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Résumé de l'introduction 
 

L'utilisation de mesures de l'entropie de l'information a permis d'évaluer avec succès la "quantité 
d'informations" ou la "complexité" d'un système. Parmi les domaines qui peuvent bénéficier de 
l'application de ces mesures spécifiques, le domaine biomédical mérite d'être mentionné en tant 
que discipline riche d'enseignements dans laquelle les chercheurs ont accès à des quantités 
considérables d'informations par l'intermédiaire de leurs examinateurs. En outre, les processus 
biologiques sont de nature remarquablement complexe, impliquant généralement des étapes 
complexes, des événements simultanés et des boucles de rétroaction autocorrectrices. Pour 
illustrer davantage ce point, l'activité bioélectrique est difficile à interpréter, car elle n'est 
généralement disponible que sous la forme d'un agrégat de multiples signaux élémentaires 
simultanés qui, même lorsqu'ils sont compris à un niveau isolé, augmentent en complexité dans 
leurs interactions lorsqu'ils sont observés depuis l'extérieur du corps. C'est précisément pour 
cette raison que l'application de mesures de l'entropie par des techniques et des processus 
nouveaux offre une solution prometteuse à ce dilemme, pour autant que nous puissions 
différencier de manière significative la dynamique des processus en mesurant la complexité. 

En outre, la littérature existante associe fortement la réduction de l'entropie à l'avancement des 
maladies motrices. La diminution de la variabilité suggère une activité motrice stéréotypée, 
empêchant les ajustements nécessaires pour changer de tâche ou s'adapter à des conditions 
changeantes. Par conséquent, un ensemble complexe et dynamique d'instructions doit être 
présent pour accomplir l'une de ces tâches, et une personne souffrant d'une déficience connexe 
aura du mal ou échouera à les exécuter faute d'une compensation adéquate. Cela s'explique par 
une réduction de la complexité des instructions que chaque muscle reçoit. 

Nous avons décidé d'aborder cette situation en appliquant l'entropie de permutation multi-
échelle (EPM). Cette mesure particulière possède un ensemble unique de caractéristiques que 
nous jugeons appropriées pour la caractérisation de ce problème. Tout d'abord, l'entropie de 
permutation fonctionne avec des informations ordinales, une qualité qui garantit que la méthode 
est robuste en ce qui concerne l'amplitude des signaux sources et la distribution de probabilité 
qu'ils contiennent. Étant donné le large éventail de sorties possibles d'amplitude de signaux 
provenant de différents sujets - une propriété souhaitable - et le fait que la MPE nécessite un 
ensemble minimal de paramètres pour fonctionner, il devient facile d'obtenir des résultats 



significatifs à partir du système en raison de ses exigences simplifiées. En outre, le calcul du MPE 
est simple et direct à effectuer, avec une gamme claire de valeurs maximales et minimales. Le 
prétraitement multi-échelle permet également au chercheur d'explorer les signaux à différentes 
échelles de temps, permettant ainsi l'identification d'informations cachées à longue portée qui 
ne sont pas nécessairement disponibles par l'acquisition directe de signaux bruts. 

Bien que les mesures du MPE et de ses variantes aient déjà été appliquées avec succès 
auparavant, la discussion de cette méthode dans la littérature est généralement traitée d'un 
point de vue algorithmique. Étant donné que les mesures de l'entropie - en particulier l'EMT - 
sont définies en fonction de la distribution de probabilité de la source, il est logique de compléter 
ces techniques en y incluant un point de vue et une approche statistiques. 

Il existe des travaux antérieurs sur la caractérisation de ce problème, avec un accent particulier 
sur la dimension d'encastrement et la longueur du signal, mais l'interaction de la statistique avec 
la procédure de granulation grossière n'a pas été abordée auparavant dans la littérature. Il 
convient également de mentionner que certaines propriétés statistiques - en particulier le biais - 
ont déjà été signalées dans la littérature, mais qu'elles ne sont généralement mentionnées 
qu'après coup. En outre, on connaît peu la variance du PPE, et il s'agit d'une mesure qui ne se 
conforme pas nécessairement à l'hypothèse de normalité largement appliquée. Compte tenu des 
raisons susmentionnées, il est possible de mal interpréter le comportement du PPE observé 
comme une propriété émergente du phénomène en question, alors que la statistique elle-même 
peut être la source de ces effets indésirables. 

Notre premier objectif dans le présent travail est de développer la théorie qui sous-tend la 
mesure de l'EMT, ainsi que de comprendre son comportement par rapport aux modèles de 
signaux et aux processus stochastiques connus. Avec ces nouvelles connaissances, nous serions 
en mesure d'énoncer et de développer notre second objectif : proposer une nouvelle technique 
de mesure de la MPE comme amélioration par rapport à d'autres méthodes bien établies, y 
compris le calcul original et ses raffinements. Enfin, nous appliquerons ces méthodes à des 
signaux électromyographiques (EMG) réels, dans le but d'obtenir une interprétation actualisée 
de la mesure de l'EMG sur des systèmes biologiques réels, et d'améliorer la précision des 
techniques ordinales existantes à des fins de classification. 

Dans le chapitre 1, nous commençons par présenter au lecteur le paysage global des techniques 
d'entropie disponibles, en les classant de manière à ce que le lecteur puisse différencier la nature 
des options possibles qui s'offrent aux chercheurs. Dans le chapitre 2, nous nous concentrons sur 
les propriétés statistiques de l'entropie de permutation multi-échelle, en fournissant une forme 
fermée pour l'approximation de la statistique de l'EMT - en prenant en considération sa 
distribution et l'effet de la longueur du signal - et des expressions générales pour ses deux 
premiers moments. Au chapitre 3, nous appliquons l'estimation de l'EMT à des modèles de 



signaux et des processus stochastiques largement répandus afin d'évaluer plus avant les 
propriétés de l'entropie dans des conditions connues, ce qui donne une valeur théorique de l'EMT 
attendue pour les processus stochastiques gaussiens. Dans le chapitre 4, nous explorons les 
propriétés des affinements de l'EMT afin de mieux comprendre les raisons de leur précision 
accrue, ce qui a permis de produire une nouvelle méthode d'EMT pour réduire davantage 
l'incertitude de l'estimation de l'entropie. Enfin, dans le chapitre 5, nous abordons le problème 
complexe des signaux électromyographiques de surface réels (sEMG) en appliquant les méthodes 
discutées jusqu'à présent dans divers dispositifs expérimentaux, et nous fournissons une 
interprétation actualisée des mesures de l'entropie dans ce contexte, tant d'un point de vue 
statistique que biologique. 
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Introduction 

L'utilisation de mesures de l'entropie de l'information a permis d'évaluer avec succès la "quantité 
d'informations" ou la "complexité" d'un système. Parmi les domaines qui peuvent bénéficier de 
l'application de ces mesures spécifiques, le domaine biomédical mérite d'être mentionné en tant 
que discipline riche en idées dans laquelle les chercheurs ont accès à des quantités considérables 
d'informations par l'intermédiaire de leurs examinateurs. En outre, les processus biologiques 
sont de nature remarquablement complexe, impliquant généralement des étapes complexes, 
des événements simultanés et des boucles de rétroaction autocorrectrices. Pour illustrer 
davantage ce point, l'activité bioélectrique est difficile à interpréter, car elle n'est généralement 
disponible que sous la forme d'un agrégat de multiples signaux élémentaires simultanés qui, 
même lorsqu'ils sont compris à un niveau isolé, augmentent en complexité dans leurs 
interactions lorsqu'ils sont observés depuis l'extérieur du corps. C'est précisément pour cette 
raison que l'application de mesures de l'entropie par des techniques et des processus nouveaux 
offre une solution prometteuse à ce dilemme, pour autant que nous puissions différencier de 
manière significative la dynamique des processus en mesurant la complexité. 

En outre, la littérature existante associe fortement la réduction de l'entropie à l'avancement des 
maladies motrices. L'idée est la suivante : la diminution de la variabilité suggère une activité 
motrice stéréotypée, entravant les ajustements nécessaires pour changer de tâche ou s'adapter 
à des conditions changeantes ; se lever ou marcher, par exemple, sont des actions qui nécessitent 
une compensation constante et fluctuante de la gravité, du vent et d'autres forces externes pour 
maintenir l'équilibre. Par conséquent, un ensemble complexe et dynamique d'instructions doit 
être présent pour accomplir l'une de ces tâches, et une personne souffrant d'une déficience 
connexe aura du mal ou échouera à les accomplir faute d'une compensation adéquate. Cela 
s'explique par une réduction de la complexité des instructions que chaque muscle reçoit. 

Nous avons décidé d'aborder cette situation en appliquant l'entropie de permutation multi-
échelle (EPM). Cette mesure particulière possède un ensemble unique de caractéristiques que 
nous jugeons appropriées pour la caractérisation de ce problème. Tout d'abord, l'entropie de 
permutation fonctionne avec des informations ordinales, une qualité qui garantit que la méthode 



est robuste en ce qui concerne l'amplitude des signaux sources et la distribution de probabilité 
qu'ils contiennent. Étant donné le large éventail de sorties possibles d'amplitude de signaux 
provenant de différents sujets - une propriété souhaitable - et le fait que la MPE nécessite un 
ensemble minimal de paramètres pour fonctionner, il devient facile d'obtenir des résultats 
significatifs à partir du système en raison de ses exigences simplifiées. En outre, le calcul du MPE 
est simple et direct à effectuer, avec une gamme claire de valeurs maximales et minimales. Le 
prétraitement multi-échelle permet également au chercheur d'explorer les signaux à différentes 
échelles de temps, permettant ainsi l'identification d'informations cachées à longue portée qui 
ne sont pas nécessairement disponibles par l'acquisition directe de signaux bruts. 

Bien que les mesures du MPE et de ses variantes aient déjà été appliquées avec succès 
auparavant, la discussion de cette méthode dans la littérature est généralement traitée d'un 
point de vue algorithmique. Étant donné que les mesures de l'entropie - en particulier l'EMT - 
sont définies en fonction de la distribution de probabilité de la source, il est logique de compléter 
ces techniques en y incluant un point de vue et une approche statistiques ; par exemple, nous 
n'obtiendrions qu'une approximation de la distribution réelle du phénomène en raison des 
informations limitées présentes sur les sources de signaux. 

Il existe des travaux antérieurs sur la caractérisation de ce problème, avec un accent particulier 
sur la dimension d'intégration et la longueur du signal, mais l'interaction de la statistique avec la 
procédure de grossièreté n'a pas été abordée auparavant dans la littérature. Il convient 
également de mentionner que certaines propriétés statistiques - en particulier le biais - ont déjà 
été signalées dans la littérature, mais qu'elles ne sont généralement mentionnées qu'après coup. 
En outre, on connaît peu la variance du PPE, et il s'agit d'une mesure qui ne se conforme pas 
nécessairement à l'hypothèse de normalité largement appliquée. Compte tenu des raisons 
susmentionnées, il est possible de mal interpréter le comportement du PPE observé comme une 
propriété émergente du phénomène en question, alors que la statistique elle-même peut être la 
source de ces effets indésirables. 

Notre premier objectif dans le présent travail est de développer la théorie qui sous-tend la 
mesure de l'EMT, ainsi que de comprendre son comportement par rapport aux modèles de 
signaux et aux processus stochastiques connus. Avec ces nouvelles connaissances, nous serions 
en mesure d'énoncer et de développer notre second objectif : proposer une nouvelle technique 
de mesure de la MPE comme amélioration par rapport à d'autres méthodes bien établies, y 
compris le calcul original et ses raffinements. Enfin, nous appliquerons ces méthodes à des 
signaux électromyographiques (EMG) réels, dans le but d'obtenir une interprétation actualisée 
de la mesure de l'EMG sur des systèmes biologiques réels, et d'améliorer la précision des 
techniques ordinales existantes à des fins de classification. 

Chapitre 1. Entropie de l'information - Concepts et définitions 



Avec son article fondateur, C.E. Shannon a établi les bases de la théorie de l'information. L'auteur 
a défini le concept de mesure de l'information, y compris l'entropie de l'information. 

En termes simples, l'entropie est une mesure de l'imprévisibilité. Étant donné une chaîne de 
symboles, un niveau d'entropie élevé implique qu'un symbole donné ne peut pas être facilement 
prédit en regardant les symboles qui le précèdent dans la chaîne ; inversement, une faible valeur 
d'entropie implique que chaque symbole peut être déduit de son histoire. Une chaîne de 
symboles totalement imprévisible produira l'entropie maximale possible par le système, tandis 
que l'entropie minimale se produira lorsqu'un seul symbole se répète sans faute ; dans un sens 
plus général, cependant, il est habituel qu'il y ait une certaine probabilité pour que chaque 
symbole apparaisse dans une chaîne donnée. On peut donc en déduire intuitivement que cette 
mesure nécessite une certaine connaissance de la distribution de probabilité et, par conséquent, 
que l'entropie doit être fonction de la fonction de probabilité associée à la chaîne. 

Bien que l'entropie mesure une propriété précise d'un ensemble aléatoire basé sur des données 
brutes, une interprétation correcte dépend fortement du contexte, car il manque une 
interprétation universelle de ces mesures. Alors que l'entropie est définie dans le contexte de la 
thermodynamique - la discipline dont elle s'inspire - comme une mesure de l'irréversibilité de 
tout processus thermodynamique (selon la définition de Rudolph Clausius), l'entropie est 
appelée contenu, diversité ou complexité dans le contexte de l'information. Néanmoins, 
l'utilisation de l'entropie de l'information peut toujours être justifiée d'un point de vue 
pragmatique, car elle a été utilisée avec succès dans une grande variété d'applications, telles que 
la compression de données et les applications dans les domaines de la finance et de la 
biomédecine. Même lorsque la véritable nature et la signification de l'entropie de l'information 
font l'objet d'un débat, cette mesure a ses utilisations et ses mises en œuvre. 

Depuis sa formulation originale en 1948, un grand nombre de variantes de l'entropie ont été 
proposées. La quantité d'options proposées à ce jour est impressionnante : pour chaque petit 
changement dans la méthode, la source de données ou l'application, il existe une mesure de 
l'entropie avec un nom propre et ses propres considérations. De plus, chaque variante présente 
ses propres avantages et inconvénients, ce qui prouve qu'il n'existe pas de solution unique à ce 
jour. 

Avant de pouvoir fouiller directement dans les rouages de cette méthode, nous devons d'abord 
présenter un paysage approprié pour l'utilisation de l'entropie de l'information, y compris ses 
variantes et ses applications courantes. 

Nous présenterons tout au long de ce chapitre les variantes d'entropie les plus courantes à 
chaque niveau d'analyse. Nous explorerons ensuite les méthodes avec une approche "inside-
out", en commençant par les variations de la définition de l'entropie de base. Ensuite, nous 



suivrons les variantes possibles dans la formulation de l'ensemble des événements relatifs au 
phénomène. La dernière étape consistera à examiner les variantes de prétraitement possibles 
sur le signal source - où les données brutes sont préparées pour l'analyse de l'entropie - et à 
discuter brièvement des raffinements apportés et du raisonnement qui sous-tend leur sélection. 
Bien que nous fournissions un panorama général de toutes les variantes d'entropie, la liste 
présentée et la discussion qui l'accompagne sont loin d'être exhaustives. 

Pour les besoins de ce projet, nous nous concentrerons sur l'entropie de permutation multi-
échelle, car ses propriétés particulières répondent aux besoins et aux exigences de l'analyse des 
signaux bioélectriques.  

 

Chapitre 2. Entropie de permutation multi-échelle - Statistiques théoriques 

À partir de toutes les mesures d'entropie possibles, nous avons plaidé en faveur de l'entropie de 
permutation multi-échelle (MPE) comme extension de l'entropie de permutation (PE) classique. 
L'EPM peut être conceptualisée comme suit : 

- Équation : L'entropie de Shannon. 
- Partition d'événement : motifs ordinaux.  
-  Preprocessing : procédure de grossièreté. 

Le travail avec des modèles ordinaux produit une mesure de l'entropie qui est invariante par 
rapport à l'amplitude du signal, et en particulier à la présence de valeurs aberrantes. Bien que 
l'amplitude contienne des informations pertinentes, nous nous intéressons davantage à la forme 
fonctionnelle du signal - un scénario digne d'intérêt serait celui où la variabilité biologique entre 
les sujets rendrait les comparaisons difficiles. En outre, le MPE présente également l'avantage de 
disposer d'un ensemble d'événements définis avant l'introduction de l'ensemble de données à 
analyser, ce qui évite de travailler avec des partitions d'événements approximatives.  

La simplicité de l'analyse MPE permet également de réduire au minimum le besoin de calibrage 
des paramètres, puisqu'aucune valeur de tolérance n'est nécessaire. En outre, d'un point de vue 
informatique, le comptage de modèles ordinaux est un processus rapide, un facteur qui peut 
potentiellement conduire à des applications en temps réel. Le processus de mise à l'échelle 
multiple, ajouté à l'EPP originale, permet aux chercheurs d'explorer le contenu d'informations 
dans des échelles de temps qui ne sont pas directement mesurées avec le signal brut, ce qui 
élargit la portée de l'analyse originale. Néanmoins, la méthode n'est pas sans inconvénients : le 
comptage de modèles ordinaux nécessite l'utilisation d'un ensemble de données suffisamment 
important pour être fiable, une question qui devient cruciale lorsque nous explorons l'approche 
multi-échelle dans une situation où la longueur du signal est réduite avec l'augmentation des 



échelles. Toute considération initiale concernant l'analyse MPE doit tenir compte de la longueur 
du signal. 

Il est important de se rappeler que les formulations de l'EMT sont généralement présentées sous 
forme algorithmique et que la distribution ordinale du modèle est mesurée directement à partir 
du signal source, car cela implique que toute information recueillie de cette manière n'est qu'une 
estimation de la véritable distribution du modèle, et donc que la mesure de l'EMT elle-même est 
également une estimation. Par conséquent, la théorie statistique qui sous-tend l'EPP n'est pas 
très étudiée dans la littérature, à quelques exceptions près. Cela justifie l'approche consistant à 
considérer le PPE comme une statistique.  

Cela dit, dans ce chapitre, nous allons approfondir les propriétés statistiques du PPE et améliorer 
le cadre théorique existant en développant les résultats que nous avons présentés pour la 
première fois dans des articles précédents. Nous commençons par une définition formelle du PPE 
et du processus de formation des gros grains. Nous commentons également les considérations 
concernant le signal source en tant que processus aléatoire, puis nous développons un modèle 
statistique de la mesure du MPE au moyen de l'expansion polynomiale de la série de Taylor. Cela 
nous permettra d'avoir une expression approximative de la valeur, du biais et de la variance 
attendus de l'EPP. Nous fournirons également l'expression de la limite inférieure de Cramér-Rao 
afin d'évaluer l'efficacité de l'estimateur. Ensuite, nous testons nos résultats théoriques par 
rapport à un modèle de substitution avec un ensemble de paramètres facilement modifiables. 
Enfin, nous discuterons et commenterons les idées préliminaires que nous avons obtenues grâce 
au développement de la théorie statistique du PPE.  

Nous avons d'abord constaté que la valeur attendue de l'EMT est un estimateur biaisé. De plus, 
le biais dépend uniquement des paramètres de l'analyse de l'EPP, en particulier la dimension, 
l'échelle et la longueur du signal. Cela implique que l'EPP présentera le même biais par rapport à 
l'échelle de temps, quelle que soit la distribution de probabilité du signal.  

Deuxièmement, nous avons constaté que la variance de l'EPP augmente presque linéairement 
avec l'augmentation de l'échelle de temps pour presque toute distribution de modèle. 
L'exception apparaît lorsque la MPE est proche d'une valeur maximale (probabilités uniformes). 
Dans ce scénario, la variance augmente de façon quadratique par rapport à l'échelle de temps. 
Notre formulation ressemble beaucoup à la limite inférieure de Cramér-Rao pour la statistique 
de l'EPP, ce qui signifie qu'elle est presque aussi efficace. Nous devons également ajouter que la 
variance présente une valeur maximale pour des valeurs spécifiques de l'EPP et des distributions 
de probabilité de modèle, car cela informe les autres chercheurs sur une région de l'EPP où nous 
avons une incertitude maximale. 



Enfin, nous avons pu suggérer un critère plus précis pour la longueur du signal que l'expression 
habituelle dans la littérature. En définissant un biais maximum autorisé, nous avons pu spécifier 
une longueur minimum (et une échelle de temps maximum) basée uniquement sur la dimension 
du modèle pour l'analyse. 

Chapitre 3. MPE sur les modèles de signaux communs 

Nous avons étudié les rouages de l'entropie de permutation multi-échelle d'un point de vue 
empirique et, surtout, statistique. C'est grâce à la série de Taylor que nous avons pu développer 
une approximation du PPE qui nous permet de calculer sa valeur et sa variance attendues. Nous 
savons à ce stade que l'EPP est un estimateur biaisé dont la valeur linéaire ne dépend que des 
paramètres de l'analyse et non de la distribution des modèles. Nous avons également constaté 
que la variance est proche de la limite inférieure de Cram\'er-Rao, et donc, approximativement 
efficace. Nous avons également été en mesure de proposer un critère de longueur plus précis 
pour un signal suffisamment long pour l'analyse MPE. Enfin, nous avons établi une plage de MPE 
normalisée où la variance est maximale pour une longueur de signal donnée. 

Bien que ces résultats soient valables pour des signaux arbitraires, nous ne pouvons pas ignorer 
le fait que la procédure à gros grains a un effet notable sur la distribution des modèles trouvée à 
chaque échelle. Il est maintenant temps d'aborder directement cette relation.  

Nous pouvons appliquer l'analyse MPE à n'importe quel signal discret sans avoir besoin de 
connaître au préalable sa dynamique sous-jacente. En fait, le calcul empirique du PPE peut nous 
donner quelques indications à cet égard. D'autre part, si nous connaissons la nature du processus, 
nous pouvons calculer un PPE théorique basé sur le modèle du signal. Nous saurons si le modèle 
du signal que nous proposons peut être approprié pour expliquer toutes les informations 
pertinentes du phénomène lorsque le PPE théorique correspond au PPE empirique. 

C'est pourquoi, dans ce chapitre, nous étudions les valeurs du PPE pour certains modèles de 
signaux bien connus, en abordant d'abord le PPE attendu des signaux déterministes communs. 
Comme nous nous attendons à ce que l'EPP soit robuste aux perturbations, nous analyserons 
également l'effet du bruit, dans le but d'évaluer quand le bruit domine sur le signal et de tester 
les limites de robustesse des méthodes. Bien que notre exploration de l'EMT envisage des 
processus aléatoires, les signaux gaussiens sont particulièrement pertinents dans le cadre du 
présent travail ; plus précisément, nous caractériserons à la fois le bruit blanc gaussien (wGn) et 
le bruit fractionnaire gaussien (fGn). En outre, nous explorerons les modèles autorégressifs (AR) 
et à moyenne mobile (MA) du premier ordre. Comme tous les signaux gaussiens présentent des 
symétries particulières, nous proposerons une formulation explicite et générale de l'EPM 
théorique pour ce type de processus aléatoires, et nous conclurons en testant notre technique 



proposée sur des modèles plus élaborés, tels que le modèle général autorégressif et à moyenne 
mobile (ARMA).  

Ces résultats permettront aux chercheurs de mieux évaluer les résultats attendus du PPE à partir 
de modèles bien établis. Nous fournirons le MPE de référence approprié pour comparer le 
contenu informatif entre les ensembles de données réels et les modèles utilisés pour les décrire. 

En traitant les signaux déterministes, nous avons constaté que la distribution de probabilité du 
modèle est fixée par la région où la pente de la courbe est positive ou négative. Le taux 
d'échantillonnage joue également un rôle important, et augmente presque invariablement la 
valeur de l'EPP. Avec un taux d'échantillonnage élevé, l'EPP converge lentement avec l'EPP d'une 
courbe continue théorique. L'ajout de bruit blanc a également été pris en compte. Nous avons 
constaté que l'effet du bruit sur l'EPP dépend fortement de la relation entre la pente de la courbe 
et l'amplitude du bruit. Si la pente est suffisamment élevée, le bruit n'a pas d'effet visible sur 
l'EMT. En revanche, dans les régions à faible pente, le bruit domine. Néanmoins, si le taux 
d'échantillonnage d'un signal bruyant est trop élevé, nous obtiendrons des valeurs de l'EMT 
caractéristiques du bruit blanc, quelle que soit la pente. 

Nous avons également étudié le MPE attendu pour les processus gaussiens corrélés couramment 
utilisés. Au moyen de symétries de motifs pour ces signaux, nous sommes en mesure de calculer 
l'EPP en fonction de la fonction d'autocorrélation du signal. Étant donné que la procédure à gros 
grains est une combinaison linéaire des éléments du signal, le signal à gros grains qui en résulte 
est également gaussien. Par conséquent, il suffit de connaître la fonction d'autocorrélation à gros 
grains pour obtenir l'EPP pour n'importe quelle échelle. 

En explorant le bruit blanc gaussien et le bruit fractionnaire gaussien, nous concluons que l'EMT 
est invariante à l'échelle temporelle pour ces processus. Les processus autorégressifs et de 
moyenne mobile de premier ordre ont une expression élaborée, mais finalement fermée, pour 
la distribution de probabilité du modèle, qui ne dépend que des paramètres des modèles et de 
l'échelle de temps. 

Dans ce chapitre, nous avons également proposé une expression générale pour l'autocorrélation 
à gros grains pour un signal arbitraire, au moyen de formes matricielles quadratiques. Cela nous 
permet de calculer l'EPP théorique d'un signal sans connaître explicitement la fonction 
d'autocorrélation à gros grains. Nous avons présenté quelques exemples de modèles ARMA avec 
un nombre arbitraire de paramètres, et avons testé les résultats théoriques par rapport aux 
simulations, avec des résultats satisfaisants. 

Cette analyse prétend être une exploration approfondie des multiples facteurs qui influencent la 
MPE d'un signal arbitraire. La pente du signal, le taux d'échantillonnage et les fonctions 
d'autocorrélation s'avèrent primordiales dans la valeur attendue de l'EMP. La recherche des 



interactions entre ces facteurs et l'étude des dimensions arbitraires feront l'objet de travaux 
futurs. 

Chapitre 4. Affinements des MPE composites 

L'EMT et d'autres méthodes d'entropie ont été soumises à différents perfectionnements afin 
d'augmenter la précision de l'estimation de l'entropie résultante. La MPE composite (cMPE) et la 
MPE composite affinée (rcMPE) visent toutes deux à mesurer le plus grand nombre de modèles 
possibles dans le signal original sans modifier l'idée sous-jacente de l'approche MPE. Il a été 
prouvé expérimentalement que ces deux méthodes donnent de meilleurs résultats en réduisant 
la variance de l'estimateur MPE. 

C'est pourquoi, dans ce chapitre, nous allons développer davantage la théorie statistique du MPE 
en incluant les algorithmes cMPE et rcMPE. Nous présenterons et discuterons les améliorations 
qu'ils offrent par rapport à l'approche classique du PPE, ainsi que leurs inconvénients et leurs 
éventuelles lacunes. En outre, nous présentons une alternative à l'approche composite classique 
de la méthode des grains grossiers - connue sous le nom de "downsampling" - qui améliore 
encore ces méthodes raffinées, en évitant les informations redondantes provenant des 
corrélations croisées d'artefacts inhérentes à la procédure des grains grossiers. Enfin, comparer 
expérimentalement toutes les méthodes discutées précédemment pour évaluer leur précision et 
recommander l'algorithme le plus approprié pour la mesure de l'entropie ordinale dans les séries 
temporelles. 

 

Nous avons constaté que les techniques de sous-échantillonnage composite réduisent 
considérablement la variance des approches cMPE et rcMPE que l'on trouve dans la littérature. 
Plus précisément, la rcMPE sous-échantillonnée, en plus de présenter la variance minimale, a 
également montré une valeur attendue qui est restée invariante par rapport à l'échelle de temps. 
Cela sera particulièrement utile, car nous ne serons pas confrontés à des dégradations notables 
lorsque nous explorerons de grandes échelles de temps. C'est pourquoi, pour des raisons 
pratiques, nous recommandons l'utilisation de cette méthode.  

Étant donné que la corrélation croisée des artefacts des techniques composites à gros grains est 
complètement évitée par l'utilisation du processus de sous-échantillonnage composite, nous 
n'avons pas caractérisé ce phénomène explicitement à des fins pratiques - c'est toutefois un 
problème mathématique intéressant qui mérite des recherches plus approfondies. 

Chapitre 5. Applications des signaux bioélectriques 



Nous disposons maintenant des outils nécessaires pour appliquer ces méthodes à des ensembles 
de données réels. Nous allons donc maintenant présenter les applications biomédicales du MPE. 

Les mesures de modèles ordinaux ont été utiles ces dernières années pour mesurer la complexité 
des systèmes biologiques, en particulier ceux liés à l'activité électrique. Ces types de signaux sont 
caractérisés par une dynamique complexe, même au repos. Certains cas notables impliquent une 
activité cérébrale spontanée présentant un comportement complexe et non aléatoire, et même 
l'activité pathologique des crises d'épilepsie est caractérisée par une séquence ordonnée 
d'événements. Alors que la plupart des méthodes nécessitent des hypothèses supplémentaires 
concernant les caractéristiques déterministes et aléatoires du signal, les mesures de l'EP ont 
l'avantage supplémentaire d'être exemptes de modèle et robustes. Enfin, comme nous l'avons 
déjà mentionné, les techniques de PE sont rapides à exécuter, une caractéristique intéressante 
pour les applications en temps réel sans autre prétraitement, comme les contextes impliquant 
des signaux bioélectriques. 

Le placement d'électrodes à la surface de la peau permet de mesurer les champs électriques 
générés par le cœur (électrocardiogramme, ECG), le cerveau (électroencéphalogramme, EEG) ou 
le système neuromusculaire (électromyographie, EMG). Dans ce dernier cas, l'électromyographie 
a été largement utilisée pour acquérir des connaissances fondamentales sur le processus de 
recrutement de l'unité fonctionnelle musculaire - appelée unité motrice - depuis les premiers 
travaux de Piper utilisant les signaux EMG. 

Les études susmentionnées ont montré jusqu'à présent que les méthodes EMG sont bien 
adaptées à l'analyse des comportements qui impliquent une contraction musculaire. Au-delà des 
aspects fondamentaux, leurs domaines d'application sont divers : c'est le cas du sport et de 
l'ergonomie, qu'il s'agisse de réaliser des exercices isométriques ou dynamiques ; dans des 
applications cliniques et technologiques, telles que la rééducation, le biofeedback et les 
interfaces myoélectriques pour le contrôle de dispositifs prothétiques ou l'interaction 
informatique. En outre, cette technique apporte également un éclairage sur l'apprentissage 
moteur et les troubles neurologiques. 

Ce chapitre se penchera sur les applications de l'EP sur les signaux EMG, en particulier les EMG 
de surface (sEMG). 

Comme l'acquisition de données sEMG à partir de la surface de la peau est nettement moins 
invasive que les techniques traditionnelles de détection à l'aiguille et au fil, la première peut être 
mise en œuvre dans un ensemble de conditions beaucoup plus diverses et flexibles, tandis que 
la seconde conserve des applications cliniques limitées. 

Tout au long de ce chapitre, nous avons passé en revue les propriétés et les mécanismes 
physiologiques des signaux sEMG, tant du point de vue de la biomédecine que de la théorie de 



l'information. Nous avons conçu une expérience concernant les contractions isométriques qui 
envisageait différentes conditions de force et de fatigue, avec l'intention d'évaluer la validité et 
la performance de différentes mesures de l'entropie de permutation (MPE, rcMPE et rcDPE). Par 
la suite, alors que nous cherchions les paramètres optimaux pour maximiser la différence 
d'entropie entre les conditions de contraction musculaire, nous avons décidé de tester ces calculs 
sous l'effet de l'échelle de temps et des variables dimensionnelles d'intégration. Enfin, nous 
avons effectué une batterie de tests statistiques afin de déterminer la signification statistique 
des résultats obtenus. 

Avant tout, nous avons déterminé que la méthode rcDPE surpasse les autres méthodes dans la 
différenciation des niveaux de fatigue dans les contractions isométriques. Nous avons trouvé les 
différences d'entropie maximales à une échelle de temps correspondant à une fréquence de 1 
000 Hz, et nous avons conclu que la dimension d'encastrement est un facteur important, car une 
augmentation de la valeur de la dimension rend la différence d'entropie plus évidente. 

Ces méthodes d'entropie ont également permis de détecter les différences entre les niveaux de 
force. Comme l'échelle de temps optimale pour la différenciation des MPE était la première 
échelle de temps, les méthodes MPE donnent exactement les mêmes résultats - le rcDPE offrant 
de petits avantages lorsqu'il est utilisé dans cette échelle. Néanmoins, la dimension 
d'encastrement s'est révélée importante en montrant une capacité de différenciation accrue à 
des valeurs plus élevées, bien que moins prononcée que dans le cas de l'ensemble de données 
sur la fatigue. 

Toutes les contractions observées présentent une augmentation rapide de l'entropie à des 
échelles de temps basses et se stabilisent ensuite. Comme nous savons, grâce aux chapitres 
précédents, que cette ligne d'entropie horizontale ne peut pas être distinguée du bruit non 
corrélé, il est sous-entendu que les échelles de temps élevées ne fournissent aucune information 
concernant l'activité dynamique des sEMG. 

D'un point de vue biomédical, les résultats de ce chapitre sont en accord avec la littérature 
actuelle. La réduction observée de l'EPM est liée à la réduction de la complexité du signal sEMG, 
qui sont des effets bien établis de la fatigue. En ce qui concerne les niveaux de production de 
force, la différence de MPE suggère un modèle d'activité différent à différents pourcentages de 
contraction volontaire maximale. Il est intéressant de noter que la MPE, par définition, ne tient 
pas compte des informations contenues dans l'amplitude du signal sEMG. Par conséquent, toute 
différenciation des signaux à différents niveaux de force doit provenir d'un schéma différent de 
recrutement et de cadence de tir des unités motrices. 

Conclusions 



Dans le présent travail, nous avons exploré les propriétés cachées et sous-jacentes de l'entropie 
de permutation multi-échelle (EPM). Notre premier objectif était de définir et d'enrichir le corpus 
de connaissances théoriques qui sous-tend l'algorithme de l'EMP, car cela nous permettrait 
d'évaluer correctement ses propriétés statistiques, ses avantages et ses limites. Notre deuxième 
objectif était de proposer une nouvelle méthode d'EMT qui tire parti de ces résultats théoriques. 
Notre troisième et dernier objectif était d'appliquer ces connaissances à un problème biomédical 
complexe, tel que l'activité électrique des muscles, afin de différencier la fatigue et la production 
de force en tant qu'états de performance. 

Pour mieux nous positionner dans le contexte de la théorie de l'information, nous avons proposé 
au chapitre 1 un critère général de classification des mesures d'entropie les plus couramment 
utilisées en ce qui concerne sa formulation de base, la définition de l'ensemble des événements 
et les techniques de prétraitement utilisées avant le calcul de l'entropie. Bien que de nombreuses 
extensions, améliorations et généralisations différentes aient été proposées depuis les travaux 
initiaux de Shannon, il n'existe actuellement aucune méthode universelle optimale pour le calcul 
de l'entropie, car les particularités du phénomène en question doivent être prises en compte ; 
même la simple définition et la nature de l'entropie ne peuvent être interprétées que dans le 
contexte de l'expérience spécifique (complexité, quantité d'informations, etc.). Par conséquent, 
notre objectif est de fournir une vue d'ensemble des variantes d'entropie que nous pouvons 
mettre en œuvre et explorer, du point de vue mathématique et statistique. 

