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Abstract

The main objective of this thesis is to propose frameworks and algorithms that are based

on advanced control approaches, in order to guide cancer treatments scheduling. It also

aims at pointing out the importance of taking into account the problem of stochastic

uncertainties handling in the drug scheduling design, since cancer dynamical systems are

considered to be highly uncertain phenomena.

Cancer dynamical interactions are still an open research topic which is not fully under-

stood yet. The complexity of such dynamics comes from their partially unknown behavior

and their uncertain nature. Additionally, they are often described by nonlinear complex

dynamics and require taking into consideration many constraints related to physiology as

well as biology.

In terms of control design, this topic gathers many complexity ingredients such as

nonlinear dynamics, constraints handling and optimality issues. Therefore, in this thesis,

we propose to use a recent optimal control approach that is based on moment optimiza-

tion. This framework has the advantage of considering all the state and input variables as

probability densities, allowing therefore to explicitly consider parametric as well as initial

state uncertainties in the optimal control problem. We use this framework in Part II,

in order to design robust optimal control schedules that represent cancer drugs injection

profiles.

The second problem that we address in Part III consists in the estimation of regions

of attraction for cancer interactions models. This problem is interesting in the context

of cancer treatment design, since it provides the set of all possible initial conditions (tu-

mor and patient health indicators), that can be driven to a desired targeted safe region,

where the patient is considered to be healed. Furthermore, we focus on the assessment of

methodologies that take into consideration the parametric uncertainties that can affect

the dynamical model.

Keywords: Optimal control, Uncertain systems, Stochastic parametric uncertainties,

Moment optimization, Domain of attraction estimation, Probabilistic certification, Cancer

dynamics, Immunotherapy, Chemotherapy.
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Résumé

L’objectif de cette thèse consiste à proposer des algorithmes ainsi que des approches, basés

sur des méthodes avancées de l’automatique, afin de guider la synthèse des traitements

de cancer. Cette thèse a également pour but de relever l’importance de la considération

des différentes incertitudes stochastiques qui peuvent affecter ce genre de systèmes.

Le phénomène de croissance tumorale et ses différentes dynamiques sont encore à nos

jours un sujet de recherche ouvert. La complexité de ce type de systèmes vient de leur

nature incertaine ainsi que de la méconnaissance de leurs comportements. Par ailleurs, ces

systèmes sont souvent décrits par des dynamiques non-linéaires complexes et requièrent

la prise en compte de différentes contraintes liées à la physiologie ainsi que la biologie de

l’être humain.

Ce sujet regroupe plusieurs ingrédients de complexité en termes de synthèse de contrôle,

tels que les dynamiques non-linéaires, la prise en considération des contraintes ainsi que

des problèmes d’optimalité. Pour cela, nous proposons dans cette thèse d’utiliser une

méthode récente de contrôle optimal basée sur l’optimisation par les moments. Cette ap-

proche a pour avantage de considérer les différentes variables d’état et de contrôle comme

étant des densités de probabilité, rendant la prise en considération d’incertitudes décrites

par des distributions de probabilité directe dans le problème de contrôle optimal. Nous

utilisons cette méthodologie dans la Partie II afin de synthétiser des contrôles optimaux

et robustes, représentant des profils d’injection de médicaments.

Le second problème qu’on considère dans la Partie III consiste en l’estimation de

régions d’attraction pour des modèles dynamiques de cancer. Ce problème est intéressant

dans le contexte de traitements de cancer, car ces régions caractérisent l’ensemble des

conditions initiales (volume tumoral et indicateurs de santé), qui peuvent être amenées

à une région saine, où le patient est considéré comme guéri. Par ailleurs, on anal-

yse des méthodologies permettant de prendre en considération des modèles dynamiques

présentant des incertitudes paramétriques.

Mots-clés: Contrôle optimal, Systèmes incertains, Incertitudes paramétriques stochas-

tiques, Optimisation par les moments, Estimation de domaines d’attraction, Certification

probabiliste, Dynamiques de cancer, Immunothérapie, Chimiothérapie.
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Chapter 1

General Introduction

Control design for biological systems has a long history dating back to many decades. It is

a wide research field that deals with the different mechanisms related to living organisms.

This research field raised a lot of interest due to its wide range of applications and their

importance from several aspects. Control theory provides a large collection of mathemat-

ical tools that one can use to change the system behavior and achieve specific objectives

of stability, optimality and robustness. Furthermore, simulation has served recently as a

powerful tool in order to study the biological systems behavior in general.

The particular problem of tumor growth phenomenon is not fully understood yet in

the medical and biological fields. Many research and investigations are still going on to

understand the different mechanisms related to this phenomenon. Few decades ago, re-

searchers started modeling the phenomenon of tumor growth and its different interactions

with the human body organs as well as the existing treatments. These models help to

analyze the different dynamics that are involved in the process of tumor growth. Fur-

thermore, they can be used in order to provide more systematic approaches for cancer

drug scheduling. It also helps to validate some well known drugs injection protocols, since

tumor progression is difficult to approach by experimental methods alone.

The availability of many models describing cancer dynamics motivated researchers

to apply different control strategies in order to propose frameworks for designing cancer

treatment profiles. This topic gathers many complexity ingredients in terms of control

design. Cancer drug scheduling requires taking into account many constraints such as

health and toxicity constraints, as well as optimality considerations.

There exists a rich literature regarding control for cancer dynamics, with a focus on

optimal control methods. Usually, optimal control problems are defined, where the cost

describes the optimal desired behavior. These problems can be solved using different

methods. In Chapter 2, we present a literature review on different control design meth-

ods that have been applied to cancer dynamics.
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CHAPTER 1. GENERAL INTRODUCTION 2

1.1 Thesis context

Modeling cancer dynamics can be achieved using different types of equations. In this

thesis, we are interested particularly in investigating models described by a set of ODEs.

These systems involve many parameters that describe the interaction between the differ-

ent compartments of the human body. In the literature regarding the control of cancer

dynamics, the parameters involved in the models are usually considered to be determin-

istic, and estimated to some degree of precision. However, in the medical field, cancer

dynamics are known to be highly uncertain by nature, since they involve many complex

and only partially known mechanisms. Furthermore, the effects of the treatment and the

evolution of the cancer depend highly on the patient.

The aim of this thesis is to analyze and investigate dynamical systems describing can-

cer interactions dynamics, which are subject to stochastic parametric uncertainties. It is

commonly known that achieving optimal recovery performances under uncertainties is a

complex task. Therefore, in this thesis we will investigate some approaches that allow to

handle uncertainties in the context of optimal control design.

This thesis addresses two main problems in terms of control for cancer dynamics:

– The first problem is addressed in Part II and consists of drug injection schedules

design for cancer treatment, in the presence of model parametric uncertainties. The

problem of optimal control under parametric uncertainties, that are described by

probability distributions, is not straightforward, since we have in this case a flow of

trajectories generated by the probability distributions of the different parameters.

Therefore, we need to define a cost from a statistical point of view. Furthermore,

the satisfaction of the constraints is not easy to guarantee when having uncertain

parameters described by probability distributions. This problem is stated and ex-

plained in details in Chapter 2.

We propose to use a recent optimal control computation approach that is based on

moment optimization. This framework has the advantage of defining all the state

and input variables as probability densities, allowing therefore to explicitly consider

parametric uncertainties in the optimal control problem. In Chapters 4 and 5 we

use this framework in order to design robust optimal control schedules for a specific

cancer dynamical model.

– The second problem is addressed in Part III and consists in the estimation of do-

mains of attraction for cancer interactions models. The problem of estimating re-

gions of attraction in the context of cancer treatment is interesting, since it provides

the set of all possible initial conditions (tumor and patient health indicators), that

can be driven to a desired targeted benign region. We propose a methodology to

estimate the robust region of attraction of cancer immune interaction model. Fur-

thermore, we suggest a framework for the estimation of probabilistically certified

regions of attraction for a cancer model.
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1.2 Manuscript outline

This thesis consists of six main chapters divided into three different parts. Part I is in-

tended to review the literature of cancer dynamics modeling and control, as well as the

different theoretical concepts that are necessary to understand the subsequent chapters.

- In Chapter 2, the different mechanisms related to the tumor growth phenomenon are

explained. We also present the different therapies that are used for cancer treatment

with a focus on immune dynamics and immunotherapy. Furthermore, we present a

brief review on the different models that describe cancer dynamics and some control

strategies that have been applied in order to schedule cancer treatments. More-

over, in this chapter, we highlight the importance of taking into account parametric

uncertainties in drug cancer scheduling. Finally, we state the problems of optimal

control as well as domain of attraction estimation under parametric uncertainties.

- Chapter 3 recalls the main theoretical aspects of optimal control via moment op-

timization. We explain in this chapter how optimal control problems can be refor-

mulated in terms of measures and thereby moments. Furthermore, we highlight the

main advantage of this approach which consists in describing the different variables

as probability distributions, allowing to explicitly consider parametric uncertainties

in optimal control problems.

Part II revolves around optimal control for cancer treatment scheduling in presence of

uncertainties. It contains the two following chapters:

- In Chapter 4, a dynamical model that describes the interaction dynamics between

cancer and the immune system is investigated. This model considers a combined

treatment of chemotherapy and immunotherapy and does not include the effects of

chemotherapy on immune cells. In this chapter, we explain how to use the moment

optimization framework in order to reformulate optimal control problems involving

uncertainties. Furthermore, some numerical simulations are presented in order to

highlight the importance of taking into account parametric uncertainties in drug

schedules design.

- In Chapter 5, the model used in Chapter 4 is further investigated, a new term is

added to this model, this term counts for the detrimental effects of chemotherapy

on immune cells. Furthermore, we add a new constraint on the minimal allowed

density of immune cells in the optimal control problem, in order to solve a realistic

problem. The parameter standing for the detrimental effects of chemotherapy is

considered to be uncertain and described by a probability distribution. Finally, we

present the optimal schedules for cancer drugs, and we highlight the importance of

adding this new term in the model.
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Part III deals with the problem of estimating the domain of attraction, it contains the

two following chapters.

- In Chapter 6, we provide a parametric analysis of a cancer growth model. Fur-

thermore, we propose a methodology to estimate the region of attraction of this

model using bang-bang control strategies. Finally, we use this approach to provide

a heuristic-estimate of the robust region of attraction of the same model.

- In Chapter 7, we propose to enhance the model used in Chapter 6 by considering the

pharmacokinetics of chemotherapy. Furthermore, we suggest a framework for the

estimation of probabilistically certified regions of attraction of a cancer dynamics

model. This framework is based on the randomized algorithms and allows to derive

the certified control strategies corresponding to the estimated domains of attraction.

1.3 List of publications

1. Maria Dassow, Seddik Djouadi, Kaouther Moussa, “Optimal Control of a Tumor-

Immune System with a Modified Stepanova Cancer Model”, 2021, (submitted to

The 11th IFAC Symposium on Biological and Medical Systems).

2. Kaouther Moussa, Mirko Fiacchini, Mazen Alamir, “Robust Domain of Attraction

Estimation for a Tumor Growth Model”, 2020, (submitted to the Journal of Applied

Mathematics and Computation).

3. Kaouther Moussa, Mirko Fiacchini, Mazen Alamir, “Probabilistically Certified Re-

gion of Attraction of a Tumor Growth Model with Combined Chemo- and Im-

munotherapy”, 2020, (submitted to the International Journal of Robust and Non-

linear Control).

4. Kaouther Moussa, Mirko Fiacchini, Mazen Alamir, “Robust Optimal Scheduling of

Combined Chemo- and Immunotherapy: Considerations on Chemotherapy Detri-

mental Effects”, The 2020 American Control Conference, July 2020, Denver, USA.

5. Kaouther Moussa, Mirko Fiacchini, Mazen Alamir,“Robust Optimal Control-based

Design of Combined Chemo- and Immunotherapy Delivery Profiles”, The 8th IFAC

Conference on Foundations of Systems Biology in Engineering, October 2019, Va-

lencia, Spain.
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Chapter 2

Modeling cancer therapies dynamics

Cancer is one of the first leading causes to death in the world. According to the worldwide

medical statistics, in 2018, 9.6 million people are estimated to have died from the various

forms of cancer. Therefore, a great deal of research had been carried out since many

decades, in order to bring out useful solutions in terms of cancer treatment. This wide area

of research involves many scientific fields such as oncology, experimental and theoretical

biology, but also computational methods and tools allowing to schedule cancer treatment.

In this chapter, we will present some biological aspects regarding the tumor growth

phenomenon and explain how the existing therapies are intended to induce tumor growth

inhibition. Furthermore, we will specifically focus on how the different phenomena related

to cancer dynamics are modeled in the literature. Finally, we will provide some insights

on how control helps to address cancer treatment scheduling problems.

2.1 Tumor growth and cancer therapies

2.1.1 Cancer growth phenomenon

The tumor microenvironment is a dynamical structure with highly varying composition

and distribution. Therefore, the tumor growth phenomenon involves very complex mech-

anisms resulting from highly uncertain nonlinear dynamics. In this section, we present

the main mechanisms which are important to the understanding of the modeling of cancer

dynamics.

The complex phenomenon of cancer growth consists in an abnormal proliferation of

cells in the human body. The cancer cells grow and divide rapidly to create new cells

and form thereby a tumor which can contain millions of cancer cells. These cells are

huge consumers of oxygen and nutrients, they divide very fast at the early stages, then,

they slow down due to a lack of nutrients. Thereafter, the cancer cells secrete vascular

endothelial growth factors (VEGF) which allow to develop new blood vessels. This process

helps to induce a tumor regrowth, resulting from the tumor cells feeding via the new blood

vessels. This mechanism is called tumor angiogenesis and is illustrated in Figure 2.1.

7
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Figure 2.1: Tumor angiogenesis process [1].

As shown in Figure 2.1, when the tumor gets bigger, its centre becomes further away

from the area where blood vessels are concentrated. Therefore, the cancer cells situated in

the center of the tumor start lacking oxygen and nutrients as the tumor grows. Similarly

to the healthy cells in the human body, cancer cells are not able to live without nutrients

and oxygen. Thus, they send out angiogenic factors (VEGF signals) which induce angio-

genesis, these signals encourage new blood vessels to grow into the tumor. Furthermore,

the fact that a tumor cannot keep up growing without a blood supply is a very relevant

observation, we will see in the sequel that one of the therapies that researchers developed

consists in inhibiting the vascularisation formation using anti-angiogenic substances.

Once a tumor starts stimulating the growth of hundreds of new small blood vessels

called capillaries, in order to bring in nutrients and oxygen, it grows very fast and gets

bigger, taking up therefore more and more space in the human body. At this stage, the

tumor burden resulting from this uncontrolled growing behavior can cause a high pressure

on the surrounding body structures. Furthermore, It can invade the nearby body organs,

this process is called local invasion.

The tumor cells compete with healthy cells as well as the physical microenviornment

for space and resources. In fact, the difference between normal and cancer cells is that the

latter can move more easily, making therefore the spread of cancer through the different

nearby tissues easier. In spite of the considerable progress in cancer biology, the way that

cancer evolves through the surrounding tissues is not fully understood yet.

Cancer cells appear first in a primary site, these cells can break away and spread

to other surrounding parts of the body, through the bloodstream or lymphatic system,

forming thereby new tumors known as secondary cancers. This process is called metastasis

which is the fundamental definition of malignancy.

Tumors can be classified into three types, benign, premalignant and malignant tumors.

Benign tumors are not cancerous, in general, they do not have the ability to spread or
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grow, whereas the premalignant ones have the potential to become malignant. Although

the benign tumors are harmful, their presence near to vessels or nerves can induce some

pains and health problems. Furthermore, due to some mutations, benign tumors can

become in some cases cancerous, therefore it is very important to be able to monitor such

uncontrolled growths. Finally, malignant tumors are cancerous and characterized by the

metastasis process, they develop and spread very quickly to other parts of the human

body. Such tumors are highly threatening to the life of the patient.

Nowadays, cancer has still a high death rate despite the considerable advances in

understanding its genomic changes. In the next section we will present some of the

advances of cancer therapies techniques that researchers have been investigating lately.

2.1.2 Cancer therapies

The last decades witnessed a noticeable progress in the cancer treatment research field,

many therapies and techniques for cancer treatment have been developed. In this section,

we will present some of these therapies that are relevant in terms of cancer dynamics

modeling and control.

Conventional cancer treatment covers many procedures, all having the same basic

objectives which consist of directly killing the tumor cells and preventing their eventual

proliferation [42]. However, one of the most important thing to highlight in cancer ther-

apies, is that staging (determination of the stage of the cancer) is crucial to the choice of

the treatment that patients need. Indeed, the choice of an appropriate therapy depends

on many criteria, for example, the size of the tumor, its location, its stage and the general

health of the patient.

One of the commonly used therapies that doctors may recommend as a local treat-

ment for cancer is surgery. This therapy can be advantageous when the cancer is fully

contained in one area. Otherwise, in the case of metastasis, a treatment that can reach

all body parts might be more convenient. Radiotherapy is also a local treatment allowing

to shrink the tumor burden and control some symptoms. This therapy consists in using

radiation (usually X-rays) in order to target cancer cells, it can be used either internally

or externally. The ionising radiation used in radiotherapy allows to destroy cancer cells in

the targeted area by inducing a damage in the DNA of these cells. However, this therapy

has also the ability to damage the nearby healthy cells, causing thereby some side effects.

Therefore, it can be combined in some cases with other treatments such as surgery or

immunotherapy in order to increase the chances to meet treatment objectives.

In addition to local therapies, there exist treatments that are able to circulate through-

out the whole human body, which make them more appropriate for treating widespread

cancers. These therapies are called systemic treatments and include chemotherapy, hor-

mone therapy, immunotherapy and targeted cancer therapies, those different treatments

will be defined briefly in the sequel.

Chemotherapy is a type of anti-cancer drug treatments that allow to damage cells

while they divide. There exist several chemotherapeutic agents characterized by different
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mechanisms, some of them are able to damage cells at the point of splitting and others

allow to target cells while they make copies of their genes, before they start splitting.

This explains why chemotherapy drugs cause side effects by affecting the healthy tissues

where cells are continually growing and dividing such as the hair, the skin and the bone

marrow. Doctors might recommend using a combination of several chemotherapeutic

drugs allowing to target cells at different division stages in order to increase the killing

effect on cancer cells. In addition to the several side effects that chemotherapy has on

the normal healthy cells, this treatment is subject to drug resistance problems, due to the

fast evolution of cancer cells towards new resistant phenotypes [74].

Furthermore, it has been proven that some cancers are sensitive to hormones, in fact,

cancers might use hormones in order to grow and develop. Therefore, hormone ther-

apy consists of drugs allowing to reduce the quantity of hormones in the body, in order

to stop or slow down the cancer growth, it is used to treat some specific types of cancer

such as breast and prostate cancers. However, this therapy might induce some side effects.

The immune system is a powerful barrier allowing the human body to protect itself

against illnesses and infections, it also helps to protect the body from any potential can-

cer development. The immune system includes the white blood cells, the spleen and the

lymph glands (specific human body organs). Therefore, it is a collection of many organs,

cells and substances collaborating to recognize and attack cancer cells. Immunotherapy

helps to enhance the immune response of the body against cancer cells, it gathers many

treatments such as monoclonal antibodies, cytokines, vaccines and CAR T-cell therapy

which all have different stimulation mechanisms. Immunotherapy is considered as a stan-

dard treatment for some types of cancer such as widespread melanoma, while it is still in

trials for other types of cancer. The next section is dedicated to explain further details

about the dynamics of immune system and immunotherapy, since the context of this the-

sis revolves around combined chemotherapy and immunotherapy for cancer treatment.

Cancer cells are different from the healthy ones because of the changes that they have

in their DNA, which make them behave differently in the human body. Targeted cancer

drugs is a wide collection of treatments whose main objective is to target the differences

that a cancer cell has. There exist several types of targeted treatments having different

effects and dynamics, for example, some types of immunotherapy such as monoclonal an-

tibodies are considered as targeted treatments, they allow to trigger the immune system

to damage cancer cells. Another example is targeted drugs allowing to prevent cancers

from developing new blood vessels. This type of drugs is called anti-angiogenic treatments.

In 1971, Folkman showed that the inhibition of the tumor vascular network helps to

reduce the tumor burden, by starving it of oxygen and nutrients. According to [16], these

therapies had been consolidated along the nineties by different discoveries, important

research efforts are still going on into angiogenesis. Some of the interesting information

that researchers discovered is that the amount of angiogenic factors is very high at the

outer edges of a cancer. Although this type of therapy is known to have limited side effects
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compared to conventional chemotherapies and radiotherapies, anti-angiogenic drugs are

most often not able to eliminate a cancer completely, it can rather shrink it or stop its

growing in some cases.

Furthermore, according to [60], there exist other therapies that are less used due to a

lack of monitoring or efficiency such as gene therapy, which consists in introducing DNA

molecules that are able to interfere with cancer cells in order to eliminate them. Gene

therapy is still in the early stages of clinical trials and research.

The growth mechanisms of a cancer are very complex processes, involving many bi-

ological interactions. This makes the response of a cancerous tumor to treatment also

complex, and depending on many factors such as the severity of the disease and the gen-

eral health of the patient [26]. Therefore, understanding the various aspects related to

cancer growth and how it interacts with treatments is of key importance. Indeed, a good

treatment protocol is intended to effectively eliminate the tumor without damaging the

healthy cells. According to [60], doctors usually combine many therapies in order to com-

pensate the side effects of some treatments (in particular chemotherapy and radiotherapy)

and to increase the chances to reduce the cancer effectively and safely.

One of the questions that the recent developments in the cancer research field led to,

is how to effectively combine different cancer treatments, in particular for the case of com-

bined chemotherapy and immunotherapy [24]. The answer to this question is definitely

not straightforward, due to the complexity and the ambiguous nature of the involved in-

teractions. Furthermore, the existence of various therapies for cancer might make this task

more complicated. Therefore, it is highly interesting to consider mathematical models and

computational tools that can help to explain the experimental and clinical observations

in order to design effective cancer treatment strategies.

2.2 Immune dynamics and immunotherapy

The role of the immune system consists in defending the human body from intruders such

as pathogens (infectious agents). According to [90], the defense systems that the body is

characterized by, are able to limit the growth of cancer cells by specifically recognizing

proteins that are not derived from the organism, considered therefore as foreign proteins.

This section will briefly review some basic immunological principles which are important

for the modeling of immune dynamics.

2.2.1 Immune system mechanisms

The involvement of the immune system in all stages of the tumor life cycle, including

prevention, maintenance and response to therapy is recognized as central to understanding

cancer development.

We can distinguish between two basic types of immune responses:

• Innate immune responses
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• Adapted immune responses

These two types of immune responses are connected via the action of various cells such

as dendritic cells, cytokines and antibodies [33]. They generally cooperate to ensure the

protection of the human body.

The innate immune system focuses on the physical and chemical barriers formed by

cells and molecules that recognize foreign pathogens. It provides a first line of defense

which does not recognize foreign proteins specifically, it rather supplies environments

which generally inhibit the spread of intruders. Although these responses are important

to limit a potential initial pathogen growth, they are usually not sufficient to heal diseases.

The adaptive immune system focuses on the lymphocytes actions to clear pathogens.

In contrast to the innate immune responses, the adaptive ones are considered to be very

specific, allowing cells to recognize and respond to a large variety of antigens (foreign

proteins). The cytotoxic T lymphocytes (CTLs), which are called more commonly killer

cells, are the most important branch of the immune system in fighting cancers [90]. They

can distinguish the cells that potentially display a foreign protein by mean of a specific

receptor, which triggers the release of particular molecules that induce apoptosis (cell

death) in the cells displaying foreign proteins. They can also be referred to as CD8+ T

cells, since they are characterized by the expression of the CD8 molecule on the surface

of the cell.

According to [33], the notion of immune memory has been for a long while directly

related to the different adaptive immune responses. Nonetheless, according to recent ex-

perimental results, there might exist a type of innate immune memory associated with

macrophages or natural killer (NK) cells.

It is important to underline the fact that the role of the immune system in fighting

cancers is not fully understood yet [23]. Indeed, experimental data showed that cancer

cells present different characteristics which prevent the immune system from recognizing

the potential mutated proteins and successfully killing the corresponding cells [90].

According to [23], there is not an agreement on the underlying dynamics taking place

in the immune response process. Figure 2.2 presents a non-exhaustive scheme for these

dynamics from a modeling point of view, this scheme is based on the works presented in

[20] and [79].

Figure 2.2 shows the main interactions between tumor, innate and adapted immune

responses and circulating lymphocytes. The NK cells allowing to attack cancer cells, rep-

resent the innate immune response, they are a specific type of circulating lymphocytes

that are stimulated by the presence of a tumor in the human body. In order to simplify

the complex mechanisms related to the NK cells stimulation, a population of circulating

lymphocytes is considered as a source of these cells.
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Tumor

NK

Innate response

CTL

Adaptive response

CL

Stimulation
Attack
Inactivation

Figure 2.2: A non-exhaustive scheme of immune interactions, CL stands for circulating

lymphocytes, NK for natural killer cells and CTL for cytotoxic T lymphocytes.

