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Abstract

With the advances of image editing and generation software tools, it has become easier
to tamper with the content of images or create new images, even for novices. These
generated images, such as computer graphics (CG) image and colorized image (CI),
have high-quality visual realism, and potentially throw huge threats to many important
scenarios. For instance, the judicial departments need to verify that pictures are not
produced by computer graphics rendering technology, colorized images can cause recog-
nition/monitoring systems to produce incorrect decisions, and so on. Therefore, the
detection of computer-generated images has attracted widespread attention in the multi-
media security research community. In this thesis, we study the identification of different
computer-generated images including CG image and CI, namely, identifying whether an
image is acquired by a camera or generated by a computer program. The main objective
is to design an efficient detector, which has high classification accuracy and good gener-
alization capability. Specifically, we consider dataset construction, network architecture,
training methodology, visualization and understanding, for the considered forensic prob-
lems. The main contributions are: (1) a colorized image detection method based on
negative sample insertion, (2) a generalization method for colorized image detection, (3)
a method for the identification of natural image (NI) and CG image based on CNN
(Convolutional Neural Network), and (4) a CG image identification method based on
the enhancement of feature diversity and adversarial samples.

Keywords: Image Forensics, Deep Learning, Computer-Generated Image, Col-
orized Image, Generalization, Trustworthiness
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Chapter 1

Introduction, State of the Art and
Objectives

Contents
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Prior Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Detection of Colorized Images . . . . . . . . . . . . . . . . . . . . . 7

1.2.2 Identification of Natural Images and Computer Graphics Images . 10

1.3 Objectives and Contributions . . . . . . . . . . . . . . . . . . . . . 18

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.1 Background

Digital image, because of its directness and understandability, makes it an efficient and
natural communication medium. Historically, the authenticity of image data is real and
reliable. For example, a photo printed in a newspaper can be widely accepted as a proof of
news; or, video surveillance records are proposed as important materials in court. Today,
with the low cost and simplification of acquiring devices, such as smart phones and digital
cameras, almost everyone can record, store and share a large number of images/videos
anytime and anywhere. In the meanwhile, lots of image editing softwares/tools also make
it extremely simple to modify image content or create new images. In consequence, the
possibility of tampering and forging visual content is no longer limited to experts. Digital
technology has begun to weaken the degree of trust in visual content, and it is obvious
that “what you see is no longer trustworthy.” As shown in Figure 1.1, this is a highly-
realistic image composed of 16 different photos1. With the advance and complexity of
processing tools, all these problems become more and more urgent, which has prompted
the progress of research on digital image forensics. The core and goal of image forensics
are to restore some trust to digital images. Generally speaking, the main purposes of
image forensics are to analyze a given digital image so as to detect whether it is a forgery,

1This image comes from http://commons.wikimedia.org/wiki/User:Mmxx, author: mxx.

1
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2 Chapter 1. Introduction, State of the Art and Objectives

Figure 1.1: A highly-realistic fake image composed of 16 different photos. Used software:
Adobe Photoshop R© [Pho].

to identify its origin, to trace its processing history, or to reveal potential details invisible
to the naked eyes [Fan15].

In the past two decades, researchers have proposed various image forensic techniques.
In the early stage and even in many current applications, fragile digital image watermark-
ing is a popular way to prove the authenticity and integrity of images [Con11; Piv13].
This is essentially an active forensics technology. Specifically, this kind of technology
actively embeds identification information (i.e., digital watermark) into the image when
the image is captured or before it is transmitted. In the forensic stage, the watermark
information is firstly extracted: if the extracted watermark matches the embedded wa-
termark, the authenticity of the image is proved; if the watermark extraction fails or the
extracted information does not match the embedded information, the image has been
tampered. The concept of trusted camera [Fri93; BF04] was proposed for the purpose
of active image forensics. The digital camera is equipped with a special watermark chip.
On the one hand, this process will inevitably affect the quality of the photo itself; on the
other hand, it also brings some inconveniences to camera manufacturers, such as the need
to develop a standard and the security of the camera itself. The high hardware cost, low
detection efficiency, and non-uniform standards of the active forensics equipment limit
the practical application scenarios of this solution.

Considering the limitations of active forensics, researchers in the field of multimedia
security have gradually shifted their attention to a new research direction/technology,
namely, passive forensics. Compared with active forensics, passive forensics technology
does not require any prior information (such as watermarks or signatures) [LUO+07;
Far09]. These techniques are usually based on the assumption that although digital
forgeries may not leave any visual traces of tampering, they may change the inherent
statistical properties of the image. Currently, passive forensics has become the main
research paradigm in the field of image forensics, which mainly includes image identi-
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fication, forgery detection and localization, image processing history recognition, and
image source camera identification, etc. Figure 1.2 summarizes these research problems.
Loosely speaking, for the image identification, the main purpose is to distinguish be-
tween natural image (NI) and computer graphics (CG) image2 [FL03; LF05; Ng+05],
colorized image (CI) [Guo+18; YRC19], recaptured image [Wan17; ZQY19], and the
latest generated image [Li+18; ZKC19; YDF19] based on the generative adversarial net-
work (GAN) [Goo+14] and so on. Image tampering detection and localization focuses on
identifying whether the content of the image has been maliciously tampered, and at the
same time locating the tampered region. Common tampering operations include copy-
move [Chr+12; Li+15; LZ19], object removal [Zho+18; Bap+19], and splicing [Zha+09;
Zha+10; Liu+11; Cao+15; RN16; Yao+17], etc. The recognition of image processing
history mainly includes detection of median filtering [KF10; CNH13; Che+15], JPEG
compression [FQ03; PF08; HHS10; Yan+14; Niu+19], resampling [PF05; FCD12; RL14],
contrast enhancement [Cao+14; WQL18], etc. The research on the forensic problems of
these image processing operations can assist in the detection and localization of image
tampering to a certain extent. The identification of the image source camera is usually
to study the camera model of the acquired image and related research [LFG06; XS12;
TCC16; Bon+17; Yan+19; MS20].

This thesis mainly studies the identification of computer-generated images, including
the classification of natural images (NI) and computer graphics (CG) images (referred
to as CG image forensics), and the classification of natural images and colorized images
(CI) (referred to as CI detection). Here, natural images refer to pictures captured by a
digital camera. The former is an important and relatively long-existing research problem
in the field of image forensics, and researchers have previously conducted a large amount
of works [LF05; Ng+05]; the latter is an emerging forensic research problem [Guo+18;
YRC19]. Figure 1.3(a) shows two high-quality CG images3; (b) shows two visually-
realistic colorized images, which are obtained using an advanced automatic colorization
algorithm [ISSI16]; (c) is the corresponding original natural images of images in (b),
where (b) and (c) share same grayscale information. In fact, it is difficult for human
observers to determine whether the images in (a) and (b) were captured by a camera
(i.e., natural images). These forensic issues have important research significance in the
fields of public security, justice, and entertainment. At the same time, recently deep
learning has achieved rapid development under the promotion of the industry and the
extensive attention of researchers. Due to outstanding performance and simplicity of
implementation, deep learning has been applied in many research fields, such as computer
vision, computer graphics, natural language processing, and multimedia security.

2CG image refers to the image rendered by computer graphics techniques.
3Images come from https://area.autodesk.com/fakeorfoto/

https://area.autodesk.com/fakeorfoto/
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Figure 1.2: A diagram summarizing passive forensics methods.

Although researchers in the image forensics community have made big progress, there
are still many difficulties and challenges in this field.

First of all, many previous identification methods adopt the traditional two-stage ma-
chine learning framework, namely, hand-crafted feature extraction and classifier training.
This kind of method usually achieves good results on relatively simple datasets. How-
ever, their performance is often limited on more complex data, and some works try to
improve the classification accuracy via a combination/fusion of multiple features which
may not always be an efficient solution. In addition, how to make full use of traditional
features or traditional filters is still an open problem worth studying.

Secondly, considering the limitations of the framework based on hand-crafted fea-
tures, some recent research efforts have been devoted to utilizing deep learning methods,
which generally achieved the state-of-the-art performance. However, some questions are
worth investigating regarding the trustworthiness and understanding of such methods.
For instance, what is the CNN (Convolutional Neural Network) model using as the dis-
criminative information, i.e., is it the “essential” difference between different kinds of



1.1. Background 5

(a) Computer graphics images

(b) Colorized images

(c) Natural images

Figure 1.3: Examples of CG images and CIs: (a) Computer graphics images; (b) Col-
orized images; (c) Natural images.

images? Is the CNN just overfitting on training data in some aspects that are not the
primary factors for the considered forensic problem? How can CNN generalize well on
“unknown” data during the testing stage? Are there potential pitfalls behind the high
performance?
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Figure 1.4: Two different frameworks for the image identification problem.

Finally, computer graphics technology, colorization technology and other generation
technologies are constantly updated and developed. In particular, with the recent and
popular tool of generative adversarial networks (GANs), it is increasingly easy to generate
high-quality fake images that can deceive the human visual system. Therefore, how
to improve the generalization (or blind detection) capability of forensic detectors has
become an important and urgent research problem. Current research mainly focuses on
improving the detection performance of forensic detectors (under an ideal experimental
environment). However, when forensic detectors are deployed in the real-world scenarios,
they will inevitably encounter the generalization problems, that is, methods/images to
be detected are “unknown” to the trained detector. At present, few researches focus on
such generalization problems in the field of image forensics.

1.2 Prior Art

Similar to other forensic problems, distinguishing between natural images and computer-
generated images usually is modeled as a binary classification problem. Given the set
of training data{(x1, y1), (x2, y2), · · · , (xN , yN )} of N samples, where x stands for the
image and y corresponds to its label (1:NI, 0: generated image, e.g., CG image, CI, etc),
the main goal is to find a good mapping function φ : y = φ(x) using the given training
samples.

For the computer-generated image identification problem, most existing methods fol-
low two different frameworks, as shown in Figure 1.4. The standard framework (bottom
of Figure 1.4) is to find a mapping y = c(f(x)), where f is a well-designed feature ex-
tractor and c stands for a classifier, such as support vector machine (SVM), or in a larger
sense, it can also stand for thresholding for scalar features. This framework is a classical
two-stage model, and its core is the feature extractor. However, hand-crafted features are
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often time-consuming and tedious to design and not necessarily the most adequate ones,
as in general it is difficult to extract and organize the discriminative information from
the data [BCV13]. A generic “end-to-end” framework (top of Figure 1.4), such as CNN,
becomes the main tendency of current research. Given a testing image, a well-trained
CNN can directly and accurately predict its label in an “end-to-end” manner.

1.2.1 Detection of Colorized Images

This section will first review the representative colorization algorithms and then present
the existing detection methods of colorized images.

1.2.1.1 Image Colorization

Image colorization adds color to a monochrome image and obtains a realistic color
image. Existing colorization algorithms mainly consist of three categories: scribble-
based [LLW04; Lua+07; Xu+09; Che+12; Pan+13], reference-based [WAM02; ICOL05;
Gup+12; He+18a], and fully automatic [ISSI16; LMS16; ZIE16] approaches. Figure 1.5
illustrates the main pipeline of these three kinds of methods.

Scribble-based methods require user-specific scribbles and propagate the color infor-
mation to the whole grayscale images. This is based on a simple assumption: adjacent
pixels with similar intensities should have similar colors. Levin et al. [LLW04] proposed
an optimization-based method to complete the colorization task. Specifically, they for-
malized the problem with a quadratic loss function, which can be solved efficiently using
standard techniques. Beside the intensity similarity, Luan et al. [Lua+07] also considered
the texture similarity, and proposed a novel energy optimization framework combining
the intensity continuity and texture similarity constraints, which can aggregate images
as multiple coherent regions to carry out the colorization. By approximately solving the
optimization problem in edit propagation, Xu et al. [Xu+09] significantly improved the
efficiency of the algorithm. Chen et al. [Che+12] introduced the locally linear embedding
constraint to edit propagation, whose core is to maintain the manifold structure formed
by all pixels in the feature space. In addition, since each pixel is only related to a few
adjacent pixels, their algorithm can achieve good operational efficiency. In general, this
kind of method is usually accompanied by trail and error to obtain satisfactory results,
and thus is rather time-consuming.

Reference-based (or exemplar-based) approaches mainly exploit the color information
of a reference image that is (semantically) similar to the input grayscale image. The key
idea is to model a matching relationship between these two images. By matching the
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Optimization
method

(a) Scribble-based colorization

(b) Reference-based colorization

Deep neural 
network

(c) Fully automatic colorization

Figure 1.5: Three kinds of colorization methods: (a) scribble-based; (b) reference-
based; (c) fully automatic. Images in (a) come from [LLW04], and images in (b) come
from [He+18a].

brightness and texture information of the image, Welsh et al. [WAM02] transferred the
entire color information from the original image to the target image. Irony et al. [ICOL05]
considered spatial consistency instead of single-pixel independent decision. Specifically,
their method first automatically finds for each pixel a matched image patch from the
reference image, and then combines the neighborhood matching measure and spatial
filtering to add an appropriate color as well as a confidence level to each pixel. Finally,
the high-confidence pixel is used as scribble and the method applies the optimization
framework of Levin et al. [LLW04] to complete the colorization. Gupta et al. [Gup+12]
first performed super-pixel segmentation on the image, and then extracted features and
carried out matching. At the same time, the voting mechanism of the image space was
used to improve spatial consistency. This super-pixel-based method can speed up the
colorization process. He et al. [He+18a] adopted deep neural networks to further improve
the visual quality of colorized images. However, the selection of suitable reference image
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Figure 1.6: From left to right: a natural image taken from ImageNet [Den+09]; three
colorized images generated by the colorization method proposed in [LMS16], [ZIE16],
and [ISSI16], respectively.

may be burdensome.

In contrast, recently researchers have developed fully automatic methods that do
not need user interaction or example color images. Cheng et al. [CYS15] proposed the
first deep neural network based image colorization method. Their method performed
pixel-wise prediction, however, the input of deep model was pre-extracted hand-crafted
features. Iizuka et al. [ISSI16] proposed a novel fully “end-to-end” network for the task of
image colorization. The input was a grayscale image and its output was the chrominance,
which was combined with the input image to produce the color image. Their network
jointly learned global and local features from an image, and at the same time, they
also exploited classification labels of the grayscale images to improve the performance.
Different from previous methods, Larsson et al. [LMS16] proposed a deep model that
predicted a color histogram, instead of a single color value, at every image pixel. Zhang
et al. [ZIE16] took into account the nature of uncertainty of this colorization task and
introduced class-rebalancing method to increase the diversity of color of resultant image.
These CNN-based methods lead to the very high visual quality of colorized images,
often plausible enough to deceive the human perception. Figure 1.6 shows a group of
images, the left-most one is the original color image taken from ImageNet [Den+09], and
the remaining three are colorized images produced by three state-of-the-art colorization
algorithms: hereafter named as Ma [LMS16], Mb [ZIE16], and Mc [ISSI16], respectively.

1.2.1.2 Detection Methods of Colorized Images

For the colorized image detection, there mainly exist two types of methods: hand-crafted-
feature-based method [Guo+18] and CNN-based method [Zhu+18; YRC19; Li+19]. Guo
et al. [Guo+18] first proposed hand-crafted-feature-based methods to detect fake col-
orized images. On the basis of the observation that colorized images tend to possess less
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saturated colors, they analyzed the statistical difference between NIs and CIs in the hue
and saturation channels. In addition, they also found that there are differences in certain
image priors. In practice, they exploited the extreme channels prior (ECP) [Yan+17],
i.e., the dark channel prior (DCP) [HST11] and the bright channel prior (BCP). They
proposed two approaches, i.e., histogram-based and Fisher-encoding-based, to extract
statistical features, and then trained SVMs for classification. Later, Zhuo et al. [Zhu+18]
greatly improved the detection performance using a CNN-based color image steganalyzer
WISERNet (WIder SEparate-then-Reunion Network) [Zen+19]. Yan et al. [YRC19] de-
signed a deep network to recognize recolorized images. The network contains three
feature extraction modules with different inputs, namely, the original input image, the
color channel difference image and the illuminance map based on segmentation. Accord-
ingly, their network also has a feature fusion module. Li et al. [Li+19] first used cosine
similarity to measure the similarity of the normalized histogram distribution of different
channels, and then performed feature extraction. Finally, a deep neural network was
used to carry out the classification.

As mentioned in the Section 1.2.1.1, the image colorization algorithm essentially
reconstructs its color information from the grayscale image. Therefore, compared with
natural images, colorized images will inevitably have some differences, such as under-
saturated colors, statistical correlation of the three color channels, and so on. Considering
these color and statistical differences, the previous works proposed the hand-crafted-
feature-based and CNN-based approaches, and achieved good detection performance.

However, there is a limitation in the existing works. When the training image and
the testing image come from different colorization algorithms, the performance of the
CNN-based method [Zhu+18] and the hand-crafted-feature-based method [Guo+18] in
general decreases. This thesis defines it as a blind detection scenario, that is, no training
sample is available from “unknown” colorization methods that we may encounter during
the testing phase of forensic detectors. Hereafter, we call this blind detection performance
as generalization performance. Take Figure 1.6 as an example, the second and fourth
images (produced by Ma [LMS16] and Mc [ISSI16]) are misclassified as NI by a CNN
model trained on NIs and CIs generated by Mb [ZIE16]. Chapters 2 and 3 will focus on
this issue. Although not being very rigorous, in the following, the term “classification
accuracy/performance” refers to the detection performance on testing data in which CIs
are generated by a same colorization method known by the training stage.

1.2.2 Identification of Natural Images and Computer Graphics Images

For the discrimination of natural versus CG images and videos, there mainly exist two
lines of research, namely, (1) subjective, perceptual studies and (2) objective studies.



1.2. Prior Art 11

Subjective studies involve performing a series of psychophysical experiments to study
the effects of image properties and cognitive characteristics of human observers on the
discrimination between photorealistic and photographic images. Objective studies usu-
ally depend on the statistical or intrinsic properties of natural and CG images or videos
and design efficient algorithms to separate them. For the objective studies, two types
of methods have been proposed: hand-crafted-feature-based methods and CNN-based
methods. The former follows the two-stage framework composed of feature extraction
and classifier training, the latter adopts the data-driven “end-to-end” framework. In the
following, we review and summarize these existing methods.

1.2.2.1 Subjective Study

In 1996, the United States Congress passed The Child Pornography Prevention Act
which, in part, prohibited any image that appears to be or conveys the impression of
someone under 18 engaged in sexually explicit conduct. This law made illegal computer
generated pictures that only appear to show minors involved in sexual activity. In 2002,
however, the United States Supreme Court struck down this law, and said that language
in the 1996 child pornography law was unconstitutionally vague and far-reaching [LF05].
This ruling led law enforcement agencies, such as judges, lawyers, and juries, to determine
whether the image is rendered, but there is no data to show that they can do this reliably.
To test the ability of human observers to distinguish between computer graphics images
and natural images, Farid and Bravo [FB07] collected 180 high-quality CG images, which
contain human, artificial or natural content. At the same time, they also collected 180
natural images matching the content of CG images. They reported that human observers
have the ability to distinguish NI from CG images. It is also found that the recognition
rate will decrease for CG images created in 2006.

Based on this earlier work, Farid and Bravo [FB12] focused exclusively on images
of people, and explored the impact of the variations in image quality that arise in real-
world settings: (1) resolution, (2) JPEG compression, and (3) color vs. grayscale. In
the meanwhile, they updated the CG images to include images rendered between 2007
and 2010. The people depicted in these images vary in age, gender, race, pose, and
lighting. The experimental result shows that observers consistently perform better at
one-half resolution, and the recognition ability will drop for lower or higher resolution.
One reason is that the fine details in computer generated images with high resolution
are very accurate and observers take their presence as evidence of a photographic image.
When the JPEG compression is stronger, the human observation ability is worse. In
addition, the recognition accuracy of RGB images by human observers is higher than the
gray-scale version.
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In the same year, Fan et al. [Fan+12b] studied the effects of the observer’s cogni-
tive characteristics and image attributes (i.e., color and shadow). Experimental results
show that visual realism depends not only on image attributes, but also on the cognitive
characteristics of the observer. Shadows are essential for visual realism. In addition,
the performance of experts is better than that of non-professionals, but only for gray-
scale images. Holmes et al. [HBF16] found that human observers have a certain degree
of deviation in recognizing photography and CG portraits, and the observers are more
likely to choose the latter. However, this bias can be greatly reduced by conducting a
small amount of training before the main experiment. On the basis of previous studies,
Mader et al. [MBF17] described a series of experiments that revealed how to improve
the recognition ability of the observer. This work demonstrates that introducing ap-
propriate training, feedback and incentive measures can further enhance the observer’s
classification ability.

1.2.2.2 Hand-crafted-feature-based Method

The traditional hand-crafted-feature-based methods for detecting CG images can mainly
be divided into two categories: spatial domain method [Ng+05; GC08; PCH09; SZY09;
ZWN12; LYS13; PZ14; PLL14; Wan+14; Pen+17] and transform domain method [LF05;
CSX07; Che+09; OA11; Fan+12a; Wan+17]. Table 1.1 summarizes the detailed infor-
mation, such as the key idea and the dimension of features.

The spatial domain method mainly analyzes some statistical differences and texture
details in the image space, and uses some geometric methods as well. Inspired by the
generation process of natural and computer-rendered images, specially object model,
light transport, and acquisition differences, Ng et al. [Ng+05] proposed geometry-based
features aided by fractal and differential geometry. To assess this approach, they cre-
ated an open dataset, i.e., Columbia Photographic Images and PRCG (PhotoRealistic
Computer Graphics) Dataset [Ng+04], comprising: (1) 800 PRCG images from 40 3D
graphic websites (PRCG), (2) 800 NIs from the authors’ personal collections (Personal),
and (3) 800 photographic images from Google Image Search (Google). Gallagher and
Chen [GC08] detected traces of demosaicing of original camera images to distinguish
camera images from computer graphics and reported a good forensic performance. How-
ever, this method may be sensitive to postprocessing operations, such as resizing, which
can remove the demosaicing interpolation structure [NC13]. From the point of view of
image perception, Pan et al. [PCH09] captured the difference in color perception and
coarseness between CG images and natural images. In details, the fractal dimensions
are derived from the hue and saturation channels of image, the generalized dimensions
are calculated on hue component gradient, and then combining these to construct fea-
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Table 1.1: The hand-crafted-feature-based methods for CG image forensics.

Type Author Year Method #Feature

Spatial
domain

Ng et al. [Ng+05] 2005 Geometry-based 192
Pan et al. [PCH09] 2009 Fractal and generalized dimension 30

Sanker et al. [SZY09] 2009 Combined features 557
Zhang et al. [ZWN12] 2012 Visual vocabulary; local image edges 256

Li et al. [LYS13] 2013 YCbCr; local binary patterns 236
Peng and Zhou [PZ14] 2014 CFA; PRNU 9
Peng et al. [PLL14] 2014 Statistical and textural Features 31

Wang et al. [Wan+14] 2014 Homomorphic filtering; statistical 70
Peng et al. [Pen+17] 2017 Multi-fractal and regression analysis 24

Transform
domain

Lyu and Fraid [LF05] 2005 DWT; higher order 216
Chen et al. [CSX07] 2007 DWT; DFT; HSV 234
Chen et al. [Che+09] 2009 Fractional lower order statistics 243
Özparlak et al. [OA11] 2011 RIT; CT; SFS 768
Fan et al. [Fan+12a] 2012 HSV, CT 16
Wang et al. [Wan+17] 2017 QWT 576

ture vector. The former describes the global color distribution, and the latter measures
the detailed texture difference. Finally, a SVM is trained for classification with the grid
searching. On the basis of several previous studies, Sankar et al. [SZY09] proposed a set of
combined features, including periodic-correlation-based feature [PF05], color histogram
feature [IVR03], moment-based statistical feature in the YCbCr color space [CSX07], and
local patch statistics [Ng+05]. Zhang et al. [ZWN12] proposed a method that analyzed
the statistical property of local image edge patches. First, a visual vocabulary on local
image edges was constructed with the aid of Voronoi cells. Second, a feature vector was
formed with a binned histogram of visual words. Finally, an SVM classifier was trained
for image classification. Li et al. [LYS13] explored the statistical difference of uniform
gray-scale invariant local binary patterns (LBP) to distinguish CG image from photo-
graphic images. Their method selected YCbCr as the color model, the JPEG coefficients
of Y and Cr components, and their prediction errors are used for LBP calculation. These
LBP features are finally used for SVM classification. Considering the generation pro-
cess of natural images, Peng et al. [PZ14] studied the impact of color filter array (CFA)
interpolation on the local correlation of photo response non-uniformity noise (PRNU),
and extracted histogram features from the local variance histograms of PRNU for iden-
tification. In addition, Peng et al. [PLL14] captured statistical features (the mean and
variance of the relative frequency of gray-scale images) and texture features for classifi-
cation. Based on the detail difference between NI and CG images, Wang et al. [Wan+14]
conducted homomorphic filtering for input image, computed texture similarity from the
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difference matrix of original image and filtered image, and then extracted the statistical
information from the difference matrix of Contourlet decompositions of these two im-
ages. These two discriminative features were used for classification. Recently, Peng et
al. [Pen+17] used a linear regression model to extract the residual of a Gaussian low-
pass-filtered image and combined the histogram statistics and multi-fractal spectrum of
the residual image with the fitness of the regression model as a feature to discriminate
between NIs and CG images.