Nous avons présenté notre principal développement théorique du PPE au chapitre 2. Au moyen 
d'une expansion polynomiale, nous avons pu trouver une approximation analytique pour la 
mesure de l'EMT, ce qui nous a permis de trouver une expression fermée pour ses deux premiers 
moments. Nous avons trouvé le biais de MPE, dont l'approximation est indépendante de la 
distribution du modèle, en ne prenant en compte que la dimension d'encastrement, la longueur 
du signal et l'échelle.  Nous avons également caractérisé la variance de MPE, qui est étroitement 
liée à la mesure de MPE elle-même.  Ici, nous avons trouvé que notre approximation de la 
variance de l'EPP ressemble beaucoup à la limite inférieure de Cramér-Rao pour la variance 
minimale.  Même en tant que statistique biaisée, l'estimation est presque efficace. Forts de ces 
nouvelles connaissances, nous avons proposé un critère de longueur minimale plus précis pour 
l'EPP. Nous avons également indiqué les valeurs de l'EPP avec une incertitude maximale le long 
de la plage d'entropie normalisée. 

Nous avons exploré les résultats attendus pour différents modèles de signaux au chapitre 3, dans 
le but d'étudier l'effet des différentes propriétés des signaux sur les résultats globaux du MPE. 
Nous avons constaté que l'entropie des signaux déterministes est affectée par la pente du signal, 
le taux d'échantillonnage et l'amplitude du bruit - bien que la méthode soit assez robuste au bruit 
lorsque le signal a une pente prononcée. Par la suite, nous avons exploré l'EMT des processus 



stochastiques, en particulier le bruit gaussien fractionnaire (qui est fractal) et les modèles ARMA, 
où nous avons constaté qu'il est possible d'estimer un résultat EMT théorique à partir des 
paramètres des processus. D'une manière générale, cela implique que les paramètres qui 
définissent un processus aléatoire contiennent toutes les informations du processus lui-même, 
et qu'il est possible de tester les signaux réels par rapport aux modèles proposés en comparant 
les mesures d'entropie. 

À ce stade, notre base mathématique était suffisante pour aborder les propriétés statistiques des 
méthodes MPE plus raffinées. Nous avons exploré les propriétés du MPE composite bien établi 
(cMPE) et du MPE composite raffiné (rcMPE). Bien que l'amélioration de l'estimation du MPE - 
en particulier la rcMPE, où le biais et la variance sont tous deux réduits - soit bien établie, nous 
avons constaté que la méthode des grains grossiers composites introduit une corrélation croisée 
entre les signaux grossiers possibles. Bien que la variance globale soit réduite par rapport à 
l'algorithme MPE original, cet effet ajoute une source artificielle d'incertitude. Nous avons 
proposé ici une procédure de sous-échantillonnage composite comme substitut au gros grain 
classique utilisé pour les techniques d'entropie multi-échelles. Cette approche a entièrement 
évité le problème de la corrélation croisée des artefacts, ce qui a permis d'augmenter la précision 
par rapport aux méthodes utilisées dans la littérature existante. En particulier, l'entropie 
composite de permutation de sous-échantillonnage (rcDPE), en plus d'avoir la plus petite 
variance parmi les méthodes discutées ici, a également l'avantage d'un biais constant pour tout 
paramètre de sous-échantillonnage à une échelle particulière. Contrairement aux deux autres 
méthodes, cela permet à la méthode d'utiliser des valeurs plus élevées à la fois en termes 
d'échelle et de dimension, et c'est donc la technique que nous recommandons pour une 
approche d'entropie ordinale. 

Enfin, au chapitre 4, nous avons pu tester ces outils et méthodes sur des signaux réels. Les 
ensembles de données que nous avons choisis sont des signaux électromyographiques de surface 
(sEMG), qui sont pratiques à mettre en œuvre car leurs méthodes sont de nature non invasive. 
Néanmoins, certains des défis que présente cette technique sont les sources de bruit et la 
superposition de signaux multiples, qui dépend elle-même de facteurs tels que la géométrie, la 
conductivité et une myriade de considérations biologiques. Nous avons découvert que les 
méthodes d'EPM - le rcDPE affichant les meilleurs résultats parmi elles - sont capables de 
discriminer de manière cohérente entre différents états de fatigue musculaire, en particulier 
pour les dimensions à forte encombrement. Malgré le fait que les méthodes MPE n'étaient pas 
aussi cohérentes lorsque nous avons essayé de trouver des différences entre les différentes 
sorties de force, nous avons quand même pu différencier les pourcentages de contraction 
volontaire maximale (CMV) avec des résultats statistiquement significatifs. Comme les méthodes 
ordinales excluent normalement l'amplitude, cette divergence implique qu'il existe encore une 



dynamique de contraction musculaire non découverte lorsque différentes puissances de force 
sont appliquées.  

D'autre part, le choix des bons paramètres est important pour cette classification, et une 
sélection adéquate des valeurs tant pour la dimension que pour l'échelle n'est pas 
nécessairement évidente a priori : en général, les dimensions les plus élevées (dans une 
fourchette raisonnable) permettent une meilleure différenciation entre les états d'activité, 
même si les rendements diminuent ; inversement, il n'existe pas d'échelle de temps 
universellement définie à choisir pour une analyse adéquate, et elles doivent être évaluées au 
cas par cas. En ce qui concerne les implications biomédicales de ces résultats, nous avons 
constaté une réduction significative de l'entropie lorsque les muscles se fatiguent. Une 
explication possible est l'allongement du potentiel d'action - un produit des changements 
électrophysiologiques - dû à la contraction continue. Nous avons également constaté une 
diminution significative de l'entropie en présence de contractions avec une force de sortie 
élevée, qui peut être expliquée par des chevauchements avec les potentiels d'action des unités 
motrices, ainsi que par la synchronisation observée de la vitesse de tir des unités motrices. 

Il y a largement place pour des recherches plus approfondies sur le front théorique de ce sujet, 
telles que l'utilisation de nouvelles définitions de l'entropie de base dans le contexte ordinal, 
l'exploration de nouvelles partitions d'événements, ou même l'essai de modèles stochastiques 
plus généraux. Plus important encore, il serait possible de revisiter certains des ensembles de 
données biomédicales bien établis et d'obtenir une interprétation plus approfondie des résultats, 
en particulier lors de l'exploration du comportement entropique à des échelles élevées. En raison 
de la précision accrue des méthodes proposées ici, elles peuvent être appliquées à la recherche 
de comportements dynamiques précédemment cachés. Nous espérons que ce projet de 
recherche contribuera à la fois à élargir le corpus de connaissances mathématiques existant et à 
améliorer encore l'utilisation des techniques d'entropie au service des sciences médicales. 

En outre, la recherche sur les méthodes d'entropie ordinale est loin d'être terminée. D'un point 
de vue théorique, nous pouvons explorer les propriétés statistiques de l'EMT en utilisant des 
formulations de base qui diffèrent de la définition originale de Shannon. Bien entendu, nous 
devrions également intégrer la dynamique des techniques "conscientes de l'amplitude" à la 
théorie générale du comportement statistique de l'EMT. Dans le domaine des modèles de 
signaux du MPE, la différence entre la complexité et le caractère aléatoire n'est pas encore 
complètement établie, et nous pensons que l'étude de processus statistiques plus élaborés et de 
signaux déterministes chaotiques pourrait apporter un éclairage supplémentaire sur ce sujet. 

En ce qui concerne les méthodes composites, la compréhension de l'interaction entre les signaux 
grossiers reste incomplète en raison d'un manque de caractérisation correcte de l'effet de 
corrélation croisée des artefacts. Théoriquement, il est fondamental de disposer d'une meilleure 



proposition concernant la distribution de probabilité des modèles ordinaux, qui est assez 
similaire - mais pas strictement identique - à une distribution multinomiale. 

Enfin, l'étude des méthodes MPE pour la caractérisation des signaux bioélectriques est encore 
un domaine d'étude fertile. Nous espérons que les méthodes d'entropie que nous proposons - 
en particulier le rcDPE - permettront de mieux différencier les signaux sEMG dans diverses 
conditions. Ces méthodes pourraient même être appliquées à des conditions réelles en raison de 
leur temps de traitement court et de leur précision accrue, car ces scénarios n'offrent 
généralement pas le luxe de bonnes conditions de mesure, grâce à des facteurs tels que les 
sources de bruit externes ou les salves d'activité de longue durée. En outre, l'effet du biais et de 
la variance de l'EMT deviendra crucial dans les études ultérieures impliquant des signaux courts 
et des conditions plus dynamiques, car ces effets affecteront plus directement l'EMT résultante. 
En outre, l'étude des simulations de signaux sEMG peut éclairer davantage la dynamique sous-
jacente de ces méthodes d'entropie, en particulier pour les contractions de différents niveaux de 
force, qui nécessitent une exploration plus approfondie. 

Le présent travail montre la grande complexité des techniques d'entropie ordinale et leurs 
applications potentielles ultérieures sur les systèmes biologiques. Même si le corps théorique 
reste encore incomplet, les améliorations possibles des résultats permettent aux chercheurs de 
faire des calculs et des prévisions plus fins et plus précis concernant des questions de santé, telles 
que les processus moteurs. Cela dit, nous espérons que ce projet de recherche apportera plus de 
clarté sur les méthodes susmentionnées, et qu'il ouvrira la voie à d'autres recherches et mises en 
œuvre technologiques. 
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Discipline/ Spécialité : Traitement du Signal

On the Statistical Properties of Multiscale Permutation

Entropy and its Refinements, with Applications on

Surface Electromyographic Signals
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Franck QUAINE Mâıtre de Conférences, Gipsa-Lab, Grenoble-
INP et l’Université de Grenoble-Alpe
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On the Statistical Properties of Multiscale Permutation
Entropy and its Refinements, with Applications on Surface

Electromyographic Signals

Antonio Dávalos-Treviño

Abstract

Permutation entropy (PE) and multiscale permutation entropy (MPE) are exten-
sively used to measure regularity in the analysis of time series, particularly in the
context of biomedical signals. As accuracy is crucial for researchers to obtain op-
timal interpretations, it becomes increasingly important to take into account the
statistical properties of MPE.

Therefore, in the present work we begin by expanding on the statistical theory
behind MPE, with an emphasis on the characterization of its first two moments in
the context of multiscaling. Secondly, we explore the composite versions of MPE in
order to understand the underlying properties behind their improved performance;
we also created an entropy benchmark through the calculation of MPE expected
values for widely used Gaussian stochastic processes, since that gives us a reference
point to use with real biomedical signals. Finally, we differentiate between muscle
activity dynamics in isometric contractions through the application of the classical
and composite MPE methods on surface electromyographic (sEMG) data.

As a result of our project, we found MPE to be a biased statistic that decreases with
respect to the multiscaling factor, regardless of the signal’s probability distribution.
We also noticed that the variance of the MPE statistic is highly dependent on the
value of MPE itself, and almost equal to its Cramér-Rao lower bound —in other
words, confirming it is an efficient estimator. Despite showing improved results, we
realized that the composite versions also modify the MPE estimation due to the
measuring of redundant information. In light of our findings, we decided to replace
the multiscaling coarse-graining procedure with one of our own, with the intention
of improving our estimations.

Since our team observed the MPE statistic to be completely characterized by the
model parameters when applied to correlated Gaussian models, we developed a gen-
eral formulation for expected MPE with low-embedding dimensions. When applied
to real sEMG signals, we were able to distinguish between fatigue and non-fatigue
states with all methods, especially for high-embedding dimensions. Moreover, we
found that our proposed MPE method makes an even clearer difference between the
two aforementioned activity states.
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Introduction

Nadie puede dudar de que las cosas recaen
un señor se enferma y de golpe un miércoles recae...

- Julio Cortázar, Me caigo y me levanto

The use of information entropy measurements has made it possible to successfully
assess the “amount of information” or “complexity” in a system. Among the areas
that can benefit from applying these specific measurements, the biomedical field is
worth mentioning as an insight-rich discipline in which researchers have access to
considerable amounts of information through their examinees. Moreover, biologi-
cal processes are remarkably complex in nature, usually involving elaborate steps,
simultaneous events, and self-correcting feedback loops. To further illustrate the
point, bioelectrical activity is difficult to interpret, as it is usually available only as
an aggregate of multiple simultaneous elementary signals that, even when under-
stood in an isolated level, grow in complexity in their interactions when observed
from outside the body. It is for this very reason that the application of entropy
measurements through novel techniques and processes offers a promising solution to
this dilemma, as long as we can significantly differentiate between process dynamics
by measuring complexity.

Additionally, existing literature strongly associates the reduction of entropy with
the advancement of motor diseases. The idea is as follows: the decline in vari-
ability suggests a stereotypical motor activity, impeding the adjustments needed to
switch tasks or adapt to changing conditions; standing up or walking, for example,
are actions that require a constant, fluctuating compensation of gravity, wind, and
other external forces to maintain balance. Therefore, a complex and dynamic set
of instructions must be present to accomplish any of these tasks, and an individual
with a related impairment will either struggle or fail to perform them due to a lack
of proper compensation. This is explained as a reduction of the complexity of the
instructions each muscle receives.

We have decided to approach this situation by applying multiscale permutation en-
tropy (MPE). This particular measurement has a unique set of features that we
deem suitable for the characterization of this problem. First of all, permutation
entropy works with ordinal information, a quality that ensures that the method
is robust with respect to the amplitude of the source signals and the probability
distribution contained within. Given the wide range of possible signal amplitude
outputs from different subjects —a desirable property— and the fact that MPE
requires a minimum set of parameters to operate, it becomes easy to obtain mean-
ingful results out of the system due to its simplified requirements. Furthermore,
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the MPE computation is simple and straightforward to perform, with a clear range
of maximum and minimum values. The multiscaling preprocessing also allows the
researcher to explore signals at different time scales, thus allowing the identification
of hidden long-range information that is not necessarily available from direct raw
signal acquisition.

Although MPE measurements and its variants have been successfully applied before,
the discussion of this method in literature is usually treated from an algorithmic
point of view. Since entropy measurements —especially MPE— are defined as a
function of the source’s probability distribution, it makes sense to complement these
techniques by including a statistical point of view and approach; for instance, we
would only obtain an approximation of the real distribution of the phenomenon as
a consequence of the limited information present on signal sources.

Previous work exists on the characterization on this problem [1], with special empha-
sis on the embedding dimension and signal length, yet the interaction of the statistic
with the coarse-graining procedure has not been previously addressed in literature.
It is also worth mentioning that some statistical properties —particularly bias—
have been reported in literature before, but they are usually only mentioned as an
afterthought. Also, there is little knowledge on the MPE variance, and this is a
measurement that does not necessarily conform to the widely applied assumption
of normality. Considering the aforementioned reasons, it is possible to misinterpret
observed MPE behavior as an emerging property of the phenomenon in question,
when the statistic itself can be the source of these unwanted effects.

Our first objective in the present work is to further develop the theory behind MPE
measurement, as well as to understand its behavior over known signal models and
stochastic processes. With this knowledge, we would be able to state and develop
our second goal: to propose a new MPE technique as an improvement over other
well-established methods, including the original computation and its refinements.
Lastly, we will apply these methods to real electromyographic (EMG) signals, with
the intention of obtaining an updated interpretation of the MPE measurement over
real biological systems, and to improve the precision of existing ordinal techniques
for the purpose of classification.

In the interest of clarity, as we present our findings throughout this research project,
we will also discuss results previously published by our team and expand on said
findings: a study pertaining to the statistical properties of MPE measurement in
[2] and [3], and findings concerning the interaction of MPE with autoregressive and
moving average processes [4].

In Chapter 1 we begin by introducing readers to the overall landscape of available
entropy techniques, classifying them in a way that readers can differentiate between
the nature of the possible options available to researchers. In Chapter 2 we focus on
the statistical properties of multiscale permutation entropy, providing a closed form
for the approximation of the MPE statistic —taking in consideration its distribu-
tion and the effect of the signal’s length— and general expressions for its first two
moments. In Chapter 3 we apply the MPE estimation over widely common signal
models and stochastic processes to further evaluate entropy properties under known
conditions, resulting in a theoretical MPE expected value for Gaussian stochastic
processes. In Chapter 4 we explore the properties of MPE refinements in order
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to obtain a deeper understanding of the reasons behind their improved precision,
subsequently producing an MPE method to further reduce the entropy estimation
uncertainty. Finally, in Chapter 5 we tackle the complex problem of real surface
electromyographic (sEMG) signals by applying the methods discussed so far in a
variety of experimental setups, and provide an updated interpretation of entropy
measurements in this context, both from a statistical and biological perspective.
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Chapter 1

Information Entropy - Concepts
and Definitions

Teóricamente a nada o a nadie se le ocurriŕıa recaer
pero lo mismo está sujeto
sobre todo porque recae sin conciencia
recae como si nunca antes.

- Julio Cortázar, Me caigo y me levanto

1.1 Introduction

With his seminal paper [5], C.E. Shannon established the basis of information theory.
The author defined the concept of information measurements, including information
entropy.

In layman’s terms, entropy is a measure of unpredictability [5]. Given a string
of symbols, a high entropy level implies that any given symbol cannot be easily
predicted by looking at its preceding symbols in the string; conversely, a low entropy
value implies that each symbol can be deduced from its history. A completely
unpredictable string of symbols will yield the maximum entropy possible by the
system, whereas the minimum entropy will occur when only one symbol repeats
itself without fail; in a more general sense, however, it is usual that there is a
certain probability for each symbol to appear in any given string. Hence, it can be
inferred intuitively that this measurement requires some knowledge of the probability
distribution and, consequently, that the entropy must be a function of the probability
function associated with the string.

Although entropy measures a precise property of a random set based on raw data,
a proper interpretation depends heavily on context, since there is a lack of a uni-
versal interpretation of said measurements. While entropy is defined in the context
of thermodynamics —the discipline that entropy took its inspiration from— as a
measure of the irreversibility of any thermodynamic process (by the definition of
Rudolph Clausius [6]), entropy is referred to as content, diversity, or complexity in
the context of information. Nonetheless, the use of information entropy can still be
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justified from a pragmatic perspective, as it has been used successfully in a wide
variety of applications, such as data compression and applications in both finances
and biomedicine [7], [8], [9]. Even when the true nature and meaning of information
entropy is up to debate, this measurement has its uses and implementations.

Since its original formulation in 1948, a large number of entropy variants have been
proposed [10]. The sheer amount of options to date are daunting: for each small
change in the in method, data source, or application, there exists an entropy mea-
surement with a proper name and its own considerations. Not only that, but each
variant comes with its own advantages and disadvantages, further establishing that
there is not a one-size-fits-all solution as of today.

In the following chapters, we will focus our efforts in the proper use and char-
acterization of multiscale permutation entropy, including its statistical properties,
expected results from known time series models, and real-life applications on elec-
tromyographic signals. Before we can delve directly in the inner workings of this
method, we need first to present a proper landscape for the use of information
entropy, including its variants and common applications.

In Figure 1.1, we present a general map of the practical entropy analysis on time
series. Any step in this process can have its own set of variants, either addressing
different problems or trying to capture different phenomena within the same dataset.
We will outline throughout this chapter the most common entropy variants at each
level of analysis. We will then explore the methods with an “inside-out” approach,
beginning with the variations of the core entropy definition. Afterwards we will
follow the possible variants in the formulation of the event set pertaining to the
phenomenon. The last step will consist in reviewing the possible preprocessing
variants on the source signal —where the raw data is prepared for entropy analysis—
and briefly discussing the refinements made and the reasoning behind their selection.
Although we provide a general landscape of all the entropy variants, the presented
list and accompanying discussion are far from exhaustive.

Figure 1.1: Entropy analysis stage components. We can conceptu-
alize the components of any entropy measure in the following three
consecutive steps: we must select the proper entropy formulation
to use, define the partition that properly describes the system we
are to measure, and decide which kind of pre-processing (if any)
will be performed on the experimental data

This chapter ends with the discussion of the multiscale permutation Entropy (MPE),

6



CHAPTER 1. INFORMATION ENTROPY - CONCEPTS AND DEFINITIONS

since its general characteristics and properties are particularly suited to our intended
application within the analysis of electromyographic signals.

1.2 Entropy Formulations

To properly define and measure the “quantity of information”, Shannon outlined
the minimum requirements for it to work. If we have a set of n events whose
probabilities of occurrence are p1, p2, . . . , pn, where

∑n
i=1 pi = 1, the measure of

uncertainty H(p1, p2, . . . , pn) must have the following properties [5],

1. H should be continuous on pi.

2. If all the probabilities are the same
(
pi =

1
n

)
, thenH should be a monotonically

increasing function of n.

3. If a choice is broken into two successive choices, the original H should be the
weighted sum of the individual values ofH associated with each step.(Recursion
Property)

In this section we will review the most common entropy formulation from the per-
spective of information theory. We will first discuss the original Shannon’s entropy,
as well as some of its alternatives, which also satisfy the properties above.

1.2.1 Classical Shannon’s Entropy

After proposing the properties of the measure of uncertainty, Shannon defined the
following equation,

H = −K
n∑

i=1

pi log pi, (1.1)

where K is any real positive constant. This equation is strikingly similar to the
definition of the Boltzmann-Gibbs entropy in a thermodynamic system [6],

H = −kb

n∑

i=1

pi log pi, (1.2)

where kb is the Boltzmann constant, and each pi represents the probability of a
microstate in the context of statistical mechanics —and later, in quantum physics.
Therefore, the name “entropy” for Shannon’s equation seems fit for the task. More-
over, by removing the equation from the physical phenomenon, it is possible to apply
this measurement to any system with appropriate partitions that obey the funda-
mental axioms of probability. Instead of particle microstates, we can talk about
alphabets, patterns, or symbols, as long as they form an appropriate event set.

Some interesting properties arise from Shannons’s entropy definition (1.1),
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1. H = 0 if and only if pi = 1 for any particular i, and zero otherwise. Any other
case yields to a positive value for H.

2. For any given n, H is maximum when all pi =
1
n
. This is the case of maximum

uncertainty, and corresponds with the discrete uniform distribution.

3. For any two joint events r and s, the joint entropy obeys the inequality,

H(r, s) ≤ H(r) +H(s), (1.3)

when equality is achieved only when the events r and s are independent.

4. Any change of probabilities that makes the probability distribution approach
the uniform case increases the value of H.

5. Given two joint events r and s (not necessarily independent) for any particular
value of r, there is a conditional probability pr(s), given by

pr(s) =
p(r, s)∑
s p(r, s)

.

Shannon defined the conditional entropy of s, labeledHr(s) [11], as the weighted
average of the entropy s for each value of r.

Hr(s) = −
∑

r,s

p(r, s) log pr(s)

Therefore,
H(r, s) = H(r) +Hr(s).

Equation (1.1) is the most straightforward equation that meets the properties de-
scribed above. We must note that this is a deterministic equation of the probability
distribution of the phenomenon to describe. This implies that, if we work in a
practical, data-driven application, we can only approximate the mass probability
function. Therefore, the event probabilities pi need to be estimated, and thus, H
would become a statistic. This will be extensively discussed in Chapter 2.

1.2.2 Tsallis Entropy

If the Shannon’s recursivity property is not strictly enforced, the logarithmic func-
tion in (1.1) is not the only equation to satisfy the properties outlined forH(p1, . . . , pn).
In 1967, Havrda and Charvát proposed a new equation for entropy called Havrda–Charvát
structural α-entropy [12]. Later in 1988, Constantino Tsallis proposed a measure
now known as Tsallis entropy within the context of thermodynamics. Both formu-
lations are functionally the same.

For a complete discrete set of probabilities {pi}, and a real parameter q, the Tsallis
entropy is defined as [13]

Hq =
K

q − 1

(
1−

∑

i

pqi

)
. (1.4)
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In the case where q approaches the value of 1, the Tsallis entropy converges with
Shannon’s entropy

limq→1Hq = −K
n∑

i=1

pi log pi = H.

By contrast, the main difference in the Tsallis entropy comes from the fact that it
is not completely additive. For any two joint independent events r and s, such that

P (r, s) = P (r)P (s), (1.5)

the Tsallis entropy satisfies the following relationship:

Hq(r, s) = Hq(r) + Sq(s) + (1− q)Hq(r)Sq(s).

Hence, the parameter q, in this case, produces a deviation from the traditional con-
straints of entropy additivity, which is particularly well-suited for physical systems
with long-range interactions, long-term memory, or fractal properties [14]. Tsal-
lis Entropy is specially useful in the description of particle velocity which present
power-law distributions [15] —conditions that are widely present in the field of
plasma astrophysics [16]. Additionally, Tsallis entropy has been used in other fields,
most notably image processing for segmentation[17] [18], where the images present
similar properties as described above [14].

1.2.3 Rényi’s Entropy

In a similar fashion, Alfred Rényi proposed a generalized entropy measurement [19].
For a real non-negative value α ≥ 0 and α 6= 1, Rényi’s entropy is defined as

Hα =
1

α− 1
log

(
n∑

i=1

pαi

)
, (1.6)

where each pi, as usual, represents the probabilities of all the possible events in the
event set, and n is the number of such events.

Rényi’s entropy is heavily modulated by the parameter α, since it modifies the
influence of the events in the final entropy measurement. For values of α close
to zero, all events tend to have the same weight, regardless of their probability of
occurrence. For high values of α (close to infinity) only the most probable events
have an influence in the final entropy value.

There are some interesting special cases for the Rényi’s Entropy. In the case that
α = 0, we obtain the max-entropy —or Hartley entropy— as long as the probabilities
are not zero,

Hα=0 = log(n), (1.7)
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which is the logarithm of the cardinality of the event set (the number of the events
in the set). Conversely, when the value of α approaches infinity, we have the min-
entropy, defined as [19]

limα→∞Hα = min(− log(pi)) = −max(log(pi)) = − log(max(pi)), (1.8)

which takes only the most probable event in account.

In the limit case when α approaches 1, we have,

limα→1Hα = −
n∑

i=1

pi log pi, (1.9)

which is, once again, Shannon’s entropy.

Rényi’s entropy generalization is particularly well-suited to analyze phenomena with
probability distributions which are notoriously different from a Gaussian behavior
[20]. This adds flexibility in the application of spectral estimations, pattern recog-
nition, and source separation [20]. Some applications can be found in biomedical
engineering [21], such as the measurement of Gaussianity of heart rate signals.

1.2.4 Entropy Formulations Remarks

Tsallis and Rényi’s entropies are some of the most widely used generalizations of
the classical Shannon entropy. Other generalized entropies are also available [22],
which present further ways to add flexibility by introducing weights to the proba-
bility distributions of the phenomena they describe. Once again, the context and
applications will define the suitability of each entropy measurement.

1.3 Event Partitions for Entropy

All entropy measurements, as defined here so far, act over a discrete probability
function. It is possible to extend these procedures for a continuous probability
density function (pdf). In practice, however, we are interested in particular events.
Therefore, even continuous distributions are partitioned in such a manner that they
reflect the events we are interested in measuring, and the definition of the sample
space Ω is utterly important.

Shannon’s work [5] portrays the original source as a string of symbols. These can
be directly in binary code format —the reason behind the use of log2— or any other
set of symbols, like the Latin alphabet. By having a string of symbols, it is possible
to interpret the entropy of the signal as a measure of the quantity of information
[5].

It is obvious that for a binary code, Ω = {0, 1}, there are only two possible events:
a random string of bits will produce either maximum entropy (each bit is com-
pletely unpredictable, given the knowledge of previous bits) or an entropy value
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of zero if we receive a string consisting of the same value (the knowledge of the
first bit is enough to predict the whole string). For the Latin alphabet, we have
26 different events for each letter if we exclude spaces, special symbols, uppercase,
accents, or punctuation marks. Although the logic behind the entropy measure-
ment does not change, the sample space is completely different. For example, we
obtain a binary string if we translate the Latin alphabet to binary code by us-
ing the ASCII convention, but the events will be defined as Ω = {′a′,′ b′, . . . ,′ z′} =
{0000000001100001, 0000000001100010, . . . , 0000000001111010}, using 16 bits for en-
coding. In literature, the event set partition Ω is enough to rename entropy mea-
surements altogether. Since there is a potentially infinite number of sample space
definitions, context and application, once again, will suggest the most useful ap-
proach.

Even though information entropy seems to be so far constrained to the use of sym-
bols, this limitation can be easily bypassed in the case of a time series composed
of measurements with continuous distributions. If we carefully select the partitions
for the sample space, a continuous distribution becomes discrete as the events are
clearly —and mutually exclusive— defined. This opens the entropy measurement
to any time series.

The most common approach for defining the event set in this scenario is to define the
sample set Ω by using patterns within the raw signal. By comparing the occurrence
of a certain pattern among the rest of the signal, it is possible to have an estimator of
the occurrence of that pattern. This, in turn, estimates its probability, which allows
entropy analysis to occur. We will briefly discuss some of the most commonly used
techniques in the context of signal processing.

1.3.1 Approximate Entropy

S. M. Pincus first developed and proposed [23] approximate entropy (ApEn) specif-
ically for the analysis of medical data. ApEn compares, for a particular cardinal
pattern, the similarity with all other patterns of the same length contained in the
signal. Typically, ApEn is presented in algorithmical form. The steps for calculating
ApEn are as follows:

1. We obtain a time series x = [x1, x2, . . . , xN ], with a uniform sampling rate. N
refers to the signal’s length; i.e. the number of samples.

2. We fix the parameter m for the size of the pattern, consisting of the number
of successive data points used for analysis.

3. We form a sequence of vectors x1,x2, . . . ,xN−m+1, where each vector is defined
as xi = [xi, . . . , xi+m−1] ∈ R

m.

4. For each vector i, we count the number of vectors j whose distance is equal or
less than a fixed tolerance r ∈ R

+,

Cm
i =

#(d[xi,xj] ≤ r)

N −m+ 1
, (1.10)

where the symbol # denotes cardinality, and the distance d[xi,xj] is defined
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as,
d[xi,xj] = max

a
|xi(a)− xj(a)|; (1.11)

that is, the position a within the vector that has the maximum difference
among their scalar elements. This distance measure is known as the Chebyschev’s
Distance [24].

5. We build up the following measurement,

Φm(r) =

∑N−m+1
i=1 log(Cm

i )

N −m+ 1
, (1.12)

which is the average of the logarithm of all calculated Cm
i .

6. Finally, the ApEn measurement is:

ApEn = Φm(r)− Φm+1(r). (1.13)

As we can see, the event partition for ApEn does not include all the possible patterns
in the signal, since that would require a large amount of data to make a proper
estimation [23]. The method herein uses the present time series, and assumes all
possible patterns included within —this is the “approximate” part. Although not
an exact solution, this allows researchers to construct an appropriate partition to
use as an entropy measurement.

This method is reported to have satisfactory results for a short signal length, and
it is fast to compute [23]. Nonetheless, ApEn is still dependent on the signal length
and the choice of a proper tolerance parameter, since the value of r is not a trivial
choice. In practice, the value r is chosen as a proportion of the signal’s standard
deviation.

We notice here that ApEn includes vector self-comparisons. Without this feature,
the individual Cm

i could be zero, making it impossible to compute ApEn. However,
proceeding in such a manner makes ApEn report a higher regularity than it should,
which is only a problem when working with short time series.

1.3.2 Sample Entropy

Sample entropy (SampEn) is a refinement over ApEn proposed by Richman and
Moorman [25]. In principle, the process is identical, yet with some key modifications:

1. We follow steps 1 to 3 from ApEn.

2. We define CA and CB in a way that

CA = #(d[xi,xj] ≤ r) for vector size m+ 1

CB = #(d[xi,xj] ≤ r) for vector size m

for all i 6= j (that is, without vector self-comparisons).

3. We calculate SampEn as:

SampEn = − log
CA

CB

. (1.14)
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In the case of SampEn, the vector comparisons are done in a way that no vector is
compared with itself, which is indeed done in ApEn. Since count variables A and
B have a small chance of being undefined, as they are the sum of all possible vector
comparisons, the regular overestimation of ApEn is not present here. Given that the
method is similar to ApEn, the event set partition approximation is almost equal.
The authors found SampEn results that agree better than ApEn when tested over
random numbers with known probability distributions [25]. In the particular case of
short time series, SampEn also shows a reduced bias in respect to ApEn [25]. These
properties make SampEn a more widely used entropy measurement, specially as the
base formulation for more elaborate algorithms [26].

1.3.3 Permutation Entropy

Permutation entropy (PE), proposed by Bandt and Pompe [27], uses the pattern
approach with the ordinal information. Instead of relying on approximate distance
measurements, PE only takes the order of the data points inside the pattern seg-
ments. This has the advantage of offering a full partition, which consists of all the
possible order permutations for the segment size at the cost of losing information
concerning the signal amplitude. This issue is addressed in [28] by weighting the
contributions to the probability distribution based on the amplitude of the patterns.

Since the event set is automatically defined by the pattern size d —the embedding
dimension— we can estimate the mass probability distribution by counting the
number of patterns of each type within the signal,

p̂i =
#{t| t < N − d, (xt, . . . , xt+d−1) has type i}

N − d+ 1
, (1.15)

for each of the i = 1, . . . , d! possible patterns. With this distribution, PE is ob-
tained by calculating the classical Shannon’s entropy. The PE algorithm is also
fast to compute for a small dimension, and it is invariant to nonlinear monotonous
transformations [27].

Nonetheless, by working on a complete event set, PE takes the opposite approach
of ApEn, where the set itself is approximated. This implies that he signal length
must be large to have a proper estimation, yet it is recommended in practice to
work with the restriction N ≫ d! to have an adequate probability distribution
estimation [29]. Some applications include the stock market [30], where PE was
successfully used as a measure of market efficiency; in mechanical engineering, PE
has been used on motor bearing fault diagnosis [31], where the method proposed
was not only capable of detecting anomalies, but also in discriminating between
fault types and fault severity. In [32], where the authors implemented multivariate
approach to PE on electroencephalograms from patients with Alzheimer’s disease,
PE was successful in detecting the “slowing” effect related to the disease, as well as
in detecting anomalies in synchronicity between channels. Further examples of PE
applications in market analysis and medical research are presented in [33].
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1.3.4 Fuzzy Entropy

At this level of analysis, we have so far worked with clearly delimited, mutually
exclusive partitions. This is the place where set theory and probability theory
intersect (pun intended). A novel approach to analyze the problem of quantifying
information is to use fuzzy logic as an alternative to classic probability definitions of
event sets and partitions. For the sake of brevity, we will only discuss fuzzy entropy
briefly, outlining its basic tenets as a variation to the event set definitions used so
far.

In the context of fuzzy logic, the boundaries between partitions are not strongly
defined, and the membership to a certain event is replaced by a membership function,
usually a ramp or a sigmoid [34]. Any particular event can be a member of different
partitions, with a particular weight defined by its membership.

De Luca and Termini [35] defined a set of axioms for fuzzy entropy, which are
analogous to the properties outlined by Shannon. Being A and B partitions defined
in a fuzzy set, xi representing any particular event, and both mA(xi) and mB(xi)
being corresponding membership functions of A and B, respectively, then HF is an
entropy measure if it satisfies the following conditions:

1. HF (A) = 0 if and only if A is not Fuzzy (partitions are defined and mutually
exclusive).

2. HF (A) = 1 if and only if mA(xi) = 0.5 for all i (all events are “halfway”
members of A).

3. HF (A) ≤ HF (B) if A is less fuzzy than B; i.e. mA(x) ≤ mB(x) ifmB(x) ≤ 0.5,
and mA(x) ≥ mB(x) if mB(x) ≥ 0.5.

4. HF (A) = HF (A
c) (the entropy of A is equal to the entropy of the complement

of A).

Given these conditions, de Luca and Termini defined the fuzzy analog to information
entropy as follows [35],

HF,k(A) = DF (A) +DF (A
c), (1.16)

where

DF (A) = −k

n∑

i=1

mA(xi) logmA(xi). (1.17)

A more generalized version is proposed by Kosko [36], based on the relative distances
between the fuzzy set and its non-fuzzy counterparts,

Rp(A) =
lp(A, Ā)

lp(A,A)
, (1.18)
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where the distance lp is defined as

lp(A,B) =

(
∑

i

|mA(xi)−mB(xi)|p
)1/p

, (1.19)

where Ā is the closest non-fuzzy set to A, and A is the farthest one.