Furthermore, the adaptive immune response is represented by a population of T cells

which are cytotoxic T lymphocytes allowing to kill tumor cells by direct contact. Accord-

ing to [79], the repertoire of T cells receptors present in the organism is rich of about 107

different types of cells, which are able to identify several antigens. Once a tumor-specific

T cell is activated, it proliferates rapidly producing cells with the same receptor.

As a part of the adapted immune system, T-suppressor cells allow to regulate the

cytotoxic activity of CTLs in order to prevent autoimmune diseases. This process occurs

when there are very high levels of activated CTL cells. Moreover, both CTL and NK cells

are inactivated after several interactions with tumor cells.

In the next section, a specific focus will be given on how immunotherapy is intended

to induce a tumor growth inhibition and the different mechanisms related to this process.

2.2.2 Immunotherapy as a cancer treatment

The noticeable progress in genetics and biochemistry that has taken place lately led to

significant advances in experimental and clinical immunology [33]. Therefore, due to their

abilities to boost the body’s immune system in targeting the cancer, immunotherapies are

becoming an important treatment for different forms of cancer. According to [21], the im-

portance of the immune system in combating cancers has been proven in the laboratory as

well as with clinical experiments. Indeed, conventional treatments such as chemotherapy,

deplete the patient’s immune system, which makes the human body prone to dangerous

infections. Therefore, it is crucial to strengthen the immune system after an immune-

depleting.
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Moreover, through the mathematical modeling of tumor growth, the presence of an

immune component has been shown to be indispensable for inducing clinically observed

phenomena such as tumor dormancy, oscillations in tumor size, and spontaneous tumor

regression.

The clinical evidence for the ability of immune system in controlling certain malig-

nancies has motivated new research aiming at the development of immunotherapies and

vaccine therapies for cancers.

According to [21], immunotherapy falls into three main categories :

• Immune response modifiers: they consist of substances that affect the immune re-

sponse, such as interleukins (including IL-2), interferons, tumor necrosis factors

(TNF), colony-stimulating factors (CSF), B-cell growth factors, and tumor infil-

trating lymphocyte (TIL) injections.

• Monoclonal antibodies: they are able to distinguish between normal and cancer

cells, and are currently being developed to target specific cancer antigens.

• Vaccines: they are generally used for a therapeutic purpose, and are created from

cancer cells in order to help the immune system to recognize and attack specific

cancer cells.

One of the immune responses modifiers that is used as an immunotherapy is the cy-

tokine interleukin 2 (IL-2). This cytokine is naturally produced by the body and known

to stimulate CD8+T cells (a type of CTL cells) recruitment and proliferation [21]. IL-2

can be administered to the body in order to boost the immune system function. Further-

more, CD8+T cells might undergo an inactivation due to its high quantity in the body,

therefore, the cytokine IL-2 helps in the resistance of the CD8+T cells population to this

inactivation.

Moreover, TIL injections is another type of immune responses modifiers that is used as

an immunotherapy, in which a large number of highly activated CD8+T cells are injected

to the human body.

The design of an effective immunotherapy might be complicated due to various factors,

including a potentially immunosuppressive tumor micro-environment, immune modulat-

ing effects of conventional treatments and therapy related toxicities. Therefore, it is

important to incorporate these complexities into mathematical and computational mod-

els of cancer immunotherapy, in order to create a pragmatic tool allowing to assess the

different drug protocols that are widely used.

Furthermore, in the case of combined therapies, such as chemotherapy and immunother-

apy, it is necessary to have such tools in order to effectively combine many therapies, to

guarantee the protection of the patient from opportunistic infections as well as the cancer
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growth inhibition [24]. In [21], many illustrative situations in which neither chemother-

apy nor immunotherapy alone are sufficient to control tumor growth, however, combining

these two therapies allowed to eliminate the entire cancer.

2.3 Modeling tumor growth and drugs interactions

In the last decades, researchers had been interested in modeling the interaction dynamics

between cancer and the human body in order to better understand and analyse the behav-

ior of these phenomena. As mentioned in the previous sections, the dynamics of cancer

growth are extremely complex, therefore, we can find many different models in the liter-

ature, depending on the therapies that are used, for example, or the different phenomena

that occur in the human body. According to [22], these models try to focus on the most

important elements related to the tumor growth process and its response to therapies.

Therefore, it is crucial that the modeling process includes the essential behavior in order

to answer specific questions about this system.

Accordingly, modeling techniques are diverse, multifaceted and highly dependent on

the elements that one wants to describe. Usually, these models include different cells pop-

ulations or compartments and try to characterize the main interactions between them,

as well as with the different therapies. In some works, tumor behaviors are described

by several variables and partial/ordinary differential equations (PDEs/ODEs). Although

these models lose the microscopic individual cell dynamics and microenvironment, they

allow to catch the global properties of the tumor growth mechanisms. In this section, we

will give a specific focus on cancer modeling through ODEs, since the literature regarding

other modeling techniques is very wide and rich.

Several works had been done on modeling the interaction of chemotherapy with the

tumor growth process, for example, [64], [72], [2] and [66]. Moreover, there are some mod-

els considering specific phenomena, for instance [14], where authors took into account the

influence of nutrients on the drug effect or [36], where authors considered the common

phenomenon of cancer cells resistance to chemotherapy. Furthermore, with the develop-

ment of new cancer therapies such as immunotherapy and anti-angiogenic therapy, other

recent models describing the interaction of these drugs with the tumor growth have been

developed. In particular, the recent advances in genetics led to considerable progress in

experimental and clinical immunology [33] and many researches on modeling the immune

system dynamics had been carried out.

We can also find some stochastic models involving uncertainties. For instance, [29]

considered an uncertainty on the time which is necessary to the eradication of endothelial

cells while [15] modeled the effect of drugs on the different compartments as a stochastic

process.

Finally, the challenge of modeling biological systems in general is to focus on the
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elements which are known to be significant in terms of control design in order to have a

simplified and reliable model. In this section, a brief overview on tumor growth modeling

will be presented.

2.3.1 Cancer growth modeling

According to [90], the mathematical modeling of tumor cells growth is one of the oldest

and best developed topics in biomathematics. One of the commonly basic models for

cancer growth is the exponential term described by the following ODE:

ẋ = rxx, x(0) = x0, (2.1)

where x = x(t) is the quantity of cancer cells at time t, it can be either the volume or

the number of tumor cells, rx is the growth rate and x0 is the initial quantity of tumor

cells. Equation (2.1) allows to model the cancer growth with an exponential term without

taking into account the potential carrying capacity of a tumor. Therefore, other terms

that are more realistic and allow to consider a limited carrying capacity for the cancer,

have been proposed in the literature:

ẋ = rxx

(
1− x

x∞

)
, x(0) = x0. (2.2)

ẋ = −rxx ln

(
x

x∞

)
, x(0) = x0. (2.3)

Equation (2.2) models a logistic growth while equation (2.3) models a Gompertzian

growth, they both consider a limited cancer carrying capacity represented by x∞, since

for x = x∞, we have ẋ = 0 for both equations, meaning that the variation of cancer cells

quantity with respect to time becomes null once the quantity of tumor cells reaches x∞.

Chemotherapy is a conventional treatment that targets tumor cells using cytotoxic

or cytostatic molecules. It is usually delivered intravenously in order to limit cells di-

vision [60]. This therapy might undergo a resistance from cancer cells when the cell

division process is stopped. Therefore, we can find many works in the literature regarding

the modeling of cancer chemotherapy interactions, for example [64], [72], [2], [66] and [67].

In [64], authors proposed the following model in order to describe tumor chemotherapy

interactions:

ẋ = rxf(x, x∞)− Λx(x, u), x(0) = x0, (2.4)

where u = u(t) stands for the concentration of a chemotherapeutic agent at time t, Λx

denotes the decrease of tumor cells that is induced by the effect of chemotherapy and

f represents the tumor growth term which can be either exponential, logistic or Gom-

pertzian.
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This drug effect term is usually considered to be proportional to the tumor cells

population, i.e: Λx(x, u) = κxu. In some works such as [66], the authors considered that

the drug spreads within the body instantaneously so that the drug infusion rate, that we

denote c = c(t), is approximately proportional to the drug concentration u. However,

this consideration might be an oversimplification especially in the case of chemotherapy

[57]. Therefore, it is important to take into account the drug pharmacokinetic dynamics

(PK) allowing to model the concentration of the chemotherapeutic agent in the body, for

example in [57], the following term was considered:

u̇ = −acu+ bcc, u(0) = 0. (2.5)

In equation (2.5), the drug infusion rate c and its corresponding concentration in the

human body u are linked through a simple first order dynamics, allowing to model the

drug concentration with an exponential growth/decay dynamical model.

As mentioned in the previous sections, chemotherapy might induce critical side effects

to the cells that are constantly dividing in the human body. Therefore, it is highly

important to consider these secondary effects in the modeling process. The authors in

[72] proposed a model that takes into account the detrimental effects of chemotherapy on

the normal healthy cells of the human body:

ẋ = rxf(x, x∞)− Λx(x, u), x(0) = x0,

ṅ = rnh(n, n∞)−Υ(n, u), n(0) = n0.
(2.6)

The model (2.6) describes the dynamics of two populations, cancer cells population

x and normal healthy cells population n, where rn stands for the growth rate of normal

cells and h(n, n∞) represents its corresponding growth function. Furthermore, Υ(n, u)

models the side effects of chemotherapy on normal healthy cells and n0 stands for the

initial quantity of normal cells.

In addition to the chemotherapy secondary effects, [2] proposed to add a term describ-

ing the detrimental effects of the tumor on the normal healthy cells:

ẋ = rxf(x, x∞)− Λx(x, u), x(0) = x0,

ṅ = rnh(n, n∞)−Υ(n, u)− Ξ(x, n), n(0) = n0.
(2.7)

The term Ξ(x, n), in the equation of normal cells dynamics, stands for the normal

cells loss induced by the presence of the tumor, it is considered to be proportional to the

normal cells, i.e: Ξ(x, n) = %xn.

As a recent improvement for these classical models, [14] proposed to multiply the

growth terms for both cancer and normal cells populations with a function G(g), stand-

ing for the effect of nutrients on the populations growth. The dynamics of nutrients is

represented by g which is modeled through an ODE. Furthermore, [36] proposed to split

the population of tumor cells into two categories, non-resistant and resistant tumor cells,

in order to model the phenomenon of tumor cells resistance to chemotherapy. Therefore,
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it is assumed that the injected chemotherapeutic agent can only kill the non-resistant

cancer cells and has no effect on resistant cancer cells. Furthermore, it is considered

that a sub-population of non-resistant cancer cells can mutate and become resistant to

chemotherapy.

2.3.2 Angiogenesis dynamics modeling

As mentioned in the previous sections, the angiogenesis phenomenon consists in the de-

velopment of a vascularization by the tumor, in order to increase its supply in oxygen and

nutrients. The main biologically validated model of the angiogenesis phenomenon was

presented in [42] and consists of the following equations:

ẋ = rxf(x, q),

q̇ = S(x, q)− I(x, q)− ηqq,
(2.8)

where :

• x is the tumor volume and q is the vascular capacity.

• f(x, q) stands for the tumor growth, it can be either logistic (equation (2.9)) or

Gompertzian (equation (2.10)):

ẋ = rxx

(
1− x

q

)
. (2.9)

ẋ = −rxx ln

(
x

q

)
. (2.10)

• I(x, q) stands for the tumor inhibition effect and is chosen to be proportional to the

tumor surface as follows :

I(x, q) = bqx
2
3 .

• S(x, q) stands for the tumor stimulation effect. The term I(x, q) tends to grow at a

rate qαxβ faster than S(x, q) with α + β = 2
3
, which gives the following ODE :

q̇ = bx−
(
%+ dx

2
3

)
q. (2.11)

• rx is the tumor growth rate, b is the vessels birth rate (stimulated by the tumor)

while d is the vessels death rate (inhibited by the tumor) and % is the natural loss

of vessels.

The assumption α + β = 2
3
, considered in [42], led researchers to suggest some modi-

fications to the original model presented in [42]. These modifications are summarized in

Table 2.1.
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Models I(x, q) S(x, q) References

H0 dx2/3q bx [42]

H1 dq5/3 bq H0 modified by [34]

E dq4/3 bx2/3 [34]

O dx2/3q bq [31]

Sc dx1/3q bx2/3 [81]

Table 2.1: The several versions of the model presented by Hahnfeldt in [42].

If we take a look at the evolution of x and q with respect to time in Figure 2.3, we

notice that changing the model parameters (α and β) affects mainly the speed with which

the variables x and q reach their maximal capacity. It is interesting to notice that without

any drugs injections, the tumor and its vascularization keep on growing, even when the

initial quantity of tumor cells is very small.
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Figure 2.3: Comparison between the models H0,H1, E and Sc. The simulations are

carried out using the following parameters values: rx=0.084 with a Gompertzian growth,

d=0.00873, b=5.85, ηq=0 [58], x(0)=10−4 and q(0)=0.

Anti-angiogenic therapy has been developed in order to inhibit the vascular growth,

preventing thereby the tumor to proliferate. Similarly to chemotherapy, anti-angiogenic

therapy induced loss on tumor cells is usually considered to be proportional to the tumor

volume x and the vascular capacity q. Thus, the dynamical system (2.8) with drugs

interactions consideration is the following:

ẋ = rxf(x, q)− λxu,
q̇ = S(x, q)− I(x, q)− ηqq − γqv,

(2.12)

where u and v are respectively the injection rates of chemotherapeutic and anti-angiogenic

agents, with λ and γ standing for their respective effects factors on the two compartments
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(the tumor and its vascularization).

As a recent modification for the system presented in [42], [9] proposed to split the

vascularization compartment into two categories, the first sub-compartment consists of

unstable vessels which are developed thanks to the tumor stimulation, these vessels are

sensitive to anti-angiogenic treatment and their volume can be reduced. The second cat-

egory consists of stable vessels which result from the maturity of some unstable vessels,

they provide the tumor with nutrients and oxygen and are not sensitive to anti-angiogenic

agents. Furthermore, a variable standing for the quality of the vascularization is intro-

duced and affects the treatments effects.

2.3.3 On modeling immune system dynamics

Immunotherapy consists in stimulating some specific immune cells in the body in order

to inhibit the cancer growth. According to [79], constructing an accurate mathematical

model for cancer immune interactions requires taking into account the most important

mechanisms that occur between the different cell populations, using existing knowledges

from cell biology, molecular biology, biochemistry and immunology. Indeed, the mathe-

matical modeling of the entire immune system can be a very complex task, that is one of

the reasons that researchers focus on the elements of the immune system that are known

to be significant in controlling the tumor growth [20].

Mathematical models can provide a relevant framework helping to systematically orga-

nize immunological concepts, and to show the range of outcomes of various immunological

hypotheses that cannot be tested experimentally yet [33]. The literature of cancer im-

mune interactions modeling covers many different models, from simple ODE systems to

more complex and large models of ODEs, as well as, hybrid systems, multi-scale models

that combine ODEs with PDEs and agent-based approaches [33], [63]. However, it is

relevant to underline the fact that increasing model complexity leads to difficulties in the

calibration of the model and its use for quantitative predictions, as well as difficulties to

analytically investigate these models [33].

According to [55], mathematical models for tumor immune interactions have a long

history dating back to Stepanova’s model [84]. The latter gives the advantage of a mini-

mally parametrized model that nevertheless includes the main aspects of cancer-immune

interactions.

The models considered in this thesis are based on the model proposed by [84] that has

been generalized in [32], the original model describes the interactions between two pop-

ulations, tumor cells and immune effector cells. This second population gathers different

types of immune cells (NK cells, CTLs,...). Therefore, it aggregates both the innate and

adaptive immune reponses. This model includes also explicitly two therapies delivery,

cytotoxic chemotherapy and immunostimulation. Furthermore, it takes into account the

chemotherapy-induced loss on tumor cells and incorporates the beneficial effects of the
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Figure 2.4: A scheme showing the interactions in model (2.13), between the tumor and

the immune system.

immune system in controlling the tumor growth. According to [55], the immune system

can be effective in controlling small cancer burdens, but for large volumes, the cancer

dynamics overwhelms the immune system. Therefore, using a combined therapy is im-

portant to achieve patient recovery.

The model proposed by [84] and generalized by [32] is the following:

ẋ =µCf (x, x∞)− γXxy − κXxu,
ẏ =µIxy − βY µIx2y − δY y + κY yw + αY ,

(2.13)

where x and y denote, respectively, the number of tumor cells and the density of effector

immune cells (ECs), u and w are, respectively, the delivery rates of a cytotoxic agent and

an immunostimulator, and f denotes the tumor growth term that has been defined previ-

ously, it can be either exponential, logistic or Gompertzian. Figure 2.4 presents a scheme

describing the different interactions between the tumor and the immune system according

to this model. Table 2.2 summarizes the definitions of the other model parameters and

their numerical values.

Table 2.2: Numerical values and definitions of the parameters used in model (2.13) and

taken from[32].

Parameter Definition Numerical value

µC tumor growth rate 0.5599 ·107 cells/day

µI tumor stimulated 0.00484 day−1

proliferation rate

αY rate of immune 0.1181 day−1

cells influx

βY inverse threshold 0.00264

γX interaction rate 1 ·107 cells/day

δY death rate 0.37451 day−1

κX chemotherapeutic 1 ·107 cells/day

killing parameter

κY immunotherapy 1 ·107 cells/day

injection parameter

x∞ fixed carrying capacity 780 ·106 cells
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Figure 2.5: The phase portrait of system (2.13) with a logistic growth, in red the benign

and malignant equilibrium points.

As shown in Figure 2.5, the uncontrolled model (2.13) has two locally asymptoti-

cally stable equilibrium points. The macroscopic malignant equilibrium is (xm, ym) =

(735.9, 0.032) and the benign one is (xb, yb) ' (34.98, 0.53). It is relevant to underline the

fact that the treatment performance highly depends on the initial conditions, since there

is coexistence of macro- and microscopic equilibriums. The initial states of system (2.13)

can be estimated with some uncertainties, before designing the drug injection schedules.

The objective of cancer treatment can be formulated as to drive the state initial conditions

from the region of attraction of the malignant equilibrium to the region of attraction of

the benign equilibrium.

We can find in the literature a wide range of cancer immune interactions models.

Some of them are biologically validated with mice and human data, such as [27] where

the authors considered three populations, tumor cells, circulating lymphocytes and effec-

tor immune cells, whereas in [21] the authors splitted the population of effector immune

cells into two populations, NK cells and CTLs in order to separate the innate and adaptive

immune responses. Furthermore, the authors considered three treatments, a chemother-

apeutic agent, IL-2 and TIL injections.

Since the objective of this thesis is to provide a qualitative assessment of some tools

and methodologies in terms of cancer dynamics control, and does not intend to focus on

a particular cancer type, we chose to base our work on a relatively simple model (based

on the one presented in [84]) in order to push further the analysis and investigation of the

tools that we develop.
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2.4 Control for cancer therapies scheduling

In real cancer treatment cases, the doctors use standard injection protocols with prede-

termined treatment dosages, depending on the type of the cancer. These protocols are

defined based on the results of many clinical trials. Therefore, the control theory related

approaches allow to provide a pragmatic tool to design cancer treatment protocols that

are based on biologically validated models, by specifying how to combine the different

therapies, their respective frequencies and dose administration, which allows to avoid the

laborious process of clinical trials as well as its high cost.

The main problem in cancer treatment is to provide a guarantee or a certification

that the designed drug injection protocol reduces the tumor burden while keeping the

patient in healthy conditions. Therefore, it requires balancing the benefits of treating the

cancer with the detrimental side effects of some treatments such as chemotherapy and

radiotherapy.

Let’s consider the following general ODE model of cancer growth with drugs interac-

tions :

ẋ = F (x, u), (2.14)

where the state x gathers many variables representing information about some compart-

ments in the human body or quantities of specific cell populations, while the control inputs

represented by u stand for the drug rates that are injected in the body. The function F

models the dynamical interactions between the different variables.

Cancer treatment scheduling requires taking into account state and input constraints,

system non-linearities and optimality issues. Furthermore, since the biological systems

are in general highly uncertain, it is crucial to handle the uncertainties in terms of cancer

protocols scheduling. This is definitely the collection of all complexity ingredients in the

context of control design.

In the last decades there has been a new wave of methods for addressing different

cancer therapies scheduling problems, they are mainly based on mathematical modeling

and control, in order to help biologists to predict the behavior of the cancerous tumors

and establish adequate drug administration strategies. According to [57], the application

of optimal control to the cancer treatment scheduling problems started by the mid-1970s

in order to investigate drug regimens effects in reducing the tumor burden. Since then,

this topic generated a lot of attention and researchers started applying different control

approaches in order to schedule cancer treatments.

Usually, researchers focus on studying the theoretical effects of the control inputs and

analyzing the state trajectories, in order to prove the feasibility or the unfeasibility of the

designed therapeutic strategies, under specific biological assumptions. Another interest-

ing application is to design multi-targeted therapies profiles that are optimized according

to the oncologists specifications.
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The progress in cancer dynamics modeling motivated researchers to apply control ap-

proaches in order to schedule cancer treatments using different control strategies. We can

cite for instance, optimal control in [56], [58], [73] and [29]. There exist also other works

where feedback control schemes are considered such as [3], [89], [48] and [61]. Further-

more, we can find model predictive control (MPC) applications such as [82] and [17].

Although the literature of control for cancer treatment is very rich, only few works

addressed the problem of handling parametric uncertainties in drugs schedules design.

One can cite for example, [3] where a robust feedback scheme is proposed to schedule

anti-angiogenic treatment combined with chemotherapy, [50] where an H∞ based robust

control was applied to the same model and [4] where a general framework for probabilistic

certification of cancer therapies was proposed. We will explain in the subsequent section

why it is important to consider parametric uncertainties in the control design process.

2.4.1 Parametric uncertainties

Due to the empirical nature of cancer dynamics modeling, this branch of biomathematics

suffers from parameters estimation problems [90]. The complexity of this process comes

not only from the unavoidable inaccuracy of the parameters estimation but mainly from

their intrinsic changing and uncertain behavior.

According to [23], one of the most challenging tasks in modeling cancer therapies dy-

namics is the computation of biological parameters from empirical data. The complexity

of this task might increase with the number of the cell populations considered in the

dynamical model.

In mathematical and computational immunology, usually, researchers consider param-

eters that are published in the literature in order to assess their methodologies. However,

this might be misleading since in addition to their dependence on the case study only few

laboratories measure and estimate these parameters [33].

Therefore, it is crucial to include the different uncertainties, that the model is subject

to, in the drug scheduling design, in order to provide a strong guarantee on the efficiency

of the treatment profile in presence of uncertainties. Moreover, one can estimate the

probability of achieving the treatment objectives from a statistical point of view in order

to assess the performance of the considered methodology.

The context of this thesis revolves around the investigation of optimal control ap-

proaches that are able to consider parametric uncertainties for the purpose of cancer

treatment scheduling. The next sections will briefly present the context of the main

contributions of this thesis that will be detailed further in the following chapters.
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2.4.2 Optimal control under uncertainties for cancer treatment

Since the design of cancer treatment protocols requires the consideration of state and

input constraint and many optimization issues, the different optimal control approaches

turn out to be adequate to this challenge.

We can find in the literature many works regarding the application of optimal control

methods on cancer treatment problems. For instance, [58], [81] and [30], where optimal

protocols for anti-angiogenic treatment were investigated, or [25] where authors designed

linear controls for a tumor-immune interactions model with chemotherapy delivery.

In order to properly state an optimal control problem, one needs to define some ingre-

dients, namely the cost function to be minimized or maximized and the constraints that

need to be fulfilled:

• The cost function: which gathers the different treatment objectives that one seeks

to achieve, such as reducing the tumor burden, enhancing the patient health, etc.

• State constraints: they represent the restrictions on the values of the different phys-

iological indicators.

• Control input constraints: they stand for the limitations on the drug dosages or

duration.

Let’s consider the general model for cancer therapies interactions (2.14):

ẋ = F (x, u).

A typical optimal control problem (OCP) to be solved is:

min
u(·)

J (x(t), x(T ), u(t))

s.t. ẋ(t) = F (x(t), u(t)),

x(t) ∈ X, u(t) ∈ U, t ∈ [0, T ],

x(0) ∈ X0, x(T ) ∈ XT ,

(2.15)

where t stands for time and belongs to the interval [0, T ] with T being the therapy du-

ration, J stands for the cost to be minimized, it is chosen according to the objectives

that one seeks to achieve. It can contain many terms such as the states at the end of the

treatment duration denoted by x(T ), integrals of the state trajectories and the control

inputs, with different penalties in order to achieve a trade-off between the different control

objectives. x(0) stands for the initial state which represents the quantities of the different

considered cell populations at the beginning of the treatment. X0, XT , X and U stand

respectively for the sets of admissible values of the initial states, the final states, the state

trajectories and the control inputs.
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Solving the optimal control problem in (2.15) provides the optimal profile u(·) that

minimizes the cost J and satisfies all the specified constraints. The solution of this prob-

lem might require some specific computational methods.

