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Chapter 1

Introduction

Whether they come from smartphones, connected devices, sensors or smart meters the volume
of generated and exchanged data is growing exponentially. In 2018, 33 Zettabytes (which
represent 1012 Gigabytes) of data were produced all over the world. This enormously large
volume of data continues to grow every day. The International Data Corporation (IDC)
predicts that this number is expected to reach 175 Zettabytes in 2025 [111]. With an estimated
generated revenue of 203 billion euros in 2020, this large amount of economically valuable data
is, unsurprisingly, a gold mine for the people holding it. The World Economic Forum compares
it to “the new oil” [59].

Traditionally, these data are collected and stored in centralized servers by large corpora-
tions (Google, Amazon, Facebook, insurance companies, etc.). This massive collection and
centralisation of data allows the crossing of data from millions of users. Thanks to the very effi-
cient big data algorithms developed during the last few decades, ranging from simple statistical
analysis (groupings, aggregation) and automatic information search (automatic classification,
rule discovery), to learning (based for example on neural networks), companies are now able
to offer tailor-made services directly inspired by user behaviour, which increases productivity,
ergonomics and usefulness. Thus, crossing data from multiple individuals is of utmost personal
and societal interest.

Unfortunately, lately, this traditional model has shown its limitations. Indeed, central-
ization suffers from many drawbacks. Public awareness of the dangers posed by the data
monopoly orchestrated by the Web giants began in 2013 when the whistle-blower Edward
Snowden shed light on one of the biggest scandals of the 21st century [107]. Snowden revealed
that the American government, through its intelligence agencies, was conducting massive
surveillance of individuals with the complicity of data holders. However, this is not the only
problem that centralization suffers from. In 2017 a report published by Cracked Labs [39] re-
veals how the different web companies share and pool the personal data of their users collected
directly or indirectly and how this astronomical amount of data is used to create extremely
accurate profiles containing sensitive and intrusive personal information of millions of indi-
viduals. In its report [39] Cracked Labs states that “The profiles that data brokers have on
individuals include not only information about education, occupation, children, religion, eth-
nicity, political views, activities, interests and media usage, but also about someone’s online
behaviors such as web searches. Additionally, they collect data about purchases, credit card
usage, income and loans, banking and insurance policies, property and vehicle ownership, and
a variety of other data types. Data brokers also calculate scores that predict an individual’s



possible future behavior, with regard to, for example, someone’s economic stability or plans
to have a baby or to change jobs”. The result of this massive profiling is the manipulation of
individuals that can range from simply influencing their shopping habits, to more worrying
issues such as manipulation of public opinion by even going so far as to influence the results of
an election. It was typically the case with the 2016 American elections, where the Cambridge
Analytica scandal [34] revealed how the elections were influenced after analyzing the profiles
of millions of Facebook users and using the information learned to influence the vote of the
targeted individuals.

Moreover, data breaches are another element that undermines the centralized model.
Whether they are intentional (misuse, malicious attack), or just by negligence (data leak-
age, mismanagement), these data breaches result in the leakage of a large amount of data.
And their number is increasing more and more. Indeed, an attack against a server containing
millions of records represents a big win for the attackers as the benefit-to-cost ratio is very
high. Among the thousands of yearly breaches, one can cite Facebook’s one, which in 2019
exposed 540 million user records on amazon’s cloud servers due to poor security [119]. The
same year Microsoft accidentally exposed 250 million customer service records [30]. The all-
time record is held by Yahoo which suffered an attack, starting from 2013, that exposed 3
billion user accounts [105].

The result of this situation is that users lose control over their own data. These threats
point the need for personal platforms which allow their users to collect, manage and share their
own data. This is the essence of the self-data movement. For all these reasons many voices
are calling for a reconsideration of the current architecture of the Web, including the founder
of the Web himself. In 2018, Tim Berners Lee published an open letter [24] denouncing the
monopoly of a few majors on the collection of personal data, he says in particular “the Web
has evolved into an engine of inequity and division; swayed by powerful forces who use it for
their own agendas.” Thanks to smart disclosure initiatives, the new web that he describes in
his open letter is no longer a dream or an impossible utopia.

The smart disclosure program started in 2010 with the blue button initiative which al-
lows patients to download their personal health data by simply clicking on a "blue button".
The former president of the United States, Barack Obama, said in September 2011 during
the opening of an open government partnership event in New York city “We have developed
new tools called ‘smart disclosures’ so that the data we make public can help people make
health care choices, help small businesses innovate, and help scientists achieve new break-
throughs” [98]. The blue button initiative was so successful that it paved the way for other
initiatives like the green button for personal energy usage data and the red button for personal
educational data. The same initiatives have been proposed in Europe, first at a national level
for each country, such as MiData [90] (energy, financial, telecommunications and retail data)
in Great Britain or MesInfos [89] in France, then at a broader level, within the European
Union, with the General Data Protection Regulation (GDPR) [99], and in particular its data
portability prerogative. The data portability allows users to access their personal data from
the companies or government agencies that collected them. In the French official journal the
data portability is defined as “the data subject shall have the right to receive the personal
data concerning him or her, which he or she has provided to a controller, in a structured,
commonly used and machine-readable format and have the right to transmit those data to
another controller without hindrance from the controller to which the personal data have been
provided”. This is clearly a big step to give users back control over their personal data and
empower them. But it is not enough to help users escape from a captive ecosystem. Indeed,



the users need a technical solution which allows them to store, manage, share and exploit
these retrieved data. This is exactly what personal data management systems (PDMS) also
called personal clouds offer.

Personal data management system solutions are flourishing. Their goal is to empower users
to leverage their personal data for their own good. They provide a way for individuals to store
all their digital environment in the same place. This opens the way to new value-added services
that were not possible with the centralized model. Indeed, users are now able to cross their
data collected from different sources (e.g., crossing bank statements with shopping history or
health records with data from connected watches, etc.). The different PDMS solutions will be
reviewed thoroughly in Chapter 2.

While storing data, previously scattered over different silos, in PDMSs increases user
control over them, collaborative uses of data are often overlooked in this context. However,
as said above, the benefits derived from crossing data belonging to multiple individuals are
considerable and has both personal and social advantages in many areas (healthcare, banking,
smart cities, social assistance, etc.). For example, computing statistics or clustering data for
an epidemiological or sociological study, training a neural network to organize bank records
into categories or predicting diagnoses according to medical symptoms. A user may want
to share her GPS position to have accurate traffic prediction [84], or her medical records to
train a shared neural network so that it can detect several diseases [42, 103]. She may also
want to adapt her energy contract based on her actual consumption without jeopardizing her
privacy [92]. A naive approach to this problem is to send personal data to a trusted third party
who will perform said collaborative computations. But as shown above, the "trusted third
party" assumption is strong and unrealistic knowing all the threats against the centralized
model. Moreover, sending personal data to a third party means loosing control over them and
thus forsake one of the major advantage of the decentralized model.

The goal of this thesis is to overcome this unrealistic trust assumption and propose a
computing framework that allows the crossing of personal data of multiple individuals/PDMSs
and ensures them sovereignty over their data and the ability to make informed and independent
choices. This raises two questions:

1. How to preserve the trust of individuals on their PDMS while engaging their data in a
distributed process that they cannot control?

2. How to guarantee the honesty of a computation performed by a myriad of untrusted
participants?

Answering these questions requires establishing mutual trust between all parties in a dis-
tributed computation. On the one hand, any (PDMS) participant must get the guarantee
that only the data required by the computation are collected and that only the final result of
the computation he consents to contribute to, is disclosed (i.e., none of the collected raw data
can be leaked). On the other hand, the querier must get the guarantee that the final result
has been honestly computed, with the appropriate code, on top of genuine data. Besides this,
to have a practical interest the framework must be:

e Generic, meaning that the framework is able to compute arbitrary functions, from
simple statistics to complex machine learning algorithms.

e Scalable, meaning that the framework can be run over a large number of participants
(e.g. tens of thousands) without a deterrent overhead.



e Decentralized, meaning that the computations are executed at the edge of the network,
directly within the participant’s devices.

Our contributions are the following:

1. We propose a generic and scalable secure decentralized computing framework which
allows the crossing of personal data of multiple individuals/PDMS and provides the
expected mutual trust and computation honesty properties. We qualitatively and quan-
titatively evaluates the scalability and security of the solution on practical use cases
(group-by queries, k-means clustering).

2. We propose a solution to hide data-dependant communications that may leak informa-
tion from attackers observing the network traffic. We quantify formally the privacy level
provided by our solution.