The transform domain method is mainly to transform the image space to the fre-
quency space, thereby exposing some forensic traces for classification tasks. Lyu and
Farid [FL03; LF05] proposed a feature combining the first four order wavelet statistics,
i.e., mean, variance, skewness, and kurtosis (computed from first three level of wavelet
coefficient and the first two level of prediction error). Besides, they both tested the
identification performance of linear discrimination analysis and SVM classifier. Chen
et al. [CSX07] proposed discrete wavelet transform (DWT)-based and discrete Fourier
transform (DFT)-based forensic method, which conducted in the HSV color space. More
specifically, they separately calculated DFT of the histogram of wavelet coefficients and
prediction error, and then extracted moment statistics as discriminative features. SVM
is used for final classification. Chen et al. [Che+09] built the alpha-stable distribution
model to characterize the wavelet decomposition coefficients, and used fractional lower
order moments to construct features. The experimental results showed that this proposed
method performs better than the previous higher-order statistical approaches. Instead
of using DWT, Özparlak et al. [OA11] extracted features from the ridgelet transform
(RIT)-based and contourlet transform (CT)-based image model. In addition, they in-
troduced the sequential floating search (SFS) to select feature, and further improved
identification performance. Later, Fan et al. [Fan+12a] used different contourlet wavelet
models and HSV color model. Considering the fact that the DWT feature for forensics
suffers from some drawbacks of DWT, i.e., oscillations, shift-variance, and lack of direc-
tionality, and two drawbacks of CWT, i.e., discontinuity of local phase and directionality
redundancy, Wang et al. [Wan+17] introduced the quaternion wavelet transform (QWT)
to solve these issues. Compared with DWT and CWT, QWT includes not only the mag-
nitude which encodes the frequency information but also three phases which indicate
richer edge and texture information. Those three phases contain extra information that
is not included in high frequency subbands of DWT and CWT, and thus have obtained
better performance.

Besides the above general cases of CG image forensics (the image contains various
scenes, e.g., indoor, outdoor, etc), there are some specific scenarios, especially CG char-
acter identification. For this kind of problem, a simple and popular strategy is to find a
class-sensitive quantity and select an appropriate threshold for classification. Synthetic
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expressions usually contain some repetitive patterns, and in natural human faces, the
same expressions are usually produced in a similar but not equal way. Based on this dis-
crepancy, Dang-Nguyen et al. [DNBDN12b] distinguished CG characters from real ones
by analyzing variations in facial expressions. This method contains five steps: human
faces extraction, facial expression recognition, active shape model (ASM) extraction,
normalized face computation, and variation analysis. An appropriate threshold was fi-
nally used for classification. Conotter et al. [Con+14] identified CG faces in videos by
detecting a physiological signal resulting from human pulse, which was absent in videos
of CG faces. The features extracted by such methods can also be combined with classifier
training. Another approach is based on face symmetry. On the one hand, if a given face
presents a high symmetric structure, this could be considered as a hint that it is gener-
ated via computer. On the other hand, although human faces are symmetric, there does
not exist a perfectly symmetrical face. Having observed these two points, Dang-Nguyen
et al. [DNBDN12a] proposed an asymmetry-information-based method to discriminate
between natural and CG human faces. This method contains three main steps: shape
normalization, illumination normalization and asymmetry estimation. At last, a spe-
cific threshold is used to carry out classification. Besides, this feature can be added to
other feature sets to improve their performance by using SVM binary classification. To
distinguish between natural and CG faces in videos, Dang-Nguyen et al. [DNBDN15]
examined the spatial-temporal variation of 3D face models, and defined a metric that
can be used to measure the diversity in animation patterns. The underlying idea is that
the variations in real faces are more complex than those in CG faces. The latter often
follows repetitive or fixed patterns. More specifically, this method associates a 3D model
to the face to be analyzed and maps various instances of the face in the video to the
model. Then, it computes a set of parameters associated to the relevant deformation
patterns. Finally, it estimates the variation of the geometric distortion parameters along
time to achieve a measure of the diversity, thus leading to the classification of the face
as synthetic or natural.

1.2.2.3 Deep-learning-based method

Inspired by the notable success of CNN in the field of computer vision and pattern
recognition, some recent works also applied CNN to solve the CG image forensic prob-
lem [Rah+17; Yao+18; He+18b; NYE19; BT+19].

By analyzing the difference between deep network and traditional hand-crafted-
feature-based methods, Rahmouni et al. [Rah+17] used convolutional layers to replace
the traditional filter layer, and designed a specific pooling layer to replace the maximum
pooling layer to extract the statistical information of the convolved image, including the
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mean, variance, maximum and minimum, as feature vector. Finally a multi-layer per-
ceptron is used to complete the classification task. Experimental results show that these
simple statistics are better than more complex histogram statistics. Yao et al. [Yao+18]
proposed a method based on sensor pattern noise and CNN to solve this task. In their
method, they used several high-pass filters, on the one hand to remove low-frequency
signals (image content), on the other hand to enhance residual signal as well as sensor
pattern noise introduced by the digital camera devices. At the same time, they found
that the performance of using three sets of high-pass filters is better than using one set
of filters. He et al. [He+18b] mainly focused on two important forensic clues, color and
texture, to detect CG images. An input image is first converted from RGB to YCbCr,
and then the Schmid filter bank is used to enhance the texture information of the lu-
minance component Y. After that, the color component and the brightness component
are respectively fed into the two convolutional networks to learn the joint feature rep-
resentation of the local image blocks. The recurrent neural network (RNN) [Shu+16]
uses these features as input to model local and global statistics, thereby achieving clas-
sification. This work is also the first attempt to introduce RNN to CG image detection
task. Considering the capability of capsule network to model image spatial information,
Nguyen et al. [NYE19] first tried to use capsule network [SFH17] to solve the problem of
CG image forensics. They used the first half of VGG-19 [SZ14] to extract hidden layer
features, and then took these features as the input of the capsule network. The entire
capsule network contains 3 main capsules and 2 output capsules (one corresponds to the
true image and the other corresponds to the fake image). In addition, in the training
stage, they slightly improved Sabour et al.’s training method [SFH17] by adding Gaus-
sian random noise to the 3D weight tensor and used an additional squash function. This
can reduce overfitting and stabilize network training. Most previous methods based on
hand-crafted features or CNN uniformly process the pixels of the entire input image,
and these technologies usually require a large computational cost. Therefore, Bhalang
Tarianga et al. [BT+19] proposed a recursive model based on the attention mechanism
to classify computer graphics images and natural images. At each time step, the model
selectively processes an image region, then uses a small CNN network to extract features,
and updates the internal state of the recurrent network (stacked long-short-term-memory
unit [LSTM]). Afterwards it uses another CNN network to predict the location of the
next image area. In the testing phase, the model gradually combines multiple steps of
information to obtain the final prediction result.

From the above presentation, we can see that the method based on subjective exper-
iments mainly studies the discrimination ability of human observers on CG images, and
useful research results have been obtained. For example, proper training and feedback
will enhance the discrimination ability of human observers. In addition, from the per-
spective of computer graphics, these quantitative measurements of realism also provide
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valuable information and guidance for enhancing the fidelity of rendering technology. In
the meanwhile, these studies also show that the discrimination ability of human observers
is limited, and cannot quickly and massively identify CG images. Therefore, research
and development of advanced computational methods is a more appropriate choice. The
approach based on hand-crafted features is mainly to extract statistical information in
the spatial domain or the transform domain to distinguish natural images from CG im-
ages. The basic process is that the researcher first analyzes the problem or data in hand,
designs some possible statistical discriminative information, and then uses mathematical
models for abstraction and modeling, so it is interpretable and understandable to some
degree. In addition, this type of method has some advantages when the data scale is
small. However, methods based on hand-crafted features also have some shortcomings.
First, most methods only obtain one aspect of features, and cannot fully reflect the
difference between natural images and computer graphics images. Since the content of
the image is rich, if only specific aspects of the feature are considered, the amount of
obtained information will be relatively limited. Secondly, the feature extraction in tradi-
tional methods mainly relies on manually designed extractors, which require professional
knowledge and a complicated parameter tuning process. Meanwhile, each method is for
specific applications and has limited generalization capability and robustness. Finally,
computer rendering technology is constantly evolving and updating, and the realism and
diversity of CG images are also constantly enhanced, which also increases the difficulty
of manually designing features.

Taking into account the limitations of the hand-crafted-feature-based methods, re-
cently researchers have used deep learning methods to solve the identification problem
of CG images. Although CG image identification is modeled as a binary classification
problem, it is fundamentally different from the general object classification task. One
important point is that object classification tasks pay more attention to semantic in-
formation. The classic CNN network usually has limited forensic performance, so some
customized modules are needed to better solve forensic problems. This is also generally
recognized by researchers in the field of multimedia security [Che+15; BS18; YNY17].
Therefore, the network design of most of the above methods is more or less inspired
by traditional image forensic methods, implicitly or explicitly using customized filters
to extract forensically relevant signals. However, we notice that the majority of exist-
ing methods use deep learning as a technical tool, without comprehensive and in-depth
analysis. For example, some interesting questions remain unanswered: How is the perfor-
mance of transferring the pre-trained model of the classic image classification task in the
computer vision to the CG image identification problem? What kind of information the
deep neural network actually uses as the discriminative information? More importantly,
although these deep-learning-based methods can usually achieve very good forensic per-
formance, the existing methods have ignored a very important research problem, that is,
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the blind detection problem (or the so-called generalization problem). When using CG
images from “known” computer rendering technology and NI to train a deep model, the
trained model usually has high detection accuracy on test data of same source. However,
when the model is tested on CG images generated from “unknown” rendering technology,
the classification accuracy sometimes drops significantly. This problem is studied for the
first time in the literature in Chapter 5 and an effective solution is proposed.

1.3 Objectives and Contributions

Keeping in mind the current problems and challenges in the field of computer-generated
image identification, the study of this thesis mainly focuses on the following four aspects:
(1) For the generalization of colorized image detection, we use feature visualization to
understand the potential underlying causes, and introduce a novel enhanced training
procedure based on negative samples to improve generalization capability; (2) For the
trustworthiness of CNN forensic detectors, we take colorized image detection as an exam-
ple to study the impact of data preparation and CNN’s first layer on forensic performance;
(3) For the problem of CG image forensics, we comprehensively study the CNN-based
solutions, including network design, training strategies, visualization and understanding;
(4) For the improvement of CG image forensic performance, we combine the first three
research work, design a new network, collect new datasets, and improve the detection
accuracy and generalization capability. More precisely, the main research contents and
contributions of this thesis include the following four points:

1. Colorized image detection based on negative sample insertion. In view of the lim-
ited generalization of existing hand-crafted-feature-based or CNN-based detectors in chal-
lenging blind detection scenario, this thesis proposes a CNN enhanced training method
to improve the generalization capability of the detector. Here, the blind detection means
that during the testing phase, the test samples are generated by “unknown” colorization
methods. This is a frequently encountered situation, in which not any samples from the
“unknown” colorization methods encountered during the testing phase have been used
during the training phase. This blind detection performance is also called the gener-
alization performance of forensic detectors. We first analyze the potential reasons for
the limited generalization performance of neural networks by means of feature visualiza-
tion, and then design an enhanced training method based on negative sample insertion.
Specifically, negative samples are automatically constructed through linear interpolation
of paired natural images and colorized images, and these samples have the same label as
colorized images. The constructed negative samples are added into the original training
dataset iteratively, then enhanced training is performed, and finally the model is cho-
sen through a simple threshold-based method. This approach is validated on multiple
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datasets and different CNNs, and the results show that the proposed enhanced training
can significantly improve the generalization performance.

2. A method with improved generalization based on studies about the impact of
data and network on the performance of CNN-based forensics. Recently, deep learning
methods have achieved good performance in many fields, and the field of image forensics
is no exception. Many researchers have introduced CNN methods to solve forensic prob-
lems, and CNN-based methods usually achieve the best forensic performance. However,
high performance may conceal some potential problems or pitfalls. Therefore, this thesis
carries out a study on the trustworthiness of CNN-based forensic detectors. Specifically,
we attempt to study and answer several questions that are closely related to detector’s
trustworthiness, such as the suitability of the discriminative features automatically ex-
tracted by the CNN model and the generalization capability to “unknown” data in the
testing phase. Taking colorized image detection as an example, this thesis investigates
these issues and obtains some useful hints. Moreover, inspired by the idea of ensemble
learning, we propose a simple and effective method to obtain the final prediction results
by combining the decision results from CNN models with different settings at the net-
work’s first layer. Experimental results show that this method can effectively improve
the generalization performance of colorized image detection.

3. A comprehensive study on the identification of natural images and CG images
based on CNN. Motivated by the observation of the limited classification performance of
traditional methods based on hand-crafted features, especially when dealing with more
complex multi-source datasets, this thesis designs and implements a generic identification
framework, which contains three groups of networks to process input image patch of dif-
ferent sizes. We first fine-tune the CNN model pre-trained on ImageNet, and then design
an improved CNN network with cascaded convolutional layers for this forensic problem.
Experimental results show that the two CNN-based solutions are superior to the state-of-
the-art methods based on hand-crafted feature extraction and classifier training. More
importantly, our method shows good classification capability on a challenging public
dataset comprising images of heterogeneous origins (very close to the real-world appli-
cation), and demonstrates strong robustness against several post-processing operations,
including resizing and JPEG compression. Our work was one of the first deep-learning-
based methods for detecting CG images. In addition, unlike the existing methods of
applying CNN to image forensic problems, we use advanced visualization analysis tools,
including fast Fourier transform (FFT), layer-wise relevance propagation (LRP), and
“preferred inputs” (PI), to understand what our CNN has learned about the differences
between NIs and CG images.

4. CG image identification based on feature diversity enhancement and adversarial
examples. The forensic performance of existing CNN-based detectors can be further im-
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proved, in particular the generalization capability of the trained detector on “unknown”
test datasets is limited. To solve this problem, we make efforts in two aspects of CNN:
network architecture design and network training. Another contribution is that for the
first time in the literature we propose to study the generalization of CG image foren-
sics. In order to study this challenging problem, we collect four high-quality CG image
datasets. For the network architecture, we design a two-branch CNN. The first layer of
the two branches of the network uses different initialization methods, namely, Gaussian
random initialization and a set of high-pass residual filters. The purpose is to enrich the
diversity of deep features. For the network training, we propose a novel model-centric
method to generate more difficult negative samples (comparing with the so-called data-
centric method, i.e., same as the negative sample generation for colorized image detection
presented earlier in this subsection, which is based on interpolation of a pair of NI and
CI). Afterwards, enhanced training is performed to further improve the generalization
capability of CNN which makes use of the generated negative samples. Experimental re-
sults on multiple datasets show that our proposed method can obtain better classification
accuracy and generalization performance.

In summary, this thesis mainly considers four research tasks. The first two tasks
focus on colorized image detection. The former solves the generalization problem, and
the latter studies the impact of data and network architecture on forensic performance
(especially the generalization performance). The last two tasks focus on the identification
of CG images. For this forensic problem, we first propose a generic CNN-based framework
and perform visualization analysis and understanding. On the basis of all our previous
studies, we then improve the network architecture design and negative sample generation
to achieve improved generalization capability of CG image identification.

1.4 Outline

The remainder of this thesis is organized as follows.

Chapter 2 presents colorized image detection based on negative sample insertion.
With the help of visualization tools, the potential causes of the generalization degrada-
tion of the deep model are analyzed. The negative samples are constructed by linear
interpolation of the paired natural and colorized images, and then the original training
dataset and the automatically generated negative samples are combined for enhanced
training to improve the generalization capability of the network.

Chapter 3 introduces the generalization improvement method based on the impact of
data and network on CNN forensic performance. Take the CNN-based colorized image
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detection as an example, some questions regarding the trustworthiness of CNN forensic
detectors are analyzed, including for example the appropriateness of the discriminative
information automatically extracted by CNN and the generalization performance on
“unseen” data during the testing phase. A simple and effective combination strategy is
proposed to improve the generalization performance of CNN.

Chapter 4 presents the CNN-based identification of natural images and CG images.
Considering the design complexity of traditional hand-crafted features and the limited
performance on challenging datasets, a generic framework based on CNN is proposed
by carrying out comprehensive studies from network fine-tuning to the design of new
networks, and its robustness against typical post-processing operations is analyzed as
well. Adequate and advanced visualization tools are used to understand what the CNN
has learned about the differences between NIs and CG images.

Chapter 5 describes the identification of CG images based on feature diversity en-
hancement and adversarial examples by considering both network architecture design and
network training. We design a novel two-branch neural network, which can learn more
diverse features, so as to obtain better classification performance and generalization. We
also propose a new gradient-based negative sample generation method to further en-
hance the generalization capability with enhanced training. In the meanwhile, the four
high-quality CG image datasets are collected and made publicly available to facilitate
the relevant research.

Chapter 6 concludes this thesis, summarizing the contributions and proposing several
perspectives about the future research work on the detection of computer-generated
images.
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Image colorization consists in adding artificial but plausible color information to
grayscale images to obtain highly realistic color images. For the colorized image detec-
tion, the previous methods based on hand-crafted features or CNN have achieved good
detection performance. However, these methods do not cope well with the challenging
blind detection scenario. This chapter proposes a simple and effective method to solve
this problem. Specifically, the negative samples are constructed by performing linear in-
terpolation on the paired natural images (NIs) and colorized images (CIs) in the training
dataset, and then iteratively added to the original training dataset for additional en-
hancement training. The whole process is completely automatic, and high generalization
performance can be consistently obtained.

The main contributions of this chapter are summarized as follows:

• For the blind detection problem of colorized image identification, this chapter pro-
poses an enhanced training framework that can improve the generalization capa-
bility of the CNN model.

• Based on the analysis of the insufficient generalization of CNN, this chapter uses
linear interpolation to construct negative samples as a proxy for “unknown” test
samples to assist CNN training. The process is completely automatic.

23
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• This chapter experimentally validates the enhanced training method on multiple
datasets and networks. Experimental results show that this method is suitable
for a variety of network architectures and can further improve the generalization
performance of the network.

The work presented in this chapter was published and orally presented at the 2019
International Symposium on Image and Signal Processing and Analysis [Qua+19b].

2.1 Network Architecture and Enhanced Training

For the colorized image detection, to our knowledge there is no existing work that con-
siders the generalization capability for CNN-based methods. In fact, this is a highly chal-
lenging scenario because no training samples of the “unknown” colorization algorithms
are available. In other words, we want the trained network to be able to successfully
detect colorized images generated by new colorization methods that remain unknown
during the training of CNN. This is a very realistic situation which can be commonly
encountered after deploying a forensic detector in practical applications. We solve this
challenging generalization problem through a simple yet effective approach, i.e., inserting
additional negative samples that are automatically constructed from available training
samples, in order to carry out an enhanced training of CNN and thus to obtain an appro-
priate decision boundary for this classification problem. Besides considering the CNN
model proposed in the recent work of [Zhu+18], in this chapter, we also construct a
different CNN model so as to validate and show that our enhanced training can work
well on different networks.

2.1.1 Architecture of Networks

In this subsection, we describe the architecture of considered networks, as shown in Fig-
ure 2.1. WISERNet [Zen+19] was originally designed to solve the problem of steganalysis
of color images and achieved good results. The core idea is to replace the channel summa-
tion operation of traditional convolution with the separable channel convolution, that is,
the three color channels are convolved separately to suppress the relevant image content.
At the same time, to increase the signal-to-noise ratio (the ratio of steganographic noise
to image content), they used a high-pass filter bank (spatial rich model, SRM [FK12])
to initialize the weights of these separable convolutions. It is believed that for natural
color images, the intensity values at the same position of the three color channels show a
strong and specific internal relationship. The existing automatic colorization algorithms
reconstruct the three color channels of red, green, and blue from a single grayscale value
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(a)

(b)

Figure 2.1: Network architecture: (a) WISERNet [Zhu+18]; (b) our designed AutoNet.

(i.e., an ill-posed problem), which will inevitably introduce forensic traces into the sta-
tistical properties of the three color channels. Meanwhile, the steganalysis methods of
color images are attempting to detect similar traces. Therefore, Zhuo et al. [Zhu+18]
introduced WISERNet to the colorized image detection problem. Let Ck(M or A) denote
a Convolution-BatchNorm-ReLU(-MaxPool or -AveragePool) layer with k filters. Fk(R)
denotes a fully-connected layer with k neurons (and with ReLU). The architecture of
WISERNet is SRM-C72A-C288A-C1152A-F800R-F400R-F200R-F2, where SRM refers
to channel-wise convolution where the convolutional kernels are fixed as the thirty 5× 5

SRM filters borrowed from [FK12]. Figure 2.2 shows part of the weights of SRM1.

To verify the generality of the enhanced training method proposed in this chapter,
that is, it is applicable to a variety of network architectures, this chapter introduces
another deep network and names it AutoNet (Automatic Network). In [Zhu+18], the
first layer (with so-called SRM) of WISERNet is untrainable, while the first layer of our
designed network AutoNet uses common convolution, and all weights of AutoNet are
trainable. The architecture of AutoNet is C32-C64M-C128M-C256M-C256M-C512M-
C512M-C512-F2. All convolutional kernel sizes in AutoNet are 3 × 3. For layers 1-7,
each convolutional layer (conv) is with the zero-padding of 1, and all max-pooling layers
in AutoNet have the same kernel size of 3× 3 and a stride of 2. For conv1, we use TanH
as activation. In Section 2.2.2, this chapter also analyzes two other common choices
in the field of image forensics, namely, no activation and rectified linear unit function
(ReLU) [Hah+00; NH10]. The input and output relationship of ReLU is relu(x) =

max(0, x); that of TanH is tanh(x) = ex−e−x

ex+e−x .

1All weights of SRM can be observed at https://github.com/tansq/WISERNet.

https://github.com/tansq/WISERNet
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Figure 2.2: Part of the weights of SRM filters.

2.1.2 Negative Sample Insertion

According to our observation, there is a certain degree of performance decrease in
the challenging blind detection scenario, not only for traditional hand-crafted-feature-
based methods [Guo+18], but also for CNN-based approaches (AutoNet and WISER-
Net [Zhu+18]), although the latter has better performance. In details, for a traditional
or CNN-based model trained on dataset constructed by one specific colorization algo-
rithm, the test performance on datasets constructed by other colorization algorithms is
sometimes limited for colorized images. The possible reason of this performance drop
is that CIs produced by a specific colorization algorithm tend to be equipped with a
particular internal property, but CIs of different colorization algorithms are very likely
to have different properties.

To clearly illustrate the encountered problem with an example, we train the AutoNet
on the dataset constructed by colorization method Mb [ZIE16], and test on the datasets
constructed by Ma [LMS16] and Mc [ISSI16], respectively. It should be noted that Ma
and Mc are the “unknown” colorization algorithms, and thus the corresponding samples of
Ma and Mc are not used in the training process. We use t-distributed stochastic neighbor
embedding (t-SNE) [MH08] to project the high-dimensional deep features (the output
of conv8 of AutoNet, and its dimension is 512) of testing data constructed by above
three colorization methods onto the two-dimensional map, and detailed visualization
results are shown in Figure 2.3. Comparing Figure 2.3(a), (b) and (c), we find that
the distributions of NIs (red squares) are relatively stable with a rather high intra-class
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(a) (b)

(c) (d)

Figure 2.3: The deep feature visualization with t-SNE [MH08]. The model is trained on
the original dataset where CIs are generated by Mb. “C” means colorized images and
“N” means natural images. “C-X” means the colorized images produced by X colorization
method, for example, “C-Ma” corresponds to CIs generated by Ma colorization algorithm.
“Y-pred” means that the predicted label of CNN is Y. We randomly select 900 natural
images from validation dataset splitting them into three equal subsets of 300 images, and
then we construct corresponding colorized images using Mb, Ma, and Mc for every 300
images. The deep feature is the output of conv8 of AutoNet, and the dimension is 512.
(d) is the combination of (a) [Mb], (b) [Ma], and (c) [Mc].

variation, which is somehow expected; in the meanwhile, CIs (blue symbols) are more
tightly clustered for each colorization algorithm but their locations change a lot for
different methods [please compare the CIs in (a), (b) and (c), which correspond to Mb,
Ma and Mc, respectively]. This is reasonable because the different colorization methods
tend to have not exactly the same internal characteristics and hence the corresponding
CIs have different locations in the feature space. When the features of CIs produced
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by “unknown” colorization algorithms (here Ma and Mc whose samples are not used for
training) are near the decision boundary of the CNN (which is trained by using NIs and
CIs produced by a “known” colorization algorithm, here Mb), and at the same time the
decision boundary is relatively close to colorized images, there are high probabilities to
misclassify the “unknown” CIs. For instance, many CIs in Figure 2.3(b) (blue circles
with red + in the figure) are wrongly predicted as NIs.

