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Abstract

Predictive Bioinformatics represents a major field of applications for combinatorial
optimization techniques. Very often, an ensemble perspective, which not only con-
sider the optimal solution but also fully embraces the set of suboptimal solutions,
needs to be adopted. In this Habilitation à Diriger des Recherches, I present a series
of algorithmic and combinatorial contributions, inspired by problems and questions
arising in the study of RiboNucleic Acids (RNAs), in particular pertaining to their
structural properties at the thermodynamic equilibrium.

I first describe a collection of generic and applied algorithmic techniques, enabling
the efficient computation of statistical properties within search spaces. Such com-
putations can be exact, or rely on unbiased estimates produced, using constrained
sampling strategies, and are founded on on a combinatorial (re-)interpretation of
dynamic programming schemes. I then adopt a purely combinatorial point of view
over search spaces, and establish asymptotic properties of classes of discrete objects
arising in Bioinformatics, showcasing the unreasonable power of (a subset of) analytic
combinatorics. Finally, I conclude with a collection of algorithmic results, obtained
through the application of a wide array of techniques, in the context of RNA design,
a field focused on combinatorial problems that are at the same time original, difficult,
and relevant to the modern goals of biology and medicine.
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Foreword

The French academic system has enjoyed a long and eventful history, leading to many
charming pecularities. One such specificity is the requirement of junior tenured scientists
to successfully defend an Habilitation à Diriger des Recherches (HDR) before being allowed
supervisedoctoral candidates in anofficial capacity. Aspart of the requirements for sucha
defense, the candidate produces amanuscript summarizing the research results obtained
since his PhD. This is my contribution towards applying for anHDR in Computer Science
at Université Paris-Sud. The individual nature of the evaluation dictates the use of the
first-person singular, but an overwhelming majority of those results hinge critically on
contributions froma community of collaborators, which I have attempted to acknowledge
profusely.

The structure, ambition, scope and length of an HDR vary substantially between disci-
plines, institutions, and followpersonal aesthetics. Somewill elicit to contribute a general
introduction for a collection of articles, while others will interlace past results with novel
research material, trying to use the opportunity to outline general theories. Some will
embrace the diversity of their past contributions, while others will strive to provide a
unified perspective over research projects spanning one to two decades.

My ambition for this document is, by formalizing some of the intuitions underlying
my past contributions, to reveal their triviality and, more seriously, contribute firm
foundations for the systematic design and analysis of algorithms in RNA Bioinformatics
and beyond. Mymain focus is therefore on the description of techniques, either classic in
other fields or contributed over the course of my young career as a scientist, showcasing
their power and level of generality by a brief description of their application in the context
of RNA bioinformatics.

For these reasons, and partly because compact does not necessarily mean simple, I
apologize in advance to the casual reader for explanations and digressions which may
appear, at times, unnecessarily technical. It is unfortunately the price to pay to achieve
my intended goal of using this document to lay out stable and explicit foundations for
futures contributions to Bioinformatics.
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Chapter 1

Introduction

Bioinformatics as a field of study is the poster child of interdisciplinarity. It is uni-
fied by an overarching objective to automate the processing and analysis of biological
data, and plays an essential part in the production of knowledge in modern Biology. In
the context of Molecular Biology, it is informed by models stemming from Biophysics
and Chemistry, quantitatively parameterized by computational methods in Statistics
and Probability theory (Machine Learning), or analyzed at a theoretical level using
Theoretical Physics and Discrete Mathematics techniques. Such quantitative models,
typically in conjunction with parsimony arguments, represent the foundations of predic-
tive algorithmic methods.

1.1 Predictive Bioinformatics and its foundations

Predictive Bioinformatics strives to produce methods which, from empirical data, pre-
dict phenomena far beyond our capacity for direct observations. Examples of such
limitations include events that occur at the nanometer scale, in the distant past, or whose
observation significantly interferes with (e.g. kill) a living system of interest. Given an
established model, consistent with current biological knowledge, predictive methods in
bioinformatics embrace some notion of search space induced by the input data. They
elect one or several element(s) of the search space by maximizing some notion of score,
usually analogous to a probability, provided by the model. The produced solution con-
stitutes a best bet under (possibly implicit) assumptions of the model. Such methods are
typically trained on reference data sets, for which a ground-truth is known, to calibrate a
widely-varying set of parameters, and validated on independent data sets as an empirical
test of their accuracy and, importantly, capacity of generalization.

Once a predictive method has been deemed satisfactory, a leap of faith occurs, follow-
ing which the model and method are treated as uniformly correct. The subsequent
predictions are considered as reflective of Nature itself, and treated as primary data in

5
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Figure 1.1: Rationale of ensemble analyses. In combinatorial optimization, near-optimal
solutions can be representative of the ensemble (A), with suboptimals concentrating
around the optimal. Ensembles may also be fragmented (B), i.e. near-optimal solutions
regroup into clusters whose representatives may differ from the optimal with respect to
some features FA and FB of interest. The optimal may then be an outlier, and should be
treated with caution, or even disregarded in favor of the ensemble centroid.

the formulation of hypotheses and functional models in Biology. This abrupt change of
perspective, treating a method with uttermost paranoia during the validation phase and
with unabashed confidence in subsequent analyses, may appear dangerously optimistic
at first sight. In fact, it is usually the root cause of the cultural clash experienced by sci-
entists transitioning from exact sciences to Bioinformatics. However, Biology as field has
evolved a remarkable robustness to misleading observations and appears, sometimes
through impassioned controversies, to overcomebiased observations causedby imperfect
experimental devices, among which Bioinformatics methods can now be counted.

Indeed, predictions produced by Bioinformatics methods are typically falsifiable, i.e.
they can be contradicted by future produced experimental data. This partly justifies the
popularity of exact algorithms in molecular biology. Indeed, in the context of an exact
optimization, failure to predict can be interpreted as a shortcoming of the underlying
quantitativemodel, motivating anddirecting further refinements. By contrast, ill-defined
optimization schemes (e.g. machine learning or heuristics), convolve possible modeling
errors with optimization errors. Failure to predict does not necessarily point towards
flaws of the model, and does not allow to refine them, as an improved model may induce
worse optimization performances (and vice-versa, a broken clock being right twice a
day), missing an opportunity for future developments.

Predictive optimization-basedmethods, however, suffer from a severe shortcoming in the
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context of combinatorial search spaces. Indeed, they ultimately output a single solution,
presumed to be optimally-likely in some sense. However, the dominating nature of
the proposed solution may show limited robustness to, even modest, changes of the
objective function, whose parameters are usually learned from data and thus subject
to experimental errors. Moreover, an optimal solution may be poorly representative of
the subspace of near-optimal solutions, so that it may be more advisable to consider a
suboptimal – representative – solution rather than an optimal – non-representative – one.

These observations constitute themainmotivations behind the development of ensemble
methods in combinatorial Bioinformatics, treating the whole search space as an object
of study rather than merely solving a needle in a haystack optimization problem. To that
purpose, a probability distribution is postulated over the search space, and probabilistic
analyses areperformed.Theoptimal solutionmay remain relevant, but ensemblemethods
allow to go further, and assess notions of support for any given solution, or how distant
features of the optimal solution are from the centroid of the ensemble. Indeed, as shown
in Figure 1.1, ensembles associated with a given instance may either be concentrated
around the optimal, or fragmented, leading to multiple clusters of diverse solutions, and
multimodal distributions for features of interest.

1.2 A crash course into RNA structure prediction

The Bioinformatics of RiboNucleic Acids (RNAs) represent a very natural realm of
application, and a source of constant inspiration, for ensemble analyses.

RNA constitutes a category of biomolecules, abstracted as sequence of nucleotidesAde-
nine (A), Cytosine (C), Guanine (G) and Uracil (U), initially transcribed from a DNA
template and further processed before reaching their cellular environment. They can
form stable complexes with proteins, but also DNA and other RNAs, allowing them
to regulate genetic expression. They can also perform enzymatic functions, i.e. pro-
cess other molecules (or themselves), act as biosensors by undergoing conformational
changes upon binding with small metabolites, and store the entire genetic material of
certain viruses (e.g. HIV, SARS, 2019 nCoV).

Their dual capacity to store and process information is unmatched, leading current
theories in evolution to considerRNAas themost likely candidate at theorigin of life [93].
Such a versatility, illustrated in Figure 1.2, not only stems from the combinatorial nature of
RNA sequences but also from its capacity to adopt one or several well-defined structures,
driving the specificity of its interactions with other actors of the cellular world.
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Figure 1.2: Beyond coding for proteins, a growing list of RNA functions. The versatility
of RNA (A) is confirmed by the sustained growth (B) of the number of functional families
in the RFAM database [84, 106], a majority of which are not coding for proteins, and
associated with a conserved well-defined secondary structure.

1.2.1 RNA structure

Following Tinoco and Bustamante [184], RNA is believed to fold in a hierarchical fashion
where canonical base pairs, mediated by hydrogen bonds, initially form a tree-like
architecture called the secondary structure. Later in the folding process, the secondary
structure is completed by complex topological motifs, including pseudoknots and non-
canonical base pairs andmotifs [114, 115]. Due to its combinatorial nature, the secondary
structure is found at the core of successful computational methods for predicting the 3D
structure of RNA [131]. It also supports the discovery of new functional families of
non-coding RNAs, RNAs that do not (only) encode a protein, but (also) act directly
on their environment through participation in catalytic and/or regulatory functions. A
conserved consensus secondary structure is indeed a central object for many families in
the RFAM database [84, 106], and a crucial element of the design of covariancemodels [62]
used to find homologous RNAs across sequenced genomes.

At a 3D level, structuremodeling is tackled using amixture of comparativemethods [134]
and low-throughput/high resolution experimental techniques such as X-ray crystallogra-
phy, Nuclear Magnetic Resonance (NMR), or Cryogenic ElectronMicroscopy (Cryo-EM).
However, those techniques are extremely time-consuming, and require a preparation of
molecules that may either not be feasible for certain RNAs, or can interfere with the
folding process itself. These difficulties induce a growing gap between the number of
functional families (±3000 as of Jan 2020), many of which requiring the adoption of a
specific structure, and the number of families with experimentally-resolved 3D model
available for at least one of their members (99 as of Jan 2020).

Recently, high throughput/low resolution alternatives have been proposed in the form
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of improved chemical probing protocols, notoriously including SHAPE probing [47,
176, 198]. Those methods expose RNA to a chemical reagent, whose affinity towards
individual nucleotides depend on the structure (and therefore partly reveal it, albeit
in a stochastic and highly noisy fashion) and can be quantified using DNA and RNA
sequencing technologies. The end-result of those methods are 1D reactivity profiles
that are not sufficient to fully characterize a structure, but greatly informative for further
(computational) modeling.

1.2.2 RNA folding prediction models and paradigms

For all the aforementioned reasons, computational structure predictionmethods are very
relevant to the current objectives and challenges of RNA Bioinformatics. In the context of
molecular biology, RNA structure prediction is mainly concerned with the prediction of
one (or several) functional fold(s) for a given molecule. Since the influence of the cellular
environment on RNA folding is difficult to fully characterize, and even harder to capture
computationally, popular in silico methods adopt an approach inspired by statistical
mechanics. They focus on stable conformations, having low free-energies, under the
rationale that unstable structures are unlikely to be recognized by their partners, and
play a reliable role in important phenotypic effects.

This notion can be formalized by considering the Boltzmann-Gibbs distribution, where
any possible structure S for a given RNA w is observed with probability

�w (S) ∝ e−E(w,S)/RT , (1.1)

where E(w,S) represents the free-energy in kcal.mol−1 of the (w,S) pair, R the Boltzmann
constant (1.9872 10−3 kcal.mol−1.K−1) and T the absolute temperature in Kelvin. This
distribution can be thought as the stationary distribution of a continuous time Markov
chain, illustrated in Figure 1.3 on a toy example. In this process, a transition between two
conformations is chosenwith probability/rate that only depend on the energy difference,
thus respecting a detailed balance. Starting from the fully-unpaired/empty structure1,
having initial probability 1, the probability mass diffuses within the space of conforma-
tions, and ultimately reaches the thermodynamic equilibrium when probabilities no
longer evolve with time. The evolution with time of probabilities/concentrations can be
determined using efficient numerical integration [201], as illustrated in Figure 1.3.B.

This vision, inspired by statistical mechanics, is at the core of historical paradigms in the
field of RNA structure prediction:

1More sophisticated models may consider a co-transcriptional folding [111] of the nascent transcript,
leading to a non-binary initial distribution at the beginning of the process.
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Figure 1.3: RNA folding paradigms. The process of RNA folding can be abstracted as
a Continuous Time Markov Chain (CTMC – A), over a discrete state space consisting of
(a subset of) the secondary structures adopted by an RNA. Starting from an initial distri-
bution, typically assigning full probability to the open chain, kinetic studies attempt to
characterize the evolution of the probability distribution with time (B). At the thermody-
namic equilibrium, the stationary distribution of the CMTC is reached and probabilities
cease to evolvewith time. Themost probable structure is then themost stable one, i.e. the
MFE structure. However, RNAdegradationmay occur before the equilibrium is reached,
and the dominant structures at finite time may represent more promising candidates for
functional hypotheses.

MFE paradigm. Early computational methods for structure prediction [95, 143, 213] fo-
cused their effort on producing (one of) the optimally stable, or Mininum Free-
Energy (MFE), structure(s), under the rationale that the MFE structure has highest
probability at the thermodynamic equilibrium;

Boltzmann ensemble paradigm. While optimal, the probability of the MFE structure
alone can be abysmally small, and decreases exponentially with the RNA length.
The MFE structure can therefore be overwhelmed, at the thermodynamic equilib-
rium, by a set of alternative structures having comparable stability and, possibly,
very different characteristics. This motivates studies of the expected properties
in the Boltzmann-Gibbs distribution, hinging on an efficient computation of the
partition function [130]

Z �

∑
S

e−E(w,S)/RT .

When these properties diverge from those of the MFE, it may be more relevant
to consider structures that are more accurate representatives of the ensemble of
structures. One such structure is the Maximum Expected Accuracy structure [55,
121], the structure minimizing some notion of expected distance to the rest of the
ensemble. Alternatively a statistically representative, Boltzmann distributed, set
of structures can be randomly generated, clustered at a structural level to identify
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alternative conformations, and eliminate outliers. A centroid structure can then be
elected for each cluster [52];

The kinetics paradigm. More recently, there has been a growing awareness of the impor-
tance of out-of-equilibrium effects in the function(s) carried out by RNA. Indeed,
in a cellular context, RNA is constantly transcribed and degraded by enzymes.
Depending on the precise dynamics of these concurrent processes, a population of
RNAs may simply be degraded before reaching its stationary distribution, so the
thermodynamic paradigm may not provide an accurate picture of the functional
structure. This generally applies to RNAs whose energy landscapes feature sub-
stantial barriers, leading to a slow convergence towards the equilibrium. Kinetics
analyses are thus concerned with the structural behavior of RNA before reaching
the equilibrium.

Examples of kinetics effects are suspected to include riboswitches, bistables RNAs
which are observerd in on and off conformations in the presence/absence of a lig-
and, a small molecule, believed to have insufficient contribution to the free-energy
to invert the relative stabilities of the on and off states. Current models are thus
based on kinetics, and postulate that the ligand modifies an energy barrier, lead-
ing to a faster/slower convergence towards the thermodynamic equilibrium [65].
More generally, co-transcriptional folding, the folding of RNA during transcrip-
tion, reveals the importance of kinetic effects. Indeed, this phenomenon would be
without effect at the thermodynamic equilibrium, since the stationary distribution
of a (ergodic) Markov chain does not depend on its initial distribution, so it would
should not matter at the equilibrium.

In the rest of this document, I will mainly focus on algorithmic strategies relevant to
the MFE and Boltzmann equilibrium paradigms, although certain were have designed
with kinetics analysis in mind [133, 180]. Kinetics analyses are indeed much more
time-consuming, and are associated with computational problems that are routinely NP-
hard [126]. Efficient heuristics and methods for analyzing kinetics are, however, the
object of ongoing projects within the RNA Bioinformatics community.

1.2.3 The secondary structure

A RNA secondary structure of size n represents the outcome of a folding process,
and focuses on a subset of base-pairs, mediated by hydrogen bonds. For essentially
computational reasons [3, 123, 175] this definition forbids crossing base pairs, also called
pseudoknots due to their ability to induce complex topologies [205]. Moreover, any
nucleotide can only be involved in a single base pair, since additional partners would
involve non-canonical edges [114]. Finally, most definitions rule out base pairs between
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Figure 1.4: Various representations for RNA secondary structures.

proximate positions, due to steric effects inducing geometric constraints, leading to a
minimal number θ of unpaired positions between paired positions.

Definition 1.2.1 (RNA secondary structure): An RNA secondary structure S of
length n is a set of base-pairs (i, j), 1 ≤ i < j ≤ n, such that:

• Each position is monogamous, ∀(i, j) , (i′, j′) ∈ S : {i, j} ∩ {i′, j′} � �;
• Minimal distance θ between paired nucleotides, ∀(i, j) ∈ S : j − i > θ;
• No pseudoknot allowed, ∀(i, j), (i′, j′) ∈ S, i < i′ : (j′ < j) or (j < i′).

The conformational space associated with a sequence of length n is simply Sn, the set
of secondary structures over n nucleotides.

In typical ab initio RNA structure prediction problems, the input is a sequence of nu-
cleotides w ∈ {A,C,U,G}?. This space of secondary structure is then usually restricted
to structures consisting of canonical base pairs B :� {{G,C}, {A,U}, {G,U}}}. In other
words, for any valid secondary structure S ∈ S one has:

∀(i, j) ∈ S : {wi,wj} ∈ B.

The secondary structure can be drawn in a variety of ways, as illustrated by Figure 1.4,
many of which being supported by our popular software VARNA, developed in collabo-
ration with Kevin Darty and Alain Denise [44].

The stability of a secondary structure is assessed using a free-energy model. The most
popular such model is the Turner nearest-neighbor free-energy model [185], which as-
sociates experimentally-determined free-energy contributions to structuralmotifs, called
loops (see Figure 1.5). The energy of any given secondary structure is then additively
defined, i.e. obtained by summing the contributions of the various loops appearing in
the structure.
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Figure 1.5: Loop decomposition supporting the Turner nearest neighbor model [185].
Free-energies are associated to each loop type, precise topology and content in nu-
cleotides, determined by, or extrapolations from, direct experimental measurements.

1.2.4 RNA 2D structure prediction from thermodynamic principles

The secondary structureprovides a convenient discretizationof the conformational space,
and allows a reformulation of several folding paradigms into combinatorial problems.
For instance, predicting the most stable secondary structure (MFE paradigm) amounts
to finding the secondary structure having minimal free-energy according to a chosen
model. Since the overall and expected number of secondary structure of length n both
grow exponentially on the length [194, 212], a proof being provided in Section 5.2, brute-
force optimization is not realistically feasible.

However, as illustrated in Example 1 below, the tree-like nature of secondary structure,
and the independence of contributions within the energy model, make those optimiza-
tions amenable to a Θ(n3) dynamic programming (DP), as initially shown by Nussinov
and Jacobson [143] in a simplified energy model. The algorithm was later extended
to capture loops and additional features of the Turner free-energy model by Zuker and
Stiegler [213], leading to aΘ(n4) time algorithm (empirically running inΘ(n3) time). This
algorithm was then extended by [204] to generate the exhaustive collection of secondary
structures within a free-energy range ∆ of the MFE structure.

Example 1: RNA BP folding – Running example
A historical problem, first efficiently solved by Nussinov and Jacobson [143] is the prediction of the
MFE structure in a simple base pairing model, i.e. having maximum number of pairs, with only
nucleotides in B being allowed to pair. Our goal is thus to compute some S? ∈ Sn such that

|S? | � max
S∈Snsuch that

∀(i,j)∈S,{wi,wj}∈B
|S|.

A classic dynamic programming scheme, inspired by Waterman [194], considers each interval [i, j] ⊂
[1,n] and their associated optimal structure S?

i,j
for [i, j]:
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i j
=

i i+1 j
+

i+1i kk-1 k+1 j

≥ θ

Reasoning on the fate of the first position iwithin S?
i,j

, one only needs to consider three cases:

1. i + θ ≥ j, so no base pair can be formed, and we have S?
i,j

:� �;
2. i+θ < j and i is left unpaired, so any base pair in S?

i,j
involves positions in [i+1, j], and we have

S?
i,j

:� S?
i+1,j

;

3. i + θ < j and i is paired to some k ∈ [i + 1, j] in S?
i,j

subject to {wi,wk} ∈ B. Beyond (i,k), any
base pairs in S?

i,j
involves positions in [i + 1, k − 1] in [k + 1, j] (but not both since pseudoknots

are forbidden), so we get S?
i,j

:� {(i,k)} ∪ S?
i+1,k−1 ∪ S?k+1,j.

This immediately suggests a recurrence for the maximum number of base pairs Ei,j, achieved by
some secondary structure for the region [i, j] ∈ [1,n] of a given RNA w:

i + θ ≥ j : Ei,j :� 0,

i + θ < j : Ei,j :� max



Ei+1,j (i unpaired)

max
j
k�i+θ+1

1 + Ei+1,k−1 + Ek+1,j if{wi,wk} ∈ B (i paired)

Note that the computation of Ei,j only requires values Ei′,j′ such that |[i′, j′]| < |[i, j]|. A dynamic
programming algorithm for computing |S? | :� E1,n will consider intervals [i, j] ⊆ [1,n], ordered by
increasing span |[i, j]|, and compute Ei,j using precomputed Ei′,j′ , storing the result before proceeding
to a (possibly) larger interval.

The correctness of the algorithm hinges on the fact that, while computing over Ei,j, all [i′, j′] such
that |[i′, j′]| < |[i, j]| are already been processed, so that Ei′,j′ in the right hand side can be used. The
number of different Ei,j terms grows inΘ(n2). Moreover, each Ei,j can be computed inO(n) arithmetic
operations, assuming that all Ei′,j′ in the right-hand-side are accessible inO(1) operations. The overall
complexities of the algorithm are therefore in Θ(n3)/Θ(n2) time and space.

Once the maximum number of base pairs is computed, one can backtrack through these recursions,
starting from [1,n], by figuring out at each step (one of) the case(s) that contributed to the max.
Concretely, one will define a recursive function Backtrack such that Backtrack(i, j) :� Return� when
i + θ ≥ j and, for i + θ < j:

Backtrack(i, j) :�



if Ei,j � Ei+1,j : return Backtrack(i,j)

if Ei,j � 1 + Ei+1,k−1 + Ek+1,j,k ∈ [i + θ + 1, j] and {wi,wk} ∈ B :

return{(i,k)} ∪ Backtrack(i,k − 1) ∪ Backtrack(k + 1, j)
Note that the two cases are not necessarily mutually-exclusive, i.e. multiple structures may achieve
maximal number of base pairs, and an arbitrary-chosen optimal one will be returned.

A second breakthrough came with the advent of comparative folding, pioneered by
the work of Sankoff [167], who automated the practices of manual modelers [134], and
proposed an algorithm for the simultaneous folding and alignment of RNA. While
associated with extreme compuational demands (Θ(n6) for aligning two homologous
sequences), its impressive gain in predictive power and reliability compared to ab initio
techniques led it to be adapted within many subsequent methods, undergoing active
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developments [128, 179, 199, 200].

A revolution came with the McCaskill [130] algorithm, which championed a transition
towards the Boltzmann ensemble paradigm. Namely, McCaskill observed that the
partition function

Z �

∑
S

e−E(w,S)/RT

could be computed in essentially Θ(n3) time, through a simple change of algebra to
the dynamic programming equations of [213]. Moreover, he showed that the same
decomposition could be adapted into an instance of the inside/outside algorithm[10,
113], leading to a Θ(n4) algorithm for computing the base-pair probabilities within
the Boltzmann ensemble. Such ensemble properties provide a notion of support for
structures predicted in theMFE paradigm [127], but also allow to predict a structure that
more adequately represents the ensemble than the MFE, such as the Maximal Expected
Accuracy structure [55, 121].

The flexibility, and scope of applications, of ensemble methods was greatly extended by
the contribution byDing andLawrence [51] of a stochastic backtrack algorithm, allowing
to produce a random, Boltzmann distributed, secondary structure in time Θ(n2). This
enabled the implementation of statistical estimators for many features, including some
that cannot be captured by dynamic programming. This also paved the way for a
statistical estimation of the dominant conformations within the Boltzmann ensemble,
using a combination of sampling and clustering [52], used by subsequent methods [177].

Finally, a strong emphasis has been recently put on the development of integrativemeth-
ods that exploit the availability of (partial/noisy) experimental information. In the early
2000s, enzymatic and chemical probingdatawere integrated ashard constraintsbyMath-
ews et al. [129]withinDP equations for RNAstructure prediction. Following the develop-
ment of quantitative experimental methods, such as the SHAPE technologies [176, 198],
probing data are now incorporated as soft constraints, a.k.a.pseudo-energieswithin DP
schemes for prediction. Such energy terms can be thought as shifting the Boltzmann
ensemble towards areas of greater compatibility with the reactivity profiles produced
by the probing experiments.
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1.3 Outline

In this manuscript, I attempt to provide an unifying view on the algorithmic and theo-
retical concepts, used in a series of personal (frequently collaborative) contributions in
Bioinformatics, Theoretical Computer Science and Discrete Mathematics. Those contri-
butions are of different nature, and address a variety of objects of study, yet they share a
consideration of ensembles of combinatorial objects, and are based on an interpretation
of enumerations schemes as algorithmic principles.

In Chapter 2, I reformulate ensemble dynamic programming algorithms, contributed in
the context of Bioinformatics within a unified framework. My contributions draw on a
strong connection between (ensemble) dynamic programming and enumerative combi-
natorics, and put a strong emphasis on the design of dynamic programming schemes,
whose productions are bĳectively associated with an ensemble of objects of interest.

Chapter 3 focuses more specifically on algorithmic methods for RNA design, the algo-
rithmic construction of new RNA sequences achieving a certain function, here through
the adoption of a given structure. In this context, I revisit the classic inverse folding
of RNA at under (essentially) a base pair maximization model, and show families for
design can be approximated in an original sense. I also develop a vision inspired by
random generation for the positive design problem, where one attempts to favor the
affinity towards a given fold.

Chapter 4 describes rejection-based techniques and algorithms for a controlled random
generation of combinatorial objects. Again, the initial focus is to present those techniques
in an application-agnostic setting, later to describe some of their applications in Bioin-
formatics. Finally, I mention some analyses of the, arguably uninformative, redundancy
within samples and the shortcomings of a rejection-based strategy to overcome it.

Finally, Chapter 5 summarizes a series of analyses focusing on the asymptotic properties
of objects occurring in (RNA) bioinformatics. Those include RNA secondary structures,
for which a careful application of analytic combinatorics principles allow to derive prop-
erties in the homopolymer model, but also other objects with connection to the design
and analysis of algorithms.s
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Chapter 2

Ensemble dynamic programming:
techniques and analyses

Following Bellman [14], a dynamic programming algorithm is usually stated as a system
of recursive equations, relating the optimal value of an objective function over a certain
argument, or problem, to a set of its values over other arguments, or sub-problems. Ad-
ditionally, such an equation has induce an acyclic computation, meaning that the set of
arguments that are used by following the recursive calls, can be totally ordered in a way
that is consistent with the left-to-right transitions in the system. Such a definition over-
looks an important aspect of a dynamic programming scheme: the semantics associated
with the choice of one of the available left-to-right transitions.

In this manuscript, we adopt a perspective dually inspired by enumerative combina-
torics, where the choice of a derivation provides partial information regarding the final
solution. Such an enumerative perspective allows to define notions of unambiguity, cor-
rectness and completeness with respect to a given search space which, if fulfilled by a
DP scheme, unlock a variety of algorithms to make statements regarding the ensemble
of solutions. Such analyses go beyond the optimization of an objective functions, and
attempt to answer selected questions involving the ensemble of candidate solutions:

• What is the support of an optimal solution?

• What is the number of near-optimal solutions?

• Are all near-optimal solutions similar? how diverse are they?

• What is the centroid solution, i.e. most similar to other near-optimal solutions?

• What are the average properties of near optimal solutions?

• Which distributions of properties are expected within near optimal solutions?

Such questions require the definition of a probability distribution, assigning proba-
bilities to elements of the search space increasingly with their value for the objective
function.
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Ensemble analyses, whose first instances can probably be traced back to the origins of
Natural Language Processing [10, 188], enjoy a great popularity in Bioinformatics. In
particular, the early age of RNA bioinformatics saw seminal contributions from scientists
with a strong combinatorial culture in Discrete Mathematics, Theoretical Physics and
Computer Science, including Michael Waterman [194], Michael Zuker [212, 213], David
Sankoff [167],Walter Fontana, Peter Stadler, Peter Schuster and IvoHofacker [74, 95, 96]. . .

The popularity of ensemble analyses in RNABioinformatics also stems directly from their
origin in statisticalmechanics, inspiring the seminal contribution of JohnMcCaskill [130]
who turned a popular DP scheme for energy minimization into an algorithm to compute
thepartition functionof theBoltzmann ensemble. This central quantity allowed toderive
expected properties of RNA at the thermodynamic equilibrium, starting with the base
pairing probabilities, which have become central to modern methods for comparative
folding of RNA [199, 200], based on a simultaneous folding and alignment of RNAs
pioneered by David Sankoff [167].

In this context, my efforts have been focusing, on: i) the design of novel DP schemes
amenable to ensemble analyses, associated with challenges of variable technicality; and
ii) the development of new techniques to enable, or accelerate, ensemble analyses.

Outline. Section 2.1 describes a unifying framework for ensemble dynamic program-
ming, used in Section 2.2 to reformulate classic and novel tools to perform an exact
computation of ensemble properties. Section 2.3 focuses on statistical sampling, pro-
viding estimates for, possibly complex, Ensemble properties. Finally, Section 2.4 presents
a selection of algorithms and results obtained in various areas of Bioinformatics using
this general framework.

The following summarizes, and attempts to unify, contributions described within the
following list of articles published in journals and/or presented at conferences.

Associated contributions

J. Waldispühl and Y. Ponty. An unbiased adaptive sampling algorithm for the exploration of RNA mutational
landscapes under evolutionary pressure. Journal of Computational Biology, 18(11):1465–79, Nov. 2011

J. Waldispühl and Y. Ponty. An unbiased adaptive sampling algorithm for the exploration of RNAmutational landscapes under
evolutionary pressure. In RECOMB 2011, volume 6577 of Lecture Notes in Computer Science, pages 501–515, Vancouver, Canada,
Mar. 2011. Springer Berlin / Heidelberg

Y. Ponty and C. Saule. A Combinatorial Framework for Designing (Pseudoknotted) RNA Algorithms. In WABI
2011, Saarbrucken, Germany, 2011

S. Sheikh, R. Backofen, and Y. Ponty. Impact Of The Energy Model On The Complexity Of RNA Folding With
Pseudoknots. In CPM 2012, volume 7354 of Combinatorial Pattern Matching, pages 321–333, Helsinki, Finland, July
2012. Juha Kärkkäinen, Springer
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P. Rinaudo, Y. Ponty, D. Barth, and A. Denise. Tree decomposition and parameterized algorithms for RNA
structure-sequence alignment including tertiary interactions and pseudoknots. In WABI 2012, tba, Ljubljana,
Slovenia, Sept. 2012. University of Ljubljana

E. Senter, S. Sheikh, I. Dotu, Y. Ponty, and P. Clote. Using the Fast Fourier Transform to Accelerate the Computa-
tional Search for RNA Conformational Switches. PLoS ONE, 7(12):e50506, Dec. 2012

E. Senter, S. Sheikh, I. Dotu, Y. Ponty, and P. Clote. Using the Fast Fourier Transform to accelerate the computational search for
RNA conformational switches (extended abstract). In RECOMB 2013, Beĳing, China, Apr. 2013

V. Reinharz, Y. Ponty, and J. Waldispühl. Using Structural and Evolutionary Information to Detect and Correct
Pyrosequencing Errors in Noncoding RNAs. Journal of Computational Biology, 20(11):905–19, Nov. 2013

V. Reinharz, Y. Ponty, and J. Waldispühl. A linear inside-outside algorithm for correcting sequencing errors in structured RNA
sequences. In RECOMB 2013, Beĳing, China, Apr. 2013

C. Chauve, Y. Ponty, and J. P. P. Zanetti. Evolution of genes neighborhood within reconciled phylogenies: an
ensemble approach. BMC Bioinformatics, 16(Suppl 19):S6, Dec. 2015

C. Chauve, Y. Ponty, and J. P. P. Zanetti. Evolution of genes neighborhoodwithin reconciled phylogenies: an ensemble approach.
In BSB 2014, volume 8826 ofAdvances in Bioinformatics and Computational Biology, pages 49–56, Belo Horizonte, Brazil, Oct. 2014.
Springer

A. Rajaraman, C. Chauve, and Y. Ponty. Assessing the robustness of parsimonious predictions for gene neigh-
borhoods from reconciled phylogenies. In ISBRA 2015, volume 9096, pages 260–271, Norfolk, Virginia, United
States, June 2015

E. Jacox, C. Chauve, G. J. Szöllösi, Y. Ponty, and C. Scornavacca. ecceTERA: Comprehensive gene tree-species tree
reconciliation using parsimony. Bioinformatics, 32(13):2056–2058, July 2016

V. Reinharz, Y. Ponty, and J. Waldispühl. Combining structure probing data on RNA mutants with evolutionary
information reveals RNA-binding interfaces. Nucleic Acids Research, 44(11):e104 – e104, 2016

W. Duchemin, Y. Anselmetti, M. Patterson, Y. Ponty, S. Bérard, C. Chauve, C. Scornavacca, V. Daubin, and E. Tan-
nier. DeCoSTAR: Reconstructing the ancestral organization of genes or genomes using reconciled phylogenies.
Genome Biology and Evolution, 9(5):1312–1319, 2017

J. Deforges, S. De Breyne, M. Ameur, N. Ulryck, N. Chamond, A. Saaidi, Y. Ponty, T. Ohlmann, and B. Sargueil.
Two ribosome recruitment sites direct multiple translation events within HIV1 Gag open reading frame. Nucleic
Acids Research, 45(12):7382–7400, July 2017

C. Chauve, J. Courtiel, and Y. Ponty. Counting, generating, analyzing and sampling tree alignments. International
Journal of Foundations of Computer Science, 29(5):741–767, 2018

C. Chauve, J. Courtiel, and Y. Ponty. Counting, generating and sampling tree alignments. In ALCOB 2016, volume 9702, pages
53–64, Trujillo, Spain, 2016. Springer

S. Hammer, W. Wang, S. Will, and Y. Ponty. Fixed-parameter tractable sampling for RNA design with multiple
target structures. BMC Bioinformatics, 20(1):209, Dec. 2019

S. Hammer, Y. Ponty, W. Wang, and S. Will. Fixed-Parameter Tractable Sampling for RNA Design with Multiple Target
Structures. In RECOMB 2018, Paris, France, 2018

2.1 A formal framework and basic algorithms

In order to refactor both classic and novel dynamic programming-based algorithms, we
introduce a formal framework. Largely inspired from Juraj Michalik’s PhD [132], it can
be seen as an operational version of the declarative proposal of Giegerich and Touzet [81],
modelingdynamic-programmingprocesses as inverse coupled term-rewriting systems [108].
Some of its features were previously introduced in collaboration with Cédric Saule [150],
based on an oriented hypergraph framework pioneered by Finkelstein and Roytberg [66],
independently pursued byHuang andChiang in the context of natural language process-
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ing [98]. It is also worth mentioning a substantial overlap with the book of Miklos [135]
dedicated to the complexity of counting and sampling, of which our framework covers
some of the easier (polynomially-solvable) cases.