3. We propose a concrete application of our framework in the medical-social field and we
demonstrate the practicality of the solution through a real case-study conducted over
10.000 patients in the healthcare field and evaluate it in terms of security, performance
and societal impact.

4. We define and formalize the personal agency, a product of the social sciences which
forms the basis of individual empowerment, in the Personal cloud context and analyze
to which extent the personal agency is achieved in current models. Finally, we show how
our framework achieves it.

This thesis is organised in seven chapters. The current chapter introduces our work and
gives the general context.

Chapter 2 introduces the concepts necessary to understand the contributions of the thesis
and to position them with respect to the state of the art. In a first step, we will draw a
panorama of the different families of PDMS solutions and show why current solutions cannot
answer our objectives, notably the ability to perform computations crossing data of multiple
individuals. We will then study the different existing techniques that are used in the literature
to perform distributed computations and evaluate the possibility of applying them to our
context. Finally, we will present the third topic related to our work, the use of secure hardware
to perform computations in a database context.

In Chapter 3, we will first define and formalize the problem we are addressing. We then
propose a framework that satisfies all the above objectives under the assumption that the com-
munication patterns are hidden to the adversaries. Finally, we will assess the effectiveness of
the framework and evaluate its security through a mix of real implementation and simulations.
This chapter is based on a work |77] published and presented in the 18th IEEE International
Conference on Trust, Security and Privacy in Computing and Communications / 13th IEEE
International Conference on Big Data Science and Engineering (TrustCom/BigDataSE) in
2019' and presented in APVP’192 and BDA’193.

In Chapter 4, we propose a mechanism to remove the anonymous communication pat-
terns assumption. We formally prove the robustness of the proposed solution against powerful

Thttps:/ /forumpoint2.eventsair.com/QuickEvent WebsitePortal /trustcom19/tc19
Zhttps://project.inria.fr/apvp2019 /programme,/
3https://bda.liris.cnrs.fr/



colluding adversaries able to observe all the communication patterns and show that the infor-
mation leakage is negligible even if all the participants except one collude to infer the data of
the last one. This chapter is based on an ongoing work.

In Chapter 5, we present an application of the framework in the medical-social field using
an on-going deployment of a PDMS on a district-wide basis and we assess the practicality
and the adaptability of the framework even in constrained environments where the band-
width is limited. This chapter is based on a work [76] published and presented in the 28th
International Conference on Information Systems Development (ISD2019)* and [78] which is
an extention of [76] published in Transactions on Large-Scale Data and Knowledge-Centered
Systems journal volume XLIV (Special Issue on “Data Management - Principles, Technologies
and Applications”)?.

Chapter 6 presents a work done in collaboration with lawyers. We will show how the
properties of secure distributed computations can have a concrete interest for the individual
in terms of empowerment, in line with the work accomplished by the European Union with
the introduction of the right to data portability. We will particularly show how our solution
can lead to strong user empowerment. This Chapter is based on a work done in collaboration
with lawyers and published in the Global Privacy Law Review®.

Finally, Chapter 7 concludes this thesis by summarizing the main contributions and giving
some interesting directions for future work.

*https://isd2019.isen.fr/
Shttps:/ /www.irit.fr /tldks/volumes/
Shttp://www.kluwerlaw.com/journals/global-privacy-law-review /
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2.3.3 Conclusion . . . . . .. 21

In this chapter, we present the three main topics related to our work: in Section 2.1 we
review the main families of Personal Data Management Systems (PDMS) and show to which
extent they tackle the challenges identified in the introduction. In Section 2.2 we present
the classical approaches used in the database context to perform distributed computations:
homomorphic encryption, secure multi-party computation, gossip-based protocols and local
differential privacy. Finally, in Section 2.3 we present the last topic related to our work,
computations using secure hardware.
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2.1 Personal Data Management Systems

The Personal Data Management Systems (PDMS) [8], Personal Information Management
Systems [1], Personal Data Servers [5] and Personal Data Stores [45] are all different names
given to the same paradigm, the Personal Cloud. A personal cloud is a set of software and/or
hardware solutions that allow their owners to gather their whole digital content, in a single
place, stored and managed under their control.

In this section we will give a global overview of the different PDMS solutions’ families as
specified in [8]. For each family we will show the main features and the trust model. At the
end of the section, we will discuss to which extent the current solutions tackle the challenges
identified in the introduction.

2.1.1 Online Personal Clouds

Most of the existing personal cloud solutions fall under this category. Many industrial prod-
ucts such as: BitsAbout.Me [25], CozyCloud [40], Digi.me [47], Nextcloud [95], Meeco [87] or
Perkeep [104] and even governmental programs like MesInfos.fing.org [89] in France or My-
Data.org [94] in Finland are representative of this family. Such solutions offer their users the
ability to store their personal data in a central server managed by the provider. The users
can access their data through the Internet. These solutions propose three features:

e Data collectors. The solutions cited above offer the possibility to automatically collect
the users’ personal data from the companies and administrations hosting them. This
is made possible thanks to smart disclosure initiatives (e.g. Blue and Green Button,
MyStudentData, etc. in the U.S.) and new regulations such as the GDPR in Europe.
The data collectors use users’ credentials to connect to the online services and fetch the
latest updates to the personal cloud owner. For instance, CozyCloud implements this
feature thought the CozyCollect application which allows the connection to different
services, including banks, insurance companies, energy companies, and so on.

e Cross-computations. As the complete digital life of the individual is stored within the
same location (instead of spread among many different databases held by the companies
that generated/gathered them in first place), new computations involving data from
different sources are made possible. For example, Cozy cloud, through Cozy Banks,
offers the users the possibility to manage and monitor all their different bank accounts
at the same place.

o Trusted storage. Within the cloud provider’s infrastructure, users’ data are compart-
mentalized, and the users can only access and perform computations on their own data.
This logical separation guarantees a trusted storage. Some solutions allow the storage
of users’ encrypted data in different locations rather than in the provider’s server which
gives a higher level of protection.

Trust model. Even if there are some differences on how the gain of users’ trust is achieved, the
common point of different online personal cloud solutions is the promises they make to users.
In particular, the cloud providers ensure that they will not observe nor disclose users’ personal
data, and these data are not exploited for anything not consented by the owner. The three
main arguments put forward are: (i) the use of the best practices in terms of security standards
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(e.g. using cryptographic primitives to protect data at rest, encrypt communication channels
using SSL, etc.) (ii) the second argument is the establishment of legally binding contracts
(e.g. having servers in location with high level of legal privacy protection) and a business
model depending on the trust that users have in the provider (i.e. it is not in their interest
to lose users’ trust as this will inevitably lead to bankruptcy) and (iii) the last argument
is the auditability and/or the accessibility of their code. Many of the online personal cloud
solutions have an open source code that can be checked and verified by the community. For
the remaining ones their code is audited by specialized companies.

These approaches rely on strong hypotheses in terms of security: (i) the PDMS provider
and its employees are assumed to be fully-honest, and (ii) the PDMS code as well as all
applications running on top of it must be trusted. This is critical in a centralized context ex-
acerbating the Benefit-to-Cost ratio of an attack. On the other hand, collective computations
are simplified by the data centralization but the security of such processing remains an issue.

2.1.2 No-knowledge Personal Clouds

To overcome the limitations inherent to online personal cloud solution that comes from the
strong assumption of trust in the cloud provider, some solutions (e.g. SpiderOak [120] or
Sync [121] and to a certain extent Digi.me mentioned above) propose an architectural variation
which consists in encrypting the data stored in the cloud. These kinds of solutions provide
two features:

e Secure storage. Unlike the online personal cloud solutions where the storage is trusted
thanks to logical separation, in no-knowledge personal cloud solutions the storage is
secure thanks to the encryption of data on disk. The personal cloud owner has the
responsibility to store and manage the encryption keys elsewhere and the cloud provider
has never access to the encryption keys.

e Secure backup. In a digital world, the risk of data loss due to, for example, mishandling
or a malicious act by an attacker (e.g. ransomware) is non negligible. No-knowledge
personal cloud solutions offer a secure point-in-time recovery that allows users to restore
all their data at a given date in the past.

Trust model. The no-knowledge personal cloud solutions protect against: (i) a malicious
or honest-but-curious cloud provider who tries to leak/observe users’ data or uses the data
outside of the owner’s consent, (ii) an attacker who compromises the provider’s servers to gain
access to raw users’ data and, (iii) a user device failure or corruption (e.g. ransomware).