We would like to find a simple yet effective method to solve the encountered problem.
The idea is that we make use of the available training samples (and only these samples)
to construct an appropriate decision boundary which can lead to better generalization
performance. A feasible and intuitive solution is to add negative samples (with same
labels as CIs) near the initial decision boundary of the CNN, so as to make the CNN be
more “strict” about the predictions of CIs and somehow push the classification boundary
towards NIs. As such, it is expected that the “unknown” CIs located close to the initial
decision boundary [e.g., those shown in Figure 2.3(b)] have more chance to be correctly
classified with the new classification boundary which would be closer to NIs. More pre-
cisely, we construct negative sample through linear interpolation between paired NI and
CI which share the same grayscale version and only differ in chrominance components.
The corresponding formulation is shown below:

INS = α · IN + (1− α) · IC , (2.1)

where INS is the negative sample, IN is the natural image, IC is the corresponding
colorized image, and α ∈ {0.1, 0.2, 0.3, 0.4} is the interpolation factor. This actually
makes sense, as negative samples are in fact forensically negative (i.e., considered as
CIs), especially for our chosen weight values among {0.1, 0.2, 0.3, 0.4} (i.e., negative
samples are closer to CIs than NIs). Figure 2.4 shows some images of negative samples
constructed through linear interpolation. It can be observed that, when α increases, the
negative samples are progressively getting closer to the natural images and it is expected
that the decision boundary is further moving towards NIs after enhanced training.

As analyzed above, adding negative samples and conducting additional training will
push the classification boundary towards NIs. Thus, the classification accuracy on the
NIs will gradually decrease as more and more negative samples are inserted. The clas-
sification accuracy of network on validation dataset also slightly decreases because the
“known” CIs are almost all correctly classified and this accuracy mainly depends on the
classification accuracy on the NIs. However, in the meanwhile the CIs constructed by
“unknown” colorization algorithms are expected to be classified more correctly, implying
a better generalization capability. Obviously, there is a trade-off between the classifica-
tion accuracy (on data similar to the training samples) and generalization performance
(mainly on “unknown” CIs) for the network. Therefore, without being able to directly
measure the generalization during training of network, we consider the classification ac-
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Figure 2.4: Negative sample generation via linear interpolation. The second row is
negative samples, from left to right: α = 0.1, 0.2, 0.3, 0.4.

curacy on NIs (on the so-called natural validation dataset V) as a measure to select
the final model in the process of additional training with negative sample insertion. In
our work, we design a threshold-based model selection criterion. This threshold (θ) es-
sentially determines the degree of final classification accuracy that can be accepted by
user or current task. Generally speaking, larger θ means that the selected model has
less high classification accuracy, but better generalization performance. Basically, we set
θ = β · error_rate, where β is a user defined parameter and error_rate is the classi-
fication error rate (in %, measured on natural validation dataset V) of the CNN model
trained with the original training dataset D before negative sample insertion. This cri-
terion simply defines the maximum tolerable value of the relative increase of error rate
on V induced by enhanced training. In our experiments, we set β = 2. One exception
is that when error_rate is very small (less than 1%), we set θ = 2%, meaning that
we can slightly relax the constraint on classification error rate to obtain relatively large
improvement of generalization performance.

Algorithm 1 illustrates the training process with negative sample insertion. It is
worth noting that we only use CIs of a “known” colorization method but in a better way
to construct a more appropriate decision boundary. In our experiments, this insertion
is an iterative process with four iterations, i.e., the α is increased from 0.1 to 0.4 with
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Algorithm 1 Enhanced training of CNN model with negative sample insertion
Input: M, lr0, S, V, D and the set of corresponding natural and colorized image pairs
P constructed from D.
Output: final model after enhanced training.
Initialization: current learning rate lr = lr0, set of negative sam-
ples N = ∅, set of error rates on V of candidate CNN models R =

∅.
1: compute error_rate ofM.
2: compute θ.
3: for all α ∈ {0.1, 0.2, 0.3, 0.4} do
4: construct negative samples from P using Eq. (2.1) and insert them into N .
5: update training dataset: D = D ∪N .
6: update the parameters ofM for S epochs. In the second half of training process,

compute error rate on V for each model, and insert this value at the end of R.
7: for all INS ∈ N do
8: if INS is misclassified then
9: remove corresponding pair from P.

10: end if
11: end for
12: set N = ∅.
13: update current learning rate: lr = lr · 0.1.
14: end for
15: select i-th model which satisfies max

i
{ri|ri ∈ R, ri < θ}.

step of 0.1. Given a CNN model M trained by using original dataset D, and some
basic settings for CNN training, such as initial learning rate lr0 and S epochs for each
insertion, we first compute error_rate on V and then the threshold θ, which is used for
final model selection. For each round of negative sample insertion, we construct negative
samples and insert them into the dataset D. Then, we update the parameters of model
M using new training dataset, and compute the error rate on V starting from the second
half of training process (i.e., from

⌈
S
2

⌉
-th epoch for each insertion, where

⌈
.
⌉
is the

integer ceiling operator), because from that time the model becomes relatively stable.
After each insertion, we test the negative samples produced by previous iteration. If a
negative sample is misclassified, i.e., the predicted label is NI and not consistent with
its ground-truth label, then we stop using the corresponding pair to construct negative
sample (i.e., we remove corresponding pair from P as described in line 9 of Algorithm 1).
In fact, this operation can slightly reduce the amount of negative samples, and does not
weaken the performance of the network. After four iterations of insertion, we select the
final CNN model. It is worth mentioning that when α > 0.5, the negative samples will
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Figure 2.5: Error rate curves of a complete training of AutoNet. The network is trained
on Mb [ZIE16], and tested on Ma [LMS16] and Mc [ISSI16]. The error rates (in %) on
CIs produced by these three methods are shown in (b), (c), and (d), respectively. The
error rate on V is shown in (a). Black dotted line separates the two stages of normal
training (60 epochs) and enhanced training (4×15=60 epochs). The green circle in (a)
stands for the final selected model.

be close to NIs, and this is likely to have more impact on the classification of NIs. Here
we take a conservative and experimentally effective approach, i.e., stopping the negative
sample insertion process after four iterations.

The complete training process of CNN model includes two stages: (1) using the
original training dataset to train the deep model from scratch until convergence (normal
training); (2) iteratively adding new negative samples into the original training dataset
and continuing to train the model as summarized in Algorithm 1 (enhanced training).
Figure 2.5 shows the error rate curves of a complete training process of AutoNet. In
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the first stage, the error rates on V and CIs produced by Mb obviously decrease in the
first 20 epochs and the network reaches the stability after about 50 epochs, as shown in
Figure 2.5(a) and (b). With the negative sample insertion, the error rate on V slightly
increases, which can be found from the second part of Figure 2.5(a). However, the
generalization performance of network has a significant improvement on CIs produced
by Ma [Figure 2.5(c)] and a small improvement on Mc [Figure 2.5(d)]. More numerical
and visual results (including t-SNE visualization after enhanced training) are given in
the next section.

2.2 Experimental Results

2.2.1 Parameter Settings

All images in our experiments are resized to 256×256 using bicubic interpolation, and for
each image, we convert its pixel values to [−1, 1] (we first rescale the pixel values from the
range [0, 255] to the range [0.0, 1.0], and then subtract these values by 0.5 and divide by
0.5). Stochastic gradient descent (SGD) with a minibatch of 20 is used to train AutoNet.
Each minibatch contains 10 natural images and 10 colorized images. We randomly shuffle
the order of training dataset after each epoch. For SGD optimizer, the momentum is
0.9 and the weight decay is 1e-4. The base learning rate is initialized to 1e-4. For the
normal training (only using original training dataset) of AutoNet, we divide the learning
rate by 10 every 20 epochs, and the training procedure stops after 60 epochs. For the
normal training of WISERNet, we follow the setting described in [Zhu+18]. As shown in
line 13 of Algorithm 1, for the enhanced training of AutoNet and WISERNet, we adopt
the same strategy about learning rate: the learning rate is divided by 10 every 15 epochs
(it is enough to guarantee the convergence after new negative sample insertion), and the
training procedure stops after 60 epochs, i.e., 4 iterations of negative sample insertion.

Following [Guo+18] and [Zhu+18], we also employ the half total error rate (HTER) to
evaluate the performance of the proposed method. The HTER is defined as the average
of misclassification rates (in %) of NIs and CIs. In this work, all reported results are the
average of 7 runs.

2.2.2 Comparison and Analysis

Before evaluating the proposed method, we provide the details of datasets used in our
experiments. Following [Guo+18] and [Zhu+18], three state-of-the-art colorization algo-
rithms, Ma [LMS16], Mb [ZIE16], and Mc [ISSI16] are adopted for producing CIs. NIs
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Table 2.1: The performance (HTER, in %, lower is better) of AutoNet with different
activations: No activation, TanH, and ReLU, on ImageNet validation dataset [Den+09].

Dataset No activation TanH ReLU
Ma 0.66 0.56 0.63
Mb 0.32 0.19 0.26
Mc 0.87 0.72 0.77

come from ImageNet dataset [Den+09]. We use 10,000 natural images from ImageNet
validation dataset to construct training dataset and validation dataset, and the ratio is
4:1. The exact indexes of these images are shared by the authors of [LMS16]. Then, we
remove the 899 grayscale images and 1 CMYK (cyan, magenta, yellow, and black) image
from the remaining 40,000 images of ImageNet validation dataset (the total number of
images in this dataset is 50,000), and obtain 39,100 natural images to construct testing
dataset. Note that, the magnitude of testing dataset is far larger than the settings re-
ported in [Guo+18] and [Zhu+18]. We employ the three colorization methods mentioned
above to produce the corresponding colorized images.

Regarding the activation function of the first layer of AutoNet, this chapter analyzes
three commonly used choices in the field of image forensics: no activation, TanH, and
ReLU. Table 2.1 reports the classification performance of different activation functions
on three datasets. We can find that AutoNet with TanH in the first layer has the
best classification performance (lowest HTER), while AutoNet without activation has
the highest HTER. Two possible reasons are: (1) The non-linearity of TanH and ReLU
helps to increase the approximation/learning capability of the network; (2) Different
from ReLU, TanH keeps the sign of features which may provide useful information for
classification of NIs and CIs.

In this chapter, we propose negative sample insertion to improve the generalization
performance of CNN-based detectors. As described in Section 2.1.2, this enhanced train-
ing uses natural validation dataset V to select the final model, and we randomly select
20,000 NIs from ImageNet test dataset [Den+09] to construct V. Table 2.2 reports the
performance of AutoNet and WISERNet before (i.e., the rows of “AutoNet” and “WIS-
ERNet”) and after (i.e., the rows of “AutoNet-i” and “WISERNet-i”) negative sample
insertion. We do not present the results of hand-crafted-feature-based methods pro-
posed in [Guo+18] because as shown in [Zhu+18] and also verified by our experiments,
CNN-based method has significantly better performance in terms of both accuracy and
generalization. The difference between the results of the row of “WISERNet” and those
reported in [Zhu+18] is probably due to the differences in the generation of experimental
data and the number of testing images (we use much more testing data). It is worth
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Table 2.2: The performance (HTER, in%, lower is better) of the two CNN-based methods
(AutoNet and WISERNet [Zhu+18]) on ImageNet validation dataset [Den+09]. For the
sake of clarity, the generalization performance results are presented in italics.

Ma Mb Mc
Method

Ma Mb Mc Ma Mb Mc Ma Mb Mc
AutoNet 0.56 10.57 10.62 31.65 0.19 6.16 13.93 1.91 0.72

AutoNet-i 1.02 6.94 5.12 5.13 0.94 1.92 3.33 1.75 1.14
AutoNet-mixup 0.89 12.45 15.35 20.68 0.34 10.04 8.42 2.25 0.76

WISERNet 0.29 2.21 10.74 33.30 0.16 7.88 5.80 0.59 0.36
WISERNet-i 0.98 1.22 2.29 4.74 0.94 2.04 2.46 1.08 0.98

mentioning that here we focus on the generalization improvement after applying our
proposed enhanced training for the two networks (i.e., AutoNet and WISERNet), rather
than the performance difference between them. We will study later in this manuscript the
architecture comparison and the design of CNN of better generalization. From Table 2.2,
we can see that the effect of negative sample insertion, i.e., improving the generalization
of network, is consistently stable for these two networks (except for one case, trained on
Mc and tested on Mb for WISERNet, but with a very low final error rate of 1.08%). The
negative sample insertion leads to slight decrease of the classification accuracy, however,
the generalization performance of network usually has apparent improvement. For ex-
ample, the initial generalization error of WISERNet trained on Mb and tested on Ma is
33.30%, and then reduces to 4.74% after enhanced training using negative samples, with
a slight increase of classification error from 0.16% to 0.94%. This is also consistent with
previous analysis (Section 2.1.2) that there is a compromise between the accuracy and
the generalization performance, and our negative sample insertion method can achieve a
satisfying trade-off.

In addition, we also compare our method with a recently proposed “mixup” learn-
ing principle [Zha+18] which regularizes the neural network and encourages the trained
model to behave linearly in-between training examples. Although the linear interpolation
is also used, there is an essential difference: “mixup” results in the linearly-transitioned
decision boundary, while our method pushes the decision boundary towards NI. Based
on the respective standing point, for the linear interpolation itself, [Zha+18] uses the
interpolation factor in the range of [0, 1] to combine pair of raw inputs and their la-
bels, whereas our method uses that of {0.1, 0.2, 0.3, 0.4} (forensically negative) and sets
the label of new generated image as CI (the so-called negative sample). In addition,
“mixup” is a form of data augmentation that implicitly affects the generalization of net-
work, whereas our enhanced training explicitly controls the decision boundary and then
improves the generalization of CNN-based detectors. In order to compare the “mixup”
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(a) (b)

(c) (d)

Figure 2.6: The deep feature visualization of AutoNet-i with t-SNE [MH08]. The model is
obtained through enhanced training of the previously trained model (used in Figure 2.3).
The meaning of symbols is same as that of Figure 2.3. It is worth noting that in t-SNE
the transformation used for dimension reduction and the obtained visualization depend
on the input data. Therefore, transformation and visualization in this figure are different
from those of Figure 2.3.

and our method, we train the model with “mixup” where the learning rate schedule is
exactly the same as the normal training of AutoNet and the results are shown in Ta-
ble 2.2 (the row of “AutoNet-mixup”). We set the “mixup” hyper-parameter α = 0.4 as
recommended in [Zha+18]. Obviously, the generalization of our enhanced training based
on negative sample insertion is significantly better than that of “mixup”, only with a
slight decrease of the classification performance (please compare the rows of “AutoNet-i”
and “AutoNet-mixup”).

At last, we visualize deep features of AutoNet-i using t-SNE [MH08], and the results
are shown in Figure 2.6. Here, deep features are the output of conv8 of AutoNet-i, and
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its dimension is 512. The corresponding visualizations of the model before negative sam-
ple insertion are shown in Figure 2.3. The testing data is also the same in Figure 2.6
and Figure 2.3. By comparing the border of correctly classified CIs, i.e., blue symbols
with a blue + inside, in Figure 2.3(d) and Figure 2.6(d), we can find that the latter has
fewer misclassified CIs, and the classification boundary is pushed towards NIs. The CIs
generated by “unknown” colorization algorithms, especially Ma [LMS16], are in conse-
quence less misclassified, and this can be clearly observed by comparing Figure 2.3(b)
with Figure 2.6(b). This confirms that our negative sample insertion scheme can push
the decision boundary towards NIs to some extent and accordingly improve the general-
ization performance.

2.3 Summary

For the colorized image detection problem, this chapter studies the challenging blind
detection scenario (i.e., the generalization capability of CNN-based methods). The po-
tential reasons for the degradation of network generalization are analyzed by feature
visualization, and an enhanced training method based on negative sample insertion is
proposed to improve the generalization capability of CNN-based detectors. Although
the classification accuracy has decreased slightly, the generalization performance of the
network has been noticeably and consistently improved. The corresponding source code
can be obtained from https://github.com/weizequan/NIvsCI.

https://github.com/weizequan/NIvsCI
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Recently, CNN has obtained notable success in computer vision and pattern recog-
nition. An important reason is that CNN attempts to automatically learn hierarchical
representation from available data in an “end-to-end” manner. Inspired by this suc-
cess, many researchers have proposed CNN-based approaches for image forensics. For
example, CNNs have been used to identify camera model [Bon+17], to expose image
forgery [Zho+18], and to detect synthetic images [Qua+18; YRC19]. These CNN-based
forensic methods in general work better than traditional hand-crafted-feature-based ap-
proaches. Despite this, some questions hidden behind the high performance are worth
studying and answering, including the following ones: What is the CNN model using as
the discriminative information, i.e., is it the “essential” difference between different kinds
of images? Is the CNN just overfitting on training data in some aspects that are not
the primary factors for the considered forensic problem? How can CNN generalize well
on “unknown” data during the testing stage? These questions are closely related to the
trustworthiness and the practical applicability of CNN-based forensics.

This chapter still studies the colorized image detection, but the research focus is dif-
ferent from the previous Chapter 2. This chapter mainly focuses on CNN-based detectors
to study issues related to trustworthiness, specifically, the impact of data and the first

37
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layer of the network on the performance of image forensics, especially generalization ca-
pability. Zhuo et al. [Zhu+18] achieved the state-of-the-art detection performance on the
experimental database shared by [Guo+18], by making use of an advanced CNN-based
color image steganalyzer called WISERNet [Zen+19]. Note that, WISERNet is particu-
larly good at detecting weak signals in images and its first layer has thirty 5× 5 residual
filters borrowed from the well-known hand-crafted steganalytic filters called SRM (spa-
tial rich model) [FK12]. As shown later in this chapter, we find that data preparation
and setting of CNN’s first layer can have big impact on the forensic performance of
WISERNet, especially the generalization capability.

The main contributions of this chapter are summarized as follows:

• To our knowledge, this chapter focuses on and studies, for the first time in the
literature, the trustworthiness of the CNN-based image forensic detector. We try
to understand the impacting factors and the potential pitfalls which are behind the
high performance of CNN. Concretely, through a lot of experimental design and
studies, we analyze the impact of data preparation and the setting of CNN’s first
layer on the performance of image forensics, especially the generalization capability.

• Inspired by the idea of ensemble learning, we propose a simple yet effective combina-
tion strategy that can further improve the generalization performance of the CNN-
based detector. The effectiveness of this method is verified on multiple datasets.
Though we take the colorized image detection as example in our studies, our work
may be useful and inspiring for other image forensic tasks.

This work was published and orally presented at the 2019 IEEE/WIC/ACM Inter-
national Conference on Web Intelligence [Qua+19a].

3.1 Data Preparation and Network

For this specific forensic problem of colorized image (CI) detection, we have some ob-
servations about data and network: CIs shared by the authors of [Guo+18] and used
in [Guo+18; Zhu+18] are in a lossless format without compression on the artificially
generated color information, and NIs (natural images) from ImageNet are in the lossy
JPEG format; in the meanwhile, the weights of first layer of WISERNet are initialized
with SRM residual filters [FK12] and untrainable. Therefore, it is natural to raise the
following question: Does WISERNet, as used in [Zhu+18], rather capture the difference
of processing history between NIs and CIs (i.e., JPEG compressed or not), or the desired
“essential” color difference? In order to answer this question, in this work, we experi-
mentally study the impact of two important but until now ignored and underestimated
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factors on CNN’s forensic performance as follows: (1) we study the impact of data by
constructing two datasets in which CIs are with/without JPEG compression, and (2) we
study the impact of network by adopting two different strategies for the setting of the
first layer of WISERNet.

3.1.1 Dataset Construction

To study the impact of different setting of datasets on the forensic performance of CNN-
based detector, we construct two sets of data and the only difference is whether CIs
are JPEG compressed or not. Following [Guo+18] and [Zhu+18], three state-of-the-art
colorization algorithms (Ma [LMS16], Mb [ZIE16], and Mc [ISSI16]) are adopted for
producing CIs. NIs come from ImageNet dataset [Den+09]. We use 10,000 natural
images from ImageNet validation dataset to construct training and validation dataset
(with the ratio 4:1). The exact indexes of these images can be found from [LMS16].
Then, as in the previous chapter, we remove 899 grayscale images and 1 CMYK image
from the remaining 40,000 images of ImageNet validation dataset (the total number of
images in this dataset is 50,000), and obtain 39,100 NIs to construct testing dataset. Note
that, the magnitude of testing dataset is far larger than the settings reported in [Guo+18]
and [Zhu+18]. We employ the three colorization methods mentioned above to produce
the corresponding colorized images. In addition, we construct another dataset where
we only replace the CIs (the original output of colorization algorithms) with a JPEG
compressed version. In details, the compressed CI is generated in the following way: given
an original CI, we first obtain the quantization table of the corresponding NI (i.e., the NI
which shares the same grayscale version) using the Matlab JPEG Toolbox [Sal03]. Then,
we estimate the quality factor from the above quantization table of NI using the method
proposed in [Cog18] and compress the CI with estimated quality factor. Hereafter, for
ease of presentation, dataset with/without JPEG compression means that CIs in this
dataset are with/without JPEG compression.

To justify the JPEG compression of CIs mentioned above we need to prove that the
artificial color information in CIs before compression is indeed considered as uncom-
pressed. To this end, we quantitatively analyze the JPEG blocking artifacts of the two
datasets with the forensic measure of KF [FQ03]. The measure KF is formulated as:

KF =
∑
k

|HI(k)−HII(k)|, (3.1)

where HI(k) and HII(k) are normalized histograms of pixel differences across block
boundaries and within the block, respectively. LargerKF means stronger JPEG blocking
artifacts. We analyze the blocking artifacts of NIs, as well as CIs with or without
JPEG compression, in the color space of YCbCr, which partitions images into luminance
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Table 3.1: KF of validation dataset in color space of YCbCr. “X-C” means the JPEG
compressed version of colorized images produced by X colorization method.

Channel NI Ma Mb Mc Ma-C Mb-C Mc-C
Y 0.3491 0.3227 0.3121 0.3144 0.3650 0.3667 0.3650
Cb 0.6757 0.0661 0.0596 0.0434 0.6552 0.6318 0.6741
Cr 0.7023 0.0653 0.0625 0.0489 0.6185 0.6548 0.6811

Figure 3.1: Network architecture of WISERNet

and chrominance and which is the space adopted by JPEG standard. We calculate
KF of validation dataset (2,000 images for each class) and report the average values
in Table 3.1. Compared with the column of “NI”, KF of “Y” of the columns of “Ma”,
“Mb” and “Mc” are very similar, while that of “Cb”, “Cr” have a large gap. This is
an experimental proof that the color information in CIs without JPEG compression is
in fact considered as forensically uncompressed. Furthermore, this gap is significantly
decreased after compressing the original CIs with the same quality factor as that of the
corresponding NIs (compare KF of “Cb”, “Cr” of the column of “NI” with that of the
columns of “Ma-C”, “Mb-C” and “Mc-C”). This implies that the difference between NIs
and JPEG compressed CIs becomes very small in terms of JPEG compression trace, and
that this trace seems quite obvious before compression which may impact the colorized
image detection, e.g., as in the experimental setting of [Guo+18; Zhu+18] where CIs are
not compressed.

3.1.2 Network Settings

Figure 3.1 illustrates the network architecture of WISERNet. The first layer of WIS-
ERNet used in [Zhu+18] is a channel-wise convolutional layer where the convolutional
kernels are fixed as the thirty 5 × 5 SRM residual filters borrowed from [FK12]. For
each convolutional layer, k is the kernel size and n is the number of feature maps, and
“FC(2)” stands for a fully-connected classifier layer with a 2-dimensional output of class
scores. To study the sensitivity and impact of the first layer of WISERNet on the dif-
ferent datasets, i.e., CIs with/without JPEG compression, we adopt another setting in
which WISERNet’s first layer is initialized in a conventional way with Gaussian random
distribution and is trainable (denoted by WISERNet-Gauss). We expect that under
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these two settings, the network focuses on different information in NIs and CIs to carry
out the classification. In the next section, we present the experimental results related to
the two datasets and the two settings of the CNN’s first layer, as well as our proposed
simple combination method to improve generalization.