2.1.1 Dynamic programming as a rewriting system

Denote byw an instance (e.g. sequence, tree, graph. . . ) of a combinatorial problem. An
instance implicitly defines a discrete universe Uw, of which the search space Ωw ⊂ Uw
of a combinatorial algorithm is a subset. Next, we need to describe how elements of the
search space are decomposed, or conversely generated, by recursive constructors.

Definition 2.1.1 (Constructor): A constructor of arity k is a function λ : Uk → U
that returns/creates a novel element the search spaceΩ from k elements ofΩ.

In other words, a constructor is a function that assembles a candidate solution from a
collection of (smaller) candidate solutions to subproblems. Constructors with zero arity,
i.e. constant functions, are called atoms and constitute base cases in the classic recursive
exposition of dynamic programming. To mark this distinction between a constructor λ
seen as a function, e.g. used to label the nodes of terms (see definition below), and its
evaluation, we use the notation λ ; v. Denote byΛ the set of all constructors for a given
DP scheme.

Prior to any definition of a dynamic programming scheme, one needs to introduce a
state space Q. Any state q ∈ Q represents a (sub)problem encountered while solving
the recursive DP computation. The spirit of dynamic programming is to solve a given
problem by solving a number of (smaller) problems, depending of the associated state
and the instance. This dependency is materialized in our formalism by derivations, each
decorated by a combinatorial constructor.

Definition 2.1.2 (Derivation): A derivation is a tuple

(q, (q, · · · ,qk), λ) ∈ Q ×Q? ×Λ,

denoted as q
λ−→ q1, . . . ,qk such that:

• q is the origin;

• (q1, . . . ,qk) ∈ Q? is the production, i.e. an ordered list of states (a.k.a.
subproblems) that have to be solved in order to solve q;

• λ ∈ Λ is a constructor of arity k.
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We can now define a (combinatorial) dynamic programming scheme as a system of
equations, coupled with a derivation system.

Definition 2.1.3 (Dynamic Programming Scheme): A dynamic programming
scheme ∆ is a tuple (Q,qw, δ), where:

• Q is the state space;

• qw ∈ Q is the initial state;

• δ ⊂ Q × Q? × Λ is an acyclic, i.e. non transitively self-referential, set of
derivations.

The acyclicity condition forbids any state to (transitively) derive into itself, and is essential
for algorithmic considerations. Note that, while the instance does not explicitly appear in
this definition, its precise content is at the origin of the state space and lists of derivations.
To illustrate this bundle of abstract definitions, let us reformulate our running example.

Example 2: RNA BP folding – Formalized dynamic programming
The DP scheme ∆BP for RNA 2D structure prediction problem, introduced in Section 1.2.3 can be
formalized as follows: the instance is w ∈ {A,C,U,G}?, a sequence of nucleotides; the universe is
U :� ∪n′≤nSn′ ; the states are the intervals Q :� {[i, j] | 1 ≤ i ≤ j ≤ n]},n :� |w| of the input sequence
w; and three types of constructors are sufficient to generate all structures:

• λ
[i,j]
� ; � → Atom, returning the empty secondary structure;

• λ
[i,j]
• (S); S → Leaves position i unpaired;

• λ
[i,j]
k
(S,S′); S ∪ S′ ∪ {{i,k}} → Adds base pair {i,k} to two substructures S and S′.

The derivations in δ consist of:

• Terminal derivations:

∀[i, j] ⊂ [1,n], j ≤ i + θ→ (i, j) λ
[i,j]
�−−−−→ ε

Semantics: Position i left unpaired, no further processing required (sequence too short to support
base pair), empty structure λε returned;

• Unpaired derivations:

∀[i, j] ⊂ [1,n], j ≤ i + θ : (i, j) λ
[i,j]
•−−−−→ (i + 1, j)

Semantics: Position i is left unpaired, requires processing of interval [i+1, j], (optimal) structure
built over [i + 1, j];

• Paired derivations:

∀[i, j] ⊂ [1,n],∀k ∈ [i + θ + 2, j], {wi,wk} ∈ B : (i, j)
λ
[i,j]
k−−−−→ ((i + 1,k − 1), (k + 1, j))

Semantics: Position i paired with k, requires processing of intervals [i + 1,k − 1] and [k + 1, j],
(optimal) structure built from [i + 1, k − 1] and [k + 1, j], augmented with base pair {i,k};

Derivation rules, in conjunction with constructors, define the search space explored
(or, conversely, generated) by a DP scheme. To reason on the relationship between
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constructors and elements of the search space, we make a subtle distinction between a
term T , a tree-like hierarchy of constructors produced by a complete series of derivations,
and its evaluation φ(T ) as an element of the search space.

For instance, using the constructors and semantics of Example 2, we have

λ
[1,5]
•

λ
[2,5]
4

λ
[3,3]
•

λ��

λ
[5,5]
•

λ��

Term T

φ(T ) � λ[1,5]• (λ[2,5]
4
(λ[3,3]• (λ��), λ[5,5]• (λ��)))

� {(2, 4)}
→ • ( • ) •

Secondary Structure
S :� φ(T )

Evaluation φ

2.1.2 Search space and suitability for ensemble applications

The terms space and search space produced by a given dynamic programming scheme
can then be defined recursively as follows.

Definition 2.1.4 (Terms of a DP scheme): The terms set T∆ generated by a dy-
namic programming scheme∆ � (Q,qw, δ) is defined as T∆ :� Tqw where, for any
q ∈ Q, one has:

Tq �

⋃
q
λ−→q1···qk∈δ

{
λ

t1 t2· · ·tk
| t1 ∈ Tq1 , t2 ∈ Tq2 , . . . , tk ∈ Tqk

}
.

Terms represent the syntactical structure of elements of the search space, which we now
define.

Definition 2.1.5 (Seach space of a DP scheme): The search spaceΩ∆ :� Ωqw

generated by a dynamic programming scheme can be similarly defined through

Ωq � {φ(T )}T∈Tq
�

⋃
q
λ−→q1···qk∈δ

{
λ(s1, . . . , sk) | (s1, . . . , sk) ∈ Ωq1 × · · · ×Ωqk

}
.

Equipped with these notions, we can now define the properties of a dynamic program-
ming scheme, that will connect it to an underlying reality.
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Definition 2.1.6 (Completeness and unambiguity of a DP scheme): A DP
scheme ∆ � (Q,qw, δ) is:

1. Unambiguous if and only if every element of the search space can be gener-
ated in only one way, i.e. φ is bĳective between T∆ andΩ∆;

2. Complete with respect to a targeted search space Ω? if and only if every
element inΩ? is considered by ∆, i.e. one hasΩ∆ � Ω?.

These two notions are crucial for ensemble applications of application. Indeed, in combi-
nation, they allow to use a given DP scheme to extract relevant properties of a preexisting
search space.

Let us now distinguish elements within the search spaces, by introducing scoring func-
tions thatwillmapnumerical valueswith each constructors and, in turn, to terms/elements
of the search space

Definition 2.1.7 (Additive scoring function): An additive scoring function f :

Λ → � associates a numerical value to each constructor, such that the score f(T )
of a term T ∈ T is defined as

f(T ) :� f(φ(T )) :�
∑
λ∈T

f(λ).

An important property of a dynamic programming scheme lies is its ability to emulate a
given function defined over its search space, by using a suitable scoring of its construc-
tors/derivations. Such function could represent an objective function in the context of
an optimization, or help induce a desired probability distribution over the search space.

Definition 2.1.8 (Correctness of a DP scheme): Let ∆ be a DP scheme, coupled
with a scoring function f : Λ→ �. A pair (∆, f) is correct, with respect to a given
function F : Ω∆ → �, if and only if F(φ(T )) � f(T ),∀T ∈ T .

By extension, we say that a DP scheme ∆ is correct with respect to a function F if and
only if there exists a scoring function f such that (∆, f) is correct.

Example 3: RNA BP folding – Unambiguity/completeness/correctness
The unambiguity of ∆BP can be proven by considering two terms T and T ′, T , T ′. Consider the first
position from the root where constructors λ and λ′, such that λ , λ′ are found in T and T ′ respectively.
Since their paths to the root encounter the same constructors, λ and λ′ are of the form λ

[i,j]
k

or λ[i,j]•
(but not λ[i,j]� , since then both would be⇒ λ � λ′). Since two constructors irrevocably induce different
partners for position i, their associated structures S :� φ(T ) and S′ :� φ(T ′) differ by at least one base
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pair, and we have S , S′, implying the non-ambiguity of ∆BP.

The completeness of ∆BP requires that any structure S ∈ Sn can be generated by the evaluation of
some term in Tq. This can be established by induction of the length n ≥ Θ+2 of the interval, assuming
that, for all [i′, j′] ∈ Q such that n′ :� j′ − i′ + 1 < n, one has Ωn′ � Sn′ . Now, consider an interval
[i, j], j − i + 1 � n and a structure S ∈ Sn, and discuss the partner of i in S: if i is unpaired, then
S � •S′ with |S′ | < n, so S′ is generated by T ′ ∈ T[i+1,j] and T :� λ

[i,j]
• (T ′) ∈ T[i,j] such that φ(T ) � S;

if i is paired to some k, then S � (S′)S′′ with |S′ | + |S′′ | < n, so S′ and S′′ are generated by terms
T ′ ∈ T[i+1,k−1] and T ′′ ∈ T[k+1,j] respectively, so T :� λ

[i,j]
k
(T ′, T ′′) ∈ T[i,j] such that φ(T ) � S.

The correctness of ∆BP requires that, for any secondary structure in the search space, the number
of base-pairs is obtained by adding numerical values mapped to constructors. This is possible since,
for any term T evaluated as φ(T ) � S, the number of base pairs in S coincides with the number of
constructors of type λ[i,j]

k
in T , so the scoring function f : λ→ � defined as

f(λ[i,j]• ) � f(λ[i,j]� ) � 0 and f(λ[i,j]
k
) �



−1 if {wi,wk} ∈ B (valid base pair)

+∞ otherwise
.

Remark 2.1.1: Note that our assumption of scoring schemes that are additively-defined on construc-
tors/transitions represents a limitations in expressivity in comparison to themore general evaluation
algebra considered in algebraic dynamic programming and its extensions [80, 81, 169, 211]. How-
ever, general algebras do not allow a smooth transition from optimization to ensemble analyses,
so we (slightly) limit the scope of our framework rather than burden our proofs and theorems.
Moreover, the current framework captures, without any complexity overhead, every applications of
dynamic programming known to this author in Bioinformatics.

2.1.3 Classic optimization

With this final notion of correctness being defined, we can finally turn to a more algorith-
mic dimension of dynamic programming, initially focusing on optimization problems,
an historical focus of dynamic programming since its initial pioneering by Bellman [14].

Problem 1 (DP-based optimization):
Input: A dynamic programming scheme ∆ and a scoring function f, such that
(∆, f) is correct with respect to an objective function F : Ω∆ → �
Output: Some element s? ∈ S∆ such that F(s?) � maxs∈S∆ F(s)

Unsurprisingly, this problem can be solved using dynamic programming, using an algo-
rithm consisting of the following steps:
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1. Matrix filling: For all state q ∈ Q, traversed in preorder, compute

mq :� max

q
λ−→q1,...,qk∈δ

f(λ) +
k∑
i�1

mqi (2.1)

2. Backtracking: Return B(qw), recursively defined for any q ∈ Q as:

B(q) :� λ(B(q1), . . . ,B(qk)), ifmq � f(λ) +
k∑
i�1

mqi ,q
λ−→ q1, . . . ,qk ∈ δ

Note that the preorder in Step 1 always exists due to the acyclicity of derivations. The
time complexity of this step is inO(|Q|+α? × |δ|), α? :� maxd∈δ α(d) for α(d) the arity of
a derivation d, i.e. the number of states in its production. The memoization of computed
values mq requires Θ(|Q|) memory. These complexities hold for the whole algorithm,
since Step 2 involves recursingover atmost |Q| states (due to acyclicity), and its complexity
is typically orders of magnitude below the requirements of Step 1.

Example 4: RNA BP folding – Energy minimization
Let us illustrate Equation (2.1) in the context of ∆BP, the DP scheme of RNA BP folding. For base-
pair maximization, the objective function is F(S) :� |S|, achieved by a scoring function f such that
f(λ[i,j]
k
) � {1 if (wi,wk) ∈ B;−∞ otherwise}, and f(λ[i,j]• ) � f(λ[i,j]� ) � 0. We get

m[i,j] � max




f(λ[i,j]� ) if i + θ ≥ j . [i, j] λ
[i,j]
�−−−−→ �

f(λ[i,j]• ) +m[i+1,j] if i + θ < j . [i, j] λ
[i,j]
•−−−−→ [i + 1, j]

maxk f(λ[i,j]k
) +m[i+1,j] +m[k+1,j] if i + θ < j . [i, j] λ

[i,j]
k−−−−→ [i + 1,k − 1], [k + 1, j]

� max




0 if i + θ ≥ j
m[i+1,j] if i + θ < j
max

j
k�i+θ+1

1 +m[i+1,j] +m[k+1,j] if i + θ < j ∧ (wi,wk) ∈ B
in which one recognizes the classic DP equation reminded in Section 1.2.3.

2.2 Exact computation of Ensemble properties

In many applications of ensemble dynamic programming, one attempts to analyze a
specific subset of the search space. Examples abound in RNA bioinformatics where
an integer-valued feature function, additively defined with respect to the dynamic pro-
gramming scheme, partition of the secondary structureswith respect to their free-energy,
base-pair distance to one or several references structure(s). . .
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2.2.1 Computing the partition function.

A ubiquitous quantity of interest is the partition function, whose definition requires
integrating over the whole search space, and is used as a normalization term within
ensemble studies. As observed by McCaskill [130], the optimization algorithm of any
unambiguous DP scheme can be adapted to compute the partition function, through a
simple algebraic substitution. Namely, it suffices to substitute (min/max,+) → (+,×),
coupled with a suitable exponentiation of energy contributions to compute the partition
function from the MFE recursions. This observation has given rise to systematic studies
decorrelating the DP scheme from its algebra [80, 97] with a specific focus on semi-ring
algebras [135, 138].

Problem 2 (Partition function):
Input: An unambiguous DP scheme ∆ and a scoring f, such that (∆, f) is correct
with respect to an energy function E : Ω∆ → �; β ∈ � a constant

Output: The partition function Z∆ ofΩ∆, defined as

Z∆ �

∑
s∈Ω∆

e−β·E(s)

The above problem can be solved by returning Z∆ :� Zqw , following the computation,
for all state q ∈ Q, of

Zq �

∑
s∈Ωq

e−β·E(s).

Those quantities can be computed recursively (in preorder), using

Zq :�
∑

q
λ−→q1,...,qk∈δ

e−β·E(λ) ×
k∏
i�1

Zqi . (2.2)

The time complexity of this computation is inO(|Q| +α? × |δ|), α? being the max arity of
a constructor, and requires Θ(|Q|)memory.

Example 5: RNA BP folding – Partition function
A reasonable energy function is defined as E(S) :� −|S|, and implicitly used inNussinov-Jacobson [143]
scheme. It is achieved by an eponymous scoring functionE such thatE(λ[i,j]

k
) � {−1 if (wi,wk) ∈ B;+∞

otherwise}, and E(λ[i,j]• ) � f(λ[i,j]� ) � 0. We get

Z[i,j] :�
∑ 


1 if i + θ ≥ j
Z[i+1,j] if i + θ < j∑j
k�i+θ+1

eβ × Z[i+1,j] × Z[k+1,j] if i + θ < j ∧ (wi,wk) ∈ B.
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The validity of the final result, i.e. the fact that Z[1,n] �
∑
S∈Sn e−β.E(S), is a direct consequence of the

unambiguity, completeness and correctness properties of ∆BP. The time and space complexities are in
Θ(n3) and Θ(n2) respectively.

2.2.2 Probabilities in Boltzmann-Gibbs distributions (inside-outside)

In many relevant contexts, the elements of a search space Ω can be assumed to follow a
Bolzmann-Gibbs distribution, where the probability of any s ∈ Ω is such that

� (s) � e
−β·E(s)

Z (2.3)

where E represents an energy score, and β a constant (analogous to a temperature), and
Z is the partition function. In such a context, the probabilities of individual elements
induce average properties (e.g. base-pair probabilities) that are extremely relevant to
ensemble analyses.

Definition 2.2.1 (Unicity of a constructor): A constructor λ ∈ Λ is uniquewithin
a DP scheme ∆ if it occurs at most once in each term T ∈ T∆.

Under the unicity condition, the probability of a constructor λ can be obtained by sum-
ming the individual probabilities of search space elements that result from its application
(or, equivalently, the terms that contain λ). Fortunately, this property can be computed
efficiently using a suitable dynamic programming scheme, as stated below.

Problem 3 (Boltzmann probability of constructor(s)):
Input: Unambiguous DP scheme ∆ + scoring f, correct w.r.t. energy function E;
β ∈ � a constant; and a set C ⊂ Λ of unique constructors

Output: The Boltzmann probabilities of constructors in C:

∀λ ∈ C : �(λ ∈ T ) �
∑
T∈T∆
s.t. λ∈T

e−β·E(φ(T ))

Z∆
(2.4)

This problem, which generalizes the computation of production probabilities in prob-
abilistic context-free grammars, is tackled by a variant of the inside-outside algo-
rithm [10, 113]. The algorithm is based on the observation that, for any monitored
constructor λ?, any term T? ∈ Tλ? :� {T ∈ T∆ | λ ∈ T } can be decomposed into:

1. a derivation d :� q
λ?−−→ q1, . . . ,qk labeled by an occurrence of λ?;

2. an outside part, a partial term in Tq ∈ T∆, truncated on an occurrence of q (left
underived). Let us denote byOq the set of outside parts leading to q;
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3. several insideparts, i.e. individual continuations of the derivationprocess, starting
from q1, . . . ,qk. Denote as Iq1 , . . . ,Iqk the set of inside parts generated from
q1, . . . ,qk respectively;

Under the unicity condition, this decomposition is unambiguous. Moreover, the respec-
tive energy contributions of the three parts are independently contributing to the energy,
and it follows that Zλ? , the partition function restricted to Tλ? , obeys

Zλ? :�
∑
T∈Tλ?

e−β.E(T )

�

∑
q
λ?−−→q1,...,qk∈δ

e−β.E(λ
?) × ©­«

∑
Tq∈Oq

e−β.E(Tq)ª®¬
×

k∏
i�1

©­«
∑
Ti∈Iqi

e−β.E(Ti)ª®¬
�

∑
q
λ?−−→q1,...,qk∈δ

e−β.E(λ
?) × Yq ×

k∏
i�1

Zqi (2.5)

where Yq :�
∑
Tq∈Oq e

−β.E(Tq) is the outside partition function. Note that, when Yq is
known, the above equation allows to simultaneously compute the partition functions Zλ
for all monitored unique constructors, through a single pass over the derivations.

The computation of Yq itself can also be performed by inverting the dynamic pro-
gramming scheme, going from a given state back to the root while allowing the further
derivation of siblings found along the way. The outside partition function Yq of a node
can be computed using dynamic programming using infix order, i.e. starting from the
root qw and processing the ancestors of a node before itself, through

Yq :�



1 if q � qw (root)∑
qp

λ−→q∈δ
s.t. q∈q

e−β.E(λ) × Yqp ×
∏k
q′∈q
q′,q

Zq′ otherwise. (2.6)

Overall, the inside-outside algorithm solving Problem 3 can be stated as:

• Using Equation (2.2), compute the inside partition function Zq for all state q ∈ Q
in preorder; → O(|Q| + α? × |δ|) time

• Using Equation (2.6), compute the outside partition function Yq for all state q ∈ Q
in infix order; → O(|Q| + α? × |δ|) time

• Iterate over derivations q
λ−→ q1 · · ·qk ∈ δ to compute (Zλ)λ∈C, initially set to 0. If

λ ∈ C, update Zλ ← Zλ + e−βE(λ
?)Yq

∏k
i�1Zqi ; → O(α? × |δ| + |C|) time

• Finally, the algorithm returns � (λ ∈ T ) :� Zλ/Zqw ,∀λ ∈ C.
The algorithm runs in time O(|Q| + |C| + α? × |δ|), α? being the maximum arity of a
constructor, and requires storage for O(|Q| + |C|) numbers.
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Example 6: RNA BP folding – BP probabilities
In the context of RNA, the inside/outside algorithm can be used to compute base-pair probabilities,
as done by McCaskill [130]. Inside contributions/partition functions are computed as detailed in
Example 5, using E(λ[i,j]

k
) � {−1 if (wi,wk) ∈ B;+∞ otherwise} and E(λ[i,j]• ) � f(λ[i,j]� ) � 0. The

monitored constructors are all λ[i,j]
k

, each unique as a position i cannot be assigned twice.

The outside contributions Yq are then computed through a specialization of Equation (2.6):

Y[i,j] :�
∑ 



1 if [i, j] � [1,n]
Y[i−1,j] if i − 1 ≥ 1∑i−Θ−1
i′�1 eβ × Y[i′,j] × Z[i′+1,i−2] if (wi′ ,wi−1) ∈ B;∑n
j′�j+1 e

β × Y[i,j′] × Z[i+1,j′] if (wi−1,wj+1) ∈ B.

We finally obtain the probabilities of constructors through a specialization of Equation (2.5)

�

(
λ
[i,j]
k
∈ T

)
:�



eβ×Y[i,j]×Z[i+1,k−1]×Z[k+1,j]

Z[1,n] if(wi,wk) ∈ B
0 otherwise

Summing over all values of j, we get the probability of a base-pairs (i,k), k − i > θ

� ((i,k) ∈ S) :�
n∑
j≥k
�

(
λ
[i,j]
k
∈ T

)

The probabilities of all base pairs can then be computed the inside/outside, in Θ(n3) time, and Θ(n2)
space by computing the probabilities of constructors on the flywithin the above sum.

Remark 2.2.1 (Beyond unique features): Remark that, in the case where λ is not unique, i.e. it
occurs more than once in a term, the output of the above algorithm is no longer the probability
of occurrence, but the expected number of occurrences of λ in a random, Boltzmann-distributed,
term. This quantity may be of interest, for instance when trying to assess expected properties of the
Bolzmann ensembles, since it allows the simultaneous computation of many expected features in a
single pass.

2.2.3 Ensemble centroid and Maximum Expected Accuracy (MEA)

The probabilities computed in Problem 3 allow to assess a notion of support for the
individual features (e.g. base pairs, helices...) of a solution within the Boltzmann-Gibbs
distribution. Thus, they can beused to assess how representative a given solution is of the
Boltzmann-Gibbs ensemble. In particular, when s? is the minimum free-energy solution,
we know that s? achieves maximal probability in the Boltzmann-Gibbs distribution.

However, in absolute terms, the probability of s? may be (and usually is) abysmally small,
and does not allow in itself to distinguish between two very different situations:

1. The solution s? is surroundedbya familyof similar suboptimal solutions {s′
1
, s′

2
. . .},

having very similar features (e.g. |s?, s′
i
| ≤ η for some notion of distance), overtak-
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ing the probability distribution (� (s?) +∑
i �

(
s′
i

)
� 1 − ε);

2. The solution s?, even supplemented by similar suboptimals, is highly dominated
by dissimilar solutions in the Boltzmann ensemble (� (s?) +∑

i �
(
s′
i

)
� ε).

A possible way to distinguish between those two worlds, consists in computing an ex-
pected distance of s? to a random solution in the ensemble.

Definition 2.2.2 (Weighted distance between solutions): Given two solutions
s, s′ ∈ Ω resulting from the applications of sets of unique constructors C �

{λ1, · · · , λk} and C′ � {λ′1, · · · , λ′k′} respectively. Then the distance |s, s′ | between
s and s′ is defined as

|s, s′ |µ �

∑
λ∈Λ

πλ × (1λ∈C − 1λ∈C′)2

where π : Λ→ �+ is a collection of weights.

Since constructors represent atomic operations that build a given element of the search
space (e.g. adding a base pair, declaring a nucleotide unpaired. . . ), this notion of distance
represents a natural way to represent popular distance metrics.

Equipped with a notion of distance, we can now define the centroid of the Boltzmann-
Gibbs ensemble [55, 87] as its most central element, i.e. the solution having minimum
expected distance to a, Boltzmann-distributed, elements of the search space.

Problem 4 (Centroid solution):
Input: Unambiguous DP scheme ∆ + scoring f, correct w.r.t. function E; β ∈ � a
constant; and a weighted distance |?, ?|µ
Output: Solution s? ∈ Ω∆ minimizing the expected distance to the ensemble:

s? � argmin
s∈Ω∆

∑
s∈Ω∆

� (s′) × |s, s′ |µ (2.7)

Fortunately, the expected distance to the ensemble of any given candidate solution s ∈ Ω
can be reexpressed as a simple sum over the Boltzmann probabilities of constructors.
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Indeed, one has∑
s′∈Ω∆

� (s′) × |s, s′ |µ �

∑
s′∈Ω∆

� (s′) ×
∑
λ∈Λ

πλ × (1λ∈s − 1λ∈s′)2

�

∑
λ∈Λ
λ∈s

πλ × � (λ < T ) +
∑
λ∈Λ
λ<s

πλ × � (λ ∈ T )

�

∑
λ∈Λ
λ∈s

πλ × (� (λ < T ) − � (λ ∈ T )) +
∑
λ∈Λ

πλ × � (λ ∈ T ) (2.8)

Since the rightmost sum no longer depends on s, finding the solution that minimizes
the expected distance is equivalent to finding a solution that optimizes the leftmost sum.
Following this observation, one can solve Problem4by executing the following algorithm:

1. Compute the Boltzmann probabilities of constructors used by the weighted dis-
tance, i.e. solve Problem 3 with C :� {λ ∈ Λ | πλ , 0};

2. Find s ∈ Ω∆ that minimizes the leftmost term of Equation 2.8, i.e. solve Problem 1,
maximizing the objective function F : Λ→ � such that

F(λ) :� πλ × (� (λ ∈ T ) − � (λ < T )) � πλ × (2� (λ ∈ T ) − 1) (2.9)

Example 7: RNA BP folding – Centroid computation
We consider the classic base-pair distance as the distance to be minimized, and accordingly replace
all constructors λ[i,j]

k
with new simplified constructors λ(i,k) and λ(i) which respectively represent

occurrences of a base pair (i,k) and an unpaired position i, irrespectively of their context [i, j] of
creation (since the context of a base pair should not contribute to the distance). We set the weight
of all constructors to 0 except for π(λ(i,k)) � 1 in the distance definition, and compute the base-pair
probabilities pi,j :� � ((i, j) ∈ S) as shown in Section 2.2.2.

Then, we solve Problem 1 in this new setting, i.e. compute the recurrence

c[i,j] � max




0 if i + θ ≥ j
c[i+1,j] if i + θ < j
max

j
k�i+θ+1

(2pi,k − 1) + c[i+1,j] + c[k+1,j] if i + θ < j ∧ (wi,wk) ∈ B
to get the least distance of a structure to the ensemble (up to a constant, i.e. the rightmost term in (2.9))
A classic backtrack allows to recover the centroid secondary stucture.

A Maximum Expected Accuracy (MEA) solution [121] can be obtained in a very similar fashion by
simplifying the objective function of Equation (2.9) to F(λ) :� πλ × � (λ ∈ T ), with πλBP :� 2γ for
base-pairing constructors, and πλUnp. :� 1 for unpaired constructors.

2.2.4 General moments of additive scores [150]

Given an additive scoring function F, it is a natural question to ask for the induced
distribution of F under a Boltzmann Gibbs distribution. Since most such distributions
are typically Gaussian, a first task is to compute the expected value µ∆(F) and variance
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σ∆(F) of F, respectively defined as µ∆(F) :� � (F(T )) and

σ∆(F) :�
√ ∑
T∈T∆

� (T ) · (F(T ) − µ∆(F))2 �
√
� (F(T )2) −� (F(T ))2.

In order to capture characteristics of more general distributions, one may consider the
moments of the distribution, defined as � (F(T )) ,� (

F(T2)) . . ., previously considered by
Miklos, Meyer and Borbala [136] specifically for the free-energy. The cross-moments
� (F1(T )n1 .F2(T )n2 · · · ) of multiple functions are also of potential interest, as their com-
putation allows to derive the Pearson correlation ρ∆(F1, F2) of two functions F1 and F2
through

ρ∆(F1, F2) � � ((F1(T ) − µ∆(F1)) × (F2(T ) − µ∆(F2)))
σ∆(F1) × σ∆(F2)

�
� (F1(T ) × F2(T )) −� (F1(T )) ×� (F2(T ))√

� (F1(T )2) −� (F1(T ))2 ×
√
� (F2(T )2) −� (F2(T ))2

so the correlation can be computed from the evaluation of � (F1(T )n1 × F2(T )n2) for all
values of (n1,n2) ∈ {(1, 0), (0, 1), (2, 0), (0, 2), (1, 1)}.

In a collaborationwith Cédric Saule [150], we have considered the computation of general
cross-moments within dynamic programming schemes.

Problem 5 ((Cross) moments of a DP scheme):
Input: Unambiguous DP scheme ∆ + scoring f, correct w.r.t. function E; β ∈ �;
and scoring functions (F1, . . . , Fp)with associated degrees (γ?

1
, . . . ,γ?p)

Output: The (cross) moment γ?
1
, . . . ,γ?p for F1, . . . , Fp :

m{γ
?
1
···γ?

p} :� �
(
F1(T )γ?

1 × · · · × Fp(T )γ?
p

)
�

∑
T∈T∆

� (T )
p∏
i�1

Fi(T )γ?
i (2.10)

A reexpression of our result [150] states thatmγ1,...,γp can be computed as

m
{γ1···γp}
q :�

∑
q
λ−→q1···qk∈δ

e−β.E(λ)
∑

λ1+τ1,1···τ1,k�γ1
...

λp+τp,1···τp,k�γp

p∏
i�1

Fi(λ)λi
(

γi

τi,1 · · · τi,k

) k∏
j�1

m
{τ1,j···τp,j}
qj . (2.11)

This expression,whoseunderlying intuition isprobablyhard todecipher at first sight, is in
fact strongly inspired by the partial pointing operator in enumerative combinatorics [50,
69]. Its main underlying idea is to modify the DP scheme ∆, introducing of a controlled
ambiguity, into aDP scheme∆{γ1,...,γp} designed to generate pointed/weighted versions
of the original terms.
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Figure 2.1: Distribution of base pairs inducedby a uniform (left) andBoltzmanndistri-
bution. Empirical distributions (histograms) measured on 20 000 stochastic backtracks,
approximated by a Normal distribution with exact means and variances, computed from
the first two moments. Boltzmann Sampling performed at 37°C with E(S) � −|S| (right)
for a toy RNA w :� (ACGU)25.

By generating each term of ∆ with suitable multiplicity, and weighting them with a
carefully chosen monomial in F1, F2 . . ., ∆{γ1,...,γp} we ensure that the multinomial for-
mula applies and, for all T ∈ ∆, the overall weight contributed by the equivalence class
{T ′ ∈ T∆{γ1,...,γp} | S′⇔ S} simplifies into Fγ1

1
(T ) × · · · × Fγpp (T ).

An algorithm for Problem 5 then consists in using Equation (2.11) to compute mγ1···γp
q

for all (γ1 · · ·γp) ≤ (γ?1 · · ·γ?p) in increasing lexicographic order and all q ∈ Q in preorder
for each degree vector, and return m{γ

?
1
···γ?

p}
qw . Its time complexity is loosely bounded

by O(|δ| ×∏p

i�1
γ?
i
1+α? × P(k,p)) where P is a polynomial of bounded degree, and the

space complexity is in Θ(|Q| ×∏p

i�1
γ?
i
). In practice, degree vectors are typically small

values, so the complexity of the algorithm is equivalent, up to a constant factor, to the
computation of the partition function.

