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Abstract

Predictive Bioinformatics represents a major field of applications for combinatorial
optimization techniques. Very often, an ensemble perspective, which not only con-
sider the optimal solution but also fully embraces the set of suboptimal solutions,
needs to be adopted. In this Habilitation a Diriger des Recherches, 1 present a series
of algorithmic and combinatorial contributions, inspired by problems and questions
arising in the study of RiboNucleic Acids (RNAs), in particular pertaining to their
structural properties at the thermodynamic equilibrium.

I first describe a collection of generic and applied algorithmic techniques, enabling
the efficient computation of statistical properties within search spaces. Such com-
putations can be exact, or rely on unbiased estimates produced, using constrained
sampling strategies, and are founded on on a combinatorial (re-)interpretation of
dynamic programming schemes. I then adopt a purely combinatorial point of view
over search spaces, and establish asymptotic properties of classes of discrete objects
arising in Bioinformatics, showcasing the unreasonable power of (a subset of) analytic
combinatorics. Finally, I conclude with a collection of algorithmic results, obtained
through the application of a wide array of techniques, in the context of RNA design,
a field focused on combinatorial problems that are at the same time original, difficult,
and relevant to the modern goals of biology and medicine.
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Foreword

The French academic system has enjoyed a long and eventful history, leading to many
charming pecularities. One such specificity is the requirement of junior tenured scientists
to successfully defend an Habilitation a Diriger des Recherches (HDR) before being allowed
supervise doctoral candidates in an official capacity. As part of the requirements for such a
defense, the candidate produces a manuscript summarizing the research results obtained
since his PhD. This is my contribution towards applying for an HDR in Computer Science
at Université Paris-Sud. The individual nature of the evaluation dictates the use of the
tirst-person singular, but an overwhelming majority of those results hinge critically on
contributions from a community of collaborators, which I have attempted to acknowledge
profusely.

The structure, ambition, scope and length of an HDR vary substantially between disci-
plines, institutions, and follow personal aesthetics. Some will elicit to contribute a general
introduction for a collection of articles, while others will interlace past results with novel
research material, trying to use the opportunity to outline general theories. Some will
embrace the diversity of their past contributions, while others will strive to provide a
unified perspective over research projects spanning one to two decades.

My ambition for this document is, by formalizing some of the intuitions underlying
my past contributions, to reveal their triviality and, more seriously, contribute firm
foundations for the systematic design and analysis of algorithms in RNA Bioinformatics
and beyond. My main focus is therefore on the description of techniques, either classic in
other fields or contributed over the course of my young career as a scientist, showcasing
their power and level of generality by a brief description of their application in the context
of RNA bioinformatics.

For these reasons, and partly because compact does not necessarily mean simple, I
apologize in advance to the casual reader for explanations and digressions which may
appear, at times, unnecessarily technical. It is unfortunately the price to pay to achieve
my intended goal of using this document to lay out stable and explicit foundations for
futures contributions to Bioinformatics.



Chapter 1

Infroduction

Bioinformatics as a field of study is the poster child of interdisciplinarity. It is uni-
fied by an overarching objective to automate the processing and analysis of biological
data, and plays an essential part in the production of knowledge in modern Biology. In
the context of Molecular Biology, it is informed by models stemming from Biophysics
and Chemistry, quantitatively parameterized by computational methods in Statistics
and Probability theory (Machine Learning), or analyzed at a theoretical level using
Theoretical Physics and Discrete Mathematics techniques. Such quantitative models,
typically in conjunction with parsimony arguments, represent the foundations of predic-
tive algorithmic methods.

1.1 Predictive Bioinformnatics and its foundations

Predictive Bioinformatics strives to produce methods which, from empirical data, pre-
dict phenomena far beyond our capacity for direct observations. Examples of such
limitations include events that occur at the nanometer scale, in the distant past, or whose
observation significantly interferes with (e.g. kill) a living system of interest. Given an
established model, consistent with current biological knowledge, predictive methods in
bioinformatics embrace some notion of search space induced by the input data. They
elect one or several element(s) of the search space by maximizing some notion of score,
usually analogous to a probability, provided by the model. The produced solution con-
stitutes a best bet under (possibly implicit) assumptions of the model. Such methods are
typically trained on reference data sets, for which a ground-truth is known, to calibrate a
widely-varying set of parameters, and validated on independent data sets as an empirical
test of their accuracy and, importantly, capacity of generalization.

Once a predictive method has been deemed satisfactory, a leap of faith occurs, follow-
ing which the model and method are treated as uniformly correct. The subsequent
predictions are considered as reflective of Nature itself, and treated as primary data in
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Figure 1.1: Rationale of ensemble analyses. In combinatorial optimization, near-optimal
solutions can be representative of the ensemble (A), with suboptimals concentrating
around the optimal. Ensembles may also be fragmented (B), i.e. near-optimal solutions
regroup into clusters whose representatives may differ from the optimal with respect to
some features Fa and Fg of interest. The optimal may then be an outlier, and should be
treated with caution, or even disregarded in favor of the ensemble centroid.

the formulation of hypotheses and functional models in Biology. This abrupt change of
perspective, treating a method with uttermost paranoia during the validation phase and
with unabashed confidence in subsequent analyses, may appear dangerously optimistic
at first sight. In fact, it is usually the root cause of the cultural clash experienced by sci-
entists transitioning from exact sciences to Bioinformatics. However, Biology as field has
evolved a remarkable robustness to misleading observations and appears, sometimes
through impassioned controversies, to overcome biased observations caused by imperfect
experimental devices, among which Bioinformatics methods can now be counted.

Indeed, predictions produced by Bioinformatics methods are typically falsifiable, i.e.
they can be contradicted by future produced experimental data. This partly justifies the
popularity of exact algorithms in molecular biology. Indeed, in the context of an exact
optimization, failure to predict can be interpreted as a shortcoming of the underlying
quantitative model, motivating and directing further refinements. By contrast, ill-defined
optimization schemes (e.g. machine learning or heuristics), convolve possible modeling
errors with optimization errors. Failure to predict does not necessarily point towards
flaws of the model, and does not allow to refine them, as an improved model may induce
worse optimization performances (and vice-versa, a broken clock being right twice a
day), missing an opportunity for future developments.

Predictive optimization-based methods, however, suffer from a severe shortcoming in the



context of combinatorial search spaces. Indeed, they ultimately output a single solution,
presumed to be optimally-likely in some sense. However, the dominating nature of
the proposed solution may show limited robustness to, even modest, changes of the
objective function, whose parameters are usually learned from data and thus subject
to experimental errors. Moreover, an optimal solution may be poorly representative of
the subspace of near-optimal solutions, so that it may be more advisable to consider a
suboptimal — representative — solution rather than an optimal — non-representative — one.

These observations constitute the main motivations behind the development of ensemble
methods in combinatorial Bioinformatics, treating the whole search space as an object
of study rather than merely solving a needle in a haystack optimization problem. To that
purpose, a probability distribution is postulated over the search space, and probabilistic
analyses are performed.The optimal solution may remain relevant, but ensemble methods
allow to go further, and assess notions of support for any given solution, or how distant
features of the optimal solution are from the centroid of the ensemble. Indeed, as shown
in Figure 1.1, ensembles associated with a given instance may either be concentrated
around the optimal, or fragmented, leading to multiple clusters of diverse solutions, and
multimodal distributions for features of interest.

1.2 A crash course into RNA structure prediction

The Bioinformatics of RiboNucleic Acids (RNAs) represent a very natural realm of
application, and a source of constant inspiration, for ensemble analyses.

RNA constitutes a category of biomolecules, abstracted as sequence of nucleotides Ade-
nine (A), Cytosine (C), Guanine (G) and Uracil (U), initially transcribed from a DNA
template and further processed before reaching their cellular environment. They can
form stable complexes with proteins, but also DNA and other RNAs, allowing them
to regulate genetic expression. They can also perform enzymatic functions, i.e. pro-
cess other molecules (or themselves), act as biosensors by undergoing conformational
changes upon binding with small metabolites, and store the entire genetic material of
certain viruses (e.g. HIV, SARS, 2019 nCoV).

Their dual capacity to store and process information is unmatched, leading current
theories in evolution to consider RNA as the most likely candidate at the origin of life [93].
Such a versatility, illustrated in Figure 1.2, not only stems from the combinatorial nature of
RNA sequences but also from its capacity to adopt one or several well-defined structures,
driving the specificity of its interactions with other actors of the cellular world.
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Figure 1.2: Beyond coding for proteins, a growing list of RNA functions. The versatility
of RNA (A) is confirmed by the sustained growth (B) of the number of functional families
in the RFAM database [84, 106], a majority of which are not coding for proteins, and
associated with a conserved well-defined secondary structure.

1.2.17  RNA structure

Following Tinoco and Bustamante [184], RNA is believed to fold in a hierarchical fashion
where canonical base pairs, mediated by hydrogen bonds, initially form a tree-like
architecture called the secondary structure. Later in the folding process, the secondary
structure is completed by complex topological motifs, including pseudoknots and non-
canonical base pairs and motifs [114, 115]. Due to its combinatorial nature, the secondary
structure is found at the core of successful computational methods for predicting the 3D
structure of RNA [131]. It also supports the discovery of new functional families of
non-coding RNAs, RNAs that do not (only) encode a protein, but (also) act directly
on their environment through participation in catalytic and/or regulatory functions. A
conserved consensus secondary structure is indeed a central object for many families in
the RFAM database [84, 106], and a crucial element of the design of covariance models [62]
used to find homologous RNAs across sequenced genomes.

Ata 3D level, structure modeling is tackled using a mixture of comparative methods [134]
and low-throughput/high resolution experimental techniques such as X-ray crystallogra-
phy, Nuclear Magnetic Resonance (NMR), or Cryogenic Electron Microscopy (Cryo-EM).
However, those techniques are extremely time-consuming, and require a preparation of
molecules that may either not be feasible for certain RNAs, or can interfere with the
folding process itself. These difficulties induce a growing gap between the number of
functional families (+3000 as of Jan 2020), many of which requiring the adoption of a
specific structure, and the number of families with experimentally-resolved 3D model
available for at least one of their members (99 as of Jan 2020).

Recently, high throughput/low resolution alternatives have been proposed in the form



of improved chemical probing protocols, notoriously including SHAPE probing [47,
176, 198]. Those methods expose RNA to a chemical reagent, whose affinity towards
individual nucleotides depend on the structure (and therefore partly reveal it, albeit
in a stochastic and highly noisy fashion) and can be quantified using DNA and RNA
sequencing technologies. The end-result of those methods are 1D reactivity profiles
that are not sufficient to fully characterize a structure, but greatly informative for further
(computational) modeling.

1.2.2 RNA folding prediction models and paradigms

For all the aforementioned reasons, computational structure prediction methods are very
relevant to the current objectives and challenges of RNA Bioinformatics. In the context of
molecular biology, RNA structure prediction is mainly concerned with the prediction of
one (or several) functional fold(s) for a given molecule. Since the influence of the cellular
environment on RNA folding is difficult to fully characterize, and even harder to capture
computationally, popular in silico methods adopt an approach inspired by statistical
mechanics. They focus on stable conformations, having low free-energies, under the
rationale that unstable structures are unlikely to be recognized by their partners, and
play a reliable role in important phenotypic effects.