In this context, entropy refers to the “vagueness” of the membership of any event
to subset A. Therefore, the interpretation of fuzzy entropy is not grounded on
probability, as Shannon entropy is. Nonetheless, fuzzy entropy has been used as a
suitable alternative to SampEn in the analysis of surface electromyographic signal
dynamics [37] [38]. In general, fuzzy entropy provides a better relative consistency
than methods such as SampEn and ApEn, as well as improving on its statistical
stability [38].

1.4 Signal Pre-Processing: Multiscaling

Now we have explored and visited some of the possible variants for entropy analysis
at the level of the core equation and the event set partition. These calculations can
be done on the raw signal directly, but it is beneficial to explore the information
content at different time scales —a particularly desirable approach when we are
looking for information contained inside longer trends. Costa et al. [26] introduced
the concept of multiscale entropy (MSEn) to take longer correlations and trends
within the signal. The process consists on applying a coarse-graining procedure to
the original signal, and implementing an entropy measurement afterwards. This
process has several variants, as pointed out by Humeau-Heurtier [10], and some of
them will be mentioned in this section. The coarse-graining procedure is completely
decoupled from the entropy equations, so it can be applied in conjunction with any
of the previous techniques as long as the proper event set is defined.

1.4.1 Multiscale Entropy

Given an arbitrary time series x = [x1, . . . , xN ]
′ (where the symbol ′ denotes trans-

position), the MSEn [26] consists of two main steps;

1. The coarse-graining procedure. For a particular time scalem, we build a coarse
signal x(m) = [x

(m)
1 , . . . , x

(m)
N/m]

′ by dividing the original signal in nonoverlapping
segments of m data points in length. The coarse-graining procedure consists
on taking the mean value of the segment,

x
(m)
j =

1

m

jm∑

i=m(j−1)+1

xi, (1.20)

where j = 1, . . . ,m ∈ N.

2. Compute SampEn (1.14) in this new coarse signal.
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A schematic representation is provided in Figure 1.2.

With this procedure, it is possible to find long-range measures of regularity hidden
within the signal. For the purposes of classification and diagnosis —the original
context of [26]— we are not bound to the raw data. When we compare MSEn from
different sources, we can choose the scale with the most pronounced differences, and
thus, improve the classification process.

Figure 1.2: The coarse-graining procedure takes the average of all
the data points within non-overlapping segments of size m. This
diagram is based on the one presented in [39].

There are, of course, some drawbacks to this method, which we will take into ac-
count. The coarse-graining procedure can be further described as a process with
two steps:

1. A moving average filtering with window size m.

2. A downsampling of the averaged signal by a factor m.

This implies that the coarse-grained signal’s length is reduced by a factor of 1/m.
This length reduction yields an increasingly imprecise sampling of the possible events
in the set, and thus, compromises the reliability of the entropy measurement.

We should also observe the frequency properties of the coarse-graining procedure,
which is equivalent to a finite-impulse low-pass filter that cannot prevent aliasing
when the downsampling procedure is applied [40].

It is also necessary to revisit the SampEn tolerance parameter r. As previously
mentioned, r is usually chosen as a percentage of the signal’s standard deviation
[25]. The coarse-graining procedure yields signals with a reduced variance, and
therefore can lead to increased coincidences between patterns. Therefore, r must be
revisited at each scale to adequately maintain proportion.

1.4.2 Refined Multiscale Entropy

Valencia et al. [40] proposed a series of refinements to address these drawbacks on
the original MSEn. The modifications can be summarized as follows:

To avoid the aliasing problem in the frequency domain present by using the coarse-
graining procedure as a filter, the authors proposed the use of a Butterworth low-pass
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filter instead of a moving average filter,

|H(e2πif )|2 = 1

1 + (f/fc)2η

where η is the filter order, fc is the cutoff frequency, and i =
√
−1. This reduces

the aliasing when the filtered time series is subsequently downsampled.

This measurement is known as refined multiscale entropy (rMSE). By testing the
method in white Gaussian noise and 1/f noise, they found significant differences:
rMSE keeps the entropy flat on white Gaussian noise and shows an increase in 1/f
noise, while MSEn presents a monotonic decrease for both signals along the time
scale. These effects are most notorious on short time series, where fast oscillations
are dominant.

1.4.3 Composite and Refined Composite Multiscale Entropy

Both the composite multiscale entropy (cMSE) [41] and refined composite multi-
scale entropy (rcMSE) [42] aim to increase the number of coarse-grained segments
obtained from a single raw signal. Given an original signal x = [x1, . . . , xN ]

′ and
a time scale m, we can get a different partition from x by starting the partition
process at different points; for the original MSEn, it is assumed that the segments
starts at x1. If we set a starting point at k = 1, 2, . . . ,m, we can build up to m dif-
ferent coarse-grained signals for that time scale. Thus, the composite coarse-crained
procedure can be written as

x
(m)
k,j =

1

m

jm+(k−1)∑

i=m(j−1)+k

xi (1.21)

where x
(m)
k,j are the elements of the segment vector x

(m)
k . The cMSE consists of the

average SampEn measured for all possible coarse-grained signals x
(m)
k for time scale

m:

cMSE(x,m, r) =
1

m

m∑

1

SampEn(x
(m)
k , r). (1.22)

This measurement takes advantage of the reduced variance of a mean value to in-
crease the precision of the entropy measurement. Wu et al. [41] show the improved
precision of cMSE over MSEn on white noise —1/f noise— and real fault-bearing
vibration signals.

1.4.4 Refined Composite Multiscale Entropy

The rcMSE [42] uses a similar approach and utilizes the same composite coarse-
graining procedure in equation (1.21). Nonetheless, the procedure first makes the
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pattern count along all the coarse signals for scale m, and then performs a single
SampEn calculation. Hence,

rcMSE = − log

∑m
k=1 CA,k∑m
k=1 CB,k

, (1.23)

where

CA,k = #(d[x
(m)
k (i),x

(m)
k (j)] ≤ r) for vector size m+ 1 (1.24)

CB,k = #(d[x
(m)
k (i),x

(m)
k (j)] ≤ r) for vector size m. (1.25)

This calculation further improves the precision of the cMSE by relying on the in-
creased number of sample pair comparisons, instead of the average of SampEn over
composite signals. This allows rcMSE to maintain accurate entropy estimations on
shorter time series [42].

1.4.5 Modified Multiscale Entropy

In order to reduce the effect of the coarse-graining procedure on the signal length,
Wu et al. [43] propose a modification to the original MSEn algorithm named, ap-
propriately, modified multiscale entropy (mMSEn) . The authors applied a moving
average filtering without the subsequent downsampling, effectively taking all the
possible segments within the signal with overlap.

This approach presents the advantage of increasing the number of pattern com-
parisons, and thus, reducing the variance of the probability estimation. This is
particularly well-suited for short time series, where there are less samples to work
with. Nonetheless, the comparison of segments with common data points can lead to
unexpected pattern matches, a phenomenon that will be further explored in Chapter
4.

1.4.6 Generalized Multiscale Entropy

In order to explore other properties of the signal, such as the dynamics of the
variance, Costa et al. [44] propose the use of the generalized MSEn by using higher
moments in the coarse-graining procedure, other than the average:

1. The signal is divided into nonoverlapping segments, as it is done with the
classical MSEn.

2. Instead of obtaining the mean value of each of the elements within the seg-
ment’s higher-order moments —such as the variance of each segment—are
used. We build the coarse-grained signal from these calculations.

3. We calculate the SampEn for each generalized coarse-grained signal.

This type of coarse-graining leads to the analysis of a completely different aspect of
the signal. Generalized MSEn follows the signal’s volatility changes when applying
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the second moment; for the third moment, we have a measure of the variation in
symmetry.

There are multiple versions of multiscale entropy analysis, each built with a different
type of filtering, procedure or decomposition —giving place to an endless amount
of possibilities. Once again, the proper choice of multiscaling procedure depends
heavily on the properties of interest in the time series, as well as the suitability of
the properties of each method. The list here is by no means exhaustive.

1.5 A Case for Permutation Entropy

With all the possible options, variations and refinements available for the measure-
ment of information entropy, the question of the appropriate method to use remains
open. This is not an easy task, in and by itself. As we have hinted through this chap-
ter, the answer lies in the context, the particular application, and the interactions
with the specific properties of the entropy variant.

We must state here some of the peculiarities concerning the analysis of surface
electromyographic (sEMG) signals. This analysis consists of the superposition of
multiple signal sources from motor neurons, which greatly vary in amplitude and
frequency, the latter two being influenced by multiple factors. The result is an
sEMG signal with a complex behavior, and particularly prone to respond to arti-
facts. Therefore, it is imperative to decompose the effects of each of these factors
to properly establish their effect on the measurement, especially when the aim is to
diagnose a particular anomaly in motor control.

Here, the properties of permutation entropy seem notably appealing, since the anal-
ysis of ordinal patterns takes away the variations regarding the amplitude of the
signal. This implies that PE analysis is naturally invariant to the force output of
the measured sEMG signal. Also, the ordinal analysis is particularly robust in the
presence of noise: when noise is sufficiently small in comparison to the signal, these
variations do not affect the order of the data points, which lead to the same entropy
measurement. While this has its limits, it is convenient to have a method that is
inherently resistant to the effects of noise, since this quality remains even if the noise
is not white or normally distributed.

We will also take advantage of the multiscale coarse-graining procedure in conjunc-
tion with PE, a measurement known as multiscale permutation entropy (MPE) [45].
This variant allows us to explore the long-trend components within the signal, and
look for regularity in muscle activity that can otherwise remain obscured by the fine
resolution of the sampling frequency used for data acquisition. Since the firing fre-
quency of the motor units has a biological upper limit, the exploration and emphasis
on lower frequencies (and thus, longer trends) is justified.

Since one of the main goals of this project is to properly characterize the statisti-
cal properties of multiscale permutation entropy, it is necessary to approach this
method with the least possible number of modifications. Hence, we are using the
classical Shannon’s entropy as proposed by Bandt and Pompe for PE. Other en-
tropy formulations, like Tsallis or Rényi, contain an additional level of complexity,
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worthy of a vast exploration work on their own. At this moment, even when MPE
is widely studied for its biomedical applications, its statistical properties are not
completely explored. Therefore, before we take into consideration further entropy
equations —or alternative multiscaling techniques and refinements— we need the
proper statistical characterization for the original MPE.

1.6 Closing Remarks

Thus far we have reviewed and summarized a wide array of entropy measurements,
starting with the original information theory formulation by Shannon [5]. We have
explained the variations in entropy formulations, event partition definitions, and
signal multiscaling. We covered the general spirit behind these entropy measurement
proposals, as well as the specific motivations behind them. Despite not being fully
comprehensive, this chapter provides a “big picture” regarding information entropy.

For the purposes of this project, we will focus on multiscale permutation entropy, as
explained above, because its particular properties suit the needs and requirements of
bioelectrical signal analysis. The particular mathematical and statistical properties
will be explored and discussed in Chapters 2 and 4, while the MPE applicability
will be further explored in Chapter 5.

Chapter Summary

• Information entropy is a measure of unpredictability within a particular sys-
tem. It is also interpreted as complexity, diversity or amount of information,
depending on the context.

• Entropy analysis is structured as:

– Equation: the actual computation of the entropy measurement.

– Event partition: the possible events within the system, as defined by
researchers. This implies corresponding probabilities assigned to each
event.

– Data Preprocessing: in most cases, entropy analysis and the event par-
tition are not applied directly to the system data, but a transformation
of it. This is specially relevant when working on time series at different
scales.

• Shannon’s entropy is the classical formulation. A couple of example gener-
alizations include the measurements postulated by Tsallis and Renyi, where
different weights are assigned to different events.

• Since entropy works with probabilities, it is equally important to define event
partitions. Since we will work within the context of time series, some of the
most prominent examples include

– Approximate/sample Entropy: approximate partitions taken directly from
the raw signal, which define the event set by similarity between signal
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segments.

– Permutation entropy: measures the rank patterns within segments in a
signal. Since all possible rank permutations are defined by the embedded
dimension, the event set is completely characterized.

– Fuzzy entropy. Based on membership functions with imperfect classifiers,
the entropy here measures “fuzziness” of the event set instead of the
probabilities of delimited, mutually exclusive events.

• In this context, signal preprocessing deals mainly with the filtering of the orig-
inal signal before defining the adequate event partitions for entropy analysis.

– Multiscale entropy applies a Coarse-Graining procedure: a moving aver-
age filter with downsampling, such that there is no overlap between data
points. This procedure captures the information contained inside long-
range trends. Several refinements of multiscaling exist, mainly to address
the problem of signal length reduction.

– Generalized multiscale entropy computes the multiscale information not
only from the average filter, but also taking advantage of higher moments.

• For the purposes of this work, we will use Multiscale Permutation Entropy, a
procedure which is particularly suitable for sEMG analysis:

– The MPE procedure is fast to compute and robust over outliers.

– MPE is invariant to signal amplitude, which eliminates the problem of
variability in signal strength proper of subject biological variability. This
implies MPE is also invariant to force output.

– Although there is sufficient development in literature regarding PE, the
multiscale variant is not completely understood from a statistical point
of view, which limits the interpretation of the results. We will develop
the necessary theory in the next chapter.
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Chapter 2

Multiscale Permutation Entropy -
Theoretical Statistics

Pero el problema, para nosotros los que pensamos nuestra vida,
es confuso y casi infinito...

- Julio Cortázar, Me caigo y me levanto

2.1 Introduction

So far, we have explored the diverse entropy analysis options we have available
when trying to measure the amount of information in a system. From all these
possibilities, we made a case in favor of multiscale permutation entropy (MPE) [45]
as an extension from the classical Permutation Entropy (PE) [27]. MPE can be
conceptualized as follows:

• Equation: Shannon’s entropy.

• Event partition: ordinal patterns.

• Preprocessing: coarse-graining procedure.

In Section 1.5 we briefly stated the reasons for this particular choice in the context
of biomedical signals. Working with ordinal patterns produces an entropy measure-
ment which is invariant respect to the signal’s amplitude, and particularly to the
presence of outliers [27]. Although there is relevant information contained within
the amplitude, we are more concerned with the functional shape of the signal —a
noteworthy scenario would include when the biological variability between subjects
makes comparisons difficult. Additionally, MPE also presents the advantage of hav-
ing a defined event set prior to the introduction of the data set to analyze, avoiding
the necessity of working with approximate event partitions.

The simplicity of MPE analysis also keeps the need of parameter calibration to a
bare minimum, since no tolerance value is needed. Also, computationally speaking,
the count of ordinal patterns is a fast process, a factor that can potentially lead to
real-time applications. The multiscaling process, added to the original PE, allows
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researchers to explore the information content in time scales not directly measured
with the raw signal, which expands the scope of the original analysis. Nonetheless,
the method is not without drawbacks: the ordinal pattern count requires the use of
a sufficiently large dataset to be reliable [46], a matter that becomes crucial when
we explore the multiscale approach in a situation where the signal length is reduced
with increasing scales. Any initial considerations regarding the MPE analysis must
take the signal length in account.

It is important to remember that the MPE formulations are typically presented in
algorithmic form and the ordinal pattern distribution is measured directly from the
source signal, since this implies that any information collected in this manner is only
an estimation of the true pattern distribution, and hence, the MPE measurement
itself is also an estimation. Therefore, the statistical theory behind MPE is not
extensively explored in literature, with some notable exceptions [1]. This justifies
the approach of considering MPE as a statistic.

Having said this, in this Chapter we will provide a deeper development of the sta-
tistical properties of MPE as well as improving the existing theoretical framework
by expanding on the results we first presented in [2] and [3]. We will begin with a
formal definition of MPE and the coarse-graining process, which were already briefly
explained in Sections 1.3.3 and 1.4.1. We will also comment on the considerations
regarding the source signal as a random process, followed by us developing a sta-
tistical model of the MPE measurement by means of the Taylor series polynomial
expansion. This will allow us to have an approximate expression of the expected
value, bias, and variance of MPE. We will also provide the expression for the Cramér
Rao lower bound to assess the efficiency of the estimator. Next, we will test our
theoretical results against a surrogate model with an easily-modifiable parameter
set. Lastly, we will discuss and comment on the preliminary insights we obtained
from the development of the MPE statistical theory. This will allow us to better
understand the behavior of MPE, which in turn will improve the interpretation of
the results obtained when we apply this analysis to real data.

2.2 Multiscale Permutation Entropy Background

2.2.1 Permutation Entropy

For a signal x = [x1, x2, ..., xN ]
′ with N elements, we define ordinal patterns of

embedded dimension d as any possible ordinal permutation between adjacent d
points of the signal. For example, for d = 2, only two possible ordinal patterns
exist: xt < xt+1 and xt > xt+1; if dimension d = 3, we could obtain pattern xt <
xt+1 < xt+2, one of the six possible patterns. In general, for embedded dimension d,
there are d! possible patterns.

For the aforementioned signal, we will assume no particular structure or statistical
properties and establish that said signal must be uniformly sampled as the only
restriction. Since this assumption implies that no further information is known,
we can only estimate the probability of each pattern by measuring the pattern
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Figure 2.1: Ordinal pattern examples. The figures represent dis-
crete data points from a uniformly sampled signal. There are 24
possible patterns for d = 4.

counts inside the signal; in other words, we measure the cardinality of the pattern
i = 1, . . . , d! [27],

yi = #{n| n < N − (d− 1),(xn, . . . , xn+d−1) has pattern i}, (2.1)

where yi is the number of patterns of type i in the signal x. Some examples of
possible ordinal patterns are shown in Figure 2.1. We can now use yi to build an
estimate of the pattern probability p̂i:

p̂i =
#{n| n < N − (d− 1), (xt, . . . , xt+d−1) has pattern i}

N − d+ 1
. (2.2)

We use the symbol p̂i here to denote that this is an estimation of the pattern
probability, as opposed to pi, which represents the true value. For a given dimension
d, the estimate probabilities for all possible patterns i form a mass probability
distribution function (pmf). Therefore, it is possible to obtain the permutation
entropy measurement using Shannon’s definition (1.1),

Ĥ = −
d!∑

i=1

p̂i ln p̂i, (2.3)

which was already presented in Section 1.2.1. Here, the value Ĥ is an estimation,
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and thus, a statistic. We can also write the normalized version of (2.3) as follows,

Ĥ =
Ĥ

ln(d!)
=

−1

ln(d!)

d!∑

i=1

p̂i ln p̂i (2.4)

which guarantees an entropy value between zero and one.

From the algorithmic point of view, PE is easy to implement and fast to compute
given a signal x and a dimension d. Since the nature of this procedure is ordinal, PE
is invariant to nonlinear monotonous transformations [27], which is in turn a desired
property when we expect to work with signals containing different amplitudes, noise,
or outliers. On the other hand, this robustness works against us if we intent to
extract information from the signal’s amplitude.

Another obvious constraint is the length of the signal. For very short signals, the
pattern counts in (2.2) are not sufficient to provide a precise estimation of the pattern
distribution. There are several proposed guidelines for the minimum length required,
with the condition N ≫ d! [27] being the most notable one —this, however, offers
no practical guidelines to the proper size of N . Other length constrain formulations
are N ≥ 5d! [47] and N > (d + 1)! [48], which were chosen empirically. Later in
this chapter we will propose a more specific length criterion, based on theoretical
guidelines.

We should note, for the sake of completeness, that the PE definition usually includes
a downsampling factor τ [49] [30], since its use is beneficial to avoid oversampling
scenarios. For the purposes of this chapter, we will assume that the signal is uni-
formly sampled and that τ = 1, since the coarse-graining procedure fulfills a similar
function in the latter case. However, we will revisit τ in Chapter 4.

2.2.2 Multiscale Coarse-Graining Procedure

Using the original signal x, we can construct coarse-grained signals for a fixed time
scale m, following a similar route to the one taken by the MSE method explained in
Section 1.4.1. We partition the data points in consecutive, nonoverlapping segments
of sizem, computing the average of each segment afterwards and constructing x(m) =
[x

(m)
1 , . . . , x

(m)
N/m]

′, where each element is,

x
(m)
j =

1

m

jm∑

i=m(j−1)+1

xi, (2.5)

where j ∈ N and m ∈ N. The MPE measurement consists on calculating the
permutation entropy on each x(m) for different time scales.

However, MPE also has the disadvantage of being sensitive to signal length: as N
decreases, the estimation of MPE will be less reliable. This effect becomes more pro-
nounced with increasing scales, where the size of the coarse-grained signal decreases
by a factor of 1/m. The general condition N/m ≫ d! must be satisfied.
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The motivation behind the coarse-graining procedure is to capture long-term infor-
mation, usually lost in the ordinal comparisons between adjacent data points. The
assessment of this information can be useful in detecting trends or recurring patterns
that are not usually evident in raw data.

2.3 Multiscale Permutation Entropy Statistics

2.3.1 Previous Considerations

Before exploring the statistical properties of MPE, we will first present the following
assumptions regarding the pattern counts:

1. For any particular set of consecutive data points in x(m), the occurrence of
any of the possible patterns can be modeled as a random variable in and
into itself. This random variable is defined as an indicator function, with a
Bernoulli distribution with multiple outcomes

Ii(x
(m)
t ) =

{
1, [x

(m)
t , . . . , x

(m)
t+d−1] has type i

0, otherwise.
(2.6)

2. All the elements Ii(x
(m)
t ) are independent, and identically distributed (iid).

These conditions guarantee that the sum of all the indicator functions leads to a
pattern count with a binomial random variable. While the first assumption holds
true —by definition— for any signal, the second one requires the signal to be com-
pletely uncorrelated, which is not true in the general case. Therefore, when the
indicator functions are independent, but not identically distributed, the most ap-
propriate model is a Poisson binomial distribution [50]; if they are not independent,
the distribution has no closed form, and approximations are needed [51]. As a first
approach to the statistical problem, we will assume that the pattern counts satisfy
both assumptions. This approach is justified, to an extent, by the fact that the
practical application of the MPE algorithm does not take in account the evolution
of ordinal patterns in time. Since the pattern probability distribution is built around
the pattern counts of the raw signal as an aggregate, the pattern probability is not
computed as a function of time.

At this point, it is useful to define the appropriate values for the time scale m. First
and foremost, m is a positive integer, so it cannot take the value of zero or any
negative number. Secondly, the maximum theoretical value is m = N , the length
of the original time scale itself, where the resulting coarse-grained signal consists of
a single data point —a nonfeasible trait for MPE analysis. If we define m/N as a
normalized scale, then 0 < m/N ≤ 1; consequently, we will consider m/N to be
very close to zero for practical reasons, as this will help explore the MPE statistic
in a standardized manner.

Before proceeding any further, we will also introduce a vectorial form of Shannon’s
entropy. Since the mathematical expressions that follow require a considerable use
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of linear algebra, it is convenient to rewrite equation (2.3) as,

H = −l ′p, (2.7)

where,

p =



p1
...
pd!


 , l =



ln p1
...

ln pd!


 . (2.8)

As long as l′ (l transposed) is an horizontal vector and p is a vertical vector, the
scalar product in equation (2.7) is identical to the sum expressed in (2.3). Similarly
we will take advantage of the scalar product and matrix quadratic forms whenever
possible to simplify the long summations that could naturally arise.

2.3.2 MPE Taylor Series Approximation

It is necessary for us to build an explicit model before properly exploring the sta-
tistical properties of H. Even though building the distribution function of H can
be a daunting challenge, it is not strictly necessary to know this function to extract
practical information. We have particular interest in knowing the expected value
and variance of H, and as we explain below, this can be accomplished by using
equation (2.7) along with a pattern count with a binomial distribution.

In this section we will explicitly formulate a statistical model to estimate H by
means of Taylor series expansions. For any coarse grained signal x(m) of length
nm = N/m− d+ 1 at time scale m ∈ N

+ and dimension d ∈ N
+, we can define the

random vector Y of size d! as the pattern count vector, and p̂ as the pattern pmf
in vectorial form:

Y =



Y1
...
Yd!


 =



nmp1 +∆Y1

...
nmpd! +∆Yd!


 = nmp+∆Y , Y ∼ Mu(nm,p) (2.9)

p̂ = 1
nm

Y = p+ 1
nm

∆Y . (2.10)

When we measure the random variables Y1, . . . , Yd!, we will obtain the individual
pattern counts y1, . . . , yd! from equation (2.1).

The random variable p̂ works as an estimator of p —the true pattern pmf vector.
∆Y is the random part of (2.9), which is a multinomial random variable. ∆Y has
zero mean and the same probability distribution as Y .

The next step is to consider the following modifications for equation (2.3): first,
the size of the coarse-grained signal will approximately be N/m instead of N . The
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true multinomial parameter is nm = N/m− d+ 1, but since N/m ≫ d, we can use
the approximation nm ≈ N/m; additionally, we should also note that the ordinal
pattern count Y can depend on m. For fractional Gaussian noise [2], the pattern
probabilities remain constant (See Section 3.3.2). This will, in general, not be the
case for other signals. For the purposes of this section, we will assume that the
pattern probabilities remain constant along m, and analyze the interaction between
these parameters at a later point.

Using the vectorial form of Shannon’s entropy (2.7) and the vectorial pmf p̂ in (2.10),
we can write the MPE estimator as

Ĥ = H(p̂) = −
d!∑

i=1

p̂i ln (p̂i) = −l̂ ′p̂, (2.11)

which is the vectorial form for the MPE estimator in (2.3). Although H is a function
of the vector p̂, the result is a scalar value. This allows us to use the multivariable
version of the Taylor series. In this case, we will use the following quadratic approx-
imation around the point p [52],

H(p̂) ≈ H(p) +∇H(p)′(p̂− p) + 1
2!
(p̂− p)′∇2H(p)(p̂− p), (2.12)

where ∇H(p) is the gradient of H(p̂) at point p, and ∇2H(p) is the Hessian matrix.

Next, using equation (2.11), we will obtain the explicit expression for the gradient
and the hessian of H(p̂), as follows,

∇H(p)|p =




∂H(p)
∂p1
...

∂H(p)
∂pd!




p

=



−(1 + ln p1)

...
−(1 + ln pd!)


 = −(1+ l) (2.13)

∇2H(p)|p =




∂2H(p)

∂p2
1

· · · ∂2H(p)
∂p1∂pd!

...
. . .

...
∂2H(p)
∂pd!∂p1

· · · ∂2H(p)

∂p2
d!



p

= −



p−1
1 · · · 0
...

. . .
...

0 · · · p−1
d!


 = −diag(p◦−1), (2.14)

where 1 is a vector of ones, and p◦−1 is the Hadamard power (element-wise) of p
[53]. diag(p◦−1) is a diagonal matrix with all the elements of p◦−1. With these
expressions, we can write equation (2.12) more explicitly:

H(p̂) ≈ H(p)− (1+ l)′(p̂− p)− 1
2
(p̂− p)′diag(p◦−1)(p̂− p). (2.15)

We note from (2.9) that p̂ − p = 1
nm

∆Y . We will use this fact to write (2.15) in
terms of ∆Y :

H(p̂) ≈ H(p)− 1
nm

(1+ l)′∆Y − 1
2

(
1
nm

)2
∆Y ′diag(p◦−1)∆Y . (2.16)
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To simplify the calculations of the moments of H(p̂) , it is desirable to rewrite the
last term in (2.16) using the following rearrangement,

∆Y ′diag(p◦−1)∆Y = ∆Y ′



p−1
1 · · · 0
...

. . .
...

0 · · · p−1
d!


∆Y

=



p−1
1 ∆Y1 · · · 0
...

. . .
...

0 · · · p−1
d! ∆Yd!


∆Y

=
(
p◦−1

)′


∆Y1 · · · 0
...

. . .
...

0 · · · ∆Yd!


∆Y

=
(
p◦−1

)′
∆Y ◦2, (2.17)

where ∆Y ◦2 is the Hadamard square of ∆Y . By replacing (2.17) with (2.16), we
finally arrive to our MPE statistic approximation:

H(p̂) ≈ H(p)− 1

nm

(1+ l)′ ∆Y − 1

2

(
1

nm

)2 (
p◦−1

)′
∆Y ◦2. (2.18)

At this point, the only term that is not explicitly shown in (2.18) is m. If we use
the approximation nm ≈ N/m, we get,

H(p̂) ≈ H(p)− m

N
(1+ l)′ ∆Y − 1

2

(m
N

)2 (
p◦−1

)′
∆Y ◦2 , (2.19)

which is a polynomial with respect to m.

This approximation for the MPE statistic has several advantages. The dependence of
∆Y (the error of the ordinal pattern count), a variable with a binomial distribution,
is evident even if the distribution of H(p̂) is not. Moreover, the deterministic and
random parts of H(p̂) are clearly shown here. Also, the role of the time scale m is
polynomial, which simplifies future calculations of moments. Although p can be a
function of m in general, this expression is compact and relatively easy to handle. In
practice, we expect p to be different at each time scale m, so we cannot immediately
assume that p and m are independent. For the purposes of exploring the properties
of equation (2.19), we will assume m is a fixed parameter. The relationship between
p and m will be directly addressed on Chapter 3, section 3.3.

2.3.3 MPE Expected Value and Bias

Since we have a polynomial form of the MPE statistic (2.19) it is possible to obtain
the first moment directly. From the definition of Y in (2.1), we know that E[∆Yi] = 0
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and var(∆Yi) = E[∆Y 2
i ] = nmpi(1− pi). It follows that

E[H(p̂)] ≈ H(p)− 1

2

(m
N

) (
p◦−1

)′
(p− p◦2). (2.20)

We can rewrite the expressions as,

(
p◦−1

)′
p =

d!∑

i=1

pi
pi

=
d!∑

i=1

1 = d!

(
p◦−1

)′
p◦2 =

d!∑

i=1

p2i
pi

=
d!∑

i=1

pi = 1,

(2.21)

so we can express (2.20) as

k. (2.22)

It is interesting that the expected value of the MPE statistic approximation is biased,
but said bias is not dependent on the pattern probabilities. The only major variable
is m, and this means that the expected value bias decreases linearly with scale, and
that it can be corrected regardless of the pattern distribution. The expression of the
bias of the expected value is,

B[H(p̂)] ≈ −1

2
(d!− 1)

(m
N

)
. (2.23)

The MPE bias is rarely taken into account in the interpretation of MPE of real-life
applications. Without the knowledge that MPE is a biased estimator, the gradual
decrease in entropy with respect to m can be mistaken for a real effect from the
phenomenon. This is our first contribution to the MPE theory, which we presented
in [2].

2.3.4 MPE Variance

The calculation of the variance of the MPE estimator is, not surprisingly, more
complex to compute than the expected value. If we compute the variance of equation
(2.19), we get:

var (H(p̂)) = E[H2(p̂)]− E2[H(p̂)]

≈H(p)2 − (m
N
)2(p◦−1)′E

[
∆Y ◦2

]
H(p)

+ (m
N
)2(1+ l)′E [∆Y ∆Y ′] (1+ l)

+ (m
N
)3(1+ l)′E

[
∆Y (∆Y ◦2)′

]
(p◦−1)

+ 1
4
(m
N
)4(p◦−1)′E

[
∆Y ◦2(∆Y ◦2)′

]
(p◦−1)

+ (m
N
)(d!− 1)H(p) − 1

4
(m
N
)2(d!− 1)2 − H(p)2.

(2.24)
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We will proceed to simplify this equation by cancelling the terms H(p)2. We also
note that the expression

(
p◦−1

)′
E
[
∆Y ◦2

]
= (N

m
)(p◦−1)′(p− p◦2)

= (N
m
)(d!− 1) (2.25)

effectively cancels (m
N
)(d!− 1)H(p). We can now rewrite equation (2.24) as

var (H(p̂)) ≈ (m
N
)2
[
(1+ l)′E [∆Y ∆Y ′] (1+ l) − 1

4
(d!− 1)2

]

+ (m
N
)3(1+ l)′E

[
∆Y (∆Y ◦2)′

]
(p◦−1)

+ 1
4
(m
N
)4(p◦−1)′E

[
∆Y ◦2(∆Y ◦2)′

]
(p◦−1).

(2.26)

We know that E [∆Y ∆Y ′] is the covariance matrix of ∆Y , matrix E
[
∆Y (∆Y ◦2)′

]

is the coskewness matrix, and E
[
∆Y ◦2(∆Y ◦2)′

]
is the cokurtosis. If we obtain these

matrices explicitly, we obtain:

E [∆Y ∆Y ′] = N
m
(diag(p)− pp′) = N

m
Σp (2.27)

E
[
∆Y (∆Y ◦2)′

]
= 2N

m

(
p◦2p′ − diag(p◦2)

)
+ N

m
(diag(p)− pp′) (2.28)

= N
m
Σp (I − 2diag(p))

E
[
∆Y ◦2(∆Y ◦2)′

]
= 3N

m
(N
m
− 2)p◦2(p◦2)′ − N

m
(N
m
− 2)(p◦2p′ + p(p◦2)′)

+ (N
m
)2pp′ − 4N

m
(N
m
− 2)diag(p◦3) + 2N

m
(N
m
− 3)diag(p◦2)

+ N
m
(diag(p)− pp′). (2.29)

(For the calculation of covariance, coskewness and cukortisis, see Appendix A).

After taking out the term H(p) from equation (2.24), we substitute the expressions
for the covariance, coskewness, cokurtosis, and the expected value of ∆Y ◦2 (equa-
tions (2.27), (2.28), (2.29), and (2.25), respectively). After some simplifications, we
get:

var (H(p̂)) ≈ (m
N
)l′Σpl + (m

N
)2
(
1′l + d!H(p) + 1

2
(d!− 1)

)

+ 1
4
(m
N
)3
(
1′p◦−1 − (d!2 + 2d!− 2)

)
. (2.30)

This expression is a cubic polynomial equation with respect to the normalized time
scale m/N . Recalling the domain limitations in Section 2.3.1, m/N will tend to
have values very close to zero, implying that the high degree terms have a tendency
to vanish, regardless of the values of p. Furthermore, since the original Taylor
series approximation is quadratic, the cubic term of var (H(p̂)) (and higher order
elements) would be incomplete. For these reasons, it is justifiable to further simplify
equation (2.30) to at least a quadratic function in respect to m.
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var (H(p̂)) ≈ (m
N
)l′Σpl + (m

N
)2
(
1′l + d!H(p) + 1

2
(d!− 1)

)
. (2.31)

Written in scalar form, (2.31) read as follows:

var (H(p̂)) ≈ (m
N
)

(
d!∑

i=1

pi ln
2 pi −H2(p)

)
+ (m

N
)2

(
d!∑

i=1

ln pi + d!H(p) + 1
2
(d!− 1)

)
.

(2.32)

This is the result we presented on [3], where not only did we obtain this expression,
but we also tested the accuracy of the approximations from (2.32), using surrogate
signals with constant pattern distribution for d = 2. We will comment on these
results later in Section 2.5.

2.3.5 MPE Cramér-Rao Lower Bound

To assess and evaluate our MPE estimator, we need it to compare the variance we
obtained from equation (2.31). If we want to evaluate H(p̂) as an estimator of H(p),
we can obtain the Cramér-Rao lower bound [54] as follows:

var(H(p̂)) ≥

[
1− dB(H(p̂))

dH(p)

]2

I(H(p̂))
= CRLB(H(p)), (2.33)

where B(H(p̂)) is the MPE bias from equation (2.23) and I(H(p̂) is the Fisher’s
information, which is defined as:

I(H(p)) = −E

[
∂2 ln(fH(p̂)(H(p);nm,p))

∂H2(p)

]
. (2.34)

(Note that by having a bias that is constant with respect to p, its derivative is zero).

We need the distribution function for H(p̂) —a function we do not explicitly know—
to get Fisher’s information. Moreover, H(p) is not a given parameter, but a measure
dependent of p.

However, there is a way around these limitations. First, although we do not directly
know the distribution of H, we are certain that the distribution of its parameter
estimator is multinomial. From equation (2.10), we know that p̂ = Y

nm
is an unbiased

estimator for p. We know that the explicit pmf of Y is:

fY (y;nm,p) = nm!
d!∏

i=1

pyii
yi!

