean
field is centred on zero without any noticeable spatial distribution. The standard
deviation of the error field is also small around 5 µm for this specimen.

The statistical parameters describing the DIC accuracy on the displacement field
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Figure 5.18: Statistical illustration of the DIC accuracy on the displacement mag-
nitude for each couple of cameras (Egg O/003)

are summarized in Table 5.6 for all specimens. As shown in Table 5.6, the error
on the displacement field is reasonable for all specimens. According to the mean
and standard deviation values, the DIC accuracy on the displacement field can be
estimated to +/- 20 µm. This amplitude of error is quite good considering the high
curvature of the specimen.

O
/
00

# Cameras 0 and 1 Cameras 0 and 2
Mean StD Mean StD
µm µm µm µm

2 -5 17 2 12
3 -2 8 1 7
4 3 8 4 13
5 -8 8 3 8
6 -2 10 -1 12

Table 5.6: Statistical parameters of the accuracy of the DIC displacement fields
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5. Validation of the buckling prediction method for thick shells subjected to
external pressure

5.3.2 Experimental results

Five specimens were tested. In this subsection the results of these experiments
and their analysis are presented. Several points need to be assessed in order to
compare the experimental analysis with the numerical ones. First as for the plates,
the measured displacement field can give a lot of information on the buckling ini-
tiation point as well as the buckling mode itself. This subsection will first present
the evolution of the deformation during the buckling tests performed on hemi-egg
shells. Then, interesting features of the experiments will be presented, they intend
to bound the experimental bifurcation point.

For the rest of this analysis, a normalized pressure/time space is used. The
critical values presented are defined as follows.

P ?
c = Pc/Pinf and t?c = (tc − t0)/tref , (5.9)

with Pc the critical pressure, Pinf the saturation pressure of the pressure profile, P ?
c

the normalized critical pressure, tc the critical time, tref the reference time of the
pressure profile, t0 the start time of the experiment and t?c the normalized critical
time.

The pressure histories measured are depicted for all experiments in Figure 5.19.
In the normalized space, a good repeatability is observed especially in the pre-
buckling phase. It shows that we achieved a good repeatability in the manufacturing
process.

Figure 5.19: Normalized pressure histories for all specimens

In Figure 5.20, the evolution of the experimental displacement magnitude is
depicted with respect to the normalized time and pressure. Only the pre-buckling
and buckling phases were considered for DIC analysis. In the post buckling phase
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the deformation is too fast to be well captured. The deformed specimen is rapidly
out of the depth of field of the cameras. One can see that two lobes are growing
continuously during the experiments until buckling.

Figure 5.20: Deformed shape with respect to the normalized time and pressure
(O/003)

For four out of five experiments, one lobe is preferred to the other and an asym-
metrical post-buckling deformed shape is obtained, as in Figure 5.21 for specimens
O/002, O/003, O004 and O/006 . For the other specimen (O/005) a symmetrical
post buckling deformed shape is obtained, as shown in Figure 5.21.

Experimental buckling detection criteria
In Figure 5.20, one can see that the displacement magnitude on the top of the egg

is back to zero or near zero at the maximum pressure. This particular phenomenon
is also described in Figure 5.22(a), where the displacement component Uz at the top
of the egg (cross surrounded) is plotted with respect to the normalized time. For a
particular pressure, a min value is observed for the displacement on the top of the
egg, followed by a rapid increase. This point is marked by a black triangle in Figure
5.22(a). This phenomenon is assumed to be the buckling initiation. Indeed, as shown
in Table 5.3, the first and the second bifurcations almost happen simultaneously,
moreover the second buckling mode presents an elevation of the summit of the egg,
as observed here.
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5. Validation of the buckling prediction method for thick shells subjected to
external pressure

Figure 5.21: Deformed specimens after buckling; from left to right: specimen
O/006, O/005, O/004, O/003 and O/002

In addition the same analysis was performed on a FE simulation of an imperfect
egg shell. As shown in Figure 5.22(b) the predicted bifurcation happens just before
the vertical inversion of the displacement. As for every structure, the amplitude of
the imperfection can affect the order (prediction / displacement inversion). Never-
theless this phenomenon is close to the predicted bifurcation and it is associated to
the initiation of the buckling.

One cannot be certain that this point completely defines the bifurcation initiation
point. Therefore a critical range is defined for each specimen. It is assumed that
this range starts from the buckling initiation point previously defined, and ranges
to the maximum pressure point. The maximum pressure point is associated to the
collapse of the shell structure, it is therefore an upper bound of the bifurcation. This
range is then used to be compared to the numerical critical values predicted.

The buckling initiation point and the maximum pressure point properties are
summarized in Table 5.7. Their corresponding normalized values can be defined
according to the different pressure profile scenario presented in Table 5.4.

Experimental buckling modes

Finally the buckling modes can be extracted at the initiation point and at the
maximum pressure point for each specimen. The same method as in the previous
section is used. A Fast Fourier Transformation is performed on the experimental
displacement field at the section of biggest radius. The harmonics corresponding to
the elastic and plastic trivial displacements are removed from the solution in order
to visualize an approximation of the buckling mode. The normalized buckling modes
are presented in Figure 5.23 at the initiation point and at the maximum pressure
point. They are plotted in a cylindrical reference frame as in Figure 5.1(b). The
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(a)

(b)

Figure 5.22: (a) Uz experimental displacement at the top of egg O/003 with respect
to the normalized time; (b) Uz displacement at the top of egg from FEA with Pinf
= 5 MPa, tref = 100 s and an initial imperfection of 1% of the shell thickness.

FFT analysis was performed on a sub-domain of the total egg, corresponding to the
DIC ROI (Region of Interest). Therefore, only a reduced part of the buckling mode
is visible, mostly contained between 60◦ and 120◦.
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5. Validation of the buckling prediction method for thick shells subjected to
external pressure

O
/0

0#

Buckling init. Max. pressure
Testing temp.

Pc tc − tmean0 Pmax tmax − tmean0

MPa s MPa s ◦C

2 3.85 90.2 4.17 112.0 27
3 3.90 135.1 4.14 155.8 28
4 3.72 169.4 3.96 206.9 26
5 3.52 1146 3.65 1454 24
6 3.52 1142 3.71 1348 23

Table 5.7: Properties of the buckling initiation point and the maximum pressure
point

Figure 5.23: Normalized buckling modes on the section of biggest radius for all
specimens at the buckling initiation point and at the maximum pressure point

For most of the specimens, the buckling mode is asymmetrical at the maximum
pressure point, except for specimen O/005 as already identified earlier. At the buck-
ling initiation point, one can observe quasi-symmetrical buckling modes for speci-
mens O/003 and O/005 and asymmetrical ones for specimens O/002, O/004 and
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Experimental results vs. FE modelling

O/006. Symmetrical modes have a wave length around 73◦ while the asymmetrical
ones have a wave length around 71 ◦, as shown in Figure 5.23 (right).

The mix of quasi symmetrical (i.e. O/003 and O/005) and asymmetrical buckling
modes at the buckling initiation point shows the proximity of the first two buckling
modes. Moreover, as discussed in [Gerard and Gilbert 1958], for specimen O/005
the shell seems to hesitate on which mode to buckle. The pressure is constant before
the collapse of the shell (cf. 5.13). This special case is discussed in the next section.

5.3.3 FEA of the buckling experiments: Discussion on the
material constitutive law and test imperfections

The last step of the analysis of the experiments consists in running FEA of the
experiments. The FE modelling of the experiments has several objectives.

First, the FEA is used to define the yield stress decrease (∆R0). The FEA is
also used to assess the validity of the material constitutive model with respect to
this type of loading.

Finally the FEA is used to assess the potential loading imperfections and their
effects on the buckling behaviour. This is done by comparing several models with
the experiments.

In all cases SHB8PS element are used to model the egg shells with an updated
Lagrangian scheme. Cast3M is used as the FE solver. The reference constitutive
law (cf. Chapter 3) is also used here with a possible decrease on the yield stress R0.

5.3.3.1 Identification of the yield stress decrease ∆R0

As mentioned many times in this work, the mechanical properties of the material
depend on the cooling rate during the solidification of the alloy.

As already introduced in Chapter 3, the yield stress decrease was identified
for each specimen using a light FEMU approach. The FE model used for this
identification process was detailed in Section 2.5 of Chapter 2. This approach is
detailed in Appendix G. The identified yield stress decreases are given for each
specimen in Table 5.8.

The identified yield stress decreases are comparable to the ones already identified
in this work (cf. Table 3.6). These data are used in the next sections in order to
compare the experiments with the buckling predictions.

5.3.3.2 Correlation of the FEA with the experiments

Following the identification of the yield stress decrease, the FEA of each ex-
periment is performed. As an example, Figure 5.24 presents the evolution of the
relative and absolute errors between the experimental and the FE displacement field
for specimen O/003 and for a selection of time steps.
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5. Validation of the buckling prediction method for thick shells subjected to
external pressure

O
/0

0# ∆R0 R0

MPa MPa

2 -5.3 10.1
3 -4.5 10.7
4 -6.1 9.4
5 -4.6 10.9
6 -5.2 10.3

Table 5.8: Yield stress decrease identified in the pre-buckling phase

As shown in Figure 5.24 the absolute error is around 0.02 mm in average and
the relative one is lower than 10% on the entire lower skin of the egg portion. As a
reminder, the DIC precision is also around 0.02mm. The observed errors are within
the DIC process precision tolerance. Moreover, the location of the main error spot
is close to the edge of a buckling lobe. In this region the displacement gradient is
high, a small error in the location of this edge can increase locally the error.

For all specimens a chronograph presenting the evolution of the error between
experimental and numerical out of plane displacements at the section of biggest
radius is plotted with respect to time in Figure 5.25. The error is stable until the
buckling of the FE model. The FE displacement field diverge from the experimental
one. The bifurcation of the FE model seems to happen earlier than the one observed
during the experiments.

Even if the numerical buckling seems to happen earlier, it shows that the FE
model and the constitutive law correctly model the structural behaviour of the egg
portion with the boundary conditions defined in Section 2.5 of Chapter 2. These
boundary conditions can impact the buckling behaviour of the egg shell. This point
is discussed in the next paragraph.

A good correlation between experiments and simulations is observed, it improves
the confidence in the identified constitutive law and the yield stress decrease.

5.3.3.3 Analysis of the imperfections from the boundary conditions

Up to here, all FE simulations of the experiments were performed on the mesh
defined from the DIC ROI, this model is called Model 1. It was described in Section
2.5 of Chapter 2.

Here, a simulation of each experiment on the equivalent perfect structure is
performed. The equivalent perfect structure is defined as the hemi-egg shell perfectly
clamped. The simulations on the equivalent perfect structure are run with the same
material parameters as for Model 1. The experimental pressure history is also
applied to the perfect hemi-egg shell. This model is called Model 2.

In addition the effect of boundary condition imperfections on the buckling of

170

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI005/these.pdf 
© [N. Jacquet], [2021], INSA Lyon, tous droits réservés



Experimental results vs. FE modelling

Figure 5.24: Absolute and relative errors between numerical and experimental
displacements after the identification of ∆R0 (O/003).

the hemi-egg is studied through another model called Model 3. In this model the
boundary conditions are softened compared to the ones of Model 2. The details of
Model 3 are discussed in a further paragraph.

All models are described in Table 5.9.

Observation of the boundary condition imperfections

Because of the good correlation previously observed between the FEA on
Model 1 and the experiments, any difference between the results of Model 1 and
Model 2 would show the effects of boundary condition imperfections.
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external pressure

Figure 5.25: Chronograph of the error on the out of plane displacement between
experiments and simulations at the section of biggest radius for all specimens

Models Model 1 Model 2 Model 3

Mesh

DIC ROI (in blue) Hemi-egg Hemi-egg
FE elements SHB8PS

B.C.
DIC disp.

Perfectly clamped
Softened

(cf. Section 2.5) (cf. Figure 5.28)
Load Mean experimental pressure

Material
Mean reference law and yield stress decrease

(cf. Tables 3.5 and 5.8)

Table 5.9: Summary of FEA models

To illustrate this point, the evolution of the out of plane displacement of a point
on the top of the egg is plotted with respect to time for both models (i.e. Model 1
and Model 2) in Figure 5.26(a).

As shown in Figure 5.26(a), the displacements extracted from the results of
Model 1 and Model 2 diverge from the beginning of the experiment. This diver-
gence is due to the bending of the specimen holder as well as the specimen flange.
The bending is due to the applied pressure. Indeed, in Model 2 the hemi-egg is
perfectly clamped, the point on the top of the egg only experiences the displacement
due to the deflection of the egg. In Figure 5.26(b) the vertical displacement (i.e.
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(a) (b)

Figure 5.26: (a) Effect of the loading imperfection on the radial deflection ur of a
point (P) on the top on the egg (O/003), green Model 1, blue Model 2; (b) Effect
of the loading imperfection on the vertical deflection Uz of an axial section of the
lower skin (red line) of egg O/003), green Model 1, blue Model 2

Uz) of the axial section of the lower skin (red line in Figure 5.26(b)) is depicted for
Model 1 and Model 2 at t = 200 s. The displacement fields have different shapes.
On Model 2, the deflection in the center due to the pressure is well visible. On
Model 1, the same deflection is embedded in the bending displacement field of the
specimen holder. Therefore the deformation is less localized in the center of the egg.

