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1. Introduction 

In the pharmaceutical environment, and especially in the research and development field, the 

quality of the medicine is a critical step as it is facing challenges with increased demand from the 

regulatory affairs to improve the quality of a pharmaceutical drug product. In order to ensure its 

proper effect on the patient health, a product has to be manufactured with the appropriate 

quality [1-3].  

Today, a lot of techniques are used in quality control (QC) laboratories to ensure the quality of a 

drug product. Several tests such as dissolution profiles, stability studies or control of active 

content are required from the pharmaceutical guidelines and authorities to ensure that the 

analysed product is included within pre-determined specifications. In the QC labs, most of the 

analytical tools are based on chemical analyses (liquid chromatography, dissolution 

apparatus…) which generally damage the sample, require solvent and a lot of time or important 

human resources.   

In the last decade, the use of vibrational spectroscopy such as near infrared or Raman 

spectroscopy has grown quickly and has appeared as an alternative analytical tool to usual 

techniques [4; 5]. By allowing fast and non-destructive analysis, without needing sample 

preparations in most cases, these analytical tools are particularly appreciated by the analysts. 

New available guidelines from European Pharmacopeia [6] or European Medicine Agency (EMA) 

[7] have strongly encouraged the use of these alternative techniques in the QC laboratories. The 

main objective is to continuously improve the knowledge of a pharmaceutical drug product to 

produce a medicine with high and consistent quality [8].  

Due to the complexity of the acquired spectra or because univariate observation of the data can 

be inadequate, multivariate data analysis and chemometrics are often needed to extract useful 

information from spectroscopic measurements [9]. Several applications have been previously 

published in the pharmaceutical environment. Qualitative analysis such as raw material 

identification [10] or counterfeit detection [11], have been carried out and have particularly 

been appreciated in the pharmaceutical field. Quantitative methods such as content uniformity, 

quantification of a crystalline form during stability studies, have been developed in order to 

replace usual chemical approaches [12].   

Apparition of chemical imaging, which gives both spectral and spatial information on the studied 

sample by associating two spatial dimensions (x and y dimensions) and one spectral dimension 

(each pixel spectrum) provides a new way of exploring a sample, i.e. a pharmaceutical drug 
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product [13; 14]. Indeed, by adding the spatial information, it is now possible to study the 

distribution of actives and excipients within a tablet or a powder sample. In the case of Raman 

microscopy, hyperspectral imaging (also called chemical imaging) is the association of a 

microscope and a Raman spectrometer. Because of the huge amount of data contained in 

hyperspectral images, a direct interpretation of the acquired images is not possible. Therefore, 

several chemometric tools have previously been applied for qualitative or quantitative analysis 

of hyperspectral dataset [15]. Some methods are mainly based on variance decomposition, while 

other methods require a calibration step or prior knowledge to develop predictive models. In 

most pharmaceutical cases, Raman microscopy coupled with chemometrics was used to study 

the compound distributions in a sample. Indeed, the study of active and excipient distributions 

can be viewed as a critical parameter significantly influencing the quality of the tablet. A non-

controlled distribution can have an impact on the tablet dissolution profile or can facilitate the 

apparition of degradation products which may be one of the reasons of a troubleshooting alert 

throughout the manufacturing process. 

In the framework of compound distributions, the study of a low dose compound, which can be 

viewed as a product located in a few pixels of an image and with a low spectral contribution 

comparing with other products, appeared as a real challenge. Indeed, because information 

linked to this product is weak and because chemometric algorithms are mainly based on the 

decomposition of statistical moments, detection of a low dose product could be difficult. 

The main objective of this thesis will be to study the ability of different chemometric tools and 

methods:  

i/ to study the compound distributions within a pharmaceutical drug product  

ii/ to identify a low dose compound in a pharmaceutical drug product  

To reach these objectives, different chemometric tools will be tested, with or without prior 

knowledge on the formulation, and innovative methodologies will be proposed, developed and 

applied on simulated and real case Raman hyperspectral datasets. 

2. Outline of the thesis 

The thesis consists of an introductory part (chapter I), followed by a state of the art section 

(chapter II) on the use of Raman spectroscopy in the pharmaceutical environment. In these two 

first sections, the major aspects of Raman spectroscopy and chemometrics tools are presented 
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with the help of several applications in the pharmaceutical environment. Brief introduction of 

the Raman effect, spectral interpretation and data analysis will be described based on a review 

of Raman applications in the pharmaceutical field. Moreover, the main objective of this thesis, 

which can be resumed as the detection of a low dose compound within a pharmaceutical drug 

product, will be detailed and explained.  

In the following sections, each chapter of the thesis refers to a scientific publication (published 

or submitted), forming the spine of this manuscript. The author would like to apologize for any 

potential redundancies between the different chapters, especially in the materials and methods 

sections, due to the chosen format of the thesis, based on articles.  

Chapter III discusses the ability of a blind source separation method, independent component 

analysis, to extract pure compound signals in hyperspectral dataset without prior knowledge. 

This chapter is the reproduction of Art. I published in the Journal of Pharmaceutical and 

Biomedical Analysis in 2014.  

Chapter IV details the use of multivariate curve resolution-alternating least squares to resolve a 

system including a low dose compound. Different approaches will be tested and discussed in this 

section. This chapter is the reproduction of Art. II published in the Journal of Pharmaceutical 

and Biomedical Analysis in 2015.  

In Chapter V, an innovative procedure to set the presence/absence maps of compounds for later 

use as local rank constraints in the multivariate curve resolution-alternating least squares 

iterative process is proposed. The algorithm is based on orthogonal projection to a space 

containing the contributions to be removed (i.e. the interference subspace) and spectral 

comparison between the projected spectrum and a pure projected spectrum of the compound of 

interest. This chapter is the reproduction of Art. III published in Analytica Chimica Acta in 2015.  

In chapter VI, an iterative approach is proposed to identify the pure compounds of a unknown 

pharmaceutical drug product by using a spectral library, spectral distances and orthogonal 

projections. This chapter is the reproduction of Art. IV submitted in the Journal of 

Pharmaceutical and Biomedical Analysis in 2015.  

Finally, the last chapter of this thesis (chapter VII) concludes by synthesizing the key points of 

the tested and developed approaches. It proposes some perspectives and future research 

applications to continue this work.  
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1. Raman spectroscopy 

1.1. Theoretical aspects 

The objective of this chapter is to provide a brief introduction to Raman spectroscopy for people 

that are not familiar with this technology. For more details, readers are referred to the literature 

[16-18].  

Raman spectroscopy can be considered as a vibrational spectroscopy. When an electromagnetic 

wave interacts with electrical and magnetic fields of atoms or molecules, different phenomena 

are observed depending on the energy of said wave. Optical spectroscopies constitute the body 

of methods that measure these light/matter interaction phenomena and thus use light for the 

study of molecular processes. Vibrational spectroscopies are optical spectroscopy techniques 

based on transitions between vibrational levels of the same electronic state. It measures the 

interaction of the incident electromagnetic radiation with the specific molecular vibrations of 

the sample. From spectrum, it is thus possible to deduce information on the nature and structure 

of a molecule, in either free or bonded form, as well as its interaction with its environment [19; 

20].  

Raman spectroscopy uses a monochromatic light source (typically a laser). When light (of 

frequency   ) interacts with matter, incident photons are mainly transmitted and absorbed by 

the sample molecules. However, a slight part of the incident light is also scattered. In that case, 

most of the photons (1 photon / 104 photons) are elastically scattered, meaning that they have 

the same energy of the incident light. This phenomenon is called the Rayleigh scattering effect. 

Occasionally (1 photon / 108 photons), a photon can be “inelastically” scattered, meaning that it 

has a frequency different that the frequencies of the incident light. This phenomenon 

corresponds to the Raman effect (Figure II-1). If the frequency of the scattered light is lower 

than the frequency of the incident light, then the Stokes Raman effect is measured          

    . However, if the frequency of the scattered light is higher than the frequency of the incident 

light, then the anti-Stokes effect is measured               . The Raman effect is weak 

comparing with the Rayleigh effect. In experimental applications, the Raman Stokes scattering is 

mainly measured as its intensity is higher than the anti-Stokes effect [21; 22]. Indeed, because 

the majority of molecules are in the ground energy state at room temperature, and not in an 

excited state as required for generating anti-Stokes scattering, the Stokes scattering is mainly 

observed. This observation can be explained by the Boltzmann distribution which describes the 

relationship between temperature and the fraction of molecules in an excited state [23]: 
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      (II-1) 

where    and    are the number of molecules in the excited and ground energy states,    and 

   the degeneracies of the excited and ground vibrational states, k the Boltzmann constant, T 

the temperature in Kelvin and    the energy differences between the vibrational energy states. 

If the temperature increases, the number of molecules in the excited state increases and the anti-

Stokes intensity changes accordingly. In theory, Stokes and anti-Stokes measurements contains 

the same frequency information, with different intensity levels.  

A Raman spectrum represents the intensity of Stokes or anti-Stokes lines as a function of 

wavenumber and not frequency. The x-axis is generally labelled the Raman shift ( ̅) and 

measured in wavenumber (cm-1). It can be calculated using the following equation: 

 

 ̅   (
 

         
 

 

          
)       (II-2) 

 
 

Where           and            are the wavelengths of the incident and the Raman scattered 

photons [24]. The Raman shift is then independent of the incident light frequency (the 

characteristic bands on a Raman spectrum will be the same whatever the wavelength of the 

laser). The positions of the Raman shifted wavenumbers for a given vibrational mode are 

identical to the wavenumbers of the corresponding bands in an infrared absorption spectrum. 

However, the stronger peaks in a Raman spectrum are often weak in an infrared spectrum, and 

vice versa. Comparing with other analytical tools, Raman spectroscopy is advantageous because 

quick and accurate measurements can often be made without destructing the sample and with 

minimal or no sample preparation. 
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Figure II-1 Description of the Raman scattering 

 
A lot of Raman instrumentations are available on the market and the objective of this chapter is 

not to provide an exhaustive review of the Raman technologies. However, Raman apparatus can 

be briefly described as a system constituted of a monochromatic light source, a filter to remove 

the Rayleigh scatter, a spectrograph to separate the Raman scattered light by wavelength, a 

detector, and a computer to visualize the data [25]. Different light sources (lasers) are available. 

The choice of excitation wavelength is a compromise: the higher the energy of the wave, the 

more intense scattering but also the greater risk of inducing parasitic fluorescence. In the 

pharmaceutical environment, to study tablet or power, a 785nm laser is often a judicious choice. 
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1.2. Raman chemical imaging 

Hyperspectral Raman images can be acquired by using two different modes: Raman mapping or 

Raman imaging. In the first case, the spectrum of the sample is dispersed across the detector, 

and the sample is moved when each spectrum has been measured. In the second case, the image 

of the sample at a single wavelength is focused on the detector and the wavelength is changed 

after each measurement [26].  

In most pharmaceutical applications, Raman mapping systems are used. Raman spectroscopy is 

coupled with a microscope in order to acquire both spectral and spatial information of a sample. 

The Raman images make possible the characterisation of the pure compound in a 

pharmaceutical drug product and can provide the distribution of actives and excipients on the 

surface of a sample. The acquisition system generates hyperspectral data cube, defined by the 

spatial dimensions x and y and the spectral dimension p, corresponding to the Raman shift 

(Figure II-2). The easiest way of having an image is to observe the data at a specific Raman shift, 

but this visualisation can only be carried out when specific Raman bands are available. It is not 

suitable when signals are overlapped. In practice, spectral datasets are often composed by 

hundreds of variables (i.e. Raman shift) which makes the direct visualisation difficult.  Due to 

high correlations between variables, their dimensions can be (mathematically) reduced without 

losing a lot of information [27].  

 

Figure II-2 Generation of hyperspectral data cube 

Every pixel contains a Raman spectrum, which can be a mixture of different compounds, 

depending on the spatial resolution used, which is a critical parameter of the analysis. Regarding 

to the Raman system, it can vary from hundreds of nanometres (high spatial resolution) to 
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hundreds of micrometres (low spatial resolution). The lower the spatial resolution, the greater 

risks of acquiring mixture signals for each pixel. However, the higher the spatial resolution, the 

longer acquisition time. A compromise must be selected depending on the objective and the 

acquisition time.  

1.3. Applications in the pharmaceutical environment 

In the pharmaceutical environment, Raman spectroscopy is used for qualitative or quantitative 

analysis [28; 29]. The continuous improvement and simplification of apparatus have made the 

use of this analytical tool easier for analysts without knowing the Raman theory in details. The 

rapid, non-destructive and non-invasive features of this technology mark its potential suitability 

as a process analytical tool for the pharmaceutical industry, for both process monitoring and 

quality control throughout drug production [30]. Chemical imaging can be considered as an 

emerging platform technology that integrates conventional imaging and spectroscopy to attain 

both spatial and spectral information from a sample. 

In the pharmaceutical environment, Raman spectroscopy and chemical imaging have been 

previously used in various ways [31]: 

- Raw material identification in warehouses [10] 

- Quantitative determination of active substance in a solid drug product [32; 33] 

- Detection and quantification of crystalline forms [34; 35] 

- Fight against illegal drugs / Counterfeit detection [36-38] 

- Process Analytical Technology: Support chemical or pharmaceutical development [39-
41] 

- Pharmaceutical development: determination of the tablet homogeneity [42; 43], 
understand dissolution performance [44]…   

 

2. Chemometric tools 

A Raman spectrum contains a lot of information that describes the chemical and physical 

composition of a sample. In the case of chemical imaging, the amount of data can be very 

important and a visual interpretation of the data is not possible. In order to extract the useful 

information, two approaches can be considered: univariate and multivariate data analysis. 

Historically, analysis of Raman data has been limited to the univariate approach by analysing 
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Raman band intensities or by calculating Raman band ratio. Univariate analysis is considered as 

the easiest, most prevalent and most robust data analysis approach and, in many cases, can 

provide sufficient information and reliable predictability [45]. But, most of the time, the 

complexity and the amount of data require the use of multivariate data analysis. 

In most cases, chemometric tools appeared as a powerful solution to extract the desired 

information. Indeed, chemometrics was extremely useful to investigate complex and very similar 

spectra by extracting the relevant chemical information from the raw spectra, especially when 

they have a large number of variables and significant overlap of analytical signals. Another 

advantage is that chemometric tools are statistical methods which provide an objective way to 

examine spectra, as opposed to pure visual inspection [46]. Large datasets are generated using 

Raman spectroscopy, thus, extracting targeted information from these complex datasets is a real 

challenge.  

Several chemometric methods have been developed and applied on spectroscopic data and 

hyperspectral imaging [15; 47]. In most applications of chemical imaging, data analysis 

procedure consists of the following steps [48] : 

- Unfold the image (3-dimensions dataset to 2-dimensions dataset) 

- Pre-process the data (spike, baseline correction…) 

- Perform data analysis (unsupervised or supervised algorithms) 

- Fold results back to image (distribution maps) 

- Enhance resulting image (image filtering, contrast enhancement…) 

 

In order to apply conventional chemometric tools on hyperspectral data cube, chemical images 

are usually unfolded from a 3-dimensions dataset to a 2-dimensions dataset. Common 

chemometric tools can then be applied on the unfolded hyperspectral images. By using these 

techniques, all the spectral information of the data cube is taken into account. Principal 

component analysis (PCA) [49], classical least squares (CLS) [50], partial least squares (PLS) 

[51], multivariate curve resolution (MCR) [52], partial least squares-discriminant analysis (PLS-

DA) [53] or independent component analysis (ICA) [54] have been previously applied on 

hyperspectral dataset acquired by vibrational spectroscopy. Three of them were mainly used in 

this thesis: principal component analysis, independent component analysis and multivariate 

curve resolution-alternating least squares. By folding back the results, distribution maps can be 

obtained. Mathematical treatments or filters can be applied on the distribution maps in order to 

enhance image contrast, or to smooth the image, or to enhance edges in the image [55]. 
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Some of the basic principles of these chemometric methods will be explained in the next sections 

as well as the pre-processing step of the data. 

2.1. Data pre-processing 

Pre-processing of the data is often necessary before applying chemometric methods in order to 

improve the model performance by removing perturbing effect or to enhance slight variations in 

the dataset [56]. With vibrational spectroscopy, it can be very important to decrease the 

influence of various signal sources that are not related to the useful chemical or physical 

information. Light scattering, variations during long acquisitions or different particle-size 

distributions could have a huge impact on the spectral quality and the use of pre-processing 

tools is often required. 

A lot of pre-processing methods have been previously used on vibrational spectroscopy [57; 58]. 

Centering of the data, baseline correction or normalisation methods are very famous pre-

processing techniques with vibrational spectroscopy. The use of derivative methods, coupled 

with a smoothing step (such as the Savitzky-Golay algorithm [59]) can be useful to enhance 

slight variations in the spectral dataset. In the case of Raman spectroscopy, cosmic rays can be 

observed on spectra, thus spike correction can also be necessary. Even if the objective of this 

thesis is not to provide an in-depth description of all the pre-processing tools applied on Raman 

spectroscopy, a brief description of the main approaches cited in this manuscript is provided in 

the next sections. 

2.1.1. Spike correction 

Spikes are usually sharp Raman bands which can influence the variance structure of the dataset. 

There are mainly explained by cosmic rays and high energy particles, striking the CCD (charge-

coupled device) detector. These cosmic rays must be removed without modifying the Raman 

spectral bands before applying chemometrics tools. A lot of methods are available to correct 

these artefacts [60] and some of them have been successfully applied to Raman chemical 

imaging [61; 62]. In this work, a spatial approach based on [63] is applied. Image spectra in a 

square pixel area neighbourhood are used to identify outlier-contaminated data points in the 

central pixel of that neighbourhood. A preliminary “despiking” of the neighbouring spectra is 

performed by median filtering. Correlations between the central pixel spectrum and its 

“despiked” neighbours are calculated, and the most highly correlated spectrum is used to 

identify outliers. Spike-contaminated data are replaced using results of polynomial 

interpolation. Application of the spike correction is illustrated in Figure II-3, where signals 
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before and after the spike correction of a lactose spectrum are displayed. The spike at 610 cm-1 

was clearly eliminated by the algorithm without modifying the Raman spectrum. 

 

Figure II-3 Application of spike correction on a lactose spectrum 

2.1.2. Baseline correction 

A spectrum can be considered as the sum of a signal which contains the useful information on 

the chemical composition of a sample and a background signal which corresponds to the 

harmful information. With Raman spectroscopy, baseline variations can mainly arise from 

fluorescence effect by causing the disappearance of the Raman bands. Manual [64], semi-

automated [65; 66] or fully automated methods [67] can be applied on the data to correct these 

unwanted spectral variations. 

In [66], a semi-automated method for fluorescence subtraction, based on a modification to least-

squares polynomial curve fitting was described. The method was improved in [65] with the 

addition of a peak-removal procedure during the first iteration and a statistical method to 

account for signal to noise effects. Experimental results demonstrate that this approach 

improves the rejection of the fluorescence background during real-time Raman spectroscopy 

and for in vivo measurements characterized by low signal-to-noise ratios. To avoid the use of 

parameters such as the polynomial order selection, fully automated baseline correction 

techniques were developed [67].  
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Asymmetric least squares (AsLS) is also a powerful method for removing baseline offset from 

raw Raman spectra. With this approach, it is assumed that some variables contain only 

background contributions. A polynomial is fitted to each spectrum and variables below the 

polynomial are up weighted before the next iteration. Process is repeated until that a pre-

defined number of variables is reached [68-70]. Application of AsLS pre-processing step was 

illustrated in Figure II-4 on 25 Raman spectra of microcrystalline cellulose. Comparing with the 

raw spectra, the baseline variation was successfully corrected by the algorithm. 

 

Figure II-4 Application of baseline correction using Asymmetric Least Squares on 25 spectra of 

microcrystalline cellulose  

2.1.3. Normalisation 

Due to acquisition variability and to concentrations or scattering variations of a compound, In 

some cases, Raman intensities can be different between samples or during the whole acquisition. 

In most situations, a normalisation has to be applied by dividing each variable of a spectrum 

with a constant [71]. The constant can be the maximum value of a spectrum, or the sum of all 

variables from a spectrum (also called the normalisation to unit area), or the sum of squares of 

all variables from a spectrum (also called the normalisation to unit length). Other methods such 

as standard normal variate (SNV) [72] or multiplicative scatter correction  (MSC)  [73], 

previously applied on near infrared spectra, have also been used successfully on Raman dataset 
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[74]. In Figure II-5, the SNV pre-processing was applied on 25 Raman spectra of Amlodipine. 

Spectral variability observed in the raw spectra was successfully corrected. 

 

 

Figure II-5 Application of SNV correction on 25 spectra of Amlodipine 

2.1.4. Derivatives 

Derivatives can be applied on spectral data for two objectives. The first one is the correction of 

the baseline variations and the second one is the enhancement of the slight spectral variations. 

Most applications used a Savitzky-Golay [59] derivation which combines a smoothing and a 

derivative steps. With derivatives, the signal quality can decrease because the noise will be 

enhanced. A well-defined compromise has to be chosen between the derivative order, the 

polynomial order and the window size in accordance with the expected spectral quality. 

In Figure II-6, a second order derivative with a window size equal to 9 and 2nd polynomial order, 

was applied on 25 Raman spectra of aspartame. Baseline variations were significantly decreased 

and slight spectral variations were enhanced by preserving a sufficient spectral quality.  
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Figure II-6 Example of derivative correction on 25 spectra of aspartame 

2.2. Multivariate data analysis 

2.2.1.  Principal component analysis 

 
The main goal of principal component analysis (PCA) is to reduce the dimensionality of a matrix 

by removing correlations between variables. PCA decomposes the data in a new set of variables 

called principal components progressively explaining the largest variations of the dataset [75]. 

The second principal component is orthogonal to the first one and explains the residual variance 

not taken into account by the previous one. A spectral matrix   can be explained by the score 

matrix T, a loading matrix P and a residual matrix E with the equation:  

            (II-3) 

Scores refer to spectral variations while loadings represent the spectral contributions to each 

principal component. For a specific number of components, the residual matrix contains the 

non-explained information. It will decrease with the number of principal components. With 

chemical imaging applications, score results can be folded back on order to observe the pixel 

variability for each principal component. In the case of Raman spectra, where the variables are 

highly correlated, the number of components is usually considerably lower than the number of 

variables. PCA can be viewed as a specific case of eigen-decomposition on the variance-
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covariance spectral matrix [76]. It is considered as a very powerful tool for exploratory analysis 

or dimension reduction, and it can also be an interesting tool to detect the number of 

components in a mixture dataset. 

PCA was successfully applied on a lot of vibrational datasets and hyperspectral images [77; 78]. 

In some cases, the variability associated to a principal component can be linked with a chemical 

compound of a tablet but in most applications, due to their unclear chemical meaning, loadings 

and associated images are difficult to interpret.  

2.2.2. Independent component analysis 

Independent component analysis (ICA) is one of the most powerful techniques in blind source 

separation [79; 80], assuming that each row of the studied matrix is a weighted sum of pure 

source signals. It has been developed to extract the pure underlying signals from a set of mixed 

signals in unknown proportions. Considering a noise-free ICA model, a matrix X (n x m) is 

decomposed as a linear generative model by the following expression: 

          (II-4)  

Where S is a (k x m) matrix of k independent source signals called the independent components 

and A is a (n x k) mixing matrix of coefficients or proportions of the pure signals in each mixed 

signal of X. The objective of ICA is to estimate a set of vectors that are as independent as 

possible, and the mixed signals in X can then be expressed as linear combinations of these 

independent components (ICs). It attempts to recover the original signals by estimating a linear 

transformation, using a criterion which reflects the statistical independence among the sources. 

To solve the previous equation, an unmixing matrix W based on the observation of X needs to be 

calculated. The output U, constituted by the independent component u1,u2, … un should be as 

independent as possible. For a noise-free ICA model, W should be the inverse of A, and U should 

be equal to S, according to the following equation: 

               (II-5)   

The mixing matrix A can then be calculated as: 

                (II-6)  
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2.2.3. Multivariate curve resolution-Alternating least squares 

Multivariate curve resolution-alternating least squares (MCR-ALS) is a well-known resolution 

method [81; 82] which has the objective of decomposing an original matrix    (n samples or 

rows and p variables or columns) of a multi-component system into the underlying bilinear 

model which assumes that the observed spectra are a linear combination of the spectra of the 

pure components in the system: 

             (II-7)  

where C is the matrix of concentration profiles, ST the matrix of pure responses (i.e. spectra) and 

E contains the experimental error. In resolution of spectroscopic images,   is the matrix of the 

unfolded image, C contains the concentration profiles that, conveniently refolded, show the 

distribution maps of each image constituent and ST contains the associated pure spectra [83]. In 

order to provide chemically meaningful profiles (i.e. pure spectra and distribution maps) and to 

strive for a unique MCR-ALS solution, several constraints must be properly chosen during the 

iterative calculation process (non-negativity, equality…) [84-86].   

MCR-ALS must be initialised by a first estimate of C or ST matrix. Initial estimates can be 

manually filled where pure spectrum of each constituent is known but generally, a mathematical 

approach is applied. SIMPLISMA (Simple-to-use interactive self-modeling mixture analysis) [87], 

orthogonal projection approach (OPA) [88], independent component analysis (ICA) [89] or 

evolving factor analysis (EFA) [90] were used on spectroscopic data to identify pure signals in a 

mixture dataset. 

During iterative process, figures of merit are the lack of fit (lof) and the explained variance (R²). 

The lack of fit is used to check if the experimental data were well fitted by the MCR-ALS 

procedure. These two criteria are calculated as follow: 

          √
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    (II-8)  
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    (II-9)  

where       is the input element of the original matrix   and      the related residual element after 

using the MCR-ALS model.  
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3. Identification of a low dose compound 

3.1. Definition of a low dose compound 

The main objective of this thesis is the detection of a low dose compound in a pharmaceutical 

drug product by using Raman microscopy. In a large point of view, it can be generalised to the 

detection of a scarce sample in hyperspectral dataset and it can be extended to other 

applications (example: identification of a contaminant in food engineering). A scarce sample can 

be defined by a compound which has low spatial distribution and low spectral contribution in 

the data cube. 

By definition, hyperspectral dataset are characterized by spectral and spatial dimensions. 

Regarding the spatial aspect, a specific compound can be distributed in most pixels of the image 

(the distribution of this compound can be considered as homogeneous) or in a few pixels of the 

image (the distribution of this compound can be considered as heterogeneous). Regarding the 

spectral aspect, the compound can provide high or low spectral contributions, depending on its 

concentrations or proportions in a spectrum, or depending on its absorptivity or spectral 

responses. As it is shown in Table II-1, four different cases can be found and observed for a 

specific compound in an image. Two of them (high spectral contribution in most pixels and high 

spectral contributions in a few pixels) can be easily tackled since the spectral information is 

highly present in several image pixels, i.e. several spectra. In this work, only the case of a 

compound which has low spatial and spectral contributions was studied.  