This notion can be formalized by considering the Boltzmann-Gibbs distribution, where
any possible structure S for a given RNA w is observed with probability

P, (S) oc e EOW,SI/RT (1.1)

where E(w, S) represents the free-energy in kcal.mol™ of the (w, S) pair, R the Boltzmann
constant (1.98721073 kcal.mol™1. K™!) and T the absolute temperature in Kelvin. This
distribution can be thought as the stationary distribution of a continuous time Markov
chain, illustrated in Figure 1.3 on a toy example. In this process, a transition between two
conformations is chosen with probability /rate that only depend on the energy difference,
thus respecting a detailed balance. Starting from the fully-unpaired/empty structure?,
having initial probability 1, the probability mass diffuses within the space of conforma-
tions, and ultimately reaches the thermodynamic equilibrium when probabilities no
longer evolve with time. The evolution with time of probabilities /concentrations can be
determined using efficient numerical integration [201], as illustrated in Figure 1.3.B.

This vision, inspired by statistical mechanics, is at the core of historical paradigms in the
tield of RNA structure prediction:

More sophisticated models may consider a co-transcriptional folding [111] of the nascent transcript,
leading to a non-binary initial distribution at the beginning of the process.
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Figure 1.3: RNA folding paradigms. The process of RNA folding can be abstracted as
a Continuous Time Markov Chain (CTMC - A), over a discrete state space consisting of
(a subset of) the secondary structures adopted by an RNA. Starting from an initial distri-
bution, typically assigning full probability to the open chain, kinetic studies attempt to
characterize the evolution of the probability distribution with time (B). At the thermody-
namic equilibrium, the stationary distribution of the CMTC is reached and probabilities
cease to evolve with time. The most probable structure is then the most stable one, i.e. the
MEFE structure. However, RNA degradation may occur before the equilibrium is reached,
and the dominant structures at finite time may represent more promising candidates for
functional hypotheses.

MEFE paradigm. Early computational methods for structure prediction [95, 143, 213] fo-
cused their effort on producing (one of) the optimally stable, or Mininum Free-
Energy (MFE), structure(s), under the rationale that the MFE structure has highest
probability at the thermodynamic equilibrium;

Boltzmann ensemble paradigm. While optimal, the probability of the MFE structure
alone can be abysmally small, and decreases exponentially with the RNA length.
The MFE structure can therefore be overwhelmed, at the thermodynamic equilib-
rium, by a set of alternative structures having comparable stability and, possibly,
very different characteristics. This motivates studies of the expected properties
in the Boltzmann-Gibbs distribution, hinging on an efficient computation of the

partition function [130]

Z = Z e EW,S)/RT
S

When these properties diverge from those of the MFE, it may be more relevant
to consider structures that are more accurate representatives of the ensemble of
structures. One such structure is the Maximum Expected Accuracy structure [55,
121], the structure minimizing some notion of expected distance to the rest of the
ensemble. Alternatively a statistically representative, Boltzmann distributed, set
of structures can be randomly generated, clustered at a structural level to identify

10



alternative conformations, and eliminate outliers. A centroid structure can then be
elected for each cluster [52];

The kinetics paradigm. More recently, there has been a growing awareness of the impor-
tance of out-of-equilibrium effects in the function(s) carried out by RNA. Indeed,
in a cellular context, RNA is constantly transcribed and degraded by enzymes.
Depending on the precise dynamics of these concurrent processes, a population of
RNAs may simply be degraded before reaching its stationary distribution, so the
thermodynamic paradigm may not provide an accurate picture of the functional
structure. This generally applies to RNAs whose energy landscapes feature sub-
stantial barriers, leading to a slow convergence towards the equilibrium. Kinetics
analyses are thus concerned with the structural behavior of RNA before reaching
the equilibrium.

Examples of kinetics effects are suspected to include riboswitches, bistables RNAs
which are observerd in on and off conformations in the presence/absence of a lig-
and, a small molecule, believed to have insufficient contribution to the free-energy
to invert the relative stabilities of the on and off states. Current models are thus
based on kinetics, and postulate that the ligand modifies an energy barrier, lead-
ing to a faster/slower convergence towards the thermodynamic equilibrium [65].
More generally, co-transcriptional folding, the folding of RNA during transcrip-
tion, reveals the importance of kinetic effects. Indeed, this phenomenon would be
without effect at the thermodynamic equilibrium, since the stationary distribution
of a (ergodic) Markov chain does not depend on its initial distribution, so it would
should not matter at the equilibrium.

In the rest of this document, I will mainly focus on algorithmic strategies relevant to
the MFE and Boltzmann equilibrium paradigms, although certain were have designed
with kinetics analysis in mind [133, 180]. Kinetics analyses are indeed much more
time-consuming, and are associated with computational problems that are routinely NP-
hard [126]. Efficient heuristics and methods for analyzing kinetics are, however, the
object of ongoing projects within the RNA Bioinformatics community.

1.2.3 The secondary structure

A RNA secondary structure of size n represents the outcome of a folding process,
and focuses on a subset of base-pairs, mediated by hydrogen bonds. For essentially
computational reasons [3, 123, 175] this definition forbids crossing base pairs, also called
pseudoknots due to their ability to induce complex topologies [205]. Moreover, any
nucleotide can only be involved in a single base pair, since additional partners would
involve non-canonical edges [114]. Finally, most definitions rule out base pairs between

11
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proximate positions, due to steric effects inducing geometric constraints, leading to a

minimal number 0 of unpaired positions between paired positions.

Definition 1.2.1 (RNA secondary structure): An RNA secondary structure S of
length n is a set of base-pairs (i,j),1 < i < j < n, such that:

e Each position is monogamous, V(i,j) # (i’,j’) € S: {i,j} n{i",j’} = &;

e Minimal distance 0 between paired nucleotides, V(i,j) € S:j —1 > 6;

e No pseudoknot allowed, V(i,j),({",j") € S,i <1 : (j’ <j)or (j < 1).

The conformational space associated with a sequence of length n is simply S, the set
of secondary structures over n nucleotides.

In typical ab initio RNA structure prediction problems, the input is a sequence of nu-
cleotides w € {A,C,U, G}*. This space of secondary structure is then usually restricted
to structures consisting of canonical base pairs B := {{G,C}, {A, U}, {G,U}}}. In other
words, for any valid secondary structure S € S one has:

V(i,j) €S: {Wi,W]’} € B.

The secondary structure can be drawn in a variety of ways, as illustrated by Figure 1.4,
many of which being supported by our popular software VARNA, developed in collabo-
ration with Kevin Darty and Alain Denise [44].

The stability of a secondary structure is assessed using a free-energy model. The most
popular such model is the Turner nearest-neighbor free-energy model [185], which as-
sociates experimentally-determined free-energy contributions to structural motifs, called
loops (see Figure 1.5). The energy of any given secondary structure is then additively
defined, i.e. obtained by summing the contributions of the various loops appearing in
the structure.

12
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Figure 1.5: Loop decomposition supporting the Turner nearest neighbor model [185].
Free-energies are associated to each loop type, precise topology and content in nu-
cleotides, determined by, or extrapolations from, direct experimental measurements.

1.2.4 RNA 2D structure prediction from thermodynamic principles

The secondary structure provides a convenient discretization of the conformational space,
and allows a reformulation of several folding paradigms into combinatorial problems.
For instance, predicting the most stable secondary structure (MFE paradigm) amounts
to finding the secondary structure having minimal free-energy according to a chosen
model. Since the overall and expected number of secondary structure of length n both
grow exponentially on the length [194, 212], a proof being provided in Section 5.2, brute-
force optimization is not realistically feasible.

However, as illustrated in Example 1 below, the tree-like nature of secondary structure,
and the independence of contributions within the energy model, make those optimiza-
tions amenable to a ©(n?) dynamic programming (DP), as initially shown by Nussinov
and Jacobson [143] in a simplified energy model. The algorithm was later extended
to capture loops and additional features of the Turner free-energy model by Zuker and
Stiegler [213], leading to a ©(n*) time algorithm (empirically running in ©(n?) time). This
algorithm was then extended by [204] to generate the exhaustive collection of secondary

structures within a free-energy range A of the MFE structure.

Example 1: RNA BP folding — Running example
A historical problem, first efficiently solved by Nussinov and Jacobson [143] is the prediction of the
MEE structure in a simple base pairing model, i.e. having maximum number of pairs, with only
nucleotides in B being allowed to pair. Our goal is thus to compute some S$* € Sy, such that
1S*| = max IS].
SeS&Sn such that
V(i,j)ES,{Wi sWj }EB
A classic dynamic programming scheme, inspired by Waterman [194], considers each interval [i,j] C
[1,n] and their associated optimal structure Sfj for [i,j]:

13



i j i i+l j ii+l k-1 k k+1 j
Reasoning on the fate of the first position i within S; j-one only needs to consider three cases:

1. 146 > j, so no base pair can be formed, and we have S’{]. =@,

2. i+0 <j and iis left unpaired, so any base pair in S{j involves positions in [i + 1, j], and we have
* . o

Sij = Sf+1,j'
3. 14+ 6 <jand iis paired to some k € [i +1,j] in Si*]. subject to {wi, wy} € B. Beyond (i, k), any
base pairs in S{‘j involves positions in [i + 1, k — 1] in [k + 1,j] (but not both since pseudoknots

are forbidden), so we get S;j ={{,k} U S)ik+1,k—1 U S§+1,j'
This immediately suggests a recurrence for the maximum number of base pairs E; j, achieved by

some secondary structure for the region [i,j] € [1,n] of a given RNA w:
i+0 > :Ei,j =0,
Eit1j (i unpaired)

i+0<j: By :zmax{ j . o
max, ;.o 1+ Eiy1 k-1 + B j if{fwi, wi} € B (i paired)

Note that the computation of E; j only requires values Ei/ j such that |[V",j’]| < [[i,j]|. A dynamic
programming algorithm for computing |S*| := Eq n will consider intervals [i,j] € [1,n], ordered by
increasing span |[[1,j]|, and compute E; j using precomputed Ey j, storing the result before proceeding
to a (possibly) larger interval.

The correctness of the algorithm hinges on the fact that, while computing over Ey j, all [i’,j’] such
that |[i",j’]| < [[i,j]| are already been processed, so that Ei- ;- in the right hand side can be used. The
number of different E; j terms grows in ©(n?). Moreover, each Ej j can be computed in O(n) arithmetic
operations, assuming that all Ey/ j- in the right-hand-side are accessible in O(1) operations. The overall
complexities of the algorithm are therefore in ®(n3)/@(n?) time and space.

Once the maximum number of base pairs is computed, one can backtrack through these recursions,
starting from [1,n], by figuring out at each step (one of) the case(s) that contributed to the max.
Concretely, one will define a recursive function Backtrack such that Backtrack(i, j) := Return@ when
i+0>jand, fori+0 <j:

Backtrack(i, j) :=
if By j = Ei41,j : return Backtrackd,j)
if Eij =1+Eit1,k-1 + Exs1,5,K € [i+0+1,j]and {wi,wx} € B:
return{(i, k)} U Backtrack(i, k — 1) U Backtrack(k + 1, j)

Note that the two cases are not necessarily mutually-exclusive, i.e. multiple structures may achieve
maximal number of base pairs, and an arbitrary-chosen optimal one will be returned.

A second breakthrough came with the advent of comparative folding, pioneered by
the work of Sankoff [167], who automated the practices of manual modelers [134], and
proposed an algorithm for the simultaneous folding and alignment of RNA. While
associated with extreme compuational demands (@(n°) for aligning two homologous
sequences), its impressive gain in predictive power and reliability compared to ab initio
techniques led it to be adapted within many subsequent methods, undergoing active
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developments [128, 179, 199, 200].

A revolution came with the McCaskill [130] algorithm, which championed a transition
towards the Boltzmann ensemble paradigm. Namely, McCaskill observed that the

partition function

2z = N oEW,S)/RT
:
could be computed in essentially @(n?) time, through a simple change of algebra to
the dynamic programming equations of [213]. Moreover, he showed that the same
decomposition could be adapted into an instance of the inside/outside algorithm[10,
113], leading to a ©(n?) algorithm for computing the base-pair probabilities within
the Boltzmann ensemble. Such ensemble properties provide a notion of support for
structures predicted in the MFE paradigm [127], but also allow to predict a structure that
more adequately represents the ensemble than the MFE, such as the Maximal Expected

Accuracy structure [55, 121].