The bending moment applied to the egg during the experiment affects the axial
(σz) and the circumferential (σφ) stress amplitudes as shown in Figure 5.27 for a
point on the top of the egg.

Figure 5.27: Effect of the loading imperfection on the stress state for a point (P)
at the top of the egg (O/003), σz the axial stress and σφ the circumferential stress

The axial stress is more affected than the circumferential one as seen in Figure
5.27. As the egg buckles on a circumferential mode, this axial bending of the egg
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should not affect the buckling behaviour of the shell. The effects of such loading
imperfections are discussed in the next paragraph.

Effect of boundary condition imperfections on buckling
In this paragraph we intend to evaluate the effect of the boundary imperfections

on the buckling behaviour of the hemi-egg shell.
In the previous paragraph a first source of imperfection was identified, i.e. the

bending of the specimen holder on the egg flange. It is also very likely that the joint
between the egg flange and the hemi-egg shell is not perfectly rigid.

In order to study the effect of both sources of imperfections two additional models
included in Model 3 were defined. They are named Model 3’ and Model 3”, and
are defined as follows:

• Model 3’: A displacement field is applied to the edge of hemi-egg shell.
This field is derived from the elastic bending of a clamped circular plate:
w = A (r2 −R2)

2
/R4, where R is the plate radius, r is the radial coordinate

of the current point and A is the maximum deflection at the center of the plate.
In addition A is a proportional function of the applied pressure. A = Ap × P .
As the FE elements are volume shell elements (SHB8PS), the rotations are
also constrained.

• Model 3”: The edge of the external skin of the hemi-egg shell is perfectly
clamped (Ux = Uy = Uz = 0). Vertical elastic springs are used on the edge of
the inner skin in order to model a rotational elastic stiffness. This allows to
model a flexible joint between the hemi-egg shell and its flange.

Figure 5.28 presents both sets of boundary conditions.
The critical time ratios were predicted for both perturbed boundary conditions

as well as for the perfect ones. The predicted critical time ratios are summarized in
Figure 5.29. Blue bars are associated to Model 2, the red ones to Model 3’ and
the yellow ones to Model 3”. The buckling modes are not affected by perturbed
boundary conditions.

As we can notice the predicted critical time ratios evaluated with Model 3’
(red bars) are generally slightly higher than the ones predicted with Model 2 (blue
bars). Moreover the critical time ratios evaluated with Model 3” (yellow bars) are
generally lower than the ones predicted with Model 2. The hemi-egg shell seems
more sensitive to a small flexibility at the flange/egg joint than to the bending of
the specimen holder.

In Model 3” the flange/egg joint flexibility was magnified. A ∆U flex
z at buckling

of 0.18 mm was numerically observed between the lower and upper skin edges, as
shown in Figure 5.30. This would correspond to a very flexible material. In reality
the joint is stiffer.

It seems that the bending introduced in Model 3’ stiffens the structure and
therefore delays the bifurcation. This is probably due to the compressive axial
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(a) (b)

Figure 5.28: (a) Boundary conditions on Model 3’; (b) Boundary conditions on
Model 3”.

Figure 5.29: Effect of the imperfections on the boundary conditions on the pre-
dicted critical time ratio for all specimens; for Model 3’ Ap = 0.275 mm.MPa−1;
for Model 3” K = 2000 N.mm−1

stress introduced by the bending load. On the other hand, the flexibility introduced
in Model 3” reduces the critical time ratio as its boundary conditions are more
flexible.

In Figure 5.29 all critical time ratio are very close. Therefore the predictions
from Model 2 are kept as reference predictions.
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Figure 5.30: Displacement of the edge of the lower skin of Model 3” due to the
introduced flexibility

5.4 Validation of the buckling prediction method

In the previous sections the numerical and experimental sets of data to be com-
pared have been generated. In this section the comparison of both sets of results is
performed and discussed in order to validate the bifurcation prediction method.

5.4.1 Comparison of the experimental data with the numer-
ical predictions

In the previous section, the yield stress decrease was defined for each specimen.
Moreover different pressure profiles were defined for each experiment according to the
uncertainty on the pressure measures. Finally, the boundary condition imperfections
were neglected. In this section the numerical predictions of the buckling of each
specimen are computed according to the yield stress decrease identified, the different
pressure profiles defined and the perfect boundary conditions. The calibrated corner
theory is used to predict the buckling of the perfect hemi-egg shell (i.e. Model 2
previously defined).

Comparison of the critical values
In Figure 5.31, the predictions are compared to the experimental critical values

defined with respect to both criteria, the buckling initiation point (in blue) and
the maximum pressure point (in red). Therefore the blue points correspond to the
critical values predicted with respect to the experimental critical values defined on
the buckling initiation point. The red points correspond the predicted critical values
with respect to the experimental critical values defined on the maximum pressure
point. Each symbol is associated to a specimen.
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Validation of the buckling prediction method

Each set includes all experiments and the different pressure profile scenario
(mean, min and max, cf. Table 5.4. Ideally, at least one set of crosses should
be superimposed with the black curve (defining the ideal prediction).

(a) (b)

Figure 5.31: (a) Comparison of the experimental normalized critical times with
the predicted ones; (b) Comparison of the experimental normalized critical pres-
sures with the predicted ones; both experimental detection methods are evaluated
(buckling initiation points in blue and maximum pressure point in red).

As shown in Figure 5.31 both sets of coloured symbols are close to the black
curve. This observation is true for the critical pressure (Figure 5.31(b)) as well as
for the critical time (Figure 5.31(a)). Each set of coloured symbols is positioned
on one side of the black curve. It shows that the prediction method predicts a
first bifurcation just after the assumed buckling initiation point, and just before the
maximum pressure point. It is likely that the buckling initiates in this range for all
experiments, but we cannot be sure where within this range.

Comparison of the buckling modes
In order to completely validate the prediction method, the buckling modes ex-

tracted from the experiments need to be compared to the predicted ones. As dis-
cussed in Appendix G, the buckling mode is not affected by neither the saturation
pressure Pinf nor by the reference time tref . An extraction of the first predicted
buckling mode on the section of biggest radius is presented in Figure 5.32.

In Figure 5.32, we can visualize the wave length of the buckling mode as well
as its asymmetric shape. The wave length is equal to 87◦ as shown in Figure 5.32.
This value is close to the one found experimentally for specimens O/002, O/003,
O/004 and O/006 at the maximum pressure time (cf. Figure 5.23).

The 15◦ difference can be explained by the FFT process applied to the egg
portion. As the FFT was performed on a 120◦ angular sector, some wave lengths
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Figure 5.32: Shape of the normalized first buckling mode predicted. Shape ex-
tracted on the lower skin and on the section of biggest radius

can be missing in the FFT analysis. Moreover, it was assumed that the harmonics
corresponding to the trivial elasto-plastic deformation did not contribute to the
buckling mode. This is globally true, but a small amount of these harmonics can
probably contribute to the buckling mode. Therefore it would not be relevant to
compare more accurately the predicted mode with the experimental ones, as this
last ones are only an approximation of the real buckling modes. Nevertheless, more
than the wave length value, the global shape and the asymmetrical character of the
experimental buckling modes (cf. Figure 5.23) are very similar to the one found
with the prediction method.

The case study of specimen O/005 is interesting since the experimental buckling
mode is symmetric. It corresponds to the second buckling mode (as shown in Table
2.5). The wave length of the second mode is equal to the wave length of the first one,
only the phase is different. The experimental buckling mode for specimen O/005 and
the second predicted buckling mode share similar wave lengths and the symmetrical
property.

All other specimens buckle on an asymmetrical mode. As the first two modes
almost coincide for this structure (cf. Table 5.3), in some specific cases the second
mode can appear. The asymmetrical mode is often preferred, as an asymmetri-
cal source of imperfection always exists. The O/005 specimen allows to observe
this phenomenon and also to confirm that the two first modes coexist at buckling
initiation.

All the buckling characteristics (critical values and buckling modes) identified
from the experiments agree well with the numerical predictions.

5.4.2 Discussion on the relevance of the corner theory

As seen in the first section of this chapter, the buckling prediction method is
based on the corner theory of Christoffersen and Hutchinson. Two parameters θc
and θ0 define the corned yield surface and the transfer function from the deformation
theory to the elastic unloading.

Here the effect of these two parameters on the critical values is discussed as well
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Validation of the buckling prediction method

as the relevance of using such approach. Using a set of reduction factor, defined
numerically, the experimental results are projected on an axis parallel to the tref
axis in the space defined by (Pinf , tref , ∆R0). This axis is defined by Pinf = 4.5 MPa
and ∆R0 = -5 MPa. These parameters were selected according to the experimental
pressure profiles and the identified yield stress decreases. The reduction factors are
defined for each critical value (Pc, tc) as follows:

rPc = P num
c (Pinf , tref ,∆R0)/P num

c (4.5, tref ,−5),

rtc = tnumc (Pinf , tref ,∆R0)/tnumc (4.5, tref ,−5).
(5.10)

The projected experimental critical values P ′ expc and t′ expc are defined as follows:

P ′ expc = P exp
c /rPc ,

t′ expc = texpc /rtc .
(5.11)

The experimental critical values corresponding to the buckling initiation point
and the maximum pressure point are projected using this last set of equations. They
are plotted with respect to tref in Figure 5.33. The critical values corresponding to
the buckling initiation point criterion are depicted by blue box plots while the red
box plots correspond to the maximum pressure point criterion. Each experiment
has two box plots, a red one and a blue one. The box plots include the experimental
sources of discrepancy, as the different pressure profile scenario (cf. Table 5.4) and
the yield stress decrease discrepancy (cf. Table G.1 in Appendix F).

In addition, the prediction curves corresponding to the corner theory with θc =
105, 112.5 and 120◦, and θ0 = 0.45(θc − pi/2) with Pinf = 4.5 MPa and ∆R0 = -5
MPa are also plotted in Figure 5.33. The three curves, green, black and magenta
correspond respectively to θc = 105, 112.5 and 115◦. These values of θc are within
the parameters tolerance region defined in Figure 5.10, with θc = 112.5◦ the optimal
and reference value. First, the three curves are almost identical and difficult to
distinguish. Moreover both set of box plots still envelop the prediction curves. It
means that in the tolerance area defined, the value of θc does not affect significantly
the predictions.

In order to evaluate the effect of θ0, the same method was used, with θc = 112.5◦

and θ0 = 0.45(θc − pi/2) as reference and θc = 117.5◦ and 125◦ and respectively
θ0 = 0.25(θc − pi/2) and 0 as second and third point. This new set of data is also
in the tolerance area of parameters defined in Figure 5.10. The third value of θ0

was chosen in order to observe the effect of a fully non-linear tangential moduli
and therefore a tangential bifurcation. The predictions using these three couples of
parameters and Pinf = 4.5 MPa and ∆R0 = -5 MPa are plotted in Figure 5.34 with
the projected experimental critical values. Same conclusions as for θc can be made.
The effect of θ0 on the prediction is also negligible here as long as the corner theory
parameters stay in the tolerance area defined.
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5. Validation of the buckling prediction method for thick shells subjected to
external pressure

(a) (b)

Figure 5.33: (a) Comparison of the projected experimental critical time ratio with
the numerical predictions for three values of θc; (b) Comparison of the projected
experimental critical pressures with the numerical predictions for three values of θc.

When θ0 is 0, the prediction increases as the tangential moduli is stiffer due to
the non-linearity. The predictions obtained with θ0 = 0 (magenta curve) are closer
to the maximum pressure point critical values. Nevertheless this set of predictions
is still within the buckling range defined experimentally. The particular value of θ0

is very specific of the corner theory. In this manner, the predictions are necessarily
different to the predictions obtained with Hencky ’s deformation theory or the Mises
flow theory. This particular point allows to validate the relevance of using the corner
theory for structures subjected to non-proportional loadings.

For any parameters within the tolerance area defined in Section 5.1, the buckling
predictions given with the corner theory agree well with the experimental critical
values.

Finally the predictions using the corner theory with θc = 112.5◦ and θ0 =
0.45(θc−pi/2) are compared to the predictions obtained with the Mises flow theory
and Hencky ’s deformation theory in Figure 5.35. The three curves, green, black and
magenta correspond respectively to the predictions using the Mises flow theory, the
corner theory and Hencky ’s deformation theory.

The different predictions are also compared to the experimental critical values
with the same conventions as in Figure 5.33. One can see that the Mises flow
theory overestimates the critical values. The predicted values are even higher than
the critical values associated to the maximum pressure point criterion. Concerning
the deformation theory, as the average value of θ is reasonable, the corner theory is
very close to the deformation theory. Nevertheless some differences can be observed
when tref is low and especially when tref is high, as shown in Figure 5.35.
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(a) (b)

Figure 5.34: (a) Comparison of the projected experimental critical time ratio with
the numerical predictions for three values of θ0; (b) Comparison of the projected
experimental critical pressures with the numerical predictions for three values of θ0.

(a) (b)

Figure 5.35: (a) Comparison of the three prediction methods with the projected
experimental critical time ratio; (b) Comparison of the three prediction methods
with the projected experimental critical pressures.