The challenge arises when the dynamics of the cancer model incorporate uncertain

parameters that are described by probability distributions for example. The solution of

the problem in this case is definitely not straightforward since one needs to define a new

cost from a statistical point of view. Furthermore, we need to guarantee the satisfac-

tion of the constraints given the nature of the parametric uncertainties. In Part II, we

will address the problem of drug injection schedules design for cancer treatment, in the

presence of model parametric uncertainties, by investigating the use of a recent optimal

control approach, based on the moment optimization framework. This method allows to

formulate and solve robust optimal control problems by taking into account uncertain

parameters and initial states, modeled as probability distributions.

In the same Part we will analyse a two dimensional model that describes the interaction

dynamics between tumor and immune cells. Furthermore, we derive statistically optimal

combined strategies of chemo- and immunotherapy treatments, assuming the knowledge of

probability distributions of some uncertain model parameters, namely, the tumor growth

rate and the rate of immune cells influx. Numerical simulations will be presented in order

to illustrate the effects of parametric uncertainties on dynamics, when using a nominal

injection profile (considering a nominal value for model parameters). Finally, we compare

the recovery performance of nominal and robust schedules.

2.4.3 Domain of attraction estimation under parametric uncer-

tainties

The estimation of the region of attraction (RoA) for cancer models is an interesting

problem since it provides the set of possible initial conditions (tumor and patient health

indicators) that can be driven to a desired targeted benign region.

This problem becomes complex when dealing with nonlinear systems and even more

challenging for uncertain systems. There are some works which dealt with the problem of

estimating the RoA for cancer models but only few of them considered model uncertain-

ties. In particular, in [78], an iterative method to estimate the robust RoA was presented.

However, robust RoA estimation is based on the worst-case scenario analysis leading to a

very pessimistic design. This is because the worst case is considered no matter how small

its probability of occurrence is.

In Part III, we propose a framework to probabilistically certify the existence of a

control structure that drives the states, corresponding to quantities of specific cells pop-

ulations in the human body, from an initial state set to a certified target set. This

probabilistic certification framework is based on the randomized methods proposed in [7]

and [8], which, unlike the robust classical design, avoids focusing on few unlikely very bad
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scenarios allowing to overcome the conservatism of the robust RoA design.

The methodology that we propose consists mainly of two steps. Firstly, we derive an

ordered sequence of sets and a control strategy over each of them, such that the states

can be driven from one set to a previous one with a certain probabilistic guarantee. The

second step consists of providing a global certification on the probability of convergence

to the initial certified target set, providing therefore a global estimation of the patient

recovery probability under parametric uncertainties.

2.5 Conclusion

In this chapter, we presented firstly a general introduction about the different biological

mechanisms that are involved in the cancer growth phenomenon, in addition to a brief

summary of the existing cancer therapies and the different related dynamics.

Furthermore, we explained in a more detailed way the different mechanisms of the im-

mune system in defending the human body and the role of immunotherapy in fighting the

cancer growth. Thereafter, we presented an overview on the literature of tumor growth

modeling and some related topics, such as modeling angiogenesis and immune dynamics.

Finally, we introduced the problem of cancer therapies scheduling in terms of control

design, and presented the main challenges that one has to face. This led us to present

briefly the main contributions and the context of this thesis, which consists mainly in

parametric uncertainties considerations in the optimal control for cancer therapies as well

as in the estimation of probabilistically certified regions of attraction.

In Chapter 3, we will present brief recalls of the theoretical notions that will be used

in the sequel, namely moments optimization for optimal control. Furthermore, a recall of

randomized methods for probabilistic certification will be presented in Chapter 7.





Chapter 3

Overview on moment optimization

for optimal control

The moment approach for solving polynomial optimal control problems (OCPs) was pre-

sented in [54] as an extension of the work presented in [51] and [52], where the author

proved that nonconvex polynomial optimization problems can be addressed by solving a

hierarchy of convex semidefinite programming (SDP) problems.

This approach, developed by Lasserre [53] and summarized in Figure 3.1, is based on

the fact that polynomial optimization problems (a class of nonconvex finite dimensional

problems) are equivalent, in the space of measures, to infinite dimensional problems, un-

der mild assumptions. These infinite dimensional problems are nevertheless linear and can

be reformulated in terms of moments since the latter are linked to measures. Approxima-

tions of the global optimal solutions can be obtained by solving relaxations of the infinite

dimensional LP problems [53], providing therefore a converging sequence of lower bounds

on the global minima, under some compactness assumptions. Therefore, generating and

solving these relaxations allow to approach the exact solution of the original polynomial

optimization problem with arbitrary precision.

Optimization problem

LP on measure

LP on moments

Semidefinite

relaxations

Numerical optimization

Figure 3.1: A scheme presenting the main steps of the moment optimization approach.
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Recently, this approach has been extended to optimal control problems with a poly-

nomial structure and bounded constraints [54], for which one can obtain sub-optimal

solutions converging to the exact optimal control as the relaxation order increases, by

solving sequences of convex problems. Furthermore, a finite convergence certificate can

be provided in order to check the global optimum recovery. Moreover, as the linear infinite

dimensional problems are defined in the space of measures, this approach allows to address

optimal control problems with uncertain variables (states and parameters) described by

probability distributions.

The idea of using moments to solve optimization and optimal control problems has

been extensively studied. For instance in [44], where the authors used the moments

approach and its dual to derive outer approximations of the region of attraction for poly-

nomial dynamical systems. We can cite also the work presented in [80] that proposes to

reformulate the discrete-time stochastic optimal control problem in terms of occupation

measures and to solve it using moments relaxations. Furthermore, the authors in [85]

presented a framework of estimation and model invalidation based on the moment opti-

mization framework, using probabilistically uncertain data.

In this chapter, we will present an overview on the main key points of the generalized

moment problem, which are necessary to the understanding of the reformulation of opti-

mal control problems in terms of moments. These tools will be used in Part II in order

to provide a framework of optimal control under uncertainties for a dynamical model

representing the dynamics of tumor in interaction with appropriate therapies.

3.1 Definitions

Firstly, we provide some basic definitions and mathematical tools that are necessary for

the next sections.

Definition 3.1 (Closed basic semi-algebraic set) A closed basic semi-algebraic set

is an intersection of finitely many closed polynomial superlevel sets, it is defined as follows:

X = {x ∈ Rn : hi(x) ≥ 0, hi(x) ∈ R[x], i = 1, ..., nX},

where h1, ..., hnX are polynomials and R[x] stands for the ring of polynomials of the variable

x ∈ Rn with real coefficients.

Definition 3.2 (Signed measure [53]) Let’s denote by B(X) the Borel σ-algebra of X,

which is a particular set of subsets of X containing all the open subsets of X. A signed

measure is a function µ : B(X) → R ∪ {∞} such that µ (∅) = 0 and µ (∪k∈NXk) =

Σk∈Nµ (Xk), where Xk ∈ B(X) are disjoint sets. Therefore, it is a function that assigns a

real number to any subset of X.
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It’s is important to precise that measures can be defined as the space of linear func-

tionals that acts on the space of continuous functions on X [43], i.e. with the action that

measures have on the elements of the dual space l ∈ C(X) through integration:

〈l, µ〉 =

∫
X

l(x)µ(dx).

Definition 3.3 (Probability measure) It is a signed measure taking only real non-

negative values (positive measure) such that µ(X) = 1. This measure can be also inter-

preted as the probability distribution of the elements on a given set X.

Example: Given the following set X with subsets X1 and X2:

X
X1

X2

Let’s consider that µp is a probability measure defined on the set X such that µp(X) =

1, if µp(X1) = 0.95, this means that if x is a random variable whose distribution is given

by the measure µp, then the probability for x to be in X1 is 95%, i.e. P (x ∈ X1) = 95%

Definition 3.4 (Dirac measure) We denote by δϑ(X) the Dirac measure at ϑ is defined

as follows:

δϑ(X) =

{
1 if ϑ ∈ X
0 otherwise

Note that the Dirac measure δϑ(X) is an example of a positive measure since it returns

two possible non-negative values (either 0 or 1).

Definition 3.5 (Moments) Considering a compact set X ∈ Rn, M (X) denotes the

space of signed measures supported on X [43]. Given x ∈ X and an integer vector σ ∈ Nn,

the moment of order σ of µ ∈M(X) is defined as:

yσ =

∫
X

xσµ(dx), (3.1)

where xσ =
∏n

k=1 x
σk
k with σ being a multi-index.

Definition 3.6 (Riesz functional [43]) Given a sequence of moments denoted y =

(yσ)σ∈Nn, the Riesz functional Ry : R[x] → R acting on polynomials p(x) is defined

as follows:

Ry(p) = Σσpσyσ, (3.2)

where pσ stands for the σ-order coefficient of p(x) with p(x) = Σσpσx
σ.
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Definition 3.7 (Moment matrix) The moment matrix of order d denoted Md(y) is

the Gram matrix of the quadratic form p(x) → Ry (p2), such that Ry(p
2) = p>Md(y)p,

where p(x) is a polynomial with degree d, and p = (pσ)|σ|≤d (p is the vector of coefficients

corresponding to the polynomial p(x) up to degree d). The moment matrix is symmetric

and linear in y by construction.

Note that with a slight abuse of notation, we use p(x) in order to emphasize the fact

that the polynomial is considered as a function, whereas the notation p represents the

vector of coefficients related to this polynomial.

Definition 3.8 (Localizing matrix) Considering a polynomial w(x), its localizing ma-

trix of order d is the Gram matrix of the form w(x) → Ry (wp2), such that Ry(wp
2) =

p>Md(wy)p with w being the coefficient vector corresponding to the polynomial w(x).

Note that the localizing matrix can be interpreted as a linear combination of different

moment matrices.

Given an infinite sequence of moments y corresponding to a measure µ, we denote by

M(y) = M∞(y) and M(wy) = M∞(wy), respectively, the infinite-dimensional moment

and localizing matrices. Furthermore, we denote byM+(X) the space of positive measures

supported on X and by P(X) the set of probability measures supported on X.

3.2 Linking moments to measures

Given a measure µ defined on a compact set, this measure is uniquely defined by the

infinite sequence of its corresponding moments [53]. This is very useful since, in practice,

instead of manipulating abstract objects such as measures, one manipulates their mo-

ments [43]. In this section, we recall the theoretical notions allowing to link moments to

measures. These notions will help us, in the sequel, to explain how to reformulate optimal

control problems in terms of moments.

Definition 3.9 (representing measure) Given an infinite sequence of moments y =

(yσ)σ∈Nn, the measure µ satisfying

yσ =

∫
X

xσµ(dx), ∀σ ∈ Nn, (3.3)

is said to be a representing measure of the sequence y.

Note that Definition 3.9 holds also for the case of truncated moments vectors, see [53].

The infinite dimensional moment and localizing matrices allow to explicitly model the

constraint that a sequence of moments y has a representing measure µ on a compact

basic semi-algebraic set X, under a mild assumption on the representation of X. These

constraints are infinite dimensional LMIs (Linear Matrix Inequalities).
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Assumption 3.1 Given a closed basic semi-algebraic set X defined as follows:

X = {x ∈ Rn : hi(x) ≥ 0, hi(x) ∈ R[x], i = 1, ..., nX}. (3.4)

We assume that one of the polynomial inequalities hi(x) is of the form r − Σn
j=1x

2
i ≥ 0,

with r ∈ R+ being a sufficiently large positive real number (such that X ⊂ {x ∈ Rn :

Σn
j=1x

2
i ≤ r}).

As mentioned in [43], although Assumption 3.1 is stronger than the compactness property

of the set X (which requires closeness and boundedness), assuming the compactness of

X and adding a supplementary constraint to its description in (3.4), allows to ensure the

satisfaction of Assumption 3.1 without loss of generality.

Proposition 3.1 (Putinar’s Theorem [76]) Consider that the set X satisfies Assump-

tion 3.1. The infinite sequence y has a representing measure in M+(X) if and only if

M(y) � 0 and M(hiy) � 0 for all i = 1, ..., nX .

Therefore, the moment and localizing matrices defined in Definition 3.7 and 3.8 allow

to reformulate infinite-dimensional problems that are written in terms of measures into

infinite-dimensional problems on moments. The latter problems can be relaxed by trun-

cating the moments vectors up to some degrees using a specific hierarchy that we will

detail in the sequel.

Although Proposition 3.1 provides a powerful tool to state if a sequence of moments has

a representing measure or not, this result concerns infinite dimensional vectors that cannot

be manipulated in practice. Therefore, in order to avoid manipulating infinite dimensional

vectors of moments, one can deal with their finite truncations. The question that arises

is: given a truncated sequence of moments (a finite sequence) denoted y(≤d) = (yσ)|σ|≤d
(the vector of moments up to order d) such that σ ∈ ∆ ⊂ Nn, does there exist a measure

µ supported on X, such that:

yσ =

∫
X

xσµ(dx), ∀σ ∈ ∆? (3.5)

In Chapter 3 of [53], the author provides an important sufficient condition for the trun-

cated moment problem (formulated in the previous question). Therefore, in addition to

the condition required in Proposition 3.1 (regarding the moment and localizing matrices),

one needs to check additional conditions on the rank of these matrices for some relax-

ation degrees, for more details see [53]. Note that this rank condition can be numerically

checked using standard linear algebra techniques.

3.3 Optimal control problem reformulation

The approach that we recall in this chapter provides a powerful tool allowing to solve op-

timal control problems where uncertainties are considered. In Part II, we will investigate
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this approach in order to design optimal control profiles that are drug injection schedules,

using a dynamical model describing the interaction between a tumor and some specific

therapies. In this section we explain how a specific class of nonlinear OCPs (polynomial

OCPs) can be reformulated in terms of moments.

First, let’s consider the following polynomial optimal control problem:

inf
u(·)

∫ T

0

L(x(t), u(t)) dt+ Φ (x(T ))

s.t. ẋ(t) = F (x(t), u(t)),

x(t) ∈ X, u(t) ∈ U, t ∈ [0, T ],

x(0) ∈ X0, x(T ) ∈ XT ,

(3.6)

where x ∈ Rn is the state, u ∈ Rm is the input, the functions F : ×Rn × Rm → R,

L : ×Rn × Rm → R and Φ : Rn → R are polynomials allowing to define the cost to be

minimized. X0, X,XT and U stand for the constraints sets and are defined as follows:

X0 ={x0 ∈ Rn : h0i(x0) ≥ 0; i = 1, ..., nX0},
X ={x ∈ Rn : hi(x) ≥ 0; i = 1, ..., nX},
XT ={xT ∈ Rn : hTi(xT ) ≥ 0; i = 1, ..., nXT },
U ={u ∈ Rm : hui(u) ≥ 0; i = 1, ..., nU}.

(3.7)

Note that F and L can also be functions of time. Furthermore, several OCPs can be

formulated from problem (3.6). We can think for instance of the case where X0 and XT

contain respectively only one element, which is a classical optimal control problem, where

we want to drive the dynamical system in (3.6) from one point (initial condition) to a

final point x(T ) while minimizing a given cost function.

Assumption 3.2 X0, X, XT and U are compact basic semi-algebraic sets.

Note that compactness is posed to satisfy standard assumptions for ensuring desirable

properties of measures and moments.

Assumption 3.3 The polynomial dynamical system ẋ(t) = F (x(t), u(t)) with u(t) ∈ U
can be interpreted as a differential inclusion ẋ(t) ∈ F (x(t), U) := {F (x(t), u(t)) : u(t) ∈ U}.
The set F (x(t), U) is assumed to be convex.

Provided that Assumptions 3.2 and 3.3 hold, a linear infinite dimensional optimiza-

tion problem can be defined over the space of probability measures, which has the same

optimum as problem (3.6). Therefore, we need to provide some definitions allowing to

achieve the reformulation of the OCP presented in (3.6).
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Definition 3.10 (Indicator function) The indicator function of a set X is defined by:

IX(x) =

{
1 if x ∈ X
0 otherwise

Definition 3.11 (Controlled occupation measure) Considering the following dynam-

ical system:

ẋ = F (x, u), x(0) = x0. (3.8)

If the function F in (3.8) is polynomial, therefore it is smooth and there exists a unique

trajectory which is solution of (3.8), given an initial condition x0 and a control law u(t),

this trajectory is denoted x(t|x0, u). The controlled occupation measure of the trajectory

x(t|x0, u) is defined as follows:

µ (A×B × C|x0, u) :=

∫
A

IB(x(t|x0, u))dt,

for all A ∈ B ([0, T ]) , B ∈ B (X) and C ∈ B (U) with t ∈ [0, T ], T can be either fixed of

free.

Therefore, the occupation measure allows to measure the time that the trajectory

(t, x(t|x0, u), u(t)) spends on a subset A×B × C of [0, T ]×X × U .

Furthermore, if we consider that the initial state x0 is a random variable in X instead

of being a deterministic vector, the distribution of x0 can be interpreted as a probability

measure ξ0 ∈ P(X), such that the expected value of the random variable x0, denoted

E [x0] is the first order moment of ξ0, i.e. E [x0] =
∫
X
xξ0(dx). Furthermore, the other

higher order moments of the random variable x0 are defined through the measure ξ0 as:

yσ =
∫
X
xσξ0(dx), with σ being the corresponding moment order. Therefore, in this case

the solution of the ODE in (3.8) is interpreted as a flow of trajectories generated by the

distribution of the random initial condition. Furthermore, the state trajectories at each

time t are also interpreted as random variables.

Definition 3.12 (Average controlled occupation measure) The average controlled

occupation measure of the flow of trajectories is defined as :

µ (A×B × C|u) =

∫
X0

µ (A×B × C|x0, u) ξ0 (dx0) .

Moreover, the initial occupation measure µ0 ∈ P ({0} ×X0) captures the information

on the initial condition and is defined as : µ0(dt, dx) = δ0(dt)ξ0(dx). The terminal

occupation measure µT ∈ P ({T} ×XT ) captures the information on the state a time T

and is defined as : µT (dt, dx) = δT (dt)ξT (dx) where ξT is the probability measure that

rules the distribution of the terminal condition x(T ).
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3.4 Infinite-dimensional measure problem

Studying the evolution of test functions v ∈ C1 ([0, T ]×X) along the trajectories alows

to characterize the flow of the system trajectories [46]. As explained in [54] and [53], by

defining the Liouville operator L : C1 ([0, T ]×X) → C ([0, T ]×X × U) as v → Lv =

−∂v
∂t

+ (∇xv)′F , the dynamics in (3.8) can be reformulated as follows :

∫ T

0

∫
X

∫
U

(
∂v

∂t
+ (∇xv)′ F

)
dµ =

∫
XT

v dµT −
∫
X0

v dµ0, (3.9)

where ∇xv =
[
∂v
∂x1
, ..., ∂v

∂xn

]
stands for the gradient of v with respect to x. Equation

(3.9) is called the controlled Liouville equation, it describes the time evolution of the

density transported by the flow of a nonlinear dynamical system. It will be used in the

sequel to express the moments constraints characterizing the system dynamics.

The following linear problem in the space of measures

inf
µ0,µ,µT

〈L, µ〉+ 〈Φ, µT 〉

s.t.

∫
[0,T ]×X×U

(
∂v(t, x)

∂t
+∇x(v(t, x))′F (t, x, u)

)
dµ

= 〈v, µT 〉 − 〈v, µ0〉, ∀v ∈ C1([0, T ]×X)

µ0 ∈M+({0} ×X0), µT ∈M+({T} ×XT )

µ ∈M+([0, T ]×X × U),

〈1, µ0〉 = 1,

(3.10)

is infinite dimensional and has the same optimum value as the original optimal con-

trol problem (3.6), under mild assumptions [54], this problem remains highly complex.

However, Lasserre hierarchy [53] of relaxed LMI problems can be determined to obtain

sub-optimal solutions, that converge to the optimal solution of the original optimal con-

trol problem, under some compactness and convexity assumptions. In order to obtain the

relaxations, one has first to consider the relation between the measure µ0, µ and µT and

their moments that has been presented in Section 3.2.

Given a constraint of the type µ ∈ M(X), it can be expressed in terms of LMI con-

straints involving infinite dimensional matrices that contain the infinite dimensional vector

of moments y, as a consequence of the Putinar’s theorem. Nevetheless, relaxations can be

obtained by considering the matrix structures obtained, by appropriately truncating the

vector of moments to a finite maximal degree (d) and imposing in (3.10) constraints over

polynomials of a finite maximal degree in spite of all v ∈ C1([0, T ]×X). In the sequel, we

will give more details on the choice of the test functions v. This leads to a hierarchy of

finite-dimensional SDP problems whose solutions converge to the solution of the optimal

control problem as the relaxation degree grows.
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The interesting feature of this approach is the fact that, even in the case of deter-

ministic dynamical systems, the initial state as well as the final one and the state along

trajectories, are dealt with by defining measures on the state space, see (3.10). The same

holds for the input. For instance, if x0 = x(0) ∈ X0 is a singleton, then the initial measure

µ0 in (3.10) should be imposed by fixing, for all σ ∈ Nn, its moments given as:

〈tτxσ, µ0〉 =

{
xσ0 if τ = 0

0 if τ ∈ N+\{0}

Therefore, no additional complexity is induced by considering states and inputs that

are random variables of a deterministic point in the state and input spaces, since in both

cases they are modeled by their measures.

3.5 Moment LP and relaxations

According to [53], every measure defined on a compact support is determinate (represent-

ing and unique), because the space of polynomials is dense (with respect to the supremum

norm) in the space of continuous functions in R. For a particular choice of monomial test

functions of the form v(t, x) = tαxβ (the choice of this basis is mainly motivated by the

simplicity of notation [43]), notice that the integral of v with respect to a given measure

µ(dt, dx), i.e.
∫
vdµ =

∫
tαxβdµ, is the moment of order γ of µ, where γ = (α, β) ∈ N×Nn.

Therefore, using monomial test functions allows to manipulate the measures with their

respective moment vectors.

z0,zT and z are compact notations of z
(≤d1)
0 ,z

(≤d1)
T and z(≤d2), standing for the moment

vectors (up to degrees d1 and d2), corresponding to µ0, µT and µ, respectively. The cost

function in (3.6) can be rephrased in terms of moments for some degrees d1 and d2 as

follows:

∫ T

0

L(x(t), u(t)) dt+ Φ (x(T )) = c′L z + c′Φ zT , (3.11)

where c′L and c′Φ are vectors containing the coefficients of the polynomial costs L and Φ

introduced in (3.6).

In addition to the cost, the dynamical constraints in (3.10) can also be rephrased in

terms of moments. By replacing the test function v(t, x) with its monomial form tαxβ

in (3.9), one can obtain a matrix equality in terms of the truncated moments vectors

z0,zT and z. Furthermore, as explained previously, Putinar’s theorem allows to express

constraints of the type µ ∈ M(X) in terms of LMI constraints, allowing therefore to

rephrase the constraints of this form that (3.10) involve.

Thereby, problem (3.10) can be relaxed into a truncated convex moment problem as
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follows:
min

z,z0,zT
c′L z + c′Φ zT

s.t. ATzT = A0z0 + Az,

M (zT ) � 0, LhTi (zT ) � 0,∀i = 1, ..., nXT ,

M (z0) � 0, Lh0i (z0) � 0,∀i = 1, ..., nX0 ,

M (z) � 0, Lhi (z) � 0 , ∀i = 1, ..., nX ,

(3.12)

where A,A0 and AT are some coefficient matrices related to the dynamics and resulting

from (3.9), for further details see [54], [53] and [46]. The minimum is with respect to the

moment vectors z,z0 and zT , meaning that the measures µ,µ0 and µT are all unknown.

Therefore, semi-definite constraints are imposed on the moment and the localizing matri-

ces, in order to guarantee the positivity and the support of the measures µ,µ0 and µT .

In order to construct the convex relaxations, the truncation degrees d1 and d2 has to

satisfy some specific conditions, see [46] and [53]. In the case where d1 and d2 are even

numbers the conditions are the following:

d1 ≥ deg(Φ),

d2 ≥ deg(L),

d2 ≥ d1 + deg(F ).

(3.13)

Finally, increasing the relaxation orders (d1 and d2) provides a monotonically non-

decreasing sequence of lower bounds converging to the optimal value. The LMI relax-

ations defined in problem (3.12) can be solved with Gloptipoly [45], using an SDP solver.

3.6 Optimal control reconstruction

After solving the LMI relaxations defined in problem (3.12), the vectors z0,zT and z

provide approximations of the moment vectors corresponding to the different occupation

measures. Therefore, one needs to reconstruct the optimal trajectories based on the ap-

proximated moments. According to [19], this problem turns out to be a typical inverse

problem, which is well mastered in the case of polynomial finite-dimensional optimization

problems. However, this problem is more challenging in the case of optimal control prob-

lems, since we can only have a finite number of approximated moments, which prevents

the reconstruction of exact measures. Therefore, we can use some numerical methods in

order to derive an approximate of the optimal trajectories and their corresponding control

law.

In [46], the authors proposed to solve the dual of the LMI moment problem which is the

LMI sum-of-squares (SOS) formulation, that can be interpreted as the search of a smooth

sub-solution of the Hamilton-Jacobi-Bellman (HJB) equation. However, this method is

computationally expensive, since one needs to impose bounds on the discretization grid

in order to avoid numerical instability. Furthermore, in [47], a polynomial densities based
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method was presented in order to approximate occupation measures. In this method,

one has to consider only a part of the approximated moments, which leads to a simple

linear problem to solve. However, the main inconvenient of this method is that it fails in

approximating discontinuous as well as non-smooth functions such as bang bang controls.