The flexibility, and scope of applications, of ensemble methods was greatly extended by
the contribution by Ding and Lawrence [51] of a stochastic backtrack algorithm, allowing
to produce a random, Boltzmann distributed, secondary structure in time ©(n?). This
enabled the implementation of statistical estimators for many features, including some
that cannot be captured by dynamic programming. This also paved the way for a
statistical estimation of the dominant conformations within the Boltzmann ensemble,
using a combination of sampling and clustering [52], used by subsequent methods [177].

Finally, a strong emphasis has been recently put on the development of integrative meth-
ods that exploit the availability of (partial /noisy) experimental information. In the early
2000s, enzymatic and chemical probing data were integrated as hard constraints by Math-
ews et al. [129] within DP equations for RNA structure prediction. Following the develop-
ment of quantitative experimental methods, such as the SHAPE technologies [176, 198],
probing data are now incorporated as soft constraints, a.k.a.pseudo-energies within DP
schemes for prediction. Such energy terms can be thought as shifting the Boltzmann
ensemble towards areas of greater compatibility with the reactivity profiles produced
by the probing experiments.
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1.3 OQOutline

In this manuscript, I attempt to provide an unifying view on the algorithmic and theo-
retical concepts, used in a series of personal (frequently collaborative) contributions in
Bioinformatics, Theoretical Computer Science and Discrete Mathematics. Those contri-
butions are of different nature, and address a variety of objects of study, yet they share a
consideration of ensembles of combinatorial objects, and are based on an interpretation
of enumerations schemes as algorithmic principles.

In Chapter 2, I reformulate ensemble dynamic programming algorithms, contributed in
the context of Bioinformatics within a unified framework. My contributions draw on a
strong connection between (ensemble) dynamic programming and enumerative combi-
natorics, and put a strong emphasis on the design of dynamic programming schemes,
whose productions are bijectively associated with an ensemble of objects of interest.

Chapter 3 focuses more specifically on algorithmic methods for RNA design, the algo-
rithmic construction of new RNA sequences achieving a certain function, here through
the adoption of a given structure. In this context, I revisit the classic inverse folding
of RNA at under (essentially) a base pair maximization model, and show families for
design can be approximated in an original sense. I also develop a vision inspired by
random generation for the positive design problem, where one attempts to favor the
affinity towards a given fold.

Chapter 4 describes rejection-based techniques and algorithms for a controlled random
generation of combinatorial objects. Again, the initial focus is to present those techniques
in an application-agnostic setting, later to describe some of their applications in Bioin-
formatics. Finally, I mention some analyses of the, arguably uninformative, redundancy
within samples and the shortcomings of a rejection-based strategy to overcome it.

Finally, Chapter 5 summarizes a series of analyses focusing on the asymptotic properties
of objects occurring in (RNA) bioinformatics. Those include RNA secondary structures,
for which a careful application of analytic combinatorics principles allow to derive prop-
erties in the homopolymer model, but also other objects with connection to the design
and analysis of algorithms.s
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Chapter 2

Ensemble dynamic programming:
fechniques and analyses

Following Bellman [14], a dynamic programming algorithm is usually stated as a system
of recursive equations, relating the optimal value of an objective function over a certain
argument, or problem, to a set of its values over other arguments, or sub-problems. Ad-
ditionally, such an equation has induce an acyclic computation, meaning that the set of
arguments that are used by following the recursive calls, can be totally ordered in a way
that is consistent with the left-to-right transitions in the system. Such a definition over-
looks an important aspect of a dynamic programming scheme: the semantics associated
with the choice of one of the available left-to-right transitions.

In this manuscript, we adopt a perspective dually inspired by enumerative combina-
torics, where the choice of a derivation provides partial information regarding the final
solution. Such an enumerative perspective allows to define notions of unambiguity, cor-
rectness and completeness with respect to a given search space which, if fulfilled by a
DP scheme, unlock a variety of algorithms to make statements regarding the ensemble
of solutions. Such analyses go beyond the optimization of an objective functions, and
attempt to answer selected questions involving the ensemble of candidate solutions:

What is the support of an optimal solution?

What is the number of near-optimal solutions?

e Are all near-optimal solutions similar? how diverse are they?

What is the centroid solution, i.e. most similar to other near-optimal solutions?

What are the average properties of near optimal solutions?

e Which distributions of properties are expected within near optimal solutions?

Such questions require the definition of a probability distribution, assigning proba-
bilities to elements of the search space increasingly with their value for the objective

function.
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Ensemble analyses, whose first instances can probably be traced back to the origins of
Natural Language Processing [10, 188], enjoy a great popularity in Bioinformatics. In
particular, the early age of RNA bioinformatics saw seminal contributions from scientists
with a strong combinatorial culture in Discrete Mathematics, Theoretical Physics and
Computer Science, including Michael Waterman [194], Michael Zuker [212, 213], David
Sankoff [167], Walter Fontana, Peter Stadler, Peter Schuster and Ivo Hofacker [74, 95, 96]. . .

The popularity of ensemble analyses in RNA Bioinformatics also stems directly from their
origin in statistical mechanics, inspiring the seminal contribution of John McCaskill [130]
who turned a popular DP scheme for energy minimization into an algorithm to compute
the partition function of the Boltzmann ensemble. This central quantity allowed to derive
expected properties of RNA at the thermodynamic equilibrium, starting with the base
pairing probabilities, which have become central to modern methods for comparative
folding of RNA [199, 200], based on a simultaneous folding and alignment of RNAs
pioneered by David Sankoff [167].

In this context, my efforts have been focusing, on: i) the design of novel DP schemes
amenable to ensemble analyses, associated with challenges of variable technicality; and
ii) the development of new techniques to enable, or accelerate, ensemble analyses.

Outline. Section 2.1 describes a unifying framework for ensemble dynamic program-
ming, used in Section 2.2 to reformulate classic and novel tools to perform an exact
computation of ensemble properties. Section 2.3 focuses on statistical sampling, pro-
viding estimates for, possibly complex, Ensemble properties. Finally, Section 2.4 presents
a selection of algorithms and results obtained in various areas of Bioinformatics using

this general framework.

The following summarizes, and attempts to unify, contributions described within the
following list of articles published in journals and/or presented at conferences.

Associated conftributions

J. Waldispiihl and Y. Ponty. An unbiased adaptive sampling algorithm for the exploration of RNA mutational
landscapes under evolutionary pressure. Journal of Computational Biology, 18(11):1465-79, Nov. 2011

evolutionary pressure. In RECOMB 2011, volume 6577 of Lecture Notes in Computer Science, pages 501-515, Vancouver, Canada,

J. Waldispiihl and Y. Ponty. An unbiased adaptive sampling algorithm for the exploration of RNA mutational landscapes under
Mar. 2011. Springer Berlin / Heidelberg

Y. Ponty and C. Saule. A Combinatorial Framework for Designing (Pseudoknotted) RNA Algorithms. In WABI
2011, Saarbrucken, Germany, 2011

S. Sheikh, R. Backofen, and Y. Ponty. Impact Of The Energy Model On The Complexity Of RNA Folding With
Pseudoknots. In CPM 2012, volume 7354 of Combinatorial Pattern Matching, pages 321-333, Helsinki, Finland, July
2012. Juha Kérkkainen, Springer
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P. Rinaudo, Y. Ponty, D. Barth, and A. Denise. Tree decomposition and parameterized algorithms for RNA
structure-sequence alignment including tertiary interactions and pseudoknots. In WABI 2012, tba, Ljubljana,
Slovenia, Sept. 2012. University of Ljubljana

E. Senter, S. Sheikh, I. Dotu, Y. Ponty, and P. Clote. Using the Fast Fourier Transform to Accelerate the Computa-
tional Search for RNA Conformational Switches. PLoS ONE, 7(12):e50506, Dec. 2012

E. Senter, S. Sheikh, I. Dotu, Y. Ponty, and P. Clote. Using the Fast Fourier Transform to accelerate the computational search for
RNA conformational switches (extended abstract). In RECOMB 2013, Beijing, China, Apr. 2013

V. Reinharz, Y. Ponty, and J. Waldispiihl. Using Structural and Evolutionary Information to Detect and Correct
Pyrosequencing Errors in Noncoding RNAs. Journal of Computational Biology, 20(11):905-19, Nov. 2013

V. Reinharz, Y. Ponty, and J. Waldispiihl. A linear inside-outside algorithm for correcting sequencing errors in structured RNA
sequences. In RECOMB 2013, Beijing, China, Apr. 2013

C. Chauve, Y. Ponty, and J. P. P. Zanetti. Evolution of genes neighborhood within reconciled phylogenies: an
ensemble approach. BMC Bioinformatics, 16(Suppl 19):S6, Dec. 2015

C.Chauve, Y. Ponty, and J. P. P. Zanetti. Evolution of genes neighborhood within reconciled phylogenies: an ensemble approach.
In BSB 2014, volume 8826 of Advances in Bioinformatics and Computational Biology, pages 49-56, Belo Horizonte, Brazil, Oct. 2014.
Springer

A. Rajaraman, C. Chauve, and Y. Ponty. Assessing the robustness of parsimonious predictions for gene neigh-
borhoods from reconciled phylogenies. In ISBRA 2015, volume 9096, pages 260-271, Norfolk, Virginia, United
States, June 2015

E. Jacox, C. Chauve, G. J. Szollosi, Y. Ponty, and C. Scornavacca. ecceTERA: Comprehensive gene tree-species tree
reconciliation using parsimony. Bioinformatics, 32(13):2056-2058, July 2016

V. Reinharz, Y. Ponty, and J. Waldispiihl. Combining structure probing data on RNA mutants with evolutionary
information reveals RNA-binding interfaces. Nucleic Acids Research, 44(11):e104 — €104, 2016

W. Duchemin, Y. Anselmetti, M. Patterson, Y. Ponty, S. Bérard, C. Chauve, C. Scornavacca, V. Daubin, and E. Tan-
nier. DeCoSTAR: Reconstructing the ancestral organization of genes or genomes using reconciled phylogenies.
Genome Biology and Evolution, 9(5):1312-1319, 2017

J. Deforges, S. De Breyne, M. Ameur, N. Ulryck, N. Chamond, A. Saaidi, Y. Ponty, T. Ohlmann, and B. Sargueil.
Two ribosome recruitment sites direct multiple translation events within HIV1 Gag open reading frame. Nucleic
Acids Research, 45(12):7382-7400, July 2017

C.Chauve, ]. Courtiel, and Y. Ponty. Counting, generating, analyzing and sampling tree alignments. International
Journal of Foundations of Computer Science, 29(5):741-767, 2018

C. Chauve, J. Courtiel, and Y. Ponty. Counting, generating and sampling tree alignments. In ALCOB 2016, volume 9702, pages
53-64, Trujillo, Spain, 2016. Springer

S. Hammer, W. Wang, S. Will, and Y. Ponty. Fixed-parameter tractable sampling for RNA design with multiple
target structures. BMC Bioinformatics, 20(1):209, Dec. 2019

S. Hammer, Y. Ponty, W. Wang, and S. Will. Fixed-Parameter Tractable Sampling for RNA Design with Multiple Target
Structures. In RECOMB 2018, Paris, France, 2018

2.1 A formal framework and basic algorithms

In order to refactor both classic and novel dynamic programming-based algorithms, we
introduce a formal framework. Largely inspired from Juraj Michalik’s PhD [132], it can
be seen as an operational version of the declarative proposal of Giegerich and Touzet [81],
modeling dynamic-programming processes as inverse coupled term-rewriting systems [108].
Some of its features were previously introduced in collaboration with Cédric Saule [150],
based on an oriented hypergraph framework pioneered by Finkelstein and Roytberg [66],
independently pursued by Huang and Chiang in the context of natural language process-
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ing [98]. It is also worth mentioning a substantial overlap with the book of Miklos [135]
dedicated to the complexity of counting and sampling, of which our framework covers
some of the easier (polynomially-solvable) cases.

