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Introduction

This thesis is constructed from a series of articles concerning social choice theory. Some

may be further specified as using the ideas of computational social choice theory. An anal-

ysis of the words “social”, “choice”, “theory” and “computational” provides a general idea

of the type of results contained within.

The word “theory” indicates that social choice theory is a formal field of study. In particular,

this thesis is mostly concerned with mathematically formal issues—as opposed to empirical

issues. However, although the work presented here is not dependent upon observations of

the real world, it does involve modelling potentially real situations (this is explicitly the case

for the simulations of Chapter 1).

The “social” part connects us to what is modelled, which is, in a rough sense, society. Of

course, the concept of society is somewhat amorphous. In our models we attempt to capture

one aspect of society that is relevant to collective choice: the preferences that each agent

has. Such preferences can be expressed in many ways. The traditional approach of social

choice theory, due to Arrow (1950), models society as a profile of ordinal preferences. This

approach, and others that we consider, specifies precisely what are to be taken as the relevant

possible states of society.

The “choice” part refers to some method for selecting or for ranking alternatives. For our

purposes, such a method is a function whose domain is the possible states of society. The

output of the function might be a chosen alternative. We call such functions social choice

functions. Other functions may output a ranking over the alternatives. We call such functions

social welfare functions. We are less concerned with descriptive accounts of how this is done

in practice, and more with the normative properties of potential methods—we study what

choices should be made by a social choice procedure.

We now come to “computational”. Problems of a social choice theoretic nature have been

found to be applicable to problems traditionally associated with computer science. In the

opposite direction, computational methods have been applied to the traditional problems of

social choice theory. This cross-fertilisation has led to the birth of computational social

choice. Interdisciplinary by nature, this field of study now treats many problems from dis-

ciplines such as economics, computer science, articial intelligence, mathematics, political

science and philosphy. Across these diverse settings, a number of specific techniques have

been developed that have a particularly computational-social-choice-theoretic nature. Of par-

ticular note is the application of the theory of computational complexity, which may (for

example, negatively) show that a supposedly attractive social choice procedure is infeasible

in practice (it may also be used positively to mitigate a negative result). Results using this
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and other such concepts contribute to an understanding of the issues of social choice theory,

not merely through performing simulations or calculations using computers, but thanks to

the formal concepts and ideas of theoretical computer science.

Within the general framework of computational social choice theory, this thesis focuses on

two main issues: how expressive the preferences of the agents are, and how decisive the

choice procedure is. The first theme may be thought of as concerning how much information

we have to deal with. The second theme considers what is done with this information. Now,

the whole point of a choice procedure is to make a choice: if it often fails to do so, it will

not be much use in practice. Along these lines, the second theme concerns how small can we

make the choice set, or how refined the output ranking.

All of the chapters touch upon, to a lesser or greater degree, one or both of the themes

of expressive-ness and decisive-ness. An overview of the specific content of each of the

chapters follows.

Chapter summaries

Chapter 1 is intended to be an introduction to computational social choice theory that at the

same time provides novel results. In it we apply the ideas of computational social choice

theory to the problem of determining the winners for sports climbing at the 2020 Olympics.

The method that will be used has been designed by the International Federation of Sports

Climbing; we call this method inverse-Borda-Nash. Our nomenclature is intended to be

descriptive—the method may be thought of as an inverse version of Borda scoring where the

winning alternatives are those with minimal product scores.

Inverse-Borda-Nash has some undesirable behaviour: in particular, an athlete can increase a

teammate’s ranking by performing worse; we say that it is manipulable. Simulations suggest

that cases where manipulation can occur are not unlikely. Given that the proposed method

is manipulable, one may wonder whether there is a different, better method for ranking the

athletes. We formalise this problem by giving a mathematical description of the properties

we want the method to satisfy. Unfortunately, we cannot satisfy all the desired properties at

the same time: we have an impossibility. Impossibility results of this type abound in social

choice theory to such an extent that there are recognisable families of methods that have

been applied in attempt to lessen their negative implications. One such family is to use the

theory of computational complexity from theoretical computer science to show that, although

undesirable behaviour may be theoretically possible, it is not computationally feasible. In

this vein, we prove that it is computationally hard to detect a manipulation for inverse-

Borda-Nash.
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The reason that our problem in Chapter 1 can be considered in terms of social choice theory

is due to the information that is available to rank the athletes. The International Federation

of Sports Climbing expressly wants the final ranking to be produced from an aggregation of

three ordinal rankings. (Their reasons for this echo traditional concerns about the difficulty

of making interpersonal comparisons of utility.) This allows us to make a recap of the

traditional issues of computational social choice theory that is nonetheless novel. Further,

we will also introduce what we believe to be a novel problem, at least in the way that it is

formulated here: the issue of decisiveness. Intuitively, a single gold medallist is preferable

to a tied situation with multiple gold medallists. This chapter presents the open problem

of whether or not there is a tension between the decisiveness of the choice method and the

other desirable properties. This problem seems to require a more formal definition of what it

means for a choice method to be decisive or not.

Chapter 2 expressly attempts to make choice methods more decisive. The technique used is

to count permutations—a technique inspired by the “parallel universe” tie-breaking version

of instant runoff voting. In Chapter 2 we apply this technique to the class of tournament

solutions. Tournament solutions take as input a complete directed graph over alternatives:

this may be considered an informational restriction, as the majority preferences of society

over the alternatives is less expressive than a full profile of preferences. Tournament so-

lutions are apt to be made more decisive as they tend to output large sets. By counting

permutations we certainly succeed in making them more decisive; however, depending on

the precise manner in which this is done, we sometimes get non-intersecting choice sets,

and it is not clear why we should prefer one choice method to another. Another drawback

is the computationally demanding nature of our technique. Intuitively, tournament solutions

provide large outcome sets in part because they do not use a lot of information. Using the

techniques of this chapter we can create solution concepts that are much more decisive than

those that are normally studied.

In Chapter 3 we look more generally at how decisive choice methods can be made given

different informational assumptions. This combines the two major themes of expressiveness

and decisiveness. The framework of this chapter is ordinal: we start with a full ordinal

profile, and consider the effect of using less information than this. We develop a definition of

maximal decisiveness with respect to the available information. This is intended to identify

whether or not a choice method is as selective as possible, given some natural restrictions.

(An example restriction would be to require that the choice to be based on tournaments, as

was the case in Chapter 2.) In particular, our definition of maximal decisiveness is designed

around neutrality, the idea that all alternatives should be treated equally.

Chapter 4 considers information in two ways that are classic to social choice theory: inde-

pendence of irrelevant alternatives and domain restrictions. Independence of irrelevant

alternatives is a local informational restriction: instead of a global look at what information
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is used by a rule or a family of rules, it concerns how much information from an individual

profile is required to calculate part of the output of a social welfare function. With respect to

social welfare functions, the strictest restriction of this type is binary independence, which

requires that we can determine which of two alternatives is preferred in the output only by

considering the pairwise comparisons of these two alternatives in the profile. This can then

be weakened to ternary independence, quaternary independence, etc. It is known that under

the full domain these are not real weakenings as they all collapse into binary independence

(except for independence over the whole set of alternatives which is trivially satisfied). In

Chapter 4 we investigate whether this still happens under restricted domains. A restricted

domain is an express limit on the expressiveness: some profiles are supposed to not exist.

We show that for different restricted domains the different levels of independence described

above may or may not be equivalent, and specify when and to what extent different versions

of independence collapse into the same condition.

Chapter 5 returns more speculatively to the question of what information should be col-

lected from society. We contrast the traditional ordinal approach—that we have been using

throughout the preceding chapters—with what we call the evaluative approach. The evalu-

ative approach involves aggregating evaluations of the alternatives made by the agents. For

example, approval voting, where society is supposed only to approve or disapprove each

alternative, is evaluative. We prove an impossibility in combining the ranking and evalua-

tive approaches. Our results suggest that there is a deep incompatibility between the two

approaches.

Common definitions

The following definitions are applied consistently throughout the thesis, except for some

slight variations in the first chapter.

Throughout we consider a finite set of objects A. With the exception of Chapter 1, this is

called the set of alternatives. If is from this set that “society” makes a choice or creates a

ranking. Typically |A| = m for some positive integer m. We refer to individual alternatives

using a1, a2, . . . , am, a, b, c,. . . , x, y, z,. . .

The elements of A are variously ranked, approved, evaluated or chosen. We write W(A)

for the set of complete and transitive binary relations, or complete preorders, over A. We

use R to refer to elements of W(A). We typically use infix notation for binary relations, for

example writing xRy instead of (x,y) ∈ R. A complete preorder R is a linear order if and

only if R is also antisymmetric. We use L(A) for the set of linear orders over A. We use R∗

for the asymmetric part of R, i.e. for all x,y ∈ A, xR∗y if and only if xRy and not yRx. The
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asymmetric part of a complete preorder is also a strict weak order, and the asymmetric part

of a linear order is a strict linear order; we use P to denote such irreflexive relations when

they do not correspond to some already defined R. We write W
∗(A) and L

∗(A) for the set

of strict weak orders and the set of strict linear orders respectively. We sometimes display a

(strict) linear order by simply writing a list starting with most preferred elements and ending

with least preferred. For example, adbc corresponds to the linear order R such that aRd, dRb

and bRc (or to the corresponding strict linear order P depending on context).

We also consider an index set N which, with the exception of Chapter 1, we refer to as

the set of agents. Typically |N| = n. The set N may be thought of as the “members” of

“society”. Different members of society may have different opinions concerning the different

alternatives, which we typically model by assigning each agent a weak order preference over

the alternatives. We call a full vector of preferences, denoted RRR ∈ W(A)N , a profile. In

general, we use bold typeface for vectors. For i ∈ N and RRR ∈W(A)N , we use Ri to refer to

the ith coordinate of RRR. By (RRR−i,R
′) we mean the profile RRR with the coordinate Ri replaced

by R′.

A social choice function takes preferences over alternatives and produces a non-empty set of

choices; f : W(A)N → 2A\ /0. Sometimes the domain will be restricted or even modified en-

tirely. A social welfare function takes preferences over alternatives and produces a ranking

of alternatives; F : W(A)N →W(A).

A permutation on some set X is an onto function g : X → X . We use typically consider per-

mutations of alternatives or agents with the notation σ : A → A and ρ : N → N. We abuse no-

tation and apply permutations to preferences and profiles as follows. For R ∈W(A) we write

σ(R) = {(σ(x),σ(y)) : (x,y) ∈ R}. For (R1, . . . ,Rn) ∈ W(A)N we write σ((R1, . . . ,Rn)) =

(σ(R1), . . . ,σ(Rn)) and ρ((R1, . . . ,Rn)) = (Rρ(1), . . . ,Rρ(n)).



Chapter 1

Discipline aggregation, manipulation and

decisiveness

This chapter serves both as an introduction to the themes of this thesis, and as a recap of

the basic ideas of social choice theory under a fresh interpretation. It is based upon joint

work with Sebastian Schneckenburger that was presented at COMSOC 2018 and AAMAS

2019. In it we apply the traditional social choice framework to the problem of aggregating

the competition results of multiple disciplines in a sports competition. This provides a recap

of many of the theoretical results of social choice theory; in fact we will retread many of

the historical advancements made within the field. Ultimately, our work raises the issue of

decisiveness, one of the main themes of this thesis.

The 2020 Olympic Games in Tokyo will inaugurate ten new gold medals; one male and

one female in each of five new events: karate, skateboarding, surfing, baseball and sports

climbing. As it is the first time that these events will appear in the Olympics, for each event

it is necessary to specify for the first time how the medal winners will be decided. This

presents a particular problem for sports climbing, because sports climbing has not existed

in a unique competition format before its introduction as an Olympic event. Instead, there

are three prevalent types of competitive climbing: bouldering, lead-climbing and speed-

climbing. It is these distinct types of sports climbing that we refer to as disciplines. Each

discipline requires different skills and measures the performance of athletes using different

methods. Thus sports climbing is to be a composite event, similar to the pentathlon—but the

manner in which medal winners are determined for the pentathlon is by no means suitable

here.

For sports climbing, it is desired that only the rankings of the athletes in each of the disci-

plines are used to determine the medal winners. In contrast, for the pentathlon quantities

such as time, height and distance, measured independently for each athlete, form the basis

for the final ranking. Given the “only rankings” constraint, the problem of designing a pro-

cedure for choosing the medal winners is similar to that of designing a procedure of social

choice theory. Of course, the terminology is different: what is traditionally the set of voters

has become the set of disciplines; the set of candidates becomes the set of athletes. But the

underlying problem is the same: how should we aggregate multiple rankings into a single,

definitive ranking?
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For the sports climbing event at the 2020 Olympics, the International Federation of Sports

Climbing (2017) has decided to rank the athletes according to the product of their ranks

in the disciplines. They have various reasons for this choice, which we will discuss later.

Also, the method will be tested in some trial events before the Olympics in order to confirm

is suitability. On the other hand, there are theoretical situations where the method gives

undesirable results: it can produce ties among a large number of athletes, which cannot

always be broken in an obvious manner; and it is potentially open to a type of manipulation.

In social choice theory, undesirable possibilities are often called paradoxes. The most fa-

mous example is Condorcet’s (1785) paradox, which shows that it is possible that a majority

prefers a first alternative to a second, that a majority prefers the second to a third, and also

that a majority prefers the third to the first.1 We will see another such majority cycle later

in this chapter (Figure 1.1). Of course, just stating individual examples of undesirable be-

haviour would be a somewhat haphazard method of analysis, a more general and principled

method of analysis is preferable.

In order to assess all relevant possible procedures for determining the medal winners, one

can try to encompass them in a single framework. In order to do so, we treat them as math-

ematical functions from lists of rankings to a final output ranking. We call such functions

discipline aggregators.2 The method of formalising social choice problems in this manner

was pioneered by Arrow (1950); it allows us to assess the possible procedures for selecting

medal winners based upon their formal properties.

There are a number of properties that a discipline aggregator may satisfy—following Arrow,

in the academic literature on social choice theory such desirable properties are typically

called axioms. We want our function to satisfy such desirable properties. For example, if a

first athlete performs better than a second in all the disciplines, surely the first athlete should

be ranked better than the second. On the other hand, there may be undesirable possibilities

for certain functions, for example, a function may be manipulable in some way or another.

The basic idea behind our definitions of manipulation is that, in certain situations, an athlete

can aid a teammate by performing worse than they normally would have done.3 If such

an situation is theoretically possible, an athlete may indeed perform such a manipulation in

1Other examples of so-called paradoxes include the Ostrogorski paradox (Rae and Daudt, 1976),

Anscombe’s paradox (Anscombe, 1976), and the multiple election paradox (Brams et al., 1998).
2Although “discipline aggregator” may be thought of as a synonym for “social welfare function” mathemat-

ically speaking, our nomenclature in this chapter serves as a reminder that there is a difference in interpretation

here.
3This idea of manipulation is not an alias of some previously studied concept from social choice theory.

In particular, it is not simply Gibbard-Satterthwaite manipulation. Gibbard-Satterthwaite manipulation is “per-

formed” by a discipline, and involves any possible change to the single ranking of this discipline. In contrast,

the manipulations we consider in this chapter are “performed” by an athlete, and involve a restricted change to

that athlete’s ranking throughout the whole profile.
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reality, which we take to be an undesirable event. We want our function to preclude such

possibilities.

A formal description of the problem also makes it easier to determine how often any given

paradoxical situation will occur. This question has a potentially empirical character; however

there is sometimes a lack of real life data: this can be the case for real-life preferences of

agents, but is especially so for our particular discipline aggregation problem, as events using

the combined format for sports climbing have only started to be run last year (2018). We can,

however, perform simulations given some assumptions on how likely each possible state is

(Garman and Kamien, 1968; Gehrlein and Fishburn, 1976).

We will give a few different definitions describing situations where a discipline aggregation

function can be manipulated. Under our most permissive definitions of manipulation, only

unreasonable functions can completely prevent such manipulation from occurring. That is,

we prove an impossibility result: any function that prevents manipulation must violate some

other desirable condition. Such a negative result, if accepted, seems to imply that some sort

of trade-off must be made.

Impossibility results often arise in social choice theory,4 and there are many different tech-

niques that have been developed in attempt to mitigate their negative conclusions. Perhaps

the most direct attack against such a result is to argue that the identified conditions are not

really necessary for a rule to be reasonable. For the most part, the properties we define are

obviously desirable. The point of weakness is in our definitions of manipulation, which in-

deed takes the place of the much discussed—and challenged—property of independence of

irrelevant alternatives.5 Various weakened versions of this property have been proposed in

the literature.

Indeed, with a slightly less permissive definition of when manipulation is possible, there are

functions that satisfy our desirable properties. However, the function that exemplifies the

possibility is, intuitively, not decisive enough. Although it satisfies our given properties, it is

nonetheless an unreasonable rule. This can only occur because our given properties are quite

weak—they are necessary for a rule to be reasonable, but not sufficient; precisely, they are

missing a condition that ensures a minimal level of decisiveness.

This raises the issue of determining a condition that ensures a minimal level of decisiveness.

Although the function exemplifying the possibility is intuitively indecisive, there is no formal

specification of this property. It is not obvious how to define a reasonable condition of

decisiveness that this function does not satisfy. In fact, there is an unreasonable, very strong

decisiveness condition that we can impose: we can require that there are no ties at all in the

4Impossibility results are the subject of a Chapter 1 in the Handbook of Social Choice and Welfare (Camp-

bell and Kelly, 2002).
5In this thesis, Chapter 4 contributes yet more discussion of this property.
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output; that a linear order is returned—this is known as resoluteness. With this property

added, the impossibility reoccurs—the question is whether or not there is a sensible, weaker

decisiveness condition will have the same effect. So, more generally, this chapter motivates

further investigation of the concept of decisiveness; a project that will be continued in later

chapters. Decisiveness is especially important for sports competitions, but remains important

for social choice more generally: after all, the whole point of social choice theory is to make

a choice!

The rest of this chapter proceeds as follows. In Section 1.1 we describe the proposed com-

bined format for sports climbing, and give an example that shows that this method may

be manipulated and may produce ties. We then provide a formal description of the ba-

sic setting in Section 1.2, which contains most of the definitions necessary for our results.

However, our description of the various types of manipulation we consider merits its own

section: Section 1.3. Having completed our definitions, we then start our analysis in earnest.

Our simulation results, in Section 1.4, show that the probability of ties under the proposed

method is quite low, but that on the other hand there is a high potential for manipulation. Our

theoretical results of Section 1.5 show that it is impossible to completely rule out manipu-

lation, although we give a possibility for a plausible weakened version of our requirements

concerning manipulation. This possibility, however, raises the issue of the decisiveness of

discipline-aggregators. In Section 1.6 we prove that it is computationally hard to determine

whether or not one can manipulate the proposed method if we allow the numbers of athletes

and disciplines to increase. Section 1.7 concludes this chapter.

1.1 The combined format for sports climbing

For the 2020 Olympics the International Federation of Sports Climbing (2017) has devised

the following combined format for sports climbing. Twenty athletes—of which each country

can have up to two representatives—will be involved in the main event, which itself is split

into two rounds. A qualification round first reduces the twenty athletes to six. These six

finalists then compete in a separate final round to determine the medals. Although in the

qualification round it is only necessary to select six athletes, in fact the procedure is identical

to that of the final round and produces a full ordering over the contending athletes, the six

best ranked are then selected.

So in each round a ranking over all the athletes is produced in the same manner: the con-

tending athletes compete in all three disciplines, thereby producing three linear orders over

the athletes. For each discipline any given specific athlete has a rank, which is the number

of other athletes that defeat her plus one; a given athlete’s overall score is the product of

the athlete’s ranks in each discipline. These product scores provide a final ordering over the



12 Discipline aggregation, manipulation and decisiveness

competitors, with lower scores being better. If two athletes receive the same score the tie

can be broken in favour of the athlete that performs better than the other in more disciplines.

That is, ties can be broken depending upon the so-called majority relation—we will see an

example demonstrating how this works, but, in short: if more than two athletes receive the

same score, ties are broken first by the transitive closure of the majority relation; where there

are cycles, an external linear-order tiebreaker is used.

Unfortunately, the combined Olympic format may lead to tied situations if more than two

athletes have the same product score and the pairwise comparisons form a cycle. Ties are

problem for both rounds of the competition: in the final round, it is desirable to have a

single gold winner; in the qualifying round, ties necessitate an extra method to determine

which athletes progress. An example demonstrates the problem—Table 1.1 shows potential

ranks of seven of the athletes and bounds on the ranks of the other thirteen athletes after the

qualification round.

Table 1.1: Possible ranks of seven of the athletes after the first round of competition.

Ranking in discipline

Athlete Speed Bouldering Lead Product

Alice 3 3 6 54

Barbara 1 5 12 60

Chloe 4 15 1 60

Dorothy 15 1 4 60

Emma 2 10 3 60

Faye 5 6 2 60

Grace 6 2 5 60

others ≥ 7 ≥ 4 ≥ 7 ≥ 196

Only six of the athletes can proceed to the final round. This means that one of the six ath-

letes with tied product scores—that is, one of the named athletes excepting Alice—must be

eliminated from the competition (along with all the other unnamed athletes). However, it is

not clear which of the six should be eliminated; when we compare each pair by which athlete

defeats the other in more disciplines, we produce a cycle. This is displayed graphically in

Figure 1.1: the athletes are represented by the first letter of their name, and an arrow points

from one athlete to another if the first performs better than the second in more disciplines.
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Figure 1.1: The majority relation be-

tween b, c, d, e, f and g—the athletes

are labelled by the first letter of their

name—given the results from Table 1.1.

The problem is that there is no Condorcet loser; that is, no athlete that is—in terms of

majorities—defeated by all the other athletes. There is a parallel concept of a Condorcet

winner: an athlete who defeats all other athletes according to the majority relation. The

proposed method considers situations without Condorcet winners or losers as tied; thus the

situation described in Table 1.1 requires the use of an external tiebreaker to decide which

athlete is eliminated.6 Suppose that the external tiebreaker eliminates Barbara. If the re-

maining athletes perform the same as in the first round, the ranks and products will be as

displayed in Table 1.2.

Table 1.2: Predicted results if the named athletes except Barbara progress to the second round and

perform the same as in the first round as given in Table 1.1.

Ranking in discipline

Athlete Speed Bouldering Lead Product

Alice 2 3 6 36

Chloe 3 6 1 18

Dorothy 6 1 4 24

Emma 1 5 3 15

Faye 4 4 2 32

Grace 5 2 5 50

6The IFSC will use a “seeding list” to break ties that are not resolvable by pairwise comparisons. Such a

seeding list is, in effect, an external linear order tiebreaker. For the final round the ranking of the qualification

round will be used as a seeding list; for the qualification round a seeding list based on the prior qualification

system will be used (Meyer, 2018).
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There is a another potential problem here: manipulation. Suppose now that Alice and Chloe

have the same nationality. The predicted results suggest that Alice will not win a medal, and

certainly not the gold, while her teammate Chloe is predicted to win the silver. However, if

Alice deliberately performs worse than Chloe in the speed competition and all other ranks

remain the same, Chloe will become the unique gold medal winner with a product score of

12.7 Thus, national loyalty may lead Alice to manipulate. In doing so she spoils the result

for Emma, whose efforts would normally have been enough for a gold medal.

The above example demonstrates two potential problems with the proposed method: ties and

manipulation. We have not yet assessed how often these problems are likely to occur, that is,

whether they are a likely problem in practice. Nor do we know whether or not these problems

are in some sense necessary: it may not be possible to design other discipline aggregation

functions which avoid them. To address these issues we require a more formal description

of the setting.

1.2 Formal description of the setting

Denote by A = {a,b,c, . . .}, |A| = m the set of athletes and by N = {1, . . . ,n} the set of

disciplines. We suppose that m ≥ 3 and n ≥ 2; note that this covers the the specific cases of

m = 6, m = 20 and n = 3. Denote the set of strict linear orders of A by L
∗(A) and use P to

denote a strict linear order over athletes. Denote and the set of complete preorders of A by

W(A). and use R to denote a complete preorder over the athletes. We use R∗ to denote the

asymmetric part of R—note that P = R∗ for some R.

All the athletes compete in each discipline i ∈ N, resulting in n strict linear orders Pi over

A. A profile that summarises the results for each discipline is denoted by (P1, . . . ,Pn) = PPP ∈

L
∗(A)N . A discipline aggregator F uses these results to produce a complete preorder over

the competitors: F : L∗(A)N →W(A).

Athletes have a rank for each discipline and for the output complete preorder. Formally, for

an ordering R over competitors, the rank of a ∈ A is r(R)(a) = rR(a) = |{x ∈ A : xPa,x 6=

a}|+ 1. Note that r(R) = r(R∗). To simplify notation, for a discipline i ∈ N we write

ri = r(Ri) = r(Pi) when the context makes it clear which profile was intended. Because

lower ranks are better, Pi and the natural ordering on ranks are inverted: for all x,y ∈ A

and i ∈ N, xPiy if and only if ri(x) < ri(y). Note that the output of a discipline aggregator

7The manipulation described here would be feasible in practice. The method used to produce the speed-

climbing ranking is a type of knockout tournament. Under the assumption that a defeats g and that c defeats f

in the quarter finals, a will face c in the semifinals; if a deliberately loses then c will be guaranteed to be ranked

at second or better at speed-climbing (International Federation of Sports Climbing, 2017).
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can contain ties, though if two or more competitors are ranked first, no competitor is ranked

second—a shared gold medal implies that no-one receives silver. We refer to athletes ranked

first in the output as winners.

We can use a profile to make pairwise comparisons between athletes. For an arbitrary profile

PPP the majority relation TPPP ⊆ A×A is defined by, for all x,y ∈ A, x 6= y

xTPPPy if and only if |{i ∈ N : xPiy}| ≥ |{i ∈ N : yPix}| .

The majority relation is connected regardless of the parity of |A|. It may not be transitive:

for a binary relation Q we write Q+ for the transitive closure of Q, the smallest transitive

relation that contains Q.

We now formally define the proposed discipline aggregator, insofar as it is determined

by the profile of results. We call this function inverse-Borda-Nash,8 and denote it by

ibn : L∗(A)N →W(A). Define the binary relation Q ⊆ A×A by

xQy iff















∏i∈N ri(x)> ∏i∈N ri(y)

or

∏i∈N ri(x) = ∏i∈N ri(y) and xTPPPy.

Define ibn(PPP) = Q+∪{(x,x) : x ∈ A}; because Q is connected this is a complete preorder.

Basic desirable properties

There are some basic desirable properties that a discipline aggregator F should satisfy. An

athlete x ∈ A clearly beats y ∈ A in PPP if for all i ∈ N, xPiy. We say F satisfies the clear

winner condition if whenever x clearly beats y in PPP, then for R = F(PPP) it is the case that

8This nomenclature is intended to be descriptive as it invokes Borda scores and the Nash product. The Nash

product is sometimes described as providing a middle ground between the utility maximisation of additive

methods and the maxi-min of egalitarian methods. However, this is not the case for the proposed method

because the Borda scores are inverted i.e. smaller numbers are better. If the scores were added, this inversion

would have no effect, but this is not the case for multiplication. For example, according to inverse-Borda-Nash,

an athlete with rankings (1,1,4) beats an athlete with (2,2,2); whereas for traditional Borda scores the opposite

is true: (19,19,19) would be considered better than (20,20,17). It is seen as an advantage of the method that it

favours specialists—it is preferred that the winner of the combined format is a potential winner of world-cups

in some individual discipline, rather than a generalist (Meyer, 2018).

We are not aware of any specific precedent for inverse Borda-Nash. This may be because it would become an

“anti-fairness” approach when applied to social choice or social welfare. However, it can be subsumed under

well-known concepts; it is equivalent to a scoring rule with weights (log(m), log(m/2), . . . , log(m/m−1),0).

The family of scoring rules are well studied within the literature, and the results of Proposition 1.1 below could

be shown as corollaries to general results concerning this family.
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xR∗y. The next two conditions impose symmetry restrictions, roughly speaking, they require

that all athletes should be treated the same and that all disciplines should be treated the same.

We say F satisfies athlete-neutrality if permuting the competitors in the profile similarly

permutes the competitors in the output ranking: for any permutation σ : A → A, given PPP and

PPP′ such that for all a,b ∈ A, i ∈ N aPib ⇔ σ(a)P′
iσ(b), then aF(PPP)b ⇔ σ(a)F(PPP′)σ(b). We

say F satisfies discipline-neutrality if permuting the disciplines in the profile has no effect

on the output ranking: for any permutation ρ : N → A, given PPP and PPP′ such that for all i ∈ N,

Pi = P′
ρ(i), then F(PPP) = F(PPP′). Our last two properties limit how much a single discipline

can determine the winner. For a discipline aggregator F , we say the gold is determined by

i ∈ N if, for any profile PPP, max(F(PPP)) = max(Pi). We say F is not determined if the gold

is not determined by any i ∈ N. Similarly, for a discipline aggregator F , we say the gold is

weakly determined by i ∈ N if, for any profile PPP and writing R = F(PPP), ri(x) = 1 implies

rR(x) = 1. We say F is not weakly determined if the gold is not weakly determined by any

i ∈ N.

Each of these properties can be linked to axioms from social choice theory. The clear winner

condition is called, for example, the “Pareto criterion” (Campbell and Kelly, 2002, p. 42).9

Athlete-neutrality becomes simply “neutrality”, whereas discipline-neutrality is known as

“anonymity”. A discipline that determines the gold may be thought of as a “top-dictator”: an

agent whose top ranked alternative must be the top ranked alternative in the output. Note that

it is easier for a discipline aggregator to be not determined than not weakly determined; in

particular, if a discipline aggregator satisfies discipline-neutrality then it is not determined,

but may still be weakly determined.

As a final exposition of our definitions, we show that Inverse-Borda-Nash satisfies all these

basic desirable properties.

Proposition 1.1. Inverse-Borda-Nash satisfies the clear winner condition, satisfies athlete-

neutrality, satisfies discipline-neutrality, and is not weakly determined.

Proof. Clear winner: if an athlete is ranked better than another in all disciplines, it must have

a smaller product of ranks, therefore will be ranked better in the output.

Athlete-neutrality: if we permute athletes, we also permute their product scores and the

relation TPPP.

Discipline-neutrality: permuting disciplines has no effect on product scores or on the relation

TPPP.

Not weakly determined: for an arbitrary discipline i ∈ N, take a profile where some athlete

a∈ A comes first in all other disciplines and second in this discipline: ri(a) = 2 and r j(a) = 1

9We will adopt this terminology in later chapters in this thesis.
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for all j ∈ N, j 6= i. If n > 2, then a is the unique winner, thus the discipline does not

determine the gold. For n = 2, the profile displayed in Table 1.3 shows that i does not

weakly determine the gold (we use the assumption that m ≥ 3).

Table 1.3: A profile that shows that inverse-Borda-Nash is not weakly determined for n = 2. Athlete

a is the overall winner, though athlete b wins for (arbitrary) discipline i.

Ranking in discipline

Athlete i j 6= i Product

a 2 1 2

b 1 3 3

c 3 2 6

others ≥ 4 ≥ 4 ≥ 16

1.3 Manipulation in the discipline aggregation framework

In this section we develop formal definitions of manipulation, one of which encapsulates the

example given in Section 1.1. These definitions are general enough that they apply to any

discipline aggregator, including the specific cases of m = 6, m = 20 and n = 3 that will be

in place for sports climbing at the 2020 Olympics. Of course, we do not cover all possible

types of manipulation here.