Furthermore, approximating the state trajectories and the controls with polynomials can

lead to inadmissible approximations.

Moreover, in [19], the authors proposed a framework for approximating occupation

measures by atomic measures, meaning that they consider only measures supported on a

finite number of points. Therefore, they propose to set a time-space grid of Dirac mea-

sures, in order to obtain a finite dimensional LP. Thereby, the decision variables are the

mass of the Dirac measures (moments of order 0), which enter linearly in the problem.

This method provides good admissible approximations and allows to deal with the differ-

ent possible control structures. Furthermore, the authors proposed in this approach to

consider a family of moments, containing only time and one of the states or control vari-

ables, in order to solve a lower dimensional linear problem, making thereby the approach

more computationally effective.

More recently, the authors of [65] proposed a method based on Christoffel-Darboux

kernels in order to approximate functions that are possibly discontinuous. The sequence

of Christoffel-Darboux polynomials related to a measure provides an adequate tool to

accurately approximate the support of a measure. This method is based on the spectral

decomposition of the moment matrix, providing a semi-algebraic approximation, and

allows to take into consideration all the moments up to some degree. Furthermore, with

this approach, the computation process can be performed in polynomial time.

3.7 Conclusion

We presented in this chapter a brief overview on how to solve optimal control problems

using moments relaxations. This theory gathers many other theoretical aspects, the read-

ers interested in further details should refer to the book [53].

An appealing feature of this approach is that, since the optimal control problems are

reformulated in terms of moments, this method is suitable for dealing with states and in-

puts that are characterized by probability distributions, simply by managing the moments

of the related probability distribution functions. Furthermore, one can consider uncertain

model parameters and initial states that are described by probability distributions, in the

control design.

In Part II, we will use this relevant feature in order to propose a framework for de-

signing robust optimal controls, that represent cancer drug injection profiles, using a

dynamical model describing the interaction between the cancer and the immune system,

with parametric uncertainties.





Part II

Optimal control under uncertainties

for cancer drugs scheduling
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Chapter 4

Robust optimal control-based design

for combined cancer therapies

without chemotherapy detrimental

effects on immune cells

Control design for biological systems is a very promising research topic. It allows to make

profit from the different mathematical tools related to control theory, in order to control

biological phenomena in general. For the specific case of control for cancer dynamics, a

very rich literature dating back to many decades is available. This topic raised a real

interest in the research community, since control provides systematic and generic tools

allowing to manage systems and meet particular specifications. We cited in Chapter 2

many works that have been done on optimal control for cancer dynamical systems.

As pointed out in Chapter 2, the different phenomena related to cancer growth are

modeled in the literature through different forms such as ODEs. These models involve

many parameters that help to describe the interaction between the different organs and

compartments of the human body. In the literature of control for cancer dynamics, usu-

ally deterministic parameters are considered.

In the medical field, it is commonly known that cancer mechanisms are highly un-

certain by nature. Both cancer evolution and the induced treatment effects are patient-

dependent. We pointed out in Chapter 2 the importance of taking into account the

different uncertainties that are likely to affect the cancer growth phenomenon. Therefore,

in this thesis, we are interested in investigating optimal control methods allowing to take

into consideration the possible parametric uncertainties.

This chapter addresses the problem of drug injection schedules design for a combined

cancer treatment, in the presence of model parametric uncertainties. It is commonly

accepted that achieving optimal recovery performances under uncertainties is a complex

task. Therefore, we propose to use a recent optimal control approach, based on the mo-

ment optimization framework presented in Chapter 3. This method allows to formulate

43
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and solve robust optimal control problems by taking into account uncertain parameters

and initial states, modeled as random variables through their probability distributions.

Furthermore, we will explain how to derive statistically optimal combined strategies of

chemo- and immunotherapy treatments, assuming the knowledge of probability distribu-

tions of some uncertain model parameters.

In Section 4.1, we present the dynamical model describing the interactions between the

tumor, the immune system and combined therapies. In Section 4.2, we state the problem

of solving optimal control problems that involve parametric uncertainties. In Section 4.3,

we explain how to reformulate robust optimal control problems into moment optimiza-

tion problems. Some technical aspects related to the implementation are presented in

Section 4.4 and the simulation results of a given case study are presented in Section 4.5.

Finally, in Section 4.6, we present a brief summary of this chapter and we discuss the

main advantages and limitations of the proposed approach.

4.1 Dynamical model

In this chapter, we will consider the two dimensional model presented in (2.13), which de-

scribes the interaction dynamics between the tumor and the immune system. According

to [55] the advantage of this model is the fact that it is minimally parameterized, however,

it still describes the main aspects of tumor-immune interactions. Furthermore, this model

had been intensively used in the literature in order to investigate its equilibriums and pro-

pose some optimal control strategies. For instance [59], where the authors investigated the

existence and the optimality of singular arcs for this model. Furthermore, [82] proposed a

multiple model predictive control scheme to design chemo- and immunotherapy injection

schedules.

Moreover, in [83], the authors proposed a robust multiple model predictive control

scheme for this model, in order to consider direct drug targeting pharmacokinetic uncer-

tainties as well as system model mismatches. This approach consists in using a bank of

models that are linear approximations of the nonlinear process around several operating

points, then an adaptive controller switching is performed in order to make the output

error converge to 0. Although this method allows to reduce the model mismatches that

are due to linearization, it doesn’t allow to rigorously consider parametric uncertainties

in the design of optimal control.

As pointed out in Chapter 2, a realistic tumor growth should consider a limited car-

rying capacity for the cancer cells population. Therefore, we consider in this chapter

a logistic growth function for the tumor dynamics f (x1, x∞) = µCx1

(
1− x1

x∞

)
, which

leads to the following polynomial dynamics :

ẋ1 =µCx1 −
µC
x∞

x1
2 − γXx1x2 − κXx1u1,

ẋ2 =µI
(
x1 − βY x1

2
)
x2 − δY x2 + κY x2u2 + αY ,

(4.1)
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where x1 and x2 denote, respectively, the number of tumor cells and the density of effector

immune cells (ECs), u1 and u2 are respectively, the delivery profiles of a cytotoxic agent

and an immunostimulator. Table 4.1 recalls the definitions of the model parameters and

their numerical values.

Table 4.1: Numerical values and definitions of the parameters used in model (4.1) and

taken from[32].

Parameter Definition Numerical value

µC tumor growth rate 0.5599 ·107 cells/day

µI tumor stimulated 0.00484 day−1

proliferation rate

αY rate of immune 0.1181 day−1

cells influx

βY inverse threshold 0.00264

γX interaction rate 1 ·107 cells/day

δY death rate 0.37451 day−1

κX chemotherapeutic 1 ·107 cells/day

killing parameter

κY immunotherapy 1 ·107 cells/day

injection parameter

x∞ fixed carrying capacity 780 ·106 cells

As explained in Chapter 2, the model (4.1) has two locally asymptotically stable

equilibrium points. The macroscopic malignant equilibrium is (xm, ym) ' (735.9, 0.032)

and the benign one is (xb, yb) ' (34.98, 0.53). The objective of cancer treatment can

be formulated as to drive the state initial conditions from the region of attraction of the

malignant equilibrium to the region of attraction of the benign equilibrium. It is important

to notice that the treatment performance depends highly on the initial conditions, since

there is a coexistence of multiple equilibriums (benign and malignant). These initial

conditions can be approximated beforehand with some degree of precision.

4.2 Robust optimal control for cancer treatments

Let’s consider the following continuous-time dynamical system:

ẋ(t) = F (x(t), u(t), p) , x(0) = x0, (4.2)

where x(t) ∈ Rn and u(t) ∈ Rm denote respectively the state and the input vectors and

p ∈ P ⊂ Rnp
+ stands for a vector whose elements can represent some unknown parameters

in the model.

In order to use the moment optimization framework presented in Chapter 3, we con-

sider that F is polynomial. Note that in the case where system (4.2) is uncontrolled (i.e.
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u = 0), for every pair of values of the initial state x(0) = x0 and the vector p, system (4.2)

admits a unique solution that we denote x(t|x0, p) for all t ∈ R+. Thus, considering x0

and p as uncertain variables described by probability distributions means that the state

is interpreted as a flow of trajectories generated by the distributions of x0 and p.

In standard optimal control problems (OCPs), we consider nominal parameters values

that we denotes pnom. These nominal values are the most representative for the model

parameters. In this case, the aim is to design a control function u(·) that minimizes an

objective function, which is in general a combination of a stage integral cost L and a final

cost Φ, under some constraints. The OCP can be formulated as follows:

min
u(·)

∫ T

0

L(x(t), u(t)) dt+ Φ (x(T ))

s.t. ẋ(t) = F (x(t), u(t), pnom) ,

x(t) ∈ X, u(t) ∈ U, t ∈ [0, T ],

x(T ) ∈ XT , x(0) ∈ X0,

(4.3)

with X0, X,XT ⊂ Rn and U ⊂ Rm.

As pointed out in Chapter 2, in the context of cancer treatment, the cost function to

be minimized can include the tumor burden and the amount of injected drugs for exam-

ple. Whereas the constraints can represent health constraints that consist in keeping the

body immunity above a certain level, or prevent drug toxicity consequences.

Cancer dynamics are known to be highly uncertain, therefore it is important to con-

sider the different uncertainties that can affect this kind of systems. In this chapter, we

investigate an optimal control approach that allows to explicitly consider uncertainties on

parameters and initial states.

In the case where uncertainties are considered, the cost to be minimized depends on

the uncertain initial state and parameters vector, since both p and x0 affect the behavior of

the state trajectory x(t). Therefore, solving an OCP in the context of uncertainties, aims

at obtaining u(·) which minimizes some statistics of a given cost function J(x0, u(·), p)
that we denote Ψ(u).

In stochastic nonlinear MPC literature, Ψ is usually the expectation of the cost J with

respect to the time invariant uncertainties p, denoted Ψ(x0, u) = Ep [J(x0, u, p)], where

x0 is a fixed initial condition, see [68]. It can also be considered as a function of the mo-

ments of J , as in [13] where the authors included the variance in the objective statistics Ψ.

We will see in the sequel that using the moment approach allows to solve optimal

control problems that explicitly involve uncertainties in the parameters and initial states.

According to [46], when the initial state is uncertain and modeled via a probability distri-

bution, the cost to be minimized in the moment optimization framework, is the average
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of the defined cost with respect to the distribution of the uncertain initial states. In the

next section, we will explain how one can explicitly include the parametric uncertainties,

such that the cost to be minimized is the expectation with respect to the uncertainties

on both the initial state and model parameters.

Therefore, the robust optimal control problem that we seek to solve can be formulated

as follows:
min
u(·)

Ψ(u) = Ex0,p [J(x0, u, p)]

s.t. ẋ(t) = F (x(t), u(t), p),

x(t) ∈ X, u(t) ∈ U, t ∈ [0, T ],

x(T ) ∈ XT , x(0) ∼ PX0 , p ∼ P ,

(4.4)

where x0 and p are uncertain variables following the probability distributions PX0 and P ,

supported on X0 and P respectively. Furthermore, Ex0,p stands for the expectation with

respect to the uncertain initial states and model parameters. As explained previously,

since x0 and p are uncertain, the state at time t is also interpreted as a random variable,

that we denote, with a slight abuse of notation, simply by x(t).

Our main objective in this chapter is to solve optimal control problems involving

uncertainties, in order to design drug injection schedules for cancer. Therefore, in the

next section, we will explain how to use the moment optimization framework to reach

this objective. Furthermore, we will explain the different technical aspects related to

implementation. Finally, we will highlight the importance of considering uncertainties in

optimal control design for cancer dynamics through a case study.

4.3 Optimal control under uncertainties via moment

optimization framework

In this section we will explain how to use the moment optimization framework, in order

to solve optimal control problems that involve parametric uncertainties. As explained

in Chapter 3, the interesting feature of this approach is that all the variables that are

involved in the OCP are described by probability measures. The polynomial optimization

method based on measures is particularly suitable for dealing with uncertain systems, by

simply imposing the moments of the related probability density functions.

In the particular case under study, we aim at designing a robust optimal control for

a dynamical model describing the tumor growth, the parameters of which are supposed

to be not perfectly known. This lack of knowledge can be modeled through uncertain

parameters characterized by probability distributions, with compact support. Then, in

practice, it is sufficient to define an extended state containing both tumor and immune

cell populations and the uncertain parameters.

In order to set problem (4.4) in the framework of Chapter 3, we propose to consider
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the time invariant uncertainties vector p as a state variable similarly to [85].{
ẋ(t) = F (x(t), u(t), p) ,

ṗ(t) = 0.

Therefore, we consider the following state extension xe = (x, p)T which results in the

following compact form:

ẋe(t) = G (xe(t), u(t)) . (4.5)

The optimal control problem to be solved is the following:

min
u(·)

Exe(0)

[∫ T

0

L(xe(t), u(t)) dt+ Φ (xe(T ))

]
s.t. ẋe(t) = G (xe(t), u(t)) ,

xe(t) ∈ Xe, u(t) ∈ U, t ∈ [0, T ],

xe(T ) ∈ Xe
T , xe(0) ∼ σ0 (Xe

0) ,

where xe(0) ∼ σ0 (Xe
0) means that xe(0) follows the probability distribution σ0 supported

on Xe
0 .

Similarly to Chapter 3, we assume that L,Φ and G are polynomials and that U ,Xe,Xe
0

and Xe
T are compact basic semi-algebraic sets.

We denote by σ0, the probability measure of the initial state xe(0) = xe0 which includes

the distribution of the time invariant uncertainties vector p. Thus, the initial imposed

measure is written µ̄0(dt, dxe) = δ0(dt)σ̄0(dxe) , where the notation µ̄0 highlights the fact

that µ0 is defined by its truncated sequence of moments, and δ0 allows to impose the

initial time to be equal to 0.

Let’s denote by w̄
(≤a)
0 the truncated sequence of moments (up to degree a) correspond-

ing to the initial measure µ̄0(dt, dxe) = δ0(dt)σ̄0(dxe) of the extended state. Following the

steps explained in Chapter 3, we can derive the finite-dimensional problem on moments

as follows:

min
z,zT

c′L z(≤b) + c′Φ z
(≤a)
T

s.t. ATz
(≤a)
T = A0z

(≤a)
0 + Az(≤b),

z
(≤a)
0 = w̄

(≤a)
0 ,

M
(
z

(≤a)
T

)
� 0, LhTi

(
z

(≤a)
T

)
� 0,∀i = 1, ..., nXe

T
,

M
(
z(≤b)) � 0, Lhi

(
z(≤b)) � 0 , ∀i = 1, ..., nXe ,

(4.6)

where the minimum is calculated with respect to the moment vectors corresponding to the

trajectory and the terminal occupation measures (µ and µT ). Analogously to (3.7), nXe
T

and nXe stand for the number of polynomials hTi and hi defining Xe
T and Xe respectively.

Furthermore a and b are the analogous of d1 and d2 in (3.13). The constraint z
(≤a)
0 = w̄

(≤a)
0

enforces the initial occupation measure to describe a given probability distribution on the
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initial extended state (including the probability density of p). This means that there is

no restriction on the type of the imposed initial probability distribution, as long as one

can compute the desired sequence of moments on a compact semi-algebraic set.

Remark 4.1 z is the vector of moments corresponding to the average controlled occupa-

tion measure.

After solving the relaxations defined over (4.6), we expect zT to contain approxima-

tions of the moments corresponding to the terminal occupation measure. Therefore, zT
characterizes the probability distribution supported on the final state set. Furthermore, z

contains approximations of the moments corresponding to the average controlled occupa-

tion measure, that involve time as well as state and control variables. One can use these

moments in order to reconstruct the different variables through the different approaches

explained in Chapter 3.

4.3.1 Solving moments problems

In the previous section, we showed that the problem of optimal control under uncertain-

ties on initial states as well as model parameters, can be addressed using the moment

optimization framework. Thereby, one can derive finite-dimensional moment problems

corresponding to problem (4.4), where the cost function is a linear combination of mo-

ments corresponding to the defined occupation measures, subject to, linear equality con-

straints on moments resulting from the system dynamics, semi-definite constraints (on the

moment and the localizing matrices) to guarantee that a sequence of moments has a rep-

resenting nonnegative measure on a compact support, and equality moments constraints

which impose the probability distribution on a compact support of the initial extended

state.

The SDP relaxations defined on problems (4.6) can be solved with Gloptipoly [45],

using SeDuMi [86] or MOSEK [71] as SDP solvers.

4.4 Technical aspects

It is worth recalling that in order to properly link moments to measures, one need to

satisfy the additional condition on the definition of the different measures support sets,

presented in Assumption 3.1 in Chapter 3. These additional constraints need to be im-

plemented in the constraints of the robust OCP presented in (4.4).

Furthermore, since we are working with polynomials that might have relatively high

degrees depending on the relaxation order, we need to scale the different variables in-

volved in the optimal control problems, such as time and state variables, in order to avoid

numerical instability.
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Since solving moment problems such as (4.6) provides approximations of the moments

corresponding to occupation measures, an interesting question that could be asked is: can

we have a certificate of convergence to the global optima? Indeed, there exists a certificate

of convergence that is based on the rank of the moment matrices up to some degrees, see

[53] for more details. This certificate is provided by Gloptipoly [45] after computing the

moments approximations. Although for complex problems such as optimal control ones,

the rank conditions are often not fulfilled and the only guarantee that one can have is that

the obtained cost is a lower bound of the optimal one, we still can have approximations of

the moments corresponding to the different occupation measures that can help us to re-

construct the different trajectories. Although these control functions are approximations

and not the optimal ones, in the context of control for cancer dynamics, the moment

optimization approach allows to have an idea of the control structure, what drugs are

preferable to be injected first and at what frequency etc.

Note that this approach is applicable for low dimensional systems having at most

six variables (states and controls) [43]. Furthermore, we will see in the sequel that this

methodology requires a considerable computational time depending on the relaxation

degree, since solving SDP problems in high dimension is numerically expensive.

4.5 Case study and numerical simulations

In this section, we present a case study where we propose to solve nominal and robust

optimal control problems for system (4.1). As explained previously, the nominal OCP

considers nominal values for the model parameters, whose values are the expectations of

the model parameters. Whereas for the robust OCP, some parameters are considered to

be uncertain and are defined through probability distributions.

For the nominal OCP, we will present numerical simulations for different cost functions,

in order to show how one needs to set the cost function parameters, in order to have the

desired state trajectories behavior. Furthermore, we will present numerical simulations

for the robust case and highlight the importance of taking into account the parametric

uncertainties in optimal control problems. This will lead us to a comparison between the

nominal and robust profiles in terms of control robustness to uncertainties.

Moreover, we will provide an idea on the number of moments involved, as well as the

required computational time to solve optimal control problems via moment optimization.

We will also show how this time evolves with respect to the relaxation order.

4.5.1 Nominal optimal control problem

Similarly to [32] and [82], we assume that the initial state of the system dynamics (4.1)

is (x1(0), x2(0)) = (600, 0.1), we also consider that the maximum drug dose is 1 for both

chemotherapy and immunotherapy. Furthermore, we add constraints on the immune cells
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density and the number of tumor cells in order to ensure the compactness of the state set

X. Another constraint on the final tumor size is imposed in order to drive the tumor to

the benign region. The nominal (i.e. considering nominal values of model parameters)

optimal control problem that we propose to solve for t ∈ [0, 60] is the following:

min
u1(·),u2(·)

J(x1(·), x2(·), u1(·), u2(·))

s.t. ẋ1 = µCx1

(
1− x1

x∞

)
− γx1x2 − κXx1u1,

ẋ2 = µI
(
x1 − βx1

2
)
x2 − δx2 + α + κY x2u2,

x1(0) = 600, x2(0) = 0.1,

x1(60) ≤ 100,

0 ≤ u1 ≤ 1 , 0 ≤ u2 ≤ 1,

0 ≤ x1 ≤ 780 , 0 ≤ x2 ≤ 5,

t ∈ [0, 60].

(4.7)

The cost J is chosen according to the objectives that one seeks to achieve. It can

contain many terms such as final states, integrals of state trajectories and control inputs,

with different penalties in order to achieve a trade-off between the different control objec-

tives. Problem (4.7) can be reformulated in the framework of moment optimization via

GloptiPoly [45], as explained in Chapter 3, and can be solved using YALMIP [62] and the

semidefinite programming solver MOSEK [71].

Note that in this chapter we consider that the minimal allowed density of immune

cells is 0, in order to solve a problem that is similar to what we find in the literature. In

Chapter 5, we will further investigate this problem by adding a constraint on the minimal

density of immune cells, in order to see its effects on the derived control profiles.

The control inputs are approximated, based on the knowledge of their moments, us-

ing Christoffel-Darboux kernel briefly described in Chapter 3, see [65] for more details.

Although it is not mentioned in problem (4.7), for practical reasons previously explained,

time and states trajectories are scaled to [0, 1] in the implementation, therefore, the con-

trol inputs presented in this chapter are computed for scaled dynamics.

Let’s consider for instance the minimization of the following cost

J1 = x1(60). (4.8)

Figure 4.1 shows the approximations of the control inputs that we obtained after

solving the reformulated problem corresponding to (4.7) with J = J1. The evolution of

state trajectories with these controls is presented in Figure 4.2, we can see that the tumor

burden decreases slowly to reach the final value that lies in the benign region.

Now, if we want the tumor size to decrease faster, we can minimize the following cost:

J2 =

∫ 60

0

x1(t)dt. (4.9)
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Figure 4.1: Open-loop control input profiles for chemotherapy (u1) and immunotherapy

(u2), for J1.
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Figure 4.2: States trajectories for J1.

The approximated control inputs are presented in Figure 4.3, we can notice that the

chemotherapy profile is aggressive and persistent, this is due to the choice of the cost



53 4.5. CASE STUDY AND NUMERICAL SIMULATIONS

which considers only the minimization of the integral of x1(t). Such controls might not

be allowed practically because of the high toxicity of the cytotoxic agent.
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Figure 4.3: Open-loop control input profiles for chemotherapy (u1) and immunotherapy

(u2), for J2.

Figure 4.4 shows that the state corresponding to the tumor cells, x1, goes to 0 faster

than in Figure 4.2. Furthermore, we can see that the immune cells density goes up rapidly

to reach relatively high values.

Since chemotherapy has damaging side effects on the human body, it is common to

frame an optimal control problem so that the total amount of drugs is penalized [25]. It is

also important to penalize the use of immunotherapy since the available amount is limited,

and for some treatment types, immunotherapy can even be toxic [70]. Furthermore, it is

important to look at the evolution of the immune system, because the immune-weakening

has damaging effects on the human body. Thereby, one can easily notice that the choice

of the cost J , to be minimized, is very important in order to meet the control objectives.

Now, we propose to minimize the following cost:

J3 = x1(60) + 0.4

∫ 60

0

x1(t)dt+ 0.01

∫ 60

0

u1(t)dt+ 0.01

∫ 60

0

u2(t)dt. (4.10)



CHAPTER 4. ROBUST OCP FOR A CANCER MODEL 54

0 5 10 15 20 25 30 35 40 45 50 55 60
−200

0

200

400

600

t (days)

x
1

Tumor and immune cells density evolution

0 5 10 15 20 25 30 35 40 45 50 55 60
0

1

2

3

4

t (days)

x
2

Figure 4.4: States trajectories for J2.
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Figure 4.5: Open-loop control input profiles for chemotherapy (u1) and immunotherapy

(u2), for J3.
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As we can see in Figure 4.5, penalizing the control inputs integrals allows to reduce

considerably the injected drugs amounts. In Figure 4.5, we show the graphs in the time

interval [0, 5] to emphasize the differences between the two profiles, since for t ∈ [5, 60],

u1(t) = 0 and u2(t) = 0.
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Figure 4.6: States trajectories for J3.

Figure 4.6 shows that the states converge to the benign equilibrium at around 30

days. Therefore, the control profiles approximated by minimizing J3 allow to satisfy the

standard control objectives, since they drive the states to the benign equilibrium (xb, yb).

Furthermore, we can notice that these drug injection profiles minimize rapidly the tumor

while maintaining a relatively strong immune system.

Table 4.2 presents the evolution of the number of moments involved in the moment

problem corresponding to (4.7), as well as the evolution of the required computational

time with respect to the relaxation order r. We can notice that both the number of

moments and the computational time increase considerably when the relaxation order

increases. Furthermore, we can see in Table 4.2 that the cost is the same for the three

values of r, therefore we chose to stop the relaxation order at 8 in order to have a low

computational time. Figure 4.7 gives an idea about the computational complexity of the

nominal optimal control problems using moments, with respect to the relaxation order.
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Table 4.2: Number of moments and the required computation time with respect to the

relaxation order r for the nominal OCP, the simulations have been performed on a hp

EliteBook 2.60GHz Intel Core i7.