2.1.1 Dynamic programming as a rewriting system

Denote by w an instance (e.g. sequence, tree, graph. ..) of a combinatorial problem. An
instance implicitly defines a discrete universe U4,,, of which the search space Q,, C U,,
of a combinatorial algorithm is a subset. Next, we need to describe how elements of the
search space are decomposed, or conversely generated, by recursive constructors.

Definition 2.1.1 (Constructor): A constructor of arity k is a function A : U* — U
that returns/creates a novel element the search space Q from k elements of Q.

In other words, a constructor is a function that assembles a candidate solution from a
collection of (smaller) candidate solutions to subproblems. Constructors with zero arity,
i.e. constant functions, are called atoms and constitute base cases in the classic recursive
exposition of dynamic programming. To mark this distinction between a constructor A
seen as a function, e.g. used to label the nodes of terms (see definition below), and its
evaluation, we use the notation A ~ v. Denote by A the set of all constructors for a given
DP scheme.

Prior to any definition of a dynamic programming scheme, one needs to introduce a
state space Q. Any state q € Q represents a (sub)problem encountered while solving
the recursive DP computation. The spirit of dynamic programming is to solve a given
problem by solving a number of (smaller) problems, depending of the associated state
and the instance. This dependency is materialized in our formalism by derivations, each
decorated by a combinatorial constructor.

Definition 2.1.2 (Derivation): A derivation is a tuple

(q7(q7 7qk)7}\)€QXQ*XA7

denoted as q 2 qi,-- -,k such that:
e q is the origin;
e (q1,...,9Kk) € Q* is the production, i.e. an ordered list of states (a.k.a.

subproblems) that have to be solved in order to solve g;

e A € Ais a constructor of arity k.
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We can now define a (combinatorial) dynamic programming scheme as a system of

equations, coupled with a derivation system.

Definition 2.1.3 (Dynamic Programming Scheme): A dynamic programming
scheme A is a tuple (Q, g+, 0), where:

e Q is the state space;

® g € Q is the initial state;

e 0 C QxQ*xAisan acyclic, i.e. non transitively self-referential, set of

derivations.

The acyclicity condition forbids any state to (transitively) derive into itself, and is essential
for algorithmic considerations. Note that, while the instance does not explicitly appear in
this definition, its precise content is at the origin of the state space and lists of derivations.
To illustrate this bundle of abstract definitions, let us reformulate our running example.

Example 2: RNA BP folding - Formalized dynamic programming

The DP scheme Agp for RNA 2D structure prediction problem, introduced in Section 1.2.3 can be
formalized as follows: the instance is w € {A,C, U, G}*, a sequence of nucleotides; the universe is
U := Unr<nSn; the states are the intervals Q := {[i,j] | 1 < i <j < n]},n := |w| of the input sequence
w; and three types of constructors are sufficient to generate all structures:

. )\([ai’j] ~ Q@ — Atom, returning the empty secondary structure;
o AlMls) s — Leaves position i unpaired;
. 7\575](3, $ )~ SUS’ U {{i,k}} — Adds base pair {i, k} to two substructures S and S’.

The derivations in d consist of:
e Terminal derivations:
[1.,j]
A
VLl c[1,n],j<i+0 - (1)) — ¢

Semantics: Position ileft unpaired, no further processing required (sequence too short to support
base pair), empty structure A, returned;

o Unpaired derivations:
Eivi]
V[17)] C [Ln]v] <i+0: (1'71) E— (1+ 17])
Semantics: Position i is left unpaired, requires processing of interval [i+ 1, j], (optimal) structure
built over [i + 1,j];

e Paired derivations:

ALl

\7/[1,]] c [1,11],Vk € [1+ 0+ Qaj]a{wiawk} €B: (17)) k—> ((1+ 17k_ 1)a(k'+ 17)))

Semantics: Position 1 paired with k, requires processing of intervals [i + 1,k — 1] and [k + 1,j],
(optimal) structure built from [i + 1,k — 1] and [k + 1,j], augmented with base pair {i, k};

Derivation rules, in conjunction with constructors, define the search space explored
(or, conversely, generated) by a DP scheme. To reason on the relationship between
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constructors and elements of the search space, we make a subtle distinction between a
term T, a tree-like hierarchy of constructors produced by a complete series of derivations,
and its evaluation ¢(T) as an element of the search space.

For instance, using the constructors and semantics of Example 2, we have

Term T Secondary Structure
}\[1,5] S = ¢(T)
I .
N Evaluation ¢ o) = AP0, APag))

/ \ ANANNNNNNNNA = {(27 4)}

—e(e)e
2.1.2 Search space and suitability for ensemble applications

The terms space and search space produced by a given dynamic programming scheme
can then be defined recursively as follows.

Definition 2.1.4 (Terms of a DP scheme): The terms set 7a generated by a dy-
namic programming scheme A = (Q, g, 0) is defined as T := 7Tg,, where, for any
q € Q, one has:

A
7-q: U //\ |t1€7-qlat2€7-qy~--7tk€7-qk .
A tltg.--tk

q—)ql---qkeé

Terms represent the syntactical structure of elements of the search space, which we now
define.

Definifion 2.1.5 (Seach space of a DP scheme): The search space Qa := Qg,,
generated by a dynamic programming scheme can be similarly defined through
Qq ={b(M}rer,
= |J s 6150 € Qg X x Qg )

A
q—>q1-qkEd

Equipped with these notions, we can now define the properties of a dynamic program-
ming scheme, that will connect it to an underlying reality.

22



Definition 2.1.6 (Completeness and unambiguity of a DP scheme): A DP
scheme A = (Q, g, d) is:
1. Unambiguous if and only if every element of the search space can be gener-
ated in only one way, i.e. ¢ is bijective between Ta and Qnx;

2. Complete with respect to a targeted search space Q* if and only if every
element in (* is considered by A, i.e. one has O = O*.

These two notions are crucial for ensemble applications of application. Indeed, in combi-
nation, they allow to use a given DP scheme to extract relevant properties of a preexisting
search space.

Let us now distinguish elements within the search spaces, by introducing scoring func-
tions that will map numerical values with each constructors and, in turn, to terms/elements
of the search space

Definition 2.1.7 (Additive scoring function): An additive scoring function f :
A — R associates a numerical value to each constructor, such that the score f(T)
ofaterm T € T is defined as

F(T) = F($(T) == > f(A).

AT

An important property of a dynamic programming scheme lies is its ability to emulate a
given function defined over its search space, by using a suitable scoring of its construc-
tors/derivations. Such function could represent an objective function in the context of
an optimization, or help induce a desired probability distribution over the search space.

Definition 2.1.8 (Correctness of a DP scheme): Let A be a DP scheme, coupled
with a scoring function f : A — R. A pair (A, f) is correct, with respect to a given
function F : Qa — R, if and only if F($(T)) = f(T),VT € T.

By extension, we say that a DP scheme A is correct with respect to a function F if and
only if there exists a scoring function f such that (A, f) is correct.

Example 3: RNA BP folding - Unambiguity/completeness/correctness

The unambiguity of Agp can be proven by considering two terms T and T/, T # T’. Consider the first
position from the root where constructors A and A, such that A # A" are found in T and T’ respectively.
Since their paths to the root encounter the same constructors, A and A" are of the form )\g’j] or A[.i’j I
(but not ?\g’ﬂ, since then both would be = A = \’). Since two constructors irrevocably induce different
partners for position 1, their associated structures S := ¢(T) and S’ := ¢(T’) differ by at least one base
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pair, and we have S # §/, implying the non-ambiguity of Agp.

The completeness of App requires that any structure S € Sy, can be generated by the evaluation of
some term in 7q. This can be established by induction of the lengthn > © + 2 of the interval, assuming
that, for all [V/,j’] € Q such that n’ :=j' =1 +1 < n, one has Qy» = S;,». Now, consider an interval
[i,jl,j —i+ 1 = n and a structure S € Sn, and discuss the partner of i in S: if 1 is unpaired, then
S = oS with |S’| < m, so " is generated by T € T[j41 jjand T := ?\EL’]](T/) € T[i,j) such that ¢(T) = S;
if 1 is paired to some k, then S = (S’) S” with |S/| + [S”| < n, so $’ and S” are generated by terms
T’ € Tiit1,k-1]) @and T” € T[j41,j] respectively, so T := )\E’JJ(T’, T”) € T|1,51 such that ¢(T) = S.

The correctness of Agp requires that, for any secondary structure in the search space, the number
of base-pairs is obtained by adding numerical values mapped to constructors. This is possible since,
for any term T evaluated as ¢(T) = S, the number of base pairs in S coincides with the number of

constructors of type 7\&{i Al in T, so the scoring function f : A — R defined as

f()\El’]]) _ f(}\g’ﬂ) -0 and f(}\%(l’]]) _ —1 if {wi,wk} eB (Vahd base pair)
+oo  otherwise

Remark 2.1.1: Note that our assumption of scoring schemes that are additively-defined on construc-
tors/transitions represents a limitations in expressivity in comparison to the more general evaluation
algebra considered in algebraic dynamic programming and its extensions [80, 81, 169, 211]. How-
ever, general algebras do not allow a smooth transition from optimization to ensemble analyses,
so we (slightly) limit the scope of our framework rather than burden our proofs and theorems.
Moreover, the current framework captures, without any complexity overhead, every applications of
dynamic programming known to this author in Bioinformatics.

2.1.3 Classic optimization

With this final notion of correctness being defined, we can finally turn to a more algorith-
mic dimension of dynamic programming, initially focusing on optimization problems,
an historical focus of dynamic programming since its initial pioneering by Bellman [14].

~

Problem 1 (DP-based optimization):
Input: A dynamic programming scheme A and a scoring function f, such that
(A, f) is correct with respect to an objective function F: Qp — R

Output: Some element s* € Sa such that F(s*) = maxges, F(s)

Unsurprisingly, this problem can be solved using dynamic programming, using an algo-
rithm consisting of the following steps:
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1. Matrix filling: For all state q € Q, traversed in preorder, compute

k
Mg = max f(A) + qui 2.1)
i=1

q_>Q17~-an€5

2. Backtracking: Return B(q,), recursively defined for any q € Q as:

k
A
B(q) = AB(a1), ..., B(qw)), if mq = FA) + > Mgy, q > 1y, i €

i=1

Note that the preorder in Step 1 always exists due to the acyclicity of derivations. The
time complexity of this step is in O(|Q| + &* X [3]), &* := maxges x(d) for «(d) the arity of
a derivation d, i.e. the number of states in its production. The memoization of computed
values mq requires O(|Q[) memory. These complexities hold for the whole algorithm,
since Step 2 involves recursing over at most | Q| states (due to acyclicity), and its complexity
is typically orders of magnitude below the requirements of Step 1.

