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Performing global approach studies on buildings, which take into consideration both the envelope and the connected systems, lead to the complexity of models under study. Simulation of such models may lead to high computational time expenses.

Usually, simplified or surrogate models instead of detailed ones are used to avoid this issue. A global approach based on the reduction of input data profiles rather than the model itself is a current case of interest. The approach evaluates annual performances of a model starting from a short simulation sequence of typical selected days instead of complete data profiles.

After presenting and analyzing the methods used in the literature for typical day selection, the thesis presents a new iterative approach with an embedded grouping algorithm. The new algorithm, called TypSS (Typical Short Sequence) Algorithm, creates and enhances iteratively a short simulation sequence of typical days based on target criteria reflecting the annual performances of a model. The algorithm was applied on a detailed building model and led to much faster simulations while obtaining results of high correlation with the reference ones. Results were also compared to an iterative and a clustering approach used for day selection and its potential was noticed.

The approach also showed its efficiency when generalized, and a sensitivity analysis on its input parameters was performed to evaluate its sensitivity to initial inputs imposed by operators.

Finally, the reduced sequence was used in a heavy multi-objective optimization study by NSGA-II. An adaptive strategy for optimization employing reduced sequences named OptiTypSS was introduced comparing the obtained results to an adaptive metamodel based approach. The method succeeded in obtaining optimal results very close to the ones from a reference full year simulation requiring less heavy simulations (30 for the metamodel approach while 9 for OptiTypSS). On the other hand computational time taken by the proposed strategy was higher than the one of metamodel due to the time consumed in the day selection process which could be enhanced in future work.
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Résumé

Les approches holistiques en modélisation des bâtiments sont des démarches globales considérant les fortes interactions entre l'enveloppe, les systèmes, l'environnement et les usagers. Par contre, ils sont très pénalisants en temps de calcul du fait de l'utilisation de modèles détaillés en régime dynamique et de périodes simulées longues. Dans ce contexte, la réduction du temps de calcul est un véritable défi pour les études holistiques.

La démarche classique utilise les méta-modèles ou des modèles réduits. La thèse explore une autre voie basée sur la réduction de la période simulée au lieu du modèle lui-même. L'objectif est de définir une séquence de jours suffisamment courte pour déterminer avec le modèle dynamique complet les performances qui sont ensuite extrapolées à l'année complète. Cela permettrait ainsi de développer une approche méthodologique plus rapide et plus accessible pour la conception des bâtiments.

Après avoir présenté et analysé les méthodes utilisées dans la littérature, la thèse présente une nouvelle approche itérative intégrant un algorithme de regroupement. Le nouvel algorithme, appelé TypSS (Typique Short Sequence) Algorithme, crée et améliore de manière itérative une séquence courte de jours typiques basée sur des critères de sélection reflétant les performances annuelles d'un cas d'étude.

L'algorithme a été appliqué sur un modèle de bâtiment détaillé et a conduit à des simulations beaucoup plus rapides tout en obtenant des résultats très proches des résultats annuels. Les résultats ont également été comparés à une approche itérative et de regroupement utilisées pour la sélection de jours et son potentiel a été remarqué.

L'algorithme a également montré son efficacité lorsqu'elle est généralisée. Une analyse de sensibilité sur les paramètres d'entrée a été réalisée pour évaluer la sensibilité aux paramètres devant être fixés par un utilisateur.

Enfin, la séquence réduite a été utilisée dans une étude d'optimisation multicritères par NSGA-II. Une approche adaptative d'optimisation utilisant des séquences réduites nommée OptiTypSS est introduite en comparant les résultats obtenus à une approche adaptative basée sur le métamodèle. La méthode a permis d'obtenir des résultats très proches des individus optimaux obtenus à partir de simulations sur une année complète. D'autre part, le temps de calcul pris par la stratégie proposée était plus élevé vi que celui du métamodèle en raison du temps consommé dans le processus de sélection du jour. En conséquence, elle pourrait être amélioré dans les travaux futurs.

Mots clés: Bâtiments, systèmes énergétiques, séquence courte, réduction du temps de calcul, optimisation multi-objectifs.
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General Introduction

The building sector in its two forms, residential and commercial, accounts for about one-third of the global energy demand. However, the sector offers significant potential for improved energy efficiency with high-performance envelops and energy-efficient systems. Building energy simulations (BES) and optimization are increasingly demanded in the field because of its emphasis on sustainability. Yet, performing global approache studies on buildings, which takes into consideration both the envelope and the systems, leads to the complexity of models under study, leading therefore to unfeasible computational time expenses. Usually, simplified or surrogate models instead of detailed building models are used to avoid this issue.

However, this model replacement may affect severely the representation of the tested case study and therefore rises doubts concerning the credibility of applied studies. In addition to that, surrogate models may be inapplicable in case of large complex models due to the need of numerous learning data to construct. A holistic approach that might solve those doubts is a current case of interest. It is based on the reduction of input data profiles rather than the model itself.

The thesis presents and evaluates a developed day selection approach called TypSS (Typical Short Sequence) Algorithm to generate reduced sequences that can be applied on detailed models, despite their level of complexity, in dynamic simulations.

A multi-objective optimization approach, named OptiTypSS, is then presented and evaluated in this research work. It employs reduced sequences generated by TypSS to accelerate heavy multi-objective optimization studies.

The manuscript is divided into four chapters starting from a thorough literature review.

In this first chapter, the problem of energy sources depletion and global warming is discussed showing the role of the building sector in this worldwide crisis. A literature review is then conducted around the studies and approaches applied in the domain as attempts to reduce the energy impact of the sector. The main issues facing researchers and engineers are discussed which are directing toward global approaches for building performance evaluation such as the use of reduced sequences in building simulations, the subject of this thesis. Approaches for typical day's selection used in the literature are described afterwards showing the interest in developing a new generalized approach.

Chapter two presents this generalized approach, named TypSS, explaining the process it takes in each step starting from reference data to a final reduced sequence of typical days. The process is explained on a building connected to a combined solar thermal and heat pump system to simplify its presentation. During the industrial revolution, humanity witnessed a transition phase from an agricultural dominated society to a commercial industrial one [START_REF] Saint-Simon | Catéchisme des industriels[END_REF]. World population has increased from around 700 million to more than 7 billion people nowadays. A growth pattern expected to exceed 9.7 billion by the year 2050 according to the International Energy Agency [START_REF] Iea | Energy Technology Perspectives 2017 -Executive Summary[END_REF]. This is accompanied by a 70% expected increase in worldwide household (home unit) with respect to the year 2010 [START_REF] Desa | World Population Prospects The 2017 Revision Key Findings and Advance Tables[END_REF]. Due to this trend, man's daily habits and living conditions have transformed radically, leading to a change in daily life style and the urge for resources to power the new growing communities.

Steam engines were soon powering transportation, factories, homes and farm implements. Coal was also used for heating buildings. At the end of the 19 th century, oil, processed into gasoline, began trending as the main energy resource for internal combustion engines. Energy use was increasing rapidly, doubling every year while the cost of energy production was declining steadily. However, this was accompanied by the depletion of those abundant yet limited resources and a drastic increase in air, water and soil pollution.

Temperature measurements made in different places of the globe during the 20th century show an increase in average temperature compared to the previous century. This increase has taken place in two stages, the first from 1910 till 1945, the second from 1976 till today [START_REF] Hansen | GLOBAL SURFACE TEMPERATURE CHANGE[END_REF]. Moreover, the work of several researchers of the Intergovernmental Panel on Climate Change (IPCC) shows the existence of a correlation between the CO2 concentration and the temperature at the surface of the earth [START_REF] Giec | Le cinquième rapport de l'évaluation[END_REF]. Following these observations, the massive exploitation of fossil fuels has been singled out as certainly responsible. The assertions of the IPCC, expressed in the various reports it has produced [START_REF] Giec | Rapports d'évaluation[END_REF], have ruled on the responsibility of fossil fuels in the increase of gases to greenhouse effect (GHG) in recent decades. Currently the majority of decision makers recognize that global warming is anthropogenic in origin.

The overall energy and environmental situation is even more complex. The world population continues to increase almost linearly during the three past decades.

Population growth naturally generates more activities and creates more needs.

Between 1980 and 2015, carbon dioxide emission increased by around 60%. Recent forecasts show that demand for energy will continue to increase reaching up to 39 gigatonne of CO2 emissions by the year 2030 (Figure I-1). According to [START_REF] Pérez-Lombard | A review on buildings energy consumption information[END_REF] the energy consumption in developing countries will increase with an annual average of 3.2% exceeding that of developed countries. 

I.3. Buildings sector on French scale

Regarding France, it is true that the unit needs of buildings is decreasing over time (thanks to thermal insulation, considering energy aspects during construction, housing rehabilitation etc.). However, energy demand in this sector remains very high especially due to the large stock of strongly consuming existing buildings. Overall, the consumption in the building sector (residential and tertiary) has been practically stable 

I.4. Concept of building performance simulation (BPS) and optimization

From this point, governments all over the world started adopting new regulations and laws that take into consideration environmental impacts for new projects. In addition, research to improve the different sector performances has become more supported by governments through more funding and new policies.

For instance, the European Union had put a policy that requires to commit a 9% reduction in energy use by 2016 based on the 2006/32/EC directives [START_REF]Directive 2006/32 EC of the European parliment and the councile of 5 April on energy end-use efficiency and energy[END_REF], in addition to decreasing the greenhouse gas emissions as well as primary energy consumption by 20% as indicated by the climate change package legislation [START_REF] Ec | The Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings[END_REF]. Paris climate change accord, COP21 [START_REF] Christoff | The promissory note: COP 21 and the Paris Climate Agreement[END_REF], mandates involved countries to limit the total CO2 emission to 40 billion tons emitted per year in order to limit the global warming to 1.5°C.

The building sector offers significant potential for improved energy efficiency with highperformance envelops and energy-efficient systems. From this point, the interest in building design studies has risen.

Building performance simulation (BPS), also denoted Building Energy Simulation (BES), is increasingly used to design buildings because of its emphasis on sustainability [START_REF] Negendahl | Building performance simulation in the early design stage: An introduction to integrated dynamic models[END_REF]. The requirement of building design are comprised of qualitative elements (social impact, esthetics, special planning, etc.) and quantitative elements (cost, yearly-consumed energy, amount of daylight, etc.). The design aims on satisfying multiple criteria in addition to measurable performances. Several papers examine how a geometric model can dynamically be operated in relation to BPS [START_REF] Shi | Performance-driven architectural design and optimization technique from a perspective of architects[END_REF]- [START_REF] Zarzycki | Exploring parametric BIM as a conceptual tool for design and building technology teaching[END_REF].

The potential of using different BPS tools can be categorized in two possible stages, simplified and detailed design stages [START_REF] Christian | Uncertainty propagation and sensitivity analysis techniques in building performance simulation to support conceptual building and system design[END_REF]. Simplified tools have shown to be useful at certain point of early design stage but might be limited to apply on later design evaluation. Many researchers have published various methods containing high precision calculations, focusing on manual variations ( [START_REF] Banke | Parametri i praksis: generativ performance i arkitektur : erhvervs-ph.d.afhandling. Kbh[END_REF], [START_REF] Petersen | Simulation-based support for integrated design of new low-energy office buildings[END_REF]) while others used Monte Carlo algorithms ( [START_REF] Christian | Uncertainty propagation and sensitivity analysis techniques in building performance simulation to support conceptual building and system design[END_REF], [START_REF] Struck | An investigation of the option space in conceptual building design for advanced building simulation[END_REF]). When it comes to optimization, most studies focus on optimizing singular or very few objectives such as the electrical consumption ( [START_REF] Shi | Performance-driven architectural design and optimization technique from a perspective of architects[END_REF], [START_REF] Wang | An object-oriented framework for simulation-based green building design optimization with genetic algorithms[END_REF], [START_REF] Sharag-Eldin | A parametric model for predicting wind-induced pressures on low-rise vertical surfaces in shielded environments[END_REF]). In general, such methods seek high precision of performance functions, which in turn penalizes the speed of calculation time.

Optimization algorithms run numerical models iteratively, constructing sequences of progressively better solutions up to a point that satisfies pre-defined optimal conditions. This point is not necessarily the globally optimal solution since it might be unfeasible due to the nature of the case study [START_REF] Baños | Optimization methods applied to renewable and sustainable energy: A review[END_REF] or even the program itself [START_REF] Wetter | A comparison of deterministic and probabilistic optimization algorithms for nonsmooth simulation-based optimization[END_REF]. Because of code features, the search space may be non-linear and have discontinuities, requiring the use of special optimization methods that do not require the computation of the derivatives of the function [START_REF] Machairas | Algorithms for optimization of building design: A review[END_REF]. In building optimization studies, the building simulation model is usually coupled with an optimization engine, which runs algorithms, and strategies to find what is described to be an optimal solution [START_REF] Attia | Assessing gaps and needs for integrating building performance optimization tools in net zero energy buildings design[END_REF]. Two of the optimization examples used in building optimization and usually applied on simplified models are described hereunder:  Pattern search, which is an iterative search for the optimum that does not require a gradient and therefore can be used in non-differentiable or continuous functions. The step size is halved in case of no more improvement is possible [START_REF] Hooke | Direct Search'' Solution of Numerical and Statistical Problems[END_REF].

 Linear programing that simplifies the problem into a linear problem (matrix) to compute directly the optimum. The optimum falls in an external point if all objective functions and constraints are linear [START_REF] Nelder | A Simplex Method for Function Minimization[END_REF].

In their review on simulation based optimization studies for building performance analysis, Nguyen et al. [START_REF] Nguyen | A review on simulation-based optimization methods applied to building performance analysis[END_REF] divided the process in three phases:

 Preprocessing phase where the formulation of the optimization problem takes place including the building model, the objective functions and constraints, selecting the appropriate optimization algorithm and coupling it with the model.

It is important in this phase for the model to be simplified to avoid severely delaying the optimization process, but not too simplified to avoid inaccurate modeling of building phenomena [START_REF] Magnier | Multiobjective optimization of building design using TRNSYS simulations, genetic algorithm, and Artificial Neural Network[END_REF].

 Optimization phase where monitoring, controlling and detecting errors of the study takes place. It is worth mentioning that in this phase, it is almost impossible to estimate the time of convergence of the optimization algorithm.

Researchers do not usually mention the time taken by the algorithm to converge to an optimal solution since the behavior of the optimization algorithms is not trivial. However, several attempts have been applied to speed up the time of simulation while still reaching good final results such as in [START_REF] Wetter | A convergent optimization method using pattern search algorithms with adaptive precision simulation[END_REF].

 Post processing phase where interpretation, verification, presenting of results and decision making take place.

In addition to simplified models based optimization methods, evolutionary algorithms are very common in the building optimization field. They are usually applied in dynamic detailed model optimization due to their learning process that helps in converging faster to optimal solutions based on results from previous iterations. Such algorithms apply the Darwinian principle of survival of the best by keeping a population of solutions of which the poorest are eliminated. Types of such algorithms include Genetic Algorithms (GA) [START_REF] Deb | A fast and elitist multiobjective genetic algorithm: NSGA-II[END_REF], Evolutionary Programing (EP) [START_REF] Sette | Genetic programming: principles and applications[END_REF], [START_REF] Fogel | Intelligence through simulated evolution: forty years of evolutionary programming[END_REF], Covariance Matrix Adaptation, Evolutionary Strategy (CMA-ES) [START_REF] Hansen | Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation[END_REF] and Differential Evolution (DE) [START_REF] Storn | Differential Evolution -A Simple and Efficient Heuristic for global Optimization over Continuous Spaces[END_REF].

Other algorithms that mimic natural processes include Harmony Search (HS) [START_REF] Woo Geem | A New Heuristic Optimization Algorithm: Harmony Search[END_REF],

Particle Swarm Optimization (PSO) [START_REF] Kennedy | Particle swarm optimization[END_REF], Ant Colony Optimization (ACO) [START_REF] Dorigo | Ant system: optimization by a colony of cooperating agents[END_REF] and Simulated Annealing (SA) [START_REF] Kirkpatrick | Optimization by Simulated Annealing[END_REF].

As mentioned previously, many building optimization studies use the single objective approach where one objective function can be optimized in an optimization run [START_REF] Evins | A review of computational optimisation methods applied to sustainable building design[END_REF].

However in real world, designers have to deal with several contradictory design criteria simultaneously such as minimizing energy demand while minimizing cost or maximizing internal comfort [START_REF] Hamdy | Applying a multi-objective optimization approach for Design of low-emission cost-effective dwellings[END_REF], [START_REF] Fesanghary | Design of low-emission and energyefficient residential buildings using a multi-objective optimization algorithm[END_REF]. Therefore, multi-objective optimization is more relevant than the single objective approach and there exist numerous research papers that consider this approach for optimization as will be shown in the following paragraphs.

In their review done on the optimization methods applied to renewable and sustainable energy, Banos et al. [START_REF] Baños | Optimization methods applied to renewable and sustainable energy: A review[END_REF] have shed the light on the concept of single and multiobjective optimization. They introduced the fact that in many applications, multi objective optimization is inevitable because of the interaction of several decision parameters.

There exist two main approaches to solve multi-objective problems:

 Scalarization approach that assigns different weight factors to each criterion and therefore back to a single objective problem, the weighted sum of the criteria [START_REF] Wright | Optimization of building thermal design and control by multi-criterion genetic algorithm[END_REF].

 Pareto optimality approaches where a trade-off optimal solution is examined and appropriate solutions are then determined. The approach is referred to as "Pareto optimization". The basic principle, established by Pareto in 1896, is as follows: "In a multi-objective problem, there is such a balance that one cannot improve one criterion without deteriorating at least one of the other criteria ". This equilibrium is called the Pareto optimum. A solution is said to be Pareto optimal if it is not dominated by any other solution where there is no other solution that can better improve one criterion without deteriorating another. The Pareto front is the set of optimal Pareto solutions. Due to the complexity of BOPs, researchers often use up to two objective functions with very few studying three or more functions such as in [START_REF] Diakaki | A multi-objective decision model for the improvement of energy efficiency in buildings[END_REF] who optimized energy consumption, CO2 emission and initial investment cost or in [START_REF] Chantrelle | Development of a multicriteria tool for optimizing the renovation of buildings[END_REF] who optimized energy consumption, thermal comfort and initial investment cost. The process of selecting the optimal solution from the front is not trivial and is known as multicriteria decision-making. Many decision making techniques have been developed [START_REF] Triantaphyllou | Multi-Criteria Decision Making Methods[END_REF] such as "pros and cons", "simple prioritization" and "bureaucratic".

Stadler et al. [START_REF] Stadler | Optimizing Distributed Energy Resources and building retrofits with the strategic DER-CAModel[END_REF] created a multi-objective process to minimize CO2 emissions by optimizing the energy systems linked to the building. Similarly, Merkel et al. [START_REF] Merkel | Optimisation of the capacity and the dispatch of decentralised micro-CHP systems: A case study for the UK[END_REF], Milan et al. [START_REF] Milan | A cost optimization model for 100% renewable residential energy supply systems[END_REF], Lauinger et al. [START_REF] Lauinger | A linear programming approach to the optimization of residential energy systems[END_REF] and others have studied building and energy supply system optimization by multi-objective approaches.