The price to pay for this increase of security is the difficulty to develop advanced (local or
distributed) services on top of no-knowledge personal clouds, reducing their use to a robust
personal data safe. Indeed, if the users want to use their data to feed an application, they first
need to download the whole content of their personal cloud, decrypt it and feed the application
with the desired data.

2.1.3 Home Cloud Software Solutions

In online personal cloud solutions, the user’s entire digital content is stored in a central server
owned by the cloud provider. These solutions provide a high data utility but present two
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major drawbacks: (i) the cloud provider may be corrupted and uses user data without their
consent and (ii) a higher probability of a massive leak of data in case of an attack. The no-
knowledge cloud solution addresses these limitations but sacrifices data utility. An alternative
is proposed by the home cloud software solutions (e.g., OpenPDS [45], DataBox [66]). The
personal data are managed at the extremities of the network (e.g., within the user’s equipment)
to circumvent the security risks of data centralization. Hence, queries on a user’s data can
be computed locally and only the result (not the raw data) is sent back to the querier. The
features of the home cloud software family are:

e Trusted storage. The data storage is considered trusted because it is stored at the
edge of the network, in user devices. For example, in OpenPDS, users accumulate their
data in stores located in their smartphones/computers and can access, explore and share
these data using a privacy-preserving framework.

o (Cross-computations. As for online personal cloud solutions, the user’s entire digital
life is stored in the same location. This opens the way to new value-added computations.
The safe answer system proposed by OpenPDS allows to answer queries while returning
only the final result instead of the raw data used.

e Data dissemination. This feature is a direct consequence of the two previous ones.
Indeed, the data are under user control and the users are granted with frameworks and
tools allowing them to explore, share and manage their data as they want.

Trust Model. These solutions implicitly assume two statements: (i) the user device at the
edge is trusted and cannot be tampered with and (ii) the framework and applications are
trustworthy. But no serious nor formal guarantees are given to underpin these assumptions.

2.1.4 Home Cloud Plugs

The next family of personal cloud is a variant of the home cloud software. The users are
equipped with a dedicated box that can store terabytes of data and run a server. This solution
alleviates the burden of administering a server on the individual’s device and logically isolates
the user’s computing environment from the box. As an example of this family, we can cite
CloudLocker [41], MyCloud [93], Helixee [97] and many personal NAS solutions. The main
features are:

o Trusted storage and backup. The dedicated hardware is plugged on the individuals’
home internet gateway and is either connected to an external drive or it directly inte-
grates it. The data are stored encrypted and the encryption keys are held by the plug.
Usually, the users can access their plug through a central server which acts as a DNS
and stores the IP addresses of each plug. This central server also acts as a backup server
where data are stored encrypted and can be restored at any moment.

Trust Model. As for home cloud software, the home cloud plugs solutions protect against
massive leaks as no central server has access to raw data. However, a strong security as-
sumption about the hardware and the software is made. Unlike home cloud software, this
assumption is supported by the fact that no other software than the one running on top of
the plug can be installed. But still no formal guarantees are provided.
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In conclusion, home cloud software and plugs focus on the trusted storage and backup
features and an access to personal data at any moment. They, however, typically do not focus
on security nor on the data related functionalities as providing these functionalities requires
extending the trusted computing base.

2.1.5 Tamper Resistant Personal Server

Research projects such as Personal Data Server [5] or Trusted Cells [7] propose an enhancement
for the home cloud plugs family by adding a tamper-resistant element (e.g. a chip) to the
hardware. This tamper-resistant element embeds a minimal trusted computing base that may
be formally proven secure and acts as a DBMS. The features of this family are:

e Secure storage. The database is embedded within the secure element, it inherits its
security properties. An external flash memory (e.g. p-SD cards) is used to store the
encrypted data, while the encryption keys and the metadata are stored within the secure
element.

e Secure cross-computations. Same as for the storage, the secure cross-computations
come from the fact that the DBMS inherits the security properties of the secure hard-
ware.

e Secure distributed computations. In [126, 124] algorithms based on Trusted Cells |7]
are proposed to achieve secure distributed computations by relying on an untrusted
central server leveraging its high computation capabilities. The data are encrypted or
anonymized and then sent to this server which performs partial computations on them.

Trust model. The trust in this type of solution is achieved through: (i) the tamper-resistance
of the hardware which makes software and hardware attacks highly difficult to perform (ii) the
embedded DBMS is minimalist which makes its administration easy even for non expert users.
However, the trust in the distributed computation is weaker. Indeed, using a central server
introduces some vulnerabilities. The server is considered as a malicious adversary having
weakly malicious intents [22]. In other words, the server may try to cheat, as long as it cannot
be detected as this would be against its business model (i.e. cheating will cause financial
damages).

This family seems to be the one fulfilling most of the desired features but still, it is
poorly extensible, notably for the part of cross-computations and distributed computations.
The limited computing power of tamper-resistant hardware forces the trade-off of privacy for
utility (by, for example, resorting to a central server with more computing power). Moreover,
the proposed algorithms to perform the aforementioned distributed computations are ad-hoc,
making the generic computation objective difficult to achieve.

2.1.6 Conclusion

Many conclusions can be drawn from this analysis. First, some features (storage, backup)
are common the all PDMS families with some variation on how they are achieved. But
unfortunately, none of the proposed solutions cover the whole data life cycle as specified
in [8] especially for the distributed computation part. However, as seen in the introduction,
distributed computations are highly important nowadays since it is the cornerstone of big
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personal data processing. Second, apart from the last solution, the trusted computing base is
so big that it is hard to prove it formally. Combining the different solutions to take advantage
of the benefits of each one is impossible because of the heterogeneity of the architectures and
trust models. Finally, none of the proposed solutions tackles our objectives stated in the
introduction. The tamper resistant personal server solution is the closest but is far from being
generic or scalable to tens of thousands of users. The solution is to increase its computing
power and propose adapted algorithms.

2.2  Secure Distributed Computations Schemes

In this section, we will present the different approaches in the literature for performing se-
cure distributed computations. There are four main approaches: (i) Using Homomorphic
Encryption, (ii) Secure Multi-Party Computations (MPC), (iii) Local Differential Privacy and
(iv) Gossip-Based Protocols. For each approach, we will present the main idea behind, some
notable works, and explain why it does not achieve our objectives.

2.2.1 Homomorphic Encryption

The principle behind homomorphic encryption was introduced by Rivest, Adelman and Der-
touzos in 1987 under the appellation Privacy Homomorphisms [112|. The idea was to allow
computation over encrypted data. In other terms, let E(a) and E(b) the encrypted values
of respectively the message a and the message b. Where F is a private homomorphism. Let
d = E(a) ® E(b), we have D(d) = a ® b where D is the decryption function associated to E
and @, ® are two (different or no) operations. After decades of research, the community came
up with interesting results that can be summarized in three categories [2]:

e Partially homomorphic encryption are encryption schemes that are homomorphic
for one operation. A lot of existing encryption schemes are partially homomorphic such
as [65, 102| which are homomorphic for the addition or [113, 54| which are homomorphic
for the multiplication.

e Somewhat homomorphic encryption schemes allow both addition and multiplica-
tion but for a limited number of times. Like [29] which allows an unlimited number of
additions and one multiplication. In [28] they propose a way to query a private database
using somewhat homomorphic encryption, but the set of possible operations is limited.

e Fully homomorphic encryption schemes are homomorphic for both addition and
multiplication for an unlimited number of times. Gentry [62] was the first to propose
a fully homomorphic encryption scheme in his thesis dissertation. Gentry showed that
any function may be computed over encrypted data. His work was followed by many
others (for example [130, 33]) mostly inspired by Gentry’s framework.

Partially and somewhat homomorphic encryption cannot be used to meet our genericity
requirement. Fully homomorphic encryption schemes are incompatible with our scalability
requirement, even if huge improvements were made since Gentry’s work, the computational
cost remains too high to be practical in real world scenarios. As an example, in [36] the
authors showed that it takes 5 minutes to encrypt an AES block.
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2.2.2 Secure Multi-Party Computation

The goal of Secure Multi-Party Computations (MPC) is to allow n users uj,us,...,u, to
jointly compute an arbitrary function f(z1,z2,...,xy,) over their private inputs x1, 2, ..., Ty
without learning anything more than the final result. For example, when computing the
maximum salary of a group, it is possible to deduce that all the other salaries are lower than
the maximum one but nothing else is revealed about the actual salaries.