Example 4: RNA BP folding — Energy minimization

Let us illustrate Equation (2.1) in the context of Agp, the DP scheme of RNA BP folding. For base-
pair maximization, the objective function is F(S) := |S|, achieved by a scoring function f such that
f(ALi’j]) = {1 if (wi, wy) € B; —c0 otherwise}, and f(?\[.i’j]) = f()\g’ﬂ) =0. We get

. [1,i]
(L) Fi+02) bLj]—2n0
.. [1,7]
myg 1 =max . FAL) + mp ) 140 < >l [i+1,]

[i,]
)\k

maxy f(AQ’jJ) F Mg+ Mgy H1+0<) oLl —— [+ 1L, k-1][k+1,j]
0 ifi+60 >

= max m[i+1’j] ifi+0< ]
rnax%(ziJreJrl 1+ Mi41,5] + M{k+1,j] ifi+0<jA(wi,wy)eB

in which one recognizes the classic DP equation reminded in Section 1.2.3.

2.2 Exact computation of Ensemble properties

In many applications of ensemble dynamic programming, one attempts to analyze a
specific subset of the search space. Examples abound in RNA bioinformatics where
an integer-valued feature function, additively defined with respect to the dynamic pro-
gramming scheme, partition of the secondary structures with respect to their free-energy,
base-pair distance to one or several references structure(s). . .
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2.2.1 Computing the partition function.

A ubiquitous quantity of interest is the partition function, whose definition requires
integrating over the whole search space, and is used as a normalization term within
ensemble studies. As observed by McCaskill [130], the optimization algorithm of any
unambiguous DP scheme can be adapted to compute the partition function, through a
simple algebraic substitution. Namely, it suffices to substitute (min/max,+) — (+,X),
coupled with a suitable exponentiation of energy contributions to compute the partition
function from the MFE recursions. This observation has given rise to systematic studies
decorrelating the DP scheme from its algebra [80, 97] with a specific focus on semi-ring
algebras [135, 138].

Problem 2 (Partition function):
Input: An unambiguous DP scheme A and a scoring f, such that (A, f) is correct
with respect to an energy function £ : Op — R; 3 € R a constant

Output: The partition function Zx of Q) 4, defined as

ZA = Z e B-E(s)

seQA

The above problem can be solved by returning Za := Z,,, following the computation,

Zq = Z e BE(s)

s€EQyq

for all state q € Q, of

Those quantities can be computed recursively (in preorder), using

k
Zg= Y, ePEW H Zq.- (22)
9=

A
q—d1,..-,qk€d
The time complexity of this computation is in O(|Q| + «* X |8]), o* being the max arity of
a constructor, and requires O(|Q|) memory.

Example 5: RNA BP folding — Partition function
A reasonable energy function is defined as E(S) := -S|, and implicitly used in Nussinov-Jacobson [143]
scheme. Itis achieved by an eponymous scoring function E such that E(?\E ’]]) = {-1if (wi,wy) € B; +0

otherwise}, and E()\?’j]) = f(?xg’ﬂ) =0. We get

1 ifi+6 >3
Zig1= D04 Zpeng) ifi+0 <]
Zi:i+9+1 eP x Z[i+17j] X Z[k+1,j] ifi+60<jA(wi,wy)eB.
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The validity of the final result, i.e. the fact that Z; ,,; = Yses, e P-E(S) s a direct consequence of the
unambiguity, completeness and correctness properties of Agp. The time and space complexities are in
O(n?) and O(n?) respectively.

2.2.2 Probabilities in Boltzmnann-Giblbs distributions (inside-outside)

In many relevant contexts, the elements of a search space () can be assumed to follow a
Bolzmann-Gibbs distribution, where the probability of any s € Q is such that
e_B'E(S)

Z

where E represents an energy score, and 3 a constant (analogous to a temperature), and

P(s) = (2.3)

Z is the partition function. In such a context, the probabilities of individual elements
induce average properties (e.g. base-pair probabilities) that are extremely relevant to
ensemble analyses.

Definition 2.2.1 (Unicity of a consfructor): A constructor A € A is unique within
a DP scheme A if it occurs at most once in each term T € Ta.

Under the unicity condition, the probability of a constructor A can be obtained by sum-
ming the individual probabilities of search space elements that result from its application
(or, equivalently, the terms that contain A). Fortunately, this property can be computed
efficiently using a suitable dynamic programming scheme, as stated below.

Problem 3 (Boltzmann probability of constructor(s)):
Input: Unambiguous DP scheme A + scoring f, correct w.r.t. energy function E;
3 € R a constant; and a set C C A of unique constructors

Output: The Boltzmann probabilities of constructors in C:

S ey, e BE@T)

VAeC:PAeT)= —StAcT = (2.4)

This problem, which generalizes the computation of production probabilities in prob-
abilistic context-free grammars, is tackled by a variant of the inside-outside algo-
rithm [10, 113]. The algorithm is based on the observation that, for any monitored
constructor A*, any term T* € Ta« := {T € Ta | A € T} can be decomposed into:

1. aderivation d := q KN qi,--..,qx labeled by an occurrence of A*;

2. an outside part, a partial term in T4 € 7Ta, truncated on an occurrence of q (left
underived). Let us denote by O the set of outside parts leading to q;
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3. several inside parts, i.e. individual continuations of the derivation process, starting
from qi,...,qx. Denote as 3q,,...,3q, the set of inside parts generated from

qi,.-..,qx respectively;

Under the unicity condition, this decomposition is unambiguous. Moreover, the respec-
tive energy contributions of the three parts are independently contributing to the energy,
and it follows that Z,+, the partition function restricted to 75+, obeys

Zyx = Z G_B'E(T)

T€7~)\*
k
= Z e~ B-EAY) Z e~ B-E(Tq) Xl_l Z e~ B-E(T)
AX Tq€0q i=1 \Ti€3q;
q—>dq1,...,qk€d
k
= > e PEMxy x| ]2 2.5)
A* i=1

q—>dq1,...,qk€d

where Vg = ZTq €94 e P-E(Ta) js the outside partition function. Note that, when Vg is
known, the above equation allows to simultaneously compute the partition functions 2
for all monitored unique constructors, through a single pass over the derivations.

The computation of )y itself can also be performed by inverting the dynamic pro-
gramming scheme, going from a given state back to the root while allowing the further
derivation of siblings found along the way. The outside partition function ) of a node
can be computed using dynamic programming using infix order, i.e. starting from the
root g, and processing the ancestors of a node before itself, through

1 if ¢ = gy (root)

Vq = S, e B-EQ) % Vg, X Hk,e Zq  otherwise. 2.6)
gp2raes P q'€q
s.t. qeq a#q

Overall, the inside-outside algorithm solving Problem 3 can be stated as:

e Using Equation (2.2), compute the inside partition function Z for all state q € Q
in preorder; — O(]Q| + * X |8]) time

e Using Equation (2.6), compute the outside partition function ), for all state q € Q
in infix order; — O(]Q| + * X |8]) time

A

e Iterate over derivations q — q; - -- gk € d to compute (Z))rec, initially set to 0. If
A € C, update 25 « 2\ + e PEMY TTE, 24, — O(a* x |8 +|C|) time

e Finally, the algorithm returns P (A € T) := 23/ Z,,, VA € C.

The algorithm runs in time O(|Q| + |C| + a* X [3]), «* being the maximum arity of a
constructor, and requires storage for O(|Q| + |C|) numbers.
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Example 6: RNA BP folding — BP probabilities

In the context of RNA, the inside/outside algorithm can be used to compute base-pair probabilities,
as done by McCaskill [130]. Inside contributions/partition functions are computed as detailed in
Example 5, using E(Ag’j]) = {-1if (wi,wy) € B;+oo otherwise} and E()\Ei’j]) = f(Ag’j]) = 0. The

[1,5]

monitored constructors are all ?\k

, each unique as a position i cannot be assigned twice.

The outside contributions Y are then computed through a specialization of Equation (2.6):

1 if[i,j] = [1,n]
Y[i—l i ifi-1>1
Yiis1 = )l .
[1,3] Z Z{,z(? ! eﬁ X Y[i’,j] X Z[i’+1,1'.—2] if (Wi’ywi—l) e B;
Z}}:j+1 eﬁ X Y[i,j'] X Z[i+1,j’] if (Wi_l,Wj+1) eB.

We finally obtain the probabilities of constructors through a specialization of Equation (2.5)

o eP XV 51X Z 141, ke11% Z [k, ]
PN eT):= Ziin)
0 otherwise

if(wy,wy) € B

Summing over all values of j, we get the probability of a base-pairs (i,k), k —i > 6

P((i,k) €S) := i P (A{j” € T)

>k

The probabilities of all base pairs can then be computed the inside/outside, in ©(n?) time, and @(n?)
space by computing the probabilities of constructors on the fly within the above sum.

Remark 2.2.1 (Beyond unique features): Remark that, in the case where A is not unique, i.e. it
occurs more than once in a term, the output of the above algorithm is no longer the probability
of occurrence, but the expected number of occurrences of A in a random, Boltzmann-distributed,
term. This quantity may be of interest, for instance when trying to assess expected properties of the
Bolzmann ensembles, since it allows the simultaneous computation of many expected features in a
single pass.

2.2.3 Ensemble centroid and Maximum Expected Accuracy (MEA)

The probabilities computed in Problem 3 allow to assess a notion of support for the
individual features (e.g. base pairs, helices...) of a solution within the Boltzmann-Gibbs
distribution. Thus, they can be used to assess how representative a given solution is of the
Boltzmann-Gibbs ensemble. In particular, when s* is the minimum free-energy solution,
we know that s* achieves maximal probability in the Boltzmann-Gibbs distribution.

However, in absolute terms, the probability of s* may be (and usually is) abysmally small,
and does not allow in itself to distinguish between two very different situations:

1. Thesolution s* is surrounded by a family of similar suboptimal solutions {s7, s}, ...},
having very similar features (e.g. |s*, s}| < for some notion of distance), overtak-
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ing the probability distribution (P (s*) + X; P (s}) = 1 - ¢);

2. The solution s*, even supplemented by similar suboptimals, is highly dominated
by dissimilar solutions in the Boltzmann ensemble (P (s*) + X; P (s}) = ¢).
A possible way to distinguish between those two worlds, consists in computing an ex-
pected distance of s* to a random solution in the ensemble.

Definition 2.2.2 (Weighted distance between solutions): Given two solutions
s,s’ € Q resulting from the applications of sets of unique constructors C =
{A1, -+ Akt and C" = {A],--- A}, } respectively. Then the distance [s, s’| between
s and s’ is defined as

|s,s"|u = Z min X (Iaec — Taecr)?
AEA

where 71: A — R™ is a collection of weights.

Since constructors represent atomic operations that build a given element of the search
space (e.g. adding a base pair, declaring a nucleotide unpaired. . . ), this notion of distance
represents a natural way to represent popular distance metrics.

Equipped with a notion of distance, we can now define the centroid of the Boltzmann-
Gibbs ensemble [55, 87] as its most central element, i.e. the solution having minimum
expected distance to a, Boltzmann-distributed, elements of the search space.

Problem 4 (Centroid solution):
Input: Unambiguous DP scheme A + scoring f, correct w.r.t. function E; 3 € Ra

constant; and a weighted distance |x, *|,,

Output: Solution s* € O minimizing the expected distance to the ensemble:

s* = argmin Z P (s") x|s,s'|u (2.7)

s€Qp SEQA

Fortunately, the expected distance to the ensemble of any given candidate solution s € Q
can be reexpressed as a simple sum over the Boltzmann probabilities of constructors.
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Indeed, one has

D P()xs, s,

Z P (s") x Z A X (Ires — Iaes')”

S'EQA S'EQA AEA
= Zm\x]P(?\géT)+ Zm\x]P(AeT)
AEN AEN
A€s Aés
= me(]P(AeET)—]P(?\eT))+ Z mxPAeT) (28)
?}\\e/\ AEN
€S

Since the rightmost sum no longer depends on s, finding the solution that minimizes
the expected distance is equivalent to finding a solution that optimizes the leftmost sum.
Following this observation, one can solve Problem 4 by executing the following algorithm:

1. Compute the Boltzmann probabilities of constructors used by the weighted dis-
tance, i.e. solve Problem 3 with C := {A € A | 7ty # 0};

2. Find s € QA that minimizes the leftmost term of Equation 2.8, i.e. solve Problem 1,
maximizing the objective function F : A — R such that

FA) = x(PAeT)=PAgT)=m x 2P(AeT)-1) (2.9)

Example 7: RNA BP folding - Centroid computation

We consider the classic base-pair distance as the distance to be minimized, and accordingly replace
all constructors ?\Li’j] with new simplified constructors A i) and A;) which respectively represent
occurrences of a base pair (i,k) and an unpaired position i, irrespectively of their context [i,j] of
creation (since the context of a base pair should not contribute to the distance). We set the weight
of all constructors to 0 except for 7(A(j i)) = 1 in the distance definition, and compute the base-pair
probabilities p; j := P ((i,j) € S) as shown in Section 2.2.2.