Example 8: RNA BP folding – Distribution of base pairs
The homopolymermodel predicts that the distribution of base-pairs in random, Boltzmann-distributed
secondary structure asymptotically follows a normal distribution, and is thus characterized by its first
two moments m{1}/Z and m{2}/Z . Those can be computed by introducing a scoring function F,
defined as F(λ[i,j]• ) � F(λ[i,j]� ) � 0 and F(λ[i,j]

k
) � 1, leading to

m
{1}
[i,j] �




F(λ[i,j]� ) if i + θ ≥ 1

F(λ[i,j]• ) ×m{0}[i,j] +m
{1}
[i,j] if i + θ < 1∑j

k�i+θ+1
F(λ[i,j]
k
) × eβ ×m{0}[i+1,j] ×m

{0}
[k+1,j] if i + θ < j ∧ (wi,wk) ∈ B∑j

k�i+θ+1
eβ ×m{1}[i+1,j] ×m

{0}
[k+1,j] if i + θ < j ∧ (wi,wk) ∈ B∑j

k�i+θ+1
eβ ×m{0}[i+1,j] ×m

{1}
[k+1,j] if i + θ < j ∧ (wi,wk) ∈ B

with m
{0}
[i,j] :� Z[i,j], leading to the exact value for the expected number of base pairs µBP :�
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m
{1}
[1,n]/Z[1,n]. A similar equation can be derived for the second moment

m2

[i,j] �




0 if i + θ ≥ 1

m2

[i,j] if i + θ < 1∑j
k�i+θ+1

eβ × F(λ[i,j]
k
)2 ×m0

[i+1,j] ×m0

[k+1,j] if i + θ < j ∧ (wi,wk) ∈ B∑j
k�i+θ+1

eβ × 2 × F(λ[i,j]
k
)1 ×m1

[i+1,j] ×m0

[k+1,j] if i + θ < j ∧ (wi,wk) ∈ B∑j
k�i+θ+1

eβ × 2 × F(λ[i,j]
k
)1 ×m0

[i+1,j] ×m1

[k+1,j] if i + θ < j ∧ (wi,wk) ∈ B∑j
k�i+θ+1

eβ × 2 ×m1

[i+1,j] ×m1

[k+1,j] if i + θ < j ∧ (wi,wk) ∈ B∑j
k�i+θ+1

eβ ×m2

[i+1,j] ×m0

[k+1,j] if i + θ < j ∧ (wi,wk) ∈ B∑j
k�i+θ+1

eβ ×m0

[i+1,j] ×m2

[k+1,j] if i + θ < j ∧ (wi,wk) ∈ B

from which we get the standard deviation σBP :�
√
m2

[1,n]/Z[1,n] − µ2BP

2.2.5 Classified DP with the Discrete Fourier Transform (DFT) [173, 174]

In some situations, precise aspects of the distribution are of interest, and cannot be easily
captured by summary statistics. For instance, Freyhult et al [75] partition the Boltzmann
Ensemble according to the distance to a reference secondary structure. Considering the
distribution of distance, they observe bimodal (an even trimodal) distributions that they
interpret as potential evidences for the presence of multistable RNAs. Other examples
in RNA bioinformatics include the classification of sequences/structures with respect to
their Hamming distance to a wild-type sequence, to assess the mutational robustness
of concrete RNAs [191], the computation of the density of states, i.e. the distribution of
free-energies within an RNA [43], or the projection of energy landscapes with respect to
the unfolded and native states [119].

Those instances can be expressed as a specialized version of classified dynamic program-
ming, where additional parameters are used to partition the search space.

Problem 6 (Classified partition function):
Input: Unambiguous DP scheme ∆ + scoring f, correct w.r.t. function E; β ∈ �;
and an additive scoring functions F : Λ→ �+ with V :� maxT∈T∆ F(T )
Output: The classified partition function Z [v], 0 ≤ v ≤ V , defined as

Z [v] :� � (F(T ) � v) × Z∆ �

∑
T∈T

s.t. F(T )�v

e−β.E(T )

A classic approach, used in many works including the above references, would consist
in adapting the dynamic programming scheme through explicit convolution products,
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leading to the following recurrence:

Z [v]q :�
∑

q
λ−→q1,...,qk∈δ

∑
v1+...+vk+F(λ)�v

e−β·E(λ)
k∏
i�1

Z [vi]qi . (2.12)

While conceptually simple, this approach induces extreme computational demands, with
a time complexity in Θ

(|δ|.Vα? ) , α? being the max arity of a derivation, and using
Θ (|Q|.V)memory. For instance, in our running DP scheme example for RNA secondary
structures (see Section 1.2.3), classifying according to the number of base pairs and ap-
plying this strategy induces an algorithm inΘ(n5) time andΘ(n3)memory complexities.

In collaboration with Evan Senter, Ivan Dotu, Peter Clote and Saad Sheikh, we have
proposed an alternative strategy based on the Discrete Fourier Transform (DFT) to avoid
costly convolution products [173, 174], following observations made in an earlier collab-
orative work with Jérôme Waldispühl [192, 193].

Its core idea is to consider a generalized version of the partition function, seen as a
polynomial in a formal variable x, which tracks the increments of the scoring function,
such that

Z(x) �
∑
T∈T∆

e−β.E(T ) xF(T ) �
V∑
v�0

Z [v] xv.

Such a polynomial can be evaluated at any point without having to previously determine
its coefficients, using the following DP equation

Zq(x) :�
∑

q
λ−→q1,...,qk∈δ

e−β·E(λ)xF(λ)
k∏
i�1

Zqi(x). (2.13)

From a well-chosen set of evaluations of Z(x) :� Zqw(x), it is then possible to use
polynomial interpolation to recover the coefficients of the polynomial, i.e. the classified
partition functions Z [v].

For the sake of illustration, one may perform a preliminary evaluation of Z at (1 + V)
distinct points x0, x1, · · · , xV , and then use Gaussian elimination to solve the linear
system 

xV
0
· · · x1

0
1

xV
1
· · · x1

1
1

...
...

...

xV
V
· · · x1

V
1


×



Z [0]
Z [1]
...

Z [V]


�



Z(x0)
Z(x1)

...

Z(xV )


. (2.14)

in its unknowns Z [0], Z [1]. . . . thus solving Problem 6 in Θ(V |δ|α? + V3) time. However,
usingGaussian eliminationwouldbehighly impractical due to itsmanyhighnumerically
unstability. Moreover, the Θ(V3) time complexity of elimination alone would become
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Algorithm 1: Fast Fourier Transform

Result: The Fourier transform of x, a vector [yj � ∑m−1
k�0 xkω

jk
m | j ∈ [0,m − 1]]

Function FFT(Coefficients x,m � |x| � 2d):
ifm � 1 then return y;
ω← 1;
(xeven, xodd) ← ([x0, . . . , xm−2], [x1, . . . , xm−1]);
(yeven, yodd) ← (FFT(xeven), FFT(xodd));
for k← 1 to m/2 − 1 do

yk ← yeven
k

+ω × yodd
k

;
yk+m/2 ← yeven

k
−ω × yodd

k
;

ω← ω ×ωn;
return [y0,y1, . . . ,ym−1]

unreasonable for larger ranges of values for F, needed to emulate several scoring functions
as pointed out in Remark 2.2.2 below.

Enters the (Inverse)DiscreteFourierTransform (IDFT) [41, 42]whichallows, inO(m logm)
time, to recover the coefficients x :� (x0, . . . , xm−1) of a polynomial P(x) of degreem − 1,
m � 2d, from its evaluation at the m-th roots of the unity. Indeed, let ωm :� e2πi/m,
then the relationship between x and y :� {P(ωkm)}m−1k�0

remarkably simplifies

∀0 ≤ k < m : xk �
1

m

m−1∑
j�0

yj ×ω−jkm . (2.15)

Moreover, evaluating all coefficients in x can be achieved much faster than the Θ(n2)
algorithm suggested by the above equation, using the Fast Fourier Transform to speed
up the evaluation to Θ(n logn).

To use the inverse DFT and interpolate Z(x), thus efficiently solving Problem 6, we first
trivially extend Equation (2.13) to support complex arguments. Then we proceed to the
main algorithm:

1. Round V + 1 upwards tom � 2d,d ∈ �, the closest power of 2;

2. Evaluate Z(ω0
m),Z(ω1

m), . . . ,Z(ωm−1m ) → y0,y1, . . . ,ym−1 withωm � e2πi/m;

3. Apply the FFT Algorithm 1 to [y0,y1, . . . ,ym−1] to obtain[
x′k :�

m−1∑
j�0

yjω
jk
m

]m−1
k�0

.

Notice from Equation (2.15) that x′
m−k � mxk,∀k ∈ [1,m − 1] and x′

0
� mx0;

4. Return
[
Z [v] :�

x′
φ(v)
n | v ∈ [0,V],φ(0) � 0 and φ(v > 0) � V + 1 − v

]
.
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This algorithm has time complexity in Θ(V |δ| α? + V logV) and space complexity in
Θ(|Q| + V). Moreover, being dominated by the independent evaluations of the Z(ωim)
terms, it can be largely accelerated by a trivial parallel execution, e.g. leading to a runtime
in Θ(|δ| α? + V logV) on V processors.

Remark 2.2.2 (Multidimensional classified DP): The DFT-based algorithm can easily be extended
to support multiple scoring functions F1, . . . , Fp, associated to maximum values V1, . . . ,Vp, to
ultimately compute Z[v1,...,vp] the partition function classified by values (v1, . . . , vp) of the scoring
functions.
This use-case can indeed be emulated using only a single function F defined on constructors as
F(λ) � ∑p

i�1
Fi(λ)

∏i−1
j�1(1 + Vj), and extended additively into

F(T ) �
p∑
i�1

Fi(T )
i−1∏
j�1

(1 + Vj) � F1(T ) + (1 + V1) × F2(T ) + (1 + V1) × (1 + V2) × F3(T ) . . . .

In this setting, any value v for F encodes a vector (v1, . . . , vp), such that the value of Z[v1,...,vp] can
be read in Z[v] after the FFT determination of 1 + V �

∏
i(1 + Vi) coefficients.

2.3 Probabilistic estimates

Sampling methods provide an alternative to exact computation, allowing the estimation
of statistical ensemble properties for arbitrary features. Namely, general properties of
Boltzmann ensembles can also be estimated from a statistically representative sample
of candidate solutions, following the approach introduced by Ding and Lawrence [51] in
the context of RNA folding prediction.

Considering a general feature function F : Ω → �, one first generates a sequence
s � (s1, s2, . . . , sM) ∈ Ω? ofM random elements from the search space, each drawn from
the Boltzmann distribution, and then returns the empirical mean

�F(s) �
∑
s∈s F(s)
M

such that lim
|s|→∞

�F(s) � � (F(S)) . (2.16)

For instance, the Boltzmann probability of a base-pair (i, j) can be estimated by consider-
ing a Boolean feature function F(i,j)(s) � 1 if (i, j) ∈ s; 0 otherwise. More generally, this
strategy allows to capture feature functions of arbitrary complexity, including those that
are not additive with respect to any dynamic programming scheme.

A first algorithmic difficulty lies in the generation itself and is usually tackled through
the simulation of a well-calibrated Markov process in classic Bayesian inference [5, 76].
However, complex distributions may induce high mixing times, before the process con-
verges to its steady-state. Moreover, to ensure that the targeted distribution is indeed
sampled (i.e. that the simulation has been executed sufficient long to guarantee converge)
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requires highly-technical analyses [152] that do not appear to lend themselves to generic
algorithmic design.

This section focuses on an alternative, where an unambiguous dynamic programming
scheme for the partition function (but not necessarily with respect to the feature function)
is used for the generation. Probabilities for each of the transitions are precomputed, so
that generated objects are independent and follow the targeted distribution. This can be
seen as an instance of the recursive method in random generation [71, 197].

2.3.1 Foreword: On the number of samples [165]

The choice of thenumber of samples is criticalwhenusing sampling to estimate statistical
properties. This number should be large enough to yield accurate estimates, but low
enough to preserve efficiency. Historically, and in many subsequent works, a sample size
of 1 000 structures was proposed [51], somewhat irrespectively of the precise context.
However, such a one size fits all approach may not yield accurate results, motivating the
following discussion and recommendations.

The empirical mean estimator represents a sum of independent variables, meaning that
classic concentration inequalities apply with minimal modifications. In particular, the
Hoeffding inequality implies that, for any feature F:

�

(
|̂F(S) −� (F(S)) | ≥ ε

)
≤ 2 exp

(−2mε2
c

)
, (2.17)

where ε is a tolerated absolute error level, S is a random sample of size m and c :�

(maxS(F(S)) −minS(F(S)))2 is a trivial upper bound of the variance of the feature. Note
that when a feature function takes binary values 0/1, e.g. when estimating a probability,
then one has c � 1. Equation (2.17) can be used to build a confidence interval at level
(1 − α), for any value α ∈ [0, 1], and we get:[

F̂(S) −
√

c

2m
log

(
2

α

)
, F̂(S) +

√
c

2m
log

(
2

α

)]
.

This means that, over multiple estimations from sampled elements, at least a fraction
(1 − α) of the runs will produce errors smaller than

√
c
2m log

(
2
α

)
. This function can be

inverted (numerically) to estimate the number m of samples that achieve an absolute
error bounded by ε at least (1 − α) of the times.

We report in Table 2.1 typical sample sizes required to achieve a given precision with
reasonable probability when estimating probabilities (i.e. expectations of 0/1-valued
features). For instance, to reach a 90% chance of estimating a base pair probability
within 0.5% of its true value, a total of 59 915 structures should be generated. In
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Tolerated Frequency within tolerance
Error 90% 95% 99%

ε � 20% 37 46 66
ε � 10% 150 184 265
ε � 5% 599 738 1 060
ε � 2.5% 2 397 2 951 4 239
ε � 1% 14 979 18 444 26 492
ε � 5h 59 915 73 778 105 966
ε � 1h 1 497 866 1 844 440 2 649 159

Table 2.1: Recommended number of samples to estimate probabilities (boolean fea-
tures). For instance, to ensure that the estimate falls within 1% of the true value for 95%
of the runs, a large number ofm �18 444 structures should be generated.

particular, 1 000 structures norm, usually considered in the literature, will guarantee a
value within 3% of the true probability only 2/3 of the times, although this sample size
will almost always (99%) return estimates within 5% of the correct value.

2.3.2 Statistical sampling

Let us now turn to the problemof sampling from the Bolzmann-Gibbs distribution, which
we formalize as follows.

Problem 7 (Statistical sampling):
Input: Unambiguous DP scheme ∆ + scoring f, correct w.r.t. function E; β ∈ � a
constant;M a number of samples

Output: A sequence s ∈ Ω?
∆
, |s| � M of elements of the search space, indepen-

dently generated in the Boltzmann distribution

� (s) � e
−β.E(s)

Z∆
,∀s ∈ s.

In the context of an unambiguous/complete DP scheme, one can easily adapt the par-
tition function recurrences into a stochastic backtrack algorithm to solve the statistical
sampling problem, as done by Ding and Lawrence [51] in the context of RNA. First, the
algorithm performs a preliminary computation of the partition function Zq for all states
q ∈ Q, using the DP algorithm introduced for Problem 2. The algorithm then gener-
atesM independent random terms/solutions using a stochastic backtrack procedure B̃
described in Algorithm 2.

The correctness of the algorithm can be established by a simple induction. Indeed,
consider a state q? ∈ Q and assume that, invoked on any state accessible from q, the
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Algorithm 2: Stochastic backtrack

Function B̃(q ∈ Q):
r← UnifRand(Zq) . Random r ∈ [0,Zq[
for d :� (q λ−→ q1, . . . ,qk) ∈ δ do

r← r − e−β·E(λ) ×∏k
i�1Zqi ;

if r < 0 then

return λ(B̃(q1), . . . , B̃(qk)) . d chosen with prob. e
−β·E(λ)×∏k

i�1 Zqi
Zq

algorithm generates a term T ∈ Tq with probability

� (T | q) � e
−β.E(T )

Zq

Executing Algorithm 2 on q?, a derivation d :� q?
λ−→ q1, · · · ,qk is chosen with proba-

bility e−β·E(λ)
∏k
i�1Zqi/Zq? , followed by the independent recursive generation of terms

T1, . . . , Tk from each of the states q1, . . . ,qk. Due to the unambiguity of ∆, the resulting
term T? :� λ(T1, . . . , Tk) cannot be generated from any other derivation of q?, and its
emission probability is thus

� (T? | q?) � e
−β·E(λ)∏k

i�1Zqi
Zq?

× e
−β.E(T1)

Zq1
× · · · × e

−β.E(Tk)

Zqk

�
e−β·(E(λ)+E(T1)+...+E(Tk))

Zq?

�
e−β·E(λ(T1,...,Tk))

Zq?

in which one recognizes the targeted distribution. The induction is completed by an
inspection of leaf states, whose derivations do not require further recursive calls, to
verify that they indeed locally induce a Boltzmann distribution.

The time complexity of the algorithm can be trivially bounded by O(M.|δ|.α?), with α?

being the max arity of a derivation, but is usually substantially lower since this upper
bound would unrealistically require all states to be traversed by all backtracks. A more
refined analysis could introduce upper bounds respectively on the numbers of states
traversed during a generation (c+), and derivations available from a state (d+). Since
one typically has c+.d+ � |δ|.α?, the worst-case complexity is then in O(|Q| + |δ|.α? +

M.c+.d+). Amore precise analysis requires the definition of a notion of length associated
with terms, opening the way for further optimizations, e.g. as described by Example 9 in
the context of RNA folding.
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Example 9: RNA BP folding – Statistical sampling
In the context of RNA conformational sampling, Algorithm 2 specializes into the following backtrack,
precededby a computation of the partition functionZ[i,j] for all [i, j] ⊆ [1,n], as described inExample 5.

Function SampleRNA2D ([i, j] ⊆ [1,n],w ∈ {A,C,G,U}n,Z):
if j − i ≤ θ then return �; . Interval too short to support base pair

r← UnifRand
(
Z[i,j]

)
. Random r ∈ [0,Z[i,j][

r← r −Z[i+1,j];
if r < 0 then

return SampleRNA2D ([i + 1, j],w)
for k← i + θ + 1 to j do

if wi,wk ∈ B then
r← r − eβ ×Z[i+1,k−1] ×Z[k+1,j]; . Defining Z[j+1,j] ≡ 1

if r < 0 then
return
{[i,k]} ∪ SampleRNA2D([i + 1,k − 1],w) ∪ SampleRNA2D([k + 1, j],w)

This function is a strict specialization of Algorithm 2, and randomly generates a secondary structure
from the Boltzmann distribution when invoked on [1,n]with a sequence of length n.

As previously analyzed [148], its execution requires Θ(n2) operations in the worst-case scenario due to
the possible Θ(n) iterations of the for loop, followed by a recursion on a subinterval only marginally
smaller (n−2). Its average-case behavior in the homopolymer model (all bases allowed to pair), or on a
random RNA sequence of length n, was shown to be in Θ(n√n), a behavior that holds for a large class
of combinatorial classes [71].

The time complexity can be dramatically lowered to O(n logn) through a minor modification of the
algorithm. Indeed, it suffices to substitute a Boustrophedon order

i + θ + 1 ; j ; i + θ + 2 ; j − 1 ; i + θ + 3 ; · · ·;
⌈
i + θ + 1 + j

2

⌉

instead of the (implicit) sequential order i+ θ+ 1 ; i+ θ+ 2 ; · · ·; jwithin the for loop to instantly
obtain a O(n logn) time complexity for the backtracks in the worst-case scenario.

2.3.3 Non redundant sampling [118, 133, 165]

Asshown inSection ??, the level of redundancy canbeoverwhelmingwithin aBoltzmann-
Gibbs sample. One the one hand, redundancy is instrumental to the consistency of the
estimator (2.16), since convergence towards the correct expectation requires that the fre-
quency of any given element converges towards its probability. On the other hand,
redundancy appears to be non-informative, and even wasteful, while sampling from a
Boltzmann-Gibbs distribution, or any distribution known a priori. Indeed, the exact emis-
sion probability of a generated sample can be derived exactly from the partition function
and, in principle, should not need to be estimated from the frequency. Moreover, sam-
pling can be used to recover diverse dominant solutions, with no further involvement
in statistical estimates, e.g. in RNA kinetics studies [110, 133] or in automated software
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testing [189].

One possibleway to avoid redundancy is to perform samplingwithout replacement, for-
bidding thegenerationat them-th stepof anypreviouslygeneratedelement [s1, . . . , sm−1].
The targeted emission probability � (sm | s1, . . . , sm−1) is then

� (sm | s1, . . . , sm−1) � � (sm)
1 −∑m−1

i�1 � (si)
(2.18)

where � (s) denotes the classic (redundant) Boltzmann-Gibbs probability. Note that
successive generations are now dependent, so classic estimators such as the empirical
mean of Equation (2.16) become biased and should not be used.

However, as shown by Rovetta et al [165], the expectation � (F(S)) of any given function
F : Ω→ � in theBoltzmanndistribution (or anyknowndistribution) can still be estimated
from a non-redundant sample [s1, . . . , sm] by

F̃([s1, . . . , sm]) � 1

m

m∑
i�1

F(si)
(
1 + (m − i) × � (si) −

i−1∑
j�1

�
(
sj

))
.

This estimator is provablyunbiased, consistent and always yields lower expectedvariance
that the empirical mean, motivating the following algorithmic problem.

Problem 8 (Non-redundant sampling):
Input: Unambiguous DP scheme ∆ + scoring f, correct w.r.t. energy function E;
β ∈ � a constant;M a number of samples

Output: A non-redundant sequence [s1, . . . , sM] ∈ ΩM∆ , of elements:

� (sm | s1, . . . , sm−1) � � (sm)
1 −∑m−1

i�1 � (si)

In collaborationwithAndyLorenz [118], we considered a restriction of the aboveproblem
to the language of a weighted context-free grammar. Its main idea is to reinterpret
derivation as a purely sequential process, where derivations involved in the production
of a term are transformed into a sequence of derivations through preorder traversal of
the derivation tree. Below is an example of a derivation tree t and its linear representation
ωt:

d1

d2 d3

d4 d5

d6t � ⇔ ωt � d1.d2.d3.d4.d5.d6

Note that the derivation tree t can be unambiguously recovered from a sequence ωt
through a prefix evaluation, and reinterpreted as a term Tωt .
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Such sequences are the ultimate product of a sequential derivation process over imma-
turewords inQ?×δ?, which starts fromω :� qw and, at each step, considers the leftmost
state qL occurring in ω � ω1.qL.ω2 (if any), picks a derivation d � qL

λ−→ q1 · · ·qk and
replace the occurrence qL in ω by d.q1 . . . qk. In the above example, the production of
ωt, using this process, would be

qw
d1→ d1. q2 .q3.q6

d2→ d1.d2. q3 .q6
d3→ d1.d2.d3. q4 .q5.q6

d4→ d1.d2.d3.d4. q5 .q6

d5→ d1.d2.d3.d4.d5. q6
d6→ d1.d2.d3.d4.d5.d6

Given an immature word ω, the language L(ω) is the set of terms (transitively) derived
from its states, and the partition function Z(ω) can be defined as

Z(ω) �
∑

T∈L(ω)
e−β.E(T ) �

∏
q∈ω∩Q

Zq
∏

q
λ−→q1···qk∈ω∩δ

e−β.E(λ). (2.19)

In particular, given a set F of forbidden terms, consider the random process which starts
from ω :� qw and, at each step, rewrites the leftmost qL in ω using some derivation
d � qL

λ−→ q1 · · ·qk, chosen at random with probability

� (d | ω � ω1.qL.ω2) � Z(ω′ :� ω1.d.q1. · · · .qk.ω2) − Z(ω′)
Z(ω) − Z(ω)

, (2.20)

with Z(ω) :� ∑
T∈L(ω)∩F e−β.E(T ). This process ultimately generates a derivation tree t?,

associated with a term T?, resulting from a (unique ) sequence

ω0 � qw
d1→ ω1

d2→ ω2 → · · · → ωp−1
dp→ ωp

dp+1→ ωt?

with probability

� (t?) � � (d1 | ω0) × � (d2 | ω1) × · · · × �
(
dp | ωp−1

) × � (
dp+1 | ωp

)
�

Z(ω1)−Z(ω1)
Z(qw)−Z(ωqw )

× Z(ω2)−Z(ω2)
Z(ω1)−Z1(ω) × · · · ×

Z(ωp)−Z(ωp)
Z(ωp−1)−Z(ωp−1) ×

Z(ωt? )−Z(ωt? )
Z(ωp)−Z(ωp)

�
Z(ωt?) − Z(ωt?)
Z(qw) − Z(ωqw)

�
e−β.E(T?)(1 − 1T?∈F )
Zqw −

∑
T∈F e−β.E(T )

�

{
� (T?)

1 −∑
T∈F � (T )

if T? < F ; 0 otherwise
}

In other words, it suffices to follow the derivations probabilities of Equation (2.20) to
induce the restricted Boltzmann-Gibbs distribution defined in Equation (2.18).

The onlymissing ingredient is a (fast)way to accessZ(ω). To that purpose, we introduced
a data structure PF � (VF , ) , analogous to a prefix tree, which represents the sequences
of derivations

DF �

{
ω0

d
[i]
1→ ω

[i]
1

d
[i]
2→ ω

[i]
2

d
[i]
3→ · · ·

} |F |
i�1
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Algorithm 3: Non-redundant sampling algorithm
Input: Unambiguous DP scheme ∆; NumberM of samples.
Output: Set ofM random terms, distributed according to the non-redundant

distribution of Equation (2.18).
Compute Zq,∀q ∈ Q . Partition function algorithm (c.f. Problem 2)
PF ← (⊥,�); . Tree initially restricted to root ⊥
π(⊥) ← 0;
F ← � . Terms generated over previous iterations→ avoided
for i ∈ [1,M] do
(ω,Zω,uω) ← (qw,Zqw ,⊥); . Start from root
N ← {uω} . Nodes traversed during generation
whileω ∩Q , � do

ω1.qL.ω2 ← ω s.t. ω1 ∈ δ? and qL ∈ Q . qL lefmost state inω
r← UnifRand(Zω − π(uω)) . Random r ∈ [0,Zω − Z(ω)[
foreach d :� qL

λ−→ q1 · · ·qk ∈ δ do
ω′← ω1.d.q1. · · · .qk.ω2; . Simulate derivation d inω
uω′ ← Child(PF ,uω,d); . Creates uω′ if absent (π(uω′) ← 0)
Zω′ ← Zω × (e−β.E(λ)∏k

j�1Zqj)/ZqL ; . Update Z per (2.19)
r← r − (Zω′ − π(uω′));
if r < 0 then . Happens with probability Zω′−Z(ω′)

Zω−Z(ω)(ω,Zω,uω) ← (ω′,Zω′,uω′); .Move to selected child
N ← N ∪ {uω′};
break;

F ← F ∪ {Tω}; . Interpretation ofω ∈ δ? as a term Tω

πω ←∏
λ∈ω e−β.E(λ);

foreach u ∈ N do π(u) ← π(u) + πω ; . Update traversed node weights
return F ; . Final non-redundant list of generated elements

performed during the generation F . Any node uω ∈ PF represents (implicitly) some
immature word ω ∈ DF . There exists a directed edge (uω → uω′) ∈ PF , labeled by a
derivation d(uω → uω′) ∈ δ if and onlyω

d→ ω′ occurs in some sequence ofDF . Finally,
on each node u ∈ DF we store a weight π(u), updated after each generation such that the
invariant π(uω) � Z(ω) is maintained, allowing O(1) access to Z(ω) while computing
probbabilities (2.20).

We obtain Algorithm 3, which generalizes earlier context-free versions [118, 133, 147]
and can be essentially found in Juraj Michalik’s PhD thesis [132]. The complexity of
the algorithm is the same, up to implementation constants, as the redundant stochastic
backtrack.
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Remark 2.3.1 (Rejection-based non-redundant sampling): In the uniform distribution (β � 0),
a rejection-based sampling constitutes a reasonable alternative to produce M unique elements.
Indeed, the search space is typically exponential |Ω| ≈ ζn for some ζ > 1. A classic coupon collector
analysis shows that the expected number of generations to get |Ω| distinct elements, is |Ω|.H|Ω|
with Hm �

∑m
i�1 1/i ∈ Θ(logn) the m-th harmonic number. Moreover, the expected number of

generation is an increasing function ofM, and is bounded byM log |Ω| ∈ Θ(M.n). In other words,
a repeated generation of elements until M distinct elements are produced has Θ(M.n) expected
time in a uniform distribution, i.e. non-redundancy sampling only induces a linear overhead in
comparison with the redundant one.
In Boltzmann-Gibbs sampling, however, the overhead is expected to grow exponentially with n, so
a rejection-based strategy is exponentially less efficient than Algorithm 3.

2.3.4 Adaptive sampling of constrained sequences [18, 90, 158]

As shown in Section 2.2.5, using explicit convolutions to compute the classified partition
function quickly becomes prohibitively costly when (combinations of) expressive scoring
functions are considered. Unfortunately, such a computation would be required to
perform a constrained sampling, by adapting the stochastic backtrack of Section 2.3.2 to
restrict the generation to objects having a value of interest.

As an alternative, in collaboration with Olivier Bodini [18], we introduced a multidi-
mensional Boltzmann sampling method, also called adaptive sampling in the context
of Bioinformatics applications [193] (due to the ubiquity of Boltzmann in Bionformatics,
leading to an overloaded nomenclature). This method is inspired both by the versatility
of rejection methods in random generation (see Section 4.1), and by the typical concen-
tration of distributions for additive parameters. This concentration is illustrated in 1D by
Figure 2.1 for the number of base pairs in RNA, and in 2D by Figure 2.2 for two types of
base pairs distinguishable in the basic Nussinov DP scheme.

Problem 9 (Constrained sampling):
Input: Unambiguous DP scheme ∆ + scoring f, correct w.r.t. function E; β ∈ �;
scoring functions F1, . . . , Fk : Λ → �+ with V :� maxT∈T∆ F(T ) associated with
objective values v?

1
, . . . , v?

k
∈ �k; and number of samplesM

Output: A collection C :� [s1, . . . , sM] of random, Boltzmann-distributed w.r.t. E,
elements ofΩ∆ such that

Fi(sj) � v?i ,∀sj ∈ C,∀i ∈ [1,k]. (2.21)

Rather than computing the costly convolution products described in Equation (2.12), we
introduced a rejection based approach called multidimensional Boltzmann sampling,
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Figure 2.2: Impact of weights on the distribution of base pairs in RNA 2D folding.
We distinguish maybe-stacked base pairs (MS), i.e. involving both ends (i, j) of an
investigated interval [i, j] (alt. such that j+ 1 is base paired) from other base pairs, called
unstacked (US). Those two contributions can be distinguished on the classic Nussinov-
Jacobson DP scheme, such that a weighted distribution can be induced.

whose principles are further described in Section 4.2.2. At its core, one uses aweighting
schemewhere numerical values (π1, . . . ,πk) are associated to scoring functions, inducing
a weighted distribution

�π1,...,πk (T ) �
e−β.E(T )

∏k
i�1 π

Fi(T )
i

Zπ1,...,πk

(2.22)

where Zπ1,...,πk is the weighted equivalent of the partition function.

Sampling within a weighted distribution can be done using Algorithm 2 based on a
unifying scoring function E? that aggregates all the contributions of individual features,
such that

E?(T ) :�
∑
λ∈T

E(λ) −
∑k
i�1 Fi(λ) × logπi

β
� E(T ) − Fi(T ) ×

∑k
i�1 logπi

β
.

This generation is coupled with a rejection step, which filters out the objects that do not
fulfill the constraints described in Equation (2.21).

A crucial observation is that, in many cases, the successive choices performed during
a stochastic backtrack can be interpreted as a large collection of independent events
(i.e. occurrences of constructors), associated with bounded values of which the scor-
ing functions are just the sum. The central limit theorem thus applies, and induces
distributions that are (multidimensional) normal (a.k.a. Gaussian) with relatively low
variance/co-variance values. In particular, once the weights are calibrated such that

µi :� �π1,...,πk (Fi(S)) � v?i ,∀i ∈ [1,k],
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Figure 2.3: Using Algorithm 4 to sample 10 000 Boltzmann-distributed secondary
structures having exactly 15 base pairs. For the RNA w � (ACGU)25 the expected
number of base pairs is approximately 32.51 in the Boltzmann distribution, as shown in
Figure 2.1 (T � 37°C, E(S) � −|S|). A binary search is used to determine aweight πBP such
that the expected number of base pairs, empirically estimated at each iteration, matches
the targeted one, accumulating across iterations.

then one has

�
(
Fi(S) � v?i ,∀i ∈ [1,k]

)
�

1√
(2π)k detΣ

where Σ is the co-variance matrix induces by scoring functions, such that Σi,j :�

�
((Fi(S) − µi)(Fj(S) − µj)) . Assuming that k is constant, and denoting by Vi the max

value taken by Fi over Ω∆, one expects Θ(M√∏
i Vi) attempts in order to obtain M

suitable element.

Our overall strategy to solve Problem 9 is summarized by (pseudo) Algorithm 4, and per-
forms the weights optimization in parallel to the generation, accumulating suitable sam-
ples. Indeed, while following different overall distributions, samples generated across
iterations of the weight optimization still follow the distribution (2.21) after the rejec-
tion step (see Section 4.1 and 4.2.1 for further discussions). The weight optimization
can usually be tackled efficiently, since the expected number of occurrences of a given
constructor is a strictly increasing function of the associated weight. The problem can
generally be solved using tools in convex optimization [15], but can also be solved using
steepest descent heuristics, or even a simple binary search in a mono-objective setting,
are usually sufficient to solve the problem.