  
Spatial 

  
In most pixels In a few pixels 

S
p

e
ct

ra
l 

High spectral 

contributions 

Pure spectra and distribution 

maps can be easily calculated 

Pure spectra and distribution 

maps can be easily calculated 

Low spectral 

contributions 

Low spectral contribution of 

the compound 

Low spatial and spectral 

contributions of the 

compound 

Table II-1 Spatial and spectral contributions of a compound 

In a pharmaceutical sample, a low dose compound can be an active (low concentrated drug 

substance, polymorph, impurity…) or an excipient (lubricant…). 
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3.2. The sampling aspect 

In the pharmaceutical environment, the main objective of Raman chemical imaging is to study 

the distribution of actives and excipients in tablets or powders. Even if a pharmaceutical drug 

product is included within the quality specifications, the different compounds can be considered 

as non-homogeneously distributed in the tablet, leading to a possible sampling error if the entire 

image of the sample is not acquired. Because the whole tablet is not perfectly homogeneous, 

acquisition of different areas could provide various results [91].  

Raman microscopy has been previously tested to study the identification of a low-content active 

pharmaceutical ingredient. In [92], tablets were prepared with two forms of API which one is 

considered undesirable and lower than 1% w/w. Authors focused on the number of image 

spectra to acquire in order to ensure the spectral detection of the low-concentrated form. The 

probability of observing at least one spectrum of a low dose compound can be calculated as 

follow: 

                 (II-10) 

and 

                       (II-11) 

Where “bin” stands for binomial distribution,     is the number of spectra of the low dose 

compound found from n spectra, and c the concentration of the low dose spectra. For example, 

for a 0.5% w/w low dose compound in a formulation, there is a probability higher than 99% to 

find a spectrum if more than 1000 spectra are acquired (Figure II-7). 
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Figure II-7 – Probability of finding at least one spectrum of a 0.5% w/w low dose compound 

Even if these studies have shown the critical aspect of the number of spectra in an image, the 

statistical approaches developed did not consider a critical parameter of an acquisition: the 

spatial resolution. With chemical imaging, Raman measurements can be performed at a 

macroscopic or a microscopic scale. When a macroscopic scale is used, the spatial resolution can 

be generally considered as lower than the particle size of each compound. Therefore, the 

measured signal may not be representative of a pure pixel composition, and can be a mixture of 

different compounds. This occurs because of the light penetrating deep into the sample. The 

acquired signal at a specific pixel position is not originated only from a small and confined 

volume on the surface of the tablet but also from under the surface and the sides, depending on 

the apparatus and the sample. In theory, the higher the magnification, the smaller the dissipation 

of the light and the sampling area which leads to a pure compound identification [93]. Because 

Raman signals from various compounds of the tablet normally interfere [92], spectral 

modifications can be difficult to identify in the case of a low dose compound. 

The probability of finding spectra (or pixels) of a given constituent is related to its concentration 

in the formulation, to its distribution in the tablet, to its scattering coefficient, to apparatus and 

acquisition parameters. Even if optimization of the chemical imaging system (for example by 

using a high spatially resolved spectrometer) appeared as a straightforward solution to detect a 

low dose compound, it increases significantly the number of points and hence, the time required 

for image acquisition.  
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By considering the spectral variations, several compounds can have interferences, with 

overlapped Raman bands, which can make the identification of a constituent harder, especially 

in the case of a low dose compound. Therefore, multivariate data analysis of the spectral dataset 

can significantly improve identification and detection of a compound. But in practice, the 

precision and sensitivity of qualitative or quantitative analysis is very sensitive to both the 

spectrometer and sampling errors. 

3.3. Data analysis aspect 

For a lot of compounds, Raman spectroscopy provides spectrum with sharp and well-defined 

Raman bands. Generally, active responses are much stronger than those from excipients so that 

even low concentrations can be satisfactory detected. For those reasons, the distinction of active 

among the components of a formulation can be manually and visually performed by the analyst 

[94; 95] using univariate observation at a single variable (i.e. Raman shift) or by calculating 

surface ratio of Raman bands.  

However, in most applications, Raman bands are overlapped and a direct interpretation of the 

spectra is not possible. Therefore, chemometric tools appeared as the only solution to extract 

useful information from the acquired signals. Several chemometric methods have been 

developed on vibrational dataset or hyperspectral imaging data cube (see Chapter II, paragraph 

2) and most of them have studied the distributions of “sufficiently concentrated” pharmaceutical 

compounds, using prior knowledge on the studied formulation.   

In some cases, the detection of a low dose compound can be useful to ensure the product quality 

or to improve the development of a product. In the literature, it has been previously studied 

from usual spectroscopic data by using bulk measurements [96; 97] and chemometric tool such 

as the PLS regression [98-100] and some of them focused on the detection limit of the analytical 

method [101]. The use of the net analyte signal (NAS) [102; 103] pre-processing appeared as an 

interesting tool to accurately resolve the analyte signal of a low dose compound and allow the 

construction of a quantitative model [104]. Several adaptations of these approaches can be 

considered, depending on the spectral basis (i.e. space containing the contributions to be 

removed) used for projecting the original dataset. 

With the definition provided in section 3.1, a low dose compound can be viewed as a product 

with low spectral variance (i.e. low spectral contribution) within the entire dataset. The variance 

is one of the moments of a distribution. In theory, it describes how far a set of samples is spread 

out around the mean. In this work, because the data are not centered, the variance can be 
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associated with the dispersion of samples around a predefined value. Due to low spectral 

contributions of the low dose compound, and because it is only present in a few spectra (i.e. 

pixels), a visual identification of its distribution is not possible and usual chemometric method, 

mainly based on statistical moment decompositions, may encounter some difficulties to extract 

the associated information. Therefore, the detection of a low dose compound by using Raman 

microscopy and chemometrics appeared as a real challenge and, to our knowledge, it has not 

been studied in a previous work. 

3.4. Contributions of the thesis  

The present work uses Raman microscopy to study the distribution of actives and excipients in a 

pharmaceutical drug product. It focuses on the application of chemometric tools to identify both 

major and minor compounds of a pharmaceutical formulation, including spectral features and 

distribution maps of each product. The detection of a low dose compound in a tablet is the 

common thread of this thesis. It was defined above as a product with low spatial and spectral 

contributions, meaning that the information is contained only in few pixels of the image and 

mixed with the other compound spectra or scattered in noise contribution. 

With usual chemometrics methods, hyperspectral image analysis can be viewed as the 

resolution of the following equation:       where X is the initial dataset, C the matrix of 

concentrations and S the matrix of pure spectra. C and S can be calculated without prior 

knowledge by using blind source separation methods or with prior knowledge by using 

resolution methods. In this work, ICA and MCR-ALS, which have been previously applied on 

spectroscopic measurements and hyperspectral imaging to provide spectral features and 

distribution maps, were used. In both cases, the decomposition of statistical moments (variances 

or cumulants) was required. Considering the studied case of the low dose compound, we can 

make the hypothesis that, because these algorithms are mainly based on the decomposition of 

statistical moments, identification of this product within hyperspectral dataset can be difficult 

and different improvements or adjustments should be required. 

In chapter III and chapter IV, the hypothesis presented above is challenged by applying ICA and 

MCR-ALS on hyperspectral image of a pharmaceutical tablet to provide the distributions of 

actives and excipients. The studied sample includes a lubricant which corresponds to the low 

dose compound. By applying ICA and MCR-ALS as usual, without any modifications of the 

calculation process, it can be assumed that these algorithms are not able to extract the low dose 

compound contributions. Some improvements and modifications of these two algorithms are 
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proposed and tested. In chapter III, the use of over-segmented ICA model is described. In chapter 

IV, modifications of the filtering process prior than the iterative MCR-ALS process are tested. 

Chapter III and chapter IV validate the difficulty of extracting the low dose compound 

contribution by using algorithms based on the decomposition of statistical moments. Rather 

than using the statistical moments, this thesis investigates alternatives method based on the 

signal space. It describes the P-dimensional space (one axis per variable) in which the 

observations can be represented as vectors. It ensures the detection of a compound without 

requiring important variations between samples (or pixels) and it appears as particularly 

suitable for the studied case of a low dose compound. 

Therefore, second part of the thesis, constituted of chapter V and chapter VI, uses orthogonal 

projections to improve the performance of MCR-ALS algorithm by calculating a constraint based 

on signals, and provides a new approach for the detection of a low dose compound in a 

pharmaceutical drug product. 

In chapter V, the work focuses on MCR-ALS calculation and especially on the optimisation of the 

spatial constraint frequently used to improve the resolution. Indeed, MCR-ALS requires the use 

of constraint to reduce intensity or rotational ambiguities and to tend to a unique solution. 

Equality constraint, based on local rank information, was previously studied. However, as the 

usual method applies singular value decomposition on several spectra, it requires a sufficient 

level of differences between samples. Since it is based on the use of second central moment (i.e. 

variance decompositions), limitations of this approach are reached in the case of a low dose 

compound. A new methodology to set up absence/presence maps is proposed. It is based on 

orthogonal projection to a basis containing all the spectral variability other than the one of the 

compound of interest. It can only be applied in situations where the space of interferences can 

be well-defined, and thus, it requires to know the sample composition beforehand. 

In the previous chapters, the pharmaceutical composition is supposed to be known by the 

analysts. However, in some applications, drug products contained in tablets or powders are not 

known. In chapter VI, an iterative method for compound detection in an unknown drug product 

is proposed. The proposed methodology requires a spectral library, spectral distances and 

orthogonal projections to iteratively detect the compound of a mixture matrix. Again, this 

iterative method is only based on the spectral space, without requiring information between 

samples (or spectra). The approach is tested and discussed on a pharmaceutical drug product 

including a low dose compound but conclusions and proposed approaches can be extended to 

other similar applications.  
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Preamble 

In this chapter, a Raman hyperspectral image of a commercialised tablet is studied. The objective 

is to examine the distribution of active principal ingredients and excipients within the tablet. A 

lot of chemometrics tools have been previously studied to extract distribution maps and most of 

them require prior knowledge for calculation or data interpretation. In this work, we want to 

focus on the use of independent component analysis (ICA), a blind source separation method, to 

extract interpretable pure signals (Figure III-1). 

With ICA, each row of a data matrix is considered to be a sum of pure source signals, neither the 

source signals, nor their proportions being known. ICA aims to extract these pure sources, 

underlying the observed signals, by maximization of their non-Gaussianity, as well as their 

concentration in each mixture. As this approach can be used without pure spectra knowledge, 

this is of a huge interest comparing with other chemometric algorithms.  

Since ICA results depend on the number of independent components used in the model, this 

criterion is considered as a critical parameter. Most of the time, it is determined based on prior 

knowledge concerning the studied case. In order to avoid this manual selection, an innovative 

method using the comparison of signals between spectral blocs is used. Being a critical 

parameter of the ICA model, the number of ICs is intentionally modified, simulating under-

decomposition or over-decomposition, in order to test the effect on results.  

 

Figure III-1 Graphical representation of the tested approach 
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In the case of a low dose compound, pure signal detection using ICA seems to be a real challenge. 

Indeed, due to its low spectral contribution and to its presence in a few pixels, the variability 

linked to this product is weak. The method is tested and discussed on a tablet manufactured 

with a low dose lubricant.  

This chapter is the reproduction of Art. I published in the Journal of Pharmaceutical and 

Biomedical Analysis in 2015.  
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APPLICATIONS OF INDEPENDENT COMPONENT ANALYSIS ON RAMAN 

IMAGES OF A PHARMACEUTICAL DRUG PRODUCT: PURE SPECTRA 

DETERMINATION AND SPATIAL DISTRIBUTION OF CONSTITUENTS1 

1. Introduction 

In recent years, chemical imaging has become an emerging technique that integrates 

conventional imaging and spectroscopy to combine spatial and spectral information from a 

sample [15]. The use of vibrational spectroscopies such as near infrared or Raman is particularly 

appreciated within the pharmaceutical research and development environment. Indeed, 

vibrational spectroscopy technologies on solid pharmaceutical samples have many advantages 

such as the rapidity of analysis, the non-destruction of the sample and the possibility to perform 

an analysis without using solvents. The spatial information provides useful information on 

product processing, for formulation development or to control the quality of an existing drug 

product. Indeed, the distribution of actives or excipients within a specific formulation becomes 

an important quality control parameter. 

Several applications of Raman spectroscopy have been published and the potential of this 

technique is widely accepted [105]. The use of Raman spectroscopy for the detection of trace 

cristallinity [106] and the determination of active content within pharmaceutical capsules [107], 

are of great interest for the development and the quality control of a formulation. Moreover, 

hyperspectral imaging shows considerable promise for providing information in diverse fields 

such as remote sensing [108] for interpretation of experimental spectroscopic images from the 

geographical region of Cuprite, foods and agriculture [109] for analysis of cucumber leaves and 

pharmaceuticals for analysis of solid dosage forms [110] or the detection of polymorphic forms 

in tablets [93]. 

Coupling spectroscopy and imaging generates a huge amount of data. Most of the time, the image 

cube is unfolded into a data matrix and to extract the maximum of information, it is necessary to 

use multivariate data analysis methods and spectral decomposition techniques [111]. Standard 

chemometric tools such as principal component analysis [112], cluster analysis [113], classical 

                                                             
1  Mathieu Boiret, Douglas N. Rutledge, Nathalie Gorretta, Yves-Michel Ginot, Jean-Michel Roger. 
Applications of independent component analysis on Raman images of a pharmaceutical drug 
product: pure spectra determination and spatial distribution of constituents. Journal of 
Pharmaceutical and Biomedical Analysis, Vol. 90 (2014) 78-84. 
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least squares [48] and multivariate curve resolution [114] have previously been described in the 

literature on Raman datasets.  

Independent component analysis (ICA) is a blind source separation algorithm [79] particularly 

appreciated for the decomposition of spectroscopic data. Its ability for spectral decomposition of 

UV-VIS spectra has already been evaluated [115]. Wang et al. [116] also highlighted that ICA can 

be used as a blind source separation technique to extract pure component information from 

various measured analytical signals such as mass spectra, mid-Infrared spectroscopy spectra or 

chromatograms. In this article, ICA was applied on a promising technique for pharmaceutical 

drug product analysis: the Raman spectroscopy. In ICA, each row of the data matrix is 

considered to be a sum of pure source signals, neither the source signals, nor their proportions 

being known. ICA aims to extract these pure sources, underlying the observed signals, as well as 

their concentration in each mixture. Source signals are assumed to have a definite structure, and 

so their intensity does not have a Gaussian distribution. On the other hand, although the 

distributions of independent signals are not Gaussian, their sum tends towards a Gaussian 

distribution. ICA aims to extract the pure source signals by maximization of their non-

Gaussianity [117]. 

In this paper, a commercial pharmaceutical tablet was analysed by Raman chemical imaging. The 

objective was to extract interpretable pure signals using ICA, in order to examine the 

distribution of active principal ingredients (API) and major excipients. ICA approach can be used 

without pure spectra knowledge. The direct data analysis of the image is a huge advantage 

comparing with the usual Chemometric algorithms. This approach can become a useful tool for 

quality control of a pharmaceutical drug product or to analyse a product with an unknown 

composition. As a method based on decomposition of the original data matrix, the number of 

independent components is a critical step of this algorithm. Usually the number of independent 

components to extract is determined based on prior knowledge concerning the formulation 

[118]. In order to select the best number of independent components, innovative tools 

previously developed and published were used in this study. Each calculated source signal was 

compared with the pure spectra of the constituents and the distribution of the compound in the 

tablet determined. Being a critical parameter of the ICA model, the number of ICs was 

intentionally modified, simulating under-decomposition or over-decomposition, in order to test 

the effect on results.  
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2. Materials and methods 

2.1. Samples 

A commercial coated tablet of Bipreterax® was used for the study. Bipreterax® is used for 

arterial hypertension treatment and is commercialised by “Les Laboratoires Servier”. It is also 

known as Perindopril (active principal ingredient 2 or API 2) / Indapamide (active principal 

ingredient 1 or API 1) association and contains respectively 4mg of API 2 and 1.25mg of API 1 in 

the commercial drugs. Actives are known to have several solid state forms, but only one of them 

is present in this formulation. Major core excipients are lactose monohydrate, microcrystalline 

cellulose (Avicel) and magnesium stearate. In order to analyse the tablet core, the coating was 

removed by eroding the sample with a Leica EM Rapid system (Leica, Wetzlar, Germany). A 

visual examination of the tablet did not provide any information concerning the distribution of 

the different compounds within the tablet.  

2.2. Raman imaging system 

The image was collected using a RM300 PerkinElmer system (Perkin Elmer, Waltham, MA) and 

the Spectrum Image version 6.1 software. The microscope was coupled to the spectrometer and 

spectra were acquired through it with a spatial resolution of 10µm in a Raman diffuse reflection 

mode. Wavenumber range was 3200–100 cm-1 with a resolution of 2 cm-1. Spectra were 

acquired at a single point on the sample, then the sample was moved and another spectrum was 

taken. This process was repeated until spectra of points covering the region of interest were 

obtained. 

A 785nm laser with a power of 400mW was used. Two scans of two seconds were accumulated 

for each spectrum. An image of 70 pixels per 70 pixels corresponding to 4900 spectra was 

acquired for a surface of 700µm by 700µm.  

2.3. Pre-processing 

Data were pre-processed in order to remove non-chemical biases from the spectra (scattering 

effect due to non-homogeneity of the surface, interference from external light source, spikes due 

to cosmic rays, random noise). First of all, data were spike-corrected in order to reduce the 

effect of cosmic rays [61]. Next, the spectral range was reduced in order to focus only on the 

region of interest, corresponding to a Raman shift from 1800cm-1 to 200 cm-1. Reduced spectra 
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were pre-processed by standard normal variates correction (SNV) [72] in order to reduce the 

effect of baseline variations and uninformative variations in global spectral intensity.  

2.4. Independent Component Analysis (ICA) 

ICA is one of the most powerful techniques in blind source separation [119]. It has been 

developed to extract the pure underlying signals from a set of mixed signals in unknown 

proportions. Considering a noise-free ICA model, a matrix X (n x m) of n spectra and m variables 

(Raman shift) is decomposed as a linear generative model by the following expression: 

         (III-1) 

Where S is a (k x m) matrix of k independent source signals called the independent components 

and A is a (n x k) mixing matrix of coefficients or proportions of the pure signals in each mixed 

signal of X.  

The objective of ICA is to estimate a set of vectors that are as independent as possible, and the 

mixed signals in X can then be expressed as linear combinations of these independent 

components (ICs). It attempts to recover the original signals by estimating a linear 

transformation, using a criterion which reflects the statistical independence among the sources. 

To solve the previous equation (Eq. III-1), an unmixing matrix W based on the observation of X 

needs to be calculated. The output U, constituted by the independent component u1,u2, … un 

should be as independent as possible. For a noise-free ICA model, W should be the inverse of A, 

and U should be equal to S, according to the following equation: 

              (III-2) 

The mixing matrix A can then be calculated as: 

               (III-3) 

Lots of algorithms are available to perform ICA calculations such as FastICA [120] or Radical 

[121]. In this paper, the JADE (Joint Approximate Diagonalization of Eigenmatrices) algorithm 

was used [122]. Compared with other methods based on parameter optimization, the JADE 

algorithm performs matrix diagonalizations, and therefore does not involve an optimization 

procedure [123].  
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The ICA_by_blocks algorithm [124] was used to determine the optimal number of signals to 

extract. This method starts by splitting the initial data matrix X into B blocks of samples (with 

approximately equal numbers of rows). Note that the samples in each block have to be 

representative of the whole dataset. ICA models are then computed with an increasing number 

of ICs for each block. To ensure the same signs of the ICs of the different models, the signs of the 

vector A (and therefore the corresponding S) are adjusted so that the most intense value in each 

vector of A is positive. ICs corresponding to true source signals should be found in all 

representative subsets of samples, or row blocks, of the full data matrix. These ICs should be 

strongly correlated. 

2.5. Data analysis 

Data analysis was performed by using Matlab R2012a software. The Matlab code of the JADE 

algorithm was downloaded from the web site in ref. [125]. 

3. Results & discussion 

3.1. Selection of number of independent components  

Determination of the number of ICs for ICA decomposition is a critical step of the data analysis. 

Indeed, calculating too few ICs results in non-pure signals, whereas calculating too many ICs can 

decompose pure signals into several contributions. The ICA_by_blocks method was applied by 

splitting the dataset row-wise into two blocks and by performing ICAs on each block. Sample 

selection to create the two subsets was done by using a "venetian blind" procedure. Each test set 

is determined by selecting every bth (number of blocks) object in the dataset, starting at object 

number one. ICA models were calculated for both blocks with from 1 IC to 20 ICs. ICs were 

compared in each block by calculating the correlation coefficients between all pairs of signals 

from both blocks for a given model. The highest-dimensional model for which ICs obtained in a 

block were similar to ICs obtained in another block indicates the optimal number of ICs to 

extract from the data under study. Figure III-2 shows that the lowest correlation between signals 

significantly decreases after 9 ICs, which was therefore considered as the optimal number of 

component for the decomposition of the dataset. The initial drop after 4 ICs and then after 7 ICs 

is assumed to be due to the fact that the ICs are not extracted from the two data blocks in exactly 

the same order. 
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Figure III-2 Lowest correlation between signals obtained using ICA_by_blocks. The lowest 

correlation obtained using the ICA_by_blocks approach significantly decreases after 9 ICs, which 

was considered as the optimal number of component for the decomposition of the dataset 

Since the sample contains five compounds and supposing that the five spectra are independent 

and that the acquired mixture spectra are linear combinations of the pure spectra, five ICs 

should have been sufficient. In this example, in contrast with the theoretical decomposition, four 

more components were used to build ICA models. Physical effects such as particle size variation 

or fluorescence of a compound could explain this “over-decomposition” of the dataset. 

3.2. Distribution of API 

An ICA model based on the JADE decomposition with 9 ICs was calculated on the unfolded, SNV 

pre-processed data cube. The matrices of the proportions, A, for each signal, S, were then folded 

back in order to obtain a representation of the spatial distribution of each independent 

component. In Figure III-3, different textures of images can be observed. Indeed, IC1, IC6 and IC9 

show very specific inhomogeneous distributions with agglomerates. Considering the different 

scales of score images, IC2, IC3, IC4, and IC5 have similar textures (or distributions) such as IC7 

and IC8 which are the same as that in IC1. It can also be seen that the distributions observed in 

these two sets of images are complementary, indicating that these two sets of Independent 

components occupy complementary regions in the tablet. In order to associate an independent 

component with a chemical compound, the calculated signals were examined. 
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Figure III-3 Proportions coefficients (A) of each IC. Images correspond to the proportions 

coefficients (A) of a 9 ICs model. A red color corresponds to a high value whereas a blue color 

corresponds to a low value. 

Figure III-4 shows the 9 signals calculated by ICA. Signals from IC1, IC2, IC3, IC4, IC5, IC6 and IC9 

look like well-defined Raman spectra with no baseline shift due to fluorescence effects whereas 

the signals in IC7 or IC8 contain noise and baseline variations which could be explained by a 

fluorescence effect. In theory, and supposing the independence of each spectrum within the 

formulation, 5 ICs should have been sufficient for the matrix decomposition. However, 9 ICs 

were determined to be present, possibly due to physical effects, or interactions between 

constituents. Considering the simplicity of the preprocessing method applied on the Raman 

spectra (spike correction, selection of a specific range and SNV), the quality of the calculated 

signals was sufficient and perfectly suitable for analytical interpretation.  
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Figure III-4 Signals, S, of the ICA model. These signals correspond to the calculated signals (S) of a 9 

ICs model. 

The spectra for the known constituents in the tablets are plotted in Figure III-5. Even though the 

spectra of all compounds are very different, lots of Raman bands are overlapped. A mixture 

spectrum is a combination of these spectra, given the presence of each constituent in any 

specific pixel of the image. In order to interpret the ICA results, the correlation coefficients 

between the ICA signals and the pre-processed spectra of the compounds were calculated. 

Results can be found in Table III-1. 
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Figure III-5 Pure spectra of the drug product constituents. In blue API 1, in green API 2, in black 

lactose, in red avicel and in magenta the magnesium stearate. Relative intensities were used as the 

spectra were split for a better observation. 

The comparison between the calculated signals and the true spectrum of each compound shows 

that only two ICs are directly linked to the drug product constituents. For each component, the 

highest correlation was highlighted with bold characters in Table III-1. 

Pure spectrum IC1 IC2 IC3 IC4 IC5 IC6 IC7 IC8 IC9 

API1 0.01 -0.09 0.07 0.14 -0.04 0.13 0.21 0.18 0.92 

API2 0.06 -0.01 0.11 0.08 0.03 0.96 0.08 0.10 -0.06 

Lactose 0.25 0.44 0.23 0.25 0.47 0.00 0.36 0.45 -0.17 

Avicel 0.49 0.15 0.06 0.02 0.20 -0.07 0.38 0.61 -0.20 

Magnesium Stearate 0.20 0.00 0.01 0.04 0.04 0.41 0.32 0.23 -0.12 

Table III-1 Correlation coefficients between the ICA signals and the pre-processed true compound 

spectra. The comparison between the calculated signals and the true spectrum of each compound 

shows that only two ICs are directly linked to the drug product constituents. For each component, 

the highest correlation was highlighted with bold characters. 
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No high correlations were found for Magnesium stearate. Two very high correlations were 

highlighted between the pure spectra and the calculated signals (respectively 0.92 between IC9 

and the active principal ingredient 1 and 0.96 between IC6 and the active principal ingredient 2). 

As is shown in Figure III-6 and Figure III-7, the calculated signals (IC9 and IC6) are in effect very 

similar to the pure spectra of API 1 and API 2. The refolded images of the corresponding 

proportions, A, therefore reflect the distribution of these two compounds. As can be seen in 

Figure III-3, the distribution of active principal ingredients is not perfectly homogeneous and 

agglomerates are observed. 

 

Figure III-6 Calculated signal of independent component 9 superposed on the spectrum of API 1. 

Comparison between API 1 spectrum and IC9 signal. The correlation between the two signals is 

equal to 0.92. 
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Figure III-7 Calculated signal of independent component 6 superposed on the spectrum of API 2. 

Comparison between API 2 spectrum and IC6 signal. The correlation between the two signals is 

equal to 0.96. 