The MPC problem was first introduced by Yao [133] in 1982 when he proposed a solution
to answer the question "Two millionaires wish to know who is richer, how can they do so
without revealing their wealth ?". Decades of research were made on this topic to find the
most efficient solution. Many different approaches have been proposed to solve the MPC
problem. However, all these approaches can be classified into three main categories:

Garbled circuits based

The first paper of this category How to Generate and Exchange Secrets [134] was proposed
by Yao in 1986 for the case of two parties. The idea was later generalized to n parties by
Goldreich, Micali and Wigderson [64]. The principle behind is the secure evaluation of boolean
circuits. Indeed, any arbitrary function can be written as a composition of logical gates. Thus,
if we have a solution that securely evaluates a logical gate, one can evaluate any function. Yao’s
idea follows four steps:

e Suppose that Alice and Bob want to compute a function. They collaborate to transform
the function into a booelan circuit (or one of the parties does it and discloses it to the
second party).

e One of the parties (say Bob) garbles the circuit, encrypts it and sends it to Alice together
with his encrypted inputs.

e Alice needs to garble her inputs. To this end, she needs Bob’s help as he is the only one
who knows the encryption key. This operation is made possible thanks to "1 out of 2
oblivious transfer" [58].

e Alice has everything now to evaluate the circuit. She does so and reveals the final result
to Bob.

Trust model. This approach guarantees a computational security® for any t < n honest-but-
curious colluding attackers. The bottleneck is the data oblivious transfer step.

Secret Sharing based

The building block of the second category of MPC protocols such [35, 23] is the Shamir’s
secret sharing scheme |117] also known as (t,n)-threshold scheme. The goal is to share a secret
among n parties in such a way that the combination of any ¢ or more shares is required to
recompute the secret, while knowing less than ¢ shares provides no information about the
secret. Shamir’s scheme works as follows:

LA cryptosystem is said to be computationally secure if it cannot be broken with the current computer
technology within a reasonable amount of time.
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e Bob wants to share his secret s over n parties with a threshold of ¢+ 1 parties to disclose
the secret. He generates a polynomial of degree t : P(x) = ayal + ... + aix + s where
«; are randomly selected in a finite field Fy, where ¢ is any prime power with ¢ > s and
q>n>t.

e Bob evaluates P in n different points (i.e. P(x1), P(x2)...., P(z,)). Note that the points
need to be different from 0 as P(0) = s. Each couple (z;, P(x;)) is a share. Each share
is sent to one party.

e When the secret needs to be rebuilt, ¢ + 1 parties need to collaborate to reconstruct
the polynomial using the polynomial interpolation. To reveal the secret, the polynomial
needs to be evaluated in 0.

This simple but elegant principle is used to perform MPC. It is trivial to notice that
having a set of ¢ shares (z;, P1(z;)) from a polynomial P;(z) and t shares (x;, P2(x;)) from a
polynomial P(x) and using the sum of the shares (z;, P1(z;) + P2(x;)), allows one to rebuild
the polynomial corresponding to the sum of the two polynomials P;(z) + P»(x). Using this
property, it is possible to perform secure addition. However, multiplication is tricky. In [23] the
authors proposed a solution that performs the multiplication without jeopardizing the security.
Note that multiplications are costly in term of communication compared to additions which
do not require any.

Trust model. Secret Sharing based category offers an information-theoretic security? for any
t < § honest-but-curious colluding attackers.

Fully Homomorphic Encryption based

The last category of MPC is based on the fully homomorphic encryption presented above
in Section 2.2.1. Some notable works for this category are [43, 38]. The main idea is the
following:

e A pair of encryption and decryption keys is generated. The encryption key is published
to all the parties and the decryption key is shared using a threshold scheme among all
the parties.

e FEach party encrypts its input using the encryption key and sends it to the other parties.
e Each party can now compute the function over the encrypted inputs.
e Finally, the parties collaborate to decrypt the final output.

Trust model. FHE based category offers an information-theoretic security for any ¢t < n

honest-but-curious colluding attackers or any ¢ < 7 active attackers.

Conclusion

The MPC research field is very active, many improvements were made during the last decades
and some practical implementations were proposed. For example in Secure Multiparty Com-
putation Goes Live [27] Danish farmers used MPC protocols to agree on the price of sugar
beets. The proposed protocol in [79] can join medium size databases with 100k rows in a

2 An unconditional security that does not depend on any assumption
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few minutes using the Sharemind framework [26]. MPC objective (i.e. allowing to compute a
generic function over private data while protecting the privacy of the inputs) is typically one
of our objectives, it however does not scale to a large number of users. Moreover, most MPC
protocols assume honest-but-curious users.

Note that some ad-hoc MPC protocols were proposed to solve some specific problems such
as secure sum [118|, dot-products |70], private matching and set intersection [60], etc. Some
of these protocols can scale to a large number of participants but they are by nature not
generic. Typically, MPC adaptations to distributed databases contexts, like SMCQL [20],
either support only few tens of participants or are limited to specific database operations.

2.2.3 Local Differential Privacy

Another technique to perform a distributed computation is local differential privacy which is
an adaptation of the global model proposed by Dwork in [51]. The general idea is as follows,
having two datasets D; and Dy which differ only in one row (i.e. the cardinality of Dy — Do
is 1). If O is the output of a certain query, the probability that @ comes from D; is almost
equal to the probability that O comes from Ds.

Unlike the other anonymization techniques (i.e. k-Anonymity [115], I-Diversity [86] or t-
Closeness |80]), differential privacy applies on the process and not the data (i.e. by analyzing
the data one cannot say if it is differentially private or not). Moreover, the protection provided
by differential privacy is stronger.

The principle behind local differential privacy takes its origin from the randomized re-
sponse [132] where the idea is to give means to eliminate the bias introduced in surveys by
introducing some randomness which protects the individual answers. For example, we want
to have statistics about an illegal behaviour (say drug addiction). We want participants to
answer the question "Do you take drugs?" instead of saying "yes" or "no", each participant
toss a coin without revealing the outcome:

e If the result is heads, the participant answers the truth.

e If the result is tails, the participant tosses another coin and answers "yes" if it is heads
and "no" if it is tails.

It is easy to see why this is better for the respondents. Indeed, when a participant says
yes", one cannot distinguish if it is the truth or if it is a random answer. The privacy level
can be adapted depending on how sensitive the collected data are by, for example, using an
unfair coin.

The power of differential privacy comes from the fact that it is no longer necessary to
know the attacker’s capabilities. Thus, differential privacy guarantees that: (i) an attacker
will not get any information about the individuals of the database and (ii) no matter what is
the prior knowledge of the attacker, the privacy guarantees still hold. However, even if there
are some real world implementations of differential privacy such as the US Census Bureau [85]
for publishing statistics, Uber [72| for enabling a private query interface over user data for
employees, Google [56] to compute aggregations over users’ data and Apple [122| with its
private collection of emojis, this adoption remains rare. The major obstacle is to design
algorithms that give an acceptable level of privacy and acceptable utility.

Local differential privacy suffers from three drawbacks. First, implementing algorithms
that can compute an arbitrary function of users’ private data is not possible. Second, the

n
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accuracy of the final result cannot be guaranteed (most of differential privacy solutions intro-
duce noise over the data). Finally, differential privacy has shown its limitation when it comes
to computing a function over many attributes [96].

2.2.4 Gossip-Based Protocols

Another approach is the use of an adaptation of gossip protocols to perform distributed com-
putations. The initial goal of gossip protocols is not to provide privacy preserving computation
schemes but to disseminate information in a peer-to-peer network. They work the same way
as a rumor spread (i.e. information/data are transmitted first from a node to another node.
Then, the two nodes holding the information spread it to another two nodes. This process is
repeated until the information is spread all over the network).

Several works adapted gossip protocols to perform privacy preserving operations such
as distributed filtering [31], clustering [4], anonymous content dissemination [32|, aggrega-
tions [71]. The adapted distributed algorithms work on fragmented data exchanged among
nodes, and noise is added to provide differentially private communication patterns that reveal
data content.

Gossip protocols scale well but are not generic in terms of possible computations. Moreover,
they consider an honest-but-curious threat model and cannot be adapted to reach all of our
goals.

2.2.5 Conclusion

As seen in this section, classical techniques to perform computations in a distributed database
context cannot be used to reach our objectives. They are either not able to compute generic
functions (local differential privacy, gossip-based protocols) or not scalable for a large num-
ber of participants (homomorphic encryption, secure multi-party computation). Moreover,
none of the above solutions consider the computation integrity objective nor the limited data
collection.