Example 10: RNA BP folding – Probing the Boltzmann ensemble of higher energy
Let us illustrate the general principle, and typical complexity analysis, of multidimensional sampling
in a simple setting. Here, we want to estimate statistical properties of 2D structures with exactly v?BP
base pairs, potentially far from the MFE, energy-wise, in a base-pair based energy model. First, we
introduce a weight WBP ∈]0,+∞[ that controls the expected number of base-pairs. Its incorporation
to the partition function computation (see Example 5) and sampling procedure (see Example 9) only
requires the introduction of πBP within the contribution of valid base pairs, which becomes πBP × eβ ×
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Algorithm 4: High-level description of a multidimensional Boltzmann strategy
for constrained sampling
Input: Num. samplesM; Functions F1, . . . Fk with targeted values (v?

i
)k
i�1

;
Estimate γ for

√
(2π)k detΣ

Output: Collection {sj}Mj�1 of random, Boltzmann-distributed, elements such
that Fi(s) � v?i ,∀i ∈ [1,k]

C← �;
π ≡ (π1, . . . ,πk) ← (1, . . . , 1);
while |C| < M do

D← SampleM × γ elements in the π-weighted distribution;
Update weight vectors towards �π1,...,πk (Fi(S)) � v?i ,∀i ∈ [1,k] ;
C← C ∪ {s ∈ D | Fi(s) � vi?,∀i ∈ [1,k]};

return C;

Z[i+1,k−1] ×Z[k+1,j].

Then a simple binary search, explicited in the pseudocode below, is typically sufficient to guarantee a
quick convergence towards suitable weights, as illustrated by Figure 2.3, and we get

C← �;
(πBP,πmin,πmax) ← (1, 0,+∞);
while |C| < M do

Compute ZBP; . Using Θ(n3) algorithm
D← {SampleRNA2D([1,n],w,ZBP)}2Mi�1 ;�#bp→ ∑

S∈D |S|
|D| ; . Estimate expected #BPs for πBP

if �#bp < v?BP then . Binary search update
(πBP,πmin,πmax) ←

(
min

(
2πBP,

πBP+πmax
2

)
,πBP,πmax

)
;

else
(πBP,πmin,πmax) ←

(πmin+πBP
2

,πmin,πBP
)
;

C← C ∪ {S ∈ D | |S| � v?BP};
return C;

2.4 Applications of ensemble dynamic programming

As can be seen in the previous section, the design of a suitable dynamic programming
algorithm unlocks a wide array of potential inquiries regarding the properties of the
ensemble of solutions, using algorithms that can be generically derived. As a conse-
quence, the most crucial aspect of a DP algorithm, arguably the only one worthy of
human attention, is the design of a suitable dynamic programming scheme, and the
combinatorial decomposition onto which it is based. In particular, it is not only essential
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Conformation space Base-pairs Stacking-Pairs Nearest-Neighbor

MFE
P

Nussinov and
Jacobson [143]

P
Ieong et al. [100]

P
Zuker and Stiegler [213]

Non-crossing Approx. – – –

MFE ??? NP-Hard
Ieong et al. [100]

NP-Hard
Ieong et al. [100]

Planar Approx.
2-approx.
±Ieong et al.

[100]

2-approx.
Ieong et al. [100]

???

MFE
P

Tabaska et al.
[181]

NP-Hard
Lyngsø [124], Sheikh et al.

[175]
(any∗ ∆model)

NP-Hard
Lyngsø and Pedersen [123],

Akutsu [3]

General Approx. –

ε-approx. ∈ O(n41/ε )
Lyngsø [124], Sheikh et al.

[175]
1/5 (any ∆model)

APX-Hard
Sheikh et al. [175]

Table 2.2: Computational complexity of RNA 2D prediction with pseudoknots in the
energy minimization paradigm.

to ensemble analysis that the DP schemes are correct, but also that they are unambiguous
and complete. In the following, I briefly mention some contributed schemes, addressing
particular problems in RNA bioinformatics and comparative genomics.

2.4.1 (Recursive) simple type pseudoknots and kissing hairpins [150]

The absence of crossing base pairs in ensemble of conformations explored by classic
algorithms represents a real limitation, and can be mainly attributed to:

1. The computational complexity of folding with pseudoknots in realistic models [3,
123], as summarized in Table 2.2, which we extended to large classes of energy
models in collaboration with Saad Sheikh and Rolf Backofen [175];

2. The difficulty to imprint, at a combinatorial level, complex geometric constraints
(e.g. chain closure) induced by base pairs, leading to ensemble of conformations
that are highly dominated by unrealistic structures.

To work around such issues, a very rich body of literature [3, 19, 29, 53, 154, 156, 164, 183]
has been dedicated to the design of dynamic programming algorithms capturing a subset
of feasible conformations. However, many of those algorithms relied on an ambiguous
DP scheme, preventing the natural exploration of ensembles of structures.

In collaboration with Cédric Saule [150], we revisited or designed popular DP schemes,
visually described in Figure 2.4, for RNA folding with pseudoknots. In order to describe
the generic derivation of ensemble algorithms (partition function, statistical sampling,
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A – Unambiguous/complete Θ(n4) version of a DP scheme for simple type
pseudoknots [3]
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B – Unambiguous/complete Θ(n5)/Θ(n4) version of a DP scheme for recursive
kissing hairpins [183]
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Figure 2.4: Unambiguous DP schemes for RNA folding in presence/absence of (recur-
sive) pseudoknots [150].

inside/outside. . . ), we used an oriented hypergraph (a.k.a. directed monotonic hyper-
graph) formalism introduced by Finkelstein andRoytberg [66], also occurring as a generic
representation of DP in the field of natural language processing [98].

In addition to designing new DP schemes for two popular families, we adopted an enu-
merative combinatorics perspective to help in theproof of their unambiguity/correctness.
Indeed, many conformation spaces amenable to dynamic programming can be enu-
merated, and generating functions PK(z) � ∑

n≥0 pn, zn with pn the number of (pseu-
dokotted) conformations over n nucleotides, have been established for the most pop-
ular DP schemes [168]. On the other hand, a full relaxation of base pair compatibil-
ity constraints (a.k.a. homopolymer model), allows to associate a generating function
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S∆(z) � ∑
n≥0 |Ω∆n |, zn to a family of DP schemes ∆1,∆2, . . . for instances of increasing

length. In particular, the equality PK(z) � S∆(z), in conjunction with a proven com-
pleteness of the DP scheme, is sufficient to conclude on its unambiguity. Conversely,
the conjunction of PK(z) � S∆(z) and a proven unambiguity implies the completeness,
effectively halving the work required to prove, typically through tedious inductions,
those two properties. We used this technique to verify the properties of two contributed
schemes described in Figure 2.4.

2.4.2 Dual partition functions and evolutionary robustness of RNAs

Over several collaborative projects, we considered a dual version of the partition function,
integrating over the space of compatible sequence/structure pairs [192, 193], or over the
set of sequences associated with one [117, 157, 158] or several [88, 90] given structures.

In a first collaboration with Jérôme Waldispühl [192, 193], we leveraged a dynamic
programming scheme introduced by the RNAMutants [191] method, to investigate the
interplay between sequence and structure at prescribed GC-content. Its DP scheme
explores all pairs (w,S) of compatible sequence and structure, classified by Hamming
distance δ(w,w?) to a reference wild type sequence w? of length n, allowing for a
Θ(n5)/Θ(n3) computation of the partition function of k-mutants

Z[k] :�
∑

w∈Σn s. t.
δ(w,w?)�k

∑
S comp. withw

e−β.E(w,S).

A restricted version of the partition function, only considering the subinterval w?
i,j

of
sequence w?, can then be computed through

Zi,j
[k]

�

∑
b∈Σ

Z i+1,j
[k−δw?

i
,b]

+

∑
b,b′∈Σ2

j∑
l�i+θ+1

k−δw?
i
w?
l
,bb′∑

k′�0
e−

β.Eb,b′
RT · Zi+1,l−1

[k′]
· Z l+1,j
[k−k′−δw?

i
w?
l
,bb′]

(2.23)

in the case of a base-pair based energy model (although the implementation supports
the Turner nearest-neighbor energy model [185]).

The same partition function was used to perform statistical sampling, revealing a major
caveat of the model: due to the overwhelming impact of the GC-content on the partition
function of a given sequence, the Boltzmann distribution was observed to disproportion-
ately focus on sequences having extremeGC-contents, potentially impacting the accuracy
of conclusions drawn while studying the evolutionary robustness of concrete sequences.
To circumvent this issue, we introduced an adaptive sampling algorithm, an instance
of multidimensional Boltzmann sampling [18], to direct the sampling towards areas of
predetermined GC-content, allowing us to study the interplay between evolutionary
robustness and thermodynamic stability [192, 193].
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m

Case 1: First position is unpaired.
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m − δa,a′
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Case 2: Extremities are paired, nested within a consecutive base-pair, forming a stacking base-pair.

a′ b′x y
m − δab,a′b′

a bx y

m

Case 3: First position in paired to some position, but not involved in a stacking pair.

a′ b′ y
m′

S

S

S

S′

S′

S′ S′′

m −m′ − δab,a′b′

Figure 2.5: Classified DP scheme for the mutational landscape with respect to a single
dominant conformation [157].

Another instance of a DP scheme generating sequences considers the space of sequences
compatible with a single structure, in an attempt to use structure conservation to detect
sequencing errors in metagenomic data sets [157, 159]. In collaboration with Jérôme
Waldispühl and Vladimir Reinharz, we considered an energy model of intermediate
complexity, mainly including stacking pairs, and computed the dual partition function
associated with a reference structure S? and sequence w?:

ZS?,[k] �
∑

w comp. with S?
δw,w?�k

e−β.E(w,S?)

using a modified version of (2.23), showcased in Figure 2.5, which runs in Θ(n.M2) time
andΘ(n.M)memory, withM themaximumnumber of suspected errors. In combination
with an outside contribution, computed in a similar fashion, we were able to compute
individual probabilities of assignments for each position. We also included contributions
in our scoring scheme for the isostericity of base pair substitutions [115, 178] revealing a
good capacity to discriminate, and to some extent correct, erroneous positions.

Dual partition functions are also essential for the positive design of RNAs, which we
addressed as a random generation task over a series of collaborative works [88, 90,
117, 160, 209, 210]. In this context, the control of the maximum number of mutations
is lifted, allowing a Θ(n) time/space computation in the case of a target secondary
structure. Recently [88, 90], we tackled the problem in its most general setting, adopting
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a declarative approach where constraints are associated to a subset of positions within
an RNA, either restricting their potential joint content or inducing specific free-energy
contributions. The entire network of dependencies induced by the constraints can then be
abstracted as an hypergraph, whose tree decompositions can be used to derive systems
of DP equations, optimal in some sense, without any direct human intervention! We
refer the reader to Chapter 3 for further context and motivation.

2.4.3 Unambiguous tree alignments [32, 33]

Generalizing the notion of sequence alignment, a tree alignment for two trees T1 and T2, is
a set of pairwise correspondences, ormatches, between the nodes of T1 and T2, consistent
with the ancestry relationships in T1 and T2. Nodes without a partner in T1 (resp. T2) are
called insertions (resp. deletions) Equivalently, a tree alignment can be represented by a
supertree, a tree T whosenodes are pairs of nodes (u1,u2) ∈ (T1×T2)∪(T1×{−})∪({−}×T2)
such that T1 (resp. T2) can be recovered from T by considering the first component u1
(resp. second component u2) in each pair, and finally contracting insertions/deletions
nodes −. Tree alignments are natural in the context of RNA bioinformatics, where
they represent a reasonable approach to measure the similarity between two secondary
structures [17, 171].

Algorithmically, a classic problem is to find the optimal alignment between two given
trees T1 and T2, e.g. the supertree that minimizes the accumulated log odds of matches
and indels. It is solved by Jiang, Wang and Zhang [103] (JWZ) based on the DP scheme:

Align
(

,

)
[Tree-alignment rules]

� min




Align
(

,

)
+ Del ( )

Align
(

,

)
+ Ins ( )

Align
(

,
)
+ Subst ( , )

Align
(

,

)
[Forest-alignment rules]

� min




min
=

{
Align

(
,

)
+ Align

(
,

)
+ Del ( )

}
min

=

{
Align

(
,

)
+ Align

(
,

)
+ Ins ( )

}

Align
(

,

)
+ Align

(
,

)
.

which can be computed in timeΘ(n1.n2. max(n1,n2)2). Moreover, as shown byHerrbach
et al. [92], the expected time complexity of the JWZ algorithm is actually in Θ(n1.n2) for
uniform random trees, the quartic complexity being circumscribed to trees with large
degrees, thus having extremely low probability.

However, this decomposition scheme features a high level of redundancy, i.e. an align-
ment of T1 and T2 has, on average, an exponential number (on |T1 | + |T2 |) of associated
supertrees generated by the above DP scheme. Worse, some alignments are associated
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Figure 2.6: Unambiguous DP scheme for tree alignments.

by a unique supertree, so the algorithm cannot be easily adapted into a tool for ensemble
analysis (e.g. to associate a notion of support for a given alignment).

With Cédric Chauve and Julien Courtiel [32, 33], we designed a correct, unambiguous
and complete DP scheme for tree alignments, summarized in Figure 2.6. While highly
technical in its design and proof, it preserves both the worst-case Θ(n1.n2. max(n1,n2)2)
and average-case Θ(n1.n2) complexities of the JWZ algorithm. In fact, using analytic
combinatorics, we could show that the average-case complexity of both algorithms, ex-
pressed as a function of the overall size n :� n1 + n2 of trees, only grows like Θ(n√n).
This counter-intuitive complexity, remarkably much lower than the Θ(n2) average-case
complexity of sequence, is however only an artifact induced by the bimodal partition of
length across a pair of trees. Indeed, upon generating a pair of trees (T1, T2) uniformly
at random such that |T1 | + |T2 | � n, one typically gets a tree of size Θ(√n) and a tree of
size Θ(n), rather than two sequences of length n/2 in the case of sequences. One should
therefore exercise caution when performing an average case analysis on pairs of objects,
lest the final result may be more representative of the length distribution than of the
underlying phenomenon. . .

The DP scheme could also be interpreted as a grammar generating a subset of supertrees,
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bĳectively associated with tree alignments, and we used analytic combinatorics tech-
niques to derive asymptotic properties of alignments (e.g. average #matches, number. . . ).
The same could be done for the (redundant) family of supertrees produced by the JWZ
DP scheme, and taking the ratio gave the expected number of supertrees, generated by
JWZ for each alignment, confirming the exponential level of ambiguity.
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Chapter 3

RNA design

Thegoodperformances ofRNAstructureprediction, especially at the secondary structure
level, suggest harnessing their underlying models and methods to perform a rational
design of RNAs, broadly defined here as the construction of novel nucleotide sequences
achieving one (or several) predefined function(s). In the context of my work, a strong
emphasis is put on the development of computational methods for an automated RNA
design.

The originality of my contributions, spanning several distinct collaborations, lies in the
adoption of a random generation perspective over the positive and, to some extent,
negative design of RNA. Additionally, I have attempted to revisit negative design in
a minimal setting, amenable to exact (if partial) combinatorial analysis, uncovering a
promising, yet unexploited, notion of approximate design, that could lead to future
developments.

Outline. I first describe in Section 3.1 the motivation, and various use-cases for RNA
design. Section 3.2 describes partial exact solutions for a combinatorial version of the
NP-hard inverse folding. Finally, Section 3.3 presents an original contribution to positive
design based on a constrained random generation, surprisingly providing a satisfactory
initialization steps for negative design.

The following summarizes, and attempts to unify, contributions described within the
following list of articles published in journals and/or presented at conferences.

Associated contributions

A. Levin, M. Lis, Y. Ponty, C. W. O’Donnell, S. Devadas, B. Berger, and J. Waldispühl. A global sampling approach
to designing and reengineering RNA secondary structures. Nucleic Acids Research, 40(20):10041–10052, Nov.
2012
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3.1 Why do we design RNAs?

At a fundamental level, designing RNAs represents the ultimate stress-test for our un-
derstanding of how RNA folds and acts on its environment. In this setting, one designs
RNA sequences expected to fold into a predefined structure with respect to a folding pre-
diction model. Synthesizing the resulting sequences, and using experimental methods
to verify the actual adoption of the desired structure, one either validates the model or
reveals some of its flaws, fueling and prioritizing further developments. Indeed, misfold-
ing designedRNAs reveal gaps in our energymodels and descriptors of the conformation
spaces used by predictive algorithms. A similar strategy can be more generally used to
test functional hypotheses involving the structure of RNA.

Molecular design also represents one of the primitives of synthetic biology, and RNAs
have been used as biosensors [65], regulators, nano-material. . . Some naturally-occurring
RNAs are sufficiently stable to fold in a modular fashion, enabling a copy/paste approach
that simply combines existing RNAs. However, such a strategy is hindered, in an in
vivo context, by the competition of artificial and endogenous RNAs, and by the intrinsic
difficulty to produce orthogonal constructs over a limited number of available architec-
tures. A rational design, coupled with an experimental filtering phase, is thus likely to
represent the method of choice for future endeavors in RNA-based synthetic biology.

At a (primarily) sequence-based level, design is essential for future developments of
RNA-based therapeutics. For instance, the recent discovery of viable treatments based
on RNA interference is fueled by an understanding of how small RNAs can interfere with
selected messenger RNAs to activate or inhibit them. In this context, an optimization
of the nucleotide sequence of small interfering RNAs, akin to a design task, is crucial
to ensure its efficacy and selectivity, mitigating the risk of side-effects for the drugs.
Similarly, the specificity of genetic contents targeted by CRISPR-based editing, an thus
its limited toxicity, is ensured by a redesign of guide RNAs. More generally, the adoption
of a stable structure is very often a prerequisite for the interaction of RNAs with selected
proteins [45], and are therefore crucial for the functionality of designedRNAs in a cellular
context.

Design also helps in the search for homologousRNAs. Indeed, inmultiple RNA families,
selective pressure mostly applies at the structure level, hindering the discovery of new
occurrences of a givenRNAgeneswithin the sameorganism (paralogs) or across available
genomes (orthologs). If a structural model is known, and if the number of identified
homologs is limited, a natural approach is to enrich homologs with sequences designed
as to fold into the shared structure, in order to cover a larger proportion of the (neutral)
sequence space.
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3.1.1 The potential of RNA design for statistical evolutionary studies

I believe that RNA design should be systematically used within families of structured
RNAs to assess the significance of observed phenomena. Indeed, a popular strategy
consists in analyzing multiple sequence alignments of RNAs, and interpret quantitative
observations in the light of an accepted pressures. To that purpose, one uses statistical
tests to refute the hypothesis that the observation is merely induced by established
properties. For instance, in the context of messenger RNAs, codon bias and the flanking
of ORFs by start/stop codons should be accounted for when drawing consequences from
the distribution of k-mers.

However, in the context of structural RNAs, most analyses only indirectly capture the
overall stability (free-energy) of transcripts through a preservation of the dinucleotide
content, based on the observation that sequences sharing a dinucleotide composition
tend to have similar free-energy in their most stable 2D conformation. However, noth-
ing prevents alternative dinucleotides compositions from achieving the same expected
free-energy, so the distribution considered by classic tests is arguably too narrow to con-
vincingly refute the hypothesis that an observed phenomenon can be imputed to the
overall MFE stability (rather than be indicative of a new, yet to be explained, selective
pressure).

Moreover, most families of functional RNAs not only share a comparable stability, but
also share the adoption of a common functional structure. In this context, the significance
of a property (e.g. overrepresentation of a motif, hypothesized as involved in amolecular
recognition mechanism) should be assessed within the set of sequences that are believed
fold into the common structure (+ additional established properties). In other words,
one should be able to perform a random generation of RNA designs in order to suitably
assess a notion of significance.

3.1.2 The different flavors of RNA design

RNA design targets a wide diversity of biological functions and, as such, encompasses
of wide array of computational tasks. Two dominant paradigms dominate current com-
putational approaches.

3.1.2.1 Positive design

Positive design can be loosely defined as focusing on to propensity of produced RNAs
to achieve a certain function. In a structural context, positive design usually involves
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generating one or several sequences having good affinity (i.e. stability ≈minimum free-
energy) towards a targeted structure. Amore functional perspectivewill also consider the
presence/absence of sequences motifs, or the affinity towards interacting with another
molecule, as assessed by an energymodel (e.g. RNA/DNAorRNA/RNA interactions) or
a probabilistic model (e.g. protein/RNA interactions). This may include compositional
biases, such as the GC-content.

3.1.2.2 Negative design

Negative design tasks loosely focus on the specificity of produced sequences, attempting
to avoid unwanted functions, interactions, structures. . . From a computational perspec-
tive, such tasks are usually harder than the one induced by positive design. Indeed,
they typically require solving an inverse combinatorial problem, generally formulated
as follows.

Problem 10 (Inverse combinatorial problem):
Input: Expected output y? and objective function f.

Output: Instance x such that{
y | f(y; x) � max

y′
f(y′; x)

}
� {y?}.

The difficulty of those problems stems from the potential difficulty of optimizing the
objective function, so that the natural decision version of the problem may not even
belong in NP. Moreover, even when the optimization (coupled with the production of a
certificate for the unicity of the optimal solution) can be performed in polynomial time,
the inverse problem can still be NP-hard [20].

In the context of structural RNA design, negative design is usually referred to as the
inverse folding problem, and historically consists in producing a nucleotide sequence,
predicted to (uniquely) fold into a targeted structure with respect to the Minimum Free-
Energy (MFE) criterion. Variants of the inverse folding problem consider the minimiza-
tion of various notions of defects, including the: MFE defect, the free-energy difference
between the target andMFE structure (or first suboptimal structure if the target andMFE
structures coincide); probability defect, the Boltzmann probability for the sequence to
adopt an alternative structure; or the ensemble defect, the expected base-pair distance
between the target and a random structure in the Boltzmann-Gibbs distribution.
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3.1.2.3 Computational approaches

Due to the robust NP-hardness of inverse folding [20, 91, 172], the dominant paradigm,
shared by multiple computational approaches [7, 9, 28, 77, 89, 95, 116, 208], combine
an initial generation of seed sequences, akin to a (sometimes very rudimentary) positive
design, with further rounds of optimizationusing a local search. Inverse folding has also
been tackled using a variety of metaheuristics, including genetic algorithms [63, 64, 125],
ant-colony optimization [107]. . .

Finally, the imperfect nature of the objectives of RNA design has left the door open for
machine learning, recently attracting the predatory attention of neural networks [166]
and/or crowdsourcing [109], with modest performances and disputable rationales.

3.2 Exact combinatorial negative design [85, 86]

The computational hardness of inverse folding, which had essentially eluded a whole
community for almost three decades, was finally rigorously established in 2018 by Bonnet
et al. [20].

It was preceded by an effort worthy of a mention by Schnall-Levin et al. [172], who
generalized the RNA design problem into the inverse Viterbi problem, consisting of
figuring out a sequence w, in a probabilistic grammar such as a e.g. Hidden Markov
Model (HMMs) or a Stochastic Context-Free Grammar (SCFG), such that a predefined
sequence of states is themost likely parsing forw. The problemwas found to be NP-hard,
even for HMMs, leading the authors to argue on an implied hardness of RNA design,
since RNA folding can be viewed as a special case of SCFG parsing. However, while the
hardness of the inverse Viterbi problem for SCFGs clearly follows from their result, it did
not imply the hardness of the problem for a given input grammar, as is the case in RNA
design.

Over the course of a collaboration with Jozef Hales, Alice Héliou, Jan Manuch and
Ladislav Stacho [85, 86], we investigated aminimal installment of negative design, aiming
to provide partial characterization for the space of designable structures. Namely, we
consider the Watson-Crick energy model, initially restricting admissible base pairs to
{A,U} and {G,C}. In this restricted context, inverse folding greatly simplifies and we
get the following formulation.
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Problem 11 (Watson-Crick combinatorial design):
Input: Secondary Structure S? over n nucleotides

Output: Sequence w such that

∀S ∈ Sn compatible with w,S , S? : |S| < |S? |.

Bonnet et al. [20] showed that a slightly restricted version of the problem, forcing the
assignment of predefined nucleotides to positions inw, is NP-hard. We thus focused our
efforts on characterizing of designable subclasses of structures.

3.2.1 Basic results

Our results require a reminder of the representation for the secondary structure, illus-
trated in Figure 3.1. Such a representation abstracts a structure as a tree, rooted in a
virtual node, with other nodes either being base-pairs nodes (labeled by interacting po-
sitions) or unpaired nodes positions (labeled by a single position). We define the inner
degree of a node as its number of base pair neighbors. For instance, the node 4-37 in
Figure 3.1 has inner degree 3.

Theorem 1 (Basic designable classes): Any structure S, represented as a tree,
can designed in linear time as soon as (at least one) of the following conditions is
met:

1. Each node in S has inner degree at most two;

2. S is saturated (no unpaired base) + any node has inner degree at most four;

Moreover,weestablished that the set ofdesignable structures is closedunderk-stuttering.
In otherwords, if a structure S, represented as a dot-parenthesisword S1.S2 . . . Sn, admits
a known design w :� w1.w2 . . . wn, then

wk1 .w
k
2 . . . w

k
n is a design for Sk1 .S

k
2 . . . S

k
n,∀k > 0.

The stuttering operation can also be described at the tree level, and essentially (up to
renumbering of nodes) amounts to: i) duplicating each unpaired node k times; and ii)
replacing any base pair node with a sequence of base pair nodes of length k.

We also identified two undesignable motifs, a.k.a. local obstructions , whose presence
is sufficient to forbid any design for the structure. Namely, it is probably impossible
to design any structure containing a multiloop with degree ≥ 5 (m5 motif), or with
degree ≥ 3 with ≥ 1 unpaired base(s) (m3 ◦ motif). Such motifs are universal to any
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Figure 3.1: Tree representation and separated coloring for a designable secondary
structure. The secondary structure admits a separated black/white/gray coloring of its
base pairs, i.e. levels (red callouts) of gray base pairs (1 and 0) and unpaired base/leaves
(2 and 4) do not overlap. The structure can thus be designed, e.g. through the sequence
below.

version of design, as they are essentially a consequence of the local nature of classic
energy models, defects definition and DP-schemes used for structure prediction. We
exploited this property in subsequent work focusing on the enumeration of designable
structures Yao et al. [206], further described in Section 5.2.4.

3.2.2 Design as a tree coloring problem

Finally, we introduced a sufficient condition for designability, based on a special coloring
of the tree representation. Specifically, we considered a 3-coloring χ, associating either
black (G-C), white (C-G) or gray (A-U or U-A) to the base-pair nodes of a structure S.
Unpaired leaves are not colored, and are typically assigned a U. We define χ as proper
such that:

• Any node has at most one black node, one white node and two gray nodes;

• White nodes have no black children;

• Black nodes have no white children;

• Gray nodes have at most one gray child.

Any failure to obey those rules implies the existence of local rewirings of base pairs,
leading to alternative configurations, and the sequence implied by the coloring is thus
not a design. However, a suitable design also requires the global absence of competing
structures, so we need a second property to conclude on the validity of the induced
design.
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We introduce the notion of level levelχ(v) of a node v within a coloring χ, defined as
the number of black nodes, minus the number of white nodes, encountered while going
from the node to the root. It can also be defined recursively as

levelχ(v) �




0 if v � Root

levelχ(p) + 1 if χ(pv) � black

levelχ(p) − 1 if χ(pv) � white

levelχ(p) if χ(pv) � gray.

where pv denotes the parent of v. Figure 3.1 illustrates the levels associatedwith a proper
coloring.

Definition 3.2.1 (Separated 3-coloring):Given a secondary structure S, a proper
3-coloring χ is separated if and only if

{level(v) | v base paired in S} ∩ {level(v) | v unpaired in S} � �.

This property is actually sufficient to rule out the absence of an alternative structure
having as many (or more) base pairs. The underlying intuition is that, in any competing
structure, some U from an unpaired nodemust be paired to an A within a gray node. In a
separated coloring, those interacting nucleotides are at different levels, so the alternative
A � U base pairs provably delimits two regions, each having different numbers of Gs and
Cs. It follows that, since pseudoknots are forbidden, then some G and C must remain
unpaired in the final structure. In other words, the competing structure has less base
pairs than the target.

Theorem 2 (Designability of separable structures): Any secondary structure S
that admits a proper and separated 3-coloring χ can be designed. Moreover, if χ is
known, then a design can be produced in linear time.

Figure 3.1 illustrates the concept of separated coloring, and some associated sequence. It
is worth noting that the existence of a separated coloring does not represent a necessary
condition for design. Moreover, finding a proper/separated coloring remains an open
algorithmic problem, so this result may appear, at first sight, devoid of any practical
consequence. Nonetheless, it is at the root of the notion of structure-approximating
design, developed over the next section.
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Figure 3.2: Execution of the structure-approximating design algorithm. An admissible
target structure (1) is represented as a tree, and decorated into a proper 3-coloring by
a greedy algorithm (2). A separated proper coloring (3) is obtained by adding selected
nodes (dotted) to prevent direct adjacency and assign different parities for gray and
unpaired nodes. The resulting coloring guarantees a linear-time design for a structure
(4) that only differs by a few base pairs (purple) from the target.

3.2.3 Structure-approximating design

While it remains unclear how a separated coloring can be efficiently found, it is easy to
adapt a proper, yet non-separated, coloring into a separated one through the insertion
of a limited number of nodes. Indeed, one can insert a small number of additional base
paired nodes in order to separate gray paired and unpaired nodes, i.e. assigning them
different levels to ensure the separated nature of the resulting coloring. This strategy
works for any tree that avoids the m5 and m3 ◦ motifs, noted that the presence of those
motifs remains unchanged by the addition of base pairs.

A first idea, not necessarily optimally parsimonious, consists in offsetting gray nodes to
even levels, and unpaired nodes to odd levels. This can be done, for any structure S
avoidingm5 andm3 ◦, in three steps:

1. Produce a initial greedy proper coloring of the tree:
• Assign to the (≥ 4) children of the root, colors black→white→gray→gray in

this order, and descend recursively into its children;
• On any internal nodes, colored in black (resp. white and gray), assign colors

b→g→g (resp. w→g→g and b→w→g) to its children;

2. Correct the coloring into a separated one:
• Insert a black paired node to prevent any direct adjacency between a gray

paired node and an unpaired leaf. Note that such cases only arise for gray
nodes associated with isolated base pairs;

• Traversing the nodes of the tree in preorder, duplicate the parent of any gray
node at odd level, or unpaired node at even level (the parent of such nodes is
provably either black or white).
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After executing this algorithm on a structure S, one obtains a tree/coloring pair (S′,χ′)
where χ′ is separated. Moreover, at most two base pairs are added to each of the helices
of S (brought down to one base pairs in the absence of isolated base pairs).

Theorem 3 (Approximated design): Given a structure S (resp. with no isolated
base pair) avoidingm5 andm3 ◦, then a designable structure S′ can be obtained by
adding ≤ 2 (resp. ≤ 1) base pair(s) to each helix in S.
Moreover, S′ can be built, and designed for, in linear time.

In practice, the number of added base-pairs usually remains modest, as shown in Fig-
ure 3.2. Future extensions of this work include the design of algorithms for adding a
minimal collection of base pairs to make the structure/coloring separated.

More importantly, we believe that the separatedproperty shouldfindanatural equivalent
in more sophisticated energymodels, including as the Turner energymodel [185]. A first
extension of our main results to virtually any weighted base-pair model substantiates
this hope.

Proposition 4 (Extension to weighted models): Theorems 1, 2 and 3 hold in any
energy model that is defined additively on base pairs, each having individual
free-energy contributions:

E(G,C) � E(C,G) → α,E(A,U) � E(U,A) → β and E(G,U) � E(U,G) → γ

such that α,β < γ.

3.3 Stochastic positive design under constraints

In the context of positive design, computational objectives are typically sufficiently simple
to be amenable to a random generation. Such an approach is preferable to a one-shot
resolution of the constraints imposed by the model of functions, for a variety of reasons:

• Positive design is typically used to generate an initial sequence, the seed sequence
of existing methods based on meta-heuristics. Generating the initial at random
thus helps meta-heuristics (local search, or genetic algorithms) overcome barriers
in the objective function;

• Although currently underexploited, statistics derived from a set of random designs
provide information on a null model for RNA evolution, allowing to assess the
significance of observed phenomenon [151, 209];
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Figure 3.3: Comparison of uniform and Boltzmann-Gibbs distributed seeds. For the
target structure ((((....))))..((((....)))), 1 000 sequences were generated,
either uniformly or in the Boltzmann distribution, using IncaRNAtion [160].

• A diverse set of sequences allows for further filtering based on properties that are
not easily necessarily imprinted at a computational level.

3.3.1 Sampling from the dual-partition function [117, 158, 160]

This last point is at the foundation of one of the PhD contribution of Vladimir Rein-
harz, supervised by Jérôme Waldispühl and myself [158, 160]. Namely, as illustrated in
Figure 3.3 for a toy structure, the Boltzmann probability typically correlate strongly neg-
atively meaning with the free-energy. This means that sequences with low free-energy
(positive design) is also likely to optimize classic objectives of design, and thus repre-
sents a potentially promising approach for the inverse folding problem. This property
was exploited by [28], which started its local search from the MFE sequence for a given
structure, leading to improved performances.