Then, we solve Problem 1 in this new setting, i.e. compute the recurrence

0 ifi+6>j
C[i,j] = max C[i+17]'] ifi+0 < )
maXL:i+9+1 @Qpix—-1)+ Cli+1,j] T C[k+1,j] ifi+0 <jA(wi,wy)eB
to get the least distance of a structure to the ensemble (up to a constant, i.e. the rightmost term in (2.9))
A classic backtrack allows to recover the centroid secondary stucture.

A Maximum Expected Accuracy (MEA) solution [121] can be obtained in a very similar fashion by
simplifying the objective function of Equation (2.9) to F(A) := my X P (A € T), with my,, := 2 for
base-pairing constructors, and 7y, := 1 for unpaired constructors.

2.2.4 General moments of additive scores (150)

Given an additive scoring function F, it is a natural question to ask for the induced
distribution of F under a Boltzmann Gibbs distribution. Since most such distributions

are typically Gaussian, a first task is to compute the expected value pa(F) and variance
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o(F) of F, respectively defined as ua(F) := E (F(T)) and

oa® = | > P (M) (F(T) - ua(P)? = {E (FT)) — E (FT)2.

TGTA

In order to capture characteristics of more general distributions, one may consider the
moments of the distribution, defined as E (F(T)) , E (F(T?)) ..., previously considered by
Miklos, Meyer and Borbala [136] specifically for the free-energy. The cross-moments
E (F1(T)™.Fo(T)™2 - - ) of multiple functions are also of potential interest, as their com-
putation allows to derive the Pearson correlation pa(Fi, F2) of two functions F; and F
through

E ((F1(T) = pa(F1)) X (F2(T) = pa(Fo)))
oa(F1) x oa(F2)
E (F1(T) x Fo(T)) = E (F1(T)) X E (F2(T))

VE (Fy(T) — E (Fi(T))? X E (F2(T)) — E (F(T))’

pa(Fi,Fo) =

so the correlation can be computed from the evaluation of E (F;(T)™ X Fo(T)"2) for all
values of (nla n?) € {(17 0)7 (07 ]-)7 (27 0)7 (07 2)7 (]-a 1)}

In a collaboration with Cédric Saule [150], we have considered the computation of general
cross-moments within dynamic programming schemes.

Problem 5 ((Cross) moments of a DP scheme):
Input: Unambiguous DP scheme A + scoring f, correct w.r.t. function E; € R;
and scoring functions (Fy, ..., Fp) with associated degrees (v7,...,v})
Output: The (cross) moment v7, ... ,y]f, for Fy, ..., Fp:
mb v = B (T X xFp(T)5) = 3 P(T) ]_[ ROY (210)
TETA

A reexpression of our result [150] states that mY?>--Y» can be computed as

{vi-vp} . -B.E(\) At {715 T'p]}
my : Z Z ]_IF (\) (m - k)]—[m 2.11)

A 7\1+111 *T1,k=Y1 i=1
q—q1--qk€d
7‘D+Tp,1 Tp,k Yp

This expression, whose underlying intuition is probably hard to decipher at first sight, isin
fact strongly inspired by the partial pointing operator in enumerative combinatorics [50,
69]. Its main underlying idea is to modify the DP scheme A, introducing of a controlled
ambiguity, into a DP scheme AlY1>¥r} designed to generate pointed / weighted versions
of the original terms.
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Figure 2.1: Distribution of base pairs induced by a uniform (left) and Boltzmann distri-
bution. Empirical distributions (histograms) measured on 20 000 stochastic backtracks,
approximated by a Normal distribution with exact means and variances, computed from
the first two moments. Boltzmann Sampling performed at 37°C with E(S) = —|S| (right)
for a toy RNA w := (ACGU)?°.

By generating each term of A with suitable multiplicity, and weighting them with a
carefully chosen monomial in Fy,Fy..., AlY1Yp} we ensure that the multinomial for-
mula applies and, for all T € A, the overall weight contributed by the equivalence class

.....

An algorithm for Problem 5 then consists in using Equation (2.11) to compute my" 7

forall (y1---vp) < (v] -+ vp) inincreasing lexicographic order and all q € Q in preorder
for each degree vector, and return m?::my"}. Its time complexity is loosely bounded

by O8] x TT}_, yi*H‘X* X P(k,p)) where P is a polynomial of bounded degree, and the

1=
space complexity is in ©(|Q| x [TI_, v¥). In practice, degree vectors are typically small

values, so the complexity of the algorithm is equivalent, up to a constant factor, to the
computation of the partition function.

Example 8: RNA BP folding - Distribution of base pairs

The homopolymer model predicts that the distribution of base-pairs in random, Boltzmann-distributed
secondary structure asymptotically follows a normal distribution, and is thus characterized by its first
two moments mil}/Z and m{?}/Z. Those can be computed by introducing a scoring function F,
defined as F()\Ei’j]) = F(?\g’j]) =0 and F()\E’j]) =1, leading to

FO\B’”) ifi+0>1
FALT) s m 0 1) ifi+0<1
W _ s Nt E NS S
1 _lsi %) vy . )
me = Zl;=i+e+1 FAL )x ef XMy X M) ifi+0 <jA(wi,wy)eB
Zi:i+9+1 eP x méil+}1,j] X mﬁin] ifi+0 <jA(wi,wg)eB
j {0} o . )
D kmit041 eP XM [t1] ifi+0 <jA(wi,wy)eB
with mfio]]f] := Z[i,j), leading to the exact value for the expected number of base pairs ppp :=
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{1}

. /Z[1,n]- A similar equation can be derived for the second moment

0 ifi+0>1
m? ifi+0<1
ZL=1+9+1 eP x F(?\Ej’j]ﬁ X m?iﬂ,j] x m([)k+1,j] ifi+0 <jAwi,wg)eB

- Z}:i+e+1 eE X 2 X F(}\E:ﬂ)i x m([l)iﬂ’].] x mEk“’j] %f 1 +0 < ; A (Wi, wy) € B
Dicirosl € X2X F(?\k )X M5 X ™) ifi+0 <jAwi,wg)eB
ZL:HGH eP x2x m%i+1,j] X m%kﬂ?j] ifi+0 <jAwi,wg)eB
Z’in+0+1 eb x mfiﬂ,].] X m([)k+17j] ifi+0 <jA(wi,wy)eB
Zi:i+6+1 eP x m([)HL].] X m?kHJ.] ifi+0 <jA(wi,wk)eB

from which we get the standard deviation opp := \/m?l’n] /2]~ HQBP

2.2.5 Claossified DP with the Discrete Fourier Transform (DFT) (173, 174)

In some situations, precise aspects of the distribution are of interest, and cannot be easily
captured by summary statistics. For instance, Freyhult et al [75] partition the Boltzmann
Ensemble according to the distance to a reference secondary structure. Considering the
distribution of distance, they observe bimodal (an even trimodal) distributions that they
interpret as potential evidences for the presence of multistable RNAs. Other examples
in RNA bioinformatics include the classification of sequences/structures with respect to
their Hamming distance to a wild-type sequence, to assess the mutational robustness
of concrete RNAs [191], the computation of the density of states, i.e. the distribution of
free-energies within an RNA [43], or the projection of energy landscapes with respect to
the unfolded and native states [119].

Those instances can be expressed as a specialized version of classified dynamic program-
ming, where additional parameters are used to partition the search space.

Problem 6 (Classified partition function):
Input: Unambiguous DP scheme A + scoring f, correct w.r.t. function E; € R;
and an additive scoring functions F : A — IN* with V := maxte7, F(T)

Output: The classified partition function Z M 0 <v <V, defined as

2V = P(R(T) =v)x 24 = Z e~ B-E(T)

TeT
s.t. F(T)=v

A classic approach, used in many works including the above references, would consist
in adapting the dynamic programming scheme through explicit convolution products,
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leading to the following recurrence:

PRI D e—ﬁ-wﬁlzg\;ﬂ. o)

ql)ql qres vi+...+v+F(A)=v

While conceptually simple, this approach induces extreme computational demands, with
a time complexity in © (|5|.V*"), o* being the max arity of a derivation, and using
© (|QJ.V) memory. For instance, in our running DP scheme example for RNA secondary
structures (see Section 1.2.3), classifying according to the number of base pairs and ap-
plying this strategy induces an algorithm in @(n?) time and ©(n?) memory complexities.

In collaboration with Evan Senter, Ivan Dotu, Peter Clote and Saad Sheikh, we have
proposed an alternative strategy based on the Discrete Fourier Transform (DFT) to avoid
costly convolution products [173, 174], following observations made in an earlier collab-
orative work with Jérome Waldispiihl [192, 193].

Its core idea is to consider a generalized version of the partition function, seen as a
polynomial in a formal variable x, which tracks the increments of the scoring function,
such that

\4
Z(x) = Z e BB (D - Z zMxy,
TeTa v=0

Such a polynomial can be evaluated at any point without having to previously determine
its coefficients, using the following DP equation

k
Z4(x) = Z e B EMLFR) H Zq,(%). (2.13)
i=1

A
q_)q17"'7qk€6

From a well-chosen set of evaluations of Z(x) := 24, (x), it is then possible to use
polynomial interpolation to recover the coefficients of the polynomial, i.e. the classified
partition functions ZM1,

For the sake of illustration, one may perform a preliminary evaluation of Z at (1 + V)

distinct points xg,x;, -+ ,xyv, and then use Gaussian elimination to solve the linear
system
x(\]/ x(l) 1 zl0] Z(xo)
Vool (1]
X x 1 Z Z(x1)
X oo x = (2.14)
Xy xy 1 zVi Z(xv)
in its unknowns 2%, 21, thus solving Problem 6 in ©(V|5|a* + V3) time. However,

using Gaussian elimination would be highly impractical due to its many high numerically
unstability. Moreover, the ©(V?) time complexity of elimination alone would become
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Algorithm 1: Fast Fourier Transform

Result: The Fourier transform of x, a vector [yj = Y15 Xl 5 € [0,m = 1]]
Function FFT(Coefficients x, m = |x| = 29):

if m = 1 then return y;

w«—1;

(xven x0dd)  ([xo ... xmeal, [X1, -+ o Xmet ]);

(yoven, yodd) — (FFT(xeven), FFT(x0qq));

fork — 1tom/2-1do

Yy — yiven +w X yidd’.
dd.
Ykam/2 < Yp o — w XyYPs;

W — WX Wn;
return [yo, Y1, ..., Ym-1]

unreasonable for larger ranges of values for F, needed to emulate several scoring functions
as pointed out in Remark 2.2.2 below.