In multi-objective problems, splitting building design problems into sub-problems (envelope, systems, renewables…) may lead to missing out on synergies between different areas. As a result, many researchers through optimizing variables from different areas considered the building globally such as in [START_REF] Peippo | Multivariate optimization of design tradeoffs for solar low energy buildings[END_REF]. Yet, performing holistic approaches on buildings, which takes into consideration both the envelope and the systems, leads to the complexity of models under study, especially when analyzing heat networks in the case of multiple buildings i.e. districts or blocks, leading therefore to unfeasible computational time expenses. Simulation of detailed building models may take several minutes in building energy simulation [START_REF] Magnier | Multiobjective optimization of building design using TRNSYS simulations, genetic algorithm, and Artificial Neural Network[END_REF]. On the other hand, simulationbased optimization techniques require up to thousands of simulations to evaluate the case study. The optimization schemes may therefore become infeasible due to such computationally expensive models. Usually, very simplified models instead of detailed building models are used to avoid this issue, as in [START_REF] Peippo | Multivariate optimization of design tradeoffs for solar low energy buildings[END_REF]- [START_REF] Oliveira Panão | Optimization of the urban building efficiency potential for mid-latitude climates using a genetic algorithm approach[END_REF]. Particularly, in [START_REF] Lee | Optimization of indoor climate conditioning with passive and active methods using GA and CFD[END_REF] Lee used a two-step optimization scheme to deal with an expensive CFD model. In the first step, Lee performed the optimization on the simple CFD model. Then he performed a few detailed CFD simulations on the optimal candidate solutions found in step 1 to refine the results. Other methods employ reducing the population size and/or the number of generations. Mancarella et al. [START_REF] Mancarella | MES (multi-energy systems): An overview of concepts and evaluation models[END_REF] used spatial aggregation to reduce the number of nodes in an energy system network study and Milan et al. [START_REF] Milan | Modeling of non-linear CHP efficiency curves in distributed energy systems[END_REF] reduced nonlinearities and discontinuities to avoid non-convexity of the program. Other work using simplified analytical models can also be found in [START_REF] Adamski | Optimization of the form of a building on an oval base[END_REF]- [START_REF] Michalek | Architectural layout design optimization[END_REF].

However, these reductions significantly lower the performance of optimization algorithms, and may result in sub-optimal solutions [START_REF] Wang | Applying multi-objective genetic algorithms in green building design optimization[END_REF]. Surrogate models are among promising solutions to this problem. A surrogate model (meta-model or emulator) is an approximation model of the original. It typically mimics the behavior of the original model to be able to produce the model responses at reduced computational cost.

In the context of optimization, surrogate models can speed convergence by reducing function evaluation cost and/or smoothing noisy response functions [START_REF] Hemker | A mixed-integer simulation-based optimization approach with surrogate functions in water resources management[END_REF]. After running the surrogate-based optimization, other refined optimization around the optimal points using the original model can be performed to obtain exact solutions. Klemm et al. [START_REF] Klemm | Multicriteria optimisation of the building arrangement with application of numerical simulation[END_REF] employed surrogate based optimization in their study by applying a polynomial regression method on CFD simulation results to derive explicit analytic objective functions, then optimizing them using a simple deterministic optimization method.

Magnier and Haghighat [START_REF] Magnier | Multiobjective optimization of building design using TRNSYS simulations, genetic algorithm, and Artificial Neural Network[END_REF] used TRNSYS simulations to train an artificial neural network (ANN), then used the trainedvalidated ANN to couple with the genetic algorithm (GA) to optimize thermal comfort and energy consumption. The database for training the ANN consists of output of 450 simulations. Time for generating the database was 3 weeks, but optimization time was very small. If direct coupling between TRNSYS and GA was used, it would need 10 year to finish the task [START_REF] Magnier | Multiobjective optimization of building design using TRNSYS simulations, genetic algorithm, and Artificial Neural Network[END_REF]. Chen et al.

[68] used a feed forwards neural network for the identification of temperature in intelligent buildings and then optimize by the particle swarm optimization (PSO).

Eisenhower et al. [START_REF] Eisenhower | A methodology for meta-model based optimization in building energy models[END_REF] used the Support Vector Machines method to generate several meta-models of a 30-zone EnergyPlus building model and then performed sensitivity analysis to select the most influential variables for optimization. These authors stated that the optimization using the meta-model offers nearly equivalent results to those obtained by EnergyPlus model.

They also recommended that the use of Gaussian Process regression, sometimesdenoted Kriging models, for optimization of complex buildings require further investigations. Gengembre et al. [START_REF] Gengembre | A Kriging constrained efficient global optimization approach applied to low-energy building design problems[END_REF] minimize 20-year life cycle cost of a single-zone building model using a surrogate model and the PSO. They concluded that the accuracy of their surrogate model is acceptable and such a surrogate model can further help designers in design space exploration with cheap simulation cost.

However, the accuracy and sensitivity of surrogate based optimization is currently not a well-developed area, especially when the number of input variables is large [START_REF] Roy | Recent advances in engineering design optimisation: Challenges and future trends[END_REF], the cost function is highly discontinuous or in cases many discrete input variables exist.

The strength and weakness of various surrogate methods is a great research field of computational and statistical science and well beyond the scope of the building simulation community. There is currently no consensus on how to obtain the most reliable estimate of accuracy of a surrogate model, thus the coefficient of correlation R² is often applied, as in [START_REF] Magnier | Multiobjective optimization of building design using TRNSYS simulations, genetic algorithm, and Artificial Neural Network[END_REF], [START_REF] Boithias | Genetic algorithms based optimization of artificial neural network architecture for buildings' indoor discomfort and energy consumption prediction[END_REF]. R² is the proportion of the variance of a dependent variable that is predictable from independent variable(s). Furthermore, the random sampling method of inputs, the number of building model evaluations used to construct and validate a surrogate model is still problematic and is often chosen empirically by analysts. It also needs more studies to see whether significant difference between optimization results given by a surrogate model and an 'actual' building model exists.

In addition to that, the processing time of optimization studies can be severely affected by the balance between the number of variables and their options. Usually, computer clusters are used for complicated optimization problems with large number of variables [START_REF] Turrin | Design explorations of performance driven geometry in architectural design using parametric modeling and genetic algorithms[END_REF]. These questions are explicit challenges of the building research community.

On the other hand, the use of detailed models is very useful for accurate and credible studies. A holistic approach that might solve those doubts, and working on detailed models, is a current case of interest. It is based on the reduction of input data profiles rather than the model itself. The approach evaluates annual performances of a model starting from a short simulation sequence of typical selected days instead of complete 365 days input data profiles. Therefore, instead of simplifying the models, running short sequences is used to reduce the computational time expenses of a fully dynamic simulation. Table I-1 shows the main advantages and disadvantages of these approaches. As mentioned above, reduced order models such as modal analysis, RC models and metamodels are derived from the case study numerical models and are simulated on complete annual profiles. On the other hand, the reduced simulation sequences are derived from input data profiles and introduced directly to complex models for dynamic simulations. 

Approach

I.5. Model study by short sequence

The literature contains various approaches to select a representative set of historical periods. As shown in Figure I-8, the process starts by the original annual data and ends in a short sequence that will be later used in model testing or optimization. In between, the reduction approach implements day selection algorithms or works through continues testing to generate a sequence to reproduce the annual performance criteria after extrapolating the results found by the reduced simulation. These approaches can be grouped in three main categories: Heuristic Approaches, Iterative Approaches and Grouping Algorithms. 

I.5.1. Heuristic Approaches

Heuristic approaches are practical methods that select directly a set of typical days highly influenced by the personal expertise or experience of the developer. The selection is quick but not guaranteed to be optimal, Figure I-9. In their study, Belderbos et al. [START_REF] Belderbos | Accounting for flexibility in power system planning with renewables[END_REF] selected the day that contains the minimum demand level of the year, the day that contains the maximum demand level and the day that contains the largest demand spread in 24 hours. Haller et al. [START_REF] Haller | Decarbonization scenarios for the EU and MENA power system: Considering spatial distribution and short term dynamics of renewable generation[END_REF] defined short-term fluctuation patterns represented by 13 days from the four seasons, each with three characteristic days that cover low, medium and high renewable energy supply regimes. They added an additional peak time day representing high demand and low renewable energy supply.

Fripp et al. [START_REF] Fripp | Switch: A Planning Tool for Power Systems with Large Shares of Intermittent Renewable Energy[END_REF] discussed within investment periods optimized based on 12 days of sampled data: two for each even-numbered month. One day in each month corresponds to conditions that occurred on the peak-load day of the same. The second day of data for each month corresponds to a randomly selected day from the same month. Hart et al. [START_REF] Hart | A Monte Carlo approach to generator portfolio planning and carbon emissions assessments of systems with large penetrations of variable renewables[END_REF] reduced the data size of energy generation by variable renewables by selecting eight specific days that contain hours with extreme meteorological and load events and 20 random days to characterize typical system behavior. Weights for each day were assigned using least squares to best match the annual load, wind speed, and irradiance distributions. Ortiga et al. [START_REF] Ortiga | Selection of typical days for the characterisation of energy demand in cogeneration and trigeneration optimisation models for buildings[END_REF] who reproduced two cumulative energy demand curves, one for heating and the other for cooling, used a graphical method of iteration while studying the optimization of cogeneration and tri-generation models for building.

The French Alternative Energies and Atomic Energy Commission (CEA) has developed an iterative approach that reduces a whole year into twelve days and was used for testing solar combisystems [START_REF] Albaric | Thermal performance evaluation of solar combisystems using a global approach[END_REF]. The test was called Short Cycle System Performance Test (SCSPT), which selects the short sequence based on weather data, the energy demand, comfort and energy stored by the system. Results were very promising and the sequence was able to reproduce the annual performance with a good degree of accuracy and worked for different models. approach while optimizing a CHP system. Following a concept close to that of Fazlollahi, they succeeded in creating a calendar showing the day distribution between clusters, which showed the seasonal effects, and the work periods that influence the building performance. Kotzur et al. [START_REF] Kotzur | Impact of different time series aggregation methods on optimal energy system design[END_REF] tested the efficiency of hierarchical clustering in estimating and optimizing the performance of a residential energy supply system and compared it to other partitional clustering approaches. Menegon et al. [START_REF] Menegon | Development of a new dynamic test procedure for the laboratory characterization of a whole heating and cooling system[END_REF] developed a new dynamic test procedure for laboratory characterization of energy systems using k-means clustering algorithm. Some other studies used clustering algorithm as a part of a bigger approach for time reduction. In his thesis study on multicriteria optimization method for urban densification project, Ribault [START_REF] Ribault | Multicriteria optimizatiion method for design assistance for urban densification process[END_REF] divided the year into 14 clusters by k-means after which he started reducing each cluster by a deleting algorithm that deletes repetitive days by an aggregate weight function based approach.

On the other hand, discriminant analysis was used by Blachandra et al. [START_REF] Balachandra | Modelling electricity demand with representative load curves[END_REF] to reclassify days of 12 months of the year comparing the monthly average load curves of electricity demand to the daily ones. Discriminant analysis works in a way where first days of the month found to be misclassified were grouped with the previous group (month) while those of the last days were grouped to the next and the middle stray days were ignored. This regrouping approach ended with nine representative curves of nine groups with a percentage error of estimation in the range of 5% for 60% of the hourly loads and 10% for about 86% of the hourly loads.

Table I-2 presents a summary of the studies found in the literature and the approaches used in each.

The table also synthesizes the approaches presenting the case study or the model that was either tested or optimized, it was found that in the majority, the methods were used as a way to ease and fasten the testing simulations while a little actually used the obtained sequence to perform direct optimization studies. In addition to that, in most studies, the used models were reduced ones and therefore not working on detailed models. The profiles used for the study were either annual profiles from weather data or load duration curves of the performance criteria, noting that the duration curves used were either temporal load curves or cumulative while mostly temporal. Evaluated criteria or attributes are also shown in the table. They depend directly on the case study, energy demand (heating and cooling) was tested in energy systems while power generation in CHP models and so on. Methods of extrapolation of the obtained results

were evaluated and found to be related to the category of the method of reduction. 

I.6. Extrapolation of results

The process of time reduction is also directly related to the method of extrapolation of the results found by the selected days. The adequacy of the extrapolated results and their proximity to the real values are the indicators for the success or failure of the method. Extrapolation is usually performed by two main methods: multiplying the obtained results by a proportion or multiplying the obtained results by the weight of the group represented by a day. The former is usually used in heuristic and iterative approaches. Multiplying by a proportion is the multiplying of the results of a short sequence simulation by a single scalar depending on the number of elements (days) in the selected data set (short sequence), so it gives the same effect for all the days of the sequence regardless of their real representation. On the other hand, extrapolation by actual group weight multiplies each value by a unique scalar that depends only on the weight of the group it came from. This way of extrapolation is inevitable in clustering algorithms where the scalar depends on the size of each cluster. Most studies in the literature used the extrapolation by a proportion when not using clustering or grouping algorithms.

I.7. Analysis and discussion

The predilection by the researchers into using clustering algorithms rather than other approaches, with a special interest in the K-means approach was noticeable. This distribution is shown in Figure I-14. This interest in clustering approach is due to its good performance in achieving the objective. Poncelet et al. [START_REF] Poncelet | Selecting Representative Days for Capturing the Implications of Integrating Intermittent Renewables in Generation Expansion Planning Problems[END_REF] showed that in their study. After validating the accuracy of their MILP based optimization approach for different cases as shown in While the heuristic approach showed the worst accuracy, the accuracy of the other approaches was good with almost the same performance. However, they noted that the time execution cost was least in heuristics and clustering. In addition to that, while the implementation cost was best in random selection and heuristics, clustering approach showed a better implementation cost than iterative by MILP with a relatively good flexibility [START_REF] Poncelet | Selecting Representative Days for Capturing the Implications of Integrating Intermittent Renewables in Generation Expansion Planning Problems[END_REF].

On the other hand, Kotzur et al. [START_REF] Kotzur | Impact of different time series aggregation methods on optimal energy system design[END_REF] validated the capability of each of k-means, kmediods and hierarchical approaches to regenerate the annual performance for different systems and for different number of selected days with smoothed typical periods. The first aspect found was that while energy systems based on centralized supply resources (CHP systems and residential systems) can be well represented with a few typical days, energy systems heavily relying on storage technologies (island system) could not be properly represented by independent typical days at all. In addition to that, hierarchical approach showed a better performance than the k-mean and k-mediod approach in both computational load and reproducibility. The following figures shows the relative errors for the approaches used on the studied CHP system and photovoltaics [START_REF] Kotzur | Impact of different time series aggregation methods on optimal energy system design[END_REF] The work done in the literature concluded that in function of the flexibility of the approach and the capability of studying special predefined days, heuristic approach comes in the lead while clustering algorithms are not very favorable. The reason behind that is the way the approach itself works, while clustering algorithms search for the best day selection by a machine learning process, simply heuristic approach works by preselection of days and performing simulations on this sequence. In addition to that, heuristics is the simplest way of reducing algorithms where no difficult coding with high math equations is required through the procedure. However, when it comes to the precision of the obtained results after simulating the short sequence and comparing its compatibility with the simplified sequence, the performance of the heuristic approach is the worst. Expecting precise results from a heuristic method requires high experience by the operator to get an efficient sequence and not wasting time by trial and error. This is not found in clustering and iterative cases where it is left for the computer to do all the trials and give finally the selected sequence, with a higher precision, and a shorter period. This approach comparison is summarized in Table I On the other hand, the diversity of the case studies found in the literature does not make us able to favor a method over another. The efficiency of the method is directly related to the system studied or optimized. However, it was shown that the same method could be used to study several case studies, which is a major benefit in the sake of defining a new approach to be used in optimization studies. Indeed, continuous modification of model parameters takes place throughout the optimization procedure of such studies. Therefore, the use of an approach that shows stability despite the modifications is necessary. In addition to that, studied models should be valid on a great domain of parameter modifications to be able to catch good optimal solutions.

(
Having an adaptive experimental design combining the definition of the short sequence and the optimization process could not only limit the number of heavy simulations required for model validation but also accelerate them through running the reduced simulations.

As explained previously, optimization studies include a lot of simulation while searching for the optimal model. Moreover, since in reality, buildings do not exist solely while rather in groups, which interact between each other such as districts or blocks, this complicates models and makes performing simulations time consuming. Even a single building in reality is a complex model of several parameters that constitute its energy systems and envelop. Therefore, instead of simplifying the models, which is inevitable yet not preferable, using short simulation sequences is very interesting in such studies.

Ortiga et al who used a reduction approach of iterative aspect, continued their study in optimizing different cases of cogeneration and trigeneration models [START_REF] Ortiga | Selection of typical days for the characterisation of energy demand in cogeneration and trigeneration optimisation models for buildings[END_REF]. The results showed very well coherence with the optimization made based on the annual sequence with less than 10% errors except for Micro-CHP total efficiency that showed a great difference. In addition to that, they concluded that for optimization, longer time sequence does not mean better results, where a sequence of 5 days gave better results than that of 10 days. In another study of multi-period optimization of district energy systems, Fazlollahi et al used the short sequence they developed in [START_REF] Fazlollahi | Multiobjectives, multi-period optimization of district energy systems: I. Selection of typical operating periods[END_REF] to perform their district optimization study [START_REF] Fazlollahi | Multi-objective, multi-period optimization of district energy systems: IV -A case study[END_REF]. The results showed that by selecting the adequate resources, centralized and decentralized conversion technologies and distribution networks, the environmental impacts could be reduced down to 65% and the total annual costs down to 27%. The time reduction approach used was k-means clustering algorithm where they generated a sequence of eight days and performed the simulations based on it.

I.8. Conclusion

The world population continues to increase almost linearly during the three past decades. Population growth naturally generates more activities and creates more energy need to power them. The final energy consumption is often attributed to four main economic sectors: industry, transport, residential and commercial. The industrial sector dominates the global energy consumption while the building sector in its two forms, residential and commercial, accounts for about one-third of the global demand.

A demand projected to increase progressively as the global demand increases.

From this point, research to improve the different sector performances has become more supported through more funding and new policies. The building sector offers significant potential for improved energy efficiency with high-performance envelops and energy-efficient systems. Building performance simulations (BPSs) are increasingly used to design buildings because of its emphasis on sustainability.

When it comes to optimization, multi-objective optimization is more relevant than the single objective approach. Yet, performing holistic approaches on buildings, which takes into consideration both the envelope and the systems, leads to the complexity of models under study, especially when analyzing heat networks in the case of multiple buildings i.e. districts or blocks, leading therefore to unfeasible computational time expenses. Simulation of detailed building models may take several minutes in building energy simulation. On the other hand, simulation-based optimization techniques require up to thousands of simulations to evaluate the case study. Usually, very simplified models instead of detailed building models are used to avoid this issue.