We considered the dual-partition function ZS? of a structure S?, defined as:

ZS? �

∑
w compatible with. S?

e−β.E(w,S?)

where E(w,S) represents a simplified free-energy model, restricted to stacked base pairs,
and β is an arbitrary constant. We then turned to a random generation of sequences
in the Boltzmann-Gibbs distribution over sequences, where any sequence w, compatible
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with S?, is emitted with probability

� (w | S?) � e
−β.E(w,S?)

ZS?
.

We refer the reader to Chapter 2.3.4 for the algorithmic aspects of computing the dual
partition function, and performing the stochastic backtrack required for the sampling.

Remark 3.3.1: Note that, while it constitutes an approximation of the established Turner energy
model [185], our stacking-based model correlates very well with the former, and virtually does not
impact the above probability. In particular, the lack of support for multiple loops provably does not
impact the distribution. Indeed, the contribution EM of a multiple loop within the Turner model
depends on its structural characteristics, but remains independent of its precise nucleotide content.
Including such a contribution to our energy model would therefore increase the Boltzmann factor
of any sequence by a factor e−β.EM , homogeneous across sequences. Meanwhile, the partition
function would be inflated by the exact same factor e−β.EM , so that the two terms would cancel in
the emission probability, leaving it unchanged.

This approach generates sequences which not only have, unsurprisingly, lower free-
energies than those produced by uniform sampling, but also much larger Boltzmann
probabilities, as illustrated by the left panel of Figure 3.3. However, further analyses
(Figure 3.3, right panel) reveal that this increased suitability to the objectives of design
comes at the cost of a drift of the GC-content towards high values (typically 75-80%).
This drift is problematic since as wild-type sequences within living organisms often
presentmediumor lowGC-content, presumably to offer better transcription rates and/or
structural plasticity [54].

As a countermeasure, we introduced a rejection strategy, an instance of multidimen-
sional Boltzmann sampling (see Section 2.3.4 and 4.2.2), to generate sequences at a con-
strained GC-content, introducing a weight xgc to induce a distribution

�xgc (w | S?) ∝ x|w|G+|w|C
gc × e−β.E(w,S?).

As shown in Figure 3.4, the drift of Boltzmann-generated sequences towards high GC
contents can be counterbalanced, while preserving much better free-energies than in-
duced by the Boltzmann distribution. Moreover, this strategy induces Boltzmann prob-
abilities that are much higher than induced by a uniform sampling, as well as a much
better proportion of sequences adopting the target structure as its MFE. In other words,
this positive design strategy constitutes a promising approach, possibly in combination
with further local optimizations, for negative design.
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Figure 3.4: Influence of targeted GC-content on characteristics of seeds. For the
structure of Figure 3.3, IncaRNAtion [160] is used to produce Boltzmann-weighted se-
quences, constrained to feature ∼50% GC content (blue), comparable to the one induced
by a uniform random generation (green). GC-constrained sequence achieve much better
free-energies and Boltzmann probabilities than uniformly-distributed sequences, while

3.3.2 Avoiding and forcing motifs [210]

This weighted sampling strategy can also be extended to accommodate further con-
straints, such as collections of forbidden (F) and mandatory (M) motifs.

Problem 12 (Motifs-constrained dual partition function):
Input: Two sets F ,M ⊂ Σ?, respectively representing forbidden and mandatory
sequence motifs; target structure S ∈ Sn
Output: Themotifs-constrained dual partition function:

ZS?;F ,M �

∑
w compatible with. S?

s. t. f<w,∀f∈F
andm∈w,∀m∈M

e−β.E(w,S?)

This problem can be solved by constructing the deterministic finite-state automaton A
that recognizes words featuring all elements of M, and none of F . A is built from
specialized versionsAM′ of the Aho-Corasick automaton [2], which we call components,
for all sets F ∪M′ ⊆ M. Components are then collated, by redirecting any terminal
state m ∈M′ of AM′ towards a suitable state in AM′\{m}. Thus, starting from AM and
reading a word w, one ends up in the component A′M, where M \M′ is exactly the set
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Figure 3.5: Construction of the automaton for sequence-constrained positive design.
From lists of forbidden (F) and mandatory (M) words (A), the Aho-Corasick automaton
(B) can be built in time linear on the accumulated length ofwords. The full automaton (C)
ensures the presence of allwords inM, by constructing components, i.e. ACautomata for
F and subsets M′ ⊆M of yet-to-be-generated words. Transitions between components
are defined to account for new elements of F , and the only accepting states are those of
the component M′ :� �. Finally, any terminal state in (B) associated with a word in F is
rerouted to a ground/garbage state ⊥.

of mandatory words in w. Additionally, all final states associated with motifs in F are
rerouted to a non-accepting ground state. The whole process is further explained and
illustrated by Figure 3.5.

The number of states |A| of A grows like Θ(2|M|∑m∈F∪M |m|). The exponential depen-
dency on |M| seems, in some sense, unavoidable. Indeed, Räihä andUkkonen [162] have
shown the NP-hardness of deciding whether or not all motifs of a collection M (F � �)
can be represented within a string of length n.

Then, the progression within A can be simulated within the dynamic programming
scheme through explicit convolutions of the state space. We give an example of such a
construct in the example below.

Example 11: Dual-partition function and constraints
In a classic base-pairing energy model, assigning a free-energy contribution Ea,b to a base pair
involving nucleotides a and b, the dual partition function for a structure S? is computed for any
interval [i, j] as:

∀i, j ∈ [1,n] : Zi,j �



1 if i > j∑
a∈{A,U,C,G} Zi+1,j if i unpaired in S?∑
(a,b)∈B e−β.Ea,b ×Zi+1,k+1 ×Zk+1,j if i paired to k in S?

and ZS? :� Z1,n. Moreover, starting from [1,n], only a linear number of subintervals [i, j] ⊂ [1,n]
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is reached by the computation, so the recurrence can be computed in linear-time using dynamic
programming.

Then we consider the adjunction of sequence constraints, forcing the presence/absence of motifsM/F
modeled by an automaton A with state space Q, transition function δ and final states F ⊂ Q. It
can be achieved by convolving the dynamic-programming schemes and the automaton A, essentially
simulating its transitions. For all pair of states q,q′ ∈ Q and indices i, j ∈ [1,n], one has :

Zq→q
′

i,j
�




0 if i > j and q , q′

1 if i > j and q � q′∑
a∈{A,U,C,G} Z

δ(q,a)→q′
i+1,j

if i unpaired in S?∑
(a,b)∈B

∑
q′′∈Q

e−β.Ea,b ×Zδ(q,a)→q′′
i+1,k+1

×Zδ(q′′,b)→q′
k+1,j

if i paired to k in S?

where Zq→q
′

i,j
represents the dual partition function, restricted to wordsw that are: i) compatible with

the interval [i, j] in S?; and ii) starting from a state q, one ends in q′ upon reading w in A.

3.3.3 Multiple structures and extended design principles [88, 90]

In the previous section, the computation of the dual partition functionwas greatly helped
by the tree-like nature of the secondary structure, inducing recurrences at the origin of
our dynamic-programming schemes. The presence of complex networks of constraints,
for instance induced by multiple secondary structures for multistable RNAs [65] or to
prevent the extension of helices [91], breaks the subtructure property induced by a single
secondary structure, and impedes the design of efficient algorithms.

In collaboration with Stefan Hammer, Wei Wang and Sebastian Will [88, 90], we consid-
ered a generalized version of the dual partition function, wheremultiple target structures
S?,S? . . . S?m are jointly considered, and the energy of a sequence is additively defined
on a collection of functions (F1, F2, . . . , Fk), called contribution. Each contribution F ob-
serves a setdep(F) ⊂ [1,n] of positions in the designed sequence, and returns a numerical
values accordingly. In other words, each contribution is a function F : Σ|dep(F)| → �,
whose values accumulate to define the energy of any given sequence.

Problem 13 (General dual partition function):
Input: Length n; Collection of contributions F :� [F1, F2, . . . , Fk]; Collection of
target structures S? :� [S?

1
,S?

2
. . . S?m].

Output: The generalized dual partition function:

ZS?,F �

∑
w∈Σm such that

w comp. with. S?,∀S?∈S?
e−β.F(w)

where F(w) � ∑k
i�1 Fi([wp | p ∈ dep(Fi)]).
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3.3.3.1 Complexity aspects

Complexity-wise, the problem is generally NP-hard, as it specializes into a variant of
negative design studied by, and proven NP-hard, by Hellmuth et al. [91]. Namely, the
authors introduced extended shapes, possibly described as secondary structures whose
base-pairs are partitioned into regular base pairs, which should be populated by valid
pairs of nucleotides, and pseudo-edges which should not be pairable. Given several
such extended shapes, the Min-Edge-Deletion in Shapes (MES) problem asks for the
minimal number of (regular or pseudo) edges to delete before a satisfying sequence
assignment can be found, i.e. such that nucleotides on regular edges (i, j) (resp. pseudo
edges (�i,�j)) forming valid pairs in B (resp. invalid pairs in U :� {AA,CC,GG,UU}).
This problem essentially constitutes a specialization of the above problem, obtained
by: i) setting S? :� �; ii) Choosing suitable contributions F(i,j)(a,b) � −1(a,b)∈B and
F(�i,�j)(a,b) � −1(a,b)∈U. In this setting, Z�,F �

∑
w e
−β.#DelEdges(w), and the existence of a

sequence violating k edges can be decided from the dual partition function in polynomial
time (e.g. through interpolation, or increasing β so that co-optimal overwhelm the
partition function).

Moreover, in a uniform setting (F :� �), a key object is the dependency graph GS of a
collection of structures S? :� [S?

1
, . . . ,S?m] of length n, defined as

GS :� ([1,n],∪mi�1Si).

This graph is simply the union of the graphs of secondary structures, and must be
bipartite for the collection to admit any design [73].

Theorem 5 (Independent set and multidesign): Given several secondary struc-
tures S? :� [S?

1
, . . . ,S?m] such thatGS is bipartite, the dual partition functionZS?,�

is exactly twice the number of independent sets in GS.

It follows that computing the general partition function is as hard as counting the num-
ber of independent sets in a bipartite graph (#BIS), a thoroughly-studied #P-hard
problem [79].

Finally, we described in Hammer et al. [88, 90] a general Fixed Parameter Tractable
solution. The entire network of contributions is jointly considered, and automatically
transformed into a set of DP equations through a tree decomposition. Resulting DP
schemes contrast with most of the schemes described in this document due to the au-
tomated nature of their design, but also due to their optimality in some well-defined
sense.
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Chapter 4

Constrained random generation through
rejection and beyond

Generic approaches for the random generation of combinatorial objects rely on the exis-
tence of a specification for the combinatorial class. However, the design of a specification
for a given combinatorial class can be a highly complex task, or altogether be provably
impossible for a given a restricted set of constructors. In the case of combinatorial classes
that are naturally expressible as languages, one can use classic pumping-lemma to rule
out the existence of regular or context-free specifications. However, such results do not
preclude the existence of a grammar for a language, which itself would be in bĳection
with the language of interest, as shown in the following example.

Example 12: Copy language
Consider the 3-copy language

L3C � {an.bn.cn | n ∈ �}
A textbook application of the pumping lemma (algebraic version) shows that the language is not
context-free: there is no context-free grammar that generates L3C. However, the language

L3 � {(a.b.c)n | n ∈ �}

can be generated using a context-free grammar (or even a simpler finite-state automaton), and admits
a trivial bĳection with L3C. Such a bĳection may simply push occurrences of a (resp. b and c) to the
beginning (resp. ending andmiddle), preserving the relative order within occurrences of a given letter.
This transform can is easily reversible, and can be implemented in linear time.

Combinatorial properties of languages can be used to rule out any suchworkaround and,
more generally, establish the unsuitability of classes of grammars for the generation of
some languages.

For instance, Flajolet [67] showed that some context-free language are intrinsically am-
biguous, i.e. any grammar that generates such a language must be ambiguous. Indeed,
languages generated from a context-free grammar are associated with ordinary gener-
ating functions that are algebraic. However, certain context-free languages are known
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to admit transcendental generating functions, and thus cannot admit an unambiguous
context-free grammar, as shown in Example 13.

Example 13: A simple intrinsically ambiguous languagea

Consider the language

LIA � {w ∈ {a,b, c}? | |w|a , |w|b or |w|b , |w|c}.

It is generated by a context-free grammar (axiom S) S → Ta<b | Tb<a | Tb<c | Tc<b, which breaks
down the language into four (overlapping, thus inducing an ambiguous grammar) sub languages that
are context free, and whose union covers all possible cases. For instance, the non-terminal Ta<b is
tasked with generating the language

La<b � {w ∈ {a,b, c}? | |w|a < |w|b}

using the following set of production rules

Ta<b → a Ta�b b Ta<b | b Ta�b a Ta<b | b Ta<b | b Ta�b | c Ta<b
Ta�b → a Ta�b b Ta�b | b Ta�b a Ta�b | c Ta�b | ε

which essentially amounts to a case distinction based on the first encountered character, reminiscent of
a first passage decomposition. Similar productions rules can be obtained for the languages generated by
Tb<a, Tb<c and Tc<b respectively, establishing the context-free nature of LIA.

To study the generating function of LIA, remark that LIA � {a,b, c}? \ LIA, where

LIA � {w ∈ {a,b, c}? | |w|a � |w|b � |w|c}

. The ordinary generating functions SIA(z) and SIA(z) are thus related through

SIA(z) � 1

1 − 3 z
− SIA(z).

Remind that algebraic generating functions are closed under addition/subtraction, so SIA(z) is algebraic
only if SIA(z) is algebraic itself. However, SIA(z) can be expressed explicitly as

SIA(z) �
∑
n≥0

(
3n

n,n,n

)
z3n.

It follows from Stirling’s expansion that, for n ≡ 0 mod 3, one has

[zn]SIA(z) �
n!

(n/3)! × (n/3)! × (n/3)! �
3 × 3n

2π × n (1 +O(1/n)).

Such an asymptotic expansion is not compatible with the universal asymptotic form of coefficients
of rational/algebraic generating functions, as seen in the Flajolet/Sedgewick bible [69], or a recently
refined result by Banderier and Drmota [11] (see Remark 5.1.2).

SIA(z) is therefore not algebraic, and neither is SIA(z). Since generating functions associated with
unambiguous context-free grammars are either rational or algebraic, we conclude that no such grammar
exists, and LIA is context-free, yet intrinsically ambiguous.

aExample borrowed from the magisterial exposition of Cyril Nicaud.

More generally, combinatorial classes associated with transcendental generating func-
tions, regardless of their language-theoretic properties, cannot be modeled using the
standard operators introduced by the symbolic method. In this chapter, we remind,
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generalize and exploit versatile rejection principles for the generation of constrained
combinatorial objects which are hard to specify (at least in their constrained version).

Outline. Section4.1 starts by reminding thegeneral objectives andprinciples of rejection
methods for random generation. Section 4.2 describes the main principles behind the
general technique called multidimensional Boltzmann sampling, whose application to
selected problems in Bioinformatics is described in Section 4.3. Section 4.4 provides an
analysis of the level of redundancy within weighted samples, and describes possible
countermeasures to such an unproductive phenomenon.

The following summarizes, and attempts to unify, contributions described within the
following list of articles published in journals and/or presented at conferences.

Associated contributions

M. Bousquet-Mélou and Y. Ponty. Culminating paths. DiscreteMathematics and Theoretical Computer Science,
10(2):125–152, 2008

A. Denise, Y. Ponty, and M. Termier. Controlled non uniform random generation of decomposable structures.
Theoretical Computer Science, 411(40-42):3527–3552, 2010

O. Bodini and Y. Ponty. Multi-dimensional Boltzmann Sampling of Languages. In AOFA 2010, volume AM of
DMTCS Proceedings, pages 49–64, Vienna, Austria, June 2010. Discrete Mathematics and Theoretical Computer
Science

D. Gardy and Y. Ponty. Weighted random generation of context-free languages: Analysis of collisions in random
urn occupancy models. In GASCOM 2010, page 14pp, Montréal, Canada, Sept. 2010. LACIM, UQAM

J. Waldispühl and Y. Ponty. An unbiased adaptive sampling algorithm for the exploration of RNA mutational
landscapes under evolutionary pressure. Journal of Computational Biology, 18(11):1465–79, Nov. 2011

J. Waldispühl and Y. Ponty. An unbiased adaptive sampling algorithm for the exploration of RNAmutational landscapes under
evolutionary pressure. In RECOMB 2011, volume 6577 of Lecture Notes in Computer Science, pages 501–515, Vancouver, Canada,
Mar. 2011. Springer Berlin / Heidelberg

J. Du Boisberranger, D. Gardy, and Y. Ponty. The weighted words collector. In AOFA 2012, volume AQ, pages
243–264, Montreal, Canada, June 2012. DMTCS

C. Banderier, O. Bodini, Y. Ponty, and H. Tafat. On the diversity of pattern distributions in rational language. In
ANALCO 2012, pages 107–116, Kyoto, Japan, Jan. 2012. Omnipress

A. Lorenz and Y. Ponty. Non-redundant random generation algorithms for weighted context-free languages.
Theoretical Computer Science, 502:177–194, Sept. 2013

Y. Ponty. Non-redundant random generation from weighted context-free languages. In GASCOM 2008, page 12pp, Bibbiena,
Italy, 2008

V. Reinharz, Y. Ponty, and J. Waldispühl. A weighted sampling algorithm for the design of RNA sequences with
targeted secondary structure and nucleotide distribution. Bioinformatics, 29(13):i308–15, July 2013

V. Reinharz, Y. Ponty, and J. Waldispühl. A weighted sampling algorithm for the design of RNA sequences with targeted
secondary structure and nucleotides distribution. In ISMB/ECCB 2013, Berlin, Germany, July 2013

Y. Zhang, Y. Ponty, M. Blanchette, E. Lecuyer, and J. Waldispühl. SPARCS: a web server to analyze (un)structured
regions in coding RNA sequences. Nucleic Acids Research, 41(Web Server issue):W480–5, July 2013

J. Lumbroso, M. Mishna, and Y. Ponty. Taming reluctant random walks in the positive quadrant. In GASCOM
2016, volume 59 of Electronic Notes in Discrete Mathematics, pages 99 – 114, Bastia, France, 2017
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J. Michálik, H. Touzet, and Y. Ponty. Efficient approximations of RNA kinetics landscape using non-redundant
sampling. In ISMB/ECCB 2017, volume 33, pages i283 – i292, Prague, Czech Republic, 2017

S. Hammer, W. Wang, S. Will, and Y. Ponty. Fixed-parameter tractable sampling for RNA design with multiple
target structures. BMC Bioinformatics, 20(1):209, Dec. 2019

S. Hammer, Y. Ponty, W. Wang, and S. Will. Fixed-Parameter Tractable Sampling for RNA Design with Multiple Target
Structures. In RECOMB 2018, Paris, France, 2018

4.1 It’s not you, it’s me: The unreasonable power of rejection

Before we move any further, let us define precisely the problem of random generation.
We are tasked with the random generation of objects of size n within a challenging class
A (i.e. hard to specify, e.g. using a grammar), according to a predefined probability
distribution p?w.

Problem 14 (Random generation for A):
Input: Numberm of objects

Output: Sequence of [w1, . . . ,wm] ∈ Am such that

�A (W � w) � p?w.

The provable inexistence of a specification can be frequently circumvented at a reasonable
cost through a rejection strategy. Itsmain idea is to consider another simpler setB, chosen
to enforce the following properties:

1. Correctness: A ⊆ B (or A ⊆ B′, admitting a computable bĳection with B);
2. Effectiveness: Objects from B can be generated (uniformly) at random;

3. Efficiency: The distribution over B is reasonably close to its target over A.

In this setting, the rejection algorithm consists in an iterated generation of objects from
a superset B ⊇ A, discarding any object in B \ A, until an object of A is obtained and
returned.

The subsequent rejections act as a conditioning, and the emission probability pw of a
given object w ∈ A simply becomes

pw � �B (W � w | W ∈ A) � �B (W � w)
�B (W ∈ A) �

�B (W � w)∑
w′∈A

�B (W � w′)

where �B (W � w) indicates the probability of generating w using the above-mentioned
generator for B.
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Typically, when a uniform distribution p?w � 1/|A| is targeted, and enforced over B by
the initial generator, one has �B (W � w) � 1/|B |, and the emission probability simplifies
into

pw �
1/|B |
|A|/|B | �

1

|A| � p
?
w.

In other words, a uniform generator for B readily yields a uniform generator for A.

This correctness generalizes beyond uniform distributions, to any case where the gen-
erated and targeted probability distributions are proportional over A:

∃κ ∈ � such that ∀w ∈ A, �B (W � w) � p
?
w

κ
(4.1)

where p?w denotes the targeted probability distribution. Again, the emission probability
simplifies into

pw �
p?w/κ∑

w′∈A
p?w/κ

� p?w,

and the rejection generator enforces the targeted probability distribution.

4.1.1 Correcting a (bounded) bias

A similar strategy can be used when the distribution of B, renormalized overA (i.e. after
rejection), does not fully coincide with the targeted distribution:

∃w ∈ A such that pw , p?w.

Denote as w	 the object in A which is most unfavorably discriminated against by the
initial generation, such that

w	 :� argmin
w∈A

δ(w) with δ(w) :� pw
p?w

.

Then, following the ideas of [142], the rejection algorithm is coupled with an additional
rejection step, accepting the generated w ∈ Awith probability

qw �
δ(w	)
δ(w) ≤ 1 (4.2)

and rejecting it otherwise. The emission probability p′w of the combined rejection is then

p′w �
pw × qw∑

w′∈A
pw′ × qw′

�
p?w∑

w′∈A
p?w′

� p?w

so that any generator for B such that �B (W � w) > 0,∀w ∈ A, can be used (potentially
at the cost of frequent rejections) to generate from Awithin the targeted distribution.
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4.1.2 Complexity aspects

Given the existence of unbounded sequences of rejections the worst-case complexity of
rejection generators is infinite. However, such scenarios are associated with abysmally
small probabilities and, overall, populate a negligible proportion of the probability space,
so worst-case analyses provides little insight into the concrete requirements of rejection-
based methods. It is thus arguably more relevant to consider the trade-off between cost
and probability, and average-case complexities are thus usually sought to measure the
practical complexity of generators.

The main contributing factor to the average-case complexity usually resides in the re-
peated (discarded) calls to the generator for B. Denote by T the number of attempts, i.e.
the number of time the generator for B must be called before generating an object from
the targeted distribution over A, then we generally have

� (T ) � 1∑
w′′∈A

�B (W � w′′) × qw′′

≤ 1

�B (W ∈ A) ×
p?w	

�B (W � w	) ×
p?w⊕

�B (W � w⊕) ,

with w⊕ � maxw∈A δ(w) being the object whose emission probability is the most posi-
tively biased in comparison to the targeted distribution.

Note that, when the uniform distribution is targeted over A, and exactly enforced over
B, we have qw � 1, ∀w ∈ A, and the expected number of attempts greatly simplifies into

� (T ) � |B ||A| .

Example 14: 2D walks with small steps [122]
Many types of 2D walks are associated with non-algebraic generating functions when confined to the
positive quadrant.

For instance, Mishna and Rechnitzer [137] showed that the generating function of positive 2D walks
taking steps in S � {↖,↘,↗} is not D-finite and, in particular, non-algebraic. However, the number
wn of such walks taking n steps admits an asymptotic equivalent in

cn � κ 3n +O(√8n)

where κ � 0.173 . . . is a computable constant.

Now consider the set of unconstrained walks over {↖,↘,↗}n, consisting of exactly 3n objects. A
trivial algorithm for the uniform generation simply chooses n steps, each one uniformly at random.

Clearly, the set of unconstrained walks (set B) includes the set of positive 2D walks (setA). A rejection
algorithm can then be envisioned, generating unconstrained walks from B until a positive walks from
A is found. The expected number of attempts from this rejection algorithm is then asymptotically
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equivalent to

� (T ) � |B ||A| �
3n

κ 3n
≈ 5.77 . . .

an, in particular, does not grow with n, leading to a linear-time rejection algorithm.

With Marni Mishna and Jérémie Lumbroso, we generalized this strategy [122] to more complex small
steps set S ⊂ [−1, 0, 1] × [−1, 0, 1], crucially allowing for an efficient generation in cases of reluctant
walks, i.e. walks having a natural attraction, called drift, towards the axes. This tendency to violate
the positivity condition in turn leads to a number of positive walks exponentially smaller than |S |n,
thus rejecting from unconstrained walks would yield an exponential expected time algorithm.

However, it as been shown in Duraj [61] that the number wn of positive 2D walks is such that wn ∈
Θ(αn nβ), for two constants α < |S | and β that only depend on the step set S. Moreover, this
exponential growth constant α is shared by a well-chosen half-plane, including the positive quarter-
plane, whose slope m can be determined numerically (or even exactly). When such a slope m is
rational, then the projection of the steps onto the chosen-plane is a rational number, and efficient
random generation algorithms for 1D positive walks can be used to generate walks in the half plane.
Those walks are then lifted onto the 2D plane, and an additional rejection step ensures positivity at the
2D level.

Since the exponential growth of the 1D and 2D walks coincide, then the rejection only contributes an
additional polynomial factor. In otherwords, the algorithm that generates 1D positivewalks and rejects
those that escape the 2D positive quadrant, has expected time per generation bounded by a polynomial
in n.

Finally, we consider the computational complexity, expressed in an arbitrary unit (#arith-
metic operations, bit-complexity [49]), and denoted as a random variable C.

In simple – yet frequent – cases, objects of a fixed size n are generated, and the time
complexity c(w) required by the generation of an object can be seen as deterministic and
only depending on n. Denoting by c(n) the complexity of generating objects in B, one
gets

� (C) � c(n)
�B (W ∈ A) (4.3)

More generally, the average-case complexity of the rejection algorithm follows

� (C) � �B (c(W))
�B (W ∈ A) (4.4)

where W is a random object in B. This formula also holds when the expected cost
of generating objects in A and B \ A differ, owing to the additivity, in expectation, of
(dependent) random variables.

Example 15: Anticipated rejection/Florentine algorithm for Motzkin walks [13]
An example of such an analysis can be found in the generation of prefixes of Motzkin walks, i.e.
random positive paths using↗,→ and↘ steps, associate to 2D vectors (+1,+1), (+1, 0) and (+1,−1)
respectively. The textbook algorithm, proposed by Barcucci, Pinzani and Sprugnoli [13], uses an
efficient anticipated rejection scheme. Its algorithmic part is straightforward, and simply consists,
starting from 0, of choosing ↑,→ or ↓with equal probability at each stage, rejecting the prefix as soon
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as a negative ordinates is reached, until a requested length n is reached.

The analysis of its average-case complexity is slightly more involved. The expected number of attempts
depends on the asymptotics of the numbers of positive paths (An) and unconstrained paths (Bn)
respectively. While we clearly have |Bn | � 3n, it is a folklore result that |An | ∈ Θ

(
3n√
n

)
, so the

probability of accepting an object is

�B (W ∈ A) � |A|n|B|n ∈ Θ(1/
√
n).

The expected number of attempts thus grows in Θ(√n) and a classic rejection scheme, generating a n
step unconstrained walk followed by a positivity test, would yield and overall complexity in Θ(n√n).

Anticipated rejection has a sizable impact on the expected generation cost, but its analysis cost is
slightly more involved. Denote by bn the number of positive walks of length n, and by dn the number
of positive walks ending in (n, 0). Being rejected before reaching n steps means having a positive prefix
ending at (k, 0) of size k < n steps, followed by a↘ step, with a cost of k rejections being incurred by
such a rejection. The expected cost of a generation is therefore given by

� (c(W)) �
∑
k<n

k
dk−1
3k

+ n
bn

3n
,

where the first term denotes the expected cost of (anticipated) rejections, and the second term denoting
the contribution of positive paths. It then follows from

dn ∈ Θ
(
3n

n
√
n

)
and bn ∈ Θ

(
3n√
n

)
,

that the first term is bounded by a constant, while the second grows like Θ(√n), and thus

� (c(W)) ∈ Θ(√n).

A direct application of (4.4) allows us to conclude that the overall average-case complexity isΘ(n). This
result is optimal (up to constants) since the number of bits required despite an expectedΘ(√n) number
of attempts.

A similar reasoning, and complexity speedup, more generally holds for a very large class
of combinatorial structures obtained by step-wise extensions, such that the extension of
a rejected object is itself rejected, as shown by Denise [48].

Example 16: Culminating paths [21]
Using anticipated rejection, to spare the cost of rejecting a fully-generated object, was crucial in the
design, with Mireille Bousquet-Mélou, of an efficient algorithm for the uniform generation of culmi-
nating paths [21]. A culminating path is a unidimensional walk which takes steps +1 and −1, starts at
position 0, and must both: 1) remain positive; and 2) be culminating, i.e. reaches its maximum height
on its final step.

Now consider the mirror image of a positive walk, obtained by reversing its sequence of steps, and
note that it is now culminating (but may not be positive). It follows that any culminating path w of
length n can be factored into w � w⊥.w>, where w⊥ is a positive path of size dn/2e, and w> is the
mirror image of some positive path of length bn/2c. In other words, the set Bn :� W⊥dn/2e ×W>bn/2c ,
whereW⊥n (resp. W>n) is the set of positive (resp. culminating) walks of length n, represents a superset
of An the set of culminating walks of length n.
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Using the kernel method, we could establish that |An | ∈ Θ(2n/n) [21], and it is a folklore result that
|W⊥m | � |W>m | ∈ Θ(2n/

√
n), so that the expected number of attempts is asymptotically

� (T ) �

���W⊥dn/2e
��� × ���W>bn/2c

���
|An | ∈ Θ (1) .

Moreover, the generation of a positive walk, or its reversal can be done in linear expected time using
anticipated rejection. Overall, we get that the simple algorithm that generates two half walks, reverses
the second one, and glues them together, restarting until the result is a culminating path, has linear
average-case complexity.

4.2 Rejecting in dimension one and then some. . .

4.2.1 (Combinatorial) Boltzmann sampling

Boltzmann sampling [60] can be seen as a special instance of rejection sampling. It
revisits the random generation of combinatorial objects of a given size n described by
a specification B. Instead of precomputing the number of objects accessible through
local alternatives using costly convolution products, it initially relaxes the size constraint,
drawing objects of any size in B until an object of suitable size is found.

More precisely, a Boltzmann generator emits an objectω ∈ B with probability

�x (W � ω) � x|ω|

B(x) (4.5)

where B(z) is the generating function of B and x is a real-valued Boltzmann parameter.
Such a distribution can be seen as a special instance of the Boltzmann distribution in
statistical mechanics, where the free-energy of an object ω ∈ B is arbitrarily set to
E(w) :� −kT log x|ω|. This leads to associating a Boltzmann factor of eE(w)/kT � x|ω|

to each object , in which one recognizes the distribution of Equation (4.5).

A careful tuning of x ensures a reasonable probability of acceptance and, in turn, an
average-case complexity scaling in O(n2) for generating an object of size n (generating
an object of approximate size in [(1 − ε) · n, (1 + ε) · n] can be performed in Θ(n) time).

The appeal of Boltzmann samplers to a large subset of the Analysis of Algorithms (AOfA)
community, can be attributed to two main factors:

• The elegance, and relative simplicity, of its algorithmic aspects: As shown in Ta-
ble 4.1, generators for Cartesian products are deceptively simple to express. Their
implementation, however, requires an evaluation of the Boltzmann Oracle, the
value of the generating functions. While this task is relatively trivial when a closed
form (or, generally, computable) formula is known for the generating function, its
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Rule type Generating function Boltzmann generator ΓVx
Product v→ a.b V(z) � A(z) × B(z) Return ΓAx.ΓBx

Union v→ a, v→ b V(z) � A(z) + B(z) If Bernoulli(A(x)/V(x)) : Return ΓAx
Else : Return ΓBx

Terminal v→ t V(z) � z Return t
Epsilon v→ ε V(z) � 1 Return ε

Table 4.1: Uniform Boltzmann generators for context-free languages.

automation for general specifications is more involved, yet possible using a mix-
ture of formal calculus and numerical iterations [145]). The optimization of the
Boltzmann parameter can also be addressed in its full generality using efficient
numerical iterations[144];

• Its strong connection with analytic combinatorics: The time complexity of Boltz-
mann samplers is strongly related to the distribution of lengths under the Boltz-
mann distribution. The design of Boltzmann samplers thusmotivates extensions of
the symbolic method to complex operators (e.g. box-product, shuffle product. . . )
that lead to generic random generation principles, and to deeper characterizations
of the rich singularities that arise from those operators.

4.2.2 Multidimensional Boltzmann sampling

In collaboration with Olivier Bodini [18], we introduced1 and studied an extension of
Boltzmann sampling, dubbedmulti-dimensional Boltzmann sampling. This technique
addresses cases where one wishes to express cardinality constraints on distinguished
atoms/letters (or combination thereof). For instance, given a language L over an alphabet
Σ :� {a,b, c}, one may be interested in the subset of L where the number occurrences
of a,b and c are equal, reducible to a pair of constraints {a � n/3;b � n/3}. Enforcing
such constraints generally escapes the expressiveness of classic operators of the symbolic
method, preventing the definition of a specification and, in turn, the use of generic
generators.

4.2.2.1 General principle

The idea of generalizing the Boltzmann rejection scheme to higher dimensions stems
from the observation that additive parameters (e.g. used to capture the #occurrence of
atoms/letters, #use of production rules. . . ) occurring in combinatorial specifications
tend to asymptotically follow normal distributions. Moreover, those distributions have

1This natural extension was already discussed in the conclusion of the seminal Boltzmann paper [60],
yet remained unexplored for almost a decade prior to our work.
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linear mean and variance. Such distributions are typically robust to the introduction
of weights, also called parameters in subsequent work, which can be used to shift the
means, thus providing a probabilistic control over the average composition of generated
objects.