The corner theory well predicts the buckling of moderately thick hemi-egg shells
subjected to external pressure. It shows better agreement with the experiments than
the Mises flow theory especially. In addition, it allows to consider within the same
model, the buckling paradox extensively discussed in the literature for elasto-plastic

181

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI005/these.pdf 
© [N. Jacquet], [2021], INSA Lyon, tous droits réservés



5. Validation of the buckling prediction method for thick shells subjected to
external pressure

materials, and non-proportional loadings.

It is also possible to see that the predictions from the corner theory are very close
to the ones from the deformation theory. Budiansky demonstrated in [Budiansky
1958] that the predictions from the slip theory for quasi-proportional loadings were
similar to the ones from the deformation theory. Therefore, the deformation theory
can be used to predict the buckling of shells subjected to quasi-proportional loadings,
such as the hemi-egg shells tested in this work. This work allows to extend the result
from [Budiansky 1958] for elasto-plastic materials to elasto-visco-plastic ones.

5.5 Conclusion

Following the proposed identification of the corner theory parameters, θc and θ0,
and a parametric analysis on the buckling of the hemi-egg shell, the experimental
results of the buckling of hemi egg shells were presented.

A good estimation of the buckling behaviour of the hemi-egg shell was given
with the buckling prediction method. The predicted critical values are within the
experimental buckling range defined. The predicted buckling modes present similar
shapes with the observed ones.

We also successfully observed a symmetrical buckling mode with specimen
O/005. It experimentally demonstrated the mode proximity identified numerically.

The experiments were performed for different pressure rates. The predictions
show good agreement with experiments for all pressure rates experimented. It vali-
dates the relevancy of Bodner ’s hypothesis for this shell geometry and this loading
case.

The coupling of the corner theory with Bodner ’s hypothesis predicts well the
buckling of hemi-egg shells subjected to external pressure.

Predictions with other corner theory parameters were also compared to experi-
mental data. Within the tolerance area defined, the corner theory parameters have
a limited impact on the buckling predictions. The correlation with the experiment
is still good.

The corner theory parameters have to be considered as material parameters,
as they define the shape of the corner on the yield surface, the loading/unloading
criterion and the tangential constitutive law. Their identification and the definition
of the tolerance region allow to set a frame around the usage of the corner theory.
Ideally these parameters would need to be identified on specific tests with non-
proportional loadings.

Finally, the corner theory was compared to the classic Mises flow theory and
Hencky ’s deformation theory. As expected the Mises flow theory overestimates the
critical values. Hencky ’s deformation theory gives critical values close to the ones
predicted with the corner theory for perfect structures. This can be explained by
the limited non-proportionality of the loading observed on the hemi-egg shell.

The extension of the deformation theory to quasi-proportional loadings (cf. [Bu-
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Conclusion

diansky 1958]) for elasto-plastic materials was also observed for elasto-visco-plastic
materials. It means that the deformation theory can be used efficiently to predict the
buckling of thick elasto-visco-plastic shells subjected to quasi-proportional loadings.
In the case of a very non-proportional loading, the corner theory of Christoffersen
coupled with Bodner ’s hypothesis can be used.

The chapter demonstrates the efficiency of the corner theory and the deformation
theory coupled with Bodner ’s hypothesis to predict the buckling of moderately thick
shells. The corner theory requires the identification of θc and θ0. The buckling
prediction method was also validated experimentally. The results presented here
could be easily extended to thick and very thick shells, as long as they experience
buckling. This method allows us to give a good estimate of the buckling load and
bucking modes for thick elasto-visco-plastic shells subjected to quasi-proportional
and non-proportional loadings.
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5. Validation of the buckling prediction method for thick shells subjected to
external pressure
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Conclusions and perspectives

Conclusions

In this work the numerical and experimental aspects of the buckling behaviour
of elasto-visco-plastic thick shells were studied. A first part was dedicated to the
development of a numerical method predicting the buckling of thick elasto-visco-
plastic shells. The other was oriented on the experimental validation of the developed
buckling prediction method.

The numerical method was built on two main concepts. The first one allows to
have an estimation of the bifurcation point for elasto-visco-plastic materials. This
estimation was first introduced by Bodner, Naveh, and Merzer for thin shells. To
define this estimation, it is assumed that the strain rate is constant at buckling for
elasto-visco-plastic materials. The second one is based on the corner theory. Fol-
lowing several discussions in the literature on the buckling paradox, Christoffersen
and Hutchinson proposed an incremental approach to rationalize the buckling para-
dox to structure subjected to non-proportional loadings. This approach was pre-
sented in Chapter 1 and extended to elasto-visco-plastic materials in Chapter 2.
Both elements were assembled into a single method to predict the buckling of thick
elasto-visco-plastic shells subjected to non-proportional loadings.

In order to validate this buckling prediction method, an experimental strategy
was developed. It includes a fine characterisation of the material behaviour and
the development of two different types of buckling experiment. These two different
types of experiment also had different objectives.

A first set of buckling experiments was focused on the buckling behaviour of
thick elasto-visco-plastic plates subjected to in-plane compressive load. This partic-
ular case presented an interesting buckling behaviour. First it follows the buckling
paradox. Then its shape is so simple that many post-processing of the displacement
fields can be performed in order to characterise the buckling initiation. This par-
ticular point allowed us to investigate the limitations of Bodner ’s hypothesis. The
methods developed showed good correlation with the experiments. Nevertheless,
we found that it should be limited to small strain rates, lower than 0.01 s−1. This
first observation is important, as for higher strain rates more sophisticated methods
should be used to predict the buckling of elasto-visco-plastic structures. A possi-
ble candidate could be the method developed in [Triantafyllidis, Massin, and Leroy
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Conclusions and perspectives

1997].

The second set of buckling experiments investigated the buckling behaviour of
thick elasto-visco-plastic hemi-egg shells subjected to external pressure. Because of
the loading and the boundary conditions, this type of structure experiences non-
proportional loadings as the sodium manifold. These experiments allow us to eval-
uate the accuracy of the corner theory to predict the buckling of thick structures
subjected to non-proportional loadings. A good agreement of the predictions with
the experiments was also observed. This set of experiments also shows that the
deformation theory can be used to predict the buckling of thick elasto-visco-plastic
shells subjected to quasi-proportional loadings. While the deformation theory allows
to safely size to buckling a thick shell subjected to a quasi-proportional loading, the
corner theory allows a better prediction thanks to its two additional parameters θc
and θ0. Nevertheless, these two parameters needs to be identified carefully in order
to be considered as material parameters and to not be structure dependent.

For all types of experiment, DIC methods to measure the displacement fields
on the surface of the different specimens was extensively used. This particular tool
allows us to identify the buckling modes for the different experiments. For both
types of experiment, mode proximity and simultaneous bifurcations or successive
bifurcations were observed. These experimental observations were also observed
with the prediction methods. This specific point is a valuable experimental result,
as it improves the confidence in the prediction of the bifurcations and the buckling
modes. The mode proximity could not have been observed without the use of DIC
methods. Coupled to the DIC methods, the implementation of the SHB8PS in
Cast3M allows to improve the link between the experiments and the FE models.

The present work presented a unified method to predict the buckling of thick
elasto-visco-plastic shells subjected to quasi-proportional and non-proportional load-
ing. The method was validated against experiments on several shell structures sub-
jected to different types of loading. The method developed here can be used on
other structures with a rate-dependency. Nevertheless, the method requires a fine
characterisation of the mechanical behaviour of the material as well as the corner
theory yield surface. Moreover the present method is limited to small strain rates,
lower than 0.01 s−1.

The method presented and validated in this document gives good results within
the limitations defined previously. As it uses existing bricks of any FE software, the
prediction method could be implemented to any FE software. At the moment, it is
implemented in Cast3M through a new procedure and for any elasto-visco-plastic
user materials.
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Perspectives

Industrial perspectives

The prediction method derived in this work could be easily used for the sizing
of thick industrial components presenting an elasto-visco-plastic behaviour, such as
the sodium manifold or pipes subjected to complex loading.

Moreover the 316L(N) stainless steel alloy is often modelled by a Chaboche
constitutive model, as used in this work. This would facilitate the application of
the present method to the sizing of the sodium manifold. As shown in this work
a statistical description of the material behaviour should be used in order to safely
size the component.

Other variables would also need to be considered, as the thermal gradient, the
manufacturing tolerance, the different load cases, the loading history, and so on. As
discussed in the last chapter, the boundary conditions and more importantly the
perfectness of the boundary conditions can affect the buckling behaviour. The joint
between the sodium manifold and the heat exchanger module would need to be well
characterized and modelled. One solution to solve this issue could be the modelling
of the boundary condition with a super-element. This last one would model the
stiffness of the joint. Its contribution to the global stiffness matrix would need to
be considered as well.

Finally structural experiments would still be necessary to validate the sizing of
such components, as the buckling is a complex problem and no model can include
all physical phenomena.

Scientific perspective

In this work the prediction method was compared to two different experiments
and one material. In order to increase the confidence in the actual method, addi-
tional experiments could be performed on more academic structures, such as plates
or pipes. Different loadings and boundary conditions could be experimented. More-
over a more non-proportional load case would need to be performed. This could be
investigated through the combination of different simple load cases, as the combined
torsion and external pressure on a pipe or the torsion and compression of a pipe.

Moreover the model material used in this work presented some manufacturing
issues, as the cooling rate dependency. Similar experiments, as presented in this
work, could be performed with a more compliant material.

In this work the buckling experiments were performed in the elasto-visco-plastic
regime. In order to complete the experimental data base, buckling experiments in the
creep regime would be valuable. The experiments presented by Gerard and Gilbert
in [Gerard and Gilbert 1958] could be compared to the predictions of the present
methods. Nevertheless only proportional loadings were tested in [Gerard and Gilbert
1958]. Creep buckling experiments on the hemi-egg shell geometry presented would
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be more valuable. Moreover in the creep regime the egg-shell showed interesting
numerical results, as shown in 2.9. This point would need more attention.

As already discussed in this document, a more rigorous method could be applied
to predict the buckling of thick elasto-visco-plastic shells. This method would be
based on the sufficient condition defined by Triantafyllidis, Massin, and Leroy in
[Triantafyllidis, Massin, and Leroy 1997]. It could be coupled to a complex yield
surface including corners. This method could cover more load cases, especially with
high strain rates. It would also give a rigorous prediction of the buckling. In order
to use this type of approach the fine definition of the complex yield surface would be
required. This could be done with the adequate experiments and instrumentation.
The definition of such yield stress is a complex task indeed. Moreover the imple-
mentation of the sufficient condition defined by Triantafyllidis, Massin, and Leroy
into a FE software would not be straightforward. This method would be interest-
ing to study as it removes the main hypothesis of this work, Bodner ’s hypothesis.
Experiments at high strain rate would also be required in order to validate this
method.
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Appendix A

Mathematical notations and
algebraic operators

We describe in this appendix the main notations used in the
manuscript as well as the algebraic operators.

Contents
A.1 General notations and operators . . . . . . . . . . . . . . . . 190
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A. Mathematical notations and algebraic operators

A.1 General notations and operators

The following conventions are generally respected for notations and algebraic
operators:

• The scalar values are written with normal typology or in capital letters. (a, b,
A, B,).

• Vectors are written in bold for normal typology and capital letters. (a, b, A,
B).

• Matrices are written in bold and capital letters. (A, B).

• Second order tensors for mechanical purposes are written in bold Greek sym-
bols. (σ, ε).

• Fourth order tensors for mechanical purposes are written in bold capital or
calligraphic letters. (C, L).

• Matrix product between two second order tensors is denoted without any op-
erator: A = BC.

• Tensorial product is classically denoted: ·.

• Scalar product is classically denoted with a point: ., it is also denominated
dot product.

• Cross product is classically denoted: ×.

Global symbol General description Example Description

a Scalar p equivalent plastic strain

A Scalar F Load

a Vector u displacement vector

A Vector U nodal displacement vector

A Matrix Kt tangential stiffness matrix

A Second order tensor σ Cauchy stress tensor

A Forth order tensor Ct Moduli of the tangential constitutive law

Table A.1: Main used notations.
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Appendix B

Analysis of the water quenched
casting process

This appendix presents the analysis carried out in order to define
the parameters of the water quench process.
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B. Analysis of the water quenched casting process

The key element of the casting process is the water quench as it defines the
cooling rate experienced by the alloy. The water quench cooling allows to to obtain
a high cooling rate. The value of the cooling rate is completely defined by the mould
design, the water temperature and the volume of water used.

The water quench process is finally defined by 5 parameters:

• The thermal conductivity of the mould material;

• The thickness of the mould;

• The effective thickness of the ingot;

• The water temperature;

• The volume of water.

It is very difficult to measure precisely the cooling rate, therefore the optimal
cooling rate was defined through numerical simulations and material observations.
Most of the material observations are visual. They are completed with the mechan-
ical properties obtained through tests.

Numerically, the cooling rate is easy to obtain. This cooling rate is evaluated
at 220◦C, defining the cooling rate at solidification. The density of porosity can be
linked to the cooling rate gradient within the thickness.