However, these reductions significantly lower the performance of optimization algorithms, and may result in sub-optimal solutions. Surrogate models are among promising solutions to this problem. However, the accuracy and sensitivity of surrogate based optimization is currently not a well-developed area, especially when the number of input variables is large.

A holistic approach that might solve those doubts is a current case of interest. It is based on the reduction of input data profiles rather than the model itself. The approach evaluates annual performance, of a complex model, including both the envelope and the connected systems, starting from a short simulation sequence of typical selected days instead of complete 365 days input data profiles. The literature contains various approaches to select a representative set of historical periods. These approaches can be grouped in three main categories: Heuristic Approaches, Iterative Approaches and Grouping Algorithms. The process of time reduction is also directly related to the method of extrapolation of the results found by the selected days. The adequacy of the extrapolated results and their proximity to the real values are the indicators for the success or failure of the method.

The predilection by the researchers into using grouping algorithms rather than other approaches, with a special interest in the K-means clustering approach was noticeable.

On the other hand, the diversity of the case studies found in the literature does not make us able to favor a method over another. The efficiency of the method is directly related to the case study studied or optimized.

Based on this thorough literature review, a new approach called TypSS (Typical Short Sequence) Algorithm, was developed and tested in the following chapters. The approach is of an iterative aspect with an embedded grouping algorithm. It uses defined target criteria chosen by the user for the typical day selection. The choice of merging those two approaches together was based on the previous examinations that reflected the advantage of the grouping algorithm regarding precision and that of the iterative approach regarding flexibility profiting from advanced computer technics that automate and enhance the process without the need for direct interferer by the operator.

Chapter II Description of the Typical Short Sequence algorithm (TypSS)

II.1. Introduction

II.1.1. Objectives

As explained in Chapter 1, physical models are used in building performance simulations (BPSs). Each model is a function of a plurality of parameters related to physical systems to be modeled. In order to make an accurate prediction, the physical models are often detailed, which leads to long simulation times. It is therefore common to seek a compromise between model accuracy and reasonable simulation time. Such a compromise leads to a decrease in quality in the simulation and therefore in the prediction of the physical behavior of the system. There is therefore a need for a method making it possible to simulate a physical system using a complex model over a long time horizon while being compatible with limited computing power or computing time.

In that respect, this PhD thesis puts forward and studies a new algorithm called Typical Short Sequence algorithm (TypSS). TypSS is a method for determining a series of typical days allowing to obtain a short simulation sequence to predict the thermal behavior of a detailed modeled building, composed of the envelope and connected systems. The approach is of an iterative aspect with an embedded grouping algorithm.

It uses defined target criteria chosen by the user for the typical day selection. The approach employs averaged and cumulative values of target criteria to evaluate both temporal performances per period and annual performances as a complete simulation.

The aim is to replicate the annual performance profile of the chosen criteria of the system, including annual global values, which could be later used in system characterization or optimization. These criteria are part of the performance functions of the model, i.e. the output of a model's simulation. On the other hand, it is much easier to understand the algorithm through an example; therefore, a case study is presented in the next section and the process of the algorithm will be explained while it is applied on it

II.1.2. Case study

Being a simulation based algorithm, TypSS requires a model 𝑚𝑜𝑑 to be applied on.

The model is the set of mathematical, physical and logical equations calculated under typical boundary conditions 𝑑𝑎𝑡 𝑇 for technical decision-making. In the case of building models, the boundary conditions are model-independent data such as weather data, occupant profiles and operation schedules that are needed for the simulation process. TypSS algorithm will now try to reproduce the profiles of those target criteria for all individuals at the same time.

II.2. TypSS: The process of the algorithm II.2.1. Global Methodology

The proposed approach generates a reduced simulation sequence by dividing the year into distinct periods and selecting a representative day for each taking into consideration the performance of the sequence as a whole. This is achieved through three main parts which are launched after parametrizing the algorithm and introducing a physical model to simulate.

The main parts include: enhancement phase produces the final sequence 𝑑𝑎𝑡 𝑟𝑒𝑑 𝑓𝑖𝑛𝑎𝑙 . In addition to that, the reference target criteria 𝑐𝑟𝑖𝑡 𝑟𝑒𝑓,𝑖𝑛𝑑𝑣 , which the algorithm bases its selected days on is generated, for each individual, in the Initialization phase. It is supplied to the two following parts to produce their sequences. The process in each block is explained in details in the following sections.



II.2.2. Parameters

As shown in 

II.2.3. Initialization

The initialization phase takes in addition to the model, two main parameters to initialize the process. The dynamic simulation of the 𝑛 𝑖𝑛𝑑𝑣 individuals of the model under the imposed yearly boundary conditions 𝑑𝑎𝑡 𝑦𝑒𝑎𝑟 will result in the individuals performances which will be used as target criteria 𝑐𝑟𝑖𝑡 𝑦𝑒𝑎𝑟,𝑖𝑛𝑑𝑣 by TypSS. This output will be used inside the algorithm itself as a reference. Running a complete simulation of the detailed model is a very important step and gives the algorithm the ability, in every iteration, to decide whether the test sequence is a good one or needs to be modified in the following iteration.

In addition to that, the block generates an initial reduced sequence 𝑑𝑎𝑡 𝑟𝑒𝑑 𝑆𝑇𝐴𝑅𝑇 based on the previous parameters, i.e. target criteria 𝑐𝑟𝑖𝑡 𝑦𝑒𝑎𝑟,𝑖𝑛𝑑𝑣 and annual data 𝑑𝑎𝑡 𝑦𝑒𝑎𝑟 .

The method comprises a step of dividing the time horizon 𝑇, year in the example, into a plurality of periods ∆𝑇 𝑑𝑎𝑦 𝑛 𝑠𝑡𝑎𝑟𝑡 @𝑑𝑎𝑦 𝑛 𝑙𝑎𝑠𝑡 where 𝑑𝑎𝑦 𝑛 𝑠𝑡𝑎𝑟𝑡 is the index of the first day of the considered period and 𝑑𝑎𝑦 𝑛 𝑙𝑎𝑠𝑡 is the index of the last day of the period. The Based on the size of the period, the periodic reference values 𝑐𝑟𝑖𝑡 𝑦𝑒𝑎𝑟,𝑖𝑛𝑑𝑣 𝑛 are calculated from the complete annual simulation performed previously for each of the tested individuals. If the criterion is extensive, the periodic reference value will be the sum of the criterion performance of each day in the period (eq. 2-1). If the criterion is intensive, the criterion average of the period is considered (eq. 2-2).

𝑐𝑟𝑖𝑡 In order to compare the reference periodic values with the ones found by the short sequence, extrapolation of the reduced values is needed. The values of each period is predicted by extrapolating the criteria of the selected days obtained from the short simulation by the size of the period 𝑛 𝑠𝑖𝑧𝑒 , i.e. weight of the period. This method of extrapolation gives a fair representation of the characteristic days in which day representing bigger periods are given a bigger weight than the ones of the smaller ones. The method of extrapolation also depends on the nature of the studied criteria.

If the criterion is extensive, then the evaluated value is the period cumulative sum and therefore the reduced value is multiplied by the number of days of the period. If the value is intensive, no need for extrapolation since the selected day will represent the average value of the entire period as explained previously. In this example, the backup energy is considered extensive while the energy stored in the tank and the internal room temperature are considered intensive where the daily average temperature is used.

The difference between the periodic reference values and the extrapolated predicted ones is then calculated and the worst performing period showing the highest difference is detected.

In case of multiple target criteria like in the one given in this section, the global difference of all the criteria is calculated. The aim is to find the best compromise for all target criteria. To do that, the values of the criteria are normalized based on the minimum/maximum of the reference values as shown in equations (eq. 2-3), (eq. 2-4), (eq. 2-5) and (eq. 2-6). This transforms all criteria into a scale ranging between [0,1] and therefore allows adding them in a single periodic scalar called 𝑆𝑐𝑜𝑟𝑒 𝑝 𝑛 , 𝑝 standing for periodic and 𝑛 for the tag of the period, to be evaluated. To calculate this scalar, the difference, between the normalized reference 𝑐𝑟𝑖𝑡 ̃𝑦𝑒𝑎𝑟,𝑖𝑛𝑑𝑣 𝑛 and extrapolated predicted 𝑐𝑟𝑖𝑡 ̃𝑟𝑒𝑑,𝑖𝑛𝑑𝑣 𝑛 values, ∆ 𝑐𝑟𝑖𝑡 𝑛 is calculated (eq. 2-7). For each criterion, periods are ranked by assigning a score 𝑆𝑐𝑜𝑟𝑒 𝑐𝑟𝑖𝑡 𝑛 to each period 𝑛. The score classifies the periods in order from worst to best performing with respect to each criterion (eq. 2-8).

Finally, for each period, the scores 𝑆𝑐𝑜𝑟𝑒 𝑐𝑟𝑖𝑡 𝑛 are added to a single scalar 𝑆𝑐𝑜𝑟𝑒 𝑝 𝑛 (eq.

2-9) and the period 𝑛 showing the least 𝑆𝑐𝑜𝑟𝑒 𝑝 𝑛 is described to be the worst performing in compromise to all target criteria. In case of having several periods with the same minimum value of 𝑆𝑐𝑜𝑟𝑒 𝑝 𝑛 , the preceding period is considered since it has an influence on the following ones.

In case of multiple tested individuals like the one given in this example (five tested individuals 𝐼 5 ), the global difference between all the individuals ∆ 𝑝 𝑛 is evaluated instead of ∆ 𝑐𝑟𝑖𝑡 𝑛 . Therefore, before denoting the scores of each period as previously explained in the case of a single individual and multiple target criteria, the differences ∆ 𝑐𝑟𝑖𝑡 𝑛 of all individuals are added for each period right after normalization of criteria values, each with its own min/max values, and calculation of differences (eq. 2-10). This will give a single global difference for each period compromising both the target criteria and the tested individuals denoted ∆ 𝑝 𝑛 , 𝑝 standing for periodic and 𝑛 for period tag. an initial sequence of four days and three target criteria, the reference data has been collected in four periods (eq. 2-1, eq. 2-2) and normalized (eq. 2-5) in blue. The short simulation is performed on a sequence of four days; values are extrapolated, normalized (eq. 2-6) and plotted in orange. The algorithm evaluates the differences between the two curves for each criterion (eq. 2-7) and classifies the periods' performances for each criterion (eq. 2-8). Period 2 was found to be the worst performing having the highest differences when compromising the three target criteria (eq. 2-9). In our example of five tested individuals, after calculating the differences between the period values of the two curves, we obtain five values per period, therefore, the differences are added per period to obtain a single difference assigned to each period (eq. 2-10) then equations (eq. 2-8) and (eq. 2-9) are applied to detect the worst performing period Worst performing period means that its representative day was the worst in regenerating its period's performances fairly. This means that despite performing clustering algorithm inside the period, which gives the center of the period with respect to all target criteria, not all points in the cluster, were covered. This could be caused by many reasons but one of the main and obvious ones is that the period is too big and witnesses many different instances with great deviations that a single day cannot represent them all. Considering more days for where it is not precise would solve this insufficiency of supplied data. Therefore, the period should be broken to try separating those very distinct instances into smaller more compact groups and new characteristic days can represent fairly these performances.

The algorithm targets the worst performing period, denoted 𝑡𝑎𝑟𝑔 𝑝𝑒𝑟𝑖𝑜𝑑 , removes its characteristic day 𝑑 𝑡𝑎𝑟𝑔 𝑝𝑒𝑟𝑖𝑜𝑑 , breaks the period into two equal halves and assigns two new centers for the two new halves as explained in the previous part. This process is shown in Figure II-13. Breaking the period generates two smaller more compact periods. The points in these periods are less (less days) than the original bigger period.

In this case, the selected days should be more able to represent those days because of having closer performances to their neighboring days. Due to this dividing process, the short sequence is now one day longer where a period has been replaced by two smaller ones with each having its unique representative day as shown in Figure II-13.

The figure also shows that the periods are now of different sizes. Extrapolation will take place based on the size of each group and therefore assigning higher weights for representative days 𝑑 𝑛 of bigger periods 𝑛. 

II.2.5. Typical days' enhancement phase

While the Period setting phase seems legitimate in the terms of dividing the year into unique groups with specific days' characteristics in addition to selecting days which are representatives of their periods, it doesn't take into consideration the global performance and the influence of the periods on each other. For that, the Typical days' enhancement phase was added. The function is of an iterative aspect as shown in Finally, and in order to speed up the algorithm process and produce more consistent results, two options were integrated in the algorithm in the Typical days' enhancement phase that can be activated by the user.

 The first option is related to the 𝑑 𝑛 candidate list the phase starts in which instead of testing all days of the target period 𝑡𝑎𝑟𝑔 𝑝𝑒𝑟𝑖𝑜𝑑 , clustering can be applied on the set of period days. The period can thus be divided into a small number of groups where a single day is selected from each. Clustering gives the center of the group therefore running the dynamic simulation on this day will lead to performances close to the other days n the group it is representing. This approach decreases the number of reduced simulations and focuses on simulating days with different performances.

 The second option is related to the way of detecting target periods 𝑡𝑎𝑟𝑔 𝑝𝑒𝑟𝑖𝑜𝑑 .

Instead of targeting periods consecutively for possible typical day 𝑑 𝑛 modification starting from period 𝑛 = 1, the period targets worst performing periods in the same way it detects them in the Period setting phase (eq. 2-1 to eq. 2-10) and starts with them first. If the new detected worst performing period was the same as the previous even after the day adjustment, repeating the previous steps will not make any changes. Therefore, the algorithm replaces iteratively the typical days starting from the first period of the sequence where there is an influence of the previous periods on the following ones as in the basic Typical days' enhancement phase approach. The algorithm skips the periods that were already manipulated and there were no day modifications to avoid useless iterations. However, incase this period was detected later as a worst performing after a day modification, it will be retested since the previous initial conditions have changed now due to a change of a day in the sequence. This option might be more time consuming than the basic consecutive period targeting method since a period could be tested more than once but leads to a more consistent sequence since it takes into consideration the changes in the boundary conditions due to the continuous updating of the reduced sequence.

II.3. Conclusion

In this chapter, the Typical Short Sequence Algorithm (TypSS) for determining a series of typical days allowing to obtain a short simulation sequence has been presented and explained through an example. The approach is of an iterative aspect with an embedded grouping algorithm. It employs averaged and cumulative values of target criteria to evaluate both temporal performances per period and annual performances as a complete simulation.

The algorithm, divided into three parts requiring,  a physical model, its parametric characteristics and external data profiles such as weather data are essential for the algorithm since it is a simulation-based algorithm that performs dynamic simulations inside its loops. Therefore, previously calculated output files are inconvenient for this type of algorithms.

 trigger and break parameters to be specified by the operator in order to control its functions which include the length of the initial reduced sequence, the length of the final reduced sequence and the number of tested individuals.

The different parts of the algorithm are:

 Initialization where the reference target criteria are defined. An initial sequence is also developed starting from those criteria through dividing the year into periods of equal sizes and selecting a representative day by k-medoids clustering.

 Period setting phase where fast dynamic simulations of the individuals take place applying directly the short sequence on the detailed model. Comparison then is done between the annual reference data and the extrapolated reduced ones and the least performing period is detected, i.e. showing the highest difference between reference and predicted criteria. The algorithm then removes the period's typical day, breaks it into two equal halves and assigns two new centers for the two new halves by clustering. Due to this dividing process, the short sequence is now one day longer where a period has been replaced by two smaller ones with each having its unique representative day.

This process of detecting and breaking down the worst periods repeats until reaching a length of a sequence of days as precised by the user. The results obtained by TypSS on the presented case study in Section II.1.2. are presented in the next chapter while activating the previously presented options in the Typical days' enhancement phase. The chapter also evaluates the sensitivity of the method on its input parameters, mainly the number of initial individuals, number and type of target criteria, influence of length of both the initial and final sequences. This study will evaluate the generalization ability of the algorithm preparing it for an optimization study.

III.1. Introduction

After presenting in the previous chapter the algorithm and the process it follows during its search for the typical sequence on a case study, the following chapter is divided into two sections: The model performances used for the day selection are the same target criteria mentioned previously:


 the daily-integrated backup energy (in kWh),

 the daily-integrated energy stored in the tank (in kWh) and  the daily-averaged internal room temperature of the building (in °C). 

III.2.1.1. Algorithm output

III.2.1.2. Temporal profiles of the target criteria

Simulating the model on the sequence of 12 days was about 25 times faster than the annual one. It took about 40secs for this case study while it takes 19mins for a full simulation with the complete sequence on the same computer configuration. with points scattered around it. For most of the periods, values are within the 10% error limits for the energetic criteria and the ±2°C limits for the internal room temperature when comparing the predicted to the reference values. .

III.2.1.3. Annual values and cumulative profiles of the target criteria

In addition to temporal profiles, the annual sum of the studied criteria and the cumulative profiles are another way of representing the temporal values and very helpful to allow direct reading and comparing of the system performance through the year until reaching the final annual value. Therefore, it is important for the predicted curves to reflect the annual reference ones. 

RMSE = √ ∑ (𝑐𝑟𝑖𝑡

III.2.1.4. Comparison with other approaches

In order to assess the value of the new developed method; the obtained results were compared to two approaches used by researchers and applied on the same case study. The first one is the clustering algorithm by k-medoids [START_REF] Kotzur | Impact of different time series aggregation methods on optimal energy system design[END_REF]. In this case, the algorithm is simply applied on the results of the annual/reference results. No simulations are run during the search of the typical days so it does not take into consideration the influence of the selected days on the model dynamics during the target. Literature showed that it is a practical approach but results will show the importance of using simulations during the target process. The second approach is the iterative approach SCSPT that was developed to reduce the time consumed during the dynamic simulation of detailed solar combisystem models [START_REF] Albaric | Thermal performance evaluation of solar combisystems using a global approach[END_REF]. The two approaches work in the following manner:

Clustering Algorithm, K-medoids K-medoids clustering algorithm is an exclusive algorithm which lies under the partitional clustering approaches. It divides data segments into a pre-determined number of clusters in which the elements of a cluster are unique and therefore not shared by other clusters. The difference between K-means, presented in Chapter 1, and K-medoids clustering is that the former assigns as a group center the exact mean of the group, which might not be an existing element, while the latter searches for an existing element closest to the mean and assigns it as the group center, as shown in 

Short Cycle System Performance Test (SCSPT)

In order to build a 12 days short sequence, SCSPT uses monthly climate data in addition to several monthly performance criteria as attributes for the calculation of "Target" criteria by empirical equations. The three target criteria are:

 A "Target Ambient Temperature" T' amb calculated from the monthly ambient temperature, the monthly space heating energy consumption for the heating season and the monthly internal temperature for the cooling season.

 A "Target Irradiation Sum" G' coll calculated from the monthly total solar irradiation, the monthly energy stored in the tank, the electrical backup energy needed for the heating season and the energy need for cooling in the cooling season.