Once fitted to match desired expectations, a rejection algorithm performs a weighted
random generation, only accepting objects with suitable composition. The concentration
of the distribution usually induces a polynomial expected number of attempts, typically
growing in Θ(nk/2)when k is the number of cardinality constraints. Let us illustrate our
general approach with a brief introductory example.

Example 17: Multidimensional Boltzmann sampler for balanced Motzkin language
Consider the Motzkin language M ⊆ {(,), •}? of well-parenthesized expressions interleaved with
dots, formally defined as :

M �
{
ω ∈ {(,), •}? | |ω|( � |ω|) and |ω′ |( ≥ |ω′ |),∀ω′ v ω (ω′ prefix ofω)} .

This language is context-free, and generated by the grammar:

S→ ( S ) S | • S | ε

Now, consider the balanced Motzkin languageM2B the subset of the Motzkin words featuring exactly
50% of dots (•), i.e.

M2B �

{
ω ∈M | (|ω| ≡ 0 mod 2) and |ω|• � |ω|

2

}

Clearly, M2B is not context-free. Moreover, the targeted 1/2 proportion of dots (•) characters differs
substantially from the 1/3 proportion expected in large uniformly-distributed Motzkin words [50]. It
follows fromDrmota’s theorem [56] that a naive rejection algorithm, generating words of length n from
M until a word inM2B is obtained, would require a number of attempts growing exponentially with
n.

However, as previously described [50], a weight π ∈ �+ can be associated to the dot (•), to induce a
weighted distribution ontoM, in which the emission probabilities become

�π (W � ω) � π|ω|•∑
ω′∈M π|ω′ |•

. (4.6)

Generating within such a distribution can be performed in time essentially O(n logn), after a precom-
putation in O(n1+o(1)), using generic generators [50].

The expected proportion of dots then becomes a function of π, allowing the user to shift the mean by
changing the value of π. Namely, the asymptotic proportion of dots is given by

�π (|W |•) � π

2 + π
(1 +O(1/√n))

and thus achieves the targeted 1/2 for π � 2. More importantly, if follows from the multidimensional
version of Drmota’s theorem [56] that, within the weighted version ofM, the number of dots asymp-
totically follows a normal distribution with mean n/2, variance σn, for some positive constant σ. The
probability of generating a word inM2B is thus in Θ(1/√n).

Now, consider the rejection algorithm which repeatedly generates words in M of length n from the
weighted distribution (4.6), setting π � 2, until a word inM2B is obtained. This algorithm is uniform
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within the restriction ofM2B towords of sizen. Moreover, its expected number of attempts is inΘ(√n),
leading to an overall complexity in Θ(n√n logn).

4.2.2.2 Problem statement and algorithm

Theproblemaddressed bymultidimensional Boltzmann sampling is the uniform random
generation of words/objects of size n satisfying:

• Specification/grammar C for a combinatorial class over atoms t1, t2. . . (a.k.a. let-
ters, or terminal symbols);

• Composition constraints of the form
{ |W |ti
n

� ri ∈ [0, 1]
}k
i�1

(4.7)

for a subset of k atoms, denoted {t1, . . . , tk} for the sake of convenience.
A multidimensional Boltzmann sampler [18] then proceeds in three stages:

1. Calibration of weights/parameters π1,π2 . . ., chosen such that
{
µi :�

�π1,π2... (|W |ti)
n

� ri ∈ [0, 1]
}k
i�1

(4.8)

2. Random generation of objects from C within the π-weighted distribution

�π1,π2... (W � ω) �
∏k
i�1 π

|ω|Zi
i

[zn]C(z;π1,π2, . . .) (4.9)

where C(z;u1,u2 . . .) represents the multivariate (weighted) generating function
marking the occurrences of the atoms

Cπ(z;u1,u2...) �
∑
w∈C

z|w|
k∏
i�1

π
|w|ti
i

u
|w|ti
i

(4.10)

3. Rejection of objects having unsuitable composition (and size) until adequate ones
are produced.

The requirement of an exact size n for the generated objects can be relaxed to accept
words having more diverse lengths in [(1 − ε) · n, (1 + ε) · n] for some constant ε > 0.
Similarly, wordswhose composition departs slightly from the expressed constraints, such
that #ti/n ∈ [ri − ε′, ri + ε′], can be deemed acceptable.
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Remark 4.2.1: Note that these relaxed statements only enforce uniformity within a given
size/composition class, and do not constrain the respective probabilities of two objects having
different length/composition. Such a slight bias is generally deemed acceptable in contexts where
statistical estimates are computed from generated structures.
Moreover those emission probabilities could, in principle, be corrected by a subsequent rejection
to ensure an overall uniform distribution, as described above in Equation (4.2). However, this
additional rejection would increase the expected complexity by an exponential factor, roughly equal
to (∏imax(πi, 1/πi))2εn.

Weight calibration. This step can be performed using two distinct approaches:

• Symbolically, it is often possible to find a simple expression relating the asymptotic
proportion of each atom to the weight. For instance, in context-free languages
generated by strongly-connected grammars, the dominant singularity is always
of square-root type, and the dominant singularity ρπ1,π2... can be expressed as a
function of the weights. The expected composition is then given by

lim
n→∞� (|W |ti/n | |W | � n) � −πi

∂
∂πi
ρπ1,π2...

ρπ1,π2...
,∀i ∈ [1,k].

This system can then be solved to obtain a closed-form formula, expressing the
solution weights as a function of the targeted proportions, as shown in Example 17
and [50].

• Numerically, an iteration was initially proposed [18], whose efficient convergence
was conditioned by the choice of a suitable initial weight vector.

This work was later revisited by Bendkowski, Bodini and Dovgal [15], leading
to a more general and efficient solution. In their work, the authors were able to
reformulate the calibration as a convex optimization problem, solved using the
interior-point method of Nesterov and Nemirovskii [140] in time polynomial to the
inverse of the required precision. The authors completed their studywith estimates
for the precision required to ensure a good acceptance probability, leading to an
overall polynomial tuning of multidimensional Boltzmann sampling.

Whenever feasible, a symbolic approach is arguablymore elegant and efficient, leading to
a trivial algorithm for computing the weights. Unfortunately, it is easy to find examples
where such a strategy involves solving systemswhose complexity lies beyond the current
capacities of symbolic mathematical engines (e.g. Maple, Mathemagix or Mathematica).
Moreover, it does not represent a good approach for languages consisting of words of
fixed size (e.g. representing the search space of a combinatorial problem for a given
instance), since the associated generating functions typically have very complex close-
form expressions (if any), are hard tomanipulate, and have infinite radius of convergence.
In such cases, numerical iterations represent the method of choice.
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Rule type Precomputation Recursive generator ΓVn

Product v→ a.b vn ← ∑n
i�0 ai × bn−i

Choose K with prob.
� (K � k) � ak×bn−k

vn
Return ΓAk.ΓBn−k

Union v→ a, v→ b vn ← an + bn
If Bernoulli(an/vn) : Return ΓA

Else : Return ΓBx

Terminal v→ t vn ←
{
π(t) if n � 1

0 otherwise
Return t

Epsilon v→ ε vn ←
{
1 if n � 0

0 otherwise
Return ε

Table 4.2: Weighted generators for context-free constructors, with π(t) denoting the
weight associated with a terminal letter/atom t. Remark that, in the case of products,
the convolution can be restricted to values of i in [1,n − 1] if the grammar is in ε-
free form. Such a form can be assumed without loss of generality, and greatly eases
the implementation by avoiding ill-defined equations, associated with non-productive
circular dependencies in the precomputation.

Weighted random generation. Generating within a weighted distribution is arguably
the easiest part of multidimensional Boltzmann sampling.

Using the recursivemethod, weights can straightforwardly incorporated in classic recur-
rences, allowing to precompute the weights accessible through local alternatives. Those
weights can, in turn, be used to derive probabilities that induce the weighted distribu-
tion described in Equation (4.9). Table 4.2 summarizes some of the constructors used
in the context of context-free languages. The computation of those recurrences can be
optimized using properties of holonomic generating functions, leading to an overall com-
plexity inO(mn logn+n1+o(1)) for the generation ofmwords of length n in the weighted
distribution of Equation (4.9), as discussed in Denise et al [50].

Weighted Boltzmann samplers can also be adapted from their uniform counterparts. To
that purpose, it suffices to substitute, in the generators of Table 4.1,weighted generating
functions defined as

Cπ(z) �
∑
ω∈C

z|ω|
k∏
i�1

π
|ω|ti
i

, (4.11)

instead of the ordinary ones used within classic Boltzmann sampling. As shown in
Denise et al [50], such weighted generating functions are the solutions of systems of
functional equations that is almost identical to those of Table 4.1, except for the addition
of weights within terminal rules v→ t, namely

(Ordinary gen. fun.) C(z) � z → (Weighted gen. fun.) Cπ(z) � π(t) × z (4.12)

where π(t) denotes the weight of an atom t. For any given weight vector, the Boltzmann
parameter calibration can
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4.2.2.3 Average-case complexity analysis

A usual with rejection-based samplers, the worst-case complexity is infinite, so we in-
vestigate the average-case complexity as the relevant metric to assess the efficiency of a
sampler. In general, the probability to draw an objectω ∈ C having suitable composition

(|ω|t1 � n · r1, |ω|t2 � n · r2 . . .) ∈ �k

in the atoms (t1, t2 . . .) is given by

�(|W |ti � n · ri,∀i ∈ [1,k] | |W | � n) �

∑
ω∈C s.t. |ω|�n,
|ω|ti�ri·n,∀i∈[1,k]

k∏
i�1

π
|ω|ti
i

∑
s.t. |ω|�n

k∏
i�1

π
|ω|ti
i

(4.13)

�
[znun·r1

1
un·r2
2

. . .]Cπ(z;π1.u1,π2.u2...)
[zn]Cπ(z;π1,π2...) (4.14)

whereCπ(z;u1,u2...) represents themultivariate generation function introduced inEqua-
tion (4.10). The expected number of attempts is simply obtained as the inverse of the
probability of acceptance, i.e. by exchanging the numerator and denominator in Equa-
tion (4.14).

Simple type grammars. For simple type grammars, associated with strongly con-
nected aperiodic specifications, the multivariate version of the Drmota Theorem [56]
applies toweighted specifications [50], and the composition in the k elected atoms follows
a k-dimensional Gaussian limiting distributions, centered on the expectation of Equa-
tion (4.7) [56]. More precisely, the coefficients of the weighted multivariate generating
function admit the following asymptotic equivalent:

[znum1

1
um2

2
. . .]Cπ(z;π1 u1,π2 u2 . . .) �

κπ1,π2... ρ
−n
π1,π2...

2k/2 nk/2 n
√
n

(
e−nΞπ1,π2... +O

(
1√
n

))

where κπ1,π2... is a constant of both n and k, ρπ1,π2... is the dominant singularity, and

Ξπ1,π2... :�

k∑
i�1

k∑
j�1

δ
(i,j)
π1,π2... × (µi −mi/n) × (µj −mj/n). (4.15)

The Ξπ1,π2... term essentially grows quadratically with k, and depends both on the
deviation of the requested composition to the expected one (µ1,µ2 . . .), and of values
δ
(i,j)
π1,π2... that are related to the variance/co-variance matrix of the system. Remark that,

upon a successful clibration of the weights (µi � ri), Ξπ1,π2... vanishes at (mi � n · ri)ki�1
so one has

[znun·r1
1

un·r2
2

. . .]Cπ(z;π1 u1,π2 u2 . . .) �
κπ1,π2... ρ

−n
π1,π2...

2k/2 nk/2 n
√
n

(
1 +O

(
1√
n

))
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Moreover from the Drmota-Lalley-Woods Theorem [56, 112, 202] (see Theorem ??) we
know that similar conditions lead a square root type singularity to dominate the ordi-
nary generating function, inducing the following universal asymptotic equivalent for the
coefficients

[zn]Cπ(z;π1,π2 . . .) �
λπ1,π2... ρ

−n
π1,π2...

n
√
n

(
1 +O

(
1√
n

))
.

The expected number of attempts probability of drawing an object of suitable composi-
tion, assuming successful calibration is then asymptotically equivalent to

�π1,π2,...(T ) �
[zn]Cπ(z;π1,π2 . . .)

[znunr1
1

unr2
2

. . .]Cπ(z;π1 u1,π2 u2 . . .) (4.16)

� 2k/2 nk/2
(
λπ1,π2...

κπ1,π2...
+O

(
1√
n

))
∈ Θ

(
2k/2nk/2

)
. (4.17)

4.2.3 Beyond simplicity

The validity of those complexities extends beyond simple type grammars, and applies to
any specification whose associated dominant singularity is unique, and arises from the
contribution of a single connected component for the chosen weight assignment. It also
applies to periodic systems such that, beyond a certain size N

[zn]C(z) , 0⇔ n ≡ 0 [p] for all n > N

for someperiodp > 1 through a simple rewriting of the grammar, coupledwith a suitable
change of variables.

However, general extensions of those complexities beyond strongly-connected systems
appear very challenging. Indeed relaxing the connectivity constraint gives rise to many
counter-examples, and may even induce bimodal distributions that cause an exponential
dependency onn for the number of attempts. In fact, wewere able to design an algorithm
which constructs and return a specification whose limiting distribution for a dedicated
atom follows an arbitrary discrete (univariate) distribution, specified by a user as part of
the input [12].

Remark 4.2.2:Empirically, in theworst case scenario of an abysmally small probability of acceptance,
estimates for the expectedwaiting time can be refinedduring the execution of the rejection algorithm.
Upon reaching the conclusion of impending doom, an exact recursive algorithm [49] can then be
elected.
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4.3 Applications of multidimensional sampling

As noted above, failure to satisfy simplicity only (potentially) affects the complexity, but
does not bear any consequence on correctness (uniformity). One can then take a leap
of faith, and adopt the multidimensional Boltzmann paradigm in contexts where the
concentration of the distribution is not guaranteed in general (but typically does hold).

In the context of RNA design (see Chapter 3 for further details), we argue for a change
of paradigm, where design is approached as a random generation problem [88, 90, 117,
158, 160, 210]. Our methods generally rely on a polynomial-time dynamic programming
algorithm to compute the dual partition function of a target structure S?

Z′S? �

∑
Sequencew such that
w compatible with S?

e−β.Ew,S?

where Ew,S? represents the free-energy of S? assuming a nucleotide sequence w, and
β represents an arbitrary constant. A stochastic backtrack algorithm reinterprets the
recurrences into a rewriting system allowing the random generation of a compatible
with emission probability

� (w | S?) � e
−β.Ew,S?

Z′
S?

.

4.3.1 Controlling the GC-content [88, 90, 158, 160, 192, 193]

The GC-content of a sequence w simply represents its proportion of Guanines and
Cytosines, defined as

GC(w) � |w|G + |w|C
|w| .

It is observed to vary substantially (16% to 75%) across genomes [94], or even between
coding and non-coding regions within certain species [99], resulting from a selective
pressure on the overall stability of RNAs.

Earlier methods for RNA design did not identify this parameter as an objective, leading
to a strong bias towards high GC-contents observed among designed sequences, as
revealed by our studies [158, 160]. Even more troublesome, was the observation that
the GC-content of designed sequences typically appears Normal-distributed with linear
variance. This means that a rejection strategy from the output of those tools would
yield exponential runtime whenever the targeted GC-content does not coincide with the
average GC-content of their output.

Fortunately, a multidimensional sampling strategy can be used to shift the expected GC-
content of designed sequences to a given target. To that purpose, the dynamic program-
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ming recurrences used for computing Z′ can be adapted through a minor modification
to compute

Z′γ,S? �

∑
Sequencew such that
w compatible with S?

e−β.Ew,S? × γGC(w)

whereγ is simply a positiveweight (akin toπt above). Amirrored change in the stochastic
backtrack allows to sample the GC-weighted distribution

�γ (w | S?) � e
−β.Ew,S? × γGC(w)

Z′
γ,S?

.

This allows to shift the expected GC-content to a targeted GC-content g ∈ [0, 1] by first
calibrating γ, e.g. using a binary search, and then perform rejection sampling to restrict
the output to sequences having a targeted GC-content.

The complexity analysis here becomes even harder to define than the above average-
case analysis, as the GC distribution now depends on the target structure S?. One
way to measure the complexity is to consider, for any size n, the worst average-case
complexity over all possible structures over n nucleotides. In this setting, we could not
formally establish the asymptotic complexity, but strongly suspect the expected number
of attempts to grow likeO(√n) in the worst-case. Indeed, popular energy models assign
free-energy contributions to loops depending on their content, meaning that the GC
contributions of two non-adjacent loops can be treated as independent random variables.
We thus expect such limited, non-transitive, dependencies to allow an application of the
Central Limit Theorem, and conclude on the normal distribution of the GC-content
(sum of Θ(n) almost-independent variables).

Similar strategies were used for controlling the GC-content in the design of algorithms
for probing evolutionary landscapes [192, 193], and for advanced versions of design
requiring compatibility with multiple targets [88, 90].

4.3.2 Dinucleotides content of protein-coding RNAs [209].

Since the potential of sequences to adopt a given thermodynamic behavior cannot be
easily captured at the generation stage, background models for RNAs usually include
the conservation of a given dinucleotides (2-mers) content, defined for a sequence w as
the vector

d(w) � (dAA(w),dAC(w),dAG(w),dAU(w), . . . ,dGG(w))
where dxy(w) denotes the number of occurrences in w for the 2-mer xy ∈ {A,C,G,U}2.
This property was essentially elected as an invariant, as it was empirically shown to act
as a good proxy for the thermodynamic stability of RNAs [37]. Random RNA sequences
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preserving a given 2-mers content can be uniformly generated as random Eulerian path,
using the dinucleotide shuffling algorithm of Altschul and Erickson [6].

However, in the context of studying a protein-coding RNA m, a background model
should ideally capture all knownproperties, to assess the statistical significance of a given
phenomenon. Therefore, in addition to the 2-mers content, emitted sequences should
also preserve the reference protein P(m), encoded as an amino-acids sequence. This
constraints allows for substitutions of codons (non-overlapping 3-mers), each encoding
an amino-acid, such that the resulting sequence m′ is said to be synonymous to m. In
short, given a coding sequence m, |m| ≡ 0 [3], we must generate, uniformly at random,
one or several RNA sequences synonymous tom′ such as

d(m) � d(m′) and P(m) � P(m′).

Here, P(·) denotes the conversion of a coding RNA into a sequence of amino acids,
achieved by a simple morphism

P(xyz.w) → aaxyz.P(w) and P(ε) → ε

where aaxyz represents the amino-acid associated with the codon xyz ∈ {A,C,G,U}3.

Due to the highly non-sequential nature of the Altschul and Erickson algorithm [6], there
is little hope of adapting it to enforce synonymous substitutions. However, synonymous
sequences can be modeled as a simple linear language L(m), defined by

L(ε) � ε and L(xyz.w) � {x′y′z′ | aax′y′z′ � aaxyz} × L(w).

A predefined 2-mers content can then be enforced using multidimensional Boltzmann
sampling, using 15 dimensions to represent the number of occurrences of each but
one of the 2-mers (the last one being indirectly captured as the complement to the
length). Aweights vector µ :� (µxy)xy∈{A,C,G,U}2 is then introduced, defining a weighted
distribution

�µ (m′ | m) �
∏
xy∈{A,C,G,U}2 µ

|m′ |xy
xy

Zµ,m
(4.18)

where
Zµ,m ≡

∑
m′ s.t.

P(m)�P(m′)

∏
xy∈{A,C,G,U}2

µ
|m′ |xy
xy

Theabovepartition function canbe computed in linear-timeusingdynamicprogramming

Zµ,abc.w;α :�
∑

a′b′c′∈{A,C,G,U}3
s.t. aaa′b′c′�aaabc

Zµ,w;c′ ×
∏

xy∈{A,C,G,U}2
µ
|αabc|xy
xy

with Zµ,ε;α :� 1 and Zµ,m ≡ Zµ,m;ε. A stochastic sampling algorithm can then be
adapted in a straightforward manner to sample with respect to the distribution (4.18),
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and coupled with a rejection scheme to obtain the algorithm at the core of the SPARCS
method [209]. Complexity-wise, the 15 degrees of freedom induce an expected Θ(n15/2)
attempts for each admissible sequence, under the assumption of a Normal multidimen-
sional distribution. In practice, we found that a tolerance of a couple of occurrences for
each 2-mers was sufficient to induce a linear empirical runtime for the method.

4.4 Redundancy in weighted sampling and countermeasures

Redundancy within of sampled sets of objects constitutes a possible shortcoming of
methods relying on aweighted sampling. Indeed, as argued in Section 2.3.3, redundancy
is generally useless in inferential statistics whenever the emission probability of a sample
can be exactly determined a posteriori. However, the extent to which redundancy prevails
quantitatively within random samples, and thus has a measurable adverse effect on the
efficiency of estimators, had not been the object of precise inquiries beyond the seminal
contribution of Flajolet, Gardy and Thimonier [70].

Let us first define formally the key concept of redundancy.

Definition 4.4.1 (Redundancy of sample):Given a collectionΩ, the redundancy
of a sample (e1, . . . , eM) ∈ ΩM is defined as

R (e1, e2, . . . , eM) � M

|(e1, e2, . . . , eM)| − 1 (4.19)

4.4.1 Collisions in weighted languages [58, 78]

The study of the expected redundancy is very much connected to the waiting times of
several events occurring in probabilistic allocations. The Birthday Paradox (BP) problem
represents one such instance, and considers the time of the first collision.

Definition 4.4.2 (Birthday paradox): Given a collectionΩ equipped with a prob-
ability distribution, the Birthday BΩ is defined as

BΩ � � (M | R(E1, . . . ,EM−1) � 0 ∧R(E1, . . . ,EM) > 0)

where Ei are random independent variables inΩ.
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For instance, in the uniform distribution overΩ, one has

� (Collision at time i | {e1, . . . , ei−1}) �
|{ej}i−1j�1 |
|Ω| <

BΩ
|Ω| ,∀i ≤ BΩ

and it follows that, after BΩ generations, one has

� (#Collisions) < BΩ × BΩ
|Ω| ∈ O(1)

and we conclude that � (R(e1, . . . , eBΩ)) → 0 for asymptotically large collectionsΩ.

Another setting of interest is that of the Coupon Collector (CC) problem, the time which
considers the expected sample size before the full collection is obtained.

Definition 4.4.3 (Coupon Collector):Given a collectionΩ equippedwith a prob-
ability distribution, the Coupon Collector CΩ is defined as

CΩ � � (M | {e1, . . . , eM} � Ω) (4.20)

It can be shown that the expected redundancy is an increasing function of M, so it is
natural to bound the redundancy is by that of the full collection, namely

� (R(e1, . . . , eM) | {e1, . . . , eM} � Ω) � CΩ
|Ω| − 1.

In collaboration with Danièle Gardy and Jérémie du Boisberranger [58, 78], we revis-
ited these quantities attempting to obtain precise specialization of the general results of
Flajolet, Gardy and Thimonier [70] in the specific context of weighted languages.

4.4.1.1 Main results

LetC be a specification generating a languageL, with a collection π of weights associated
with atoms. We denote by π∇n (resp. π∇n) theminimal (resp. maximal)weight of a word
in Ln. Consider the weighted generating function

Cπ(z) �
∑
ω∈L

πiz
|ω|

�

∑
n≥0

µπ,nz
|ω|

and denote by ρπ its dominant singularity. Finally let us define the k-th moment of a
π-weighted distribution as

αk,n �

mn∑
i�1

pki �

∑
w∈Ln π(w)k
µπ,nk

�
µπk,n

µπ,nk
. (4.21)

We consider the following conditions:
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C1 Diversity: The max. probability π4n/µπ,n of a word in Ln is exponentially decreas-
ing with n;

C2 Log-positive weights: For each terminal symbol t ∈ Σ, πt > 1;

C3 Bounded dependency: For any rational number k > 1 and any weight vector π
such that Condition C2 holds, ρπk < ρπk holds.

Theorem 6 (Birthday paradoxes in weighted languages): Under condi-
tions C1, C2 and C3, the birthday paradox of Ln is given by

BLn;π ∼
√
π√

2α2,n

�
µπ,n
√
π√

2µπ2,n

∈ Ω (γn) , γ :�
ρπ√
ρπ2

> 1

In other words, the first collision typically occurs after a time exponential on n (albeit
with typically small base), inducing essentially zero redundancy before BΩ;π samples.

Theorem 7 (Coupon collector for weighted languages): The expected num-
ber of generations CLn;π needed to get all words in Ln is such that

µπ,n

π∇n
≤ CLn;π ≤ 2 ·Hmn ·

µπ,n

π∇n
(4.22)

This result is a direct corollary of Berenbrink and Sauerwald [16], and was later refined
in Du Boisberranger et al. [58]. In particular, Equation (4.22) implies that, for a vast
collection of languages the expected redundancy can grow exponentially with n for a
given targeted occupancy.

Remark 4.4.1 (Redundancy of RNA sampling (homopolymer model)): Inparticular, this results
impacts any specifiable family of Boltzmann-weighted RNA secondary structures (homopolymer
models), forwhichone typically hasπ∇n ∈ O(1). It implies that,when the full collection is reached, the
expected number of copies of a secondary structure essentially grows (up to a possible Θ(n) factor)
like µπ,n/|Ln | ∈ Θ(αn) with α > 1. This forbids using rejection-based generation strategies for the
non-redundant generation of large sample sizes, since rejections would then become overwhelming.

Moreover, denote byWn,π the weight classes in Ln, such that

Wn,π :� {(w,m) | ω ∈ Ln : π(ω) � w andm � |{ω ∈ Ln | π(ω) � w}|} .

Then the expected number of distinct elements after k generations can be computed.
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Theorem 8 (Distinct weighted words): The expected number of distinct words
after k generations is given by

� (|{e1, . . . , ek}|) �
∑

(w,m)∈Wn,π

m ·
(
1 −

(
1 − w

µπ,n

)k)
�

∑
(w,m)∈Wn,π

m ·
(
1 − e− w

µπ,n
k
)
+O(1).

A similar results holds for the coverage C of a sample (e1, . . . , ek), defined as

C(e1, . . . , ek) �
∑
e∈{e1,...,ek} π(e)

µπ,n
(4.23)

which represents the proportion of the distribution that has already been sampled.

Theorem 9 (Coverage of weighted words): The expected coverage of a set of
distinct words after k generations is given by

� (C(e1, . . . , ek)) �
∑

(w,m)∈Wn,π

m · w
µπ,n

·
(
1 −

(
1 − w

µπ,n

)k)
.

Since there are atmost (n+1)|Σ| different compositions/classes ofweights, the expressions
of Theorems 8 and 9 can be computed in polynomial time algorithms from theweighted-
classified partition functions µπ,n, also known as the density of states.

Since redundancy can become overwhelming, it is natural to pursue algorithmic coun-
termeasures. More precisely, the above result shows that the algorithmic problem of
sampling without replacement from a weighted language cannot be efficiently tackled
using rejection, motivating an unranking approach [118], or a modified instance of the
recursive method [118, 147], illustrated in Section 2.3.3 and used to build RNA kinetics
landscapes [133].
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Chapter 5

Asymptotic properties of RNA secondary
structures and other trees

The tree-like nature of RNA secondary structures not only makes it an excellent play-
ground for dynamic programming, but also enables the study of its generic asymptotic
properties. Suchworkgoback to the very earlydays ofRNAbioinformatics, withpioneer-
ing works fromWaterman [194], Zuker and Sankoff [212], Viennot and Vauchaussade de
Chaumont [187], Hofacker [96], Bundschuh andHwa [24], Nebel [139], Clote [36], Reidys
and Jin [104], and others too numerous to mention exhaustively. While initially moti-
vated by algorithmic [194] and evolutionary [212] considerations, the field has gradually
turned towards questions in statistical mechanics, adressing the behavior of RNA at the
thermodynamic equilibrium, as exemplified by the work of Bundschuh andHwa [25]. In
this context, asymptotic enumerations can be used to elucidate the equilibriumproperties
of random large homopolymers, including their dependency to changes of temperatures
(phase transitions [23, 26]).

In the homopolymer model, nucleotides are anonymized, so that any pair can form
base pairs, inducing structural motifs that are equally contributing to the stabilization of
their conformation. Implicitly, this amounts to coarsely abstract an RNA as its length n.
While such a simplificationmay appear bold at first sight, many of the properties derived
from this model are robust to the incorporation/perturbations of the energy model, or
can be used as a first step to recover the dependency on an actual nucleotide content
(heteropolymer model) [24, 212].

This chapter summarizes some contributed asymptotic analyses, using techniques in
enumerative and analytic combinatorics, to address questions in algorithmic analysis
and design [33, 148, 150], RNA thermodynamics [38], network properties [180], and
design/evolution [206]. In the interest of self-completeness, we start by reminding basic
tools and notions. A magisterial exposition, including much more versatile techniques,
can however (and should!) be sought in the Flajolet/Sedgewick bible [69].
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Outline. In this short chapter, I first remind in Section 5.1 some basic concepts, tools
and principles in analytics combinatorics and, in Section 5.2, I describe the application of
those techniques to selected problems involving the secondary structure of RNA.

The following summarizes, and attempts to unify, contributions described within the
following list of articles published in journals and/or presented at conferences.

Associated contributions

W. A. Lorenz, P. Clote, and Y. Ponty. Asymptotics of RNA shapes. Journal of Computational Biology, 15(1):
31–63, 2008

Y. Ponty. Efficient sampling of RNA secondary structures from the Boltzmann ensemble of low-energy: The
boustrophedon method. Journal of Mathematical Biology, 56(1-2):107–127, 2008

Y. Ponty and C. Saule. A Combinatorial Framework for Designing (Pseudoknotted) RNA Algorithms. In WABI
2011, Saarbrucken, Germany, 2011

P.Clote, Y. Ponty, and J.-M. Steyaert. Expecteddistance between terminal nucleotides ofRNAsecondary structures.
Journal of Mathematical Biology, 65(3):581–99, Sept. 2012

C. Chauve, J. Courtiel, and Y. Ponty. Counting, generating, analyzing and sampling tree alignments. International
Journal of Foundations of Computer Science, 29(5):741–767, 2018

D. Surujon, Y. Ponty, andP.Clote. Small-worldnetworks andRNAsecondary structures. Journal of computational
biology : a journal of computational molecular cell biology, 26(1):16–26, Jan. 2019

H.-T. Yao, C. Chauve, M. Regnier, and Y. Ponty. Exponentially few RNA structures are designable. In ACM-BCB
2019, pages 289–298, Niagara-Falls, United States, 2019. ACM Press

5.1 Basic tools in enumerative and analytic combinatorics

Analyzing the asymptotic enumerative behavior of a combinatorial class can be done by
the following four-step program, referred to as the symbolic method in the pioneering
work of the late Philippe Flajolet:

1. Find a unambiguously grammar/specification that generates the objects;

2. Translate the grammar into a system of functional equations;

3. Solve the system and identify the dominant singularities;

4. Use some automatic Theorem to extract the leading term for the asymptotic equiv-
alent for the number of objects of size n.

5.1.1 Context-free languages.

A combinatorial class is a, possibly infinite, setAwhere every object a ∈ A has a length
|a|, and such that the restriction An to objects of A having any given length n is finite.
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Combinatorial classes are usually described by a specification, which can be interpreted
as a generative process. Among such processes are context-free grammars, abstract
derivation systems formally defined as shown below.

Definition 5.1.1 (Context-free grammar): A Context-free grammar is a 4-tuple
G � (N ,Σ,R,S0)where:

• N is a set of intermediate symbols called non-terminal symbols;

• Σ is a set of letters, also called terminal symbols, used for encoding our
combinatorial objects;

• R is a set of productions rules of the general form S→ w, where v ∈ N is a
non-terminal symbol, andw is a word composed of non-terminal or terminal
symbols. When the right-hand side is empty (|w| � 0), the rule is said to
generate the empty word ε;

• S0 is the axiom, a special non-terminal fromwhich the generation is initiated.

A derivation results from the application of a production rule S→ w inR, replacing the
non-terminal S on the left-hand side with the right-hand side w. Starting from w :� S0,
one can iterative choosing a production S′ → w′ for the leftmost non terminal S′ in w,
replacing its occurrence with w′, until w only consists of terminal letters only. One then
obtains a tree-like sequence of choices, called a parse tree. Considering (implicitly) all
possible parse trees leads to a, possibly infinite, set LG of sequences, which is called the
language of G and can be interpreted as a combinatorial class.

Definition 5.1.2 (Generated language): The language LS of a non-terminal S ∈
N within a context-free grammar G � (N ,Σ,R,S0) is the set LS such that

∀t ∈ Σ : Lt � {t} and ∀S ∈ R : LS �

⋃
(S→w)∈R

|w|∏
i�1

Lwi (5.1)

where
∏

is the Cartesian product of languages, i.e. all ordered concatenations of
words from the sets, defined as {ε} for an empty word w � ε.

The language of a CFG grammar G is defined as LG :� LS0 .

Any grammar can be transformed into an equivalent Chomsky Normal Form (CNF)
grammar, where the rules associated to each non-terminal S ∈ N are restricted to the
following cases:

• Product type non-terminal S→ T .Uwhere T ,U ∈ N ;

• Union type non-terminal S→ T and S→ U, where T ,U ∈ N ;
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• Terminal type non-terminal S→ t, where t ∈ Σ is a terminal symbol;

• Epsilon type non-terminal S→ ε, denoting the empty word;

Next comes the crucial notion of unambiguity of a grammar, which guarantees a unique
way to produce each word in LG.