. (2.35)

33



MPE Statistics with sEMG Applications

We can calculate the Cramér-Rao bound for p by stating the multivariate form of
its definition:

I(p)−1 = CRLB(p), (2.36)

where the elements of I(p) are

Ij,k(p) = −E

[
∂

∂pj
ln(fY (y;nm,p))

∂

∂pk
ln(fY (y;nm,p))

]
. (2.37)

Before going any further, we must note that I(p) is a square matrix of size d!. It is
convenient to remember that vector p is constrained by

d!∑

i=1

pi = 1, (2.38)

since the parameters pi of p represent all the probabilities of the event set. There-
fore, if we know the values of p1, . . . , pd!−1, we know the last probability pd! as a
consequence is

pd! = 1−
d!−1∑

i=1

pi. (2.39)

The particular choice of pd! is arbitrary. Since we lose no information, we can take pd!
out from our calculations and subsequently recover this value from equation (2.39).
This fact allows to define an auxiliary parameter vector p∗ as

p∗ = [p1, . . . , pd!−1]
′. (2.40)

Because p∗ does not lose information, then

CRLB(p) = CRLB(p∗) = I(p∗)
−1, (2.41)

where I(p∗) is a square matrix of size d! − 1. Its elements are obtained as per
equation (2.37).

To obtain the Cramér-Rao bound of H(p) , we use the relation between CRLB(p∗)
and CRLB(H(p)) from [55],

CRLB(H(p)) =

(
∂H(p)

∂p∗

)′

CRLB(p∗)

(
∂H(p)

∂p∗

)
, (2.42)
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where

∂H(p)

∂p∗

=

[
∂H(p)

∂p1
, . . . ,

∂H(p)

∂pd!−1

]′
. (2.43)

If we take advantage of equation (2.39), the values of the elements in equation (2.43)
are

H(p) = −
d!∑

i=1

pi ln pi = −
d!−1∑

i=1

pi ln pi − pd! ln pd!

∂H

∂pj
= −1− ln pj − ln pd!

∂pd!
∂pj

− pd!
∂ ln pd!
∂pj

= −1− ln pj + ln pd! + pd!
1

pd!
= ln pd! − ln pj

∂H

∂p∗

= ln pd! 1− l∗, (2.44)

where 1 is a column vector of ones with size d!− 1, and

l∗ = [ln(p1), . . . , ln(pd!−1)]
′. (2.45)

We now need to obtain the explicit expression for CRLB(p∗). To obtain the el-
ements of the Fisher matrix from equation (2.37), we need to obtain the natural
logarithm of the multinomial distribution (2.35) and its derivatives:

ln(fY (y;nm,p)) = ln(nm!) +
d!−1∑

i=1

yi ln(pi)−
d!−1∑

i=1

ln(yi!) + yd! ln(pd!)− ln(yd!!)

∂ ln(fY )

∂pj
= yjp

−1
j − yd!p

−1
d!

∂2 ln(fY )

∂p2j
= −yjp

−2
j − yd!p

−2
d!

∂2 ln(fY )

∂pj∂pk
= −yd!p

−2
d!

−E

[
∂2 ln(fY )

∂p2j

]
= nmp

−1
j + nmp

−1
d!

−E

[
∂2 ln(fY )

∂pj∂pk

]
= nmp

−1
d!

∴ I(p∗) = nm

(
diag(p∗

◦−1) + p−1
d! 1 · 1′

)
, (2.46)

where 1 · 1′ is a square matrix of ones, and nm ≈ N/m. The derivatives here retain
the probability pd!, since it remains a function of all the other elements of p∗, as
stated in equation (2.39).
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The next step is to find the inverse of I(p∗). Here, it is useful to use the following
lemma [56]: if A and A+B are nonsingular matrices, and B has rank 1, then

(A+B)−1 = A−1 − 1

1 + tr(BA−1)
A−1BA−1. (2.47)

From equation (2.46), we have expression p∗ as the sum of two matrices. The
diagonal of p∗ is nonsingular, by definition, and I(p∗) is nonsingular too. Since
1 · 1′ is rank 1, the lemma (2.47) applies.

Therefore,

CRLB(p∗) = I(p∗)
−1 = 1

nm
(diag(p◦−1

∗ ) + p−1
d! 1 · 1′)−1

= 1
nm

(
diag(p∗)−

p−1
d!

1 + p−1
d! (1− pd!)

p∗p
′
∗

)

I(p∗)
−1 = 1

nm
(diag(p∗)− p∗p

′
∗) .

(2.48)

It is worth mentioning that he CRLB(p∗) looks surprisingly similar to the covariance
matrix in equation (2.27).

Finally, if we introduce equations (2.44) and (2.48) into equation (2.42), we obtain

CRLB(H(p∗)) =
1
nm

(ln(pd!)1− l∗)
′ (diag(p∗)− p∗p

′
∗) (ln(pd!)1− l∗)

= 1
nm

(ln2(pd!)1
′diag(p∗)1− ln2(pd!)1

′p∗p
′
∗1+ l′∗diag(p∗)l∗ − l′∗p∗p

′
∗l∗

− 2 ln(pd!)1
Tdiag(p∗)l∗ + 2 ln(pd!)1

′p∗p
′
∗l∗).

(2.49)

By noting the following relations,
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1′diag(p∗)1 =
d!−1∑

i=1

pi = 1− pd!

1′p∗ =
d!−1∑

i=1

pi = 1− pd!

1′p∗p
′
∗1 = (1′p∗)

2
= (1− pd!)

2

l′∗diag(p∗)l∗ =
d!−1∑

i=1

pi ln
2 pi

l′∗p∗ =
D−1∑

i=1

pi ln pi = −H − pd! ln pd!

l′∗p∗p
′
∗l∗ = (l′∗p∗)

2
= H2 + 2Hpd! ln pd! + p2d! ln

2 pd!

1′diag(p∗)l∗ = p′
∗l∗ = −H − pd! ln pd!

1′p∗p
′
∗l∗ = −(1− pd!)(H + pd! ln pd!)

= −H − pd! ln pd! + pd!H + p2d! ln pd!. (2.50)

we can simplify and rewrite equation (2.49) as

CRLB(H(p)) = 1
nm

(
d!∑

i=1

pi ln
2(pi)−H2

)
= m

N
l′Σpl. (2.51)

By referring back to (2.31), we note that the CRLB(H(p)) is exactly the first term
in our MPE’s model variance (2.32). As long as we stay in the low end of the time
scale, we can be sure that the MPE statistic will be approximately efficient (i.e.
m/N is close to zero), regardless of the pattern probability distribution. This is
one more reason to try to stay in the lower end of the time scales when doing a
multiscale analysis. Here, the upper practical constraint of m will only depend on
the original signal’s data length N .

2.4 Simulations and Results

So far we have found some relevant information regarding the statistical properties
of MPE. first, the MPE statistic (2.3) is not unbiased, and this bias is completely
independent of the pattern distribution (2.23), since it is only affected by the embed-
ding dimension d. Secondly, we found the MPE variance (2.32) to closely resemble
the Cramér Rao lower bound (2.51), suggesting that the MPE estimator, although
not unbiased, is close to the minimum variance for the MPE.

In this section, we will test these properties of MPE. In order to simplify the vi-
sualization, we will restrict ourselves to the dimension d = 2, where the pattern
distribution is binomial and only has one parameter: p = P (xt < xt+1). We will
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propose and design a surrogate model with an explicit p as a parameter, for the
purpose of controlling the pattern distribution, and thus generate the appropriate
random signals for testing. We will then compute MPE using (2.3), and compare
both the mean results and variance with our corresponding predictions from equa-
tions (2.22) and (2.31).

2.4.1 Surrogate Model

To test the results here obtained (2.22), (2.31), we need to design a proper signal
model with the following goals in mind: the model must preserve the pattern proba-
bilities across all of the signal, and the function must have the pattern probability as
an explicit parameter —which, in turn, is easily modifiable. The following equation,

xt = xt−1 + ǫt − δ(p), (2.52)

where t is a discrete time step that satisfies these criteria for dimension d = 2. Here,
ǫt is a Gaussian noise term with variance σ2 = 1 without loss of generality [46]. The
function δ(p) represents the trend function, which is built up from the Gaussian
cumulative distribution function (cdf) as follows:

p = P (xt < xt+1) =
1
2

(
1− erf

(
δ(p)√

2

))
(2.53)

δ(p) =
√
2 erf−1(1− 2p). (2.54)

By using the expression (2.54) in our surrogate model (2.52), we can control the
pattern probabilities present in the generated signal just by modifying the value
of p; this relationship is illustrated in Figure 2.2. Consequently, we can compare
our resulting mean MPE values with the surface generated by equation (2.22) for
d = 2 (higher dimensions lead to hypersurfaces), as well as comparing the resulting
MPE variance from our surrogate model simulations with the surface from equation
(2.31). We present both surfaces explicitly on Figure 2.3.

The surrogate model (2.52) was implemented in Matlab, generating 500 signals per
each of the 99 different values of p = 0.01, 0.02, . . . , 0.99 we utilized. Additionally,
the signal length was also set to N = 1000, and we used the time scales m =
1, . . . , 50; for each value of p andm, we obtained the MPE along all the corresponding
signals. Finally, we obtained the mean MPE and variance for each case. The results
are shown in Figure 2.4.

By directly applying the coarse-graining procedure (2.5) to the surrogate signals
in (2.52), the probability p will be modified at each scale. Therefore, instead of
applying (2.5) directly, we generated a new set of 500 signals using the original
surrogate model (2.52) with length N/m at increasing values of m. This will retain
the effect of decreasing signal length, without modifying the parameter p. For the
purposes of this test, p and m should be completely independent.

38



CHAPTER 2. MULTISCALE PERMUTATION ENTROPY - THEORETICAL

STATISTICS

0 50 100 150

t

-100

-50

0

50

100

x

p=0.3

p=0.5

p=0.7

(a) (b)

Figure 2.2: Test surrogate model from equation (2.52) for dimen-
sion d = 2. (a) Model’s sample paths for different values of
p = P (xt < xt+1). (b) The shift term δ(p) is modified in accordance
with the Gaussian cumulative distribution function, in a way that
the variation for the next point in the process has probability p.

2.4.2 Results

Figure 2.4a displays the value of the expected normalized MPE value versus the
pattern probability p, with each curve representing a different value of m. As we
can see, the general shape of the curve is preserved across time scales, with a small
shift downward for each increasing scale. In fact, as we can see from Figure 2.4c,
the decrease along m is almost linear, which agrees with the predicted MPE bias
(2.23). Moreover, all the lines present the same downward slope, regardless of pat-
tern probability.

Figure 2.4b shows the shape of the MPE variance along p. We can see that the
symmetry around p = 0.5, which corresponds to the maximum entropy. We note,
interestingly, that the curves present clearly defined maxima near the extremes of
the distribution, and they preserved along all time scales. We can also note, un-
surprisingly, that the variance greatly increases with the time scale m; as shown in
Figure 2.4d, where we can see that, for almost all fixed pattern probabilities, the
variance increase linearly. This is both present in the theoretical lines and the sim-
ulation results, further supporting the MPE variance formulation in (2.31). Lastly,
we notice that the variance from simulations is consistently over the predicted values
from equations (2.22) with regards to the mean MPE and (2.31) the MPE variance.

We observe a notable exception in the behavior of the MPE variance curve with
respect to the time scale. In the case of a uniform pattern distribution and maximum
entropy (where all pi =

1
d!
, ∀i = 1, . . . , d!), the linear term of (2.31) vanishes, leaving

only a quadratic curve; for any distribution which deviates from uniformity, the
linear term dominates. This effect is clearly shown in Figure 2.5.
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Figure 2.3: Three-dimensional theoretical normalized MPE (2.4)
for d = 2. (a) Mean MPE value (2.22) in respect to the pattern
probability p and normalized time scale m/N . (b) MPE variance
(2.31) in respect to p and m/N .

2.5 Discussion

We need to compare our results with previous literature regarding the MPE mo-
ments. In the specific case pertaining white noise (i.e. uniform pattern distribution),
Little and Kane [1] developed the expected value of classical PE that is subject to
finite-length constraints. They found the normalized MPE expected value and vari-
ance to be

E[Ĥ] ≈ 1− d!− 1

2N ln d!
(2.55)

var(Ĥ) ≈ d!− 1

2N2(ln d!)2
. (2.56)

Our results from equations (2.22) and (2.31) prove to be generalizations of the find-
ings in [1]. First, our MPE statistic (2.19) is valid for any arbitrary pattern distribu-
tion, implying that the statistic is robust with respect to the underlying dynamics
of any real time series. Secondly, our results extend the finite-length constraints
by including the multiscaling component; since the moments are length-dependent,
we cannot ignore the decreasing size of coarse-grained signals when applying MPE.
Therefore, if we compute the MPE moments (2.22) (2.31) by using m = 1 and
pi =

1
d!
, ∀i = 1, . . . , d!, we replicate Little’s results [1] (note that the results in equa-

tion (2.55) are normalized by 1/ln(d!), which is obtained by using the normalized
MPE definition of (2.4) instead of the one found in (2.3)).

Now, the MPE variance presents some interesting properties worth discussing. As
we can see in Figure 2.4b, the variance is particularly sensitive to the pattern dis-
tribution. The points of minimum variance correspond to the maximum MPE at
p = 0.5, and the minimum MPE at points p = 0 and p = 1; on the other hand,
it is interesting to know the distribution which yields the maximum variance (and
thus, uncertainty) of the MPE statistic. Since the first term in (2.31) dominates the
overall MPE variance curve, as well as corresponding to the CRLB, we will proceed
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Figure 2.4: Normalized MPE (2.4) for d = 2. (a) Mean MPE
(2.22) with respect to pattern probability p, which shows a clear
maximum at p = 0.5 (the point of equiprobable patterns). (b)
MPE variance (2.31) in respect to p. We observe minimum points
at p = 0, p = 0.5, and p = 1, as well as maximum points at
p = 0.083 and p = 0.917. (c) Mean MPE (2.22) in respect to the
normalized time scale m/N . We observe here the linear bias from
(2.23), which has the same slope regardless of p. (d) MPE variance
(2.31) in respect to m/N . We observe a linear increase, showing
that the first element of (2.31) is dominant.
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Figure 2.5: MPE variance (2.31) for d=2 with respect to normalized
time scale m/N . (a) Pattern probability p = 0.3. We observe an
almost linear increase with scale, where the first term of (2.31)
is dominant. (b) Pattern probability p = 0.5, which corresponds
to uniform pattern distribution. Here, the linear term in (2.31)
vanishes, leaving only a quadratic increase with scale.

to find the local maxima and minima. For d = 2, we can write (2.51) as

var(Ĥ) ≈
(
m
N

)
lTΣpl|d=2 =

(
m
N

)
p(1− p) ln2

(
p

1− p

)
. (2.57)

The minimum points become obvious if we look for the zeros of (2.57): if p = 0.5,
p = 0, or p = 1, then (2.57) vanishes. The maximum variance, on the other hand,
does not correspond to a particularly value of interest in the MPE curve. To find
the maximum points, we need to take the derivative of equation (2.57):

(
m
N

)
d
dp

(
lTΣpl|d=2

)
=
(
m
N

)
ln

(
p

1− p

)(
(1− 2p) ln

(
p

1− p

)
+ 2

)
= 0. (2.58)

When equation (2.58) is equal to zero, we find the extreme points of the variance
MPE curve. It is obvious, once again, that p = 0.5 corresponds to a minimum value.
The maximum points are found by solving the transcendental function

ln

(
p

1− p

)
=

2

2p− 1
. (2.59)

The maximum entropy variance for d = 2 is found at points p = 0.083 and p = 0.917,
both equidistant from p = 0.5. This implies that we need to be cautious with
the MPE measurement we obtain from the signal, as the MPE variance changes
nonlinearly with respect to MPE itself.

The second interesting property of the MPE variance is its relationship with the
time scale. As we can see from figure 2.4d, the variance increases almost linearly
with m. This is true for almost any pattern probability p, even the most unbalanced
values. Nonetheless, when MPE is close to its maximum value, the first (linear) term
in (2.31) is almost zero, so we need to take into account the second (quadratic) term
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of the MPE variance (2.31). This is actually displayed in Figure 2.5, where this
particular plot increases in a parabolic curve, both in theory and in simulations.

When solving (2.59) for p, we found that the points p = 0.083 and p = 0.917
correspond to the maximum variance for any given m/N , and that they both lead
to a normalized MPE value of H = H/ln d! = 0.413. Therefore, the entropy value
around this point produces the maximum variance possible for the MPE statistic.
We can clearly see these maximum points on Figure 2.4b.

Further elaborating on this result, it is in our interest to know the distribution of p
that produces the maximum uncertainty H(p̂) for all dimensions d, since it would
provide us with information about the worst-case scenario regarding the precision
of the MPE statistic. For this purpose, we will define the following maximization
problem: we want to maximize the first term of the MPE variance,

lTΣpl =
d!∑

j=1

pj(ln pj)
2 −

(
d!∑

j=1

pj ln pj

)2

, (2.60)

subject to restriction

d!∑

j=1

pj = 1. (2.61)

For this very purpose, we capitalize on the advantages offered by the Lagrangian
method of multipliers. First, we define the function as

L(λ,p) =
d!∑

j=1

pj(ln pj)
2 −

(
d!∑

j=1

pj ln pj

)2

− λ

(
d!∑

j=1

pj − 1

)
. (2.62)

By taking the partial derivative of L with respect to pi, ∀ i = 1, . . . , d!, we obtain
the following equation system:

∂L
∂pi

= ln2 pi + 2 ln pi − 2(ln pi + 1)

(
d!∑

j=1

pj ln pj

)
= λ, ∀ i. (2.63)

Since all ∂L
∂pi

= λ, we can take any probability pi as a reference point, similarly to
what we did in Section 2.3.5. We will again use the last variable pd! without loss of
generality. By setting ∂L

∂pi
= ∂L

∂pd!
, we obtain the following equation:

(ln pi − ln pd!)

[
(ln pi + ln pd!) + 2− 2

d!∑

j=1

pj ln pj

]
= 0. (2.64)

This expression has two multiplied terms. Even if one or both terms turn to be zero,
the equation (2.64) still holds true. If the first term is zero, then we have
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ln pi − ln pd! = 0

pi = pd!, ∀i. (2.65)

This condition can only be met if all the probabilities are the same. Therefore,
this condition corresponds to the uniform distribution of p for any dimension d. We
know this distribution produces the maximum MPE, and corresponds to a minimum
variance (2.61).

Now, if the second term in (2.64) is equal to zero, this implies that pi 6= pd!, ∀i. We
can write this second term as

ln pi + ln pd! + 2− 2
d!∑

j=1

pj ln pj = 0, ∀ i 6= d!. (2.66)

We can rewrite equation (2.66) as

ln pi + ln pd! = −2 + 2
d!∑

j=1

pj ln pj, ∀ i 6= d!. (2.67)

We note that the right side of the equation is constant for all i. Once again, this
implies that

ln pi + ln pd! = ln pj + ln pd!

pi = pj, ∀ i, j 6= d!. (2.68)

Once again, all probabilities pi are identical, given i 6= d!. By using the constraint
in equation (2.61), we see that

pd! = 1− (d!− 1)pi. (2.69)

Also, from equation (2.67), we can see that the summation term is exactly the
definition of entropy in (2.3). Therefore,

ln pi + ln pd! + 2 + 2H(p) = 0, ∀ i 6= d!. (2.70)

Given the restrictions found in (2.68) and (2.69), we can obtain the entropy expres-
sion for this case:
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H(p) = −
d!∑

j=1

pj ln pj

= −
d!−1∑

j=1

pj ln pj − pd! ln pd!

= −(d!− 1)pi ln pi − pd! ln pd!. (2.71)

We then substitute (2.71) into (2.70),

ln pi + ln pd! + 2− 2(d!− 1)pi ln pi − 2pd! ln pd!) = 0,

(1− 2(d!− 1)pi) ln pi + (1− 2pd!) ln pd! + 2 = 0. (2.72)

Finally, by introducing once again our expression for pd! (2.69), we obtain the fol-
lowing:

(1− 2(d!− 1)pi) ln pi + (1− 2(d!− 1)pi) ln 1− (d!− 1)pi + 2 = 0

ln pi + ln 1− (d!− 1)pi =
−2

1− 2(d!− 1)pi

ln

(
pi

1− (d!− 1)pi

)
=

2

2(d!− 1)pi − 1
. (2.73)

This is a transcendental equation for pi. With this information at hand, we know
that the critical points that yield maximum variance for an arbitrary dimension d
must have a pattern probability distribution that satisfies (2.59):

ln

(
pi

1− (d!− 1)pi

)
=

2

2(d!− 1)pi − 1
, ∀ i 6= d!

pd! = 1− (d!− 1)pi. (2.74)

As long as we have this structure in the pattern distribution, we will have a maximum
variance for the system. For d = 2, this equation is reduced to equation (2.59).

By computing the results in (2.74) for dimensions d = 3, . . . , 7, we found the partic-
ular distributions which maximize the MPE variance (2.31) for each case. These are
the worst-case scenarios regarding the precision of our MPE statistic. The results
are shown in Table 2.1.

Although the precise value of the normalized MPE (2.4) differs across dimensions, it
is clear that there is a region around H ≈ 0.450 where our normalized MPE statistic
will have maximum variance. However, we will not explore the uniqueness of this
result in the present work, since any arbitrary signal that presents a distribution
close to (2.74) requires particular consideration.
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d pi pd! H
3 0.036 0.082 0.425
4 0.0113 0.7394 0.425
5 0.0027 0.6811 0.438
6 0.0005 0.6405 0.450
7 0.00008 0.61200 0.466

Table 2.1: Probability distributions that yield maximum variance
for normalized MPE H, at dimensions d = 3, . . . , 7. The probabili-
ties are subject to the restrictions pi = pj for i 6= j, and pi 6= pd!.

2.6 MPE Length Criterion

By knowing the moments of the MPE statistic (2.22) (2.31), we are now able to
propose some improvements on this technique’s implementation on real signals. We
will revisit the problem of the length constraint N/m ≫ d!, which is not sufficiently
clear as a criteria for a long signal. We present a reformulation of this constraint as
follows: we know that a signal consisting of uncorrelated noise will lead to a uniform
pattern probability distribution, and thus, to the maximum possible entropy value
for the system. We also know that uncorrelated noise will retain maximum MPE,
regardless of scale [2]. Therefore, with these assumptions in mind, the decrease
of MPE with scale comes exclusively from the bias in equation (2.23). We then
define a maximum deviation tolerance α that measures the percentage of the MPE
decline from the maximum possible MPE. We propose a length criterion where the
maximum bias is less than the value of α, such that

|B[H(p̂)]| < α

1

2

d!− 1

ln d!

(m
N

)
< α

N

m
>

1

2α

d!− 1

ln d!
. (2.75)

Here we use the normalized MPE estimator H(p̂) (2.4), so that we can interpret
α as a percentage —which should be quantitatively small. Although obtaining the
value of d for this equation is not trivial, abiding by the suggestion of Bandt and
Pompe [27] gives us the advantage of only working with dimensions d = 3, . . . , 7.
Therefore, we provide a table comparison for these values in Table 2.2.

Although this is in no way a true improvement on the length constraint itself, it
allows researchers to have a more precise gauge over the limits of their study. This
criterion takes away the ambiguity of the valid parameter selection.

The surrogate model (2.52) was implemented in Matlab, generating 500 signals
per each of the 99 different values of p = 0.01, 0.02, . . . , 0.99 we utilized. Addi-
tionally, the signal length was also set to N = 1000, and we used the time scales
m = 1, . . . , 50; f. For each value of p and m, we obtained the MPE along all the
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d d!−1
ln d!

min N
m

3 2.79 333
4 7.23 643
5 24.86 1,667
6 109.28 5,724
7 591.86 25,164

Table 2.2: Critical points for N/m for different values of the em-
bedded dimension d. Minimum signal length N/m at α = 0.05

corresponding signals. Finally, we obtained the mean MPE and variance for each
case. The results are shown in Figure 2.4.

2.7 Closing Remarks

In this chapter, we have developed the multiscale permutation entropy statistic,
presenting its expected value, bias, and variance by means of a Taylor series approx-
imation. We also tested our theoretical results against previous literature [1], as
well as with simulations from a suitable surrogate model. In both cases, the results
match our predictions, further supporting our initial formulations.

We first found that the MPE expected value is a biased estimator. Moreover, the bias
is solely dependent on the parameters of the MPE analysis, particularly dimension,
scale, and signal length. This implies that the MPE will present the same bias with
respect to time scale, regardless of the pattern probability distribution of the signal.

Secondly, we found the MPE variance to increase almost linearly with increasing
time scale for almost any pattern distribution. The exception emerges when the
MPE is close to a maximum value (uniform probabilities). In this scenario, the
variance increases quadratically in respect to the time scale. Our formulation closely
resembles the Cramér-Rao lower bound for the MPE statistic, which means it is
almost as efficient. We must also add that the variance presents a maximum value
for specific MPE values and pattern probability distributions, as this informs other
researchers about an MPE region where we have maximum uncertainty.

Finally, we were able to suggest a more precise criterion for signal length than
N/m ≫ d!—which is usually found in literature. By defining a maximum allowed
bias, we were able to specify a minimum length (and maximum time scale) based
solely on the pattern dimension for the analysis.

We are aware of the possible refinements available for MPE, which are reported
to increase the precision of the measurement [57]. This chapter’s main purpose is
to develop the theory on classical MPE; a necessary approach to understand the
increasingly refined methods that will be discussed in Chapter 4. Furthermore,
the relationship between pattern distribution and time scale were left out of the
analysis intentionally, since it is necessary to first establish the most simplified model
possible. The evolution of the pattern distribution with respect to scale will be
discussed in Chapter 3 for well-known stochastic processes.
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Chapter Summary

• Permutation entropy (PE) measures the information content within the prob-
ability distribution of the ordinal patterns in a signal for a given embedding
dimension.

• Multiscale permutation entropy (MPE) performs the PE calculation over a
coarse-grained signal that aims to capture the ordinal information content
over longer trends.

• The pattern probability distribution is assumed to follow a multinomial dis-
tribution. This is in general, not true, since the patterns present along time
are generally neither independent nor identically distributed. Nonetheless, the
multinomial approach is justified, since PE and MPE estimate the probabilities
from pattern counts.

• Since the pattern counts estimate the true pattern probability distribution, the
MPE must be regarded as a statistic. We propose a Taylor series expansion
on MPE in order to obtain its moments.

• The MPE expected value is a biased statistic, which decreases its value when
the time scale increases. Moreover, the bias’ linear approximation is indepen-
dent of the estimated pattern probability distribution, and hence, the same
could be stated for any given time series.

• The MPE variance, on the other hand, does not depend on the pattern dis-
tribution. The variance tends to be small when the MPE itself is close to
its maximum value or really close to zero. Regardless, the variance presents
maximum points for specific pattern probability distributions.

• The Taylor approximation to the MPE variance is close to the Cramér-Rao
lower bound for the MPE estimator, with the first term being exactly the
CRLB. The variance deviates from the CRLB only when the MPE is close to
its maximum.

• We tested the accuracy of our MPE model against surrogate signals, which
further valides our results, specially in the case of the downward MPE bias
and the almost linearly increasing variance with respect to the scale.

• To address the ambiguity of the length constraint of MPE, we proposed a
precise criterion based on a maximum bias tolerance. This provides a more
explicit rule for parameter selection than the often cited N/m ≫ d!.

• With the MPE variance, we were also able to specify a particular MPE region
where the variance will be maximum, regardless of scale and almost indepen-
dently of the embedding dimension of choice.
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Chapter 3

MPE on Common Signal Models

Un jazmı́n, para dar un ejemplo perfumado.
A esa blancura, ¿de dónde le viene su penosa
amistad con el amarillo?

- Julio Cortázar, Me caigo y me levanto

3.1 Introduction

So far, we have delved inside the workings of multiscale permutation entropy from
both the empirical and —most importantly— the statistical point of view. It is
through the Taylor series that we have been able to develop an MPE approximation
which allows us to compute its expected value and variance. We know by this
point that MPE is a biased estimator with a linear value that only depends on
the parameters of the analysis and not the pattern distribution. We also found
the variance to be close to the Cramér-Rao lower bound, and thus, approximately
efficient. We were also able to propose more precise length criterion for a sufficiently
long signal for MPE analysis. Finally, we established a normalized MPE range where
the variance is maximum for a given signal length.

Although these results hold true for arbitrary signals, we cannot ignore the fact that
the coarse-graining procedure has a noticeable effect on the pattern distribution
found at each scale. In Chapter 2 we intentionally left this fact out of the analysis,
so that we could isolate the effect of the signal length over MPE statistic. Now it is
time we address this relationship directly.

We can apply the MPE analysis on any discrete signal without the need of prior
knowledge of its underlying dynamics. In fact, the empirical computation of MPE
can give us some insight in this regard. On the other hand, if we know the nature of
the process, we can compute a theoretical MPE based on the signal’s model. We will
know if our proposed signal model can be appropriate for explaining all the relevant
information of the phenomenon when the theoretical MPE matches the empirical
MPE.

Therefore, in this chapter we will study the MPE values for some well-known sig-
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nal models, addressing first the expected MPE from common deterministic signals.
Since we expect the MPE to be robust to perturbations [27] [45] [58], we will also
analyze the effect of noise, with the intention of assessing when the noise dominates
over the signal and testing the robustness limits of the methods. Although our ex-
ploration of MPE contemplates random processes, Gaussian signals are particularly
relevant in the present work; more specifically, we will characterize —as we already
did in [2]— both white Gaussian noise (wGn) and fractional Gaussian noise (fGn).
Additionally, we will explore —as done by our team in [4]— first order autoregres-
sive (AR) and moving average (MA) models. Since all Gaussian signals present
particular symmetries [58], we will propose an explicit, general formulation of the
theoretical MPE for this type of random processes, and conclude by testing our
proposed technique on more elaborated models, such as the general Autoregressive
and Moving average model (ARMA). These results will allow researchers to bet-
ter gauge the expected MPE results from well-established models. We will provide
the appropriate benchmark MPE to compare the information content between real
datasets and the models used to describe them.

3.2 MPE on Models with Deterministic Signals

In this section we will briefly discuss the MPE results we should expect from de-
terministic signals. For known functions of time, we would expect to observe a low
value of MPE, since the signal is easily predictable if we know its analytic function.
We will also discuss the effects of the sampling rate, since we will work with discrete
signals in practice. Finally, we will evaluate the introduction of random noise and
gauge its overall effect on our entropy measurements. In this section, without loss
of generality, we will limit our analysis to the time scale m = 1.

3.2.1 Deterministic Signals

First and foremost, we need to approach the simplest signal models available: deter-
ministic curves. By introducing a signal shape with a known function and absence
of randomness, it is almost trivial to obtain the pattern probabilities, regardless of
the embedded dimension d used for the analysis. Nevertheless, we can address here
some of the most basic concepts regarding the MPE implementation.

A continuous signal can be regarded as a series of points with an infinitesimal dis-
tance between them. If we were able to measure such a system, we will only find
two possible patterns: either an always increasing (pattern 1) or always decreasing
(pattern d!). For simplicity, we will call them monotonic patterns. These cases
correspond with the regions where the slope of the curve is positive and negative,
respectively. The only special case here comes from the local maxima and minima
of the curve, where the slope is zero —we exclude the case where the curve is hor-
izontal, since patterns with data points of equal value must be properly classified
by the researcher. In the case of reaching its limits, all the nonmonotonic pattern
probabilities p2, . . . , pd!−1 are zero almost surely. Thus, we would only measure the
monotonic pattern probabilities by measuring the proportion of time where the curve
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has the corresponding slope. More formally, given an embedding dimension d and a
continuous function x = g(t) within a bounded time t, such that tmin ≤ t ≤ tmax, we
can obtain the probability of the pattern p1 (increasing) and pattern pd! (decreasing)
by measuring the proportion of time where the derivative of g(t) is positive, such
that

p1 =

(∑
k∈K (g−1(xmax,k)− g−1(xmin,k)) |dxdt > 0

)

tmax − tmin

(3.1)

pd! = 1− p1, (3.2)

where k ∈ K is the number of local minima within tmax− tmin, g
−1(x) is the inverse

function of x = g(t), xmin,k and xmax,k are the local minima and maxima, and
g−1(xmin,k) < g−1(xmax,k) for all k. As we can see, the probability pd! is just the
complement of p1. All other probabilities p2, . . . , pd!−1 = 0.

Therefore, we can write the normalized PE of such a system as

limp2,...,pd!−1→0H =
−1

ln(d!)
(p1 ln(p1) + pd! ln(pd!)]). (3.3)

We use the limit since, strictly speaking, ln(0) is not defined. Figure 3.1 shows an
example of such a calculation with a deterministic cubic polynomial equation.

There is an additional effect we will discuss, given that we are working with discrete
signals. In the regions close to the maximum and minimum points of x = g(t),
we would expect non-monotonic patterns to appear. Intuitively, we can see that
sampled signals from f(t) would not exactly adhere to equation (3.1). For a suf-
ficiently large sampling rate, the nonmonotonic patterns probabilities would tend
toward zero, so (3.1) would still be a good approximation. On the contrary, when
the pattern size is comparable to the number of data points between local maxima

0 0.5 1 1.5 2 2.5 3

time (sec)

-0.5

0

0.5

1

x

Figure 3.1: Sampled cubic polynomial x = 1
3
t3 − (2

3
)t2 + 2t− 1

2
for

t = [0, 3] seconds. The regions t = [0, 1] and t = [2, 3] sec have a
positive slope; therefore p1 = 2/3 and pd! = 1/3. It follows from
equation (3.3) that the normalized PE is H = 0.3552 for d = 3.
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Figure 3.2: Sine wave x = sin (2πft) with wave frequency f = 1,
from 0 ≤ t ≤ 5 seconds. Here we show the sampled signals with
sampling frequency (a) fs = 8 Hz, (b) fs = 32 Hz, and (c) fs = 216
Hz, with their corresponding values of normalized PE at dimension
d = 3. (d) shows the PE of the sine wave x at different sampling
frequencies fs. The measured PE converges with the theoretical
normalized PE (3.3) for the continuous sine wave (H = 0.387).

and minima, the nonmonotonic pattern probabilities would be comparable to the
monotonic ones. In figure 3.2, we can observe the effect of the sampling frequency
fs over the measured MPE (m = 1 and d = 3) of a sine wave. As we increase fs,
the number of patterns that overlap with a local maximum or minimum decreases
considerably. Therefore, as we increase the sampling rate, the overall MPE slowly
converges with the theoretical value predicted by (3.3).

From these examples we can offer the following observations. First, even if fs satisfies
the Nyquist-Shannon theorem fs > 2fmax, this criterion is not enough to guarantee
an accurate MPE estimation from a continuous deterministic signal. It is necessary
that fs ≫ fmax to avoid any significant deviations from the theoretical PE value
in (3.3). Second, contrary to the bias effect discussed in Section (2.3.3), a small
fs produces an overestimation of MPE. The source of this effect comes from the
number of patterns that overlap with a maxima or minima. Therefore, this is a
geometric effect, rather than a statistical one.

52



CHAPTER 3. MPE ON COMMON SIGNAL MODELS

So far, we can observe two important factors that have an effect on the MPE of
deterministic signals: the sampling rate and the presence of maximum and minimum
points. Since we have not explored neither non-differentiable functions nor chaotic
systems, we cannot claim this list of factors is exhaustive. Nonetheless, here we
present the basic considerations regarding the properties of deterministic functions
for MPE calculations.

3.2.2 Deterministic Signals with Noise

It is a well-known fact that white noise yield the maximum permutation entropy
value. This corresponds to a uniformly distributed pattern mass probability func-
tion, where each pattern has the exact same chance of appearing in the signal. This
presents itself in stark contrast to a deterministic signal, which will present a low
entropy value if we measure it with a high enough sampling rate. As a consequence,
it is natural to ask what would we expect from the MPE measurement of determin-
istic signal in the presence of noise. This is particularly relevant, since we expect to
have at least a small amount of noise from a real signal measurement, and the MPE
method is regarded as a robust method.

Intuitively, there will be no difference between noisy and clean signals from the
perspective of entropy if the amount of noise is small in comparison to the amplitude
of the patterns. Nonetheless, if the added noise has a sufficiently large variance, it
will override the deterministic pattern, as described in Figure 3.3.