 A "Target Horizontal Irradiation Sum" G' hor calculated from the monthly total horizontal irradiation and the monthly internal room temperature.

The algorithm then starts from a random initial 12 days sequence and searches the typical days that would have the closest weather data characteristics to those three "Target" weather criteria by calculating a global error ∆E 𝑆𝐶𝑆𝑃𝑇 and limiting it to a threshold µSCSPT.

These steps are repeated iteratively for each month until constructing the 12 days sequence. In a connected research work, Sayegh et al. [START_REF] Sayegh | Determination of a Short Simulation Sequence for the Multi-Criteria Optimization of Buildings: A Case Study[END_REF] evaluated the performance of the approach and its efficiency upon generalization. The approach showed some limitations regarding this issue due to its functionality that cannot be applied except on a single individual at once; therefore, the obtained sequence is not adapted to great number of parametric modifications. In addition to that, it has limitations regarding its flexibility to different case studies since it depends on empirical equations and final sequence is highly dependent on the initial, randomly selected, sequence.

The three sequence reduction methods are applied on the same solar combisystem shown in Table III-3). The SCSPT curve (in orange) showed the best cumulative profile of this criteria almost replicating the reference curve. However, the curve deviates at the end posing an error of 4.5% on annual sum estimation. This proximity in covering the variations of the relative curve is due to the size of the periods. The winter season is represented by only one day in the TypSS case (while three in the SCSPT case) which makes this period very sensitive to estimation error. However, those errors are then compensated since more days are used to describe inter-seasonal periods.

Finally, the clustering curve (in green) was the least performant where it not only failed attaining the annual sum with a 15% error, but the curve evolution did not reflect well the reference one recording an R² of 0.88. This is due to the fact that the clustering approach does not take into consideration the simulation process and the effect of representative days on each other when constructing the short sequence unlike the other two approaches. On the other hand, the evolution of the curves was better for the energy stored in the tank ( 

III.2.2. Multiple tested individuals III.2.2.1. Simulation results

The five individuals (Table II 

Criteria

III.3. Sensitivity of the TYPSS algorithm to its main parameters

In the following section, sensitivity of the algorithm to its main parameters has been evaluated. Each parameter is evaluated by its own with no crossing between them to evaluate their influence separately. The same study is executed on several parametric inputs. The algorithm requires several inputs from the user to start its day selection process and therefore there is an uncertainty on each input and questions regarding their influence on the final results. The main parameters that initialize the algorithm and can be modified by the user are four: does not necessarily implement better prediction [START_REF] Kotzur | Impact of different time series aggregation methods on optimal energy system design[END_REF]. Rather, it is related to the case study and the evaluated criteria. In addition to that, the initial sequence was found to be influential on the final output as in the case of SCSPT iterative approach. Therefore, these inputs should be evaluated to give the user certainty about his choice of initial data. Moreover, the way the algorithm works suggests that giving more data will help in having more generalized results. This was shown in the previous part in Figure where giving more individuals would help in generating a generalized sequence applicable on further studies. However, giving a lot of data will make it difficult for the algorithm to find a single representative day for a huge set of distant points therefore it is important to know until what extent adding more individuals is helpful or starts to affect negatively the obtained results. In addition to that, TypSS algorithm is a simulation based algorithm, therefore, adding more individuals will require additional simulations for each test sequence through the course of the algorithm and therefore causing more computation time by the algorithm to converge. This is also applicable on the case of target criteria where trying to estimate many criteria at the same time will diverge the focus of the algorithm and might lead to less accurate results and therefore it is important to know the limit of the algorithm regarding this aspect. As a result to all those remarks, a sensitivity analysis is essential and has been applied and presented in this section to evaluate the stability and consistency of the algorithm and its results.



III.3.1. Length of the initial sequence

Considering the same solar combisystem model, the influence of the initial sequence has been evaluated. Previously, the initial sequence was formed of four periods representing the four quarters of the year and roughly the four seasons. In addition to that, it was noticed that starting with a two days initial sequence terminated with the same sequence of the 4 days sequence. Therefore, the algorithm divided the two periods into four equal ones and then continued its course as if it started by four equal initial periods and it is therefore recommended not to start with a very short initial sequence since it will be cut equally in the first iterations by the algorithm.

In addition to that, the values recorded by the eight initial periods sequence showed that it is not favorable to divide initially the year into many small equal parts if the final number of days is relatively small. In this study, starting by 8 initial days left only four more steps for the algorithm to reach the 12 days sequence. Therefore, it is better to leave the Period setting phase in the algorithm do the breaking down of the sequence based on the performance of the simulation. In this case, an initial sequence of 4,5 or even 6 days seem adequate to avoid unnecessary iterations by the algorithm and still leave space for this phase in the algorithm to perform.

III.3.2. Length of the generated sequence

Starting from an initial sequence of four typical days representing the four quarters of the year, seven sequences were generated by TypSS applied on the same case study as before with three considered target criteria. The sequences are of different lengths ranging between 6 and 30 typical days (numbers were chosen randomly). The performances of those sequences regarding the global performance values, i.e. global R², annual sum errors and CVRMSE, of each of the target criteria have been analyzed

and traced in Figure III-11. Curves show that achieving good results is still applicable even with very short sequences. However, increasing the number of days will indeed help in achieving better performances. Regarding the backup energy, global coefficient of determination R² increased up to 0.99 with a 30 days sequence while being 0.88 with a 6 days sequence. This was accompanied by an oscillating recording of the annual sum error ranging between 0.02% and 2.5% and CVRMSE decreasing from 12% to 3%. On the other hand, the performance of the two other criteria showed an almost stable recording for the global R² around 0.99 and a decreasing annual sum error and CVRMSE as number of typical days increase. In addition to that, the performance of a 20 days sequence was noticeable where it didn't follow the trend of the curves giving less accurate performances than shorter sequences. This supports the idea in the literature indicating that longer sequences do not forcely mean better performances. Rather, the choice of sequence length is directly related to the case study and the initial conditions. The temporal, periodic and cumulative profiles are Finally, the time recorded by TypSS for each case is recorded and plotted in Figure III-12. Computational time increases as the number of days in a target sequence is increased reaching 6 hours for a sequence of 30 days while it was 3 hours for the sequence of 12 days which was sufficient to predict all performances of the model as presented in section III.2.1. Therefore, the length of the generated sequence is a parameter that should be considered by the operator since it has an influence on both the quality of the obtained results and the computational time spent by TypSS to converge. For the following sections, sequences of 12 days will be considered since it proved it is efficient for this case study. 

III.3.3. Number of tested individuals

In this section, the influence of the number of tested individuals is evaluated.

Sequences of 12 days have been generated starting from a four days initial sequence and applied on different number of individuals. Sequences were formed on 1, 3, 5, 7

and 10 individuals (numbers were chosen randomly) and the prediction of the three previous target criteria was examined by calculating the annual sum error, global coefficient of determination and CVRMSE. In the same way adopted in section II.2.2. The figure shows that adding more individuals to the algorithm did not affect negatively the obtained results. Considering only the individuals of the algorithm, it was expected that adding more individuals will make the results less accurate since the algorithm now works on a wider data range at the same time. On the other hand, the coefficient of determination of the fifty individuals was expected to be better as the number of individuals increase. This is because more data are now taken into consideration and therefore the generated sequence has covered a wider range of instances that include the performances of those individuals thanks to LHS method of sampling that selects samples from the entire specified space. On the other hand, the figure shows that the results were consistent with high coefficient of determinations ranging between 0.88 and 0.99 unlike the expected trend. However, this could be reasoned to the way TypSS works on in which it tries to improve this parameter as much as possible to propose finally a sequence with a high coefficient of determination.

For further analysis, the annual sum errors of the target criteria were calculated for This leads to a cluster center not fully capable of representing all data points. Even though the errors were increasing as the number of individuals increase, they stayed inferior to the 10% limit. The backup energy showed the highest increase from 0.3% to 6.5% while the other two criteria did not exceed the 5% error. 

III.3.4. Number and type of the target criteria

The aim of TypSS is to regenerate fastly specific performances that are under interest by the user. The algorithm was developed in a way that it can take whatever number or type of a performance, denoted target criterion, as long as it has an annual profile.

However, giving many criteria to regenerate will diverge the focus of the algorithm and therefore affect the quality of the results. In such case, the evaluation variables of all criteria are taken into consideration simultaneously and denoted global values. Taking random criteria might thus affect the performance of the algorithm since, for instance, it was noticed in the previous part that the Period setting phase focuses more on periods that whiteness great temporal modifications. Therefore, there should be a sort of harmony between the selected target criteria or else there will be a specific focus on a specific part of the year. The choice of the target criteria depends highly on the aim of the study and the interest of the user. If a later optimization will be performed for a specific performance of the model, it is recommended to take into consideration only this criterion for TypSS if possible or with what might help in presenting over time system phenomena such as thermal inertia. This will give the algorithm the ability to focus entirely on this aspect and therefore assure better presentation. To verify that, three different sequences were generated and compared on the individual I1 of section III.2.1. . The first is based only on the backup energy as the target criterion (for a following interest in optimizing this criterion as will be presented in Chapter IV ). The second is based on the backup energy and the energy stored in the tank. Finally the third is the one presented previously and includes the three initial target criteria, energy stored in the tank, backup energy and internal room temperature as shown in 

CVRMSE increased slightly from 4% to 5.8%. This is because the focus of the algorithm currently diverged to other aspects too. The backup energy profile is less identical to the reference one especially in the first heating part of the year because the algorithm has reduced the cuts of the year in this part and applied more period division in the summer period where the internal room temperature witnesses variations. Figures and Table also showed that not including specific criterion, as a target criterion would lead to bad predictions of them as the curves in blue showed in Finally, the generalization aspect was examined for each case (Figure . It was clear from the recorded errors that not considering a criterion in the algorithm process would not lead to an accurate prediction of it. This appeared in the energy stored in the tank and internal room temperature curves, recording best values when taken into consideration. Moreover, the influence of considering more criteria in diverging the focus of the algorithm appeared in the backup energy figure that recorded least performance when three criteria is considered. However, it was noticed the positive influence of adding the energy stored in tank to the prediction of the backup energy. This is reasoned to the role of the energy stored in the tank in representing the inertia of the system and therefore giving a closer performance to the real case. It is therefore recommended to consider energy stored in the tank in backup energy studies even though it is not in its direct interest. 

III.4. Conclusion

Applied on a building model with a solar combisystem the simulation of a sequence of 12 days was about 25 times faster than the annual one using the same computer configuration. In addition to the saved simulation time, results show that the output of the short simulation sequence are of high correlation with the reference ones in addition to annual sum errors not exceeding 1% and daily CVRMSE inferior to 6%.

Results were also compared to two approaches used by researchers on the same case study and showed best performance.

In addition to that, despite using a single short sequence of 12 days for simulating simultaneously five different individuals of solar combisystems each having a unique parametric configuration, the generated curves follow in a very good correlation the reference annual ones, for all individuals and all target criteria. Moreover, the annual sums were estimated with a high precision of a relative error not exceeding 2% for the backup energy and internal room temperature and 8% for the energy stored in the tank.

The daily CVRMSE values of the target criteria were all inferior to the 25% limit specified by ASHRAE recording a maximum of 15.2% for the backup energy. The Regarding the length of the initial sequence, figures showed that there was no remarkable influence due to the modification of this input as long as it leaves space for the algorithm to perform until it reaches the final sequence. The global coefficient of determination stayed high despite the modifications with a global R² ranging between 0.95 and 0.99. The annual sum error stayed almost stable with errors not exceeding 1.2% while the CVRMSE remained inferior to the 25% limit. Therefore, it is recommended not to start with a very short initial sequence since it will be cut equally in the first iterations by the algorithm. In addition to that, the values recorded by the relatively long initial sequence (eight initial periods when considering 12 final periods)

showed that it is not favorable to divide initially the year into many small equal parts.

Rather leave it for the algorithm through the Period setting phase to do its breaking down based on the performance of the simulation.

On the other hand, regarding the length of the generated sequence, curves show that achieving good results is still applicable even with very short final sequences.

However, increasing the number of days will indeed help in achieving better performances. This supports the idea found in the literature indicating that longer sequences do not forcely mean better performances. Rather, the choice of sequence length is directly related to the case study and the initial conditions. In the evaluated model, 12 days was adequate.

Regarding the number of tested individuals, the data shows that the time increases proportionally as the number of individuals increase. Therefore, it is essential to consider a reasonable number of individuals to avoid a high computational time expense. Figures show that adding more individuals to the algorithm did not affect negatively the obtained results. In the case of applying the sequences on their corresponding individuals, the annual sum error increases as more individuals are included. However, they stayed inferior to the 10% limit. The backup energy showed the highest increase from 0.3% to 6.5% while the other two criteria did not exceed the 5% error. When testing all 50 individuals, considering more individuals improved the quality of results. However, the maximum error went back increasing with adding more individuals reaching up to 16% with ten individuals. This reflects the idea that adding Finally and regarding the number and type of target criteria, the study focusing on the backup energy (as it is the main interest for a following optimization study) showed that R² decreased slightly to 0.97 while the CVRMSE increased slightly from 4% to 5.8% and annual sum error remained unchanged. Therefore, the number and type of the target criteria is a very crucial input variable and the algorithm is highly sensitive to this parameter. The user should be aware of the criteria he is choosing to regenerate and it is recommended to make several trials to find the best criteria combination since it is directly related to the case study and the boundary conditions of the system. In the presented study, the thermal inertia has an influence for better prediction of the system's performances, therefore, it is recommended to consider criteria that represent this phenomenon (such as energy stored in the tank) even though they might not be in the direct interest of the upcoming study.

On the other hand, the global computational time consumed using the new approach for the simulation of the tested building model is higher than using directly the annual sequence. While the latter took 19mins to execute, the global annual computational time taken by the proposed approach is 40 secs by the reduced dynamic simulation in addition to 3 hours taken by TypSS to converge by a single individual as shown in Figure III-13. Therefore, before improving the performance of TypSS, it is not an interesting measure on the scale of model simulation. However, the results obtained after simulation were accurate and the conclusions from the sensitivity evaluation were promising. Therefore, speeding up a very time consuming study, such as optimization of a detailed model, by applying the short simulation sequence is an interesting field to explore. The value of the approach, in its current version, is in its output sequence.

Implementing the reduced sequence in repetitive simulation based studies will show its value in saving time with respect to using the annual time consuming simulation.

The next chapter presents the performance of TypSS on a multi-objective optimization of the building model presenting the process OptiTpSS.

Chapter IV Multi-objective optimization using reduced sequences: Introducing OptiTypSS IV.1. Introduction

IV.1.1. Objective

When it comes to optimization, algorithms run iteratively numerical models constructing sequences of progressively better solutions to a point that satisfies optimal conditions. Because of code features, the results may be non-linear and have discontinuities. The use of special optimization methods that do not require the computation of the derivatives of the function is therefore necessary [START_REF] Machairas | Algorithms for optimization of building design: A review[END_REF]. For that reason, the building simulation model is usually coupled with an optimization engine, which runs algorithms, and strategies to find an optimal solution [START_REF] Attia | Assessing gaps and needs for integrating building performance optimization tools in net zero energy buildings design[END_REF].

It was cleared in Chapter 1 that in building performance simulation (BPS), multiobjective optimization is more relevant than the single objective approach and there exist many research works that consider this approach while optimization. On the other hand, simulation-based optimization techniques require up to thousands of simulations to evaluate the case study and simulating detailed models is very useful for accurate and credible results. The optimization schemes may therefore become infeasible due to such computationally expensive models. In addition to that, it was explained in the same chapter that model reduction or the use of surrogate models may cause issue due to doubts regarding precision, sensitivity and even computation time in the case of surrogate model validation. The processing time of optimization studies can be severely affected by the balance between the number of variables and their options so usually computer clusters are used for complicated optimization problems with large number of variables.

Therefore, the use of short simulation sequences is another interesting measure in this case. It was shown in Chapter 3 that the sequence obtained by TypSS reduced the simulation time of a detailed building model by 25 times than a full year simulation.

Which means that simplifying the model or replacing it by a surrogate one is not necessarily essential to accelerate its simulation. This conclusion can be projected to simulation-based optimization where detailed model simulations will be consecutively repeated but much faster now thanks to reduced data profiles. The obtained results, which could be used to find the optimal solution, were also accurate and validated upon generalization. Consequently, a multi-objective optimization of a detailed building model while using reduced data profiles found by TypSS is applied in this section.

There can be two ways of application:  either the sequence is defined before the optimization (sequential approach)  or there is an adaptive plan combining identification of the short sequence and optimization (adaptive approach).

The interest of the second approach is to be more efficient through exploring only the individuals around the optimal solutions. The two approaches were tested and analyzed. In addition to that, results of the second approach were compared to a metamodel adaptive approach. Simplifying the case study with the surrogate approach rises concerns regarding the validity of the model. On the other hand, reducing the simulation sequence by TypSS rises concerns regarding the validity of the reduced sequence with respect to the predicted performances. Therefore, a reference optimization study was performed to evaluate the obtained Pareto fronts. It includes a highly time consuming annual simulation of the detailed model and the reference Pareto front was used to be compared with the predicted ones.

IV.1.2. Multi-objective optimization method

Optimization methods are numerous and can be classified into four categories according to [START_REF]Etude des méthodes d'optimisation Multicritères[END_REF]:

 Deterministic methods based on the derivative of the results with respect to the decision parameters.

 Enumerative methods that go through the entire search space.

 Random methods that test certain points in space at random.  Evolutionary (genetic) that processes all the solutions evolved in successive stages. These processes are based on Darwinian evolution and work with the evolution of populations over generations.

In the following study, the chosen optimization method is based on genetic algorithms and more particularly on the method NSGA-II (Non-dominated Sorting Genetic Algorithm-II), an improvement made by researcher Deb of the method NSGA [START_REF] Deb | A fast and elitist multiobjective genetic algorithm: NSGA-II[END_REF] which uses the notion of Pareto dominance [START_REF] Lu | Optimal Design of Renewable Energy Systems in Low/Zero Energy Buildings[END_REF]. The NSGA-II method consists of: The optimization algorithm, in a range specified by the operator, modifies those parameters while searching for their optimal combination. The ranges imposed in this study were the ones used previously when generating the 50 individuals by LHS (SCOLL ranging between 6.5-25m², VST ranging between 0.3-1m 3 and INS ranging between 0.04-0.3m) to keep consistency of the study. The focus of the study was to optimize:

 The annual backup energy Q backup (in kWh) needed by the system to operate which was previously used as one of the target criteria for TypSS algorithm.