3.2 Results and Analysis

3.2.1 Experimental Settings

All the experiments are implemented with PyTorch [Pyt]. The GPU version is
GeForce R© GTX 1080Ti of NVIDIA R© corporation. For each image, we crop the 256×256
image patch in the upper left corner to construct the dataset.

We train the network according to the experimental setting described in [Zhu+18].
SGD with patch size of 32 is used for training all networks, the initial learning rate
is set as 1e-3, the adopted scheduler of learning rate is “inv” (power: 0.75; gamma:
0.0001; weight_decay: 0.0005), and the moment is 0.9. We use the early stopping
strategy to select the optimal model, i.e., when the accuracy on the validation dataset
does not increase after 200 epochs, the training process is terminated, and the model
with the highest validation accuracy is selected as the final model. Following [Guo+18]
and [Zhu+18], the half total error rate (HTER) is employed to evaluate the detection
performance. The HTER is defined as the average of misclassification rates (in %) of
NIs and CIs. In this chapter, all reported results are the average of 5 runs.

3.2.2 Impact of Data and Network

In this subsection, we first study the impact of CIs with/without JPEG compression
and setting of WISERNet’s first layer on the classification accuracy (i.e., trained and
tested on CIs of same colorization algorithm) and generalization (i.e., trained and tested
on CIs of different colorization algorithms). Then, we propose a simple yet effective
method to improve the generalization of WISERNet. Table 3.2 reports the performance
of WISERNet and WISERNet-Gauss trained on dataset without JPEG compression
and tested on dataset without/with compression. On the contrary, Table 3.3 reports
the performance of these two networks trained on dataset with JPEG compression and
tested on dataset with/without compression. In addition, we also tested a variant of
WISERNet with trainable first layer initialized with SRM filters, so-called WISERNet-
T. As reported in Table 3.2 and 3.3, the performance of WISERNet and WISERNet-T
is in many cases similar, therefore, we mainly analyze the results related to WISERNet
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Table 3.2: The performance (HTER, in %, lower is better) of WISERNet [Zhu+18] and
WISERNet-Gauss trained on dataset without JPEG compression. For each row, “X”
(e.g., “WISERNet”) means testing on dataset without JPEG compression and “X-cro”
(e.g., “WISERNet-cro”) means cross-testing on dataset with JPEG compression. The
generalization performance results are presented in italics (same in Table 3.3).

Ma Mb Mc
Method

Ma Mb Mc Ma Mb Mc Ma Mb Mc
WISERNet 0.34 4.49 3.67 3.27 0.23 0.30 3.15 0.98 0.21

WISERNet-cro 20.56 40.06 40.65 36.99 22.97 32.47 34.82 28.37 26.31

WISERNet-T 0.31 9.67 6.67 16.44 0.41 0.89 3.28 1.14 0.33
WISERNet-T-cro 15.02 40.28 42.38 34.49 22.00 35.23 33.48 27.97 30.37

WISERNet-Gauss 0.58 20.90 25.93 24.98 0.43 2.03 23.39 1.41 0.46
WISERNet-Gauss-cro 0.89 27.96 31.70 28.48 10.08 27.95 22.18 14.37 10.53

WISERNet-Ensemble 0.60 3.86 3.61 2.82 0.38 0.43 2.68 0.82 0.38
WISERNet-Ensemble-cro 0.96 26.44 29.40 25.79 8.99 23.92 19.68 13.58 9.66

Table 3.3: HTER (in %, lower is better) of different networks trained on dataset with
JPEG compression. For each row, “X” (e.g., “WISERNet”) means testing on dataset with
JPEG compression and “X-cro” (e.g., “WISERNet-cro”) means cross-testing on dataset
without JPEG compression.

Ma Mb Mc
Method

Ma Mb Mc Ma Mb Mc Ma Mb Mc
WISERNet 0.78 18.90 24.28 9.35 0.93 2.98 4.78 2.79 0.89

WISERNet-cro 0.69 13.78 17.40 10.31 0.67 1.08 4.40 1.29 0.66

WISERNet-T 0.80 29.37 26.38 7.39 0.87 3.37 3.46 3.65 1.08
WISERNet-T-cro 0.72 25.42 23.40 8.62 0.73 2.01 3.09 1.94 0.89

WISERNet-Gauss 0.76 25.52 27.97 9.03 0.89 5.26 4.05 3.53 0.96
WISERNet-Gauss-cro 0.72 22.97 29.27 12.53 0.74 3.86 5.49 2.44 0.84

WISERNet-Ensemble 0.82 16.00 20.43 6.08 0.93 2.10 2.44 2.14 1.00
WISERNet-Ensemble-cro 0.80 11.72 15.81 6.72 0.85 1.10 2.30 1.40 0.95

in the following.

For the analysis of the impact of JPEG compression and CNN’s first layer on the
forensic performance, we first analyze the different performance of WISERNet on datasets
with/without JPEG compression, then we analyze the influence of the different settings
of the first layer of WISERNet on network performance.

Compared with the row of “WISERNet” in Table 3.2, we can find that the clas-
sification and generalization error rate of the row of “WISERNet” in Table 3.3 both
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increases. In other words, when only replacing CIs with corresponding compressed ver-
sion, the forensic performance (especially generalization) obviously drops. Meanwhile,
the detection performance significantly decreases when we train WISERNet on dataset
without JPEG compression and test it on dataset with compression (compare the rows
of “WISERNet” and “WISERNet-cro” in Table 3.2), whereas this phenomenon does not
exist in the case of training on dataset with JPEG compression and testing on dataset
without compression (compare the rows of “WISERNet” and “WISERNet-cro” in Ta-
ble 3.3). These results indicate that WISERNet takes the trace of JPEG compression
as the important discriminative feature and thus has good generalization when trained
and tested both on dataset without JPEG compression of CIs (the row of “WISERNet”
in Table 3.2).

In addition, in Table 3.2, when the first layer of WISERNet is initialized with Gaus-
sian random distribution and trainable (the so-called WISERNet-Gauss), the general-
ization is not as good as the original WISERNet (compare the rows of “WISERNet” and
“WISERNet-Gauss”). On the contrary, the rows of “WISERNet” and “WISERNet-Gauss”
in Table 3.3 are relatively close, where the networks are trained and tested on datasets
with JPEG compression of CIs. This further implies that the SRM filters can strongly
capture the trace of JPEG compression.

To summarize, when the training datasets have a pitfall, i.e., the CIs are without
JPEG compression, the WISERNet can achieve very good detection performance, espe-
cially generalization, because this model uses SRM filters in the beginning of network
which coincidentally and mistakenly detects the trace of JPEG compression. This is how-
ever not desirable and leads to the dramatic performance drop in the row of “WISERNet-
cro” in Table 3.2. In the meanwhile, when the training database is carefully prepared
as in Table 3.3, the original WISERNet is indeed a good choice for this forensic task,
providing better overall performance than WISERNet-Gauss and WISERNet-T.

3.2.3 Generalization Performance Improvement

During the above research, we notice that the detection performance differs for WISER-
Net and WISERNet-Gauss, e.g., the rows of “WISERNet” and “WISERNet-Gauss” in
Table 3.3. The only difference between these two networks is in the first layer. Intu-
itively, this difference may, to some extent, guide the two networks to extract different
discriminative features. We qualitatively analyze this difference, and visualize the FFT
(fast Fourier transform) of the first-layer kernels of these two networks after training,
and the corresponding results are shown in Figure 3.2.

As shown in Figure 3.2(a), many kernels in the first layer of WISERNet have an ap-
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(a) SRM (b) R

(c) G (d) B

Figure 3.2: Visualization of FFT of the first-layer filters of WISERNet [(a)] and
WISERNet-Gauss [(b), (c), and (d)]. From left to right: SRM, filters in R, G, and
B channel, respectively. Note that, filters for R, G, and B in WISERNet are all SRM.

parent high-pass response, whereas the kernels of WISERNet-Gauss [Figure. 3.2(b), (c)
and (d)] mainly capture the band-pass frequency information. Based on these observa-
tions, we introduce a simple yet effective method to further improve the generalization,
by somehow borrowing idea from ensemble learning. Specifically, we combine the predic-
tions of these two networks to obtain the final prediction according to a simple criterion:
the final prediction is CI when the prediction of either of two networks is CI, otherwise the
image is NI. The rationale behind this criterion is that we trust the (different) discrimina-
tive features of both networks which are used to determine whether an image is CI. The
corresponding results are reported in rows of “WISERNet-Ensemble” and “WISERNet-
Ensemble-cro” in Table 3.2 and 3.3. Obviously, the generalization can be improved by
this method while decreasing very slightly the classification accuracy (compare the rows
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of “WISERNet”, “WISERNet-Gauss”, and “WISERNet-Ensemble” in Table 3.2 and 3.3).
Despite of its simplicity, to the best of our knowledge, this ensemble strategy with differ-
ent initialization methods (SRM and Gaussian) is for the first time used for improving
the generalization of CNN-based image forensic detector. The success is probably due
to the high diversity of the two initializations, more diverse than the conventional way
of using only one initialization method (e.g., Gaussian) with different random sampling.

3.2.4 Discussion

Unlike traditional hand-crafted-feature-based forensic methods, recent CNN-based ap-
proaches are relatively difficult to understand concerning what is the discriminative infor-
mation used by CNN, and sometimes this information can be surprising and misleading.
Taken the above CNN-based colorized image detection as an example, when within the
dataset there is an apparent difference in JPEG compression, the CNN with SRM filters
captures to some extent this trace and takes it as part of the discriminative information.
Consequently, the high performance of CNN model benefits from and covers up the po-
tential pitfall existing in the dataset. As far as we know, there is no existing work that
considers and studies this kind of phenomenon for CNN-based image forensics. From
this case study, we get some useful hints: 1) reducing as much as possible the impact of
image generation and processing history (this information is not relevant to the task at
hand), so we need to carefully prepare the data; 2) carefully using some existing filters
(e.g., SRM filters) in the beginning of CNN because these filters have strong capacity of
capturing image processing history and thus are risky to be used if the dataset has not
been properly prepared.

3.3 Summary

This chapter considered the CNN-based colorized image detection as an example and
studied the impact of image generation pipeline and CNN’s first layer on the classification
accuracy and generalization. From this case study, we learned some lessons related to
the trustworthiness of CNN-based forensics, which until now have been ignored among
the community but would be helpful for researchers in the field to avoid biased data
preparation and network design. We think that our new study in this direction can be
useful for other forensic tasks, e.g., detection of computer graphics images and GAN-
generated fake images where similar problems and pitfalls may exist. It is interesting
to continue our work on improving the generalization of deep-learning-based detectors,
either based on an ensemble of classifiers or other approaches.
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Chapters 2 and 3 focus on the forensic problem of colorized image detection, espe-
cially the generalization capability. Besides the fake colorized images, computer graphics
images are also a common and important type of computer-generated images. Starting
from this chapter, we will study the identification of computer graphics images, mainly
based on CNN.

At the time when we carried out the studies presented in this chapter, prevalent
methods for distinguishing between NIs (natural images) and CG (computer graphics)
images with various scenes and contents followed the classical pipeline of machine learn-
ing, which consisted of two separate phases: (1) designing sophisticated, discriminative
and hand-crafted features (almost always multidimensional features); (2) training clas-
sifiers (e.g., SVM, ensemble classifier). This pipeline usually performs well on relatively
simple datasets, such as those in which NIs are acquired by only one or two digital cam-
eras. However, such methods often exhibit limited performance (to be shown later in this
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chapter) on complex datasets comprising images of heterogeneous origins. An example
is the challenging setting of the Columbia dataset [Ng+04], in which we want to dif-
ferentiate between NIs collected from Google Image Search (Google) and photorealistic
computer graphics (PRCG) images downloaded from various websites of CG image col-
lections. In general and as argued by other image forensic researchers [Che+15; BS18],
discriminative hand-crafted features are tedious to design, and the designed features are
not necessarily the most adequate for a given forensic problem, especially for complex and
challenging datasets. To this end, we propose a new data-driven, CNN-based framework
to distinguish between NIs and CG images. The proposed framework is different from the
traditional pipeline of almost all existing methods (at the time when we conducted this
work) with two separate steps of feature extraction and classifier training. The proposed
framework is “end-to-end” and does not require designing features by hand.

Our study is one of the first attempts in the literature on deep-learning-based de-
tection of computer graphics images. We pay special attention to the completeness of
our study, including fine-tuning popular network, new network design, comprehensive
experimental evaluation, visualization and understanding, etc. Our contributions are
summarized as follows:

• We introduce a generic framework that uses CNN to identify NIs and CG images.
This framework can be easily adjusted to handle different sizes of input image
patches.

• We fine tune a pre-trained CNN and then design and implement a new and im-
proved CNN. Both CNN-based solutions outperform state-of-the-art methods that
combine hand-crafted feature extraction and classifier training.

• Our method exhibits good forensic performance in the challenging dataset of Google
versus PRCG comprising images of heterogeneous origins and is thus close to the
real-world application. Our method also demonstrates strong robustness against
several post-processing operations, including resizing and JPEG compression.

• Unlike previous attempts to use CNNs for other image forensic problems, we at-
tempt to understand what our CNN has learned about the differences between NIs
and CG images by using advanced visualization tools, which provide interesting
observations and insights for future studies.

The work presented in this chapter was published by the international journal “IEEE
Transactions on Information Forensics and Security” [Qua+18].
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4.1 Proposed CG Image Identification Framework

For this CG image forensic problem, the traditional two-stage classification models have
limited performance on complex data with heterogeneous origins, and a reason is that
these hand-crafted features are tedious to design and not necessarily the most adequate
ones. A generic “end-to-end” framework, such as CNN, may be a better option. Given
a testing image, a well-trained CNN can directly and accurately predict its label. To
this end, we introduce a suitable CNN model for our framework. We consider three
different methodologies in our approach: (1) following the existing network architecture
and training it from scratch, (2) fine-tuning an “off-the-shelf” network that has been
pre-trained on another dataset and/or for another task, and (3) designing a new network
and training it from scratch. Before providing details on these methodologies, we present
our general strategy adopted when using CNN for classifying NIs and CG images.

4.1.1 Local-to-Global Strategy

In view of computational cost, diversity of image size, and specific requirement of im-
age forensics, we adopt the local-to-global strategy (LGS) of training on small patches
and classifying full-sized images using the simple majority voting rule. This strategy is
partly based on the concept of data augmentation, which is a commonly used technol-
ogy to expand training data, especially for deep learning [KSH12; SZ14]. Krizhevsky et
al. [KSH12] randomly altered the intensities of the RGB channels of each training image
using principal component analysis. The motivation behind this scheme is that object
identification in digital images should be invariant to changes in the pixel intensity and
color of the illumination. Simonyan et al. [SZ14] resized each training image, with the
length of its shorter edge as an integer randomly sampled from the range of [256, 512]
for scale augmentation.

For our classification problem, on the one hand, local decisions, i.e., high accuracies
on small image patches, are important and generally desirable in many image forensic
applications. On the other hand, a small patch cropped from a CG image is still CG,
and this is also true for NI. Therefore, we apply patch augmentation, that is, we crop a
certain number of image patches of a fixed size from each training image to augment the
training dataset and try to obtain an accuracy as high as possible on patches.

This strategy is flexible for local and global forensic decisions. The direct result of
such a strategy is high classification accuracy on patches, and the strategy can thus be
used for the case of local decisions without any modification. For global decisions, merely
conducting majority voting of multiple local decisions can lead to good performance,
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which is a natural result of the high accuracy on patches. In practice, we randomly crop
a fixed number of patches from each training image using Maximal Poisson-disk Sampling
(MPS) [Qua+16] to construct the training set. Unlike random sampling, cropping with
MPS can completely cover the entire image and thus retains the original information
as much as possible. In the testing phase, we crop a certain number of patches from
each testing image and take the label (0: CG image and 1: NI) of patches with a higher
number as the prediction result of this image. As shown later, this strategy can also
enhance the performance of existing approaches that are based on manually designed
features.

4.1.2 Fine-Tuning

Fine-tuning, a technique based on the concept of transfer learning, is pervasive in the
field of deep learning. Yosinski et al. [Yos+14] analyzed the transferability of neurons in
each layer of a deep CNN. For similar datasets, they found that initializing the weights
of almost any number of layers from a well-trained network on an original dataset can
improve the generalization performance after fine-tuning to the new dataset. Such trans-
ferability generally declines as the dissimilarity between the source and target task/data
increases. However, fine-tuning pre-trained CNN models from computer vision tasks
has in general been omitted by the multimedia security community, at least at the time
of this work. We are curious about and want to verify the transferability of such pre-
trained models when applied to image forensic problems, although our available data
and classification task are somewhat different from those of the pre-trained CNN model.

A well-known reference network for visual recognition is CaffeNet [Jia+14], which is
trained on 1.3 million images with 1,000 categories. CaffeNet has eight layers (or group
of layers): two convolutional groups, each of which includes one convolutional layer, one
max-pooling layer and one local response normalization layer; three cascaded convolu-
tional layers, followed by a max-pooling layer; and three fully-connected (FC) layers.
In CaffeNet, each convolutional layer consists of linear multidimensional convolutional
kernels and rectified linear unit (ReLU) activation [Hah+00; NH10]. We successively fine-
tune the first N layers, where N = 1, 2, · · · , 7. We always need to change the number of
neurons in the last output layer from 1,000 (for the 1,000 classes of ImageNet [Den+09])
to 2 (binary classification of NIs and CG images). The detailed results are reported in
Section 4.2.3, where we show that fine-tuning CaffeNet leads to satisfactory results that
are better than those of state-of-the-art methods.

Next, we decide to design and implement our own CNN that can cope even better
with the classification of NIs and CG images. We present its architecture and energy
function in the next two subsections. The design of the new CNN is motivated by the
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Figure 4.1: Architecture of NcgNet. The network input is a 233×233 RGB image, which
is represented by a green square for simplicity. A red square stands for a convolutional
kernel, and the numbers close to it denote the kernel size. For example, the first red
square from the left is a 7× 7 convolutional kernel. The feature maps are represented by
shaded cuboids. No padding exists in NcgNet.

following observations and intuitions. First, our task and the corresponding dataset are
more or less dissimilar to those of CaffeNet (in particular, no CG image is used during the
training of CaffeNet); therefore, transferability might not be optimal. Second, CaffeNet
is a relatively complex CNN designed for advanced and complicated computer vision
tasks, but our task on hand is a less complicated two-class classification problem. Thus,
a less deep and less complex network would suffice to solve our problem. Third, the fixed
architecture of CaffeNet prevents us from easily adapting the network to accommodate
different sizes of input patches.

4.1.3 Proposed Network - Architecture

Figure 4.1 shows the architecture of our network, and we denote it as NcgNet (natural and
computer graphics network). The input of our network is an image patch, and the output
is a binary label. One image patch is abstracted step by step through nonlinear mapping
(i.e., linear convolution and nonlinear activation) and down-sampling. A powerful high-
level reasoning is then applied. The informative and highly abstracted vector is converted
into the probability vector of the label. As illustrated by Figure 4.1, the entire network is
made up of the so-called convFilter layer, three convolutional groups, two FC layers and a
softmax layer. Before explaining each layer, we mention one detail about the relationship
between the patch and input sizes of CNN. We actually follow the common way in the
field of computer vision [KSH12; He+16]. The patch size (240 × 240) is slightly larger
than the input size of the network (233 × 233) shown in Figure 4.1, which can increase
the space of training samples and is thus useful in suppressing potential over-fitting.
During each iteration of network training, every 233× 233 training sample is randomly
cropped from a 240× 240 patch. In the testing stage, the network extracts five patches
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of 233×233 pixels (the center and four corner patches) from a testing sample, flips these
patches in the left-right direction (i.e., horizontal reflection), and finally averages the
predictions of total 10 patches as the final result.

The convFilter layer consists of a few convolutional kernels (32 in NcgNet). In multi-
media security, such as steganalysis, a common operation is applying a group of filters on
an input image/patch prior to the execution of the main algorithm [PBF10; FK12]. The
convFilter layer cannot be simply regarded as “pre-processing” like fixed and manually
designed filters in previous steganalytic methods because our layer is trainable without
any constraint. In addition, these kernels are not explicitly required to have high-pass
properties, such as in several previous methods that use CNN for steganalysis and foren-
sics [Qia+15; Che+15; BS18]. Technically, the convFilter layer maps an RGB image to
several feature images filled in with real value elements and co-adapts to the successive
convolutional group. In Section 4.2.3, we analyze the classification accuracy of our net-
work with the convFilter layer and compare with several different configurations related
to this layer.

In our network, a convolutional group includes convolutional (Conv), batch nor-
malization (BN), ReLU activation and max-pooing layers. The Conv layer conducts
multidimensional linear operations and produces multiple feature maps. BN [IS15] ex-
plicitly forces the output of Conv to take on a unit Gaussian distribution. This layer
makes network training highly robust to poor initialization. The ReLU activation layer
introduces nonlinearity into the network and thus enhances the mapping capacity of the
model. Its form is f(x) = max(0, x). Max-pooling is a down-sampling operation, where
the maximum value within a local window is taken as the output. On the one hand,
this operation reduces the number of parameters to learn by reducing the spatial size of
representation and thus decreases computational cost. On the other hand, this opera-
tion provides basic translation invariance to internal representation. In our network, all
max-pooling layers have the same kernel size of 3× 3 and a stride of 2.

The two FC layers constitute an FC two-layer neural network, where every single
neuron connects to all neurons in the previous layer. This part of network conducts
high-level reasoning. Many parameters of the network are located here. A simple and
effective regularization technique, i.e., Dropout [Sri+14], is applied to each FC layer to
prevent potential over-fitting. In the training stage, each unit in the FC layers is kept
active with a probability (default value is 0.5), with the interpretation of sampling the
neural network and updating the weights of such sub-networks on the basis of input data.
No Dropout is applied in the testing stage.

The softmax layer maps the high-level feature vector (output of FC layers) to the
probability vector of class labels. Therefore, the dimension of its output is equal to the
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number of classes, and the sum of its output is 1.

To accommodate multiple input sizes, we design three groups of network. We do
not change the depth of the network and the number of kernels in each layer during the
adjustment of network architecture to maintain the structural stability of our CNN. For
a small input size, a new network can be rapidly built by simply reducing the kernel size
and removing the striding of the first few layers. This minor adjustment also ensures
that experimentally the input flow can propagate to the last FC layers with a sufficient
amount of useful information.

4.1.4 Proposed Network - Loss Function with Regularization

CNN models are usually trained by minimizing a well-designed loss function with the
aid of back propagation. A loss function is often composed of a data loss term and a
regularization term. The data loss term evaluates the compatibility between a prediction
(e.g., the class scores in a classification problem) and the ground-truth label, and the
regularization term on model weights is designed to prevent the over-fitting of trained
models. In our method, we use multinomial (binomial in our case) logistic loss (also
known as cross-entropy loss) with softmax, that is

J(θ)(data) = − 1

N
[
∑

N
i=1
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i
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aij
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where N is the number of training samples, K is the number of categories, 1{·} is the

indicator function so that 1{True} = 1 and 1{False} = 0, e
aij∑

K
j=1e

ai
j
is the softmax

function (normalized exponential function) that converts the network output into the
probability of the class label, ai = φ(xi, θ) is the 2D output vector of the network
parameterized by θ, and K = 2 in our case.

We select L1 regularization to be added to the loss function to reduce the complexity
of model and prevent over-fitting. The total loss is

J(θ) = − 1
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] + λ|θ|, (4.2)

where regularization weight λ balances the data loss and regularization terms.

We also attempt L2 regularization and find that L1 regularization yields better re-
sults. A possible explanation is that in this work, we consider a binary classification
problem, which is not highly complex. From a human cognition point of view, solving
such a problem may not require a large amount of brain activity and area to learn and
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understand. Analogically, our problem may just require a relatively simple model, that
is, a model with sparse parameters reflected by the selected L1 regularization.

4.2 Experimental Results and Analysis

4.2.1 Dataset

Our experiments are mainly conducted on the Columbia Photographic Images and PRCG
Dataset [Ng+04]. The experiments consider three sets of images from the Columbia
dataset: (1) 800 PRCGs from 40 3D graphic websites (PRCG), (2) 800 NIs from some
personal collections (Personal), and (3) 800 photographic images from Google Image
Search (Google). We remove five images with incorrect labels from the Google set af-
ter discussing via email with the first author of the dataset and obtaining his approval.
The final number of images in the Google set is 795. Previous studies have consid-
ered several common dataset settings, such as Personal+Google versus PRCG [Ng+05;
CSX07], Personal versus PRCG [GC08], and authors’ own datasets (mostly not publicly
available) [LF05; Kha+08; LYS13; Pen+17], which were sometimes combined with the
Columbia dataset. The NIs in the authors’ own datasets are often acquired by a small
number of digital cameras; this is similar to the configuration of Columbia’s Personal
set and thus appears to be less challenging. To the best of our knowledge, no previ-
ous method has been tested under the challenging setting of Google versus PRCG. This
setting is difficult because NIs in Google and CG images in PRCG have heterogeneous
origins [GC08]. We focus on this most challenging setting, i.e., Google versus PRCG,
which comprises images that we typically encounter in a real-world forensic scenario. We
also test our method on two other settings: Personal versus PRCG and Personal+Google
versus PRCG.