Relaxation order r 8 10 12

Number of moments 3333 6760 12538

Average computational time 0.67mn 5.16mn 42.03mn

Cost −5.89 · 10−3 −5.89 · 10−3 −5.89 · 10−3
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Figure 4.7: Computational complexity of the nominal OCPs for J = J3.

Although the controls in Figure 4.5 satisfy standard objectives in the context of nom-

inal optimal control, we will show that when the dynamics are subject to parameters

uncertainties, these controls will not meet the goals set in the optimal control problem.

4.5.1.1 Robustness analysis for the nominal profiles

Let’s assume that the tumor growth rate µC and the natural influx of immune cells α are

uncertain and described by the following distributions: µC ∼ N (0.5599, 0.1) truncated

in [0, 1.1198] and α ∼ N (0.1181, 0.05) truncated in [0, 0.2362]. The expectations of these

distributions are the parameters values presented in Table 4.1. The truncation interval

upper bound is the double of the expectation in order to keep the interval symmetric with
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respect to the parameters mean value.

Remark 4.2 The considered distributions are not based on practical knowledge of the

system parameters, they are chosen only to illustrate the problem of handling parametric

uncertainties. The robust schedules will be designed considering truncated distributions in

order to satisfy compactness and positivity conditions.
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Figure 4.8: Distribution of µC .
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Figure 4.9: Distribution of α.
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Remark 4.3 Note that the lower bounds of the truncation intervals for the distributions of

µC and α are chosen to be 0 in order to consider small parameters values. Furthermore,

for the tumor growth rate µC, we can see in Figure 4.8 that due to the choice of the

distribution, the probability to have µC = 0 is almost 0. Moreover, for the natural influx

of immune cells α, we can see in Figure 4.9 that the probability to have α = 0 (meaning

that there is no natural influx of immune cells) is very low.

Figure 4.10 presents 100 Monte-Carlo simulations, using the nominal drug profiles,

with random values of µC and α (the random selection is carried out according to their

corresponding probability distributions). It shows that there is a probability of 19% for

the states to converge to the malignant equilibrium (xm, ym) (i.e. leading to patients

death). Therefore, it is crucial to consider the potential uncertainties on model parame-

ters.
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Figure 4.10: Monte-Carlo tests on the nominal schedules.

4.5.2 Robust optimal control problem

Let’s consider that the tumor growth rate µC and the rate of immune cells influx α are

uncertain parameters. As previously, we assume that µC ∼ N (0.5599, 0.1) truncated in

[0, 1.1198] and α ∼ N (0.1181, 0.05) truncated in [0, 0.2362].

Let’s extend system (4.1) to the following dynamics:

ẋ1 = µCx1 −
µC
x∞

x1
2 − γXx1x2 − κXx1u1,

ẋ2 = µI
(
x1 − βY x1

2
)
x2 − δY x2 + κY x2u2 + αY ,

µ̇C = 0,

α̇Y = 0.

(4.11)
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The state extension in (4.11) allows to characterize µC and αY by their probability

distributions, and to impose their time invariant characteristic through the dynamics

µ̇C = 0 and α̇Y = 0. Thus, supposing that σµC (µC) and σαY (αY ) denote the probability

distributions of parameters µC and αY , the optimal control problem to be solved should

have as initial condition

µ0 (t, x1, x2, µC , αY ) = δ0(t) δx1(0)(x1) δx2(0)(x2) σµC (µC) σαY (αY ),

imposed through moments of the initial measure.

Similarly to problem (4.7), one can reformulate the robust optimal control problem

with dynamics (4.11) by including the moments of the parameters distributions.
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Figure 4.11: Chemo- and immunotherapy schedules (robust and nominal), for J3.

Figure 4.11 presents a comparison between nominal and robust injection schedules,

approximated after minimizing the cost J3 in the nominal case and Ep [J3] in the robust

case (expectation of J3 with respect to the uncertain parameters), since we have a flow

of trajectories generated by the parameters distributions. We can notice that similarly to
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Figure 4.12: Monte-Carlo tests on the robust schedules.

the nominal profiles, the robust ones are also single doses injected at the beginning of the

treatment. However, we can see that the robust profiles use more amounts of drugs which

highlights the importance of taking into account parametric uncertainties in the optimal

control problem.

Figure 4.12 presents 100 Monte-Carlo simulations using the approximated robust in-

jection profiles. We can notice that the probability of convergence to the malignant

equilibrium has been reduced from 19%, using the nominal profiles, to 8%, in the case

of robust schedules. Note that the moment optimization approach provides solutions al-

lowing to satisfy the imposed constraints. Therefore, if one obtains the optimal control

input profiles, no constraint violation should occur and the probability of convergence to

the malignant equilibrium should be 0%. However, since the control input profiles are

approximated, some constraint violation might occur.

4.5.3 Cost-based performance comparison

Problem (4.7) can be written in a compact form as follows :

min
u1(·),u2(·)

J(x1(·), x2(·), u1(·), u2(·))

s.t. gC(x1(·), x2(·), u1(·), u2(·)) ≤ 0.
(4.12)

In order to effectively compare the performance of nominal and robust schedules, we

write the asymptotically equivalent problem of (4.12) as :

min
u1(·),u2(·)

J(x1, x2, u1, u2) + ρ max(gC(x1, x2, u1, u2), 0), (4.13)
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where ρ ∈ R is sufficiently big ρ = 104.

Using the asymptotic equivalence between (4.12) and (4.13), we computed the costs

corresponding to nominal and robust profiles, based on Monte-Carlo simulations that we

carried out for both schedules. Table 4.3 and Figure 4.13 show that the mean and vari-

ance of the costs corresponding to robust schedules are considerably less than those of the

nominal costs. This is mainly due to the excessive number of constraints violations that

occur when applying nominal controls.
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Figure 4.13: Histograms of robust and nominal costs.

Table 4.3: Statistics of the normalized costs (nominal and robust).

Mean Variance

Nominal cost 0.20 0.14

Robust cost 0.12 0.07

Table 4.4 presents a comparison between the computational times of the nominal op-

timal control problem and the robust one. We notice a considerable difference in the

computational cost for the same relaxation order, it is mainly due to the increase of

the problem dimension, after performing dynamics extension to solve the robust OCP.

Increasing the relaxation order r allows to have better approximations of the moments,

however, it increases the problem dimension and therefore, the computational time.
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Table 4.4: Computation times on hp EliteBook 2.60GHz Intel Core i7.

Relaxation order r Average computation time Number of moments

Nominal OCP 8 0.69mn 3333

Robust OCP 8 62.00mn 22022

4.6 Conclusion and discussion

We presented in this chapter some results on the application of moment optimization

theory to schedule cancer treatment. We highlighted the importance of taking into ac-

count parametric uncertainties in the optimal control problem. Furthermore, we designed

robust and optimal combined chemo- and immunotherapy injection profiles that allow to

meet specific objectives.

The moment optimization approach can be very promising for many applications,

since it allows to reconstruct optimal injection schedules for a class of nonlinear systems

with parametric uncertainties considerations. However, it has some limitations, mainly

the restriction on polynomial dynamics and the limited dimension (state and control vari-

ables) that can be handled. Although the required computational time is high in the

case of solving a robust OCP, in some applications, it remains crucial to guarantee robust

performances.

In the next chapter we will explore the consequences of adding a new term in the

model that stands for the detrimental effects of chemotherapy on immune cells. Further-

more we will investigate the effects of adding an additional minimal immune cells density

constraint on the control profiles and the state trajectories.



Chapter 5

Robust Optimal Scheduling of

cancer treatment with considerations

on chemotherapy detrimental effects

As pointed out in Chapter 2, the last decades witnessed a real interest in modeling the

interaction dynamics between the cancer and the human body in order to better un-

derstand and to analyze these phenomena. Since the dynamics of cancer growth are

extremely complex, we can find many different models in the literature, depending on

the therapies that are used, for example, or the different phenomena that occur in the

human body. According to [20], for the specific case of cancer-immune interactions, the

mathematical modeling of the entire immune system can be a very complex task, that is

one of the reasons for which researchers focus on the elements of the immune system that

are known to be significant in controlling the tumor growth.

In this chapter, we further investigate the mathematical model presented in Chapter 4,

that describes the interactions between the cancer and the immune system. This model

takes into account the detrimental effects of chemotherapy on both cancer and immune

cells populations. The problem of cancer treatment scheduling is considered as a robust

optimal control problem (ROCP) in the sense that we derive statistically optimal com-

bined strategies of chemo- and immunotherapy treatments, assuming the knowledge of

the probability distribution of the chemotherapy killing parameter (effects on the immune

population). Furthermore, we add in the ROCP a health constraint on the minimal al-

lowed immune cells density, and we use the moments optimization framework presented

in Chapter 3, which allows to explicitly consider uncertainties on model parameters.

In Section 5.1, we present the dynamical model that we use for numerical simulations.

In Section 5.2, we present the optimal control problem to be solved with nominal parame-

ters values and we highlight the consequences of adding the new term in the drug profiles.

The robust optimal control problem to be solved and its corresponding simulation results

are presented in Section 5.3. Finally, in Section 5.4, we summarize the work that we

present in this chapter.

63
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5.1 Dynamical model

Similarly to the model illustrated in Chapter 4, we consider in this chapter a modified

version of Stepanova’s model [84], where we replace the exponential growth term by a

logistic one

(
f(x1) = µCx1

(
1− x1

x∞

))
, since the logistic term allows to bound the

number of cancer cells by x∞ which is more realistic.

Unlike the model considered in Chapter 4, we added to model (4.1) the term −ηY u1x2

in the dynamics ẋ2, which stands for the direct detrimental effects that chemotherapy

has on the immune system. This term has been introduced in [32], where the authors

proposed a generalized model, based on the Stepanova’s model presented in [84]. How-

ever, this model has neither been investigated as an optimal control problem nor been

considered in numerical simulations.

According to [55], the immune system can be effective in controlling small cancer vol-

umes, but for large volumes, the cancer dynamics overwhelms the immune systems, thus,

using a combined therapy is important to achieve patient recovery.

Let’s consider the following dynamics :

ẋ1 =µCx1 −
µC
x∞

x2
1 − γXx1x2 − κXx1u1,

ẋ2 =µIx1x2 − βY µIx2
1x2 − δY x2 + κY x2u2 − ηY u1x2 + αY ,

(5.1)

where x1 and x2 denote, respectively, the number of tumor cells and the density of effec-

tor immune cells (ECs), u1 and u2 are, respectively, the delivery profiles of a cytotoxic

agent and an immunostimulator. Figure 5.1 presents a scheme describing the different

interactions between the tumor and the immune system with the new parameter ηY .

TumorImmune cells

µC
αY

γX

µI

βY
δY

ηY

u1

κX

u2
κY

Figure 5.1: A scheme showing the interactions in model (5.1), between the tumor and the

immune system, in particular, note the parameter ηY that is introduced in this chapter

yielding a model that differs from the one used before in Chapter 4.

As shown in Figure 5.2, the uncontrolled model (5.1) has two locally asymptotically

stable equilibriums. The macroscopic malignant equilibrium is (xm, ym) = (735.9, 0.032)

and the benign one is (xb, yb) ' (34.98, 0.53), they are the same as in Chapter 4 since the
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new term does not affect the model equilibriums. The trajectory in black represents the

evolution of uncontrolled states starting from the initial condition x0 = (500, 0.5). In this

chapter, we are interested in driving the initial condition x0 = (500, 0.5), which lies in

the unsafe region, to the benign equilibrium without violating health constraints, while

considering uncertainties on the model parameters.

The initial condition represents the patient health conditions, it can be approximated

before the treatment period. Note that the choice of x0 is made only for illustrative pur-

poses, the methodology that we present in this chapter remains applicable for other initial

states values.
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Figure 5.2: Phase portrait of model (5.1), that trajectory in black represents the evolution

of the states starting from x0 = (500, 0.5).

5.2 Optimal design of combined cancer therapies with

chemotherapy detrimental effects

We will first consider a nominal value of ηY in order to solve a nominal optimal control

problem, then we will consider ηY as an uncertain parameter, with a given probability
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distribution, and solve the robust optimal control problem. Finally, we compare the ef-

fects of both profiles (nominal and robust) for a family of realizations of the parameter

vector values, in order to infer on the consequences of adding the chemotherapy-induced

damage term and to highlight the importance of considering it in the therapy scheduling

design.

Let’s suppose that the initial condition is (x10, x20) = (500, 0.5), we can see in Fig-

ure 5.2 that without control, the trajectory corresponding to this initial state converges

to the malignant equilibrium.

Similarly to Chapter 4, we consider that the maximum drug dose is 1 for both

chemotherapy and immunotherapy. Furthermore, we add constraints on the immune

cells density and the number of tumor cells in order to ensure the compactness of the

state set. We also impose a constraint on the final tumor size in order to drive the tumor

to the benign region and a constraint on the minimal immune cells density, recommended

to prevent the body from excessive weakening of the immune system. The nominal (i.e.

considering a nominal value of ηY ) optimal control problem that we propose to solve for

t ∈ [0, 60] is the following:

min
u1(·),u2(·)

J(x1(·), x2(·), u1(·), u2(·))

s.t. ẋ1 = µCx1

(
1− x1

x∞

)
− γXx1x2 − κXx1u1,

ẋ2 = µI
(
x1 − βY x1

2
)
x2 − δY x2 + αY + κY x2u2 − ηY u1x2,

x1(0) = 500, x2(0) = 0.5,

x1(60) ≤ 100,

0 ≤ u1 ≤ 1 , 0 ≤ u2 ≤ 1,

0 ≤ x1 ≤ 780 , 0 ≤ x2 ≤ 5,

x2 ≥ 0.1,

t ∈ [0, 60].

(5.2)

As previously mentioned , in terms of control of cancer dynamics, the expression of the

cost J involves many terms that are function of states and control inputs, with different

penalties in order to achieve a trade-off between the different control objectives. The cost

that has been implemented for this problem is presented bellow. We can reformulate Prob-

lem (5.2) in the framework of moments optimization via GloptiPoly 3 [45], as explained

in Chapter 3. Similarly to Chapter 4, we solved the moments problem corresponding

to (5.2) using YALMIP [62] and the semidefinite programming solver MOSEK [71]. We

approximated the control input profiles, with the moments of the different occupation

measures, using the Christoffel-Darboux kernel approach [65]. Furthermore, we scale the

time and the state trajectories to [0, 1], for the practical reasons previously explained.

Therefore, in this chapter, the control inputs are computed for scaled dynamics.

We mentioned in Chapter 4 the importance of considering chemotherapy damaging



67 5.2. OPTIMAL DESIGN OF COMBINED CANCER THERAPIES

side effects on the human body in the optimal control problem. Thereby, it is crucial to

minimize the total amount of injected chemotherapy. It is also important to minimize

the use of immunotherapy since the available amount is limited, and for some treatment

types, immunotherapy can even be toxic [70]. Therefore, one needs to take into account

all this information in the definition of the cost function. Here, we focus on the assessment

of the methodology by taking the following cost :

J = 10x1(60) + 4

∫ 60

0

x1(t)dt+ 0.01

∫ 60

0

u1(t)dt+ 0.1

∫ 60

0

u2(t)dt.

In Figure 5.3, we show the drug delivery profiles in the time interval [0, 5] to highlight

the treatment duration, since for t ∈ [5, 60], u1(t) = 0 and u2(t) = 0. We can see in

this figure that, for ηY = 1, the chemotherapy profile is a considerable injection at the

beginning of treatment followed by a one day maximal dose injection of immunotherapy.

Figure 5.4 shows the time evolution of state trajectories. We can notice that the tumor

burden is considerably reduced during the five first days, due to the considerable amount

of chemotherapy drugs injected at the beginning. We can also notice that this important

injection of chemotherapy induced a decrease in the density of immune cells (due to the

term −ηY u1x2) in the dynamics of x2. However, the minimal constraint is still respected

thanks to the immunostimulation (u2).

Although the control input profiles in Figure 5.3 allow to drive the state trajectories

to the benign equilibrium, without any constraint violation, we will show using Monte-

Carlo simulations, that when considering uncertainties on the effects of chemotherapy on

immune cells, the nominal control profiles will show a lack of robustness.

Let’s assume that ηY ∼ U ([0, 2]), this distribution is not based on practical knowledge

of the system parameters, it is chosen only to illustrate the problem of handling parametric

uncertainties. The methodology remains applicable for general probability distributions.

Figures 5.5 and 5.6 presents 100 Monte-Carlo simulations using the nominal profiles

with random values of ηY . Figure 5.7 shows the phase portrait corresponding to the

Monte-Carlo simulations. We can see in these figures that there are many violations of

the immune cells density constraint (i.e. leading to critical immune weakening of pa-

tients). Another point to notice is that, in some cases, there is a small tumor regrowth

due to the weakening of immune system. Therefore, it is crucial to consider the potential

uncertainties on chemotherapy detrimental effects.
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Figure 5.3: Nominal control input profiles (u1 and u2), for ηY = 1.

0 5 10 15 20 25 30 35 40 45 50 55 60
0

200

400

600

x
1

0 5 10 15 20 25 30 35 40 45 50 55 60
0

0.2

0.4

0.6

0.8

t (days)

x
2

Figure 5.4: States trajectories (x1 and x2) using nominal control profiles.
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Figure 5.5: Monte-Carlo tests on nominal control profiles, x1 trajectories.
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Figure 5.6: Monte-Carlo tests on nominal control profiles, x2 trajectories.
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Figure 5.7: Monte-Carlo tests on nominal control profiles, phase portrait.

5.3 Robust optimal scheduling of combined cancer

treatment

Let’s extend system (5.1) to the following dynamics:

ẋ1 = µCx1 −
µC
x∞

x1
2 − γXx1x2 − κXx1u1,

ẋ2 = µI
(
x1 − βY x1

2
)
x2 − δY x2 + κY x2u2 + αY − ηY u1x2,

η̇Y = 0.

(5.3)

The state extension in (5.3) allows to characterize ηY by its probability distribution,

as explained in Chapter 4. Similarly to problem (5.2), one can reformulate the robust

optimal control problem with dynamics (5.3) by including the moments of the distribution

of ηY . Thus, supposing that σηY (ηY ) denote the probability distribution of ηY , the optimal

control problem to be solved should have as initial condition

µ0(t, x1, x2, ηY ) = δ0(t) δx1(0)(x1) δx2(0)(x2) σηY (ηY ),

imposed through the moments of the initial measure.

Figure 5.8 shows the robust chemotherapy injection profile where we minimize the

expectation of the nominal cost J that we denote EηY [J ]. We can notice that compared

to the nominal case (Figure 5.3), the use of chemotherapy in the robust case has been
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considerably reduced in intensity but extended in time. This is due to the presence of con-

straint on the minimal immune cells density and the new term −ηY u1x2 which reduces

the amount of immune cells when chemotherapy concentration increases. The robust

chemotherapy schedule uses less than 3.5% of the maximal allowed dose, this concentra-

tion decreases slowly during the treatment period while in the nominal profile, it is a one

maximal dose at the beginning of treatment period.
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Chemotherapy delivery profile

Figure 5.8: Robust control input profile corresponding to chemotherapy (u1).

Figure 5.9 shows the immunotherapy profile, we can notice that the nominal and ro-

bust profiles of immunotherapy are almost the same, it is a one day maximal dose at the

beginning of the treatment period.
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Figure 5.9: Robust control input profile corresponding to immunotherapy (u2).
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Figure 5.10: Monte-Carlo tests on robust control profiles, x1 trajectories.

Similarly to the nominal case, we did 100 Monte-Carlo simulations on system (5.1),

using robust schedules, the results are presented in Figure 5.10 and 5.11. We can notice

in Figure 5.10 that the tumor volume takes more time to be reduced in the robust case.

However, as we can see in Figure 5.11, there is no immune constraints violation unlike

the nominal case.
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Figure 5.11: Monte-Carlo tests on robust control profiles, x2 trajectories.
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Figure 5.12: Monte-Carlo tests on robust control profiles, phase portrait.
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Figure 5.13: Costs comparison.

Figure 5.12 presents the phase portrait of the Monte-Carlo trajectories, showing that
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the state trajectories are considerably less dispersed than in the nominal case (Figure 5.7).

Figure 5.13 shows the distributions of nominal and robust costs, obtained using the

same cost based comparison methodology presented in Chapter 4. Furthermore, Table 5.1

presents the statistics of the two cost distributions. We can notice that both the mean

and the variance are smaller in the robust case than in the nominal one.

Table 5.1: Statistics of the normalized costs (nominal and robust).

Mean Variance

Nominal cost 0.39 0.05

Robust cost 0.30 1·10−4

5.3.1 Computational time comparison

In Table 5.2 we compare the required computational time for a relaxation order r = 8,

for both the nominal and robust cases. We notice that the computational time required

for solving the nominal OCP for r = 8 is the same as in Chapter 4, which is explained

by the fact that the system dimensions as well as the number of moments are the same

for both problems. We also notice that the computation time for the robust OCP with

r = 8 is considerably less than the one corresponding to the robust problem of Chapter 4,

since the number of moments is also smaller. This is due to the difference in the state

dimension after extension since in Chapter 4, we considered two uncertain parameters

(µC and αY ) adding thereby two extra states to the model. Whereas in this chapter we

considered only the parameter standing for chemotherapy detrimental effects on immune

cells (ηY ) as uncertain.

Table 5.2: Average computation times on hp EliteBook 2.60GHz Intel Core i7

Nominal OCP Robust OCP

Relaxation order r 8 8

Time 0.67mn 6.00mn

Number of moments 3333 8998

5.4 Conclusion

In this chapter, we presented numerical simulation results on optimal control under uncer-

tainties for a cancer interactions model. The model that we considered takes into account

the detrimental effects of chemotherapy on the immune system. Furthermore, we added
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in the OCP a minimal constraint on the density of immune cells.

Although the nominal profiles allowed to satisfy the constraints for a nominal scenario,

it turns out that when considering uncertainties on the chemotherapy effects on immune

cells, the tumor burden presents some oscillations and the minimal constraint on immune

cells might be violated.

Therefore, we solved a robust OCP which considers the chemotherapy killing param-

eter (effects of chemotherapy on immune cells) as an uncertain parameter, described by

a given probability distribution. We noticed that in this case the intensity of injected

chemotherapy is considerably reduced compared to the nominal case. Furthermore, the

constraints are satisfied and all state trajectories converge to the benign equilibrium.

Thus, we highlighted in this chapter the importance of taking into account the side ef-

fects of chemotherapy on immune cells as well as their eventual uncertain behavior.

Although the moment optimization approach does not allow to consider high dimen-

sional systems, it is interesting to use it for such problems in order to investigate the

consequences of adding new uncertain terms on the control profiles scheduling.
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Chapter 6

Robust domain of attraction

estimation for a cancer model

Estimating the region of attraction (RoA) of equilibrium points is a fundamental problem

in systems engineering [18]. This set, called also the domain or the basin of attraction,

contains the initial states that can be driven to a stable equilibrium point, without violat-

ing the specified constraints. Therefore, the estimation of regions of attraction is a very

important and still open field of research [6].

In practical problems, the systems are often affected by different types of uncertain-

ties. Hence, one of the challenging problems in the control of dynamical systems is the

estimation of robust regions of attraction for nonlinear and uncertain systems. According

to [11], the Lyapunov theory for ODEs initiated the notion of invariant sets for control

problems. Deriving the exact RoA for dynamical systems is a challenging task, therefore,

researchers focus on determining Lyapunov functions, since the sublevel sets of the latter

represent the boundaries of positively invariant sets [88]. In fact, a positively invariant

set, for a given dynamical system, is such that if it contains the states at a given time,

then, there is a guarantee that it will contain the state trajectories for the future.

One of the commonly used convex sets for the estimation of invariant sets are polyhe-

drons and ellipsoids. According to [6], invariant ellipsoids have been used in the literature

in order to estimate the regions of attraction of nonlinear systems. In [11], a detailed

review on invariant sets approaches is provided, with a specific comparison between poly-

hedrons and ellipsoids, in terms of estimation accuracy and flexibility. According to [12],

it is established, in terms of RoA estimation as well as robustness analysis, that the ellip-

soidal based approaches are conservative. In contrast to ellipsoids, polyhedral sets provide

less conservative solutions, although they might be computationally expensive.

The estimation of regions of attraction for linear systems has received a specific atten-

tion in the literature. There exist many works for this class of systems, see for example

[10], [11], [12] and [92]. In contrast to linear systems, the characterization of regions of

attraction for nonlinear systems is an open research topic. There exist some approaches,

that are based on convex difference inclusions (CDIs), allowing to estimate the RoAs for

79
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nonlinear systems, see [5], [38], [37], [40], [39]. Furthermore, in [77], the latter methods

were extended to characterize the RoAs for nonlinear systems, subject to different types

of uncertainties.

Moreover, there are other methods based on the moment optimization framework, al-

lowing to estimate the RoAs of polynomial dynamical systems and providing a hierarchy

of semi-algebraic outer (or inner) approximations of the RoA, by solving a sequence of

linear matrix inequalities (LMIs) problems, see [49] and [44]. However, as mentioned in

Part II, the moment optimization based methods are limited to low dimensional systems

and require a relatively high computational time. Therefore, extending these approaches

to uncertain systems might be challenging.