We only consider manipulations that apply to the discipline aggregator. We are not concerned

with doping, score fixing, betting, or any other of the many documented examples of foul

play in sports competitions, problems that any designer of a discipline aggregator would find

difficult to directly combat. A characteristic of the manipulations that we do consider is that

they involve an athlete deliberately performing badly. However, we are not concerned with

deliberate bad performances that cause restarts (Jimenez, 2012), or that otherwise abuse the

rules internal to the competition. An example of manipulation that a scrupulous designer

of discipline aggregators might be able to prevent is the following: a competitor, in the

group stages of a knockout tournament, deliberately loses a match in order to face a weaker

opponent in the following round. Such manipulation seems to have occurred at the 2012

Olympics (TheGuardian, 2012).10

For our purposes, a manipulating athlete changes the sincere profile, P, to some other manip-

ulated profile, P′, where the only changes possible are that the manipulator is ranked worse

in one or more of the disciplines. The manipulator only has incentive to make the changes if

10Another example that fits our definitions of manipulation is the phenomenon of “team orders” in Formula

One racing (Gpupdate, 2008).
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the manipulated profile P′ is more desirable to her than the sincere profile. So, for manipula-

tion to be a problem, two conditions need to be fulfilled: the athlete needs to be able to force

the manipulated profile P′ to occur, and they need to prefer it to the real profile P. These two

conditions involve a few assumptions.

We assume that the athlete knows what the results would be if everyone were to perform to

their best abilities—that is, the athlete knows what the sincere profile is. This may be justified

by the claim that the athlete knows roughly how good the other athletes are, especially in

the specific case of the final round of the sports climbing event where the first round can

be taken as a proxy. Relatedly, we assume that no other athletes will manipulate, so that

the sincere profile would indeed be the result if the manipulator did not manipulate. This

is a simplifying assumption: we have to start somewhere, and we don’t want to start by

considering levels of rationality.11 We also assume that the athlete can precisely control how

much worse they perform. In general, this is perhaps unrealistic, though there are specific

cases where this is extremely reasonable: the speed competition runs head-to-head, so for

certain configurations of profiles it would be easy to perform a specific manipulation that

results in a specific ranking. Altogether, our assumptions are no stronger than those of what

is probably the most important theorem concerning manipulation in social choice theory: the

Gibbard-Satterthwaite Theorem.

We write the condition restricting which profiles an athlete can manipulate to—given a start-

ing sincere profile—as follows. From a sincere profile P, a profile P′ is a possible manipula-

tion by athlete a if12

(1.i) for all i ∈ N, x ∈ A\{a} and y ∈ A, xPiy implies xP′
iy.

This discipline manipulation condition underlies all of our following definitions of ma-

nipulation. The distinct definitions of manipulation only differ in what is required for the

profile P′ to be preferred by a to P. The clearest reason that an athlete may prefer one profile

to another is if it results in a better output ranking for the athlete herself. Supposing that a

manipulates from P to P′, and writing R = F(P) and R′ = F(P′), this condition requires that

rR′(a)< rR(a).

We refer to this as an egoistic manipulation.13 Egoistic manipulation is impossible under in-

verse Borda-Nash: if an athlete worsens their ranking in one or more disciplines, she receives

a strictly larger product score, whereas all other athletes receive at most the same product

11Our analysis can be considered decision theoretic as opposed to game theoretic.
12Note that we do not consider the possibility that two or more agents manipulate together. In such a case, a

manipulator may be able to rank higher than in the sincere profile.
13Egoistic manipulation can be compared to traditional definitions of monotonicity. However, note that the

focus is on rank as opposed to pairwise comparisons between athletes.
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score as before, thus any athletes that she was weakly defeated by according to the sincere

profile will still weakly defeat her according to the non-sincere profile. Other rules, however,

do permit egoistic manipulation.14

In contrast to egoistic manipulation, where an athlete improves their own output ranking,

an athlete may manipulate in order to improve the output ranking of some other athlete.

One may suppose that this other athlete is a teammate, friend, or comes from the same

country. Given profiles and P and P′ as in the discipline manipulation condition, an athlete a

manipulates for athlete b if

(1.ii) rR′(b)< rR(b).

We call this altruistic manipulation.15 Technically, this definition includes egoistic manip-

ulation as the special case when a= b. Of course, if a 6= b, an altruistic manipulation may not

result in a more desirable outcome for the manipulating athlete. We now give two different,

but not necessarily incompatible, reasons why an altruistic manipulation may be desirable

for the manipulating athlete, the first of which comes in a strong and weak version.

The first reason seems at first sight obvious: if the altruistic manipulation involves no sacri-

fice on the part of the manipulator a. This seemingly amounts to the condition

(1.iii) rR′(a)≤ rR(a).

We will call such altruistic manipulations without sacrifice. However, there is a slight sub-

tlety involved here; although we have said that the output ranks are the most important thing

for discipline aggregation, pairwise comparisons may still have a secondary importance: it

seems preferable to win the gold uniquely than to share it with other athletes. Even if an

athlete can manipulate without sacrifice, they may nonetheless not want to do so because

they end up sharing their rank with more athletes than before. The following condition rules

out this possibility,

(1.iv)
∣

∣{x ∈ A : xR′a}
∣

∣≥ |{x ∈ A : xRa}| ,

if this is satisfied as well as (1.iii) above we say that a manipulation is completely without

sacrifice. Because it occurs in fewer profiles, manipulation completely without sacrifice is

easier to prevent than manipulation (just) without sacrifice.

The example of manipulation given in Section 1.1 is not a manipulation without sacrifice.

The idea instead is that the manipulating athlete recognises that she probably won’t get a

14Cf. non-monotonic binary trees, Chapter 2.
15One might also consider the possibility of spiteful manipulation, whereby an athlete manipulates in order

to worsen the rank of a specific target athlete.
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higher ranking than her teammate, but can nonetheless manipulate to aid her teammate. The

condition that ensures this is the following

(1.v) rR′(b)< rR(a).

We give manipulation of this type the name spoiler, this refers to the fact that a poorly ranked

athlete spoils the fair result concerning other, better ranked, athletes. The condition ensures

that b performs better than a would have done.16

We now formally state the full definitions of the two main types of manipulation that we are

interested in, the first of which splits into its strong and a weak versions.

Definition 1.2 (Non-sacrificial manipulation). Let F (PPP) = R and F (PPP′) = R′, and a,b ∈ A.

Competitor a can manipulate without sacrifice, for competitor b, from the profile PPP to the

profile PPP′ if

(1.i) for all i ∈ N, x ∈ A\{a} and y ∈ A, xPiy implies xP′
iy

(1.ii) rR′(b)< rR(b)

(1.iii) rR′(a)≤ rR(a).

Such a manipulation is completely without sacrifice if it also satisfies

(1.iv) |{x ∈ A : xR′a}| ≥ |{x ∈ A : xRa}|.

Definition 1.3 (Spoiler manipulation). Let F (PPP) = R and F (PPP′) = R′, and a,b ∈ A. Athlete

a can spoil, for athlete b, from the profile PPP to the profile PPP′ if

(1.i) for all i ∈ N, x ∈ A\{a} and y ∈ A, xPiy implies xP′
iy

(1.ii) rR′(b)< rR(b)

(1.v) rR′(b)< rR(a).

When both the athlete b and the profiles are implicit and need not be specified, we will say

simply that athlete a spoils.

Two final remarks on our definitions of manipulation: first, for some pairs of profiles these

definitions overlap; second, they do not cover all conceivable manipulations of the discipline

aggregator. In particular, there is the example of altruistic manipulation in the first round of

the sports climbing event: here, the desirable outcome is that the manipulator and their target

are both ranked better than seventh (and not tied if ranked sixth).

16Manipulation without sacrifice and spoiler manipulation amount to the egoistic case if we set a = b, but

manipulation completely without sacrifice does not; in fact there are cases of egoistic manipulation that are not

cases of manipulation completely without sacrifice.
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1.4 The likelihood of undesirable profiles: simulation re-

sults

At the time of typing, the combined format for sports climbing has not been used in many

real-life events. We can, however, generate many possible outcomes for events and see what

one might expect. Such simulations methods have a long history in social choice theory,

where large scale data concerning individuals’ preferences has not always been readily avail-

able. We consider the results of such simulations in this section. In short, our simulations

suggest that for inverse-Borda-Nash, although ties are unlikely to be a problem, potential for

manipulation occurs with a high probability.

We generated profiles with six athletes and three disciplines, the same numbers as in the

final round of the Olympics sports climbing competition. The generated profiles form three

groups: in the first group, for each discipline every possible strict linear order is equally

likely—profiles are drawn from the impartial culture. For profiles in the second group

there is a positive correlation in an athlete’s results across the three disciplines. In the final

group there is positive correlation between two disciplines and negative correlation with the

third. This third culture conforms best to our actual expectations for the competition because

the two disciplines of bouldering and lead climbing have an intersection of athletes at the top

level, whereas top level speed climbers do not typically compete in the other disciplines.

For a profile based on the impartial culture we independently select three strict linear orders,

each uniformly at random from the set of all possible linear orders. Our positively correlated

culture uses the Plackett-Luce (1975; 1959) model17 with initial odds

21 : 22 : 23 : 24 : 25 : 26.

Label the athletes as a j for j ∈ {1,2,3,4,5,6}. Writing t = ∑
6
i=1 i2, each athlete a j has a

p j = j2/t probability of being ranked first. The idea is that the initial odds also represent

the strengths of the athletes; in particular, we suppose that each athlete is two times stronger

than her closest competitor. Given that the athletes in a set B defeat the athletes in A\B, the

probabilities that determine the winners within A\B should only depend upon the relative

strengths of the athletes within A\B. So if athlete ak, k 6= j ranks first, then a j has a

j2

t − k2
=

p j

1− pk

probability of being ranked second. If ak ranks first and al ranks second, l 6= j, l 6= k, then a j

has a

j2

t − k2 − l2
=

p j

1− pk − pl

17This model’s ability to forecast Formula One results has been studied by Henderson et al. (2018).



22 Discipline aggregation, manipulation and decisiveness

Table 1.4: The number of randomly generated profiles that involved ties, were subject to spoiler ma-

nipulation, were subject to manipulation without sacrifice, were subject to manipulation completely

without sacrifice, and that were subject to any of these three types of manipulation. 100,000 six agent

profiles were generated for each culture. A profile was considered subject to manipulation if any of

three disjoint random pairs of agents could manipulate.

Culture Ties Spoiler

manipulation

Without

sacrifice

Strict without

sacrifice

Any

manipulation

Impartial 632 37,730 47,807 47,326 59,660

Positive

correlation

779 13,792 43,723 41,597 46,964

Negative

correlation

526 44,826 48,741 48,350 63,151

probability of being ranked third. The positive correlation arises because we suppose that the

athletes have the same strengths for each discipline; a profile consists of three independently

generated strict linear orders using the same initial odds. A negatively correlated profile is

created by taking a positively correlated profile and reversing the strict linear order of the

last discipline.18

We randomly generated 100,000 profiles of each type. A profile counts as tied if at least

one tie occurs at any ranking level—we do not count the number of distinct ties nor how

many athletes are involved in each tie. To count manipulations, we first randomly pair the

athletes into three disjoint pairs. A profile counts as manipulable if at least one of the pairs

can manipulate. We perform the count separately for spoiler manipulation, manipulation

without sacrifice, manipulation completely without sacrifice, and for any of these types of

manipulation. The results are presented in Table 1.4.

According to our simulations, it is very unlikely that there will be a tie at any level of the

output complete preorder in the final round of the competition. We also ran simulations

for twenty athlete profiles obtaining similar results.19 This strongly suggests that a tie in

the actual competition is very unlikely to occur: note that each of our models exhibits a

18The associated culture best represents our, somewhat naive, expectations for the competition—we expect

lead climbing and bouldering to be positively correlated with each other and negatively correlated with speed

climbing.
19For profiles with twenty athletes, of the 100,000 profiles we generated for each culture, 208 profiles had

ties for the impartial culture, 1108 profiles had ties for the positively correlated culture, and only 92 profiles

had ties for the negatively correlated culture that conforms best to our expectations for the actual competition.
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high degree of symmetry; and such symmetries are intuitively more likely to lead to tied

situations. Indeed, it has been shown that the impartial culture maximises the probability

for majority cycles (Tsetlin et al., 2003), one of the necessary conditions for a tie. However,

from our simulations we see more ties for the positively correlated culture; we conjecture

that this is because two opposing criteria need to be fulfilled for there to be a tie: there need

to be majority cycles, but these must occur among athletes with the same scores. Regardless,

the incidence of ties is low even for the positive culture. Of the three cultures, we see fewest

ties with the negatively correlated culture which best represents our expectations for the

competition.

In contrast to the low incidence of ties, there does seem to be a high potential for manip-

ulation, of both kinds. For each culture approximately half the profiles are manipulable.20

We make two further observations: first, the incidence of manipulation without sacrifice that

is not also completely without sacrifice is very small—the value obtained when subtracting

the value of column five from the value of column four. A loose interpretation is that for

inverse-Borda-Nash there is not much difference between the stronger and weaker versions

of the without sacrifice property. Second, spoiler manipulation seems less likely under the

positively correlated culture. An intuitive explanation for the lower incidence of spoiler ma-

nipulation for the positively correlated culture is the following: for this culture it is more

likely that one athlete in a pair will always be ranked above their teammate, in which case

the worse ranked athlete cannot spoil. Nevertheless, even for the positive culture there is a

non-negligible potential for spoiler manipulation (more than 10% of the generated profiles).

1.5 Impossibilities that suggest a trade-off between deci-

siveness and manipulability: axiomatic results

In this section we investigate the general theoretical properties of discipline aggregators. Our

investigation leads to the introduction of decisiveness as a desirable condition.

Inverse-Borda-Nash is manipulable. However, this doesn’t mean that a better discipline ag-

gregator exists. Our first result of this section is the following: one cannot prevent both kinds

of manipulation without violating a desirable condition. This is an impossibility result in the

classical sense. Apart from the conditions concerning manipulation, the result uses only the

20We also tested profiles with twenty athletes for manipulation. Each culture resulted in higher counts of

potential manipulation than in the six athlete case. Of course, to fully address the issue of manipulation in the

qualification round would require other modifications: here a manipulation is desirable if and only if it moves

the target athlete below the sixth place threshold; it can also be noted that we no longer have an argument for

why the non-manipulated profile is common knowledge.
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weakest of our conditions; in particular, it does not rely upon the relatively strong condi-

tions of athlete-neutrality and discipline-neutrality, and uses the weaker “not determined”

condition as opposed to “not weakly determined”. It thus shows that almost any reasonable

discipline aggregator must allow for some kind of manipulation, some of the time.

Theorem 1.4. No discipline aggregator prevents spoiler manipulation, prevents manipula-

tion without sacrifice, satisfies the clear winner condition and is not determined.

Proof. We proceed by showing that if both types of manipulation are prevented and the clear

winner condition is satisfied then there a determined discipline, that is, a discipline i ∈ N

such that, for a ∈ A such that ri(a) = 1, aPx for all x 6= a. The proof follows the structure of

the proof of Arrow’s theorem by Reny (2001).

Take an arbitrary discipline aggregator F that prevents spoiler manipulation and manipu-

lation without sacrifice and that satisfies the clear winner condition. Consider any profile

where a comes first in all disciplines and b comes last. By the clear winner condition a must

be ranked first and b last. We express this fact as in the Figure 1.2.

N

a

|

b

7→

a

|

b

Figure 1.2: A profile where a always comes first and b last, and the

corresponding output.

Now consider moving b up in the first discipline. So long as b does not cross above a, a must

still be uniquely ranked first, as otherwise the agent c that b becomes ranked above can spoil

for the new winner from PPP1 to PPP2. Note that this argument does not rely on the fact that a

wins in all disciplines.

PPP1

1 > 1

a a

| |

c |

b |

| |

| b

7→
a

|

PPP2

1 > 1

a a

| |

b |

c |

| |

| b

7→
a

|

Figure 1.3: A profile PPP1 for which the position of b is changed, but not with respect to the unique

winner a, leading to another profile PPP2 for which a is still the unique winner.

If we rank b above a, either a remains the unique winner or there is some other set of winners
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X . In the second case there is some x ∈ X , x 6= a. If we continue to successively rank b first

for the remaining disciplines, then at some point b must become the unique winner by the

clear winner condition—in particular when b is ranked first in all disciplines: thus the second

disjunct of the previous sentence must be fulfilled at some point; there must be some profile

which outputs a top, but moving b above a gives some other set of winners X . Label the

discipline for which this happens i∗, and label the respective profiles as PPP3 and PPP4. Note

that in PPP3 athlete b has been moved up to be directly below a, the same argument as above

implies that a is still the winner in the output.

PPP3

< i∗ i∗ > i∗

b a a

a b |

| | |

| | b

7→
a

|

PPP4

< i∗ i∗ > i∗

b b a

a a |

| | |

| | b

7→
b

|

Figure 1.4: A critical profile PPP3 and discipline i∗ such that if athlete b is ranked above athlete a to

create PPP4, then athlete b becomes the unique winner.

We know that a /∈ X , otherwise a could spoil without sacrifice for x from PPP3 to PPP4. This

implies that b ∈ X , as otherwise b could spoil for a from PPP4 to PPP3. This implies that x /∈ X

for x 6= a,b, as otherwise b could manipulate without sacrifice for x from the profile where b

is the unique winner.

In PPP4 we can move a down in the profile without changing the output winner b (otherwise a

could spoil), we display this as PPP5. Also consider the profile PPP6 created from PPP5 by moving

a up one place in discipline i∗.

PPP5

< i∗ i∗ > i∗

b b |

| a |

| | a

a | b

7→
b

|

PPP6

< i∗ i∗ > i∗

b a |

| b |

| | a

a | b

7→
a

|

Figure 1.5: Profiles showing that i∗ plays an important role for whether or not athlete a wins in the

output.

We claim that a must the unique winner in PPP6. First, note that if neither a nor b were ranked

first for PPP6, then a can spoil for b from PPP6 to PPP5. If b is ranked first but not uniquely ranked
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first, then b can spoil without sacrifice from PPP5 to PPP6. If b is uniquely ranked first, then at

some point in stepwise changes from PPP6 to PPP3 some other athlete must perform a spoiler

manipulation. Thus as b is not ranked first a is amongst the winners. If a were not unique, a

could spoil without sacrifice from PPP3 to PPP6.

Take some third alternative c 6= a,b. The profile PPP7 is obtained from PPP6 by moving b and c

down in the profile. Here the unique winner is still a, as otherwise b or c could spoil. Create

PPP8 by moving a to be ranked last in all disciplines except i∗.

PPP7

< i∗ i∗ > i∗

| a |

| | |

c | c

b c a

a b b

7→
a

|

PPP8

< i∗ i∗ > i∗

| a |

| | |

c | c

b c b

a b a

7→
a

|

Figure 1.6: Profiles for which a is ranked first in i∗, for which a must also be the winner in the output.

In the profile PPP8, alternative c is a clear winner over b, so b cannot be ranked first. If a were

not ranked first then b could spoil for a from PPP8 to PPP7. If any other athlete is ranked first,

then a can manipulate without sacrifice from PPP7 to PPP8. Thus a must be the unique winner in

PPP8.

In general, for any profile where a wins in discipline i∗, a must be uniquely ranked first in the

output, as otherwise there would be some chain of changes from PPP8 to the profile in question,

one of which would be a spoiler manipulation for the new winning athlete. As a was chosen

arbitrarily, for each alternative x there is a discipline ix such that whenever x wins in ix, x

must be uniquely ranked first. As two alternatives x and y cannot both be ranked first, ix = iy

for all x,y ∈ A, thus i∗ determines the gold.

The proof of Theorem 1.4 closely follows that of Reny (2001), who presents Arrow’s impos-

sibility and the Gibbard-Satterthwaite theorem side by side. Although we consider manipu-

lation, the result is, in terms of its formal shape, closer to the presentation of Arrow’s result

than to that of the Gibbard-Satterthwaite result. Requiring the impossibility of both forms

of manipulation takes the place of binary independence, though this requirement does not

imply binary independence.21 Consider the discipline aggregator that returns the total pre-

order where a is ranked uniquely first and all other alternatives jointly second if a is first in

21By binary independence we mean the specific version of Arrow’s independence of irrelevant alternatives

that requires of a social welfare function F that, for all pairs {a,b} ⊆ A, for any two profiles RRR,RRR′ such that for

all i ∈ N xRiy ⇔ xR′
iy, xF(RRR)y ⇔ xF(RRR′)y (note that this definition works only because R, R′, F(RRR) and F(RRR′)

are complete, cf. the definition of 2-IND given in Chapter 4).
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all disciplines, and a is ranked second and all other alternatives jointly first otherwise; this

violates binary independence but prevents both kinds of manipulation. The no-manipulation

requirement is closer to Condorcet independence of irrelevant alternatives (Yu, 2015).

This means that our impossibility is not simply a corollary of Arrow’s theorem.

Theorem 1.4 is tight for the four conditions, in the sense if any one is removed there is a

discipline-aggregator that satisfies the other three. Dictatorships, for which the ranking of

a single discipline is copied, are determined but satisfy the other three conditions. Constant

functions violate only the clear winner condition (except the function that always ranks

every athlete first, which is also weakly determined). We define a function below that we call

iterative first place elimination that only allows manipulation without sacrifice. Before this,

we describe a function that only allows spoiler manipulation: this proceeds sequentially, at

stage t, remove the athlete who is ranked last in discipline t modulo n, and rank this athlete

below the other athletes remaining in the profile.22 Arguably the best exposition of this

process is given by the example in Table 1.5. Formally, we define iterative successive last

removal, isr : L∗(A)N →W(A) as follows. For an arbitrary profile PPP, let loset(PPP) = {a ∈ A :

rt(a) is maximal}. Let PPP1 = PPP, and for t ≥ 1 recursively define PPPt+1 as the restriction of

PPPt to A\loset mod n(PPP
t). Writing P = isr(PPP), for x,y ∈ A, define xRy if and only if there are

integers s, t ≤ m such that s ≥ t and x ∈ loses mod n(PPP
s) and y ∈ loset mod n(PPP

t).

Proposition 1.5. Iterative successive last removal prevents manipulation without sacrifice,

satisfies the clear winner condition, is not weakly determined and satisfies athlete-neutrality.

Proof. Prevents manipulation without sacrifice: suppose an athlete “manipulates” by per-

forming worse in a profile but also that she does not get a worse output ranking. Thus she

is removed at the same point t and has output rank m− t +1. Clearly, all the partial profiles

after this point will be the same as in the non-manipulated case. As she was not removed

before t, this means that for all the partial profiles at stage s < t she was not ranked last in

discipline s modulo n, this means that she did not change the athlete who was ranked last in

this discipline, thus the loser at this stage will be the same.

The clear winner condition: if a is better than b in all disciplines then a cannot be removed

before b.

Not weakly determined: for disciplines i 6= 1, consider the profile where the athlete ranked

first in i is ranked last in 1. For discipline 1 consider the profile where the athlete ranked first

in 1 is ranked second last in 2.

We cannot satisfy all our properties simultaneously. However, if we strengthen manipulation

without sacrifice to manipulation completely without sacrifice there are functions that work.

22Cf. the Coombs rule described by, for example, Grofman and Feld (2004) or in Freeman et al. (2014).
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Table 1.5: The process of iterative successive last removal applied to the final round given the results

of Table 1.1, supposing that Faye was eliminated by the external tie-breaker and the remaining athletes

perform as in the first round.

Ranking Speed Bouldering Lead Final ranking

1st Barbara Dorothy Chloe

2nd Emma Grace Emma

3rd Alice Alice Dorothy

4th Chloe Barbara Grace

5th Grace Emma Barbara

6th Dorothy Chloe Alice

1st Barbara Grace Chloe

2nd Emma Alice Emma

3rd Alice Barbara Grace

4th Chloe Emma Barbara

5th Grace Chloe Alice

6th Dorothy

1st Barbara Grace Emma

2nd Emma Alice Grace

3rd Alice Barbara Barbara

4th Grace Emma Alice

5th Chloe

6th Dorothy

1st Barbara Grace Emma

2nd Emma Barbara Grace

3rd Grace Emma Barbara

4th Alice

5th Chloe

6th Dorothy

1st Barbara Barbara Emma

2nd Emma Emma Barbara

3rd Grace

4th Alice

5th Chloe

6th Dorothy

1st Barbara Barbara Barbara Barbara

2nd Emma

3rd Grace

4th Alice

5th Chloe

6th Dorothy
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Table 1.6: The process of iterative first place elimination applied to the final round given the results of

Table 1.1, supposing that Faye was eliminated by the external tie-breaker and the remaining athletes

perform as in the first round.

Ranking Speed Bouldering Lead Final ranking

1st Barbara Dorothy Chloe

2nd Emma Grace Emma

3rd Alice Alice Dorothy

4th Chloe Barbara Grace

5th Grace Emma Alice

6th Dorothy Chloe Barbara

1st Barbara, Chloe, Dorothy

2nd (none)

3nd (none)

4th Emma Grace Emma

5th Alice Alice Grace

6th Grace Emma Alice

1st Barbara, Chloe, Dorothy

2nd (none)

3nd (none)

4th Emma

5th Alice Grace Grace

6th Grace Alice Alice

1st Barbara, Chloe, Dorothy

2nd (none)

3nd (none)

4th Emma

5th Grace

6th Alice Alice Alice Alice
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The function we define proceeds in stages, determining the top ranked candidates then re-

moving them from the profile. The function may be described as a back-to-front version of

instant runoff voting applied using two quota rules. If an athlete is ranked first in strictly

more than half the disciplines, then she is the unique winner with respect to the athletes in

the profile—the quota is (m+ 1)/2. Otherwise, any athlete that has at least one first place

ranking in the profile is a joint winner—that is, the quota is 1. The winners are removed

from the profile, and the procedure repeats. We name this iterative first place elimination,

ifpe : L∗(A)N →W(A). See Table 1.6 for an example. Formally, for an arbitrary profile PPP,

let

localwin(PPP) =







{a} if ∃a ∈ A, |{i ∈ N : ri(a) = 1}|> n/2

{x ∈ A : ∃i ∈ N,ri(x) = 1} otherwise.

Let PPP1 = PPP. For t ≥ 1, recursively define PPPt+1 as the restriction of PPPt to A\localwin(PPPt).

Writing R = ifpe(PPP), for x,y ∈ A, define xRy if and only if there are integers s, t such that

s ≤ t and x ∈ localwin(PPPs) and y ∈ localwin(PPPt).

Proposition 1.6. Iterative first place elimination prevents spoiler manipulation, prevents

manipulation completely without sacrifice, satisfies the clear winner condition, is not weakly

determined if n ≥ 3, satisfies athlete-neutrality and satisfies discipline-neutrality.

Proof. Prevents spoiler manipulation: an athlete clearly cannot affect any of the partial pro-

files PPPt starting from t = 1 until she is ranked first in one of the disciplines. So suppose that

the athlete is ranked first in the partial profile. There are two possibilities

1) The athlete becomes a winner for this partial profile, in which case she cannot spoil

because she does as well as the other athlete for which she spoils.

2) The athlete is not a winner for this partial profile, in which case a different athlete is

ranked first in more than half the disciplines; this second athlete will be the winner no

matter how the putative manipulator changes her ranking.

Prevents manipulation completely without sacrifice: we know that an athlete a cannot affect

athletes that get better output ranks. Suppose that PPP is the partial profile for which a ∈

win(PPP). First suppose a is ranked first in more than half the disciplines: if she performs

worse in enough of these disciplines she will no longer be the unique winner, but this violates

the strictness condition. Otherwise, she will be removed from the profile in the next step,

thus any other changes to her ranking do not affect the output. Now suppose a is ranked first

in less than half the disciplines. If a performs worse in a discipline i for which ri(a) > 1,

this will not affect the output ranking as a is removed from the profile in the next round. If a

performs worse in a discipline i for which ri(a) = 1, there are three possibilities:

1) A different athlete becomes the unique winner, thus a is ranked lower in the output.
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2) A new athlete becomes a winner, violating the strictness condition.

3) The winners remain the same, thus the same athletes will be removed from this profile

and the output will not change.

Satisfies the clear winner condition: if a is ranked better than b in all disciplines, it is not

possible that b become ranked first in a partial profile if a is still contained in the profile.

Not weakly determined: here we require the condition that n ≥ 3; for arbitrary i ∈ N consider

the profile in Table 1.7.

Table 1.7: Profile demonstrating that, if the number of disciplines is greater than or equal to three,

iterative first place elimination is not weakly determined.

Ranking in discipline

Athlete {i} N\{i} Product

a 2 1 2

b 1 2 2n−1

others ≥ 3 ≥ 3 ≥ 3n

Even though it satisfies our state properties, iterative first place elimination is nonetheless

unsatisfactory. The intuitive problem is that it is indecisive, where we use the (slightly im-

precise) term decisive to describe how often ties are produced in the output. A strong version

does provide a clear definition: a resolute function always produces a linear order. Requiring

this level of decisiveness recreates the impossibility because it makes manipulation without

sacrifice equivalent to the strong version. However, resoluteness is too strong—it implies

that either athlete-neutrality or discipline-neutrality is violated. Given a completely symmet-

ric profile, the results of the competition are not enough to tell the athletes apart. In such

a case it seems reasonable that the discipline aggregator outputs ties, and to suppose that

conditions external to the profile will be used to break them.

We can note some differences in focus for the multi-discipline interpretation, in comparison

to traditional social choice: it stresses the importance of having a minimal rank; an athlete

is mainly concerned with the number of athletes ranked strictly higher than her in the output

complete preorder. The other difference is a particular importance on the “decisiveness”

of the function; how often ties are output at any ranking level. Authors often sidestep the

issue of ties in order to obtain their main results, by supposing that there is an exogenous

linear order tiebreaker or by restricting the output to linear orders, but this is obviously

unsatisfactory for our purposes as it is the question of ties themselves that we are interested

in. We are not aware of a good reference for this subject, but it provides a natural further

step: starting from resolute functions, to what extent must we relax decisiveness in order to

prevent manipulation?
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1.6 How easy is it to determine whether or not to manipu-

late: complexity results

The fact that manipulation is possible does not necessarily imply that it is feasible: there

may be a variety of barriers to manipulation in practice. One such barrier, expressed using

the theoretical tools of computer science, is that it may be too computationally demanding to

determine how to manipulate. In fact, prior even to this, we show that it is too demanding to

even determine whether or not a profitable manipulation can be carried out. Such ideas have

been pursued in computational social choice theory following the seminal work of Bartholdi

et al. (1989). In this section we apply these ideas taken from computational social choice to

our definitions of manipulation.

What does it mean to say that a problem is too hard? Suppose that we have an algorithm—a

specific set of instructions—that solves the problem in, for example, ten simple steps: in

such a case the problem doesn’t seem too hard. Of course, the length of time taken by an

algorithm typically varies depending upon the input; indeed, just to read all the input data

when there are more than ten disciplines will take more than ten steps. So an algorithm

that fully reads the input takes at least linear time; in the other direction, we say that the

algorithm is linear if this is in a sense the most time that it takes, i.e. if the number of steps

required is bounded from above by a (fixed) multiple of the size of the input. More generally,

a problem is considered tractable if, for some (fixed) polynomial, there is an algorithm that

always solves the problem in less steps than the number given when the input size is inserted

into the polynomial—the words “always” and “less” mean that we consider the amount of

time that it would take to find a solution in the worst case. Some algorithms take more time

than this. In particular, some algorithms take exponentially many steps with respect to the

size of the input. This means that above a certain size of input the algorithm will certainly

take too long. If the only algorithms that can solve a problem are exponential, the problem

may be considered too hard, or in other words, intractable.