IC1 is mainly correlated with the spectrum of Avicel. Specific bands due to the chemical bond 

vibrations are observed in this component (especially between 1250cm-1 and 1000cm-1, spectral 

range linked to CC ring bond stretches and CO stretches). IC7 and IC8 are mainly correlated with 

the spectrum of avicel (0.38 for IC7 and 0.61 for IC8) but the correlation with lactose (0.36 for 

IC7 and 0.45 for IC8), magnesium stearate (0.32 for IC7 and 0.23 for IC8) and API1 (0.21 for IC7 

and 0.18 for IC8) cannot be considered as non-significant. IC7 and IC8 signals are not well 

defined Raman spectra and contain principally noise or baseline variations which can explain 

these high correlations with several different products. As can be seen in Figure III-3, IC7 and 

IC8 have similar spatial distributions which are the same as that in IC1. Avicel is a 

microcrystalline cellulose powder which is known as a product providing a fluorescence effect 

with Raman, which could explain the contribution of IC7 and IC8.  

As is shown in Figure III-8, IC2, IC3, IC4 and IC5 are linked to the lactose spectrum. Lots of 

lactose Raman bands are identified in these IC signals (for example band at 460cm-1 in signals 2, 

3 and 5 due to various CCO and OCO bending modes, or band at 1088 cm-1 linked to the 

stretching vibration of the COC bridge). These 4 components gave their highest correlations with 

the lactose spectrum. However, these correlations were low (from 0.23 to 0.47) reflecting the 

decomposition of the pure spectrum into 4 components. The signal decomposition was 
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particularly significant in the low Raman shift spectral range. In this spectral region, coupled CC 

and CO vibrations rather than single functional group are mainly observed. By observing the 

refolded image of coefficients, note that the distribution of this product was very similar 

(considering the different image scales).  

 

Figure III-8 Calculated signal of independent component 2, 3, 4, 5 plotted with the spectrum of 

Lactose. Comparison between lactose spectrum and IC2, IC3, IC4 and IC5 signals. The correlations 

between the signals are respectively equal to 0.44, 0.23, 0.25 and 0.47. The pure spectrum of 

lactose and the four calculated independent components are displayed. The pure spectrum was 

decomposed into four components. 

The observed decomposition of the lactose information into separate Independent Components 

could be due to two phenomena. The first one is the physical effect. Indeed, lactose is known to 

have important particle size variations which can modify the light scattering and as a 

consequence the Raman spectra. These slight modifications could behave as independent 

phenomena and thus result in separate ICs. Moreover, the different combinations of vibrations 

could be interpreted by ICA decomposition as an independent variation. The second hypothesis 

is linked to the ICA decomposition itself. Indeed, as the formulation contains 5 compounds, the 

model may have mathematically over-decomposed the dataset by using 9 ICs. 

In order to explore the ability of ICA to extract a pure signal from lactose, an ICA model was 

calculated with 5 ICs, which was the known number of constituents used to manufacture the 
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tablet. By comparing the 5 ICs with the pure spectra, a high correlation was found with lactose 

(R = 0.90), one with API1 (R = 0.95), one with API2 (R = 0.94), while a weak correlation was 

found with avicel (R = 0.39) and one signal contained noise and mixed pure contributions. The 

lactose contribution was therefore not divided among several components, as was observed 

when using 9 ICs. As is shown in Figure III-9, the calculated signal IC3 was very similar to the 

pure lactose spectrum. With 5 ICs, the decomposition of the original matrix was mainly due to 

chemical variations whereas the decomposition using 9 ICs included physical effects.  

 

Figure III-9 IC3 signal from a 5 components ICA model superposed on the spectrum of lactose. 

Comparison between lactose spectrum and IC3 signal from a 5 components ICA model. The 

correlation between the two signals is equal to 0.90. 

 

By observing ICA coefficients and signals, it can be seen that no information from the 

magnesium stearate was observed. The non-detection of this compound, frequently used as a 

lubricant in a pharmaceutical formulation, could be mainly due to its low concentration in the 

tablet (0.5 w/w%). Indeed, several hypotheses can be advanced to explain this lack of detection: 

the physical formulation of the product, the sensitivity of the spectroscopy or the failure of the 

ICA algorithm. As the analysed area does not represent the whole surface of the tablet and 

because of its low content, it is possible that the acquired spectra did not contain any 

magnesium stearate information. Moreover, the Raman contribution of the magnesium stearate 
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could be hidden by the contribution of the other constituents. In order to test the ability of ICA to 

detect and extract the information related to magnesium stearate, new models with more 

components and other pre-processing methods were tested (details not shown). By using a 

Savitzky-Golay pre-processing [59] and a model with 15 ICs, one signal (Figure III-10) was 

highly correlated (r = 0.87) with the pure spectrum of magnesium stearate and the distribution 

of the product can then be studied (Figure III-11). However, the quality of other signals 

significantly decreased. Pure spectra were divided among several components and the analytical 

meaning of each signal was not intuitive. 

 

Figure III-10 IC12 superposed on the magnesium stearate spectrum from a 15 component ICA 

model. Comparison between magnesium stearate spectrum and IC12 signal from a 15 components 

ICA model. The correlation between the two signals is equal to 0.87. 
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Figure III-11 Distribution of IC12 (magnesium stearate) from a 15 component ICA model. This 

component is highly correlated to magnesium stearate. 

4. Conclusions 

ICA was successfully applied on a Raman image of a commercial tablet. A representative image 

of the tablet was acquired and the spectrum of each pixel, which can be associated to a mixture 

of the different pure compounds, was pre-processed and analysed using the JADE algorithm to 

calculate signals and proportions with a specified number of components. This parameter was 

estimated by using the ICA_by_blocks method. This technique shows very good results to choose 

the most appropriate number of ICs on a real Raman dataset. It avoids arbitrary selection of this 

critical criterion.  

This method gave good results to provide pure spectra of the active substances. Contribution of 

avicel was spread among 3 ICs. The first one was very similar to the pure spectrum of avicel 

whereas the two others were mainly fluorescence signals. Being a microcrystalline cellulose, 

avicel is known to be prone to fluorescence effects. The contribution of lactose was shared over 

4 ICs which may be due to an over-decomposition of the original dataset or to physical 

contributions. In order to improve the pure lactose signal quality and based on knowledge of the 

product formulation, an ICA model was calculated using fewer ICs. The lactose contribution was 

then no longer divided among several signals but, the physical effects were no longer observed. 
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This should be contrasted with the fact that using an insufficient number of ICs leads to the non-

detection of a low content compound, magnesium stearate. It has been shown here that using a 

very large number of components and another pre-processing method resulted in a well-defined 

ICA signal linked to magnesium stearate. It was then possible to examine the distribution of this 

low content product within the tablet. However, due to the over-decomposition of the dataset, 

other pure signals were divided among several components, which made the identification of 

each contribution within the tablet more difficult. 

The ICA_by_blocks method was therefore a compromise between under- and over- 

decomposition. Even if the contribution of lactose or avicel were divided among several 

components, the spatial information obtained could be very useful for formulation development 

or to improve the quality control of pharmaceutical samples. New approaches, based on data 

fusion from ICA calculations to gather information from the same constituent, are under 

development and will be detailed in a future work. 
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Contributions of chapter III 

In this chapter, ICA was tested in order to extract chemical pure signals from a supposed 

unknown pharmaceutical drug product. This blind source separation algorithm appeared as a 

powerful tool to extract pure signals without prior knowledge on the spectral dataset, i.e. the 

pharmaceutical formulation. By using these calculated signals, distribution maps of actives and 

excipients can be provided.  

The impact of the critical parameter of ICA model, i.e. the selection of the number of 

components, was studied. It was shown that a model must be built by using an appropriate 

number of independent components. On the one hand, an under-fitted model was not able to 

extract all the pure signals of the studied formulation and the calculated signals were a mixture 

of several compounds. On the other hand, an over-fitted model extracted a number of 

components higher than the real number of products in the formulation. It provided signals 

divided among several components which were difficult to interpret. The ICA_by_blocks 

approach was a powerful alternative method to estimate the number of independent 

components for the decomposition.  

Due to chemical or physical variability of each pure compound, the number of independent 

components which has to be calculated is often higher than the number of pure compounds in 

the formulation. For instance, lactose, a common excipient in the pharmaceutical development, 

is known to have important physical variability due to particle size variations. This variability 

can modify the light scattering and as a consequence the Raman spectra. Due to this spectral 

variation, the ICA model can mathematically over-decompose the dataset by providing a number 

of independent components higher than the number of tablet pure compounds, and then higher 

than the physico-chemical rank of the hyperspectral dataset. This latter criterion can be defined 

as the number of variability sources in hyperspectral dataset, including both chemical and 

physical variations. 

As far as a low dose compound is concerned, it can be assumed that its spectral and spatial 

contributions in the mixture dataset are low. The scarcity of the low dose compound can be 

associated with a low spectral variability in the hyperspectral dataset. If the spatial resolution is 

lower than the particle size of the low dose compound, its spectral information is mixed with the 

spectral contribution from the other actives and excipients. Moreover, because of its low spatial 

distribution, information of the low dose compound is supposed to be identified only in few 
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pixels. This spatial and spectral scarcity highlighted the challenge of extracting the associated 

pure signal by using a blind source separation method.  

In this work, an over-fitted model using a number of components higher than the ICA_by_blocks 

method selection was used (15 components instead of 9). By using this high number of 

components, higher than the physico-chemical rank of the matrix, the spectral information from 

the low dose compound was extracted from the noise part of the matrix. The JADE algorithm 

was used to perform ICA decomposition. This algorithm starts by applying a singular value 

decomposition on the centered data with the objective of whitening and reducing the number of 

rows in the matrix (i.e. by calculating a scaled loadings matrix and a scaled scores matrix using 

singular value decomposition). If a model with n independent components is applied, n principal 

components are calculated in the whitening step (based on singular value decomposition). By 

reducing the dimensions of the initial matrix, some information can be lost, especially for a low 

dose compound. Therefore, this specific case requires a model with a sufficient number of 

components, which can be higher than the theoretical number of compounds in the spectral 

matrix or higher than the physico-chemical rank of hyperspectral dataset. 

By projecting the pre-processed matrix on the calculated signal, distribution maps were easily 

displayed. Over-decomposed ICA model appeared as the only way to extract and detect the low 

dose compound, assuming that the compound pure spectrum is known. Without prior 

knowledge on the formulation, it would have been difficult, if not impossible, to identify a signal 

correlated to the magnesium stearate pure spectrum. 

To conclude this first part, ICA was an interesting tool to extract pure spectra of actives and 

excipients in the studied formulation, without prior knowledge. The number of components, i.e. 

the number of signals, can be estimated by using ICA_by_blocks method but, due to spectral 

variability, it is often higher than the real number of compounds. In the case of a low dose 

compound, ICA_by_blocks method is not suitable and an over-fitted ICA model, with a number of 

components higher than the real number of products or higher than the physico-chemical rank 

of the matrix, must be used. One of the drawbacks of the ICA method was identified on the 

distribution maps assessment. Indeed, once the signals are calculated, distribution maps can be 

evaluated by projecting the initial spectral matrix on the signals. However, depending on the 

product contributions in the hyperspectral dataset, the distribution maps can be in accordance 

with the expected results or can be totally different, due to spectral correlations between drug 

products. In order to improve the distribution maps quality, and to enhance some spectral 
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variations, several pre-processing tools, such as derivatives, can be applied on the data before 

ICA decompositions. 

In a future work, the previous results should be confirmed on different tablets, including low 

dose compounds which provide various Raman spectra, with different spectral responses or 

with different interactions between actives and excipients. Moreover, the JADE algorithm is one 

of the algorithms available for ICA decomposition. Among the different algorithms available, we 

have chosen to work with this algorithm because, in the chemometric community, it is the 

easiest method to understand and implement. It optimises the second and fourth order 

cumulants from the data and, although it is known to be slow for large data sets, it does not 

require any gradient searches and consequently avoids the convergence problems that 

sometimes occur with other algorithms [126]. JADE algorithm requires to reduce the matrix 

dimension and thus can lose the interesting information part linked to the low dose compound. 

In order to confirm the results of this chapter, it would be interesting to test other ICA 

algorithms, based on other decompositions, to evaluate the differences between these tools and 

to study advantages and drawbacks of each approach.  

In addition and to expand these results, ICA was tested on a real case example for counterfeit 

sample analysis in art. V (Figure III-12). In this work, Raman hyperspectral imaging and PCA 

were firstly used to identify a counterfeit pharmaceutical drug product. In a second phase, 

hyperspectral dataset of the counterfeit sample was analysed with ICA, without prior knowledge 

on the formulation. The two main products in the tablet were easily identified: metformin (a 

well-known active different that the one used in the genuine formulation) and microcrystalline 

cellulose. This algorithm appeared as particularly powerful for this specific application where 

the studied formulation is never known. 
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Figure III-12 Application of independent component analysis on counterfeit samples  
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Preamble 

As previously mentioned, the main objective of this thesis is the identification of low dose 

compound information (i.e. signal and distribution map) by using chemometric tools on 

hyperspectral dataset. In this work, a Raman hyperspectral image of a tablet including a low 

content product was used as experimental data.  In the previous chapter, ICA was used without 

prior knowledge to extract pure signals and distribution maps. Satisfying results were obtained 

for the main excipients and actives. However, some limitations were highlighted for 

identification and distribution map assessment in the case of a low dose compound. 

 

In this chapter, another well-known chemometric technique is tested and challenged: 

multivariate curve resolution-alternating least squares (MCR-ALS). Previously, this method has 

been successfully applied on hyperspectral dataset but to our knowledge, the detection of a low 

dose compound was not studied, especially from Raman hyperspectral dataset. 

 

In this work, MCR-ALS is applied on the studied Raman data to identify the low dose compound 

and to provide its associated distribution in a tablet. Due to the low spectral variability of the 

compound (comparing with the other products of the formulation) and because MCR-ALS 

algorithm is based on variance decomposition, this objective appeared as a real challenge. 

Different approaches are proposed and compared (Figure IV-1), using initially filtered or non-

filtered data, or using a column-wise augmented dataset before starting the MCR-ALS 

optimisation procedure including appended information on the low dose compound. 

 

Note that this work has been performed with a Raman microscope and samples similar to those 

described in the chapter III. As this chapter is the reproduction of Art. II published in the Journal 

of Pharmaceutical and Biomedical Analysis in 2015, the readers will find some redundancies 

between chapter III and chapter IV in the materials and methods section. 
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Figure IV-1 General scheme of the tested approaches in Chapter IV 
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DISTRIBUTION OF A LOW DOSE COMPOUND WITHIN PHARMACEUTICAL 

TABLET BY USING MULTIVARIATE CURVE RESOLUTION ON RAMAN 

HYPERSPECTRAL IMAGES2 

1. Introduction 

In the last decade, the use of imaging coupled with vibrational spectroscopies (near infrared, 

mid infrared, fluorescence and Raman) has grown quickly in research and development 

environments. The spatial and spectral information contained in hyperspectral images can be 

associated with the distribution of the different constituents within the sample. Different areas 

such as polymer research [127], biomedical analysis [128], environment field [108] and 

pharmaceutical development [129] are using these new analytical tools based on vibrational 

hyperspectral imaging. During the analytical lifecycle of a pharmaceutical drug product, 

hyperspectral imaging became a very powerful technique to explore the compound distributions 

on the tablet surface or within a powder mixture [130]. This technology appeared as innovative 

and promising to ensure the final quality of the drug product [131] from the development to the 

production. 

Because of the huge amount of data contained in hyperspectral images, a direct interpretation of 

the acquired images is often not possible. Therefore, several chemometric tools have previously 

been applied [15; 132]. Qualitative analyses such as Principal Component Analysis (PCA) have 

already been used with near infrared [133] and Raman [134] chemical imaging in order to study 

the compound distribution in a sample. Since PCA is mainly linked to the dataset variability and 

as calculated loadings do not have chemical meaning, this approach is used as a descriptive 

method. To extract quantitative information at a global and pixel level, principal component 

regression (PCR) and partial least squares regression (PLS-R) have already demonstrated 

through several studies that they were powerful chemometric techniques [135; 136]. However, 

these methods can be time consuming and difficult to implement as they usually require a 

calibration step to develop predictive models. To overcome this problem, resolution methods 

seem to be a good alternative.  

                                                             
2 Mathieu Boiret, Anna de Juan, Nathalie Gorretta, Yves-Michel Ginot, Jean-Michel Roger. Distribution of 
low dose compound within pharmaceutical tablet by using multivariate curve resolution on 
Raman hyperspectral images. Journal of Pharmaceutical and Biomedical Analysis, Vol. 103 (2015) 35-43. 
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The aim of resolution methods is to provide the distribution maps and pure spectra related to 

the image constituents of a sample from the information contained in the raw image [137]. 

Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) is one of the most famous 

tools applied on hyperspectral images [83; 138]. MCR-ALS decomposes the initial data in a 

bilinear model, assuming that the observed spectra (i.e. each pixel of the image) are a linear 

combination of the spectra of the pure components in the system. In order to ensure an accurate 

resolution, constraints have to be used during the optimization process. Indeed, due to 

rotational or intensity ambiguities, resolution of a multicomponent hyperspectral image might 

not be unique [139]. Different constraints were established and tested [81; 140]. In image 

resolution, non-negativity, spectral normalization and local rank analysis are generally the most 

successful tools. Local rank analysis describes the spatial complexity of an image by identifying 

the rank of a pixel neighbourhood area. Combined with reference spectra of the image 

constituents, the absence of one or more specific constituent in a pixel can be highlighted. Some 

constraints used for the resolution of a chemical process, such as unimodality, closure or hard-

modelling should not be used to analyse hyperspectral images because concentration profiles in 

the pixels of an image do not present the global continuous evolution that process profiles have 

[141]. 

Raman chemical imaging, because of its advantages such as negligible sample preparation, high 

chemical specificity and high spatial resolution, emerges as a new analytical tool in the quality 

control process of a solid drug product [142]. Final drug products are usually manufactured by 

using at least one active pharmaceutical ingredient (API) and several excipients. To improve 

powder flowability, most of the pharmaceutical manufacturing process includes a lubricant in 

the final drug formulation [143]. This compound is commonly present in a very low 

concentration in the powder blend and a spectroscopic bulk analysis will not be able to extract 

its contribution. Indeed, the corresponding variance of this constituent is very weak comparing 

with the other compounds of the sample. PCA, which aims at describing the directions of 

maximum global variance in the data, may have difficulties in retrieving information linked to a 

low dose constituent when the variance allocated to this component is similar in level to noise, 

which is often large in hyperspectral images. By offering the possibility to acquire images with a 

high spatial resolution, Raman chemical imaging coupled with appropriate chemometric 

methods appears as a promising technique to detect a low dose compound within a solid drug 

formulation. 

In this work, MCR-ALS was applied on Raman chemical imaging data in order to provide the 

distribution of actives and excipients in a commercialised tablet. MCR-ALS was challenged by 
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trying to identify the low dose lubricant in the hyperspectral image. The effect of using 

algorithms driven by finding directions of maximum variance explained is studied. In this sense, 

the effect linked to the first step of noise-filtering based on PCA, which is often used in MCR-ALS 

to remove noise and non-useful spectral information, is studied. By applying MCR-ALS on a 

noise-filtered PCA matrix, it is shown that the information of the low dose constituent may be 

lost during data reduction. The comparison between the MCR-ALS decomposition on a filtered 

and a non-filtered PCA matrix is presented. Moreover, to keep the low dose constituent 

information during the PCA reduction, calculations are performed on an augmented matrix 

including the low dose constituent spectrum. The necessity of using appropriate pre-processing 

methods and constraints to find out the correct information linked to these low dose 

constituents is emphasized. This article shows the strategies to be followed in MCR-ALS analysis 

to retrieve correct information for low dose image constituents, from pre-processing, conditions 

to drive the iterative optimization to proper inclusion of constraints.  

2. Materials and Methods 

2.1. Samples 

A commercial coated tablet of Bipreterax®, prescribed for arterial hypertension treatment and 

commercialised by “Les Laboratoires Servier”, was used for the study. It is also known as 

Perindopril/Indapamide association. Final drug product contains respectively 4 mg of 

Perindopril (API1) and 1.25 mg of Indapamide (API2). Actives are known to have several solid 

state forms, but only one of them is present in this formulation. Major core excipients are lactose 

monohydrate, microcrystalline cellulose (Avicel). Magnesium stearate (MgSt), which is used as a 

lubricant, was added to the blend before compression with a theoretical mass concentration 

corresponding to 0.5% w/w. In order to analyse the tablet core, the coating was removed by 

eroding the sample with a Leica EM Rapid system (Leica, Wetzlar, Germany). A visual 

examination of the tablet did not provide any information concerning the distribution of the 

different compounds within the tablet. 

2.2. Raman imaging system  

The image was collected using a RM300 PerkinElmer system (PerkinElmer, Waltham, MA) and 

the Spectrum Image version 6.1 software. The microscope was coupled to the spectrometer and 

spectra were acquired through it with a spatial resolution of 10 µm in a Raman diffuse reflection 

mode. Wavenumber range was 3200–100 cm−1 with a resolution of 2 cm−1. Spectra were 
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acquired at a single point on the sample, then the sample was moved and another spectrum was 

taken. This process was repeated until spectra of points covering the region of interest were 

obtained. A 785 nm laser with a power of 400 mW was used. Two scans of 2 s were accumulated 

for each spectrum. An image of 70 pixels per 70 pixels corresponding to 4900 spectra was 

acquired for a surface of 700 µm by 700 µm. 

2.3. Pre-processing 

Data were preprocessed in order to remove non-chemical biases from the spectra (scattering 

effect due to non-homogeneity of the surface, interference from external light source, spikes due 

to cosmic rays, random noise). First of all, data were spike-corrected in order to reduce the 

effect of cosmic rays [61]. The spectral range was reduced in order to focus only on the region of 

interest, corresponding to a Raman shift from 1800 cm−1 to 200 cm−1. Reduced spectra were 

preprocessed by asymmetric least squares (AsLS) to correct baseline variations due to 

fluorescence contributions [68]. Finally, to enhance slight spectral variations, a Savitzky-Golay 

first derivative with a 2nd order polynomial smoothing on a 9 points window [59] was applied. 

2.4. Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) 

A brief description of the MCR-ALS algorithm is given here. The algorithm was previously 

described in detail in Refs. [81; 140]. As any resolution methods, the main goal of MCR-ALS is 

decomposing the original matrix        (n samples or rows and p variables or columns) of a 

multi-component system into the underlying bilinear model which assumes that the observed 

spectra are a linear combination of the spectra of the pure components in the system: 

           (IV-1) 

where C is the matrix of concentration profiles, ST the matrix of pure responses (i.e. spectra) and 

E contains the experimental error. In resolution of spectroscopic images,        is the matrix of 

the unfolded image, C contains the concentration profiles that, conveniently refolded, show the 

distribution maps of each image constituent and ST contains the associated pure spectra [144].  

In order to provide chemically meaningful profiles (i.e., pure spectra and distribution maps) and 

to reduce intensity and rotational ambiguities in the MCR solutions, constraints must be 

properly chosen during the iterative MCR-ALS process. Since concentrations of the constituents 
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should not be negative, a non-negativity constraint was applied. Moreover, the calculated 

spectral profiles in matrix ST were normalized at each iteration. To identify where the 

constituents of the drug product are present or absent in the image, the Fixe Size Moving 

Window Evolving Factor Analysis (FSMW-EFA) method was applied to the data [145]. This 

method provides the local complexity of a sample by performing singular value decomposition 

by moving a window of pixels across the full image. A window contains a specified number of 

spectra (at least 4, corresponding to a specific pixel and its neighbours). By calculating singular 

value maps of the sample, the presence of overlapped compounds in a pixel area can be 

displayed. By selecting a specific threshold, a corresponding local rank map can be provided by 

plotting the number of significant singular values above the threshold. This approach, due to its 

local character, is particularly well adapted to identify a compound with a low signal or with a 

low concentration within the sample because small local areas are analyzed one at a time. By 

comparing the local rank information with reference spectral information, missing constituents 

on particular pixels can be known [141].   

Figures of merit of the optimization procedure are the lack of fit (lof) and the explained variance 

(R²). The lack of fit is used to check if the experimental data were well fitted by the MCR-ALS 

procedure. These two criteria are calculated as follow: 
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where       is the input element of the original matrix        and      the related residual element 

after using the MCR-ALS model (see equation IV-1). Input element can be the original element 

from         or the element of a noise filtered PCA matrix          
 using the same number of 

components as in the MCR-ALS. A noise filtered PCA matrix          
 can be obtained as follows:  

         
                   

  (IV-4) 

where U, S and VT are calculated by singular value decomposition of the original        matrix 

and k is the number of the known constituents in the drug product. The PCA reduced matrix 
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corresponds to a filtered matrix in a reduced space. This matrix should contain the major part of 

the spectral variance without noise. 

MCR-ALS must be initialised by a first estimate of C or ST matrix. Initial estimates are generally 

obtained by purest variable selection methods, such as SIMPLISMA (Simple-to-use Interactive 

Self-Modelling Mixture Analysis) [87]. This method identifies the most dissimilar spectra (or 

sample) in the dataset. However, due to the homogeneity of a pharmaceutical sample, it could be 

difficult to identify a pure pixel corresponding to a single constituent. Most of the time, the 

theoretical formulation of the sample is known during the development process. So pure 

reference spectra acquired with the same spectrometer and the same acquisition parameters 

can be selected as initial estimates to start the optimisation process. 

In this article, three approaches will be tested and discussed in order to display the distribution 

of actives and excipients, including the low dose constituent. The first approach starts with the 

noise filtered PCA matrix          
 calculated from equation (IV-4) using a component number k 

equal to the theoretical number of constituents in the formulation. The second approach consists 

of increasing the number of components to generate the noise filtered PCA matrix, from k to the 

maximum number of variables, the latter meaning working with the raw non-filtered data set. 

The third approach consists of using an augmented matrix, where the information of the low 

dose constituent is added, ensuring the extraction of its contribution during the noise filtering 

step. 

3. Results and discussion 

3.1.  Exploratory analysis 

Because of the spectral variability, applying multivariate data analysis on raw data would not 

lead to accurate results. Spectra were preprocessed in order to remove baseline variations and 

cosmic rays. A spike correction algorithm and asymmetric least squares were applied. In order 

to enhance low variations, a Savitzky-Golay first derivative with a window size of 9 points and a 

2nd polynomial order was calculated (Figure IV-2). 
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Figure IV-2 Preprocessed Raman spectra (AsLS and first derivative) 

By observing the mean intensity plot of the image (mean intensity in each pixel), no useful 

information about compound distributions was extracted (results not shown). Therefore, 

chemometric tools have to be used in order to extract meaningful distributions of the different 

compounds. As a descriptive method, PCA was applied on the preprocessed data. By calculating 

appropriate principal components, that describe the maximum variance of the data set and are 

orthogonal to each other, PCA decomposes the preprocessed matrix in scores (related to 

distribution maps) and loadings (related to spectra) matrices [49; 146]. Figure IV-3 shows the 

image scores results of the five first principal components. Different distributions and 

agglomerates were highlighted in the images. In this particular example, by knowing the studied 

formulation and by observing the calculated loading vectors, the distribution maps of PC1 and 

PC5 were linked to the lactose variability, while distribution maps of PC2, PC3 and PC4 were 

respectively linked to the distributions of API1, avicel and API2. 