Therefore, in the case of deterministic signals with added noise, the magnitude of
the slope becomes important —in contrast to the direction of the slope, as we saw
in Section 3.2.1). In the case of a completely horizontal line, the addition of noise,
regardless of its amplitude, will inevitably shift the MPE from zero to its maximum
value. In contrast, curves with a pronounced slope should preserve their ordinal
patterns, even in the presence of noise. Therefore, for a signal with clear local
maxima and minima, we should see an increased number of nonmonotonic patterns
as a product of noise, since the regions near these points have a slope close to zero.
An example of one of such cases is shown in Figure 3.4.

In order to gauge the effect of amplitude over MPE of deterministic signals with
white noise, we will test the case of a parabolic curve x = t2 for 0 ≤ t ≤ 15 seconds.
The parabola has a slope that increases linearly with time for this region. This
is particularly well-suited for our experiment. We thereby add white noise to the
parabola, testing for different standard deviation values σ. We will calculate local

Figure 3.3: The presence of noise does not affect the signal patterns,
as long as the variation is small compared to the curve’s slope.
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Figure 3.4: Sampled cubic polynomial x = 1
3
t3 − (2

3
)t2 + 2t− 1

2
for

t = [0, 3] seconds, with added white Gaussian noise with standard
deviation of (a) σ = 0.001 and (b) σ = 0.005. In the regions near
the local maximum and minimum, the white Gaussian noise, rather
than the polynomial, determines the ordinal patterns present.

MPE for a sliding window of ∆t = 0.05 seconds. The results are shown in Figures
3.5a and 3.5b.

Additionally, we want to explore the phenomenon from the opposite perspective, by
having a straight line x = At with fixed slope A, and white noise with a standard
deviation σ that increases with time. By following the same procedure, we obtained
the results shown in Figures 3.5c and 3.5d.

As we could expect, as we increase the slope of the signal, MPE is reduced from a
region where the noise dominates (maximum entropy) to a region where the deter-
ministic line has most effect (minimum entropy). Figure 3.5b confirms this trend.
The opposite effect occurs when we increase the standard deviation of the noise,
as it moves from minimum to maximum entropy. Surprisingly, the shift from one
regime to the other is not sharp. Instead, we observe a transition curve which de-
pends on the exact slope and standard deviation values. Here, we will not attempt
to characterize this behavior formally. It suffices to say that there is a strong inter-
action between the geometry of the signal and the intensity of the noise, regarding
the overall resulting MPE measurement.

Now that we know the overall MPE effect of the interaction between noise amplitude
and slope, we should reintroduce the sampling rate. Geometrically, if the sampled
data points for a noisy signal are close together in time, the vertical distance be-
tween values decreases, even for a pronounced slope. Therefore, for a constant noise
standard deviation, we should expect an increase of MPE values when the sampling
frequency increases.

To test this effect over the MPE of noisy signals, we revisit the example of the
sinusoidal wave function x = sin(2πft) from 0 ≤ t ≤ 5 seconds, with increasing
sampling frequency fs. We perform the MPE calculation for m = 1 at different
values of SNR. The results are shown in Figure 3.6.

At first glance, we can see in Figure 3.6a that the SNR has a profound impact on the
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Figure 3.5: (a) Parabolic curve x = t2 for 0 ≤ t ≤ 15 seconds,
with added white noise at σ = {0.005, 0.001, 0.002}. (b) MPE at
d = 3 within respect to the linearly increasing slope of the parabolic
curve at different values of σ. (c) Straight line x = At with added
white noise at increasing σ = [1e − 9, 1e − 6]. (d) MPE at d = 3
within respect to a linearly increasing σ at different values for the
slope A. The MPE values in (b) and (d) come from a local sliding
window of ∆t = 0.05 sec. The sampling rate for this measurements
is fs = 6670Hz.

overall results, compared to the noiseless MPE vs. fs curve in Figure 3.2d. Instead
of reducing MPE asymptotically to the theoretical continuous entropy, the value
of noisy sine waves presents a minimum, and then increases with higher fs. For
a sufficiently large sampling frequency, the noise effect dominates over the signal,
regardless of SNR. In Figure 3.6b, we present an MPE surface, respect to both
fs and SNR. We can see a clear frontier between the regions where the sine wave
dominates (in blue), and the region where the noise effect prevails (in yellow). As
we increase the SNR, the noise effect requires higher sampling frequencies to appear,
and the frontier within regions is not linear.

This entropy increase with sampling rate can be explained by the vertical distance
between data points: the closer the data points are in time, the closer they are
in vertical distance, even for a steep slope. Therefore, we should also be wary of
oversampling the signal, since we are increasing the effect of noise, as exemplified in
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Figure 3.6: Sine wave function x = sin(2πft) from 0 ≤ t ≤ 5
seconds, with increasing sampling frequency fs, in the presence of
white noise at different signal-to-noise ratio (SNR). (a) Mean MPE
vs. fs at SNR = 10 dB, 20 dB, and 30 dB. The MPE follows the
MPE of the noiseless sine wave for low fs, and approaches maximum
entropy at high sampling rates. (b) MPE surface representation,
with fs and SNR as independent variables. Low entropy values are
shown in blue, and high entropy in yellow. We observe a clear
frontier between regions where noise dominates (yellow), or the
underlying deterministic signal is more important (blue).

Figure 3.7: For a fixed signal-to-noise ratio (SNR), an increased
sampling rate fs implies the data points are closer together, both
in time and amplitude. Therefore, when fs is high, the pattern
noise dominates over the deterministic signal, and thus, the ordinal
pattern is modified.
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Figure 3.7. Fortunately, the coarse-graining procedure, characteristic of the MPE,
acts as a downsampling parameter, which can correct this effect. Therefore, a careful
exploration of the MPE signals with respect to noise is always recommended before
further analysis.

3.3 MPE on Models with Random Gaussian Sig-

nals

In contrast to the previous section, here we will focus on characterizing the MPE of
random stochastic processes, focusing on Gaussian processes. Here, the information
content from the signal does not come directly from the geometry of the model, but
from its autocorrelation function [58]. White Gaussian noise (wGn), as we discussed
before, produces a uniform ordinal pattern distribution. Since wGn is uncorrelated,
we can make no inferences regarding possible future patterns, given the information
we have. This is not the case when we have an autocorrelation other than zero.

The models in this section share the following characteristics. First, it is evident
that each data point in the series has at least one Gaussian error term. Second, the
signals are stationary —this property is not strictly necessary, as we can see from
section 3.2.2. Third, the Gaussian random variable has a constant variance, and
hence, presents homoscedasticity. Models with nonconstant variance will be studied
in future work. Lastly, and most importantly, we will not restrict ourselves to white
Gaussian noise (wGn). As we will see, the autocorrelation in this process presents
some information content, manifest in the MPE.

The coarse-graining procedure presents an additional challenge for the calculation
of Gaussian ordinal patterns. In the general case, there is no guarantee that the
pattern probability distribution of these signals will remain the same across time
scales. Therefore, as part of our analysis of Gaussian models, we will also provide
the evolution of the pattern probabilities as a function of time scale. This step is
essential to obtain the MPE as a function of the process parameters.

3.3.1 Gaussian Ordinal Pattern Distributions

Bandt and Shiha [58] first observed the pattern distributions of Gaussian noise by
taking advantage of the pattern symmetries present in these models. For embedded
dimension d = 2, the two patterns have the exact same probability p1 = p2 = 1/2,
with no effect stemming from the autocorrelation in the noise. This is true because
of the stationary constraint outlined before, and the fact that, for a Gaussian ran-
dom variable, the median is equal to the mean. By the definition of the median,
the probability of having an increasing pattern is P (Xt > Xt+1) = 1/2. Therefore,
unless the signal is non-stationary, the signal will be balanced [58]. Since the coarse-
graining procedure is an averaging transformation, the resulting coarse signal is also
Gaussian and stationary. Although this is a general result, it is also not useful in
the characterization of the Gaussian process.
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Figure 3.8: Three-dimensional surface for (a) MPE, and (b)
var(MPE) for Gaussian models and dimension d = 3. This rep-
resentation is possible since the Gaussian pattern symmetries (3.4)
allow the pattern pdf to be dependent on only one variable p1.

For d = 3, the patterns present an interesting structure. By exploiting the general
symmetry properties of patterns of dimension three, applied to Gaussian distribu-
tions, the following relationships arise between pattern probabilities [58],

p1 = p6

p2 = p3 = p4 = p5 =
1
4
(1− 2p1), (3.4)

being p1 the monotonically increasing pattern, and the remaining pi follow the lex-
icographic order of the permutations [59]. By using Plackett’s lemma [58], they
found an explicit relationship between the autocorrelation function of the process
(ρ(λ)), and the increasing pattern probability,

p1 =
1

π
arcsin

(
1

2

√
1− ρ(2)

1− ρ(1)

)
, (3.5)

where ρ(1) is the autocorrelation between adjacent points, and ρ(2) is the autocor-
relation between data points two steps apart.

As we can clearly see, all of the pattern’s distribution is completely characterized
by computing the first pattern probability. This reduces the problem from five
dimensions (3!-1 degrees of freedom) to just one. We also note that this relationship
will hold for any stationary Gaussian process. Any coarse-grained signal whose
source time series is a Gaussian process, will itself be a Gaussian process, and will
still obey equation (3.5). From this point, we rewrite the original PE definition (2.3)
using the pattern symmetries in (3.4):

H = −2p1 ln(p1)− (1− 2p1) ln
(
1
4
(1− 2p1)

)
. (3.6)
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The problem now lies in obtaining the autocorrelation functions for the coarse-
grained versions of these models. By introducing the time scale to the autocor-
relation function, we can easily obtain the pattern probability p

(m)
1 (the pattern

probability at scale m) and the theoretical MPE value for the model.

Before exploring more specific Gaussian processes, we should address the embedded
dimension. For the purposes of this section, we will limit our analysis to the case
of d = 3. Although there are explicit symmetries obtained for d = 4, some of
the resulting pattern probabilities lie in the complex plane, which complicates its
interpretation. For d ≥ 5, the pattern probabilities have no closed form [58].

3.3.2 White Gaussian Noise and Fractional Gaussian Noise

As described by Manderlbrot [60], the fGn models a surprisingly large amount of
natural phenomena across time, from hydrology to stock markets. Interestingly, fGn
does include white Gaussian noise as a special case. The fGn fractal properties are
of special interest under the MPE approach.

In this section we will lay down the necessary theory about fGn, with special em-
phasis on its autocorrelation function, as we have previously published in [2]. This
will allow us to build a model for coarse-grained fGn signals (cgfGn). By obtaining
the autocorrelation function of cgfGn, we will completely characterize the pattern
distribution function, and thus, the theoretical MPE with respect to the time scale
m.

It is not necessary to state the explicit form of the fGn signals, but we will need to
relate it to the fractional Brownian motion (fBm). For n ∈ N, we will write fBm
signal as XB(n) and fGn as XG(n), corresponding to time tn. Since fGn and fBm
are continuous, we need to work with the discrete sampled version.

These models are dependent of the Hurst exponent 0 < h < 1, which is used to model
long-term autocorrelations that are proportional to th [60] (the Hurst exponent is
usually found in literature as uppercase H. Here, we use lowercase h to avoid using
H, which we use for MPE). For h > 0.5, each new data point is positively correlated
to all previous ones. For h < 0.5, each new point is inversely correlated to all its
history. In the case of h = 0.5, the model is identical to uncorrelated Gaussian noise.
For this reason, we will consider wGn as a special case of fGn. Therefore, all the
results for fGn also apply to the classical, uncorrelated wGn.
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Regarding some properties of fBm, we can state that [61],

Fractional Brownian motion

1 Model XB(n) =
∑n

i=0 XG(i)

2 Expected value E[XB(n)] = 0

3 Variance var(XB(n)) = E[X2
B(n)] = σ2n2h

4 Covariance cov(XB(n), XB(n+ λ)) = σ2

2

(
n2h + |n+ λ|2h − (λ)2h

)

5 Correlation ρB(n, λ) =
1

2n2h

(
n2h + |n+ λ|2h − (λ)2h

)

(3.7)

where λ is the index shift between data points. The value of XB(n) is the sum of all
the prior individual, nonindependent Gaussian steps. The autocorrelation between
different points in the fBm depends on the distance between data points, as well
as the absolute position in time. Similarly, we can write the properties of fGn as
follows,

Fractional Gaussian noise

1 Model XG(n) = XB(n)−XB(n− 1)

2 Expected value E[XG(n)] = 0

3 Variance var(XG(n)) = E[X2
G(n)] = σ2

4 Covariance cov(XG(n), XG(n+ λ)) = σ2

2

(
|λ+ 1|2h + |λ− 1|2h − 2|λ|2h

)

5 Correlation ρG(λ) =
1
2

(
|λ+ 1|2h + |λ− 1|2h − 2λ2h

)

(3.8)

Here, the fGn is defined with respect to fBm. Each fGn instance is the increment
between the fBm at the same time tn, compared to the realization at tn−1. In this
case, the autocorrelation is not dependent directly on the position in time. Instead,
it is solely dependent on the relative distance between data points.

Using these properties with the definition of the coarse-graining procedure (2.5), we
can express the properties of a cgfGn by introducing the relationship between fBm
and fGn (3.8), as follows,

X
(m)
G (n) =

1

m

mn∑

j=m(n−1)+1

XG(j)

= 1
m
[XB(mn)−XB(m(n− 1))] . (3.9)

By writing the cgfGn in terms of fBm, we simplify the expression enough to obtain
the moments manually.
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E[X
(m)
G (n)] = 0 (3.10)

var(X
(m)
G (n)) = E[X

(m)
G

2
(n)]

= 1
m2E

[
(XB(mn)−XB(m(n− 1)))2

]

= σ2m2(h−1). (3.11)

We will take advantage of the variance and covariance of fBm in equation (3.7), where
λ = m. More importantly, we need to obtain the autocovariance and autocorrelation
of (3.9). This can be done by using the same reasoning as with the cgfGn variance,
as follows,

cov(X
(m)
G (n),X

(m)
G (n+ λ)) = E[X

(m)
G (n)X

(m)
G (n+ λ)]

= 1
m2E

[
(XB(mn)−XB(m(n− 1)))

(XB(m(n+ λ))−XB(m(n+ λ− 1))
]

= σ2

2
m2(h−1)

(
|λ+ 1|2h + |λ− 1|2h − 2λ2h

)
(3.12)

ρ
(m)

Ḡ
(λ) = 1

2

(
|λ+ 1|2h + |λ− 1|2h − 2λ2h

)

= ρG(λ). (3.13)

By dividing (3.12) by (3.11), we get the autocorrelation of the coarse-grained signal,
which is exactly the same as the autocorrelation of the original fGn signal in (3.8).
This is consistent with the self-similarity property of the fractional Gaussian noise
signals [46],

XG(n)
d
= chXG(c

−1n), (3.14)

which are equal in distribution. Therefore, by revisiting the pattern probabilities for
Gaussian signals in equation (3.5), the MPE of coarse-grained fGn remains constant
for all time scales and for any given Hurst exponent h. As a consequence of this
result, the MPE of white Gaussian noise is invariant to the time scale coarse-graining
transformation. When we compute the pattern probabilities from (3.5), we obtain,

p
(m)
1,fGn =

1

π
arcsin

1

4

√
1 + 22h+1 − 32h

1− 22(h−1)
, (3.15)

which we use to obtain the MPE of fGn by means of equation (3.6).

In Figure 3.9 we observe the mean MPE from 1500 fGn signal simulations (length
N = 5000). Contrary to the result found in (3.13), we observe a linear downward
trend for the MPE with respect to time scale m. This is easily explained by the
MPE bias from equation (2.23). We included the bias in the theoretical prediction
(dotted lines) in Fig. 3.9b. Since the simulated results only on a downward trend, it
implies that the MPE for fGn is not affected by the scale, other than the linear bias
effect. Therefore, we conclude that the fGn, by virtue of the self-similarity property,
contains the same MPE regardless of time scale.

61



MPE Statistics with sEMG Applications

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

H

0.982

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

P
E

m=1

m=10

m=20

m=30

M

h

(a)

0 5 10 15 20 25 30

m

0.99

0.991

0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1

P
E

H=0.5

H=0.2

H=0.8

M

h

h

h

(b)

Figure 3.9: (a) Average MPE of fGn with respect to the Hurst
exponent, for different time scales m. The curves get downshifted
with increasing m. (b) MPE of fGn respect to m, for Hurst expo-
nents h = {0.2, 0.5, 0.8}. The dotted lines represent the theoretical
predictions, while the solid lines measure the mean MPE from 1500
signals of length N = 5000.

3.3.3 First-Order AR Models

Autorregressive (AR) [62] Gaussian processes are ubiquitous tools in signal process-
ing, used to represent complicated time series phenomena. The AR process takes
into account the influence of the parameter p̃ (not to be confused with p, which
refers to probability) past data points in a new iteration of the process, plus a new
random Gaussian innovation. The general AR (p̃) process is described as,

XAR(p̃)(n) = c+ εn +

p̃∑

i=1

φiXAR(p̃)(n− i), (3.16)

for time tn, where the ǫn terms are assumed to be Gaussian, independent and identi-
cally distributed (iid), with mean zero and constant σ2 variance. The term p̃ denotes
the number of elements, or lags, taken in account for the AR model.

The first degree AR (p̃ = 1) is expressed as,

XAR(1)(n) = c+ εn + φXAR(1)(n− 1), (3.17)

where

E[XAR(1)(n)] = c/(1− φ) (3.18)

var(XAR(1)(n)) = σ2/(1− φ2) (3.19)

ρAR(1)(λ) = φ|λ|. (3.20)
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At this point, we will limit the analysis to the first-order AR processes, so that we
can ensure the coarse-grained pattern probabilities have a closed form. More general
cases will be explored in Section 3.3.5.

As we have previously done in [4], we will apply the coarse-grained procedure to the
AR(1) processes. We here set the constant c = 0, without loss of generality. If we
apply the coarse-graining procedure expression in (2.5) into first-order AR process
(3.17), we get,

X
(m)
AR(1)(n) =

φ

m

(1− φm

1− φ

)
XAR(1)(m(n− 1)) +

1

m

m∑

j=1

(1− φj

1− φ

)
εmn+1−j. (3.21)

The variance of (3.21) is

var(X
(m)
AR(1)(n)) =

σ2

m2(1− φ2)

[
m

(
1 + φ

1− φ

)
− 2φ

1− φ

(
1− φm

1− φ

)]
. (3.22)

The autocovariance function γλ for (3.21) is given by

γλ = cov
(
X

(m)
AR(1)(n), X

(m)
AR(1)(n+ λ)

)
=

φmλ+2

m2

(1− φm

1− φ

)2
var(XAR(1)(m(n− 1))) +

σ2

m2
φm(λ+1)1− φm

1− φ

m∑

j=1

(
1− φj

1− φ

)
φj.

(3.23)

and the autocorrelation is

ρ
(m)
AR(1)(λ) = φm(λ−1)+1

[
(1− φm)2

m(1− φ2)− 2φ(1− φm)

]
. (3.24)

for |λ| > 0, and ρ
(m)
AR(1)(0) = 1.

From this point, it is straightforward to obtain the probability of obtaining the
increasing pattern probability for embedded dimension d = 3 by using this auto-
correlation function (3.24) to obtain the first pattern probability (3.5), and the PE
equation in (3.6). We note here that (3.21) is not itself an AR(1) process. Nonethe-
less, it is still a stationary Gaussian process, so the assumptions required for (3.5)
still apply. Therefore, the increasing ordinal pattern for coarse-grained AR(1) is

p
(m)
1,AR(1) =

1

π
arcsin

(
1

2

√
m(1− φ2)− φ(2− φm)(1− φ2m)

m(1− φ2)− φ(1− φm)(3− φm)

)
. (3.25)
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Even when the equation (3.25) is cumbersome, we have a closed expression for
the pattern distribution in the AR(1) model. Moreover, the distribution is only a
function of the model’s parameters and the time scale. This means the MPE of
this model is completely characterized, and any deviation from these results come
from effects outside the statistical properties of the signal. In figure 3.10 we can
observe the comparison between our MPE models and actual MPE measurements
from simulated AR(1) processes.
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Figure 3.10: (a) MPE curves for AR(1) with respect to their corre-
sponding model parameter φ. Different curves correspond to differ-
ent time scales m, as shown directly in the plots. (b) MPE curves
with respect to m, with φ = {0.25, 0.50, 0.75, 0.90}. Dotted lines
represent theoretical MPE values, while solid lines show the result-
ing mean MPE from 1500 signals of N = 1000.

As we can observe from Figure 3.10, increasing time scales tend to increase the
MPE, except for φ values close to 1. For high φ, the signal presents a minimum
entropy at a scale different than m = 1. Consequently, we would want to find the
critical value of φ above which this effect begins to occur. Therefore, in the limit
case, where we set the probabilities pm=1

1,AR(1) = pm=2
1,AR(1) to be equal, we get

1− ρ
(m=1)
AR(1) (2)

1− ρ
(m=1)
AR(1) (1)

=
1− ρ

(m=2)
AR(1) (2)

1− ρ
(m=2)
AR(1) (1)

φ(φ− 1)(φ2 + φ− 1) = 0

φ = −1/2 +
√
5/2 ≈ 0.618.

(3.26)

Thus, as we previously published in [4], this result states that coarse-grained AR(1)
models a φ parameter greater than the Golden Ratio, presents more regularity and
structure on longer time scales than the original signal.

3.3.4 First-Order MA Models

As in section 3.3.3, the moving average process [62] is also one of the most referenced
techniques in the modelization of random time series. Contrary to the AR model, the
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MA process computes each data point as the weigthed sum of q̃ previous innovations,
in addition to the present one. The general MA(q̃) process is described as,

XMA(q̃)(n) = c+ εn +

q̃∑

j=1

θjεn−j. (3.27)

for time tn, where the ǫ terms are assumed to be Gaussian, independent and identi-
cally distributed (iid), with mean zero and constant σ2 variance. The term q̃, is the
number of lags taken in account for the MA model. The first degree MA (p̃ = 0,
q̃ = 1), which is the simplest case, is explicitly written as

XMA(1)(n) = c+ εn + θεn−1, (3.28)

with moments

E[XMA(1)(n)] = c (3.29)

var(XMA(1)(n)) = σ2(1 + θ2). (3.30)

The normalized autocorrelation is given by

ρMA(1)(λ) =





1, if λ = 0

θ/(1 + θ2), if |λ| = 1

0, otherwise,

(3.31)

where λ is the time shift between data points XMA(1)(n) and XMA(1)(n± λ).

As previously done in [4], we will apply the coarse-grained procedure to MA(1)
processes. We will, once again, take the coarse-grained definition from equation
(2.5), as in section 3.3.3. We will once again set c = 0 without loss of generality.
For any time scale m, the coarse-grained MA(1) (cgMA(1)) process is,

X
(m)
MA(1)(n) =

θ

m
εm(n−1) +

1

m
εmn +

1 + θ

m

mn−1∑

j=m(n−1)+1

εj, (3.32)

being n ∈ N the index variable of the new coarse-grained signal, and m the scale.
From this expression, we will derive the autocovariance function,

Cov
(
X

(m)
MA(1)(n), X

(m)
MA(1)(n+ λ)

)
=





σ2

m

(
1 + θ2 + 2

(
m−1
m

)
θ
)
, if λ = 0

θ
m
σ2, if |λ| = 1

0, otherwise.

(3.33)
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For λ = 0, we have the variance of the coarse-grained MA(1) model. If we divide
(3.33) by its own variance, we obtain the autocorrelation function,

ρ
(m)
MA(1)(λ) =





1, if λ = 0
θ

m(1+θ2)+2(m−1)θ
, if |λ| = 1

0, otherwise.

(3.34)

Once again, it is straightforward to calculate the probability of obtaining the increas-
ing pattern probability for embedded dimension d = 3, by using this autocorrelation
function (3.34) to obtain the first pattern probability (3.5), and the PE equation in
(3.6). The new cgMA(1) process is still Gaussian, even when the original properties
of MA(1) do not apply. Therefore, the use of (3.5) is still valid. The increasing
ordinal pattern for coarse-grained MA(1) is

p
(m)
1,MA(1) =

1

π
arcsin

(
1

2

√
m(1 + θ2) + (2m− 2)θ

m(1 + θ2) + (2m− 3)θ

)
. (3.35)

Here, in contrast to the case of fractional Gaussian noise, the pattern probabilities
do not stay constant across time scale. Nonetheless, we have an explicit equation
that governs the evolution of the pattern probability distribution, based solely on
the MA(1) parameter θ and time scale m. It is cumbersome to express the MPE of
MA(1) using this expression, but the MPE value can be easily computed by using
Equation (3.6). We must note here that the expression inside the arcsin function is
almost equal to 0.5, which yields a pattern probability of 1/6, even for small m. This
implies that, other than the case where m = 1, the coarse-grained MA(1) process
will be virtually indistinguishable from noise. Figure 3.11 shows the MPE for the
coarse-grained MA(1) process for different values of θ and time scale m.

For the MA(1) process, we can appreciate that only the first time scale m = 1
presents a noticeable deviation from the maximum entropy. This implies that the
coarse-graining procedure, in fact, nullifies the autocorrelation effect on the original
signal. For scales greater than m = 1, the process is indistinguishable from noise,
regardless of the model parameter θ. This is not surprising, since distant points in
a MA(1) process are not correlated. The coarse-graining procedure reflects this.

3.3.5 General Formulation for Correlated Gaussian Models

When we consider the general formulation of the Gaussian models, we observe the
coarse-grained signals are still Gaussian, albeit with different autocorrelation func-
tions. This property still allows the use of the symmetries in (3.4) for all time scales
to obtain the MPE based solely on the autocorrelation function at dimension d = 3.
If we solely rely on these assumptions about a model, we can formulate a general
expression to properly describe the signal autocorrelation for all m.
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Figure 3.11: (a) MPE curves for MA(1) with respect to their corre-
sponding model parameter θ. Different curves correspond to differ-
ent time scales m, as shown directly in the plots. (b) MPE curves
with respect tom, with θ = {0.25, 0.5, 0.75}. Dotted lines represent
theoretical MPE values, while solid lines show the resulting mean
MPE from 1500 signals of N = 1000.

Therefore, in this section we will obtain the autocorrelation function for the general
coarse-grained Gaussian stationary signal. First we need to recall the coarse-grained
procedure definition from Equation (2.5), now for a random process,

X(m)(n) =
1

m

mn∑

j=m(n−1)+1

X(j),

where n is the time index of the original signal and m is the time scale. We will
rewrite this expression in vectorial form as a dot product, as follows,

X(m)(n) =
1

m
1′




X(m(n− 1) + 1)
X(m(n− 1) + 2)

...
X(mn)


 =

1

m
1′X(m)(n(m)). (3.36)

Without any knowledge of the signal, we cannot know its expected value a priori.
Nonetheless, we can at least state the form the general expression for the covariance.
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cov(X(m)(n), X(m)(n+ λ))

= E
[
X(m)(n)X(m)(n+ λ)

]

− E
[
X(m)(n+ λ)

]
E
[
X(m)(n+ λ)

]

=
1

m2
E
[
1′X(m)(n)X(m)(n+ λ)′1

]

− 1

m2
E
[
1′X(m)(n+ λ)

]
E
[
X(m)(n+ λ)′1

]

=
1

m2
1′
(
E
[
X(m)(n)X(m)(n+ λ)′

]

− E
[
X(m)(n+ λ)

]
E
[
X(m)(n+ λ)′

] )
1

=
1

m2
1′ K(m)

(
X(m)(n),X(m)(n+ λ)

)
1. (3.37)

In this expression, K is the mxm covariance matrix:

K(m)
(
X(m)(n),X(m)(n+ λ)

)
=




cov(X(m(n− 1) + 1), X(m(n+ λ− 1) + 1)) . . . cov(X(m(n− 1) + 1), X(m(n+ λ)))
cov(X(m(n− 1) + 2), X(m(n+ λ− 1) + 1)) . . . cov(X(m(n− 1) + 2), X(m(n+ λ)))

... . . .
...

cov(X(mn), X(m(n+ λ− 1) + 1)) . . . cov(X(mn), X(m(n+ λ)))




(3.38)

It is evident from equation (3.37) that the sum all the elements of K(m) will lead to
the cov(X(m)(n), X(m)(n+ λ)) we are looking for. This sum is written in a compact
form by means of a matrix quadratic form. Regarding the inner structure of K,
we observe the distance between data points change in a predictable way. Each
time we move one diagonal below, the distance between data points compared by
the covariance is reduced by one. The opposite is true if we move above the main
diagonal of K. If the signal model has constant variance σ2

x, we can extract this
common element from the covariance matrix. This will help in the display of the
diagonal properties:

K(m)
(
X(m)(n),X(m)(n+ λ)

)
= σ2

xR
(m)(mλ)

= σ2
x




ρ(mλ) ρ(mλ+ 1) . . . ρ(mλ+m− 1)
ρ(mλ− 1) ρ(mλ) . . . ρ(mλ+m− 2)

...
...

. . .
...

ρ(mλ−m+ 1) ρ(mλ−m+ 2) . . . ρ(mλ))


 (3.39)

Here, we define the autocorrelation matrix R(mλ) as a Toeplitz matrix, with the
same geometric properties as K. The time shift in the autocorrelation function
decreases one point as we go down in the diagonals, and increases as we go up. At
this point, we must address a special case where this behavior is not true. If we
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compute the autocorrelation matrix between a vector segment X(m)(n) and itself,
we obtain,

R(m)(0) =




ρ(0) ρ(1) . . . ρ(m− 1)
ρ(1) ρ(0) . . . ρ(m− 2)
...

...
. . .

...
ρ(m− 1) ρ(m− 2) . . . ρ(0))


 , (3.40)

since ρ(−λ) = ρ(λ). R(0) is the only instance where the autocorrelation matrix
is symmetric, and the strictly increasing distance with the matrix diagonals do not
apply.

From Equation (3.37) we can now compute the autocorrelation function of the
coarse-grained signal as follows,

ρ(m)(λ) =
cov(X(m)(n), X(m)(n+ λ))

var(X(m)(n))
=

1′K(m)(X(m)(n),X(m)(n+ λ))1

1′K(m)(X(m)(n),X(m)(n))1
. (3.41)

If we have a signal with homoscedasticity, the equation further simplifies to

ρ(m)(λ) =
1′R(m)(mλ)1

1′R(m)(0)1
. (3.42)

These equations can, in practice, be difficult to compute in an explicit, scalar form.
Nonetheless, (3.41) can be used with any evenly sampled signal. If, furthermore,
the signal is itself stationary and homoscedastic, we can use (3.42) to obtain its
coarse-grained autocorrelation function. If we go even further, if we only know
the autocorrelation values for λ = 1, 2, . . . ,m− 1, we can obtain the coarse-grained
autocorrelation value without even knowing the underlying functions. It is sufficient
for the signal to be Gaussian to use the results in (3.41) and (3.42) to obtain the
pattern probability distribution (3.5), and thus, the MPE (3.6).

3.3.6 ARMA Models Revisited

At this point, we can return to our results in section 3.3.3 and 3.3.4, to use the
MA(1) and AR(1) models as an example of an explicit computation for (3.42). In
the case of MA(1), the coarse-grained autocorrelation is,
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ρ
(m)
MA(1)(λ) =

1′R(m)(mλ)1

1′R(m)(0)1
, for |λ| = 1

=
θ

1+θ2

m+ 2(m− 1) θ
1+θ2

, for |λ| = 1

=
θ

m(1 + θ2) + 2(m− 1)θ
, for |λ| = 1

∴ ρ
(m)
MA(1)(λ) =





1, if λ = 0
θ

m(1+θ2)+2(m−1)θ
, if |λ| = 1

0, otherwise.

(3.43)

which is the same result as obtained in (3.34). For the AR(1) process, we have,

ρ
(m)
AR(1)(λ) =

1′R(m)(mλ)1

1′R(m)(0)1

=
φm(λ−1)

(
(1 + φm) φ

(1−φ)2
(1 + (m− 1)φm −mφm−1) +mφm

(
1−φm

1−φ

))

2m
(

1−φm

1−φ

)
−m− 2 φ

(1−φ)2
(1 + (m− 1)φm −mφm−1)

= φm(λ−1)+1

[
(1− φm)2

m(1− φ2)− 2φ(1− φm))

]
, (3.44)

which is, again, equal to equation (3.24).

Now, we can use equation (3.42) to obtain the general coarse-grained autocorrela-
tion for an arbitrary ARMA(p̃, q̃). Since the explicit derivation would be long and
cumbersome, it would suffice to have a general form for the autocorrelation function
of the original ARMA process, to obtain the coarse-grained version.

If we already know the ARMA parameters, it is enough to obtain the autocorrelation
for XARMA(p̃,q̃)(n). This can be accomplished solving the generalized Yule-Walker
(YW) equations for the autocovariance function γ. If p̃ > q̃,

γ0 = φ1γ1 + · · ·+ φp̃φp̃ + σ2 + θ1E[Xnǫn−1] + · · ·+ θq̃E[Xnǫn−q̃]

γ1 = φ1γ0 + · · ·+ φp̃φp̃−1 + 0 + θ1σ
2 + · · ·+ θq̃E[Xnǫn−q̃+1]

...

γq̃ = φ1γq̃−1 + · · ·+ φp̃φp̃−q̃ + 0 + 0 + · · ·+ θq̃σ
2

...

γp̃ = φ1γp̃−1 + · · ·+ φp̃φ0

...

γλ = φ1γλ−1 + · · ·+ φp̃φλ−p̃. (3.45)
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If p̃ < q̃, the YW equations change sightly,

γ0 = φ1γ1 + · · ·+ φp̃φp̃ + σ2 + θ1E[Xnǫn−1] + · · ·+ θq̃E[Xnǫn−q̃]

γ1 = φ1γ0 + · · ·+ φp̃φp̃−1 + 0 + θ1σ
2 + · · ·+ θq̃E[Xnǫn−q̃+1]

...

γp̃ = φ1γp̃−1 + · · ·+ φp̃φ0 + 0 + 0 + · · ·+ θq̃E[Xnǫn−q̃+p̃]

...

γq̃ = φ1γq̃−1 + · · ·+ φp̃φq̃−p̃ + 0 + 0 + · · ·+ θq̃σ
2

...

γλ = φ1γλ−1 + · · ·+ φp̃φλ−p̃. (3.46)

All the autocovariance terms γλ must be divided by γ0 to obtain the first max(p̃, q̃)
autocorrelations values. Any autocorrelation λ > max(p̃, q̃) follows the autorregres-
sive recursive relation, and can be computed a posteriori.

With the YW equation solution for ρ(λ) = γλ/γ0, we can use equation (3.42) utilizing
the pattern probability in equation (3.5) (for d = 3) to obtain the MPE in (3.6).
We can observe some examples in Fig. 3.12 with the average MPE of 100 signals at
N = 5000 with bias correction. The models shown correspond to:

1. AR(p) with a single parameter φp = 0.25, with increasing order p, with all
lower order parameters set to zero. Fig. 3.12a.

2. ARMA(1,q), with fixed AR parameter φ1 = 0.5, and adding a new MA term
θ1 = · · · = θq = 0.1 with increasing order. Fig. 3.12b.

3. MA(q) with a single parameter θq = 0.25 with increasing q, also with lower
order parameters equal to zero. Fig. 3.12c.

4. ARMA(p,1), with fixed MA parameter θ1 = 0.5, and adding a new AR term
φ1 = · · · = φp = 0.1, also with increasing order. Fig. 3.12d.

Once again, albeit the behavior of each model presents more complications than
the AR(1) and MA(1) models, it is evident that the simulations closely follow the
MPE predictions. This fact further proves the utility of equation (3.42) to obtain
the MPE of elaborate Gaussian models.

3.4 Closing Remarks

In this chapter we have explored the different factors that have an effect on the final
MPE value measured from a signal. For this purpose, we studied the MPE results
from different types of signals and models.