Enters the (Inverse) Discrete Fourier Transform (IDFT) [41,42] which allows, in O(m log m)
time, to recover the coefficients x := (xo, ..., Xm-1) of a polynomial P(x) of degree m — 1,
m = 294, from its evaluation at the m-th roots of the unity. Indeed, let w,, := e***/™,
then the relationship between x and y := {P(wl‘n)}]’?:?)l remarkably simplifies

1 m-—1 )
YOSk <m:ixe=— Y5 X wi ~. (2.15)
j=0

Moreover, evaluating all coefficients in x can be achieved much faster than the ©(n?)
algorithm suggested by the above equation, using the Fast Fourier Transform to speed
up the evaluation to ©(nlogn).

To use the inverse DFT and interpolate Z(x), thus efficiently solving Problem 6, we first
trivially extend Equation (2.13) to support complex arguments. Then we proceed to the
main algorithm:

1. Round V + 1 upwards to m = 29, d € N, the closest power of 2;
2. Evaluate Z(w?,), Z(wk ), ..., Z(@™ ) = Yo, Y1, ..., Ym-1 with wy, = >™H/m;

3. Apply the FFT Algorithm 1 to [yo, Y1, ..., Ym-1] to obtain

m-—1
’o_ jk
Xy 1= Z YjWm
j=0

Notice from Equation (2.15) that X’ _, = mxy, Yk € [1,m — 1] and x| = mxo;

m-1

k=0

4. Return |21 = 289 |y € [0, V], (0) = 0and (v > 0) = V+ 1 —v|.
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This algorithm has time complexity in O(V [5| o* + VlogV) and space complexity in
O(|Q| + V). Moreover, being dominated by the independent evaluations of the Z(wt,)
terms, it can be largely accelerated by a trivial parallel execution, e.g. leading to a runtime
in O(|8| «* + Vlog V) on V processors.

Remark 2.2.2 (Multidimensional classified DP): The DFT-based algorithm can easily be extended

to support multiple scoring functions Fi,...,Fp, associated to maximum values Vi,...,Vp, to
ultimately compute Z[V1:--Vp] the partition function classified by values (vi, ..., vp) of the scoring
functions.

This use-case can indeed be emulated using only a single function F defined on constructors as
FQA) = Zle Fi(A) H};i (1+Vj), and extended additively into

P i-1
F(T) = > M @+ V) = i)+ (1+ Vi) X Fa(T) + (1+ Vi) X (1 +Va) x Fy(T) ...
i=1 j=1
In this setting, any value v for F encodes a vector (v1,...,Vp), such that the value of Z Vi vpl can

be read in Z[V! after the FFT determination of 1 + V = [Ti(1 + V;) coefficients.

2.3 Probabilistic estimates

Sampling methods provide an alternative to exact computation, allowing the estimation
of statistical ensemble properties for arbitrary features. Namely, general properties of
Boltzmann ensembles can also be estimated from a statistically representative sample
of candidate solutions, following the approach introduced by Ding and Lawrence [51] in
the context of RNA folding prediction.

Considering a general feature function F : O — R, one first generates a sequence
s =(s1,82,...,5Mm) € Q* of M random elements from the search space, each drawn from
the Boltzmann distribution, and then returns the empirical mean

o F 2
F(s) = ZSGST(S) such that |llim F(s) = E (F(S)) . (2.16)
For instance, the Boltzmann probability of a base-pair (i, j) can be estimated by consider-
ing a Boolean feature function F; ;)(s) = 1if (i,j) € s;0 otherwise. More generally, this
strategy allows to capture feature functions of arbitrary complexity, including those that

are not additive with respect to any dynamic programming scheme.

A first algorithmic difficulty lies in the generation itself and is usually tackled through
the simulation of a well-calibrated Markov process in classic Bayesian inference [5, 76].
However, complex distributions may induce high mixing times, before the process con-
verges to its steady-state. Moreover, to ensure that the targeted distribution is indeed
sampled (i.e. that the simulation has been executed sufficient long to guarantee converge)
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requires highly-technical analyses [152] that do not appear to lend themselves to generic
algorithmic design.

This section focuses on an alternative, where an unambiguous dynamic programming
scheme for the partition function (but not necessarily with respect to the feature function)
is used for the generation. Probabilities for each of the transitions are precomputed, so
that generated objects are independent and follow the targeted distribution. This can be
seen as an instance of the recursive method in random generation [71, 197].

2.3.1 Foreword: On the number of samples (165)

The choice of the number of samples is critical when using sampling to estimate statistical
properties. This number should be large enough to yield accurate estimates, but low
enough to preserve efficiency. Historically, and in many subsequent works, a sample size
of 1 000 structures was proposed [51], somewhat irrespectively of the precise context.
However, such a one size fits all approach may not yield accurate results, motivating the
following discussion and recommendations.

The empirical mean estimator represents a sum of independent variables, meaning that
classic concentration inequalities apply with minimal modifications. In particular, the
Hoeffding inequality implies that, for any feature F:

P (|f(s> ~E(F©S))| > 5) < 2exp (_2‘:52) , (2.17)

where ¢ is a tolerated absolute error level, S is a random sample of size m and c :=
(maxs(F(S)) — ming(F(S)))? is a trivial upper bound of the variance of the feature. Note
that when a feature function takes binary values 0/1, e.g. when estimating a probability,
then one has ¢ = 1. Equation (2.17) can be used to build a confidence interval at level
(1 = ), for any value « € [0, 1], and we get:

lF(S) - w/%ﬂlog (%),f(S) + ﬂ%llog (%)] .

This means that, over multiple estimations from sampled elements, at least a fraction

(1 — o) of the runs will produce errors smaller than /5% log (2). This function can be
inverted (numerically) to estimate the number m of samples that achieve an absolute
error bounded by ¢ at least (1 — «) of the times.

We report in Table 2.1 typical sample sizes required to achieve a given precision with
reasonable probability when estimating probabilities (i.e. expectations of 0/1-valued
features). For instance, to reach a 90% chance of estimating a base pair probability
within 0.5% of its true value, a total of 59 915 structures should be generated. In
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Tolerated Frequency within tolerance

Error 90% 95% 99%
e =20% 37 46 66
e =10% 150 184 265
e =5% 599 738 1 060
e =2.5% 2 397 2951 4239
e=1% 14 979 18 444 26 492
& = 5%o 59915 73778 105 966

e=1% 1497866 1844440 2649159

Table 2.1: Recommended number of samples to estimate probabilities (boolean fea-
tures). For instance, to ensure that the estimate falls within 1% of the true value for 95%
of the runs, a large number of m =18 444 structures should be generated.

particular, 1 000 structures norm, usually considered in the literature, will guarantee a
value within 3% of the true probability only 2/3 of the times, although this sample size
will almost always (99%) return estimates within 5% of the correct value.

2.3.2 Statistical sampling

Let us now turn to the problem of sampling from the Bolzmann-Gibbs distribution, which

we formalize as follows.

Problem 7 (Statistical sampling):
Input: Unambiguous DP scheme A + scoring f, correct w.r.t. function E; 3 € Ra
constant; M a number of samples

Output: A sequence s € Q*, |s| = M of elements of the search space, indepen-
P q A P P

dently generated in the Boltzmann distribution

e—B.E(s)
]P(S) = Z—A,VS € 8.

In the context of an unambiguous/complete DP scheme, one can easily adapt the par-
tition function recurrences into a stochastic backtrack algorithm to solve the statistical
sampling problem, as done by Ding and Lawrence [51] in the context of RNA. First, the
algorithm performs a preliminary computation of the partition function Z for all states
q € Q, using the DP algorithm introduced for Problem 2. The algorithm then gener-
ates M independent random terms/solutions using a stochastic backtrack procedure B
described in Algorithm 2.

The correctness of the algorithm can be established by a simple induction. Indeed,
consider a state g* € Q and assume that, invoked on any state accessible from g, the
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Algorithm 2: Stochastic backtrack

Function %(q € Q)
T« UnifRand(Zy) > Random r € [0, Z4[

ford::(qlq]L ..... qx) € d do

rer—e BERN x ]_[]f:1 Zqi5

if r < 0 then
B R . e PENXITE, 2.
return A\(B(q1), ..., B(qxk)) > d chosen with prob. *
algorithm generates a term T € 7 with probability
]P T 6_6~E(T)
(Tlaq) = Z.
Executing Algorithm 2 on q*, a derivation d := q* 2 qi, -, qk is chosen with proba-

bility e FEM [T 2 q:/ 24+, followed by the independent recursive generation of terms
Ty, ..., Tx from each of the states qq, ..., qx. Due to the unambiguity of A, the resulting
term T* := A(Ty, ..., Tx) cannot be generated from any other derivation of q*, and its
emission probability is thus

-B-EA) 7k -B.E(T1) -B.E(Tx)
e 1 Zq;
P | qy= S HimZa e et
Zq* Zq, Zqy
e—f3~(E(7\)+E(T1)+...+E(Tk))
Zq*
e B-EA(T1,...,Ti)
= Zo

in which one recognizes the targeted distribution. The induction is completed by an
inspection of leaf states, whose derivations do not require further recursive calls, to
verify that they indeed locally induce a Boltzmann distribution.

The time complexity of the algorithm can be trivially bounded by O(M.[6|.«*), with «*
being the max arity of a derivation, but is usually substantially lower since this upper
bound would unrealistically require all states to be traversed by all backtracks. A more
refined analysis could introduce upper bounds respectively on the numbers of states
traversed during a generation (c*), and derivations available from a state (d*). Since
one typically has ¢*.d* < [§|.a*, the worst-case complexity is then in O(|Q| + |5].o* +
M.c*.d"). A more precise analysis requires the definition of a notion of length associated
with terms, opening the way for further optimizations, e.g. as described by Example 9 in
the context of RNA folding.
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Example 9: RNA BP folding - Statistical sampling
In the context of RNA conformational sampling, Algorithm 2 specializes into the following backtrack,
preceded by a computation of the partition function Z|; ;) forall [, j] € [1,n], as described in Example 5.

Function SampleRNA2D ([i,j] € [1,n],w € {A,C, G, U™, 2):

if j — i < O then return @; > Interval too short to support base pair
T« UnifRand (Z[i’j]) >Random r € [0, 25 5[
T T = 2]

if r < 0 then
| return SompleRNA2D ([i+1,j],w)

fork —i+06+1tojdo
if wi, wi € B then
rer—ePx Zli41,%-1] X Z[k41,5); > Defining Z[j4; 51 = 1

if r < 0 then
return

{[i, k]} U SampleRNA2D([i + 1, k — 1], w) U SampleRNA2D([k + 1, j], w)

This function is a strict specialization of Algorithm 2, and randomly generates a secondary structure
from the Boltzmann distribution when invoked on [1, n] with a sequence of length n.

As previously analyzed [148], its execution requires @(n?) operations in the worst-case scenario due to
the possible ©(n) iterations of the for loop, followed by a recursion on a subinterval only marginally
smaller (n — 2). Its average-case behavior in the homopolymer model (all bases allowed to pair), or on a
random RNA sequence of length n, was shown to be in ©(ny/n), a behavior that holds for a large class
of combinatorial classes [71].

The time complexity can be dramatically lowered to O(nlogn) through a minor modification of the
algorithm. Indeed, it suffices to substitute a Boustrophedon order

i+0+1+4j
i+6+1«»j«»i+6+2~>j—1~>i+6+3~>~~~«»{;w

2

instead of the (implicit) sequential orderi+ 6 +1 ~> i+ 6 + 2 ~> - - - ~ j within the for loop to instantly
obtain a O(nlogn) time complexity for the backtracks in the worst-case scenario.