58 

 

Figure IV-3 PCA scores: five first components associated with their explained variances. Different 

distributions and agglomerates were highlighted. PC1 and PC5 were linked to the lactose 

variability, while PC2, PC3 and PC4 were respectively linked to the distributions of API1, avicel and 

API2. 

Even if PCA analysis provides a first approximation of the component distribution within the 

sample, the contribution of magnesium stearate was not extracted with this approach.  By 

observing the cumulative variance explained by the PCA model, it was shown that 98.5% of the 

variance was captured with 5 components, which means that 1.5% of the spectral variability 

was not explained by the model. From PC6, the variance contained in the principal components 

was lower than 0.2% of the total variance and reached a plateau of 0.02% of variance explained 

per component, which could be associated with a non-structured noise contained in the spectral 

matrix.  

Theoretical spectral variance      of the magnesium stearate was estimated to 0.5% of the total 

variance and was calculated by using the following equation: 
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where C and ST are respectively the theoretical concentrations and the pure reference spectra of 

each constituent i. Due to the low concentration of magnesium stearate within the drug product, 

and because of the homogeneity aspect of the powder mixture before compression, the spectral 

variance of the lubricant might be lower or higher than 0.5%, depending on the studied area of 

the tablet.  

Several hypotheses could explain the non-identification of magnesium stearate within the 

spectral matrix. Due to its low concentration, the lubricant could either be present on a limited 

number of pixels or could either be missing in the studied area. The associated spectral 

information could have led to overlapped features with other components or could have been 

spread into noise contributions. 

PCA is mainly linked to the variability contained within the hyperspectral dataset, expressed as a 

combination of orthogonal components. Even if it provides a first approximation of the four 

major constituent distributions, the low spectral variability linked to the lubricant was not 

displayed on the five first components. Moreover, due to their unclear chemical meaning, 

loadings are difficult to interpret. To overcome this issue, MCR-ALS algorithm and appropriate 

constraints were used to enhance the chemical information of the decomposition. 

3.2. MCR-ALS 

3.2.1. Non-negativity and local rank constraints 

MCR-ALS was initialized by using reference spectra of the five different constituents. Spectra 

were acquired with the same system and with the same parameters as the image. Image pre-

processing tools were applied on the reference spectra (see section 2.3). To reduce rotational 

and intensity ambiguities, non-negativity and equality constraints were applied on the 

calculated concentrations. Lof and R² values were calculated according to equations (IV-2) and 

(IV-3). 

By analysing the image locally, FSMW-EFA provides an estimation of the local complexity of the 

image [145]. Local rank map was obtained by calculating singular value decomposition on a 4 

pixel window moving across the whole data. In general, the number of pixels has to be equal or 

higher than the total number of the image constituents but in this case, due to the high spatial 

resolution, the hypothesis was advanced that the five compounds could not be present in the 

same pixel.  Four eigenvalues were calculated for each pixel group. Each component singular 
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values were sorted in increasing order (Figure IV-4). By choosing an appropriate threshold 

which separates significant singular values from noise, the local rank map was displayed (Figure 

IV-5). (Note that the threshold is selected visually, based on the fact that singular values 

associated with noise are very small and similar among them and lay at the bottom of plot in 

Figure IV-4). The number of missing components for a specific pixel was calculated by removing 

the local rank value of the pixel to the total rank of the matrix (chosen as the number of 

theoretical constituents). By calculating correlation coefficients between the raw pixel spectrum 

and each of the reference spectra, the constituent with the lowest correlation was identified as 

absent. The absence of a particular component in a pixel was not confirmed unless the 

correlation coefficient between the pixel spectrum and the reference spectrum of that 

component is equal or smaller than the largest element in the correlation matrix for that 

particular component. Results were afterwards encoded in an absence matrix Csel (Figure IV-6) 

containing null values in the concentration elements of the missing components and “not-a-

number” (NaN) values in other pixels (unconstrained pixels) [141]. 

 

Figure IV-4 Singular values plot (top: non-sorted singular values, bottom: sorted singular values) 

 



61 

 

Figure IV-5 Local rank map obtained by choosing an appropriate threshold which separates 

significant singular values from noise. 

 

Figure IV-6 Csel matrix (Orange: absence of the constituent, White: presence of the constituent) 

 



62 

3.2.2. Effect of PCA filtering on MCR-ALS results 

In all cases, MCR-ALS was applied on the preprocessed data by using the constraints previously 

described (see section 3.2.1). The initial preprocessed matrix was reduced (noise-filtering) by 

using the five first vectors of the PCA decomposition of       . MCR-ALS on the filtered PCA 

matrix provides an optimum value after 9 iterations. 97.9% of the variance was explained with a 

lack of fit calculated on the initial        and the reduced          
   matrices respectively equal 

to 14.7 and 7.9. Correlation coefficients between calculated spectra and reference spectra were 

displayed in Table IV-1. The four first calculated spectra were highly correlated to the two 

actives and the two major excipients whereas the fifth component was not correlated to the 

magnesium stearate or to other constituents.  

  API1 API2 Lactose Cellulose MgSt 

Sopt.1 0,98 0,16 0,02 -0,02 -0,05 

Sopt.2 0,15 0,97 0,04 0,05 0,07 

Sopt.3 0,10 0,01 0,99 0,14 0,03 

Sopt.4 0,00 0,05 0,15 0,95 -0,03 

Sopt.5 0,02 0,21 -0,09 0,07 0,08 

Table IV-1 Correlations between MCR-ALS calculated Sopt and the reference spectra (PCA filtered 

dataset) 

By starting MCR-ALS after a PCA reduction of the data, the magnesium stearate contribution was 

associated with the non-explained variance. In our example, the theoretical number of 

components in the drug product is equal to 5. The matrix          
 calculated by equation (IV-4), 

is then calculated by using the five first components of the PCA decomposition. With 5 

components, 98.5% of the total variance was explained, which means that 1.5% of the variance 

was not included in the iterative MCR-ALS process. This part of the non-explained variance 

contains essentially noise but, due to the low concentration of magnesium stearate, could also 

contain the spectral contribution of this constituent. 

In order to improve the MCR-ALS results and to extract magnesium stearate contribution, MCR-

ALS analysis on a PCA-filtered matrix including progressively a larger number of principal 

components was tested. MCR-ALS decomposition was performed by using a PCA-filtered 

         
 matrix using an increasing number of components, from 5 to the total number of 

variables. For the first iteration, the          
 matrix was built by using the five first vector of the 
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PCA reduction. The following MCR-ALS calculation was performed by adding an additional 

principal component to calculate the          
  matrix. This process was repeated until the 

number of principal components was equal to the number of variables, corresponding to the use 

of the preprocessed non-filtered initial        matrix. For each MCR-ALS decomposition from 5 to 

100 components, the highest correlation coefficient between the resolved spectra and the pure 

reference spectrum of magnesium stearate is displayed (Figure IV-7). 

 

Figure IV-7 Highest correlation between the calculated spectra (Sopt) and the reference spectrum of 

magnesium stearate (for each iteration of a PCA filtered matrix built from 5 to 100 components) 

By using less than 20 principal components to reproduce the          
 matrix, the contribution 

of magnesium stearate was not extracted. Using 20, the correlation between the calculated 

spectrum and the reference magnesium stearate spectrum was equal to 0.87 and reached 0.90 

after a using 50 principal components to reproduce the matrix. As it is shown in Table IV-2, 

where MCR-ALS was applied on a          
 built with k = 5, 10, 15, 20, 50, the results of the two 

active principal ingredients and the two major excipients were not modified. In this case, using 

less than 20 components to build the matrix          
 lose the magnesium stearate contribution.  
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Number of principal 

components used to 

reproduce the          
 

matrix 

5 10 15 20 50 

Iterations 9 5 5 3 3 

R² 99.4 98.8 98.7 98.6 98.4 

Lof (%) 7.9 11.12 11.6 11.9 12.8 

Cor. Sopt1/API1 0.98 0.98 0.98 0.98 0.98 

Cor. Sopt2/API2 0.97 0.97 0.97 0.97 0.97 

Cor. Sopt3/lactose 0.99 0.99 0.99 0.99 0.99 

Cor. Sopt4/cellulose 0.95 0.95 0.95 0.95 0.95 

Cor. Sopt5/MgSt 0.08 -0.01 -0.02 0.87 0.90 

Table IV-2 MCR-ALS results according to the number of components used to build the PCA reduced 

         
 matrix 

In order to keep the maximum information, the initial preprocessed         matrix (i.e. the PCA 

non-filtered dataset) was used to start the iterative MCR-ALS process. Non-negativity and local 

rank constraints on concentrations were applied. The optimum was reached after 3 iterations, 

with a lack of fit equal to 14.7 and a percentage of variance explained equal to 97.8. 

Correlations between calculated spectra and API1, AP12, lactose and avicel were respectively 

equal to 0.98, 0.97, 0.99 and 0.95. Distributions and contributions of the different constituents 

were then displayed in Figure IV-8. Major excipients (lactose and cellulose) are identified across 

the whole image in distribution maps 3 and 4. Agglomerates of API 1 and API 2 were highlighted 

in the top left and right distribution maps. The correlation between the calculated spectrum and 

the magnesium stearate reference was equal to 0.90 (Figure IV-9). By using a non-filtered PCA 

matrix with appropriate constraints, the information linked to the low dose constituent was 

extracted. The non-filtering option can be the choice when there are no references that can 

indicate in an objective manner the number of PCs necessary to include a minor constituent. As 

shown in Figure IV-8, only few pixels of the image contained the lubricant (Copt.5), which could 

be explained by its low concentration within the drug product. 
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Figure IV-8 Distribution maps of drug substance constituents (PCA non-filtered dataset) 

 

Figure IV-9 Sopt versus reference spectrum of magnesium stearate 
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3.2.3. Pure spectrum augmented matrix 

The preprocessed data matrix was column-wise augmented to form a multiset structure 

including the magnesium stearate preprocessed pure spectrum [147]. For this type of matrix 

augmentation, the bilinear model can be written as: 

(
  

  
)  (

  

  
)     (

  

  
)                    (IV-6) 

where    is the pure spectral matrix of the different compounds present in the considered 

preprocessed    data matrix and the augmented    pure spectrum matrix. In these two 

matrices, the chemical compounds have to be the same, but their concentration profiles can be 

different. Non negativity of concentration and local rank constraints were applied on the data as 

it was described in section 3.2.1. In multiset analysis, a new constraint based on correspondence 

among species can be used. This constraint fixes the presence or absence of components in 

concentration matrix, always taking into account the sequence of components in the initial 

estimates to encode the information on presence/absence correctly. This presence or absence 

information is coded in binary format and introduced into the MCR algorithm. For   , the 

correspondence among species vector was fixed to [ 1, 1, 1, 1, 1 ] as each constituent was 

supposed to be in the drug product whereas, for   , only one value corresponding to the 

lubricant was fixed to 1, corresponding to the vector [ 0, 0, 0, 0, 1 ] (Note that this code is valid as 

long as MgSt is the fifth profile in the spectral estimates used in the MCR analysis). When a 

particular component is not present in a concentration matrix, the elements in the related 

profile are set to zero. This type of constraint contributes significantly to the elimination of 

rotational ambiguities. 

By adding information of the low dose constituent in the matrix, the PCA reduction of the 

multiset provides a different model, which ensures the extraction of the lubricant information. 

The MCR-ALS can then be performed as usual, by using a first step of PCA reduction with 5 

components. The optimum was reached after 6 iterations, with a lack of fit equal to 8.3 (with 

respect to          
) and 16.1 (with respect to       ) and a percentage of variance explained 

equal to 97.4%.  

Correlations between calculated MCR-ALS Sopt spectra and the five reference spectra were 

respectively equal to 0.98, 0.96, 0.99, 0.95 and 0.99 (Table IV-3) which ensure an appropriate 

resolution of the studied system. In Figure IV-10, distributions of API1, API2 and the two main 
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excipients were in accordance with the previous results obtained from MCR-ALS on a PCA 

filtered or non-filtered dataset. However, because of the high correlation between the calculated 

Sopt.5 spectrum and the magnesium stearate reference spectrum, the distribution of the lubricant 

can be easily observed in the Copt.5 distribution map. As for the PCA non-filtered approach, only 

few pixels were highlighted with the lubricant contribution, which could be explain by its low 

concentration within the drug product. 

  API1 API2 Lactose Cellulose MgSt 

Sopt.1 0,98 0,16 0,02 -0,02 0.03 

Sopt.2 0,16 0,96 0,04 0,06 0,19 

Sopt.3 0,08 0,04 0,99 0,14 -0,09 

Sopt.4 -0,10 0,07 0,16 0,95 -0,20 

Sopt.5 0,02 0,20 -0,09 0,07 0.99 

Table IV-3 Correlations between MCR-ALS Sopt and the reference spectra (column-wise augmented 

dataset) 

 

Figure IV-10 Distribution maps of drug substance constituents (augmented matrix approach) 
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4. Conclusions 

MCR-ALS was applied on Raman Chemical images in order to study the distribution of actives 

and excipients within a pharmaceutical drug product. This article was focused on the 

identification of a low dose constituent within a formulation. Three different approaches were 

tested. First, MCR-ALS was performed on a PCA reduced dataset built by using a number of 

components equal to the number of constituents within the formulation. Due to the low spectral 

variability of the lubricant, the PCA reduction did not extract the corresponding information and 

the MCR-ALS process was not able to find out this product. However, distribution of actives and 

major excipients were in accordance with the known formulation. In order to ensure the 

conservation of the low dose constituent contribution within the dataset, a sequential PCA 

reduction process was tested. For each iteration, a new PCA reduced dataset was generated 

(from 5 to 100 components) and used for MCR-ALS calculations. It was shown that the lubricant 

information was not present in the iterative MCR-ALS process unless 20 components were used. 

From a PCA non-filtered dataset, the magnesium stearate distribution was detected by using 

appropriate non-negativity and local rank constraint. Results showed the distribution of the five 

constituents with high correlations between the calculated signals and the pure reference 

spectra. Finally, the initial preprocessed dataset was column-wise augmented with magnesium 

stearate preprocessed pure spectrum. By using a correspondence among species constraint 

properly defined, the PCA reduction of the matrix kept the lubricant information and then, the 

decomposition of the Raman chemical image provided high correlated calculated spectra with 

reference and well-defined actives and excipients distribution map.  

This study demonstrates the ability of MCR-ALS to extract the contribution of a low constituent 

of a solid drug product from Raman hyperspectral images. The choice of appropriate pre-

processing methods, constraints, data structures used and modus operandi was important to 

reach the objective. Raman Chemical images, known as a useful tool to study the distribution of 

compounds in a solid drug product, might be used to study the distribution of low dose 

constituents as a lubricant, an impurity or a crystalline form transformation. 
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Contributions of chapter IV 

In this chapter, we focused on the strategies to be followed in MCR-ALS analysis to retrieve 

correct information for low dose image constituents, from pre-processing, conditions to drive 

the iterative optimization to proper inclusion of constraints. MCR-ALS is a well-known 

chemometric technique for data analysis on vibrational spectroscopy dataset. It was previously 

applied on hyperspectral imaging in order to study the distribution of actives and excipients. In 

our work, we tested the MCR-ALS ability to extract information from a low dose compound in a 

mixture dataset. As MCR-ALS usually starts with a noise filtering step by applying PCA on the 

studied dataset, we made the hypothesis that the information from a low dose compound could 

be lost before starting the iterative process. 

 

First, pre-processed data were observed by applying a non-centered PCA. It is generally 

associated with a singular value decomposition on the variance-covariance matrix (the center of 

the matrix is the mean value of the dataset), but, in the case of a non-centered matrix, the 

variance-covariance matrix should be viewed as a scatter matrix (the center of the matrix is 

equal to zero). This decomposition provides the direction of the maximum variability across the 

data. By applying a non-centered PCA on the studied matrix, and by knowing the studied 

formulation, the distribution maps of the main compounds were highlighted. However, the 

contribution of magnesium stearate, the low dose lubricant, was not extracted with this 

methodology. PCA pointed out some difficulties in retrieving information linked to this 

compound because the variance allocated to this constituent can be considered as similar in 

level to noise. Indeed, with a theoretical concentration of 0.5% (w/w) in the drug product, the 

spectral variance contained in the data is weak. By using a principal PCA-filtered dataset as a 

first step of the MCR-ALS approach, the lubricant information is scattered in the non-explained 

variance (in the non-structured noise part) and the associated distribution in the tablet cannot 

be highlighted. 

Two hypotheses could explain the non-identification of magnesium stearate within the spectral 

matrix. First, due to its low concentration, the low dose compound could be missing in the 

studied area. However, according to equation II-11, a number of spectra equal to 4900 (70 pixels 

x 70 pixels) should be sufficient to detect the lubricant (probability = 0.999). Second hypothesis 

could be explained with spectral information which could have led to overlapped features with 

other components or could have been spread into noise contributions.  
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Considering the MCR-ALS procedure to study the compound distributions, three different 

approaches were tested and challenged to extract the targeted low dose information. The first 

started the iterative process with the noise PCA-filtered matrix using a number of components 

equal to the theoretical number of compounds in the formulation. The second consisted of 

increasing the number of components to generate a noise PCA-filtered matrix, using a number of 

components from k to the maximum number of variables, the latter meaning working with the 

raw non-filtered dataset. The third approach consisted of using an augmented matrix, where the 

spectral information of the low compound was added before calculation, ensuring the extraction 

of its contribution during the noise filtering step. 

It was shown that a sufficient number of components to generate the PCA-filtered matrix must 

be used in order to keep the lubricant variability within the dataset or, otherwise, work with the 

raw non-filtered data. Different models were built using an increasing number of components to 

perform the PCA reduction. It was shown that the magnesium stearate information can be 

extracted from a PCA model using a minimum of 20 components. In the last part, a column-wise 

augmented matrix, including a reference spectrum of the lubricant, was used before starting 

MCR-ALS process. PCA reduction was performed on the augmented matrix, to ensure that the 

magnesium stearate contribution was included within the MCR-ALS calculations. By using an 

appropriate PCA reduction, with a sufficient number of components, or by using an augmented 

dataset including appended information on the low dose component, the distribution of the two 

actives, the two main excipients and the low dose lubricant were correctly recovered. 

 

Moreover, the effect of using appropriate pre-processing methods and constraints to find out the 

correct information linked to the low dose compound was assessed. Spike correction, baseline 

correction, and derivative were used for two reasons: i/ to avoid harmful signal contributions 

and ii/ to enhance slight spectral variations. Because initial estimates of concentrations or 

spectra are needed to start the MCR-ALS iterative process, pure spectra of each compound were 

acquired using the same experimental conditions. 

In order to improve the resolution and to reduce rotational and intensity ambiguities, equality 

constraint was applied on the calculated concentrations. This constraint was calculated by 

estimating the local rank of each image pixel and by providing a map of absence/presence for 

each drug compound. This approach used a threshold on singular values in order to separate 

significant values from noise. But, this threshold was selected visually, based on the fact that 

singular values associated with noise are very small and similar among them. Without knowing 

the sample or the distribution of a low dose constituent, it can be difficult to select the threshold.  
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The studied dataset was previously used in Art. I and we already had a good idea concerning the 

distribution of magnesium stearate in the image, which helped us to choose the proper 

threshold. However, it is important to notice that a modification of the threshold value can have 

a huge impact on the resolution, and then can lead to incorrect results.  

 

This latter observation led us to the following chapter where we will focus on the optimization 

of the equality constraint by proposing a new method of mapping based on orthogonal 

projections. Because the methodology based on the calculation of singular value on moving 

windows appeared as uncertain and risky in the case of a low dose product, we will propose an 

alternative method which could provide suitable absence/presence maps. 
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Chapter V: An alternative method for 

presence/absence maps determination by 

orthogonal projections 
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Preamble 

 

In the previous chapter, MCR-ALS was used to provide the distribution of a low dose compound 

in a pharmaceutical drug product. Different approaches were tested and proposed to keep the 

low dose information before starting the iterative process. Avoid the PCA-filtering step appeared 

as essential to obtain a good resolution. Moreover, constraints on spectra and concentrations 

must be applied between iterations in order to reduce ambiguities. At the end of chapter IV, 

some limitations about the absence/presence maps (used as equality constraint) calculation 

were highlighted.  

Equality constraint is known to be a powerful tool which allows the identification of presence or 

absence of a specific compound. However, in the case where the low dose compound has low 

spectral contributions, two issues may arise by using a method based on singular value 

decomposition. First, singular value decomposition might encounter some difficulties to extract 

the variability linked to the low dose compound if the spectral response is low, because the 

associated variance is weak. Second, comparison between image spectra and reference pure 

spectra might be difficult to perform. 

In this work, we propose an alternative procedure to set the presence/absence maps of 

compounds for the determination of MCR-ALS equality constraint. In order to focus on the useful 

information from a compound, the proposed approach is based on orthogonal projection to a 

space containing the contributions to be removed, i.e. the interference subspace which contains 

environmental, acquisition or physical variations from the other compounds. By working within 

the signal space, describing the P-dimensional space in which the observations can be 

represented as vectors, it ensures the detection of a compound without requiring important 

variations between samples. 

The proposed approach will be firstly tested on a simulated dataset. By knowing pure spectra 

and distribution of actives and excipients, the method capability to provide maps of 

absence/presence will be assessed. In a second part, the proposed approach will be tested on a 

real tablet image. Absence/presence maps and MCR-ALS results will be presented and discussed. 
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Note that this work has been performed with a Raman microscope and formulation similar to 

those described in the chapter III and chapter IV. As this chapter is the reproduction of Art. III 

published in Analytica Chimica Acta in 2015, the readers will find some redundancies between 

chapters III/IV and chapter V in the materials and methods section.  



75 

SETTING LOCAL RANK CONSTRAINTS BY ORTHOGONAL PROJECTIONS FOR 

IMAGE RESOLUTION ANALYSIS: APPLICATION TO THE DETERMINATION OF 

A LOW DOSE PHARMACEUTICAL COMPOUND3 

1. Introduction 

The use of imaging coupled with vibrational spectroscopies has shown a huge interest in 

research and development environments [15], especially to control the drug product quality 

during development and beyond post-marketing authorisation [49]. It provides spatial and 

spectral information associated with the distribution of the different compounds within the 

sample. Direct interpretation of the acquired images is often not possible and several 

chemometric tools have previously been published to aid in this task [132]. Qualitative analyses 

such as principal component analysis (PCA) [134] or independent component analysis (ICA) 

[89] have already been used as a descriptive method to study compound distributions in a 

sample by Raman chemical imaging. To extract quantitative information at a global and local 

pixel level, principal component regression (PCR) and partial least squares regression (PLS-R) 

have been shown to be powerful chemometric techniques [135]. However, these methods can be 

time consuming and difficult to implement since they require a calibration step to develop 

predictive models.  

By avoiding the calibration step, resolution methods were identified as a good alternative to 

study the compound distribution within a pharmaceutical drug product. They provide the 

distribution maps and pure spectra related to the image compounds of a sample from the 

information contained in the raw image [148]. Multivariate curve resolution-alternating least 

squares (MCR-ALS) has been used on Raman hyperspectral images to study the distribution of 

actives and excipients [83; 138]. In order to ensure an accurate resolution, constraints have to 

be used during the optimization process. In image resolution, non-negativity, spectral 

normalization and local rank analysis are generally the most successful constraints [84]. Local 

rank analysis describes the spatial complexity of an image by identifying the rank of a pixel 

neighbourhood area. Combined with reference spectra of the image compounds, the absence of 

one or more specific compound in a pixel can be highlighted. To identify where the compounds 

of the drug product are present or absent in the image, the fixed size image window evolving 

factor analysis (FSIW-EFA) method can be applied to the data [145]. This method provides the 

                                                             
3 Mathieu Boiret, Anna de Juan, Nathalie Gorretta, Yves-Michel Ginot, Jean-Michel Roger. Setting local 
rank constraints by orthogonal projections for image resolution analysis: Application to the 
determination of a low dose compound. Analytica Chimica Acta (2015), Vol. 892 (2015) 49-58 
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local complexity of a sample by performing singular value decomposition by moving a window 

of neighbouring pixels across the full image. By comparing the local rank information with 

reference spectral information, missing compounds on particular pixels can be known. The local 

complexity and the correct definition of the presence/absence maps are relevant steps of the 

MCR-ALS algorithm. Indeed, the quality in the resolution of the system depends on the adequacy 

and correct setting of constraints. If pure compound pixels or pixels with absent compounds are 

present in the images, both singular value decomposition and identification of missing 

compounds should led to the identification of the presence or absence of the studied compound 

and hence should help to provide better MCR-ALS results, less affected by ambiguity.  

In the case of a low dose product, it can be assumed that the compound is not homogenously 

distributed (i.e. it is present in a few pixels at low concentrations). Spatial and spectral 

information is scarce because only few pixels of the image contain the product of interest and 

the associated variances are mixed with the other compounds of the formulation. In order to 

keep the maximum of information during the iterative process, MCR-ALS has to be performed 

without PCA-based filtering matrix [149] with the appropriate constraints. In cases where the 

low dose compound has additionally a low spectral response, two problems may arise to obtain 

proper local rank maps and related maps of presence/absence for this kind of compounds. 

Firstly, singular value decomposition applied on moving window might encounter some 

difficulties to extract the variability linked to the low dose compound if the spectral response is 

low, since the associated variance is weak. Second, since the correlation between pure spectra of 

the formulation is not null (i.e. spectra are not orthogonal), construction of presence/absence 

maps, based on the comparison between image spectra and reference pure spectra might be 

difficult to set up especially if the contribution of the signal of the low dose compound to the 

pixel spectrum measured is low.  

Previous works have been published on the detection of a low dose compound by vibrational 

spectroscopy within a pharmaceutical drug product [96; 97; 100] and some of them focused on 

the detection limit of the analytical method [101]. The net analyte signal (NAS) concept was used 

in the pharmaceutical environment to improve the spectral interpretability [150] of model 

results. It was defined as the part of the signal that is orthogonal to the spectra of the other 

components [151]. For one component of interest, two definitions were proposed [102; 103]. 

NAS was first defined as “the part of the spectrum of the component of interest that is 

orthogonal to the spectra of the other components”. Afterwards, the definition evolved into “the 

part of the raw signal that is useful for prediction of the component of interest”. NAS has a 

conceptual meaning and is very difficult to measure. It can be viewed as a particular case of 
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preprocessing methods based on orthogonal signal projection approaches [152-154]. The use of 

NAS pretreatment appeared as an interesting tool to accurately resolve the analyte signal of a 

low dose compound and allow the construction of a quantitative model [104]. Several 

adaptations of these approaches can be considered, depending on the spectral basis (i.e. space 

containing the contributions to be removed) used for projecting the original dataset. 