Proving that a problem can only be solved by an exponential algorithm is not the only method

used to show that a problem is too hard. There is another class of problems, nondetermin-

istic polynomial problems (NP), which are commonly considered to serve as a boundary

for tractability. Although the exact difficulty of problems in this class is not known, it is

sometimes possible to prove that a given problem is at least as hard as any other problem

in this class. Roughly speaking, it is shown that if one has an algorithm for the problem in

question, then this can be used to solve any of the problems in the class. A problem that

can be so used is called NP-hard. Under the famous assumption that P 6=NP—that some NP

problems are not polynomial—this means that for any polynomial there are infinitely many

inputs whose computation time will be larger than the polynomial; a proof that a problem
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is NP-hard is typically taken as evidence that the problem is intractable. In this section we

show that determining whether or not there is a manipulation without sacrifice is NP-hard.

Given that we have managed to perform simulations, it is obviously easy in practice to deter-

mine whether or not a manipulation is possible. Although this is not of direct importance to

the case of sports climbing, which involves three disciplines and at most twenty candidates,

it may well be important for other applications of our model. We precisely state our decision

problem concerning manipulation as follows.

CAN-MANIPULATE-WITHOUT-SACRIFICE:

Input: A set of athletes A, a set of disciplines N, a profile PPP ∈ L(A)N , two specific

athletes a and b.

Question: Is there a manipulation without sacrifice by a for b from PPP to some other

profile?

We show that CAN-MANIPULATE-WITHOUT-SACRIFICE becomes a difficult question to an-

swer as the number of athletes and disciplines increases.

Proposition 1.7. CAN-MANIPULATE-WITHOUT-SACRIFICE is NP-complete.

Proof. For membership, take the profile that is manipulated to as a certificate and verify that

this actually is a manipulation, i.e. that b does actually end up ranked better, and that a does

not end up ranked worse.

For hardness, we provide a polynomial reduction from EXACT-3-COVER, which is the fol-

lowing NP-complete problem:

EXACT-3-COVER:

Input: A set X = {x1, . . . ,x3t} of elements, a set X = {X1, . . . ,Xs} of subsets of X

such that for each Y ∈ X, |Y |= 3.

Question: Is there a subset X′ ⊆ X such that
⋃

X
′ = X and for any distinct pair Xi,X j ∈

X
′, Xi ∩X j = /0?

Suppose we are given an instance of EXACT-3-COVER. We use this to construct—in time

polynomial in the size of the original instance—a new instance of CAN-MANIPULATE-

WITHOUT-SACRIFICE, such that an algorithm solving the manipulation decision problem

returns “yes” for this new instance if and only if EXACT-3-COVER returns “yes” for the

original instance.

The athletes in the instance are {a,b,c,d}∪X ∪X ′ ∪X ′′. The sets X ′ and X ′′ are of fixed

cardinality; there are |X |+ 14 athletes in total. The purpose of these athletes in the reduc-

tion is as follows: a is the potential manipulator; b is the athlete she attempts to help; c is
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an athlete who defeats b according to the starting profile, but who will be tied with b if a

manipulates in at least t disciplines; d is an athlete defeated by b according to the starting

profile but who will defeat b if a manipulates in strictly more than t disciplines; each xi ∈ X

is defeated by a according to the starting profile, but threatens to defeat a in the course of

the manipulation—in particular a will only be able to improve the ranking of xi at most

once; and X ′ = {x′1, . . . ,x
′
8} and X ′′ = {x′′1,x

′′
2} contain dummy athletes who pad rankings

and ensure that cycles are of the right length. In the starting profile, each discipline that a

potentially changes her ranking in corresponds to some Y ∈X. For each of these disciplines,

if a changes her ranking then she improves the ranking of each xi ∈ Y (though by different

amounts: see Figure 1.8). We design the starting profile in such a manner that there is a

successful manipulation without sacrifice if and only if EXACT-3-COVER returns “yes” for

the original problem.

We construct the starting profile from two parts: a base subprofile Pbase and a padding sub-

profile Ppad. In the base subprofile the athletes {b,c,d} all receive the same product score,

and the athletes {a}∪X all receive the same product score; it also contains all those dis-

ciplines for which a might want to worsen her ranking in order to manipulate for b. The

padding profile creates the required differences in the product scores of the athletes.

For the base profile, for each triple Y ∈ X we create 3t + v+1 disciplines and the associated

rankings, where v is the smallest natural number such that 3t + v+ 1 is divisible by nine.

Thus Pbase = {Pi
Y : Y ∈ X, i ∈ {1, . . . ,3t + v+ 1}}. For each triple Y only the ranking P1

Y

can be profitably changed by a during a manipulation for b, we thus will refer to P1
Y as

corresponding to Y . The remaining rankings make athletes within two specific sets have the

same product scores. For P1
Y , the two dummy athletes x′′1 and x′′2 are placed at the top of the

ranking, then c, a, and d, then (in arbitrary order) the elements in the triple Y , then b, then (in

arbitrary order) the remaining elements of X\Y , and finally the elements in X ′. To ensure that

athletes in {b,c,d} have the same product scores, and that athletes in {a}∪X have the same

product scores, we also add rankings Pi
Y for i = {2, . . . ,3t + v+ 1} that cycles the positions

of the athletes in these two sets, also requiring that for each of these rankings b performs

better than a. The dummy athletes X ′ ensure that these cycles can be realised—Figure 1.7

demonstrates the cycles, and shows how the dummy athletes in X ′ allow for b to perform

better than a in these cases. In particular, elements from X ′ are added to the set {a}∪X that

is cycled through so that the cardinality of the created set is divisible by nine. This means

that we only need to cycle through the set containing a exactly once while we cycle through

the set containing b three times slower. We can then place a sixth in P2
Y , seventh in P3

Y and

eighth in P4
Y , and place b third in these three rankings: this means that for a given Y ∈ X, the

only ranking Pi
Y for which a is ranked better than b is that where i = 1. For a given Y ∈ X,

we create less than |X |+9 rankings: in total the number of disciplines in the base profile is

bounded from above by (|X |+9) |X|.
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x′′1 x′′2 c a d x1 x2 x3 b x4 . . . x3t x′1
. . . x′8

Figure 1.7: The ranking P{x1,x2,x3} corresponding to the set {x1,x2,x3} ∈ X. Leftwards athletes per-

form better than rightwards athletes. The required cycling through the ranking is indicated by the

thick arrows. It can be ensured that a is ranked below b for all other rankings in the cycling if we

cycle according to the higher arrow once every three times we cycle according to the lower arrow. In

the cycle indicated by the lower arrow, of the dummy athletes we cycle through only the X ′′′ ⊆ X ′

required such that 1+ |X |+ |X ′′′| is divisible by nine; this ensures that both cycles end at the same

point.

For the padding part of the profile Ppad, we want to ensure, firstly, that the following ratios

between the product scores of the athletes hold:

(A) ∏ri(x
′′)≤ ∏ri(c) for all x′′ ∈ X ′′,

(B) ∏ri(c) = (8/9)t ∏ri(b),

(C) ∏ri(b) = (9/10)t ∏ri(d),

(D) ∏ri(d)≤ ∏ri(a),

(E) ∏ri(a) = (4/9)t(4/5)∏ri(x) for all x ∈ X ,

(F) ∏ri(a)< (4/9)t ∏ri(x
′) for all x′ ∈ X ′;

secondly, that b is not ranked worse than a in any of the rankings; and thirdly, that the number

of disciplines required is bounded by a polynomial in the size of the original input. Let us

assume for now that we can create the required padding profile. Because the elements in

{b,c,d} have the same product scores as each other in the base profile, and ditto for the

elements in {a}∪X , and because elements in X ′ have larger product scores and elements in

X ′′ smaller, (A) to (F) also apply in the full profile consisting of the combination of the base

and padding profiles. We now show that this full profile is manipulable if and only if the

original problem has an exact covering by three sets.

Suppose that we have a “yes” instance of EXACT-3-COVER, so there exists an exact covering

X
′ of X . Let a worsen her position, so that she is directly below b, in exactly the t disciplines

corresponding to X
′—an example of how this affects each one of these t rankings is displayed

in Figure 1.8—we claim that this is a successful manipulation without sacrifice by a for b.

In the resulting profile the product score of c remains the same, but the product score of b is

multiplied by (8/9)t . Because, by (B), in the original profile the product score of c is (8/9)t

times that of b, in the resulting profile b and c have the same product score. Similarly, the

product score of d is multiplied by (4/5)t ; so (B) and (C) imply that the product scores of

a, b and c are all the same in the resulting profile. We now need to show that none of the

athletes who were ranked worse than b become ranked better than b, and, to ensure that the



36 Discipline aggregation, manipulation and decisiveness

x′′1 x′′2 c a d x1 x2 x3 b x4 . . . x3t x′1
. . . x′8

x′′1 x′′2 c d x1 x2 x3 b a x4 . . . x3t x′1
. . . x′8

4/5 5/6 6/7 7/8 8/9 9/4

Figure 1.8: The ranking of a single discipline before and after a manipulates. The numbers display

the ratio, if not equal to one, of an athlete’s product scores before and after this particular manipula-

tion.

manipulation is without sacrifice, to show that none of the athletes who were ranked worse

than a become ranked better than a. In fact, because those athletes ranked worse than b were

either a or themselves ranked worse than a, and because the product score of a has increased,

it suffices to show the without sacrifice part. To see that this holds, note that for each x ∈ X

the product score is decreased by at most 5/6, because they only have their ranking changed

in exactly one discipline and 5/6 < 6/7 < 7/8. Because for a the product score is increased

by (9/4)t and because 4/5 < 5/6, condition (E) implies that these athletes remain worse

ranked than a. To be precise, the product score of a in the manipulated profile is 24/25 times

that of the product score of each x ∈ X in the manipulated profile. Similarly, for each x′ ∈ X ′

the product score doesn’t change, thus (F) implies that a still defeats x′ as required.

In the other direction, suppose that there is a successful manipulation without sacrifice. As

the only athletes that b is ranked worse than in the non-manipulated profile are x′′1 , x′′2 and

c, and because it is impossible that b becomes ranked at least as high as x′′1 or x′′2 through a

manipulation of a (by (A) and the fact that x′′1 and x′′2 perform best in each ranking of the base

profile), this means that b must be ranked at least as high as c in the manipulated profile,

which means that a must change her ranking in at least t disciplines where she is ranked

better than b. However, a cannot change her ranking in more of these disciplines, otherwise

d would become ranked strictly above b and the manipulation would not be successful. Also,

of the disciplines that she changes her ranking in, she can only improve the ranking of any

given xi at most once, otherwise this xi would multiply her product score by a value less than

(7/8)2—itself less than (4/5)—so xi would be ranked better than a and the manipulation

would not be without sacrifice. Thus the disciplines in which a does manipulate correspond

to an exact covering of the set X as required.

It remains to show that the desired padding profile can be constructed. This construction is

facilitated by the following technical lemma.

Lemma 1.8 (Assign a specific ratio of product scores). Given disjoint sets X I,X II,X III such

that X I ∪X II ∪X III = A, distinct athletes x,y ∈ X II, and natural numbers

p,q ∈
{∣

∣X I
∣

∣+1,
∣

∣X I
∣

∣+2, . . . ,
∣

∣X I ∪X II
∣

∣

}

,
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there is a profile, over an index set I of cardinality the lowest common multiple of
∣

∣X I
∣

∣,
∣

∣X II
∣

∣

and
∣

∣X III
∣

∣, such that

∏
i∈I

ri(z) = ∏
i∈I

ri(w) for j ∈ {I, III},z,w ∈ X j,

∏
i∈I

ri(z)< ∏
i∈I

ri(w) for j < k, j,k ∈ {I, II, III},z ∈ X j,w ∈ Xk

∏
i∈I

ri(x) = (p/q)∏
i∈I

ri(z) for z ∈ X II\{x,y} .

Proof of Lemma 1.8. For p = q, we create a profile that cycles through the three sets of

alternatives separately: choose arbitrary orderings of X I, X II, and X III; concatenate the list

representations of these to create the first ranking in the profile. Now, cycle the positions

of the elements within the three sets, each time adding the new ranking to the profile: after

as many steps as the lowest common multiple of the cardinalities of these three sets we will

reach a ranking such that the next ranking is again the first ranking. For each set, each

element in this set is in each position the same number of times, thus elements within a set

have the same product scores.

In fact, the p 6= q case is dealt with in almost the same manner, we only modify one of

the rankings in the cyclical profile. Create a base ranking starting with elements of X I in

arbitrary order, then elements of X II such that x is at position q and y is at position p and

with the other elements in arbitrary order, and finally elements of X III in arbitrary order. The

profile is built up of cyclings through this ranking, with the base ranking replaced once by

the ranking where the positions of x and y are swapped. The cycles go individually through

X I, X II and X III. �

Example 1.9. Suppose that X I = {a,b}, X II = {x,y,c}, X III = {d}, p = 3, and q = 5. The

base ranking is abycxd. The profile constructed according to the proof of Lemma 1.8 con-

tains the rankings (abxcyd,baxycd,abcxyd,baycxd,abxycd,bacxyd): for this profile a and

b have the same product score of 23—which is also the smallest, c has a product score of

(3.4.5)2, x has a product score of 33.42.5 = (3/5)(3.4.5)2, y has a product score of 3.42.53,

and d has the largest product score of 66.

We repeatedly apply Lemma 1.8 in order to get the required ratios between the product

scores of the athletes. For some of these applications we let X I ⊇ X ′′: this ensures that for

these subprofiles (A) holds; when this is not the case we will occasionally require some extra

compensatory padding.

In order to achieve the ratio given by (B), we use the above lemma 3t times. First we

apply it t times with the values X I = /0, X II = X ′′ ∪{b,c,d}, X III = X ∪X ′ ∪{a}, x = x′′1 ,

y = c, p = 3, and q = 4. Note here that x′′1 actually has the smallest product score in this
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partial profile, and x′′2 has the joint second smallest, alongside b and d—no compensatory

padding is required. Note also that the number of disciplines required for each application

of the lemma is bounded (conservatively) from above by (|X |+ 14)3, because the lowest

common multiple of three numbers that sum to a value is certainly less than the cube of

that value. We now again apply the lemma t times, with almost identical values: X I = /0,

X II = X ′′∪{b,c,d}, X III = X ∪X ′∪{a}, x = x′′1 , y = c, p = 3, and q = 2. Combined with the

previous t applications, this gets the desired ratio of (4/3)t(2/3)t = (8/9)t for (B). However,

for these applications x′′1 has a larger product score than b, c and d; and x′′2 has a larger product

score than c. To redress this we apply the lemma t times with X I = X ′′, X II = {b,c,d},

X III = X ∪X ′∪{a}, and p = q (thus x and y can be chosen arbitrarily). Because 3t = |X |, the

number of disciplines used up to now is certainly bounded from above by (|X |+14)4.

The process for (C) involves an almost identical application of the lemma 3t times, only for

the first 2t applications here x = x′′1 , y = d and (p,q) takes the values (2,3) and (5,3) for

the first and second t applications respectively. Again, the final t applications compensate

for the larger product score of x′′1 (and to a certain extent for the product score of x′′2) in the

t preceding applications: we again apply the lemma t times with X I = X ′′, X II = {b,c,d},

X III = X ∪X ′∪{a}, and p = q.

In total, the number of disciplines used up to now is bounded from above by 2(|X |+14)4.

The inequality of part (D) holds because for all the applications of the lemma, we place d in

some set X i and a in some set X j, for i, j ∈ {I, II, III}, such that i < j.

For part (E), we apply the lemma t +1 times. For the first t applications, let X I = {b,c,d}∪

X ′′, X II = {a}∪X ∪X ′ and X III = /0, and let x = a, y= x′1 and p= 8, q= 18. Note that for this

subprofile x′1 has the largest product score of all the athletes. We also apply the lemma once

with the same values except p = 8 and q = 10. To again give a conservative upper bound,

we require less than 3(|X |+14)4 disciplines.

And in fact this suffices; it is not hard to see that (F) is also satisfied. Because for all of these

rankings b is ranked better than a, and their amount is polynomially bounded from above,

we have the required padding profile Ppad.

1.7 Final remarks on discipline aggregation

In this chapter we have seen a novel interpretation of Arrow’s traditional social choice frame-

work involving the aggregation of linear orders. Under this interpretation what are tradition-

ally thought of as candidates become the agents of the model. These agents can strategize

in a specific manner: they can worsen their own position within one or more of the in-
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put strict linear orders. This interpretation captures the problem of aggregating multiple

ranked competitions. In particular we consider the proposed method for sports climbing at

the 2020 Olympics. Simulations suggest that, although ties are unlikely to occur, this pro-

posed method is potentially open to manipulation. Although it is impossible to completely

prevent manipulation under its least restrictive definitions, a small further assumption about

the sacrifices that athletes are unwilling make means that we can find other methods that

prevent manipulation. This possibility is demonstrated through a novel method which is,

however, too susceptible to ties to be practical.

Our interpretation is novel to the best of our knowledge. Other work concerning manipu-

lation in sports competitions includes work concerning manipulating seedings (Russell and

Van Beek, 2011), and tends to be of a more operations-research nature than social-choice-

theoretic. Wright (2014) provides a survey. We are not aware of other work that explicitly

considers candidates as agents in the way that we do—our work is distinct from the strand

of literature which considers manipulation by strategic candidacy (Dutta et al., 2001; Lang

et al., 2013; Brill and Conitzer, 2015). Of course, there are strong similarities between our

results and more traditional work in social choice theory, and there may be implicit con-

nections that we have not determined, for example with Yu’s (2015) definition of Condorcet

independence of irrelevant alternatives or Sanver and Zwicker’s (2009) definition of one-way

monotonicity. Our types of manipulation are also novel in terms of their formal definitions,

although there are some similarities with work that looks at restricted manipulations, for

example were voters aim to be in some sense truthful (Obraztsova and Elkind, 2012). In

particular, it should be noted that our version of manipulation is not just a restricted version

of coalitional manipulation; rather, the ranking in every discipline can be changed in a re-

stricted manner. This means that we have an orthogonal result to Proposition 1 of Conitzer

and Sandholm (2002), which states that if calculating the output of a rule is easy, then fix-

ing the number of athletes leads to easy decision problems concerning manipulations; for

our definitions of manipulation it is instead a fixed number of disciplines that leads to easy

decision problems.

Our interpretation fits well into Arrow’s framework. Table 1.8 contains a comparison of

the terminology used in this chapter with traditional terminology. Arguably, the problem

of aggregating multiple disciplines is better served by this framework than the typical prob-

lems of social choice theory. The linear order profile is the input in practice.23 There are

no questions, as there are for social choice theory, about whether eliciting full linear or-

23Rather than aggregating linear order profiles, a method could aggregate points determined by each indi-

vidual’s performance, as in the modern pentathlon. The final score for an athlete would be independent of the

performance of other athletes, sidestepping our issue of manipulation. This approach was discarded by the

International Federation of Sports Climbing because (1) it is considered too complex for the audience and (2)

it is difficult, perhaps impossible, to assign points in a balanced way across the disciplines (Meyer, 2018). We

thus take it is as given that the input is ordinal.
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Table 1.8: A comparison of the terminology used for the discipline aggregation framework with that

used for social choice theory.

Discipline aggregation Social choice theory

Athletes Alternatives

Disciplines Agents

Discipline aggregator Social welfare function

Clear winner condition Pareto criterion

Athlete-neutrality Neutrality

Discipline-neutrality Anonymity

Not determined No top-dictator

No egoistic manipulation Monotonicity







No altruistic manipulation No specific identical concept, similarities

with binary independence and

Gibbard-Satterthwaite manipulation

No non-sacrificial manipulation

No spoiler manipulation

ders is problematic, let alone if linear order preferences are suitable or even sensible—cf.

competing approaches like approval voting (Brams and Fishburn (1978), for a recent exten-

sive treatment see Laslier and Sanver (2010)) and majority judgment (Balinski and Laraki,

2011).24 The required output is also obviously a complete preorder, whereas in social choice

theory often what is desired is a choice, requiring a social choice function as opposed to a so-

cial welfare function. Sometimes it is not obvious that manipulation is actually undesirable

for social choice theory, especially when one considers iterative manipulation (Meir et al.,

2010; Lev and Rosenschein, 2012; Obraztsova et al., 2015). Indeed, “manipulation” is a mis-

nomer, a better term is strategic behaviour. In contrast, for sports competitions manipulation

is aptly named and clearly undesirable in and of itself, whether because it goes against the

spirit of the competition or because it cheapens the spectacle. Concerning the information

requirements for manipulation, we have argued that the qualification round can be used as a

proxy for the results in the final round. This is to some degree unrealistic—the athletes will

not perform exactly the same—however it is certainly not less realistic than the traditional

Gibbard-Satterthwaite assumption of common knowledge of all preferences of all agents.

We also observe that cheating does occurs in the Olympics, including in the form of delib-

erate bad performances (Jimenez, 2012; TheGuardian, 2012). In another arena, Formula 1,

24Interestingly, Balinski and Laraki (2011) use the example of Olympic figure skating as part of their argu-

ment against the ordinal approach. In the past the ranking of skaters was produced by aggregating multiple

ordinal rankings given by multiple judges. The particular method has since been replaced, and it is argued that

reason underlying the replacement is that the method violates independence. Balinski and Laraki thus go in the

opposite direction to us: they use experience from the Olympics and apply it to social choice theory.
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altruistic manipulation of the type we consider—more precisely, spoiler manipulation—has

be observed to occur (Gpupdate, 2008).25

Although it fits well into the traditional framework, there are two ways in which the focus

of the discipline aggregation problem differs from that the traditional view: it stresses the

importance of having a minimal rank; and it places particular importance on the decisive-

ness of the ranking method, that is, how often ties are output at any ranking level. Authors

often sidestep the issue of ties in order to obtain their main results, perhaps by supposing

that there is an external linear order tiebreaker, or by restricting the output to linear orders

(Zwicker, 2016, p. 33). Alternative approaches, such as dealing directly with set-valued out-

comes (Barberà et al., 2004; Brandt, 2011; Brandt and Brill, 2011), or using a randomised

mechanism to break ties (Obraztsova et al., 2011), are also unsatisfactory for our purposes

because it is the precisely the problem of minimising the number of ties itself that we are

interested in. Although decisiveness is also required for elections, the sidestepping of the is-

sue is perhaps justified when there are large electorates. However, for our problem the small

number of disciplines makes the issue of deciveness particularly important. So although

even for a small election involving a hundred voters it seems likely that for a given profile

a rule will distinguish the candidates, this is no longer the case for a “population” of three

disciplines.

An interesting extension of our model would be to apply a sequential protocol approach,

where one considers partial revelation of the profile in a sequential manner. This is pre-

cisely how the Olympic sports climbing event will unfold, though in practice there will be

measures put in place to isolate the athletes from the partial results during the progress of

competition for a single discipline. Such a sequential extension can also be applied to other

competition formats. There is already a literature of related results concerning necessary

and possible winners (stemming from Konczak and Lang (2005)) upon which such an ex-

tension may be based. Another avenue for further study would be to introduce the issue

25The work of this chapter is in part due to the extremely pertinent and useful remarks made by reviewers

before its presentation at COMSOC 2018. In particular we should address a remark that was made concerning

Formula 1: that the type of manipulation that we consider is less “important” than the phenomenon where

a racer blocks the passage of cars of rival teams in order to preserve an advantage for a teammate. In our

opinion this exemplifies the distinction between manipulation and strategic behaviour. In Formula 1 a single

“blocking move” is sanctioned Benson (2012). Allowing blocking may be considered desirable because it adds

a strategic level for the competitors and improves the spectacle for viewers; one might consider blocking to be

strategic behaviour. On the other hand, the type of behaviour we consider—which although rare, also seems to

occur in Formula 1 (Gpupdate, 2008)—is clearly undesirable—the reviewer used the term “scandalous”—and

merits its designation as manipulation. Now, strategic behaviour between teammates plays an important role in

many seemingly individualistic competitions, e.g. in various cycling events teammates draft behind each other.

However, such strategic behaviours are typically domain specific and thus difficult to consider in the general

manner that we treat manipulation; they would arguably be better investigated under the heading of operations

research.
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of bribery (Faliszewski et al., 2006); in particular the notion of swap bribery (Elkind et al.,

2009) seems applicable. This would extend the relevance of any results beyond the case of

altruistic teammates.

The question that arises out of this work concerns the decisiveness of social choice rules that

prevent manipulation. It seems obvious that extremely indecisive rules are unsatisfactory.

This is implicit, for example, in the impossibility theorem of Wilson (1972), which shows

that the conditions of Arrow’s theorem without the Pareto criterion results in either a dicta-

torship, and anti-dictatorship or the null rule which always returns complete indifference. In

this case it is clear that complete indifference is an undesirable outcome, so the impossibility

is effectively recreated with a different set of properties: any level of decisiveness at all leads

to dictatorship. However, for rules that are only sometimes indecisive, it is reasonable to have

recourse to an external tiebreaker if the candidates have performed symmetrically. We have

a possibility result that requires an intuitively indecisive method, and, on the other hand, we

know that requiring resoluteness leads to an impossibility. But it is not clear how to describe

the situation in between these two options. Indeed, at this point, we are not even sure how to

go about measuring the decisiveness of a rule.



Chapter 2

Relieving the tension between neutrality

and resoluteness using parallel universes

This chapter introduces a novel family of rules whose purpose is to be more decisive than the

rules on which they are based, while retaining the property of neutrality.1 The aim is to push

the limits of the trade-off between decisiveness on the one hand and neutrality (and implicitly

anonymity) on the other. Our work is largely inspired by Conitzer et al. (2009), who consider

this trade-off for instant runoff voting, and Brill and Fischer (2012), who consider this trade-

off for ranked pairs. It is based upon the notion of parallel universes, which was introduced

in Conitzer et al. (2009).

The idea behind parallel universes is the following: multiple possible universes arise when

there are multiple possible implementations of a given method, each of which is undertaken

in a slightly different manner; these implementations are run in parallel and their outputs

combined. Let us take instant runoff voting, applied to the profile with three alternatives and

six voters displayed in Table 2.1, as an example.

1 2 3 4 5 6

a a b b c c

c c c c b a

b b a a a b

Table 2.1: An example profile. Each column

corresponds to the ranking of an agent, with

higher alternatives preferred to lower alterna-

tives.

Instant runoff voting successively eliminates the alternative that receives the least first place

votes. However, in the above profile, there is a three-way tie: a, b and c are all ranked first

two times. In one universe, a may be eliminated, whereas in others b or c may be eliminated.

If we suppose that alternative c is eliminated, then we again end up with a tie between a and

b: again, there are different possible universes, in one of which a is selected, in another b is

selected.

What, exactly, does a universe correspond to? The question is open to interpretation and

will depend upon the particular method in question. For instant runoff voting, one possi-

ble answer is that a universe corresponds to a linear order tiebreaker. Different linear order

1It is based upon work by Kruger and Airiau (2017).
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tiebreakers can sometimes produce different outcomes, and thus correspond to different uni-

verses. The tree of possibilities for each linear order tiebreaker is given in Figure 2.1.

Considered individually, each possible universe produces a single outcome, thus instant

runoff voting within a given universe is resolute. However, we can see that the profile is

symmetric between a and b: neutrality, if imposed, would require that if a is chosen, then

b must be chosen as well. Given a specification of what universes are possible, rather than

supposing that we live in one fixed universe, we can return all alternatives that win in any

possible universe. If we have a suitable definition of which universes are possible, this will

even make the rule neutral. Taking the union of all possible universes in this way is a general

method for making many resolute, non-neutral rules neutral, at the price of losing resolute-

ness. We call this the parallel universe concept.

Another possibility is to consider possible universes in a probabilistic manner. Applied to

the tree in Figure 2.1, the idea would be that we choose which branch to take depending on

some random process, flipping a coin for example. For instant runoff voting, if each possible

branch is chosen with equal probability, this amounts to determining the probability based

upon how many linear orders tiebreakers a given alternative is selected. We thus have a

method that is based upon counting linear orders. In such a manner we get both neutrality

and (ex post) resoluteness, but randomness is perhaps too high a price for many practical

situations, in particular where legitimacy is supposed to be established through the choice

procedure. Agents may find it difficult to accept the result of a random decision, no matter

how fair it is ex ante.

A way of derandomising, while still counting possible universes, is to select those alterna-

tives that win in most universes. To return to our above example, we saw that a was only

selected in one universe, whereas it can be seen (Figure 2.1) that c wins in four universes.

Indeed, using the three alternative profile as a template, examples can be constructed such

that some alternative wins for m!−(m−1)! universes, whereas another alternative only wins

for one universe, under instant runoff voting. It seems a little unreasonable to treat the al-

ternative that wins in only 1/m! of the universes the same as the alternative that wins in

(m−1)/m of the universes.

We have seen that the general principles of taking parallel universes and, further, argmax al-

ternatives can be applied to rules that are normally considered in a non-neutral and resolute

form, specifically instant runoff voting and ranked pairs. This general principle is, however,

also applicable to slightly different types of choice methods. In particular, we focus in this

chapter upon tournament solutions. There are two reasons for our choice. First, tourna-

ment solutions can be described, in a slightly imprecise manner, as indecisive, that is, they

tend to output large sets of alternatives. Second, a large class of tournament solutions are

implementable by binary trees (Banks, 1985; Laslier, 1997; Horan, 2013). That is, there are
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Initial profile

1 2 3 4 5 6

a a b b c c

c c c c b a

b b a a a b

1 2 3 4 5 6

c c b b c c

b b c c b b

1 2 3 4 5 6

a a c c c c

c c a a a a

1 2 3 4 5 6

a a b b b a

b b a a a b

Alternative b

selected for bca

Alternative a

selected for abc

Alternative c

selected for acb,

cab

Alternative c

selected for bca,

cba

a eliminated b eliminated c eliminated

b eliminated a eliminated a eliminated b eliminated

Figure 2.1: The possible instant runoff outcomes outcomes for a profile under different tiebreakers,

where the rightmost alternative in the tiebreaker amongst those alternatives with fewest first place

votes is eliminated in the first round. In the first round there is a three-way tie between a, b and c,

leading to three different possibilities depending upon which of these alternatives is eliminated. Two

of these possibilities lead to c being selected, whereas the third is subject to a further tie between a

and b. This means that c is the winner for four linear order tiebreakers, whereas a and b each win for

only one linear order tiebreaker.

natural ways of seeing tournament solutions as parallel extensions of a resolute non-neutral

rule. Such binary trees provide a natural object on which to apply permutations, which can

be identified with the linear order tiebreakers of different universes.

For the rest of this chapter, the input to the social choice function is not a profile of prefer-

ences, but rather a tournament. Agents are not explicitly present in a tournament, but their

existence can be taken as implicit: it is well known that for any tournament there is a corre-
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sponding preference profile such that the majority relation coincides with this tournament

(McGarvey, 1953). In this chapter we consider functions of type f : T(A) → 2A\ /0 where

T(A) is the set of tournaments over A. We use T to refer to arbitrary tournaments. For some

properties it will be necessary to have variable electorates, in such a case f will in fact refer

to a family of functions, each applicable to tournaments over different sets of alternatives;

we distinguish such families from individual functions by referring to them as tournament

solutions.

We draw tournaments by placing an arrow between two alternatives. We impose the conven-

tion that if there is no arrow, we assume it goes to the right. Thus the two diagrams in Figure

2.2 display the same tournament. In fact, this tournament is the smallest tournament that is

non-trivial in the sense that it is neither completely symmetric nor transitive. We will refer

to this particular tournament with the name T 4.

a1

a2 a3

a4

a1 a2 a3 a4

Figure 2.2: Two representations of the tournament T 4. An arrow from x to y represents xTy. When

no arrow is drawn between two alternatives x and y, and x is to the left of y, then xTy.