Definition 5.1.3 (CFG Unambiguity): CFG G � (N ,Σ,R,S0) is unambiguous if
and only if one of the following (equivalent) statements is true:

• there exists a bĳection between the parse trees and the elements of L;
• all parse trees produce distincts words over the terminal alphabet;

• the unions in Equation 5.1 are disjoint, and anywordproducedby aCartesian
products can be uniquely factored into its parts.

Another way if For the rest of this exposition, we are going to assume that the considered
grammars are unambigous and. Moreover, this time without loss of generality, we will
assume that our grammars do not have infinite cycles of unit productions:

S→ T → · · · → S

Those are non productive and can be detected and eliminated by standard algorithms

5.1.2 Enumeration and generating functions.

Withinunambiguousgrammars, one can easily characterize the set ofwordsLS generated
from each non-terminal S ∈ N and the number sn of its elements of length n, depending
of its type:

• Product S→ T .U: Each word generated from S can be decomposed into elements
in LT and LU of length i and n − i respectively. The grammar is unambiguous, so
this decomposition is unique, so we have

sn �

n∑
i�0

ti × un−i;

• Union S→ T and S→ U: The unambiguity of the grammar implies that the union
is disjoint, so we have sn � tn + un;

• Terminal S→ t: Generates {t}, so we have s1 � 1 and sn � 0,∀n , 1;

• Epsilon S→ ε: Generates {ε}, so we have s0 � 1 and sn � 0,∀n , 0.

We can now introduce the key tool of enumerative combinatorics.
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Definition 5.1.4 ((Counting) generating function): A generating function A(z)
for a combinatorial A is a formal power series that summarizes the cardinality
information over A:

A(z) �
∑
a∈A

z|a| �
∑
n≥0

anz
n

where an � |An | denotes the number of objects of size n in A.

In the above definition, z is a formal complex variable, and can be thought as amedium of
useful information, later retrieved using a Taylor expansion at z � 0. We use the notation
[zn]A(z) to represent the n-th coefficient of A(z), noting that [zn]A(z) � an.

Consider the generating functionS(z) associatedwith (languageof) a non-terminalS ∈ N .
By definition, one has

S(z) �
∑
w∈LS

z|w| �
∑
n≥0

snz
n.

The recursive nature of the grammar then induces a fairly simple recursive scheme, and
the generating function S(z) of a non-terminal S obeys a remarkably simple system of
functional equations:

• Product S→ T .U: We have

S(z) �
∑
n≥0

snz
n
�

∑
n≥0

(
n∑
i�0

ti × un−i
)
zn � T (z) ×U(z) (5.2)

• Union S→ T and S→ T : We have

S(z) �
∑
n≥0

snz
n
�

∑
n≥0
(tn + un) zn �

∑
n≥0

tnz
n
+

∑
n≥0

unz
n
� T (z) +U(z).

• Terminal S→ t: S(z) � ∑
w∈LS z

|w| � z|t| � z;

• Epsilon v→ ε: S(z) � ∑
w∈LS z

|w| � z|ε| � z0 � 1.

Any unambiguous context-free grammar in CNF can thus be transformed into a system
of functional equation. This system is algebraic, as Gaussian elimination can be used to
express it as

P(z,S(z)) � 0 where P is a polynomial in S(z) and z, (5.3)

and its solutions are called algebraic generating functions by analogy.

Example 18: DNA strings
DNA strings can be expressed as a language {A,C,G, T}?, generated by the context-free grammar

S→ A.S | C.S | G.S | T.S | ε
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This grammar can be transformed in the CNF grammar for illustrative purposes

S→ S′ | E S′→ T .S T → T ′ | T ′′ T ′→ a | c T ′′→ g | t
a→ A c→ C g→ G t→ T E→ ε

The transforms described above, coupled with minor simplifications, lead to the following system

S(z) � 4z × S(z) + 1 �
1

1 − 4z

which can be solved to obtain
S(z) � 1

1 − 4z
�

∑
n≥0

4n zn.

Remark 5.1.1: In general, algebraic systems associatedwith context-free grammars are non-linear, so
that conjugate solutions may exist. However, only one will admit positive integers as its coefficients.

5.1.3 Basic singularity analysis

Finding a closed-form expression for sn, the coefficients of S(z), is generally a highly
involved task (although such a form always exists [11]). An easier alternative is to use
analytic combinatorics to extract a simple asymptotic equivalent for sn. Singularity
analysis simplifies this problem by focusing on the singularities of S(z), i.e. points of the
complex plane where the generating function ceases to be analytic.

Of particular interest are the dominant singularities, i.e. singularities of smallest modu-
lus that are the main contributors to the coefficients. From Pringsheim’s Theorem [69, pp
240], we know that at least one of them lies on the real axis for non negative series. More-
over, only limited types of singularities may occur in algebraic generating functions. This
leads to predictable behaviors for the coefficients, and allows to bypass complex analysis
(almost) entirely thanks to automatic theorems.

Rule type Language Coefficients Generating function

Product S→ T .U LS � LT × LU sn �
∑n
i�0 ti × un−i S(z) � T (z) ×U(z)

Union S→ T , S→ U LS � LT
⋃LU sn � tn + un S(z) � T (z) +U(z)

Terminal S→ t LS � {t} sn �

{
1 if n � 1

0 otherwise
S(z) � z

Epsilon S→ ε LS � {ε} sn �

{
1 if n � 0

0 otherwise
S(z) � 1

Table 5.1: Generated languages, enmerations and ordinary (counting) generating func-
tions for unambiguous Chomsky Normal Form grammars.
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Theorem 10 (Asymptotic growth [69, pp 244]): Let ρ ∈ �+ be the dominant
singularity of an algebraic generating function S(z), then:

lim
n→+∞

n
√
[zn]S(z) � 1/ρ.

In other words, the exponential part of the asymptotics is solely driven by the value of
the dominant singularity. This property is sometimes referred to as the first principle of
Analytic Combinatorics, and is sufficient to obtain crude estimates.

Example 19: DNA strings – Asymptotics
We illustrate this principle on DNA strings, associated with a generating function S(z) � 1

1−4z Here,
the (unique) dominant singularity is a pole (cancellation of the denominator) at z � 1/4.
Theorem 10 implies that, for some subexponential term f(n), (limn→+∞ n

√
f(n) � 1),

[zn]S(z) � 4n.f(n).

An application of Theorem 11 below refines this estimate to [zn]S(z) � 4n(1 +O(1/n)), meaning that
we can rule out the existence of an additional polynomial term.

The second principle of Analytic Combinatorics considers the nature of singularities
to determine more precise estimates. Transfer theorems can then be used to relate the
asymptotic growth of sn to the behavior of S(z) close to its dominant singularity.

Theorem 11 (Rational Singularities [69, pp 256]): Let ρ ∈ �+ be the dominant
singularity of an algebraic generating function S(z), rewritten as

S(z) � U(z)
(1 − z/ρ)α + T (z) (5.4)

where α ∈ �+ − {0}, κ ∈ �, (1 − z/ρ)α × T (z) and U(z) are analytic at z � ρ and
κ :� U(ρ). Then the coefficients of S(z) admit the following asymptotic equivalent

[zn]S(z) � κ

(α − 1)! × n
α−1 × ρ−n (1 +O(1/n)) . (5.5)

Polar singularities are the only singularities arising from left/right linear grammars (or,
more generally, rational languages), associated with systems in Equation 5.3 that are
linear in S(z). In such cases, the solution of the system is a rational generating function,
i.e. it can be reduced to a formA(z)/B(z), forA and B some polynomials. The alternative
formulation required by Equation (5.6), can thus always be found.

Example 20: Fibonacci language
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The Fibonacci language is generated by

F→ a F | bb F | ε

The number fn of words of size n is thus given by

fn �



fn−1 + fn−2 if n ≥ 2

1 otherwise (n ∈ {0, 1})

such that fn is the (n + 1)-th Fibonacci number. The generating function is then

F(z) � z F(z) + z2 F(z) + 1 �
1

1 − z − z2 �
1

(1 − z/ρ+)(1 − z/ρ−) with ρ± �
−1 ± √5

2
.

Here, the dominant singularity is ρ+ since |ρ+ | < |ρ− |. F(z) can then be reformulated as

F(z) � � − ρ−/
√
5

1 − z/ρ+ +
ρ+/
√
5

1 − z/ρ−
where the second term is already analytic at z � ρ+ (and so is its multiplication by 1 − z/ρ+).

A direct application of Theorem 11, with ρ :� ρ+, α :� 1, and κ :� ρ−/
√
5, provides a precise asymptotic

estimate
[zn] F(z) � ρ−√

5
ρ−n+ (1 +O(1/n)) .

Polar singularities may also dominate in (non linear) cases, and their simplicity always
make them worthy of an initial investigation. However, non-rational languages will typ-
ically see more complex singularities arise and dominate their asymptotics. Fortunately,
as covered by the following result, similar asymptotics hold, and can be derived at the
cost of marginally more work.

Theorem 12 (Single Algebraic Singularity [69, pp 393] + [11, 68]): Let ρ ∈
�+ be the single dominant singularity of an algebraic generating function S(z),
rewritten as

S(z) � U(z)
(1 − z/ρ)α + T (z) (5.6)

where α ∈ � −�, T (z) and U(z) are analytic at z � ρ, and κ :� limz→ρU(z) > 0.
Then the coefficients of S(z) admit the following asymptotic equivalent

[zn]S(z) � κ

Γ (α) × n
α−1 × ρ−n (1 +O(1/n)) .

The main difference with the rational case covered by Theorem 11, is that α can take
more general values than just positive ones. This way, it covers singularities arising from
radical forms

√
1 − z/ρ, called square-root type singularities, that are ubiquitous when

enumerating tree-like objects.

The case of multiple dominant singularities, i.e. singularities ρ0, ρ1, ρ2. . . such that
|ρ0 | � |ρ1 | � |ρ2 | � . . ., is slightly more involved. In cases where the co-dominant
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singularities lead to different values α0 < α1 ≤ α2, then only the largest needs to be
considered, and Theorem 12 holds with a slightly enlarged error termO(1/nmin(α0−α1,1)).

However, singularities are complex numbers and may team with, or cancel each others’
contributions for certain values of n (e.g. in the case of complex conjugates). However, as
mentioned in Banderier and Drmota [11], multiple dominant singularities will give rise
to periodic behaviors, with asymptotic equivalents still obeying the general form given
in Theorem 12 (or 0) for any value of n such that n ≡ r [p], where p is the period of the
system.

In practice, a grammar featuringmultiple dominant singularities can be rewritten, to only
generate words of length n with a prescribed modular value r which, in combination
with a suitable change of variables/vocabulary Σ, will suppress such periodic behaviors
and lead to a single dominant singularity.

Remark 5.1.2: Banderier and Drmota [11] provide a definitive characterization of singularities in
algebraic generating functions, including those of context-free languages. They show that the α
value for dominant singularities can only take dyadic values

α ∈
{
− 1

2k
| k ≥ 1

}
∪

{
m

2k
| m ≥ 1 ∧ k ≥ 0

}
⊂ �.

By further restricting the type of dominant singularities in algebraic generating functions, this
results provides new tools to prove the intrinsic ambiguity of certain classes of languages and, more
generally, the impossibility to model combinatorial classes using certain types of specifications.

Example 21: RNA Secondary Structures
Following Waterman [194], RNA secondary structures can be generated by the grammar

S→ (S≥1 )S | •S | ε

where S≥1 forbids S to generate the empty word ε, and thus has generating function S(z) − 1. The
associated system of functional equations is then

S(z) � z (S(z) − 1) z S(z) + z S(z) + 1 ⇔ 0 � z2S2(z) + (−1 + z − z2)S(z) + 1

Solving the quadratic equation, gives two solutions for S(z)

S±(z) � 1 − z + z2 ± √∆
2 z2

where ∆ is the discriminant

∆ :�
(
1 − z + z2)2 − 4 z2 �

(
1 + z + z2

) (
1 − 3z + z2

)
�

(
1 − z

x−

) (
1 − z

x+

) (
1 − z

y−

) (
1 − z

y+

)
with x± :�

3 ± √5
2

and y± :�
−1 ± i√3

2

Extracting the first terms of S+(z) reveals negative coefficients, inconsistent with our expectation of a
non-negative number of structures, and we conclude that

S(z) :� S−(z) � 1 − z + z2 −
√
(1 − z/x−) (1 − z/x+) (1 − z/y−) (1 − z/y+)

2 z2
.
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The function admits singularities for z ∈ {x−, x+,y−,y+}, and is analytic everywhere else in �. The
dominant singularity is ρ :� x− as it has smallest modulus, and we can rewrite S(z) as

S �
1 − z + z2

2z2
− 1

(1 − z/ρ)−1/2
×U(z) with U(z) :�

√
(1 − z/x+) (1 − z/y−) (1 − z/y+)

2 z2

where U(z) can verified to be analytic at z � ρ, and reaches the following value

κ :� U(ρ) �
√
12
√
5 − 20

(7 − 3
√
5) ×

√
3 +
√
5
�

√
15 + 7

√
5

2
.

A direct application of Theorem 12, with α � −1/2, gives the final asymptotic equivalent:

[zn]S(z) � κ

2
√
π
× ρ
−n

n
√
n
(1 +O(1/n))

This asymptotic first-order estimate is remarkably accurate, and is already within 1% of the true count
for RNAs of length 250 nts, and keeps on getting better and better to reach asymptotic equality.

5.1.4 Useful extensions and shortcuts

5.1.4.1 Ensemble properties using multivariate gen. fun. and derivatives

So far, generating functions have only provided valuable information on the number of
words of size n within a language. However, in many cases, the asymptotic growth of
sn � [zn]S(z) is arguably less relevant to a downstream application than the expected
properties of a word inLn. To study such properties, one needs to (transiently) introduce
a bivariate generating functions, which not only considers the length of an object, but
also some additional property, here called a feature.

Namely, consider atomic contributions {fr}r∈R, associating a (possibly null) numeric
value to the production rules of a grammar.

Definition 5.1.5 (Additive feature): An additive feature F : L → � is defined
additively based on a set of atomic contributions such as, for all w ∈ L generated
by a unique parse tree pw, one has

F(w) �
∑
r∈pw

f(r).

Features naturally include the number of occurrences |w|t of a given letter t ∈ Σ in aword
w. More complex features may require the design of an ad hoc grammar to accommodate
highly-specific atomic contributions.

This allows to define the bivariate generating function of a language with respect to a
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feature.

Definition 5.1.6 (Bivariate generating function):Given a languageL, the bivari-
ate generating function S(z,u) for a feature F is

S(z,u) �
∑
w∈L

uF(w) zn �

∑
n≥0

∑
k≥0

sn,k u
k zn (5.7)

where sn,k is the number of words of length n having value k for the feature F.

The function S(z,u) is solution of a system of equations similar to the constructs of
Table 5.1, but with additional monomials ufr being assigned to each production rule
r ∈ R (unless fr � 0, since ufr � u0 � 1). Namely, for any non-terminal S ∈ N , the
system will feature an equation:

S(z,u) �
∑
r:S→w

ufr
∏
x∈w




T (z,u) if x :� T ∈ N ,

z if x ∈ Σ,
1 otherwise.

Atomic contributionswill accumulate at the exponent of u, ultimately leading to the term
uF(w) in Equation (5.7).

Expected value of a feature. Solving the system, one obtains an expression for S(z,u),
from which information can be derived for the distribution of F(W), the feature value of
a random word. In particular, the expected value of F for a uniformly distributed word
in Ln is given by

[zn] ∂S(z,u)∂u

���
u→1

[zn]S(z, 1) �
[zn] ∑

w∈L F(w)uF(w)−1 zn
��
u→1

[zn] ∑w∈L zn �

∑
w∈Ln F(w)
sn

�

∑
w∈Ln

F(w) × � (W � w | n) � � (F(W) | n)

Interestingly, algebraic functions remain algebraic upon partial derivatives, so singular-
ity analysis can be used to obtain an asymptotic equivalent for the coefficients of the
numerator.

Example 22: Bivariate Motzkin words
To illustrate how bivariate generating functions can be used to analyze the content of random words,
we consider the classic example of Motzkin words (see also Fig. 5.1), generated by the grammar

S→ (S)S | •S | ε

Notice that, while ( and ) play a symmetrical role, the letter • seems quite different. Indeed, • is
essentially responsible for the extension of sequences, while ( and ) emulate a parenthesis system,
inducing tree-like structures. It is thus natural to pursue the expected number of occurrences of • in a
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uniformly-distributed word of size n.

First, we define the atomic features as the number of occurrences of • produced by each derivation:

r1 : S→ (S)S ⇒ fr1 � 0 r2 : S→ •S ⇒ fr2 � 1 r3 : S→ ε ⇒ fr3 � 0

Then we translate the grammar into a system of functional equations involving by the bivariate gener-
ating function

S(z,u) � z2 u0 S(z,u)2 + z u1 S(z,u) + u0 � z2 S(z,u)2 + z uS(z,u) + 1

Solving the system gives

S(z,u) �
∑
n≥0

∑
k≥0

sn,ku
kzn �

1 − zu −
√
(1 − uz − 2z)(1 − uz + 2z)

2z2

One then derives by u, and set u � 1, to obtain the generating function counting the total number of
occurrences of •within Motzkin words of length n.

∂S(z,u)
∂u

� − z

2z2
+

√
1 − uz − 2z

4z
√
1 − uz + 2z

+

√
1 − uz + 2z

4z
√
1 − uz − 2z

∂S(z,u)
∂u

����
u→1

� − z

2z2
+

√
1 − 3z

4z
√
1 + z

+

√
1 + z

4z
√
1 − 3z

� − z

2z2
+
(1 − 3z) + (1 + z)

4z
√
1 + z × √1 − 3z

� − z

2z2
+

1 − z
2z
√
1 + z

× 1√
1 − 3z

The resulting (mono variate) generating function features two singularities at z � 1/3 and z � −1
respectively, so the dominant one is ρ � 1/3. Applying Theorem 12 with α � 1/2 andU(z) � √1 + z/2z
gives the following equivalent

[zn] ∂S(z,u)
∂u

����
u→1

�
1 − ρ

2ρ
√
1 + ρ

√
π

ρ−n√
n
(1 +O(1/n))

On the other hand, for the denominator we have

S(z, 1) � S(z) � 1 − z −
√
(1 − 3z)(1 + z)
2z2

⇒ [zn]S(z) �
√
1 + ρ

4ρ2
√
π

ρ−n

n
√
n
(1 +O(1/n))

Taking the ratio finally gives the expected number of occurrences of the letter •

� (|W |• | n) �
[zn] ∂S(z,u)∂u

���
u→1

[zn]S(z) �

1−ρ
2ρ
√
1+ρ
√
π

ρ−n√
n
(1 +O(1/n))

√
1+ρ

4ρ2
√
π

ρ−n
n
√
n
(1 +O(1/n))

� n
2ρ (1 − ρ)
1 + ρ

(1 +O(1/n)) � n

3
(1 +O(1/n))

Quite surprisingly, the asymptotic proportion of • is exactly 1/3, and so are those of ( and ) (having
equal number of occurrences), despite the highly asymmetrical roles played by the three letters.

Remark 5.1.3 (Higher Order Moments): By iterating the partial derivative (compensating with u
each time), higher moments can be extracted in a similar manner, granting access to the variance,
skewness, kurtosis of the feature distribution induced by the uniform distribution over words of
length n.
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S→ (S )S | •S | ε S

S→ T (S )S | T
T → • T | ε

S T

Figure 5.1: Strong connectivity canbe amatter of choice, as illustratedby twogrammars
for Motzkin words. The top grammar has strongly-connected dependency graph, while
the bottom grammar, although equivalent, induces a dependency graph which is not
strongly-connected.

5.1.4.2 Simple-type grammars

Shockingly, it is sometimes possible to skip steps 2, 3 and 4 of the symbolic method, and
determine the type of singularity directly from properties of the grammar. To achieve
superlative laziness, one first considers the dependencies in the grammar.

Definition 5.1.7 (CFG Dependency Graph): The dependency graph of a
(weighted) grammar G � (N ,Σ,R,S0) is a directed graph, whose vertices are
non-terminals (N ), and whose arcs are any S→ T such that (S→ w) ∈ R, T ∈ w.

A critical phenomenon occurs when the dependency graph is strongly-connected, i.e.
when any vertex can be reached from any other vertex through a sequence of arcs. Note
that the absence of strong connectivity for a dependency graph reflects on the chosen
grammar, and does not necessarily represent an intrinsic property of the language L. It
is thus the responsibility of the modeler to find a suitable grammar, as shown in example
described in Figure 5.1.

Intuitively, the combinatorial explosion can be understood as flowing through the depen-
dency graph, and the strong-connectivity implies the existence of a steady-state, where
the dominant growth homogeneously contaminates all vertices (a.k.a. non-terminals).
Under this condition, the growth of the language can be restricted to two possible cat-
egories, depending on whether the grammar is linear, i.e. at most one non-terminal
in its production rules, or tree-like, i.e. at least one production rule with two or more
produced non-terminal.
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Theorem 13 (Strongly-connected Asymptotics: Perron-Frobenius [69, pp
343] + Drmota-Lalley-Woods [56, 112, 202] ): Given a CFG G � (N ,Σ,R,S0)
with strongly-connected dependency graph, only the following two types of dom-
inant singularities may occur:

• If G is linear, then the dominant singularity ρ is a simple pole, i.e. there exists
U(z) and T (z), both analytic at z � ρ, with U(ρ) , 0 such that:

S(z) � U(z)
1 − z/ρ + T (z) ⇒ [zn]S(z) � U(ρ) × ρ−n(1 +O(1/n));

• IfG is tree-like, then the dominant singularity ρ has square-root type, i.e. there
exists U(z) and T (z) analytic at z � ρ, k :� limn→+∞U(ρ) , 0, such that:

S(z) � −U(z) ×
√
1 − z/ρ + T (z) ⇒ [zn]S(z) � κ

2
√
π
× ρ

−n

n
√
n
(1 +O(1/n)).

Such stereotyped asymptotics are immensely useful to study languages with large gram-
mars, for which human patience and symbolic calculus can both reach their respective
limits. In this case, computing the first coefficients of the generating function, e.g. using
the recurrences of Figure 5.1, would allow to estimate κ and ρ to a sufficient precision in
most applied contexts.

5.1.4.3 Weighted languages and asymptotics

Another extension, crucial in applied contexts, considers the introduction of weights,
and was explored in a collaboration with Alain Denise and Michel Termier [50].

Definition 5.1.8 (Weighted grammar): A Weighted Language is generated by a
context-free grammar G � (N ,Σ,R,S0), coupled with aweight vector π, associat-
ing a weight πt to each terminal t ∈ Σ.

The weight π(w) of a word w ∈ Σ? is defined by

π(w) �
|w|∏
i�1

πwi .

The overall weight of a language L is then typically the quantity of interest, encapsulated
in a weighted generating function

Sπ(z) �
∑
w∈L

π(w) zn �

∑
n≥0

∑
w∈Ln

π(w) zn �

∑
n≥0

sn z
n
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where sn now represents the accumulatedweight of all words of lengthn inL. Weighted
generating functions associated with unambiguous grammars are the solutions of an
algebraic system of functional equations. Those can be obtained using a slightlymodified
version of the constructs in Table 5.1, where terminals rules now account for their
respective weight:

(Ordinary gen. fun.) S(z) � z → (Weighted gen. fun.) Sπ(z) � πt × z. (5.8)

While Sπ(z) can be of interest in itself, e.g. as its coefficients representpartition functions,
one can also adopt an alternative probabilistic view and think of the weights as inducing
a Boltzmann-Gibbs distribution over the class of words of size n.

Definition 5.1.9 (Weighted distribution): Let G � (N ,Σ,R,S0,π) be an unam-
biguous CFG, generating a language L, and n be a length, theweighted distribu-
tion is defined such that:

�π (w | n) �
∏|w|
i�1
πwi

[zn]Sπ(z) �
π(w)
sn

where sn � [zn]Sπ �
∑
w∈Ln π(w).

The association of weights to terminal symbols (or, equivalently, to individual produc-
tions, as we showed [149]) grants more flexibility to the modeler in the design of a
specification, particularly when weights are non-rational reals. Examples abound when
real-valued weights are needed, e.g. when weights are optimized to achieve a targeted
composition, or when classic Boltzmann-Gibbs distributions of the form � (w) ∝ e−Ew/β
are being investigated.

Moreover, their associated generating functions remain the solutions of algebraic systems
of equations, so the entire armada of analytic combinatorics can be leveraged to analyze
their asymptotic behavior.

Proposition 14 (Asymptotics of Weighted Languages): The asymptotic equiv-
alents of Theorems 10, 11, 12, and 13 hold for weighted generating functions.

Example 23: Expected number of secondary structures per RNA [212]
The number of secondary structures of length n [194] only represents a crude upper bound for the
number of secondary structures compatible with a given RNA sequence w, |w| � n. indeed, canonical
base-pairs can only form between pairs of nucleotides in

B � {(A,U), (U,A), (G,C), (C,G), (G,U), (U,G)},

forbidding certain secondary structures to form for certain sequences.

While the precise number of such structures vary substantially depending on the actual sequence,
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it is possible to obtain a more precise estimate by considering the expected number of secondary
structures. To that purpose, one may consider, and enumerate, pairs (w,S) of compatible sequence
and structure, i.e. such that, for any base pairs in S the associated nucleotides in w belong to B. In
other words, we need to find a grammar that jointly generates the sequence and structure, using an
extended alphabet

ΣB � {(A,(C,(G,(U,)A,)C,)G,)U, •A, •C, •G, •U}
leading to the grammar

S→ (A S
≥1 )U S | (U S

≥1 )A S | (G S
≥1 )C S | (C S

≥1 )G S

| (G S
≥1 )U S | (U S

≥1 )G S | •A S | •C S | •G S | •U S | ε

Equivalently, one can simply consider the usual grammar of Example 21, and use weights π( � 6,π) �

1,π• � 4 to simulate the multiplicities of production rules. The associated system is then

Sπ(z) � π( π) z2 Sπ(z)
(
Sπ(z)≥1 − 1

)
+ π•Sπ(z) + 1 � 6 z2 Sπ(z)

(
Sπ(z)≥1 − 1

)
+ 4Sπ(z) + 1

Solving the system gives the weighted generating function

Sπ(z) � 1 − 4z + 6z2 −
√
1 − 8z + 4z2 − 48z3 + 36z4

12z2

Singularity analysis can be performed, allowing estimates for the total number of compatible se-
quence/structure pairs

Sπ(z) � κ ρ−n

n
√
n
(1 +O(1/n))

with 1/ρ ≈ 8.164. Dividing by the number of RNA sequences of size n gives the average number of
structures compatible with a uniformly distributed sequence of length n, and we get

�
(
#Compatible structures | n) ∈ Θ (

2.04n

n
√
n

)

This approach can pushed even further, thanks to the flexibility of weighted/probabilistic generating
functions, to produce asymptotics under more general random sequence models, including Bernouilli
processes [212], or Markov chains [146].

5.2 Asymptotic combinatorics of RNA secondary structures

Asmentioned in our introduction, RNAsecondary structures have been the object ofmul-
tiple works focusing on their asymptotic properties. We remind their formal definition,
also defined in Section 1.2.3, for the sake of completeness.

Definition 5.2.1 (RNA secondary structure): An RNA secondary structure S of
length n is a set of base-pairs (i, j), 1 ≤ i < j ≤ n, such that:

• Each position is monogamous, ∀(i, j) , (i′, j′) ∈ S : {i, j} ∩ {i′, j′} � �;
• Minimal distance θ between paired nucleotides, ∀(i, j) ∈ S : j − i > θ;
• No pseudoknot allowed, ∀(i, j), (i′, j′) ∈ S, i < i′ : (j′ < j) or (j < i′).

In the θ � 1 case, i.e. no pairing of consecutive pairs, we obtain a popular combinatorial
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≥ 1

= ⋃⋃
ε

S •S (S≥1 )S ||→ ε

Final grammar: S→ •S | ( T )S | ε T → •S | ( T )S
Figure 5.2: Decomposition of secondary structures and associated context-free gram-
mar. Note that one can always systematically rewrite a grammar to enforce cardinality
constraints such as the one found in S≥1.

class (OEIS:A004148), admitting a wealth of equivalent characterizations, including:

1. Well-parenthesized expressions over {(,), •} without occurrences of ();

2. Positive walks from 0 to 0 taking steps {↗,↘,→} without peaks (↗↘);

3. Unary-binary trees without sherries (simple binary tree, occurring as a leaf). . .

In particular, the representation as well parenthesized expressions immediately suggests
a decomposition for secondary structures, ultimately leading to a grammar. Namely,
consider a non-ε secondary structure, and focus on its first nucleotide b:

• If b is unpaired, then what follows is itself secondary structure;

• If b is paired to some partner b′, then b and b′ delimit an inner interval where
a (non empty) structure can be found. Following the interval [b,b′] is another
(unconstrained) secondary structure.

It follows that secondary structures can be split into two subsets, themselves built from
(smaller) structures. Those subsets are disjoint since a given position cannot be simulta-
neously paired and unpaired, leading to an unambiguous decomposition. Their union,
complemented with the empty structure ε, is also complete with respect to secondary
structures.

Theorem 15 (Asymptotics of secondary structures [194]): The number sn of
secondary structures of length n is asymptotically equivalent to

sn �

√
15 + 7

√
5

8π
.
φn

n
√
n
(1 +O(1/n))where φ � ρ−1 ≈ 2.62 . . .

An illustrative proof of this result, using modern techniques of analytic combinatorics, is
given in Example 21.
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5.2.1 Expected 5’–3’ distance [38]

A first application of the above principles considers the 5’–3’ distance, i.e. the graph
distance induced by a(n ensemble of) secondary structure(s) between the ends of an
RNA.

Definition 5.2.2 (5’–3’ distance): Given an RNA secondary structure S, the 5’–
3’ distance, graph distance induced by a(n ensemble of) secondary structure(s)
between the ends of an RNA

Yoffe et al [207] argued that a small distance, independent of RNA length, between the two
ends of RNA single-stranded molecules. The authors claimed that such a small distance
was intrinsic to linear polymers, a claim supported by a heuristic argument arising from
polymerphysics, andempirically from the systematicMFE foldingof randomlygenerated
RNAs under various compositions. Such a short distance is indeed deemed crucial to
the effective circularization of Eukaryotic messengers RNAs [196] through RNA-proteins
and protein-protein complexes.

In collaboration with Peter Clote and Jean-Marc Steyaert [38], we decided to revisit this
claim at three different levels: Theoretically, by checking its asymptotic validity in the
homopolymer model; Algorithmically, by introducing a Θ(n3) dynamic programming
algorithm to compute the expected 5’-3’ distance for a given sequence at the thermo-
dynamic equilibrium; Empirically, by computing the graph distance on a collection of
RNAs of documented structures.

Our asymptotic analysis relies on the design of a grammar which, by identifying nu-
cleotides on the 5’ to 3’ shortest path, allowed the derivation of a bivariate generating
function for the 5’–3’ distance. We achieved this by a classic, if technical, application of
the symbolic method. Essentially, we duplicated the production rules, distinguishing
rules that generate the exterior bases from those whose content is nested within some
base pair, and are as such not relevant to the expected 5’–3’ distance. A similar reason-
ing allowed to capture general values for the minimum distance θ between two paired
positions, and we obtained the following grammar:

Sθ → [Rθ]Sθ | ◦Sθ | ε; Tθ → (Rθ)Tθ | • Tθ | ε; Rθ → (Rθ)Tθ | • Rθ | •θ (5.9)

Translating into a system of bivariate functional equation, one obtains

Sθ(z,u) � z2u2Rθ(z)Sθ(z,u) + zuSθ(z,u) + 1

Tθ(z) � z2Rθ(z)Tθ(z) + zTθ(z) + zθ
Rθ(z) � z2Rθ(z)Tθ(z) + zRθ(z) + zθ.
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Solving the system gives the bivariate generating function

Sθ(z,u) �
∑
n≥0

∑
k≥0

sk,n;θ u
k zn �

1

1 − zu − u2(1−2z+zθ+2−√∆θ)
2(1−z)

(5.10)

with sk,n;θ the number of secondary structures of length n, with minimum base pair
distance θ, and having k nucleotides on the exterior face, and

∆θ � 1 − 4z + 4z2 − 2zθ+2 + 4zθ+3 − 4zθ+4 + z2θ+4. (5.11)

In particular, one gets

Sθ(z, 1) � 1 − 2z + 2z2 + 2zθ − zθ+2 − √∆θ
(1 − z)2z2 .

Next, we use the classic bivariate analysis

Eθ(z) � ∂Sθ(z,u)
∂u

����
u�1

�
P(z) − (2 − 5z + 4z2 − 2zθ+2 + zθ+3)√∆θ

2(1 − z)2z4

such that en :� [zn]Eθ(z) is the accumulated number of exterior bases across all RNAs
of length n, and P(z) is a polynomial of degree θ + 4, whose precise value bears no
consequence on the asymptotics. Applying Theorem 12, one gets

[zn]Sθ(z, 1) ∼ − 1

(1 − ρ)2ρ2 × [z
n]

√
∆θ (5.12)

[zn]Eθ(z) ∼ −
(
2 − 5ρ + 4ρ2 − 2ρθ+2 + ρθ+3

)
2(1 − ρ)2ρ4 × [zn]

√
∆θ. (5.13)

where ρ is the shared dominant singularity of Sθ(z) and Eθ, i.e. the root of ∆θ having
smallest modulus (real by Pringsheim). We obtain the following result by taking the ratio
of estimates (5.13) and (5.12) to obtain the expected number of bases on the exterior base,
to which we subtract 1 to obtain the graph distance.