In the context of cancer treatment, the regions of attraction are interpreted as the

sets of initial health conditions (tumor volume and immune cells density for example), for

which there exists a treatment strategy such that the patient recovers, without any health

damage or side effect. Therefore, the characterization of this type of sets is essential for

the analysis of cancer related dynamical systems. Furthermore, since this class of systems

is known to be highly uncertain, it is crucial to estimate the RoA under uncertainties for

such systems.

There exist in the literature few works regarding the estimation of RoAs and robust

RoAs for cancer dynamical systems. We cite for example [28] and [91], where the au-

thors proposed different Lyapunov functions based approaches, to estimate the domain

of attraction of the tumor free equilibrium point corresponding to autonomous cancer

growth models, where no therapies are considered. Furthermore, in [78], an iterative pro-

cedure method, based on approximating the uncertain system with CDIs, was presented

to estimate the robust region of attraction of a tumor growth model with chemotherapy.

However, the model that we consider in this chapter has not been investigated in the

literature to estimate its controlled region of attraction.

This part is dedicated to the estimation of regions of attraction under parametric

uncertainties, for a model describing cancer dynamics in interaction with the immune

system as well as combined therapies. In this chapter, we propose a readily applicable

methodology that is in the same line of sliding mode control, in order to characterize

the region of attraction of a cancer dynamical model, using bang-bang control strategies.

Furthermore, this methodology will be used in order to derive an estimate of the robust

region of attraction, where the model parameters are considered to be uncertain. It is

worth emphasizing that this approach does not provide the control strategies to be ap-

plied, however, it provides the set of initial conditions, such that for every initial condition

in this set, there exists a control strategy allowing to drive the states to a benign stable

equilibrium. This can also be seen as to provide an estimate of the control invariant set

corresponding to the benign stable equilibrium.

This chapter is organized as follows: In Section 6.1, we present the cancer dynamical
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model, furthermore, we investigate the parametric space of this model and we analyze

the effects of parametric uncertainties on the model equilibrium points. In Section 6.2,

we present the methodology allowing to derive the RoA of the cancer benign equilibrium,

corresponding to the considered model. We use the latter approach in Section 6.3 in order

to derive an estimation of the robust RoA. Finally, Section 6.4 summarizes the work that

we present in this chapter and links it to the contribution of Chapter 7.

6.1 Dynamical model

We consider here the same model as in Chapter 5, describing the interaction between a

tumor and the immune system under the effects of a combined therapy:

ẋ1 = µCx1 −
µC
x∞

x2
1 − γXx1x2 − κXx1u1,

ẋ2 = µIx1x2 − βY µIx2
1x2 − δY x2 + κY x2u2 − ηY u1x2 + αY ,

x(0) = (x1(0), x2(0)) = x0,

(6.1)

where x1 and x2 denote, respectively, the number of tumor cells and the density of effector

immune cells (ECs), u1 and u2 are, respectively, the delivery profiles of a cytotoxic agent

(chemotherapy) and an immunostimulator. The initial state of system (6.1) is denoted

by x0.

Table 6.1 summarizes the definitions of the model parameters and their nominal val-

ues. We slightly changed the values of some parameters since with the previous set of

parameters values (used in Chapter 4 and 5 and taken from [32]), the domain of attrac-

tion for the uncontrolled system (6.1) (for u1 = 0 and u2 = 0) was unrealistically big.

This allows us to solve a problem which is more reasonable and realistic from a practical

point of view. Furthermore, we focus on the assessment of a methodology that remains

applicable for different nominal parameters values.

Let’s denote by x = (x1, x2) and u = (u1, u2), respectively, the state and the con-

trol input vectors. The uncontrolled nominal model (6.1) (for u = (0, 0)) has two lo-

cally asymptotically stable equilibrium points. The macroscopic malignant equilibrium is

xm = (766.44, 0.08) and the benign one is xb = (41.45, 0.95).

In standard control problems for cancer dynamics, the objective of the treatment

consists in general in driving the state trajectories from the region of attraction of the

malignant equilibrium to the region of attraction of the benign equilibrium. This can

be seen as to switch an acute tumor to its chronic state. In this part, we are interested

in characterizing the set of initial conditions (tumor volume and immune density) from

which the state trajectories can be driven to the safe region.

In the context of cancer treatment, the determination of the region of attraction is an

interesting problem, since it provides an information on the possibility of recovery for a

patient, given the initial measured health conditions. We mean by recovery reaching a
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Table 6.1: Definitions and nominal values of the parameters used in model (6.1).

Parameter Definition Numerical value

µC tumor growth rate 1.0078 ·107 cells/day

µI tumor stimulated 0.0029 day−1

proliferation rate

αY rate of immune 0.0827 day−1

cells influx

βY inverse threshold 0.0040

γX interaction rate 1 ·107 cells/day

δY death rate 0.1873 day−1

κX chemotherapeutic 1 ·107 cells/day

killing parameter

κY immunotherapy 1 ·107 cells/day

injection parameter

x∞ fixed carrying capacity 780 ·106 cells

ηY chemo-induced loss 1

on immune cells

safe region where the tumor is considered to be harmless, and there is no need to inject

drugs. The safe region corresponds to the region of attraction of the locally asymptot-

ically stable benign equilibrium xb without therapies. This set as well as the region of

attraction under treatment will be properly defined in the sequel.

Moreover, we will use the characterization of the domain of attraction of system (6.1)

to derive an estimate of the robust region of attraction when the model parameters are

considered to be uncertain and belong to a given hyperbox.

In this section, we will provide necessary and sufficient conditions for the equilibriums

of system (6.1) to exist, given the vector of model parameters p. We will also investigate

the parametric space and show the equilibrium points distributions. Furthermore, we will

provide an estimate of the region of attraction of the benign equilibrium xb when nominal

parameters are considered (the parameters values in Table 6.1).

6.1.1 Model equilibriums

We are interested in finding a general equation to obtain the equilibrium points of

model (6.1) when no control is applied (ie: u = (0, 0)). Therefore, we need to solve

the following equations:
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ẋ1 =µCx1 −
µC
x∞

x1
2 − γXx1x2 = 0, (6.2)

ẋ2 =µI
(
x1 − βY x1

2
)
x2 − δY x2 + αY = 0. (6.3)

The nontrivial solution of (6.2) is:

x1 =
x∞
µC

(µC − γXx2) . (6.4)

By replacing (6.4) in (6.3), we obtain that solving ẋ2 = 0 implies solving the following

polynomial equation:

− µIβY x
2
∞γ

2
X

µ2
C

x3
2 +

(
2µIβY x

2
∞γX − µIx∞γX
µC

)
x2

2 +
(
µIx∞ − µIβY x2

∞ − δY
)
x2 + αY = 0.

(6.5)

We denote by a(x2) the monic polynomial corresponding to the polynomial in (6.5) as

follows:

a(x2) = x3
2+µC

(
µIx∞γX − 2µIβY x

2
∞γX

µIβXx2
∞γ

2
X

)
x2

2+µ2
C

(
δY + µIβY x

2
∞ − µIx∞

µIβY x2
∞γ

2
X

)
x2−

µ2
CαY

µIβY x2
∞γ

2
X

.

(6.6)

This notation will be used in the sequel in order to investigate the parametric space cor-

responding to model (6.1).
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Figure 6.1: Phase portrait of (6.1) with the three equilibrium points.
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Considering the nominal parameters in Table 6.1, the polynomial (6.5) has three real

solutions. The state x1 corresponding to the number of tumor cells can be obtained

through (6.4) for each root of (6.5). The three equilibriums of system (6.1) are the benign

and the malignant ones, which are locally asymptotically stable, and the saddle point

which separates the regions of attraction of the benign and malignant equilibriums (see

Figure 6.1).

6.1.2 Estimating the domain of attraction of the benign equi-

librium

Let’s denote by p ∈ P ⊂ Rnp
+ the vector of dimension np = 9 containing the parameters of

model (6.1) such that:

p = (µC , µI , αY , βY , γX , δY , κX , κY , ηY )T . (6.7)

The uncontrolled system (6.1) can be written in the following form:

ẋ = F (x, p), x(0) = x0, (6.8)

where x0 stands for the initial state.

Let φ(t, x0, p) be the solution of (6.8) evaluated at time t ≥ 0 and corresponding to

the state initial condition x0 and the parameters vector p. We denote by xpb the benign

equilibrium of system (6.1) for a given parameters vector p. Note that the existence of a

benign equilibrium depends on the vector of parameters p. We will provide in the sequel

necessary and sufficient conditions for the existence of such an equilibrium.

Definition 6.1 The RoA Ωp
0 of the benign equilibrium of the uncontrolled system (6.8)

for a given parameters vector p is defined as follows:

Ωp
0 =

{
x0 ∈ R2

+ | lim
t−→∞

φ(t, x0, p) = xpb

}
. (6.9)

The region of attraction Ωp
0 characterizes the set of initial states that can be driven to

the benign equilibrium without any control action. This set can be seen as the safe region

previously explained, since there is a guarantee that all trajectories having as initial state

x0 ∈ Ωp
0, converge to the benign equilibrium xpb after some time, and without control.

Therefore, Ωp
0 can be used as a target set for any control strategy.

Let’s denote by pnom ∈ Rnp
+ the vector containing the nominal parameters of model (6.1)

(presented in Table 6.1), such that:

pnom = (1.0078, 0.0029, 0.0827, 0.004, 1, 0.1873, 1, 1, 1)T . (6.10)

As mentioned in [32], finding an analytic description for the domain of attraction of

the benign equilibrium denoted Ωpnom
0 might be challenging. However, there exist some

methods for approximating these sets, see for example [41] and [35].
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Definition 6.2 We denote by Ω̂pnom
0 an estimate of the nominal uncontrolled RoA of the

benign equilibrium denoted Ωpnom
0 .

Note that xpnomb is the same previously defined benign equilibrium point xb = (41.45, 0.95),

when nominal parameters are considered.

Figure 6.2 shows the phase portrait of system (6.1) with an estimation of the nominal

uncontrolled region of attraction of the benign equilibrium. We can notice that this set

is considerably smaller than the region of attraction of the benign equilibrium with the

previous set of parameters used in Chapter 4 and 5, see Figure 5.2.

In the context of standard control, where deterministic parameters are considered, the

set shown in Figure 6.2 can be used as a target set for the defined control strategy, since

all the trajectories starting in this set converge to the corresponding benign equilibrium

without any control action.
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Figure 6.2: Phase portrait of (6.1) with nominal parameters pnom, estimate of the nominal

uncontrolled RoA of the benign equilibrium Ω̂pnom
0 in dashed cyan.

6.1.3 Parametric space investigation

In the previous section, we presented the general equations providing the equilibriums of

system (6.1). The roots of the polynomial (6.6) can be either real or complex depending

on the parameters vector p. In this chapter, we are interested in providing an estimation
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of the robust region of attraction of system (6.1) subject to parametric uncertainties.

Therefore, it is interesting to investigate the parametric space, since there might be some

inadmissible parameter vectors, for which the polynomial (6.6) has complex roots, this

case being unrealistic in the context of cancer dynamics modeling.

In the sequel, we provide necessary and sufficient conditions for system (6.1) to have

real distinct equilibrium points. Furthermore, we illustrate these conditions with ex-

amples in both cases, when the polynomial equation allowing to derive the equilibrium

points of system (6.1) has only real roots, as well as in the case when it has complex roots.

Theorem 6.1 The system (6.1) for a given parameters vector p has three real distinct

equilibrium points if and only if the following condition is satisfied:

H(ap) :=

 s0 s1 s2

s1 s2 s3

s2 s3 s4

 � 0 (6.11)

where ap stands for the coefficients vector corresponding to the polynomial a(x2) (6.6),

and H(ap) denotes the Hermit matrix of the polynomial a(x2). The coefficients of the

Hermit matrix s0, s1, s2, s3 and s4 have the following expressions:

s0 = 3

s1 = µC

(
2βx∞ − 1

βY x∞γX

)

s2 =
µ2
C

µIβ2
Y x

2
∞γ

2
X

(µI − 2δY βY − 2µIβY x∞ + 2µIβ
2
Y x

2
∞)

s3 =
µ2
C

µIβ3
Y x

3
∞γ

3
X

(−µCµI + 3µCµIβY x∞ − 3µCµIβ
2
Y x

2
∞ + 8µCµIβ

3
Y x

3
∞ + 3µCβY δY

−6µCµIβ
2
Y x∞δY − 6µCµ

2
Iβ

3
Y x

3
∞ + 3αY β

2
Y x∞γX)

s4 = (1− 4βY x∞ + 4β2
Y x∞)

(
µ4
C (1− 4βY x∞ + 4β2

Y x
2
∞)

β4
Y x

4
∞γ

4
Y

− 4µ4
C (δY + µIβY x

2
∞ − µIx∞)

µIβ3
Y x∞x

4
∞γ

4
X

)

The proof of Theorem 6.1 is given in Appendix A. The condition (6.11) provided by

Theorem 6.1 is satisfied if and only if the eigenvalues of the Hermit matrix H(ap) are

strictly positive. Let’s denote by Λ the vector containing the eigenvalues of the Hermit

matrix H(ap).

Example 6.1 Considering the vector of nominal parameters pnom defined in Table (6.1),

we check the condition in Theorem 6.1 by computing the eigenvalues of the corresponding

Hermit matrix:

Λ =

 0.9543

0.7176

0.0175


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we can notice that the condition of Theorem 6.1 is satisfied, which is directly related to the

fact that system (6.1) has the three real distinct equilibrium points (41.45, 0.95) , (224.64, 0.72)

and (766.44, 0.02) (see Figure 6.1).

Example 6.2 Let’s consider the following parameters:

µC = 1.1497

µI = 0.0024

δY = 0.2210

αY = 0.0739

βY = 0.0046

γX = 1.0391

x∞ = 780

In this case, we obtain that the Hermit matrix has the following eigenvalues:

Λ =

 −0.003

0.5902

6.1589


which does not satisfy the condition in Theorem 6.1 since we have one negative eigenvalue.

The roots of polynomial (6.6) obtained for this set of parameters are the following:

x2 =

(
0.98± 0.06i

0.02

)
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Figure 6.3: Example of the phase portrait of system (6.1), when its corresponding poly-

nomial (6.6) has two complex roots.
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In this case, we have only one real equilibrium point (769.80, 0.02) corresponding to

the malignant equilibrium. Figure 6.3 shows the phase portrait corresponding to the set

of parameters considered in this example. We can see that this phase portrait does not

have the same characteristics as in Figure 6.1, where we have two locally asymptotically

stable equilibria, the benign one corresponding to an acute tumor and the malignant one

corresponding to its chronic state as well as the real saddle point.

The condition of Theorem 6.1 allows us to check the admissibility of a given parame-

ters vector. In addition to the satisfaction of this condition, one can check the positivity

of the real equilibrium points after solving (6.5).

Definition 6.3 (Admissibility of p) We say that a vector of parameters p is admissible

if the condition of Theorem 6.1 is satisfied and the real distinct roots of (6.6) are positive.

Definition 6.3 will be used in the sequel in the algorithm that we suggest to estimate

the robust region of attraction of system (6.1).
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1.2
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x
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Saddle points
Benign equilibriums
Malignant equilibriums

Figure 6.4: Distribution of equilibrium points under uncertainties, in red the benign

equilibriums, in blue the saddle points and in green the malignant equilibriums.
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6.1.4 Equilibrium points distribution

Let’s consider that the vector of model parameters p is unknown and belong to the fol-

lowing interval:

[0.9pnom, 1.1pnom] , (6.12)

where pnom stand for the vector containing nominal parameters in Table 6.1. We can

draw the distribution of the equilibrium points of model (6.1), using Monte-Carlo tests

corresponding to random selections of the model parameters in the given interval.

Figure 6.4 shows the distribution of the equilibriums of system (6.1) for 1600 unifor-

mally distributed samples of model parameters in the given interval. This figure shows

that the malignant equilibrium points are considerably less dispersed than the benign ones

and the saddle points. For this choice of uncertainties interval, all the selected parameters

vectors were admissible.

The distribution of the benign equilibrium points presented in Figure 6.4 will be used

in Chapter 7, in order to characterize a certified set where the state trajectories converge

to their respective benign equilibriums in spite of all possible parametric uncertainties

meeting (6.12).

6.2 RoA estimation with bang-bang control

The cancer dynamical system (6.1) can be written as:

ẋ = F (x, u, p), x(0) = x0. (6.13)

We denote by Φu(T, x0, p) the solution of this system evaluated at time T ≥ 0 for

a given initial state x0 using a control strategy u (·). Let’s denote by Ωp
u the controlled

domain of attraction of system (6.1) with a bang-bang control strategy, for a given vector

of parameters p. We consider the following state and input constraints sets:

X =
{
x ∈ R2

+ | x2 ≥ c
}

(6.14)

U =
{
u ∈ R2

+ | u1, u2 ∈ {0, 1}
}

(6.15)

The control input constraint set U in (6.15) allows to consider bang-bang control

strategies.

Definition 6.4 The RoA Ωp
u of the controlled system (6.1) is defined as follows:

Ωp
u =

{
x0 ∈ R2

+| ∃u(·) s.t. Φu(T, x0, p) ∈ Ωp
0, x ∈ X, u ∈ U

}
. (6.16)

where Ωp
0 is the previously defined region of attraction of the benign equilibrium xpb of

system (6.1), without drugs, corresponding to the admissible parameters vector p. We
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denote by X ⊂ Rn and U ⊂ Rm the sets of admissible values corresponding the state x

and the control u, respectively.

Practically, (6.16) means that we set a therapy time T , then we characterize the set

of initial conditions Ωp
u such that for each initial state x0 (information about the patient

health) belonging to Ωp
u, there exists at least one control law u(·), which allows to drive

the states trajectories to the safe region Ωp
0 without violating the constraints on states

and control inputs.

Problem 6.1 (Estimation of the nominal controlled RoA) Given the nominal

parameters vector pnom and considering bang-bang control strategies, characterize the

region of attraction of the controlled system (6.1).

This region is denoted Ωpnom
u and provides the set of state initial conditions for

which there exists a bang-bang control strategy denoted u(·), such that the states at the

end of the treatment period (at time T ) belong to the region of attraction of the benign

equilibrium Ωpnom
0 (the safe region for the nominal parameters vector pnom without

control inputs). Additionally, the state trajectories as well as the control inputs have

to satisfy the constraints defined by the sets X and U.

In this section, we present a methodology to estimate the region of attraction of

system (6.1). Firstly, we characterize the domain of attraction for a given admissible

parameters vector p. Then, in the next section, we provide a heuristic estimate of the

robust region of attraction for model (6.1).

6.2.1 Characterizing the RoA for the nominal controlled system

Let’s consider the vector of nominal parameters pnom and bang-bang control strategies.

Since we have only two control inputs u1 and u2 corresponding to chemotherapy and im-

munotherapy injections respectively, there are only four possible instantaneous injection

strategies. We inject only chemotherapy, only immunotherapy, both of them or neither

chemotherapy nor immunotherapy.

Let’s denote these injection strategies as follows:

S0,0 No drug injection u = (0, 0).

S1,0 Injection of chemotherapy u = (1, 0).

S0,1 Injection of immunotherapy u = (0, 1).

S1,1 Injection of both chemotherapy and immunotherapy u = (1, 1).
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By drawing the phase portrait of the injection strategies previously listed, we can

have an information on all possible bang-bang strategies allowing to drive the states to

the safe region, without constraints violation. This can help us to derive an estimate the

set Ωpnom
u previously defined. This choice of strategies makes the constraints in (6.15)

directly satisfied. The satisfaction of state constraints specified by (6.14) can be checked

by drawing it in the phase portrait as well.

Figure 6.5 shows the phase portrait of system (6.1) using the drug injection schedules

listed above. In this figure, we can notice that all the black trajectories corresponding to

a continuous injection of chemotherapy violate the minimal constraint on immune cells

density. We can notice also that the continuous injection of immunotherapy (represented

by blue trajectories) allows to enlarge the domain of attraction of the benign equilib-

rium. Moreover, all the magenta trajectories, corresponding to a continuous injection of

both chemo- and immunotherapy, converge to the safe region, which further enlarges the

domain of attraction of the benign equilibrium. However, we can notice that for bigger

initial cancer volumes, the magenta trajectories violate the minimal constraint on immune

cells density.

Figure 6.5 shows all the possibilities of switching between the different strategies in

order to drive the states to the safe region. An interesting option is to choose the strat-

egy allowing to reduce the quantity of injected drugs or to minimize the hospitalization

time. We do not further investigate this idea here, since we are interested in estimating

the domain of attraction of system (6.1). Therefore, the only relevant information is the

existence of at least one control strategy allowing to drive the states to the region of

attraction of the benign equilibrium.

Since the strategy of injecting both therapies provides the biggest domain of attrac-

tion, we focus on the magenta trajectory that is tangential to the minimal constraint

x2 ≥ c. This trajectory is depicted by (1) in Figure 6.6, we can notice also that in this

region of the state space, the blue trajectories (with immunotherapy only) evolve above

the constraint line, before converging to the malignant equilibrium. We are interested

in characterizing the blue trajectory that is tangential to the magenta one (depicted by

(2) in Figure 6.6) in order to further enlarge the domain of attraction of the controlled

system (6.1). Note that for this specific initial state (represented in green in Figure (6.6)),

the strategy to consider is to use immunotherapy till the state reaches the yellow point

and then to use both chemotherapy and immunotherapy in order to satisfy the specified

constraint.
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Figure 6.5: Phase portrait of system (6.1) with different drug injection strategies, the

red trajectories correspond to S0,0, the black ones to S1,0, the blue ones to S0,1 and the

magenta ones to S1,1, in green the minimal constraint on immune cells density, in dashed

cyan the estimated nominal uncontrolled region of attraction of the benign equilibrium.

The triangle sign denotes the beginning of a trajectory, whereas the sign + denotes its

ending.
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Figure 6.6: The three points q1, q2 and q3 characterizing the RoA of model (6.1), and the

resulting RoA that is an estimate of Ωpnom
u using nominal parameters is shown in cyan

dashed line. The triangle sign denotes the beginning of a trajectory, whereas the sign +

denotes its ending.

Let’s denote the points characterizing the domain of attraction as follows:

q1 = (q11,q12) The point where the magenta trajectory is tangential to the minimal

constraint on immune cells density x2 ≥ c.

q2 = (q21,q22) The point where the blue trajectory is tangential to the magenta one.

q3 = (q31,q32) The point where the blue trajectory intersects with the constraint line.

In the sequel, we provide a generic methodology to derive the three points character-

izing the domain of attraction of the controlled system (6.1).

Computing q1

System (6.1) can be written as :

ẋ1 =F1(x, u, p),

ẋ2 =F2(x, u, p).
(6.17)
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In order to find q1 we have to solve F2 = 0 for x2 = c and u = (1, 1), it implies

solving the following equation:

− cµIβY x2
1 + cµIx1 + αY − cδY + cκY − cηY = 0. (6.18)

Let q11 be the positive solution of (6.18), q1 is defined as follows:

q1 = (q11, c). (6.19)

Computing q2

Let’s denote the time inverse trajectory of (6.13) for u = (1, 1), having as final

point q1, as x2 = g(x1) and gp as the polynomial approximation of g up to some

degree. In order to find q2, we have to solve the following equations:

F (x, (0, 1), p)× F (x, (1, 1), p) = 0,

x2 = gp(x1).
(6.20)

Solving (6.20) implies solving the following equations system:


−µIβY κXx3

1x2 +

(
µc
x∞

+ µIκX

)
x2

1x2 + γXηY x1x
2
2 + (κXκY − δY κX − µcηY )x1x2

+κXαY x1 = 0

x2 = gp(x1)
(6.21)

Finally, solving (6.21) provides an approximation of q2.

Computing q3

Let x2 = h(x1) be the time inverse trajectory of (6.13) for u = (0, 1), having as final

point q2. We denote by x2 = hp(x1) the polynomial approximation of this trajectory.

Therefore, in order to find q3, we need to solve the following equation:

hp(x1)− c = 0. (6.22)

Solving (6.22) provides an approximation of q31 and q3 is defined as follows:

q3 = (q31, c). (6.23)

Note that the solutions of the equations allowing to derive the points q1, q2 and q3 de-

pend on the parameters vector p. However, one can validate the RoA structure afterwards,

by checking the following conditions:
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{
q11 > 0, q31 > q11

q21 > q31, q22 > c
(6.24)

Remark 6.1 The methodology allowing to derive the points q1, q2 and q3 has been tested

over 2000 scenarios, corresponding to uncertain parameters vectors, as defined in (6.12).

We also checked, using the conditions in (6.24), that all these scenarios have the same

characterization shown in Figure 6.6.

6.2.2 Algorithm for the estimation of domains of attraction

After deriving the characteristic points as explained in the previous section, the region of

attraction of the controlled system (6.1) is characterized by the following trajectory (see

Figure 6.6):

x2 = Dp(x1) =


c if x1 < q31

hp(x1) if q31 ≤ x1 ≤ q21

gp(x1) if x1 > q21

(6.25)

The region of attraction Ωp
u is defined as follows:

Ωp
u =

{
x ∈ R2 | x2 ≥ Dp(x1)

}
(6.26)

Algorithm 6.1 summarizes the methodology previously explained, allowing to derive

the domain of attraction of the controlled system (6.1) for a given vector of parameters p

and considering bang-bang control strategies.