The methods that we use to select alternatives from a tournament are based upon binary

trees. A binary tree is a structure containing nodes, each with two children who are either

themselves nodes or leaves of the tree. An example of a graphical representation of a tree is

drawn in Figure 2.3: note that we only write the subscript label of each alternative.

One manner of reducing a tree to produce a smaller tree is to compare two leaf siblings

according to the tournament relation, and to replace their parent with a leaf corresponding to

whichever of the two alternatives “defeats” the other. This process can be repeated until only

one alternative remains. Some of the steps in the reduction process of the above tree using

the tournament T 4 are displayed in Figure 2.4.

The structure of the rest of this chapter is as follows. In Section 2.1 we provide definitions

for the rules we consider in this chapter. All these rules are based on binary trees, but more

general rules will require families of binary trees, of which we will define some particular
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1 4 3 4 2 4 3 4

Figure 2.3: An example binary tree. (Specifically, the Banks tree over four alternatives, see Sec-

tion 2.1.1).

4
3 4 2 4 3 4

7→

4 3 2 3

7→ 2

Figure 2.4: Some steps in the reduction of the tree in Figure 2.3 by the tournament T 4. If a leaf

dominates its sibling, this leaf replaces the siblings’ parent.

instances by recursion. We then show how to use single trees or families of trees to define

tournament solutions. In Section 2.2 we provide theoretical results for the defined tourna-

ment solutions: we identify if these are identical to other rules and determine their axiomatic

properties. In Section 2.3 we assess how successful our novel rules are at providing more

decisive choice than the rules upon which they are based. We assess our results on trees in

Section 2.4.

2.1 Binary trees

The specific choice functions that we consider in this chapter are based on binary trees whose

leaves are alternatives in A. We represent the set of such trees by the context-free grammar

generated by the rules below (in Backus-Naur form).

τ ::= a ∈ A | (ττ)

Parentheses delimit subtrees; directly adjacent elements within parentheses are sibling leaves.

We use τA for the set of all such trees with leaves from A. We often omit outermost and left-

most parentheses, i.e. we assume left associativity. We use τ ∈ τA to refer to an arbitrary
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tree. If every element in A occurs as a leaf in τ , we say that τ is complete. If some element

in A occurs as two or more leaves in τ , we say that τ is repetitive.

2.1.1 Families of binary trees

As well as individual trees, we consider families of binary trees for any set of alternatives A.

To define these families, we define a function g that takes a list of alternatives as input and

returns a tree whose leaves are alternatives in the list. Technically, for all A with |A| ≥ 2 we

define functions gA : L(A)→ τA, where L(A) is the set of linear orders, each interpreted as a

list of alternatives. The function g is defined as, for R ∈ L(A), g(R) = gA(R).

We define five families of trees using the following five functions. These five functions

apply to linear orders over alternatives: for trees we only write the subscript label of the

alternative; we write i instead of ai. These functions are recursive in that they form subtrees

from functions applied to shorter lists. To terminate the recursion, for a list x we set g(x) to

be the tree with the single leaf x.

Simple trees: st(12 . . .m) = 1(st(2 . . .m)).

We follow Laslier’s (1997) nomenclature. Such trees are sometimes called voting

caterpillars (Fischer et al., 2009).

Banks trees: bn(12 . . .m) = bn(13 . . .m)(bn(23 . . .m)).

These trees are named after Banks (1985). Note we do not place parentheses around

the left subtree because we assume left associativity.

Two-leaf trees: tt(12 . . .m) = 12.

These trees are incomplete for |A|> 2. This is the only family we define that contains

incomplete trees.

Balanced tree: ft(12 . . .m) = ft
(

1 . . .
⌊

m
2

⌋)(

ft
(⌈

m
2

⌉

. . .m
))

.

These trees have have minimal height over the space of complete trees, where height

is given by the maximal nesting of parentheses. Formally, the height of a tree with a

single leaf is zero; the height of tree (ττ ′) is one plus the maximum of the heights of

the subtrees τ and τ ′. Lang et al. (2007) define balanced voting trees with a slightly

less restrictive definition.

Iterative Condorcet trees: ic(12 . . .m) = 12 . . .m ic(2 . . .m).

The above definition is inspired by the work of Altman and Kleinberg (2010). Recall

that we assume left associativity; an iterative Condorcet tree contains no parentheses

when represented as strings.

Figure 2.5 contains graphical representations of these trees for four alternatives.
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Simple tree

st(1234) = 1(2(34))
1

2
3 4

Banks tree

bn(1234) = 14(34)(24(34))

1 4 3 4 2 4 3 4

Two-leaf tree

tt(1234) = 12
1 2

Balanced tree

ft(1234) = 12(34)
1 2 3 4

Iterative Condorcet tree

ic(1234) = 123423434

1 2
3

4
2

3
4

3
4

4

Figure 2.5: Binary trees with four alternatives.
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2.1.2 Using binary trees to define social choice functions

We define choice functions from a binary tree in three ways. The first involves competing

siblings against each other until one alternative remains, and is thus a resolute tournament

function. The second considers each possible permutations of the alternatives as a different

parallel universe, and returns all possible winners in any parallel universe. The third involves

counting universes, and returns those alternatives which win in most universes. Formal defi-

nitions for each follow.

First, alternatives compete against their siblings according to the majority relation, the win-

ners moving up to the parent node until we have a final winner at the root. Formally, for a

tree τ ∈ τA, the function τ : T(A)N → A has the following recursive definition:

xy(T ) =

{

x if xT y

y otherwise
ττ ′(T ) = τ(T )τ ′(T )(T ).

Effectively, the tournament T defines a binary algebraic operation, a tree describes an alge-

braic term, and the result of applying the binary operation throughout the term is the reduced

form of the tree.

Second, we define a tournament function by take the union of our first function for all

possible permutations. Following Conitzer et al. (2009), we use the terminology “uni-

verse” to refer to each possible permutation. Thus this method forms the parallel uni-

verse solution concept. We indicate this with a superscript PU; formally, for a family

of trees g with gA : L(A) → τA, we create a function of type gPUA : T(A)N → 2A. Define

gPUA (T ) = {gA(R)(T ) : R ∈ L(A)}. The outcomes of many of these parallel universe ver-

sions are well studied—the question of what tournament rules are implementable by parallel

universes in this manner has been studied by Horan (2013), who gives necessary and suffi-

cient conditions. Not that a single family of trees actually defines a tournament function for

any set A: this means that we will be able to consider properties which require a variable

agenda.

Third, we define a tournament function as follows: count the number of permutations that

result in each winner; instead of taking the union over all universes, only return those alter-

natives that win in most universes. We refer to this as the argmax solution concept, and use

AM as the corresponding superscript. For gA : L(A) → τA, we define the function of type

gAMA : T(A)N → 2A by

gAMA (T ) = argmax
x∈A

| {R ∈ L(A) : gA(R)(T ) = x } | .

This family of rules appears to be novel. As in the parallel universe case, a given family of

trees actually defines a rule over variable agendas.
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2.2 Identities and properties of tree based rules

This section is mostly composed of two kinds of results: the first show that the rules we

have defined output certain known sets; the second describe axiomatic properties that these

rules satisfy. Some of the rules coincide with one or other of the following five tournament

solution concepts.

The set of Condorcet non-losers. .

This contains all a ∈ A such that there exists a b ∈ A such that aT b.

The top cycle. .

This is the smallest set B ⊆ A such that bT a for all b ∈ B and a ∈ A\B.

Given a tournament T , we say a ∈ A covers b ∈ A if aT b and for all x ∈ A such that bT x,

aT x.

The uncovered set. .

This contains all and only alternatives that are not covered by any other alternative.

The Banks set. .

This contains maximal alternatives (by T ) of maximal (by inclusion) subsets of A that

are transitive according to T .

The Copeland set. .

This contains alternatives that dominate the most other alternatives, i.e. it is the set

argmaxa∈A |{x ∈ A : aT x}|.

The first three concepts are increasing in terms of decisiveness: for any tournament, each al-

ways outputs a subset of the former, and sometimes a proper subset. So the last two concepts

are the most decisive of the five, however it is not obvious how to compare them to each

other, because they may produce completely disjoint solution sets. So although it appears,

for example, that the Copeland set tends to be smaller, by cardinality, than the Banks set, even

a formal statement to this effect could not necessarily be taken as meaning that Copeland is

more decisive. We will discuss more why this is the case in the following chapter.

We now list five axiomatic properties, two of which are close variants. The first three apply

to an arbitrary tournament function f : T(A)→ 2A\{ /0}. The last two require the possibility

of a variable agenda, they thus apply to families of tournament functions for all possible

sets of alternatives, or tournament solutions. To express these we require some additional

notation: T 〈a,b〉 is T with the relation between a and b inverted. For the last two properties

we will require the notation of a summary of a tournament. Let T ′ ∈ T({a1, . . . ,am}), and,

for each i ∈ {1, . . . ,m}, T i ∈ T(Ai) for pairwise disjoint sets of alternatives Ai. We write

T = (T ′;T 1, . . . ,T m) to refer to the tournament over
⋃

Ai defined as follows: for each a ∈ Ai

and b ∈ A j, if i = j then (aT b iff aT ib); whereas if i 6= j then (aT b iff aT ′b). The final



52 Relieving the tension between neutrality and resoluteness using parallel universes

property also requires the idea of the restriction of a binary relation to a subset: for B ⊆ A we

write T ↾B= {(a,b) ∈ T : a,b ∈ B}. The idea behind our first condition is that reinforcing a

winning alternative should not make it lose.

Monotonicity: if a ∈ f (T ) and bT a, then a ∈ f (T 〈a,b〉).

The idea behind the second condition is that a clearly best alternative should be selected.

Condorcet consistency: if aT x for all x 6= a, then f (T ) = {a}.

We now present two conditions: the first of these can be applied to tournament functions

(and thus also to tournament solutions); the second is a strengthening of the first that can

only be applied to tournament solutions. The idea behind both these conditions is that making

restricted changes to tournaments should not completely change the output solution (Laffond

et al., 1996).

Weak composition consistency: take any X ⊆ A such that for any x,x′ ∈ X , y ∈ A\X we

have xTa if and only if x′Ta. Then for any {a,b} ⊆ X it is the case that

1) f (T )∩ (A\X) = f (T 〈a,b〉)∩ (A\X) and

2) f (T )∩X 6= /0 if and only if f (T 〈a,b〉)∩X 6= /0.

Composition consistency: for any T = (T ′;T 1, . . . ,T m), index i and alternative a ∈ Ai, it is

the case that a ∈ f (T ) iff ai ∈ f (T ′) and a ∈ f (T i).

The final condition, like composition consistency, can only be applied to tournament solu-

tions. Indeed, it explicitly concerns variable agendas; it explicitly places restrictions on the

output when the set of alternatives expands or contracts. Our definition follows Brandt et al.

(2016), p61.

Stability: for all tournaments T and all nonempty X ,Y,Z ⊆ A with Z ⊆ X ∩Y ,

Z = f (T ↾X) = f (T ↾Y ) if and only if Z = f (T ↾X∪Y ).

All of the tournament solution concepts and properties defined above are treated in more

detail by Laslier (1997) and Brandt et al. (2016). We now consider, in turn, the three different

types of tree rules with respect to these rules and properties, starting with singleton trees.

2.2.1 Singleton trees

Singleton trees are technically not identifiable with tournament functions, because they are in

fact of a different type, outputting a single alternative instead of a set. Of course, it is natural

to consider the output of a singleton tree as a singleton, thereby allowing for a comparison

with tournament functions. However, other tournament functions are typically neutral and

thus irresolute. Thus, tournament functions that are not defined in terms of trees typically
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do not coincide with singleton tree functions. Indeed, the most explanatory description of a

singleton tree function is just the tree itself.

With respect to properties, a singleton tree can only be applied to tournaments defined on a

superset of its leaves, and indeed are best interpreted as applying to a fixed agenda. Thus it

makes little sense to apply properties that require a variable candidature to a function defined

by a singleton tree. The following general properties are easily verified.

Observation 2.1. Rules defined by individual trees are resolute and non-neutral. Such a

rule satisfies Condorcet consistency iff it is complete. If a tree is non-repetitive, its rule is

monotonic.

The main property of interest for this subsection is monotonicity. Non-repetition is not a

necessary condition for monotonicity; the Banks tree provides an example of a monotonic

but also repetitive tree.

Proposition 2.2. For any number of alternatives, bn is monotonic.

Proof sketch. This result is well known (Banks, 1985), so we only provide a high level de-

scription of the proof. Consider the following intuitive definition of the Banks tree. First,

we suppose that the rightmost alternative in the Banks tree is the preliminary winner. We

then successively examine the other alternatives (as arguments in the recursive definition

from right to left), potentially setting them as new preliminary winners. For an alternative

to become the new preliminary winner, it must defeat every member of the set of previous

preliminary winners. After all the alternatives have been tested, we select the current prelim-

inary winner. Clearly, if an alternative was selected then it defeated all previous preliminary

winners: changing only this alternative so that it defeats more alternatives will not change

the fact that it is selected.

2.2.2 Parallel universe trees

The first results of this subsection concern the identities of parallel universe rules based on

families of trees.

Proposition 2.3. We have the following equivalences between parallel universe rules and

known rules:

1) stPU returns the top cycle.

2) bnPU returns the Banks set (Banks, 1985).

3) ttPU returns the set of Condorcet non-losers.

4) The tournament solution icPU is identical to the top cycle.
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Proof. Only (4) deserves comment, the other results are well known or obvious. The binary

tree ic implements the iterative Condorcet rule, described by Altman and Kleinberg (2010),

into a binary tree rule. This rule successively removes alternatives from the tournament, ac-

cording to some given linear order, until the contracted tournament has a Condorcet winner;

this Condorcet winner is then selected. If we parallelize over all possible linear orders, this

produces every element in the top cycle: for an arbitrary element in the top cycle, consider

successively removing the elements following the cycle starting with the alternative domi-

nated by the arbitrary element. It is similarly easy to see that no element not in the top cycle

can be produced by this procedure.

To see that the iterative Condorcet tree ic(1 . . .m) implements this, note that after the first

m−1 comparisons if m is still a possible winner it will have defeated every other alternative,

if not it has been eliminated as it does not reappear higher in the tree; in the latter case the

process then continues by comparing m−1 against all alternatives < m−1, etc. Figure 2.6

contains an example.

Most of the above results can be found in the literature on social choice theory. Only the

parallel universe version of the iterative Condorcet tree is novel, although it does not define

a novel rule, as it coincides with the parallel universe version of the simple tree, i.e. the top

3 2
1

4
2

1
4

1
4

4

4 2
1

4
1

4
4

4 1
4

4

a1

a2 a3

a4 a1

a2

a4 a1 a4

Figure 2.6: At top: partial reductions of the tree ic(3214) = 32142141444. Below that: the tour-

nament T 4 and the tournaments created by the removal of alternative a3 and then alternative a2, at

which point there is a Condorcet winner. This illustrates the equivalence of the iterative removal of

alternatives until there is a Condorcet winner with the tree ic.
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cycle.

We have not, however, considered balanced trees yet. The set of parallel universe winners for

the balanced tree can be a proper subset of the Top Cycle. In particular, to win in a universe

an alternative must dominate at least ⌊log2 m⌋ alternatives. Thus this solution concept does

not always produce a superset of the uncovered set, as for arbitrarily many alternatives we can

construct a tournament with an uncovered alternative that only defeats one other alternative.

Nor need the parallel universe version of

the balanced tree be a subset of the un-

covered set: consider the tournament in

Figure 2.7 to the right. Here a2 is covered

by a1, but a2 is also the output of a bal-

anced tree, specifically 154(32)(T ) = 2.

a1 a2 a3 a4 a5

Figure 2.7: A tournament for which a covered al-

ternative, a2, is the output of a balanced tree.

This means that solution concepts based on balanced trees are somewhat atypical: most other

tournament solutions that have been studied are refinements of the uncovered set.

We could have given a different definition for the balanced trees. If log2 |X | is not an inte-

ger there are multiple non-repetitive tree structures that have minimum height. Our choice

of definition not only minimises the height but also minimises the difference between the

number of leaves in any node’s left and right subtrees, other definitions produce different

functions. For example, consider the two tournaments and the two trees in Figure 2.8.

a1 a2 a3 a4 a6 a5

1 2 3 4

5 6

a1 a2 a4 a6 a3 a5

1 2

5

4 3

6

Figure 2.8: Two tournaments and two different balanced trees. The trees output different solution

sets that are not contained in each other.

Both the trees are of minimal height for complete trees over six alternatives. Here a6 is the

winner for the left tree and left tournament, and also for the right tree and right tournament.

However, there are no permutations of the labels of the trees which make 6 the winner for a

tree and its opposite tournament. Thus the different balanced trees produce distinct sets of

parallel universe winners that are not contained in each other. Ultimately, as was the case
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for singleton trees, it appears that the best description of the identity of the parallel universe

version of the fair tree is in terms of the tree itself.

We now consider the properties of parallel universe rules. In general, parallel universe ver-

sions of binary trees may not be monotonic. Laslier (1997) provides a large counterexample.2

Figure 2.9 provides a smaller example with only 5 alternatives involving the tournament T

defined as a5T a4T a3T a2T a1 and iT j for all other i < j; the tournament T 〈a4,a5〉; and the

binary tree τ = 412(453)4.

T :

a1 a2 a3 a4 a5

T 〈3,4〉:

a1 a2 a3 a4 a5

τ:

4 1
2

4 5
3

4

Figure 2.9: A tournament and a second version of this tournament with a4 reinforced, and a tree

for which a4 is output according to the first tournament but for which no permutation outputs a4 as

the winner after a4 is reinforced. This demonstrates a violation of monotonicity for parallel universe

versions of binary trees.

It can be verified that τ(T ) = 4. In fact there are four permutations of the tree that select this

alternative. Now reinforce alternative a4, obtaining T 〈a4,a5〉. We have verified by computer

that there are no permutations of τ that select a4 for the tournament T 〈a4,a5〉. That is to say,

a4 ∈ τPU(T ) but a4 6∈ τPU(T 〈3,4〉).

Although monotonicity does not hold in general for parallel universe binary tree rules, the

particular parallel universe rules we define inherit monotonicity from the singleton tree of

which they are composed.

Observation 2.4. For a family of trees gA, if for every R ∈ L(A) the singleton tree gA(R) is

monotonic, then so to is gPUA .

It is also known that parallel universe binary tree rules are weakly composition consistent,

consult Moulin (1986) or Laslier (1997) for proof.

The final property we consider is stability. Brandt et al. (2016) show that the top cycle is

stable but that Banks is not. It is easy to find a counterexample to stability for the set of

Condorcet non-losers: for example, consider any transitive tournament with at least three

alternatives. Only the balanced tree remains: the parallel universe version of this rule can be

seen to be non-stable using tournament T 4 of Figure 2.2.

2More precisely, a family of counterexamples.



2.2 57

2.2.3 Argmax applied to trees

Of the argmax versions of our five families of trees, only ttAM is a known rule, namely

Copeland. Note that Copeland is not implementable by parallel universe trees (Horan, 2013).

The other argmax rules are novel. We have seen that stPU = icPU; this identity does not carry

across to the argmax versions.

Proposition 2.5. The tournament solutions stAM and icAM are distinct.

Proof. The tournament T in Figure 2.10 provides the required example: stAM(T ) = {d} and

icAM(T ) = {a}. This tournament is one of the tournaments for which we display the results

in Table 2.2. The solutions were found with the aid of a computer.

a0

a1

a2

a3

a4

a5

Figure 2.10: A tournament whose output shows that two

families of binary trees, the simple tree st and the iterative

Condorcet tree ic, although equivalent for parallel universes,

are distinct for argmax.

This suggests that we have to choose our refinement with care: in fact, there doesn’t seem to

be any principled reason to choose one of these versions over the other in order to obtain a

refinement of the top cycle.

The big question here is whether or not the argmax versions of our rules also satisfy mono-

tonicity. Unfortunately, it seems difficult to prove the monotonicity property here, which

is a basic desirable property. The only rule for which we are sure that this holds is the

argmax version of tt, which corresponds to Copeland. It would be somewhat surprising if

monotonicity did not also apply to the other argmax versions of the rules.

We can show that no argmax rule is composition consistent, for m ≥ 5.

Proposition 2.6. There is no family of trees τ such that τAM satisfies weak composition

consistency.

Proof. Consider the tournaments T = (T ′′,T 1,2,3) and T ′ = (T ′′,T 2,2,3) such that T ′′ and

T 1 are cyclic tournaments with 3 alternatives, T 2 is a transitive tournament, and 2 and 3 are

tournaments with single alternatives. Suppose for a contradiction that there is a tree τ such

that τAM is composition consistent. This must make all five alternatives winners in T , by

composition consistency and neutrality. However, in the second, only one alternative in T 2

can win (by Condorcet consistency), and 2 and 3 must also win. Now, consider the number

of permutations for which 2 and 3 win for the tree τ under tournaments T and T ′: these must

be the same. Similarly, the number of permutations for which some alternative in T 1 wins
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Table 2.2: Alternatives selected by various argmax rules for all non-reducible tournaments of size six.

The alternatives are labelled from 0 to 5. The Markov solution concept (Laslier, 1997) is provided

to allow for comparison with what is typically considered a particularly decisive tournament solution

concept.

stAM bnAM ftAM ttAM icAM markov

0 0 0 0,1 0 0

0 0 0 0,1 0 0

0 0 0 0,1 0 0

0 0 0 0,1 0 0

0 1 0 0 0 0

1 1 1 1 1 1

0 0 0 0 0 0

0 0 0 0,1 0 0

0 0 0 0,1 0 0

0 0 0 0,1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

2 2 2 0 0 0

0 0,1 0 0 0 0

0 0 0 0 0 0

0 4 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0,1,2,3 0 0

4 4 0 0,1,2,4 0 4,0

0 0 0 0,1,2,3 0 0

1 1 1,2 1,2,3,4 1 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

2 2 2 2,3,4 2 2

1 1 1,3,4 1,3,4 1,3 1

4 4 4 1,4,5 4 4

3,4,5 3,4,5 3,4,5 3,4,5 3,4,5 3,4,5

3,4,5 3,4,5 3,4,5 3,4,5 3,4,5 3,4,5
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must be the same as the number of permutations for which some alternative in T 2 wins. As

in T all alternatives are winning, 2 and 3 must win 20 times. But in T ′ the Condorcet winner

of T 2 must win 60 times, contradiction.

None of our argmax rules are stable either. Consider the tournament T 4 of Figure 2.2: each

argmax solution concept returns at most two alternatives, but removing one of the others

results in a symmetric tournament that must return all three alternatives for any neutral rule.

2.3 Success of tree-based argmax rules as refinements

Assuming that our argmax rules satisfy the basic property of monotonicity, the other issue

at hand is how effective they actually are at refining the set of winners. Let us start by

considering tt: for ttPU, the set of Condorcet non-losers is an extremely indecisive solution

concept. However, ttAM corresponds to the Copeland set, which is much more decisive even

than many other solution concepts we consider. Here moving to the argmax universe version

provides a large gain in decisiveness.

The same seems to be the case for the other solution concepts. We have tested this on some

example tournaments. The outcome of all of our rules is only affected by alternatives in

the top cycle. Thus we restrict attention to non-reducible tournaments, where there is a

cycle throughout the whole tournament. Moon (1968) provides a list of all non-isomorphic

tournaments involving six alternatives, from which we see that there are only thirty-four such

non-reducible tournaments. We applied our rules to all of these, and compared them with the

(intuitively decisive) Markov solution concept. The specific results are found in Table 2.2.

From Table 2.2 it can be verified that all these solution concepts are distinct. We can also

see that the Banks set contains three alternatives 14 times, four alternatives 8 times, five

alternatives 9 times and six alternatives 3 times. In contrast bnAM outputs a single winner

32 times, two winners 1 time and three winners 2 times. Both stAM and icAM get similar

(though distinct) results. Copeland, equivalent to ttAM, outputs a single winner 18 times,

two winners 7 times, three winners 5 times and four winners 4 times. Thus it appears that

the argmax rules are significantly more decisive than the full parallel universe versions.
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2.4 Assessment of the possible universes method applied to

tree based tournament functions

In this chapter we have described a method for making tournament solutions more resolute

using a technique of counting permutations. The particular attraction of the argmax rules is

that they are more decisive than their parallel version counterparts. We summarise the status

of our rules in Table 2.3, and their properties in Table 2.4. However, the real test of their

attractiveness hinges upon whether or not they satisfy monotonicity, which we have not been

able to prove or disprove.

There is also the issue of the computational complexity of these rules. Naive implementa-

tions of parallel or argmax rules with as many universes as linear orders run in factorial time,

which is prohibitively slow. However, there is a counterpoint here: approximating argmax

winners will be easy to do using Monte-Carlo methods. This echoes the fact that, although

determining the set of Banks winners is NP-hard (Woeginger, 2003), a simple greedy al-

gorithm can find some Banks winner in polynomial time (Hudry, 2004). It would also be

interesting to consider reducing the amount of possible universes. For example, instead of

considering all linear order tiebreakers, consider only “cycles” of tiebreakers, e.g. the set

{12 . . .m,23 . . .m1, . . . ,m1 . . .(m − 1)}. Although we are no longer certain to retain neu-

trality (although there may be special cases where this occurs), considering such universes

corresponds to a natural weakening of neutrality. The selection according to both parallel

universes and argmax over restricted universes will be a subset, and likely a proper subsets,

of the selection according to the parallel universe rule over all universes. This provides a

potentially tractable method for making rules more decisive.

Although decisiveness seems to be an attractive property, it is not the sole aim of a choice

function. If there is little reason to choose one alternative over another, then perhaps they

should be tied. In particular, we have seen methods above that are designed to make partic-

ular rules more decisive. However, they do not do so in a consistent manner. Indeed, it is

hard to fully justify of the foundations behind the selection process that refines the particular

solutions. Ultimately, this comes back into the question of information, and how it is used to

distinguish alternatives.
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Table 2.3: Summary of identities of rules based on trees.

Family of trees Parallel universe Argmax

Simple tree Top cycle (Laslier, 1997) new

Banks tree Banks (Banks, 1985; Laslier, 1997) new

Fair tree Cup rule new

Two-leaf tree Condorcet non-losers Copeland

Iterative Condorcet tree Top cycle (Altman and Kleinberg, 2010) new

Table 2.4: Known properties for rules based on trees.

Monotonic Condorcet consistent

Family of trees PU AM PU AM

Simple tree ✓ ? ✓ ✓

Iterative Condorcet tree ✓ ? ✓ ✓

Banks tree ✓ ? ✓ ✓

Balanced tree ✓ ? ✓ ✓

Two-leaf tree ✓ ✓ ✗ ✓

Composition consistent Stable

Family of trees PU AM PU AM

Simple tree weakly ✗ ✓ ✗

Iterative Condorcet tree weakly ✗ ✓ ✗

Banks tree ✓ ✗ ✗ ✗

Balanced tree weakly ✗ ✗ ✗

Two-leaf tree weakly ✗ ✗ ✗



Chapter 3

Maximally decisive social choice

In this chapter we investigate the notion of decisiveness1 formally. What do we mean by the

concept of decisiveness, and why are we interested in it? Decisiveness provides the “choice”

in social choice—after all, the ultimate purpose of social choice is to actually pick something

from some options. The more decisive a social choice function, the more effective it is at

guiding our actions and decisions. Thus we want our rules to select small sets; a study of

decisiveness may tell us just how small we can make our selections.

It may be wondered why we should introduce this concept, given that resoluteness has been

well studied in social choice theory, going back at least to Moulin (1983). Our response is

that resoluteness is too strong a property. Moulin’s work shows that resolute rules that satisfy

anonymity and neutrality only exist if the number of alternatives, m, cannot be written as the

sum of non-trivial divisors of the number of individuals, n. This means that for many sets

of alternatives and agents resoluteness is an unattainable goal. Even in cases where it is

possible, it may not be desirable: consider the general example of a profile with n = 2k and

m = 3 in Table 3.1.

Table 3.1: A profile for which the cardinality of alternatives and agents makes it possible to have a

resolute social choice function, but for which the resolute outcome is undesirable.

1 to 2k−1 −1 2k−1 to 2k −2 2k −1 2k

a b c c

b a a b

c c b a

We know that at least one resolute anonymous and neutral social welfare choice function

exists for these numbers, however such a rule must select c in the above profile, which is not

1Our choice of terminology deserves some justification, especially given that the term “decisiveness” is

often used with a different meaning in proofs of Arrow’s theorem. Fishburn (1977) uses the term “discrim-

inability”, but this rather seems to suggest that a social choice function tells a lot of alternatives apart: selecting

two out of four alternatives actually discriminates between four distinct pairs of alternatives, while selecting

one out of four alternatives only discriminates between three distinct pairs. We consider this point again in

Chapter 5. Another choice would have been “selectiveness”, as used by Sato (2009).
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a desirable outcome.2 In this profile, if we select a, then anonymity and neutrality force us

to also select b. The profile is intrinsically tied.3 Nonetheless, we can still apply an effective

notion of decisiveness here: given anonymity and neutrality, there are only three possible

outcomes: {a,b,c},{a,b},{c}. The idea is to rule out {a,b,c} because it is possible to

select a proper subset of this outcome.

Anonymity forces an equivalence class on the space of profiles: two profiles for which we

permute the agents must output the same outcome. Although neutrality can be considered

as forming another equivalence class, as is done for the impartial, anonymous and neutral

model described by Eğecioğlu and Giritligil (2013), we rather consider neutrality in a slightly

different manner, as a group action on the space of profiles. Alternatives in the same orbit

are considered indistinguishable, as per Bubboloni and Gori (2014).

However, the requirement of maximal decisiveness given anonymous information is again

too strong. Suppose we add another alternative to the profile in Table 3.1 and create the

profile of Table 3.2.

Table 3.2: Profile with two alternatives that it is difficult to choose between.

1 to 2k−1 −1 2k−1 to 2k −2 2k −1 2k

a b c d

b a a b

c c b a

d d d c

Now a and b are distinguishable. However, it does not seem that the addition of d has made

any real change to what the output should be.4

In what follows neutrality is a central property for the definition of what it means to be

maximally decisive. Anonymity is less central: we construe anonymity as only one of many

2Bubboloni and Gori (2014) address this issue by also requiring that the rules satisfy a majoritarian property.

This will further reduce the values of n and m for which there are suitable rules.
3In practice, such a tied profile will probably ultimately use an external tiebreaker to choose a single alter-

native in the case of ties. For example, from a tied set, one may (i) select the alternative ranked highest by some

fixed strict linear order, or (ii) select the alternative ranked highest by some specific agent. Randomisation is

also possible—one may (iii) randomly select an alternative in the output set, or (iv) randomly select an agent

and use their ordering to break the tie. However, such tiebreakers are here considered as secondary processes,

external to the social choice rule itself. While such tiebreakers are probably necessary for practical implemen-

tations of an irresolute choice functions, they are not part of the definition of a choice function proper, and do

not affect decisiveness.
4This also connects with ideas of local independence conditions. We consider such properties in Chapter 4.
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types of informational restrictions. It is the combination of neutrality with an informational

restriction that provides our notion of maximal decisiveness. There are a number of other

informational bases that we will consider. Most of these will imply anonymity, in such cases

we can consider functions that apply to profiles with varying amounts of agents, i.e. variable

electorate social choice functions. We write N for the set containing each finite and non-

empty initial segment of N, i.e. N = {{0},{0,1},{0,1,2},{0,1,2,3}, . . .}. In the following

we use D to refer to the domain in a general fashion, i.e. D ∈ {L∗(A)N ,L∗(A)N }. In this

chapter, our aim is to formalise decisiveness within the simple ordinal framework of social

choice theory. We thus here consider functions of the form and consider functions of type

f : DN → A. Note if PPP ∈ L
∗(A)N then PPP ∈ L

∗(A)N for some N. This framework is in the

Arrovian tradition: there are no interpersonal comparisons, nor cardinal values of utility.5

The rest of this chapter is divided into three sections: in the first of these, we formalise the

idea of information bases, and give various examples. This will allow us, in the section

after, to give a better definition of maximal decisiveness, which takes into account what

information is considered relevant. The final section gives some closing remarks.