In this article, we propose an alternative procedure to set the presence/absence maps of 

compounds for later use as local rank constraints. The proposed approach is based on 

orthogonal projection to a space containing the contributions to be removed (i.e. the 

interference subspace). Each compound has its proper subspace containing spectral variability 

due to the environment, acquisition or physical variations. This variability can be viewed as a 

basis of vectors with an appropriate set of dimensions to build the interference subspace. By 

orthogonally projecting a spectrum to this basis, interferences are removed and only 

information of the compound of interest is kept. Since the method is not based on variance 

decomposition, it should be well adapted for a drug product which contains a low dose 

compound located in few pixels and with a low spectral response. Spectral comparison between 

the projected spectrum and a pure projected spectrum of the compound of interest can lead to 

the presence/absence maps used as local rank constraints in the MCR-ALS iterative process. 

2. Theory 

2.1. Notations 

Vectors are noted in bold lowercase, matrices in bold uppercase, and scalars in italic lowercase 

characters. Vectors are arranged in lines and one line represents one spectrum. The transposed 

forms of a vector   and a matrix   are noted   and   , respectively.   is the identity matrix of 

dimensions p x p, where p is the number of variables in a spectrum.   and   orthogonally 

projected to a detrimental basis   are noted   and   .   is the Euclidian orthogonal projector to 

 . 

2.2. Pretreatment using orthogonal projections  

Orthogonal projections can be applied as a preprocessing method by orthogonally projecting 

spectra to a basis of detrimental information or interferences. This idea was previously 

illustrated by the concept of NAS which was defined in the literature as the part of the sample 

spectrum that is related to the analyte and orthogonal to the interferences [151]. The 

performance of the pretreatment is directly explained by its ability to obtain a good 
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approximation of a basis   including the detrimental information. The basis   can be set up by 

using pure spectra or information extracted from experimental design or from models or by 

using calibration datasets. 

Let   be a basis of detrimental information of dimensions l x p (l spectra/signals, p variables), 

including all the chemical information of the formulation, except the one of the compound of 

interest. The Euclidian orthogonal projector to   can be calculated by applying: 

      (    )
  

    (V-1) 

Assuming that    is a spectrum of dimension 1 x p from the matrix   of dimension n x p, a 

spectrum     is obtained after a projection of    orthogonally to   through the Euclidian 

orthogonal projector  : 

            (V-2) 

For all spectra, the projected matrix    orthogonal to   can be obtained by applying:   

    (    (    )
  

 )  (V-3) 

2.3. Multivariate curve resolution-alternating least squares (MCR-ALS) 

The algorithm was previously described in detail in Refs. [81; 82]. The main goal of MCR-ALS is 

decomposing the original matrix        (n samples or rows and p variables or columns) of a 

multicomponent system into the underlying bilinear model which assumes that the observed 

spectra are a linear combination of the spectra of the pure components in the system: 

            (V-4) 

where C is the matrix of concentration profiles, ST the matrix of pure responses and E contains 

the experimental error. In resolution of spectroscopic images,        is the matrix of the unfolded 

image, C contains the concentration profiles that, conveniently refolded, show the distribution 

maps of each image constituent and ST contains the associated pure spectra [144].  To keep the 

maximum of information during the iterative process, and especially when a low dose 

compound is studied, MCR-ALS must be performed on the        matrix without PCA-based 

filtering [149]. In order to provide chemically meaningful profiles (i.e. pure spectra and 
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distribution maps) and to reduce intensity and rotational ambiguities in the MCR solutions, 

constraints must be properly chosen during the iterative MCR-ALS process. Since concentrations 

of the compound and Raman intensities should not be negative, a non-negativity constraint (n-n 

constraint) is often applied.  

To exploit the presence or absence of a compound in image pixels, local rank constraints can be 

used. A previous approach, based on FSIW-EFA, was performed by applying local singular value 

decompositions [27]. This method was identified as a powerful tool by providing local 

information on pixels. Coupled with reference spectral information, it can provide a map of 

absence for each constituent. This method can be applied in all instances and it is the only option 

when there is no prior information on the composition of the samples and, hence, interference 

spaces as proposed in section 2.2 can not be designed. However, in the case of a low dose 

compound with a low spectral signal, the identification of the presence and absence of this 

compound might be difficult. In this work, an alternative method to the FSIW-EFA method is 

proposed. This approach, based on orthogonal projections, is particularly adapted to the 

identification of a low dose compound with low intensity spectral signal within a pharmaceutical 

drug product and will be presented in the next section. Lack of fit and explained variance, two 

common figures of merit [82] of the MCR-ALS optimization procedure, were used to assess the 

model efficiency. 

2.4.  Proposed approach to determine presence/absence maps of 

compounds to set local rank constraints 

In this work, the orthogonal projection pretreatment was used to set up presence/absence maps 

used as local rank constraints during MCR-ALS iterations. The basis   with information of the 

interference spaces was estimated by applying singular value decomposition on the suitable 

pure compound Raman images. Each pure Raman image is formed by several spectra, including 

all environmental, acquisition, physical and chemical variability for a compound. In order to 

include all the spectral variability in the interference space, an appropriate number of 

dimensions was chosen for each subspace   of the basis  . The final   basis can, therefore, have 

a rank higher than the number of compounds of the image to include all spectral variability that 

can be found associated with a single compound.   

For each compound of interest c, let     be the interference matrix, including all the variability 

of the drug compounds, except the information from c. The orthogonal projector to     can be 

calculated as follow: 
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         (V-7) 

By orthogonally projecting the spectra     of an image of the pharmaceutical formulation and a 

pure spectrum   of the compound of interest to the basis    , projected image spectra     and a 

pure projected spectrum    can be calculated by: 

                (V-8) 

and  

            (V-9) 

In this work, the mean spectrum of a pure compound image was used as the pure spectrum  . In 

Figure V-1, inspired by [154], the basis     is constituted of three subspaces corresponding to a 

formulation which contains four compounds. Each subspace is a set of loading vectors calculated 

by applying a non-centered PCA based on singular value decomposition on pure compound 

images (respectively 4, 3 and 2 loading vectors for interference spaces of compounds 1, 2 and 3). 

     and     are calculated by orthogonally projecting an image spectrum and the pure spectrum 

of the product of interest to the detrimental subspace, i.e. the basis    . It is crucial to project 

the pure spectrum of each compound also onto the related interference space to keep only as a 

reference the orthogonal part of the pure spectra for later correlation studies. Performing the 

correlation between the orthogonal projection of any pixel spectrum and the raw pure spectrum 

of the pure compounds would lead to misleading conclusions because any pure compound 

spectrum is partially correlated to the rest of compounds in the system.      
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Figure V-1 Graphical representation of the proposed approach 

For a compound, the presence/absence map is calculated by estimating the Pearson’s 

correlation between the orthogonal projections of the pixel spectra     and the pure spectrum 

  : 

          
 

 

   

∑          ̅̅ ̅̅̅       ̅̅ ̅ 
 
   

     
   

  (V-10) 

A high           
 value corresponds to a spectrum strongly correlated to the pure projected 

spectrum   . If the value is higher than a specified threshold, then the compound is considered 

as present. On the other hand, a low value will be associated with the compound absence. 

Selection of the threshold value can be considered as a critical parameter in the proposed 

approach. An appropriate value, ensuring the proper presence or absence of a compound, has to 

be selected by observing the correlations           
 and the associated projected image spectra 

and pure projected spectrum. Absences of compounds in different pixels will be encoded and 

used as local rank constraints during the alternating least squares iterative process. 
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3. Materials and methods 

3.1. Raman microscopy 

Images were collected using a RM300 PerkinElmer system (Perkin Elmer, Waltham, MA) and the 

Spectrum Image version 6.1 software. The microscope was coupled to the spectrometer and 

spectra were acquired with a spatial resolution of 10µm in a Raman diffuse reflection mode. A 

785nm laser with a power of 400mW was used. Wavenumber range was 3200–100cm-1 with a 

resolution of 2cm-1. Spectra were acquired at a single point on the sample, then the sample was 

moved and another spectrum was taken. This process was repeated until spectra of points 

covering the region of interest were obtained.  

3.2. Samples 

3.2.1. Simulated data 

A hyperspectral Raman image was synthesized by using pure compound images of lactose, 

avicel® (i.e. microcrystalline cellulose), indapamide (used as active pharmaceutical ingredient 

or API) and magnesium stearate. Pure tablets were prepared with a manual tablet press and 

Raman images of 40 pixels per 40 pixels corresponding to 1600 spectra were acquired for a 

surface of 400µm by 400µm. Two scans of two seconds were accumulated for each spectrum. In 

order to simulate a hyperspectral Raman dataset with various known concentrations of API and 

excipients, an image structure was manually designed by defining 8 different classes including 

circular and rectangular shapes (Figure V-2). Each class was constituted of different amount of 

the four pure products (Table V-1). In order to simulate concentration variability, 

concentrations were normally distributed around the target value (distribution was set up with 

a mean of zero and a standard deviation of one), leading to four various concentration maps 

(Figure V-3). The magnesium stearate, usually added in a pharmaceutical formulation as a 

lubricant, was used as the low dose compound and was only present in classes seven and eight 

with a target concentration of 5% w/w. Among the 1600 pixels, only six contained magnesium 

stearate. The spectral and spatial variability directly linked to the lubricant is weak and the 

distribution study of this compound appeared as a real challenge. 
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Figure V-2 Image distribution patterns used to build synthetic image (eight classes represented by 

eight different colours) 

 

 

Classes Lactose Avicel® MgSt API 

1 70 20 0 10 

2 20 70 0 10 

3 20 30 0 50 

4 20 60 0 20 

5 30 10 0 60 

6 10 70 0 20 

7 20 35 5 40 

8 65 20 5 10 
Table V-1 Target concentrations of the eight classes 
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Figure V-3 Simulated distribution maps of lactose, avicel®, API and magnesium stearate (MgSt) 

Each spectrum [x1, x2, …, xi] of the simulated image   of dimensions n x m x p where n means 

pixels in x- direction, m pixels in y- direction and p spectral channels was the result of the sum of 

the images of the pure compounds, conveniently modified to reflect the pixel concentration 

patterns assigned to the classes. For one spectrum i, a spectrum    was obtained as:  

   ∑         
 
    (V-11) 

where      is the concentration profile of the spectrum i that includes the concentration pattern 

of the compound j in the different classes and      the pure spectra (Figure V-4). In this way, the 

whole simulated image was obtained by using each of the 1600 spectra of the images of pure 

compounds. Using this simulation procedure, concentration variability was included within the 

final dataset. Moreover, due to the spectral variability included within the pure compound 

images, noise was also included in the hyperspectral data.   
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Figure V-4 Building of simulated data 

3.2.2. Real dataset 

A commercial coated tablet of Bipreterax® was used for the study. Bipreterax® is used for 

arterial hypertension treatment and is commercialised by “Les Laboratoires Servier”. It is also 

known as Perindopril (active principal ingredient 2 or API 2) / Indapamide (active principal 

ingredient 1 or API 1) association and contains respectively 4mg of API 2 and 1.25mg of API 1 in 

the commercial drugs. Actives are known to have several solid state forms, but only one of them 

is present in this formulation. Major core excipients are lactose monohydrate and avicel® and 

minor excipient is magnesium stearate. In order to analyse the tablet core, the coating was 

removed by eroding the sample with a Leica EM Rapid system (Leica, Wetzlar, Germany). A 

visual examination of the tablet did not provide any information concerning the distribution of 

the different compounds within the tablet. Two scans of two seconds were accumulated for each 

spectrum. An image of 70 pixels per 70 pixels was acquired for a surface of 700µm by 700µm.  

4. Results and discussion 

4.1. Principal component analysis (PCA) on pure images 

Due to physical and environmental variability such as particle size, polymorphism, water 

content and acquisition variation, spectral differences are often observed in a hyperspectral 

image of a pure compound. On Raman spectra, this variability can be illustrated by multiplicative 
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and additive effects due to scattering and fluorescence contributions. By applying non-centered 

PCA on pure Raman images, a well-known chemometric method based on singular value 

decomposition, the variability subspace of each compound can be identified. A reference image 

of Indapamide, of dimensions 40 pixels per 40 pixels was acquired. In Figure V-5, spectral 

variations can be observed between the 1600 spectra. Scores images and loadings, based on 

variance decomposition of the whole matrix, highlighted spectral variability included in the 

Raman image. The number of components of the model was chosen by observing the total 

variance explained.  

 

Figure V-5 Non-centered PCA on pure compound image of API. Raw spectra, scores maps and 

loadings 

4.2.  Proposed approach on simulated data 

A non-centered PCA was performed on the four pure unfolded images in order to set up the 

interference basis. The number of components was chosen by explaining 99.9% of the total 

spectral variance. The interference basis     for lactose, avicel®, API and magnesium stearate 

were respectively built with 5, 5, 3 and 4 components (i.e. loading vectors). 

Orthogonal projected spectra of the simulated image to the suitable interference space for each 

compound were displayed in Figure V-6. For lactose, avicel® and API, orthogonal projected 

signals were similar to the expected pure compound Raman spectra. For magnesium stearate, 
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Raman spectra orthogonally projected to the basis     including spectral variability and 

information of the three main formulation compounds (lactose, avicel® and API) provided noisy 

signal. Due to the weak spatial and spectral presence of magnesium stearate within the 

simulated formulation, direct interpretation of these projected spectra was not possible. Each 

projected spectral matrix was compared with the orthogonal projection of the related pure 

spectrum by correlation. Correlation maps displayed in Figure V-7 showed high correlations 

between the projected spectra of lactose, avicel® and API and the associated pure projected 

spectrum. The 6 pixels containing low concentrations of magnesium stearate provided 

correlations with the projected pure spectrum from 0.5 to 0.8. Other pixels of the image were 

not correlated to the projected pure spectrum of magnesium stearate. 

 

Figure V-6 Orthogonal projected spectra of the simulated data to the suitable interference space 

    for each compound 
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Figure V-7 Correlation maps           
 (k1 = lactose basis, k2 = avicel basis, k3 = API basis, k4 = MgSt 

basis) 

By selecting a threshold which ensures the detection of a compound in a pixel, the 

presence/absence maps presented in Figure V-8 can be calculated. In this example, a correlation 

lower than 0.5 was associated with the absence of the studied compound. By using this 

threshold, API, avicel® and lactose were identified in the 1600 pixels of the image while the low 

dose compound was only identified in the 6 pixels corresponding to the theoretical simulated 

data. The threshold was selected to avoid incorrect absences of each compound. As it was shown 

in Figure V-7, pixels without magnesium stearate provided low correlations because the 

projected image spectra contained only noise contributions. The differences between low and 

high correlations were sufficiently obvious to be properly discriminated. 
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Figure V-8 Presence/Absence maps of compounds in the simulated image (blue colour: Presence of 

the compound, white colour: absence of the compound) 

MCR-ALS was performed with a non-negative constraint on concentrations, with the local rank 

constraints based on orthogonal projection approach and without PCA-filtering before iterative 

process. Between MCR-ALS iterations, if a compound was considered to be absent, the 

concentration was forced to zero as usually done in local rank constraints. In Table V-2, the 

advantage of using local rank constraints was shown by studying the correlations between the 

MCR-ALS calculated spectrum and the pure spectrum of magnesium stearate which were 

respectively equal to 0.78 and 0.89 without or with the local rank constraint. 

  MCR-ALS with n-n constraint 
MCR-ALS with n-n and local 
rank constraints 

rsopt1/API 1.00 1.00 

rsopt2/Avicel® 1.00 1.00 

rsopt3/Lactose 1.00 1.00 

rsopt4/MgSt 0.78 0.89 

lof % 0.89 0.91 

Explained variance % 99.99 99.99 
Table V-2 MCR-ALS results on simulated data 
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4.3. Proposed approach on real dataset 

The studied tablet was manufactured with 5 pure compounds (2 actives and 3 excipients). Pure 

compound Raman images of dimensions 40 pixels per 40 pixels were acquired with the same 

acquisition parameters as the studied image. A non-centered PCA was applied on each pure 

compound image. For each compound, the interference basis     was built with the PCA 

loadings. The number of loadings for a basis was selected by choosing an appropriate number of 

components explaining 99.9% of the total variance of each image in order to include the 

maximum of variability in the interference basis. Projected spectra were studied by correlation 

with the pure projected spectrum. A conservative threshold of 0.5 was used to avoid incorrect 

absences. A value lower than the selected threshold indicated the absence of the studied 

compound. In Figure V-9, the white colour was linked to the absence of the studied compound 

and the associated concentration was fixed to zero in the MCR-ALS process. However, blue pixels 

were related to high correlations between a spectrum     and the pure projected spectrum    of 

a compound c. 

 

Figure V-9 Presence/absence maps of drug compounds (blue colour: Presence of the compound, 

white colour: absence of the compound) 

Lactose, main excipient of the studied formulation, was detected in the whole surface of the 

tablet. Absence or presence of the two actives and avicel® were easily highlighted with the 
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proposed approach. Magnesium stearate, used as a lubricant in the formulation (i.e. the low dose 

compound) was detected only in few pixels of the image. 

MCR-ALS was performed with non-negativity constraint on spectra and concentrations, without 

using PCA-based filtering. Presence/absence maps were used as local rank constraints between 

iterations to set up the concentrations to zero if a compound was considered absent. In Table 

V-3, the importance of the maps of presence/absence matrix in the multivariate curve resolution 

was highlighted. Indeed, by using the appropriate local rank constraints, better results were 

obtained.  Except for avicel®, correlations between the calculated MCR-ALS spectra and the pure 

reference spectrum of each constituent were higher by using local rank constraints. Significant 

improvements were observed for API2 and magnesium stearate by respectively increasing the 

correlation values from 0.51 to 0.93 and 0.34 to 0.84 (Figure V-10). By using local rank maps 

constraints, the model was improved as a part of the noise was separated from the model. By 

reducing noise in the MCR-ALS model, explained variance decreased by taking a value from 

99.92% without using local rank constraint to 98.98% with the spatial constraint, and lack of fit 

increased by taking a value from 2.66% without using local rank constraints to 10.09% with the 

spatial constraint.  

 

Figure V-10 Calculated spectrum by MCR-ALS (with n-n and local rank constraints) and pure 

spectrum of magnesium stearate 
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  MCR-ALS with n-n constraints 
MCR-ALS with n-n and local 
rank constraints 

rsopt1/API1 0. 70 0. 93 

rsopt2/API2 0. 52 0. 93 

rsopt3/Avicel® 0. 95 0. 81 

rsopt4/Lactose 0. 98 0. 99 

rsopt5/MgSt 0.34 0.84 

lof % 2.66 10.09 

Explained variance % 99.92 98.98 
Table V-3 MCR-ALS results on real dataset 

Resolved distribution maps for all compounds in the formulation were displayed in Figure V-11. 

Distribution of actives and excipients were as expected according to the nature of the 

formulation of the drug product. Indeed, as major excipients, lactose and avicel® were identified 

in the whole tablet surface. The two actives were distributed throughout the tablet. Magnesium 

stearate, the low dose compound used as lubricant in the formulation, was identified in few 

pixels of the image.  

 

Figure V-11 Distribution maps of the five compounds obtained by MCR-ALS (with n-n and local 

rank constraints) 
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5. Conclusions 

The proposed approach, which applies orthogonal projections pre-processing to set up 

presence/absence maps of compounds to be used as local rank constraints in the MCR-ALS 

iterative process showed excellent results in the case of a low dose compound within a 

pharmaceutical drug product. For each compound of a pharmaceutical formulation, the spectral 

matrix (i.e. the unfolded image) was orthogonally projected to a basis containing all the 

interferences other than the product of interest. Orthogonal projected spectra were then 

compared with the orthogonal projection of a pure spectrum of interest to the same basis. By 

choosing a threshold on correlation coefficients between the signals, presence/absence maps 

can be set up and used as local rank constraint during MCR-ALS process. Results were 

significantly improved by using this constraint. 

Orthogonal projections have been shown to be an interesting approach to set local rank 

constraints in pharmaceutical formulations because the composition of the sample is known, 

therefore, interferences spaces can be well defined and because, in case of low dose compounds, 

the result of algorithms based on variance decomposition may be compromised. In this specific 

case, orthogonal projection can be viewed as a filtering method which removes detrimental 

information and focuses on spectral contribution of the product of interest. 
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Contributions of chapter V 
 
 
In this work, we proposed an alternative method to set up the absence/presence maps used as 

equality constraint in MCR-ALS process. This method was based on the hypothesis that each 

compound has its proper subspace containing spectral variability due to chemical and non-

chemical contributions (environmental, acquisition, physical…). This variability can be viewed 

as a basis of vectors with an appropriate set of dimensions considered as the detrimental 

subspace. The basis of vectors was calculated for each compound, using non-centered PCA on 

pure compound images. The number of vectors to be used was selected by explaining 99.9% of 

the total spectral variance. For each compound, correlations between pure projected spectra and 

image projected spectra were calculated. A high value indicated the presence of a compound 

while a low value was associated with the absence of a compound.  

By using this approach, maps of absence/presence were in accordance with the simulated and 

real formulation dataset. This approach appeared as very powerful in the case of a low dose 

compound because orthogonal projection can be viewed as a filtering method which removes 

detrimental information and focused on spectral contributions of the product of interest. 

Moreover, because this method is not based on variance decomposition, it is perfectly well 

suited for a low dose compound in a mixture dataset. Indeed, using orthogonal projections 

offered the possibility of working in a different subspace, i.e. the signal subspace.  While the 

usual chemometric tools try to find differences between samples (i.e. by working in the sample 

space), the proposed approach focused on the signal information. In the case of the low dose 

compound, information in the sample space is scarce and cannot be extracted by using 

chemometric methods based on the scatter matrix in the sample space. Using the signal space 

appeared as a powerful alternative method to circumvent the usual decompositions of 

chemometric methods.  

However, it is important to notice that this approach can only be applied in situations where the 

space of interferences can be well-defined, i.e. it requires to know the sample composition 

beforehand. In some cases, during a stability study or when a counterfeit sample is analysed, the 

studied formulation is not known by the analyst and the proposed approach might be difficult to 

implement.  

This latter observation led us to the following chapter where we will propose an iterative 

approach, based on a spectral library, spectral distances and orthogonal projections to identify 

the pure compounds in an unknown pharmaceutical drug product. 
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Chapter VI: An iterative approach for 

compound detection in an unknown 

formulation 
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Preamble 

In the previous chapter, we highlighted the ability of multivariate curve resolution, associated 

with the suitable constraint, to provide the distribution of pure compounds in a pharmaceutical 

drug product, including a low content compound. Most of our previous work was applied on a 

presupposed known formulation.  

However, in some cases, the formulation is not previously known by the analyst and the pure 

compound identification appeared as a real challenge. Two applications can be cited in the 

pharmaceutical environment. First application concerns the analysis of a counterfeit sample, 

which is defined as a product sold under a product name without proper authorization. It may 

include products without the active ingredient, with an insufficient or excessive quantity of the 

active ingredient, with the wrong active ingredient, or with fake packaging. Obviously, 

compounds included in the product are not known beforehand. The second application concerns 

the chemical modification of a sample during a stability study. During this required test, 

products are stored in various temperature and humidity conditions, in different packaging, 

during several months. The objective is to control the product modifications during the storage 

(for example modifications of the crystalline form or degradations of active).  

Because the formulation is not always known, we propose in this section a new methodology to 

detect pure compound in a mixture dataset. Based on a spectral library, spectral distances and 

orthogonal projections, this approach should be particularly suited for a formulation which 

contains a low dose compound. 

The proposed approach is tested on a tablet manufactured with one active pharmaceutical 

ingredient and five excipients, including the low dose lubricant. The tablet is stored 3 months in 

high temperature conditions before Raman analysis. 

Note that this work has been performed with a Raman microscope similar to the one described 

in the chapters III, IV and V. As this chapter is the reproduction of Art. IV submitted in the 

Journal of Pharmaceutical and Biomedical Analysis in 2015, the readers will find some 

redundancies between chapters III, IV, V and chapter VI in the materials and methods section.  
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AN ITERATIVE APPROACH FOR COMPOUND DETECTION IN AN UNKNOWN 

PHARMACEUTICAL DRUG PRODUCT:  

APPLICATION ON RAMAN MICROSCOPY4 

1. Introduction 

Raman spectroscopy is becoming increasingly more accepted as a powerful tool in the 

pharmaceutical research and development environment since this technique has some major 

benefits [155; 156]. By coupling a microscope with the usual Raman spectroscopy, hyperspectral 

images providing both spectral and spatial information can be acquired, containing a lot of 

information on the distribution of active pharmaceutical ingredients (API) or excipients in a 

product [157]. The development of these analytical methods is very useful to ensure and control 

the drug product quality during development and beyond post-marketing authorisation [132]. 

Even if Raman chemical imaging has been used to detect and quantify crystalline forms [158; 

159], to characterize particle size [160] or to assess blending effect on tablet quality [114], the 

main goal in the pharmaceutical industry remains the assessment of the product quality by 

determining the compound distributions within a tablet [15; 148; 161]. 

Because of the huge amount of data contained in hyperspectral images, a direct interpretation of 

the acquired images is not possible and several chemometric tools have previously been 

published to aid in this task. Hyperspectral data analysis can be divided in several parts 

depending on the objectives, but most of the times it starts with a pre-processing step followed 

by a data analysis procedure. Pre-processing methods are usually applied to correct for external 

perturbations and undesired phenomena to focus on the targeted information. The next step 

consists of analysing the data by applying qualitative or quantitative chemometric tools such as 

principal component analysis (PCA) [112; 146], independent component analysis (ICA) [123] or 

multivariate curve resolution-alternating least squares (MCR-ALS) [84]. These algorithms 

assume that the acquired spectra are the weighted sum of pure spectra of the formulation 

compounds. One challenging task during application of these chemometric tools on imaging 

techniques is how to effectively extract chemical information from the image [48] but, the 

quality of the extracted signals (related to each pure compound) is also a critical step of the 

multivariate data analysis. 

                                                             
4 Mathieu Boiret, Nathalie Gorretta, Yves-Michel Ginot, Jean-Michel Roger. An iterative approach for 
compound detection in a unknown pharmaceutical drug product: application on Raman 
spectroscopy. Accetpted in Journal of Pharmaceutical and Biomedical Analysis (2015). 
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A lot of algorithms have been previously studied to extract pure spectra (also named 

endmembers in the remote sensing field) within a mixture dataset [162; 163]. On the one hand, 

in the chemometrics community, SIMPLISMA (Simple-to-use interactive self-modeling mixture 

analysis) [87], orthogonal projection approach (OPA) [88], independent component analysis 

(ICA) [89] or evolving factor analysis (EFA) [90] were used on spectroscopic data to identify 

these pure signals in a mixture dataset. On the other hand, in the remote sensing community, 

other approaches such as pixel purity index (PPI) [164], autonomous morphological endmember 

extraction (AMEE) [165], N-FINDR [166] or vertex component analysis (VCA) [167] appeared as 

powerful algorithms to extract pure features from hyperspectral images. However, all these 

algorithms are mainly based on either the hypothesis that each compound has a pure pixel in the 

image or that a signal contains a sufficient level of spectral contributions for a compound. 