2.3.3 Non redundant sampling (118, 133, 165)

Asshown in Section ??, the level of redundancy can be overwhelming within a Boltzmann-
Gibbs sample. One the one hand, redundancy is instrumental to the consistency of the
estimator (2.16), since convergence towards the correct expectation requires that the fre-
quency of any given element converges towards its probability. On the other hand,
redundancy appears to be non-informative, and even wasteful, while sampling from a
Boltzmann-Gibbs distribution, or any distribution known a priori. Indeed, the exact emis-
sion probability of a generated sample can be derived exactly from the partition function
and, in principle, should not need to be estimated from the frequency. Moreover, sam-
pling can be used to recover diverse dominant solutions, with no further involvement
in statistical estimates, e.g. in RNA kinetics studies [110, 133] or in automated software
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testing [189].

One possible way to avoid redundancy is to perform sampling without replacement, for-

bidding the generation at the m-th step of any previously generated element [s1, ..., Sm-1].
The targeted emission probability P (sy | s1,...,Sm-1) is then
P(s
P s | $1,00 s 8mot) = o) @.19)

1= P (se)
where P (s) denotes the classic (redundant) Boltzmann-Gibbs probability. Note that

successive generations are now dependent, so classic estimators such as the empirical
mean of Equation (2.16) become biased and should not be used.

However, as shown by Rovetta et al [165], the expectation E (F(S)) of any given function
F: O — Rinthe Boltzmann distribution (or any known distribution) can still be estimated

from a non-redundant sample [s1,...,sm] by
m i-1
— 1 )
F([s1,...,sm]) = n—liZ:;F(si) 1 +(m—1)><lP(sl)—]Z:;]P (s5) ]

This estimator is provably unbiased, consistent and always yields lower expected variance
that the empirical mean, motivating the following algorithmic problem.

Problem 8 (Non-redundant sampling):
Input: Unambiguous DP scheme A + scoring f, correct w.r.t. energy function E;
3 € R a constant; M a number of samples

Output: A non-redundant sequence [s1,...,sm] € QX‘, of elements:

P (Sm)
1- Y™ P (s0)

P(sm|St,.-+,8m-1) =

In collaboration with Andy Lorenz [118], we considered a restriction of the above problem
to the language of a weighted context-free grammar. Its main idea is to reinterpret
derivation as a purely sequential process, where derivations involved in the production
of a term are transformed into a sequence of derivations through preorder traversal of
the derivation tree. Below is an example of a derivation tree t and its linear representation

W+
d;
/ I\
t=dy d3 dg =4 w¢ = dy.do.dg.dy.d5.dg
ds ds

Note that the derivation tree t can be unambiguously recovered from a sequence wy

through a prefix evaluation, and reinterpreted as a term T,
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Such sequences are the ultimate product of a sequential derivation process over imma-

ture words in Q* x 8*, which starts from w := q,, and, at each step, considers the leftmost
A

state qi occurring in w = w;.qr.w2 (if any), picks a derivation d = q; — q;---qx and

replace the occurrence qr in w by d.q; ... qk. In the above example, the production of

wy¢, using this process, would be
dq do ds d4
qw — dl. d2 -93-q¢ — dl.dg. qds -de6 — dl.dg.d3. d4 -95-de¢ — dl.dg.d3.d4. qds -g6

d5 d6
— d1.d2.d3.d4.d5. de — dl.dg.dg.d4.d5.d6

Given an immature word w, the language £(w) is the set of terms (transitively) derived
from its states, and the partition function Z(w) can be defined as

Zw)= Y eBEN= [] z, [ e B-EM, (2.19)

TeLl ewn A
= d Q q—q1-qrewnd

In particular, given a set F of forbidden terms, consider the random process which starts
from w := q,, and, at each step, rewrites the leftmost q; in w using some derivation
A
d =qr — qi--- qx, chosen at random with probability
Z(w = wi.d.qr. - .qr.wa) — Z(w’)
Z(w) - Z(w)

P(d|w=w.qrL.ws) = , (2.20)
with Z(w) := Yre L(w)NF e B-E(M. This process ultimately generates a derivation tree t*,

associated with a term T*, resulting from a (unique ) sequence

d1 d2 dp dp+l
wozqw—)wl—)wQ—)~~~—)wp_1—)wp — W ¢ *

with probability

P(t*) =P (di | wo) XP(dy | w1) X+ XP(dp | wp-1) X P (dp+1 | wyp)

_ Ew)-E(w1) o Ewa)-Bl(wa) o Blwp)=E(wp) o E(wi)-F(w)
Z(qu)-Z(way) ~ E(w1)-Z1(w) Z(wp-1)-Z(wp-1) * Z(wp)-Z(wp)

_ Z(we) = Z(we) e PRI — 1)
= () —§(wqw) = Zqw — DTer e—B.E(T)
B P (T*)

- {1 - 21erP(T)

In other words, it suffices to follow the derivations probabilities of Equation (2.20) to

if T ¢ F;0 otherwise}

induce the restricted Boltzmann-Gibbs distribution defined in Equation (2.18).

The only missing ingredient is a (fast) way to access Z(w). To that purpose, we introduced
a data structure Pr = (Vr,) , analogous to a prefix tree, which represents the sequences

. . . Fl

[il [il [ !
N I R T

Dr=Jwg = w; = Wy — -+

i=1

of derivations
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Algorithm 3: Non-redundant sampling algorithm

Input: Unambiguous DP scheme A; Number M of samples.
Output: Set of M random terms, distributed according to the non-redundant

distribution of Equation (2.18).

Compute Z4,Yq € Q > Partition function algorithm (c.f. Problem 2)
Pr « (1,9); > Tree initially restricted to root L
(L) « 0;
F 0 > Terms generated over previous iterations — avoided
forie[1,M]do
(W, Zy, uw) — (Gw, Zqy, L) > Start from root
N — {uy} > Nodes traversed during generation
while wN Q # @ do
wi.qL.wy «— w s.t. w; €d and qr € Q > qr lefmost state in w
T« UnifRand(Z,, — m(uw)) >Random T € [0, Z¢ — Z(w)]
foreach d := qr L qi---qx € 6 do
w — wi.d.qr. - .qr.Wo; > Simulate derivation d in w
Uy «— Child(P£, u, d); > Creates u if absent (7t(iyy) < 0)
Zyy — Zo X (e BENTX, Z0)/2q,; > Update Z per (2.19)
T 71— (Lo —m(uw));
if r < 0 then > Happens with probability 2:—%
(W, Zw,uw) «— (W, Zyr, Uwr); > Move to selected child
N — N U {uw};
break;
F — FU{Tw}; > Interpretation of w € 6* as a term Ty,
T — [Thew € P EV;
foreach u € N do 7(u) « 7(u) + 7, ; > Update traversed node weights
return F; > Final non-redundant list of generated elements

performed during the generation /. Any node u, € Pr represents (implicitly) some
immature word w € Dx. There exists a directed edge (u, — uyr) € Pz, labeled by a
derivation d(u,, — uy) € difand only w A w’ occurs in some sequence of Dr. Finally,
on each node u € Dr we store a weight 7t(u), updated after each generation such that the

invariant m(u,,) = Z(w) is maintained, allowing O(1) access to Z(w) while computing
probbabilities (2.20).

We obtain Algorithm 3, which generalizes earlier context-free versions [118, 133, 147]
and can be essentially found in Juraj Michalik’s PhD thesis [132]. The complexity of
the algorithm is the same, up to implementation constants, as the redundant stochastic
backtrack.
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Remark 2.3.1 (Rejection-based non-redundant sampling): In the uniform distribution (3 = 0),
a rejection-based sampling constitutes a reasonable alternative to produce M unique elements.
Indeed, the search space is typically exponential [Q)| = (™ for some ¢ > 1. A classic coupon collector
analysis shows that the expected number of generations to get |Q| distinct elements, is [Q[.H|q)
with Hy = Z{Zl 1/i € B(logn) the m-th harmonic number. Moreover, the expected number of
generation is an increasing function of M, and is bounded by Mlog |Q| € @(M.n). In other words,
a repeated generation of elements until M distinct elements are produced has @(M.n) expected
time in a uniform distribution, i.e. non-redundancy sampling only induces a linear overhead in
comparison with the redundant one.

In Boltzmann-Gibbs sampling, however, the overhead is expected to grow exponentially with n, so
a rejection-based strategy is exponentially less efficient than Algorithm 3.

2.3.4 Adaptive sampling of constrained sequences (18, 90, 158)

As shown in Section 2.2.5, using explicit convolutions to compute the classified partition
function quickly becomes prohibitively costly when (combinations of) expressive scoring
functions are considered. Unfortunately, such a computation would be required to
perform a constrained sampling, by adapting the stochastic backtrack of Section 2.3.2 to
restrict the generation to objects having a value of interest.

As an alternative, in collaboration with Olivier Bodini [18], we introduced a multidi-
mensional Boltzmann sampling method, also called adaptive sampling in the context
of Bioinformatics applications [193] (due to the ubiquity of Boltzmann in Bionformatics,
leading to an overloaded nomenclature). This method is inspired both by the versatility
of rejection methods in random generation (see Section 4.1), and by the typical concen-
tration of distributions for additive parameters. This concentration is illustrated in 1D by
Figure 2.1 for the number of base pairs in RNA, and in 2D by Figure 2.2 for two types of
base pairs distinguishable in the basic Nussinov DP scheme.

Problem @ (Constrained sampling):
Input: Unambiguous DP scheme A + scoring f, correct w.r.t. function E; € R;

scoring functions Fq,...,Fx : A = N* with V := maxye7, F(T) associated with
objective values v{,..., v} € N¥; and number of samples M
Output: A collection C := [sy, ..., sm] of random, Boltzmann-distributed w.r.t. E,

elements of QA such that

Fi(sj) = v}, Vs € C, Vi€ [1,k]. (2.21)

Rather than computing the costly convolution products described in Equation (2.12), we
introduced a rejection based approach called multidimensional Boltzmann sampling,
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Figure 2.2: Impact of weights on the distribution of base pairs in RNA 2D folding.
We distinguish maybe-stacked base pairs (MS), i.e. involving both ends (i,j) of an
investigated interval [, j] (alt. such that j + 1 is base paired) from other base pairs, called
unstacked (US). Those two contributions can be distinguished on the classic Nussinov-
Jacobson DP scheme, such that a weighted distribution can be induced.

whose principles are further described in Section 4.2.2. At its core, one uses a weighting
scheme where numerical values (7, . . ., 7t ) are associated to scoring functions, inducing

a weighted distribution

_ Fi(T
e~ B-E(T) 1—11;1 i (T)

Pr,... o (T) = (2.22)

Zﬁl,...,ﬁk

where Z, . n, is the weighted equivalent of the partition function.

Sampling within a weighted distribution can be done using Algorithm 2 based on a
unifying scoring function E* that aggregates all the contributions of individual features,
such that

k k
=1 Fi(A) x1 i o1l i
EX(T) = ) E() - 2imt PN X108 _ 4oy g1y x ZA=L 08T
AeT B 8
This generation is coupled with a rejection step, which filters out the objects that do not

tulfill the constraints described in Equation (2.21).

A crucial observation is that, in many cases, the successive choices performed during
a stochastic backtrack can be interpreted as a large collection of independent events
(i.e. occurrences of constructors), associated with bounded values of which the scor-
ing functions are just the sum. The central limit theorem thus applies, and induces
distributions that are (multidimensional) normal (a.k.a. Gaussian) with relatively low

variance/co-variance values. In particular, once the weights are calibrated such that

Hi = ]E7'[1,...,7Ik (FI(S)) = V{, Vie [17k]7
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Figure 2.3: Using Algorithm 4 to sample 10 000 Boltzmann-distributed secondary
structures having exactly 15 base pairs. For the RNA w = (ACGU)?® the expected
number of base pairs is approximately 32.51 in the Boltzmann distribution, as shown in
Figure 2.1 (T = 37°C, E(S) = —|S|). A bina