 The investment, material and installation, cost cost Total (in €) of the three modified parameters (eq. 4-2). The cost of each parameter was calculated based on the equations (eq. 4-3) to (eq. 4-7) described in [START_REF] Fraisse | INTégration ENergétique des Systèmes et de l'Enveloppe des bâtiments : développement d'une méthodologie et d'un outil de conception optimisant la performance globale[END_REF]. Where 𝐼𝑁𝑆 insulation thickness in m Those objective functions were chosen for being two opposite yet important performances of building assessment. The annual need for backup energy expresses the energy savings and environmental impact of the model. However reducing energy is of a cost that should be examined since high investment cost is inapplicable even if it was ideal for the environment. Other criteria could have been examined such as energy savings, primary energy, CO2 or internal room temperature as in [START_REF] Diakaki | A multi-objective decision model for the improvement of energy efficiency in buildings[END_REF], [START_REF] Chantrelle | Development of a multicriteria tool for optimizing the renovation of buildings[END_REF] but only two criteria are analyzed in the following sections for simplicity.

cost
Regarding the optimization's algorithm parameters and since the optimal α value, used in eq. 4-1, is different for each optimization problem and cannot be known without performing numerous simulations, it is set to 80%. This value is recurrent in the literature and does not influence the final result but the number of generations necessary to obtain the Pareto front [START_REF] Luis | Technological Innovation for Industry and Service Systems: 10th IFIP WG 5.5/SOCOLNET[END_REF]. In addition to that, Gaussian mutation is used.

It consists in choosing a decision parameter randomly on a number of child individuals and in adding a random value to it according to a Gaussian distribution. If the new value falls outside the range of variation of the decision parameter, it remains unchanged. Mutation rate was set at 10% which is frequently used in the literature. As with the growth rate, this value does not influence the final result [START_REF] Luis | Technological Innovation for Industry and Service Systems: 10th IFIP WG 5.5/SOCOLNET[END_REF]. Finally and to ensure getting best individuals, the optimization algorithm stops when the population has not changed for 20 generations.

In order to evaluate the quality of the obtained results in the sequential approach, a reference optimization study was performed. It includes an annual simulation of the detailed model and the obtained 2D Pareto front was used to be compared with the reduced one. 

IV.2. Sequential multi-objective optimization methodology

In this approach, the reduced sequence is generated previously and applied directly in 

IV.4. Comparison of OptiTypSS with an adaptive metamodel based approach

In order to evaluate the value of OptiTypSS, the obtained Pareto front was compared to the result obtained from an adaptive optimization approach with metamodels, one of the most used methods in multi-objective optimization of detailed models [START_REF] Hemker | A mixed-integer simulation-based optimization approach with surrogate functions in water resources management[END_REF]. A metamodel being an approximation model of the original simulation model that mimics the behavior of the original model to be able to produce the model responses at reduced computational cost as previously stated in Chapter 1.

Following the method developed in the INTENSE project [START_REF] Intense | Intégration énergétique des systèmes et de l'enveloppe des bâtiments[END_REF], the multi-criteria optimization of the building model was carried out at the same time as the construction of the metamodel to limit computational time expenses. The method consists in adding learning points where the estimation variance is greater, taking into account only the zone of the optimal solutions (sets of parameters forming the Pareto front). After each point addition, re-evaluation of the metamodel and the Pareto front takes place. Once the metamodel has reached a reasonable precision over all the ranges of variation of the decision parameters, the focus becomes on a small area of the reference function.

This technique allows the reduction of the exploration areas of the decision parameters which leads in reducing the computing time knowing that only the area of optimal solutions is worth being considered in an optimization study. The method is divided into three main steps: OptiTypSS is slightly less performant recording errors inferior to 1.5% (in red) while requiring only nine heavy annual simulations (six for the generation of the Pareto front and three for validation). This result implements that the new developed method is as efficient as other approaches used in the domain and is an interesting field to continue on since it gives reliable results. However, the time of convergence was much faster in the case of the metamodel than the others as shown in Table IV where it spent a total of 27 hours for both first (with 3 initial individuals) and second (with 6 tested individuals) calls. This time was mainly spent in the Typical days' enhancement phase because of the numerous iterations it does while modifying the typical days period by period. Activating the option previously explained in this phase which runs clustering inside the periods and selects a set of days to be tested instead of all days of the period would help in speeding up the phase and therefore the TypSS algorithm and OptiTypSS in global. In addition to that, while NSGA-II was run using 30 processors for parallel simulations, TypSS was applied on a single processor.


Performing parallel simulations in TypSS would speed up the process. However, to be relevant, the different approaches should be run several times to generalize those time results since they could also depend on how busy the computer was when doing the study with other processes which should be taken into consideration. . The optimized model was kept detailed and the reduced sequences was employed in a sequential and adaptive approach to accelerate the optimization process.

Reference

In the sequential approach, the optimization algorithm converged much faster when using the short sequence recording 5.7 hours to converge while it took 175 hours when using the annual data profiles on a 30 processors computer. In addition to that, the influence of the initial inputs was noticed where results improved when considering more test individuals and focusing, when generating the reduced sequence in TypSS, only on the target criteria used in the optimization study.

After that, the adaptive approach OptiTypSS was proposed and tested to improve even more the predicted Pareto front. It involves using TypSS, and not only its output 123 sequence, inside the optimization study. The proposed process works on benefiting from the aspects of TypSS to decrease the differences between the predicted and reference Pareto fronts, without even having the latter. This is achieved by checking the representation of the predicted Pareto front by selecting and testing several individuals taken from different parts of the Pareto front itself and validating its proximity to corresponding individuals simulated with reference data.

The obtained Pareto front improved and superposed the reference one showing a result as efficient as using metamodels. However, optimization by reduced sequence was not the fastest due to the time consumed by TypSS in the generation of the reduced sequence. However, employing metamodels can be limited for too complex models where there exist too many optimization parameters since the meta-model itself is more complex and needs more points to have good learning. While in the OptiTypSS, no simplification of the model is required and no need for a great number of individuals as previously shown. This is a promising result for more complex case studies like network models. Accelerating TypSS by reducing the number of tested days during the day selection process, parallelizing the simulations or even improving the functions to reach faster to an adequate reduced sequence will be very helpful in achieving fast and accurate optimization studies of models despite their level of complexity.

General conclusions and perspectives

The thesis studies the concept of dynamic building performance simulations by sequences of several typical days. The literature contains various approaches to select a representative set of historical periods. These approaches can be grouped in three main categories: Heuristic Approaches, Iterative Approaches and Grouping Algorithms. The predilection by the researchers into using grouping algorithms rather than other approaches, with a special interest in the K-means clustering approach was noticeable due to its practicality and efficiency. However, efficiency of a method is directly related to the case studied or optimized.

Therefore, the thesis presents and evaluates a new day selection approach called TypSS (Typical Short Sequence) Algorithm to generate robust reduced sequences and can be applied on different detailed models in characterization and optimization studies.

The approach is of an iterative aspect with an embedded grouping algorithm. It employs averaged and cumulative values of target criteria (model performances)

specified by the user to evaluate both temporal performances per period and annual performances as a complete year. The algorithm divides the year into different sections, denoted periods, and selects representative days for each period creating a sequence of typical days to be used directly in dynamic simulations of detailed models.

After explaining in details the process followed by the algorithm, it was applied on a building model with a solar combisystem and a sequence of 12 days was generated.

Dynamic simulation on the short sequence was about 25 times faster than the annual one using the same computer configuration. In addition to the saved simulation time, results show that the output of the short simulation sequence are of high correlation with the reference ones recording minor annual sum errors. Results were also compared to the ones obtained using sequences from clustering by K-mediods and the iterative approach SCSPT, used by researchers in the literature, on the same case study and showed best performance.

A sequence was also generated using simultaneously five individuals to evaluate the generalization capability of the method and curves follow in a very good correlation the reference annual ones, for all individuals and all target criteria. The sequence was validated on 45 other individuals not taken into consideration by the algorithm. The curves showed that the sequence succeeded in predicting the annual performances of all target criteria with relative errors not exceeding 10%. They also showed that generating a sequence on more than a single individual improves the quality of results and favors the aim of developing a generalized sequence applicable on a wide parametric range.

After analyzing the output of a model simulation, the sensitivity of results to four initialization inputs of the algorithm were evaluated. The length of the initial sequence, length of the final sequence, number of tested individuals and number and type of the targeted target criteria were examined. The sensitivity to each input was tested separately and without crossing.

Regarding the length of the initial sequence, results showed that it is not favorable to divide initially the year into many small equal parts if the final generated sequence is relatively short. Rather leave it for the algorithm to do its breaking down based on the performance of the simulation. On the other hand, regarding the length of the generated sequence, curves show that achieving good results is still applicable even with very short final sequences. However, increasing the number of days will indeed help in achieving better performances depending on the case study.

Regarding the number of tested individuals, the data shows that the time increases proportionally as the number of individuals increase. Therefore, despite considering more individuals in the day selection process helps in giving a generalized sequence, it is essential to consider a reasonable number of individuals to avoid a high computational time expense. Finally and regarding the number and type of target criteria, the algorithm distributes its focus as more criteria are added. Thus, it is a very crucial input variable and the algorithm is highly sensitive to this parameter. The user should be aware of the criteria he is choosing to replicate in case he is interested in a multi criteria study. In this case, it is recommended to make several trials to find the best criteria combination since it is directly related to the case study and the boundary conditions of the system.

After evaluating the algorithm in a model simulation and its sensitivity to input parameters modifications, it appeared that despite the accurate results it obtains, it is not as attractive due to the time consumed in the day selection process. However, rapidly obtained accurate results by the generated reduced sequence make employing it in repetitive simulation studies interesting such as optimization. Therefore, NSGA-II (Non-dominated Sorting Genetic Algorithm-II) was chosen as an optimization method based on genetic algorithms that uses the notion of Pareto dominance. A sequential and adaptive approach were evaluated.

In the sequential approach study, the optimization algorithm converged much faster when using the short sequence recording 5.7 hours to converge while it took 175 hours when using the annual data profiles on a 30 processors computer. In addition to that, the influence of the initial inputs was noticed where results improved when considering more test individuals and focusing only on the target criteria used in the optimization study. However, predicted Pareto fronts diverged slightly from the reference one.

In the adaptive approach study, OptiTypSS was proposed to improve the predicted Pareto front. It involves using TypSS, and not only its output sequence, inside the optimization study. The obtained Pareto front superposes the reference one showing a result as efficient as using metamodels. However, optimization by reduced sequence was not the fastest due to the time consumed by TypSS in the generation of the reduced sequence. Accelerating TypSS by activating the options included in its Typical day enhancement phase or parallelizing the phases' iterations will be very helpful in achieving fast and accurate optimization studies of models despite their level of complexity.

In perspective, the algorithm can be updated to improve its performance and speed up the time of convergence. Combining the second and third phases in a way that would achieve year dividing and at the same time succeeding in estimating the annual performances by the reduced sequence will help in speeding up the time of convergence. This would also remove the need for a "number of generated days in the final sequence 𝑛 𝑆𝑇𝑂𝑃 " input since a shorter good-performing sequence might be achieved before even reaching the specified final number of days. However, the majority of the computational time consumed is in the third phase, Typical day enhancement phase, so further work should be done first on this phase to avoid consecutive calling of a high computational time phase. gives a sense of the total difference between annual predicted energy uses, and annual reference energy use. CVRMSE gives an indication of the model's ability to predict the overall load shape that is reflected in the data, i.e. temporal profiles.

In addition to that, the discontinuities found in the generated sequence may be detrimental towards some case studies such as specific controllers. Modifications can be applied on the algorithm's process to smoothen those discontinuities and become more general. This also includes adding functions that could discover specific instances in the year such as peak demand days which are important in the designing stage.

Furthermore, the algorithms (TypSS and OptiTypSS) are still in their early testing stages. They should be applied on other case studies to validate their generality.

Thermal inertia is one of the main challenges to estimate when using reduced sequences. While the model tested in the thesis has thermal inertia in its envelop and storage volume, the algorithms should be tested on cases with higher thermal inertia such as large buildings. Complex heat networks are also one of the main fields of interest for time and even data reduction due to their high computational time expenses. Sensitivity analysis can also be expanded and crossing between input parameters could be applied to examine the sensitivity of the algorithm to all possible input scenarios.

Regarding the optimization strategy, while the obvious choice in the example shown in this thesis was choosing optimization by metamodels due to relatively fast convergence towards accurate results, this conclusion cannot be generalized.

Metamodels require specific technical skills to create and may be inapplicable in complex cases such as heat networks. Therefore, OptiTypSS is still an interesting measure that requires more improvement. Enhancing TypSS will definitely help in accelerating OptiTypSS. However, the strategy itself could be improved. The high computational time expense is directly related to the number of individuals involved in the day selection process. Considering a lower number of individuals concentrated only around the optimal Pareto front would help in decreasing the number of useless or misleading iterations. Using special techniques or algorithms that apply learning processes from previous iterations could make convergence much faster. This opens the door towards new fields of using methods such as evolutionary (genetic) processes in the day selection and exploring the idea of combining several strategies together using the strength points of each. 
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  The third chapter is divided in two parts. The first part presents the obtained results upon a dynamic simulation of the case study and compares them to those obtained by two other methods of sequence reduction used in the literature. Using the sequence obtained by TypSS was 25 times faster than the annual one and best performant with respect to the others. Moreover, the chapter evaluates the generalization potentials of the algorithm through simulating the case study but this time with several parametric configurations simultaneously and not considered in the day selection process. The sequence estimated the performances with relative errors inferior to 10% and Coefficient of Variation of Root Mean Square Error (CVRMSE) inferior to 25% the limit specified by ASHREA. The second part presents a sensitivity analysis on the input parameters of the algorithm and implements recommendations for a better performing reduced sequence.Finally, chapter four presents the results obtained upon using the obtained reduced sequence in a sequential and an adaptive multi-objective optimization study applying the conclusions acquired in the previous chapter. The adaptive OptiTypSS approach is introduced showing the accuracy of its obtained Pareto front by comparing it to the results obtained by a surrogate model of the tested case study. Obtained Pareto fronts by the two approaches were very close to the reference one but the global computational time was much higher with the new proposed strategy. Therefore, improvements are required and several measures are proposed in the perspectives that open the door to new more profound work.
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  since 2003. It represents 44% of the total consumption, far ahead of transport (32%), industry (21%) and other sectors mainly agriculture (3%) (Figure I-5).
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  Figure I-7 illustrates the different approaches of simulation adopted in the BPS domain and their relation to the complexity of the model.
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 7 Figure I-7. The relation between the complexity of the case study and the type of time sequence used for simulations.
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 8 Figure I-8. General schema of the short sequence selection process followed by the iterative reduction approach.
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 9 Figure I-9. Heuristic method in typical day selection.

  Poncelet et al.[START_REF] Poncelet | Selecting Representative Days for Capturing the Implications of Integrating Intermittent Renewables in Generation Expansion Planning Problems[END_REF] developed a MILP iterative approach to predict the electricity demand, the onshore wind generation and the PV solar generation data supplied by the Belgian transmission system operator. The basic model divides each cumulative load duration curve into a number of bins. Each bin corresponds to values within a specific range. MILP is then employed in an iterative way to identify a representative day of each bin as well as the weight assigned to each day based on the weight of the bin thus minimizing the difference between the original and predicted curve until finally obtaining a duration curve as close as that of the original.
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 11 Figure I-11. Grouping method in typical day selection.
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 12 Figure I-12. Classification of clustering techniques[START_REF] Elnozahy | A probabilistic load modelling approach using clustering algorithms[END_REF] 

  Figure I-15, they compared the performance with the other approaches. Figure I-16 compares the accuracy of their approach (denoted OPT) bythat of a heuristic approach (denoted H), hierarchical clustering approach (denoted CA) and random selection approach (denoted RS) for two representative days. Since each approach takes different computational time to converge, the figures are plotted with generalized axes for better visualization. Time is recorded in (%) representing the advancing course of the process. Evaluated criteria are normalized to keep all plots in the same range (between 0 and 1).
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 15 Figure I-15. Approximation of the duration curves using the OPT approachto select a varying number of representative days[START_REF] Poncelet | Selecting Representative Days for Capturing the Implications of Integrating Intermittent Renewables in Generation Expansion Planning Problems[END_REF] 

  Figure I-17) and residential system based on heat pumps (Figure I-18).
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 17 FigureI-17. Relative error for the case of CHP system[START_REF] Kotzur | Impact of different time series aggregation methods on optimal energy system design[END_REF] 

Figure II- 1

 1 Figure II-1 shows a general scheme of a typical building model. The model is built from the combination of envelope (walls, windows, roof…) and the connected systems (heating, cooling, electric…) which parametrize the model equations. Model parameters sets are denoted 𝑝𝑎𝑟 𝑖𝑛𝑑𝑣 with 𝑖𝑛𝑑𝑣 being the tag of an individual. As explained previously, a model with a unique parametric combination is considered an individual with unique performances. Simulating an individual under the given boundary conditions leads to the calculation of the internal equations giving output results, denoted model performances. These performances are used by TypSS algorithm as target criteria 𝑐𝑟𝑖𝑡 𝑇,𝑖𝑛𝑑𝑣 to select the typical days of its typical short sequence.
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 23 Figure II-2. Case study: (Up) solar combisystem connected to a building, (bottom) envelope parts with inside and outside facade areas.

  Initialization phase where initial variables are calculated and provided to the other parts of the algorithm  Period setting phase that divides the time horizon (typically a year) starting from the initial data supplied from the Initialization phase into periods of different sizes enabling more focus on periods with higher performance changes. This is accompanied by locating period centers and proposing them as representatives of their periods forming therefore an intermediate reduced sequence. Typical days' enhancement phase that enhances the sequence generated from the Period setting phase by searching better representative days for each period based on global performance values.
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 4 Figure II-4 shows the global scheme of the algorithm and a detailed scheme is presented in APPENDIX A.
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 4 Figure II-4. The global scheme of the algorithm TypSS.