Considering a low dose compound, it can be assumed that spatial and spectral information is 

scarce because only few pixels of the image contain the product of interest and because the 

associated spectral contributions are mixed with the other formulation compounds. Considering 

this specific case, there are no pure pixels in the studied dataset and identification of the low 

dose compound appeared as a real challenge [149; 168]. In most chemometric methods, the 

targeted information is extracted by using the variability between the samples i.e. the 

differences between the acquired spectra or pixels. But, in the case of the low dose compound, 

these variations cannot be easily highlighted as the associated contributions are weak and 

spread into mixture spectra or noise contribution. 

In most pharmaceutical applications, the studied formulations are known beforehand, but in 

some cases, analysts have limited information or do not have prior knowledge on the studied 

product. For instance, in forensic applications, illegal medicines can be analysed by vibrational 

spectroscopy to quickly detect counterfeit products [15; 30; 169]. Comparing with genuine 

drugs, counterfeit samples can be manufactured with different actives or excipients, and 

identification of product compounds without prior knowledge on the samples could be of 

interest for analysts. Moreover, during development of a pharmaceutical drug product, stability 

studies are performed to analyse the evolution of the product in time through different storage 

conditions (packaging, temperature and relative humidity). Because Raman chemical imaging 

combined with chemometric algorithms is useful to explore the inner structure of a 

pharmaceutical drug product [170], evolution of the active quality can be observed in terms of 

degradations or modifications of its crystalline forms [93]. Therefore, this analytical tool 

appeared as a very promising methodology to monitor these modifications.  
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In this article, the objective is the identification of pure compounds in a pharmaceutical tablet, 

assuming that analysts do not know the studied formulation beforehand and that a potential low 

dose product is present in the sample. A new methodology is proposed to provide the chemical 

composition of the tablet. By using a spectral library, compounds are iteratively detected by 

calculating spectral distances between images and reference spectra. Because each compound 

has its proper subspace containing chemical information and spectral variability, the associated 

spectral contributions can be iteratively removed by using orthogonal projections. This 

approach works exclusively in the signal space, describing the P-dimensional space (one axis per 

variable) in which the observations can be represented as vectors. Thus, it ensures the detection 

of a compound without requiring important variations between samples (or pixels). Therefore, 

by progressively identifying the formulation compounds, from the main product to a product 

with low contributions, this approach is particularly well adapted to detect all the compounds in 

a formulation. After spectral  identification and in order to provide distribution maps of actives 

and excipients, MCR-ALS process is applied [81; 82]. 

The remainder of the paper is organized as follows. Section 2 describes the experimental 

framework, including notations, samples and apparatus details. The proposed iterative approach 

will be described in this section. Section 3 presents the ability of the proposed approach to 

detect the pure compound in an unknown formulation and the MCR-ALS results. Finally, section 

4 presents our conclusions. 

2. Materials and methods 

2.1. Notations 

Vectors are noted in bold lowercase, matrices in bold uppercase, and scalars in italic lowercase 

characters. Vectors are arranged in lines and one line represents one spectrum. The transposed 

forms of a vector   and a matrix   are noted    and   , respectively.   is the identity matrix of 

dimensions p x p, where p is the number of variables in a spectrum.   and   orthogonally 

projected to a vector basis   are noted    and   .   is the Euclidian orthogonal projector to  .  

For a spectral matrix      , the sample space    describes the N-dimensional space (one axis 

per observation) in which we can represent the variables (Raman shift) as vectors. The spectral 

space    describes the P-dimensional space (one axis per variable) in which we can represent 

the observations (sample spectra) as vectors. 
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2.2. Samples 

A pharmaceutical tablet was especially manufactured by wet granulation for this study. The 

tablet was prepared by mixing and granulating one active pharmaceutical ingredient, Ivabradine 

(chronic heart failure treatment), commercialised by “Les Laboratoires Servier”, and four 

excipients: metolose® (Shin Etsu, Tokyo, Japan), eudragit® (Evonik, Essen, Germany), 

microcrystalline cellulose, and maltodextrin. Dried and calibrated granulates were lubricated 

with magnesium stearate, which can be associated with a low dose compound as it represented 

only 0.5% (w/w) of the theoretical formulation. The lubricated granulates were compressed 

with a rotary press equipped with punches and dies allowing the production of tablets with the 

required shape. Film-coating and smoothing are carried out in rotative coating pans. The studied 

drug product contained 10% (w/w) of active in the tablet. The active is known to have several 

solid state forms (form 1 and form 2) but only the original active form 1 was used to 

manufacture the product. Submitted to high temperature conditions, the active is known to 

undergo a crystalline modification from form 1 to form 2. Before Raman chemical imaging 

analysis, the tablet was stored 3 months at 50°C in a blister. In order to analyse the tablet core 

and to ensure a flat surface, the tablet was eroded with a Leica EM Rapid system (Leica, Wetzlar, 

Germany). A visual examination of the tablet did not provide any information concerning the 

distribution of the different compounds within the tablet.  

2.3. Raman imaging system 

The tablet image was collected using a RM300 PerkinElmer system (PerkinElmer, Waltham, MA) 

and the Spectrum Image version 6.1 software. A microscope equipped with an objective 100x 

magnification was coupled to the spectrometer and spectra were acquired through it with a 

spatial resolution of 10µm in a Raman diffuse reflection mode. Wavenumber range was 3200–

100 cm-1 with a resolution of 2 cm-1. Spectra were acquired at a single point on the sample, then 

the sample was moved and another spectrum was taken. This process was repeated until 

spectra of points covering the region of interest were obtained. A 785nm laser with a power of 

400mW was used. Four scans of three seconds were accumulated for each spectrum. An image 

of 30 pixels per 30 pixels corresponding to 900 spectra was acquired for a surface of 300µm by 

300µm.  

2.4. Spectral library 

There are many ingredients and actives in the market but this work focused on the products that 

can be found in SERVIER’s formulations. Spectral databases available on the market are mainly 
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constituted of a single Raman spectrum for each product [171]. In order to include physical and 

chemical variability of the pure products, a database was built by acquiring one hyperspectral 

image for each pure compound. The spectral library was constituted of 8 API and 16 excipients, 

corresponding to 24 images of dimensions 5 pixels per 5 pixels. Images were collected on pure 

compound tablets using the same conditions as the one described in section 2.3. Details of the 

spectral library, including uses and functional activities, can be found in Table VI-1.  

 

 

Table VI-1 – Spectral library 

2.5. Proposed approach 

In this work, the objective was to identify all the pure compounds of a pharmaceutical drug 

product, assuming that the chemical composition is not known by the analyst and that a low 

N° Product Id. Actives/Excipients Main uses and functional category 

1 API 1 Amlodipine High blood pressure or chest pain 

2 API 2 Atorvastatine 
Reduces levels of "bad" cholesterol and 
triglycerides 

3 API 3 Carvedilol Heart failure and hypertension 
4 API 4 Indapamide Fluid retention (oedema) and  hypertension 
5 API 5 Ivabradine form 1 Heart failure 
6 API 6 Ivabradine form 2 Heart failure 

7 API 7 Perindopril 
High blood pressure and prevention of heart 
attack 

8 API 8 Strontium ranelate Osteoporosis 
    
9 Excipient 1 Aspartame Sweetener 

10 Excipient 2 
Calcium hydrogen 
phosphate 

Tablet diluent 

11 Excipient 3 Eudragit RS PO Sustained release agent 
12 Excipient 4 Lactose Tablet diluent 
13 Excipient 5 Maltodextrin Binder 
14 Excipient 6 Magnesium stearate Lubricant 
15 Excipient 7 Macrogol Plasticizer 
16 Excipient 8 Mannitol Tablet diluent 
17 Excipient 9 Microcrystalline cellulose Tablet diluent 
18 Excipient 10 metolose Sustained release agent 
19 Excipient 11 Povidone Binder 
20 Excipient 12 Citric acid Acidifying agent 
21 Excipient 13 Starlac Tablet diluent 
22 Excipient 14 Sucrose Sweetener 
23 Excipient 15 Talc Anticaking agent 
24 Excipient 16 Titane dioxide Opacifier 
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dose compound can be present in the studied product. The proposed approach relies on a 

spectral library, spectral distances and orthogonal projections to iteratively detect pure 

compounds of a tablet. Since the method is not based on variance decomposition and because it 

focuses on the signal space rather than the usual sample space, it should be well adapted for a 

drug product which contains a low dose compound, interpreted as a compound located in few 

pixels and with low spectral contributions [172]. 

Let   be the unfolded image (of dimensions n spectra and p variables) and    be the unfolded 

image (of dimensions k spectra and p variables) of a reference compound   included in the 

spectral library. A matrix  ̅ is defined by calculating the mean spectrum for each compound c, i.e. 

the mean spectrum of each matrix   . The  ̅ spectral matrix contains as many lines as the 

number of compounds in the spectral library.  

2.5.1. Spectral distances 

The first step of the proposed approach consists of the spectral distance calculations between 

every spectrum of the   matrix and each spectrum of  ̅. The spectral angle mapper (SAM) was 

used for this purpose [173]. SAM is an automated method for directly comparing a signal to a 

reference spectrum. The algorithm determines the spectral similarity between two spectra by 

calculating the angle α between the two signals, treating them as vectors in a space with 

dimensionality equals to the number of bands.  

By considering a reference spectrum  ⃗⃗  and a pixel spectrum    from a two-variable data 

represented on a two dimensional plots as two points, representation of the α angle is displayed 

in Figure VI-1. The calculation consists of taking the arccosine of the dot product of the two 

spectra by applying the following equation: 

       (
    ⃗⃗ 

‖  ‖ ‖ ⃗⃗ ‖
)   (VI-1) 
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Figure VI-1 – Description of α angle in the spectral angle mapper (SAM) calculation 

The SAM algorithm uses only the vector direction and not the vector length, which means that 

the signal intensity does not modify the angle between two signals. Image spectra and spectral 

library spectra can thus be acquired with different Raman exposure time, leading to different 

spectral intensities. Two similar spectra have a SAM value equal to 0 while two orthogonal 

spectra (dissimilar) have a SAM value equal to   ⁄ , corresponding to an angle   equal to 90°. 

Low and high SAM values can be respectively associated with high or low similarity between the 

signals and the reference spectra. 

2.5.2. Identification of the pure compound 

Once the SAM values are calculated between every spectrum of   and each spectrum of  ̅, the 

second step of the proposed approach consists of pure compound identification. SAM values can 

be observed either by plotting them in function of the pixel number, or by refolding them to get a 

SAM image, or by using a boxplot representation [174]. This latter representation was 

considered as the most suitable observation mode since it provides the SAM distributions.  
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Figure VI-2 – Boxplot representation of SAM  

In the proposed approach, mean of the SAM values lower than the quartile q1, including 25% of 

the sorted values, are observed for each compound of the spectral library (Figure VI-2). This 

mean value, noted     was calculated as follows: 

    
∑       

 
   

 
  (VI-2) 

Where       
 are the SAM values lower than q1, n the number of samples lower than q1. A 

product which provides the lowest     is associated with a pure compound. 

A low     means that a product is present in most of the pixels in the sampling area. However, 

in the case of a high    , the distribution must be observed. Indeed, in the case of a low dose 

compound, where only few pixels of the image contain the product, the number of low SAM 

values is limited, and the     will not allow the detection of the product. Boxplot representation 

offers the possibility to highlight rare SAM values (corresponding to low values in the 

distribution and considered as outliers) and is thus suitable for the detection of a low dose 

compound.  

Therefore, two criteria (    and outliers) have to be observed in order to identify a pure 

compound in the studied dataset. If for all the compounds of the spectral library, no low values 

of     and outliers (i.e. low SAM values) are observed, then the iterative process stops.   

2.5.3. Orthogonal projection 

Once a pure compound is identified, the associated mean spectrum is added to the pure spectral 

matrix  . Next,   and  ̅ are orthogonally projected to a subspace   corresponding to the signal 
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space of the identified compound, including chemical contribution and spectral variability. For a 

compound c, the vector basis is estimated by applying a non-centered singular value 

decomposition (SVD) on the suitable pure Raman unfolded image   . The subspace   was built 

with eigenvectors, selected by choosing a number of components explaining 99.9% of the total 

variance of each image in order to include the maximum of spectral information (including 

spectral variability) in the basis. 

An orthogonal projector   to   is calculated as follow: 

                (VI-3) 

By orthogonally projecting the spectra   and mean pure spectra  ̅ to the basis  , projected 

image spectra    and pure projected spectra  ̅  are obtained by:  

         (VI-4) 

and  

 ̅   ̅    (VI-5) 

The following iterations are performed on    and  ̅ .  

2.5.4. Overview of the iterative approach 

The proposed approach is thus divided with the different steps listed below and graphically 

represented in Figure VI-3: 

1. Initialise the calculation process with       and   ̅   ̅  

2. Calculate SAM values between every spectrum    and each mean spectrum of  ̅  from 

the spectral library 

 

3. By observing     and outliers, identify a pure compound c within the formulation and 

add the corresponding mean spectrum to  . Iterative process stops if the two observed 

criteria do not provide low SAM values, corresponding to spectral similarity between the 

signals 
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4. Spectra   and  ̅ are orthogonally projected to the subspace   constituted of the non-

centered SVD eigenvectors calculated on unfolded pure Raman images of the identified 

compounds 

 

5. Back to step 2 

 

Figure VI-3 – Description of the proposed approach 

3. Results and discussion 

3.1. Identification of the tablet compounds 

First, Raman hyperspectral dataset was spike-corrected to reduce the effect of cosmic rays [61]. 

Next, the 3-dimensions data cube was unfolded to obtain a 2-dimensions matrix   of dimensions 

n samples (spectra) per p variables (Raman shift). The Spectral range was reduced in order to 

focus only in the region of interest corresponding to Raman shift from 1800 to 200 cm-1 (Figure 

VI-4).  
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Figure VI-4 – Raw spectra of the image of dimensions 30 pixels per 30 pixels (900 spectra) 

In Figure VI-5, the 24 mean reference spectra of  ̅ were displayed. Note that for several 

products, the correlation between spectra can be important. For example, correlations between 

Ivrabradine form 1 and form 2 or between lactose and starlac® were respectively equal to 0.75 

and 0.90. 

Image was acquired with a spatial resolution of 10µm, corresponding to a pixel size higher than 

the particle sizes of the tablet compounds. Therefore, it can be assumed that each pixel of the 

image contained a mixture of the formulation compounds. Even if pure pixel can be present for 

the main formulation excipients, identification of all the tablet compounds, including low dose 

products, appeared as a real challenge.  
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Figure VI-5 – Mean spectra of the 24 pure products included in the spectral library 

Iterative process was applied on the pre-processed Raman spectral matrix  . During the first 

iteration step, SAM values were calculated between the 900 pre-processed Raman spectra and 

the 24 mean reference spectra obtained from the unfolded pure images. Results of the first step 

of the iterative process are displayed in Figure VI-6. 

In iteration 1, the lowest mean of SAM values lower than q1 (   ), equal to 0.07, was calculated 

for metolose®, the main excipient of the studied formulation. Therefore, this compound was 

identified as a formulation compound and the associated mean spectrum was added to the 

matrix  . In the next step, the original pre-processed matrix   was orthogonally projected to a 

subspace  , built by applying a non-centered SVD on the pure unfolded image of metolose®. 

This basis of vectors includes the spectral contributions of the identified compound. By 

orthogonally projecting all the spectra to this basis, metolose® spectral contributions were 

subtracted and only the information of the other compounds was kept. The number of 

eigenvectors was chosen by explaining 99.9% of the total spectral variance, and was equal to 5. 

  and  ̅ spectra were orthogonally projected to the subspace  , providing new    and  ̅  

matrices. 

The second iteration calculated SAM values between every orthogonal projected spectrum    

and each projected mean spectrum of  ̅ . By definition, all the spectral contribution and 
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variability (due to the environment, acquisition or physical variations) from metolose® were 

subtracted. The lowest    , equal to 0.57, was calculated for eudragit®, the second main 

excipient in the studied formulation. The associated mean spectrum was added to the pure 

spectral matrix  . Initial matrices   and  ̅  were orthogonally projected to the basis   including 

vector basis linked to metolose® and eudragit®. The number of eigenvectors used to build 

eudragit® subspace was equal to 5. 

In iteration 3, crystalline form 1, crystalline form 2 and microcrystalline cellulose provided three 

low values of     respectively equal to 0.92, 0.87 and 1.00. The closeness of     values between 

the two crystalline forms of active can be explained by the correlation between the two pure 

spectra, equal to 0.75. Indeed, because of high spectral correlation between those two pure 

spectra, SAM values between the projected spectra and the pure spectra were close. Since only 

slight differences between     values were observed, the selection of a compound among these 

three pure products can be discussed. In this work, the minimum     value was used to identify 

a pure compound and hence the identified compound of the third iteration was the second form 

of API. This crystalline form of active was not used in the initial manufacturing process and 

appeared during the 3 months of storage at 50°C in a blister. The corresponding spectral 

contribution, calculated by using 4 eigenvectors, was added to the   subspace. Note that the 

minimum SAM values could have been used to detect a pure compound, and would have been 

led to a different order to extract the pure products. Using orthogonal projections offers the 

possibility of working in the signal space    rather than in a sample space   . By applying this 

methodology, the spectral information linked to a pure compound can be iteratively identify and 

subtracted. Thus, the extraction order of a compound is not a critical parameter of the proposed 

approach.   

By observing the boxplot representations in Figure VI-6, several outliers (lower than     and 

represented as red crosses) were highlighted for several compounds (Spectral number 5, 13 and 

14 in iteration 5 for example). Outliers can be associated with low SAM values between the pure 

projected spectra and the image projected spectra and thus to heterogeneous distribution of a 

product in the tablet. Indeed, broad SAM value distributions including outliers (i.e. low SAM 

values) rely on compounds which are not homogeneously distributed in the sample.  
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Figure VI-6 – SAM values boxplot and     values calculated from iteration 1 to 8 (to identify each 

sample number, readers are refered to Table VI-1) 

In iteration 4, as a consequence of the identification of the second crystalline form of active in 

iteration 3, and because of the spectral correlation between the two crystalline forms of active, 

the API form 1     value significantly increases, taking a value from 0.92 to 1.26. The lowest 

    value, equal to 0.87, was calculated for microcrystalline cellulose. The corresponding 

spectral contribution, calculated by using 5 eigenvectors, was added to the   subspace. 

In iteration 5, the lowest     value equal to 1.19, was calculated for the first crystalline form of 

API. By orthogonally projecting the original   and  ̅ matrices to the subspaces of the five first 

identified pure compounds, calculations focused on compound which provides lower 

contributions, due to a low dose compound or because of a low Raman response. On the one 

hand, in the case of a compound present in few pixels, only few low SAM values are calculated, 

and thus the     values cannot be sufficient to identify a compound. One the other hand, in the 

case of a low spectral response, the signal can be mixed with noise contribution and SAM values 

can be higher than the values calculated in the previous iterations. In both cases, in addition to 

    values, observations of outliers can be useful.  
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The sixth iteration highlighted the lowest     for matltodextrin, with a value equal to 1.29 and 

several outliers identified below    . Despite of a concentration of 6.5% in the theoretical 

formulation, identification of the maltodextrin in the sixth iteration and the high     value can 

be explained by a weak Raman response of this product comparing with the other formulation 

compounds. 

The seventh iteration highlighted high     values for all the compound, except for the 

magnesium stearate which provided a     value equal to 1.36. Moreover, by observing the SAM 

value distribution, several pixels with low SAM values can be highlighted, taking values from 

0.77 to 1.30. SAM values calculated between magnesium stearate projected pure spectrum and 

the associated projected spectra  ̅      are displayed in Figure VI-7. Only three SAM values 

lower than 0.8 were calculated. By observing the associated projected spectrum    (at a 

specified position y = 23 and x = 4) and the projected mean spectrum  ̅     , a correlation equal 

to 0.75 between the two signals can be highlighted (Figure VI-8). 

 

Figure VI-7 – SAM values between pure projected spectrum  ̅     of magnesium stearate and the 

   matrix (iteration 7) 
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Figure VI-8 – Projected spectrum    at positions y = 23 and x = 4 (blue) and the projected mean 

spectrum  ̅     (red) 

Despite of the low magnesium stearate concentration in the formulation (0.5% w/w), the 

product was successfully detected by the proposed approach. The subspace   was completed 

with the magnesium stearate subspace built by using 3 eigenvectors and   and  ̅ were 

orthogonally projected to this new vector basis. 

Iteration 8 provided high     values for all compounds of the spectral library. Moreover, no 

outliers, corresponding to spectra with low SAM values were identified. No additional 

compounds were identified and the iterative process stopped.  

At the end of the iterative process, the pure spectral matrix   was constituted of seven spectra 

corresponding to the following compounds: metolose®, eudragit®, API form 2, microcrystalline 

cellulose, API form 1, maltodextrin and magnesium stearate. Assuming that the formulation was 

unknown, the proposed approach successfully identified the entire tablet composition, including 

the modification of a crystalline form and the low dose compound.  

In this work, the compound selection and the end of the iterative process were mainly based on 

the observations of     and SAM outlier values. On the one hand, a compound highly 

concentrated and homogeneously distributed in a sample provides low     values and can be 

easily identified. On the other hand, a low dose product, distributed in a few pixels with a low 
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spectral response, provides only few low SAM values related to outliers. Observations of     

and outliers during the iterative process offers the possibility to detect both major and minor 

compounds in the sample. Since the approach works exclusively in the signal space, it ensures 

the detection of a compound without requiring important variations between samples. 

Therefore, by progressively identifying the formulation compounds, from the main product to a 

product with low contributions, it is suitable to detect all the compounds in a formulation 

Even if the method appeared as a powerful methodology, it requires a minimum of expertise, 

especially to interpret the SAM distributions (    and outliers). A semi-automatic method was 

tested in order to select the number of compounds (i.e. the number of iterations) to be used. In 

theory, once all the compounds are identified, all      values should tend to a value close to   ⁄  

(α equal to 90° due to the dissimilarity between signals) and the standard deviation between all 

the calculated     values should reach a plateau. Figure VI-9 displays the evolution of standard 

deviation calculated on     for 15 iterations. The standard deviation progressively decreased 

from the first to the seventh iteration, taking a value from 0.25 to 0.05. After the seventh 

iteration, the standard deviation reached a plateau, meaning that no additional compound was 

present in the formulation. In addition to the visual interpretation of     and outliers for each 

compound of the spectral library, this approach could be useful to select the number of 

compounds in the studied sample. 

 

Figure VI-9 – Evolution of standard deviation of the 24     values 
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The proposed iterative approach appeared as an interesting methodology to detect the 

compounds of a pharmaceutical drug product without prior knowledge on the formulation. 

Using these identified spectra and in order to provide distribution maps of each compound, 

multivariate curve resolution-alternating least squares (MCR-ALS) was applied on the data. 

3.2. Multivariate curve resolution-alternating least squares 

MCR-ALS was performed with non-negativity constraint on spectra and concentrations, without 

using PCA-based filtering in order to keep the maximum of information before the iterative 

process [149] and by using the initial estimate spectral matrix   determined in the previous 

section. To enhance slight spectral variations, data were pre-processed with a Savitzky-Golay 

[59] first derivative with a 2nd order polynomial smoothing on a 9 points window. Model was 

considered as optimum after 6 iterations, providing a lack of fit equal to 5.9% and a percentage 

of variance explained equal to 99.9%. 

The distribution of actives and excipients is displayed in Figure VI-10. The main excipients, 

metolose®, eudragit® and microcrystalline cellulose were easily detected on the tablet surface. 

Distribution of actives highlighted the transformation of active form 1 to form 2 during the 

stability study. An estimation of the compound concentration was calculated by applying the 

following method for each of the c product:  

   
∑   

 
   

∑ ∑     
 
   

 
   

      (VI - 6) 

where n is the number of spectra (or pixels). 

Even if these values have only an indicative meaning, since only a small area of the mixture was 

considered, the results were in accordance with the theoretical tablet formulation (Table VI-2). 
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Figure VI-10 – Distribution maps of metolose®, API form 1, eudragit, microcrystalline cellulose, 

API form 2, magnesium stearate and maltodextrin 

Pure compound 
Theoretical amount (% 

w/w) 
Calculated Cc (% w/w) 

   
Metolose® 40 39 
Eudragit® 25 29 

API  11 5 (form 1) + 5 (form 2) 
Microcrystalline cellulose 17 15 

Maltodextrin 6.5 6 
Magnesium stearate 0.5 1 

   
Table VI-2 – Estimation of the compound concentration 
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4. Conclusions 

In this article, a new methodology to identify pure compounds in a pharmaceutical drug product 

by Raman microscopy was proposed. It was assumed that the chemical composition of the 

product was not known beforehand by the analyst and that a low dose compound can be present 

in the studied tablet. In this proposed approach, a spectral library, spectral distances and 

orthogonal projections were used to iteratively detect pure compounds of a tablet. Since the 

method is not based on variance decomposition, it was well adapted for a drug product which 

contains a low dose compound, interpreted as a compound located in few pixels and with a low 

spectral response. 

The method was tested on a tablet specifically manufactured for this study and constituted of 

one active pharmaceutical ingredient and 5 excipients, stored 3 months at 50° in a blister before 

analysis. A spectral library, constituted of 8 actives and 16 excipients, was used as a spectral 

database. Two forms of the active pharmaceutical ingredient were detected. A modification of 

the crystalline form during the storage was highlighted. Moreover, the lubricant, considered as a 

low dose compound, was successfully identified in the tablet. By using the pure identified 

spectra, multivariate curve resolution-alternating least squares was applied on the whole 

spectral matrix. Results provided the distribution maps of each compound in the tablet. The 

distribution and estimation of the amount of each compound was in accordance with the 

theoretical formulation. 

This approach could be particularly interesting for analyst in either the case of identification of 

pure compound in an unknown product such as a counterfeit product or during the stability 

study of a pharmaceutical drug product (tablets, powders or extrudates) to study the 

degradation of active and the modification of crystalline forms.  
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Contributions of chapter VI 

In this chapter, we proposed an iterative method to identify pure compounds of a 

pharmaceutical drug product, assuming that the chemical composition is not known beforehand 

and that a low dose compound can be present in the studied formulation. 

The proposed approach requires a spectral library constituted of pure spectral images of pure 

compounds which are subject to be present in the formulation. Obviously, the more the number 

of compounds in the spectral library, the more efficient the proposed approach. Spectral 

distances were calculated between every image spectra and reference mean spectra of the 

spectral library. A low distance value was associated with the identification of a pure compound. 