By dealing with deterministic signals, we found the pattern probability distribution
to be set by the region where the curve’s slope is positive or negative. The sampling
rate also plays an important role, and almost invariably increases the MPE value.
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Figure 3.12: MPE curves vs. time scale for ARMA(p̃, q̃) models.
Figures (a) and (c) correspond to AR and MA models increasing
order, respectively, with only a single parameter (of the highest
order). Figure (b) and (d) are models with one fixed AR or MA
parameter. The particular values used are shown in their respective
plots. Dotted lines represent the theoretical results, and the solid
lines show the results from simulations.

With a high sampling rate, the MPE slowly converges with the MPE of a theoretical
continuous curve. The addition of white noise was also considered. We found noise’s
effect on MPE depends heavily on the relationship between the curve’s slope and
the noise amplitude. If the slope is sufficiently high, the noise has no visible effect
on MPE. For regions with low slopes, in contrast, the noise dominates. Nonethe-
less, if the sampling rate of a noisy signal is too high, we will obtain MPE values
characteristic of white noise, regardless of the slope.

We also studied the expected MPE for commonly-used correlated Gaussian pro-
cesses. By means of pattern symmetries for these signals, we are able to compute
the MPE as a function of the signal’s autocorrelation function. Since the coarse-
graining procedure is a linear combination of the signal’s elements, the resulting
coarse-grained signal is also Gaussian. Therefore, it is sufficient to know the coarse-
grained autocorrelation function to obtain the MPE for any scale.

72



CHAPTER 3. MPE ON COMMON SIGNAL MODELS

By exploring white Gaussian noise and fractional Gaussian noise, we conclude that
the MPE is invariant to time scale for these processes. First order Autoregressive and
Moving Average processes have an elaborate, but ultimately closed, expression for
the pattern probability distribution, which depends only on the models’ parameters
and the time scale.

In this chapter we also proposed a general expression for the coarse-grained auto-
correlation for an arbitrary signal, by means of matrix quadratic forms. This allows
us to compute the theoretical MPE of a signal without knowing the coarse-grained
autocorrelation function explicitly. We presented some examples of ARMA models
with an arbitrary number of parameters, and tested the theoretical results against
simulations, with satisfactory results.

This analysis pretends to be an in-depth exploration on the multiple factors that
influence the MPE of an arbitrary signal. The signal’s slope, sampling rate, and
autocorrelation functions prove to be paramount in the expected MPE value. The
research of the interactions between these factors, and the study of arbitrary dimen-
sions, will be subject of future work.

Chapter Summary

• The MPE of deterministic, noiseless continuous signals depends solely on the
proportion of time the curve has positive or negative slope.

• For sampled deterministic signals, the sampling rate also has the effect of
increasing the theoretical MPE. When the sampling frequency increases, the
measured MPE slowly converges with the theoretical continuous case.

• The addition of uncorrelated noise to deterministic signals adds a new factor
to the MPE measurement. MPE sensitivity to noise depends heavily on the
relationship between the noise’s amplitude and the curve’s slope. Near the
maximum and minimum points, random patterns appear, and the pattern
distribution is uniform. In zones with high enough slope, the presence of noise
presents no modification to the MPE.

• A high sampling rate enhances the effect of noise over deterministic signals. If
the sampling rate is high enough, the noise dominates, regardless of the slope.

• Correlated Gaussian processes have a particular structure which can be ex-
ploited to obtain the theoretical expected MPE, reducing the degrees of free-
dom of the system. We focus our study to dimension d = 3, since d = 2 yields
trivial results, d = 4 yields to complex probability distributions, and d ≥ 5
has no closed form.

• For Gaussian processes, pattern probability distributions (and MPE) depend
explicitly on the signal’s autocorrelation function. Therefore, if we obtain the
autocorrelation function for coarse-grained Gaussian signals, we can obtain a
closed expression for their MPE as a function of the models’ parameters and
time scale.

• White Gaussian noise and fractional Gaussian noise, having the property of
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self-similarity, are invariant to the coarse-graining process and time scale. The
signal only presents a downward trend, explained by the bias in Chapter 2.

• We obtained the expressions for the coarse-grained first-order autoregressive
and moving average processes, validated by simulations.

• A general coarse-grained autocorrelation function is presented by means of ma-
trix quadratic forms. This formulation allows us to compute coarse-grained
autocorrelations of elaborate Gaussian models without a closed form. Sev-
eral examples are presented for autoregressive and moving average models of
arbitrary order.
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Chapter 4

Composite MPE Refinements

Y si sospechamos lo recayente de nuestro estado,
¿cómo nos rehabilitaremos?

- Julio Cortázar, Me caigo y me levanto

4.1 Introduction

MPE and other entropy methods have been subjected to a variety of different refine-
ments in order to increase the precision of the resulting entropy estimation. Some
examples have been briefly mentioned by us in Chapter 1, with the composite ap-
proach to coarse-graining — which was discussed in general terms in Chapter 1,
section 1.4.3— being a natural progression of the original MPE algorithm. Both
composite MPE (cMPE) and refined composite MPE (rcMPE) [57] aim to measure
the maximum number of possible patterns within the original signal without modi-
fying the underlying idea of the MPE approach. Both of these methods have been
experimentally proven to yield better results by reducing the variance of the MPE
estimator.

Therefore, in this Chapter we will further expand on the MPE statistical theory
by including the cMPE and rcMPE algorithms. We will outline and discuss the
improvements they offer over the classical MPE approach, as well as their draw-
backs and possible shortcomings. Moreover, we present an alternative to the classic
composite coarse-graining approach —which is known as “downsampling”— that
further improves these refined methods. Finally, we compare all the previously dis-
cussed methods experimentally to evaluate their precision and recommend the most
appropriate algorithm for the measurement of ordinal entropy in time series.
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4.2 Composite Coarse-Graining Techniques

4.2.1 Composite Coarse-Graining Procedure

Composite coarse-graining stems from the notion that, for a given time series x

and a set time scale m, we can build an m different coarse signals if we change the
starting element for the coarse-graining procedure. Up to this moment, classical
MPE assumes that the starting point is equal to the first element of the time series
(x1). At most, we can have an m number of difference signals for the same time
scale that are similar to one another yet contain slightly different information. We
apply the general procedure to build all the possible coarse signals for m,

x
(m)
k,j =

1

m

jm+(k−1)∑

i=m(j−1)+k

xi, (4.1)

with k = 1, . . . ,m for the starting element. Applying the procedure in (4.1) gives

us coarse signals x
(m)
1 , . . . ,x

(m)
m for any given m.

This refinement allows us to access previously unaccounted ordinal patterns in the
series, thus increasing their number for the purposes of building the empirical pattern
probability distribution. Therefore, utilizing composite coarse signals allows us to
partially overcome the length constraints imposed by the multiscaling process..

We can make some comments regarding procedure (4.1). Since we are working with
ordinal patterns, there is no need to perform the averaging by 1/m for each coarse

signal element; this implies that, if x
(m)
k=1,j < x

(m)
k=1,j+1, then mx

(m)
k=1,j < mx

(m)
k=1,j+1.

Thus, in stark contrast to the cardinal entropy techniques, we do not need to take
the average of each segment to preserve the patterns. The sum of the elements is
enough.

But more importantly, we will discuss now one of the main shortcomings present in
this approach that is not mentioned in existing literature. If we compare the same
elements from different coarse signals at a given m and revisit the definition in (4.1),
we observe that the elements share information with another and that segments from
different coarse signals overlap. For example, a closer look at Fig. ?? reveals that
the first elements of the coarse signals x

(m)
1 and x

(m)
2 are

x
(m=3)
k=1,1 = 1

m
(x1 + x2 + x3)

x
(m=3)
k=2,1 = 1

m
(x2 + x3 + x4).

Since elements x2 and x3 appear in both signals, all the information that we could
measure from coarse signals x

(m)
1 and x

(m)
2 will have some level of redundancy. This

will become more evident as we increase the value of m, and consequently, the
number of shared elements increases.
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This redundancy is bound to create cross-correlation between coarse signals, even if
the original signal is uncorrelated noise. This effect will influence the overall MPE
estimators that rely on composite signals, possibly resulting in an increased variance
due to this redundant information. For the remainder of this chapter, we will refer
to this effect as an artifact cross-correlation: the presence of correlation between
coarse signals originating from shared elements and not from the inherent dynamics
of the signals in question.

In the following subsections we will outline the most common composite methods:
composite MPE (cMPE) [39] and the refined composite MPE (rcMPE) [57]. The
characterization of the explicit statistical properties of these methods, including
their moments, is beyond the scope of this work. Nonetheless, we will provide some
guidelines regarding their performance over classical MPE.

4.2.2 Composite MPE

Following the composite coarse-graining procedure in equation (4.1) [39] makes it
possible to achieve better precision by averaging the MPE result for all the composite
signals with the same time scale. Even though this approach was originally named
“improved multiscale permutation entropy” [39], we will refer to this procedure as
composite MPE due to its shared similarities with composite multiscale entropy
—as proposed by Wu et al. [43] using SampEn— in its mathematical approach.

Given the original time series x and embedding dimension d, we compute the clas-
sical MPE on each of the possible composite coarse signals x

(m)
1 , . . . ,x

(m)
m for each

time scale m to obtain the cMPE. The cMPE value is the average of each of the
resulting MPE measurements of all m coarse signals:

Hc(p̂
(m)) =

1

m

m∑

k=1

Hk(p̂
(m)), (4.2)
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where Hk(p̂
(m)) are the k possible entropy values for scale m. The approach of

this method relies on reducing the variance by taking the average of multiple MPE
measurements.

If we suppose all Ĥ(x
(m)
k , d) are independent for k = 1, . . . , τ , we expect to obtain

the traditional moments for the mean of Ĥ, namely

E[Hc(p̂
(m))] =

1

m

m∑

k=1

E[H(p̂
(m)
k )] ≈ H(p(m))− 1

2
(d!− 1)

(m
N

)
. (4.3)

We assume all the values of H(p̂
(m)
k ) to have a positive correlation, since the coarse

signals share almost the same data points

cov(H(p̂
(m)
k1

), H(p̂
(m)
k2

)) > 0, ∀k. (4.4)

Therefore, the general expression of the cMPE variance can be written as

var
(
Hc(p̂

(m))
)
=

1

m2
var(

m∑

k=1

H(p̂
(m)
k ))

=
1

m2

m∑

k=1

var(H(p̂
(m)
k )) +

1

m2

m∑∑

i 6=j

cov(H(p̂
(m)
k1

), H(p̂
(m)
k2

))

=
1

m
var(H(p̂

(m)
k )) +

1

m2

m∑∑

i 6=j

cov(H(p̂
(m)
k1

), H(p̂
(m)
k2

)), ∀k

≥ ( 1
N
)l(m)′Σ(m)

p l(m) + ( 1
N
)(m

N
)
(
1′l(m) + d!H(p(m)) + 1

2
(d!− 1)

)
,

(4.5)

where k1 = 1, . . . ,m and k2 = 1, . . . ,m. The measure of equality should be reached
when the Hk(p̂

(m)) are not correlated.

As we can see from equation (4.3), it should not come as a surprise that the expected
value does not change with respect to classical MPE. Nonetheless, the variance in
equation (4.5) is indeed reduced by a factor of 1/m. This has a visible effect on
the polynomial approximation, reducing the degree by one. Now the first element is
constant with respect to m, and the second term is linear. Equation (4.5) provides
a benchmark for the minimum variance the cMPE can obtain in the presence of
uncorrelated coarse signals.

4.2.3 Refined Composite MPE

Originally proposed by Humeau-Heutier et al. [57], rcMPE approaches composite
coarse signals through a different mechanism. Instead of using the average MPE,
this method counts all the ordinal patterns contained in composite coarse signals
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for a given scale m. This results in a single pattern probability estimation, which is
used thereafter to obtain the entropy measurement. Computing rcMPE requires us
to first take the average estimation for each pattern probability,

̂̄p(m)
=




̂̄p(m)

1

̂̄p(m)

2
...

̂̄p(m)

d!



= 1

m




∑m
k=1 p̂

(m)
k,1∑m

k=1 p̂
(m)
k,2

...∑m
k=1 p̂

(m)
k,d!



, (4.6)

where the pattern probability estimator p̂
(m)
k,i is obtained using equation (2.2) for

each composite coarse signal k = 1, . . . ,m. At this point, it is enough to make a
single MPE computation over this pattern probability,

Hrc(p̂
(m)) = −

d!∑

i=1

̂̄p(m)

i ln ̂̄p(m)

i , (4.7)

following the same procedure as the original MPE definition (2.4), using ̂̄p(m)
instead

of p̂(m).

The explicit representation of the first two moments Hc(p̂
(m)) require further ex-

planation. First, we modify the original multinomial pattern count expression from
equations 2.9 and 2.10 (from Chapter 2) as follows,

Y =



Y1
...
Yd!


 =



nmp1 +∆Y1

...
nmpd! +∆Yd!


 = nmp+∆Y , ∼ Mu(nm,p)

p̂ = 1
nm

Y = p+ 1
nm

∆Y ,

where the random variable Y represents the counts for each possible ordinal pattern
and nm = N/m. Similarly, we can define the estimated probability vectors p̂k for
k = 1, . . . , τ as follows,

Y k =




Yk,1

Yk,2
...

Yk,d!


 =




nmp1 +∆Yk,1

nmp2 +∆Yk,2
...

nmpd! +∆Yk,d!


 = nmp+∆Y k, ∼ Mu(nm,p)

p̂k = 1
nm

Y k = p+ 1
nm

∆Y k. (4.8)

Before making the entropy computation, we obtain the average of all the pattern
counts along the composite signals k:
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Y =
m∑

k=1

Y k =
1

m

m∑

k=1

N
m
p+

1

m

m∑

k=1

∆Y k

Y =
N

m
p+

1

m

m∑

k=1

∆Y k

mY = Np+
m∑

k=1

∆Y k. (4.9)

We note that mY is the vector containing the sum of the patterns contained in all
composite signals. We proceed to define that

Z = mY (4.10)

∆Z =
m∑

k=1

∆Y k, (4.11)

where vector ∆Z contains the sum of all the errors for each pattern. The new
variable Z is defined as

Z = Np+∆Z (4.12)

̂̄p = p+ 1
N
∆Z. (4.13)

Rewriting the refined composite technique in such a way is revealing: equation
(4.13) is identical to the probability estimation in (4.6) and this formulation shows
explicitly that the estimation is now independent of the time scale value in m.
However, the existing artifact cross-correlation effect indicates that all the ∆Y k in
(4.11) are not uncorrelated; therefore, Z ∼ Mu(N,p) is not satisfied in a general
sense.

If we use (4.12) in our classical MPE Taylor series approximation (2.19) from section
2.3.2, we obtain

H(p̂) ≈ H(p)− 1

N
(1+ l)′ ∆Z − 1

2

(
1

N

)2 (
p◦−1

)′
∆Z◦2. (4.14)

Obtaining the expected value of (4.14) is enough to also obtain the mean rcMPE.
Since Z is not strictly multinomial, the moments of ∆Z do not correspond to the
results in Appendix A. However, we assume all ∆Y k have a positive correlation,
since we expect all ∆Y k measurements to have similar results. Therefore,

Cγ = cov(∆Y k1 ,∆Y k2) > 0,
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so

E[∆Z◦2] = N(p− p◦2) + Cγ

≥ N(p− p◦2). (4.15)

where Cγ represents added value due to artifact cross-correlations. Therefore, we
can clearly write the expected value as,

E[Hrc(̂̄p
(m)

)] ≤ H(p(m))− 1

2
(d!− 1)

(
1

N

)
, (4.16)

and its variance as,

var(Hrc(p̂
(m))) ≥ ( 1

N
)l(m)′Σ(m)

p l(m) + ( 1
N
)2
(
1′l(m) + d!H(p(m)) + 1

2
(d!− 1)

)
.

(4.17)

Despite the fact that there is still bias in the rcMPE expected value and its variance,
having eliminated the m dependence indicates that we now have a constant bias
which relies solely on the signal’s original length and the embedded dimension.
Thanks to this refinement, it is possible for us now to explore higher m values
without worrying about loss of precision due to signal length reduction.

The artifact cross-correlation effect does not allow the rcMPE moments (4.16) and
(4.17) to achieve equality, since the definition of the composite coarse-graining pro-
cedure (4.1) itself imposes some level information redundancy. Therefore, we should
look for alternatives to the classical coarse-graining to further improve the precision
of rcMPE (and cMPE).

4.3 Composite Downsampling Techniques

4.3.1 Composite Downsampling Procedure

Instead of fully characterizing this artifact cross-correlation effect, a complex and
time-consuming mathematical endeavor, we will present an alternative that is ex-
empt of this redundancy from the beginning: composite downsampling. Downsam-
pling in the context of PE is not a new concept. Most modern literature [49] define
the pattern probability estimation for PE as

p̂i =
#{n| n < N/τ − (d− 1), [xn, . . . , xn+d−1] has pattern i}

N/τ − (d− 1)
. (4.18)

The downsampling parameter τ ∈ N
+ is reintroduced in this definition of the pattern

probability estimator. From the cardinal point of view, the coarse-graining proce-
dure represents a better smoothing filter than a simple downsampling procedure,

81



MPE Statistics with sEMG Applications

Figure 4.1: Schematic representation of the composite downsam-
pling procedure at τ = 3: we downsample the original signals by
taking data points that are τ spaces apart; if we shift the initial
position, we can build τ signals. The present downsampling signals
share no mutual data points between them.

since the former incorporates more signal information and the latter implies a loss
of resolution as a trade-off. Nonetheless, both procedures behave similarly for the
purpose of ordinal patterns.

If we introduce the composite approach to the classical downsampling procedure,
we can define composite downsampled signals as follows for k = 1, . . . , τ :

x
(τ)
k,j = xk+τ(j−1). (4.19)

Changing the starting element k allows us to obtain a τ number of downsampled
signals from the original signal x. This implies no information loss, since all the ele-
ments in x are still present in the composite signals x

(τ)
k (see Fig. 4.1). Additionally,

since we can also appreciate that the resulting signals have no elements in common,
we know that the artifact cross-relation effect will not be present. This is justified
if we regard the process (4.19) as a systematic sampling, where each downsampled
signal is a sample of the “population” signal x, with the constraint that no samples
share mutual elements.

It is necessary for us to first revisit some concepts from Chapter 2 before going into
detail about the effects of composite approaches on MPE. For a signal x of length
N , the MPE estimator is expected to have the following moments (see Sections 2.3.3
and 2.3.4):
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E[H(p̂(m))] ≈ H(p(m))− 1

2
(d!− 1)

(m
N

)

var
(
H(p̂(m))

)
≈ (m

N
)l′(m)Σ(m)

p l(m) + (m
N
)2
(
1′l(m) + d!H(p(m)) + 1

2
(d!− 1)

)
.

Both the expected value and the variance depend on time scale m, both implicitly
(by means of p̂(m))) and explicitly. It is also worth mentioning that these moments
are heavily dependent on signal length N and the embedding dimension d.

Since the downsampling procedure also reduces the signal length in a similar fashion,
it stands to reason that applying a classical downsampling procedure with any given
τ value will present the moments as follows:

E[H(p̂(τ))] ≈ H(p(τ))− 1

2
(d!− 1)

( τ

N

)
(4.20)

var
(
H(p̂(τ))

)
≈ ( τ

N
)l′(τ)Σ(τ)

p l(τ) + ( τ
N
)2
(
1′l(τ) + d!H(p(τ)) + 1

2
(d!− 1)

)
.

(4.21)

Given that the only explicit change is switching from τ instead of m, we can capi-
talize on the MPE theory and apply it to the downsampling case.

Certainly, we cannot expect to obtain the same pattern probabilities from these two
procedures due to the fact that, in general, p(τ) 6= p(m). Still, we expect to get the
exact same pattern distribution (i.e. uniform) for both procedures in some specific
circumstances, such as in the presence of uncorrelated noise.

Having said that, we now present the new entropy measurements: composite down-
sampling permutation entropy (cDPE) and refined composite downsampling permu-
tation entropy (rcDPE).

4.3.2 Composite Downsampling Permutation Entropy

Similarly to the case of cMPE, utilizing the composite downsampling procedure
(4.19) allows us to define cDPE as:

Hc(p̂
(τ)) =

1

τ

τ∑

k=1

Hk(p̂
(τ)). (4.22)

It is by means of the downsampling procedure (4.19) that we can deduce that all

Ĥ(x
(τ)
k , d) are independent for k = 1, . . . , τ . Therefore, we find the traditional

moments for the mean of Ĥ, namely

E[Hc(p̂
(τ))] =

1

τ

τ∑

k=1

E[H(p̂
(τ)
k )] ≈ H(p(τ))− 1

2
(d!− 1)

( τ

N

)
, (4.23)
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and

var(Hc

(
p̂
(τ))
)
=

1

τ 2
var(

τ∑

k=1

H(p̂
(τ)
k ))

=
1

τ 2

τ∑

k=1

var(H(p̂
(τ)
k ))

=
1

τ
var(H(p̂

(τ)
k )), ∀k

≈ ( 1
N
)l(τ)

′
Σ(τ)

p l(τ) + ( 1
N
)( τ

N
)
(
1′l(τ) + d!H(p(τ)) + 1

2
(d!− 1)

)
.

(4.24)

Once again, the cDPE expected value (4.23) does not change with respect to classical
MPE, and we still have a downward bias whose only dependencies are the embedding
dimension (d), signal length (N), and the downsampling parameter (τ). Conversely,
the cDPE variance (4.24) is reduced by a factor of 1/τ in this case, and we expect it
to be approximately close to (4.24) due to the lack of an artifact cross-correlation by
virtue of the definition shown in (4.19). This implies an improvement over the cMPE
variance (4.5), where the cross-correlations will invariable reduce the estimator’s
precision.

4.3.3 Refined Composite Downsampling PE

By following the same reasoning as with rcMPE, rcDPE takes the average pattern
probability distribution from all the downsampled signals for the parameter τ . As
with (4.6), we proceed to define the probability vector,

̂̄p(τ)
=




̂̄p(τ)1

̂̄p(τ)2
...

̂̄p(τ)d!



= 1

τ




∑τ
k=1 p̂

(τ)
k,1∑τ

k=1 p̂
(τ)
k,2

...∑τ
k=1 p̂

(τ)
k,d!



. (4.25)

where the pattern probability estimator p̂
(τ)
k,i is obtained using equation (2.2) for

each composite coarse signal k = 1, . . . ,m. At this point, it suffices to apply a single
MPE computation to produce this pattern probability.

For the composite downsampling procedure, we present rcDPE by using the exact
same approach as before,

Hdrc(̂̄p
(τ)
) = −

d!∑

i=1

̂̄p(τ)i ln ̂̄p(τ)i , (4.26)

84



CHAPTER 4. COMPOSITE MPE REFINEMENTS

and following the same procedure as the original MPE definition (2.4), using ̂̄p(τ)

instead of ̂̄p(m)
.

Once again we can enunciate the explicit moments of rcDPE, for the downsampled
signals display no artifact cross-correlation. By following the procedure outlined for
rcMPE in section 4.2.3, we obtain the rcDPE expected value,

E[Hdrc(̂̄p
(τ)
)] ≈ H(p(τ))− 1

2
(d!− 1)

(
1

N

)
, (4.27)

and the rcDPE variance,

var(Hdrc(p̂
(τ))) ≈ ( 1

N
)l(τ)

′
Σ(τ)

p l(τ) + ( 1
N
)2
(
1′l(τ) + d!H(p(τ)) + 1

2
(d!− 1)

)
. (4.28)

In contrast to rcMPE, we do not expect in this case for the expected value (4.27)
and its variance (4.28) to raise above the aforementioned mathematical expressions,
since the artifact cross-correlation is not present. We still have the advantage of
taking the explicit τ parameter dependence out of the equation, which suggests a
stable behavior across τ .

4.4 Results and Discussion

4.4.1 Results

Composite Methods

We know from [39] that cMPE is indeed more accurate than MPE. Since the compos-
ite coarse-grained signals are bound to present artifact autocorrelation, we expect
the variance to be significantly more than the one predicted in (4.5).

Therefore, we will proceed to test these results against simulations in order to as-
sess the precision of both cMPE and cDPE. For this purpose, we will apply both
procedures on simulated white Gaussian noise, with 500 signals of length N = 1000
for d = 3 as our sample. We will also set max(m/N) = max(τ/N) = 0.01, which is
well within the length criterion defined in Chapter 2.5.

As we can see from Figure 4.2, cMPE and cDPE closely follow the path of classical
MPE, with a reduced variance. Nonetheless, when we compare both composite
entropy methods (Figure 4.2d), we can see that the cDPE variance follows the
theoretical curve (dotted) while the cMPE variance consistently shows higher values.
While cDPE does follow equation (4.24) and validates our assumptions, it follows
that cMPE does not adhere to equation (4.5), since it requires the absence of artifact
cross-correlations between coarse-grained signals. In other words, if we look for an
entropy ordinal statistic with reduced variance, cDPE outperforms cMPE, specially
when utilizing large time scales.
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Figure 4.2: Composite vs. classical MPE measurements for white
Gaussian noise, with dimension d = 3 and normalized time scale
m/N . (a) Comparison of MPE and cMPE. (b) var(MPE) and
var(cMPE). (c) DPE and cDPE. (b) var(DPE) and var(cDPE).
(e) Comparison between composite methods: cMPE and cDPE.
(b) var(cMPE) and var(cDPE). Solid lines are the product of 500
iterations of wGn signals with N = 1000 and d = 3. Dotted lines
are the predicted values from equation (2.23), (2.31), and (4.24).

It is worth mentioning that, although cDPE follows the theoretical variance, the
expected value for all PE follow a different path than the previously predicted linear
bias. This effect did not manifest in previous chapters due to our experimental

86



CHAPTER 4. COMPOSITE MPE REFINEMENTS

setup, and deserves further comments. We will revisit this discrepancy in Section
4.4.2.

Refined Composite Methods

By following the same experimental setup, we now compare the differences in perfor-
mance between the rcMPE and rcDPE algorithms. As we can see in Figure 4.3, the
refined composite approach outperforms their composite entropy counterparts by
reducing the estimator’s variance even further. When we compare both composite
procedures, we can observe again that rcDPE follows the theoretical variance (Fig.
4.3f) while rcMPE is considerably higher. This is explained again by the presence of
artifact cross-correlation between coarse-grained signals. In terms of precision, the
rcDPE is the best approach discussed in this work so far.

Regarding the expected value, we observe that rcDPE presents no scale-dependent
bias, as predicted from equation (4.28). On the other hand, rcMPE does indeed
show a decrease in time scale, albeit not as pronounced as in the case of cMPE (Fig.
4.3a). This effect, once again, can be attributed to the artifact cross-correlations
from composite coarse-grained signals.

Even when the rcDPE bias is scale-independent, we can observe that the results from
simulations are slightly higher than the predicted rcDPE line. This is the same effect
as the discrepancy found between the theoretical linear bias and the simulation
results present in MPE, DPE, cMPE and cDPE. Thus, this divergence is not a
product of the different composite techniques and must be analyzed independently
(see Section 4.4.2).

4.4.2 Discussion

Expected Value Divergence

The first topic to discuss is the pervasive discrepancy between the MPE expected
value and the simulation results, since these discrepancies are present regardless of
the PE technique used. When we observe a difference between a composite coarse-
graining and a composite downsampling method, we can be sure that said difference
comes from the presence or absence of artifact cross-correlations, respectively. If the
deviations appear on all instances, this implies that such artifact cross-correlations
are not the main source. As we see in Figure 4.4a, this effect is not only present
across all pattern dimensions d, but it is also more noticeable when d is high.

If cross-correlations are not the source of these differences, the next step is to revisit
our assumptions from Chapter 2.3.1. Our assumptions therein mention that every
ordinal pattern stemming from an uncorrelated random process is itself uncorrelated.
If we simulate pattern counts directly from a multinomial variable instead of using
an uncorrelated noise signal —under the same parameters (N = 1000, d = 3, and
500 signals)— we indeed recover predicted the linear bias that was mentioned in
Chapter 2, as shown in Figure 4.4b. This fact implies that the pattern distribution
is not constant across scales, as previously expected from white Gaussian noise in
Section 3.3.2.
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Figure 4.3: Composite vs. refined composite MPE measurements
for white Gaussian noise, with dimension d = 3 and normal-
ized time scale m/N . (a) Comparison of cMPE and rcMPE. (b)
var(cMPE) and var(rcMPE). (c) cDPE and rcDPE. (b) var(cDPE)
and var(rcDPE). (e) Comparison between composite methods:
rcMPE and rcDPE. (b) var(rcMPE) and var(rcDPE). Solid lines
are the product of 500 iterations of wGn signals with N = 1000
and d = 3. Dotted lines are the predicted values from equation
(4.27), (4.5), and (4.28).
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Figure 4.4: (a) Entropy discrepancy between expected value and
simulation results for cDPE for different d values. (b) Entropy dis-
crepancy vs. simulated pattern counts from multinomial (equiprob-
able) distribution.

This apparent contradiction can be explained by further reexamining our assump-
tions from the pattern counts for PE —even before taking into account multiscaling
or other refinements. Strictly speaking, when we assume a multinomial distribution,
we accept that the patterns inside the signal are uncorrelated and identically dis-
tributed. However, we know this is not the case for a general signal, which changes
its properties over time; according to [59] and [63], a more appropriate description
of an ordinal process would be a first-order Markov chain. Even when we obtain
our patterns from uncorrelated noise, the patterns themselves are not independent,
since they share most of their elements. Considering these circumstances, we expect
the pattern distribution, under these circumstances, to not remain invariant across
scales, therefore producing a deviation from the expected linear downward trend.
The characterization of this phenomenon is beyond the scope of the present work,
but its exploration is nonetheless worthy of attention.

Composite Techniques and Precision

Regarding the precision of the different MPE refinements presented in this chapter,
we observe rcDPE to present both the smallest variance across time scales and a
desired scale-independent bias. The refined composite approach, in conjunction with
a composite downsampling process instead of traditional coarse-graining, renders the
problem of the artifact cross-correlations obsolete.

If we revisit the length constraints discussed in Section 2.6, since the time scale is
no longer a problem, the only limiting factor is the signal’s original length N . Table
4.1 shows the minimum length required for rcDPE analysis at different embedded
dimensions, for a precision of α = 0.05. For practical purposes, the maximum τ for
rcDPE is such that N

τ
> d, in order to ensure that composite downsampled signals

contain at least one pattern of dimension d; a signal this short is still not advisable.

Lastly, we should note that the experimental rcDPE line is horizontal with respect
to time scale, hence proving that the rcDPE result is independent of the downsam-
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(a) (b)

Figure 4.5: (a) Markov chain state diagram for an ordinal process
of d = 3, where not all states are accessible in one step. (b) Two
successive ordinal patterns for d = 4. Given an ordinal pattern,
only d possible patterns from the state-space of size d! are accessible.
Figures from [63].

d ln d!
d!−1

min N

3 2.79 333
4 7.23 643
5 24.86 1,667
6 109.28 5,724
7 591.86 25,164

Table 4.1: Minimum length N for rcDPE at embedded dimension d
and α = 0.05. With these conditions in mind, coarse signal length
is not dependent on τ (or m).

pling parameter τ . Albeit not truly an unbiased estimator, the bias present in our
calculations is guaranteed to be stable. Furthermore, we can approximate this bias
by knowing signal length (N) and dimension (d) values, regardless of the pattern
distribution present.

4.5 Closing Remarks

We have explored and expanded on throughout this chapter the theory behind the
composite refinements over classical MPE analysis. We also presented composite
downsampling as an alternative to the composite coarse-graining procedure, with
the intention of shedding the artifact cross-correlations between composite coarse
signals at the same time scale.

We found that composite downsampling techniques vastly reduce the variance of the
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cMPE and the rcMPE approaches found in literature. Specifically, downsampled
rcMPE, on top of presenting the minimum variance, also showed an expected value
that remained invariant with respect to the time scale. This will be particularly
useful, since we will not face noticeable degradations when exploring large time
scales. Therefore, for practical purposes, we recommend the use of this method.
We also proposed an updated version of the length constraint criterion presented in
Chapter 2 that is independent of scale.

Since the artifact cross-correlation from composite coarse-graining techniques is com-
pletely avoided by the use of the composite downsampling process, we did not char-
acterize this phenomenon explicitly for practical purposes —this is, however, an
interesting mathematical problem deserving further research.

During the exploration of MPE refinements, we unexpectedly came across a de-
viation from the MPE expected values and the actual MPE measurements over
uncorrelated white Gaussian noise. Since this deviation is present on all techniques
tested here, we conclude the artifact cross-correlations is not the source of this effect.
Instead, we reevaluated our assumptions over a scale-independent pattern probabil-
ity distribution from a white Gaussian noise process. Additionally, further literature
research [59] [63] revealed that the ordinal pattern count follows a first-order Markov
process. Although this effect merits further research, rcDPE makes a sufficient bias
correction to justify continuing the use of the multinomial approach.

Chapter Summary

• The composite coarse-graining procedure consists on utilizing the classical
coarse-graining algorithm at different starting points, with the intention of
increasing the number of coarse signals for a given time scale.

• Although the composite coarse-graining procedure increases the precision of
MPE estimation, it also introduces artifact cross-correlations between com-
posite signals, which consequently increases the expected variance.

• To avoid artifact cross-correlations, we present a composite downsampling
process by using the classical downsampling procedure in conjunction with
the composite techniques.

• Composite MPE produces no deviation from the original MPE expected value.
Nonetheless, the variance is reduced with respect to MPE.

• Composite downsampling PE (cDPE) still follows the predicted, biased ex-
pected value, but improves the variance beyond the cMPE by virtue of avoid-
ing artifact cross-correlation effects.

• Refined composite MPE, on top of outperforming cMPE, also mitigates the
scale-dependent bias.

• Refined composite downsampling PE (rcDPE), a method devised in this re-
search project, presents the minimum variance value over all other refined MPE
variants, again by virtue of completely avoiding artifact cross-correlations be-
tween composite signals.
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• So far, rcDPE is the only ordinal entropy measurement whose expected value
is explicitly independent from time scale for uncorrelated noise.

• An unexpected result arises when comparing white Gaussian noise entropy
measurements, which diverge from the theoretical expected value. This effect
challenges our assumptions of scale-independent pattern probability distribu-
tions for uncorrelated noise. Nonetheless, rcDPE is sufficiently stable across
scales to mitigate these scale-dependent probabilities.
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Chapter 5

Bioelectrical Signal Applications

Hagamos una cosa:
usted se rehabilita y yo la observo

- Julio Cortázar, Me caigo y me levanto

5.1 Introduction

We have so far developed and expanded on the statistical properties of multiscale
permutation entropy, including the functional forms for its first two moments (Chap-
ter 2). These new theoretical improvements were tested by us on common signal
models and stochastic processes (Chapter 3), and our latest contribution has con-
sisted in further developing MPE by exploring the method’s refinements, including
the proposal of an alternative to the widely used coarse-graining procedure (Chapter
4). The progress has done more than just leading to a greater, in-depth understand-
ing of MPE algorithm and methods, since it also has contributed to the correction
of the MPE bias while increasing the statistical precision of the method. As hinted
in Chapter 1, we now have the necessary tools to apply these methods on real data
sets. Therefore, we will now proceed to introduce the biomedical applications of
MPE.

Ordinal pattern metrics have been useful in recent years to measure complexity in
biological systems, particularly the ones related to electrical activity [33]. These
types of signals are characterized by complex dynamics, even when on resting con-
ditions [64]. Some noteworthy cases involve spontaneous brain activity presenting
complex, non-random behavior [65] [66], and even pathological activity from epilep-
tic seizures are characterized by an ordered sequence of events [67]. While most
methods require further assumptions regarding the signal’s deterministic and ran-
dom features, PE measurements have the added advantage of being model-free and
robust [33]. Finally, as we have previously discussed, PE techniques are fast to exe-
cute, an attractive feature for real-time applications without further pre-processing,
such as contexts involving bioelectrical signals.