3.1 The informational content of families of functions

By an (informational) basis we mean a partition of the space of profiles into equivalence

classes.

Definition 3.1. A basis is the equivalence relation determined by some symmetric and re-

flexive relation ∼⊂ D ×D .

Definition 3.2. We say that a social choice function f is expressible by a basis ∼ if for all

PPP,PPP′ ∈ D , PPP ∼ PPP′ implies that f (PPP) = f (PPP′).

A basis implicitly describes an environment of information. In order to compute the output

of a rule that is expressible by this basis, only the relevant information concerning this envi-

ronment is required. This is less information than that given by the environment involving

complete profiles—unless the equivalence class of basis only contains singletons, a some-

what trivial case. Given that any equivalence relation defines a basis, there may not always

be a nice interpretation of the environment of information.

The definition of informational bases may be considered quite a dry, abstract notion that it

is hard to get an intuitive grasp upon. Sometimes, however, there is a nice interpretation

5It is in fact a slightly restricted version of the full ordinal framework: we allow ties in the output but not

in the input. Allowing for ties only in the output provides the intricacy necessary to investigate decisiveness,

which is already enough to raise non-trivial problems.
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of what is going on behind a basis. This can typically be given in terms of a function that

reduces profiles into a compact representation, e.g. a tournament. Under this interpretation,

two profiles contain the same information if they have the same compact representation.

Such functions in effect produce bases: profiles that map to the same object belong to the

same equivalence class.

3.1.1 Examples of informational bases

Two well-known environments of restricted information go under the names of C1 infor-

mation and C2 information. These concepts were first defined by Fishburn (1977) and are

captured by the following two functions. Let pairs = {(x,y) : x,y ∈ A}. Define the majority

relation of a profile

T : L∗(A)N → 2pairs by (x,y) ∈ T (PPP) iff |{i ∈ N : xPiy}| ≥ |{i ∈ N : yPix}| .

Define the weighted tournament of a profile

W : L∗(A)N → Npairs by W (PPP)(x,y) = |{i ∈ N : xPiy}| .

The equivalence relation ∼C1 is defined by PPP ∼C1 PPP′ iff T (PPP) = T (PPP′). Similarly, the equiv-

alence relation ∼C2 is defined by PPP ∼C2 PPP′ iff W (PPP) =W (PPP′). In general, we will be slightly

loose about the distinction between an information environment, a basis, and a function that

defines a basis; the context should make it clear what is meant. For instance, occasionally

we will use C1 to refer to the basis ∼C1.

Example 3.3. Consider the profile PPP1 involving three alternatives and five agents, two with

preferences abc, two with preferences cab, and one with preferences bca. The tabular pre-

sentation, tournament, and weighted tournament of this profile are displayed in Figure 3.1

below.

1 2 3 4 5

a a c c b

b b a a c

c c b b a

Figure 3.1: Clockwise from above: the tabu-

lar representation of a profile, its tournament, its

weighted tournament, the matrix corresponding to

its weighted tournament, and the matrix corre-

sponding to its tournament.

a

b

c

a

b

c

4

1
23

3

2





0 1 0

0 0 1

1 0 0









0 4 2

1 0 3

3 1 0




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C2 is more expressive than C1; any rule that can be calculated using C1 information can

also be calculated by C2 information. The formal property that corresponds to this is the fact

that (the basis) C2 is a refinement of C1: for any pair of profiles PPP,PPP′ ∈ L
∗(A)N such that

PPP ∼C2 PPP′ we also have PPP ∼C1 PPP′. In the other direction, there are rules that can be calculated

using C2 information that cannot be calculated using C1 information. In general, the relative

expressivity of two bases is simply a question of refinement.

Observation 3.4. A basis ∼ can express all rules expressed by a basis ∼ ′ if and only if ∼

refines ∼ ′.

Functions expressible by C1 include the top cycle, the uncovered set, and the Banks set.

Functions expressible by C2 include all those expressible by C1, Kemeny (defined as a union

choice rule), ranked pairs, and Borda.

We know the range of the function T . A theorem by McGarvey (1953) shows that for any

possible tournament, there is a profile that maps to it.

Theorem 3.5 (McGarvey). Take arbitrary A. For every complete and asymmetric relation

S ⊆ pairs, there is some profile PPP ∈ L
∗(A)N such that T (PPP) = S.

The range of W is difficult to determine. However, a slightly modified function can be

defined that almost contains the same amount of information: define the symmetric weighted

tournament of a profile

symW : L∗(A)N → Zpairs by symW (PPP)(x,y) =W (PPP)(x,y)−W (PPP)(y,x).

Example 3.6. We consider again the profile from Example 3.3. This produces the following

symmetric weighted tournament and representative matrix. Note that in the graph we only

need to label positive edges, the reverse edges are labelled with the negative of these values.

a

b

c

3

1

1

Figure 3.2: Left: a symmetric weighted tour-

nament. Right: the matrix corresponding to

this symmetric weighted tournament.





0 3 −1

−3 0 1

1 −1 0





Debord (1987) shows that all (and only) symmetric weighted tournaments whose weights all

have the same parity correspond to some profile. Note that if we know how many agents

were involved in the original profile, then we can determine the weighted tournament from
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a weighted symmetric tournament.6 It is only if we do not know the number of agents

that information is lost when a weighted tournament is turned into a symmetric weighted

tournament.

Theorem 3.7 (Debord). Take arbitrary A. For every function g : pairs→ Z such that (i) for

all (x,y)∈ pairs, g(x,y) =−g(y,x), and (ii) the range of g only contains numbers of the same

parity, there is some profile PPP ∈ L
∗(A)N such that symW (PPP) = g.

Let us call the informational basis determined by symmetric weighted tournaments symC2.

The relation between symC2 and C2 is subtle: they are equivalent if we consider them bases

over L∗(A)N for some fixed electorate N. This corresponds to the fact that if we know the

number of agents, then we can reconstruct the weighted tournament from the symmetric

weighted tournament. However, this is not the case for the variable electorate domain, where

C2 is more expressive than symC2, as the following (somewhat arbitrary) example shows.

Example 3.8. Define a social choice function that returns the Borda winners (see Definition

3.11) if there is some pair of alternatives (x,y) for which W (PPP)(x,y)≥ 5, and that otherwise

returns the top cycle. As the condition and both functions can be determined using C2

information, this function as a whole can be determined with C2 information. The winners

for the profile PPP1 of Example 3.3 will be {a,b,c}, however if we add three symmetric agents

with preferences abc, bca and cab, to create the profile PPP2, displayed in Table 3.3, then there

is a unique winner {a}. However, the symmetric weighted tournament is the same for both

profiles.

Table 3.3: The profile of Figure 3.2 with three agents with cyclic preferences added.

1 2 3 4 5 6 7 8

a a c c b a b c

b b a a c b c a

c c b b a c a b

It is hard, however, to think of a reasonable social choice function that makes use of the extra

information afforded by C2 in comparison to symC2. Intuitively, the extra expressivity of

C2 gained through being able to determine the size of the electorates is not relevant to fair

social choice.

Of course, there are informational environments that are even more expressive than C2. For

voting situations the information giving the names of agents is removed, leaving only the

counts of each strict linear order; this is captured by the function

vs : L∗(A)N → NL
∗(A) defined by vs(PPP)(P) = |{i ∈ N : Pi = P}| .

6It is also important that we have assumed strict linear order profiles.
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Observation 3.9. The range of vs is NL
∗(A).

The basis associated with voting situations can express any anonymous rule, including those

not expressible by C2 information, such as instant runoff voting (see the introduction to

Chapter 2 for a description) or Dodgson (reference).

In general, we want to impose anonymity, thus most bases that we consider are coarsenings of

voting situations. The following are important exceptions—though not because they produce

reasonable rules. We remove all information from the profile with the function

null : L∗(A)N →{ /0}.

Obviously, the only choice functions expressible by the associated basis are constant. Now,

suppose we have have a fixed electorate N. For each agent i ∈ N we remove information

involving the other agents with the projection

proji : L∗(A)N → L
∗(A) defined by proji(PPP) = Pi.

The choice functions expressible by the associated basis include not only the dictatorship

of i, but also reverse dictatorships and various other such functions. Note that although a

dictatorship and reverse dictatorship for i are expressible by the same basis, their outputs

never coincide (except in the trivial case where |A|= 1).

We have defined the functions T , W , symW , vs, null, and the projections proji for each agent

i. Each of these functions maps from the set of profiles into some other set of objects, and can

be used to define a basis or informational environment, respectively tournaments, weighted

tournaments, symmetric weighted tournaments, voting situations, trivial information, and

single agent based information. A basis in turn is associated with the family of social choice

functions that it expresses. We now go in the opposite direction; we start with a family of

rules, and try to determine a basis which can be used to express this family and an associated

function.

3.1.2 Informational functions that express positional scoring rules

The family of positional scoring rules is quite distinct from the families given by C1 and C2

information.

The traditional definition of a positional scoring rule makes reference to a scoring vector

xxx ∈ RA. Each individual assigns each alternative the score in the position of the vector

that corresponds to the position of the alternative in the individual’s ranking. We then sum

up each alternative’s scores to produce a final summed score. Alternatives with maximal
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summed scores are selected. Formally, the scoring function with vector xxx is the function

fxxx : D → 2A\{ /0} defined by

fxxx(PPP) = argmax
b∈A

∑
i∈N

xri(a) where ri(a) = |{b ∈ A : bPia}|+1.

Observation 3.10. For each scoring vector xxx, the associated positional scoring rule on the

variable electorate domain, fxxx : L∗(A)N → 2A\{ /0}, is a unique social choice function up to

affine transformations of the vector; i.e. a scoring vector xxx′ such that there are no α,β ∈ R,

α > 0 such that αxxx+β = xxx′ defines a different social choice function.

Note that the above observation does not apply when we have a fixed electorate. But, given

a variable electorate, it means that we can define a canonical normalised vector for each

scoring rule: xxx ∈ [0,1]A such that 0 and 1 are each values of some coordinate in xxx.7 We will

refer to such rules as positional scoring rules.

Positional scoring rules are not expressible by any of the bases that we have seen thus far,

with one notable exception, the Borda social choice function. In canonical form the Borda

vector is

BV =

(

1,
|A|−2

|A|−1
, . . . ,

1

|A|−1
, 0

)

.

Definition 3.11. The Borda social choice function, or just Borda for short, is the scoring

function fBV.

The obvious way to create a reduced informational environment that can express all scoring

rules is to transform the profile into a matrix that records how many times each alternative

is ranked in each position. We call this the positional matrix of a profile: it associates each

column with an agent, and for each row counts how many times the agent is ranked in that

position. We will assume that the agents are a1, a2, . . . , a|M| and that agent ai is associated

with column i. We formally define

posM : D → NA×A by posM(PPP) ji = |{k ∈ N : rk(ai) = j}| .

We define the basis ∼posM in the obvious manner, and will sometimes simply refer to it as

posM.

7Except in the trivial case where all the coordinates have the same value. Note that our definition is a

slight generalisation of some traditional definitions, which tend to require that the vector is weakly decreasing

throughout and strictly decreasing at least once.
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Example 3.12. Let A = {a,b,c}, N = {1,2,3,4,5,6}, and PPP3 be as given in Table 3.4.

Table 3.4: A profile in which all alternatives are ranked third twice.

1 2 3 4 5 6

a a a a b c

b b c c c b

c c b b a a

posM(PPP3) =





4 1 1

0 3 3

2 2 2





Consider an arbitrary scoring vector (α1,α2,α3). The total summed score for a is 4α1+2α3,

and for both b and c is α1 + 3α2 + 2α3. Under positional scoring the selection will be

determined by which of these two sums is larger; in effect, then, which of 4α1 and α1 +3α2

is larger.

The information given by posM can be used to express any scoring rule. In fact, it can

express many more functions than these. In general, any partial ordering over the set of

vectors with natural number coordinates corresponds to a generalised scoring rule which

returns maximal alternatives according to this ordering.8 The following theorem, due to Fine

and Fine (1974) determines the range of posM.

Theorem 3.13 (Fine). Let M be a matrix of natural numbers and p be a natural number such

that each row in M sums to p and each column in M sums to p. Then there is some profile PPP

such that posM(PPP) = M.9

We now look for a coarser basis which still expresses scoring rules. There are two obvious

methods for reducing the information of posM. The first is scaling—matrices which are

scalar multiples of each other can be considered equivalent. To obtain a canonical form of

scaled matrices, we normalise such that all the columns sum to 1. As a result we will end up

with matrices of type QA×A rather than NA×A: for the rest of the subsection we will suppose

that all our matrices are of the former type, because this is a superset of the latter type. The

normalisation itself is

norm : QA×A → [0,1]A×A defined by norm(M) =

(

1

∑i∈N M1i

)

M.

We use npM to refer to the function norm◦ posM and to this function’s associated basis and

informational environment.

The second method for reducing information concerns cases where all the alternatives are

ranked in a given position at least once. This means that some of the scores assigned to the

alternatives will cancel out. This leads to the following type of reduction.

8Note that multiple partial orderings will correspond to the same choice function: we do not have an equiv-

alent result to Proposition 3.10 here.
9Note that the definition of the positional matrix given here transposes that of Fine and Fine (1974).
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We write Zi for a matrix with 1s in the row i and zeros

elsewhere. The reduction of a (positive) matrix involves

taking away as many Zi rows as necessary until there is

a zero in each row. Formally, define

red : QA×A →QA×A by red(M) = M− ∑
i∈N

αiCi

where each αi = min{Mi j : j ∈ N}, using the traditional

definitions of matrix subtraction and scalar multiplica-

tion. We use rpM to refer to the composed function

red ◦ posM and the associated basis and informational

environment.

Zi =

























0 · · · 0
...

...

0 · · · 0

1 · · · 1

0 · · · 0
...

...

0 · · · 0

























(ith row)

Speaking somewhat loosely, these two reductions commute; the order of reduction is unim-

portant: this is due to the distribution of scalar multiplication over matrices. More precisely,

norm ◦ red = norm ◦ red ◦ norm. For the complete reduction we write nrpM = norm ◦ red ◦

posM, which comes with its associated basis and informational environment.

Example 3.14. We again consider A = {a,b,c} and N = {1,2,3,4,5,6} and the profile PPP3

from Example 3.12.

posM(PPP3) =





4 1 1

0 3 3

2 2 2



 red◦ posM(PPP3) =





3 0 0

0 3 3

0 0 0



 rpos(PPP3) =





1 0 0

0 1 1

0 0 0





It is obviously possible to express any scoring rule using nrpM information. What about the

range of this function? The following result is corollary to Theorem 3.13.

Corollary 3.15. Take arbitrary A. For every matrix M ∈ 0,1A × [0,1]A with rational values

such that (i) the values in each column sum to 1 and (ii) each row contains a 0 there is a

profile PPP ∈ L
∗(A)N such that rpos(PPP) = M.

Let us compare the move from full positional information (pM) to scaled and reduced po-

sitional information (nrpM) with the move from weighted tournaments (W ) to symmetric

weighted tournaments (symW ). The move to nrpM involves two reductions (normalisation

and subtraction of rows) whereas symW only involves one. With symW , if the size of the

electorate is known, then we can reconstruct the full weighted tournament. This is not the

case for nrpM; we can only reconstruct the full positional matrix if only one of the reductions

is applied—i.e. from npM or rpM, if we know the size of the electorate, we can reconstruct

pM, but we cannot reconstruct pM from nrpM. This suggests that these two reductions

are distinct in an important way. Indeed, this is the case, as there are functions that can be

expressed by npM and not by rpM, and vice-versa.
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An example of a rule that is expressible by npM but not by rpM is the social choice function

that returns those alternatives with the best median position (or, equivalently, the best median

score, for any strictly decreasing score vector).10 We directly define this in terms of the npM

matrix: the median score of an alternative is the first number such that sum of the values in

the rows less than or equal to this number is at least a half. Formally, this is equivalent to:

med(a,M) = min{n ∈ {1, . . . , |A|} : ∑
n
i=1 Mia ≥ 1/2}. The function

fmed : D → 2A\{ /0} is defined by fmed(PPP) = argmin
a

(med(a,npM(PPP))) .

Example 3.16. Recall the profile PPP3 from Example 3.12. Its full positional and scaled posi-

tional matrices are displayed below.

posM(PPP3) =





4 1 1

0 3 3

2 2 2



 npM(PPP3) =





2/3 1/6 1/6

0 1/2 1/2

1/3 1/3 1/3





The median winner is a.

Define a new profile PPP4 by adding three groups of three symmetric agents, for a total of nine

agents. This produces the following matrices.

posM(PPP4) =





7 4 4

3 6 6

5 5 5



 npM(PPP4) =





7/15 4/15 4/15

3/15 5/15 5/15

5/15 6/15 6/15





The median winners are a, b and c. Although the median winners for PPP3 and PPP4 are distinct,

rpM(PPP3) = rpM(PPP4) (which is easily verified), thus the median rule cannot be expressed by

rpM.

An example of a rule expressible by rpM but not by npM is one that we call near plurality.

We only provide a sketch: this returns both the plurality winners and any other alternative

that is one changed preference away from being a plurality winner.

It is trivially the case that symW can express all and only weighted tournament rules—it is

how these rules are defined. This means, furthermore, that symW is the coarsest possible

basis for this class of rules. However, scoring rules were not defined with respect to nrpM,

and, except in trivial cases, nrpM is not coarsest possible basis for this family.

Example 3.17. Let A = {a,b,c}. Take PPP5 and PPP′5 such that

10The first use of the median for social choice seems to be Bassett and Persky (1999). General versions

of such rules (ordered weighted averages) are studied by Goldsmith et al. (2014) and García-Lapresta and

Martínez-Panero (2017).
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spos(PPP5) =





1 1/3 0

0 2/3 1

0 0 0



 and spos(PPP′5) =





1 2/3 0

0 1/3 1

0 0 0



 .

Such profiles exist by Corollary 3.15. We observe that any scoring rule gives the same

output to both these profiles. Suppose the scoring vector is (s1,s2,s3). If s1 > s2, then {a} is

returned; if s2 > s1 then {b} is returned; and if s1 = s2 then {a,b,c} is returned.

We can use the above example to show that (for |A| = 3) there is a coarser basis than nrpM

that expresses all positional scoring rules. Let B be the basis such that PPP5 ∼B PPP′5, and all

other profiles are in individual equivalence classes. Neither of nrpM or B is a coarsening

of the other, however there is a unique finest basis that coarsens both: the infimum or meet

according to the partial order of refinement.

Over bases, refinement forms not only a partial order, but a complete lattice, thus both infi-

mums and supremums are well-defined. With respect to refinement, for two bases B1 and

B2, we write B1 ∧B2 for the infimum and B1 ∨B2 for the supremum. More generally, we

write
∧

X for the infimum (meet) of the set X and
∨

X for the supremum (join) of X .

Observation 3.18. If two bases B1 and B2 can both express a function, then so too can their

meet B1 ∧B2. More generally, if a family of bases Bi for i ∈ I can express a function then so

too can
∧

i∈I Bi.

We can continue this idea in order to show that there is a unique coarsest basis that expresses

all scoring vector rules. First, note that each specific rule f directly defines a basis, ∼ f ,

defined by PPP ∼ f PPP′ iff f (PPP) = f (PPP′). Such a basis ∼ f is almost a complete description of

the rule—although it does not record to which alternatives a specific profile maps, it does

associate this profile with all other profiles that map to the same alternative. The coarsest

basis for positional scoring rules is
∧

{∼ f : f is a positional scoring rule}. We will refer to

this basis as ∼scor.

The existence of a coarser basis that expresses all positional scoring rules immediately im-

plies that there are rules expressible by nrpM that are not positional scoring rules. In fact,

further, it can be the case that the coarsest basis for a family can express rules not in the

family. For variable electorates this is the case for ∼scor.

We define lexicographic plurality

flex : D → 2A\{ /0} by flex(PPP) = argleximaxa [nrM(PPP)]a

where by [M]a we mean the vector that is the column indexed by a, and by leximax we mean

the ordering > on vectors xxx,yyy such that xxx > yyy iff there is i ∈ N such that xi > yi and for all

j < i, x j = y j.



74 Maximally decisive social choice

On variable electorates this is not equivalent to any individual positional scoring rule. On the

other hand, for any fixed electorate there is obviously an equivalent scoring rule with vector

(1/|N|,1/|N|2,1/|N|3, . . .). To see that lexicographic plurality, flex, is expressible by scoring rule

information, we precisely need to show that for any two profiles that are distinguished by flex

there is some scoring rule that distinguishes them. These profiles may have different sized

electorates N and N′, without loss of generality suppose N ≥ N′. Then the scoring rule with

vector (1/|N|,1/|N|2,1/|N|3, . . .) distinguishes the two profiles as required.

Here is a summary of the bases that we have seen in this section.

Basis Notes

C1 Tournament information, majorities.

C2 Pairwise counts, how often an alternative is preferred to its pair.

symC2 Symmetric pairwise counts, how often an alternative is preferred minus how

often the paired alternative is preferred.

vs Voting situations, anonymous information.

null No information, can only express constant functions.

proj Projections, can express (rank positional) dictatorships.

posM Information contained in a rank matrix, how often each alternative has each rank.

npM Normalised rank matrix, invariant to scaling.

rpM Reduced rank matrix, invariant to summing across any row, effectively changes

count for a given rank for every alternative.

nrpM Normalised and reduced rank matrix.

scor Precisely the information need to express all scoring rules and no more.

In the following section we go on to define maximal decisiveness with respect to these.

3.2 Maximally decisive rules with respect to bases

An informational basis determines sets of profiles that must return the same outcomes.

Whether or not a rule returns the smallest sets of alternatives possible, i.e. whether or not

a rule is maximally decisiveness, is a question that concerns profiles that remain in the same

set when alternatives are permuted.

Definition 3.19. A social choice function f is maximally decisive for a basis ∼ if for any

profile RRR such that a,b ∈ f (RRR), there is a permutation σ such that σ(a) = b and RRR ∼ σ(RRR).

Note that technically we don’t require that a maximally decisive rule is expressible by the

basis in question. If we need to make it precise that this is the case, we use the following

term.
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Definition 3.20. A social choice function is properly maximally decisive on ∼ if it is max-

imally decisive on ∼ and it is expressible by ∼.

Example 3.21. Constant rules are maximally decisive for and expressible by all bases. A

dictatorship is similarly maximally decisive, but is not expressible by (for example) voting

situations. We can however turn dictatorships into neutral, properly decisive social choice

functions for voting situations.

When dealing with maximal decisiveness, it is often easier to think in terms of the specific

representations of the informational bases in questions, rather than in terms of profiles. This

and various other techniques make it slightly easier to deal with the abstract concept of

maximal decisiveness, we now apply some of these to a specific social choice function:

Borda.

3.2.1 Borda and maximal decisiveness

It is perhaps instructive to see some examples of failures of maximal decisiveness. Our first

example shows that Borda is not maximally decisive for symmetric weighted tournaments

by considering permutations applied to a weighted tournament, rather than to the underlying

profiles.

Example 3.22. Borda is not maximally decisive for symC2. The families of profiles deter-

mined by the weighted graph in Figure 3.3 provides a counterexample.

a

b

c

1

3

1

Figure 3.3: A weighted tournament that shows that Borda is not maximally

decisive for symC2. The output according to Borda is {a,b}. However,

note that if we move a to b’s position in the graph, then a ends up with

different edges. This implies that for any profile P that maps to this weighted

tournament, if we permute a to b in the profile, then the resulting profile will

map to a different weighted tournament.

Our second example shows that Borda is not maximally decisive for the positional scoring

rule basis because there is a neutral rule that is more decisive than Borda on some specific

profile.

Example 3.23. Borda is not maximally decisive for scoring vector information (i.e. ∼scor).

Consider, for example, the equivalence class of profiles that contain the following profile.
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1 2

a c

b b

c a

Table 3.5: A profile that shows that Borda is not maximally decisive for

scoring vector information. Here the Borda output is {a,b,c}. However

there are clearly other scoring rules that select only b: as these rules are

neutral, this suffices to show that Borda is not maximally decisive.

We tried to choose the coarsest possible bases in the above examples because this gives the

strongest results. This can be seen by the contraposition of the following.

Observation 3.24. If a function f is maximally decisive for a basis ∼ then it is also maximally

decisive for all coarsenings ∼ ′ of ∼.

However, it is the case that Borda is maximally decisive for some bases: in particular the

basis that is trivially defined in terms of the rule. As well as this rather trivial case, Borda is

also maximally decisive for other, more interesting, bases.

Proposition 3.25. Borda is properly maximally decisive for the meet of symmetric weighted

tournament information and scaled positional information: that is, Borda is properly maxi-

mally decisive for symC2∧npM.

Proof. The “properly” part is due to the the fact that Borda is expressible by symC and by

npM, thus, in line with Observation 3.18, Borda is expressible by symC2∧npM.

For maximal decisiveness, take an arbitrary profile PPP for which Borda outputs both a and b.

Suppose also that |A| ≥ 4; for fewer alternatives the proof is simpler. As a general overview

of the strategy, we add agents to the profile in order to create a profile in the same equivalence

class for which a and b have the same weighted majorities, i.e. W (PPP)(a,b) =W (PPP)(b,a) and

for all x ∈ A\{a,b}, W (PPP)(a,x) = W (PPP)(b,x). The permutation that switches a and b and

leaves the other alternatives fixed fulfils the condition of Definition 3.19. In particular, we

will add four agents of PPP7 displayed in Table 3.7, which is constructed from PPP6 displayed in

Table 3.6.

PPP6

1 2 3 4

a d b c

b c a d

xxx xxx′ xxx xxx′

c b d a

d a c b

Table 3.6: A profile whose symmetric weighted tournament only contains

zeros. Here xxx refers to an arbitrarily ordered vector containing all the re-

maining alternatives, and xxx′ is the inverse of xxx. The symmetric weighted

tournament of this profile contains only zeros for weights because agents 1

and 2, and also agents 3 and 4, have inverse rankings.

We now permute a and c for agents 2 and 3. This results in the following profile.



3.2 77

PPP7

1 2 3 4

a d b c

b a c d

xxx xxx′ xxx xxx′

c b d a

d c a b

Table 3.7: A profile whose scaled positional

matrix is the same as the profile in Table 3.6.

Only candidates a and b have changed rank-

ing in this profile. The weighted tournament

of this profile does not contain only zeros: see

the partial weighted tournament to the right.

a

b

c

d

2

22

2

0
0

We can assume that the weighted majorities in PPP are of even parity, if not, double the profile

so that this is the case (by npM the doubled profile is in the same equivalence class). Assume,

without loss of generality, that in PPP alternative b has a weak pairwise majority over a. If this

majority is strict, add as many copies of PPP7 as required so that neither a nor b has a strict

pairwise majority over each other. This profile is in the same equivalence class as PPP, via the

profile where copies of PPP6 are added instead. Note furthermore that a and b have the same

Borda scores as each other in this profile. Let us call this resultant profile PPP′.

The end of the proof involves a similar addition of agents to ensure that a and b have the

same pairwise majority over every other alternative x 6= a,b.

Write X = A\{a,b}, and consider the vector vvv ∈ ZX defined by vx = W PPP′(a,x)−W PPP′(b,x).

If vvv = (0, . . . ,0), we are done. Otherwise, consider x such that the absolute value |vx| is

maximal. Suppose also that vx is positive—the negative case is symmetric. There must be

some y ∈ X such that vy is negative, because otherwise a and b would have different Borda

scores. We now add a permuted version of PPP7 that has the (partial) weighted tournament

displayed in Figure 3.4 to the profile.

a

y

b

x

2

22

2

0
0

Figure 3.4: A (partial) weighted tournament. As for the profile in Ta-

ble 3.7, a profile that induces this weighted tournament be constructed

so that it has the same positional matrix as the profile displayed in Ta-

ble 3.6, thus this constructed profile belongs to the same informational

class.

This creates a profile PPP′′—in which neither a nor b dominates the each other—and a corre-

sponding vector vvv′ defined by v′x = W PPP′′(a,x)−W PPP′′(b,x). Note that if we order vvv and vvv′

decreasingly, the second ordered vector is lexicographically smaller than the first, because

we are dealing with finite numbers, repeating this procedure will eventually end up with a

vector that contains only zeros as required.

This result is perhaps not too surprising given known characterisations of Borda in terms of

conditions that are quite similar to the informational restrictions imposed by the basis. Our
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proposition itself, however, is not quite a characterisation: the rule that outputs the Borda

loser, for example, is also maximally decisive for the basis in question. Although there are

various other violations of the Pareto criterion possible here, at least maximal decisiveness

rules out the constant rule that always outputs all alternatives.

Note that in the above proposition we used symmetric weighted tournaments and scaled

positional matrices. Both of these informational classes form bridges between electorates of

variable sizes, and it may be wondered if we get the same results with a refinement that only

uses one or the other of these bridges. We cannot, for instance, do without the “symmetric”

part: see Table 3.8.

1 2 3

a a b

b b c

c c a

Table 3.8: A profile that demonstrates that Borda is not maximally

decisive for C2∧npM. For this profile, Borda outputs {a,b}. However,

the only profiles in the same equivalence class are scalings. For these,

there is no permutation between a and b.

Borda is not maximally decisive for scoring information. However, there is an obvious way

to make it more decisive, using a ranking version of lexicographic plurality.

Observation 3.26. Borda refined by a social welfare version of lexicographic plurality is

properly maximally decisive for full positional information.

One may wonder if we can create a similar maximally decisive refinement of Borda for

weighted tournament information. We do not know of any natural maximally decisive rules

for symC2 information, let only ones that can furthermore be generalised to social welfare

functions.

3.2.2 Finding maximally decisive rules

We now turn attention from a specific rule to specific bases, and ask if we can say anything

about maximally decisive rules with respect to a basis. For many bases, it is difficult to even

describe proper maximally decisive rules.11

With respect to C1 information, it is not only the case that none of the common tournament

solutions are not maximally decisive, but furthermore it is difficult to even come up with a

description of a maximally decisive rule. The problem can be demonstrated by the tourna-

ment in Figure 3.5. The details of the construction do not interest us too much here, suffice

it to say that almost all tournament solutions described in the literature can be shown to be

non-maximally decisive using this tournament.

11Of course, proper maximally decisive rules certainly exist, in an abstract sense, for every basis.
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a1

b1

c1

a2

b2

c2

a3

b3

c3

Figure 3.5: An almost symmetric tournament—undrawn arrows go down. The faded picture in the

background displays the general shape of the tournament, with the asymmetry in red. This tournament

contains nine alternatives xi for x ∈ {a,b,c} and i ∈ {1,2,3}. For each i ∈ {1,2,3}, there is a cycle

between the triple of alternatives ai, bi and ci. For i∈ {1,2} the cycles are ai→ bi→ ci→ ai, whereas

the cycle for i = 3 is inverted, c3 → b3 → a3 → c3. The other relations are symmetric, and are defined

as follows: for the pairs (i, j) ∈ {(1,2),(2,3),(3,1)}, we have xi → x j for x ∈ {a,b,c} and x j → yi

for x 6= y. Due to the fact that the cycle through a3, b3 and c3 goes in the opposite direction to the

other triples, these three elements can be distinguished from the other triples, and it follows that the

other two triples can also be distinguished from each other. However, it is difficult to describe a rule

that selects only one of a1, a2 and a3, let alone to imagine a principled reason for selecting one and

not the others.
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An exception to this are the argmax rules of Chapter 2, which do tend to select a proper

subset from this tournament. However, these do not form a consensus: the different rules

disagree on which alternatives should be chosen.12 Other profiles also show that even these

rules are not maximally decisive, with the possible exception of argmax applied to the simple

tree.