Image spectra and pure spectra were then orthogonally projected to the vector subspace of the 

identified compound, including its chemical and physical variability. The corresponding 

information is subtracted from the data and the next iteration can be performed. The process 

was repeated until that no pure compounds were identified (high values of spectral distances). 

Due to low spectral resolution (lower than the particle sizes of the different constituents) and to 

the penetration depth of the Raman signal, a pixel cannot be assigned to a pure spectrum. Thus, 

as presented in chapter V, the use of the signal space (by using orthogonal projections) appeared 

as particularly well-adapted to iteratively subtract the contribution of a selected pure 

compound. Indeed, since a loss of information can occur by applying variance decomposition, or 

more generally by applying algorithms based on the decomposition of a statistical moment, the 

use of orthogonal projections offers the possibility to work in a signal space, which ensures the 

conservation of the low dose contribution between iteration. 

In this work, a tablet stored 3 months in a blister at 50°C was studied. Once the pure products 

were identified in the hyperspectral dataset, MCR-ALS was performed to provide distribution 

maps of each compound. Two conclusions can be highlighted. First, during the storage, we 

noticed a crystalline modification of the active, due to high temperature conditions. Although 

that the two crystalline form spectra were highly correlated, the proposed approach successfully 

detects the apparition of the second form. Second, the proposed approach was able to detect the 

low dose lubricant and the maltodextrin, which is known to provide weak Raman response.  
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Chapter VII: Conclusions and future work 
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1. Introduction 

In this work, we aim at challenging chemometric tools on Raman microscopy for studying both 

identification and distribution of compounds in a pharmaceutical drug product. The common 

thread running through the current thesis is focused on the identification of a low dose 

compound within hyperspectral images. Although apparatus or experimental parameters can 

significantly improve the results, this work is only focused on the multivariate data analysis 

aspect to extract the targeted information. 

In a pharmaceutical drug product, but more generally in a mixture dataset, a low dose 

compound can be present. In this work, it is defined as a product distributed in a few pixels with 

a low spectral response (comparing with the other compounds) leading to weak variance in the 

acquired hyperspectral dataset. As usual chemometric tools are mainly based on variance 

decomposition, requiring a sufficient level of contributions in the spectral dataset, the detection 

of a low dose compound and the assessment of its distribution in the sample appeared as a real 

challenge.  

In this thesis, we tested the ability of ICA and MCR-ALS to reach the objectives previously 

described. Regarding the case of low dose compound identification, we proposed new 

methodologies of working for applying MCR-ALS and for estimating the presence/absence maps 

used as equality constraint during optimisation procedure. Finally, we proposed an iterative 

method to detect pure compounds in an unknown formulation, assuming that the studied 

product is not known. This final chapter summarizes contributions of the thesis by emphasizing 

key points of the developed chapters. Scientific perspectives and future works will be presented 

and discussed. 

Although only pharmaceutical samples and Raman microscopy are studied in the current 

manuscript, conclusions and proposed approaches can be extended to a general case of 

hyperspectral datasets which potentially includes a low dose compound (example: detection of a 

contaminant in food engineering). 

2. Main contributions 

2.1. A flashback to the beginning of this work 

Hyperspectral datasets provide both spatial and spectral information from a sample. The spatial 

dimension provides distribution maps of the studied compounds while the spectral dimension 
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can be associated with chemical information. Hyperspectral chemical imaging is particularly 

appreciated in different fields and it is now considered as a powerful analytical tool in the 

pharmaceutical environment. As it was listed in this current thesis, a lot of applications have 

been previously developed, to study the distribution of actives and ingredients for instance, but, 

none of them focused on a low dose compound spread into hyperspectral dataset (see Chapter 

II, paragraph 3). Thus, we decided to focus on this specific case where a low dose product is 

distributed in a mixture dataset.  

Two objectives were pursued, based on Raman hyperspectral images:  

i/ Study of the compound distributions within a pharmaceutical drug product   

ii/ Identification of a low dose compound in a pharmaceutical drug product 

Across the current thesis, the first objective was dealt with the help of ICA and MCR-ALS. These 

chemometric methods were applied to study the compound distributions in hyperspectral 

images. Methods were challenged and discussed on a real case example of Raman images of 

pharmaceutical tablets. Because these chemometric tools mainly use the decomposition of 

statistical moments or apply filtering process to reduce the matrix dimensions before 

calculations, the difficulty of extracting the information linked to a low dose compound was 

expected. Limitations of these approaches to reach our objective were rapidly verified and new 

ways of working were proposed.  

To our point of view, the main issue to solve the second objective (i.e. the low dose compound 

identification) can be summarised with one specific well-known mathematical parameter: the 

variance. This latter is defined as one of the moments of a distribution. It describes how far a set 

of samples is spread out around the mean. In this work, because the data are not centered, the 

variance can be associated with the dispersion of samples around a predefined reference.  

When a low dose compound is present in hyperspectral images, low spatial and spectral 

contributions provide weak variance in the entire dataset. Because most usual algorithms are 

based on variance decomposition, we had to think about new approaches in order to extract the 

targeted information with multivariate data analysis. Note that the useful information can be 

defined by both the low dose compound contribution and the other compound contributions in 

the dataset. 
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2.2. Applications of a blind source separation methodology 

First, from a practical point of view, ICA is known to be fully suited to provide an estimation of 

pure signals from a mixture dataset. When the number of independent components is well-

chosen, calculated signals are highly correlated to pure spectra. By projecting the initial matrix 

on the calculated signals, it is very easy to display distribution maps of each compound, provided 

that spectra have not similar profiles.  

In this work, the JADE algorithm was chosen to perform the calculation. Even if the 

determination of independent signals is not based on variance decomposition, it requires high 

order statistics (i.e. fourth order cumulant) to set up the independent signals. Before 

independent signal determination, whitening and reducing steps are performed in order to 

reduce the size of the data.  By applying these reducing steps, a loss of information, especially for 

a low dose compound, can occur. 

The potential of blind source separation method to extract pure signal information from an 

unknown dataset was verified in this thesis. In addition, we highlighted the importance of 

choosing the suitable number of components to develop a model. Moreover, we presented some 

results on the detection of a low dose compound (signal and distribution). By calculating 

extracted signals with a reference pure spectrum of the low dose compound, the product was 

successfully identified. But, the model had to be built with a number of components higher than 

either the theoretical number of compounds in the formulation or than the physico-chemical 

rank of the mixture dataset. Therefore, it appeared as difficult, if not impossible, to identify a low 

dose compound if the reference spectrum of the product is unknown. In addition, using this 

over-decomposed ICA model significantly decreased the quality of signals and distribution maps 

for the main actives and excipients. Thus, depending on the objective, the proper number of 

components must be selected. In addition, we highlighted that distribution maps have to be 

interpreted with carefulness since there are estimated by a projection of the original matrix on 

the calculated signals. In the case of similarity between pure compound spectra, distribution 

maps can be incorrect. 

In conclusion, to extract the low dose compound information, by using ICA and especially the 

JADE algorithm (which includes a filtering step before starting the independent signal 

determination), it is important to use a sufficient number of dimensions in order to keep the 

targeted information in the matrix. However, using an over-segmented model significantly 

decreases the signal quality for other formulation compounds. A compromise must be properly 

selected, depending on the objectives. 
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2.3. Applications of multivariate curve resolution 

Second part of this thesis mainly focused on MCR-ALS to study the distribution of actives and 

excipients in the studied pharmaceutical drug product. As previously mentioned, the main 

objective was the detection of a low dose compound in a pharmaceutical formulation, assuming 

that it is present in a few pixels, with low spectral contributions. A new methodology was 

proposed, ensuring that the information from the low dose compound is maintained in the 

spectral matrix before starting the iterative process of alternating least squares.  

Three different cases were challenged, especially by modifying the matrix before alternating 

least squares iterations. The first case was considered as the usual way of working, applying a 

PCA-filtering on the spectral matrix using a number of components equal to the number of 

compounds in the formulation before starting MCR-ALS. The second also used a PCA-filtered 

matrix, but the number of components was progressively increased from k (i.e. the number of 

compounds in the formulation) to the maximum of variables (i.e. the data corresponds to the 

non-filtered matrix). The third case used an augmented matrix where the low dose compound 

spectral information was added to the initial dataset.  

We concluded that in the case of a low dose compound, it is very important to ensure that the 

corresponding information is kept in the initial matrix before starting the iterative process. 

Therefore, two approaches should be considered in the case of a low dose compound: i/ a PCA-

filtering step should be avoided or ii/ the low dose spectral information should be added to the 

initial matrix (i.e. augmented matrix). 

In addition, we emphasized the necessity of using both proper pre-processing tools on the data 

and constraints on concentrations and spectra during the MCR-ALS optimisation procedure. The 

latter improves significantly the results of the calculation but might be difficult to set up in this 

particular case. Alternative method for setting up this constraint was proposed in Chapter V. 

Chapter III and chapter IV highlighted the difficulty to extract a low dose compound 

contribution, either by using ICA or MCR-ALS. The only way of extracting the targeted 

information is to limit the filtering process usually applied before setting up the model. This 

filtering process is mainly based on the decomposition of statistical moments and could lead to 

the loss of contributions in the case of a low dose compound. In order to circumvent these 

limitations, another paradigm, based on the signal space rather than the sample space, was 

proposed and tested in chapter V and chapter VI. 
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2.4. Alternative method for presence/absence map estimations 

Constraints used in alternating least squares optimisation procedure are essential to reduce 

intensity or rotational ambiguities and to move towards a unique solution. Different constraints 

have been previously studied and applied but one of them, called the equality constraint, is 

known to significantly improve the resolution.  

Usually, equality constraint is based on local rank maps to estimate the compound 

absence/presence maps. A well-known and famous method, called FSMW-EFA [144], has been 

previously used on Raman chemical imaging. This method is based on the singular value 

decomposition of a pixel and its neighbourhood.  However, in the case of a low dose compound 

which has low spectral contribution, the spectral information can be mixed with the other 

compound contributions or spread into the noise.  Thus, a method based on singular value 

decomposition and correlations between spectra could fail to identify this product. 

In this work, the objective was to provide an alternative to the presence/absence map 

determination by circumventing the variance limitation linked to a low dose compound. For 

each product of the mixture, the proposed approach used orthogonal projection to a space 

containing the contributions to be removed (interference or detrimental subspace), i.e. 

information from compounds other than the compound of interest. The projected spectra were 

analysed and presence or absence of a compound were highlighted by using correlation maps. 

We tested and validated this approach on a simulated dataset which was manufactured with a 

low content product in 6 pixels, and then on a real dataset.  

By using only the spectral information, the proposed approach focuses on the signal space. 

Therefore, the limitations encountered by working in a sample space were circumvented. 

Indeed, since this methodology is only based on spectra, it does not require significant variations 

between samples. A low dose compound, which was defined as a product with low spatial and 

spectral contributions, can then be identified. Note that this approach can only be applied when 

the sample composition is known because the space of interferences must be well-defined. 

2.5. Compound detection in an unknown formulation 

Previous developments in the thesis assume that the studied formulation is known. However, in 

some applications such as counterfeit detection or analysis of a product during a stability study, 

it could be useful to identify the different compounds, associated with their distributions in the 

sample, without knowing the formulation. 
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We proposed a methodology to identify all the compounds of a pharmaceutical formulation, 

including a potential low dose compound, assuming that the analyst do not know the 

formulation beforehand. This approach uses a spectral library, which includes hyperspectral 

images of pure compounds, spectral distances, and orthogonal projections. Spectra are 

iteratively detected in the studied sample by observing and interpreting the spectral distance 

values. It is important to have a spectral library which includes a large number of actives and 

excipients. The more the number of compounds in the spectral library, the more efficient the 

proposed approach to detect an unknown compound in a formulation.  

Based on orthogonal projections, this method is suitable for a formulation which includes a low 

dose compound. Indeed, it is only based on the spectral information and does not require high 

differences between samples. By using the signal space rather than the sample space, this 

method does not require the calculation of statistical moments between samples, then, even if 

the sample is scarce and scattered in the image spectral mixture, it will be identified with 

success.  

Once the pure compound spectra detected, curve resolution methods can be applied to provide 

the distribution of actives and excipients in the pharmaceutical drug product. The proposed 

approach was tested on a formulation which contains different forms of actives and excipients, 

including a low dose lubricant. 

3. Limits and future work 

The work in this thesis presents some limitations which will be discussed in this section. Across 

the thesis, ICA and MCR-ALS were challenged on Raman images of a pharmaceutical drug 

product to detect major and minor compounds in the formulation. Limitations of these 

algorithms were rapidly highlighted by focusing on the case of a low dose compound and the 

proposed approaches significantly improve the ability of algorithms for low dose compound 

detection.  

Although ICA was successfully applied on the data to detect pure signals of the main actives and 

excipients (chapter III), it is important to keep in mind that the JADE algorithm, used in this 

work, starts with a reduction of dimensions based on singular value decomposition. In the case 

of a low dose compound, the spectral variance is weak in the matrix and the reduction of 

dimensions can lead to a loss of the associated information. In order to circumvent this 

limitation, a high number of independent components can be selected to ensure the detection of 

the low dose compound. However, it will significantly decrease the quality of the other 
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calculated signals, associated with the main compounds of the formulation. Moreover, the 

detection of the low dose compound was mainly based on a spectral comparison between the 

calculated signal and the pure spectrum of the targeted product. Without knowing the reference 

pure spectra, identification of the low dose signal might be difficult, if not impossible. Thus, 

depending on the objective (detection of the main products, detection of a low dose compound, 

with or without prior knowledge), ICA must be applied carefully by applying the suitable 

calculation process.  

In chapter IV, similar conclusions were highlighted with MCR-ALS which usually applies a 

reduction of dimensions before the iterative process, with the risk of losing the useful 

information linked to a low dose compound. By modifying the filtering step, MCR-ALS became an 

interesting chemometric tool for the detection of a low dose compound in a formulation. 

However, since constraints have huge impacts on the resolution, there have to be judiciously 

optimised. The absence/presence maps appeared as very powerful constraint to improve the 

results. But, to set up these maps, applying methods based on singular value decomposition 

appeared as inappropriate in the case of a low dose compound. In chapter V, the proposed 

approach based on orthogonal projections provided good results. However, identification of a 

compound still requires the use of a threshold during the correlation map interpretations. An 

inappropriate threshold will lead to false absence/presence maps and hence, will not provide 

satisfying resolution and a minimum of expertise can be required. 

Because hyperspectral imaging uses both spatial and spectral information, two limitations can 

be considered. First, considering the spatial aspect for a low dose compound, drawback could be 

associated with the sampling error. Indeed, since the whole sample is not acquired (limited 

surface or limited depth), pixels containing the low dose product can be missed. It is thus 

important to acquire a sufficiently large image to ensure the acquisition of all the sample 

compounds. Second, considering the spectral aspect for a low dose compound with low spectral 

contributions, the limit of detection will depend on the product. Indeed, a product with very low 

concentrations, such as an impurity for instance, will not be detected by this approach. Indeed, if 

the information is not contained in the spectra, multivariate data analysis will not be able to 

extract it. The proposed methodology could be suitable to other Raman technology which are 

known to be more sensitive (surface enhanced Raman spectroscopy for instance). 

In a future work, several elements should be tested and challenged. Even if a lot of work can be 

considered to improve the results, the following perspectives were identified as the most 

interesting studies in the near future: 
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- Test other ICA algorithms: In this work, the JADE algorithm was applied for model calculations 

(Chapter III). In order to challenge the presented results, different ICA algorithms such as 

mutual information based least dependent component analysis (MILCA) [175; 176], SNICA 

[115] or Fast-ICA [120] for example, should be tested. Even if they do not require a reduction 

of dimensions, the determination of independence between signals is differently performed 

and results might be different. 

- Initialize MCR-ALS with ICA signals: ICA appeared as an interesting method to calculate pure 

signals. It has been used in the literature to initialize non-negative matrix factorization [177] 

and it might be used to calculate initial estimate of the MCR-ALS process. It might provide an 

alternative approach to usual pure spectrum identification tools (OPA, SIMPLISMA…) when no 

pure pixels are present in hyperspectral dataset. 

- Challenge the results on other datasets: Results of this thesis were only based on Raman 

hyperspectral imaging of pharmaceutical drug products. However, results and proposed 

methodologies should be well-adapted to other chemical imaging techniques such as near 

infrared or matrix-assisted laser desorption ionization imaging or other environments 

(detection of a contaminant in food engineering) 

- Extend the spectral database: In order to ensure the compound detection in an unknown 

formulation (chapter VI), the spectral database should be expanded with pure compound 

images. The more the pure compound images in the spectral library, the more efficient the 

proposed approach.   

- Challenge the limit of detection of the method: Limit of detection of the proposed methods 

should be assessed. Indeed, in this work, we mainly used magnesium stearate, a well-known 

excipient often used as a lubricant, as the low dose compound because it is present in most 

pharmaceutical formulations manufactured by direct compression process and because it 

provides a well-resolved Raman spectrum with sharp Raman peaks. However, the presented 

work should be tested on other low dose compounds linked to weak modifications of a 

crystalline form or impurities. 

  



127 

General conclusion 

 

Raman microscopy can be considered as a powerful analytical tool in the pharmaceutical 

environment to study the distribution of actives and excipients through the entire drug product 

life cycle. Because the distribution of compounds can modify significantly the quality of the final 

drug product, the interest of such a technology is growing fast. However, due to the huge amount 

of data, a direct interpretation of the acquired image is not possible and multivariate data 

analysis must be applied to extract the targeted information. Using real case examples of 

pharmaceutical drug products, the objective of the thesis was divided in two main items: i/ 

Study the compound distributions in a pharmaceutical drug product and ii/ Identify a low dose 

compound in a sample. 

A lot of chemometric tools have been previously applied on chemical imaging dataset to display 

the distribution of actives and excipients. Most of them are based on variance decomposition or, 

in a large point of view, on the decomposition of statistical moments. Therefore, some 

limitations can be observed for the case of a low dose compound, which provides low spatial and 

spectral contributions in a pharmaceutical drug product.  

In the first part of the thesis, this work highlights the potential of independent component 

analysis and multivariate curve resolution to analyse hyperspectral dataset and extract 

information of pure compounds. In the case of a low dose compound, the reduction of 

dimensions or the filtering steps led to a loss of information linked to the targeted product. 

However, properly used, these two methods appeared as interesting to detect a product with 

low spatial and spectral contributions. Both algorithms require a high number of components to 

extract the low dose compound information, which can be mixed with the other compounds of 

the mixture or spread into noise contributions.  

In the second part of the thesis, this work focuses on the signal space, describing the P-

dimensional space (one axis per variable) in which the observations can be represented as 

vectors. By using only the spectral information and orthogonal projections, absence/presence 

maps of a compound are displayed and are used in the multivariate curve resolution-alternating 

least squares iterative process. It ensures the detection of a compound without requiring 

important variations between samples (or pixels). Since it does not require the use of the 

decomposition of statistical moments on samples, it appears as particularly suitable for the 
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studied case of a low dose compound. In addition, an iterative approach is proposed to detect 

pure compounds in a pharmaceutical drug product. Based on a spectral library, spectral 

distances and orthogonal projections, this approach focuses on the signal space and is also 

suitable to the detection of a low dose compound. 

In the current thesis, the results and proposed methodologies are obtained from Raman 

microscopy and pharmaceutical drug product. However, it could also be suitable to other 

hyperspectral dataset including a scarce constituent. 
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Résumé en français 

1. Contexte et objectifs  

Tout au long du développement d’un produit pharmaceutique, il est important de contrôler la 

qualité des échantillons fabriqués. En effet, afin de garantir l’effet du produit sur le patient, et 

pour assurer la santé de ce dernier, le médicament se doit de répondre aux exigences 

réglementaires décrites dans les dossiers soumis aux agences [3]. Pour cela, de nombreuses 

méthodes analytiques sont disponibles permettant, par exemple, de doser le principe actif ou 

d’étudier sa libération dans l’organisme. La plupart de ces méthodes sont basées sur des 

analyses chimiques longues, qui détruisent l’échantillon, qui nécessitent l’utilisation de solvants, 

et sont consommatrices en ressources humaines et matérielles. 

Depuis plusieurs années, les techniques de spectroscopies vibrationnelles, telles que la 

spectroscopie de diffusion Raman, ont fait leur apparition dans les laboratoires de contrôle 

[4].  Ces techniques ont montré de nombreux avantages car elles permettent en général des 

mesures rapides, sans solvants et sans destruction de l’échantillon. L’information contenue dans 

un spectre permet par exemple, de quantifier un principe actif dans un comprimé, d’authentifier 

un produit suspecté d’être falsifié ou bien de contrôler l’apparition d’une nouvelle forme 

cristalline au cœur du produit. 

L’apparition des systèmes d’imagerie chimique a permis d’ajouter une nouvelle dimension 

spatiale en plus de la dimension spectrale classiquement utilisée [14]. En effet, avec ces 

techniques, les spectres sont acquis pour chaque pixel d’une image hyperspectrale, permettant 

d’obtenir une information sur la répartition des composés au sein d’un comprimé ou d’une 

poudre (Figure R-1). Par conséquent, lors du développement du médicament ou après sa mise 

sur le marché, l’étude de la distribution en actifs et excipients apporte une information 

complémentaire aux analystes pour assurer la qualité du produit ou pour comprendre un 

problème (exemple : modification du profil de dissolution à cause d’une mauvaise répartition 

d’un des produits).  

Cependant, les techniques d’imagerie hyperspectrale fournissent des volumes de données 

importants qui ne sont en général pas interprétables par analyse visuelle et directe. C’est 

pourquoi les algorithmes chimiométriques apparaissent comme des outils incontournables pour 

extraire l’information pertinente de ces données [15]. De nombreuses méthodes sont 
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disponibles, allant des méthodes exploratoires non supervisées aux méthodes quantitatives 

supervisées. L’étude de la distribution des composés, l’identification des agglomérats au cœur 

d’une formulation, l’étude des formes cristallines dans un produit ont ainsi pu être étudiés en 

faisant appel à ces techniques. 

 

Figure R-1 Représentation schématique d’une image hyperspectrale Raman 

Alors que la plupart des algorithmes classiquement utilisés sont basés sur des notions de 

variance spectrale, ou plus généralement sur la décomposition de moments statistiques, 

certaines limitations peuvent être rencontrées dans le cas d’un composé faiblement dosé. Dans 

cette thèse, un composé faiblement dosé est défini comme un composé ayant de faibles 

contributions spatiales et spectrales au sein de l’hypercube de données. En d’autres termes, ce 

composé est distribué de façon hétérogène au sein de l’échantillon analysé, c’est-à-dire qu’il est 

présent dans quelques pixels de l’image seulement. De plus, l’information spatiale portée par ce 

composé étant faible, elle peut être soit mélangée avec celle des autres produits, soit dispersée 

dans l’information non structurée associée au bruit.  

Seul le cas du composé ayant de faibles contributions spatiales et spectrales sera étudié dans ces 

travaux (Table R-1). Les résultats sont obtenus sur des données issues de problématiques 

pharmaceutiques, mais les conclusions et approches proposées pourront être étendues au cas 

général d’un composé minoritaire dans un hypercube de données constitué d’un mélange de 

signaux. 
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Contributions 

spectrales fortes 

Détermination simple des 

spectres purs et cartes de 

distribution 

Détermination simple des spectres 

purs et cartes de distribution 

Contributions 

spectrales faibles 

Faible contribution spectrale du 

composé sur l’ensemble de 

l’image 

Contributions spectrales et 

spatiales faibles 

Table R-1 Contributions spatiales et spectrales d’un composé 

A partir de données acquises à l’aide d’un microscope Raman, les objectifs de cette thèse 

peuvent être divisés en deux grands axes : 

1/ Etudier la distribution en actifs et excipients dans une forme pharmaceutique solide 

2/ Rechercher un constituant minoritaire d’une formulation dans une image de mélange 

Cette thèse est organisée en 7 chapitres. Le premier chapitre présente les objectifs et le plan du 

manuscrit. Le deuxième chapitre présente le contexte de la thèse et effectue un état de l’art des 

outils et techniques utilisées dans ces travaux. La spectroscopie Raman et l’imagerie 

hyperspectrale, qui sont les techniques utilisées pour l’analyse des comprimés, sont décrites 

succinctement et un état des lieux des applications dans l’industrie pharmaceutique est 

présenté. Puis, sont présentés les prétraitements et outils chimiométriques utilisés pour les 

différentes études. De plus, l’application à la recherche d’un composé faiblement dosé, et la 

présentation de la problématique sont discutées. Les chapitres III à VI sont la reproduction de 

publications publiées ou soumises. Ces 4 publications sont introduites par une partie 

« préambule », puis conclues par une partie « contributions ». Dans les chapitres III et IV, les 

algorithmes d’analyse en composantes indépendantes (ICA) et de résolution multivariée de 

courbes par moindres carrés alternés (MCR-ALS) sont utilisés pour étudier la répartition des 

produits au sein d’une forme pharmaceutique solide. Les algorithmes sont challengés pour 

identifier un composé présent en faible quantité dans le comprimé. Les limites de ces approches 

sont mises en évidence pour la résolution de ce cas précis et des propositions de travail sont 

avancées. Les chapitres V et VI se focaliseront sur l’information spectrale uniquement, en 

favorisant l’espace des signaux, qui semble plus adapté pour la recherche d’un composé 
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minoritaire. Le chapitre V se concentre sur l’optimisation d’une contrainte spatiale pour la 

résolution du système. Cette méthode se base sur les projections orthogonales et semble tout à 

fait adaptée à l’identification d’un composé faiblement dosé. Le chapitre VI propose une 

méthode de détection des spectres purs d’un mélange en supposant que la composition de celui-

ci n’est pas connue a priori. Cette méthode est testée avec succès sur une formulation qui 

contient des produits minoritaires. 

2. Matériel et méthodes 

2.1. Instrumentation et échantillons 

Les études portent sur des images Raman de comprimés pharmaceutiques composés d’un ou 

plusieurs principes actifs et de différents excipients. Toutefois, Les méthodologies et approches 

testées pourront être appliquées à d’autres signaux ou échantillons. 

Les images sont acquises en utilisant la cartographie Raman, qui permet d’enregistrer de façon 

séquentielle les spectres de l’image en déplaçant l’échantillon entre chaque acquisition spectrale. 

Après analyses des données, les images acquises permettent de caractériser et d’étudier la 

distribution des produits au sein de l’échantillon analysé. 

Chaque pixel contient un spectre Raman qui peut être associé à un spectre de mélange des 

différents constituants du produit étudié. En fonction de la concentration du produit et de sa 

réponse spectrale, sa contribution au sein du spectre du mélange sera plus ou moins importante. 