A parametric study was performed with Cast3M to study the effect of the water
temperature, the mould material and the mould thickness. Semi-infinite plates
model the mould and the ingots, as depicted in Figure B.1(a) .

The water is considered as a perfect heat source. The thermal fluxes between the
water and the mould, and the liquid alloy and the mould are modelled by convective
flux. The exchange coefficient between water and the mould is plotted with respect
of the hot surface temperature and the water temperature in Figure B.1(b), the
law is extracted from [“Simulation of Heat Treatment Distortion”]. The exchange
coefficient between the liquid alloy and the mould is set to 10 mW.mm−2.K−1 (cf.
[Bricard and Gobin 2001]). Table B.2 summarises the numerical conditions tested.
The ingot thickness is fixed to 13 mm. The thermal conduction coefficient used are
summarized in Table B.1

Material Thermal conductivity Units

Steel 40 W.m−1.s−1

Aluminium 150 W.m−1.s−1

SAC 305 60 W.m−1.s−1

Table B.1: Thermal conductivities of the mould materials and the SAC 305

The results of this parametric study are presented in Figure B.2. As expected
the thinner the mould is the higher the cooling rate is. Moreover an aluminium
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(a) (b)

Figure B.1: (a) Semi-infinite plate modelling to simulate quenching; (b) Heat
transfer coefficient law between water and mould with respect of the mould temper-
ature and the water temperature

mould offers better cooling rates than a steel one. With a thin aluminium mould
the cooling rate gradient within the alloy thickness is higher than the one with a
thick mould or a steel mould. In addition a higher quench temperature allows to
decrease the cooling rate gradient. Experimentally we observed large porosity with
a 5 mm thick aluminium mould quenched at 20◦C, when none were observed for a
5 mm thick steel mould quenched at 20◦C.

Combining experimental observations with numerical analysis it seems reason-
able to choose cooling rate below 20◦C.s−1 to guaranty acceptable micro-structure
and material properties. In addition the mould thickness is set to 5 mm because
of machining constraints and to minimize the weight of the different moulds. Two
ideal quench conditions can be defined with respect to the mould material, they are
summarized in Table B.3.

These ideal quench conditions could not be reach for the aluminium mould be-
cause of heating issues. The quench temperature was reduced to 40◦C.
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B. Analysis of the water quenched casting process

Mould Mould Quench Mould Mould Quench
material thickness temperature material thickness temperature

n/a [mm] [◦C] n/a [mm] [◦C]

Steel 5 20 Aluminium 5 20
Steel 6 20 Aluminium 6 20
Steel 7 20 Aluminium 7 20
Steel 8 20 Aluminium 8 20
Steel 9 20 Aluminium 9 20
Steel 10 20 Aluminium 10 20
Steel 5 30 Aluminium 5 30
Steel 5 40 Aluminium 5 40
Steel 5 50 Aluminium 5 50
Steel 5 60 Aluminium 5 60
Steel 5 70 Aluminium 5 70
Steel 5 80 Aluminium 5 80

Table B.2: Mould parameter and quench temperature tested for the parametric
study

Mould material Mould thickness Target quench temperature
n/a [mm] [◦C]

Steel 5 20
Aluminium 5 60

Table B.3: Quench temperatures and mould design parameters selected
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Figure B.2: Results of the quench parametric study; top graphs correspond to
cooling rate at the surface of the ingot (in blue) and in the bulk (in red) with
respect of the mould thickness and water temperature; bottom graphs correspond
to the cooling rate gradient between the surface an the bulk of the ingot. Results
are presented for Aluminium mould (dashed line) and steel mould (plain line)
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B. Analysis of the water quenched casting process
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Appendix C

Thick shell modelling

This appendix introduces the theoretical framework of the shell
theory. The presentation of the formulation of a volume shell

called SHB8PS follows. Finally the developments performed to use
the SHB8PS with elasto-visco-plastic materials are presented.
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C.1.2 Shell theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

C.2 The SHB8PS element . . . . . . . . . . . . . . . . . . . . . . . 204

C.2.1 The SHB8PS elastic formulation . . . . . . . . . . . . . . . . 204

C.2.2 SHB8PS for anisotropic visco-plasticity . . . . . . . . . . . . 210

197

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI005/these.pdf 
© [N. Jacquet], [2021], INSA Lyon, tous droits réservés



C. Thick shell modelling

In this work we are interested in the buckling of a structure defined as shells.
In this section the assumptions and the formulation used to define a shell problem
are presented. The plates and shells theories are presented first. The plate theory
is used to introduce the shell one. The basic formulation of a 3D volume shell
element is presented then. This element called SHB8PS is implemented in many FE
softwares, it is a good candidate to link experiments and FE simulations. Finally
the developments performed in this work in order to use the SHB8PS with elasto-
visco-plastic materials are presented.

C.1 Shell theories

The modelling of a 3D structure as a shell or a plate is often used, as it reduces
the complexity and the time to solve the mechanical problem. In this section the
hypothesis defining the different plate and shell theories as well as their formulations
are presented.

First, it is needed to define the vocabulary used.

Plate: A plate is an element of volume delimited by two parallel planes spaced of
the thickness h. The thickness h is small compared to the other dimensions of the
plate. The 3D volume is reduced to a 2D plane called the mean plane.

Shell: By analogy to the plate, a shell is an element of volume delimited by two
parallel surfaces spaced of the thickness h. The 3D volume is reduced to a 3D surface
called the mean surface.

Thin/thick: The shells and plates can be considered as thin or thick. It is com-
monly assumed that a shell is thin if the thickness is at least 10 times smaller than
the second smallest dimension of the plate or shell. Two examples can illustrate this
definition. For a plate defined by its length a, its width b and its thickness h, the
plate is considered as thin if b/h >> 10, it will be thick if b/h ≤ 10 and moderately
thick if 10 ≤ b/h ≤ 20. Equally for a cylinder defined by its length L, its radius R
and its thickness h, the cylinder is thin if R/h >> 10, it will be thick if R/h ≤ 10
and moderately thick if 10 ≤ R/h ≤ 20.

C.1.1 Thin and thick plate theory

Two main theories were developed to model a mechanical plate problem, the
Kirchhoff-Love one and the Reissner-Midlin theory. The Kirchhoff-Love theory is
limited to thin plates, while the Reissner-Midlin one also considers thick plates and
shells. Only the Reissner-Midlin theory is presented in this work, as the Kirchhoff-
Love theory is a specialisation of the Reissner-Midlin theory.

The Reissner-Midlin theory is based on the following assumptions:
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Shell theories

• any point from the mean plane can only move in the normal direction with
respect to the mean plane,

• the thickness does not vary through the plate,

• the normal stress is negligible,

• a line initially normal to the mean plane stays straight but not necessary
normal to the mean plane.

Moreover at least one of the following statements needs to be verified:

• The plate is assumed as infinitely long,

• the boundary conditions can be reduced in order to obtain bending loadings
only.

Figure C.1: Local coordinate system of a plate [Oñate 2013b]

Based on this set of assumptions, the displacement fields can be defined at a
point defined by its coordinates (x, y, z) as follows:

u(x, y, z) = z φx(x, y),

v(x, y, z) = z φy(x, y),

w(x, y, z) = w(x, y),

(C.1)

with u and v the in-plane displacement fields, w the out of plane displacement field,
and φx and φy the rotations of a normal of the undeformed mean plane around y and
x axis respectively as shown in Figure C.1. The x and y coordinates positioned the
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C. Thick shell modelling

considered point in the mean plane of the plate, while the z coordinate positioned
the considered point normally to the mean plane as shown on Figure C.1.

The displacement vector is defined as follows:

u =

 w
φx
φy

 =

 w
−∂w

∂x
+ θx

−∂w
∂y

+ θy

 , (C.2)

with θx and θy the angle between a normal of the undeformed mean plane and a
normal of the deformed mean plane around y and x respectively, as shown in Figure
C.1. In the Kirchhoff-Love theory θx = θy = 0.

The strain tensor can be defined as follows:

ε =
1

2

(
∇u+∇tu

)
. (C.3)

Therefore one can write:

ε =


εxx
εyy
εxy
εyz
εxz

 =


z 0 0 0 0
0 z 0 0 0
0 0 z 0 0
0 0 0 1 0
0 0 0 0 1

 ·


∂φx
∂x
∂φy
∂y

1
2

(
∂φx
∂y

+ ∂φy
∂x

)
1
2
φx + ∂w

∂x
1
2
φy + ∂w

∂y

 = S · ε̂, (C.4)

with εzz = 0 and ε̂ the generalized strain tensor.
This formulation allows to separate the components of the strain tensor. One

part corresponds to the plate bending while the other to the plate shearing. This
approach can also be adopted for the stress tensor, which leads to:

ε =

{
εb
εs

}
and σ =

{
σb
σs

}
, (C.5)

and

dσ = C : dε,{
dσb
dσs

}
=

[
Cb 0
0 Cs

]{
dεb
dεs

}
,

(C.6)

where C is the tangential constitutive law, the subscript b defines the bending part
of the tensor while the subscript s defines the shear one.

It is sometime convenient to describe the plate problem with its resultant load
tensor σ̂. This is done by integrating the stress tensor on the thickness of the plate,
as follows:
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Shell theories

σ̂ =

{
σ̂b
σ̂s

}
=


Mx

My

Mxy

Tx
Ty

 =

∫ t
2

− t
2

S · σdz. (C.7)

σ̂ can be linked to the generalized strain tensor thanks to a generalized consti-
tutive law, as follows:

dσ̂ =

∫ t
2

− t
2

{Sdσ} dz

=

[∫ t
2

− t
2

{SCS} dz
]
dε̂

= Ĉdε̂.

(C.8)

As C and S are symmetrical on can write:

Ĉ = Ŝ · C

Ŝ =

∫ t
2

− t
2

S2dz

=


t3

12
0 0 0 0

0 t3

12
0 0 0

0 0 t3

12
0 0

0 0 0 t 0
0 0 0 0 t

 ,
(C.9)

Ĉ is the generalized tangential constitutive law.

C.1.2 Shell theory

The elements just presented on plates can be extended to shells. The structures
modelled are not plane anymore, and the shell can experienced in-plane strain and
stress. Two strategies can be adopted.

C.1.2.1 Plane shells

The first one models the shell with several plate elements. This is the easiest
one as all the previous theoretical elements can be used in a local coordinate system
(x′, y′, z′) attached to the plate, where the plane (x′, y′) coincides with the mean
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C. Thick shell modelling

plane of the plate. The in-plane strains and stresses are introduced through the
local displacement fields:

u′(x′, y′, z′) = u′m(x′, y′) + z′φ′x(x
′, y′),

v′(x′, y′, z′) = v′m(x′, y′) + z′φ′y(x, y),

w′(x′, y′, z′) = w′m(x′, y′).

(C.10)

u′m is the displacement along x′ in the mean plane. It only depends on x′ and y′

coordinates.
v′m is the displacement along y′ in the mean plane. It only depends on x′ and y′

coordinates.
This leads to dissociate the local strain tensor into a membrane part ε′m, a

bending part ε′m and a transverse shear part ε′m as follows:

ε′ =


ε′m
ε′b
ε′c


= S′ ·


ε̂′m
ε̂′b
ε̂′c



=


1 0 0 z′ 0 0 0 0
0 1 0 0 z′ 0 0 0
0 0 1 0 0 z′ 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

 ·



∂u′m
∂x
∂v′m
∂y

1
2

(
∂u′m
∂y

+ ∂u′m
∂y

)
∂φx
∂x
∂φy
∂y

1
2

(
∂φx
∂y

+ ∂φy
∂x

)
1
2
φx + ∂w

∂x
1
2
φy + ∂w

∂y


= S′ · ε̂′,

(C.11)

with ε′zz = 0.
As previously mentioned, the local stress increment can be related to the local

strain increment through the tangential constitutive law C:

dσ′ = C ε′ =
[
Cps 0
0 Cs

]
·
{
εps
εs

}
with: εps =


εxx
εyy
εxy

 and εs =

{
εyz
εxz

}
(C.12)

The strain and stress tensors are therefore defined in the local coordinate system
and the constitutive law is integrated in the local coordinate system to solve the
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Shell theories

mechanical problem. The constitutive law is divided into a plane stress constitutive
law Cps and a transverse shear one Cs.

C.1.2.2 Curved shells

Finally, to be as close as possible to the real geometry, curved shell elements
can be used. The previous theoretical elements can be re-used as long as a local
coordinate system can be defined. This is possible through the definition of an
additional coordinate system attached to the curved shell and deforming with it.
Three coordinate systems are therefore defined:

• the global coordinate system (x, y, z), it corresponds to the frame where the
structure is placed,

• the curvilinear parametric coordinate system (ξ, η, ζ), it deforms with the
shell element,

• the local coordinate system (x′, y′, z′) is tangent to the surface defined by
ζ = Cst..

Figure C.2 presents the three different coordinate systems.

Figure C.2: Coordinate systems of a curved shell [Oñate 2013a]

The curvilinear parametric coordinate system (ξ, η, ζ) is defined as its third
direction ζ is linear in the thickness direction. Other directions depend on the
numbering of the element nodes (cf. [Oñate 2013a]). The curvilinear coordinate
system deforms with the shell.