2.3 Secure Hardware Based Distributed Computations

The last topic related to our work, is the use of dedicated secure hardware to securely com-
pute over data. There are various types of secure hardware, embedded chips like the ones
used in credit cards, SIM cards used in phones, encrypted hard-drives, secure co-processors
and hardware security modules (HSM). Each technology has varied objectives ranging from
accelerated processing and secure storage, to isolated execution and trusted computing. They
are generally used in specific use cases and provide ad-hoc solutions to some existing prob-
lems. In the next subsection we will briefly describe the limitations of the aforementioned
solutions with respect to our context. We will then discuss a more promising secure hardware
technology called Trusted Execution Environment (TEE) which best fits our context.

2.3.1 Traditional Secure Hardware

Several works propose the use of specific secure hardware in databases context. These works
can be sorted into two categories: (i) mono-user setting where the computations and/or data
are controlled by the same controller. In other words, the data are held by (or belong to) the



2.3. Secure Hardware Based Distributed Computations 18

same entity managing the computations done over them and (ii) multi-users setting where
data are scattered over many users that manage the computations.

Mono-user setting

TrustedDB [17], Oblivious Query Processing [13] and Cipherbase [12, 110| make use of a se-
cure co-processor to offer a secure query evaluation. They basically split the query processing
into two parts, one executed on the untrusted part and the other executed within the secure
co-processor. TrustedDB embeds a full SQL lite DBMS within the secure part while in Ci-
pherbase, the secure co-processor is used only for cryptographic operations and expression
evaluation. The encryption keys are stored in the secure part and used to decrypt the data
and encrypt the result. The processing of the sensitive data is done inside the secure part, but
due to limited storage capacity of the hardware, data are stored encrypted in an untrusted
storage and are sent to the secure part only when needed. These solutions are centralized by
nature and do not match our context.

PicoDBMS [109] and MILo-DB [9] are two DBMS designed to run in highly constrained
environments (small RAM, slow write capabilities, etc.). Both use the tamper-resistance of
smartcards to implement a full secure DBMS able the handle most traditional database queries
(selections, joins, aggregations, etc.). The encryption keys are stored within the smartcard
while the encrypted data are stored in an untrusted storage (e.g. flash memory). Both
solutions are designed for a mono-user context but they can be used to execute simple queries
in a multi-user context (as seen next).

Multi-users setting

Decentralized solutions based on secure hardware have also been proposed for aggregate
queries. For example, in [125, 126] the authors propose a protocol to perform global com-
putations such as SQL aggregates using a specific secure hardware [11] and architecture [7].
In their architecture, each node is equipped with a Trusted Data Store (TDS) with limited
computing resources, storage, and low availability. A central entity called Supporting Server
Infrastructure(SSI) is used to exchange encrypted messages between nodes and store interme-
diate results. Unlike the TDS, the SSI has high computing resources and availability. The
TDSs are considered honest while the SSI is honest-but-curious. Based on the same tech-
nology as in [7] and a similar architecture the authors of [124] propose a way to perform
privacy-aware mobile participatory sensing. Both solutions suffer from the same drawbacks:
(i) the honest-but-curious central entity is not compatible with our setting, (ii) all the nodes
share a common key used to encrypt data transiting between nodes, which means that if the
security of one node is compromised, the privacy of the whole system fails and (iii) due to the
low computing resources, the proposed protocols can execute a limited number of tasks which
clashes with our genericity objective.

Conclusion

Ad-hoc secure hardware cannot be used in our context. The major obstacles are either their
limited computing power, which prevent the design of generic and scalable protocols to per-
form secure and distributed computations, or the unrealistic assumption of equipping all
participants with specific secure hardware such as secure co-processor.
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2.3.2 TEE as Game-changer

The emergence of Trusted Execution Environments (TEE) [114] definitely changes the game.
The following definition of TEE is given in [114]:

“Trusted Execution Environment (TEE) is a tamper- resistant processing environment that
runs on a separation kernel. It guarantees the authenticity of the executed code, the integrity
of the runtime states (e.g. CPU registers, memory and sensitive I/O), and the confidentiality
of its code, data and runtime states stored on a persistent memory. In addition, it shall be able
to provide remote attestation that proves its trustworthiness for third-parties. The content of
TEE is not static; it can be securely updated. The TEE resists against all software attacks as
well as the physical attacks performed on the main memory of the system. Attacks performed
by exploiting backdoor security flaws are not possible.”

In other words, a TEE is a secure area inside a main processor. It runs in parallel with
the operating system. It combines tamper-resistant hardware and software components to
provide integrity and confidentiality guarantees for arbitrary computations on sensitive data.
More precisely TEEs provide three main security properties:

e [solation for the code they execute. This means that a code being executed inside a TEE
cannot be influenced by anything (user environment/OS) outside of the secure area.

e Confidentiality of the data within the TEE. This means that an attacker (or even the
TEE owner) cannot leak the data processed inside the TEE (except the inputs and the
outputs).

e Remote attestation that is a mechanism which enables the proof of the identity of the
code running inside a TEE [6]. Attestation abstractly is a cryptographic hash of the
running code together with its return value, signed with the secret key of the TEE.
It allows for performing remote computations inside TEEs while obtaining integrity
guarantees on the result.

Compared to ad-hoc secure hardware, TEE are now omnipresent in end-user devices like
PCs (e.g., Intel’s Software Guard eXtention (SGX) in Intel CPUs since the Skylake version in
2015), mobile devices (e.g., ARM’s TrustZone in ARM processors equipping smartphones and
set-top boxes) and dedicated platforms (e.g., TPM combined with CPU or MCU). All these
solutions provide the three properties mentioned above with different levels of performance.

In the same way as with traditional secure hardware, works using TEEs in databases
context can be sorted into the same two categories: mono-user and multi-users.

Mono-user setting

Several works use TEEs to provide security in a single database context. EnclaveDB [108]
proposes a high performance database engine that uses the properties of TEE to guarantee
confidentiality, integrity and freshness of data and queries even with a malicious database
administrator and/or compromised operating system. The sensitive data are stored within
secure enclaves together as compiled queries. Other works focus on secure key value store such
as [123] which proposes an SGX-based log-structured merge tree key value store that ensures
integrity, completeness and freshness. The proposed solution uses protected memory buffers
outside the secure part to circumvent the limited enclave memory and optimize updates.
SPEICHER |[16] and ShieldStore [74] are two other secure key value stores based on SGX.
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Secure indexes were also proposed using TEEs. HardIDX [61] leverages SGX enclaves to
securely search over outsourced and encrypted data while maintaining high query performance.
HardIDX implements only the search function inside secure enclaves and thus can be used as
an efficient and encrypted database index. Oblix [91] is another search index over encrypted
data. Unlike HardIDX, Oblix combines oblivious access techniques with the TEEs to hide the
access patterns and prevent information leakage.

TEEs are also used in the distributed databases context. For example, Opaque [135] is a
distributed data analytics platform implemented on SparkSQL that makes the access pattern
oblivious. ObliDB [57] is another solution providing oblivious access pattern. VC3 [116] im-
plements map reduce using Intel SGX. The mappers and reducers are executed in separate
enclaves. VC3 ensures the security of the code and the processed data and provides integrity
guarantees to the controller using the different properties of TEEs. Communications between
enclaves are encrypted but the access pattern may leak information. M2R [49] and Observ-
ing and Preventing Leakage in MapReduce [100] propose a solution to overcome the access
pattern leakage in VC3 by hiding communication patterns between mappers and reducers.
The anonymity of inputs is ensured by adding a shuffle step between mappers and reduc-
ers. In [106], the authors propose another solution to execute map reduce using SGX, their
proposal is close to VC3 one but proposes an easier and fault-safe solution that uses Lua to
implement a lightweight MapReduce framework.

Most of these works have a unique controller, as opposed to our setting where no unique
individual is supposed to be in control of the computation. Additionally, most of the time
this controller also provides the data to be computed on. This greatly simplifies the problem
as the same controller verifies all enclaves and organizes the computation.