Placing electrodes in the skin’s surface allows us to measure electric fields generated
by the heart (electrocardiogram, ECG), the brain (electroencephalogram, EEG) or
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the neuromuscular system (electromyography, EMG). In the latter case, electromyo-
graphy has been widely used to gain fundamental knowledge on the recruitment
process of the muscular functional unit —known as motor unit [68]—since Piper’s
first work using EMG signals [69].

The aforementioned studies have shown so far that EMG methods are well-suited
to analyze behavior that involve muscle contraction. Beyond fundamental aspects,
their application domains are diverse: there is the case of sports and ergonomics,
whether performing isometric or dynamic exercises [70] [71]; in clinical and techno-
logical applications, such as rehabilitation, biofeedback, and myoelectric interfaces
for the control of prosthetic devices or computer interaction [72]. Additionally, this
technique also sheds light on motor learning [73] and neurological disorder [74].

This chapter will delve into the PE applications over EMG signals, particularly
surface EMGs (sEMG). Since acquiring sEMG data from the surface of the skin is
significantly less invasive than the traditional needle and wire detection techniques,
the former can be implemented in a much more diverse and flexible set of conditions,
while the latter maintains limited clinical applications.

That being said, we will begin this chapter by presenting the necessary biological
background involving the neuromuscular dynamics of muscle contraction and the
general characteristics of EMG methods. We will then move on to explain the factors
affecting the EMG signal shape and defining the biological complexity within it from
an information entropy perspective. Lastly, we will apply the MPE techniques on a
series of isometric muscle contractions datasets for the purpose of characterizing the
information content both on fatigue conditions and contractions at different force
level outputs.

5.2 Motivation

Before going further, we must first express the motivations behind the proposed
experiments in the chapter. So far, our approach to PE techniques has been purely
theoretical, even when testing our methods and models. This is necessary and de-
sirable from the academic perspective. Nonetheless, if the intention of this work is
to eventually contribute to biomedical applications, we must address the practical,
data driven viewpoint. For this reason, it is necessary to test the performance of the
MPE methods on real datasets with complex biological dynamics. In particular, we
choose to work with isometric force contractions, since these are the best documented
experiments– and easiest to reproduce– in literature [75] [76]. Likewise, the signal
length of the datasets was chosen to be large in order to minimize bias and variance
from the different MPE estimators. This will properly measure the methods’ inter-
action and performance with the biological information, with the least amount of
interference from the statistical properties previously discussed. Further testing of
the MPE moments on biological datasets with more challenging conditions will be
addressed in future work, after these methods’ feasibility is confidently established.
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5.3 EMG Signals and Biological Complexity

5.3.1 Physiology

If we consider all the possible demands that the human body can be subjected to,,
the nervous and motor systems must be able to regulate the muscle force outputs
for both powerful and precise movements, as well as to maintain balance, posture,
locomotion, and even gestures. This process implies a vastly complex and adaptable
set of instructions and processes, for voluntary movement and reflex reactions alike.
When we see a muscle as an actuator, the most fundamental component is the
motor unit (MU) —the end-effector of the motor control. The MU consists of a
single alpha-motoneuron —with the body of the cell located in the spinal cord—
and the individual muscle fibers (MF) it connects through its long axon. The alpha-
motoneuron integrates all the input from the higher-level central control system (the
brain), the peripheral reflex system, and the activity coming from other muscles by
means of afferent feedback [77]. MU fibers are activated/inhibited through this
process, leading to muscle contraction or a lack of thereof (see Figure 5.1).

Figure 5.1: Command of the voluntary contraction arising from the
cerebral cortex, the latter reaching the motoneuron at the spinal
level through projections. The motoneuron axon leaves the spinal
cord in order to link with muscle fibres. However, one motoneuron
receives several inputs (activation and/or inhibition), with some
arriving directly and others via interneurons located at the spinal
level. Some of the information it receives stems from proprioceptive
feedback. Figure from [78] [79].

MU activation is supported through membrane voltage polarity reversal due to an
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increase of the sodium and potassium conductance across the cell membrane. This
transient membrane voltage variation is labelled action potential (AP) and grows
for the duration —typically between 2 and 5 ms— of a few milliseconds, after which
the membrane returns to its state of restom voltage; step by step, this phenomenon
propagates along the cell membrane from the neuromuscular junction to the tendon’s
ending. At the MF, there are regularly spaced invaginations along the membrane
(tubular system) and radially oriented inside the cell. This allows to provide the
AP to the middle of the cell, where the electromechanical coupling is being done.
Indeed, at the tubular system, the AP leads to the release of the calcium (Ca+)
accumulated inside the storage tank toward the intracellular surroundings. Hence,
Ca+ concentration increases close to the contractile protein’s structure (myofibril),
which allows it to uncover the binding site between the myosin filaments and the
actin filaments —the functional protein for MF contraction. This provides the acto-
myosin bridges association in order to produce the filament sliding (Huxley theory
[80]) and therefore the MF contraction.

However, a unique sequence of bridges does not have the ability to develop me-
chanical force. This is achieved by a close succession of bridge formations and
dissociations, produced by a train of AP. There are two ways in which the neu-
romuscular control system drives MU to adjust force development: increasing or

Figure 5.2: Schematic representation of the AP propagating along
the muscle fibre, and considered in terms of a leading and trailing
dipole pair (extracellular sign depicted) for which the record volt-
age depends on the angle of electrode (e) view (left panel). The
solid angles (Ω) are modified regarding the AP location during its
movement and explain the voltage shape detected by the sensor
(right panel). Image from [81].
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decreasing these interspike AP intervals —defined as the MU firing frequency (rate
coding or temporal recruitment) [82]— and the modulation of the number of active
MU (spatial recruitment).

AP is a phenomenon localized in a restricted area along the MF that, for any given
moment, is surrounded by two areas in which their voltage membrane is at resting
state and thus in reverse polarity. This phenomenon can be modelled as a tripole (+
- - +), with two parts have to be taken into account: one for the rising edge —the
leading dipole pairs (- +)— and one for the tail —the trailing dipole pair (+ -)—
[78]. As this phenomenon propagates along the muscle fibre,the contribution of each
part on the final voltage result —which can be observed with electrodes— changes
in accordance to the angle of view thus changes the measured potential (Figure 5.2)
[81]. Therefore, the conduction velocity of this phenomenon will be affected and,
consequently, have a defining effect on the frequency content in the signal.

5.3.2 Motor Units and EMG

Since any given motoneuron activates all of the muscle fibres within a MU, the
“remote sensor” will not detect the activity of one muscle fiber, but the voltage field
of several muscle fibers. Therefore, one MU produces an individual signal —known
as motor unit action potential (MUAP)— that is equal to the sum of all voltage
fields stemming from every muscle fiber pertaining to a specific MU. Furthermore,
the geometric characteristics of the muscle fibers (such as size, number and location)
will determine the shape of the MUAP (Figure 5.3). Lastly, the resulting sEMG
signal will emerge by taking into account the interference from a set of generated
MUAP.

There are other factors besides the intrinsic characteristics of the MU that influence
the surface EMG measuring —or any EMG signal. Indeed, the MUAP propagation
medium acts as a low-pass filter, which in turn is composed of several types of tissue
that include fat, skin, and the interface between the skin and the sensor. With that
in mind, we can see that, the bigger the distance between the MU and the sensor, the
greater the decrease in the MUAP amplitude and frequency content [78]. Moreover,
there are different MU types available inside a single muscle: MU with greater fiber
diameter (large vs. small MU) present an increased AP conduction velocity, which in
turn increases the frequency content of the MUAP wave; MU of a larger size contain
more muscle fibers, which in turn produce a sEMG amplitude increase [83]. Further
complications arise if we opt for sEMG data acquisition through classical surface
sensors, since that would not allow us to isolate activity of an individual MU, limiting
our detection capacity to only the overall activity of a particular target muscle. The
most common spatial recruitment patterns for the latter follow a recruitment order
in accordance to the size of all the MU involved [84] (i.e. the smaller ones activate
first and the larger ones follow afterwards) to increase the force output; nonetheless,
this canonical recruitment order is affected in the presence of several factors, such as
contraction speed, fatigue, or stretch reflex. All these parameters show how difficult
it is to apprehend and interpret sEMG signals.
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Figure 5.3: The individual motor units (MU) receive activa-
tion/inhibition information from the spinal cord. Each activated
MU produces a motor unit action potential (MUAP) with a spe-
cific firing rate and conduction velocity. The overall sEMG con-
sists of the aggregate interference of all generated MUAP, which in
turn suffer nonlinear transformations due to medium propagation.
sEMG signal model from [83].

5.3.3 EMG and Complexity

Adaptability and survival are usually seen together in the biological sciences, as it
has become a hallmark of living organisms that are fit to prolong their survival.
Among the myriad of known adaptability strategies, it is common for them to ex-
press multiscale, nonlinear variability, since said feature allows the subject to quickly
adapt to any situation; unsurprisingly, it is also the reason why numerous functional
or structural studies in the living system report such complex behavior and struc-
tures [84]. With that in mind, it becomes necessary to develop analysis techniques
that contemplate these types of behaviours, and sEMG is not the exception to the
rule. Complex by nature of its own genesis, they consist of a greater number of MU
[85], and are composed of various MUAP shapes with a nonlinear mixture. Addi-
tionally, sEMG expresses different behaviors, including stochastic and deterministic
components that confer a notable level of complexity to its signals [86]. At the same
time, just as there is no universal definition for biological complexity, there is also a
lack of a single formulation capable of characterizing all the dynamical behaviours in
a biological system to date [86]. Despite that fact, we have previously discussed in
Chapter 1 that entropy measurements can be regarded as a measure of information
complexity, therefore making it possible for us to use it in order to obtain some
insight regarding EMG signals.

Permutation entropy techniques were selected due to their two previously mentioned
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properties: invariance to amplitude and robustness with respect to noise. In partic-
ular, we expect to isolate the effect of pattern shape from the force output (increased
amplitude) by using the ordinal pattern approach —an approach that complements
other EMG analysis techniques, such as fractal analysis [87]. Therefore, it stands to
reason that PE and MPE measurements have become widespread tools in the study
of bioelectrical signals [45] [33] [75] [76] [88].

By taking into account our mathematical contributions —from Chapter 2 to 4— in
the present work, we can further contribute to the interpretation of PE and MPE
results. Our first advancement is acknowledging the bias effect, which improves our
interpretations whenever we observe a monotonic (or even linear) MPE decrease with
respect to a time scale. We also studied the properties of the MPE variance and
presented improvements on MPE techniques by removing variance artifact sources
within the estimator itself. Lastly, our new permutation entropy proposed methods
allow us to correctly assign observed variations to biological factors and possibly
artifacts from measuring protocols [89], rather than labeling them as estimation
errors.

5.4 MPE on Real sEMG Signals

We will work directly with real EMG signals in this section as a means to illustrate
the applicability of the MPE technique and outline both its practical limits and
shortcomings. For the purpose of this research project, we will focus our efforts in
the analysis of isometric contractions.

It is usual to observe a decrease of the EMG frequency parameters —the mean or
median frequency computed on the power spectral density— during sustained iso-
metric exercise at challenging intensity levels (above 20% of the maximal voluntary
force) [90] [91] along with an increase of the EMG amplitude, often quantified by
means of the root Mean square (RMS), during the first stage of exercise. While the
first measurement provides information about some AP conduction propagation dis-
turbances along the muscle fibres, the second one suggests compensatory strategies
provided by the neuromuscular system in order to sustain the requested task [91],
such as increasing the firing rate. However, these parameters are also sensitive to
other factors (i.e. force variation); to illustrate further, an increase in force involves
MU recruitments (spatially and temporally) [92] and, consequently, an increase in
EMG amplitude [93]. Such modifications will lead to changes in the nature of the
mixture of active MU and in their activities, which results in the modification of the
shapes of the MUAP and, eventually, the shape of the sEMG signal.

In view of this, we propose to explore the consequences of this physiological up-
heaval as a function of the force factor and as a function of fatigue through entropic
indicators of sEMG.
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5.4.1 Methods

Experimental Setup

Data was collected during a previous study conducted by the signal team of the
PRISME laboratory, in which ten healthy subjects (three women and seven men,
ages 24 ± 1.5 year, all right-handed) participated in this study. They were fully
informed about the experimental procedures and every subject gave their signed
consent.

An isometric ergometer was specifically designed for this experiment in order to
secure the subject’s body on a chair, focusing on the trunk and joints involved in
the isometric flexion of the right elbow (shoulder and elbow); in regards to the arm,
it was positioned as to rest horizontally —perpendicular in relation to the the rest of
body, with the elbow joint angle being immobilized at a 100o of extension— and the
hand was oriented midways between a supination and pronation position. Subjects
had to pull on a rigid wire, which in turn was connected to a strain gauge, to activate
the measuring of the isometric force output by means of a wrist-cuff attached close
to the styloid process. Moreover, a visual feedback displayed the supplied force in
comparison to the requested level.

The sEMG signal of the biceps brachii was recorded by means of electrodes located
on the muscle belly, halfway between the motor innervation point and the tendon,
and was also boosted by a bipolar isolated amplifier. Force and sEMG signals
acquisitions were synchronized by an analog-to-digital card (PCI 6023E, National
Instrument, USA) at a 10 kHz sampling frequency.

The protocol was built around maximal isometric elbow flexion contractions as its
cornerstone activity: subjects would sustain each contraction for three seconds each,
and have a three-minute rest between each contraction; additionally, it was deter-
mined that the trial would revolve around the subjects’ maximum voluntary contrac-
tion (MVC). The pre-exercise test had subjects perform at least three contractions
as a warm-up, while the main phase of the trial had subjects perform the same kind
of contractions at 20%, 40%, 60% and 80% MVC in a randomized order. After
a final three-minute rest, subjects were asked to perform a sustained 70% MVC
contraction until exhaustion, when they could not support the required force level.

Data Setup and Entropy Techniques

MPE has been so far explored as a function of the fatigue factor by carrying out
calculations on datasets obtained during the sustained force until exhaustion. Each
sample obtained during this work were split in four non-overlapping segments of
equal length, labeled as windows (W1, W2, W3, W4), in chronological order (0% −
25%, 25% − 50%, 50% − 75% and 75% − 100% time to exhaustion, respectively).
MPE has also been explored as a function of the force level factor by carrying out
calculations on datasets obtained from the four short contraction exercises at 20%,
40%, 60%, and 80% MVC.

MPE, rcMPE and rcDPE calculations were applied to each segment at different
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values of scale (m), from 1 to 100 in 1-step increments and at dimension (d) values
of 3, 4, and 5. Since the average signal from the trials is N = 274,000 data points, the
maximum dimension of analysis is set at d = 5 and the length criterion adheres to
the aforementioned discussion on classic MPE (Chapter 2.6). For practical purposes,
the down sampling parameter for rcDPE was set to τ = m.

Statistical Tests

The entropy averages were calculated on eleven values for each of the conditions
present in this study: MPE methods, scale, dimension, fatigue step, and force level.
The study of the differences between methods and their parameters (scale and di-
mension) has been carried out on gross results from segment W1 to W4 (fatigue
condition) and from segment 20% to 80% (force level condition), as well as the dif-
ference between these segment results. For the fatigue (delta step) and the force
level (delta force) conditions, five and six combinations have been taken into ac-
count, respectively: [W1 − W2; W1 − W3; W1 − W4; W2 − W3 ; W3 − W4], and
[20%− 40%; 20%− 60%; 20%− 80%; 40%− 60%; 40%− 80%; 60%− 80%].

Statistical analysis was performed by means of the Statistica 7.1 Software (Stat Soft.
Inc.). Given that samples were drawn by normality and equal variances in all groups
(evaluated by the Lilliefors and the Levene tests [94], respectively) in the case of the
fatigue study, statistics were conducted by means of three-way repeated measures
analysis of variance (ANOVA). The repeated measure is the step fatigue (or the
delta step fatigue) and corresponds to the first factor. The other two factors were
the method (MPE, rcMPE, rcDPE) and the dimension (3, 4, 5). When a significant
difference was observed, the Bonferroni comparison procedure was used in order to
isolate the differing groups.

Since both the assumptions of normality and homogeneity of variances failed in the
first part of the force study, the Kruskal-Wallis multicomparison test was performed
to compare the methods’ ability to discriminate between the different levels of force
(20%-40%; 20%-60%; 20%-80%; 40%-60%; 40%-80%; 60%-80%) and to evaluate the
effect of the dimension factor (3, 4, and 5). In the second part of this study, from the
previous results, only one method, scale and dimension have been selected. Under
these conditions, the assumption on conducting parametric models has been satis-
fied, hence repeated measures ANOVA were carried out to investigate the entropy
evolution together with force level. Following this analysis, the Bonferroni compar-
ison procedure was used to isolate the force level groups (20%, 40%, 60%, and 80%
of MVC) that differ. All significance thresholds were fixed at α < 0.05.

5.4.2 Results

Comparison between methods and their settings

Fatigue

As a first approach, four mean MPE curves were plotted as a function of time
scale m at dimension d = 3 (Figure 5.4, left-hand column) for all four window
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segments (W1 to W4) while contemplating the three methods (MPE, rcMPE, rcDPE
; 3 subplots). Two phases can be observed in these curve kinematics: first, a rapid
increase is achieved on shorter time scales (from m = 1 to m ≈ 60), followed by
a steady state (m > 60) for the three algorithms. The four curves belonging to
the four segments differ below this value m = 60 and are superimposed above it.
Regarding the methods, the curve profiles are similar, although both of the two
refined composite methods show smoother lines in comparison to MPE, matching
our previous results from Chapter 4. Presentation of MPE as the difference between
segment results (∆MPE) allows us to refine the scale area that serves as the best
differentiator between segments(Figure 5.4, right-hand column). Indeed, the curves
present a greater difference in the 8 to 15 m value range, and since this area remains
unchanged regardless of the method applied, we can deduce that it corresponds to
the optimal scale range of analysis for this particular dataset. This range prevails
even if a higher embedding dimension is selected (Figure 5.5). Therefore, for the
subsequent steps in our analysis, we kept the m = 10 value fixed.

Themethod factor has a significant effect (Figure 5.6a) on the ∆MPE value (F (2, 486)
= 4.091, p = 0.0077), with rcDPE producing higher differences than the other two
methods (MPE and rcMPE, p = 0.017 and p = 0.025, respectively). Dimension also
has a significant effect (Figure 5.6b) on the ∆MPE value (F (2, 486) = 94.837, p <
0.001), with dimension d = 5 producing higher differences than d = 4 (p < 0.001)
or d = 3 (P < 0.001). No evidence of interaction between factors has been reported.

Force Levels

Similarly to the isometric sustained contraction dataset, the four MPE curves —cor-
responding to the four force levels (from 20% to 80% MVC) with respect to time
scale m— follow a rapid entropy increase (Figure 5.7, left-hand column). The curves
achieve a steady state around m ≈ 60, up to the specified maximum (m = 100).
As previously seen, the difference is that the two refined composite methods show
smoother lines when compared to regular MPE. Differences between force level (Fig-
ure 5.7, right-hand column) are more relevant around m = 1, and drop off rapidly
with increasing scale. Hence, the smallest time scale (m = 1) is the most suitable
setting to discriminate MPE differences between force levels for the isometric con-
dition of this study. This behavior is preserved for dimensions d = 4 and d = 5, as
shown in Figure 5.8.

No significant statistical effect stemming from the method of choice was observed
despite an observed trend—Kruskal-Wallis test H(2, N = 8100) = 4.045, p = 0, 13].
The P value between methods is indicative of the aforementioned trend, with a
higher ∆MPE result for rcDPE (sum of rank 4121) when compared with the classi-
cal MPE result (sum of rank 3997). On the other hand, dimension —Kruskal-Wallis
test H(2, N = 8100) = 85.82, p < 0, 001— has a significant effect on the ∆MPE
value, with dimension d = 5 (sum of rank 4249, p < 0, 001) producing higher differ-
ences than both d = 4 (sum of rank 4191, p < 0.001) and d = 3 (sum of rank 3712,
p < 0.001). Significantly different force level comparisons are shown in Figure 5.9.
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Figure 5.4: Left column: mean entropy values as a function of scale
(m) for the fatigue steps (from W1 to W4). Right column: variation
in entropy mean values as a function of scale (m) on the pairwise
differences between steps of fatigue (only W1 −W3, W2 −W4, and
W1−W4 are shown). From top to bottom: MPE (a, b), rcMPE (c,
d) and rcDPE (e, f). All values at dimension d = 3.
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Figure 5.5: Left column: mean entropy values as a function of
scale (m) for the fatigue steps (from W1 to W4). Right column:
variation in entropy mean values as a function of scale (m) on the
pairwise differences between steps of fatigue (W1 −W3, W2 −W4,
and W1 − W4). Dimension values, from top to bottom: d = 4 (a,
b) and d = 5 (c, d).
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Figure 5.6: Effective hypothesis decomposition for fatigue isomet-
ric contraction entropy for the following factors: (a) methods, (b)
dimension. The vertical lines denote 95% confidence intervals for
the ANOVA F distribution.

MPE Application

The physiological MPE application has been managed using the rcDPE developed
in the present study by setting it at the dimension d = 4 and scale m = 10 for the
sustained exercise conditions, and at the dimension d = 4 and scale m = 1 for the
isometric force level.

Repeated ANOVA measurements concerning the fatigue and force factor revealed
statistically significant effects ([F (3, 27) = 72.3, p < 0.0001] and [F (3, 27) = 96.298
, p < 0.0001], respectively). Additionally, there was a significant rcDPE decrease
for both factors: in the case of fatigue, this was associated with time progression to
exhaustion (Figure 5.10a) and occurred throughout all stages (p < 0.0001); in the
case of force level, this was associated with force level increase (Figure 5.10b) and
occurred throughout all force levels (p < 0.0001)

5.4.3 Discussion

Optimal Parameter Settings

We will begin discussing the optimal parameters for this analysis by taking the
observed results as our reference. As we saw from the fatigue signals, the time
scale with the most pronounced difference between segments is around m = 10 (or
τ = 10). Since the original sampling frequency used for the experiment is fs = 10
kHz, the effective sampling rate over the coarse/downsampled signals is fs = 1 kHz,
which only captures information the range 0 - 500 Hz as a consequence of Shannon’s
theorem. According to [95], this is the frequency range where sEMG information is
produced by the MU contractions. Although more evidence is needed in this regard,
we expect that the most adequate sampling rate for PE calculations will be close to
1,000 Hz. Conversely, the % MVC categories present the most pronounced differ-
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Figure 5.7: Left column: mean entropy values as a function of scale
(m) for the force level (from 20% to 80% MVC). Right column:
variation in entropy mean values as a function of scale (m) on the
differences between force levels (from 20% − 40% to 20% − 80%).
From top to bottom: MPE (a, b), rcMPE (c, d) and rcDPE (e, f).
All values at dimension d = 3.
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Figure 5.8: Left column: mean entropy values as a function of the
scale (m) for the force level (from 20% to 80% MVC). Right column:
variation in entropy mean values as a function of scale (m) on the
differences between force levels (from 20% − 40% to 20% − 80%).
Dimension values, from top to bottom: d = 4 (a, b) and d = 5 (c,
d).

ences at low time scales. In this particular dataset, a scale around m = 1 is the most
appropriate, for this setting seems to be task dependent. Therefore, a preliminary
visual exploration is recommended to select the adequate scale. We should also note
that, for this case, m = 20 —which corresponds to a 500 Hz sampling frequency—
should be avoided, since any difference between % MVC disappears at this scale.

We found the embedding dimension to be particularly important in the differenti-
ation between entropy values. Here, the maximum dimension used (d = 5) yields
the highest differences between segments. As we mentioned in Section 5.4.1, we did
not use higher dimensions in order to maintain the MPE bias below acceptable lev-
els, due to the signal length constraints. This restriction does not apply to rcMPE
and rcDPE, where we can use higher dimensions (See Section 4.4.2). In the case of
rcDPE, signal length allows the use of higher d values without significant increases
in bias. Further testing needs to be done regarding the performance of rcDPE at
higher dimensions, with a special emphasis on the increasing computational costs
involved.
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Figure 5.9: Range boxplots for MPE differences with increasing
dimension d = [3, 4, 5]. (a) 20%− 40%, (b) 20%− 60%, (c) 20%−
80%, (d) 40%−80%. Only statistically significant results are shown
(Kruskal-Wallis test with α = 0.05).

Therefore, as a general rule of thumb when working with sEMG signals that include
fatigue, occur during isometric contractions and are a product of a high level of force
(above 20% MVC), we recommend the use of a time scale that adjusts the coarse
(or downsampled) signals close to 1,000 Hz, with at least an embedding dimension
close to d = 5. Regarding the time scale, we should adjust our parameter (m or τ)
in order to capture the maximum difference between groups. These parameters will
not be standard, and depend on the particular characteristics of the dataset. The
differentiation between % MVC offers a better performance when using a scale that
fits a high frequency (10 kHz) and dimension d = 5, albeit the advantages of using
this dimension instead of d = 4 are negligible.

Entropy Technique Performance

Regarding the different available entropy methods utilized in the present work, we
found that the rcDPE method makes the differences between fatigue activity win-
dows at isometric contraction stand out better than methods using either rcMPE
or classical MPE. On the other hand, methods are no longer relevant in order to
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distinguish between force levels, since all MPE algorithms are mathematically iden-
tical when we set the dimension value as m = 1. It should be noted, however, that
the entropy curves were more stable in both of the refined composite methods when
compared them to classical MPE.

Even though all methods have been proven to be valid due to the statistically sig-
nificant results obtained, it should be noted that choosing a time scale that is either
low or too high would be affect the experiment negatively, albeit for very different
reasons: while choosing a time scale that is too small would make the differences
between methods almost indistinguishable, a time scale that is too high would ren-
der all of the methods useless, since they cannot distinguish complexity from noise,
even when the length constraints are satisfied.

If we compare these results with the information from previous chapters, we note
that the effect of the MPE bias is not evident, even in the case of classical MPE.
Since this experiment collected long length signals (the 70% MVC signals averaged
a signal length of N = 274, 000, while the other % MVC signals had a N = 30, 000
value each), the bias effect remains small even at high time scales. Also, a high
signal length yields a small MPE variance, which contributes little to the overall
observed variability between subjects.

By comparing the MPE curves, we observe results which are close to the ones re-
ported by Cashaback [86] for multiscale sample entropy over continuous 70% MVF
activity. This result is also consistent with the one found by Navaneethakrishna [76]
when using MPE directly: for short-time scales, the curves present a sharp increase
in MPE, while MPE remains almost stationary in long-term scales.

According to [86], short-term scales have a significantly different multiscale sample
entropy at different stages of fatigue while the long term scales report no statistical
significance, although they present a noticeable difference. In the context of MPE,
high-time scale entropy stability suggests that there is no difference between sEMG
and uncorrelated noise [76]; this is supported by previous work present in Chapters
2 and 4. While the exact scale between the two regions is not available before the
MPE calculation, MPE stabilizes around scale m ≈ 60 for the fatigue and % MVC
sEMG data sets.

In regards to the% MVC signals case, the fact that the MPE methods were able
to distinguish between force outputs is worthy of notice. By the definition of these
ordinal patterns, no information concerning sEMG amplitude was used, therefore
suggesting that the differences in MPE do not come from a measurement of force
output, but from the information contained within the sEMG ordinal patterns. This
indicates the presence of different dynamics within the signals while using different
force outputs.

Physiological Findings

The changes in entropy values as a function of fatigue are in line with existing
literature: the study done by Cashaback et al. [86] has a similar experimental setup
(muscle model, isometric contraction, different levels of strength and fatigue test)
and it also reported that entropy decreased in the presence of fatigue. However,
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Figure 5.10: Range boxplots for rcDPE measurements from isomet-
ric contractions with dimension d = 4. (a) Four activity windows
from sustained 70% MVC at scale m = 10, (b) % MVC force levels
at scale m = 1. From the repeated ANOVA test measurements,
the pairwise comparisons are statistically significant (p < 0.001).
statistically significant pairwise comparisons (p < 0.001) are shown
with a **.

study contrasts with the present work, as a decrease in entropy is observed as the
force level increases in the latter, while an increase and then a decrease in this
sEMG indicator is reported in the former under the same circumstances. However,
this discrepancy can be explained by different force levels, since they ranged from
40%, 70% and 100% MVC in the former whereas the latter utilized a 20% to 80%
with 20% increments. Moreover, our research shows more pronounced kinematics
in the entropy indicator.

Observed entropy depletion can be explained through the relationship between force
intensity and the increase in probability of temporal overlap between MUAP [96],
with firing rate and the number of recruited MU showing a similar behavior in
the presence of force output. Although the main recruitment strategy used by the
motor command to increase the force level up to 80% MVC is the spatial mode
(the number of active MU, in the case of the biceps brachii muscle), rate coding
is also expressed [97]. Moreover, MU firing rate synchronization may also play
a part in this phenomenon due to the fact that it takes place at higher levels of
force (from 80% MVC) [85]. All these modifications can reduce variations in the
sEMG path as reported in the study by Gabriel et al. [97] and consequently reduce
the entropy signal . Indeed, the present work reports a continuous decrease in the
average number of peaks per spike when force intensity increases (from 40% to 100%
MVC). Here, “spike” is defined as the consecutive succession of a peak and a valley
(positive and negative, respectively) that crosses the isoelectric line, while “peak”
corresponds to a fluctuationdeflection that does not cross that line.

Some of the factors that contribute to entropy decrease in the force intensity con-
dition may also explain the effect of fatigue in entropy decrease, for it has been
reported that MU firing rate synchronization increases continuously until exhaus-
tion during sustained effort [98]. Another factor which is fully expressed during
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peripheral fatigue is the reduction of muscle fibre conduction velocity (MFCV) [91],
with part of this reduction being attributed to an increase of AP duration due to dis-
ruptive electrophysiological phenomena [99]. Furthermore, this increased duration
of the AP phenomena should widen the MUAP waveform [100].

Lastly, the biological interpretation of the time scale deserves further comments. We
know the information content inside sEMG lies in the range of 20 Hz – 500 Hz [95],
the most appropriate sampling frequency for measurements is fs = 1, 000 Hz (due
to the Shannon’s Sampling theorem), as shown by the Fatigue signal dataset. By
having the original signal sampled at fs = 1 kHz with scale m = 10 (or τ = 10), we
capture only the desired range where the information is meaningful. For the refined
composite methods, it is better to use this setup, since we are measuring multiple
coarse/downsampled signals which improve the final entropy precision. Further-
more, the use of rcMPE or rcDPE avoids the overemphasis of the noise due to high
sampling frequency; an effect already discussed in section 3.2.2. In this context, we
still recommend the use of rcDPE over rcMPE, since the latter does not perform
the filtering effect discussed in section 1.4.1.

The % MVC dataset is harder to interpret. Here, the higher differences were ob-
tained at m = 1, suggesting high frequency information content is important for
classification. Moreover, for m = 20, the information comes from the effective range
20 Hz – 83 Hz, which lead to no difference between force levels whatsoever. This
implies that no relevant information content is present at low frequencies for ordinal
entropy techniques. Further experiments are needed to properly understand and
interpret this result.

5.5 Closing Remarks

Throughout this chapter we have reviewed the properties and physiological mech-
anisms behind sEMG signals, from the perspective of both biomedicine and infor-
mation theory. We designed an experiment concerning isometric contractions that
contemplated different force output and fatigue conditions, with the intention of
gauging the validity and performance of different permutation entropy measure-
ments (MPE, rcMPE, and rcDPE). Thereafter, as we looked for the optimal param-
eters to maximize the entropy difference between muscle contraction conditions, we
decided to test these calculations under the effect of the time scale and embedding
dimension variables. Finally, we performed a battery of statistical tests in order to
determine the statistical significance of the results obtained.

First and foremost, we determined that the rcDPE method outperforms the other
methods in the differentiation of fatigue levels in isometric contractions. We found
the maximum entropy differences at a time scale corresponding to a frequency of
1,000 Hz, and we concluded that the embedding dimension is an important factor,
since an increase in the dimension value makes the entropy difference more evident.

These entropy methods were also able to detect differences between force levels.
Since the optimal time scale for MPE differentiation was the first time scale, the
MPE methods yield the exact same results —with rcDPE offering small benefits
when used in this scale. Nonetheless, the embedding dimension still proved to be
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important by showing an increased differentiation capacity at higher values, albeit
less pronounced than in the case of the fatigue dataset.

All observed contractions have a rapid entropy increase at low time scales and stabi-
lize afterwards. Since we know from previous chapters that this horizontal entropy
line cannot be distinguished from uncorrelated noise, it is implied that high-time
scales provide no information regarding sEMG dynamic activity.

From the biomedical point of view, the results in this chapter agree with current
literature. The observed reduction of MPE is linked to the reduction of the sEMG
signal’s complexity, which are well-established effects of fatigue. Regarding the force
output levels, the difference in MPE suggests a different activity pattern at different
percentages of maximum voluntary contraction. It is interesting to note that MPE,
by definition, disregards the information contained in the amplitude of the sEMG
signal. Therefore, any differentiation from the signals at different force levels must
originate in a different pattern of motor unit recruitment and firing rate.

Chapter Summary

• Surface electromyographic (sEMG) signals are measurements of the electrical
activity stemming from muscle motor units (MU), which are in turn responsi-
ble for muscle contraction. Skin electrodes record the aggregate activity of all
the MU involved in the contraction.

• The final shape of the sEMG signal is the result of several intrinsic and extrinsic
factors, such as MU size, conduction velocity, firing rate, MU recruitment
strategy, sensor distance, intermediate tissue filter, as well as the subject’s
age, fatigue level, and possible motor pathologies.

• sEMG signals, being complex by their own genesis, can be characterized by the
amount of information contained within them. Particularly, ordinal entropy
methods provide a good measure of the aggregate sEMG patterns.

• It has been observed that a compromised biological system presents a system-
atic reduction of entropy, and thus, can help in the detection and differentia-
tion of different activity states.

• In our experiment, ten subjects performed a series of isometric contractions of
their right biceps brachii at different levels of maximum voluntary contraction
(MVC), followed by a sustained force effort until exhaustion. We took several
permutation entropy measurements (MPE, rcMPE, and rcDPE) at different
dimensions (d = 3, 4,and 5) in order to observe the difference between force
levels and fatigue states. We also explored the signals at different time scales
(m = 1, . . . , 100) in order to gauge the appropriate value which maximizes the
differences in each case.

• When analyzing sustained isometric contractions, we found that the rcDPE
method outperforms the other methods with statistical significance. We also
found the highest dimension used (d = 5) to be the best parameter to differ-
entiate between fatigue states.
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• When analyzing different % MVC signals, we found that rcDPE has a slight
comparative advantage in the differentiation between force levels. We found
again d = 5 to be the best dimension value, albeit its improvement being small
when compared to d = 4, suggesting diminishing returns for higher dimensions.

• The time scale range that maximizes differences for sustained contraction was
found to be between m = [8, . . . , 15], regardless of method. The highest dif-
ferences between % MVC levels were found in the first time scales.

• When we applied the rcDPE method with d = 4, we found significant results
between the different entropy values at different sections of the fatigue (at
m = 10) and force levels (m = 1) datasets.

• These different rcDPE measurements are consistent with existing literature,
where a reduction of entropy is observed in the presence of fatigue.

• The reduction of rcDPE at high % MVC can be explained by a synchronization
of the MU firing rate, as well as an overlap between MUAP.

113





Conclusions

. . . y será tan hermoso decir . . .
ahora nos vamos al centro y nos compramos un helado
el mı́o todo de frutilla
y el de usted con chocolate y un bizcochito.

- Julio Cortázar, Me caigo y me levanto

In the present work we have explored the hidden, underlying properties of multiscale
permutation entropy (MPE). Our first goal was to set and further enrich the theo-
retical body of knowledge behind the MPE algorithm, since that would allow us to
have a proper assessment of its statistical properties, advantages, and limitations.
Our second goal was to propose a new MPE method that takes advantage of said
theoretical findings. Our third and last goal was to apply this knowledge in a com-
plex biomedical problem, such as electrical muscle activity, in order to differentiate
between fatigue and force output as states of performance.