4.2.2 Experimental Settings

All experiments in this chapter use the deep learning framework Caffe [Jia13]. Before
conducting all the experiments, we resize all images using bicubic interpolation so that the
shorter edge of each resized image has 512 pixels. This operation can reduce the impact of
scale and thus ensure the consistency of all image patches. For all three settings, namely,
Google versus PRCG, Personal versus PRCG and Personal+Google versus PRCG, we
use the ratio of 3:1 to randomly split each dataset into training and testing sets. To follow
the local-to-global strategy and generate sufficient training data for our CNN model, we
randomly crop 200 patches from each training image using MPS [Qua+16]. Similarly,
the testing set is obtained by cropping 30 patches from each testing image. Every patch
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Table 4.1: Impact of number of extracted patches (in row) on the network’s performance
for testing patches of 240× 240 pixels on the Google vs. PRCG dataset.

Num. Accuracy (%) Standard deviation (%)
100 84.67 0.6203
200 85.15 0.2861
300 85.15 0.2545

is pre-processed by subtracting the per-pixel mean of all training patches. Stochastic
gradient descent with a minibatch of 128 patches is used to train CNN models. The
base learning rate is initialized to 1e-3 and is divided by 10 every 30K iterations. The
training procedure stops after 90K iterations. The default value of regularization weight
λ is 1e-4, except for patch sizes of 60 × 60 and 30 × 30, whose regularization weights
are 5e-5 and 1e-5, respectively. As the patch size decreases, the number of parameters
in the corresponding CNN model decreases (additional details of networks for different
patch sizes are given in Section 4.2.4). Thus, using a small λ value for regularization is
reasonable, and experimentally, this leads to a slightly improved performance.

As described above, we extract 200 patches from each training image. For the patch
size of 240 × 240, we have relatively high overlapping between patches. This does not
weaken the performance of our network. Table 4.1 shows the median and standard
deviation of the results of 7 runs for different amounts of cropped patches (i.e., 100,
200 and 300). Compared with 100 patches, the classification accuracy of 200 patches
is increased by 0.48%, and the standard deviation is reduced by 0.3342%. This result
means that in this case, doubling the training data can improve the performance and
stability of our network. However, when we increase the number of cropped patches from
200 to 300, the network’s performance remains nearly the same, but the computational
cost increases.

We compare our proposed method with four state-of-the-art methods at the time
of this study which are based on hand-crafted features, namely, Spam [PBF10],
Geo [Ng+05], Mfra [Pen+17], and Vlie [ZWN12] (the fourth method is mainly for
robustness evaluation against JPEG post-processing). These four methods follow the
conventional two-stage pipeline of machine learning and use SVM as the classifier. Con-
sidering the long training time and high memory footprint of SVM, we randomly crop
10 patches from each training image to construct the corresponding training sets for the
first three conventional methods [PBF10; Ng+05; Pen+17] and 15 patches for the Vlie
method to compensate for the 100 images of each category that are used to compute
the visual vocabulary, similar to the original paper [ZWN12]. The number of samples
in these training sets ensures reasonable training time and memory consumption and is
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Table 4.2: Impact of different numbers of extracted patches on the classification accuracy
of testing patches of 240×240 pixels and full-sized testing images with voting for the best
two state-of-the-art methods, namely, Geo [Ng+05] and Spam [PBF10]. Experiments are
conducted on the Google vs. PRCG dataset.

Num.
Geo Spam

patch voting patch voting
10 80.65 87.91 76.13 84.63
20 80.76 88.16 76.33 84.89

also sufficient for obtaining stable and near-optimal results for the four methods. As
shown in Table 4.2, doubling the training samples exerts a minor impact on classifica-
tion performance, but the memory footprint considerably increases. For Spam with a
high-dimensional feature vector, the memory consumption becomes prohibitive even on
a computer equipped with 32GB of RAM. All these methods are evaluated on the same
testing set as our proposed method. For SVM training, we use the popular and efficient
LS-SVM implementation [Suy+02].

4.2.3 Fine-Tuning CaffeNet and Analysis of convFilter Layer

To solve the CG image forensic problem, we first explored the fine-tuning of CaffeNet,
and corresponding experimental results are reported in Table 4.3, in which the accuracy
is computed on all testing image patches of 240 × 240 pixels in the setting of Google
versus PRCG. In addition to this patch-wise accuracy, we generally observe the same
trend for other metrics, such as the accuracy after voting on full-sized images. We also
train CaffeNet on the Google versus PRCG dataset from scratch for comparison. All of
the results of fine-tuning are better than the result of the network trained from scratch
(the column of “C-S” in Table 4.3), which is consistent with the observation in [Yos+14].
Through fine-tuning, we can obtain relatively good classification accuracies that are
higher than those of traditional methods based on hand-crafted features. The detailed
results of traditional methods can be found in the second last column of Table 4.8, with
the highest attained accuracy being 80.65%, which is lower than any accuracy obtained
by fine-tuning (i.e., “C-1” to “C-7” in Table 4.3). A possible explanation is that having a
large number of NIs from ImageNet (to our knowledge, no CG image exists in ImageNet)
is beneficial for the network during its pre-training, and this helps the network understand
the “intrinsic” properties of NIs, one of the two classes that we want to distinguish in our
work.

Our proposed NcgNet copes better with this forensic problem. Here we first analyze
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Table 4.3: Classification accuracy of fine-tuning different layers of CaffeNet on dataset of
Google vs. PRCG. Accuracy is computed on all patches of 240×240 pixels in the testing
set of Google vs. PRCG. “C” stands for CaffeNet. “C-S” means training CaffeNet form
scratch on Google vs. PRCG. “C-N” means fine-tuning the first N layers of pre-trained
CaffeNet [Jia+14] with the remaining layers retrained using random weight initialization,
where N = 1, 2, · · · , 7.

Network C-S C-1 C-2 C-3 C-4 C-5 C-6 C-7
Accuracy (%) 76.85 81.22 82.08 82.23 81.17 82.71 82.13 82.06

Table 4.4: Impacts of different configurations related to convFilter layer on the classifi-
cation accuracy of testing patches of 240× 240 pixels on the Google vs. PRCG dataset.
‘cF’ is the abbreviation of convFilter. We show the median of results of 7 runs, each
with random initialization of CNN.

Network with cF without cF with cF and ReLU cF with constraint
Accuracy (%) 85.15 84.51 83.97 82.35

the performance of the convFilter layer of our network. Table 4.4 lists the classification
accuracy of four different configurations related to this convFilter layer: (1) our proposed
network shown in Figure 4.1 with two cascaded convolutional layers at the beginning of
network; (2) removing the convFilter layer from the proposed network; (3) inserting an
additional ReLU activation layer in our network after the convFilter layer; and (4) adding
the high-pass filtering constraint from [BS18] to the convFilter layer in our network. Our
configuration provides the highest accuracy, which demonstrates the utility of convFilter
layer. The classification accuracy decreases when the convFilter layer is followed by
ReLU activation, which may be an evidence that the relationship of “co-adaptation”
between the convFilter layer and the successive convolutional group is weakened by
ReLU activation to some extent. Adding a constraint to the convFilter layer, such as in
Bayar and Stamm’s work [BS18], also leads to performance degradation, which means
that prior knowledge that is useful for image manipulation detection in [BS18] is not well
suited for the task of NI and CG image classification.

4.2.4 Performance Evaluation

In this subsection, we compare the classification accuracy of the proposed method with
that of state-of-the-art methods on patches of different sizes. As mentioned earlier, our
network is slightly modified to accommodate different input sizes. The difference of
networks used for different patch sizes is provided in Table 4.5. Furthermore, the max-
pooling of the C1 of Net-3 has no stride (i.e., the stride is equal to 1). The network
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Table 4.5: Difference of networks used for different patch sizes. “7 × 7(2)” means that
the convolutional kernel size is 7 × 7 with a stride equal to 2, and all other strides are
equal to 1.

convFilter C1 C2 C3 F4 F5
Net-1 7× 7 7× 7(2) 5× 5 3× 3 4096 4096

Net-2 5× 5 5× 5 3× 3 3× 3 2048 2048

Net-3 3× 3 3× 3 3× 3 3× 3 2048 2048

adjustment is simple. For small patches, we only reduce the kernel size and remove the
stride to guarantee the structural stability of our CNN with a fixed depth and ensure
that the information flow can pass to the FC layers under an appropriately abstracted
form. For Net-2 and Net-3, we cut the number of neurons of the FC layers in half to
prevent over-fitting. The correspondence between networks and patch sizes is as follows:
Net-1 for 240×240 and 180×180; Net-2 for 120×120 and 60×60; and Net-3 for 30×30.
The corresponding input sizes of the networks for the five patch sizes are 233 × 233,
169× 169, 107× 107, 51× 51, 27× 27.

Figure 4.2 shows a comparison of the classification accuracy of our method and
those of three hand-crafted-feature-based methods (Spam [PBF10], Geo [Ng+05] and
Mfra [Pen+17]) under different patch sizes. For each patch size and method, the exper-
iment is repeated seven times with different randomized initialization/parameterization
to enhance the statistical significance of the results. We show the median of the results
obtained by seven runs. Our method demonstrates the best performance for all patch
sizes, followed by Geo and at last Mfra as the worst. As mentioned earlier, the clas-
sification performance of conventional methods based on hand-crafted features mainly
depends on the discriminability of features. These features do not appear to be discrimi-
native in this complex and challenging setting of Google versus PRCG. By contrast, our
method automatically learns, as much as possible, useful and task-specific information
from available data with the aid of the powerful learning capacity of CNN. Such auto-
matic learning and unified “end-to-end” optimization for this classification task is a better
choice than previous two-stage solutions. The accuracies of almost all methods decrease
with decreasing patch size. This observation is understandable because smaller patches
intuitively contain less information. Therefore, correctly classifying them is difficult for
computational forensic algorithms and even human beings. The numerical results that
correspond to the median accuracies shown in Figure 4.2 can be found in the group of
columns labeled “Original” in Table 4.6. The performance improvement of our method
compared with the second-best method, Geo [Ng+05], varies between 2.48% and 4.50%
depending on the patch size.
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Figure 4.2: Comparison of our method with three state-of-the-art methods under different
patch sizes. The solid lines show the median of 7 runs, and the error bars illustrate the
maximum and minimum. The result of Mfra for 30×30 patches is not indicated because
Mfra fails to extract features from such small patches.

Table 4.6: Classification accuracies (%) for different testing settings: Original, Scale300,
Scale1000, JPEG90, and JPEG80. “-” means that in this case, the Mfra method cannot
successfully extract features. For each testing setting, we show the accuracies of four
methods (in group of four columns) on patches of five different sizes (in row). For every
testing setting, the first column (our method) within the group of four columns always
has the highest accuracy.

Patch
Original Scale300 Scale1000 JPEG90 JPEG80

Our Geo Spam Mfra Our Geo Spam Mfra Our Geo Spam Mfra Our Geo Spam Mfra Our Geo Spam Mfra
240 × 240 85.15 80.65 76.13 63.04 84.33 76.38 64.09 56.15 85.01 80.04 73.62 61.44 83.52 76.94 65.53 58.35 82.39 75.82 63.47 59.50
180 × 180 83.69 79.32 74.61 60.94 83.63 75.18 63.67 55.94 83.78 78.77 72.04 59.27 81.79 75.58 64.05 56.13 80.92 75.05 62.70 57.26
120 × 120 81.81 79.08 72.70 61.37 80.65 74.82 63.41 57.56 81.72 78.44 71.64 60.04 79.10 74.50 64.21 57.98 77.56 73.82 62.43 58.10
60 × 60 77.03 74.55 69.75 59.81 76.71 72.59 61.13 57.75 76.98 74.12 69.64 - 74.69 71.32 62.80 56.98 73.73 71.51 61.34 56.85
30 × 30 73.45 69.30 66.53 - 72.38 67.96 57.61 - 73.33 69.19 66.16 - 71.05 67.55 60.81 - 69.80 66.61 59.71 -

Next, we analyze the robustness of NcgNet. An effective image forensic algorithm
should not only correctly deal with original data, which is Columbia’s testing data in
our experiments, but should also have a good level of robustness on post-processed data
because post-processing is likely to occur either as a routine operation or an intentional
attack. To evaluate robustness, we perform tests against two typical post-processing
operations of rescaling and JPEG compression. For rescaling, we consider down-scaling
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Figure 4.3: Classification accuracies of the five methods on five different testing sets.
The patch size is 240 × 240. “-P” is the accuracy on patches, and “-V” is the accuracy
after voting on full-sized images.

and up-scaling. Section 4.2.2 indicates that all images to be classified are resized in a
pre-processing step before they are fed into CNN so that the shorter edge of the resized
image has 512 pixels. Therefore, we test our trained network on testing sets, including
images with a shorter edge rescaled to 300 pixels (simulation of post-processing) and
then resized back to 512 pixels by the pre-processing of our method (“Scale300”) and
images with a shorter edge rescaled to 1000 pixels and then to 512 pixels (“Scale1000”).
We compare the results with the baseline setting (denoted by “Original”). We use bicubic
interpolation to rescale the image while preserving its aspect ratio, and we intentionally
choose 300 and 1000 pixels for rescaling to avoid the potential side effect induced by the
divisor and multiple of 512 (e.g., 256 and 1024). As for JPEG compression, in the first
place we consider two typical quality factors: 90 (“JPEG90”) and 80 (“JPEG80”).

For all methods, we select the trained model, which provides the median classifica-
tion accuracy of seven runs in the “Original” setting, to perform this robustness test.
All testing results are reported in Table 4.6. Mfra fails to extract features from 30× 30

patches because the patch is too small. For all five testing settings and five patch sizes,
the performance of our method is stable and always better than that of the three other
methods. As an example, for Spam, the average performance drop of “Scale300” on all
patch sizes is 9.962%, whereas the corresponding value of our method is only 0.686%. In
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Figure 4.4: Classification accuracies of our method, Geo [Ng+05], and Vlie [ZWN12] for
a large range of quality factors, i.e., from 100 to 10 with a step of 10. The patch size
is 240 × 240. “-P” is the accuracy on patches, and “-V” is the accuracy after voting on
full-sized images.

Figure 4.3, the solid lines show the classification accuracies of the five methods on five
different testing sets for 240 × 240 patches. Our method has stronger robustness than
the other methods. The two post-processing operations slightly change the correlation
of pixels with their local neighborhoods, and conventional methods, especially the Col-
orSRM method [GFC14] and Spam method, might be sensitive to this subtle alteration
of local statistical property. By contrast, our method is almost insensitive to rescaling
and quite robust against JPEG compression. This robustness can be attributed to the
diversity of the challenging dataset and the powerful learning capability of CNN.

In addition, we investigate the JPEG robustness of our method, Geo [Ng+05], and
Vlie [ZWN12] for a large range of quality factors, that is, from 100 to 10 with a step of
10. The corresponding results are shown in Figure 4.4. Compared with Geo and Vlie,
our method always demonstrates the best performance on patches and full-sized images
under all considered factors. Although the results of Vlie remain relatively stable, the
accuracies on patches and full-sized images are the lowest with or without (corresponding
to the “Original” case in Figure 4.4) JPEG post-processing. When the quality factor is
very low (e.g., 20 and 10, although such factors are rarely used in real-world applications),
the performance of our method drops more rapidly than that of Geo but remains the
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Table 4.7: Comparison of classification accuracy (%) of NcgNet with that of StatsNet
on four datasets: Raise vs. Level-Design, Google vs. PRCG, Personal vs. PRCG, and
Personal+Google vs. PRCG. “StatsNet” refers to the case where the number of training
patches is almost the same as (in fact slightly larger than) 40,000 used in the original
paper [Rah+17], and “StatsNet2” refers to the case where more training samples are used
with 200 patches cropped from each training image (the same as in ‘Our’ method).

Method
Raise vs. Level-Design Google vs. PRCG Personal vs. PRCG Personal+Google vs. PRCG
patch full-size patch full-size patch full-size patch full-size

Our 94.75 99.58 77.03 88.41 95.60 97.25 80.15 86.43
StatsNet 89.76 99.30 67.50 75.31 63.63 75.75 69.68 75.38
StatsNet2 89.68 99.30 68.27 76.57 65.56 80.00 68.51 69.51

best among the three methods.

In the following, we experimentally compare the classification performance of
NcgNet with that of a parallel work (StatsNet [Rah+17]), not only on their dataset
(Raise versus Level-Design comprising 1,800 CG images from the Level-Design Refer-
ence Database [Pia17] and 1,800 photographic images randomly selected from RAISE
dataset [DN+15]) but also on all the three datasets described in Section 4.2.1. The
results are reported in Table 4.7. For StatsNet, we use the authors’ shared implemen-
tation [Rah17] and follow the default setting described in [Rah+17]. The patch size of
StatsNet is 100× 100, while we use patches of 60× 60 pixels for our method. This is a
disadvantageous setting for our method because smaller patches contain less information.
However, although the patch size of our method is nearly a quarter of that of StatsNet,
our network performs consistently better on all the four datasets (Table 4.7). Further-
more, instead of using the default number of training samples as described in [Rah+17],
we increase the amount of training data of StatsNet to match that of our method (i.e.,
cropping 200 patches from each training image), and this network variant is denoted by
StatsNet2. The last two rows in Table 4.7 show that in general, no guaranteed perfor-
mance improvement from StatsNet to StatsNet2 is observed, although a large amount of
data is used for training. A possible reason is that StatsNet is a three-layer network with
a limited number of parameters; thus, using more training data than necessary would
not improve its patch classification accuracy considerably.

4.2.5 From Local to Global Decision

The local-to-global strategy, an important component of our framework, is highly flexible
and produces local and global decisions. Such a strategy applies not only to our CNN-
based method, which is related to data augmentation, but also to conventional methods
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Table 4.8: Effect of local-to-global strategy on the classification accuracy (%) of the
seven methods. “Our-DF” means that the activation output of FC5 is extracted as deep
feature and an SVM classifier is trained. The second column corresponds to the case of
training on the full-sized images, and the third and fourth columns correspond to the
two cases of training on the local patches (240 × 240) then testing on either patches
or full-sized images with voting. The first case does not apply to “Our” method and
“Our-DF” method.

Method
Full-sized images Local patches

full-size patch voting
Our - 85.15 93.20

Our-DF - 84.62 92.70
ColorSRM 86.63 82.93 88.16

Geo 86.14 80.65 87.91
Spam 81.86 76.13 84.63
Vlie 69.77 64.07 72.04
Mfra 65.49 63.04 70.28

based on hand-crafted features, as shown later in this subsection.

The accuracies obtained by our method after voting from patches of different sizes
(ranging from 30×30 to 240×240 pixels) are as follows: 83.63%, 88.41%, 88.66%, 92.70%,
and 93.20%. Accuracy after voting refers to the accuracy on full-sized images where the
predicted label of each testing image is obtained via majority voting of the predictions of
29 cropped patches (we ignore the last one of the 30 randomly cropped testing patches
to avoid tie votes). The voting result is improved when the patch size increases, but we
find a very minor performance improvement for patches larger than 240×240, which lead
to a more costly computation. Therefore, we select the 240× 240 patch to produce the
final voting result. In addition, the voting accuracy, that is, the classification accuracy
on full-sized images, of our method is always higher than the corresponding values of
existing methods, as can be seen from the last column of Table 4.8. In particular, a
considerable performance improvement of 5.04% is observed for our method compared
with the ColorSRM method, which is the best hand-crafted-feature-based method.

For a fair comparison with previous SVM-based methods, we extract CNN deep fea-
tures (i.e., the activation output of FC5) and train an SVM classifier with the same
experimental setting of SVM-based methods (i.e., cropping 10 patches from each train-
ing image). The results on local patches and full-sized images are reported in Table 4.8.
Compared with the ColorSRM method (best among all hand-crafted-feature-based meth-
ods), our deep-feature-based method (“Our-DF” in Table 4.8) is improved by 1.69% and
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4.54% on local patches and full-sized images, respectively. This improved performance
indicates that our deep feature has better discriminative power than traditional hand-
crafted features. In addition, our CNN-based method has slightly higher classification
accuracies than our deep-feature-based method (compare the second and third rows of
Table 4.8). This finding implies that merging feature extraction and classifier train-
ing into a unified “end-to-end” framework brings additional benefits and supports our
motivation of developing a CNN-based method.

We then evaluate and verify the robustness of the voting accuracy against the post-
processing operations, and the obtained results are shown by dashed lines in Figure 4.3.
The comparison of the five dashed lines indicates that our method has a stable and
consistently better performance than the three state-of-the-art methods.

Next, we validate this local-to-global strategy on hand-crafted-feature-based meth-
ods, and the results are shown in Table 4.8. Each method has three cases: train on
full-sized images and test on full-sized images; train on local patches and test on local
patches; and train on local patches and test on full-sized images using voting. These
three cases correspond to the last three columns of Table 4.8, respectively. The first case
does not apply to our methods. The accuracy of training on local patches and testing
on full-sized images with voting is higher than that of directly training and testing on
the full-sized images for the five conventional methods, and this can be observed by
comparing the second and last columns of Table 4.8. A possible reason behind this im-
provement is that the local-to-global strategy increases the diversity of training samples
to some extent. In this work, we use the simple majority rule to vote. This point can be
further improved in our future work.

4.2.6 Further Analysis and Failed Examples

As reported above, our method demonstrates good performance in the highly challenging
dataset of Google versus PRCG. We also conduct tests of the proposed method on
other datasets, namely, Personal versus PRCG and Personal+Google versus PRCG and
compare our method’s performance with that of state-of-the-art methods. Figure 4.5
shows a comparison of patch classification accuracies under the two settings. In these
two settings, our method still exhibits the best performance, especially for Personal
versus PRCG (Figure 4.5(a)), where the classification accuracy remains stable for patches
larger than 60 × 60 pixels. Table 4.9 presents the classification accuracies on full-sized
testing images obtained after voting from 240 × 240 patches. We observe an accuracy
improvement of 1.50% and 4.02% when we compare the result of our method to that
of the second-best method (Spam and Geo, respectively) under the setting of Personal
versus PRCG and Personal+Google versus PRCG, respectively. In addition, compared
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Figure 4.5: Comparison of patch classification accuracy on two other datasets: (a) Per-
sonal vs. PRCG and (b) Personal+Google vs. PRCG. The results of Mfra on 30 × 30

patches are not provided because of feature extraction failure on such small patches.

Table 4.9: Comparison of classification accuracy (%) on full-sized testing images, ob-
tained after voting from 240× 240 patches, on two other datasets.

Dataset Our Geo Spam Mfra
Personal vs. PRCG 98.50 95.50 97.00 82.75

Personal+Google vs. PRCG 93.13 89.11 88.61 72.19

with the setting of Google versus PRCG (the last column in Table 4.8), a noticeable
performance improvement for the setting of Personal versus PRCG (the second row in
Table 4.9) is observed for our method and existing methods. Our explanation is that
the Personal set is simpler (i.e., acquired by a small number of digital cameras) than
the Google set. Thus, the classification is less difficult, and the result is improved for all
methods.

We further analyze the results of our method in terms of two additional measures,
namely, the error rate of CG patches misclassified as NI (denoted as CGmcNI) and its
counterpart (denoted as NImcCG). The corresponding results are reported in Table 4.10.
With decreasing patch size, these two measures increase for almost all testing settings,
which is consistent with the previous findings (Section 4.2.4). The two error rates are
often balanced. However, the NImcCG values of JPEG90 and JPEG80 are clearly higher
than CGmcNI (last four columns of Table 4.10, particularly for small patches). A possible
reason is that the details of natural patches are partially removed by JPEG compression.
Thus, the NI patches, especially those of small sizes, become relatively “simple” and
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Table 4.10: Statistics on misclassification rates (%) of NcgNet for different testing set-
tings: Original, Scale300, Scale1000, JPEG90, and JPEG80. We consider the error rate
of CG patches misclassified as NI (CGmcNI) and its counterpart (NImcCG). For each
testing setting, we show these two error rates (in group of two columns) on patches of
five different sizes (in row).