Multi-users setting

The closest works to ours are the ones falling into this category. Ryoan [69] provides a frame-
work for building a network of SGX backed sandboxes for executing "software as a service"
computations. However, only the master enclave is supposed to obtain guarantees on the com-
putation, instead of propagating trust in the whole system. Hence, the objectives of the com-
putation are fundamentally distinct from ours. Authors in [101] propose privacy-preserving
multi-party machine learning algorithms. They propose an adaptation of five machine learn-
ing algorithms that prevents the exploitation of side channels attacks by using a library of
data-oblivious primitives. To prevent the leakage due to external data access, they propose to
randomize the data and always access all the data. Their solution focuses on machine learning
algorithms and is then not applicable in our context where one of the objectives is to com-
pute arbitrary functions. In SEP2P [83] the authors propose a P2P personal data processing.
Their goal is to provide a protocol able to select a list of random users to execute a query.
They use distributed hash tables and CSAR protocol [15] to ensure that the selection process
includes at least one honest user such that the whole random list is trusted. DISPERS [82]
extends SEP2P to the query evaluation. The authors proposed a way to split and distribute
the execution of a query to a set of randomly selected actors. Both works are targeted to the
PDMS context but the main differences with our work is that: (i) they do not consider the
integrity of the computation which is one of our main objectives and (ii) in their architecture,
the users are not able to choose to participate to a computation or not, the only choice they
have is to be part of the whole system or not.
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2.3.3 Conclusion

TEEs are able to compute arbitrary functions over sensitive data (decrypted on the fly in
protected areas) while guaranteeing data confidentiality (the execution cannot be observed
outside of the secure part) and providing an integrity attestation (proof that the code executed
in a remote enclave is genuine). This opens up new ways of doing secure distributed processing
with the hope of reconciling genericity and scalability.

Unfortunately, TEEs are far from providing a complete solution on their own. Indeed,
TEEs have been primarily designed to delegate the execution of a given code to an untrusted
server in the cloud. Building similar security guarantees in a decentralized setting with thou-
sands of participants running different pieces of code is a brand new challenge.

Moreover, while TEEs tamper-resistance makes attacks highly difficult and costly, it does
not eradicate them completely. The authors of [10] classify these attacks into two categories:
(i) Attacks based on speculative execution like Spectre |75] and Foreshadow [128], these attacks
need to be fixed by the hardware manufacturer and (ii) side channel attacks [131], the TEE
in this case behaves in a “sealed glass proof” mode [127], i.e., the confidentiality property
is compromised, but the isolation and attestation properties still hold. These attacks are
however complex to perform and usually require physical access to the TEE, which prevents
large scale attacks. Unfortunately, TEEs corrupted by side-channel attacks cannot be detected
by honest ones as their behavior is still the correct one and it should be taken into account
when designing protocols using TEEs.
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introduction (i) How to preserve the trust of individuals on their PDMS while engaging their
data in a distributed process that they cannot control? and (ii) How to guarantee the honesty
of a computation performed by a myriad of untrusted participants?

In our setting, each participant holds her personal data in a PDMS and is equipped with
a trusted execution environment. We leverage the properties of TEEs to achieve our goals.

3.1 Problem Formulation

3.1.1 Architecture and Trust Model

The trust model considered in our context stems from the decentralized nature of the targeted
infrastructure and the properties of the TEEs introduced in Section 2.3.2 (i.e. isolation,
confidentiality and remote attestations).

o Untrusted user devices. No credible security assumptions can be made on the ex-
ecution environment running on widely open personal devices (PC, laptop, home box,
smartphone, etc.) managed by non-experts. We thus consider that the device OS and
applications can be corrupted.

e Unirusted infrastructure. We also consider the communication infrastructure as
untrusted. At this point we make the assumption that the communication flow incurred
by the computed algorithm is made data independent, i.e., that personal data cannot be
inferred by observing the communication pattern among participants. In Chapter 4 we
will provide a solution on how to make the communication flow data independent.

e Large set of trusted TEFEs, small set of corrupted TEEs. We assume that each
individual owns a TEE-enabled device hosting his personal data (i.e., his PDMS). This is
definitely no longer fantasy considering the omnipresence of ARM’s TrustZone or Intel’s
SGX on most PC, tablets and smartphones. As explained in Section 2.3.2, a small subset
of TEEs could have been corrupted by malicious participants (potentially colluding) to
break their confidentiality with side-channel attacks.

e Trusted computation code. We consider that the code distributed to the participants
has been carefully reviewed and approved beforehand by a regulatory body (e.g., an
association or national privacy regulatory agency). But the fact that the code is trusted
does not imply that its execution behaves as expected. Indeed, some malicious users may
try to participate to the computation with another code that disclose more information
that it should.

e Trusted citizen identity. We consider that citizens have been assigned a private /pub-
lic key by a trusted (e.g., governmental) entity (e.g., as used today for paying taxes
online). This prohibits attackers generating multiple identities with the objective to
massively contribute to a computation to isolate a small set of participants and infer
their data.

3.1.2 Problem Statement

The problem can be formulated as follows: how to translate the trust provided to the com-
putation code by the regulatory body into a mutual trust between all parties participating



3.2. Mutual Trust 25

to the computation under the presented trust model? To solve this problem, the following
properties need to be satisfied:

e Mutual trust. Assuming that the declared code is executed within TEEs, mutual trust
guarantees that: (1) only the final result of the computation can be disclosed, i.e., none
of the raw data of any participant is leaked and the result is honestly computed as
certified by the regulatory body, (2) only the data strictly specified for the computation
are requested from the participant PDMSs, (3) the computation code is generic and
makes it possible to verify that any collected data is genuine?.

e Local assurance of validity. The querier and each involved participant must be able
to monitor locally (i.e., on its own, without relying on a central trusted party) that the
computation is being performed in compliance with the code declaration, by all other
participants. If any honest participant detects a validity violation, an error is produced
and the computation stops without producing any other (partial) result.

e Resilience to side-channel attacks. Assuming a small fraction of malicious and
potentially colluding participants involved in the computation with corrupted TEESs,
our framework must (1) guarantee that the leakage remains circumscribed to the data
manipulated by the sole corrupted TEEs, (2) prevent the attackers from targeting a
specific intermediate result (e.g., sensitive data or data of targeted participants) and (3)
maximize the Cost-to-Benefit ratio of an attack. Note that this is the best we can do
assuming that the code manipulates clear data and that side channel attacks can be
performed. In addition, the means to achieve resilience should maintain the communi-
cation flow independent of the data being processed (i.e., attack resiliency should not
affect the data independence).

e Genericity and scalability. To have a practical interest, the solution must finally: (1)
be generic enough to support any distributed computations (e.g., from simple aggregate
queries to advanced machine learning computations) and (2) scale to a large population
(e.g., tens of thousands) of individuals.

3.2 Mutual Trust

To provide the mutual trust property, we propose adopting a manifest-based approach. As
described in Figure 3.1.

3.2.1 Global Overview of the Framework

Our framework is conducted in three steps :

Stepl: logical manifest declaration. We call Querier an entity (e.g., a research lab, a
statistic agency or a company, acting as a data controller in the GDPR sense) wishing to
execute a treatment over personal data. The Querier specifies a Logical Manifest describing
the computation to be performed, namely: its purpose, the source code of the operator to be
run at each participant, the distributed execution plan materializing the data flow between

4 Assuming data genuineness can be actually verified by the running code in any way (e.g., thanks to a
digital signature).
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Figure 3.1: Manifest-based distributed computation

operators and a set of privacy rules to be fulfilled, including data collection rules and expected
number of participants. The Querier submits this logical manifest to a Regulatory body which
certifies its compliance with the expected privacy practices. The certified logical manifest is
then published in a public manifest store where it can be downloaded by individuals wishing

to participate. Example 1 illustrate a logical manifest (deliberately naive for the sake
simplicity) for a group-by query implemented using a MapReduce-like framework.

Example 1. (GroupBy manifest)

of

Purpose:
Compute the mean quantity of anziolytic prescribed to employees group
by employer
Operators:
mapper source code
reducer source code
Distributed execution plan and dataflow:
number of mappers: 10.000
number of reducers: 100
any mapper linked to all reducers
Collection rules:
SELECT employer_name FROM Job;
SELECT sum(qty)FROM Presc
WHERE drugtype = ‘anziolytic’;
Querier Public key: Rex2fAzHj6k7dle
Manifest signature : dF$3sif

Step2: physical manifest construction. Once certified, the manifest can be viewed

as

a logical distributed query plan (participants are not yet identified). When a sufficient num-
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ber of potential participants consent to contribute with their data, a Physical Manifest is
collectively established by the TEEs of all participants (according to our trust model, each
participant is equipped with a TEE). A physical manifest assigns an operator to each partic-
ipant. As detailed in Section 3.4.1, this step is critical for resilience to side-channel attacks,
by prohibiting corrupted participants from selecting specific operators in the query plan for
malicious purpose.

Step3: physical manifest evaluation. FEach participant downloads the physical manifest
(or the subpart allocated to him). The participant’s TEE initializes an enclave to execute his
assigned operator and establishes communication channels with the TEEs of other participants
supposed to exchange data with him (according to the manifest distributed execution plan).
The participants then contributes his personal data to the operator and allows the computation
to proceed. Once all participants have executed their task, the end-result is delivered to the
querier.