  Figure II-4, several data are essential for the algorithm to function. They can be divided into two groups:  Parameters related to the algorithm itself: Those parameters control the process of the algorithm and serve as triggers or breaks of its different parts. Those inputs include: o the length of the initial sequence 𝑛 𝑆𝑇𝐴𝑅𝑇 taken as four days in this example. This way, the initial sequence roughly represents the four seasons as the starting point of the algorithm. o the length of the generated sequence or number of typical days produced 𝑛 𝑆𝑇𝑂𝑃 . This parameter will be the breaker that allows the transition from dividing the year into partitions, Period setting phase, to global performance assessment and improvement, Typical days' enhancement phase. In addition to triggers and breakers, there exist data base related to the day selection process inside the algorithm: o the reference data 𝑑𝑎𝑡 𝑟𝑒𝑓 which represent the boundary conditions of the model. Yearly occupants' profile and operation schedules were provided to the model. In addition to that, yearly weather file of Chambery France, which has a moderate climate, cold in winter and relatively warm with occasional showers in summer was selected as the climate data file. Therefore, the reference case is that of one year and the reference data are now denoted 𝑑𝑎𝑡 𝑦𝑒𝑎𝑟 .  Parameters related to the case study, typically known as "inputs" of the algorithm, which define the nature of the tested model through assigning its parameters. Those inputs include: o number of tested individuals 𝑛 𝑖𝑛𝑑𝑣 which has been fixed to five in this study. o the different parametric configurations 𝑝𝑎𝑟 𝑖𝑛𝑑𝑣 which define an individual.The algorithm evaluates at least one individual 𝐼 1 . On the other hand, for life cycle assessment, statistical studies or optimization studies, the parameters of the models are modified which affects the output of the simulations. Those outputs are later used to define the best performing model. However, when it comes to sequence reduction methods, those outputs are used as target criteria 𝑐𝑟𝑖𝑡 𝑇,𝑖𝑛𝑑𝑣 as stated previously. Thus, a sequence which was generated based on a certain output data of a certain parametric combination 𝑝𝑎𝑟 𝑖𝑛𝑑𝑣 , might not replicate other outputs of the same model with different parameters since the initial conditions are now different. Therefore, and in order for the generated sequence remaining applicable in such parameter-modifying studies, it is essential that a single short simulation sequence would be able to replicate the performance functions despite a great number of parametric modifications so that the obtained results are reliable throughout the whole study and with all cases. For this sake, the TypSS algorithm was adapted to work simultaneously on several individuals 𝐼 𝑖𝑛𝑑𝑣 . For instance, modifying the surface of the solar collector (SCOLL), the volume of the storage tank (VST) of the solar combisystem and the thickness of the insulating material (INS) of the building in the case study leads to different individuals 𝐼 𝑖𝑛𝑑𝑣 . Using Latin Hypercube Sampling (LHS), 50 individuals 𝐼 50 of the model in Figure II-2 were generated with SCOLL ranging between 6.5-25m², VST ranging between 0.3-1m 3 and INS ranging between 0.04-0.3m. Those ranges were put randomly yet still respecting sizing limits in such systems. The 50 individuals are presented in Figure II-5 and listed in Appendix B.

Figure II- 5 .

 5 Figure II-5. Fifty individual samples 𝐼 50 found by Latin Hypercube Sampling.

  schematic example of this step is given in Figure II-6 in which the year has been divided into four equal periods with 𝑛 𝑆𝑇𝐴𝑅𝑇 = 4 days. For instance, the second period after dividing the year into four quarters is ∆𝑇 92@182 beginning at the 92 nd day of the year (included) and ends at the 182 nd day (included).

Figure II- 6 .

 6 Figure II-6. Schema of a profile and dividing the year 𝑇 𝑠𝑖𝑚 into four initial periods.

Figure II- 7 .

 7 Figure Profile of a criterion in period ∆𝑇92@182 showing the day distribution in the period and a characteristic day 𝑑 𝑛 .

Figure

  Figure II-8. The process of generating the initial sequence of four days.

Figure II- 9 .

 9 Figure II-9. The process of generating the reduced profile of the initial sequence starting from the annual one.

FigureII. 2 . 4 .

 24 Figure II-10. The general process of the initialization phase.

Figure II- 11 .

 11 Figure II-11. The general process of the Period setting phase.

Figure II- 12

 12 Figure II-12 shows an example of the output of the previously explained process. For

Figure II- 12 .

 12 Figure Comparison between the annual and extrapolated short sequence values for each criteria after being normalized and detecting the worst performing period (period 2).

Figure II- 13 .

 13 Figure II-13. The process of detecting and dividing the worst performing period.

Figure II- 14 .

 14 Figure II-14. It starts from the reduced sequence generated by the Period setting phase 𝑑𝑎𝑡 𝑟𝑒𝑑 𝑆𝑇𝑂𝑃 and terminates by the final sequence of the algorithm 𝑑𝑎𝑡 𝑟𝑒𝑑 𝑓𝑖𝑛𝑎𝑙 .𝑑𝑎𝑡 𝑟𝑒𝑑 𝑓𝑖𝑛𝑎𝑙 is a sequence of same length and period sizes as 𝑑𝑎𝑡 𝑟𝑒𝑑 𝑆𝑇𝑂𝑃 but with modified typical days 𝑑 𝑛 .

Figure II- 14 .-

 14 Figure II-14. The general process of the Typical days' enhancement phase.

Figure II- 15 . 2 (

 152 Figure II-15. The process of target period day modification.

Figure II- 16 .

 16 Figure II-16. Scatter of the tested sequences (blue) with respect to the global coefficient of determination 𝑅 𝐺𝑙𝑜𝑏𝑎𝑙 2



  Typical days' enhancement phase was added to take into consideration the global performance and the influence of the periods on each other. It replaces iteratively the representative day of a target period by a list of days of the same period searching for a new day combination that will improve the global coefficient of determination. This step is repeated iteratively until passing through the whole sequence period by period. When all periods are tested, the algorithm finally outputs the compromise between the global coefficient of determination 𝑅 𝐺𝑙𝑜𝑏𝑎𝑙 2 and global annual sum error 𝐸 𝐺𝑙𝑜𝑏𝑎𝑙 . Two options for the operator are included at this stage to help the algorithm converge faster to more consistent results.
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 52211 The first section introduces the results obtained after running the algorithm on a case study. Investigating the main objectives of the algorithm. Is it able to estimate accurately, after succeeding in reducing the calculation time, the annual performances and temporal profiles? Is it applicable to studies that include continuous parametric modifications such as optimization studies? This part is divided into two subsections o The first subsection shows the results obtained on a single individual I1 of this case study with a unique parametric configuration for its components and compares them to results obtained by other approaches used in the literature. The second subsection shows the results obtained on a set of individuals of different parametric configurations I indv and therefore evaluating the generalization potentials of the algorithm. The parametric inputs of the algorithm in this section continued as in the previous chapter Number of days in the initial sequence 𝑛 𝑆𝑇𝐴𝑅𝑇 = 4 𝑑𝑎𝑦𝑠 representing roughly the four seasons of the year. o Number of days in the final sequence 𝑛 𝑆𝑇𝑂𝑃 = 12 𝑑𝑎𝑦𝑠 to compare the obtained results with SCSPT, a method used in the literature that selects typical days based on monthly values. Number of tested individuals 𝑛 𝑖𝑛𝑑𝑣 fixed to one in the first subsection with simulating only one individual 𝐼 1 and five in the second subsection for five individuals 𝐼 The modified parametric configurations that define individuals 𝑝𝑎𝑟 𝑖𝑛𝑑𝑣 are the surface of the solar collector SCOLL, volume of the storage tank VST and thickness of the insulation material INS.  The second section examines the questions stated at the end of the previous chapter regarding the sensitivity of the algorithm upon input data modifications. What influence does the number of tested individuals, number and type of target criteria, length of the final and initial sequence have on the quality of the obtained results? Simulation results of the case study Single individual I As previously shown in Chapter 2, the case study is a building connected to a combined solar thermal and heat pump system (Figure II-2). The system is made of solar thermal collectors of a surface of 9.28m², a storage volume of 0.763m 3 and a heat pump. The envelope is of an effective floor area of 70m² and the net floor area (first plus second floor) is 140 m². The model is run using the weather file of Chambery, France.

Figure III- 1 Figure III- 1 .

 11 Figure III-1 shows the 12 days ambient temperature and horizontal solar irradiation profiles (Figure III-1(b)) compared to the annual reference ones (Figure III-1(a)) as an example of two of the data profiles that will be introduced to the model to be simulated on. Figure III-1(a) also shows the selected days in Table III-1 as they are distributed in the year (in orange). The values are per hour, therefore, profiles in the subfigure (a) show 365x24=8760 data while those subfigure (b) 12x24=288 data. The discontinuities between the selected days appear clearly in the reduced ambient temperature profile. Those discontinuities are noticed more around the representative days of the big-sized periods, i.e. periods 1, 7, 11 and 12. The discontinuities are due to the fact that the days are taken from different parts of the year. Since the days are distinct as shown in Table III-1, some climate characteristics, including the ambient temperature, will be discontinuous. This is not visible in the global horizontal profile in the same figure because the daily values of this characteristic always start and end with zero no matter its position in the year. As mentioned Chapter 2, TypSS does not work on limiting those discontinuities but rather regenerate the performance of the model despite their presence.

Figure III- 2 Figure III- 2 .Figure III- 3 .Figure III- 4 .

 2234 Figure III-2 to Figure III-4 show the results obtained for each period when simulating

  Figure III-5 shows the cumulative profiles of the backup energy (Figure III-5(a)), the energy stored in the tank (Figure III-5b)) and the internal room temperature (Figure III-5(c)) as obtained by both, the reduced sequence (in blue) and the reference case (in black).

Figure III- 5 . 2 and

 52 Figure III-5. Annual and extrapolated cumulative profiles of the target criteria: (a) integrated backup energy, (b) integrated energy stored in the tank, (c) integrated internal room temperature.

Figure III- 6 .

 6 Figure III-6. This method of clustering is more realistic in the case of searching for a real typical representative day.

Figure III- 6 .

 6 Figure Principle of partitional clustering, Kotzur et al.[START_REF] Kotzur | Impact of different time series aggregation methods on optimal energy system design[END_REF] 

  model and therefore three sequences of 12 days have been generated based on the same target criteria used in the previous part and coefficient of determination, annual error and CVRMSE. Those criteria were directly used by the TypSS and clustering approaches and indirectly (through the empirical equations) by the SCSPT approach. The time consumed by each method to find its own sequence varies significantly between them. While the clustering algorithm being the fastest with couple of minutes, it took about 2.5hrs for the SCSPT method and 3hrs for the TypSS algorithm to converge to their final sequences due to the repetitive simulations of the model with the test sequences. Simulating the model on the final sequences of each method gives the results in Figure III-7 and detailed in

Figure III- 7

 7 Figure shows that the cumulative profiles were globally better generated using the developed TypSS approach in comparison with the other two approaches. In the case of backup energy curve (Figure III-7(a)), the TypSS curve (in blue) followed with a good correlation the reference one (in black), recording an R² of 0.97. At the end of the winter period, where the electrical need decreases, the curve overestimates the electrical consumption. However, this overestimation is then corrected at the beginning of the heating season, leading to a final value close to the reference one (0.1% difference as

Figure III- 7 .

 7 Figure III-7. Annual and extrapolated cumulative profiles as obtained by the three methods: (a) backup energy, (b) energy stored in the tank, (c) internal room temperature.

4 .

 4 Typical short sequence of 12 days and the number of days in each period obtained on five individuals.

Figure III- 8 Figure

 8 Figure III-8 shows the cumulative profiles of the target criteria as obtained by the reduced sequence (dashed line) and the reference case (solid line). Each individual is given a unique color for a better visualization of the obtained results. In addition to that, the coefficients of determination and CVRMSE of each curve are recorded in Table III-5. The figure shows that despite using a single short sequence of 12 days for simulating five different individuals of the model, each having unique parametric characteristics and different performances, the generated curves follow in a very good correlation the reference annual ones, for all individuals and all target criteria. Regarding the backup energy Figure III-8(a)), the sequence generated almost identical curves for individuals 1 and 2, and very close curves for individuals 3, 4 and 5 with minor deviations.

Figure III- 9 .

 9 Figure III-9. Annual sum errors of the target criteria of all 50 individuals obtained after simulation with the typical day sequences obtained with one individual (orange) and five individuals (blue).

  Length of the initial sequence or number of days in initial sequence  Length of the generated sequence or number of days in final sequence  Number of tested individuals  Number and type of the target criteria These parameters will influence the quality of the output results where they are directly dependent on them. It was shown in the literature that generating a longer sequence

FigureFigure

  Figure III-10.

Figure III- 11 .

 11 Figure III-11. Performances of generated sequences by TypSS of different sizes regarding each target criterion: (a) coefficient of determination, (b) annual sum error, (c) CVRMSE.

Figure III- 12 .

 12 Figure III-12. Time recorded by the algorithm to converge to its final sequences of different sizes.

,

  individuals were selected by clustering based on their performances from the 50 individuals data base generated by LHS. The data base was divided into groups, clusters, in which one of each is selected to obtain different performing individuals. For example, to obtain 3 individuals, the 50 individuals were classified into 3 groups by clustering and the center of each cluster is selected obtaining 3 centers to be considered as 3 individuals. Before examining the outputs, the algorithm computational time was recorded and plotted in Figure 3-13. The recorded time includes both the time spent while calculating the annual reference data and the time taken by the algorithm through its course to converge to the final sequence. The data shows that the time increases proportionally as the number of individuals increase. Therefore, it is essential to consider a reasonable number of individuals to avoid a high computational time expense.

Figure III- 13 .

 13 Figure III-13. Time recorded by the algorithm to converge to its final 12 days sequenc regarding different number of tested individuals.

Figure III- 14 .

 14 Figure III-14. Global coefficient of determination recorded applying the generated sequences on their corresponding individuals (blue) and original 50 individuals (orange).

  each sequence. The results are plotted in Figure III-15. Due to better visualizing concerns, not all individuals values are plotted. Rather, only the maximum recorded errors were taken since it covers the performance of the whole set of individuals. The aim is to have all individuals falling under the acceptable limits so examining the individuals showing the maximum errors will cover the rest.Figure III-15(a) shows the maximum annual sum errors recorded for each target criteria applying the generated sequence on their corresponding individuals while Figure III-15(b) on the original 50 individuals. The trend of the curves followed an expected trajectory. In the case of applying the sequences on their corresponding individuals (Figure III-15(a)), the annual sum error increases as more individuals are included. This is expected since more data are now taken into consideration and therefore clusters are bigger and less compact.

Figure III- 15 .

 15 Figure III-15. Maximum annual sum errors recorded for each target criterion applying the generated sequences on: (a) their corresponding individuals and (b) the original 50 individuals.

Figure III- 16

 16 Figure III-16(b) and Figure III-16(c) and the orange curve in Figure III-16(c). Moreover,it was noticeable how the estimation of the energy stored in the tank improved slightly after adding the internal room temperature, which reflects the idea that having a harmony between the target criteria will influence positively the outcome of the algorithm. TableIII-9 shows how each of the four initial periods of the year have been divided by the Period setting phase for a total of 12 periods as influenced by the criteria change.

Figure III- 17 .

 17 Figure III-17. Annual sum errors of the target criteria of all 50 individuals obtained after simulation with the typical day sequences obtained with one criterion (blue), two criteria (orange) and three criteria (grey).



  same sequence was then tested on 45 other individuals not taken into consideration by the algorithm. The curves show that the sequence succeeded in predicting the annual performances of all target criteria with relative errors not exceeding 10%. The curves also showed that generating a sequence on more than a single individual improves the quality of results and favors the aim of developing a generalized sequence applicable on a wide parametric range.After analyzing the output of a model simulation, the sensitivity of results to four initialization inputs of the methodology were evaluated (without crossing) in the second part of the chapter to evaluate the sensitivity of the algorithm to the user inputs: Length of the initial sequence or number of days in initial sequence  Length of the generated sequence or number of days in final sequence  Number of tested individuals  Number and type of the target criteria

  more individuals might lead to less compact groups and therefore less performing representing days. It is therefore essential to be reasonable with the number of tested individuals. Moreover, adding more individuals has led to slight increase in CVRMSE values in case of applying the sequences on their corresponding individuals while a descending behavior in case of the 50 individuals.



  Creating a random initial population of individuals.  Identifying N Pareto fronts: differentiate several Pareto fronts and prioritize them. The first Pareto front will include all non-dominated solutions, the second Pareto front will include all the solutions dominated by a single other solution, the third Pareto front will include the solutions dominated by 2 other solutions and so on...

Figure IV- 1

 1 Figure IV-1 shows an example of point classification into dominated and nondominated in an optimization study that minimizes two performance functions. The individual denoted "Reference point" in the figure is dominated by two individuals and therefore will be classified in the third Pareto front rank. The five individuals in black were not dominated by any individual and therefore will be classified in the first Pareto front and so on.

Figure IV- 1 .

 1 Figure IV-1. Dominated and Non-dominated regions of a reference point[START_REF] Gong | Multiobjective adaptive surrogate modeling-based optimization for parameter estimation of large, complex geophysical models: MULTIOBJECTIVE ADAPTIVE SURROGATE BASED OPTIMIZATION[END_REF].

Figure IV- 2 .

 2 Figure IV-2. Representation of the "crowding" distance[START_REF] Gong | Multiobjective adaptive surrogate modeling-based optimization for parameter estimation of large, complex geophysical models: MULTIOBJECTIVE ADAPTIVE SURROGATE BASED OPTIMIZATION[END_REF].

Figure IV- 3 .

 3 Figure IV-3. Example of a selection tournament for K = 3 and a maximization problem [97].

Figure IV- 4 .IV. 1 . 3 .

 413 Figure IV-4. Process of cross over between two parents and the mutation of a gene in their obtained child.

  Figure IV-5 shows the Pareto front obtained with the complete annual simulation. It was obtained after running the algorithm on a super computer with 30 cores and took 175 hours (around 7.3 days) to converge.

Figure IV- 5 .

 5 Figure IV-5. Reference Pareto front obtained with an annual simulation.

  the optimization study of the building model. The 12 days sequence presented in Chapter 3 in Table III-1 and obtained from a single tested individuals was used. The same parameter ranges, as in the reference case, were defined ( SCOLL, VST and INS) and the same model aspects/performances (investment cost and annual need of backup energy) were evaluated for comparison with the Pareto front obtained upon an annual simulation. Moreover, the optimization study was applied on the same computer configuration of 30 cores without any modifications of software or hardware.

Figure IV- 6

 6 Figure IV-6 shows the Pareto front obtained (in blue) with respect to the reference Pareto front (black).

Figure IV- 6 .

 6 Figure IV-6. Predicted Pareto front with respect to the reference one after applying the short sequence obtained from a single individual and three target criteria.

Figure IV- 7 .

 7 Figure Comparison between the reference and the two predicted Pareto fronts after applying the short sequence obtained from a single (blue) and five individuals (red) considering three target criteria.

Figure IV- 8 .

 8 Figure IV-8. Predicted Pareto front with respect to the reference one after applying the short sequence obtained from five individuals and backup energy as the only target criterion.

Figure

  Figure IV-10. Predicted Pareto front obtained from three individuals and a single target criterion. Pareto is divided into three parts showing the initial and selected individuals.

Figure IV- 11 .

 11 Figure IV-11. Predicted Pareto front with respect to the reference one after applying the short sequence obtained from three individuals and a single target criterion.

Figure IV- 12 .

 12 Figure IV-12. Predicted Pareto front obtained from six individuals and a single target criterion. Pareto is divided into three parts showing the initial and selected individuals.

  The predicted values are highly in accordance with the reference values recording minor errors and this appears in Figure IV-13 when plotting the predicted and reference Pareto front. The two Pareto fronts are superposing each other with the predicted Pareto front almost replicating the reference one.

Figure IV- 13 .

 13 Figure IV-13. Predicted Pareto front with respect to the reference one after applying the proposed strategy.

Figure IV- 14 .

 14 Figure IV-14. Individuals corresponding the predicted (orange) and reference (blue) Pareto fronts as found after applying the proposed strategy.