The local coordinate system is different in every point of the shell. It is defined
such as the third direction z′ is normal to a plane formed by two vectors respectively
tangent to curves defined by ξ constant and ζ = ζ̄, and η constant and ζ = ζ̄. ζ̄
corresponds to the actual point zeta coordinate:
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C. Thick shell modelling

z′ ζ̄ =

(
∂x

∂ξ

)
η=Cst.,ζ̄

∧
(
∂x

∂η

)
ξ=Cst.,ζ̄

. (C.13)

The first direction x′ is chosen as tangent to the curve defined by η constant in
the plane defined by ζ̄:

x′ ζ̄ =

(
∂x

∂ξ

)
η=Cst.,ζ̄

. (C.14)

The last direction is parallel to the cross product of z′ with x′.
Therefore the stress and strain tensors can be defined in the local coordinate as

well as the constitutive law integration.

This subsection gives the theoretical elements to formulate shell elements in FE
softwares. Most of them are formulated with 3D surface elements, which is not
well adapted for experimental/numerical comparison. In the next subsection a 3D
volume shell element is presented. Its geometrical representation eases the direct
comparison between numerical simulations and experiments.

C.2 The SHB8PS element

Many elements exist to model shell structures, most of them reduce the 3D
volume of the structure to a 3D surface. Abed-Meraim and Combescure developed
in [Abed-Meraim and Combescure 2002] a 3D shell element which allows to model
completely the shell with its volume. It is named SHB8PS. The main benefit of
this 3D formulation is the absence of rotational degrees of freedom, because of its
fully 3D displacement fields. Many works describe its formulation for elastic and
elasto-plastic material. Its basic formulation is presented here as a baseline. The
specific developments, especially concerning the material behaviour, are detailed in
Section C.2.2.

C.2.1 The SHB8PS elastic formulation

Its parametric mesh shape is a cube. The physical coordinates of any point x
in this cube are linked to their parametric coordinates (ξ, η, ζ) by the following
equation:

x =
8∑
i=1

xiNi(ξ, η, ζ), (C.15)

where the Ni are the shape functions of the element and x = [x y z]t. The parametric
coordinates system is defined in [Abed-Meraim and Combescure 2002]. The Ni

functions are defined as follows:
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The SHB8PS element

Ni(ξ, η, ζ) =
1

8
(1 + ξiξ)(1 + ηiη)(1 + ζiζ) with: (ξ, η, ζ) ∈ [−1, 1]3, (C.16)

subscript i corresponds to quantities linked to node i of the parametric mesh.

Using the same formalism as above the displacement fields inside a mesh is
defined by:

u(x) =
8∑
i=1

ui(x)Ni(ξ, η, ζ), (C.17)

with u = [ux uy uz]
t.

Finally the displacement gradient can be expressed as follows:

∇u = B · d

B =



btx +
4∑

α=1

hα,xγ
t
α 0 0

0 bty +
4∑

α=1

hα,yγ
t
α 0

0 0 btz +
4∑

α=0

hα,zγ
t
α

bty +
4∑

α=1

hα,yγ
t
α btx +

4∑
α=1

hα,xγ
t
α 0

0 btz +
4∑

α=1

hα,zγ
t
α bty +

4∑
α=1

hα,yγ
t
α

btz +
4∑

α=1

hα,zγ
t
α 0 btx +

4∑
α=1

hα,xγ
t
α



,
(C.18)

with:

205

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI005/these.pdf 
© [N. Jacquet], [2021], INSA Lyon, tous droits réservés



C. Thick shell modelling

bX =
∂N

∂X
(0)

h1,X =
∂

∂X
(ηζ),

h2,X =
∂

∂X
(ξζ),

h3,X =
∂

∂X
(ξη),

h4,X =
∂

∂X
(ξηζ), with: X = x, y or z,

hα = [hα,x, hα,y, hα,z]
t,

γα =
1

8

[
hα −

(
(htα · x)bx + (htα · y)by + (htα · z)bz

)]
,

(C.19)

with x = [x1 ... x8]t, y = [y1 ... y8]t, z = [z1 ... z8]t and N = [N1 ... N8]t corre-
sponding to the eight nodes coordinates and shape functions and d = [dx dy dz]

t

the nodal displacement vector.

The stiffness matrix is computed using a reduced integration scheme with five
integration points (as detailed in [Abed-Meraim and Combescure 2009]). The prop-
erties of the five integration points are described in Table C.1.

Integration point ξ η ζ ω
1 0 0 -0.906179845938664 0.236926885056189
2 0 0 -0.538469310105683 0.479628670499366
3 0 0 0 0.568888888888889
4 0 0 0.538469310105683 0.479628670499366
5 0 0 0.906179845938664 0.236926885056189

Table C.1: Integration point properties, parametric coordinates and weight

The elementary stiffness matrix can be expressed as:

K =

∫
Ωe

Bt ·C ·BdΩ =
5∑
i=1

ω(ζi)J(ζi)B
t(ζi) ·C ·B(ζi), (C.20)

with Ωe the elementary domain, J the jacobian of the transformation from the
parametric to the physical space and ω(ζi) the integration point weight.

With this method, h3 = h4 = 0 at the integration points and B is reduced to
B12. B12 is defined by:
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The SHB8PS element

B12 =



btx +
2∑

α=1

hα,xγ
t
α 0 0

0 bty +
2∑

α=1

hα,yγ
t
α 0

0 0 btz +
2∑

α=1

hα,zγ
t
α

bty +
2∑

α=1

hα,yγ
t
α btx +

2∑
α=1

hα,xγ
t
α 0

0 btz +
2∑

α=1

hα,zγ
t
α bty +

2∑
α=1

hα,yγ
t
α

btz +
2∑

α=1

hα,zγ
t
α 0 btx +

2∑
α=1

hα,xγ
t
α



, (C.21)

Because of its basic formulation, the SHB8 element presents some Hourglass
modes (due to the reduced integration) and is subjected to locking issues (as most
of shell elements). To overcome this issue Abed-Meraim and Combescure proposed
a new formulation to stabilize the element and to treat the locking phenomenon.
Details of the formulation can be found in [Abed-Meraim and Combescure 2009].
The key elements of the formulation are presented thereafter.

First the Hallquist vectors bX are replaced by Flanagan-Belytschko ones. They
are defined by:

b̂X =
1

ωe

∫
Ωe

N,X(ξ, ηζ)dΩ with: X = x, y or z. (C.22)

Then the discrete gradient operator B becomes B̂. One can observe that B̂ is
a sum of a constant term B̂c and a variable one B̂n such as:

B̂ = B̂c + B̂n, (C.23)

with,

B̂c =



b̂tx 0 0

0 b̂ty 0

0 0 b̂tz
b̂ty b̂tx 0

0 b̂tz b̂ty
b̂tz 0 b̂tx


, B̂n =



X̂ t
1234 0 0

0 Ŷ t
1234 0

0 0 Ẑt
1234

Ŷ t
1234 X̂ t

1234 0

0 Ẑt
1234 Ŷ t

1234

Ẑt
1234 0 X̂ t

1234


, (C.24)
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C. Thick shell modelling

and,

X̂ t
1234 =

4∑
α=1

hα,xγ̂
t
α,

Ŷ t
1234 =

4∑
α=1

hα,yγ̂
t
α,

Ẑt
1234 =

4∑
α=1

hα,zγ̂
t
α.

(C.25)

Then the stiffness matrix and the internal forces are computed in the corotational
frame defined at mid-step. The corotational frame is oriented by:

a1 = a0
1,

a2 = a0
2 + ac,

a3 = a1 ∧ a2,

(C.26)

with,

a0
1 = [Λt

1 · x,Λt
1 · y,Λt

1 · z]t,

a0
2 = [Λt

2 · x,Λt
2 · y,Λt

2 · z]t,
(C.27)

ac = −a
0
1
t · a0

2

a0
1
t · a0

1

a0
1, (C.28)

and,

Λ1 = [−1, 1, 1,−1,−1, 1, 1,−1]t,

Λ2 = [−1,−1, 1, 1,−1,−1, 1, 1]t,

Λ3 = [−1,−1,−1,−1, 1, 1, 1, 1]t.

(C.29)

The stiffness matrix and the internal forces are finally defined by:

Ke =

∫
Ωe

B̂t
12CB̂12dV +KSTAB,

fint =

∫
Ωe

B̂t
12 · σdV + fSTAB.

(C.30)

For linear problems an improved plane-stress constitutive law is chosen which
inhibit locking phenomena. The constitutive law is defined by:
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The SHB8PS element

C =


λ+ 2µ λ 0 0 0 0
λ λ+ 2µ 0 0 0 0
0 0 E 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ

 , (C.31)

µ =
E

2(1 + ν)
, λ =

Eν

1− ν2
, (C.32)

with E the Young modulus and ν the Poisson ratio.
KSTAB is defined in elasticity by:

KSTAB =

 k11 k12 k13

k21 k22 k23

k31 k32 k33

 , (C.33)

with:

k11 = (λ+ 2µ)H11

[
γ̂3 · γ̂t3 +

1

3
γ̂4 · γ̂t4

]
,

k22 = (λ+ 2µ)H22

[
γ̂3 · γ̂t3 +

1

3
γ̂4 · γ̂t4

]
,

k33 =
µ

3
H11

[
γ̂4 · γ̂t4

]
,

kij = 0, i 6= j,

(C.34)

and:
H11 = 1

3

(Λt
2y)(Λt

3z)

(Λt
1x)

, H12 = H21 = 1
3
Λt

3z,

H22 = 1
3

(Λt
1x)(Λt

3z)

(Λt
2y)

, H13 = H31 = 1
3
Λt

2y,

H33 = 1
3

(Λt
1x)(Λt

2y)

(Λt
3z)

, H23 = H32 = 1
3
Λt

1x,

(C.35)

fSTAB is defined by:

fSTAB =



fSTABx =
4∑

α=3

= Qxαγ̂α

fSTABy =
4∑

α=3

= Qyαγ̂α

fSTABz =
4∑

α=3

= Qzαγ̂α


. (C.36)

Q is called the generalized stress tensor, which is related to q (called generalized
strain tensor) by the following set of equations in elasticity:
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C. Thick shell modelling

Q̇x3 = (λ+ 2µ)H11q̇x3,

Q̇x4 =
1

3
(λ+ 2µ)H11q̇x4,

Q̇y3 = (λ+ 2µ)H22q̇y3,

Q̇y4 =
1

3
(λ+ 2µ)H22q̇y4,

Q̇z3 = 0,

Q̇z4 =
1

3
µH11q̇z4,

(C.37)

with,

q̇xα = γ̂tdx,

q̇yα = γ̂tdy,

q̇zα = γ̂tdz.

(C.38)

The generalized stress is computed in the half-step configuration, leading to the
following expression:

Qn+1 = Qn + ∆tQ̇|n+1/2. (C.39)

This brief description of the SHB8PS formulation in elasticity intends to set
a framework in order to present the numerical development done in Cast3M. More
details on the formulation can be found in [Abed-Meraim and Combescure 2009] and
[Abed-Meraim and Combescure 2002], including the expression of the geometrically
nonlinear operator Kσ or the following pressure operator Kp. The extension of the
existing formulation (in elasticity and elasto-plasticity) to anisotropic inelastic rate
dependent behaviours is presented in the next section. It is then implemented in
Cast3M and used for numerical simulations.

C.2.2 SHB8PS for anisotropic visco-plasticity

As mentioned in the previous section, the SHB8PS element is particularly effi-
cient to model thick shell structures. In this section its implementation to Cast3M
FE software for a generic anisotropic inelastic behaviour will be detailed.

SHB8PS in Cast3M and Mfront
The SHB8PS element was already present in Cast3M, but its usage was lim-

ited to linear elastic analysis. This paragraph intends to present the developments
performed in Cast3M to use the SHB8PS element in non-linear analysis, including
nonlinear constitutive laws and anisotropic behaviours. We constrained ourselves
to use only existing Cast3M operators. In order to ease to implementation of the
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The SHB8PS element

SHB8PS element to Cast3M. The Mfront software was used for the constitutive law
integration. The numerical developments were focused on three topics:

• Geometrical non-linearity,

• Material non-linearity,

• Inelastic anisotropic behaviour.

In next paragraphs the numerical developments concerning each topic are pre-
sented.

Geometrical non-linearity

The first task was focused on geometrical non-linearity. Because of the deforma-
tion of the structure some operators as, the stiffness matrix or the internal forces
are impacted. The geometrical integration domain is modified for both operators.
Moreover the stabilization of the internal forces presents a time dependency as men-
tioned in Equation C.39.

The time dependency of the stabilisation forces is solved by introducing an in-
ternal variable to store the five non-zero components of the general stress tensor
Q (defined in Equation C.37). This internal variable is computed in the Cast3M
operator ’BSIGMA’ from the previous general stress tensor Q and the displacement
increment ∆u. This additional internal variable field is called ’VSHB’.

The implementation of the SHB8PS element is limited to an updated Lagrangian
formulation in this work. Therefore, it is needed to update the geometry of the
shell at each increment. The kinematics of the SHB8PS element does not include
thickness change due to the plane-stress formulation. Indeed the shell thickness
changes during loading. The thickness strain can be defined as follows in the co-
rotational frame:

εtot33 = εPS33 + ε33 (C.40)

with ε33 computed from the displacement field, while εPS33 is defined during the
constitutive law integration. εPS33 is the thickness strain due to the in-plane plane-
stress formulation.