3.2.2 Assessment of the Mutual Trust

Let us introduce the following definitions in order to analyze how mutual trust is achieved.

Definition 1 (Distributed Execution Plan). A distributed execution plan DEP is defined
as a directed graph (V,E) where vertices V are couples (op;,a;) € OP x A with OP the
set of operators to be computed and A the set of computing agents, and edges E are couples
(< opi,a; >, < opk, a; >) materializing the dataflow among operators, namely the transmission
by a;j to a; of op; output. For anyv; € V', we denote by Ant(v;) (resp. Succ(v;)) the antecedents
(resp. successors) of v; in the DEP, that is the vertices linked to v; by a direct incoming (resp.
outgoing) edge.

This representation of distributed execution plans is generic enough to capture most dis-
tributed data-oriented computations. Based on this definition, we can introduce the notion of
logical manifest.

Definition 2 (Logical Manifest). A logical manifest LM is as a tuple < PU,DEP,CR, N >,
with PU the textual purpose declaration, DEP a distributed execution plan, C R the collection
rule applied at each participant and N the expected number of participants.

The CR declaration translates the limited collection principle enacted in all legislations
protecting data privacy (i.e., no data other than the ones strictly necessary to reach the
declared purpose PU will be collected). We assume that this declaration is done using a
basic assertional language (e.g., a subset of an SQL-like language) easily interpretable by the
Regulatory body on one side and easily translatable into the specific query language of any
PDMSs on the participant’s side. For the sake of simplicity, we assume that the data queried
at each participant follow the same scheme (if it is not the case, it is basically a matter of
translating the collection rules in different schemes). N plays a dual role: it represents both
a significance threshold for the Querier wrt. the declared purpose and a privacy threshold for
the Regulatory body wrt. the risk of reidentification of any individual in the final result. The
notion of physical manifest can be defined as follows:

Definition 3 (Physical Manifest). A physical manifest PM is a tuple < LM, P, F,Qcr >
such that: (1) function F : LM.DEP.A — P assigns agents to the participants P contributing



3.3. Local Assurance of Validity 28

to the computation of LM ; (2) F is bijective, so that a given participant cannot play the role
of different agents and each agent is represented by a participant; (3) any query q; € Qcr 18
the translation for participant p; of the collection rule LM.CR into the query language of his
PDMS.

Definition 4 (PM valid execution). An execution of a physical manifest PM is said valid
if the execution has not deviated in any manner from what is specified in LM, i.e., (1) the
operators in LM.DEP.OP are each executed by the TEFE of the participant designated by
F while respecting the dataflow imposed by LM.DEP.E, (2) the TEE of any participant p;
queries its host with q;, (3) N different participants contribute to the computation and (4) all
data exchanged between the participants’ TEFEs are encrypted with session keys.

Lemma 1. Under the hypothesis H1 that the execution of a PM is valid and H2 that no TEE
have been corrupted, the mutual trust property is satisfied.

We postpone to Section 3.3 how to achieve hypothesis HI and to Section 3.4 the counter-
measures suggested in the case hypothesis H2 does not hold.

Proof. The three conditions in mutual trust definition given in Section 3.1.2 hold by construc-
tion. First, condition (1) is satisfied because H1 guarantees that each operator in DEP.OP is
executed within a TEE, and H2 and the TEE’s confidentiality property ensure that no data
can leak other than the input and output of each DEP.OP. Encrypting the data exchanges
between each vertex v; and Ant(v;) and Succ(v;) in DEP with a session key ensures the
confidentiality of the global execution of PM.DEP. The final result is itself sent encrypted
to the Querier so that no raw data other than the final result can leak all along the execution.
Second, condition (2) stems from the fact that each participant p; is presented with ¢; which
is a translation of LM.C'R. The honest execution of g; over p;’s PDMS remains however under
the participant’s responsibility who selected it to protect his personal data. Regarding condi-
tion (3), H1 and H2 again guarantee the integrity of the global execution of PM.DEP. Note
that this guarantee holds even in the presence of corrupted TEEs since side-channel attacks on
TEEs may compromise the confidentiality of the processing but not the isolation property. It
immediately follows that any check integrated in the operator code can be faithfully performed
on cleartext data, thus ensuring genericity. O

Compared to state of the art solutions, our manifest-based approach holds the capacity
to reconcile security with genericity and scalability. First, the TEE confidentiality property
can be leveraged to execute the computation code at each participant over cleartext genuine
data. Second, the shape of the DEP and then the resulting number of messages exchanged
among participants, directly results from the distributed computation to be performed. Hence,
conversely to MPC, homomorphic encryption, Gossip or Differential privacy approaches, no
computational constraints compromising genericity nor performance constraints compromising
scalability need to be introduced in the processing for security reasons.

3.3 Local Assurance of Validity

Once mutual trust is ensured, one needs to ensure that each participant gets the assurance
that the computation was performed as expected. Ideally, this means that the computation
should behave as if all participants could continuously monitor all the others, i.e., check all
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operator computations, ensuring correctness of the sent/received data at each step, and abort
the whole process if any misbehavior happens. This is formalized in Definition 5.

3.3.1 Definitions and Naive Solution

At this stage, we assume that the execution plan has been produced by an arbitrary function,
assigning a position ¢ in the execution plan to each participant (the strategy for performing
this assignment is discussed in Section 3.4). We also assume that the local code executed by
a participant either terminates successfully or explicitly returns an error.

Definition 5 (locally checkable execution). The execution of a distributed execution plan DEP
is said locally checkable if for any participant p; € PM.P, either (1) p;’s view of the partial
execution up to p;’s role is valid or (2) p; returns an error and no data is ever transmitted to
other participants.

An immediate consequence of Definition 5 is that, for any locally checkable execution,
either a global result is produced if the execution is valid or no intermediate values is ever
leaked. It follows that a protocol guaranteeing locally checkable executions for a DEP exactly
provides local assurance of validity as any deviation from the normal execution would result
in an invalid execution and would therefore result in an error at the participant’s level.

As participants execute code in TEEs, a naive way to satisfy Definition 5 is to instrument
the code of each operator in order to make sure that before sending out any (partial) result the
code gets approval from all other participants. While this solution trivially satisfies our goal
of local assurance of validity, the communication overhead with a large number of participants
is overwhelming.

3.3.2 Proposed Solution

In order to overcome the aforementioned problem, we leverage the fact that using the TEE
mechanisms and attestation, one can rely on checks made within other participant’s TEEs.
In our architecture, the foundation of local checkability is the decomposition of the code
running at each participant in a generic TEE monitor and a specific TEE computation code.
The objective of this distinction is to avoid the need for any participant to recompile the
code running on the other participants and compute its hash to evaluate the validity of the
requested remote attestations. The execution at each participant then works as follows: (1)
untrusted code executed on the local host, called untrusted prozry in Figure 3.2, creates a TEE
enclave and launches the TEE monitor code inside this enclave, (2) the TEE monitor, the role
of which is to interpret the manifest and drive the local execution, creates a second enclave to
launch the TEE computation code corresponding to the operator assigned to the participant
in the execution plan. Note that all of the scheduling is performed by the untrusted proxy, in
particular waking up TEE monitors as they are needed for the computation.

The TEE monitor code is identical for each participant, so that its hash is known by
everyone. This code is minimal, can be easily formally proved and is assumed trusted by
all participants. This lets us consider the manifest LM as data, including the code of the
local operator to be computed, let each local TEE monitor check the integrity of this data
and then attest the other participants (antecedents and successors in the execution plan) to
the genuineness of the TEE computation code. Antecedents and successors can easily check
in turn the validity of the received remote attestation by checking only the genuineness of
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the remote TEE monitor. This double attestation by the antecedents and by the successors
is mandatory to guarantee, for each participant, the validity of the inputs it receives and
the authenticity of the recipients for its own outputs. This transitive attestation principle is
depicted in Figure 3.2.

Following this strategy, local checkability is guaranteed. Intuitively, if a specific participant
does not execute the genuine TEE monitor, it will be unable to provide a valid attestation to
its partners (antecedents/successors) which will stop the execution and return an error. Then,
if all participants run the correct TEE monitor and execute the same manifest, the execution
is necessarily correct, since the TEE monitor only executes its dedicated code, and attestation
prevents attacks from the OS on the result of the TEE computation code. If, however, one
participant does not execute the correct manifest, its antecedents/successors will fail during
the manifest verification. Finally, for any execution plan represented by a connected graph,
the validity of the global execution is obtained by propagating errors through the execution
graph, if an error occurs at any point during the computation. In order to prevent an attacker
from running a large number of instances of a computation code in enclaves, each enclave
must be tied to an identity, certified by a citizen identity provider.