Step 1 : Step 3 :

 13 Development of the metamodel from learning points obtained by LHS sampling. Step 2: Improvement of the metamodel by sequential addition of learning points where the estimation variance is the highest over the entire range of variation of the decision parameters with re-evaluation of the metamodel after each point addition. Improvement of the metamodel by sequential addition of learning points where the estimation variance is highest on the area of the decision parameters forming the Pareto front of Step 2 with re-evaluation of the metamodel and the Pareto front after each addition point. In the tested case study, the approach required 10 learning points in each step for a total of 30 learning points, i.e. 30 heavy annual simulations, in order to create the metamodel. The obtained Pareto front is plotted in Figure IV-15 (in orange) and shows high correlation with the reference one (in black). The Pareto front obtained by

- 3 .

 3 Optimization by metamodel took only 2 hours while using 10 processors (which can't be increased due to considering 10 learning individuals in each step) while it took around 38.4 hours with OptiTypSS (includes running TypSS and applying the optimization twice). The majority of the time consumed to generate the Pareto front of the reduced sequence was mainly consumed in the TypSS algorithm itself during the generation of the short sequence

Figure IV- 15 .

 15 Figure IV-15. The reference Pareto front with respect to the predicted ones by the proposed strategy and metamodel.

Moreover, considering other

  evaluation values, in addition to the coefficient of determination and the annual sum errors, inside the algorithm might improve the quality of the obtained sequence. For instance, considering the Coefficient of Variation of the Root Mean Squared Error (CVRMSE) or the Normalized Mean Bias Error (NMBE) when day selection would enhance the choice taken by the algorithm. NMBE

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

23 Table I -

 23I 3. Comparison of the approaches

Table III -

 III [START_REF] Hansen | GLOBAL SURFACE TEMPERATURE CHANGE[END_REF].Typical short sequence of 12 days and the number of days in each period obtained on five individuals.

Table III -

 III 5. The global and individual coefficient of determination of the three target

Table III -

 III 9. Initial periods' division influenced by the modification of the target criteria.

Table IV -

 IV 1. Comparison between annual and predicted sums of the initial and selected individuals from the first predicted Pareto front.

121 xviii Nomenclature Variables Used in model

  

	𝑐𝑟𝑖𝑡 𝑟𝑒𝑑,𝑖𝑛𝑑𝑣 𝑠𝑢𝑚 𝑁 𝑑𝑎𝑦𝑠 𝑝 1 (𝑖)	sequence by the individual indv Criterion annual sum obtained with the short Number of days in the test sequence Parent 1 individual at iteration 𝑖	unit criterion days -
	𝑝𝑎𝑟 𝑖𝑛𝑑𝑣 𝑝 1 (𝑖) 𝑐𝑟𝑖𝑡 ̅̅̅̅̅ 𝑦𝑒𝑎𝑟 𝑝𝑒𝑟𝑖𝑜𝑑 𝑅 𝑐𝑟𝑖𝑡 2 𝛼	Mean criterion value obtained with the reference Parametric configuration of an individual Parent 2 individual at iteration 𝑖 annual sequence by an individual Coefficient of determination of a target criterion by an individual Percentage of crossing	criterion --unit -%
	INS VST SCOLL 𝑑𝑎𝑡 𝑟𝑒𝑓 2 𝑅 𝑐𝑟𝑖𝑡 𝑎𝑙𝑙 𝑑𝑎𝑡 𝑦𝑒𝑎𝑟 𝑑𝑎𝑡 𝑟𝑒𝑑 𝑆𝑇𝐴𝑅𝑇 2 cost Total R 𝐺𝑙𝑜𝑏𝑎𝑙 cost Coll	Insulation thickness Volume of storage tank Surface of solar collector Reference data (year, 3 years, 10 years…) Yearly data Coefficient of determination of a target criterion by Used in OptiTypSS data points from all individuals Initial reduced sequence data Global coefficient of determination of all criteria by Total investment cost data points from all individuals Investment cost of solar collector	m m 3 m² -----€ €
	𝑐𝑟𝑖𝑡 𝑑𝑎𝑡 𝑟𝑒𝑑 𝑆𝑇𝑂𝑃 𝑑𝑎𝑡 𝑟𝑒𝑑 𝑓𝑖𝑛𝑎𝑙 𝑆𝑐𝑜𝑟𝑒 𝑐𝑟𝑖𝑡 𝑛 cost Vol 𝑆𝑐𝑜𝑟𝑒 𝑝 𝑛 𝑑 𝑛 cost Ins 𝑡𝑎𝑟𝑔 𝑝𝑒𝑟𝑖𝑜𝑑 𝑐𝑟𝑖𝑡 𝑦𝑒𝑎𝑟,𝑖𝑛𝑑𝑣 𝑛,𝑗 𝑑𝑎𝑦 𝑛 𝑠𝑡𝑎𝑟𝑡 (∆ 𝑐𝑟𝑖𝑡 𝑛 ) 𝑖𝑛𝑑𝑣 cost Ins ext wall	Used in TypSS target criterion Intermediate reduced sequence data Final reduced sequence data Period n score for a criterion Investment cost of storage tank Period n score for all criteria Criterion value obtained with the reference annual Characteristic day of a period n Investment cost of insulation material Target period simulation for day j of the period n by the individual indv First day of a period n Difference between normalized reference and Investment cost of external wall insulation	--€ ---criterion € --unit --€
	𝑐𝑟𝑖𝑡 𝑦𝑒𝑎𝑟,𝑖𝑛𝑑𝑣 𝑛 𝑑𝑎𝑦 𝑛 𝑠𝑡𝑜𝑝 cost Ins roof	Criterion value obtained with the reference annual simulation for period n by the individual indv Last day of a period n predicted criterion value for a period n and an individual indv Investment cost of roof insulation	criterion unit -€
	𝑐𝑟𝑖𝑡 𝑦𝑒𝑎𝑟,𝑖𝑛𝑑𝑣 𝑚𝑎𝑥 E crit Q backup ∆ 𝑝 𝑛 𝑐𝑟𝑖𝑡 𝑦𝑒𝑎𝑟,𝑖𝑛𝑑𝑣 𝑚𝑖𝑛 E Global 𝑛 𝑖𝑛𝑑𝑣 𝑖𝑛𝑖 ∆𝑇 𝑑𝑎𝑦 𝑛 𝑠𝑡𝑎𝑟𝑡 @𝑑𝑎𝑦 𝑛 𝑙𝑎𝑠𝑡 Target period specifying its limits Maximum criterion value obtained with the reference annual simulation for all periods by the individual indv Relative annual sum error of a criterion by an Difference between normalized reference and Annual backup energy individual predicted criterion value for a period n and all Minimum criterion value obtained with the reference annual simulation for all periods by the individual indv Relative annual sum error of all criteria by an individuals Number of initial tested individuals individual 𝑛 𝑖𝑛𝑑𝑣 𝑠𝑒𝑙𝑒𝑐 Number of individuals selected from the predicted	criterion % -kWh unit indvs % criterion unit indivs
	𝑐𝑟𝑖𝑡 ̃𝑦𝑒𝑎𝑟,𝑖𝑛𝑑𝑣 𝑛 E max	Normalized criterion value obtained with the reference annual simulation for period n by the Maximum global annual sum error of all criteria between all the individuals Used in SCSPT Pareto	-%
	𝐼 𝑖𝑛𝑑𝑣 G' coll µ	individual indv Tested individuals Target irradiation sum Breaking threshold	-kWh %
	𝑐𝑟𝑖𝑡 ̅̅̅̅̅ 𝑦𝑒𝑎𝑟,𝑖𝑛𝑑𝑣 𝑚𝑜𝑑 G' hor	Mean criterion value obtained with the reference annual sequence by the individual indv Tested model Target horizontal irradiation sum	criterion unit -kWh
	𝑛 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 T' amb 𝑐𝑟𝑖𝑡 𝑟𝑒𝑑,𝑖𝑛𝑑𝑣 𝑛 𝑛 𝑖𝑛𝑑𝑖𝑣 µSCSPT	Criterion value obtained with the short sequence for Number of target criteria Target ambient temperature period n by the individual indv Number of individuals Breaking threshold	criterion -°C unit -%
	𝑐𝑟𝑖𝑡 ̃𝑟𝑒𝑑,𝑖𝑛𝑑𝑣 𝑛 n period ∆E 𝑆𝐶𝑆𝑃𝑇	Normalized criterion value obtained with the short Number of periods sequence for period n by the individual indv Global error	--%
	𝑐𝑟𝑖𝑡 𝑦𝑒𝑎𝑟,𝑖𝑛𝑑𝑣 𝑠𝑢𝑚 𝑛 𝑆𝑇𝐴𝑅𝑇 𝑛 𝑆𝑇𝑂𝑃	Criterion annual sum value obtained with the reference annual sequence by the individual indv Number of days in the initial sequence Number of days in the generated sequence Used in NSGA-II	days criterion unit days
	𝑛 𝑠𝑖𝑧𝑒 𝑐(𝑖)	Number of days in a period n Child individual at iteration 𝑖	days -
		xxii xxiii xxiv	

Table I -

 I 2. The different approaches found in the literature and their field of application.

	References	Approaches	Case study	Type of the model	Used profile	Evaluated criteria	Extrapolation of sequence	Objective of the reduction
	Balachandra et al.	Discriminant Analysis	Electrical plants	Reduced Model	Load profile (temporal)	Generation of electricity	-	Test method for system modeling
	Ribault et al.	Clustering+ iterative	Urban densification	Complex model	Climate data (temporal), energy demand (temporal)	Energetic need	Weight of cluster	Optimization
	Menegon et al.	Clustering (k-means)	Energy systems	Complex model	Climate data (temporal), load profile (temporal)	Climate data, thermal load	Weight of cluster	Test method for laboratory system characterization
	Domeniguez et al.	Clustering (k-means)	CHP	Reduced Model	Load profile (cumulative)	Power	Weight of cluster	Test method for system characterization
	Fazlollahi et al.	Clustering (k-means)	Energetic system of a district	Reduced Model	Climate data (temporal), load profile (cumulative)	Climate data, thermal load electric load,	Weight of cluster	Optimization
		Clustering						
	Kotzur et al.	(hierarchic, k-means, k-	CHP, energy supply systems	Reduced Model	Climate data (temporal), Electricity demand (temporal)	Climate data, electric load	Weight of cluster	Test method for system design
		mediods)						
		Iterative						
	Poncelet et al.	(MILP), clustering	PV panels, wind turbines	Reduced Model	Load profile (Cumulative)	Generation of electricity	Weight of cluster	Test method for system characterization
		(hierarchic)						
	Albaric et al.	Iterative (SCSPT)	Solar combisystems	Complex model	Climate data (temporal)	Climate data, heating, thermal storage	Proportion	Test method for laboratory system characterization
	Ortiga et al.	Iterative (graphical)	Regeneration systems	Complex model	Load profile (Cumulative)	Cooling, heating	Repetition factor for each time period	Optimization
	Hart et al.	Heuristic	System of variable renewables	Reduced Model	Climate data (temporal), Electricity demand (temporal)	Climate data, electric load	-	Test method for system planning and assessment
	Fripp et al.	Heuristic	Power systems	Reduced Model	load profile (temporal), Electricity demand (temporal)	Power generation, electricity demand	-	Test method for system planning
	Haller et al.	Heuristic	Long term decarburization strategies	Reduced Model	Load profile (temporal)	Fluctuation of renewable supply	-	Test method for scenario evaluation
	Belderbos et al.	Heuristic	Power plant	Reduced Model	Electricity demand (temporal)	Electricity demand	-	Test method for system planning

Table I -

 I -3. 

	Criteria	Iterative Approach	Heuristic approach	Clustering
	Precision	Good	Average	Very Good
	Flexibility	Good	Very Good	Good
	Simplicity	Good	Very Good	Average

3. Comparison of the approaches

Table II

 II 

	-1.			
			𝑝𝑎𝑟 𝑖𝑛𝑑𝑣	
	𝑖𝑛𝑑𝑣	Collector surface	Storage volume	Isolation thickness
		(m²)	(m 3 )	(m)
	1	6,5	0,3	0,04
	2	7,85	0,61	0,05
	3	7,08	0,77	0,25
	4	17,49	0,88	0,07
	5	25	1	0,3

Table II -

 II 

1. The parametric characteristics of the five initial individuals.

  𝑐𝑟𝑖𝑡 𝑦𝑒𝑎𝑟,𝑖𝑛𝑑𝑣 𝑚𝑖𝑛 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚(𝑐𝑟𝑖𝑡 𝑦𝑒𝑎𝑟,𝑖𝑛𝑑𝑣 𝑛 ) 𝑛 ∈ [1, 𝑛 𝑆𝑇𝑂𝑃 ]

	𝑆𝑐𝑜𝑟𝑒 𝑐𝑟𝑖𝑡 𝑛 = 𝑟𝑎𝑛𝑘𝑖𝑛𝑔 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 𝑐𝑜𝑚𝑝𝑎𝑟𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒	𝑛 ∈ [1, 𝑛 𝑆𝑇𝑂𝑃 ]	(2-3) (2-8)
	Where	𝑜𝑡ℎ𝑒𝑟 𝑝𝑒𝑟𝑖𝑜𝑑𝑠 𝑓𝑜𝑟 𝑎 𝑢𝑛𝑖𝑞𝑢𝑒 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 𝑐𝑟𝑖𝑡 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 ∆ 𝑐𝑟𝑖𝑡 𝑛
	𝑐𝑟𝑖𝑡 𝑦𝑒𝑎𝑟,𝑖𝑛𝑑𝑣 𝑛 Where	period value obtained by reference annual simulation
	𝑛 𝑆𝑇𝑂𝑃 𝑛 𝑆𝑇𝑂𝑃		length of test sequence length of test sequence	
		𝑐𝑟𝑖𝑡 𝑦𝑒𝑎𝑟,𝑖𝑛𝑑𝑣 𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚(𝑐𝑟𝑖𝑡 𝑦𝑒𝑎𝑟,𝑖𝑛𝑑𝑣 𝑛 ) 𝑛 ∈ [1, 𝑛 𝑆𝑇𝑂𝑃 ] 𝑆𝑐𝑜𝑟𝑒 𝑝 𝑛 = ∑ 𝑆𝑐𝑜𝑟𝑒 𝑐𝑟𝑖𝑡 𝑛 𝑛 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 𝑐𝑟𝑖𝑡=1 𝑛 ∈ [1, 𝑛 𝑆𝑇𝑂𝑃 ]	(2-4) (2-9)
	Where			
	𝑐𝑟𝑖𝑡 𝑦𝑒𝑎𝑟,𝑖𝑛𝑑𝑣 𝑛 Where 𝑛 𝑆𝑇𝑂𝑃 𝑆𝑐𝑜𝑟𝑒 𝑐𝑟𝑖𝑡 𝑛 𝑛 𝑆𝑇𝑂𝑃	period value obtained by reference annual simulation period score for a unique criterion crit length of test sequence number of days in test sequence
	𝑐𝑟𝑖𝑡 ̃𝑦𝑒𝑎𝑟,𝑖𝑛𝑑𝑣 𝑛 = 𝑛 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 number of target criteria 𝑐𝑟𝑖𝑡 𝑦𝑒𝑎𝑟,𝑖𝑛𝑑𝑣 𝑛 -𝑐𝑟𝑖𝑡 𝑦𝑒𝑎𝑟,𝑖𝑛𝑑𝑣 𝑚𝑖𝑛 𝑐𝑟𝑖𝑡 𝑦𝑒𝑎𝑟,𝑖𝑛𝑑𝑣 𝑚𝑎𝑥 -𝑐𝑟𝑖𝑡 𝑦𝑒𝑎𝑟,𝑖𝑛𝑑𝑣 𝑚𝑖𝑛	𝑛 ∈ [1, 𝑛 𝑆𝑇𝑂𝑃 ]	(2-5)
	Where 𝑐𝑟𝑖𝑡 𝑦𝑒𝑎𝑟,𝑖𝑛𝑑𝑣 𝑛 𝑐𝑟𝑖𝑡 𝑦𝑒𝑎𝑟,𝑖𝑛𝑑𝑣 𝑚𝑎𝑥 Where 𝑐𝑟𝑖𝑡 𝑦𝑒𝑎𝑟,𝑖𝑛𝑑𝑣 𝑚𝑖𝑛 (∆ 𝑐𝑟𝑖𝑡 𝑛 ) 𝑖𝑛𝑑𝑣	period value obtained by reference annual simulation ∆ 𝑝 𝑛 = ∑ (∆ 𝑐𝑟𝑖𝑡 𝑛 ) 𝑖𝑛𝑑𝑣 𝑛 𝑖𝑛𝑑𝑖𝑣 𝑛 ∈ [1, 𝑛 𝑆𝑇𝑂𝑃 ] 𝑖𝑛𝑑𝑣=1 maximum periods value obtained by reference annual simulation (2-10) difference between normalized reference and predicted criteria minimum periods value obtained by reference annual simulation values for period n and individual indv
	𝑛 𝑆𝑇𝑂𝑃 𝑛 𝑖𝑛𝑑𝑖𝑣		length of test sequence number of initial individuals	
	𝑛 𝑆𝑇𝑂𝑃	𝑐𝑟𝑖𝑡 ̃𝑟𝑒𝑑,𝑖𝑛𝑑𝑣 𝑛 = length of test sequence 𝑐𝑟𝑖𝑡 𝑦𝑒𝑎𝑟,𝑖𝑛𝑑𝑣 𝑚𝑎𝑥 -𝑐𝑟𝑖𝑡 𝑦𝑒𝑎𝑟,𝑖𝑛𝑑𝑣 𝑚𝑖𝑛 𝑐𝑟𝑖𝑡 𝑟𝑒𝑑,𝑖𝑛𝑑𝑣 𝑛 -𝑐𝑟𝑖𝑡 𝑦𝑒𝑎𝑟,𝑖𝑛𝑑𝑣 𝑚𝑖𝑛	𝑛 ∈ [1, 𝑛 𝑆𝑇𝑂𝑃 ]	(2-6)
	Where			
	𝑐𝑟𝑖𝑡 𝑟𝑒𝑑,𝑖𝑛𝑑𝑣 𝑛	period value obtained by short sequence
	𝑐𝑟𝑖𝑡 𝑦𝑒𝑎𝑟,𝑖𝑛𝑑𝑣 𝑚𝑎𝑥	maximum periods value obtained by reference annual simulation
	𝑐𝑟𝑖𝑡 𝑦𝑒𝑎𝑟,𝑖𝑛𝑑𝑣 𝑚𝑖𝑛	minimum periods value obtained by reference annual simulation
	𝑛 𝑆𝑇𝑂𝑃		length of test sequence	
		∆ 𝑐𝑟𝑖𝑡 𝑛 = |𝑐𝑟𝑖𝑡 ̃𝑟𝑒𝑑,𝑖𝑛𝑑𝑣 𝑛 -𝑐𝑟𝑖𝑡 ̃𝑦𝑒𝑎𝑟,𝑖𝑛𝑑𝑣 𝑛 | 𝑛 ∈ [1, 𝑛 𝑆𝑇𝑂𝑃 ]	(2-7)
	Where			
	𝑐𝑟𝑖𝑡 ̃𝑟𝑒𝑑,𝑖𝑛𝑑𝑣 𝑛	normalized period value obtained by short sequence
	𝑐𝑟𝑖𝑡 ̃𝑦𝑒𝑎𝑟,𝑖𝑛𝑑𝑣 𝑛	normalized period value obtained by reference annual simulation
	𝑛 𝑆𝑇𝑂𝑃		length of test sequence	