The out of plane displacement field is then updated as follows:

B̂tB̂∆UPS
3 = B̂t


0
0

∆εPS33

0
0
0

 , (C.41)
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C. Thick shell modelling

with εPS33 declared as an internal variable. This linear system can be solved in a
weak formulation defined by:

∫
Ω

B̂tB̂∆UPS
3 dΩ =

∫
Ω

B̂t


0
0

∆εPS33

0
0
0

 dΩ, (C.42)

which can be expressed as:

K33
rig∆U

33 = f 33
ε . (C.43)

The internal forces are defined on the new configuration, including the thickness
change. At convergence of the Newton iterations of the global resolution algorithm,
the configuration is updated to the new configuration including the thickness change.

Material non-linearity
This first development allows to perform simulations in updated Lagrangian for-

mulation. For non-linear constitutive material law more developments are needed.
These developments concern the material law integration and the stabilisation strat-
egy.

In order to be able to use as many constitutive laws as possible it was chosen to
follow a generic approach already mentioned in literature (cf. [Trinh 2009]). This
approach consists in dividing the constitutive law into a plane-stress law and a 3D
law. The plane-stress components (red in Equation C.44) of the constitutive law
are integrated inelastically while the other components stay fully elastic (green in
Equation C.44). The inelastic constitutive law can be written in the co-rotational
frame as follows:

σ̇ = Ct ε̇ =


Ps1111 Ps1122 0 Ps1112 0 0
Ps2211 Ps2222 0 Ps2212 0 0

0 0 E 0 0 0
Ps1211 Ps1222 0 Ps1212 0 0

0 0 0 0 µ 0
0 0 0 0 0 µ

 ε̇. (C.44)

This strategy allows to use any existing integration algorithm to integrate the
constitutive law. Every inelastic constitutive law can be integrated that way, it can
be elasto-plastic or elasto-visco-plastic as wished. Nevertheless we have to be careful
in defining the tangent stiffness matrix and the internal forces as the stabilisation
can be impacted. Inelastic behaviour was implemented through a user subroutine
created with Mfront (cf. [Helfer et al. 2013]). Mfront is a software used to develop
material constitutive laws. This approach reduced the development work in Cast3M
to two main topics:
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The SHB8PS element

• the sub-division of the 3D problem into a plane-stress one and a 3D elastic
one,

• the stabilisation of the stiffness matrix and the internal forces.

The first one is relatively easy to perform in small strain formulation as the strain
and stress are computed in the co-rotational frame. The strain tensor ε derived from
the displacement field is divided into a plane stress part (εPS) and a 3D one (ε3D)
as follows:

ε = εPS + ε3D =


ε11

ε22

0
2ε12

0
0

+


0
0
ε33

0
2ε23

2ε13

 . (C.45)

Same approach is followed for the stress tensor:

σ = σPS + σ3D =


σ11

σ22

0
σ12

0
0

+


0
0
σ33

0
σ23

σ13

 . (C.46)

The stress increment is then computed through Mfront thanks to an implicit
integration algorithm. The plane stress components are integrated inelastically while
the 3D components are integrated elastically.

The final stress tensor is re-combined into a three dimensional one to be used
in the global resolution algorithm. From the integration algorithm the consistent
tangent operator is also computed.

These two last sets of data are important for the global resolution algorithm.
The stress tensor is used to compute the internal forces and the tangent operator
the tangent stiffness matrix. As mentioned before, in order to consider as many
constitutive laws as possible, the stabilisation forces and the stabilisation stiffness
matrix are modified compared to the formulation detailed in [Abed-Meraim and
Combescure 2009].

As a reminder, the stabilisation terms of the stiffness matrix are derived in the
co-rotational frame as follows:

KSTAB =

∫
Ωe

B̂t
34CtB̂34dV, (C.47)

with KSTAB also defined by:
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C. Thick shell modelling

KSTAB =

 k11 k12 k13

k21 k22 k23

k31 k32 k33

 . (C.48)

One can show that only the diagonal terms are needed for the stabilization of
the element in elasticity. The hypothesis is conserved in inelasticity as mentioned
in [Abed-Meraim and Combescure 2009]. Instead of applying an inelasticity factor
to the stabilisation terms as performed in [Abed-Meraim and Combescure 2002;
Abed-Meraim and Combescure 2009], the stabilisation stiffness matrix is computed
using the tangential constitutive law. Only the relevant terms are conserved (cf.
[Abed-Meraim and Combescure 2009]).

Finally the stabilization stiffness matrix can be defined by:

k11 = Ps1111H11

[
γ̂3 · γ̂t3 +

1

3
γ̂4 · γ̂t4

]
,

k22 = Ps2222H22

[
γ̂3 · γ̂t3 +

1

3
γ̂4 · γ̂t4

]
,

k33 =
µ

3
H11

[
γ̂4 · γ̂t4

]
,

kij = 0, i 6= j.

(C.49)

Equally the stabilisation forces are still defined by Equation C.36, with:

Q̇x3 = Ps1111H11q̇x3,

Q̇x4 =
1

3
Ps1111H11q̇x4,

Q̇y3 = Ps2222H22q̇y3,

Q̇y4 =
1

3
Ps2222H22q̇y4,

Q̇z3 = 0,

Q̇z4 =
µ

3
H11q̇z4,

(C.50)

Anisotropy
The strategy followed to implement anisotropic behaviour is detailed in this

paragraph. First only inelastic anisotropy has been considered in the work. The
strategy developed here consists in defining the anisotropy axis in the co-rotational
frame. The anisotropic behaviour is only applied to the plane stress components of
the strain and stress tensors. As a baseline the strain and stress tensors are defined
in the co-rotational frame. Before the integration of the constitutive law, the strain
and strain components are transported in the anisotropic frame. The constitutive
law is integrated, therefore the stress increment and stress tensor are defined as
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The SHB8PS element

well as the linear tangent operator and finally transported back to the co-rotational
frame.

It is important to notice that the present method is managed by Mfront (cf.
[Helfer et al. 2013]). The problem is therefore concentrated on the element orienta-
tion and the definition of the axis of anisotropy.

This formulation is then used for all finite element analysis with the exception of
the FEMU process. The developments performed on the SHB8PS in Cast3M were
validated against test cases from the literature.
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Appendix D

Development of the FEMU
process

This appendix presents the details of the FEMU process developed.
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D. Development of the FEMU process

Figure D.1: FEMU method data flow

The buckling behaviour of any structure is highly dependent of the constitutive
law of its material. An inverse method was implemented to identify the constitutive
law selected for the SAC305 alloy and presented thereafter. This method is named
FEMU for Finite Flement Model Updating. This method is based on the update of
the material parameters of a finite element model until convergence of the model with
experimental data, as described in [Avril et al. 2008]. This identification is therefore
based on experimental data, a finite element model, the constitutive law chosen and
an optimisation algorithm. The different elements are presented in Figure D.1

D.1 2D-DIC

As already mentioned, the FEMU approach is based on experimental data, as
the displacement fields on the surface of the specimens. They are defined through
a 2D-DIC method.

The pictures taken by the cameras are post processed following a global 2D-DIC
method as described in [Besnard, Hild, and Roux 2006]. 2D-DIC is performed with
Ufreckles, a FE-DIC global approach software developed by [Réthoré 2018]. The
global approach is based on a FE kinematic formulation to identify the displacements
fields on the specimen observed. Because of the speckle pattern properties, a Q4
element mesh with a mean cell size of 41 px was created. This numerical link between
experiments and FE simulations reduces numerical errors due to data exchange. The
DIC mesh is directly built on the reference images. Points on the specimen edges
are selected and a parametric mesh is fitted to the specimen shape. The parametric
mesh is controlled by a set of control points. In Figure D.2 the process followed
to create the DIC mesh is presented. Figure D.2(a) depicts the points selected on
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Tensile tests modelling

the specimen edges. An optimisation algorithm is used to fit the parametric shape
and its control points to the selected points (see Figure D.2(b)). Finally the control
points are transferred to Cast3M to build the FE and DIC mesh, as shown in Figure
D.2(c).

Figure D.2: DIC mesh fitting for FEMU method

This method presents different advantages:

• The numerical mesh models accurately the specimen geometry,

• Pre-test measurements of the specimen define the metric definition of the DIC
and FE meshes,

• Data transfer between experiments and FE model is direct.

The mesh definition is particularly important in this case as it defines the quality
of the DIC results as well as the FE results. Ideally the FE mesh would be as fine as
possible. Nevertheless, a single mesh of the DIC mesh needs to include at least 10
different gray levels. Because of the speckle pattern dimensions a compromise needs
to be found to respect DIC constraints and FE convergence quality constraints.

D.2 Tensile tests modelling

The purpose of the FEMU method is to compare data with finite element results
in order to identify the material parameters, in this subsection the different bricks
of the finite element model will be detailed.
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D. Development of the FEMU process

D.2.1 FE model

The finite element model intends to simulate the experiments with high fidelity.
Cast3M, a FE software, is used to model the tensile experiment. The material
constitutive law is integrated with an implicit scheme through Mfront (see [Helfer
et al. 2015]).

Because of the specimen geometry and the loading conditions, Q4 elements with
reduced integration are used under plane stress condition. The plane stress condition
allows to reduce computation time and therefore to increase the robustness of the
FEMU algorithm (discussed in the next subsection). As the strain level stays low
(under 10 %), localisation issues and high triaxiality levels should be low, which
motivate the use of plane stress assumption. This model was compared favourably
with a full 3D FE model, the results are presented in Chapter 3. The experiment
is divided into several time steps. Each time increment corresponds to a picture.
The time discretization is compliant with the small strain assumption during an
increment. An update lagrangian formulation is used with an implicit time scheme
to solve the mechanical problem. The thickness of every element is also updated
during the simulation.

The loading of the specimen is performed by applying the DIC displacement
fields to each end of the specimen. To reduce inherent DIC errors on the boundaries
of the mesh, two rows of elements were removed at each end of the specimen, as
shown in Figure D.3. Because of the noisy displacement fields, in time and space,
the DIC displacement fields are smoothed to reduce numerical integration issues
during FE simulations.

Figure D.3: FE mesh and boundary condition enforcement

D.2.2 Material constitutive law

The constitutive law of SAC305 alloy is modelled with a unified elasto-visco-
plastic model. Creep behaviour is model with a Norton law and the hardening
with three Voce equations. Because of the orthotropic properties of Tin crystal,
SAC305 presents an isotropic transverse behaviour. This anisotropic behaviour is
modelled with the Hill yield criterion. It was chosen to keep elasticity isotropic. The
constitutive law is defined by the following set of equations:
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Tensile tests modelling

σ = C εe,
ε = εe + εp,

ṗ =

(
F

K

)n
,

F = σeq −R(p),

R(p) = R0 +
3∑
i=1

Ri

(
1− e−bip

)
,

σeq =
√
σ : H : σ,

(D.1)

with, σ the Cauchy stress tensor, ε the Biot strain tensor, εe the elastic strain
tensor and εp the plastic strain tensor, C the isotropic elastic linear operator, σeq
the Hill equivalent stress defining the yield surface, H the Hill tensor (used here for
transverse anisotropy), p the equivalent plastic strain, R the hardening variable and
ṗ the equivalent strain rate.

In the general case the Hill tensor is defined by:

H =


F +H −F −H 0 0 0
−F G+ F −G 0 0 0
−H −G H +G 0 0 0

0 0 0 L 0 0
0 0 0 0 M 0
0 0 0 0 0 N

 , (D.2)

with:

F = 0.5

(
1

R2
11

+
1

R2
22

− 1

R2
33

)
G = 0.5

(
1

R2
11

+
1

R2
33

− 1

R2
22

)
H = 0.5

(
1

R2
22

+
1

R2
33

− 1

R2
11

)
L =

3

2

(
1

R2
12

)
M =

3

2

(
1

R2
23

)
N =

3

2

(
1

R2
13

)

(D.3)

In case of transverse isotropy the Hill tensor is completely defined by the Lank-
ford coefficient Rlank:

R11 = 1 R12 = 1
R22 = 1 R13 = 1

R33 =
√

Rlank+1
2

R23 = 1

(D.4)
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D. Development of the FEMU process

and:

RLank = εyy/εzz, (D.5)

with y the width direction of the specimen, z its thickness direction.

The material parameters to be identified are R0, R1, b1, R2, b2, R3, b3, K, n, Rlank

and C defined by the Young’s modulus and Poisson ratio. Many parameters needs to
be defined, the associated identification process is therefore complex. Nevertheless,
the complexity of the constitutive law allows to better model the SAC 305 behaviour
and especially its tangential behaviour. This is particularly important for inelastic
buckling analysis.

D.3 FEMU algorithm

The algorithm used to identify the material parameters is the main component
of the FEMU method. This algorithm compares experimental data with data from
the FE model. The different data are compiled into an objective function. By
minimizing the objective function, a set of material parameters can be identified.
In the next paragraphs the objective function and the minimization strategy will be
discussed.