Algorithm 6.1 Estimation of the RoA of the controlled system (6.1)

Input: p

Check if p is admissible (Definition 6.3)

Solve (6.18) to obtain q1

Solve (6.20) to obtain q2

Solve (6.22) to obtain q3

Check the conditions in (6.24)

Derive Ωp
u using (6.25)–(6.26)

Output: Ωp
u

Figure 6.6 shows the estimated domain of attraction of system (6.1) denoted Ωpnom
u ,

for nominal parameters pnom, that we obtained using Algorithm 6.1. It also shows the

trajectories corresponding to S1,0,S0,1 and S1,1 for different initial states, highlighting the

fact that the state trajectories starting out of the estimated region of attraction, either

converge to the malignant equilibrium or violate the specified constraint.

6.2.3 RoA sensitivity analysis

We showed in the previous section that the nominal domain of attraction of system (6.1)

can be characterized by the points q1,q2 and q3 (see Figure 6.6). In this section, we are
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interested in investigating the sensitivity of the RoA estimation with uncertainties on the

model parameters. Therefore, we change the parameters values with some percentages,

in order to see the effect of this change on the estimation of the ROA.
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Figure 6.7: The sensitivity of RoA estimation with respect to the model parameters.

Figure 6.7 shows the nominal controlled RoA denoted Ωpnom
u in cyan dashed line. This

figure shows also the RoA of system (6.1) for different changes in the model parameters.

We notice that changing the parameters δY and γX changes slightly the RoA estimation,

whereas by changing the parameter βY the RoA volume decreases drastically. The other

parameters show more or less the same sensitivity.

Remark 6.2 The RoAs shown in Figure 6.7 are derived for deterministic parameters

vectors, in the sense that we change one parameter value and derive the RoA for a fixed

parameters vector.

Note that the parameters changing signs (either + or −) have been chosen such that

the RoA volume is reduced. Furthermore, the percentage of change has been chosen such

that the parameters vector p remains admissible.
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6.3 Heuristic estimate of the robust RoA

The characterization of the domain of attraction of a given system as explained in Prob-

lem 6.1 is interesting since it provides the set of initial conditions that can be driven to

the safe region. However the common assumption made for such deterministic approaches

is that the system parameters are perfectly known [18], which is not realistic for practical

problems. As previously mentioned, system parameters are generally affected by uncer-

tainties that can be described by probability distributions or belong to given intervals.

After characterizing the region of attraction of system (6.1) for a given parameters

vector, it is interesting to find the domain of attraction when the model parameters are

uncertain. This set is called the robust region of attraction and represents the set of initial

conditions that can be driven to the safe region in spite of all possible uncertainties. The

robust region of attraction is defined as the intersection of all the regions of attraction

governed by (6.1) for all possible realizations of p [88].

Definition 6.5 The robust region of attraction of system (6.13), for a given set of pa-

rameters P, denoted ΩP
u is defined as follows:

ΩP
u =

⋂
p∈P

Ωp
u. (6.27)

Remark 6.3 Note that this definition of the robust RoA means that there exists a con-

trol u for each initial state x0 and parameters vector p. This can be seen as an outer

approximation of the real robust RoA, which is indeed bigger.

Problem 6.2 (Estimation of the robust controlled RoA) Given an uncertain

parameters vector p belonging to a set P, we are interested in estimating the robust

region of attraction of system (6.1), such that the state trajectories correspond-

ing to the initial states in this set, belong to the safe region after some time and

do not violate the specified constraints, in spite of all possible parametric uncertainties.

It is commonly known that finding the exact robust region of attraction for a non-

linear system is a challenging task. Therefore, we aim here at providing a tighter

estimate of the robust region of attraction ΩP
u that we denote ΩR.

Let’s denote by
{
p(j)
}N
j=1

a collection of samples of the parameters vector p corre-

sponding to model (6.1), uniformly drawn in the following interval:

[0.9pnom, 1.1pnom] . (6.28)

In the previous section, a characterization of the RoA of system (6.1) for nominal

parameters pnom denoted by the set Ωpnom
u had been provided. This procedure can be
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applied in order to derive the RoA of system (6.1) for each parameters sample p(j), by

checking the validity of the characterization through the conditions (6.24).

We denote by Ωp(j)

u the RoA of the controlled system (6.1) considering the parameters

vector p(j) and bang-bang control strategies.

In order to characterize the robust region of attraction, we perform N Monte-Carlo

tests assuming that the samples
{
p(j)
}N
j=1

are uniformly distributed in the interval (6.28).

The intersection of all the sets Ωp(j)

u , estimated for each sample p(j), is defined by the

maximum of all the corresponding functions Dp(j) (defined in (6.25)). Thus, the estimated

robust region of attraction is the following:

ΩR = {x ∈ R2 | x2 ≥ DR(x1)}, (6.29)

where DR(x1) is defined as follows:

DR(x1) = max
(
Dp(1)(x1), · · · ,Dp(N)

(x1)
)
. (6.30)

Algorithm 6.2 Robust RoA estimation

Input:
{
p(j)
}N
j=1
, N

ΩR ← X
while j ≤ N do

Ωp(j)

u ← Algorithm 6.1
(
p(j)
)

ΩR ← ΩR ∩ Ωp(j)

u

j ← j + 1

end while

Output: ΩR

Algorithm 6.2 allows to derive a heuristic estimate of the robust region of attraction

of system (6.1), for N samples of parameters vectors, by intersecting their corresponding

controlled regions of attraction.

Figure 6.8 shows the regions of attraction derived for N samples p(j), the estimated

robust region of attraction for different number of samples N , using Algorithm 6.2. We

can notice that the estimation of ΩR is enhanced and the robust RoA volume is reduced

as the number of samples N grows. We stopped running Algorithm 6.2 at N = 2000

since for bigger values of N the estimations of the robust RoA was almost the same as

for N = 2000. Note also that the estimated robust RoA is considerably smaller than the

nominal one, even with the uncertainties rate that is only ±10%.
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Figure 6.8: Monte-Carlo tests for the RoA estimation under ±10% of parametric un-

certainties, the blue bold trajectory defines the estimated robust region of attraction of

system (6.1) denoted ΩR, for N = 2000, the pink trajectory defines the estimated robust

RoA for N = 1000 and the orange one for N = 200, the dashed cyan trajectory is the

estimated nominal domain of attraction Ωpnom
u .
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6.4 Conclusion

We presented in this chapter an extensive parametric analysis for a cancer dynamical sys-

tem. This allowed us to provide necessary and sufficient conditions for the admissibility

of the model parameters vectors. Furthermore, we investigated the effects of parametric

uncertainties on the system equilibrium points, as well as on the estimation of regions of

attraction.

Therefore, we used a readily applicable methodology, allowing to characterize the do-

main of attraction of a nonlinear system describing cancer dynamics, with bang-bang

control strategies. Then, we used this approach to derive an estimation of the robust

region of attraction.

It is important to point out the fact that regions of attraction might be highly sensi-

tive to parametric uncertainties, and can be considerably reduced when considering even

small uncertainties on the model parameters. This is critical in the context of cancer

treatment, since such sets provide an information on the patients that can be healed,

using appropriate treatments.

As previously mentioned, the methodology that we presented in this chapter charac-

terizes the set of initial states for which there exists a control input, such that the state

are driven to a stable equilibrium, however, it does not provide the control strategies to

be used. In the next chapter, we propose a methodology to estimate a probabilistically

certified region of attraction for a cancer model. Furthermore, we provide the correspond-

ing control strategies allowing to drive the states to the benign stable equilibrium, in spite

of all uncertainties realizations. The probabilistically certified RoA is intended to be less

conservative than the robust one, since in the latter we consider the worst-case scenario

for the RoA design. We will use the results of this chapter for comparison purposes.



Chapter 7

Probabilistically certified region of

attraction of a tumor growth model

In this chapter, we are interested in estimating regions of attraction (RoAs) under para-

metric uncertainties for a cancer growth model with combined therapies. We propose to

investigate a cancer growth dynamical model that is widely used in the literature. How-

ever, this model has never been investigated to estimate its region of attraction. Therefore,

we aim at pointing out the importance of uncertainties considerations in RoA estimation

for such models.

As mentioned in Chapter 6, the estimation of the region of attraction for cancer mod-

els is an interesting problem since it provides a set of possible initial conditions (tumor

volume and immune density for example) that can be driven to a desired target set (be-

nign region). This problem becomes complex when dealing with nonlinear systems and

even more challenging for uncertain systems. There are some works which dealt with the

problem of estimating the RoA for cancer models, see [69] and references therein, but only

few of them considered model uncertainties. In particular, in [78], an iterative method to

estimate the robust RoA was presented. However, robust RoA estimation is based on the

worst-case scenario analysis leading to potentially pessimistic design. This because the

worst-case is considered no matter how small its probability of occurrence is.

As shown in the previous chapters, even for low dimensional systems, the presence of

parametric uncertainties can affect drastically the efficiency of a nominal controller as well

as the size of the estimated RoAs. Therefore, we propose a framework of probabilistic cer-

tification, based on the randomized methods, in order to derive probabilistically certified

RoAs of a cancer growth model. The model that we consider in this chapter describes the

interaction between a tumor and the immune system in presence of a combined chemo-

and immunotherapy. Furthermore, we model the concentration of the chemotherapy agent

in the body via a pharmacokinetic equation.

The approach that we propose consists in probabilistically certifying the existence of

a control structure, that drives the states corresponding to tumor cells and immune cells

density, from an initial state set to a certified target set. This probabilistic certification

101
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framework is based on the randomized methods proposed in [7] and [8], which, unlike

the robust classical design, avoids focusing on few unlikely very bad scenarios allowing to

overcome the conservatism of the robust RoA design.

The methodology that we suggest consists mainly of two steps. Firstly, we derive an

ordered sequence of sets and a control strategy over each of them such that the states

can be driven from a set to the previous with a certain probabilistic guarantee. The

appropriate choice of the first set allows to insure that the union of the sets is a prob-

abilistically certified approximation of the RoA. The second step consists in providing a

global certification on the probability of convergence to the initial certified target set.

This chapter is organized as follows: In Section 7.1, the dynamical cancer model and

the problem of RoA probabilistic certification are introduced. Section 7.2 recalls the

randomized algorithms approach for probabilistic certification. In Section 7.3, a frame-

work for RoA probabilistic certification is proposed, based on the randomized methods

presented in [7] and [8]. In Section 7.4, the proposed RoA probabilistic certification

framework is applied to the considered cancer model. Finally, Section 7.5 summarizes the

contribution that we present in this chapter and compare it to the results of Chapter 6.

7.1 Dynamical model

The following nonlinear dynamical system describes the interaction between a tumor and

the immune system in presence of chemotherapy and immunotherapy drugs:

ẋ1 = µCx1 −
µC
x∞

x2
1 − γXx1x2 − κXx1x3,

ẋ2 = µIx1x2 − βY µIx2
1x2 − δY x2 + κY x2u2 − ηY x3x2 + αY ,

ẋ3 = −acx3 + bcu1,

x(0) = (x1(0), x2(0), x3(0)) = x0,

(7.1)

where x1, x2 and x3 denote, respectively, the number of tumor cells, the density of effector

immune cells (ECs) and the concentration of chemotherapy in the body, u1 and u2 are,

respectively, the dosages of a cytotoxic agent and an immuno-stimulator. This model

has the advantage of being a low dimensional system that nevertheless includes the main

aspects of cancer-immune interactions.

In many models it is assumed that the drug concentration is equal to its dosage which

is an oversimplification. Therefore, we revisited the model proposed in [32] by adding a

pharmacokinetic (PK) equation that allows to model the concentration of chemotherapy

in the body. As previously mentioned, this model has been widely used in the literature

for cancer drug scheduling.
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Figure 7.1: Schematic representation of the different interactions in model (7.1), between

the tumor, the immune system and the drug dosages.

Table 7.1: Definitions and nominal values of the parameters used in model (7.1).

Parameter Definition Numerical value

µC tumor growth rate 1.0078 ·107 cells/day

µI tumor stimulated 0.0029 day−1

proliferation rate

αY rate of immune 0.0827 day−1

cells influx

βY inverse threshold 0.0040

γX interaction rate 1 ·107 cells/day

δY death rate 0.1873 day−1

κX chemotherapeutic 1 ·107 cells/day

killing parameter

κY immunotherapy 1 ·107 cells/day

injection parameter

x∞ fixed carrying capacity 780 ·106 cells

ηY chemo-induced loss 1

on immune cells

ac chemotherapy 0.5

concentration decay

bc drug rate effect 1

on the concentration

of chemotherapy

Figure 7.1 presents a scheme describing the different interactions between the tumor

and the immune system as well as the different injected drugs. Table 7.1 summarizes the

definitions of the model parameters and their nominal values. We slightly tuned the values

of some parameters since with the previous set of parameters values (used in Chapter 4

and 5 and taken from [32]), the domain of attraction of the benign equilibrium for the

uncontrolled system (7.1) (for u1 = 0 and u2 = 0) was unrealistically big. This allowed us

to solve a more challenging and seemingly realistic problem. Moreover, we properly chose

the parameters ac and bc of the PK dynamics, such that the drug concentration reaches
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Figure 7.2: Temporal open-loop control structure for each cycle, in black and yellow,

respectively, the immunotherapy and the chemotherapy profiles.

its maximum in 4.8h and starts decreasing towards a negligible value after a period of 15

days. Note that this is an example of a treatment protocol, nevertheless, it is worth em-

phasizing that in this chapter, we focus on the assessment of a methodology that remains

applicable for different nominal and PK parameters values.

Let’s denote by x = (x1, x2, x3) and u = (u1, u2) respectively, the state and the

control input vectors. In this chapter, we consider a cycle-based treatment, where the

drugs are injected following NC therapeutic cycles. Each cycle having two phases, a

hospitalization period lasting 5 days, where the patient receives one injection per day, and

a rest period where the patient recovers. Figure 7.2 shows a typical temporal combined

control structure, the different notations in this figure are defined as follows:



σI , σC : duration of immunotherapy and chemotherapy injections, respectively.

dI , dC : concentration of immunotherapy and chemotherapy injections, respectively.

νC : the delay between chemotherapy and immunotherapy injections.

T = 5 : hospitalization duration.

Tc = 15 : cycle duration.

Let’s denotes by d̄C the maximal desired concentration of x3. Since x3 and u1 are

linked through first order dynamics, d̄C allows to monitor dC . Therefore, for a given

treatment cycle, the therapeutic profile considered in this chapter is completely defined

by the following control parametrization θ:

θ = [νC , σC , d̄C , σI , dI ]. (7.2)
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Figure 7.3: A typical PK evolution profile for chemotherapy, with 5 consecutive doses

lasting 4.8h, during the 5 first days of the therapy period, at a rate of one dose per day.

In cancer treatment design, we usually have some constraints to satisfy, they can be

defined either on the states or on the control inputs. These constraints allow to prevent

from drug toxicity and immune weakening. In this chapter, we consider the following

constraints for all t ∈ [0, T ], with T ∈ R+:

x2(t) ≥ c, with c ∈ R+, (7.3)

0 ≤ x3(t) ≤ 1, (7.4)

0 ≤ u2(t) ≤ 1, (7.5)

where (7.3) is a health constraint on the minimal density of immune cells. The constraints

on x3(t) and u2(t) for all t, are drug toxicity constraints. The constraint (7.4) on x3 can

be satisfied by properly choosing a constraint on u1, given the PK parameters (ac and bc)

since these two variables are linked through simple first order dynamics.

Figure 7.3 shows a typical PK evolution profile, where 5 consecutive doses of chemother-

apy are injected, at a rate of 1 dose per day, each dose lasting 4.8h. We can notice that

thanks to a proper choice of the constraint on u1, the constraint on x3 is satisfied even

for successive drug doses injections. Furthermore, the constraints on the control inputs,

u1 and u2, can be satisfied by properly choosing the parametrization θ (namely, d̄C and

dI) of the control input u. Therefore, we will consider only the constraint (7.3), since the

satisfaction of the other constraints can be monitored by a proper choice of θ.

The uncontrolled model (7.1) (for u = (0, 0)) has two locally asymptotically stable

equilibriums points. The macroscopic malignant equilibrium is xm = (766.4, 0.018, 0) and
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the benign one is xb = (41.45, 0.954, 0). In general, the objective of the treatment is to

drive the state initial conditions to the region of attraction of the benign equilibrium (safe

region), without constraints violation. We are interested specifically in characterizing the

set of initial conditions (tumor volume and immune density) from which the trajectories

of (7.1) can be driven to the safe region under parametric uncertainties.

In Chapter 6, we proposed a methodology to characterize the controlled region of at-

traction of model (7.1) with bang-bang controls (without pharmacokinetics). Then, we

used this approach to derive and estimate of the robust region of attraction. In this chap-

ter, we propose to derive a probabilistically certified RoA for model (7.1), that is based on

chance-constrained problems, tolerating some constraints violations provided that their

corresponding probability is small enough. In the sequel, we will properly define what

we mean by the probability of constraints violations being small enough, and we will

introduce the problem of deriving probabilistically certified RoAs.

Definition 7.1 We denote by Ω0 a probabilistically certified region of attraction of many

benign equilibrium points, corresponding to many parameters vector samples, when no

control is applied to model (7.1), i.e. u = (0, 0).

The set Ω0 can be interpreted here as a safe region, where we have a guarantee that

if the state trajectories belong to Ω0, they will converge to their respective benign equi-

libriums, in spite of all uncertainties realizations, with a confidence probability.

Problem 7.1 (Estimation of a probabilistically certified RoA) We aim at

computing a sequence of sets {Ωk}NCk=1, for NC therapeutic cycles. Those sets are

determined in the space of the cancer burden (defined by the number of cancer cells)

and the ECs density, such that, in the family of control parametrizations that we

consider, there exists a therapeutic protocol that drives, with a desired probability, the

states from Ωk+1 to
k⋃
j=0

Ωj without safety constraints violations.

Similarly to Chapter 6, we denote by Ω̂pnom
0 an estimation of the region of attraction

of the benign equilibrium for u = (0, 0), when nominal model parameters (in Table 7.1)

are considered.
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7.2 Recall of the randomized algorithms for proba-

bilistic certification

The randomized algorithms were presented in [87], [7] and [8] in order to solve opti-

mization problems with probabilistic constraints satisfaction. In contrast to the standard

robust control design, which is based on the worst-case scenario analysis leading hence to

potentially pessimistic design, the randomized methods provide the possibility to avoid

focusing on the worst scenarios if their probability of occurrence is small. Therefore, this

framework is very interesting from the cancer treatment point of view, since the latter

involves many uncertainties that have to be considered as mentioned in Chapter 2.

This section aims at briefly recalling the main key-points of the randomized methods

that are important for the assessment of the approach that we propose in this chapter,

in which we present a framework of estimation of probabilistically certified regions of at-

traction for a cancer therapies dynamical model.

Let’s consider the following optimization problem :

min
θ∈Θ

J(θ)

s.t. ∀p gc(θ, p) = 0,
(7.6)

where θ ∈ Θ ⊂ Rnθ is the decision variable (which can be a parametrization of a control

law) and p is the uncertainties vector following the probability measure P defined in the

set P (the vector p can contain for example model parameters that are considered to

be uncertain), J is the cost to be minimized. In terms of control design for dynamical

systems, the cost J can involve the states, the input variables, their respective integrals

with respect to time or any combination of these indicators. Finally, gc is an indicator

function on the violation of some given constraints and is defined as follows:

gc(θ, p) :=

{
0 if all the constraints are satisfied

1 otherwise

The randomized method consists in replacing the original hard problem in (7.6) by

the following problem:

min
θ∈Θ

J(θ)

s.t. PrP{gc(θ, p) = 1} ≤ η,
(7.7)

where the constraint is on the probability of constraints violation, giving therefore a soft

constraint in the sense that we can accept a value of θ which minimizes the cost J , even

if the constraints are violated for some realizations of p, provided that the probability of

these violations is less than or equal to η (small enough). Even though the constraint in

(7.7) simplifies the previous constraint in (7.6), the computation of the violation proba-

bility remains expensive. Authors in [7] and [8] proposed a simplification which consists
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in replacing the probability by the mean value over Np drawn independent identically dis-

tributed (i.i.d.) samples of p in P according to the probability distribution P . Therefore,

the simplified optimization problem is the following:

min
θ∈Θ

J(θ)

s.t.

∑Np
i=1 gc

(
θ, p(i)

)
Np

≤ m

Np

,
(7.8)

where m is the number of constraints violations. In [7] and [8], several bounds on Np

are given such that the fulfillment of the constraint in (7.8) implies that the probability

condition in (7.7) is satisfied with a confidence probability greater than or equal to 1− δ.
Therefore, the Np bounds that are derived involve the precision η and the confidence of

fulfillment δ.

In this chapter, we are interested in specific control structures, since cancer treatment

schedules are often defined by cycles with a hospitalization period where the patient

receives several drug injections and a rest period for recovery. Therefore, it is more

adequate in this case to consider that the controls are parametrized by a discrete variable

θ with cardinality nΘ ∈ N. This choice of θ simplifies the optimization problem (7.7),

since it can be solved by a simple enumeration. In this case, the following proposition

from [8] holds:

Proposition 7.1 Let m ∈ N be any integer representing the number of accepted failures.

Let δ ∈ (0, 1) be a targeted confidence parameter. Take Np satisfying

Np ≥
1

η

(
m+ ln

(nΘ

δ

)
+
(

2mln
(nΘ

δ

)) 1
2

)
(7.9)

then any solution of (7.8) in which {p(j)}Npj=1 are i.i.d. following the probability distribution

P satisfies the constraint in (7.7) with a probability greater than or equal to 1− δ

The inequality (7.9) is mathematically based on the binomial distribution. In this sec-

tion, we presented a concise overview of the basic theoretical aspects of this methodology,

the readers interested in further mathematical proofs should refer to [8].

It is interesting to notice that the bound on Np provided by Proposition 7.1 does not

depend on the dimension of p which is useful when having many uncertain parameters in

the certification problem. Furthermore, as we can see in Table 7.2, since the confidence

parameter δ affects the bound logarithmically, we can have a highly confident certification

with a tractable number of random samples.
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Table 7.2: The evolution of the number of samples Np required to achieve the certi-

fication, with respect to the confidence design parameter δ and the number of control

parametrizations nΘ, for η = 10−2 and m = 1.

nΘ δ = 0.1 δ = 0.01 δ = 0.001

10 864 1162 1451

100 1162 1451 1732

1000 1451 1732 2008

10000 1732 2008 2280

Furthermore, for a specific desired confidence parameter δ = 10−3, Table 7.3 pro-

vides an idea on the evolution of the number of trials Np that should be performed for

each possible control law θ, with respect to the precision parameter η and the number of

control parametrizations nΘ. Therefore, the total number of simulations is Nsim = Np ·nΘ.

Table 7.3: The evolution of the number of samples Np required to achieve the certification,

with respect to the precision design parameter η and the number of control parametriza-

tions nΘ, for δ = 10−3 and m = 1.

nΘ η = 0.1 η = 0.01 η = 0.001

10 146 1451 14503

100 174 1732 17312

1000 201 2008 20073

10000 228 2280 22796

This approach provides a powerful pragmatic tool allowing to certify control strategies.

In [4], a randomized method based framework for probabilistic certification of feedback

control strategies has been proposed for a combined cancer therapy model.

7.3 Probabilistic certification of ROA

In this section, we will establish a framework of RoA probabilistic certification, based on

the randomized methods presented in the previous section. We propose to use this general

framework in order to probabilistically certify the existence of a control structure which

allows to drive initial states from a given set to a target set under parametric uncertainties.

Let’s rewrite system (7.1) into the following form:

ẋ = F (x, u, p), (7.10)
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where p is the vector of parameters that model (7.1) involves. Furthermore, we consider

that the variables of system (7.10) are subject to the following constraints:

x ∈ X, x(T ) ∈ Ω, u ∈ U. (7.11)

As previously mentioned, we consider that the control inputs are parametrized by a

vector θ which lies in a discrete set Θ with cardinality nΘ ∈ N. This choice of θ fits

particularly to the case of cancer therapy design, since some of the parameters involved

in the treatment scheduling are naturally quantified.

Suppose that the parameters vector p is a random variable following the probability

distribution P that we denote p ∼ P . Given a set Γ ⊆ Rn (to be more precise, Γ must

belong to the σ-algebra defined on Rn) and a parameterization of the input θ ∈ Θ, let’s

consider the following optimization problem:

min
θ∈Θ

J(θ)

s.t. ∀ (x0, p) ∈ (Γ× P) gc(θ, x0, p) = 0,
(7.12)

where J(θ) is a cost function to be minimized. In terms of cancer treatment design, this

function can be a combination of many objectives that one seeks to achieve, for example

reducing the quantity of injected drugs, to prevent from toxicity, or reducing the duty

cycle in order to reduce the hospitalization duration. gc is the failure indicator function,

defined on the state trajectories of (7.10). The function gc is deterministic such that, for

a given initial state, an input parametrization θ and a model parameters vector p ∈ P, it

is equal to one if the constraints (7.11) are violated, during at least some instant on the

trajectory, zero otherwise. Problem (7.12), then, aims at selecting the optimal control

strategy such that no constraints violation occurs.