For the simpler bases, it is possible to characterise the proper maximally decisive rules in a

more informative manner than this. For trivial information, the maximally decisive rules are

precisely those constant rules that return singletons. Thus these rules are resolute.

Observation 3.27. Under the trivial basis, the only maximally decisive rules are constant

singleton rules.

Similarly, any maximally decisive rule for single agent information must be resolute.

Observation 3.28. Under proji information, there is one maximally decisive rule for each

function of the form g : L∗(A)→ A, and this is defined by g◦proji. Conversely, every maxi-

mally decisive rule under proji information corresponds to some function g◦proji.

3.3 Final remarks on maximally decisive social choice

In this chapter we have introduced a new way of analysing whether or not a social choice

function selects as small sets as possible. This notion, that we call maximal decisiveness,

is intertwined the notion of what information is taken as relevant to the choice. With more

information, one can expect a social choice function to select smaller sets. This allows us

to define our concept of maximally decisiveness in such a way that does not conflict with

anonymity and neutrality.

Anonymity is taken as only one type of informational constraint on social choice functions.

In Section 3.1 we defined a general framework for the information used by functions, what

we call the informational basis of a function. Within this framework we looked at known

informational restrictions, C1 and C2 information, and defined our own versions of vari-

ous positional information environments. Such informational restrictions really amount to

equivalence classes; each equivalence class on the space of profiles determines a family of

rules that can be expressed using the information expressed by that equivalence class. In the

other direction, an informational basis can be determine in terms of a family of social choice

functions.

12Argmax Banks returns six of the nine. With the simple tree and for iterative Condorcet, only three are

returned, each a different subset of the six returned by argmax Banks. Argmax applied to the fair tree returns

the three alternatives not returned by argmax Banks.
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Full information, can express
any social choice function

Anonymous information

C1, tournaments

C2, weighted tournaments

symC2, symmetric weighted
tournaments

symC2∧ rnpM, can express
Borda

symC2∧npM, Borda maxi-
mally decisive

Trivial, singleton constant
functions maximally decisive

Full positional, lexicographic
plurality maximally decisive

Reduced positional rpM, e.g.
near plurality

Scaled positional npM, e.g.
median

Reduced and scaled positional
rnpM

Dictatorial, for each i ∈ N, dic-
tatorships and reverse dictator-
ships maximally decisive

Figure 3.6: Informational bases ordered in terms of refinement. A line connects a higher basis with

a lower basis if the higher basis refines the lower. For some bases, the social choice functions that it

can express, or those functions which are maximally decisive for it are written.

In Section 3.2 we define the formal notion of maximally decisiveness. We investigated the

Borda choice rule with respect to this concept, but in general we do not know too much about

this concept. It seems to be easiest to consider positional-type methods using this concept.

For other natural informational bases, such as those described by C1 and C2 information,

maximal decisiveness seems to be an unreasonably strong condition to impose. Further

investigation seems to be merited.

Figure 3.6 displays a number of different bases, ordered by refinement. Some examples of
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maximally decisive rules are also displayed.

We can place the work in this chapter firmly in the Arrovian tradition of supposing that strict

linear order preferences are the underlying objects of social choice. We do not admit other

types of basic information, such as approval ballots. Some of these other possible options

are considered in Chapter 5. Nor do we consider adding extra information, for example in

the form of interpersonal comparisons—there is a long tradition of such a move in social

choice theory. We go in the opposite direction, with a focus on neutrality as the basis of a

rule: all alternatives should be treated equally. This in effect takes the place of independence

conditions.

The work in this chapter can be contrasted with work considering how much information

needs to be elicited from agents in order to compute the outcome of a social choice proce-

dure. At a purely practical level, Conitzer and Sandholm (2005) determines the communi-

cation complexity of a number of social choice procedures: the (worst-case) number of bits

required to be elicited from the agents in order to calculate the output of the procedure. On

a more theoretical level Sato (2009; 2016) considers a measure of information based upon

the message spaces for individual agents. Our measure of information is more holistic; it

takes whole profiles into account, as opposed to looking at information from an agent-wise

perspective.

Our notion has more similarity to another practical notion from the computational social

choice literature: the compilation complexity of a social choice procedure. Defined by

Chevaleyre et al. (2009), this determines how much space is required to store a partial pro-

file, given that we will want to be able to calculate the outcome of a specific procedure when

given the remainder of the profile. Our notion of the coarsest informational basis for a given

family is similar: how much space is required to store a complete profile, given that we will

want to be able to calculate the outcome when given any one of a family of procedures.

Xia and Conitzer (2010) give the compilation complexity for many common social choice

procedures.

However, our notion is more theoretical than practical. Let us look at things from an opposite

point of view: indecisiveness may be informative. If for a particular profile there seems to be

no reason to select one alternative over another, we may be able to infer something about the

structure of this profile that makes this the case. This may help us to identify other profiles

where this is less obviously the case, but where nonetheless two alternatives should only be

selected together. Even more generally, this may help us to determine the underlying reasons

why one alternative is chosen instead of another.
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Domain restrictions and independence of

irrelevant alternatives

The work in this chapter concerns two types of informational restrictions in the traditional

social choice theoretic setting where a profile of complete preorders is aggregated into a

single complete preorder.1 The first of these supposes that some profiles are not possible: it

thus involves a domain restriction of a social welfare function. Such domain restrictions

are often studied in social choice theory; in particular they are often observed to mitigate the

negative conclusions of impossibility results. Perhaps the most celebrated example of this

is that of the single-peaked domain, but many other examples exist. Gaertner (2001; 2002)

provides surveys of the social choice theoretic literature on domain restrictions.

Instead of a global look at what information is used by a rule or a family of rules, we are

concerned with how much information from a single profile is required to calculate part of

the output of a social welfare function. It may be seen as desirable that only local information

is required to calculate parts of the output. Independence properties ensure this by requiring

that whenever individuals’ preferences over a given set of alternatives remain the same, then

so should the social preference.

Independence of irrelevant alternatives (IIA) is such an independence property. It is the

central property of Arrow’s (1950) celebrated impossibility. Arrow’s original formulation

requires independence over every subset of alternatives. However, there is an alternative

formulation which requires independence only for subsets of cardinality two. Although this

formulation is superficially weaker, it is straightforward to observe that independence over

pairs implies independence over any set, and thus that the two formulations are equivalent.

Blau (1971) showed that independence over larger subsets implies independence over smaller

subsets. Thus we observe what we call the Blau equivalence: roughly expressed, this states

that all versions of independence have the same strength. The Blau equivalence implies that

Arrow’s result cannot be escaped by weakening independence to subsets of some fixed car-

dinality greater than two. In turn we call this stronger version of Arrow’s result the Blau

impossibility.

The Blau equivalence rests upon the assumption that the domain is complete. In this chap-

1 The work in this chapter is based upon Kruger and Sanver (2018).
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ter we consider the effects of imposing domain restrictions, and delineate when the Blau

equivalence does and doesn’t hold.

One set of motivations behind independence properties concerns the impracticality of de-

termining or using complete profiles of preferences over anything more than a small set of

alternatives. Grouped here are concerns about the cognitive burden on agents required to

rank too many alternatives, the communication complexity and perhaps computation com-

plexity involved with large profiles, and, even more fundamentally, the fact that in some

situations one may not even know the full range of possible alternatives. Another motivation

is more ideological: one may claim that the ranking over a given set of alternatives should

be independent of some other alternatives because these other alternatives are irrelevant, and

attempting to use them, as Borda scoring does, to give a pseudo-utility is wrong-headed.

Our results in this chapter are probably of more interest to someone who is in favour of in-

dependence for practical reasons: we show that, for some domain restrictions, one may be

able to escape impossibility results by using weaker forms of independence, which may still

overcome the practical concerns.

Section 4.1 presents the setting formally, including a formal definition of the condition re-

quiring that independence over sets of cardinality k is satisfied. Section 4.2 shows that un-

der restricted domains, unlike under the full domain, increasing k may effectively weaken

independence—hence the Blau equivalence may fail. Section 4.3 characterises the domains

for which nominally different versions of independence have effectively different strengths,

thus also effectively providing a characterisation for the Blau equivalence. In Section 4.4

we develop the idea of what we call the Blau partition of a domain. We show that there

are many possible such partitions; thus that the Blau equivalence can fail in many different

ways. We construct a particular domain in Section 4.5, making sure during its construc-

tion that it is subject to Arrow’s impossibility. We define a social welfare function on this

domain that satisfies a weaker version of independence alongside Arrow’s other properties.

This verifies that on some domains it is possible to escape Arrow’s result through weakening

independence. Section 4.6 makes some final remarks.

4.1 Definitions

In this chapter we consider social welfare functions with restricted domains: functions

F : DN →W(A) for some D ⊆W(A). We use F∗(RRR) to denote the strict component of F(RRR).

Given a set X ⊆ A, the restriction of a preference R to X is R ↾X= {(x,y) ∈ R : x,y ∈ X}. We

use similar notation to apply restrictions to domains (sets of preferences) and preference

profiles. Formally, for X ⊆ A, D ⊆ W(A) and RRR ∈ DN we write D|X = {R ↾X : R ∈ D} and

RRR|X = (Ri|X)i∈N .
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We say two preferences R and R′ coincide X if R ↾X= R′ ↾X Similarly, preference profiles,

and domains, coincide on X iff their restrictions to X are identical. A preference R over X

extend a preference R′ over Y ⊆ X if these coincide on Y .

Most of this chapter is concerned with general properties of social welfare functions. The

following are well-known examples of such properties. A social welfare function F is dic-

tatorial if there is some i ∈ N such that xR∗
iy implies x[F∗(RRR)]y. A social welfare function

F satisfies the Pareto criterion if xR∗
iy,∀i ∈ N implies x[F∗(RRR)]y. These two properties,

alongside independence of irrelevant alternatives which we formally define below, are the

traditional conditions for the impossibility result of Arrow (1950). Along the lines of Blau

(1971), we consider a generalised notion of what it means for a social welfare function

to be “independent”. A social welfare function is k-IND, for an integer 2 ≤ k ≤ m, if for

every X ⊆ A with |X | = k, for any two profiles RRR,RRR′ ∈ DN that coincide on X , we have

F(RRR) ↾X= F(RRR′) ↾X . As discussed in the introduction to this chapter, independence of irrel-

evant alternatives is sometimes expressed as 2-IND and sometimes as the conjunction of all

k-IND for k = 2, . . . ,m; these formulations are equivalent.

4.2 A counterexample on restricted domains

One may question the whether there is any purpose, even at a formal level, in defining k-IND

separately from 2-IND. The fact that independence over smaller sets implies independence

over larger sets seems to have become common knowledge soon after Arrow’s original pre-

sentation of independence of irrelevant alternatives. Further, this “upwards” implication

holds over any domain.

Proposition 4.1. For any social welfare function F over any domain D⊆W(A), if F satisfies

k-IND then it also satisfies l-IND, for any 2 ≤ k < l ≤ m.

Proof. Take two profiles RRR and RRR′ such that RRR|Y = RRR′|Y for some set Y of cardinality l.

We want to show that F(RRR) ↾Y= F(RRR′) ↾Y . For each distinct pair {x,y} ⊂ Y , there is a

set Xxy such that {x,y} ⊆ Xxy ⊂ Y and
∣

∣Xxy

∣

∣ = k. Clearly RRR|Xxy
= RRR′|Xxy

, thus by k-IND

F(RRR) ↾Xxy
= F(RRR′) ↾Xxy

. This implies F(RRR) ↾{x,y}= F(RRR′) ↾{x,y}. As this is the case for every

pair x,y ∈ Y , F(RRR) ↾Y= F(RRR′) ↾Y as required.

This observation dates back to May (1954), though the fact that it applies in all domains is

not explicitly noted.

In 1971 Blau proved the inverse “downwards” implication, thus showing that nominally

weaker versions of independence imply nominally stronger versions. The Blau equivalence

amounts to the combination of the upwards and downwards implications.



86 Domain restrictions and independence of irrelevant alternatives

Theorem 4.2 (Paraphrase of Blau’s (1971) “Theorem 4”). For any social welfare function

F over the full domain D = W(A), if F satisfies l-IND then it also satisfies k-IND, for any

2 ≤ k < l < m.

Proof. It suffices to show that when F satisfies l-IND it satisfies (l − 1)-IND. Take F that

satisfies l-IND. Take two arbitrary profiles, and suppose there is a set X of size l−1 such that

the two profiles coincide on this set. We suppose that the two profiles are identical except

for one voter, they can thus be written (RRR−i,Ri) and (RRR−i,R
′
i). Extending to the case where

multiple voters have different preferences only involves iteration of this case. Consider two

alternatives x,y ∈ A such that x 6= y, x 6∈ X and y 6∈ X (these exist as |X | ≤ m− 2). Take

a preference R′′ ∈ W(A) such that this extend both Ri ↾X∪{x} and R′
i ↾X∪{y}. Equivalently,

R′′ ↾X∪{x}= Ri ↾X∪{x} and R′′ ↾X∪{y}= R′
i ↾X∪{y}. There may be multiple possible R′′

i s, but

there is always at least one. Now by l-IND we have F(RRR,Ri) ↾X∪{x}= F(RRR,R′′) ↾X∪{x} and

F(RRR,R′′) ↾X∪{y}= F(RRR,R′
i) ↾X∪{y}. Thus F(RRR,Ri) ↾X= F(RRR,R′′) ↾X= F(RRR,R′

i) ↾X .

However, Blau’s proof for the downward direction uses two conditions not present for the

upward direction: first, it supposes the full domain; and second it requires a strict inequality

l <m. The second of these two is necessary because m-IND is trivially satisfied by any social

welfare function. We will be more interested in what happens when we relax the assumption

of a full domain, which is used by Blau in the following manner: Blau’s proof takes two

preferences and “connects” them through a third. This third preference is guaranteed to exist

on the full domain. When we consider restricted domains, this is no longer always the case.

In fact in the following domain this third “connecting” preference never exists, for l = 3.

Example 4.3. Fix m = 4. Let D be the domain containing the six linear orders displayed

in Table 4.1. Every preference in this domain is a linear order. Further, every triple has six

different possible orderings:

∀x,y,z ∈ A such that x, y, and z are distinct,
∣

∣D|{x,y,z}

∣

∣= 6.

Thus in a setting where preferences are restricted to linear orders, all triples are free.2 A result

established by Blau (1957) states that if all triples are free Arrow’s impossibility holds. Thus

any social welfare function on this domain that satisfies 2-IND and the Pareto criterion is

dictatorial.

Note that given any linear order over three alternatives, only one preference in D extends

this linear order. No preference in the domain extends a non-linear complete preorder of

three alternatives. That is to say, for X ⊂ A with |X | = 3 and R,R′ ∈ D, if R ↾X= R′ ↾X

then R = R′. This implies that any social welfare function over this domain satisfies 3-IND

2 Here “triple” means a subset of alternatives of size three. A triple is free if every possible ordering over

this triple exists within the domain.
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Table 4.1: A domain for which every triple is free. This means the Arrow’s result applies to this

domain; however, the result no longer holds on this domain if we weaken the independence axiom.

RI RII RIII RIV RV RVI

a2 a3 a3 a2 a1 a4

a1 a1 a4 a4 a4 a1

a3 a2 a2 a3 a2 a3

a4 a4 a1 a1 a3 a2

trivially. For example, ranking by Borda scores provides a non-dictatorial social welfare

function that satisfies the Pareto criterion. By the above paragraph this cannot satisfy 2-IND;

more generally this shows that 3-IND does not imply 2-IND.

The above example implies that k-IND and l-IND for k 6= l need not be equivalent. In the

next section we first consider k-IND for some fixed value of k, before returning to the issue

of comparing k-IND to l-IND for k 6= l.

4.3 The Blau equivalence: when are different versions of

independence equivalent?

Given a particular social welfare function defined on a particular domain, k-IND may or may

not be satisfied. In this section we give a necessary and sufficient condition for this property.

This will allow us to determine the domains for which k-IND implies l-IND, for arbitrary

values of k and l. This generalises the question as posed by Blau, who showed that on the full

domain, if a social welfare function satisfies k-IND then it also satisfies l-IND for k, l < m.

We have already seen in Section 4.2 that there are domains where this general result does not

hold. This section will allow us to determine when it does.

Definition 4.4. For a domain D, integer k ∈ {2, . . . ,m} and two alternatives x,y ∈ A, two

preferences R,R′ ∈ D are (k,x,y)-adjacent if there is a set X ⊆ A such that |X |= k, {x,y}⊆ X

and R ↾X= R′ ↾X .

Figure 4.1 displays some examples of adjacency on a domain that we will return to later in

the chapter.

Just considering adjacency does not suffice; recall that Blau’s method uses a third profile to

“connect” two profiles that are not directly adjacent. For domains that are proper subsets of

the full domain, it may be necessary to use even more profiles to form this connection.
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Rp1

Rp2

Rp3

Rp4
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Rp6

Rp7

Rp8

(4,a1,a2)-adjacency

Rp1

Rp2

Rp3

Rp4

Rp5

Rp6

Rp7

Rp8

(4,a3,a5)-adjacency

Rp1

Rp2

Rp3

Rp4

Rp5

Rp6

Rp7

Rp8

(3,a1,a2)-adjacency

Rp1

Rp2

Rp3

Rp4

Rp5

Rp6

Rp7

Rp8

(3,a3,a5)-adjacency

Rp1

Rp2

Rp3

Rp4

Rp5

Rp6

Rp7

Rp8

(2,a1,a2)-adjacency

Rp1

Rp2

Rp3

Rp4

Rp5

Rp6

Rp7

Rp8

(2,a3,a5)-adjacency

Rp1 Rp2 Rp3 Rp4 Rp5 Rp6 Rp7 Rp8

a1 a2 a2 a3 a3 a4 a4 a5

a2 a1 a3 a2 a4 a3 a5 a4

a3 a3 a1 a4 a2 a5 a3 a3

a4 a4 a4 a1 a5 a2 a2 a2

a5 a5 a5 a5 a1 a1 a1 a1

Figure 4.1: Graphs displaying (k,x,y)-adjacency for some example values on the single-peaked

domain of Table 4.2 (which is also displayed above). Note that for (x,y) = (a1,a2) or (x,y) = (a3,a5),

(2,x,y)-reachability is the same as (3,x,y)-reachability but not (4,x,y)-reachability.
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Definition 4.5. For a domain D, integer k = 2, . . . ,m and two alternatives x,y∈A, two prefer-

ences R,R′ ∈D are (k,x,y)-reachable iff there is a sequence of preferences R= S0,S1, . . . ,St =

R′ such that Ss and Ss+1 are (k,x,y)-adjacent. If R,R′ ∈ D are (k,x,y)-reachable we write

R ≃ k
xyR′.

Remark 4.6. For all k ∈ {2, . . . ,m} and x,y ∈ A, the relation ≃ k
xy is an equivalence relation

on D. Note that if k < l then the relation ≃ l
xy refines ≃ k

xy.

In particular, the equivalence classes of ≃ m
xy are as refined as possible: they are precisely the

singleton subsets of D.

Lemma 4.7. A social welfare function F on D satisfies k-IND if for any pair of alternatives

x,y ∈ A and for any agent i and pair of profiles RRR and (RRR−i,R
′
i), if Ri and R′

i are (k,x,y)-

reachable then F(RRR) ↾{x,y}= f (RRR−i,R
′
i) ↾{x,y}.

Proof. (If.) Take a social welfare function F and suppose that the right hand side of the iff

holds. Take X such that |X | = k and RRR,RRR′ ∈ D such that RRR|X = RRR′|X . Now, for all i ∈ N,

we have Ri ↾X= R′
i ↾X ; thus for all {x,y} ⊆ X , for all i ∈ N, Ri,R

′
i are (k,x,y)-adjacent,

thus (k,x,y)-reachable. Thus by the right hand side of the iff, for all {x,y} ⊆ X we have

F(RRR) ↾{x,y}= F(RRR′) ↾{x,y}, so clearly F(RRR) ↾X= F(RRR′) ↾X as required.

(Only if.) Suppose that k-IND is satisfied. Suppose Ri,R
′
i are (k,x,y)-reachable. Thus there

is a list Ri = S0,S1, . . . ,St = R′
i with each Si ∈ D such that for each s < t, there is a Xs ⊇ {x,y}

with |Xs| = k and Ss|Xs
= Ss+1|Xs

. Thus by k-IND F(RRR−i,Ss) ↾Xs
= F(RRR−i,Ss+1) ↾Xs

, so in

particular F(RRR−i,Ss) ↾{x,y}= F(RRR−i,Ss+1) ↾{x,y}. Thus

F(RRR) ↾{x,y} = F(RRR−i,S1)|{x,y} = · · · = F(RRR−i,R
′)|{x,y}

as required.

This characterisation will allow us to determine when different versions of independence

imply each other. Let us formally define this generalised concept.

Definition 4.8. For 2 ≤ k, l ≤ m, a domain D is (k, l)-equivalent iff (any social welfare func-

tion on D is k-IND iff it is l-IND).

The main result of this section provides a necessary and sufficient condition on domains that

determines when (k, l)-equivalence holds.

Theorem 4.9. A domain D is (k, l)-equivalent iff for all x,y ∈ A, ≃ k
xy =≃ l

xy.

Proof. (If.) Suppose F satisfies l-IND, and suppose the right hand side of Theorem 4.9

holds. We want to show that F also satisfies k-IND: take arbitrary x,y ∈ A, agent i ∈ N and

pair of profiles RRR and (RRR−i,R
′
i) such that Ri,R

′
i are (k,x,y)-reachable. By the right hand side
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of Theorem 4.9, these are also (l,x,y)-reachable. Thus as F satisfies l-IND, by the only if

direction of Lemma 4.7 we have F(RRR) ↾{x,y}= F(RRR−i,R
′
i) ↾{x,y} as required.

(Only if.) If k = l this is trivially satisfied, so assume k < l. We proceed by contraposition:

suppose the negation of the right hand side of Theorem 4.9. To accord with Remark 4.6,

≃ l
xy must properly refine ≃ k

xy. Thus there are alternatives x,y ∈ A, agent i ∈ N, and S,S′ ∈ D

such that S ≃ k
xyS′ but not S ≃ l

xyS′. We construct an F that satisfies l-IND but violates k-IND.

First, let S = {R ∈ D : R ≃ k
xyS} and S ′ = D\S . Define F such that it

1) returns some fixed ordering over all pairs {z,w} where z,w 6= x,y,

2) sets x[F(RRR)]z and y[F(RRR)]z for all z 6= x, and

3) returns x[F(RRR)]y iff ∀i ∈ N, Ri ∈ S .

We claim that F satisfies l-IND but not k-IND. First let us demonstrate the violation of

k-IND: for RRR where ∀i ∈ N, Ri = S, F(RRR) ↾{x,y} 6= F(RRR−1,S
′)|{x,y} but S,S′ are (k,x,y)-

reachable. Now we show the satisfaction of l-IND. First note for all pairs except {x,y},

F returns the same ordering over these pairs, thus the condition of Lemma 4.7 is trivially

satisfied. It remains to check for the pair {x,y}. Take an arbitrary agent i and pair of profiles

RRR and (RRR−i,R
′
i) such that Ri and R′

i are (k,x,y)-reachable. If for all j ∈ N, R j ∈ S , then as

Ri ∈ S and Ri ≃
k
xyR′

i we also have R′
i ∈ S , thus F(RRR) ↾{x,y}= F(RRR−i,R

′
i) ↾{x,y}. So suppose

for some j ∈ N, R j /∈S . If j 6= i then we still have R j /∈S within (RRR−i,R
′
i), whereas if j = i

then R′
i /∈ S , thus F(RRR) ↾{x,y}= F(RRR−i,R

′
i) ↾{x,y}.

4.4 Violating the Blau equivalence: what Blau partitions

are possible?

As the name suggests, for a given domain D, (k, l)-equivalence is an equivalence relation

on the integers {2, . . . ,m}. Given that we can determine when the different versions of

independence imply one another, we now ask: what is the structure of these implications for

a given domain?

Definition 4.10. For a given domain, the Blau partition is the partition of {2, . . . ,m} deter-

mined by (k, l)-equivalence. That is, given a domain D, integers k and l with k < l are in the

same equivalence class of the Blau partition iff D is (k, l)-equivalent.

Definition 4.11. For p,q ∈ N, an integer interval is a set {x ∈ N : p ≤ x ≤ q}. An interval

partition is a partition whose equivalence classes are all integer intervals.

We use the following notation for integer intervals and interval partitions. An interval parti-

tion of {2, . . . ,m} can be concisely expressed by the maxima of the members of its equiva-
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lence classes. So instead of writing the full interval partition

{{2, . . . ,q1},{q1 +1, . . . ,q2}, . . . ,{qt−1 +1, . . . ,qt}}

where q1 < q2 < · · ·< qt = m, we write Jq1,q2, . . . ,qt K.

We now show that Blau partitions do not contain any gaps, and thus must be composed of

intervals.

Proposition 4.12. Every Blau partition is an interval partition.

Proof. Suppose that we have (k, l)-equivalence. Take p such that k < p < l. It suffices to

show that we have (k, p)-equivalence. By Proposition 4.1, if a social welfare function is

k-IND, then it is p-IND. Similarly, if the social welfare function is p-IND it is also l-IND,

thus by (k, l)-equivalence it is k-IND as required.

For example, the Blau partition under the full domain is Jm−1,mK. The Blau partition under

the domain of Example 4.3 is J2,4K.

Remark 4.13. A domain satisfies the Blau equivalence if and only if it has Blau parti-

tion Jm−1,mK.

One way of violating the Blau equivalence is if the Blau partition only contains a single

equivalence class. This only occurs for extremely restricted domains.

Proposition 4.14. The Blau partition contains one equivalence class if and only if D ⊆

{R,Rrev} for some linear order R, where xRrevy if and only if yRx.

Proof. (If.) For any social welfare function, the property of k-IND is trivially satisfied for

all k = 2, . . . ,m.

(Only if.) Contraposition: there must be R,R′ ∈ D such that R ↾{x,y}= R′ ↾{x,y} for some

x,y. We describe a social welfare function F that satisfies m-IND but not 2-IND. Indeed,

as m-IND is trivially satisfied for any social welfare function, setting xF(RRR)y if and only

if no agents in RRR have the preference R suffices (arbitrarily fix the ordering over the other

alternatives).

Of course, more interesting violations are also possible. We show in the next theorem that

any interval partition that contains m as a singleton is the Blau partition under some domain.

Indeed, for an arbitrary such interval partition we provide an explicit construction of the

required domain.

Theorem 4.15. For any interval partition of {2, . . . ,m} which contains {m} as an equiva-

lence class, there is a domain D such that the Blau partition under this domain is this interval

partition.
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Proof. We use some additional notation. Recall we label the alternatives a1, . . . , am. Let R↓

be the linear order over A such that aiRa j iff i < j. Write R↓k for the ordering that has aiR
∗a j

for i < j, i 6= k, j 6= k and aiR
∗ak for all i 6= k. Informally, R↓k starts with R↓ and sends the

kth element to the bottom, thus R↓ = R↓m.

Take a set {q1, . . . ,qk} = K ⊆ {2, . . . ,m}. Let D′ = {R↓k : k ∈ K}. We will show that the

Blau partition of the domain D′ is Jq1, . . . ,qk K if m−1,m ∈ K. By transitivity, it suffices to

show that

1) if k ∈ K, then (k,k+1)-equivalence does not hold, and

2) if k 6∈ K, then (k,k+1)-equivalence holds.

We show these one after the other.

1) Here R↓k ∈ D′. Consider a1R∗a2 . . .Pak ∈W({a1, . . . ,ak}). Both R↓ and R↓k are exten-

sions of this within D′, which implies that R↓ ≃ l
a1al

R↓k. Now, all preferences R′ 6= R↓k

in the domain have akR′ai for the m− k alternatives ai where i > k. This implies that

no linear order in the domain coincides with R↓k on a superset of {ak−1,ak} of size

k+ 1. This implies that R↓ 6≃ k+1
a1ak

R↓k. As ≃ k
a1ak

6= ≃ k+1
a1ak

, by Theorem 4.9 we do not

have (k,k+1)-equivalence.

2) Here R↓k 6∈ D′. We first show the following lemma.

Lemma 4.16. Take integers k′,k′′ such that 2 ≤ k′ < k′′ ≤ m. Suppose for any S,S′ ∈ D

and set X ⊂ A such that S ↾X= S′ ↾X and |X |= k′, there are Y,Y ′ ⊃ X and S′′ ∈ D such

that S ↾Y= S′′ ↾Y , S′′ ↾Y ′= S′ ↾Y ′ and |Y |= |Y ′|= k′′. Then we have (k′,k′′)-equivalence.

Proof of Lemma 4.16. To see this, take arbitrary {x,y} ⊂ A and R,R′ ∈ D such that

R ≃ k′

xyR′. We want to show that R ≃ k′′

xyR′. So, suppose there is a list R = S1,S2, . . .St =

R′ such that for each i = 1, . . . , t −1 there is a set Xi ⊃ {x,y}, with |Xi|= k′, and such

that Si|Xi
= Si+1|Xi

. We want to find a list R = S′1,S
′
2, . . .S

′
t ′ = R′ such that for each

i = 1, . . . , t ′− 1 there is a set Yi ⊃ {x,y}, with |Yi| = k′′, and such that S′i|Yi
= S′i+1|Yi

.

We expand the first list, adding in a single new linear order between each adjacent

pair. First, for 1 ≤ i ≤ t, set Si = S′2i−1, with in particular St = S′2t−1 = S′t ′ . Then, for

1 ≤ i < t, take the two linear orders required by the condition as S = Si and S′ = Si+1,

and define each S′2i = S′′. �

We now show that the condition of Lemma 4.16 is satisfied for k′ = k and k′′ = k+1.

Consider an arbitrary set X = {as1 , . . . ,ask
}, with si > s j if i > j and |X | = k, and an

arbitrary ordering S over this set.

Suppose S 6= R↓ ↾X , then there is at most one extension of S in D∗, so there is nothing

to prove. So suppose S = R↓ ↾X , and consider R and R′ in the domain that extend S.

Note these must be of the form R↓p and R↓q for p,q 6= s1,s2, . . . ,sk−1, as otherwise

S 6= R↓ ↾X . Without loss of generality suppose p < q.

Case 1. If p,q 6= sk, R↓p ↾X∪{q}= R↓ ↾X∪{q} and R↓q ↾X∪{p}= R↓ ↾X∪{p} as required.
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Case 2. Suppose p = sk.

Subcase a. Suppose sk < m. Then there is r 6∈ K such that r > sk. As sk > k,

there is some r′ 6∈ K such that r′ < sk. We have R↓p|X∪{r′} = R↓ ↾X∪{r′} and

R↓q ↾X∪{r}= R↓ ↾X∪{r} as required.

Subcase b. Suppose sk = m. As m−1,m ∈ K, k < m−1, thus there are distinct

r,r′ 6∈ K such that r,r′ < sk . Without loss of generality suppose r 6= p and

r′ 6= q, we then have R↓p ↾X∪{r}= R↓ ↾X∪{r} and R↓q ↾X∪{r′}= R↓ ↾X∪{r′} as

required.