D.3.1 Objective function

The objective function can be defined as the difference between experimental
and numerical observable variables. Those variables can be the displacement fields,
the strain fields, the load or other relevant variables.

The displacement fields and the reaction load are often chosen as components
of the objective function. Due to the coarse microstructure of SAC305, a noisy dis-
placement field is observed on the specimen surfaces. Using a noisy measurement
in the function to minimize would imply a large number of local minimums. There-
fore, a regularized strain field was introduced in the objective function instead of
the displacement field. The regularized strain field is defined as the average of the
strain field within a 2 mm radius circle surrounding the current integration point.
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FEMU algorithm

The objective function is defined as follow:

f = Rt ·R

R =



(
Fn−F e
ηF

)
(
εnxx−εexx
ηεxx

)
(
εnyy−εeyy
ηεyy

)
(
λ(i)−λ(i)

0

C
(i)
λ

)


(D.6)

with subscript n and e respectively stand for numerical and experimental data. F
contains the value of the reaction load for each increment. εxx and εyy are vectors
containing respectively the strain value at every integration point and for every time
increment in x and y directions. λ and λ0 are the vectors containing the material
parameters for the current increment and their initial value. Each type of value is
normalised by its acceptable error value, ηF , ηεxx and ηεyy , as proposed in [Neggers
et al. 2017]. Each component of the material difference vector (λ − λ0) is also
normalized with respect to an acceptable change of the corresponding parameter
during the optimisation process.

D.3.2 Minimization algorithm

The identification of the best material parameters λ∗ is conditioned by the fol-
lowing optimisation problem:

λ∗ = arg min
λ

(f(λ)) (D.7)

This optimisation problem is solved with a Matlab R© function lsqnonlin. A New-
ton type approach is used to minimize f . At each optimisation increment the next
material parameters are defined by solving the following equation:

f(λ+ dλ) = f(λ) +∇f tdλ+
1

2
dλtHdλ with: H =

∂2f

∂λ2
(D.8)

H is the Hessian of f , λ is the current material vector and dλ is the material vector
increment to find. As R is explicitly known, H can be approximated by:

H = 2J t · J , with: J =
∂R

∂λ
, (D.9)

J is the Jacobian matrix of R.
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D. Development of the FEMU process

To solve Equation D.8, a ”Trust-Region” method is implemented (see [Moré and
Sorensen 1983]). First, the material vector increment, dλ, is constrained by the
following equation:

||D · dλ|| ≤ ∆, (D.10)

with D a scaling matrix and ∆ a scalar parameter defining the size of the confidence
area of Equation D.8.

Then the Equation D.8 is solved on a sub-space S of two dimensions (cf. [Branch,
Coleman, and Li 1999]). Because of its size, this sub-problem is easy to solve.

The difficulty is in the definition of the sub-space S. S is defined by two vectors
s1 and s2 as follow:

s1 ×∇f = 0,

H · s2 = −∇f,

or:

st2 ·H · s2, < 0

(D.11)

To summarise, the following steps are followed:

1. Definition of the sub-space S,

2. Resolution of Equation D.8 on S,

3. If f(λ+ dλ) < f(λ), then λ = λ+ dλ,

4. Update of the size of confidence area, ∆.

This solving method is particularly efficient for large optimisation problem. The
quadratic approach combined with the definition of the objective function accelerates
the convergence. Only the Jacobian J of R is needed to compute the gradient and
the Hessian of f . Thanks to the sub-problem approach the solver time is reduced. Its
confidence area keeps the solver stable and maximizes the convergence probability.
Nevertheless as the Jabocian J is computed numerically, a large number of FE
simulations is needed. Most of the computation time is dedicated to the Jacobian
computation.

In addition to the solving method of the minimisation algorithm, a random multi-
start strategy has been implemented. The minimisation problem is solved several
times with a randomly chosen initial material vector. Thanks to the simple modelling
method adopted combined with a parallel approach, several local minimums can be
found in an acceptable computation time. The Pareto frontier or a global minimum
of the problem can be found. This last issue was discussed in Chapter 3. This
minimisation method gives us confidence in the set of material parameters selected
at the end.
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Appendix E

FEMU detailed results

The detailed results of the FEMU process are presented in the
appendix
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E. FEMU detailed results

This appendix presents the detailed results of the FEMU process. First the a
brief introduction of the uncertainty associated to the optical measure system is
presented. Then, the results of a sensitivity study on the material parameters is
introduced. Finally the FEMU results are compared to the tensile test results.

E.1 Uncertainty assessment

The uncertainties associated to the optical set-up and the DIC processing were
evaluated through the mean and standard deviation of the displacement fields iden-
tified from a set of still images.

For each specimen the error on the displacement is defined by a Gaussian dis-
tribution, characterized by its mean value and its standard deviation respectively

U
err

x/y and StD
(
U err
x/y

)
. Table E.1 summarises these parameters for all specimens.

The calibration factor is also given for all specimens in Table E.1.

Specimen ID
Calibration

factor
[mm.px−1]

U
err

x
[µPx]/[µm]

StD (U err
x )

[µPx]/[µm]

U
err

y
[µPx]/[µm]

StD
(
U err
y

)
[µPx]/[µm]

TT/11 0.024 27/0.64 21/0.49 -41/-0.98 26/0.63
TT/12 0.025 0/-0.01 19/0.47 -20/-0.50 19/0.48
TT/21 0.0225 19/0.42 10/0.23 3/0.08 29/0.65
TT/22 0.0225 -14/-0.32 22/0.48 -51/-1.15 15/0.35
TT/31 0.0225 -15/-0.34 15/0.33 50/1.13 31/0.70
TT/32 0.0225 -30/-0.68 28/0.64 107/2.41 49/1.11
TT/41 0.021 11/0.22 19/0.41 -13/-0.28 22/0.47
TT/42 0.021 -37/-0.77 36/0.76 26/0.55 17/0.35

Table E.1: Summary of displacement errors due to calibration, camera set-up and
DIC process

The measurement error is very small, mostly lower than 1 µm. The low er-
ror amplitude shows the quality of the experimental optical set-up as well as its
calibration.

E.2 Sensitivity study

First the sensitivity of each parameter is defined in order to select the best set
of material parameters and to understand how they interact with each other.

This can be easily done by analysing the Hessian matrix with respect to the
residual load or/and the residual strain as described in [Neggers et al. 2017]. As
presented in the previous chapter the Hessian matrix is defined thanks to the Ja-
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Sensitivity study

cobian matrix of the objective function. The Jacobian matrix can also be defined
with respect to the different components of the objective function as follows:

J =

 JF
Jεxx
Jεyy

 =

 ∂RF
∂λ

∂Rεxx
∂λ

∂Rεxx
∂λ

 , (E.1)

with:

R =

 RF

Rεxx

Rεyy

 . (E.2)

Finally the Hessian matrix can be defined as:

H = J t · J ,
= J tF · JF + J tεxx · Jεxx + J tεyy · Jεyy ,
= HF +Hεxx +Hεyy .

(E.3)

Each Hessian matrix, HF , Hεxx , Hεyy can be used to study the sensitivity of
the algorithm with respect to each material parameter and to each component of
the objective function. The diagonal terms of the Hessian give information about
the sensitivity of each parameter independently. The other terms of the Hessian
matrix give information about the sensitivity of the coupling of material parameters
with each other. As an example the value of H11 shows the impact of R0 on the
global solution. Equally H19 shows how R0 and n interact with each other and their
coupled impact on the global solution. The coupled sensitivity can also be analysed
using the covariance matrix C defined by:

Cij =
H−1
ij√

H−1
ii H

−1jj
. (E.4)

While the Hessian matrix gives the amplitude of the coupling effect, the covariance
matrix shows how the parameters interact with each other.

The Hessian and Jacobian matrices can be extracted at each increment of the
resolution. We chose to study the sensitivity of the algorithm around a minimum of
the objective function. Therefore only the final Hessian matrix is analysed.

In Figure E.1 the Hessian and covariance matrices are plotted with respect of
each component of the objective function, i.e. F , εxx and εyy.

In addition the diagonal terms of the Hessian matrix are plotted in Figure E.2.
Figure E.2 depicts the influence of each material parameter on each component of

the objective function and their cumulated effects. First, Figure E.2 shows that the
material parameters have a strong impact on the load components of the objective
function. Only few parameters have a non-negligible effect on the strain components,
bi, Rlank and ν. The most influential parameter is n, this results is also discussed
later. The hardening coefficients Ri and the yield stress come next.
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E. FEMU detailed results

Figure E.1: Hessian and covariance matrices of the minimisation problem

Figure E.2: Normalized diagonal terms of the Hessian matrix

The following observation can be made by analysing the non-diagonal terms of
the Hessian and the covariance matrices:

• The yield stress R0 interacts with the creep parameters K and n, their coupling
have a strong impact on the load response,

• The yield stress R0 coupled with the hardening coefficients Ri has a strong
impact on the strain components of the objective function,

• The hardening coefficients and exponents (Ri and bi) interact with each other
and impact especially the load response,

• The hardening coefficients coupled with each other have an important effect
on the strain components of the objective function,
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FE results vs. Experimental results

• The young modulus interacts with the hardening coefficient and the creep
coefficient K without affecting the solution,

• The couple Lankford’s ratio / Poisson’s ratio affects especially the strain com-
ponents of the objective function.

This sensitivity analysis helped to understand the different links between all
material parameters and their impacts on the correlation of the numerical model
with the experiments. This sensitivity analysis should also indicate if the solution
is unique. Ideally all parameters should be independent to obtain a unique solution.
From this analysis four groups of parameters can be defined, the hardening group
containing the Ri coefficients, the bi exponents and R0, the creep group containing
R0, K and n, the geometrical group with Rlank and ν, and finally the elastic group
with E and ν. These groups have different impacts on the quality of the identification
process, with a special interest for the creep group discussed in the next section.
This sensitivity analysis has also allowed to define the Cλ coefficients and the ηi
coefficients of the objective function in Equation D.6.

As strain localisation on grain boundaries was observed (cf. 3.2), large coeffi-
cients for ηεxx and ηεxx were chosen. As the hardening group of parameters affect
mainly the load, their Cλ coefficients are large in order to unconstrained their evo-
lution. On the opposite, the Cλ parameters for the creep group are small, except for
R0, as it is also included in the hardening group. Same strategy is applied to the
geometrical group. Finally as the young modulus sensitivity is almost negligible, its
Cλ value is also small in order to keep E close to its initial value (defined from the
literature). This low sensitivity of E can be explained by a smaller amount of data
collected in the elastic range rather than in the inelastic one. Tables E.2 and E.3
summarize the sensitivity parameters defined.

η F [N] εxx [%] εyy [%]

/ 1.0 5.0 5.0

Table E.2: Summary of η sensitivity parameters

Cλ R0 R1 b1 R2 b2 R3 b3 K n Rlank E ν

×λinii 106 106 106 106 106 106 106 10−2 10−3 10−3 10−2 10−3

Table E.3: Summary of Cλ sensitivity parameters

E.3 FE results vs. Experimental results

The validation of the constitutive laws identified for each material batch is per-
formed through the FE analysis of each tensile experiment. For each material batch,
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E. FEMU detailed results

both experiments are simulated with the material parameters identified. The gen-
erated numerical data are then compared to the experimental data. Scalar data
are compared through time, while the strain field data are compared in two differ-
ent ways. The global spatial distribution of the field data is compared first. Then
the spatial distribution of the strain fields are analysed statistically over time and
compared to experiments.

Figure E.3: FE simulation vs. experiment TT/31

Figures E.3 and E.4 illustrates these two approaches for specimen TT/31. First,
the load history from the post identification FE analysis (in blue in Figure E.3) fits
well to the experimental load history (in red in Figure E.3). The global shape, and
especially in the plastic region, corresponds well to the experimental measurement.
The strain fields obtained from the FE analysis are compared at four time steps in
Figure E.3. For all four time steps, both numerical strain fields (εxx and εyy) are
compared to experimental ones. In Figure E.3 the upper cases depict the numerical
and experimental εxx strain fields and lower ones the εyy strain fields. The spatial
distribution of the FE strain fields corresponds well to the experimental strain fields
as shown in Figure E.3. The plastic region as well as the strain amplitude on
both components (εxx and εyy) extracted from the FE analysis are comparable with
the experimental ones. The difference observed is due to the localisation of the
experimental strain on material defects or grain boundaries. This can be observed
in Figure E.3 where strain hotspots can be observed on the edges of the specimen.
This effect is even more visible by analysing the strain field statistically over time
as illustrated in Figure E.4. While the average, the second and third quartiles of
the strain fields extracted from the FE simulation fit well to the experiment, the FE
maximum and minimum strain on both components diverge from the experimental
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FE results vs. Experimental results

ones. This phenomenon corresponds well to the localisation issue on a material
defect described before. Outside of the range defined by [1st quartile, 3rd quartile],
the strain difference between numerical simulations and experiments is not relevant
to analyse as both strain fields do not describe the same physical problem locally.
Nevertheless a good correlation within the second and third quartiles is observed.