De plus, le mélange des signaux sera directement dépendant de la résolution spatiale du 

système. En effet, plus la résolution spatiale sera faible (supérieure à la centaine de microns par 

exemple), plus l’information acquise pour chacun des pixels contiendra un mélange des produits 

de la formulation. A l’inverse, une résolution spatiale élevée (quelques microns par exemple), 

aura tendance à limiter les mélanges de signaux, au détriment de temps d’acquisition beaucoup 

plus longs. Afin d’avoir une surface représentative du comprimé, il est donc important de 

sélectionner une résolution spatiale en accord avec  les objectifs de l’étude. 

2.2. Analyse des données 

Les différentes étapes d’analyse d’un hypercube de données suivent en général le déroulement 

suivant [48]: 

- Déplier l’image pour obtenir une image 2-dimensions 
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- Prétraiter les données (corriger des variations indésirables ou exacerber de faibles  

modifications spectrales) 

- Utiliser des algorithmes qualitatifs ou quantitatifs, supervisés ou non supervisés 

- Réorganiser les résultats pour obtenir des cartes de distribution 

- Appliquer un traitement d’image  pour améliorer la qualité des résultats obtenus 

 

Dans ces travaux,  l’objectif sera de challenger deux approches chimiométriques, l’ICA et la MCR-

ALS pour étudier leurs capacités à extraire l’information des constituants d’une forme 

pharmaceutique solide, incluant l’information portée par un composé faiblement dosé. 

3. Contributions  

L’identification et l’étude de la distribution d’un composé faiblement dosé peuvent être  

considérées comme le fil conducteur des travaux de cette thèse. Un composé faiblement dosé est 

considéré comme étant un produit présent dans quelques pixels de l’image avec une 

contribution spectrale faible. En utilisant les approches chimiométriques classiquement 

appliquées sur ce type de données, l’étude de la distribution d’un tel composé dans une image 

apparait comme un véritable challenge. 

En effet, alors que les algorithmes chimiométriques se basent principalement sur la 

décomposition de moments statistiques, ces approches pourraient s’avérer limitées pour 

extraire l’information d’un constituant ayant de faibles contributions spatiales et spectrales.  

Dans la première partie de la thèse, constituée des chapitres III et IV, cette hypothèse est 

confirmée et les limitations des algorithmes ICA et MCR-ALS sont mises en évidence. Différentes 

propositions sont fournies afin d’aller chercher l’information liée au composé minoritaire. Bien 

que différentes pour les deux algorithmes testés, elles nécessitent d’aller regarder plus 

« profondément » dans la donnée car l’information du constituant minoritaire se situe 

principalement dans une partie moins structurée du signal. 

Les parties suivantes de la thèse, constituées des chapitres V et VI, se focalisent sur un 

référentiel de travail différent, basé uniquement sur un espace spectral, décrivant un espace à P-

dimensions (un axe par variable p) dans lequel les spectres peuvent être représentés comme des 

vecteurs. En utilisant cet espace, il est alors possible, grâce aux projections orthogonales, de 

s’affranchir progressivement des contributions spectrales d’un produit voire d’identifier des 

signaux dans une matrice.  Ce nouveau paradigme permet dans le chapitre V de déterminer des 

cartes d’absence/présence à utiliser comme contrainte lors du processus itératif de la MCR-ALS. 

Dans le chapitre VI, l’utilisation d’une bibliothèque spectrale et de cet espace permet de 
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proposer une méthodologie innovante pour l’identification des produits purs dans une 

formulation inconnue. 

4. Résultats 

4.1. Utilisation de la séparation de source aveugle pour la détermination de 

spectres purs et l’étude de la distribution spatiale des composés 

L’analyse en composantes indépendantes [80] est utilisée pour extraire des signaux purs à partir 

d’une image hyperspectrale Raman de comprimé. En théorie, cette approche recherche 

l’indépendance statistique des signaux dans un jeu de données et ne nécessite pas de 

connaissance à priori sur la formulation. Plusieurs algorithmes peuvent être utilisés pour 

effectuer une décomposition ICA. Dans nos travaux, l’algorithme JADE (Joint Approximate 

Diagonalization of Eigenmatrices) [123], basé sur l’optimisation des cumulants d’ordres 2 et 4, 

est utilisé. Cette algorithme ne nécessite pas de recherche de gradient et évite les problèmes de 

convergences qui peuvent être rencontrés avec d’autres algorithmes. L’algorithme décompose 

une matrice de spectre X comme suit : 

        (R-1) 

Avec S une matrice des k sources indépendantes et A la matrice de mixage des coefficients.  

Dans un premier temps, le travail consiste à démontrer les capacités de cet algorithme pour 

extraire l’information spectrale des constituants purs d’une formulation. Dans un second temps, 

l’importance de la sélection du nombre de composantes pour la décomposition est mise en 

évidence. En effet, le nombre de composantes (ICs) peut être choisi en fonction de la 

connaissance du produit (nombre de composantes égal au nombre de composés de la 

formulation) ou en utilisant une approche mathématique (ICA_by_blocs [124]). La sélection du 

nombre d’ICs apparait comme étant un élément critique de la décomposition. En effet, en 

utilisant un nombre d’ICs trop petit, les signaux extraits risquent d’être des signaux de mélanges 

de produits de l’échantillon analysé. A l’inverse, un nombre d’ICs trop grand risque de 

décomposer un signal en plusieurs contributions, voire à extraire des composantes de bruit. Afin 

d’obtenir un modèle et des signaux de qualité, l’étude montre qu’il est donc fondamental de 

sélectionner un nombre de composantes approprié. Pour cela, la méthode ICA_by_blocs apparait 

comme étant un bon compromis (Figure R-2). En utilisant cette approche, le nombre de 

composantes utilisé reste supérieur au nombre de constituants du mélange. Toutefois, celui-ci se 

rapproche de la réalité physico-chimique du mélange, incluant la variabilité chimique (différents 
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composés dans un mélange) et la variabilité physique des constituants (différentes tailles 

granulométriques, formes cristallines…). 

 

Figure R-2 Résultat d’ICA_by_blocs : 

Corrélations les plus faibles entre les signaux 

des deux blocs 

 

Figure R-3 Carte de distribution des coefficients 

A pour les 9 ICs 

 

Dans la formulation étudiée, l’approche ICA_by_blocs nous a dirigé vers un nombre de 

composantes égal à 9, ce qui a permis d’obtenir les cartes de distributions associées aux 9 

signaux calculés (Figure R-3). Alors que certaines cartes sont liées à un seul composé (IC6 et 

IC9), d’autres sont liées à un même produit (exemple IC2, IC3, IC4 et IC5 pour le lactose). Cette 

décomposition s’explique par la variabilité physico-chimique propre à un composé. 

Pure spectrum IC1 IC2 IC3 IC4 IC5 IC6 IC7 IC8 IC9 

API1 0.01 -0.09 0.07 0.14 -0.04 0.13 0.21 0.18 0.92 

API2 0.06 -0.01 0.11 0.08 0.03 0.96 0.08 0.10 -0.06 

Lactose 0.25 0.44 0.23 0.25 0.47 0.00 0.36 0.45 -0.17 

Avicel 0.49 0.15 0.06 0.02 0.20 -0.07 0.38 0.61 -0.20 

Magnesium Stearate 0.20 0.00 0.01 0.04 0.04 0.41 0.32 0.23 -0.12 

Table R-1 Corrélations entre les signaux du modèle et les spectres purs des constituants de la 

formulation 

En utilisant cette approche, l’information liée au composé faiblement dosé n’est pas extraite 

(Table R-1). En effet, de par sa faible contribution (spatiale et spectrale), l’information associée 

est masquée par les autres constituants de la formulation et est contenue dans une part non 

expliquée du modèle. Afin d’identifier ce composé faiblement dosé, un modèle est construit avec 
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un nombre de composantes supérieur au nombre de constituants de la formulation et au résultat 

fourni par l’approche ICA_by_blocs. L’étude des corrélations entre les signaux calculés et le 

spectre pur du composé minoritaire permet d’identifier ce constituant sur la composante 12 

d’un modèle ICA à 15 composantes (Figure R-4 et Figure R-5).  

 

Figure R-4 Spectre dérivé du stéarate de 

magnésium (rouge) et IC12 (bleu) 

 

Figure R-5 Distribution du stéarate de 

magnésium dans l’image 

4.2. Utilisation de résolution multivariée de courbes pour l’identification 

d’un constituant faiblement dosé 

L’algorithme MCR-ALS [82] est utilisé pour étudier la répartition d’un composé faiblement dosé 

au sein d’une forme pharmaceutique solide. Déjà utilisée sur des images hyperspectrales Raman, 

l’approche MCR-ALS pour la détection d’un composé minoritaire reste toutefois un vrai 

challenge.  

Cet algorithme fait appel à des contraintes appliquées sur les spectres ou les concentrations à 

chaque itération, ce qui permet de limiter les ambiguïtés (rotationnelles ou d’intensités) et de 

tendre vers une solution unique. 

L’utilisation classique de l’algorithme MCR-ALS débute par un filtrage des données, équivalent à 

une réduction de dimensions qui utilise la décomposition en valeurs singulières de la matrice 

initiale, en utilisant un nombre de composantes k égal au nombre de constituants de la 

formulation tel que : 

         
                   

   (R-2) 
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Cette réduction de dimension permet de réduire l’espace de travail en conservant l’information 

dite utile et en réduisant la part de bruit contenue dans l’hypercube de données.  

Dans cette partie, il est démontré que la réduction de dimensions, dans le cas d’un composé 

faiblement dosé, doit être effectuée avec parcimonie ou totalement évitée afin de ne pas perdre 

l’information du composé minoritaire. En effet, dans ce cas, la part de variance spectrale portée 

par le produit est faible et ne se retrouve pas dans les premières composantes d’un modèle (si la 

matrice          
 est construite avec un nombre k trop faible) mais plutôt dans la part du bruit 

non-structuré. 

Nombre de composantes k 

pour le calcul de          
  

5 10 15 20 50 

Iterations 9 5 5 3 3 

R² 99.4 98.8 98.7 98.6 98.4 

Lof (%) 7.9 11.12 11.6 11.9 12.8 

Cor. Sopt1/API1 0.98 0.98 0.98 0.98 0.98 

Cor. Sopt2/API2 0.97 0.97 0.97 0.97 0.97 

Cor. Sopt3/lactose 0.99 0.99 0.99 0.99 0.99 

Cor. Sopt4/cellulose 0.95 0.95 0.95 0.95 0.95 

Cor. Sopt5/MgSt 0.08 -0.01 -0.02 0.87 0.90 

Table R-2 Résultats de la MCR-ALS avec un nombre de composantes k croissant pour la 

construction de la matrice           
 

Les résultats des études sont présentés dans le tableau R-2. Pour un nombre de composantes k 

inférieur à 20, l’information liée au stéarate de magnésium n’est pas identifiée. En effet, avec un 

nombre de composantes inférieur à 20, l’information associée au composé minoritaire n’est pas 

inclue dans la matrice          
 et est contenue dans la part de variance non-expliquée du 

modèle. Pour assurer l’extraction de la contribution du constituant minoritaire, il est donc 

nécessaire de s’assurer d’avoir conservée l’information dans la matrice          
.  

Pour cela, deux possibilités sont proposées : 

- La matrice initiale          
 est construite avec un nombre suffisant de composantes k. Il 

y aura plus de bruit dans les signaux mais l’information du composé minoritaire sera 

conservée. 
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- La matrice initiale est « augmentée » en ajoutant des spectres purs liés au constituant 

minoritaire. La matrice          
, conservera donc cette information lors de la réduction 

de dimensions. 

 
Dans ces deux cas, le prétraitement des données et l’utilisation des contraintes sont des 

paramètres critiques de la résolution. Les résultats obtenus permettent d’afficher la répartition 

des 2 actifs et des 3 excipients de la formulation étudiée, incluant le composé minoritaire (Copt5 

sur la Figure R-6). 

 

Figure R-6 Distributions des 5 constituants de la formulation (Calculées à partir d’une matrice non 

filtrée) 

La contrainte d’égalité, basée sur la détermination des rangs locaux, et permettant, pour chaque 

pixel de déterminer l’absence ou la présence d’un constituant, s’avère indispensable pour 

obtenir des résultats satisfaisants. Toutefois, l’approche classique utilise des décompositions en 

valeurs singulières locales et la détermination d’un seuil [84]. Sans connaissance à priori de la 

distribution des constituants de l’image utilisée,  la détermination de ces cartes pourrait s’avérer 

difficile. Une approche alternative est donc proposée dans le chapitre suivant. 
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4.3. Proposition d’une méthode pour la mise au point des cartographies 

d’absence/présence de composés  

Les contraintes d’égalité, dont l’efficacité a été démontrée pour améliorer les résultats de 

l’algorithme MCR-ALS, peuvent parfois être difficiles à définir, notamment dans le cas d’un 

constituant faiblement dosé car le mode de calcul ne permet pas d’identifier simplement un 

composé avec de faibles contributions spatiales et spectrales. La méthode usuelle, basée sur 

l’approche FSIW-EFA, peut être décomposée de façon simplifiée par les trois étapes ci-dessous 

[144] : 

- Effectuer une décomposition en valeurs singulières sur des blocs de pixels d’une image.  

- Etudier la répartition de ces valeurs ordonnées dans un ordre croissant. L’utilisation 

d’un seuil permettra de définir le nombre de composés dans un bloc, et donc de 

déterminer le nombre de produits absents pour chaque bloc. 

- Calculer les corrélations avec les spectres purs connus. L’absence d’un composé pourra 

être mise en évidence et associée à une valeur de 0 (ou à une valeur faible) lors du 

processus itératif de la MCR-ALS. 

 

Dans le cas d’un constituant faiblement dosé, l’information spectrale du composé est souvent 

mélangée et masquée par les contributions spectrales des autres produits de la formulation. Les 

étapes de décomposition en valeurs singulières ou de corrélations avec les spectres purs 

peuvent montrer certaines limites dans ce cas précis. 

 

L’approche alternative proposée se base sur un concept différent, qui fait appel uniquement à 

l’espace des signaux et peut donc être parfaitement adaptée aux composés minoritaires. Cette 

méthode utilise les projections orthogonales. Chaque constituant a son propre espace de 

variabilité défini par un ensemble de vecteurs incluant variabilités chimiques et physiques. 

Celui-ci est déterminé en faisant une acquisition d’image du produit puis en réalisant une 

décomposition en valeurs singulières non centrée sur l’image dépliée. Le nombre de vecteurs 

propres est sélectionné en observant la variance expliquée, qui doit être supérieure à 99.9% de 

la variance totale de l’image. 
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Figure R-7 Représentation graphique de l’approche proposée 

 

Pour chaque constituant c de la formulation, une matrice d’interférence     est déterminée. 

Cette matrice intègre la variabilité de tous les composés de la formulation, sauf la variabilité de c. 

Chaque spectre xn (spectre de l’image) ou s (spectre de référence) est projeté orthogonalement à 

la base     afin de ne conserver uniquement l’information utile de c. Pour cela, un projecteur 

orthogonal     est calculé tel que : 

 

         
        

          (R-3) 

Les spectres sont projetés orthogonalement à la base     en appliquant  (Figure R-7) : 

                 (R-4) 

et    

             (R-5) 

L’étude des corrélations (équation R-6) entre les spectres projetés de l’image      et les spectres 

purs projetés     détermine des cartes d’absence/présence à utiliser dans le processus itératif de 

la MCR-ALS. 
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Figure R-8 Carte d’absence (blanc) / présence (bleu) 

 

Dans l’exemple étudié, les cartes d’absence/présence (Figure R-8) définies par l’approche qui 

utilise les projections orthogonales ont permis d’améliorer considérablement les résultats de la 

MCR-ALS. En effet, la distribution du composé minoritaire au sein du comprimé a ainsi pu être 

fournie avec succès (Table R-3). 

  MCR-ALS with n-n constraints 
MCR-ALS with n-n and local 
rank constraints 

rsopt1/API1 0. 70 0. 93 

rsopt2/API2 0. 52 0. 93 

rsopt3/Avicel® 0. 95 0. 81 

rsopt4/Lactose 0. 98 0. 99 

rsopt5/MgSt 0.34 0.84 

lof % 2.66 10.09 

Explained variance % 99.92 98.98 
Table R-3 Résultats de la MCR-ALS 

L’utilisation d’un espace spectrale permet, pour chaque produit, de s’affranchir de l’information 

des autres composés du mélange et facilite la mise au point des cartes d’absence/présence. 

4.4. Approche itérative pour la détection des composés d’une formulation 

inconnue 

Dans les précédentes parties de cette thèse, les formulations étudiées sont supposées connues. 

Toutefois, certaines applications ne permettent pas de connaitre les constituants d’un produit a 
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priori. C’est le cas, par exemple, des produits contrefaits (différents principes actifs ou 

excipients) ou de l’analyse d’un produit au cours d’une étude de stabilité (dégradation du 

principe actif, modification des formes cristallines…). Dans ces cas spécifiques, une approche de 

détection des composés s’avèrent très utile.  

L’approche proposée dans ces travaux se base sur une bibliothèque spectrale, des calculs de 

distances, et des projections orthogonales. En travaillant exclusivement dans un espace des 

signaux, cette approche est parfaitement adaptée aux constituants faiblement dosés dans une 

formulation. 

Soit   l’image hyperspectrale dépliée,    l’image dépliée d’un produit pur de la bibliothèque 

spectrale, et  ̅ une matrice qui contient les spectres moyens de chaque image    de la 

bibliothèque.  

 

L’approche proposée se divise en 5 étapes listées ci-dessous et résumées dans la Figure R-9 : 

 

1. Initialiser le processus avec       et   ̅    ̅  

2. Calculer les distances spectrales (SAM values) entre chaque spectre de    et chaque 

spectre moyen  ̅  

3. En observant les distances, identifier un produit pur i de la formulation et ajouter le 

spectre moyen associé dans la matrice  . Les itérations s’arrêtent si aucune faible valeur 

de distance n’est observée pour tous les produits de la bibliothèque spectrale. 

4. Les spectres   et les spectres moyens  ̅ sont projetés orthogonalement à l’espace 

vectoriel   constitué par les vecteurs propres déterminés par une décomposition en 

valeurs singulières non centrée sur les images dépliées des produits purs identifiés  

5.  Retour à l’étape 2 



o 

 

Figure R-9 Processus itératif de la méthode 

 

 

Figure R-10 Distances spectrales de l’iteration 1 à l’iteration 8 

La Figure R-10 fournit pour 8 itérations, la distribution des distances spectrales calculées entre 

les spectres et les références. Des valeurs faibles sont associées à une similarité entre les deux 

signaux, et donc à la présence d’un composé. Des constituants sont ainsi identifiés jusqu’à 

l’itération 7, en mettant en évidence des valeurs moyennes ou des individus avec des valeurs de 

distance faibles. Chaque spectre identifié sera ajouté dans une matrice S utilisée pour initialiser 

la MCR-ALS qui fournira des valeurs proches de la formulation théorique (Table R-3).  



p 

Pure compound 
Theoretical amount (% 

w/w) 
Calculated Cc (% w/w) 

   
Metolose® 40 39 
Eudragit® 25 29 

API  11 5 (form 1) + 5 (form 2) 
Microcrystalline cellulose 17 15 

Maltodextrin 6.5 6 
Magnesium stearate 0.5 1 

   
Table R-3 Résultats de la MCR-ALS à partir de la matrice S 

5. Conclusions 

Dans cette thèse, la microscopie Raman a été utilisée sur des formes pharmaceutiques solides 

pour étudier la répartition en actifs et excipients au cœur de ces échantillons. La détection d’un 

composé faiblement dosé a été le principal challenge de ces travaux. En effet, alors que la 

majeure partie des algorithmes se base sur des décompositions de moments statistiques, les 

difficultés d’extraction d’une information faible, distribuée dans quelques pixels de l’image et 

mixée avec les signaux des autres composés, ont rapidement été mises en évidence.  

Dans ces travaux, l’ICA et la MCR-ALS sont utilisés avec succès pour étudier la distribution des 

composés dans un comprimé, sous réserve que ceux-ci soient présents avec une contribution 

suffisante au sein de l’image hyperspectrale. Dans le cas d’un composé faiblement dosé, les 

limitations de ces algorithmes ont été confirmées. Principalement liée aux modes de calcul, ou 

aux étapes de filtrage utilisées dans ces algorithmes, la détection d’un composé faiblement dosé 

montre de nombreuses difficultés.  

Afin de pallier ces difficultés, différentes propositions de travail sont étudiées. Dans la première 

partie de ces travaux, l’ICA et la MCR-ALS sont utilisés. Dans le cas de l’ICA, un nombre élevé de 

composantes indépendantes s’avère nécessaire pour l’étude d’un composé minoritaire. En effet, 

en utilisant un nombre réduit de composantes (sélectionné manuellement ou avec un méthode 

statistique), l’information du composé minoritaire, qui se situe majoritairement dans une part 

de variance non-expliquée, ne se retrouve pas dans le processus de calcul et est donc perdue dès 

l’initialisation de l’algorithme. Un problème identique est observé en faisant appel à l’algorithme 

MCR-ALS ou la première étape du calcul consiste à réduire les dimensions du jeu de données. 

Pour contourner ces limitations, deux méthodologies de travail sont proposées pour détecter un 

composé minoritaire. Dans le cas de l’ICA, l’utilisation d’un grand nombre de composantes sera 

nécessaire pour détecter un signal corrélé au constituant d’intérêt. Toutefois, en appliquant cette 
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méthodologie, il faut s’attendre à une diminution de la qualité des signaux pour les autres 

composés de la formulation. Dans le cas de la MCR-ALS, il est nécessaire de conserver un 

maximum d’information spectrale avant que le processus itératif ne démarre. Pour cela, la 

réduction de dimension initiale peut être contournée ou effectuée avec un nombre de 

composantes suffisant, ou l’utilisation des matrices augmentées pourra être envisagée. Afin 

d’obtenir une résolution satisfaisante, les prétraitements et les contraintes devront être 

optimisés.   

Dans la seconde partie de la thèse, les travaux se focalisent sur l’espace des signaux, qui permet 

de s’affranchir d’une variabilité entre les individus, qui peut être très faible dans le cas d’un 

composé minoritaire. 

Une première proposition consiste à développer de nouvelles cartes d’absence/présence d’un 

constituant, utilisées comme contraintes dans le processus de la MCR-ALS. Cette approche est 

une alternative aux méthodes actuelles basées à la fois sur des décompositions en valeurs 

singulières par blocs de pixels et sur des corrélations entre spectres. Pour chaque constituant, la 

matrice de spectres de l’image est projetée orthogonalement à une base d’interférence qui est 

constituée de toute la variabilité physico-chimique des composés autres que celui d’intérêt. En 

comparant les spectres résiduels avec les spectres de référence projetés, il devient alors possible 

de déterminer les cartes d’absence/présence pour un composé, incluant le cas d’un produit 

minoritaire. 

La seconde proposition utilise également l’espace de signaux, mais cette fois ci pour identifier les 

constituants d’une formulation sans connaissance a priori, en s’appuyant uniquement sur une 

bibliothèque spectrale, des distances spectrales et des projections orthogonales. Cet algorithme 

itératif identifie pas à pas les composés d’une formulation.  

Ces travaux démontrent donc les limitations des approches classiques, qui utilisent la 

décomposition de moment statistiques, pour l’identification des composés minoritaires dans un 

mélange. Dans ce cas précis, l’utilisation de l’espace des signaux est privilégié. Cette approche 

apporte une vraie valeur ajoutée à l’analyse des données dans le cas d’un composé minoritaire 

ayant de faibles contributions spectrales et spatiales dans une matrice de mélange. 

  



 

  



 

Résumé 

L’imagerie hyperspectrale est désormais considérée comme un outil analytique à part entière dans 

l’industrie pharmaceutique, aussi bien au cours du développement pour assurer la qualité d’un produit que pour 

résoudre des problématiques de production après la mise sur le marché du médicament.  

Dans ces travaux, la microscopie Raman est utilisée pour étudier la distribution en principes actifs et 

excipients au sein d’une forme pharmaceutique solide, en se focalisant tout particulièrement sur l’identification d’un 

composé faiblement dosé. Ce dernier est défini comme étant un produit ayant de faibles contributions spatiales et 

spectrales, signifiant qu’il est distribué dans quelques pixels de l’image avec une information spectrale peu présente 

dans un spectre de mélange. Alors que la plupart des algorithmes chimiométriques se basent sur la décomposition de 

moments statistiques, nécessitant une variation suffisante entre les échantillons (les pixels d’une image), les limites de 

ces outils pour résoudre ce cas spécifique sont rapidement atteintes. 

La première partie de la thèse met en évidence les difficultés de détection d’un composé faiblement dosé en 

utilisant l’analyse en composantes indépendantes et la résolution multivariée de courbes. Des méthodologies de 

travail sont proposées pour contourner ces limitations. Pour les deux techniques, les étapes de réduction de 

dimensions apparaissent comme des paramètres critiques de la méthode.  

La seconde partie de la thèse se focalise sur l’espace des signaux pour déterminer des cartes 

d’absence/présence de constituants ou pour détecter des constituants dans une formulation inconnue, en se basant 

sur des espaces spectraux portant une information relative aux constituants de la formulation. Les techniques 

proposées sont parfaitement adaptées à la détection d’un composé faiblement dosé et ces méthodes pourraient être 

adaptées à d’autres techniques de mesure ou d’autres domaines d’application. 

Mots clés : Microscopie Raman, constituant faiblement dosé, analyse en composantes indépendantes, 

résolution multivariée de courbes, projections orthogonales 

 

Abstract 

Hyperspectral imaging is now considered as a powerful analytical tool in the pharmaceutical environment, 

both during development to ensure the drug product quality and to solve production issues on commercialized 

products. 

In this thesis, Raman microscopy is used to study the distribution of actives and excipients in a 

pharmaceutical drug product, by especially focusing on the identification of a low dose compound. This latter product 

is defined as a compound which has low spatial and spectral contributions, meaning that it is scattered in a few pixels 

of the image and that its spectral response is mixed with the other compounds of the formulation. While most 

chemometric tools are based on the decomposition of statistical moments (requiring sufficient variations between 

samples or image pixels), some limitations have been rapidly reached.  

The first part of this thesis highlights the difficulty to detect a low dose compound in a product by using 

independent component analysis or multivariate curve resolution. Different methodologies are proposed to 

circumvent these limitations. For both techniques, reduction of dimensions and filtering steps appears as critical 

parameters of the method.  

The second part of the thesis focusses on the signal space to determine absence/presence compound maps 

or to detect pure compounds in an unknown formulation. The proposed methods are only based on the spectral space 

of each formulation compound. There are perfectly suitable to a low dose compound and should be well-adapted to 

other analytical techniques or to other environments.  

Keywords: Raman microscopy, low dose compound, independent component analysis, multivariate curve 

resolution, Orthogonal projections 