Patch
Original Scale300 Scale1000 JPEG90 JPEG80

CGmcNI NImcCG CGmcNI NImcCG CGmcNI NImcCG CGmcNI NImcCG CGmcNI NImcCG
240× 240 15.67 14.03 16.65 14.67 15.70 14.26 16.06 16.90 19.13 16.06
180× 180 15.95 16.67 16.45 16.29 16.20 16.26 14.63 21.84 17.87 20.32
120× 120 19.20 17.17 22.93 15.70 20.28 16.24 17.55 24.30 21.55 23.33
60× 60 20.98 25.00 23.77 22.80 22.00 24.06 19.52 31.18 21.15 31.47
30× 30 25.70 27.41 28.12 27.11 27.02 26.31 24.15 33.82 24.97 35.52

Figure 4.6: Failed examples: the top row corresponds to CG images misclassified as NIs,
and the bottom row corresponds to NIs misclassified as CG images.

appear computer generated.

Figure 4.6 shows several failed examples of our method, including the case of CG
images mistakenly classified as NIs (top row) and the case of NIs mistakenly classified as
CG (bottom row). The light in the first image on the top row has good naturalness, and
the color transition and texture of the two other images are rather plausible. Therefore,
these CG images are misclassified as NIs by our network. On the contrary, the first two
natural images on the bottom row have a certain degree of unnaturalness in light and
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color, and the last image has a dramatic color transition (e.g., the ceiling and shadow).
These clues lead to the wrong classification.

4.3 Visualization and Understanding

Our CNN-based method exhibits good performance in terms of classification accuracy
and robustness against typical post-processing operations. This characteristic is at-
tributed to a well-designed and implemented CNN model. In this section, we wish
to understand knowledge that is hidden in the data and cannot be reflected by the quan-
titative evaluation metrics used in Section 4.2. Specially, we analyze and understand
what our CNN method has learned about the difference between NIs and CG images by
using several advanced and appropriate visualization tools that are relevant to CNNs.
This point was omitted in previous attempts of using CNNs for image steganalysis and
forensics.

We study the filters that CNN has learned at its first layer. The first convolutional
layer of CNN directly takes raw pixel data as an input and is thus more interpretable than
other layers in the remaining part of the network [LJY17]. A common phenomenon exists
in many CNNs well trained on natural images for computer vision tasks: the kernels they
learn in the first layer are similar to Gabor filters and color blobs [Yos+14]. From the
signal processing perspective, the convolution kernels of the first layer are linear filters.
Therefore, a powerful analysis tool, that is, fast Fourier transform (FFT), can be used to
analyze the properties of these kernels. Figure 4.7 shows the FFT of the kernels in the first
layer of our CNN, our CNN with an additional high-pass filtering constraint from [BS18],
and CaffeNet pre-trained on ImageNet. The filters are organized in groups of three (in
columns), which correspond to the three color channels B, G and R. Many kernels in
the first layer with the constraint of [BS18] [Figure 4.7(b)] have an apparent high-pass
response, whereas the convFilter kernels of our method [Figure 4.7(a)] mainly capture
the band-pass frequency information. However, the high-pass filtering constraint reduces
the performance by approximately 3% (see results in Table 4.4). This performance drop
is evidence that the band-pass information in a certain range of frequency may be more
useful for identifying NIs from CG images than that at high frequencies. Furthermore,
the first group of 96 filters of the first layer in CaffeNet shown in Figure 4.7(c) are
highly consistent among the three color channels, but this consistency slightly decreases
in the last group of 96 filters, as shown in Figure 4.7(d). The former collects orientated
information, and the latter considers color to some extent. By contrast, almost all
the filters in our method show no apparent consistency among the three channels, as
illustrated in Figure 4.7(a), which implies that this identification task between NIs and
CG images is more color-sensitive than conventional computer vision tasks.
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Figure 4.7: Visualization of the FFT of the first-layer filters in our NcgNet (a), NcgNet
with the constraint from [BS18] (b), and pre-trained CaffeNet [Jia+14] (c,d). (c) corre-
sponds to the first 96 kernels of the first layer in CaffeNet and (d) corresponds to the
last 96 kernels. The filters are organized in groups of three (in columns) corresponding
to the three color channels B, G and R. Brighter pixels mean higher values.

To summarize, we obtain the following observations concerning filters in the first layer.
Image forensic tasks may need a new set of appropriate filters aside from those tailored
for computer vision tasks, but not necessarily high-pass filters as suggested in [BS18].
Different forensic tasks may require different, adequate filters that can be learned with
or without constraint. An appropriate constraint may improve performance as shown
in [BS18], whereas an inappropriate constraint may decrease the performance as shown in
our paper. In the latter case, “freely” learning these filters is a better solution. Further
studies should examine the interesting research problem of the design and training of
CNN and its layers for different forensic problems.

In the following, we continue our analysis of what our CNN has learned and what
inspiration we can obtain from the well-trained model. Through two advanced visualiza-
tion tools, namely, layer-wise relevance propagation (LRP) toolbox [Lap+16] and deep
visualization toolbox [Yos+15], we analyze the trained model from the data-centric and
network-centric point of view, respectively. The network-centric approach only requires
the trained network for its analysis, and the data-centric approach additionally requires
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Figure 4.8: Heatmaps of four sample image patches. The top row corresponds to NIs,
and the bottom row corresponds to CG images. Each group consists of the input image
patch (left) and its heatmap (right). The red color in heatmaps stands for a large value,
blue for a small value, and black for an intermediate value.

passing sample data through that network.

LRP [Bac+15] is a technique for determining the degree of local contribution in an
individual input to the neural network’s output. In practice, we can obtain information
about which pixels in the input image are relevant to the prediction outcome of the CNN
by using the LRP toolbox [Lap+16]. The relevance scores assigned to the pixels can be
visualized as an image with the same size as the input image, which is called a heatmap.
Figure 4.8 shows four sample image patches and the corresponding heatmaps on our
trained CNN model. Here, the CNN model does not use batch normalization due to the
limitation of LRP toolbox. Figure 4.8(a) and (c) are NIs from Google while (b) and (d)
are CG images from PRCG. We observe several very red pixels (meaning high contri-
butions) in the heatmap of (b) corresponding to bright parts on the forehead, shoulder,
and arm in the CG image, which implies that the prediction of CNN is relevant to the
unnaturalness of light. The same CNN regards the light in (a) as rather natural, which
contributes to the prediction (see red pixels corresponding to the left collar and slightly
red pixels on the nose and chin). For (d), high relevance in the bottom of car is observed
because the transition of the shadow is unnaturally sharp, but the color transition in (c)
is smoother and natural and thus contributes to the prediction. Hence, our CNN model
uses the naturalness degree of light and the smoothness of color transition as important
clues for NI and CG image classification. This finding also provides insights into possi-
ble directions for computer graphics algorithms to further improve the photorealism of
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(a) (b)

Figure 4.9: Visualization of preferred inputs in image space for two output units. The
left corresponds to CG image, and the right corresponds to NI.

rendered images and synthesized images [BZ17].

With the help of the deep visualization toolbox [Yos+15], we compute the preferred
inputs in the image space for two output units located immediately prior to the final
softmax layer, which are shown in Figure 4.9. The preferred input refers to the input
image that causes the corresponding unit to have high activation. Figure 4.9(a) is filled by
multiple color blobs, which implies that CG images often contain large color primitives
and look relatively “simple”. By contrast, the recurrent appearance of “light points”
shown in Figure 4.9(b) implies that natural images have more variability and look rather
“complex”. This condition might be one of the main differences between NIs and CG
images. Our observation is completely in line with the hypothesis and observation of
Dang-Nguyen et al. [DNBDN15], who assumed that synthetic facial animations present
a less complex pattern, whereas natural ones have a much more complicated variability.
Our observations of static NIs and CG images are similar to those of [DNBDN15] that
examined the difference between natural and CG facial videos. This similarity may
imply that CNNs can, to some extent, unconsciously follow a similar idea of the hard
intelligent work of researchers when facing similar problems. In the future, we plan to
design CNNs for the discrimination of natural and CG videos, and we expect to gain
similar understanding and observation as those reported in [DNBDN15].

4.4 Summary

We proposed a generic framework based on the convolutional neural network to identify
and understand the difference between natural and computer-generated images. The
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performance of our network is better than that of conventional methods and a recent
parallel CNN-based method not only on the highly challenging Google versus PRCG
dataset, but also on relatively simple datasets. Our method also outperforms state-of-
the-art methods in terms of performance in small image patches and robustness against
typical post-processing operations. These factors are important for a forensic method to
be useful in real-world applications.

We attempted to conduct an extensive study on using CNN for distinguishing between
NIs and CG images. We considered the fine-tuning, structure, energy function design,
flexibility, visualization, and understanding of CNN. To our knowledge, fine-tuning of
pre-trained CNN from computer vision tasks and the visualization and understanding of
what a CNN has learned are new in image forensics and might be useful and inspiring
for other multimedia security tasks. Our source code is available at https://github.
com/weizequan/NIvsCG.

https://github.com/weizequan/NIvsCG
https://github.com/weizequan/NIvsCG
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On the basis of the research work in chapter 4, this chapter will continue to study
the problem of CG image identification, and make improvements from the three aspects
of dataset construction, network architecture and network training to obtain better clas-
sification accuracy and generalization capability.

For the CG image forensic problem, researchers have proposed hand-crafted-feature-
based methods and CNN-based methods. Due to the powerful learning capacity of CNN,
the CNN-based methods often achieve better forensic performance; however, the blind
detection problem (or the so-called generalization problem) has been omitted in exist-
ing methods. This problem occurs when we train a CNN model using CG images from
“known” computer graphics rendering techniques, and then test the model on images
generated by “unknown” rendering techniques. Take Figure 5.1 as an example, the CG
images in second, third, and fourth columns (rendered by Autodesk, Corona, and VRay,
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Figure 5.1: From left to right: four groups (columns) of computer-generated images
which were rendered by Artlantis [Art], Autodesk [Aut], Corona [Cor], and VRay [Vra],
respectively.

respectively) are misclassified as NI by a CNN model trained on NIs and CG images
rendered by Artlantis (first column). The misclassification is probably due to the exis-
tence of subtle and different “intrinsic” traces left by each rendering technique, e.g., in
color use and light-material interaction. It is worth mentioning that this problem can be
frequently encountered in practice when deploying detectors of CG images in real-world
applications, as there can always exist CG images generated by new and/or customized
rendering tools.

To improve the forensic performance, especially the generalization capability, we make
efforts in two aspects of CNN: network architecture and network training. The core idea
is to design and implement CNN with more diversity in feature learning and with the use
of harder negative samples in the so-called enhanced training. The negative sample means
the artificially constructed image by only using the original training dataset (potentially
combined with information from CNN model), and its ground-truth label is same as that
of CG image.

Specifically, we design a two-branch neural network which can capture more diverse
features. Chapter 2 considered the generalization problem in the task of colorized image
detection, and proposed negative-sample-based enhanced training to effectively improve
the generalization performance of CNN. In Chapter 2, we used linear interpolation of
paired natural and colorized images to construct negative samples. Although this re-
quirement of paired images is not satisfied for the classification of NIs and CG images,
we extend this interpolation method in a straightforward way to the unpaired setting
and find that it can still improve the CNN’s generalization for the CG image forensic
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problem. This data-centric method only uses training images and is “blind” to the CNN
model; therefore, motivated by a potential performance boost, we propose a new and
more effective method (so-called model-centric method) by coupling the negative sample
generation with the gradient information of CNN loss function.

Our contributions are summarized as follows:

• We for the first time in the literature raise and study the generalization issue of
the CG image forensic problem. For the experimental study of this generalization
problem, we collect four computer graphics datasets which were generated by four
different rendering tools.

• We design a new network which has better generalization. The beginning part of
the network has two branches with different initializations for the first layer.

• We propose a novel and effective model-centric method to generate negative sam-
ples. Given a trained model and a CG image, we iteratively modify this image
via gradient-based distortion to make the distorted version close to the decision
boundary of the CNN model. The gradient can be easily computed using back-
propagation.

This piece of work is in press for publication in the international journal “Forensic
Science International: Digital Investigation” [Qua+20] (https://doi.org/10.1016/j.
fsidi.2020.301023).

5.1 Proposed Method

For the CG forensic problem, current CNN-based approaches can achieve high classifi-
cation accuracy. However, the performance of these forensic detectors often drops when
testing the trained model on CG images generated by “unknown” computer graphics
rendering tools. To solve this generalization problem, in this work, we consider two
aspects of CNN: network architecture and network training. Our network design is in-
spired by the work of Chapter 3 [Qua+19a] about the impact of CNN’s first layer on
forensic performance, where we proposed a simple criterion to combine the predictions
of two independently trained networks for obtaining the final result. In this chapter, we
design and implement a novel two-branch CNN model and apply different initialization
strategy to the first layer of these two branches. This network can be trained in the
end-to-end manner, and we expect to enrich the diversity of learned features through
this ensemble-like design. For the network training, we adopt the enhanced training
framework proposed in [Qua+19b]. An important component of enhanced training is

https://doi.org/10.1016/j.fsidi.2020.301023
https://doi.org/10.1016/j.fsidi.2020.301023
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Figure 5.2: Architecture of our network named ENet (Ensemble Network). The network
input is a 233× 233 RGB image, and output is the class scores. For each convolutional
layer, k is the kernel size, n is the number of feature maps, and s is the stride. “FC(2)”
stands for a fully-connected layer with a 2-dimensional output of class scores. No padding
exists in our network.

the so-called negative samples, which are generated in [Qua+19b] by linear interpolation
of paired natural image and colorized image and which are deemed to be more difficult to
classify. In this chapter, we propose two types of generation methods of negative samples
(same label as CG images): (1) data-centric method, which constructs negative sample
via linear interpolation of unpaired NI and CG image. (2) model-centric method, which
generates negative sample by modifying the CG image based on the gradient of CNN.

5.1.1 Network Design

The standing point of network design is to enrich the diversity of feature learning. In-
spired by the observation in [Qua+19a] and ensemble learning, we design a novel two-
branch network to automatically and efficiently combine the kernels initialized with SRM
filters [FK12] and Gaussian random distribution in the beginning of network, and it can
be trained in the standard end-to-end way. This novel network is denoted by ENet (En-
semble Network), and the corresponding network architecture is shown in Figure 5.2. In
practice, our network takes the NcgNet proposed in [Qua+18] as backbone: the begin-
ning part (from L1 to L4 in Figure 5.2) has a new two-branch design; starting from L5,
the network architecture is same as NcgNet. The input of ENet is an RGB image. After
the first layer (so-called filter layer), we use three convolutional layers without pooling
operation (L2-4) to analyze the filtered signal. The analysis results are concatenated (in
the channel-wise manner) as the input of L5, and three consecutive convolutional layers
(L5-7) and two fully-connected layers (L8-9) are applied to conduct high-level abstrac-
tion and reasoning. The last layer (L10) with softmax maps the high-level feature vector
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to the 2-dimensional class scores (NI and CG). In total, ENet is a 10-layer network.

In our network, from L2 to L4, we do not use any pooling operation so as to retain
useful discriminative information, which also helps for improving the diversity between
the two branches. In the second branch (B2 in Figure 5.2), the SRM means that the con-
volutional kernels are fixed as the thirty 5×5 SRM residual filters borrowed from [FK12].
These three SRM blocks are applied to each color channel of input image, i.e., R, G,
and B, respectively. Then, all output channels are directly concatenated together to
form a ninety-channel input of the second convolutional layer (L2). Except for the first
layer (L1), each Conv is equipped with batch normalization (BN) layer. And we do not
add activation layer after L2 to preserve useful information as much as possible. Follow-
ing [Qua+18], all max-pooling layers have the same kernel size of 3 × 3 and a stride of
2.

5.1.2 Data-Centric Method

This method constructs negative sample by linear interpolation, and the corresponding
formulation is:

INS = α · INI + (1− α) · ICG, (5.1)

where INS is the negative sample, INI is the natural image, ICG is the computer-
generated image, and α ∈ {0.1, 0.2, 0.3, 0.4, · · · , 0.9, 0.99} is the interpolation factor.
For each factor, we randomly combine the NI and CG image of original training dataset.
To clearly illustrate this process with examples, we select four CG images, and then
randomly select an NI for each CG image to generate the negative sample via Eq. 5.1
with three different factors (α = 0.1, 0.5, 0.9). The corresponding results are shown in
Figure 5.3. When α increases [from Figure 5.3(c) to Figure 5.3(e)], the negative samples
are progressively getting closer to the natural images [Figure 5.3(b)]. In addition, we
allow the use of larger interpolation factor than the work in Chapter 2 [Qua+19b], i.e.,
α > 0.4, mainly due to the “blind” nature of this method, i.e., it is blind to the decision
boundary of trained CNN model.

5.1.3 Model-Centric Method

The model-centric method in this chapter is more related to adversarial samples in the
field of machine learning. For the consistency of description, this section first briefly
reviews adversarial samples. In addition, readers could refer to recent surveys [AM18;
Yua+19] for a comprehensive coverage of this rapidly evolving topic.

Szegedy et al. [Sze+14] found an intriguing phenomenon: several high-performance
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(a)

(b)

(c)

(d)

(e)

Figure 5.3: Examples of data-centric method. From top to bottom: (a) four CG images
rendered by Corona [Cor]; (b) randomly selected NI for each CG image; (c), (d), and
(e): the negative samples generated by Eq. 5.1 with CG image and NI in (a) and (b) of
the same column, where the interpolation factor α is 0.1, 0.5, and 0.9, respectively. We
calculate the PSNR (peak signal-to-noise ratio) for the negative samples [(c), (d), and
(e)], with the CG image [(a)] as the reference. PSNR values (in dB) from left to right:
(c) 28.12, 28.42, 28.09, and 27.32; (d) 14.24, 14.44, 14.31, and 13.12; (e) 9.14, 9.33, 9.20,
and 8.02.
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Figure 5.4: An example of adversarial sample. Network is the pre-trained
GoogLeNet [Sze+15] on ImageNet [Den+09]. This image comes from [GSS15].

machine learning models, including advanced deep neural networks, are susceptible to
adversarial examples (or adversarial attacks). When applying a small and imperceptible
perturbation to a test sample, this perturbed version is very likely to be misclassified
by trained deep models. Goodfellow et al. [GSS15] explained that linearity in high-
dimensional spaces is the primary cause of neural networks’ vulnerability to adversarial
perturbation. Based on this linear view, they proposed the fast gradient sign method
(FGSM) to generate adversarial examples, where the required gradient can be computed
efficiently using backpropagation. Figure 5.4 illustrates an example of adversarial sam-
ple based on FGSM. By adding an imperceptibly small vector whose elements are of the
same sign as that of the corresponding elements in the gradient of the cost function with
respect to the input, GoogLeNet [Sze+15]’s classification of the image can be changed
(from “panda” of 57.7% confidence to “gibbon” of 99.3% confidence). This gradient-based
method is the backbone of many subsequent construction methods of adversarial exam-
ples. FGSM is essentially a one-step gradient-based method; therefore, a straightforward
extension of this method is to apply it in a multiple-step fashion with smaller step size
(in extreme cases, changing the value of each pixel only by 1 on each step) [KGB16].
Tramèr et al. [Tra+18] proposed to prepend FGSM by a small random step, which is
based on the sign of a Gaussian distribution.

In computer vision and machine learning, adversarial examples have been used to
improve the robustness of deep networks. There is less effort in the literature on using
adversarial examples to improve network’s generalization. To our knowledge, there is no
such existing work in the image forensics community. In this chapter, we propose a re-
fined and appropriate method to generate adversarial examples as negative samples (i.e.,
simulated proxy of “unknown” CG images) for improving generalization. Specifically, our
model-centric negative sample generation method is based on a new iterative version of
FGSM, i.e., we randomly select certain percent of pixels to be changed by 1 for each
step. The essential motivation of our method is to strictly control the strength of attack
(in other words and loosely speaking, the location of negative samples relative to the
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decision boundary of CNN). Our method has different original intention when compared
to the conventional adversarial attacks in the field of machine learning, where they prefer
to maximally cross the decision boundary with as small as possible perturbation. Our
method shares some similarities with the iterative strategy of Tondi [Ton18]; however,
some differences exist: (1) [Ton18] uses adversarial examples to carry out attacks, while
we use adversarial examples to improve the generalization of CNN-based forensic detec-
tors which is to our knowledge new in the literature. (2) With some technical choices,
our iterative version is more finely controlled in terms of the confidence level of negative
samples, which is important for the enhanced training.

Model-centric method is related to the gradient-sign-based adversarial sample gener-
ation. In the following, we first recall the formulation of FGSM [GSS15] and its iterative
variant [KGB16]. Then, we describe our iterative masked gradient sign method (IMGSM)
for constructing negative sample.

Let x be the original (or clean) image, x̂ the perturbed version of x with expected
target t,M a deep model and JM(x, t) the loss function (e.g., cross-entropy loss) used
to train the original modelM. The formulation of FGSM is

x̂ = x− εsign(OxJM(x, t)), (5.2)

where hyper-parameter ε controls the magnitude of the perturbation.

An iterative variant of FGSM is

x̂k+1 = Clipx,ε{x̂k − βsign(OxJM(x̂k, t))}, (5.3)

where Clipx,ε{x′} is the operation which projects the image x′ into the L∞ ε-
neighbourhood of the source image x [KGB16]. Usually, the value of β depends on
the data type of image pixel (integer or float) and is set following the minimal distortion,
e.g., changing the integer pixel value only by 1 for each modification.

Our goal is to modify a CG image x and output a harder negative sample x̂ with
predicted probability p as NI under original trained model. x̂ plays the role of simulated
proxy of “unknown” CG image that may be encountered during testing. To exactly
control the predicted probability of negative sample, we introduce the iterative masked
gradient sign method (IMGSM). Compared with Eq. 5.3, our formulation of IMGSM has
two differences: (1) we have no clip operation because we mainly consider the attack
confidence of negative sample (i.e., the probability p) and do not need to strictly limit
the magnitude of the perturbation. (2) we introduce the random-mask-based strategy to
perturb the input image for each modification so that we can exactly control the attack
confidence of negative sample, e.g., falling into a certain interval. The formulation is

x̂k+1 = x̂k − βmλ � sign(OxJM(x̂k, t)), (5.4)
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Algorithm 2 Iterative masked gradient sign method
Input: trained modelM, x, attack confidence interval [pmin,pmax], the maximal iter-
ations K = 200, the initial mask probability λ0 = 0.96.
Output: negative sample x̂.
Initialization: current mask probability λ = λ0, p is set as the predicted confidence of
x as NI.

1: while p < pmin and λ <= 0.998 do
2: set x̂0 = x, x̂cand = x.
3: for k = 0 to K − 1 do
4: compute OxJM(x̂k, t) using backpropagation.
5: compute x̂k+1 via Eq. 5.4.
6: compute current attack confidence p of x̂k+1.
7: if p > pmax then
8: break.
9: else

10: set x̂cand = x̂k+1.
11: end if
12: end for
13: set x̂ = x̂cand, and compute the attack confidence p of x̂.
14: if λ < 0.99 then
15: λ = λ+ 0.01.
16: else
17: λ = λ+ 0.002.
18: end if
19: end while

where� is the element-wise product operation andmλ is the binary mask whose elements
are randomly set as zeroes with probability λ. Note that x, O, and mλ have the same
shape. In our experiment, the 8-bit integer pixel is scaled to float in [−1, 1], therefore, we
set β = 2/255 to guarantee the minimal distortion. In other words, after transforming
back to the integer pixel value, ±β on float means adding or subtracting by 1.

Algorithm 2 illustrates the process of model-centric negative sample generation. To
constrain the predicted confidence of generated negative sample belonging to a certain
interval [pmin,pmax], we introduce adaptive strategy to adjust the mask probability λ
shown in line 14-18 of Algorithm 2. Starting from a minimal value of λ which exper-
imentally leads to large distortion (thus large jump of p) for each modification while
iterating on k in line 3, the mask probability progressively increases when the predicted
probability of generated negative sample cannot fall into the required interval. A mask
with higher value of λ leads to milder increase of p in each iteration, with more chance
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Figure 5.5: The statistics of model-centric negative sample generation: (a) mask proba-
bility λ, (b) iterations k, (c) the predicted probability p of original CG images, and (d)
the predicted probability p of corresponding negative samples.

to meet the constraint of required interval for p. In our experiment, we choose the
confidence interval of generated negative sample as [0.3, 0.5], which means the negative
sample is close to original classification boundary and in the side of CG image.