Figure E.4: FE vs. experiment, statistical analysis of the strain fields (TT/31)

This last observation leads to the conclusion that the material laws identified
are sufficient at the structure scale. Nevertheless localisation issues and microscopic
issues cannot be analysed with the identified laws. This limitation is not an issue for
buckling analysis as the localisation is more related to the post-buckling behaviour
of the structure. In the pre-buckling phase and at buckling, localisation phenomenon
is often in-existent.

The same analysis can be done for all experiments. Instead of analysing both
strain fields (experimental and numerical), the difference between experimental and
numerical strain fields is statistically analysed with respect to the average experi-
mental strain in Figure E.5. Only the results on εxx are presented in Figure E.5.
Equivalent results on εyy were also observed. The numerical load is also compared
to the experimental one in Figure E.5. It can be observed that the strain difference
ranging from the first quartile to the third one is relatively small (lower than 0.005
in absolute value) as shown in Figure E.5. The relative error is therefore lower than
10% within this range.

As shown in Figure E.5, the average strain error is almost zero and the difference
between experimental load and numerical one is also very small. Good correlation
is observed between all experiments and simulations.
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E. FEMU detailed results

Figure E.5: FE post FEMU vs. experiments for all tensile experiments, (left)
Normalized load with respect to the normalized time, (right) statistical description
of the strain difference between FE post FEMU and experimental strain εxx with
respect to the mean experimental axial strain εexpxx .
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Appendix F

Parametric analysis of the
buckling of a hemi-egg shell

The results of the parametric analysis carried out in order to study
the buckling of thick hemi-egg shells is presented in this appendix.

Contents
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F. Parametric analysis of the buckling of a hemi-egg shell

In this appendix the results of the parametric analysis on the buckling of hemi
egg shell is presented. In a first section, the effect of Pinf and tref on the buckling
of the hemi-egg shell is analysed in the nominal conditions (no imperfection, neither
on the geometry nor on the material). The effect of imperfections (material or
geometrical imperfections) on the critical values is presented in Sections F.2 and
F.3. The material imperfections are defined through the parameter ∆R0 and the
geometrical ones by Rimp

% .
A a reminder the different parameters can take the values presented in Table

F.1. Every combination is simulated. The outputs of the analysis are, the critical
pressure Pc and the critical time tc.

Pinf tref Rimp
% ∆R0

[MPa] [s] [%] [MPa]

4.00 10 0 -7.5
4.25 20 0.1 -5.5
4.50 50 0.2 -2.5
4.75 100 0.5 0
5.00 200 1.0 2.5
5.25 500 2.0 5.0
5.50 1000 5.0
5.75 2000 10
6.00 5000 20

10000

Table F.1: Summary of input parameter values

The reference time, tref , is taken as a major parameter, as it mainly defines the
loading rate and therefore the strain rate within the shell structure. Both outputs
are presented with respect to tref and another parameters (Pinf , R

imp
% or ∆R0).

F.1 Effect of the pressure history in the nominal

conditions

A first post processing of the results of the parametric analysis was performed
in order to study the effect of the pressure profile parameters (Pinf and tref ) on
the first bifurcation point. Only the simulations without any imperfection, either
geometric or material imperfections are considered in this section. A first illustration
of the effect of Pinf and tref is presented in Figure F.1. One can see on the left plot
the evolution of the predicted eigen pressure (blue curves) with respect to the time
ratio t/tref for different pressure rates (defined by tref ) and with Pinf = 5 MPa.
The bifurcation point is reached when the eigen pressure curve crosses the pressure
profile one (plain black curve). In addition the buckling mode is plotted for each
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Effect of the pressure history in the nominal conditions

Figure F.1: (left) Eigen pressure ratio with respect to time ratio t/tref for different
pressure rates; (right) Eigen pressure ratio with respect to time ratio t/tref for
different saturating pressures (Pinf in MPa)

pressure rate. Same approach is followed on the right plot of Figure F.1, where the
eigen pressure curves are drawn with respect to t/tref . Each colour corresponds to a
different value of Pinf . As shown in Figure F.1, for a fixed value of Pinf , the critical
pressure ratio and the critical time ratio decrease when tref increases. Equally, when
Pinf increases, the critical pressure ratio and the critical time ratio decrease for a
fixed value of tref . This normalized illustration is very convenient to present several
results in different time and pressure scales. It is also convenient to visualize the
effect of the pressure profile parameters. Nevertheless, we are mostly interested in
visualizing the absolute critical values.

Abacuses presented in Figure F.2 were generated with the idea of visualizing
the effect of the pressure profile on the critical values. The critical pressure Pc is
depicted, with respect to Pinf and tref , by an iso-value plot in Figure F.2-(left).
Same drawing process was followed in Figure F.2-(right) to present the evolution of
the critical time with respect to Pinf and tref .

As preliminary observed in Figure F.1, the critical pressure increases with Pinf ,
and decreases with tref . Therefore, the critical pressure Pc increases with the pres-
sure rate Pinf/tref . Moreover, the critical pressure Pc is contained in a pressure
range from 4.1 MPa to 4.5 MPa. This observation leads to a first experimental
constraint, the pressure profile used for the experiments must have a Pinf parameter
higher than 4.5 MPa. This constraint guaranties to observe buckling of the hemi-
egg shell. Regarding the critical time ratio tc/tref , its value follows an asymptotic
trend when tref increases. However, it decreases when Pinf increases and it follows
an exponential increase when Pinf tends to Pc. Indeed, if Pinf is lower than Pc,
the shell changes buckling regime to creep buckling, therefore tc → tcreepc . tcreepc is
the creep buckling critical time for Pinf and tref . If Pinf is too small the shell can
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F. Parametric analysis of the buckling of a hemi-egg shell

Figure F.2: Predicted critical pressure (left) and time (right) with respect to Pinf
and tref in nominal conditions.

even not buckle at all. Another observation can be made on the buckling regime,
when tc/tref is high we are in the creep regime, while when it is small we are in
the elasto-visco-plastic regime. Finally, as shown on Figure F.1 the buckling mode
does not seem to be affected by Pinf or tref . Therefore the first three modes still
correspond to the one presented in Figure 5.8.

From this first post processing, we can assume that Pinf must be as small as
possible, but higher than 4.5 MPa, in order to be close to the creep buckling regime.
Several values of tref can be chosen to define the experimental pressure rates without
any additional constraint other than the experimental ones.

In the two next sections, the effect of imperfections on the buckling of the hemi-
egg shell will be investigated. First the impact of an initial geometric imperfection
will be analysed. Then the effect of a material imperfection will be analysed. Both
analyses tend to finalize the selection of the experimental conditions. It will also
allow to generate reference data in order to validate the buckling prediction method
with the experiments.

F.2 Effect of geometrical imperfections

Shell structures can be more or less dependent on geometric imperfections. It is
almost impossible to avoid geometric imperfections on such structures. Geometric
imperfections can be due to the machining of the component, its set-up in the test
rig or some environmental conditions as the temperature. In this particular case the
geometric imperfection introduced to the structure can be evaluated to 0.05 mm (or
1.5% of the shell thickness) on the mean shape. This is defined according to the
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Effect of geometrical imperfections

(a)

(b)

Figure F.3: (a) Critical pressure (left) and time ratio (right) iso-values with respect

to Pinf and Rimp
% with tref = 100 s; (b) Critical pressure (left) and time ratio (right)

iso-values with respect to tref and Rimp
% with Pinf = 5 MPa

milling machine used and the manufacturing process followed. Imperfections intro-
duced by the test rig are difficult to measure or even to evaluate in this particular
case. In this matter, we studied the impact of the initial geometrical imperfection
on the critical values with respect to Pinf and tref .

As in Section 5.1.2, the initial geometric imperfection is defined as a linear com-
bination of the first fifteen elastic buckling modes, with their eigenvalues as weight.
The overall is normalized to obtain a maximum displacement equal to Rimp

% × h,
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F. Parametric analysis of the buckling of a hemi-egg shell

with h the shell thickness. h is not modified here.
The same drawing procedure as in Figure F.3 was adopted to present the results

of this imperfection analysis. Figure F.3(a) presents the critical pressure (left) and
critical time ratio (right) iso-values with respect to Pinf and Rimp

% with tref = 100 s.
Figure F.3(b) also presents the critical pressure (left) and time ratio (right) iso-
values, but with respect to tref and Rimp

% , and with Pinf = 5 MPa. As observed
in Figures F.3(a) and F.3(b), the critical pressure Pc and the critical time ratio
tc/tref are almost unchanged for imperfection amplitudes Rimp

% lower than 5% of
the shell thickness. 5% of the shell thickness corresponds to 0.15 mm, much higher
than 0.05 mm imperfection estimated for the machining imperfections. Therefore
we can assume that the shell structure selected is not very dependent on initial
geometrical imperfections. Other types of imperfections will have to be considered
in order to post process the experimental results. Nevertheless the initial geometric
imperfections can be neglected based on this analysis.

F.3 Effect of material imperfections

Finally the potential material imperfections are analysed. In this section an
imperfection on the initial yield stress is considered. Indeed, as mentioned and
observed in the previous chapters, the yield stress can be affected by the cooling
rate (cf. [Kim, Huh, and Suganuma 2002]). This last one can vary according to
the water temperature, the environmental temperature, the size of the mould, the
volume of alloy cast, etc... Therefore, all specimens can have a different yield stress.

This section has two objectives. First, it analyses the effect of a yield stress
offset ∆R0 on the critical values and the buckling behaviour. Secondly, it presents
abacuses allowing to normalize the imperfect experimental critical values. This is
used later in order to compare the test data to the numerical analysis with the same
reference data.

As in the previous section the critical pressure Pc and the critical time tc were
studied according to the pressure Pinf , the pressure rate defined through tref and the
yield stress offset ∆R0. To present the results of the analysis, the same approach as
in the previous section was followed. In Figure F.4(a), the iso-values of the critical
values are drawn with respect to Pinf and ∆R0, equally in Figure F.4(b) the critical
values are drawn with respect to tref and ∆R0. As expected the lower the yield stress
is, the earlier the bifurcation happens. On the opposite, when the yield stress is too
high, we change regime from elasto-visco-plastic buckling to pure creep buckling.
This limit is defined by a thick red line and the labels ”Creep buckling” or ”C.B.”
in Figure F.4.
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Effect of material imperfections

(a)

(b)

Figure F.4: (a) Critical pressure (left) and time ratio (right) iso-values with respect
to Pinf and ∆R0 with tref = 100 s; (b) Critical pressure (left) and time ratio (right)
iso-values with respect to tref and ∆R0 with Pinf = 4.5 MPa
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F. Parametric analysis of the buckling of a hemi-egg shell
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Appendix G

Identification of the yield stress on
the hemi-egg specimens

This appendix details the approach used to identify the yield stress
on the hemi-egg specimens
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G. Identification of the yield stress on the hemi-egg specimens

Because of the complexity of the component as well as the casting process, it
is very difficult to characterise with simple tensile tests the yield stress abatement.
Indeed, the only solution would be to extract tensile specimens from the buckling
specimen flange. Nevertheless this area of the specimen is thicker than the other
ones, therefore the cooling rate could have been lower as well as the mechanical
properties. These tests would not be representative of the material properties in the
egg region.

A numerical approach was followed in order to identify the yield stress abatement
of each specimen. A light FEMU process with the FE model Model 1 was used.
Model 1 is presented in Section 2.5 of Chapter 2. The objective function is defined
as follows:

f = Rt ·R with : Ri =
‖Uexp(ti)−Unum(ti)‖

0.01
, (G.1)

where R is the residual vector, Uexp the experimental displacement fields, Unum the
FE displacement fields, and the ti correspond to the time steps where the measured
pressure is within the pressure range [25%, 95%] of the maximum pressure. This
allows to be in a phase where the egg shell has not buckled yet. The normalization
by 0.01 mm corresponds to the order of magnitude of the measured displacement
error discussed earlier.

Following this approach the yield stress abatement is defined in order to minimise
the error between the experimental displacements and the numerical ones.

The identified yield stress abatements are presented for each specimen in Table
G.1. In addition the effect of the upper bound of the pressure range used for the
identification was also considered. The yield stress abatement range (presented in
Table 5.8) is defined for an upper bound of the pressure range going from 92.5% to
97.5%.

O
/
00

#

∆R0 (95%
Pmax)

∆R0 (92.5%
Pmax)

∆R0 (97.5%
Pmax)

MPa MPa MPa

2 -5.36 -5.70 -4.87
3 -4.78 -5.26 -4.35
4 -6.15 -6.55 -5.55
5 -4.59 -4.97 -3.75
6 -5.21 -5.85 -4.26

Table G.1: Yield stress abatement identified in the pre-buckling phase

242

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI005/these.pdf 
© [N. Jacquet], [2021], INSA Lyon, tous droits réservés



Bibliography

Abed-Meraim, F. and A. Combescure (2002). “SHB8PS––a new adaptative,
assumed-strain continuum mechanics shell element for impact analysis”. Com-
puters & Structures 80.9, pp. 791–803.

Abed-Meraim, Farid and Alain Combescure (2009). “An improved assumed strain
solid–shell element formulation with physical stabilization for geometric non-
linear applications and elastic–plastic stability analysis”. en. International Jour-
nal for Numerical Methods in Engineering 80.13, pp. 1640–1686.
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