4.5 Blau’s impossibility: do k-IND social welfare functions

exist on Arrovian domains?

We now have a better idea of when l-IND implies k-IND for l > k. The fact that for some do-

mains the Blau equivalence fails opens up the possibility that on a domain where the Arrovian

impossibility holds, i.e. a domain where 2-IND and the Pareto criterion imply dictatoriality,

we may nonetheless have a social welfare function that satisfies k-IND, the Pareto criterion

and non-dictatoriality with 2 < k < m. This may be thought of as a successful weakening of

independence; such a weakening overcomes what we call Blau’s impossibility.

In fact, we have already seen a somewhat trivial successful weakening of independence. For

the domain of Example 4.3 ranking by Borda scores satisfies 3-IND, but as every triple is

free this domain is subject to Arrow’s impossibility. This example is trivial in that 3 belongs

to the “top” equivalence class in the Blau partition, thus any social welfare function on this

domain satisfies 3-IND. We now describe an example of a social welfare function that is not

trivial in this sense, defined on the union of single-peaked and single-dipped domains. Of

course, single-peakedness is well known as an escape from the Arrovian impossibility.3

Definition 4.17. A domain is single-peaked if there is a linear order ≻ on A, called the axis,

such that (x ≻ y ≻ z or z ≻ y ≻ x) implies (xRy implies yRz).

Note that single-peakedness, considered as a property, is satisfied by multiple domains, how-

ever reference is often made to “the single-peaked domain”, which could have multiple

interpretations: for a fixed axis ≻ there is a unique largest (by cardinality and inclusion)

single-peaked domain that contains all other single-peaked domains with the same axis.4 In

fact, this version of the largest single-peaked domain cannot be expressed within our current

framework, because it is not a Cartesian power domain.

3 Black (1948) provides the classic reference concerning single peaked domains.
4Another (incompatible) interpretation of the largest single-peaked domain is the domain that consists of

those profiles for which there is some axis along which the candidates are single-peaked.
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Definition 4.18. A maximal single-peaked domain is a largest single-peaked domain with

respect to some given axis.

Maximal single-peaked domains are examples of domains that satisfy the Blau equivalence

but where the Arrovian impossibility does not apply.

Proposition 4.19. For m > 2, any maximal single-peaked domain satisfies the Blau equiva-

lence, i.e. it has Blau partition Jm−1,mK.

Proof. As for m > 2 a maximal single-peaked domain has more than two elements, by

Proposition 4.14 we know that there is not one single partition. Thus it suffices to show

(l, l + 1)-equivalence for l = 2, . . . ,m− 2. We proceed by showing that the condition of

Lemma 4.16 holds. Thus suppose that S ↾X= S′ ↾X for S,S′ ∈ D and X ⊂ A with |X | = l.

Note as |X |= l ≤ m−2 there are a,b ∈ A\X . For x ∈ A, Y ⊆ A and R ∈ D, define

µ(x,Y,R) = |{y ∈ Y : x ≻ y,yRx}|− |{y ∈ Y : y ≻ x,yRx}| .

This may be thought of as a measure of “how far anti-clockwise” x is in R with respect

to some set of alternatives Y . Now, there is a S′′ ∈ D such that S′′ ↾X= S ↾X , µ(a,X ,S) =

µ(a,X ,S′′) and µ(b,X ,S′)= µ(b,X ,S′′). Then, as required, S ↾X∪{a}= S′′ ↾X∪{a} and S′ ↾X∪{b}

= S′′ ↾X∪{b}.

By removing preferences from a maximal single-peaked domain we can create a domain

to which neither the Blau equivalence nor the Arrovian impossibility applies. For instance,

consider the domain Dp displayed in Table 4.2.5

Table 4.2: A single-peaked domain.

Rp1 Rp2 Rp3 Rp4 Rp5 Rp6 Rp7 Rp8

a1 a2 a2 a3 a3 a4 a4 a5

a2 a1 a3 a2 a4 a3 a5 a4

a3 a3 a1 a4 a2 a5 a3 a3

a4 a4 a4 a1 a5 a2 a2 a2

a5 a5 a5 a5 a1 a1 a1 a1

Let us draw attention to the pair (a1,a2). Because Rp2 and Rp3 are (4,a1,a2)-adjacent,6

5 Preferences were not removed arbitrarily to create this domain. For the remaining preferences, note

that the alternatives on either side of the “peak” are balanced; that these alternatives are interspersed as far

as possible. Compare to the idea of equidistantly single-peaked domains described by Ozdemir and Sanver

(2007).
6The full list of pairs of rankings that are (4,a1,a2)-adjacent is (Rp2,Rp3), (Rp6,Rp7) and (Rp7,Rp8). See

Figure 4.1.
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therefore

(4.i) {5} is a member of the Blau partition of Dp.

However, none of Rp6, Rp7 or Rp8 are (4,a1,a2)-adjacent to Rp4, as the rankings, firstly, of a1

and a5 and, secondly, of a2 and a4 are different in each pair of preferences. It can similarly

be seen that Rp5 is not (4,a1,a2)-adjacent to any of the other rankings in Dp. Therefore it is

not (4,a1,a2)-reachable to any other ranking, although it is certainly (2,a1,a2)-reachable to

other rankings. Thus 2 and 4 are in different sets of the Blau partition for this domain, so

(4.ii) Dp does not satisfy the Blau equivalence.

The inverse of a single-peaked domain is a single-dipped domain. Such a single dipped

domain, Dd, is displayed in Table 4.3.

Table 4.3: A single-dipped domain.

Rd1 Rd2 Rd3 Rd4 Rd5 Rd6 Rd7 Rd8

a1 a1 a1 a1 a5 a5 a5 a5

a2 a2 a2 a5 a1 a4 a4 a4

a3 a3 a5 a2 a4 a1 a3 a3

a4 a5 a3 a4 a2 a3 a1 a2

a5 a4 a4 a3 a3 a2 a2 a1

We now consider the union domain Du = Dp∪Dd. This satisfies the free triple condition and

thus is subject to the Arrovian impossibility: there is no 2-IND and non-dictatorial social

welfare function that satisfies the Pareto criterion defined on Du. As the only rankings in

the domain with a2 preferred to a1 are in Dp (because Rd8 = Rp8), the statements (4.i) and

(4.ii) equally apply if we substitute Du for Dp. This opens up the possibility for a successful

weakening of independence. Define DL = {Dpi,Ddi : i = 1,2,3,4} and DR = {Dpi,Ddi : i =

5,6,7,8}.

Definition 4.20. Selective pairwise majority is the function on Du that proceeds as follows:

divide the voters into those who have preferences in DL and those who have preferences in

DR, then perform pairwise majority7 on the larger of these two groups. Break ties arbitrarily

in a consistent and deterministic manner.

Theorem 4.21. Selective pairwise majority is non-dictatorial social welfare function on Du

that satisfies the Pareto criterion and 4-IND.

7Pairwise majority determines the ranking over pairs of alternatives based upon which is preferred by more

voters.
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Figure 4.2: The alternatives in the domain that is

the union of the single-peaked domain of Table 4.2

and the single-dipped domain of Table 4.3 domain

arranged on a circle. The single-crossing line for

DL is the semicircle to the left; that for DR is the

semicircle to the right.

Proof. First note that DL and DR are each single-crossing domains8 (see Figure 4.2), thus

this function does actually return a complete preorder as required. As pairwise majority on

DL—or indeed on DR—is non-dictatorial, so to is selective pairwise majority. If all agents

prefer x to y, then a majority also do so for whichever of DL or DR has more voters; therefore

selective pairwise majority satisfies the Pareto criterion.

To finish we show that selective pairwise majority is 4-IND. Take arbitrary R ∈ DL and

R′ ∈ DR. Note that a1Ra5 but a5R′a1; and also a2Ra4 but a4R′a2. As there are only five

alternatives, R and R′ never coincide on a set of four alternatives. Thus R and R′ are not

(k,x,y)-adjacent for any pair of alternatives x,y. As R and R′ were chosen arbitrarily, they are

not (k,x,y)-reachable either.9 So for any R′′ such that R ≃ 4
xyR′′, R′′ ∈ DL, by the definition of

the social welfare function substituting this R′′ for R in a profile will not change the outcome.

The same point applies to R′. Thus by Lemma 4.7 we have 4-IND.

8 A domain is single-crossing if its preferences can be listed R1,R2, . . . ,Rt—or placed on a line—such that,

for all x and y, if xR1y and yRsx, then xRiy for s ≤ i ≤ t. Gans and Smart (1996) provide some economic

applications of this property. Rothstein (1991) shows that for any profile on a single-crossing domain there is a

representative voter whose (strict) preferences coincide with the (strict) majority relation (though note that he

does not use the term single-crossing).
9For all alternatives x 6= y, the set of equivalence classes of ≃ 4

xy on Du is the following refinement of

{DL,DR}: {{Rp1,Rp2,Rp3,Rd2,Rp3},{Rp6,Rp7,Rp8,Rd6,Rp7},{Rp4},{Rp5},{Rd4},{Rd5}}.
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4.6 Final remarks on domain restrictions and independence

of irrelevant alternatives

We have focused on the Blau (1971) equivalence, which concerns the impossibility of weak-

ening binary independence by considering independence over sets of higher cardinality. We

started by observing that this equivalence may vanish under domain restrictions, i.e., for

some domains k-IND diverges from 2-IND for 2 < k < m. Next, we provided, for any given

domain D and any given value of k, a necessary and sufficient condition for a social welfare

function to satisfy k-IND. We used this result to identify a necessary and sufficient condition

for a domain to be D (k, l)-equivalent—a result which enables the determination of cases

where the Blau equivalence holds. The Blau equivalence itself was defined in terms of Blau

partitions; we also saw that for almost any such partition there is a domain that exemplifies

it. Finally, in the section preceding this one we defined a particular five alternative domain

that is subject to the Arrovian impossibility but violates the Blau equivalence, and a non-

dictatorial social welfare function on this domain that is satisfies the Pareto criterion and

4-IND.

What results can we draw from our work? There is no logical dependence between the Blau

equivalence and the Arrovian impossibility. We have seen domains where both hold (the

full domain), where just the Blau equivalence holds (any maximal single-peaked domain),

where just the Arrovian impossibility holds (the domain of Example 4.3 and the domain Du

in Section 4.5), and also where neither hold (the domains Dp and Dd in Section 4.5).

Let us restrict our attention to domains that are subject to Arrow’s impossibility. Here the

Blau equivalence implies that the impossibility holds even for weaker versions of indepen-

dence. Hence, when the Blau equivalence fails, a potential escape from Arrow’s impos-

sibility arises: there may be domains where Arrow’s result holds, i.e. where 2-IND, the

Pareto criterion and non-dictatoriality are logically incompatible; but also where there exist

non-dictatorial social welfare functions that satisfy the Pareto criterion and some version of

k-IND.

As was already noted by Blau (1971), it is not interesting to weaken independence to m-

IND, because this is trivially satisfied by any social welfare function. For example, on any

domain, ranking by Borda scores is non-dictatorial and satisfies m-IND and the Pareto crite-

rion, though this escape from Arrow’s impossibility is somewhat unsatisfying. We consider

this social welfare function to be similarly unsatisfying on the domain of Example 4.3. Al-

though on this four alternative domain ranking by Borda scores satisfies 3-IND, so too will

any other social welfare function: 3 and 4 are in the same equivalence class of the Blau

partition of this domain. Blau’s impossibility, when elaborated in line with the above strand

of thought, may be properly stated: there is no non-dictatorial and k-IND social welfare
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function that satisfies the Pareto criterion, for any k not in the equivalence class of the Blau

partition that contains m. Thus Blau’s impossibility holds on domains that are subject to

Arrow’s impossibility where there are only two equivalence classes in the Blau partition,

though Section 4.4 shows that there are many domains with more than two such equivalence

classes.

Section 4.5 gives an example of a non-trivial weakening of independence: a non-dictatorial

social welfare function defined on a five alternative domain that is subject to Arrow’s im-

possibility that satisfies the Pareto criterion and 4-IND, where 4 is in a different equivalence

class to 5 in the Blau partition. Thus Blau’s impossibility is extensionally a stronger result

than Arrow’s impossibility; it applies to fewer domains. Of course, the domain and social

welfare function we describe are (somewhat) designed to provide the necessary example.

However, it is interesting to note that during their construction we started with single-peaked

and single-dipped domains and ended up with a single-crossing condition. These are all Con-

dorcet domains, where the pairwise majority relation is transitive, but we see no particular

reason why successful weakenings must necessarily involve domains of this type. We have

found at least one other (less simply expressed) example on the domain Du; we conjecture

that there are many different types of successful weakenings.



Chapter 5

Combining ordinal and evaluative infor-

mation in social choice

The traditional approach in social choice theory involves aggregating ordinal preferences

over alternatives. We1 will refer to this as the ranking approach. This can be contrasted

with what we call the evaluative approach, which involves aggregating evaluations of the

alternatives made by the agents. For example, approval voting, as pioneered by Brams and

Fishburn (1978), is evaluative; it affords two possible evaluations for each of the alternatives:

approved or disapproved. In this chapter we prove an impossibility in combining the ranking

and evaluative approaches. Our result implies that there is an incompatibility between the

two.

Imagine that a committee is tasked with selecting a candidate for a position that does not need

to be filled. The position may be offered to the best candidate. If this candidate rejects the

offer, the position can then be offered to the second best candidate, and so on until it would

be preferable to leave the position unfilled rather than offer it to the next best available

candidate. The task can be divided into two: creating a ranking over the candidates—the

ordinal part; and determining which candidates are suitable for the position—the evaluative

part. It is these two different parts that are the subject of this chapter.

In the above task, candidates are individually evaluated as being suitable, or not, for a po-

sition. A less interpreted presentation of the evaluation occurs in the preference-approval

framework—originally conceived of by Brams and Sanver (2009), and investigated further

by Erdamar et al. (2017). The smallest non-trivial application of this framework involves

two alternatives, a and b, which are ranked with respect to each other and also individually

evaluated as approved or disapproved. There are natural restrictions upon how rankings and

evaluations should be combined. For example, if a is approved and b is disapproved, it would

be unreasonable to also rank the two alternatives as indifferent. A consistent combination of

ranking and approvals is known as a preference-approval.

A preference-approval can be represented as a complete preorder over the alternatives that

is also equipped with a zero-line to demarcate the approval level. For the two alternatives a

and b there are eight possible preference-approvals. These are displayed in Figure 5.1.

1This chapter is based upon joint work with Remzi Sanver
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a
a

b
b ab

b a

b
a

a
b

ab
b a

1st 2nd 3rd 4th 5th 6th 7th 8th

Figure 5.1: The possible preference approvals for two alternatives. An alternative is strictly preferred

to the other if and only if it is higher on the page, and alternatives are approved if and only if they are

above the horizontal line.

The following example of a collection of preference-approvals may set off alarm bells.

Example 5.1. Suppose that there are only three agents and that they have, respectively, the

first, third and fifth preference-approvals displayed in Figure 5.1. Amongst these agents a is

ranked above b by a majority—if we aggregate the ranking according to the majority method

of May (1952), then a will be ranked above b in the social ordering. At the same time, a

is disapproved by a majority and b is approved by a majority—if we aggregate the evalua-

tions by majority, thereby complying with Sanver’s (2010) axiom of majoritarian approval,

b should be uniquely approved in the output. Thus applying majority on the decomposed

components of these preference-approvals results in an inconsistent outcome.

Example 5.1 effectively recreates the Condorcet paradox with the zero-line as an implicit

third alternative. We extend the example into a more general result, mirroring the connection

between Condorcet’s paradox and Arrow’s (1950) impossibility theorem. So the Condorcet-

like example presages a more general phenomenon, which we prove as an impossibility

theorem. Our result states that if aggregation of preference-approvals is performed in a

decomposed manner and the approval aggregation part satisfies unanimity, then the only

possibility is a dictatorship. Unanimity is a weak condition; the important condition is that

of decomposability, which takes the place of the well-known independence condition of

Arrow (1950): decomposability requires that the social evaluation for each alternative only

depends upon the individuals’ evaluations for that alternative, and that the social ranking

between the alternatives only depends upon the individuals’ rankings over the alternatives.

Decomposability can be weakened in a variety of ways. For example, we identify various

possibilities when decomposability is weakened within the evaluative part, but the ordinal

and evaluative parts are kept separate—these possibilities are stated as Propositions 5.6, 5.7

and 5.8. We also identify four specific possibilities that arise when the decomposability

between the ordinal and evaluative parts is relaxed.

To justify the importance of decomposability, let us expand upon its analogy to Arrow’s ax-
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iom of independence. To determine social ranking between two alternatives, one can very

well use information about how agents compare these to a third alternative. In fact, we know

by Arrow’s Theorem that this must be the case (if one wants a sensible ranking aggregation).

One may like or dislike Arrow’s axiom as a principle of ranking aggregation, but it is im-

portant to know that ranking aggregation is not decomposable into pairs. In a similar vein,

one may like or dislike decomposability between ranking and evaluation aggregation as a

principle, but it is worth knowing that such a decomposition is not possible.

To give a brief overview of the rest of the chapter: in Section 5.1 we define the basic

model of preference-approvals. We show our central impossibility concerning the aggre-

gation of preference-approvals in Section 5.2. Possibilities arise if one does not require that

preference-approvals are aggregated in a decomposed manner, which we explore in Section

5.3. We prove an extended version of the impossibility, applicable for more than two evalu-

ation levels, in Section 5.4. Final remarks are provided in Section 5.5.

5.1 The preference-approval model

In this chapter agents not only express preferences in terms of complete preorders (see the

introduction for definitions) but also in terms of sets of alternatives: we write Bi ∈ 2A for the

set of alternatives approved by i ∈ N.

Sets of alternatives form part of the definition of preference-approvals, which were first

conceived by Brams and Sanver (2009). A preference-approval of agent i ∈ N is a pair

pi = (Ri,Bi) ∈ W(A)× 2A, composed of a complete preorder and set of approved alterna-

tives, with the extra requirement that

(5.i) (∀x,y ∈ A)( (xRiy and y ∈ Bi)⇒ x ∈ Bi ) .

We write Π for the set of all preference-approvals.

Example 5.2. We have already seen one example of a possible interpretation of a preference-

approval, that we here restate alongside two other interpretations.

1) Alternatives are candidates for a position that need not be filled, and the zero-line

represents the point at which it is preferred that the position be left empty.

2) Alternatives are time-slots at which a meeting may be held. Ateendees have prefer-

ences over dates, and are unavailable at those dates that are below the line.

3) Alternatives are possible venues for an event, but transport restrictions only allow at-

tendees to come to certain of the venues.

Arguably, item (3) in Example 5.2 may not belong to the preference-approval framework: an

agent may well recognise that a venue that they cannot attend is nonetheless a better venue
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than one that they can attend. Our analysis requires that the evaluations and rankings cannot

be divorced in this manner. Another possibility that we do not account for is indifference in

ranking between two alternatives that are evaluated into different categories.2

A profile of preference approvals is some ppp = (p1, p2, . . . , pn) ∈ ΠN . As a general rule we

write vectors in boldface.

A preference-approval aggregator is a function π : DN → Π, where D ⊆ Π. A preference-

approval aggregator π is dictatorial if there is an agent d whose strict preference and ap-

proval line are reproduced in the output preference-approval; i.e. d ∈ N is a dictator if for all

ppp = ((R1,B1), . . . ,(Rn,Bn)) we have π(ppp) = (R,Bd) where R is some ranking such that xR∗y

if xR∗
dy.

Example 5.3. There are somewhat natural examples of preference-approval aggregators for

each of our example interpretations of the preference approval framework.

1) Shortlist the candidates using the evaluations, and then perform your preferred ordinal

aggregation on the remaining candidates.

2) Supposing that we want as many people as possible to attend the meeting: approve

only those slots where a maximum of attendees can attend. For the remaining dates,

rank first in terms of weak dominance, then in terms of time (earlier dates preferred to

later dates).

3) Chose amongst the venues that most people can attend, but also take into account the

ranking of those who cannot even attend the chosen venue.

The issues raised by the latter two examples are interesting, but will not be treated further in

this chapter.

In this chapter we consider social welfare functions with restricted domains; functions

F : DN → W(A), where D ⊆W(A). We write F∗(RRR) for the strict part of F(RRR). We say

that f satisfies the Pareto criterion if, for all RRR ∈W(A), xPiy for all i ∈ N implies xF∗(RRR)y.

We say that F is dictatorial if there is a d ∈ N such that for all RRR ∈ W(A), xR∗
dy implies

xF∗(RRR)y.

We also consider aggregation in the approval voting tradition. For x ∈ A, an elementary

approval aggregator αx is a function αx : {0,1}N → {0,1}. We refer to the elementary

approval aggregator of a subscripted alternative, such as ai, directly with the subscript, i.e.

αi = αai
. An elementary approval aggregator should be interpreted as a map from a profile

where each agent either approves x (assigns it 1) or disapproves x (assigns it 0) into a situation

where either x is globally approved (the result is 1) or x is globally disapproved (the result

is 0). Such a function satisfies unanimity if αx(0, . . . ,0) = 0 and αx(1, . . . ,1) = 1. An

2Only allowing for this weakening could be seen as analogous to moving from total preorders to quasi-

orders.
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approval aggregator α is a function α : (2A)N → 2A. We say that α satisfies (alternative-

wise) unanimity if, for any x ∈ A, (1) if x ∈ Bi for all i ∈ N then x ∈ α(BBB) and (2) if x ∈ Bi

for no i ∈ N then x /∈ α(BBB).3

Our final definitions concern splitting up various aggregators into sub-functions. An approval

aggregator is decomposable if, for each alternative x ∈ A there is an elementary approval

aggregator αx such that:

x ∈ α(BBB)⇔ αx( 1
B1
(x), . . . ,1

Bn
(x) ) = 1

where the indicator function of X ⊆ A, is the function 1
X

: A →{0,1} defined by

1
X
(x) =

{

1 if x ∈ X

0 otherwise.

In such a case we write α = (αx)x∈A. Similarly, π can be decomposed into (F ,α) if

π((R1,B1), . . . ,(Rn,Bn)) = (F(R1, . . . ,Rn),α(B1, . . . ,Bn));

and further into (F ,(αx)x∈A) if α = (αx)x∈A. In such cases we write, respectively, π = (F ,α)

and π = (F ,(αx)x∈A).

5.2 An impossibility in aggregating preference-approvals

Theorem 5.4. If D=Π then any π =(F ,α1, . . . ,αm) such that F satisfies the Pareto criterion

and αx satisfies unanimity for all x ∈ A is dictatorial.

Proof. Take a preference-approval aggregator π = (F ,α1, . . . ,αm) : ΠN → Π such that f

satisfies the Pareto criterion and each αi satisfies unanimity. To show that π is dictatorial, we

define a social welfare function F over an extended set of alternatives A∪{z}= X .

The function F corresponds to π , while the alternative z represents the zero-line. Using two

results from the literature on social welfare functions, we show that F is dictatorial, which

in turn implies that π is dictatorial

We say that a social welfare function g : DN →W(X) satisfies binary independence if for

every pair {x,y} ⊆ X , for all RRR,RRR′ ∈ DN , if RRR | {x,y} = RRR′ | {x,y} then g(RRR) | {x,y} = g(RRR′) |

{x,y}. Note that in order for binary independence to not be trivially satisfied it is necessary

3 The term “alternative-wise” indicates a distinction from a (weaker) version of unanimity which requires

that if all agents have exactly the same evaluations for all the alternatives, then the output evaluations are

identical. We do not consider the weaker version of unanimity in this chapter.
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that |X | > 2. We say a domain is Arrovian if any social welfare function that satisfies the

Pareto criterion and binary independence must also be dictatorial. Kelly (1994) gives some

conditions that imply that a domain is Arrovian.

Given a preference-approval p = (R,B) define a complete preorder p ∈W(B∪{z}) by, for

{a,b} ⊆ B, apb ⇔ aRb, bpa ⇔ bRa, apz ⇔ a ∈ B, and zpa ⇔ a 6∈ B. It can be verified that p

is complete and transitive. Write p∗ for the strict part of p; the above definitions imply that,

for any {a,b} ⊆ A,

(5.ii) aPb ⇔ ap∗b

and

(5.iii) a ∈ A ⇔ ap∗z .

Define

D = {p : p ∈ Π} ⊂W(A∪{z}) .

By definition p 7→ p is a bijection from Π to D. This means there is also a bijection from

preference approval profiles ppp ∈ ΠN to ppp = (pi)i∈N ∈ DN . The domain DN is a (Cartesian)

product domain that contains all possible linear orders and yet does not contain the com-

plete preorder where all pairs of alternatives are considered indifferent. Thus this domain is

Arrovian according to Kelly’s (1994) “Theorem 1”.

Define the social welfare function F : DN →W(A∪{z}) as, for an arbitrary ppp ∈ DN ,

(5.iv) F(ppp) = π(ppp) .

We now show that F satisfies the Pareto criterion and satisfies binary independence.

For the Pareto criterion, take an arbitrary ppp. We split into two cases. First we consider pairs

{a,b} ⊆ A. Suppose for all i ∈ N api
∗b. The result follows directly from the fact that F

satisfies the Pareto criterion. Second, we consider pairs {a,z} with a ∈ A. As a first subcase,

suppose for all i ∈ N, api
∗z. This implies that all agents approve a in ppp. By unanimity of αa,

a is approved in π(ppp), thus aF(ppp)z as required. For the subcase where for all i ∈ N we have

zp∗i a, replace approve with disapprove in the preceding sentence.

For the proof of binary independence, we utilise results due to Campbell and Kelly (2000),

who establish the notion of relevant sets. A relevant set is defined with respect to social

welfare function g : DN → W(X), where D ⊆ W(X) and g satisfies the Pareto criterion. A

relevant set for a pair {x,y} ⊆ X is the minimal (by inclusion) set of alternatives Y ⊇ {x,y},

Y ⊆ X , such that for all profiles RRR,RRR′ ∈ D ⊆ W(X), if RRR | Y = RRR′ | Y then g(RRR) | {x,y} =

g(RRR′) | {x,y}. Campbell and Kelly’s “Theorem 2 part (I)”, paraphrased, states: for any social
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welfare function g that satisfies the Pareto criterion, and distinct alternatives x,y,w, if the

relevant set of {x,y} is {x,y} then the relevant set of {y,w} either (1) contains x or (2) is

identical to {y,w}.

We know already that F satisfies the Pareto criterion. Take arbitrary {a,b} ⊆ A. By the

decomposability of π , (1) the relevant set of {z,a} is {z,a} and (2) the relevant set of {a,b}

is a subset of A 6∋ z. Because the relevant set of {a,b} does not contain z, by “Theorem 2 part

(I)”, the relevant set of {a,b} must be {a,b}. Thus we have binary independence.

Altogether this implies that

(5.v) F is dictatorial, with a dictator d.

We claim that d must also be a dictator for π: take an arbitrary profile ppp = (RRR,BBB) and write

π(ppp) = (R,B).4 The definitions of p and F and the dictatoriality of F lead to the following

chains of implications, for a,b ∈ A.

aPdb
(5.ii)
⇔ apd

∗b
(5.v)
⇔ aF

∗
(ppp)b

(5.iv)
⇔ aπ(ppp)

∗
b
(5.ii)
⇔ aPb

(5.vi)

a ∈ Bd

(5.iii)
⇔ apd

∗z
(5.v)
⇔ aF

∗
(ppp)z

(5.iv)
⇔ aπ(ppp)

∗
z
(5.iii)
⇔ a ∈ B

(5.vii)

Thus the preference-approval aggregator π is dictatorial.

There are two subtle requirements in this proof, concerning properties of the created domain

and the informational restrictions of the created social welfare function. Concerning the first,

the presence of all linear orders and the absence of the preference of complete indifference is

sufficient for a domain to be Arrovian. This means that for a possibility based on a restricted

domain it will be necessary to remove at least one preference-approval that corresponds to

a linear order. Concerning the second, it was crucial that the relevant set of an alternative

and the zero-line alternative was exactly that pair: if we do not decompose the aggregation

of approvals, then this need no longer be the case, and the theorem of Campbell and Kelly

(2000) no longer applies.

The impossibility vanishes for certain interesting restricted domains of preference-approvals.

Denote by Π− the domain where all alternatives below the line must be considered indiffer-

ent. For A= {a,b}, Π− contains exactly the six preference-approvals displayed in Figure 5.2.

4Note that to ease presentation, we transpose the Cartesian product without comment, i.e. when we

write (RRR,BBB), where RRR = (R1, . . . ,Rn) and BBB = (B1, . . . ,Bn), we are technically referring to the profile

((R1,B1),(R2,B2), . . . ,(Rn,Bn)).



106 Combining ordinal and evaluative information in social choice
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b ab

b a

b a ab

Figure 5.2: The six preference-approvals in Π−.

The restriction to the domain Π− is reasonable for many applications of the preference-

approval framework: in particular, for the interpretation of alternatives as time-slots for a

meeting, as in Example 5.2 (2), it seems reasonable to assume that time-slots that cannot be

attended are considered indifferent. However, for the selection of candidates for a position

that may be left empty as in Example 5.2 (1), although it seems reasonable to consider can-

didates who are considered unsuitable as indifferent in the output, in the profile it may be

useful information to know one committee member ranks two candidates that she considers

unsuitable.

Let αud
x be the “unanimous disapproval rule” that disapproves x iff x is disapproved by all

agents in N. Note that this elementary approval aggregator satisfies unanimity. We strengthen

the Pareto criterion to the strong Pareto criterion by requiring of a social welfare function

F that if for x,y ∈ A and RRR ∈ DN such that xRiy for all i ∈ N and xR∗
iy for some i ∈ N, then

xF∗(RRR)y.

Proposition 5.5. If F is a social welfare function with domain W(A)N that satisfies the strong

Pareto criterion, then (F ,(αud
x )x∈A) is a preference-approval with domain (Π−)N .

Proof. We need to verify that for all (RRR,BBB) ∈ (Π−)N ,

( f (RRR),(αud
x )x∈A(BBB)) = (R,B) ∈ Π .

For x,y ∈ A, suppose that xRy and x /∈ B, we only need to show that y /∈ B (i.e. we show the

contrapositive of the consequent of (5.i)). Because x /∈ B, by the definition of αud
x there are

only two possible preference approvals in Π− that each agent can have: each agent can either

approve y and disapprove x, or disapprove both and rank them as indifferent. But no agent

can have the first, otherwise yR∗x by the strong Pareto criterion, contradiction xRy. Thus all

agents disapprove y, and thus y /∈ B by the definition of αud
y , as required.

5.3 Possibilities from relaxing decomposability

Our notion of decomposing a preference-approval aggregator takes place at two different

levels. Theorem 5.4 requires:
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1) that determining whether a specific alternative is approved is independent of the ap-

provals of the other alternatives in the profile.

2) that the aggregation of rankings and approvals are independent of each other.

Relaxing either of these requirements leads to possibilities.

5.3.1 Relaxing the decomposability of the approval aggregation

We characterize two families of rules that arise when we relax the internal decomposability

of the approval part of a preference-approval aggregator. Our characterisations apply to

the two alternative case: well-behaved approval aggregators that work alongside any social

welfare function that satisfies the Pareto criterion; and maximally discriminating approval

aggregators that distinguish between alternatives as often as possible. However, for three or

more alternatives, these characterisations can no longer be applied; we nevertheless show

that there are still possibilities.

5.3.1.1 Well-behaved approval aggregators

There are approval aggregators over {a,b} that create a preference-approval aggregator not

matter what social welfare function that satisfies the Pareto criterion that they are paired with.