To clearly illustrate the process of model-centeric negative sample generation with an
example, we train the ENet on Corona dataset, and then generate the negative samples
of CG images in training dataset (in total, 5040 images). Figure 5.5 shows the histogram
of mask probability λ (a), iterations k (b), and predicted probability p of original CG
images (c) and corresponding negative samples (d). Given a CG image, it is difficult to
derive an algorithm which can theoretically guarantee that the predicted probability p of
negative sample strictly falls into the expected interval (i.e., [0.3, 0.5] in our experiment).
In practice, by using our adaptive mask strategy, we observe that experimentally almost
all negative samples can successfully fall into this interval, like Figure 5.5(d), where only
two samples are not in [0.3, 0.5]. This is because the two original CG images have p
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Figure 5.6: Four groups of CG sample (top row) and corresponding negative sample
(bottom row) based on model-centric method. We calculate the PSNR for the negative
sample, with the CG sample as the reference. PSNR values (in dB) from left to right:
56.32, 58.92, 56.63, and 56.25, respectively.

value larger than 0.5, i.e., 0.76 and 0.64.

In addition, Figure 5.6 shows four groups of negative samples (bottom row) based
on model-centric method and corresponding CG images (top row). From left to
right: for CG sample, p = 2.40e-5, 4.92e-3, 1.95e-4, 2.01e-4; for negative samples,
p = 0.32, 0.38, 0.48, 0.35. Comparing the two rows, we can find that the CG images
and the corresponding negative samples are visually almost the same (see PSNR values
in the caption of Figure 5.6). Furthermore, compared with the PSNR values reported
in the caption of Figure 5.3, those of Figure 5.6 are obviously larger, which means that
the perturbation introduced by model-centric method is much smaller than data-centric
method. We also analyze the min/max perturbation for CG images in Figure 5.6, i.e.,
the minimal/maximal perturbation value for pixels within an image. The min/max per-
turbations are from left to right: −3/3, −3/2, −3/3, and −4/3, respectively (pixel values
are in the range of 0 to 255). These results demonstrate that when generating negative
samples, gradient-based perturbation modifies very slightly the pixels of CG images in
an almost imperceptible way.

5.1.4 Network Training

Basically consistent with Chapter 2, a complete network training includes two stages:
normal training and enhanced training. The CNN model first conducts normal training
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from scratch with the original training dataset D, i.e., NIs and CG images generated
by “known” rendering tools. After the model converges, we continue to train the model
with enhanced training based on negative sample insertion. This enhanced training is
an iterative process, and the main pipeline is described as follows.

• We construct negative samples using Eq. 5.1 or Algorithm 2, and insert them into
D.

• We update the parameters ofM using D. Starting from the second half of training
process, we compute the error rate r on the so-called natural validation dataset V
and also mark the model as candidate model if its r is less than θ (a threshold
that determines the accepted degree of final classification accuracy on NIs; in our
experiment, we set θ = 4%).

• The above two steps interleave until reaching the stop condition. If the error rates
on V starting from the second half of training process are all larger than θ, we stop
the iteration process; otherwise, we stop when the number of iterations reaches
maximal value Z: for data-centric method, Z = 10 (α can take 10 values, see in
Section 5.1.2); for model-centric method, Z = 20.

• From all candidate models, we select the final model which has the maximal r.

5.2 Experimental Results of CG Image Identification

5.2.1 Dataset Collection

To study the generalization problem and validate our proposed method, we collect four
CG datasets: Artlantis [Art], Autodesk [Aut], Corona [Cor], and VRay [Vra]. The CG
images were downloaded from the websites of the four rendering software tools. The col-
lected CG images have high level of photorealism and are very close to real-world scenes.
Some examples are shown in Figure 5.1. The number of images of these four datasets are
1,620, 1,620, 1,593, and 1,579, respectively. Figure 5.7 and Figure 5.8 separately show
the histogram of the image size and JPEG compression quality factor of the CG datasets.
For each CG dataset, we randomly select 360 images as testing set, and the remaining
images as training set (with the approximate ratio of 4:1). To guarantee the diversity of
NIs, we combine two datasets of RAISE [DN+15] and VISION [Shu+17] in our experi-
ments. RAISE is a collection of 8,156 raw images that were taken at very high resolution
and we randomly select 4,700 images. In order to simulate the real-world setting, we
randomly resize and compress these raw images. For each raw image, we first resize
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Figure 5.7: The histogram of image size of CG datasets: (a) Artlantis; (b) Autodesk; (c)
Corona; (d) VRay.

with bicubic interpolation and with the length of its shorter edge as an integer randomly
sampled from the set of {500, 750, 1000, 1500, 2000, 2500, 3000}. Then, we compress the
resized image with quality factor randomly sampled from the range of [70, 100]. VISION
is composed of images captured by 35 mobile devices where each device includes 100 nat-
ural images (in total 3,500 images). In addition, these natural images were exchanged
via the Facebook (high and low quality respectively) and WhatsApp social media plat-
forms, and thus each image has four versions (“nat”, “natFBH”, “natFBL”, and “natWA”
in [Shu+17]). Considering the same content of these four versions, we randomly select
one version for each image and obtain 3,500 images. In the end, we have 8,200 NIs from
RAISE and VISION.

In the following, we provide the details of datasets used in our CG identification
experiments. We randomly select 5,040 NIs and duplicate approximately 4 times of



86
Chapter 5. Identification of CG Images with Feature Diversity

Enhancement and Learning from Harder Samples

70 75 80 85 90 95 100
Quality factor

0

500

1000

1500

2000

#N
um

(a) Artlantis

70 75 80 85 90 95 100
Quality factor

0

200

400

600

800

1000

1200

#N
um

(b) Autodesk

70 75 80 85 90 95 100
Quality factor

0

200

400

600

800

#N
um

(c) Corona

70 75 80 85 90 95 100
Quality factor

0

200

400

600

800

1000
#N

um

(d) VRay

Figure 5.8: The histogram of JPEG compression quality factor of CG datasets: (a)
Artlantis; (b) Autodesk; (c) Corona; (d) VRay.

each CG training set (5,040 CG images after duplication) to construct four final train-
ing datasets, corresponding respectively to the four rendering software tools (Artlantis,
Autodesk, Corona, and VRay). From the remaining 3,160 NIs, we respectively select
360 NIs for each CG dataset and combine corresponding testing set (360 CG images) to
construct four final testing datasets. The remaining 1,720 NIs constitute the so-called
natural validation dataset, which is used for the final CNN model selection in the stage
of enhanced training (the details are described in Section 5.1.4).

5.2.2 Experimental Settings

In this chapter, we consider two recent state-of-the-art CNN models of YaoNet [Yao+18]
and NcgNet [Qua+18]. In [Yao+18], the images are first converted to grayscale and
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then fed into YaoNet to reduce the computational complexity. For convenience and fair
comparisons, we directly use RGB images as the input of YaoNet and this variant achieves
better performance compared with grayscale input. Following [Qua+18], all images in
our experiments are resized using bicubic interpolation so that the shorter edge of each
resized image has 512 pixels, and for each image, we rescale its pixel values to [−1, 1]. The
input size of network is 233× 233. Stochastic gradient descent (SGD) with a minibatch
of 32 is used to train ENet. For SGD optimizer, the momentum is 0.9 and the weight
decay is 1e-4. The initial learning rate is 1e-3. For the normal training (only using
original training dataset) of ENet, we divide the learning rate by 10 every 100 epochs,
and the training procedure stops after 300 epochs. For the normal training of YaoNet and
NcgNet, we follow the same learning rate schedule as described respectively in [Yao+18]
and [Qua+18]. In the stage of enhanced training of these three networks, we adopt the
same strategy about learning rate: the learning rate is continued to be divided by 10
every 15 epochs (one insertion) and fixed after 4 iterations of negative sample insertion
to avoid learning rate becoming too small. Following [Qua+18], we adopt the standard
10-crop testing [KSH12]: given a testing sample, the network extracts five patches of
233× 233 pixels (the center and four corner patches), flips these five patches in the left-
right direction (i.e., horizontal reflection), and then averages the predictions of total 10
patches as the final result. We employ the half total error rate (HTER) to evaluate the
detection performance. The HTER is defined as the average of misclassification rates
(in %) of NIs and CG images, here same as the overall error rate on balanced testing
datasets. In this work, all reported results are the average of 5 runs.

5.2.3 Validation of Proposed Network

We validate our network architecture design of ENet in terms of the conventional clas-
sification performance and the generalization capability. All the networks are trained
on Autodesk and tested on Artlantis, Corona, and VRay. The corresponding results are
reported in Table 5.1. Compared with YaoNet, NcgNet and NcgNet_SRM, ENet demon-
strates better performance for both “known” and “unknown” rendering engines. Here,
the NcgNet_SRM is the variant of NcgNet where the first layer of NcgNet is replaced
with three SRM blocks like the first layer of B2 in Figure 5.2. In addition, although
NcgNet_Comb and ENet have comparable results, the former needs to train two models
separately, i.e., which inevitably and approximately doubles the number of parameters
and training time.

Next, we evaluate the performance of four variants of our proposed ENet, i.e.,
ENet_d, ENet_SRM, ENet_d_half, and ENet_rand. We remove the B2 of ENet (the
blue dotted rectangle in Figure 5.2) and double the number of feature maps of L3 and
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Table 5.1: The classification performance (HTER, in %, lower is better) of different net-
work architectures. “NcgNet_Comb” is the combination result of predictions of “NcgNet”
and “NcgNet_SRM” according to the combination criterion used by [Qua+19a]. For the
sake of clarity, the results of generalization performance on “unknown” rendering engines
are presented in italics.

Network Autodesk Artlantis Corona VRay
YaoNet 4.61 28.14 15.00 21.17
NcgNet 2.84 16.61 12.78 16.58

NcgNet_SRM 2.42 17.97 8.97 16.09
NcgNet_Comb 2.16 13.14 7.75 12.61

ENet 1.56 10.39 7.67 13.39

Table 5.2: The classification performance (HTER, in %, lower is better) of our pro-
posed ENet and its four variants. All networks are trained on Autodesk. The results of
generalization performance on “unknown” rendering engines are presented in italics.

Network Autodesk Artlantis Corona VRay
ENet_d 2.00 15.06 10.25 16.11

ENet_SRM 2.00 11.19 7.30 13.44
ENet_d_half 1.72 12.53 8.44 13.44
ENet_rand 2.28 15.97 10.33 16.89

ENet 1.56 10.39 7.67 13.39

L4 to obtain ENet_d. Similarly, we remove the B1 of ENet (the red dotted rectan-
gle in Figure 5.2) and also double the number of feature maps of L3 and L4 to obtain
ENet_SRM. For ENet_d_half, we combine the three SRM blocks with the first layer of
ENet_d, i.e., concatenating the outputs of these three SRM blocks with the output of
first layer of ENet_d to form a 120-channel input of the L2 of ENet_d. In addition, we
use the Gaussian random distribution to initialize the first layer of B2 of ENet and make
the corresponding ninety kernels trainable, and this replaces the B2’s original setting
of using fixed SRM filters. The corresponding model is denoted by ENet_rand. Note
that, the number of parameters of these four variants are slightly larger than that of
ENet. Among these five networks, the ENet achieves better overall performance (see Ta-
ble 5.2). We find that ENet outperforms ENet_rand (comparing the row of “ENet_rand”
and “ENet”). This demonstrates that our ensemble-like design, with different intializa-
tions at the first layer of the two branches, can improve the performance of network,
especially generalization. It can also be observed that ENet_SRM and ENet_d_half
have satisfying performance and that the ENet can further decrease the conventional
classification error rate meanwhile slightly improving the overall generalization. Our
conjecture is that convolutional layers without pooling operation in the front part of the
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(a) R (b) G

(c) B (d) SRM

Figure 5.9: Visualization of FFT of the first-layer filters of ENet. B1: (a)[R], (b)[G] and
(c)[B]; B2: (d)[SRM].

two-branch structured ENet tend to preserve the diversity of the information flow, which
may be helpful to improve the forensic performance.

To better analyze and understand ENet, we qualitatively analyze the first-layer filters
of ENet from the signal processing perspective, i.e., visualizing the FFT (fast Fourier
transform) of the first-layer kernels of two branches (B1 and B2 in Figure 5.2), and the
corresponding results are shown in Figure 5.9. Different from the apparent high-pass
response in (d) for SRM, many kernels in the first layer of B1 capture the band-pass
frequency information and several kernels even have relatively low-pass response. This
implies that the ENet can automatically capture different frequency band information
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with the help of our ensemble-like design. This is beneficial to enrich the extracted
features and to improve the detection performance.

5.2.4 Effect of Enhanced Training

In this chapter, we introduced two types of negative sample generation: data-centric
method and model-centric method. To verify the effectiveness of these two methods for
generalization improvement, we conduct extensive experiments with three CNN models
on four datasets. We report in Table 5.3, 5.4, 5.5, and 5.6 the performance before (the
column of “NT”) and after (the columns of “ET-I” and “ET-G”) enhanced training of
YaoNet, NcgNet, and ENet, when they are trained on Artlantis, Autodesk, Corona, and
VRay, respectively. For each table, starting from the second column, each consecutive
three columns form a group, in total four groups. The first group (e.g., “Artlantis” in
Table 5.3) is the conventional classification error rate, and the remaining three groups
(e.g., “Autodesk”, “Corona”, and “VRay” in Table 5.3) are the generalization performance.

From Table 5.3-5.6, we find that enhanced training with negative sample insertion
based on data-centric and model-centric methods usually leads to slight increase of con-
ventional classification error rate; however, the generalization of the three networks can
be apparently and consistently improved by these two methods (except for one case in
Table 5.5, when we trained YaoNet on Corona with data-centric method and tested on
VRay, with a small increase of HTER by 1.39% from 9.14% to 10.53%, but model-centric
method can decrease it to 7.19%). As an example of performance improvement, when
we trained ENet on Artlantis with enhanced training based on model-centric method
(comparing the columns of “NT” and “ET-G” of the last row in Table 5.3), the conven-
tional classification accuracy decreases by 1.44%, whereas the generalization is improved
by 5.75%(Autodesk), 7.30%(Corona), and 6.36%(VRay), respectively. Furthermore, in
Table 5.3-5.6, the HTER value of ENet is always the lowest among three networks except
for one case (3.08% in Table 5.4, i.e., training on Autodesk and testing on Autodesk with
data-centric method). This illustrates our proposed ENet has the superior performance.

We also compare the performance of data-centric and model-centric based enhanced
training with that of “mixup” [Zha+18]. “mixup” is a learning principle to regularize the
neural network and encourage the trained model to behave linearly in-between train-
ing examples. We train the ENet with “mixup” and set its hyperparameter α = 0.4 as
recommended in [Zha+18]. All the results are reported in Table 5.7. Comparing the
columns of “MU” with “ET-I” and “ET-G”, we find that data-centric and model-centric
based enhanced training significantly outperforms “mixup”. Furthermore, the generaliza-
tion performance of “mixup” sometimes is worse than that of normal training (without
“mixup”), e.g., training on Autodesk and testing on Artlantis (10.39% vs. 13.30%). A
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Table 5.3: Performance (HTER, in %, lower is better) of three networks when trained on
Artlantis. “NT” stands for normal training; “ET-I” and “ET-G” stands for enhanced train-
ing with negative samples produced by unpaired linear interpolation and gradient-based
distortion, respectively; The generalization performance results on “unknown” rendering
engines are in italics (same for Table 5.4, 5.5, and 5.6).

Artlantis Autodesk Corona VRay
Network

NT ET-I ET-G NT ET-I ET-G NT ET-I ET-G NT ET-I ET-G
YaoNet 3.86 5.17 3.94 20.31 12.61 12.64 18.17 14.14 13.72 15.11 13.42 12.47
NcgNet 3.17 3.47 3.61 12.69 8.47 8.17 16.00 11.72 11.22 12.58 10.78 9.58
ENet 1.31 2.31 2.75 10.06 5.09 4.31 14.58 8.15 7.28 11.86 7.22 5.50

Table 5.4: Performance (HTER, in %, lower is better) of three networks when trained
on Autodesk.

Autodesk Artlantis Corona VRay
Network

NT ET-I ET-G NT ET-I ET-G NT ET-I ET-G NT ET-I ET-G
YaoNet 4.61 3.86 2.72 28.14 22.50 16.84 15.00 11.31 8.00 21.17 16.00 12.97
NcgNet 2.84 2.87 2.67 16.61 11.48 11.03 12.78 9.50 9.06 16.58 12.32 12.64
ENet 1.56 3.08 2.39 10.39 5.64 5.58 7.67 5.39 4.86 13.39 7.47 8.22

Table 5.5: Performance (HTER, in %, lower is better) of three networks when trained
on Corona.

Corona Artlantis Autodesk VRay
Network

NT ET-I ET-G NT ET-I ET-G NT ET-I ET-G NT ET-I ET-G
YaoNet 3.79 3.79 3.28 19.53 17.17 11.33 10.87 10.50 8.42 9.14 10.53 7.19
NcgNet 2.73 3.06 2.81 21.74 15.05 13.69 9.56 7.25 7.67 8.08 6.11 5.75
ENet 1.50 2.72 2.14 16.08 7.61 6.39 7.92 6.83 7.03 7.78 4.36 4.39

Table 5.6: Performance (HTER, in %, lower is better) of three networks when trained
on VRay.

VRay Artlantis Autodesk Corona
Network

NT ET-I ET-G NT ET-I ET-G NT ET-I ET-G NT ET-I ET-G
YaoNet 4.28 4.22 3.64 16.77 15.75 11.64 15.30 11.89 9.64 9.05 7.47 6.33
NcgNet 3.20 3.53 2.84 14.06 10.19 8.97 15.00 8.86 8.53 5.53 5.17 5.33
ENet 1.25 2.22 1.72 11.58 6.94 5.39 9.97 5.97 6.08 4.53 4.31 3.17

possible reason is that “mixup” is essentially a form of data augmentation that implicitly
affects the generalization of trained CNN model (in fact, this sometimes cannot guaran-
tee the improvement of generalization as reported in Table 5.7 and mentioned above),
whereas data-centric and model-centric based enhanced training can explicitly change
the decision boundary and then improve the generalization of CNN-based detectors.
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Table 5.7: Performance (HTER, in %, lower is better) of ENet. Each row stands for the
training dataset. Starting from the second column, each consecutive four columns form
a group, and each group stands for the testing dataset. “NT” stands for normal training;
“ET-I” and “ET-G” stand for enhanced training with negative samples produced by un-
paired linear interpolation (data-centric) and gradient-based distortion (model-centric),
respectively; “MU” stands for “mixup” [Zha+18]. The generalization performance results
are in italics.

Dataset
Artlantis Autodesk Corona VRay

NT ET-I ET-G MU NT ET-I ET-G MU NT ET-I ET-G MU NT ET-I ET-G MU
Artlantis 1.31 2.31 2.75 1.75 10.06 5.09 4.31 11.95 14.58 8.15 7.28 16.03 11.86 7.22 5.50 11.86
Autodesk 10.39 5.64 5.58 13.30 1.56 3.08 2.39 1.70 7.67 5.39 4.86 9.44 13.39 7.47 8.22 14.44
Corona 16.08 7.61 6.39 14.67 7.92 6.83 7.03 6.97 1.50 2.72 2.14 1.31 7.78 4.36 4.39 6.06
VRay 11.58 6.94 5.39 9.22 9.97 5.97 6.08 9.72 4.53 4.31 3.17 4.33 1.25 2.22 1.72 1.19

As shown above with experimental results, model-centric negative sample inser-
tion usually achieves better performance in terms of conventional classification accuracy
and generalization capability, especially for YaoNet, when compared with data-centric
method. The reason is that model-centric method can more exactly control the location
of negative samples relative to the decision boundary in the feature space of CNN, and
thus more effectively improve the generalization with relatively small decrease of the
classification accuracy on NIs. To clearly illustrate the location of negative samples gen-
erated by data-centric and model-centric methods in the feature space, we train YaoNet
on NIs and CG images rendered by Autodesk. We visualize the deep features of negative
samples in the last insertion of enhanced training with t-SNE [MH08], and results are
shown in Figure 5.10. In Figure 5.10(a), many negative samples are mixed with point
cloud of NIs and predicted as NI (blue diamonds with red +) because the linear interpo-
lation is conducted in the image space and “blind” to CNN. On the contrary, all negative
samples of model-centric method in Figure 5.10(b) are predicted as CG (blue diamonds
with blue +) and almost located in the middle of point clouds of NIs and CG images.

5.2.5 Discussion

In our study, we first observe a new problem regarding the generalization performance
of CG forensics, then propose a new method to cope with this challenging problem, and
finally validate the proposed method with extensive experiments. New understanding we
get from this study is mainly the following: when we roughly know that a class may have
a relatively large distribution change during testing, we can use our method to generate
proxy samples of the “unknown” distributions by only using available training data; the
enhanced training with such samples is effective to improve generalization. This is valid
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(a) (b)

Figure 5.10: The deep feature visualization of YaoNet with t-SNE [MH08]. “C” means
computer-generated images and “N” means natural images. “C-Auto” means the CG
images rendered by Autodesk and “C-NS” means the negative samples generated by data-
centric method (a) and model-centric method (b). “Y-pred” means that the predicted
label of CNN is Y. NIs and CG images are randomly selected from training dataset for
visualization.

for the 12 (4*3) tested cases. Our work is a small step towards the ultimate goal of fully
understanding CNN’s generalization. We have also tried to gain new understanding with
FFT of first-layer filters and t-SNE visualization, which may provide useful insights to
colleagues.

5.3 Summary

In this chapter, we studied and proposed a solution for the challenging blind detection
problem of CG image forensics. To facilitate this study, we collected four CG datasets
with high level of photorealism. We designed and implemented a novel two-branch
network with different initializations in their respective first layer to extract more diverse
features, and this network has good generalization performance. In the meanwhile, we
also introduced the data-centric and model-centric negative sample generation used for
conducting enhanced training. This can further improve the generalization performance
of CNN-based detectors. More information and materials, including the source code and
datasets, are available at https://github.com/weizequan/CGDetection.

For this new and challenging CG forensic problem, our method does not offer a rig-
orous framework/formulation, which can be considered as a limitation. However, this

https://github.com/weizequan/CGDetection
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might also be an advantage: e.g., we avoid implicit restrictions due to mathematical mod-
eling, such as specific hypothesized parameterization of the distributions of “unknown”
CG images. Further, our approach does not use any sample or prior knowledge of new
distributions, which is usually necessary for a rigorous formulation (e.g., in many domain
adaptation algorithms). This makes our method simple, flexible and generic because our
assumption is very weak and everything is done “off-line” at the training side. In the
future, we plan to study the generalization improvement with a suitable rigorous for-
mulation. Our proposed method and such a future method are not contradictory, and
can even complement each other, e.g., our “off-line” method applied first, before an “on-
line” continual learning method. Last but not least, our study implies that in order to
improve generalization it is beneficial to learn diverse features and to learn from harder
artificial samples. We would like to test this idea in other research problems and in the
meanwhile explore other approaches to understanding and enhancing the generalization
of CNN-based forensic detectors.
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6.1 Summary of Contributions

With the rapid development of image editing software and computer graphics rendering
technology, as well as recent generation algorithms based on deep learning tools (CNN,
GAN, etc.), it has become easier to tamper with image content or generate high-quality
images. While these generation technologies facilitate and enrich human daily life, they
also weaken the reliability of digital images, and potentially endanger areas that are very
sensitive to image data, such as public security, justice, medical care, and education, etc.

For the identification of computer-generated images, researchers have proposed a
variety of solutions and made good progress, but there are still many problems to be
solved. First of all, at the time when we started this thesis work, most of the existing
forensic methods mainly used a two-stage framework of discriminative feature extraction
and classifier training. These approaches usually have limited performance on com-
plex data. Inspired by the successful application of advanced deep learning methods in
many research fields, recently some researchers have tried to design new deep models
and achieved good image forensics performance. However, some questions related to
the trustworthiness and interpretation of CNN-based forensic methods are still worth
studying. For instance, we may ask the following questions: What information does the
CNN extract as discriminative features, and does it capture the “essential” difference be-
tween different types of images? In the testing phase, can the discriminative information
extracted by CNN generalize well on the “unknown” data, and how to further improve
its generalization capability? Finally, computer rendering tools, colorization techniques
and other image generation technologies, now more or less using advanced deep learning
methods, can generate images with higher and higher visual quality, which undoubt-
edly increases the requirements of good generalization (or blind detection) capability of
forensic detectors. Therefore, evaluating and improving the generalization performance

95
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of image forensic methods is of great research value and practical significance. For the
problem of identifying computer-generated images, current research mainly focuses on
improving the detection performance of forensic detectors (under an ideal experimental
environment). Very few works consider and discuss the generalization of detectors for
the “unknown” test data. Under this context, this thesis has studied the above issues in
depth and obtained some useful results, which are summarized as follows:

1. A colorized image detection method based on negative sample insertion. Con-
sidering that the current forensic methods based on hand-crafted features or CNN have
insufficient generalization capability on the “unknown” test data (i.e., the challenging
blind detection scenarios), this thesis proposes a CNN enhanced training method to im-
prove the generalization performance of the network. This blind detection performance
can be regarded as the generalization capability of forensic detectors. With the aid
of the feature visualization, we first analyze the potential reasons for the performance
degradation of CNN when used to identify the “unknown” test data, and then design
a simple and effective enhancement training method. Specifically, the negative sam-
ples (with the same label as colorized images) are automatically constructed through
linear interpolation of paired natural image and colorized image (both sharing a same
grayscale luminance component), and then these negative samples are iteratively added
to the original training data to be used in the so-called enhanced network training. Ex-
perimental results show that this enhanced training method can significantly improve
the generalization performance of different CNNs.