To better position ourselves in the context of information theory, we proposed in
Chapter 1 a general criterion for classifying the most commonly used entropy mea-
surements with respect to its core formulation, the definition of the event set, and
the preprocessing techniques used prior to entropy computation. Although many
different expansions, improvements and generalizations have been proposed since
Shannon’s original work, there is no current universal best method for entropy com-
putation, since the peculiarities of the phenomenon in question must be taken into
account; even the mere definition and nature of entropy can only be interpreted
within the context of the specific experiment (complexity, amount of information,
etc.). Therefore, our aim is to provide a broad view of the entropy variants we can
implement and explore, from the mathematical and statistical point of view.

We introduced our main theoretical development of MPE in Chapter 2. By mean
of a polynomial expansion, we were able to find an analytical approximation for
the MPE measurement, which allowed us to find a closed expression for its first
two moments. We found the bias of MPE, whose approximation is independent
of the pattern distribution, by only taking into account the embedding dimension,
signal length, and scale. We also characterized the MPE variance, which is tightly
linked to the MPE measure itself. Here, we found our MPE variance approximation
to closely resemble the Cramér-Rao lower bound for minimum variance. Even as
a biased statistic, the estimation is almost efficient. Armed with this newfound
knowledge, we proposed a more precise minimum length criterion for MPE. We also
pointed at the MPE values with maximum uncertainty along the normalized entropy
range.
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We explored the expected results for different signal models in Chapter 3, with the
aim of exploring the effect of different signal properties on the overall MPE results.
We found the entropy of deterministic signals to be affected by the slope of the
signal, the sampling rate, and the amplitude of the noise —albeit the method is
quite robust to noise when the signal has a pronounced slope. Subsequently, we
explored the MPE of stochastic processes, particularly fractional Gaussian noise
(which is fractal) and ARMA models, where we found that it is possible to estimate
a theoretical MPE result from the processes’ parameters. In a general sense, this
implies that the parameters that define a random process contain all the information
from the process itself, and it is possible to test real signals vs. proposed models by
comparing entropy measurements.

At this point, our mathematical base was sufficient to tackle the statistical properties
of more refined MPE methods. We explored the properties of the well-established
composite MPE (cMPE) and refined composite MPE (rcMPE). While the improve-
ment of the MPE estimation —particularly rcMPE, where both the bias and the
variance are reduced— is well-established, we found that composite coarse-graining
introduces an artifact cross-correlation between the possible coarse signals. Al-
though the overall variance is reduced with respect to the original MPE algorithm,
this effect adds an artificial source of uncertainty. Here, we proposed a compos-
ite downsampling procedure as a substitute to the classical coarse-graining used
for multiscale entropy techniques. This approach avoided the problem of artifact
cross-correlation entirely, yielding an increase in precision over the methods in exist-
ing literature. In particular, refined composite downsampling permutation Entropy
(rcDPE), on top of having the smallest variance among the methods discussed herein,
also has the added benefit of a constant bias for any particular scale/downsampling
parameter. In contrast to the other two methods, this allows the method to utilize
higher values in both scale and dimension, and therefore, it is the technique we
recommend for an ordinal entropy approach.

Finally, in Chapter 5 we were in the position to test these tools and methods on
real signals. Our chosen datasets consisted of surface electromyographic (sEMG)
signals, which are convenient to implement due to their methods being noninvasive
in nature. Nonetheless, some of the challenges present in this technique are noise
sources and the superposition of multiple signals, which turns depend on factors
such as geometry, conductivity, and a myriad of biological considerations. We found
that MPE methods —with rcDPE showing the better results among them— are
able to consistently discriminate between different states of muscle fatigue, specially
for high-embedding dimensions. Despite the fact that the MPE methods were not
as consistent when attempting to find differences between various force outputs, we
were still able to differentiate the maximum voluntary contraction (MVC) percent-
ages with statistically significative results. Since ordinal methods normally exclude
amplitude, this divergence implies that there are still undiscovered muscle contrac-
tion dynamics when different force outputs are applied. On the other hand, choosing
the right parameters is important for this classification, and an adequate value se-
lection for both dimension and scale is not necessarily obvious a priori : generally
speaking, higher-embedding dimensions (within a reasonable range) yield a better
differentiation between activity states, albeit with diminishing returns; conversely,
there is no universally defined time scale to choose for a proper analysis, and they
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must be evaluated on a case-by-case basis. Regarding the biomedical implications
of these results, we found a significant entropy reduction when muscles become
fatigued. One possible explanation points to the action potential elongation —a
product of electrophysiological changes— due to continuous contraction. We also
found a significant entropy decrease in the presence of contractions with a high-force
output, which can be explained by overlaps with motor unit action potentials, as
well as observed motor unit fire rate synchronization.

There is ample room for further research on the theoretical front of this topic, such
as utilizing new core entropy definitions in the ordinal context, exploring further
event partitions, or even testing more general stochastic models. Most importantly,
it would be possible to revisit some of the well-established biomedical datasets and
obtain a more in-depth interpretation of the results, particularly when exploring
entropy behavior at high scales. On account of the improved precision of the meth-
ods herein proposed, they can be applied to search for previously hidden dynamic
behavior. We hope this research project will contribute both to broaden the ex-
isting mathematical body of knowledge and to further improve the use of entropy
techniques at the service of the medical sciences.

Additionally, the research on ordinal entropy methods is far from complete. From
the theoretical perspective, we can explore the statistical properties of MPE using
core formulations that differ from Shannon’s original definition. Of course, we should
also incorporate the dynamics of “amplitude-aware” techniques to the general MPE
statistical behavior theory. In the domain of MPE signal models, the difference
between complexity and randomness is still not completely settled, and we believe
that further light could be shed on this topic by studying more elaborate statistical
processes and chaotic deterministic signals.

Regarding composite methods, understanding the interaction between coarse sig-
nals remains incomplete due to a lack of the proper characterization of the artifact
cross-correlation effect. Theoretically speaking, a better proposition concerning the
probability distribution of ordinal patterns is fundamental, which is quite similar
—yet not strictly the same— to a multinomial distribution.

Finally, the study of MPE methods for the characterization of bioelectrical signals is
still a fertile area for study. We expect our proposed entropy methods —particularly
rcDPE— to better differentiate between sEMG signals in a variety of conditions.
These methods could even be brought to real-life conditions due to their short pro-
cessing time and the improved precision, since these scenarios usually lack the luxury
of good measuring conditions, thanks to factors such as external noise sources or
long duration activity bursts. Furthermore, the effect of the MPE bias and variance
will become crucial in later studies involving short signals and more dynamic condi-
tions, as these effects will affect the resulting MPE more directly. Additionaly, the
study of sEMG signal simulations can further shed light in the underlying dynamics
of these entropy methods, particularly for different force level contractions, which
require more in-depth exploration.

The present work shows the rich complexity behind ordinal entropy techniques and
their subsequent, potential applications on biological systems. Even when the the-
oretical body still remains incomplete, the possible refinements in the results allow
researchers to make finer, more accurate calculations and predictions concerning
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health issues, such as motor processes. Having said that, we hope that this research
project offers more clarity regarding the aforementioned methods, as well as lighting
the way for further research and technology implementations.
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Covariance, Coskewness, and
Cokurtosis Matrices

In this section we will briefly derive the expressions for the covariance, coskewness,
and cokurtosis matrices for a multinomial distribution.

First, we recall from equation (2.9) and (2.10) the structure of the pattern count
distribution from Chapter 2,

Y = np+∆Y ∼ Mu (n, p1, . . . , pd!)

p̂ = 1
n
Y = p+ 1

n
∆Y ,

using the same definitions as in Equations (2.1) and (2.2). As before, Y is the
random variable which represents the pattern count in the signal while p̂ is the
estimator of the pattern probabilities. For an embedded dimension d, there are d!
possible patterns.

We should also define m as the time scale for MPE analysis, and let n be the
greatest integer number below N/m+ d− 1, which will represent the length of the
coarse-grained signal at scale m.

Additionally, we notice that elements Yi from vector Y are composed of two parts:
a deterministic npi constituent and a random ∆Yi constituent.

We note that the elements Yi from the vector Y are composed of a deterministic
part npi, and a random part ∆Yi. It should be evident that E[∆Yi] = 0 and ∆Yi is
identically distributed to Y .

We start by obtaining the expected values of the vector multiplication ∆Y ∆Y ′. We
know that

E
[
∆Yi

2
]
= npi(1− pi) (A.1)

E [∆Yi∆Yj] = −npipj, (A.2)
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for i = 1, . . . , d! and j = 1, . . . , d!. Thus, if we gather all possible combinations of i
and j in the covariance matrix, we get

E [∆Y ∆Y ′] = n(diag(p)− ppT )

= nΣp. (A.3)

Similarly, the skewness and coskewness can be expressed as,

E
[
∆Y 3

i

]
= 2np3i − 3np2i + npi (A.4)

E
[
∆Yi∆Y 2

j

]
= 2npip

2
j − npipj, (A.5)

which yields to the coskewness matrix

E
[
∆Y (∆Y ◦2)′

]
= n(diag(p)− pp′) + 2n

(
p(p◦2)′ − diag(p◦2)

)

= n(diag(p)− pp′)− 2n
(
diag(p◦2)− pp′diag(p)

)

= nΣp (I − 2 diag(p)) , (A.6)

where we use again the vector definitions in Equation (2.27).

Lastly, we follow the same procedure to obtain the cokurtosis matrix, by first ob-
taining the values

E
[
∆Y 4

i

]
= 3n(n− 2)p4i − 6n(n− 2)p3i + n(3n− 7)p2i + npi (A.7)

E
[
∆Y 2

i ∆Y 2
j

]
= 3n(n− 2)p2i p

2
j − n(n− 2)(p2i pj + pip

2
j) + n(n− 1)pipj, (A.8)

which combines in the matrix as follows

E[∆Y ◦2(∆Y ◦2)′] =3n(n− 2)p◦2(p◦2)′ − n(n− 2)(p◦2p′ + p(p◦2)′) + n2pp′

− 4n(n− 2)diag(p◦3) + 2n(n− 3)diag(p◦2) + n(diag(p)− pp′)
(A.9)

=− 3n(n− 2) diag(p)Σp diag(p)

+ n(n− 2) (diag(p) Σp +Σp diag(p))− n(n− 1)Σp

+ n2 diag(p)
(
I − diag2(p)

)
− 2n diag2(p) (I − diag(p))) .

(A.10)

By taking advantage of this expressions, we are able to calculate the MPE variance
in Chapter 2.
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Math Glossary

This is a list of the most relevant symbols used through this thesis.

x The vector containing all the data points in an arbitrary time series. This is
the starting point of the MPE analysis.

xt Refers to the element t of x, from t = 1, . . . , T .

t The index T will be used to refer to any particular data point in x.

N Signal length of x.

d Embedded dimension (integer value) that corresponds to the number of con-
secutive data points that will form a pattern. In most cases, the number of
ordinal patterns is equal to the factorial of the embedded dimension, d!.

τ Downsampling parameter for signal x. For τ = 1, we keep the original signal.

yi Pattern count i = 1, . . . , d!. The number of times pattern i appearing in the
signal x.

y Vector of size d! containing all the pattern counts yi.

pi Pattern probability i = 1, . . . , d!. The probability of pattern i appearing in
the signal x. As a reference point, the pattern i = 1 will always refer to the
increasing pattern (i.e. xt < · · · < xt+d−1), and the pattern i = d! will refer to
the decreasing pattern.

p Vector of size d! containing all the pattern probabilities pi.

l Vector of size d! containing all the natural logarithms of the pattern probabil-
ities ln pi.

H This is the general symbol used to denote multiscale permutation entropy. This
includes the original formulation of permutation entropy, which corresponds
to the first time scale.

Hq Tsallis entropy

Hα Rényi’s entropy
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H Normalized multiscale permutation entropy. We obtain this measure by divid-
ing H by ln d!.

m Time scale of MPE. By following the coarse-graining procedure, m represents
the size of the non-overlapping segments inside the signal x.

x
(m)
(k) The coarse-grained version of x, for time scale m. Note that there are k =

1, . . . ,m possible coarse-grained signals, each beginning with the kth element
of x. When the starting point is not specified, we can write x(m), and assume
k = 1.

nm Signal length of x(m,k).

p
(m,k)
i

Pattern probability i = 1, . . . , d! in the coarse grained signal x(m,k). Likewise,
when the starting point is not specified for the coarse-graining procedure, we
can write p

(m)
i and assume k = 1.

X A vector which represents a sequential random process with a given model.
Not to be confused with x, which corresponds to a given time series with
unknown a priori properties.

Yi Random variable representing the pattern count i = 1, . . . , d!. Unless otherwise
specified, Yi is assumed to be a binomial random variable.

p̂i Random variable representing the pattern probability i = 1, . . . , d!. Unless
otherwise specified, p̂i is assumed to be a binomial random variable, identically
distributed to Yi.

Y Vector of size d! containing all the pattern counts Yi. Unless otherwise speci-
fied, Y is assumed to be a multinomial random variable.

p̂ Vector of size d! containing all of the pattern probabilities p̂i. Unless other-
wise specified, p̂ is assumed to be a multinomial random variable, identically
distributed to Y .

p̂(m) When the vector p̂ is not constant respect to m.

l̂ Vector of size d! containing all the natural logarithms of the pattern probabil-
ities ln pi.

Ĥ Multiscale permutation entropy estimator. This is a scalar function of p̂.

h Hurst parameter for fractional Gaussian motion and fractional Gaussian noise.

K Covariance matrix.

σ2 Variance.

ρ Normalized autocorrelation function.

λ Refers to the autocorrelation lag in the autocorrelation function ρ(λ).

R Normalized autocorrelation matrix.

ǫt Gaussian error innovation with zero mean and variance σ.

p̃ Order of the autoregressive model.
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q̃ Order of the moving average model.

φi Any parameters from an autoregressive model AR(p̃), for index i = 1, . . . , p̃.

φ Vector of autoregressive model parameters for AR(p̃).

θj Any parameters from an moving average model MA(q̃), for index j = 1, . . . , q̃.

θ Vector of moving average model parameters for MA(q̃).

Hc Composite MPE.

Hrc Refined composite MPE.

Hcd Composite downsampling PE.

Hrcd
Refined composite downsampling PE.
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Acronym Glossary

This is a list of the most relevant acronyms used throughout this thesis.

pdf Probability density function.

pmf Probability mass function.

ApEn
Approximate entropy.

SampEn
Sample entropy.

MSEn
Multiscale entropy.

rMSE
Refined multiscale entropy.

cMSE
Composite multiscale entropy.

rcMSE
Refined composite multiscale entropy.

MPE
Multiscale permutation entropy.

cMPE
Composite multiscale permutation entropy.

rcMPE
Refined composite multiscale permutation entropy.

DPE
Downsampling multiscale permutation entropy.

cDPE
Composite downsampling multiscale permutation entropy.

rcDPE
Refined composite downsampling multiscale permutation entropy.
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wGn
White Gaussian noise.

fbm Fractional Brownian motion.

fGn Fractional Gaussian noise.

cgfGn
Coarse-grained fractional Gaussian noise.

AR Autoregressive process.

MA Moving average process.

cgAR
Coarse-grained autoregressive process.

cgMA
Coarse-grained moving average process.

ARMA
Autoregressive and moving average process.

cgARMA
Coarse-Grained autoregressive and moving average process.

ECG
Electrocardiogram.

EEG
Electroencephalogram.

EMG
Electromyogram Electromyography.

sEMG
Surface electromyography.

MU Motor unit.

MF Muscle fibers.

MUAP
Motor unit action potential.

MVC
Maximum voluntary contraction.
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patterns, permutation entropy and stock market inefficiency,” Physica A:
Statistical Mechanics and its Applications, vol. 388, no. 14, pp. 2854–2864,
Jul. 15, 2009, issn: 0378-4371.

[31] X. Zhang, Y. Liang, J. Zhou, and Y. zang, “A novel bearing fault diagnosis
model integrated permutation entropy, ensemble empirical mode decomposi-
tion and optimized SVM,” Measurement, vol. 69, pp. 164–179, Jun. 1, 2015,
issn: 0263-2241.

[32] F. C. Morabito, D. Labate, F. La Foresta, A. Bramanti, G. Morabito, and
I. Palamara, “Multivariate multi-scale permutation entropy for complexity
analysis of alzheimer’s disease EEG,” Entropy, vol. 14, no. 7, pp. 1186–1202,
Jul. 4, 2012.

[33] M. Zanin, L. Zunino, O. A. Rosso, and D. Papo, “Permutation entropy and its
main biomedical and econophysics applications: A review,” Entropy, vol. 14,
no. 8, pp. 1553–1577, Aug. 23, 2012.

[34] I. Ahmad, Introduction to Applied Fuzzy Electronics. Englewood Cliffs, NJ,
USA: Prentice Hall, 1997.

[35] A. De Luca and S. Termini, “A definition of a nonprobabilistic entropy in
the setting of fuzzy sets theory,” en, Information and Control, vol. 20, no. 4,
pp. 301–312, May 1972, issn: 0019-9958.

[36] B. Kosko, “Fuzzy entropy and conditioning,” Information Sciences, vol. 40,
no. 2, pp. 165–174, Dec. 1986, issn: 0020-0255.

[37] W. Chen, Z. Wang, H. Xie, and W. Yu, “Characterization of surface EMG
signal based on fuzzy entropy,” IEEE Transactions on Neural Systems and
Rehabilitation Engineering, vol. 15, no. 2, pp. 266–272, Jun. 2007, issn: 1534-
4320.

[38] H. Azami, P. Li, S. E. Arnold, J. Escudero, and A. Humeau-Heurtier, “Fuzzy
entropy metrics for the analysis of biomedical signals: Assessment and com-
parison,” IEEE Access, vol. 7, pp. 104 833–104 847, 2019, issn: 2169-3536.

[39] H. Azami and J. Escudero, “Improved multiscale permutation entropy for
biomedical signal analysis: Interpretation and application to electroencephalo-
gram recordings,” Biomedical Signal Processing and Control, vol. 23, pp. 28–
41, 2016.

[40] J. F. Valencia, A. Porta, M. Vallverdu, F. Claria, R. Baranowski, E. Orlowska-
Baranowska, and P. Caminal, “Refined Multiscale entropy: Application to
24-h Holter Recordings of Heart Period Variability in Healthy and Aortic
Stenosis Subjects,” IEEE Transactions on Biomedical Engineering, vol. 56,
no. 9, pp. 2202–2213, Sep. 2009, issn: 0018-9294, 1558-2531.

[41] S.-D. Wu, C.-W. Wu, S.-G. Lin, C.-C. Wang, and K.-Y. Lee, “Time se-
ries analysis using composite multiscale entropy,” Entropy, vol. 15, no. 3,
pp. 1069–1084, Mar. 18, 2013.

[42] S.-D. Wu, C.-W. Wu, S.-G. Lin, K.-Y. Lee, and C.-K. Peng, “Analysis of com-
plex time series using refined composite multiscale entropy,” Physics Letters
A, vol. 378, no. 20, pp. 1369–1374, Apr. 4, 2014, issn: 0375-9601.

129



MPE Statistics with sEMG Applications

[43] S.-D. Wu, C.-W. Wu, K.-Y. Lee, and S.-G. Lin, “Modified multiscale entropy
for short-term time series analysis,” en, Physica A: Statistical Mechanics and
its Applications, vol. 392, no. 23, pp. 5865–5873, Dec. 2013, issn: 0378-4371.

[44] M. D. Costa and A. L. Goldberger, “Generalized multiscale entropy analysis:
Application to quantifying the complex volatility of human heartbeat time
series,” Entropy, vol. 17, no. 3, pp. 1197–1203, Mar. 12, 2015.

[45] W. Aziz and M. Arif, “Multiscale permutation entropy of physiological time
series,” in 2005 Pakistan Section Multitopic Conference, Dec. 2005, pp. 1–6.
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[52] L. Hörmander, Linear Partial Differential Operators, ser. Grundlehren der
mathematischen Wissenschaften. Berlin Heidelberg: Springer-Verlag, 1963,
isbn: 978-3-642-46177-4.

[53] R. Horn and C. Johnson, Matrix Analysis, 2nd Ed. Cambridge University
Press, 2013.

[54] R. C. Geary, “Review of mathematical methods of statistics,” The Economic
Journal, vol. 57, no. 226, in collab. with H. Cramér, pp. 200–202, 1947, issn:
0013-0133.

[55] B. Friedlander and J. M. Francos, “Estimation of amplitude and phase pa-
rameters of multicomponent signals,” IEEE Transactions on Signal Process-
ing, vol. 43, no. 4, pp. 917–926, Apr. 1995.

[56] K. S. Miller, “On the inverse of the sum of matrices,” Mathematics Magazine,
vol. 54, no. 2, pp. 67–72, 1981, issn: 0025-570X.

[57] A. Humeau-Heurtier, C.-W. Wu, and S.-D. Wu, “Refined composite multi-
scale permutation entropy to overcome multiscale permutation entropy length
dependence - IEEE journals & magazine,” IEEE Signal Processing Letters,
vol. 22, pp. 2364–2367, 12 2015.

[58] C. Bandt and B. Shiha, “Order patterns in time series,” Journal of Time
Series Analysis - Wiley Online Library, 2007.

130



BIBLIOGRAPHY

[59] K. Keller, M. Sinn, and J. Emonds, “Time series from the ordinal viewpoint,”
Stochastics and Dynamics, vol. 07, no. 2, pp. 247–272, Jun. 1, 2007, issn:
0219-4937.

[60] B. Mandelbrot and J. Van Ness, “Fractional brownian motions, fractional
noises and applications,” SIAM Review, vol. 10, no. 4, pp. 422–437, Oct. 1,
1968, issn: 0036-1445.

[61] D. Delignières, “Correlation properties of (discrete) fractional gaussian noise
and fractional brownian motion,” Mathematical Problems in Engineering,
Mathematical Problems in Engineering - Hindawi, vol. 2015, 2015.

[62] P. Brockwell and R. Davis, Time Series Analysis, Forecasting and Control.
Revised Edition. Holden-Day, Jan. 1, 1976, 575 pp.

[63] S. Berger, A. Kravtsiv, G. Schneider, and D. Jordan, “Teaching ordinal pat-
terns to a computer: Efficient encoding algorithms based on the lehmer code,”
Entropy, vol. 21, no. 10, p. 1023, Oct. 2019.

[64] A. L. Goldberger, L. A. N. Amaral, J. M. Hausdorff, P. C. Ivanov, C.-K. Peng,
and H. E. Stanley, “Fractal dynamics in physiology: Alterations with disease
and aging,” en, Proceedings of the National Academy of Sciences, vol. 99,
no. suppl 1, pp. 2466–2472, Feb. 2002, issn: 0027-8424, 1091-6490.

[65] J. M. Beggs and D. Plenz, “Neuronal Avalanches in Neocortical Circuits,”
en, Journal of Neuroscience, vol. 23, no. 35, pp. 11 167–11 177, Dec. 2003,
issn: 0270-6474, 1529-2401.

[66] G. Dragoi and S. Tonegawa, “Preplay of future place cell sequences by hip-
pocampal cellular assemblies,” en, Nature, vol. 469, no. 7330, pp. 397–401,
Jan. 2011, issn: 1476-4687.

[67] K. Schindler, H. Gast, L. Stieglitz, A. Stibal, M. Hauf, R. Wiest, L. Mariani,
and C. Rummel, “Forbidden ordinal patterns of periictal intracranial EEG
indicate deterministic dynamics in human epileptic seizures,” en, Epilepsia,
vol. 52, no. 10, pp. 1771–1780, 2011, issn: 1528-1167.

[68] E. G. T. Liddell and C. S. Sherrington, “Recruitment and some other features
of reflex inhibition,” Proceedings of the Royal Society of London. Series B,
Containing Papers of a Biological Character, vol. 97, no. 686, pp. 488–518,
Apr. 1, 1925.

[69] H. Piper, Elektrophysiologie menschlicher Muskeln. Berlin: J. Springer, 1912.
[70] S. Bercier, R. Halin, P. Ravier, J.-F. Kahn, J.-C. Jouanin, A.-M. Lecoq,

and O. Buttelli, “The vastus lateralis neuromuscular activity during all-out
cycling exercise,” Journal of Electromyography and Kinesiology, vol. 19, no. 5,
pp. 922–930, Oct. 1, 2009, issn: 1050-6411.

[71] P. Madeleine, A. Samani, A. T. Binderup, and A. K. Stensdotter, “Changes in
the spatio-temporal organization of the trapezius muscle activity in response
to eccentric contractions,” Scandinavian Journal of Medicine & Science in
Sports, vol. 21, no. 2, pp. 277–286, 2011, issn: 1600-0838.

[72] M. Hakonen, H. Piitulainen, and A. Visala, “Current state of digital sig-
nal processing in myoelectric interfaces and related applications,” Biomedi-
cal Signal Processing and Control, vol. 18, pp. 334–359, Apr. 1, 2015, issn:
1746-8094.

[73] M. Dimitriou, “Enhanced muscle afferent signals during motor learning in
humans,” Current Biology, vol. 26, no. 8, pp. 1062–1068, Apr. 25, 2016, issn:
0960-9822.

131



MPE Statistics with sEMG Applications

[74] R. Parry, O. Buttelli, J. Riff, J. Roussel, N. Sellam, M. L. Welter, and E.
Lalo, “Rethinking gait and motor activity in daily life: A neuroergonomic
perspective of Parkinson’s disease,” fr, Le travail humain, vol. Vol. 80, no. 1,
pp. 23–50, Apr. 2017, issn: 0041-1868.

[75] A. L. Goldberger, C.-K. Peng, and L. A. Lipsitz, “What is physiologic com-
plexity and how does it change with aging and disease?” Neurobiology of
Aging, vol. 23, no. 1, pp. 23–26, Jan. 1, 2002, issn: 0197-4580, 1558-1497.

[76] M. Navaneethakrishna and S. Ramakrishnan, “Multiscale feature based anal-
ysis of surface EMG signals under fatigue and non-fatigue conditions,” in 2014
36th Annual International Conference of the IEEE Engineering in Medicine
and Biology Society, ISSN: 1558-4615, Aug. 2014, pp. 4627–4630.

[77] T. W. Boonstra, L. Faes, J. N. Kerkman, and D. Marinazzo, “Information
decomposition of multichannel EMG to map functional interactions in the
distributed motor system,” NeuroImage, vol. 202, p. 116 093, Nov. 15, 2019,
issn: 1053-8119.

[78] R. Merletti and P. Parker, Electromyography: Physiology, Engineering, and
Non-Invasive Applications. IEEE Press Series in Biomedical Engineering,
2004.

[79] D. G. Sale, “Neural adaptation to strength training,” in Strength and Power
in Sport, John Wiley & Sons, Ltd, 2008, pp. 281–314, isbn: 978-0-470-75721-
5.

[80] A. F. Huxley and R. Niedergerke, “Structural changes in muscle during con-
traction: Interference microscopy of living muscle fibres,” Nature, vol. 173,
no. 4412, pp. 971–973, May 1954, issn: 1476-4687.

[81] J. Kimura, Electrodiagnosis in Diseases of Nerve and Muscle: Principles and
Practice. OUP USA, Oct. 2013, 1177 pp., isbn: 978-0-19-973868-7.

[82] R. M. Enoka and J. Duchateau, “Rate coding and the control of muscle
force,” Cold Spring Harbor Perspectives in Medicine, vol. 7, no. 10, a029702,
Jan. 10, 2017, issn: , 2157-1422.

[83] J. Basmajian and de Luca C.J., Muscles Alive: their functions revealed by
electromyography, 5th Edition. Williams and Wilkins, 2017.

[84] A. L. Goldberger, “Non-linear dynamics for clinicians: Chaos theory, fractals,
and complexity at the bedside,” The Lancet - Elsevier, vol. 347, no. 9011,
pp. 1312–1314, May 11, 1996, issn: 0140-6736, 1474-547X.

[85] H. Miyano and T. Sadoyama, “Theoretical analysis of surface EMG in vol-
untary isometric contraction,” European Journal of Applied Physiology and
Occupational Physiology, vol. 40, no. 3, pp. 155–164, Sep. 1, 1979, issn: 1439-
6327.

[86] J. G. A. Cashaback, T. Cluff, and J. R. Potvin, “Muscle fatigue and contrac-
tion intensity modulates the complexity of surface electromyography,” Jour-
nal of Electromyography and Kinesiology, vol. 23, no. 1, pp. 78–83, Feb. 1,
2013, issn: 1050-6411.

[87] P. Ravier, O. Buttelli, R. Jennane, and P. Couratier, “An EMG fractal in-
dicator having different sensitivities to changes in force and muscle fatigue
during voluntary static muscle contractions,” Journal of Electromyography
and Kinesiology, vol. 15, no. 2, pp. 210–221, Apr. 1, 2005, issn: 1050-6411.

132



BIBLIOGRAPHY

[88] Y. Liu, Y. Lin, J. Wang, and P. Shang, “Refined generalized multiscale en-
tropy analysis for physiological signals,” Physica A: Statistical Mechanics and
its Applications, vol. 490, pp. 975–985, Jan. 15, 2018, issn: 0378-4371.

[89] H. J. Hermens, B. Freriks, R. Merletti, D. Stegeman, J. Blok, G. Rau, C.
Disselhorst-Klug, and G. Hägg, “European recommendations for surface Elec-
troMyoGraphy,” p. 4,

[90] C. De Luca, “Myoelectrical manifestations of localized muscular fatigue in
humans.,” Critical Reviews in Biomedical Engineering, vol. 11, no. 4, pp. 251–
279, Jan. 1984, issn: 0278-940X, 1943-619X.

[91] R. Merletti and L. R. Lo Conte, “Surface EMG signal processing during
isometric contractions,” en, Journal of Electromyography and Kinesiology,
vol. 7, no. 4, pp. 241–250, Dec. 1997, issn: 1050-6411.

[92] C. G. Kukulka and H. P. Clamann, “Comparison of the recruitment and
discharge properties of motor units in human brachial biceps and adductor
pollicis during isometric contractions,” Brain Research, vol. 219, no. 1, pp. 45–
55, Aug. 1981, issn: 0006-8993.

[93] J. Hogrel, “Use of surface EMG for studying motor unit recruitment during
isometric linear force ramp,” en, Journal of Electromyography and Kinesiol-
ogy, vol. 13, no. 5, pp. 417–423, Oct. 2003, issn: 1050-6411.

[94] M. Brown and A. Forsythe, “Robust tests for equality of variances,” Journal
of the American Statistical Association - Taylor and Francis Group, vol. 69,
pp. 364–367, 1974.

[95] C. J. De Luca, “The use of surface electromyography in biomechanics,” Jour-
nal of Applied Biomechanics, vol. 13, no. 2, pp. 135–163, May 1, 1997, issn:
1065-8483.

[96] A. J. Fuglevand, D. A. Winter, and A. E. Patla, “Models of recruitment and
rate coding organization in motor-unit pools,” Journal of Neurophysiology,
vol. 70, no. 6, pp. 2470–2488, Dec. 1, 1993, issn: 0022-3077.

[97] D. A. Gabriel, S. M. Lester, S. A. Lenhardt, and E. D. J. Cambridge, “Anal-
ysis of surface EMG spike shape across different levels of isometric force,”
Journal of Neuroscience Methods, vol. 159, no. 1, pp. 146–152, Jan. 15, 2007,
issn: 0165-0270.
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Sur les Propriétés Statistiques de l'Entropie de Permutation 

Multi-échelle et ses Raffinements; applications sur les Signaux 
Électromyographiques de Surface 

 
L'entropie de permutation (PE) et l'entropie de permutation multi-échelle (MPE) sont largement utilisées pour 
mesurer la régularité dans l'analyse des séries temporelles, en particulier dans le contexte des signaux 
biomédicaux. Comme la précision est cruciale pour les chercheurs afin d'obtenir des interprétations optimales, 
il devient de plus en plus important de prendre en compte les propriétés statistiques de l'EMP. 

C'est pourquoi, dans le présent travail, nous commençons par développer la théorie statistique qui sous-tend 
l'EMT, en mettant l'accent sur la caractérisation de ses deux premiers moments dans le contexte de la multi-
échelle. Ensuite, nous explorons les versions composites de MPE afin de comprendre les propriétés sous-
jacentes à l'amélioration de leurs performances ; nous avons également créé un point de référence d'entropie 
par le calcul des valeurs attendues de MPE pour les processus stochastiques gaussiens largement utilisés, 
puisque cela nous donne un point de référence à utiliser avec de vrais signaux biomédicaux. Enfin, nous 
différencions la dynamique de l'activité musculaire dans les contractions isométriques par l'application des 
méthodes MPE classique et composite sur des données électromyographiques de surface (sEMG). 

À la suite de notre projet, nous avons constaté que l'EPM est une statistique biaisée qui diminue par rapport 
au facteur multidimensionnel, quelle que soit la distribution de probabilité du signal. Nous avons également 
remarqué que la variance de la statistique MPE dépend fortement de la valeur de la MPE elle-même, et est 
presque égale à sa limite inférieure Cram'er-Rao - en d'autres termes, confirmant qu'il s'agit d'un estimateur 
efficace. Malgré l'amélioration des résultats, nous avons réalisé que les versions composites modifient 
également l'estimation de l'EPP en raison de la mesure d'informations redondantes. À la lumière de nos 
conclusions, nous avons décidé de remplacer la procédure de grossier calibrage à plusieurs échelles par une 
de nos propres procédures, dans l'intention d'améliorer nos estimations. 

Comme notre équipe a observé que la statistique de l'EMT était entièrement caractérisée par les paramètres 
du modèle lorsqu'elle était appliquée à des modèles gaussiens corrélés, nous avons développé une 
formulation générale de l'EMT attendue avec des dimensions à faible encombrement. Lorsqu'elle est 
appliquée à des signaux sEMG réels, nous avons été en mesure de distinguer les états de fatigue et de non-
fatigue avec toutes les méthodes, en particulier pour les dimensions à haute imbrication. De plus, nous avons 
constaté que la méthode MPE que nous proposons fait une différence encore plus nette entre les deux états 
d'activité susmentionnés. 

Mots clés : Entropie de Permutation Multi-échelle,Électromyographie,Traitement de Signaux,Statistique, 

 On the Statistical Properties of Multiscale Permutation Entropy 
and its Refinements, with Applications on Surface 

Electromyographic Signals 
 

Permutation entropy (PE) and multiscale permutation entropy (MPE) are extensively used to measure 
regularity in the analysis of time series, particularly in the context of biomedical signals. As accuracy is crucial 
for researchers to obtain optimal interpretations, it becomes increasingly important to take into account the 
statistical properties of MPE. 

Therefore, in the present work we begin by expanding on the statistical theory behind MPE, with an emphasis 
on the characterization of its first two moments in the context of multiscaling. Secondly, we explore the 
composite versions of MPE in order to understand the underlying properties behind their improved 
performance; we also created an entropy benchmark through the calculation of MPE expected values for 
widely used Gaussian stochastic processes, since that gives us a reference point to use with real biomedical 
signals. Finally, we differentiate between muscle activity dynamics in isometric contractions through the 
application of the classical and composite MPE methods on surface electromyographic (sEMG) data. 

As a result of our project, we found MPE to be a biased statistic that decreases with respect to the multiscaling 
factor, regardless of the signal’s probability distribution. We also noticed that the variance of the MPE statistic 
is highly dependent on the value of MPE itself, and almost equal to its Cram´er-Rao lower bound -in other 
words, confirming it is an efficient estimator. Despite showing improved results, we realized that the composite 



versions also modify the MPE estimation due to the measuring of redundant information. In light of our findings, 
we decided to replace the multiscaling coarse-graining procedure with one of our own, with the intention of 
improving our estimations. 

Since our team observed the MPE statistic to be completely characterized by the model parameters when 
applied to correlated Gaussian models, we developed a general formulation for expected MPE with low-
embedding dimensions. When applied to real sEMG signals, we were able to distinguish between fatigue and 
non-fatigue states with all methods, especially for high-embedding dimensions. Moreover, we found that our 
proposed MPE method makes an even clearer difference between the two aforementioned activity states. 

 

Keywords : Multiscale Permutation Entropy, Electromyography, Signal Processing, Statistics. 
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