-

  The global annual sum error 𝐸 𝐺𝑙𝑜𝑏𝑎𝑙 (eq. 2-13), the sum of the criteria annual sum errors 𝐸 𝑐𝑟𝑖𝑡 (eq.[START_REF] Iea | Energy Technology Perspectives 2017 -Executive Summary[END_REF][START_REF] Desa | World Population Prospects The 2017 Revision Key Findings and Advance Tables[END_REF][START_REF] Hansen | GLOBAL SURFACE TEMPERATURE CHANGE[END_REF][START_REF] Giec | Le cinquième rapport de l'évaluation[END_REF][START_REF] Giec | Rapports d'évaluation[END_REF][START_REF] Pérez-Lombard | A review on buildings energy consumption information[END_REF][8][9][10][START_REF] Ben Ahmed | Consommation d'énergie, ressources énergétiques et place de l'électricité[END_REF][START_REF]Directive 2006/32 EC of the European parliment and the councile of 5 April on energy end-use efficiency and energy[END_REF][START_REF] Ec | The Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings[END_REF][START_REF] Christoff | The promissory note: COP 21 and the Paris Climate Agreement[END_REF]. In case of multiple tested individuals, 𝐸 𝐺𝑙𝑜𝑏𝑎𝑙 is calculated for each individual and the maximum between them 𝐸 𝑚𝑎𝑥 is taken 𝑖𝑛𝑑𝑣 𝑗 daily value of the criterion obtained by the short sequence 𝑐𝑟𝑖𝑡 𝑦𝑒𝑎𝑟,𝑖𝑛𝑑𝑣 𝑗 daily value of the criterion obtained by the reference annual sequence 𝑐𝑟𝑖𝑡 ̅̅̅̅̅ 𝑦𝑒𝑎𝑟,𝑖𝑛𝑑𝑣 mean value of the criterion in the reference annual sequenceThe phase starts by the generated sequence of the Period setting phase 𝑑𝑎𝑡 𝑟𝑒𝑑 𝑆𝑇𝑂𝑃 . It targets a period 𝑡𝑎𝑟𝑔 𝑝𝑒𝑟𝑖𝑜𝑑 . However, rather than breaking the period in two parts, it replaces iteratively the representative day 𝑑 𝑛 , with the tag 𝑛 = 𝑡𝑎𝑟𝑔 𝑝𝑒𝑟𝑖𝑜𝑑 , by a list of days of the same period, denoted 𝑑 𝑛 candidates in the figure. The other selected days of the generated sequence are kept unchanged. Rapid dynamic simulations of each individual are applied with the new updated reduced sequence 𝑑𝑎𝑡 𝑟𝑒𝑑 𝑆𝑇𝑂𝑃 𝑗,𝑛 in each iteration and the reduced criteria profiles 𝑐𝑟𝑖𝑡 𝑟𝑒𝑑,𝑖𝑛𝑑𝑣 are obtained after extrapolation. 𝐸 𝐺𝑙𝑜𝑏𝑎𝑙 with respect to the reference 𝑐𝑟𝑖𝑡 𝑦𝑒𝑎𝑟,𝑖𝑛𝑑𝑣 .When all days in the 𝑑 𝑛 candidate list of the target period are tested, the previously selected day is then replaced by the day showing the highest 𝑅 𝐺𝑙𝑜𝑏𝑎𝑙 The function targets the first period of the sequence and starts making a day modification as shown with 𝑑𝑎𝑡 𝑟𝑒𝑑 𝑆𝑇𝑂𝑃 1,1 𝑑𝑎𝑡 𝑟𝑒𝑑 𝑆𝑇𝑂𝑃 2,1 and 𝑑𝑎𝑡 𝑟𝑒𝑑 𝑆𝑇𝑂𝑃 3,1 . This is

		R 𝐺𝑙𝑜𝑏𝑎𝑙 2	= ∏	𝑐𝑟𝑖𝑡=1 𝑛 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎	𝑅 𝑐𝑟𝑖𝑡 𝑎𝑙𝑙 2	(2-11)
	Where				
	𝑅 𝑐𝑟𝑖𝑡 𝑎𝑙𝑙 2	coefficient of determination of a target criterion with the data points of
		all individuals			
	n criteria	number of the target criteria	
	𝑅 𝑐𝑟𝑖𝑡 𝑎𝑙𝑙 2 This is accompanied by calculating the global coefficient of determination 𝑅 𝐺𝑙𝑜𝑏𝑎𝑙 = 1 -∑ (𝑐𝑟𝑖𝑡 𝑟𝑒𝑑,𝑖𝑛𝑑𝑣 𝑗 -𝑐𝑟𝑖𝑡 𝑦𝑒𝑎𝑟,𝑖𝑛𝑑𝑣 𝑗 )² 365 𝑗=1 ∑ (𝑐𝑟𝑖𝑡 𝑦𝑒𝑎𝑟,𝑖𝑛𝑑𝑣 𝑗 -𝑐𝑟𝑖𝑡 ̅̅̅̅̅ 𝑦𝑒𝑎𝑟,𝑖𝑛𝑑𝑣 )² 365 𝑗=1 (2-12) 2 and
	Where 𝑐𝑟𝑖𝑡 𝑟𝑒𝑑,E Global = ∑ 𝑛 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 𝑐𝑟𝑖𝑡=1 Where E crit annual sum error of a target criterion 𝐸 𝑐𝑟𝑖𝑡 n criteria number of the target criteria 𝐸 𝑐𝑟𝑖𝑡 = |𝑐𝑟𝑖𝑡 𝑟𝑒𝑑,𝑖𝑛𝑑𝑣 𝑠𝑢𝑚 -𝑐𝑟𝑖𝑡 𝑦𝑒𝑎𝑟,𝑖𝑛𝑑𝑣 𝑠𝑢𝑚 | 𝑐𝑟𝑖𝑡 𝑦𝑒𝑎𝑟,𝑖𝑛𝑑𝑣 𝑠𝑢𝑚 Where 𝑐𝑟𝑖𝑡 𝑟𝑒𝑑,𝑖𝑛𝑑𝑣 𝑠𝑢𝑚 annual sum of criterion obtained by the short sequence × 100 𝑐𝑟𝑖𝑡 𝑦𝑒𝑎𝑟,𝑖𝑛𝑑𝑣 𝑠𝑢𝑚 annual sum of criterion obtained by the reference annual (2-13) (2-14) sequence the final annual sum error accompanied by the calculation of 𝑅 𝐺𝑙𝑜𝑏𝑎𝑙 2 and 𝐸 𝐺𝑙𝑜𝑏𝑎𝑙 for each reduced sequence. On
	the other hand, the other typical days 𝑑 𝑛 𝑤𝑖𝑡ℎ 𝑛 ∈]1, 𝑛 𝑆𝑇𝑂𝑃 ] are not changed and into consideration (eq. 2-15). E max = 𝑚𝑎𝑥(𝐸 𝐺𝑙𝑜𝑏𝑎𝑙 ) 𝑖𝑛𝑑𝑣 𝑖𝑛𝑑𝑣 ∈ [1, 𝑛 𝑖𝑛𝑑𝑣 ] (2-15) remain as they were returned by the Period setting phase. When all candidate days
	The annual sum error is directly linked to the main goal of the test sequence i.e. can Where with the highest are tested in the target period, the new sequence 𝑑𝑎𝑡 𝑟𝑒𝑑 𝑆𝑇𝑂𝑃 𝑗,𝑡𝑎𝑟𝑔 𝑝𝑒𝑟𝑖𝑜𝑑 the short sequence estimate the annual sums of the model 𝑐𝑟𝑖𝑡 𝑦𝑒𝑎𝑟,𝑖𝑛𝑑𝑣 𝑠𝑢𝑚 ? However, E Global global annual sum error 𝑅 𝐺𝑙𝑜𝑏𝑎𝑙
	n indv number of tested individuals		

it is not enough. So, the regression coefficient is used to express how well the short sequence results describe the reference results at each time step for all criteria. Is the short sequence appropriate? 2 , and a new updated reduced sequence is found achieved in the block 𝑑 𝑛 destiny in the figure.

Since the global coefficient of determination is now higher, the global performance of the sequence became better than the previous one. If the 𝑅 𝐺𝑙𝑜𝑏𝑎𝑙 2 has not improved the day will not be modified. The algorithm then goes to a new target period and repeats the previous loop until all periods were targeted and no more possible improvements in the reduced sequence. In that case, the final sequence 𝑑𝑎𝑡 𝑟𝑒𝑑 𝑓𝑖𝑛𝑎𝑙 is produced, the final output sequence of the TypSS algorithm.

An example of this process is shown in

Figure II-15. The year appears to be divided into nine periods (𝑛 𝑆𝑇𝑂𝑃 =9) by the Period setting phase giving therefore the sequence 𝑑𝑎𝑡 𝑟𝑒𝑑 9 as shown in the figure. Periods' size of 𝑑𝑎𝑡 𝑟𝑒𝑑 9 are not equal and are remained unchanged through the process of the Typical days' enhancement phase as stated previously. 2 is returned and the function goes to another target period.

Table III -

 III 

	Period	1	2	3	4	5	6	7	8	9	10 11 12
	Number of days	91 22	23	11	12	23	91	5	6	11 23 46
	Selected	27 th	12 th	23 rd	24 th	1 st	26 th	10 th	3 rd	6 th	15 th	31 st	26 th
	Day	Jan	April	April	May	June	June	July	Oct	Oct	Oct	Oct	Dec
	Table III-1.Typical short sequence of 12 days and the number of days in each period.
	cold weather remained of big sizes reaching up to 91 days. This was predicted since
	the performances of the target criteria during this time of the year have a sort of
	consistent profiles.										

1 presents a 12 days sequence in addition to the length of each period obtained by TypSS. It is noticed that the algorithm chose to break the inter-seasonal periods of the year into smaller ones and therefore considering more days for these parts of the year. This is influenced by the nature of the used target criteria, which present high variations during this time of the year. This result appears in the table in periods 4,5,8 and 9 where the periods had between 5 and 12 days only. On the other hand, the seasonal periods, or the periods when the weather witnesses stable hot or

Table III -

 III 𝑟𝑒𝑑,𝑖𝑛𝑑𝑣 -𝑐𝑟𝑖𝑡 𝑦𝑒𝑎𝑟,𝑖𝑛𝑑𝑣 )² 𝑖𝑛𝑑𝑣 𝑛 daily value of the criterion obtained by the short sequence 𝑐𝑟𝑖𝑡 𝑦𝑒𝑎𝑟,𝑖𝑛𝑑𝑣 𝑛 daily value of the criterion obtained by the reference annual sequence According to ASHRAE Guideline 14[START_REF]ASHRAE Guideline 14-2002, Measurement of Energy and Demand Savings[END_REF], a CVRMSE of and below 25% indicates a good model fit with acceptable predictive capabilities. TableIII-2 shows the CVRMSE (considering daily values of the cumulative profiles) with values recorded between 1.1 and 5.8%. In addition to that, the relative annual sum error 𝐸 𝑐𝑟𝑖𝑡 (eq. 2-14) is of 0.1%

	for the backup energy, 0.4% for energy stored in the tank and 0.5% for the internal
	room temperature.				
	Criteria	Reference annual	Predicted annual	Error CVRMSE
		sum		sum
	Backup energy	3017 kWh		3020 kWh	0.1%	5.8%
	Energy stored in the	19011 kWh		19095 kWh	0.4%	1.8%
	tank				
	Internal room	7804 °Cd		7763 °Cd	0.5%	1.1%
	temperature				
		365 𝑛=1	365			(3-2)
	Where				
	𝑐𝑟𝑖𝑡 𝑟𝑒𝑑,CV(RMSE) =	1 𝑐𝑟𝑖𝑡 ̅̅̅̅̅ 𝑦𝑒𝑎𝑟,𝑖𝑛𝑑𝑣	× 𝑅𝑀𝑆𝐸	(3-3)

Where 𝑐𝑟𝑖𝑡 ̅̅̅̅̅ 𝑦𝑒𝑎𝑟,𝑖𝑛𝑑𝑣 mean value of the criterion crit in the reference annual sequence

RMSE

Root-Mean Square Error 2. Comparison between reference and predicted annual sum of the target criteria.

Table III -

 III Table III-3.

	Criterion		K-Medoids	SCSPT TypSS
		R²	0.88	0.99	0.97
	Backup Electrical Energy	Annual Sum Error (%)	15	4.5	0.1
		CVRMSE (%)	10	3	5.8
		R²	0.98	0.98	0.99
	Energy Stored in Tank	Annual Sum Error (%)	4.5	4	0.4
		CVRMSE (%)	6	8.2	1.8
		R²	0.99	0.99	0.99
	Room Temperature	Annual Sum Error (%)	0.6	2.1	0.5
		CVRMSE (%)	3	2.4	1.1
	Calculation time		seconds	2.5 hours	3 hours

3. Comparison between the three time reduction methods results.

Backup energy Energy stored in the Tank Internal room temperature

  

	Individuals	R²	CVRMSE	R²	CVRMSE	R²	CVRMSE
				%		%		%
	1		0.97	10.2	0.99	6.4	0.99	2.5
	2		0.96	8.4	0.99	4.2	0.99	2.4
	3		0.91	15.2	0.98	6.8	0.99	3.3
	4		0.94	13.3	0.99	6.1	0.99	2.7
	5		0.92	11.4	0.99	10.3	0.99	3.5
	Global	0.98					
	R²						

Table III -

 III 

5. The global and individual coefficient of determination of the three target

criteria.

Table III -

 III 7. 

	1 Criterion			Backup energy
	2 Criteria	Backup energy	Energy stored in the tank
	3 Criteria	Backup energy	Energy stored in the tank	Internal room temperature

Table III -

 III 

7. Considered criteria in each case. The results are traced in Figure III-16 and detailed in Table III-8. The aim is to evaluate the influence of such input variations.

  Total = cost Coll + cost Vol + cost Ins

			(4-2)
	Where	
	cost Coll	investment cost of solar collectors
	cost Vol	investment cost of storage tank
	cost Ins	investment cost of insulation material
		cost Coll = 900 × 𝑆𝐶𝑂𝐿𝐿	(4-3)
	Where	
	𝑆𝐶𝑂𝐿𝐿	surface area of the collectors in m²
		cost Vol = 0.5 × 𝑉𝑆𝑇 + 1000	(4-4)
	Where	
	𝑉𝑆𝑇	volume of the storage tank in liters
		cost Ins = cost Ins ext wall + cost Ins roof	(4-5)
	Where	
	cost Ins ext wall investment cost of external wall insulation
	cost Ins roof	investment cost of roof insulation
		cost Ins ext wall = 60 + 117 × (𝐼𝑁𝑆 -0.1)	(4-6)
	Where	
	𝐼𝑁𝑆	insulation thickness in m
		cost Ins roof = 19 + 50 × (𝐼𝑁𝑆 -0.3)	(4-7)

Table IV

 IV 

		Indv	Annual sum (kWh)	Predicted sum (kWh)	Relative error (%)
	Initial	1	5142	5124	3.5
	individuals	2	2388	2297	3.8
	𝑛 𝑖𝑛𝑑𝑣 𝑖𝑛𝑖	3	3461	3531	2
	Selected	4	1956	1769	9.5
	individuals	5	2242	2076	7.4
	𝑛 𝑖𝑛𝑑𝑣 𝑠𝑒𝑙𝑒𝑐	6	3098	3153	1.7
					-1 indicate
	that the Pareto front actually deflected from the reference one at the first and second
	part, represented by their corresponding individuals, and it shows relatively high
	differences. This appears in Figure IV-11.		

Table IV -

 IV 

1. Comparison between annual and predicted sums of the initial and

selected individuals from the first predicted Pareto front.

Table IV -

 IV 

		Indv	Annual sum (kWh)	Predicted sum (kWh)	Relative error (%)
		1	5142	5106	0.7
		2	2388	2383	0.2
	Initial	3	3461	3489	0.8
	individuals				
	𝑛 𝑖𝑛𝑑𝑣 𝑖𝑛𝑖	4	2242	2288	2
		5	1956	2004	2.5
		6	3098	3088	0.3
		7	2016	1987	1.4
	Selected				
	individuals	8	2373	2395	0.9
	𝑛 𝑖𝑛𝑑𝑣 𝑠𝑒𝑙𝑒𝑐	9	3017	3016	0.01

2. Comparison between annual and predicted sums of the initial and

selected individuals from the second predicted Pareto front.

  Table IV-3. Time consumed to obtain the final Pareto fronts of Reference, OptiTypSS and metamodel simulations.

				OptiTypSS	metamodel
	Number of heavy simulations	600	6		30
	Number of process	Pre-optimization	-	TypSS	2x	-
	calls	NSGA-II	1	2x		1
	Process	Pre-optimization	-	1 st call 2 nd call	9 18	-
	Time					
	(hours)			1 st call	5.7	
		NSGA-II	147			2
				2 nd call	5.7	
	Total Time (hours)		147	38.4		2
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Chapter III Application of TypSS and sensitivity analysis on its input parameters

Moreover, Table III-6 shows that the annual values of the target criteria were estimated with a good precision of a relative error not exceeding 2% for the backup energy and internal room temperature, and 8% for the energy stored in the tank between the reference values (AN) and the predicted ones (TS). The curves show that while the relative errors did not exceed 10% for all target criteria in the case of five individuals based sequence (in blue), the backup energy was badly estimated for the most of 50 individuals in the case of a single individual based sequence recording up to 45% error. On the other hand, while the influence of number of individuals did not seem to be noticeable in the case of energy stored in the tank, the performance of a single individual was slightly better than that of five in the case of internal room temperature with a minor difference up to 1%. However, in the case of temperature, the performance value usually taken into consideration is the temporal estimation within the limits of ±2°C when considering temperature in Celsius. In the following sections, the annual sum error is still considered even for the temperature criterion to keep consistency of the study. The obtained results show the influence of the target criteria on their profiles. When the backup energy was taken alone into consideration, the cumulative profile was replicating the reference profile in the periods of electric energy use, i.e. cold periods of the year. The profile increased in an exact trend as the reference one recording an R² of 0.99 before it deviated slightly at the end of the summer period but this deviation was corrected in the following periods to continue exactly as the reference recording with a final annual sum error of 0.1%. Creating a longer sequence might lead to better representation, which appeared with a sequence of 30 days previously presented in 

Criteria

IV.3. Adaptive multi-objective optimization methodology (OptiTypSS)

The process of OptiTypSS is presented in Figure IV-9. The strategy searches for the optimal solutions while at the same time identifying the reduced sequence.