3.3.3 Algorithm

The pseudo code of the TEE monitor is provided in Algorithm 1. For the sake of conciseness,
we restrict this algorithm to the management of tree-based execution plans, however extending
it to any graph is just a matter of allowing multiple successors. Note that the scheduling of the
execution and errors propagation can be handled by untrusted code. Indeed, if a participant
encounters an error, it would typically propagate it upstream so as not to let successor’s
enclaves hanging. However, it is by no means security critical as successor’s enclave would
simply never execute if they fail to receive their antecedents’ inputs.

While hidden in the pseudo code, we assume that all communications between participants
and the different enclaves are performed on secure channels. This is crucial to ensure that
the endpoints of channels lie in real TEE enclaves and to prevent an adversary capable of
observing the communications from getting access to user data. A primitive reaching this goal
is called attested key exchange [19]. It allows to exchange a key with an enclave executing a
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specific program, and hence ensures (using the attestation mechanism) that the endpoint of
the channel lies within an enclave and that the enclave is executing the expected program, even
if the administrator of the machine running the enclave is corrupted. We abstract this creation
of a secure channel as channel(remote, expected code) where remote is the remote enclave
and expected code is the code expected to be running in the remote enclave. The cost is
essentially 1 remote attestation and 2 communications. Once established, all communications
are assumed to be done on this channel. For simplicity’s sake we abstract away who is the
initiator of the secure channel and view this process as symmetric.

Algorithm 1: TEE monitor
Input: LM the logical manifest, id = (sk;, pk;, cert;) the participants cryptographic
identity and the corresponding certificate
Output: boolean indicating success

if verify(LM) = false then // verify manifest
return error
end
PM < Build_phys _manifest(LM,id) // build phys. manifest
i < get_my _position(PM, sk;)
PM; + extract(PM,1)
Qi, P;, C;, op; < Parse(PM;)
foreach antecedent € C; do // get antecedents’ outputs
if not(channel(antecedent, sel f.code)) then return error
if not(id_check(antecedent)) then return error
if child. PM # PM then return error
input _tuples+ < accept _input(antecedent)
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end
input _tuples+ < out _call(Q;) // query PDMS
Eop, < create__enclave(op;) // create op; enclave
if not(channel(Eop,,op;) then return error
send_tuples(input _tuples, Eqp,) // produce output
res_op; < accept_input(Eop,) // execute op;
successor < get _successor(PM,res _op;)
if successor = querier then

a < attest(res_op;, PM)

send(a,res_op;)

return success
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end

if not(channel(successor), sel f.code) then return error
if not(id_check(successor)) then return error

if successor;.PM # PM then return error
send_tuples(res_op;, P;)

return success
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Algorithm description

In lines 1 to 7, the integrity of the logical manifest is verified by checking its signature, the
physical manifest is built in collaboration with the other participating TEE monitors (cf. Sec-
tion 3.4, which also covers the explanation of line 4, not required in this section) and the part
of the manifest related to this participant is extracted (i.e., the set of its antecedents/succes-
sors, the data collection query used to retrieve data from the local PDMS and the code of the
operator to be evaluated locally).

Then, in lines 8 to 13, the attestation of each antecedent is verified, by comparing the
hash value of the code it is running to the hash value of the TEE monitor code (common to
each participant). Once the antecedent TEE monitor is known to be correct, we check that it
runs the correct manifest. We also check its identity by requiring its enclave to send it. This
provides enough assurance because once we know the code of its enclave we know that it will
honestly send its identity. Finally, the input tuples of the local operator are retrieved from its
antecedents and /or the local PDMS of this participant.

In lines 15 to 17, the TEE monitor creates an additional enclave for the operator to be
run (its code is part of the manifest) and requests an attestation from this enclave (the hash
of the operator is compared to the hash of the code computed by the TEE monitor) to make
sure that the host did not compromise or impersonate the operator code. Then the monitor
establishes a secure channel with the operator enclave, using an attested key exchange as
in [19] and TEE monitor calls the operator using the appropriate inputs.

Finally, in lines 18 to 29, the TEE monitor, either sends the result to the querier if its result
is the final result, together with an attestation guaranteeing the result was indeed produced
by the correct computation of the specified data; or sends its result to the next participants
as planned by the DEP.

3.3.4 Assessment of the Local Assurance of Validity

Proposition 1. Algorithm 1 satisfies the locally checkable execution property for the physical
manifest PM derived from the logical manifest LM by the build phys manifest function.

Proof. We sketch a game based proof that our protocol satisfies the locally checkable property.
The goal of this proof is to show that performing an error free computation which is not a
valid execution of DEP is equivalent to a game where, by construction, the execution is valid
(up to the negligible probability of breaking either a cryptographic hypothesis or security of
TEEs). Assume that at least one participant p performs an error free execution. We perform
the proof in five game hops, successively removing bad events until the game is secure by
construction:

o First game hop. We bound the probability that any participant does not execute the
correct TEE monitor. This reduces to breaking the remote attestation property for the
offending party as it necessarily is accepted by the participants it communicates with or
an error would be produced.

e Second game hop. We forbid the event that a participant does not execute the same
DEP as p. As all TEE monitors are honest at this step, and check agreement on the
executed DEP, this reduces to a participant being able to inject a fake message into
the secure channel between TEE monitors, i.e., breaking integrity of the secure channel
between TEE monitors.
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e Third game hop. We limit the probability that a participant is not executing the code
allocated by DEP. This reduces to breaking the local attestation of the offending party’s
machine (if the code executed is forged) or security of the identity binding (if the code
is supposed to be executed by another participant), i.e., security of signature schemes
typically.

e Fourth game hop. We bound the probability that inputs/outputs to the computation
codes are not the correct ones or are leaked. This reduces to breaking integrity or secrecy
of the secure channel between the computation enclave and the monitor enclave.

e Fifth game hop. We bound the probability that messages exchanged between partic-
ipants are the correct ones or are leaked, which again reduces to breaking the integri-
ty/secrecy property of the secure channel between the TEE monitors.

Finally, we have an execution where all exchanged messages are correct and the whole code
is executed as expected, which, by construction performs a valid computation. Note that if
the execution is not error free, line 28 is never executed, and no data is sent, ensuring point
(2) of the definition of locally checkable execution. Hence, the protocol proposed for executing
a manifest achieves the locally checkable execution property: any participant, including the
Querier, is guaranteed that any other participant runs the manifest as expected. Note that

this sketch of proof holds for any connected graph and not simply for n-ary trees.
O

3.4 Resilience to Attack

According to our trust model, a small fraction of TEEs can be instrumented by malicious
(colluding) participants owning them to conduct side-channel attacks compromising the TEE
confidentiality property. This issue is paramount in our Manifest-based approach which draws
its genericity and scalability from the fact that computing nodes manipulates cleartext genuine
data, putting them at risk.

The resilience to side-channel attacks property introduced in Section 3.1, states first that
the leakage generated by an attack must be circumscribed to the data manipulated by the
sole corrupted TEEs. This is intrinsically achieved in our proposal by never sharing any
encryption key among different nodes. A second requirement is to prevent any attacker from
targeting specific personal data. Randomness and Sampling are introduced next to achieve
this goal. Finally, DEP reshaping is proposed to tackle the third requirement, i.e., maximizing
the average Cost/Benefit ratio of an attack.

3.4.1 Randomness

In a physical manifest, we distinguish participants assigned to a collection task (which con-
tribute to the query with their own personal raw data) from participants assigned to a compu-
tation task (which process personal data produced by other participants). Attacking any TEE
running a collection task has no interest since the attacker only gains access to his own per-
sonal data. Hence, the primary objective of an attacker is to tamper with the building phase
of a physical manifest such that his TEE be assigned a computation task to leak the data it
manipulates. The goal of our randomness counter-measure is to assign a random position in
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the DEP to each participant to prevent any potential attackers (Querier or any participants)
colluding with corrupted TEE from being assigned a computation task.

Definition 6 (Provably random execution plan). A distributed execution plan PM.DEP is
said to be provably random if any participant p; € PM.P can verify that its position and the
position of any other participants in PM.P has been obtained randomly.

If this condition is not met, the execution of the manifest must be aborted. We propose a
solut