As previously explained, the randomized method consists in replacing the original

problem in (7.12) by the following chance-constrained problem tolerating some violations:

min
θ∈Θ

J(θ)

s.t. PrX0(Γ)×P {gc(θ, x0, p) = 1} ≤ η,
(7.13)

where the constraint is on the probability of violation, with respect to the distribution

of x0 on Γ, that we denote X0(Γ), and p ∼ P . This problem gives therefore a chance-

constrained formulation in the sense that we can accept a vector θ which minimizes the

cost J , even if the constraints are violated for some realizations of (x0, p), provided that

the probability of these violations is lower than η, hence small enough.

Since problem (7.13) is hard to solve, it can be simplified into the following problem,

employing the empirical mean instead of the probability of the constraints violation:
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min
θ∈Θ

J(θ)

s.t.
N∑
i=1

gc

(
θ, x

(i)
0 , p

(i)
)
≤ m,

(x0, p)
(i) ∼ (X0(Γ)× P) , ∀i = 1, . . . , N,

(7.14)

where m is the maximum number of allowed constraints violation.

Theorem 7.1 Given Γ ⊆ Rn, let m ∈ N be any integer, and δ ∈ (0, 1) a targeted

confidence parameter, and suppose that problem (7.14) has a solution, that we denote θ̂,

for N i.i.d. samples of (x0, p), with N satisfying the following condition from [8]:

N ≥ 1

η

(
m+ ln

(nΘ

δ

)
+
(

2m ln
(nΘ

δ

)) 1
2

)
Then the solution θ̂ satisfies the constraint in problem (7.13) with a probability higher

than 1− δ.

In the next section, we will explain how the iterative resolution of problems of the

type (7.14) allows one to generate a sequence of sets {Ωk}NCk=1 such that the constraints

violation on passing from Ωk+1 to
k⋃
j=0

Ωj is smaller then η with a certain desired confidence

probability 1− δ.

7.3.1 Algorithm for RoA estimation

Given a target set Ω, our objective is to certify that the set Γ is such that there exists a

control parametrization θ, for which at least 100 · (1 − η)% of the trajectories of (7.10),

generated by the distributions of the initial states x0 ∈ Γ and the uncertain parameters p,

converge to Ω at time T , while satisfying constraints (7.11), with a confidence higher than

1− δ. Any solution of (7.14) defines a local control strategy that satisfies the constraints

while minimizing the cost J(θ).

Γ generator

We suppose that we have a generator of sets Γ with a parametrized geometry

providing a family of nested potential sets Γ, then we can compute the biggest one

that is probabilistically certified through (7.14). In the case under study, we consider

that the sets Γ have a polytopic form.

Therefore, starting from Ω0 which is in the certified region of attraction of many be-

nign equilibriums without therapies, an iterative procedure can be designed to generate
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the sequence {Ωk}NCk=0 such that the trajectories starting in Ωk+1 end in
k⋃
j=0

Ωj with the

desired probability and without violating the constraints. In particular, we will consider

sequences of sets such that Ωk ∩Ωk+1 = ∅. Then, we keep doing this certification process

until given Ωk−1, the set Ωk is empty. Once the RoA probabilistic certification algorithm

terminates, the candidate to be a probabilisitically certified RoA is the set ΩC =
NC⋃
i=1

Ωi.

Note that, if x0 ∈ Ωk, for k = 1, · · · , NC , this means that the trajectory of length

T will end in
k−1⋃
j=0

Ωj without violating the constraint with a certain probability, but no

direct probabilistic guarantee is given regarding the convergence to the set Ω0.

It is not straightforward to derive a probabilistic bound on driving the states directly

from the last set of the sequence ΩNC to Ω0. This is because the latter probability in-

volves the accuracy and confidence parameters, η and δ. Another reason is that, there is

no guarantee that, given the initial state distribution X0(Ωk), the distribution of the state

at the end of the k-th therapeutic cycle is X0(Ωk−1), for which the probabilistic validation

is performed. However, after deriving the sequence of certified sets, we can approximate

the probability of driving the states from ΩNC to Ω0, with the corresponding certified

control strategy, using Monte-Carlo simulations.

Algorithm 7.1 Sequence of probabilistically certified sets
Input: Ω0

k ← 0

while Ωk 6= ∅ do

Ω←
k⋃
j=0

Ωj

repeat

Generate Γ

until (7.14) is unfeasible for Γ

k ← k + 1

Ωk ← Γ

end while

NC ← k − 1

Output: ΩC ←
NC⋃
i=0

Ωi

Finally, by using Algorithm 7.1, we can obtain a sequence of certified sets, such that

the output is the candidate to be a probabilistically certified RoA ΩC .
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7.4 Probabilistically certified RoA for a cancer model

As previously explained, considering NC treatment cycles, our objective consists in esti-

mating the probabilistically certified RoA of model (7.1) that we denote ΩC . To this end,

we certify a sequence of successive disjoint sets such that their union is the candidate to

be a probabilistically certified RoA.

Moreover, the temporal control profiles that we consider correspond only to the hos-

pitalization period (see Figure 7.2), meaning that the rest period is not included in the

decision variable θ defined in Section 7.1, since we assume that this parameter can be

estimated afterwards depending on the health conditions of the patient.

Therefore, we propose a feedback control strategy that can be seen in an implicit way,

such that at the end of each therapy period, we measure the states (patient health and

tumor volume) and depending on the certified set Ωk where this measure lies, we can

estimate the maximal possible recovery time (Tc − T ) that the patient can take. At the

end of the rest period, the certified therapy corresponding to this set is then applied, we

keep doing this process until we reach the safe region Ω0.

The initial condition x0 is assumed to be uniformly distributed in the set Γ while

the parameters of model (7.1) are assumed to be normally distributed in the following

interval:

[0.9pnom, 1.1pnom] , (7.15)

where pnom is the nominal value of each parameter and the variance of these distributions

is 0.01. The parameter x∞ is supposed to be known.

The failure indicator function, which determines whether the constraints (7.3)–(7.5)

are satisfied or not, is defined on x(t|x0, p, θ) which is the state trajectory of (7.1) for

a given control parametrization θ and a random sample of x0 and p. We denote by

x(T |x0, p, θ) the state trajectory evaluated at the end of the hospitalization period. There-

fore, the failure indicator is defined as:

gc(θ, x0, p,Ω) :=

{
0 if x2(t|x0, p, θ) ≥ c ∀t and x(T |x0, p, θ) ∈ Ω

1 otherwise

where Ω is a probabilistically certified target set which can be seen as the safe region to

attain at the end of the cycle.

Using Algorithm 7.1, we can derive a sequence of probabilistically certified sets pro-

viding the probabilistically certified RoA. Firstly, we need to derive an initial target set

Ω0, in order to initialize the certification algorithm.

7.4.1 Probabilistically certified initial target set Ω0

Definition 7.2 Given p ∈ P (drawn according to the probability distribution P) and x0

following a uniform distribution on Ωeq, we denote by Ωeq a certified set in a neighbor-
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hood of benign equilibriums of (7.1), generated by the realizations of p according to the

probability distribution P. Therefore Ωeq is derived such that:

PrU(Ωeq)×P {x2(t|x0, p) ≥ c, ∀t > 0 and x(T |x0, p) ∈ Ωeq} > 1− η. (7.16)

Note that Ωeq is slightly different than a probabilistically certified invariant set, since

we don’t require that the trajectories starting in Ωeq stay in it, we rather require that

these trajectories satisfy the constraints (7.3)–(7.5) and converge to Ωeq after some time T .

Given p belonging to P and x0 following a uniform distribution on Ω0, that we denote

U(Ω0), Ω0 is determined such that:

PrU(Ω0)×P {x2(t|x0, p) ≥ c, ∀t > 0 and x(T |x0, p) ∈ Ωeq} > 1− η, (7.17)

for a given time T . Note that the set Ωeq is derived to be used as a target set for the

determination of Ω0.

In order to provide an estimation of Ωeq, we draw the distribution of the benign equi-

libriums of model (7.1) for many parameters vector samples (selected according to the

probability distribution P). Then, we choose a geometry for Ωeq surrounding the benign

equilibriums of the sample shown in Figure 7.4. Finally, we expand this set until (7.16)

is not satisfied.

After finding a proper geometry for the set Ωeq such that it satisfies (7.16), we use

Algorithm 7.1 in order to provide an estimation of the certified set Ω0. Note that in this

case X0(Γ) corresponds to U(Ω0) since we assume that x0 is uniformly distributed on Ω0,

and the target set for the states at time T denoted Ω in the definition of gc corresponds to

Ωeq. Furthermore, since we deal with an uncontrolled problem, we have θ = 0. Therefore,

(7.7) turns out to be a feasibility problem, where we need only to guarantee the probabil-

ity condition in (7.17) by using the empirical mean over gc for N i.i.d. samples of (x0, p)

mentioned in (7.14), with θ = 0 and nΘ = 1, with the bound N given by Theorem 7.1.

We assume that the set Ω0 to be certified has the same geometry as the estimated

nominal uncontrolled region of attraction Ω̂pnom
0 (derived in Chapter 6) that we shrink

until (7.17) is not satisfied given the confidence probability 1 − δ. There is clearly no

guarantee that the set Ω0 that we obtain is the biggest possible certified set, however, in

this case, proving the existence of a set Ω0 satisfying (7.17) is enough, since Ω0 is only

used as a target set for the Algorithm 7.1 allowing therefore to compute the sequence of

certified sets.

Figure 7.4 shows the probabilistically certified RoA of the benign equilibriums Ωeq, the

estimated uncontrolled nominal region of attraction Ω̂pnom
0 and the initial probabilistically

certified target set Ω0 for different T . Figure 7.5 shows the phase portrait of (7.1) with

both the estimated nominal RoA Ω̂pnom
0 without control, and the certified initial target

set Ω0 for T = 60. We can see that the Ω0 is smaller than Ω̂pnom
0 which shows the effects

of parametric uncertainties consideration.
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Figure 7.4: Probabilistically certified sets Ω0 for different horizons T.
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Figure 7.5: Phase portrait of (7.1), estimated nominal uncontrolled RoA Ω̂pnom
0 in dashed

cyan and the estimated certified initial target set Ω0 for T = 60 in blue.
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7.4.2 Validation of the estimation of Ω0

In order to validate the estimation of the target set Ω0, we carry out 5000 Monte-Carlo

simulations by randomly selecting the initial states as well as the model parameters ac-

cording to their respective probability distributions. We can notice that in Figure 7.6 there

are only 11 trajectories that converge to the malignant equilibrium, violating thereby the

specified constraints. This corresponds to 99.78% of successful trajectories, validating

therefore the imposed probabilistic bound.
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Figure 7.7: Probabilistically certified RoAs for 3 injection cycles.

7.4.3 Probabilistically certified region of attraction ΩC

We denote by ΩC the probabilistically certified region of attraction of system (7.1). We

initialize Algorithm 7.1 with Ω0 in order to derive the sequence of probabilistically certi-

fied sets providing the certified RoA for model (7.1).

We consider that the decision variable θ is defined by the following variables:
σI ∈ {0, 0.16, 0.32, 0.48, 0.64, 0.8},
σC = 0.2, νC = 0.2,

dI ∈ {0, 0.25, 0.5, 0.75, 1},
d̄C ∈ {0, 0.11, 0.22, 0.33, 0.44, 0.56, 0.67, 0.78, 0.89, 1}.

Therefore, the cardinality of Θ is nΘ = 300 giving the bound N ≥ 1863 according

to Theorem 7.1, for m = 1, η = 10−2 and δ = 10−3. The number of simulations to be

performed for each set certification is Nsim = N · nΘ = 558900. The required computa-

tional time to perform Nsim simulations is less than 6 mn using Matlab coder toolbox.
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Figure 7.6: Monte-Carlo simulations to validate the certified target set Ω0.



CHAPTER 7. PROBABILISTICALLY CERTIFIED ROA OF A CANCER MODEL 118

Therefore, 1 simulation requires around 621µs on an hp EliteBook 2.60GHz Intel Core i7.

Figure 7.7 shows the 3 certified cycles for T = 5 obtained using Algorithm 7.1, nomi-

nal and robust RoAs that have been estimated using the method presented in Chapter 6,

where bang-bang control strategies were considered. We can see that, as the number

of cycles increases, the certified RoA gets closer to the robust controlled one denoted

ΩR. Furthermore, it is interesting to notice that there is a small region of Ω3, which is

probabilistically certified but does not belong to the robust RoA, although the control

structure in the robust case is less restrictive. This is potentially due to the fact that the

probabilistic method is less conservative than the robust one.

7.4.4 Validation of the estimation of ΩC

We approximated the probability of driving the states from Ω3 to Ω0 using 5000 Monte-

Carlo simulations. We obtained that 99.6% of the trajectories of (7.1) having initial

conditions in Ω3 converge to Ω0 using the probabilistic certified control strategies that

we derived. Figure 7.8 shows the phase portrait of the 5000 Monte-Carlo trajectories.

We can notice that only a small part of these trajectories violate the minimal constraint

on immune cells density. The trajectories violating this constraints are presented in

Figure 7.9.

7.5 Conclusion

In this chapter, we presented a framework of probabilistic certification for regions of attrac-

tion which is based on the randomized methods, allowing to overcome the conservatism

of worst-case robust approaches by proposing a tractable problem with probabilistic con-

straints.

This framework has been used to derive a certified region of attraction for a cancer

growth model. Furthermore, we provided a validation on the probability of driving the

states to the certified safe target set with its corresponding control strategy.

The main advantages of this framework is that it is less conservative since it is more

tolerant to constraints violations in the presence of uncertainties, in contrast to the robust

design of RoAs. Furthermore, the methodology that we presented in this chapter provides

the control strategy corresponding to each certified initial states set, which allowed us to

validate the estimations using Monte-Carlo simulations.

The probabilistic certification of regions of attraction can be seen as a tool to tune the

several parameters of the treatment protocols by properly choosing the model parameters

and their distributions, the geometry of the regions of attraction to be certified and the

control parametrization.
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Figure 7.8: Monte-Carlo simulations to validate the certified sequence of controls with

their respective sets, the green polytope in dashed line is the set Ω3 where the initial

states were selected.
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Chapter 8

General conclusion

The main objective of this thesis was to propose frameworks and algorithms that are

based on advanced control theory approaches, allowing to create systematic and generic

numerical tools, in order to guide the design of cancer drugs scheduling.

Cancer dynamical systems are known to be highly uncertain by nature, and are often

described by nonlinear complex dynamics that are not fully understood yet. These diffi-

culties make the control of such systems a challenging task. Therefore, in this thesis, we

focused in investigating control approaches allowing to take into consideration the uncer-

tainties that can affect cancer dynamical systems. Furthermore, we aimed at pointing out

the importance of considering stochastic parametric uncertainties in the drug schedules

design.

In the context of cancer treatment scheduling, in addition to the complexities men-

tioned above, we have to take into consideration many constraints on the states as well

as on the control inputs. An example is taking into account health constraints in order to

prevent an eventual immune weakening of the human body, or drug toxicity constraints

especially for chemotherapy, which is known to have many side effects. Moreover, we need

to deal with optimality issues since we often want to reduce as fast as possible the tumor

burden while avoiding an immune depletion.

One of the solutions proposed for this type of problems is optimal control design. Dif-

ferent approaches related to optimal control were designed in the literature, we reviewed

some of them in Chapter 2. This category of approaches is interesting since it allows to

deal with nonlinear systems, to consider hard constraints and to provide optimal guar-

antees. However, only few works dedicated to cancer treatment scheduling considered

uncertainties on model parameters.

The first part of this thesis was dedicated to a literature review as well as to recall

different theoretical concepts. In Chapter 2, we extensively explained the different dy-

namics related to the cancer growth phenomenon. We also presented the main therapies

that are used for cancer treatment with a focus on immune dynamics and immunother-

apy. Thereafter, we presented a brief review on the literature of cancer growth modeling

121
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and introduced the problem of cancer therapies scheduling in terms of control design, as

well as the main challenges that one has to face. We also proposed to use an optimal

control approach allowing to take into consideration parametric uncertainties as well as

uncertainties on the initial states, in the control design.

The approach that we proposed to use is based on the moment optimization frame-

work, it consists in transforming a polynomial optimal control problem in the space of

measures, and then rephrasing it in terms of moments. This method allows to consider a

class of nonlinear systems that is widely used in many applications, which is polynomial

dynamics. The appealing feature of this approach is that it is suitable for dealing with

states and inputs as probability distributions, simply by managing the moments of the

related probability distribution functions. This makes the explicit consideration of para-

metric uncertainties as well as initial state uncertainties straightforward in the optimal

control problem formulation. In Chapter 3 we briefly recalled the main theoretical aspects

of optimal control via moment optimization. We also explained in this chapter how to

reformulate optimal control problems in terms of moments and gave some details about

the reconstruction of input and state trajectories.

In the second part of this thesis, we used the moment optimization framework in

order to schedule cancer treatment. We considered a widely used mathematical model,

describing the interaction dynamics between a cancer, the immune systems as well as

combined chemotherapy and immunotherapy. In Chapter 4, we first derived nominal

optimal control profiles corresponding to drug schedules, where fixed model parameters

were consider. Thereafter, we modeled the tumor growth rate and the natural influx of

immune cells (which are model parameters) with probability distributions and designed

robust optimal control profiles. Finally, we compared the efficiency of both profiles (nom-

inal and robust) under parametric uncertainties, using Monte-Carlo simulations. The

obtained results showed the importance of taking into account parametric uncertainties

in the drug schedules design, since the nominal control profiles do not meet the control

objectives under uncertainties.

In Chapter 5, we modified the well known Stepanova model used in Chapter 4 in

oder to consider the detrimental effects that chemotherapy has on the immune system,

by adding a term in the dynamical equation corresponding to the density of effector im-

mune cells. Moreover, we added a new constraint, in the optimal control problem, in

order to consider a minimal allowed density of immune cells in the optimal control prob-

lem. Furthermore, we considered the parameter standing for the detrimental effects of

chemotherapy to be uncertain and described by a probability distribution. We designed

nominal and robust control profiles and compared them, we noticed that the maximal

concentration of chemotherapy has been considerably reduced, which highlights further-

more the importance of considering parametric uncertainties.

The moment optimization approach can be very promising for many applications, and

it is worth applying it to other models describing cancer dynamics, in order to have an
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idea on the appropriate drug injection schedules, when parametric uncertainties are con-

sidered. However, it is important to know that this approach has some limitations, which

consist mainly in the restriction on polynomial dynamics and the limited dimension (state

and control variables) that can be handled. Moreover, the required computational time

might be relatively high in the case of solving a robust optimal control problem. However,

in some applications, it remains crucial to guarantee robust performances.

On another hand, the estimation of domains of attraction for dynamical systems is a

fundamental and important problem in control theory. This set provides all the possible

initial states, for which there exists a control strategy, such that the state trajectories

starting at these initial conditions can be driven to a stable equilibrium. Deriving an an-

alytical expression for this type of sets is a challenging problem, especially for nonlinear

dynamical systems. Therefore, there exist many works on numerical approaches, in the

literature, to estimate the domain of attraction of dynamical systems. In Chapter 6, we

provided a brief review on some widely applicable techniques to estimate the regions of

attraction.

In the case of cancer dynamical systems, the domains of attraction represent the sets of

initial health conditions (tumor volume and immune cells density for example), for which

there exists a treatment strategy such that the patient is healed, without any health

damage or immune depletion. Therefore, the characterization of this type of sets is very

interesting for cancer dynamics. Furthermore, since this class of systems is known to be

highly uncertain by nature, it is also important to estimate the RoA under uncertainties

for such systems.

The third part of this thesis was dedicated to the estimation of domains of attraction

for uncertain nonlinear systems describing cancer dynamics. In Chapter 6, we proposed

a readily applicable approach to provide a characterization of the domain of attraction

of the well know Stepanova’s model for a given parameters vector. In this method that

is in the same line as sliding mode control, we considered bang-bang control strategies.

Moreover, we used this approach to derive an estimate of the robust domain of attraction,

when the model parameters are considered to be uncertain.

Furthermore, in Chapter 6, we provided an extensive analysis on the effects of paramet-

ric uncertainties on the model equilibriums points, as well as on the region of attraction

structure. We noticed that when considering parametric uncertainties, the size of the

region of attraction is considerably reduced. Therefore the domain of attraction might be

highly sensitive to parametric uncertainties, which is a crucial information in the context

of cancer treatment, since such sets provide an information on the patients that can be

healed, using appropriate treatments.

It is worth emphasizing that the methodology proposed in Chapter 6 does not provide

a specific control strategy to apply, but, it rather gives an idea on the initial health con-

ditions that can be healed or not. Furthermore, these results was used in Chapter 7 for
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comparison purposes, in the latter chapter a methodology allowing to provide certified

control strategies was presented.

The methodology that was proposed in Chapter 7 is based on the randomized al-

gorithms and allows to estimate probabilistically certified regions of attraction. In this

chapter, we used a modified Stepanova model, which was extended in order to consider

the pharmacokinetics of chemotherapy explained in Chapter 2.

The framework of probabilistic certification of regions of attraction allows to certify

in a probabilistic sense the existence of a control strategy that drives the states from

an initial state to a certified target set. Unlike the robust classical design of regions of

attraction that considers the worst-case scenario, the proposed framework avoids focusing

on few unlikely very bad scenarios, allowing to overcome the conservatism of the robust

RoA design by means of a probabilistic certification.

We used this approach in Chapter 7 in order to derive a certified region of attraction

for a cancer growth model. Furthermore, this certified RoA was validated using Monte-

Carlo simulations, by estimating the probability of driving the states to the certified safe

target set, using the corresponding certified control strategies.

The results of Chapter 7 showed that the probabilistically certified region of attraction

might be less conservative than the one based on the worst-case scenario, since there are

some regions of the state space which belong to the probabilistically certified RoA and not

to the robust one, even though the control inputs were more constrained in the probabilis-

tic certification framework. An interesting perspective for the work of Chapter 7 would

be to consider more flexible set structures, in order to provide a tighter approximation of

the probabilistically certified RoAs.

Finally, the different frameworks presented in this thesis can be seen as tools allowing

to tune the several parameters of cancer therapies protocols, in order to better achieve

the treatment objectives. Furthermore, these tools help to build an awareness on the

importance of considering parametric uncertainties in the control design.
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Proof of Theorem 6.1

Let’s consider the following polynomial:
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Let a2, a1 and a0 be the coefficients of the monic polynomial (A.1) such that:
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Let ap = (a2, a1, a0)T be the coefficients vector corresponding to the polynomial a(x2).

We can define the Hermite form corresponding to (A.1) as follows:

H(ap) =

 s0 s1 s2

s1 s2 s3

s2 s3 s4


where s0, s1, s2, s3 and s4 are defined as follows:

s0 = 3

s1 = −a2

s2 = a2
2 − 2a1

s3 = −a3
2 + 3a1a2 − 3a0

s4 = a4
2 − 4a1a

2
2 + 2a2

1 + 4a0a2

According to Theorem 1.1 in [75], the Hermit matrix H(ap) is positive definite if and

only if the roots of a(x2) are real and distinct.
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optimization and semidefinite programming. Optim. Methods and Software, 24(4-5

(2009), 761–779.

[46] Henrion, D., Lasserre, J. B., and Savorgnan, C. Nonlinear optimal control

synthesis via occupation measures. In Proceedings of the 47th IEEE Conference on

Decision and Control (Cancun, Mexico, December 2008), pp. 4749–4754.

[47] Henrion, D., and Pauwels, E. Linear conic optimization for nonlinear optimal

control. arXiv:1407.1650 (2018).

[48] Kassara, K., and Moustafid, A. Angiogenesis inhibition and tumor-immune

interactions with chemotherapy by a control set-valued method. Mathematical Bio-

sciences 231, 2 (2011), 135–143.

[49] Korda, M., Henrion, D., and Jones, C. N. Inner approximations of the region

of attraction for polynomial dynamical systems. IFAC Proceedings Volumes (IFAC-

PapersOnline) 9, 1 (2013), 534–539.

[50] Kovacs, L., Szeles, A., Sapi, J., Drexler, D. A., Rudas, I., Harmati, I.,

and Sapi, Z. Model-based angiogenic inhibition of tumor growth using modern robust

control method. Computer Methods and Programs in Biomedicine 114, 3 (2014), e98–

e110.

136



[51] Lasserre, J. B. Optimisation globale et théorie des moments. Comptes rendus de

l’Académie des Sciences Paris (2000).

[52] Lasserre, J. B. Global optimization with polynomials and the problem of mo-

ments. SIAM Journal on Optimization 11(3), 3 (2001), 796–817.

[53] Lasserre, J. B. Moments, positive polynomials and their applications. Imperial

College Press, London, UK (2010).

[54] Lasserre, J. B., Henrion, D., Prieur, C., and Trélat, E. Nonlinear optimal
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