2. An ensemble-like generalization method for colorized image detection. In the
field of image forensics, somehow as expected, CNN-based methods usually achieve the
state-of-the-art performance. However, some questions about the trustworthiness of such
methods are worth studying and answering, for example, regarding the suitability of
the discriminative features automatically extracted by the CNN and the generalization
performance of these features on “unknown” test data. Taking colorized image detection
as an example, this thesis carries out studies and analysis on the above issues through
a series of experiments, and obtains some useful hints, concerning the preparation of
experimental data and the use of some existing filters in the beginning of CNN. In the
meanwhile, inspired by the experimental results, we propose a very simple method to
obtain the final prediction by combining the decisions from CNNs with different settings
at the network’s first layer. Experiments show that this ensemble-like method can further
improve the generalization performance of colorized image detection.

3. CNN-based identification of natural images and CG images. Having observed the
limited forensic performance of methods based on hand-crafted features, we have con-
ducted a comprehensive study of CNN-based solutions, which includes CNN fine-tuning,
architecture design, loss function selection, visualization and understanding. This thesis
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introduces a generic CNN-based framework for identifying computer-rendered images.
We start with fine-tuning of a well-known pre-trained CNN from the computer vision
community, and then design a new and improved CNN. Both of these CNN-based solu-
tions are superior to the latest methods combining hand-crafted feature extraction and
classifier training. Our proposed method shows the best performance on challenging
public datasets (very close to the real-world scenarios), and has good robustness against
several possible attacks (including resizing and JPEG compression). Last but not least,
unlike the existing methods of applying CNN to other image forensic problems, this thesis
presents the first attempt to use advanced visualization tools (such as FFT and layer-
wise relevance propagation toolbox) to understand what our CNN has learned about
the differences between natural images and computer-rendered images. These attempts
could provide interesting observations and insights for this CG image detection problem
as well as other image forensic tasks.

4. An improved method for identifying CG images based on feature diversity en-
hancement and adversarial samples. For this part of work, we make efforts to improve
the generalization capability of CNN-based detectors from two aspects: network archi-
tecture and network training. To our knowledge, we propose and study for the first time
in the literature the generalization performance of CG image detection. We first collect
four high-quality datasets of computer-rendered images. For the network architecture,
we design and implement a novel two-branch CNN. The first layer of the two branches of
the network uses different initialization methods to enrich the diversity of deep features.
For the network training, we propose a new method based on gradient perturbation to
generate more difficult artificial negative samples, and then the enhanced training is
carried out to further improve the generalization capability of the CNN-based detector.
Our study implies that in order to improve generalization it is beneficial to learn diverse
features and from harder artificial samples.

6.2 Perspectives

As summarized above, in this thesis we made some contributions to the research problem
of identifying computer-generated images. More efforts shall be devoted to this interest-
ing and important forensic problem. Regarding the future working directions, we have
the following suggestions:

1. Increasing the diversity of learned features. Although the deep-learning-based
method has achieved good forensic performance, the first layer of most networks uses a
set of fixed high-pass filters to extract high-frequency signals. Despite of its effective-
ness, this design may suppress some useful forensic traces, and high-pass filters may not



98 Chapter 6. Conclusions

always be the optimal solution. Therefore, free learning or appropriate co-learning with
high-pass filters (such as ensemble learning), is an interesting future working direction.
In addition, it is promising to design a new deep network architecture to integrate multi-
ple forensic traces, with the main purpose of increasing the diversity of feature learning.
Possible attempts include the fusion of the features of the spatial domain with those
of the transform domain, extracting useful information from automatically learned do-
mains, and further enhancing the discrimination and generalization capability of features
through automatic feature fusion and feature selection.

2. Robustness of the forensic detector. The continuous development of computer
generation technology leads to fake images of higher and higher quality. At the same
time, a robust forensic detector needs to be able to deal with a certain degree of mali-
cious attacks. Therefore, the anti-forensics of computer-generated images is also worth
studying. In addition, the deep network itself also has the risk of being attacked, such as
adversarial samples. One possible research idea is to combine anti-forensics in the field of
multimedia security and adversarial defenses of deep network to improve the robustness
of CNN-based forensic detectors. Moreover, real-world scenarios often have demanding
requirements for the robustness of forensic detectors, for example in the case of an ad-
versarial and high-loss image compression. How to retain the forensic performance in
such adversarial but realistic scenarios is an important research problem.

3. The detection and quality enhancement of GAN-generated images. Currently,
GAN-generated images have become more and more realistic (such as DeepFake,
Face2Face, etc), which inevitably bring security risks. Consequently, the detection of
GAN-generated images has become a new forensic problem, which has attracted the at-
tention of more and more researchers. In fact, the identification of computer-generated
images and the enhancement of the perceived quality of generated images are two sides
of the coin, but both are very interesting and related research topics. For example, the
detection of GAN-generated images can be used as an analysis method to understand the
generation process itself, and accordingly can provide inspiration and guidance for the en-
hancement of the realism of the generated images. Both research topics can be advanced
through several rounds of competitions between them. This is similar to the interplay
between steganalysis and steganography, or between cryptanalysis and cryptography.
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A.1 Introduction

L’image numérique, de par son caractère direct et compréhensible, en fait un moyen de
communication efficace et naturel. Historiquement, l’authenticité des données d’image
est fiable. Par exemple, une photo imprimée dans un journal peut être largement accep-
tée comme preuve d’actualité ; ou, les enregistrements de vidéosurveillance sont proposés
comme documents importants au tribunal. Aujourd’hui, grâce au faible coût et à la sim-
plification des appareils d’acquisition, tels que les téléphones intelligents et les appareils
photo numériques, presque tout le monde peut enregistrer, stocker et partager un grand
nombre d’images/vidéos à tout moment et n’importe où. En attendant, de nombreux
logiciels/outils d’édition d’images rendent également extrêmement simple la modification
du contenu d’image ou la création de nouvelles images. En conséquence, la possibilité
de falsifier le contenu visuel n’est plus limitée aux experts. La technologie numérique a
commencé à affaiblir le degré de confiance dans le contenu visuel, et il est évident que
« ce que vous voyez n’est plus digne de confiance ». La figure A.1 montre une fausse
image très réaliste composée de 16 photos différentes1. Avec l’avancée et la complex-
ité des outils de traitement, tous ces problèmes deviennent de plus en plus urgents, ce
qui a poussé les recherches sur la criminalistique des images numériques. Le cœur et
l’objectif de la criminalistique d’image sont de restaurer une certaine confiance dans les
images numériques. D’une manière générale, les principaux objectifs de la criminalis-
tique d’images sont d’analyser une image numérique donnée afin de détecter s’il s’agit
d’une falsification, d’identifier son origine, de retracer son historique de traitement, ou
de révéler des détails potentiels invisibles à l’œil nu [Fan15].

1Cette image provient de http://commons.wikimedia.org/wiki/User:Mmxx, auteur : mxx.
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Figure A.1: Une fausse image très réaliste composée de 16 photos différentes. Logiciel
utilisé : Adobe Photoshop R© [Pho].

Cette thèse étudie principalement l’identification des images générées par ordinateur,
y compris la classification des images naturelles (NI) et des images de synthèse (CG)
(appelées CG image forensics), et la classification des images naturelles et des images
colorisées (CI) (appelée détection de CI). Ici, les images naturelles font référence aux
images capturées par un appareil photo numérique. Le premier est un problème de
recherche important et relativement ancien dans le domaine de la criminalistique des
images, et les chercheurs ont déjà mené un grand nombre de travaux [LF05; Ng+05] ; ce
dernier est un problème de recherche émergent en criminalistique des images [Guo+18;
YRC19]. La figure A.2 montre en (a) deux images CG de haute qualité2 et en (b) deux
images colorisées visuellement réalistes, qui sont obtenues en utilisant un algorithme de
colorisation automatique avancé [ISSI16] ; la figure A.2 (c) montre les images naturelles
originales correspondantes des images de (b), où (b) et (c) partagent les mêmes infor-
mations en niveaux de gris. En fait, il est difficile pour les observateurs humains de
déterminer si les images en (a) et (b) ont été capturées par une caméra (c’est-à-dire des
images naturelles). Ces questions de la criminalistique des images ont une importance
de recherche significative dans les domaines de la sécurité publique, de la justice et du
divertissement. Dans le même temps, l’apprentissage profond a récemment atteint un
développement rapide grâce à la promotion de l’industrie et à l’attention considérable
des chercheurs académiques.

A.2 Objectifs et Contributions

En gardant à l’esprit les problèmes et défis actuels dans le domaine de l’identification
d’images générées par ordinateur, l’étude de cette thèse se concentre principalement

2Les images proviennent de https://area.autodesk.com/fakeorfoto/.

https://area.autodesk.com/fakeorfoto/
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(a) Images d’infographie

(b) Images colorisées

(c) Images naturelles

Figure A.2: Exemples d’images CG, CI et NI : (a) Images d’infographie (CG) ; (b)
Images colorisées (CI) ; (c) Images naturelles (NI). Les images de (b) et (c) partagent
les mêmes informations en niveaux de gris.

sur les quatre aspects suivants : (1) Pour la capacité de généralisation de la détection
d’images colorisées, nous utilisons la visualisation des caractéristiques pour compren-
dre les potentielles causes sous-jacentes, et nous introduisons une nouvelle procédure
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d’entraînement renforcée basée sur des échantillons négatifs pour améliorer la capacité
de généralisation ; (2) Pour la fiabilité des détecteurs criminalistiques basés sur les CNNs
(Convolutional Neural Networks), nous prenons comme exemple la détection d’images
colorisées pour étudier l’impact de la préparation des données et la première couche
de CNN sur les performances criminalistiques ; (3) Pour le problème de la criminalis-
tique d’image CG, nous étudions de manière exhaustive les solutions basées sur CNN,
y compris la conception de réseau, les stratégies d’entraînement, la visualisation et la
compréhension ; (4) Pour améliorer les performances de la détection des images CG,
nous combinons les trois premiers travaux de recherche, concevons un nouveau réseau,
collectons de nouveaux échantillons de données et améliorons la précision de détection
et la capacité de généralisation. Plus précisément, les principaux contenus de recherche
et contributions de cette thèse comprennent les quatre points suivants :

1. Détection d’image colorisée basée sur l’insertion d’échantillon négatif. Compte
tenu de la capacité de généralisation limitée des détecteurs existants basés sur les carac-
téristiques fabriquées à la main ou basés sur CNN dans un scénario de détection aveugle
difficile, cette thèse propose une méthode d’entraînement de CNN renforcé pour améliorer
la capacité de généralisation du détecteur. Ici, la détection aveugle signifie que pendant
la phase de test, les échantillons de test sont générés par des méthodes de colorisation «
inconnues ». Il s’agit d’une situation fréquemment rencontrée, dans laquelle aucun échan-
tillon des méthodes de colorisation « inconnues » rencontrées lors de la phase de test n’a
été utilisé pendant la phase d’entraînement. Cette performance de détection aveugle est
également appelée performance de généralisation des détecteurs criminalistiques. Nous
analysons d’abord les raisons potentielles de la performance de généralisation limitée
des réseaux de neurones au moyen de la visualisation des caractéristiques, puis nous con-
cevons une méthode d’apprentissage renforcé basée sur l’insertion d’échantillons négatifs.
Plus précisément, les échantillons négatifs sont automatiquement construits par interpo-
lation linéaire des paires d’images naturelles et d’images colorisées, et ces échantillons
ont la même étiquette que les images colorisées. Les échantillons négatifs construits sont
ajoutés dans l’ensemble de données d’apprentissage d’origine de manière itérative, puis
un entraînement renforcé est effectué, et enfin le modèle est choisi par une méthode
simple basée sur des seuils. Cette approche est validée sur plusieurs jeux de données
et différents CNNs, et les résultats montrent que l’entraînement renforcé proposé peut
considérablement améliorer les performances de généralisation.

2. Une méthode avec une capacité de généralisation améliorée basée sur des études
sur l’impact des données et du réseau CNN sur les performances des détecteurs crim-
inalistiques. Récemment, les méthodes d’apprentissage profond ont obtenu de bonnes
performances dans de nombreux domaines, et le domaine de la criminalistique d’image ne
fait pas exception. De nombreux chercheurs ont introduit des méthodes basées sur CNN
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pour résoudre des problèmes criminalistiques, et ces méthodes permettent généralement
d’obtenir les meilleures performances criminalistiques. Cependant, des performances
élevées peuvent masquer certains problèmes ou pièges potentiels. Par conséquent, cette
thèse mène une étude sur la fiabilité des détecteurs criminalistiques basés sur CNN. Plus
précisément, nous étudions et répondons à plusieurs questions étroitement liées à la fia-
bilité du détecteur, telles que l’adéquation des caractéristiques discriminantes extraites
automatiquement par le modèle CNN et la capacité de généralisation à des données «
inconnues » dans la phase de test. Prenant comme exemple la détection d’images col-
orisées, cette thèse étudie ces problèmes et obtient des conseils utiles. De plus, inspirés
par l’idée de l’apprentissage d’ensemble, nous proposons une méthode simple et efficace
pour obtenir les résultats finaux de la prédiction en combinant les résultats de décision
des modèles CNN avec des réglages différents à la première couche du réseau. Les ré-
sultats expérimentaux montrent que cette méthode peut améliorer les performances de
généralisation de la détection d’images colorisées.

3. Une étude approfondie sur l’identification des images naturelles et des images CG
basée sur CNN. Motivée par l’observation des performances de classification limitées des
méthodes traditionnelles basées sur des caractéristiques fabriquées à la main, en parti-
culier lorsqu’il s’agit d’ensembles de données multi-sources plus complexes, cette thèse
conçoit et met en œuvre un cadre d’identification générique, qui contient trois groupes
de réseaux pour traiter les blocs d’images d’entrée de différentes tailles. Nous effec-
tuons d’abord le réglage fin du modèle CNN pré-entraîné sur ImageNet, puis concevons
un réseau CNN amélioré avec des couches convolutives en cascade pour ce problème
criminalistique. Les résultats expérimentaux montrent que les deux solutions basées sur
CNN sont supérieures aux méthodes de pointe basées sur l’extraction de caractéristiques
fabriquées à la main et l’entraînement de classificateurs. Plus important encore, notre
méthode montre une bonne capacité de classification sur un ensemble de données pub-
lic difficile comprenant des images d’origines hétérogènes (très proches de l’application
du monde réel), et démontre une forte robustesse contre plusieurs opérations de post-
traitement, y compris le redimensionnement et la compression JPEG. Notre travail a
été l’une des premières méthodes basées sur l’apprentissage profond pour détecter les
images CG. De plus, contrairement aux méthodes existantes d’application de CNN aux
problèmes de criminalistique d’image, nous utilisons des outils avancés d’analyse et de
visualisation, y compris la transformation de Fourier rapide (FFT), la propagation de
pertinence par couche (LRP) et les « entrées préférées » (PI), pour comprendre ce que
notre CNN a appris sur les différences entre les images NI et CG.

4. Identification d’images CG basée sur l’amélioration de la diversité des caractéris-
tiques et des exemples contradictoires. Les performances criminalistiques des détecteurs
CNN existants peuvent être encore améliorées, en particulier la capacité de généralisation
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sur des ensembles de données de test « inconnues » est limitée. Pour résoudre ce prob-
lème, nous faisons des efforts dans deux aspects de CNN : la conception de l’architecture
du réseau et l’entraînement du réseau. Une autre contribution est que pour la première
fois dans la littérature, nous proposons d’étudier la capacité de généralisation des méth-
odes criminalistiques d’images CG. Afin d’étudier ce problème difficile, nous collectons
quatre jeux de données d’images CG de haute qualité. Pour l’architecture du réseau, nous
concevons un CNN à deux branches. La première couche des deux branches du réseau
utilise différentes méthodes d’initialisation, à savoir l’initialisation aléatoire gaussienne
et un ensemble de filtres résiduels de passe-haut. Le but est d’enrichir la diversité des
caractéristiques extraites. Pour l’entraînement du réseau, nous proposons une nouvelle
méthode centrée sur le modèle CNN pour générer des exemples contradictoires comme
des échantillons négatifs plus difficiles (en comparaison avec la méthode dite centrée sur
les données, c’est-à-dire identique à la génération d’échantillons négatifs pour la détec-
tion d’images colorisées présentée plus haut, qui est basée sur l’interpolation d’une paire
de NI et CI). Ensuite, un entraînement renforcé est effectué pour améliorer encore la
capacité de généralisation de CNN qui utilise les échantillons négatifs générés. Les résul-
tats expérimentaux sur plusieurs jeux de données montrent que notre méthode proposée
peut obtenir une meilleure précision de classification et une meilleure performance de
généralisation.

En résumé, cette thèse considère principalement quatre tâches de recherche. Les deux
premières tâches se concentrent sur la détection d’images colorisées. Le premier résout
le problème de capacité de généralisation, et le second étudie l’impact des données et de
l’architecture du réseau sur les performances criminalistiques (en particulier les perfor-
mances de généralisation). Les deux dernières tâches se concentrent sur l’identification
des images CG. Pour ce problème criminalistique, nous proposons d’abord un cadre
générique basé sur CNN et effectuons une analyse et une compréhension du réseau en
utilisant des outils avancés de visualisation. Sur la base de toutes nos études précé-
dentes, nous améliorons ensuite la conception de l’architecture du réseau et la généra-
tion d’échantillons négatifs pour atteindre une capacité de généralisation améliorée de
l’identification d’images CG.

A.3 Perspectives

Comme résumé ci-dessus, dans cette thèse, nous avons apporté quelques contributions
au problème de recherche de l’identification des images générées par ordinateur, plus
précisément les images d’infographie (CG) et les images colorisées (CI). Des efforts sup-
plémentaires seront consacrés à ce problème criminalistique intéressant et important.
Concernant les futures orientations de travail, nous avons les suggestions suivantes :
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1. Augmenter la diversité des caractéristiques apprises. Bien que la méthode basée
sur l’apprentissage profond ait obtenu de bonnes performances criminalistiques, la pre-
mière couche de la plupart des réseaux utilise un ensemble de filtres passe-haut fixes
pour extraire les signaux de haute fréquence. Malgré son efficacité, cette conception
peut supprimer certaines traces criminalistiques utiles, et les filtres passe-haut peuvent
ne pas toujours être la solution optimale. Par conséquent, l’apprentissage libre ou le co-
apprentissage approprié avec des filtres passe-haut (tels que l’apprentissage d’ensemble),
est une direction de travail future intéressante. En outre, il est prometteur de concevoir
une nouvelle architecture de réseau profond pour intégrer plusieurs traces criminalis-
tiques, dans le but principal d’augmenter la diversité de l’apprentissage des caractéris-
tiques. Les tentatives possibles incluent la fusion des caractéristiques du domaine spatial
avec celles du domaine de transformation, l’extraction d’informations utiles à partir de
domaines appris automatiquement, et l’amélioration de la capacité de discrimination
et de généralisation des caractéristiques par une fusion automatique et la sélection de
caractéristiques.

2. Robustesse du détecteur criminalistique. Le développement continu de la tech-
nologie de génération d’images conduit à de fausses images de meilleure qualité. Dans
le même temps, un détecteur criminalistique robuste doit être capable de gérer un cer-
tain degré d’attaques malveillantes. Par conséquent, l’anti-criminalistique des images
générées par ordinateur mérite également d’être étudiée. De plus, le réseau profond lui-
même risque également d’être attaqué, comme des échantillons contradictoires. Une idée
de recherche possible est de combiner l’anti-criminalistique dans le domaine de la sécurité
multimédia et les défenses antagonistes des réseaux profonds pour améliorer la robustesse
des détecteurs criminalistiques basés sur CNN. De plus, les scénarios du monde réel ont
souvent des exigences élevées en matière de robustesse des détecteurs criminalistiques,
par exemple dans le cas d’une image contradictoire compressée à perte élevée. Comment
conserver la performance criminalistique dans de tels scénarios contradictoires mais réal-
istes est un problème de recherche important.

3. La détection et l’amélioration de la qualité des images générées par GAN (Genera-
tive Adversarial Network). Actuellement, les images générées par GAN sont devenues de
plus en plus réalistes (comme DeepFake, Face2Face, etc.), ce qui entraîne inévitablement
des risques de sécurité. Par conséquent, la détection des images générées par le GAN est
devenue un nouveau problème criminalistique, qui a attiré l’attention de plus en plus de
chercheurs. En fait, l’identification des images générées par ordinateur et l’amélioration
de la qualité perçue des images générées sont les deux faces d’une pièce de monnaie,
mais les deux sont des sujets de recherche très intéressants et connexes. Par exemple, la
détection d’images générées par GAN peut être utilisée comme une méthode d’analyse
pour comprendre le processus de génération lui-même, et en conséquence peut fournir
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une inspiration et des conseils pour l’amélioration du réalisme des images générées. Les
deux sujets de recherche peuvent être avancés à travers plusieurs séries de concours entre
eux. Ceci est similaire à l’interaction entre la stéganalyse et la stéganographie, ou entre
la cryptanalyse et la cryptographie.
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Title: Detection of Computer-Generated Images via Deep Learning

Abstract: With the advances of image editing and generation software tools, it
has become easier to tamper with the content of images or create new images, even for
novices. These generated images, such as computer graphics (CG) image and colorized
image (CI), have high-quality visual realism, and potentially throw huge threats to many
important scenarios. For instance, the judicial departments need to verify that pictures
are not produced by computer graphics rendering technology, colorized images can cause
recognition/monitoring systems to produce incorrect decisions, and so on. Therefore,
the detection of computer-generated images has attracted widespread attention in the
multimedia security research community. In this thesis, we study the identification of
different computer-generated images including CG image and CI, namely, identifying
whether an image is acquired by a camera or generated by a computer program. The
main objective is to design an efficient detector, which has high classification accuracy
and good generalization capability. Specifically, we consider dataset construction,
network architecture, training methodology, visualization and understanding, for the
considered forensic problems. The main contributions are: (1) a colorized image
detection method based on negative sample insertion, (2) a generalization method for
colorized image detection, (3) a method for the identification of natural image (NI) and
CG image based on CNN (Convolutional Neural Network), and (4) a CG image iden-
tification method based on the enhancement of feature diversity and adversarial samples.

Keywords: Image Forensics, Deep Learning, Computer-Generated Image, Col-
orized Image, Generalization, Trustworthiness



Titre : Détection d’images générées par ordinateur basée sur l’apprentissage profond

Résumé : Avec les progrès des outils logiciels d’édition et de génération d’images, il
est devenu plus facile de falsifier le contenu des images ou de créer de nouvelles images,
même pour les novices. Ces images générées, telles que l’image d’infographie (CG) et
l’image colorisée (CI), ont un réalisme visuel de haute qualité et peuvent potentiellement
menacer de nombreuses applications importantes. Par exemple, les services judiciaires
doivent vérifier que les images ne sont pas produites par la technologie de rendu
infographique, les images colorisées peuvent amener les systèmes de reconnaissance
/ surveillance à produire des décisions incorrectes, etc. Par conséquent, la détection
d’images générées par ordinateur a attiré une large attention dans la communauté
de recherche en sécurité multimédia. Dans cette thèse, nous étudions l’identification
de différentes images générées par ordinateur dont les images CG et CI. Nous nous
intéressons à identifier si une image est acquise par une caméra ou générée par un
programme informatique. L’objectif principal est de concevoir un détecteur efficace,
qui a une précision de classification élevée et une bonne capacité de généralisation.
Plus précisément, nous considérons la construction de jeux de données, l’architecture
du réseau, la méthodologie d’entraînement, la visualisation et la compréhension, pour
les problèmes criminalistiques considérés. Les principales contributions sont : (1) une
méthode de détection d’image colorisée basée sur l’insertion d’échantillon négatif, (2)
une méthode d’amélioration de généralisation pour la détection d’image colorisée, (3)
une méthode d’identification d’image naturelle (NI) et d’image CG basée sur CNN
(réseau de neurones convolutifs), et (4) une méthode d’identification d’image CG basée
sur l’amélioration de la diversité des caractéristiques et des échantillons contradictoires.

Mots clés : Criminalistique des images, Apprentissage profond, Image générée
par ordinateur, Image colorisée, Généralisation, Fiabilité
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