Theorem 16 (Expected 5’-3’ distance - Homopolymer model [38]): The ex-
pected 5′−3′ distanceDn over all RNA secondary structures of lengthn, assuming
minimum distance θ between paired nucleotides, is given by

Dn �
[zn]Eθ(z)
[zn]Sθ(z, 1) − 1 �

2 − 5ρ + 3ρ2 + ρ3 − 2ρθ+2 + ρθ+3

(1 − ρ) ρ2 (1 +O(1/n)) (5.14)

where ρ is the smallest modulus root of

∆θ :� 1 − 4z + 4z2 − 2zθ+2 + 4zθ+3 − 4zθ+4 + z2θ+4. (5.15)

As suspected by Yoffe et al [207], the expected value is constant, small and stable to
different values of θ. Of particular interest are the following numerical approximations,
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for ρ and Dn when θ � 1 and 3:

θ � 1→ ρ ≈ 0.381,Dn ≈ 5.47

θ � 3→ ρ ≈ 0.436,Dn ≈ 4.15

The expected distance can also be analyzed in a refined model introduced by Zuker and
Sankoff [212] (see Example 23 for details), which captures base pairing rules that prevent
certain structures to be adopted by a given sequence. In this model, a stickiness pa-
rameter σ represents the probability that a sequence, randomly generated by a Bernoulli
process, forms a given pair (σ :�

∑
Valid BPs(b,b′) pb × pb′). Incorporating the stickiness

in our above analysis allows to derive the expected 5’-3’ distance induced by a random
RNA sequence.

Theorem 17 (Expected 5’-3’ distance - Random Sequence model [38]): The
expected 5′ − 3′ distance Dσn in a random sequence of length n, generated by a
Bernoulli process (stickiness σ), under a min. base pair distance θ, is given by

Dσn �
Φθ,σ(ρ) − 4(ρ − 1)3σ2ρ4

4(ρ − 1)3σ2ρ4 (1 +O(1/n)) (5.16)

where Φθ,σ(z) is a (relatively) simple polynomial

Φθ,σ(z) :� 4 − 14z − 18z2 + (2σ − 10)z3 + (2 − 2σ)z4 − 4σzθ+2 + 6σzθ+3 − 2σzθ+4,

and ρ is the root of smallest modulus of

1 − 4z + (6 − 2σ)z2 + 4(σ − 1)z3 + (σ − 1)2z4 − 2σzθ+2 + 4σzθ+3 − 2σ(1 + σ)zθ+4 + σ2z2θ+4.

Again, the introduction of the stickiness does not change the nature of the expected
distance, which remain a constant of n.

Our conclusions [38]. Interestingly, while both the asymptotics and equilibrium anal-
ysis of RNA sequences appeared to support the hypothesis of Yoffe et al [207], our
empirical analyses of the STRAND database [8], consisting of structured non-coding
RNAs, indicated in a positive observed correlation between the 5’–3’ distance and RNA
length. This observation suggests that structural RNAs may be under selective pressure
to have larger 5’–3’ distance than expected from pure polymer theory, warranting further
analyses.

5.2.2 RNA network properties [180]

First introduced by Watts et al [195], Small-world networks are defined as satisfying the
following, informally-stated, properties:
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• the shortest path distance between any two nodes is “small”, e.g. six degrees of
separation between any two persons;

• the average clustering coefficient is large, e.g. friends of a person tend to be friends
of each other.

Small-world networks are ubiquitous in biology, sociology, and information technology;
examples abound, including the neural network ofC. elegans [195], the gene co-expression
in S. cerevisiae [186], protein folding networks [22, 170]. . . For additional examples, see
the excellent review of Albert and Barabási [4]. In particular, Wuchty [204] observed a
small-world property for the low energy RNA secondary structure network of E. coli phe-
tRNA, and hypothesized this property to be crucial for the structural kinetics induced by
tRNA modifications.

In collaboration with Defne Surujon and Peter Clote [180], we investigated asymptotic
properties of theRNAnetwork, the ensemble of all RNA secondary structures connected
by amove set.

Definition 5.2.3 (Move set): Given an RNA length n, amove set

MS � {M1,M2, . . .}

is a collection ofmoves, i.e. functionsM : Sn → P(Sn).

For any structure S ∈ Sn, the execution of a move returns structures M(S) ⊂ Sn, each
resulting from the application of a (small) perturbation to S. Popular moves [72], in the
context of a structure S, include:

• Addition of a base pair (i′, j′) such that S ∪ {(i′, j′)} is a valid structure;

• Removal of a base pair (i, j) ∈ S;
• Shift of (i, j) ∈ S into (i′, j′), i � i′ or j � j′, only if resulting in a valid structure;

We considered two move sets:

• MS1 :� {Addition,Removal};
• MS2 :� {Addition,Removal, Shift}

Notice that, while individual moves may not be reversible, MS1 and MS2 are both
symmetric, and allow to define a notion of neighborhood crucial to the definition of a
network.

116



AUU
AAAGGUUUAUACCUUCC

CAG
GUA

ACAAACCAACCAACUUUC
GA

UC
U
C
U
U
G
U
A
G
A
U
C
U
G
U
U
C
U
C
U
A
A
A
C
G
A
A
C
U
U
U
A
A
A
A
U
C
U
G
U
G
U
G
G
C
U
G
U
C
A
C
U
C
G
G
C
U
G
C
A
U
G
C
U
U
A
G
U
G
C
A
C
U
C
A
C
G
C
A
G
U
A
U
A
A
U
U
A
A
U
A
A
C
U
A
A
U
U
A
C
U
G
U
C
G
U
U
G
A
C
A
G
G
A
C
A
C
G
A
G
U
A
A
C
U
C
G
U
C
U
A
U
C
U
U
C
U
G
C
A
G

GC
UGCUUACGGUUUCGUCCGUGUUGCA

GCCGAUCAUCAG
CACAUCUAGGUUUUGUCCGGGUGUGACCGAAAGGUAAGAUGGAGA

GCCUUGUCCCUGG
U
U
U
C
A
A
C
G
A
G
A
A
A
A
C
A
C
A
C
G
U
C
C
A
A
C
U
C
A
G
U
U
U
G
C
C
U
G
U
U
U
U
A
C
A
G
G
U
U
C
G
C
G
A
C
G
U
G
C
U
C
G
U
A
C
G
U
G
G
C
U
U
U
G
G
A
G
A
C
U
C
C
G
U
G
G
A
G
G
A
G
G
U
C
U
U
A
U
C
A
G
A
G
G
C
A
C
G
U
C
A
A
C
A
U
C
U
U
A
A
A
G
A
U
G
G
C
A
C
U
U
G
U
G
G
C
U
U
AGUAGAAGU

UGA
AAAAGGCGUUUUGCCUCAACUUGAAC

AGCCC

Definition 5.2.4 (RNA Network): Given a length n and a symmetric move setMS,
the RNA Network is the undirected graph GMS � (V,E), where V � Sn are
secondary structures of size n, and E contains pairs of structures {S,S′} such that
S′ ∈M(S) for some moveM ∈MS (⇒ S ∈M′(S)).

We particularly focused on the expected degree and clustering coefficient of large RNA
networks, and rigorously proved that the RNA network is asymptotically not small-
world. Following [40], a family {Sn,n � 1, 2, 3, . . .} of graphs must satisfy certain
properties to qualify as small-world.

Definition 5.2.5 (Small-world property [40]): A family {Gn | n � 1, 2, 3, . . .} of
graphs is small-world if and only if the following conditions hold:

A The largest distance between any two nodes in Gn is in O(log |V |);
B The average degree of Gn is in O(log |V |);
C The global clustering coefficient Cg(Gn) is bounded away from zero.

We remind that the global clustering coefficient Cg(G) of a graph G � (V,E) is defined
by Newman et al [141, Equation (77)] as:

Cg(G) � 3 × #triangles
#connected triples (5.17)

where a triangle is a set {x,y, z} ∈ V of nodes such that {(x,y), (y, z), (z, v)} ⊂ V , and a
(connected) triple is a set {x,y, z} of nodes, such that {(x,y), (y, z)} ⊂ V .

Clearly, families of RNA networks induced by MS1 and MS2 both satisfy condition A,
since any structure can be reached from any other one in Θ(n) operations (e.g. ≤ n/2
removals + ≤ n/2 additions), while |V | � |Sn | ∈ Θ(ρ−n/n

√
n).

Expected degree. The expected degree of a secondary structure, the average number of
distinct structures in the neighborhood of a structure S, obviously depends on the move
set. For MS1, starting from a structure S, any base pair in S can be removed, but only
co-accessible positions (i.e. belonging to the same loop) can be safely added to S. For
MS2, shift moves allow more flexibility, allowing the binding of positions involved in
two adjacent loops. In both cases, we can already conclude that Condition B holds, since
the degree of any S is inO(n3), i.e. bounded by a polynomial in n, while |V | � |Sn | grows
exponentially on n.

Still, a more precise analysis of the expected degree sheds some light on the techniques
used to study the clustering coefficients, so we elaborate its main steps. Essentially, we
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first observe that, in any structure S ∈ Sn, any base pair can be removed, so the overall
number of removal moveswithin Sn is exactly characterized by the accumulated number
of base pairs in Sn.

Moreover, since additions and removals are reciprocal operations, there exists a bĳection
between pairs of structure/removal and structure/addition. The overall degree over
Sn is then 2 × bn, where bn is the overall number of base pairs in Sn. Its associated
generating function can be obtained by defining the number of base pairs as a feature,
as shown in Section 5.1.4.1. Alternatively, we built an ad hoc grammar that generates all
possible secondary structures with all possible distinguished base pair (here with θ � 1):

S• → [S≥θ ]S | (S•,≥θ )S | (S≥θ )S• | •S•
S→ (S≥θ )S | •S | ε

Executing the various steps of the symbolic method, followed by singularity analysis,
one obtains an asymptotic equivalent for bn. Dividing 2 · bn by |Sn | gives the expected
degree δMS1n under θ � 3.

Theorem 18 (Expected degree of the RNA network [180]): The expected de-
gree δMSn of a random uniform node in the RNA network Gn of a move setMS is
such that:

δMS1n � κ · n(1 +O(1/n)) with κ ≈ 0.473;

δMS2n � κ · n(1 +O(1/n)) with κ ≈ 1.56.

To compute the equivalent of bn for the shift move only, we built a grammar based on a
similar idea as above, encoding the position and outcome of the move using an extended
alphabet (? for the fixed end of the base pair, and 〈/〉 for the shifting end). We obtained
the following grammar, provably unambiguous and complete with respect to shifting
moves:

Ŝ→ Ŝ• | (Ŝ) | S(Ŝ) | Ŝ(R) | T̂
T̂ → ?R〉〉 | S ? R〉〉 | ?R〉S〉 | S ? R〉S〉 | 〈〈R? | S〈〈R?
| 〈S〈R? | S〈S〈R? | 〈R ? R〉 | S〈R ? R〉

S→ • | S• | (R) | S(R) R→ θ | R• | (R) | S(R)
θ→ •θ

The resolution of the associated system, in itself, justifies investing in a symbolic compu-
tation software, but can nevertheless be done, leading to the asymptotics summarized in
Theorem 19.
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Clustering coefficient. Finally, we address the validity of Condition C, based on the
value of the clustering coefficient, the last missing piece to assess the small world nature
of homopolymer-based RNA networks. This requires the computation of the numbers
of triangles and connected triples, two features which we capture in a similar strategy
as above, and designing two unambiguous grammars whose generated languages are
in bĳection with the triangles and triples respectively. The associated grammars, which
we spare the reader out of pure humanity, were tediously designed to exhaust (not only
its designers but also) all pairs of valid consecutive moves in all contexts, this while
capturing the proximity (triangle) or not (triple) of the initial and final structures.

Theorem 19 (Triangles, triples and clustering in RNA networks [180]): Under
the MS2 move set with θ � 3, the RNA network Gn is such that:

#triangles(Gn) � κn (1 +O(1/n)) with κ ≈ 1.22

#connected triples(Gn) � λn2 (1 +O(1/n)) with λ ≈ 0.112

Cg(Gn) � 3 × #triangles
#connected triples ∈ Θ

(
1

n

)

It follows that Cg(Gn) → 0 as n → ∞, meaning that Condition C is not satisfied. This
result is robust to changes of θ.

Corollary 20 (RNA networks are not small world):
The family of RNA networks is not small world.

Conclusions. Our result that, in an homopolymer model, RNA networks are not small
world seem to contradict the conclusions of Wuchty [204] based on empirical observa-
tions. However, it must be noted thatWuchty [204] restricted its observations to the most
stable conformations (low-free energy). Moreover, this observed discrepancy between
a sequence-free (homopolymer) model and Wuchty’s observations based on a limited
subset of RNAsmay be reconciled by the existence of a specific selective pressure for this
family.

5.2.3 RNA shapes: Abstract representations of structures [120]

RNA shapes, introduced by Giegerich et al [82], represent a hierarchy of abstract rep-
resentations for the secondary structures of RNA. Each secondary structure is assigned
a shape at every level of abstractions, so that shapes at any level represent equivalence
classes for the folding space. By providing a hierarchy coarse-grained descriptors, they

119



AUU
AAAGGUUUAUACCUUCC

CAG
GUA

ACAAACCAACCAACUUUC
GA

UC
U
C
U
U
G
U
A
G
A
U
C
U
G
U
U
C
U
C
U
A
A
A
C
G
A
A
C
U
U
U
A
A
A
A
U
C
U
G
U
G
U
G
G
C
U
G
U
C
A
C
U
C
G
G
C
U
G
C
A
U
G
C
U
U
A
G
U
G
C
A
C
U
C
A
C
G
C
A
G
U
A
U
A
A
U
U
A
A
U
A
A
C
U
A
A
U
U
A
C
U
G
U
C
G
U
U
G
A
C
A
G
G
A
C
A
C
G
A
G
U
A
A
C
U
C
G
U
C
U
A
U
C
U
U
C
U
G
C
A
G

GC
UGCUUACGGUUUCGUCCGUGUUGCA

GCCGAUCAUCAG
CACAUCUAGGUUUUGUCCGGGUGUGACCGAAAGGUAAGAUGGAGA

GCCUUGUCCCUGG
U
U
U
C
A
A
C
G
A
G
A
A
A
A
C
A
C
A
C
G
U
C
C
A
A
C
U
C
A
G
U
U
U
G
C
C
U
G
U
U
U
U
A
C
A
G
G
U
U
C
G
C
G
A
C
G
U
G
C
U
C
G
U
A
C
G
U
G
G
C
U
U
U
G
G
A
G
A
C
U
C
C
G
U
G
G
A
G
G
A
G
G
U
C
U
U
A
U
C
A
G
A
G
G
C
A
C
G
U
C
A
A
C
A
U
C
U
U
A
A
A
G
A
U
G
G
C
A
C
U
U
G
U
G
G
C
U
U
AGUAGAAGU

UGA
AAAAGGCGUUUUGCCUCAACUUGAAC

AGCCC

Sec.str. ((((.((((..((((......))))))))((((......)))).))))
π′-shape [ _ [ _ [ _ ] ] [ _ ] _ ]
π-shape [ [ - - ] [ ] ]

Contract identical consecutive characters
→ π′-shape

+ Remove unpaired regions
Contract nested helices
→ π′-shape

Figure 5.3: Example of RNA shapes constructions from a secondary structure. While π′
shapes (most detailed) merely contract unpaired regions and helices, π shapes (coarsest)
only retain the underlying tree backbone (gray tree).

enable a variety of analysis, including a comparison-free clustering of secondary struc-
tures [27], e.g. generated by stochastic sampling [51] within the Boltzmann ensemble of
low energy; or the alignment-free detection of recurrent conformations across homolo-
gous sequences [155]; or the indexation of RNA families for a faster attribution [102].

However, while shapes can be computed at various levels of abstractions (see Figure 5.3),
and in linear time, the computational tractability, and statistical power, of a shape-based
analysis is conditioned by a reasonable growth of the number of shapes populated by
the method. To anticipate such a growth, in collaboration with Peter Cote and Andy
Lorenz [120], we investigated the enumerative properties of RNA shapes at two extreme
levels of abstractions, namely considering π (coarsest) and π′ (most detailed).

π-shapes. As illustrated in Figure 5.3, π shapes quite rudely disregard unpaired nu-
cleotides, and contract consecutive helices separated only by an internal loop/bulge.
They can then be seen as a well-parenthesized expression, forbidding directly nested
(a.k.a. stacking) pairs of parentheses as these would be contracted by the abstraction
process. RNA π shapes (except for the shape of size 0, denoted as ε) can therefore be
generated by the following grammar

Sπ → [ T ]Sπ | [ T ] T → [ T ]Sπ | ε

Solving the associated system, ultimately adding 1 to recover ε, gives

Sπ(z) ≡
∑
n≥0

sπnz
n
�

1 − z2 −
√
1 − 2z2 − 3z4

2z2

where sπn is the total number of π-shapes over n characters, from which one draw two
immediate conclusions.
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[[[][]][][]][] ( ) ( . ) .

2n + 2 letters 2n + 2 edges n edges n letters
Motzkin wordsπ shapes

(

)
(

.

)
.

Figure 5.4: Illustration of bĳection between π shapes and Motzkin words. π shapes of
size 2n+ 2 can be interpreted as Dyck words of same length, and be turned into a binary
tree, constrained so that the right child of an internal node cannot be a leaf. Removing
leaves, one gets a partial binary tree with n edges, whose internal nodes must have a
right child. Traversing the tree in preorder, emitting a letter (when descending in a right
child for the first time, a letter . for consecutive right descents, and a letter )when going
back up one level, one gets a Motzkin word (OEIS:A001006) of length n.

Theorem 21 (π-Shapes [120]): The number sπ
2n of π shapes over 2n characters

obeys

sπ2n �

√
3

2
√
π
.
3n

n
√
n
(1 +O(1/n))

Moreover, π-shapes of size 2n+ 2 are in bĳection with Motzkin words of length n.

The bĳection can be made explicit, and we get:

ψ : [ A ] B→ φ(A) •ψ(B) (B , �) φ : [ A ] B→ φ(A) ( ψ(B) )
[ A ]→ φ(A) ε→ ε.

The associated transformation can perhaps be better expressed as a traversal of a tree, as
illustrated in by Figure 5.4.

π′-shapes. At the other end of the shape hierarchy, π′ shapes are obtained from sec-
ondary structures by collapsing consecutive unpaired positions into a single dedicated
character_. The language ofπ′ shapes is then essentially awell-parenthesized expression
with an neutral character, i.e. a Motzkin word (OEIS:A001006), excluding:

• Consecutive occurrences _ _ of unpaired regions;

• Nested/stacking pairs of parentheses [[ · · ·]].
Expanding the classic Motzkin grammar to capture such constraints gives:

S→ U[ T ]S | U T → U[ T ]U[ T ]S | _[ T ] _ | [ T ] _ | [ T ] _ | ε U→ _ | ε

121

https://oeis.org/A001006
https://oeis.org/A001006


AUU
AAAGGUUUAUACCUUCC

CAG
GUA

ACAAACCAACCAACUUUC
GA

UC
U
C
U
U
G
U
A
G
A
U
C
U
G
U
U
C
U
C
U
A
A
A
C
G
A
A
C
U
U
U
A
A
A
A
U
C
U
G
U
G
U
G
G
C
U
G
U
C
A
C
U
C
G
G
C
U
G
C
A
U
G
C
U
U
A
G
U
G
C
A
C
U
C
A
C
G
C
A
G
U
A
U
A
A
U
U
A
A
U
A
A
C
U
A
A
U
U
A
C
U
G
U
C
G
U
U
G
A
C
A
G
G
A
C
A
C
G
A
G
U
A
A
C
U
C
G
U
C
U
A
U
C
U
U
C
U
G
C
A
G

GC
UGCUUACGGUUUCGUCCGUGUUGCA

GCCGAUCAUCAG
CACAUCUAGGUUUUGUCCGGGUGUGACCGAAAGGUAAGAUGGAGA

GCCUUGUCCCUGG
U
U
U
C
A
A
C
G
A
G
A
A
A
A
C
A
C
A
C
G
U
C
C
A
A
C
U
C
A
G
U
U
U
G
C
C
U
G
U
U
U
U
A
C
A
G
G
U
U
C
G
C
G
A
C
G
U
G
C
U
C
G
U
A
C
G
U
G
G
C
U
U
U
G
G
A
G
A
C
U
C
C
G
U
G
G
A
G
G
A
G
G
U
C
U
U
A
U
C
A
G
A
G
G
C
A
C
G
U
C
A
A
C
A
U
C
U
U
A
A
A
G
A
U
G
G
C
A
C
U
U
G
U
G
G
C
U
U
AGUAGAAGU

UGA
AAAAGGCGUUUUGCCUCAACUUGAAC

AGCCC

Solving the generating function, one gets

Sπ
′(z) � A(z) − B(z)

√
∆

C(z) with ∆ :� 1 − 2 z2 − 6 z3 − 5 z4 − 6 z5 − z6 + 2 z7 + z8,

andA(z), B(z) and C(z) are polynomials, non-null at z � ρ the dominant singularity (also
smallest root of ∆).

Theorem 22 (π′-Shapes [120]): The number sπ′n of π′ shapes over n characters
obeys

sπ
′
n � κ

γn

n
√
n
(1 +O(1/n))where γ :�

1

ρ
≈ 2.41 and κ :� lim

z→ρ
B(z)

2
√
πC(z) ≈ 0.985.

The chosen level of abstractions for shapes has therefore a strong impact on the number
of representatives of the RNA folding landscapes. At the coarsest level, the number of
π-shapes only grows in Θ(1.73n/n√n), while the more informative π′-shapes induce a
combinatorial explosion in Θ(2.41n/n√n).

Refined estimates for shapes compatible with a sequence. The total number of shapes
overn characters represents a very crude upper bound for the expected number of shapes
returned by a predictive method when executed on an RNA consisting of n nucleotides.
Indeed, certain sequences may not support the helices required to build a given shape.
Ideally, one would therefore like to compute the expected number of shapes compatible
with a sequence of length n. However, this turned out to be very challenging, due to
apparently intrinsic difficulties to establish a suitable specification.

Indeed, computing an asymptotic equivalent for the expected number of shapes seems
beyond the current reach of the symbolic method. For instance, contrary to RNA sec-
ondary structures, it does not seempossible to formulate an unambiguous grammars that
enumerates all compatible shapes/sequences pairs. This is due to the fact that several
secondary structures, all compatible with a given sequence and substantially different,
may share a common shape at one or several levels, as shown below:

ACUACAGUGGUAGUACUUUAGAAUGUCUUAGA

S1 �.(((..(((....))))..))..((...)).. → π(S1) � [][] π(S1) � _[_[]_]_[]_

S2 �((....)).((...))................ → π(S2) � [][] π(S2) � []_[]_

S3 �(((((....)))))..((((((...)))))). → π(S3) � [][] π(S3) � []_[]_

More modestly, it is possible to refine our initial upper bound, by considering the min-
imum length of a sequence supporting a given shape. For instance, hairpin loops,
identified by motifs [], are subject to a minimum distance θ, and thus can be thought to
consume θ+2 nucleotides. We can capture this phenomenon by replacing each occurrence
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of ε in the above grammars, indicating the occurrence of a hairpin loop by •θ. Summing
over shapes associated with minimum size smaller than n, one obtains much refined
estimates.

Theorem 23 (Expected number of shapes [120]): The expected number eπn
(resp. eπ′n ) of π shapes (resp. π′ shapes), compatible with an RNA of length n
under a min base pairing distance θ � 3, obeys:

eπn ≤
1.28 × 1.81n

n
√
n

(1 +O(1/n)) eπ
′
n ≤

2.44 × 1.32n

n
√
n

(1 +O(1/n))

While these upper bound are considerably tighter than the total number of shapes of
length n, they still appear overly pessimistic in comparison to the empirical observations
of Voss et al [190]. In this work, the authors conjectured growths inΘ(1.1n) andΘ(1.16n)
for π and π′ shapes respectively, motivating the development of new analysis techniques
for this pragmatic class of conformational descriptors.

5.2.4 Enumerating designable structures [206]

The inverse folding of RNA, i.e. the computational search for an RNA sequence that
folds stably and preferentially into a target structure, is a classic test piece in RNA bioin-
formatics. Its motivation arises from applications ranging from synthetic biology [182]
to RNA therapeutics [203] through systems biology [65] and nanotechnologies [83]. It
is NP-hard even under very simple energy models [20], and is typically approached at a
practical level through a large collection of methods, based on metaheuristics, constraint
programming or random generation paradigms [34].

Since the overarching goal of RNA design is to produce functional molecules, it is tempt-
ing to adopt an inverted perspective on the RNA design, and treat the limitations in-
duced by popular sequence generation models as constraints weighing on evolution
itself. Indeed, the sequence/structure relationship in RNA is used as a metaphor for
the genotype/phenotype map in theoretical evolutionary studies [105] (neutral network
theory). In this context, the total [194] or expected [212] number of secondary structures
is used as a baseline to quantify the phenotype space, the set of functions achieved by a
gene/molecule. However, this set is largely overestimated since many structures cannot
be adopted as a functional structure, e.g. due to their intrinsic unstability.

In collaboration with Hua-Ting Yao, Cédric Chauve and Mireille Régnier [206], we ad-
dressed the quantification of designable structures, i.e. structures for which no RNA
sequence is deemed acceptable which respect to the objectives of inverse folding. More
specifically, following the seminal work of Dirks et al [54], notions of defects are used as
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objectives for design. Defect metrics quantify, for a given candidate candidate sequence,
the existence of competitive alternative structures to the target structure. Examples
include the free-energy defect, the free-energy difference, for a candidate sequence, be-
tween the target structure and its best competitor; or the probabily defect, the overall
Bolzmann probability of not adopting the target structure at the thermodynamic equi-
librium. This allows to define a design criterion, which only accepts sequences whose
defect does not exceed some predefined tolerance ε > 0 for the defect D.

Definition 5.2.6 (Designable secondary structure): Given a defect D and a tol-
erance ε > 0, a secondary structure S? ∈ Sn is designable if and only if there exists
w ∈ Σn such that D(w,S?) < ε.

Since their computation requires the joint considerationof: i) a realistic energymodel [185];
and ii) the entire space of alternative structures, the computation of defects usually in-
volves the execution of a dynamic programming algorithm. Due to their reliance on
dynamic programming, all modern notions of defect are monotonous with respect to
loops. Namely, as soon as a sequence/structure pair exceeds a certain defect tolerance
within a (combination of) loop(s), coined a local obstruction, it cannot be extended into
a larger structure sequence that would meet tolerance. This fact was already observed by
Aguirre-Hernández et al [1], identifying two local obstructions for the free-energy defect,
and by Hales et al [86] in a base pair maximization model. We verified the ubiquity of
obstructions, proposing a brute force algorithm running in Θ(Φk4kk3), Φ � (1 +

√
5)/2

(a.k.a. the golden ratio), for computing the intrinsic defect of all (combinations of) loops
over k nucleotides, ultimately resulting in a list F of local obstructions for a given defect
and threshold.

Remark 5.2.1: Regardless of the chosen defect, the existence of a polynomial time algorithm for the
enumeration all local obstructions would be highly surprising. Indeed, the existence of a complete
list of obstructions of size n, having cardinality polynomial on n, would suggest a polynomial-time
algorithm, using basic motif search in trees, for the decision version of the NP-hard inverse folding
problem [20]. Possible alternatives, such as fixed-parameter algorithms, remain a possibility that
could be worthy of being explored.

From a collection F of local obstructions, the next step is to consider the restricting effect
of forbidden motifs on the structure/phenotype space. To that purpose, we adopted a
tree representation, where the occurrence of a motif m ∈ F within a structure can be
expressed as the exactmatch of a treemotif associatedwithm, as illustrated by Figure 5.5.
It is well-known that motifs in trees asymptotically occur a number of time linear on
the tree size, almost irrespectively of their precise definition, and that forbidding some
motif induces a decay of the exponential growth [35, 39]. The following result ensues
immediately.
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Figure 5.5: Graph and tree representations of an RNA secondary structure S. Our
notion of occurrence of a motif in a structure requires an exact match, such that the
induced subgraphm2 of a motifm1 ∈ S does not automatically occur in S.

Theorem 24 (Exponentially low density of designable structures [206]): For
any defectD and tolerance ε, the proportion of designable secondary structure in
Sn is exponentially decreasing with n, i.e. there exists β < 1 such that

|{S ∈ Sn | S is designable}|
|Sn | < βn.

To establish this result, the set of secondary structures that avoids any motif in F can be
used, as it represents a superset for the set of designable structures. It is generated by
the grammar:

S→ ( T )S | •S | ε
T → S \ F

with F :� {m′ | ∀m ∈ F ,m � (m′ )}. This translates into the following system:

S(z) � z2 T (z)S(z) + z S(z) + 1

T (z) � S(z) − F(z, T )

where F(z, T ) is the gen. fun. of enclosed structures within motifs in F , such that

F(z, T ) �
∑
m∈F

zγ(m) Tδ(m) − c(z, T )

where γ(m) (resp. δ(m)) is the size (resp. number of paired leaves) of the motif m′,
and c(z, T ) is a correcting term to account for potential overlaps. Solving the equation
numerically gives the asymptotic equivalents listed in Table 5.2.
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#Local Asymptotic Proportion of designable structures? (upper bound)
Defect ε obstructions ρ equivalent Equiv. P10 (%) P50 (%) P100 (%) P200 (%) P500 (%) P1000 (%)

Free-energy 1 104 0.449 Θ
(
2.226n

n
√
n

)
0.973n 76.1 25.4 6.48 4.19·10−1 1.14·10−4 1.30·10−10

Probability .5 117 0.450 Θ
(
2.224n

n
√
n

)
0.972n 75.3 24.2 5.84 3.41·10−1 6.81·10−5 4.64·10−11

Probability .1 152 0.460 Θ
(
2.176n

n
√
n

)
0.95n 59.9 7.69 0.59 3.51·10−3 7.27·10−10 5.29·10−21

Probability .01 174 0.481 Θ
(
2.078n

n
√
n

)
0.908n 38.1 0.80 6.44·10−3 4.14·10−7 1.10· 10−19 1.22·10−40

Table 5.2: Consequence of obstructions of size up to 12 on proportion of designable
secondary structures. (?) Proportions of designable sequences computed using an as-
sumption of equal constants for the asymptotic leading terms of the number of secondary
structures, respectively allowing and forbidding local obstructions.
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Chapter 6

Conclusion and perspectives

In this Habilitation, I have attempted to provide a unified perspective over a series
of contributions in ensemble dynamic programming, random generation, analysis and
design of algorithms with applications in Bioinformatics, focusing on RNA folding from
thermodynamic principles and RNA folding.

These research projects, spanning more than a decade of research, more than a dozen
of distinct collaborations and 50+ manuscripts published in journals and selective con-
ference, have allowed me to draw fruitful connections between my initial background
in computer science and discrete applied mathematics, and my growing expertise and
visibility in RNA Bioinformatics. Beyond their absolute value as scientific contributions
and tools for the community, they have contributed to build a level of clarity in my objec-
tives, and positioningwith respect tomy communities, allowingme to (more) confidently
envision the future mentoring of young researchers.

Current projects. Over the next couple of years, my research will foreseeably be ded-
icated to two main projects in RNA bioinformatics, namely the connection between
design and RNA evolution and the integrative structure prediction informed by prob-
ing data, under respective grants from the French Agence Nationale de la Recherche
(Decrypted and PaRNAssus projects) awarded for the two projects for the 2020–2024
period.

In the former, we will explore with Simona Cocco, Rémi Monasson and Bruno Sargueil
to which extent modernmethods in evolutionary analysis, based on the concept of direct
information, can be used to recover andunravel designprinciples resulting fromnegative
selective pressures. I also wish to revisit negative design as a null model for assessing
the significance of observations, as mentioned in Chapter 3. This will require revisiting
the controlled random generation of a NP-hard problem, hopefully helped by my recent
enthusiasm for parameterized complexity algorithms.
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The latter project, implemented in collaboration with Ronny Lorenz and Bruno Sargueil,
attempts to define newmethods to exploit information produced in unconventional set-
tings for RNA probing. Those include probing experiments in different ionic conditions
where pseudoknots are suspected (or new tests to assess their presence), produced using
diverse reagents revealing different aspects of RNA architectures or acting with differ-
ent speeds. One of the requirements for such an endeavor is the design of polynomial
DP-based classes of pseudoknots, using conceptual tools introduced in Chapter 2, ef-
ficient and focusing on geometrically-feasible structures, enabling reasonable ensemble
analyses.

At a more methodological level, I am increasingly convinced that an efficient pursue of
finalized projects in RNA Bioinformatics requires to limit the distraction represented by
the implementation/debugging of complex DP algorithms (by students having limited
experience and patience). For this reason, I plan to invest some of my time to the
development of a generic DP framework to allow the production of efficient low-level
code from a generic DP description. Existing frameworks are indeed either unsufficiently
generic, or not easily amenable to support desirable features like random generation.
Such a development would also provide motivation to explore connections with formal
calculus, from which some of my contributions are already directly originating (through
enumerative combinatorics).

Finally, the recent development of methods combining sampling and clustering, follow-
ingDing et al. [52] have led us to identify strong limitations in performances, experienced
when using both agglomerative and divisive algorithms for unsupervised machine. I
am therefore currently venturing in the darkest pits of machine learning, hoping to find
techniques (e.g. embeddings) that will allow an efficient processing of large sampled
sets of structure, hoping to increase the robustness, and reproducibility of downstream
analyses.

Team development. This decade since my PhD has finally allowed to grow as a scien-
tist, from the postdoc-like status associated with a junior researcher CNRS position, to
securing my own research fundings and supervising my student, and finally to taking
the acting (2016) and permanent (2017–2018) scientific lead of the AMIBio team at LIX,
culminating in the recent recruitment of Sebastian Will.
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