Let N be the set of non-empty proper subsets of N. Take any function g : N ×N →{0,1}.

Define the approval aggregator αg as follows:

1) If a is approved by all agents and b approved by none, approve only a,

2) Else if b is approved by all agents and a approved by none, approve only b.

3) Else:

3.1) if a is approved by no agents or b is approved by none, approve neither.

3.2) if a is approved by all agents or b is approved by all, approve both.

3.3) otherwise, let Na be the set of agents that approve a and Nb be the set of agents

that approve b; if g(Na,Nb) = 1 approve both alternatives, otherwise disapprove

both.

Note that αg satisfies unanimity. Let G be the set of functions of type g : N ×N →{0,1}.

One may consider that an approval aggregator α is well-behaved if ( f ,α) is well-defined for

any f that satisfies the Pareto criterion. Under such an interpretation, Theorem 5.6 charac-

terises the well-behaved approval aggregators.

Proposition 5.6. Suppose m = 2. If f satisfies the Pareto criterion and has domain W(A),

then, for any g∈G, ( f ,αg) defines a preference-approval aggregator with domain ΠN . In the
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other direction, if α 6= αg for some g ∈ G, then there is some f that satisfies the Pareto crite-

rion with domain W(A)N such that ( f ,α) does not define a preference-approval aggregator

with domain ΠN .

Proof. Take f and αg as described above, let π = ( f ,αg). Consider a profile ppp = (RRR,BBB).

Suppose that x ∈ π2(ppp) and y /∈ π2(ppp), for {x,y} = {a,b}. It suffices to show that xπ∗
1 (ppp)y.

As we must be in case 1 or case 2, x is approved by all agents and y is approved by none,

thus by consistency xPiy for all i ∈ N, thus by Pareto optimality xπ∗
1 (ppp)y as required.

Now take an arbitrary approval aggregator α ′ 6= αg that satisfies unanimity. This implies that

the outputs given in cases 1 and 2 still apply, thus the output in one or other of 3 (a), (b) or

(c) must be different. Suppose that (a) is not the case; the proof for the others is similar. This

implies that there is a non-empty proper subset Nx of agents such that when x is approved

only by all agents in Nx and y is approved by no agents, x is approved in the output and y

disapproved in the output. Consider the function f ′ such that w f ′(RRR)z if and only if wPiz for

any i ∈ N. It is not hard to see that f ′ a well-defined social welfare function that satisfies the

Pareto criterion, however ( f ′,α ′) is not admissible.

5.3.1.2 Maximally discriminating approval aggregators

The approval aggregators of the previous subsection are very undiscriminating, which is pre-

cisely what is needed to make them compatible with many different social welfare functions

that satisfy the Pareto criterion. On the other hand, if we start with a social welfare function,

we can choose an approval aggregator that tends to discriminate between the alternatives, in

terms of approvals, as much as possible.

We start with a social welfare function f over {a,b} that satisfies the Pareto criterion. Con-

sider a linear order profile over the two alternatives with a reduced electorate N′ ⊆ N,

RRR′ ∈ L(A)N′
. We say that RRR′ is sufficient for x ∈ A if for all profiles RRR ∈ L(A)N such that

for all i ∈ N′ R′
i = Ri, x f ∗(RRR)y, where y ∈ A,y 6= x.

We now define an aggregator α f in terms of f . Take an arbitrary approval profile BBB. The

total approval count is ∑i∈N |Bi|. Let I be the set of agents who approve a and disapprove

b and let J be the set of agents who approve b and disapprove a. We write L(A) for the set

of linear orders over A. Let RRR′ ∈ L(A)I∪J be such that aPib if i ∈ I and bPia if i ∈ J. For

x ∈ A, if RRR′ is sufficient for x, α f (BBB) = {x}. Otherwise, if the total approval count is greater

than or equal to n = |N|, approve both alternatives; if the total approval count is less than n

disapprove both alternatives.

One may consider an approval aggregator maximally discriminating if it classifies different
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alternatives into different classes as often as possible. 5 Theorem 5.7 shows that α f is

maximally discriminating if one wants to be consistent with f .

Proposition 5.7. Suppose m = 2. If f satisfies the Pareto criterion and has domain W(A)N ,

then ( f ,α f ) is a preference-approval aggregator defined on the domain ΠN . Further, if α is

an approval aggregator such that for some profile BBB and alternative x ∈ {a,b}, α(BBB) = {x}

but α f (BBB) = /0 or α f (BBB) = B, then ( f ,α) does not define a preference-approval aggregator

with domain ΠN .

Proof. We first show that, for an arbitrary profile (RRR,BBB), the output of

( f ,α f )(RRR,BBB) = (R,B)

is a preference-approval. Supposing that x ∈ B and y /∈ B, we need to show that xPy. Because

α f (A) = {x}, this means that RRR′ ∈ L(A)N′
, N′ ⊆ N is sufficient for x, where for all i ∈ N,

x ∈ Bi and y /∈ Bi implies that i ∈ N′ and xP′y, and y ∈ Bi and x /∈ Bi implies that i ∈ N′ and

yP′
i x. Because each (Ri,Bi) is a preference-approval, this means that Ri = R′

i for all i ∈ N′.

Because RRR′ is sufficient for x, this implies that xPy as required.

Now suppose that α is an approval aggregator such that for some profile BBB and alternative

x ∈ {a,b}, α(BBB) = {x} but α f (BBB) = /0 or α f (BBB) = A. Suppose that α f (BBB) = /0; the case

with α f (BBB) = A is very similar. This means that the total approval count is less than n, and

that RRR′ ∈ L(A)N′
, N′ ⊆ N is not sufficient for x, This means that there is some RRR such that

for all i ∈ N′, Ri = R′
i but y f (RRR)x. Applying ( f ,α) to the profile (RRR,BBB) will not produce a

preference-approval.

5.3.1.3 Relaxing the decomposability of the approval aggregation with three or more

alternatives

For three or more alternatives, our analysis is complicated by the fact that there are social

welfare functions that satisfy the Pareto criterion which cannot be used to create a consistent

preference-approval aggregator. Ranking by the sum of Borda scores provides an example—

in this setting involving indifferences, we take the Borda score of an alternative to be the

number of other alternatives it is weakly preferred to. Consider the two preference-approval

profiles in Figure 5.3, each profile containing two agents and three alternatives. Note that in

both a must be approved and c must be disapproved by unanimity. Using Borda scoring, b

5Note that this precise formulation of discriminability has strong implications for cases with more than three

alternatives. Let A = {a,b,c,d}. Obviously, if all alternatives in A are approved, then there is no discrimination

between the alternatives. If only one alternative is approved, then three pairs of alternatives have different

evaluations. If two alternatives are approved, then four pairs of alternatives have different evaluations. Thus

one may distinguish between discriminability and decisiveness.
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Figure 5.3: Two preference-approval profiles that show that if there are three alternatives, there are

social welfare functions that satisfy the Pareto criterion that cannot be used to create a consistent

preference-approval aggregator

is considered indifferent to c in the left profile, and indifferent to a in the right profile. This

then means that b must be disapproved in the left profile and approved in the right profile,

however b has the same approvals for both, thus no approval aggregator is consistent with

ranking by Borda scores.

This means that for three or more alternatives there are no well-behaved approval aggrega-

tors. Nor can we find a maximally discriminating approval aggregators for any given ranking

function, because no approval aggregator may exist at all. So the two characterisations given

above cannot be directly extended to the case of three or more alternatives.

Nonetheless, there are still possibilities when there are three or more alternatives. Define

a disjunctive social welfare function fdb as ranking by Borda scores if any agent is com-

pletely indifferent between all the alternatives and as a copy of the first agent’s preferences

otherwise. Similarly, define αdb such that it approves all alternatives if each alternative is

approved at least once, otherwise it disapproves all alternatives if each alternative is disap-

proved at least once, otherwise it copies the evaluations of the first agent.

Proposition 5.8. For m ≥ 2, ( fdb,α
db) is a preference-approval aggregator defined on the

domain ΠN .

Proof. We need to check the consistency of the output. So suppose that for two alternatives

x,y ∈ A, x is approved and y is disapproved. We need to show that xPy. Because x and y are

in different approval classes, we must be in a profile where the first agent must have had her

approval levels copied. As such, no agent can be indifferent between all the alternatives, so

the first agent also has their preferences copied, thus xPy as required.

5.3.2 Relaxing decomposability between rankings and approvals

There are also possibilities if the output ranking is allowed to depend upon the approvals in

the profile. In this subsection we describe four such preference-approval aggregators.
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5.3.2.1 Shortlist by elementary approval aggregators then rank

We first give an example of a preference-approval aggregator π I, where the approval aggre-

gation is internally decomposed and independent of the ranking aggregation while the output

ranking depends upon the approvals in the profile. Under π I, the approvals are used to select

an approved shortlist, and then the ranking is performed separately upon the approved and

non-approved alternatives. For x ∈ A, we define α
maj
x for arbitrary zzz ∈ {0,1}N as

αmaj
x (zzz) =

{

1 if |{i ∈ N : zi = 1}| ≥ n/2,

0 otherwise.

Define the approval part of π I such that π I
2(RRR,BBB) = (αmaj

x )(BBB). For the ranking part, we use

a local version of Borda where the score for an alternative is calculated using either only the

approved or only the disapproved alternatives. First, for each X ⊆ A, let

bscoreX : W(A)N → X → N

be defined as

bscoreX(RRR)(x) = ∑
i∈N

|{y ∈ X : xRiy}| .

Define bordaX : W(A)N →W(X) by

(x,y) ∈ bordaX(RRR) if and only if bscoreX(RRR)(x)≥ bscoreX(RRR)(y).

Returning to the definition of π I, and writing B = π I
2(RRR,BBB), let R = π I

1(RRR,BBB) be defined by

xPy for x ∈ B and y /∈ B; xRy if and only if (x,y) ∈ bordaB(RRR) for x,y ∈ B; and xRy if and

only if (x,y) ∈ bordaA\B(RRR) for x,y /∈ B.

If we suppose that an approval aggregator is composed of elementary approval aggregators

such as α
maj
x , there will be many cases where either all alternatives are approved or all

alternatives are disapproved. One may desire instead to try to approve half of the alternatives.

It is impossible to always do so without violating unanimity, but we can create an approval

aggregator that only approves all alternatives when every alternative is approved by all agents

and only disapproves all alternatives when every alternative is disapproved by all agents.

5.3.2.2 Shortlist by non-decomposable approval aggregator then rank

We now describe a preference-approval aggregator π II that typically approves around half

the alternatives; under π II, the approval aggregation is not anymore internally decomposed

but is still independent of the ranking aggregation while the output ranking depends upon the

approvals in the profile.
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We informally describe the approval aggregation part as an iterative process. First approve

all alternatives that are each approved by all the agents. If more than half of the alterna-

tives are approved, disapprove the remaining alternatives. Otherwise, from the remaining

set of alternatives, approve all those alternatives with maximal approval support—repeat

this step until at least half the alternatives are approved, and afterwards disapprove the re-

maining alternatives. Formally, define γ : N → (A → N) → 2A by x ∈ γ j(g) if and only if

g(x) ≥ j.6 Define ascore : (2A)N → A → N by ascore(BBB)(x) = |{i ∈ N : x ∈ B}|. Note that

for j < k we have γk(ascore(BBB)) ⊆ γ j(ascore(BBB)) and that in particular γ0(ascore(BBB)) = A

and γn+1(ascore(BBB)) = /0; these facts mean that the following definition is well-formed. Let

αhalf(BBB) = γ j(ascore(BBB)) for the maximal j ∈ N such that
∣

∣γ j(ascore(BBB))
∣

∣≥ m/2.

Our second preference-approval aggregator is like the first, π I, only using the non-decomposable

approval aggregator defined above. Define the approval part of π II such that π II
2 (RRR,BBB) =

αhalf)(BBB). For the ranking part, writing B = π II
2 (RRR,BBB) let R = π II

1 (RRR,BBB) be defined by xPy

for x ∈ B and y /∈ B; xRy if and only if (x,y) ∈ bordaB(RRR) for x,y ∈ B; and xRy if and only if

(x,y) ∈ bordaA\B(RRR) for x,y /∈ B.

5.3.2.3 Perform ranking aggregation then approve according to the ranking

We now consider a function π III whose ranking aggregation is independent of approvals

while the output approvals depend upon the rankings in the profile. There is a somewhat

trivial family of examples here: perform ranking aggregation by any desired method, and

approve some fixed number or proportion of alternatives. This method completely ignores

the input approvals, so the output ranking is obviously independent of the approvals in the

profile. For an example social welfare function, we consider Borda ranking. Formally,

define the ranking part of π III such that π III
1 (RRR,BBB) = bordaA(RRR). For the approval part, let

π III
2 = γ j(bscore(RRR)) for the maximal j ∈ N such that

∣

∣γ j(bscore(RRR)
∣

∣ ≥ m/2. Note that BBB

occurs nowhere in the definition of π III; the output completely ignores the input approvals.

5.3.2.4 Borda with a movable zero determined by the zero-line

For completeness, we also describe a natural function π IV for which both the ranking and

the approvals are interdependent. Suppose that each agent assigns a score to each alternative

depending upon how many alternatives there are in between the alternative and the zero-

line, with a positive or negative score respectively if the alternative is above or below the

zero-line; for each alternative, sum their scores; rank the alternatives according to their sum,

6Our definitions are given in functional style, i.e. functions are used as arguments. Note that we assume left

associativity of expressions, i.e. h(i)(x) is (h(i))(x), indeed we will typically write hi(x); and that we assume

right associativity of type definitions, i.e. h : X → Y → Z is implicitly h : X → (Y → Z).
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and disapprove any and only alternatives with a sum strictly less than zero. This may be

thought of as Borda ranking with a movable zero—note that although the idea behind this

is natural, the detailed definition requires some arbitrary decisions. For π IV, first define

mscore : Π → A → N by

mscore(R,B)(x) =

{

|{y ∈ B : xRy}| if x ∈ B,

0−|{y ∈ A\B : yRx}| if x /∈ B,

Define π IV(RRR,BBB) = (R,B) by

xRy if and only if ∑
i∈N

mscore(Ri,Bi)(x)≥ ∑
i∈N

mscore(Ri,Bi)(y)

and x ∈ B if and only if mscore(Ri,Bi)≥ 0.

5.4 Extending the impossibility to more evaluation levels

The impossibility of combining the ordinal and evaluative approaches also applies to the case

where there are more than two evaluation levels. In order to consider multiple evaluation

levels we must extend the preference-approval framework, which requires more definitions

that immediately follow.

Denote by E a set of possible evaluations, |E| ≥ 2. A preference-evaluation is a pair v =

(R,s) where s : A → E is a sorting function into |E| categories. We suppose that there is

linear order � on E. A preference-evaluation v = (R,s) is consistent with � if xRy implies

s(x)� s(y). Let Ω be the set of consistent preference evaluations.

The existence of a linear order on E is central to our interpretation of the evaluative approach.

For e,e′ ∈ E, the interpretation of e ≻ e′ is that e is a better evaluative category than e′.

Consistency with ordinal preference states, roughly speaking, that it is impossible to prefer

a worse category to a better category.

A preference-evaluation aggregator is a function ω : ΩN → Ω. We say that a preference-

evaluation aggregator ω is dictatorial if there is an agent d whose strict preference and evalu-

ations are reproduced in the output preference-evaluation; i.e. d is a dictator if for all profiles

of preference-evaluations vvv = ((R1,s1), . . . ,(Rn,sn)), we have ω(vvv) = (R,sd) such that for

all x,y ∈ A, xR∗
dy implies xR∗y.

An elementary evaluation aggregator for an alternative x is a function

ηx : EN → E .
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For j ∈ {1, . . . ,m}, we typically shorten ηa j
to η j. Such a function satisfies (evaluation)

unanimity if ηx(t, . . . , t) = t for all t ∈ E. We write ω = (F ,η1, . . . ,ηm) if7

ω((R1,s1), . . . ,(Rn,sn)) = (F(R1, . . . ,Rn),λx.ηx(s1(x), . . . ,sn(x))).

Theorem 5.9. Any preference-evaluation aggregator ω = ( f ,(ηx)x∈A) such that ηx satisfies

unanimity for all x ∈ A is dictatorial.

Proof. Take a preference-evaluation aggregator ω as in the statement of the theorem. We

first show that f satisfies the Pareto criterion. We then show that every pair of evaluation

categories have a “local” dictator. Such a local dictator must be a dictator on the ranking

function—this implies that all such local dictators coincide. Finally, we argue that this agent

is also an evaluation dictator.

Suppose that RRR is such that for all i ∈ N, aPib, we want to show that a f ∗(RRR)b. Take e1,e2 ∈ E

such that e1 ≻ e2. Define sss such that for all i ∈ N,

si(x) =

{

e1 for all x such that xRia

e2 otherwise

For each i ∈ N, each (Ri,si) is a preference-evalution consistent with �. By unanimity,

ω2(RRR,sss)1(a) = e1 and ω2(RRR,sss)(b) = e2. By consistency of the output, a f ∗(RRR)b, thus f

satisfies Pareto optimality.

Let ω = ( f ,(ηx)x∈A) : ΩN → Ω such that f satisfies the Pareto criterion and ηx satisfies

unanimity for all x ∈ A. Take an arbitrary pair of evaluation categories e,e′ ∈ E,e 6= e′.

Write Ω | e,e′ = Ω∩ (W(A)×{e,e′}A). There is an agent de,e′ = d such that for all (RRR,sss) ∈

(Ω | e,e′)
N , for x ∈ A and ω(vvv) = (R,s) we have sd(x) = s(x), otherwise we can translate ω

with its domain restricted to (Ω | e,e′)
N into a preference-approval aggregator that violates

Theorem 5.4.

We now argue that d is a dictator over F . Take arbitrary x,y ∈ A and RRR ∈W(A)N such that

xR∗
dy. Without loss of generality suppose that e ≻ e′, consider a profile sss such that for all

z ∈ A such that zRdx, sd(z) = e, for all z ∈ A such that xPdz, sd(z) = e′, and for all z ∈ A, for

all i ∈ N\{d}, si(z) = e′. Note that this sss forms a consistent preference-evaluation profile

when combined with RRR. By consistency, for ω(RRR,sss) = (R,s), xPy. Thus xF∗(RRR)y if and only

if xR∗
dy. Note that this implies that de,e′ = de′′,e′′′ for any e,e′,e′′,e′′′ ∈ E.

Finally we argue that d is also an evaluation dictator. Take arbitrary x ∈ A and sss ∈ (EA)N .

We want to show that ηx(sss) = sd(x). Write e = sd(x), and pick some y ∈ A, y 6= x. Consider

some profile sss′ where for all i ∈ N, s′i(x) = si(x) and s′i(y) = e. Consider any profile RRR such

that xR∗
dy and that is consistent with sss′, note that such a profile exists. By unanimity, for

7 We use lambda notation in the following manner: λx.F(x) = F .
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ω(RRR,sss′) = (R,s), s(y) = e. By dictatoriality of d on F , xR∗y. By consistency, s′(x)� s′(y) =

e. Similar to above, consider any profile RRR′ such that yR∗
dx and that is consistent with sss′. By a

similar chain of arguments, s′(y)� s′(x), thus s′(x) = e. Because for each i∈N, s′i(x) = si(x),

ηx(sss) = sd(x).

Theorem 5.9 is a significant strengthening of Theorem 5.4, as it removes the Pareto opti-

mality of the social welfare function and allows for more than two evaluation levels. We

nevertheless present the two theorems separately. One reason for this is because we do not

see an obvious direct proof of Theorem 5.9 that does not use Theorem 5.4. Moreover, it is

less obvious how the possibilities expressed in Section 5.3 (which hold even when the social

welfare function is required to satisfy the Pareto criterion) apply when there are more than

two evaluation levels—while positive results are possible, the extra technicalities are cum-

brous and would clutter the results. In a similar vein, we do not discuss domain restrictions

when there are more than two evaluation levels.

5.5 Final remarks

There is a view that social choice should be performed using evaluations rather than rank-

ings. In fact, the literature contains several examples of social choice procedures that use

evaluations, including approval voting (Brams and Fishburn, 1978), threshold aggregation

involving three-graded rankings (Aleskerov et al., 2007; Alcantud and Laruelle, 2014), utili-

tarian voting (Hillinger, 2005) and range voting (Gaertner and Xu, 2012; Pivato, 2014; Zahid

and De Swart, 2015; Macé, 2018). A further example is majority judgment, introduced by

Balinski and Laraki (2011), which selects the alternative with the highest median evaluation.

To be sure, the median has earlier usages as a social choice rule, for example by Bassett

and Persky (1999) who apply it within the traditional Arrovian ranking framework, how-

ever it should be noted that majority judgment can choose between alternatives with tied

highest median, which (depending on the setting) may be an important improvement in de-

cisiveness. Balinski and Laraki’s contribution goes beyond this extra tiebreaking step: they

provide a whole framework within which evaluative methods can be analysed.8 Part of their

defense of majority judgment consists of a defense of the evaluative approach as a whole,

for example they claim that

the central problem becomes how to transform many individual grades of a com-

mon language into a single collective grade where the individuals may have un-

known preferences that are too complex to be formulated. Sharing a common

8Later work picks up this approach and compares different evaluative methods within an evaluative frame-

work, for example work by Brams and Potthoff (2015).
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language of grades makes no assumptions about an agent’s or a judge’s utilities

or preferences. (Balinski and Laraki, 2011, p. xiii, their italics).

The debate between defenders of ranking aggregation and defenders of evaluation aggrega-

tion goes back to the early days of approval voting9 and has been reactivated by the work of

Balinski and Laraki.10 This literature not only notes that particular evaluative methods are in-

compatible with majoritarianism conditions defined on social welfare functions (such as our

example in the introduction) but reflects an incommensurability between the two approaches

which is substantiated by our results. In fact, Theorem 5.9 shows that when unanimous

evaluation aggregators are used, dictatoriality is the only consistent way to independently

aggregate rankings and evaluations. Even dictatoriality fails to work when the social welfare

function is assumed to satisfy mild conditions such as near unanimity, where if everyone

except one agent ranks an alternative top, this alternative should be ranked top in the output.

In brief, caution is advised in searching for a compromise that combines the two approaches

by allowing individuals to have both rankings and evaluations.11

The impossibilities expressed by Theorems 5.4 and 5.9 depend on decomposing the rank-

ing and evaluation aggregators from each other (which embodies the incommensurability

between the two approaches) but also on the decomposability of the evaluation aggregation

itself. This latter decomposability is satisfied by every evaluative method that we are aware

of; indeed, Balinski and Laraki (2011) argue that this decomposability is the correct inter-

pretation of the independence property.

When decomposability is relaxed there are various possibilities, as described in Section 5.3.

In particular, relaxing the internal decomposability of the approval aggregation leads to the

possibilities given by Proposition 5.6 and Proposition 5.7. More generally, we can structure

the space of possible preference-approval aggregators along two axes. One axis imposes

restrictions upon the ranking part of the aggregation: the strongest restriction here is a version

of binary independence applied to preference-approval aggregators, which requires that the

9For example, see the back and forth between Saari and Van Newenhizen (1988), Brams et al. (1988b),

Saari and Van Newenhizen (1988) and again Brams et al. (1988a).
10For example Balinski and Laraki (2007), Felsenthal and Machover (2008), Brams (2011), Edelman (2012),

Balinski and Laraki (2016) and Laslier (2017).
11The preference-approval framework that we treat in this chapter can, as Sanver (2010) discusses, be math-

ematically placed within the traditional literature of social welfare functionals (Sen, 1977) where cardinal or

interpersonal comparisons are allowed. Preference-approvals present a weak version of ordinal level compar-

isons (OLC) which are explored by Roberts (1980). The closest previous work of this type that we are aware of

is due to List (2001), who considers a narrow informational addition that he calls OLC+0, which only allows

a single level of ordinal comparability. This is almost equivalent to the preference-approval framework, but it

allows for alternatives to be on the zero-line, thus there is a third evaluative category within which indifference

is forced. Also, List’s results concern functions that produce choice sets or ordinal rankings, not functions that

output preference-approvals or their equivalent.
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Table 5.1: Possible preference-approval aggregators within the space where the vertical axis imposes

restrictions on the evaluative part of aggregation and the horizontal axis imposes restrictions on the

ranking part of the aggregation. We implicitly suppose that the evaluative part respects unanimity,

and that the preference-approval aggregator is non-dictatorial.

Ranking aggregation

Approval aggregation Satisfies binary

independence

Independent of

approvals

No restriction

Independent of

rankings and

completely

decomposable

Impossible for any number of alternatives by

Theorem 5.9

Shortlist by majority

approvals then rank,

π I

Independent of

rankings

Possible by

Proposition 5.8

Shortlist a given

proportion by

approvals then rank,

π II

No restriction

Possible for two

alternatives (by

Proposition 5.6 or 5.7

and May (1952)),

impossible for more

than two (Arrow,

1950)

Approve k highest

ranked, π III

Borda with movable

zero, π IV

output ranking of each pair only depends upon the input rankings of these pairs. Binary

independence implies the following weaker condition: that the ranking aggregation only

depends upon the ranking part of the profile. Finally, there are aggregators with no restriction

on the ranking aggregation. The second axis imposes restrictions on the evaluative part

of the aggregation: the evaluations of each alternative can be computed independently of

any other information; or can depend upon the evaluations of all the alternatives; or can be

calculated using all the information from the profile. This structure, and various possibilities

and impossibilities within, is drawn in Table 5.1—note that the results of the table only apply

to preference-approvals, not to preference-evaluations.

As a final note, it may be wondered: given that we consider a particular form of aggrega-

tion, can we embed our work into a more general aggregation frameworks? Wilson (1975),

Nehring (2003), or Maniquet and Mongin (2016) provide possibilities, but perhaps the most

promising general framework would be that of judgment aggregation, for which List and

Puppe (2007) provide a survey. The linear order version of Arrow’s theorem is relatively

easy to embed into judgement aggregation (Dietrich and List, 2007), however it required

much more technical consideration of Dietrich (2015) for the full generality of Arrow’s the-

orem over weak preferences to be thus embedded. Without the extra generality afforded by
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weak preferences, much of our results become extremely simple: thus although it seems pos-

sible to perform an embedding into judgement aggregation, it requires the heavy machinery

of Dietrich (2015) to be done in an interesting manner.



Conclusion

The first three chapters investigate the concept of decisiveness in increasingly abstract terms.

The concept arises in the first chapter as a slightly under-defined, but intuitively desirable

property, that seems to be in potential conflict with other properties when we consider a

real-life application of social choice theory.

The second chapter abstracts away from any particular application, but still considers con-

crete choice functions. It provides a general method that makes specific choice functions

output smaller choice sets, and may be viewed as an attempt to further understand the con-

cept of decisiveness. The method is a success insofar as it does certainly make the rules more

decisive, however the costs of applying it are unclear. The method requires a utilisation of

more information from the profile, and it is not clear that this use is justified. We possibly

loose the character of the original social choice function, as is evidenced by the fact that it is

hard to guarantee the inheritance of properties from the original function to their more deci-

sive versions. Worse, there are distinct possibilities as to how the function can be made more

decisive, and it is not obvious which of these possibilities is better. Perhaps this is because

the decisive versions attempt to use too much information from the profile—so perhaps we

should attempt to restrict the amount of information that is used from a profile.

The fourth chapter takes an even more abstract view of the problem: we now move to con-

sidering families of choice functions. It provides a definition of maximal decisiveness with

respect to the information basis of a rule. However, it turns out that very few rules actually

used in practice are maximally decisive with respect to our intuitive informational bases.

There is simply too much global information to make choices. Further, although we thereby

can class some rules as more and less decisive than each other, this classification has many

incompatibilities.

It is, thus, not clear that we have the correct definition of decisiveness, nor even that such a

definition is possible given a global take on information. This suggest that a local look at the

information in the profile may be more useful. The third chapter gives a result concerning

the classic method of enforcing that only local information is used in determining the output

of a social welfare function: independence of irrelevant alternatives. This property general

leads to strong impossibility results. We investigate a method of escaping this impossibility

through a combination of means: slightly weakening the strict imposition that requires that

only extremely local informational be relevant, and also applying domain restrictions.

The final chapter returns, in part, to the problems of the first chapter. It describes a different

paradigm for social choice: the evaluative paradigm. Perhaps the problems of social choice

are better served by such a paradigm? Our results may be interpreted as showing that if
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we want to adopt the evaluative paradigm, we should do so in whole, rather than trying to

combine the two different approaches.

So, what is the upshot of this for social choice theory? The issues surrounding decisiveness

seem to dissolve in an evaluative framework. However, as we see in the first chapter, there

are applications of social choice problems where it truly is the ordinal framework that is

desired. Under such a framework, the problem of decisiveness remains unsolved: taking a

global look of profiles forces distinctions between alternatives which should probably not

be distinguished, whereas the local look leads to strong impossibilities or difficult technical

results.



Glossary

(k, l)-equivalent a domain D is such if any social welfare function on D is k-IND iff it is

l-IND. 89–92, 94, 97, 122

(k,x,y)-adjacent requires that there is a set X ⊆ A such that |X |= k, {x,y} ⊆ X and R ↾ X =

R′ ↾ X . 87, 89, 92, 94–96

(k,x,y)-reachable (≃k
xy) requires that there is a set X ⊆ A such that |X |= k, {x,y} ⊆ X and

R ↾ X = R′ ↾ X . 89, 90, 92, 95, 96

agent (i, j,k. . . ) 7, 26, 40, 65, 67–69, 84–86, 89, 90, 101, 128, 129, 131

agents, set of (N) a set such that |N|= n. 7, 26, 50, 64, 65, 67–69, 84, 85, 89, 90, 101, 121,

124, 127–129, 131

alternative (a1,a2, . . . ,am,a,b,c, . . . ,x,y,z. . . ) 6, 7, 26, 40, 43–45, 47, 50–52, 57, 65–67,

69, 74, 84–87, 89–96, 99, 100, 121, 123–126, 129–131

alternatives, set of (A) a set such that |A|= m. 6, 7, 15, 26, 46–48, 50–52, 56, 64–69, 84–87,

89, 90, 92–94, 101, 113, 121–131

alternative-wise unanimity requires that for any x ∈ A, (1) if x ∈ Bi for all i ∈ N then

x ∈ α(AAA) and (2) if x ∈ Bi for no i ∈ N then x /∈ α(AAA). 103

altruistic manipulation manipulation that aids some other athlete. 19, see discipline ma-

nipulation condition

anonymity treat agents symmetrically. 16, 40, 129

approval aggregator (α) of type α : (2A)N → 2A. 103, 130

approval voting social choice procedure in the social choice theory, evaluative approach

where alternatives are either approved or disapproved by the agents, alternatives

with the most approvals are selected. 99

argmax tree function (AM) given gA : L(A)→ τA, define

gAMA (T ) = argmaxx∈A |{R ∈ L(A) : gA(R)(T ) = x}|. 50, 57–59, 61, 133

argmax universe concept run a procedure in all possible universes and return those out-

comes that happen in most universes, refines the parallel universe concept. 44

argument max function (argmax) elements of X that return the largest value for some func-

tion g: argmaxx∈X g(x) = {x ∈ X : ∀y ∈ X ,g(x) ≥ g(y)} . 50, 51, 69, 121, 129,

131

Arrovian domain domain on which Arrow’s impossibility holds. 104

athlete 8, 14–21, 24–27, 30, 31, 40, 129, alias for alternative

athlete-neutrality treat athletes symmetrically. 16, 40, alias for neutrality

athletes, set of (A) a set such that |A| = m. 14–16, 18–20, 24, 26, 27, 30, 129, alias for

alternatives, set of

axiom in social choice theory, refers to desirable properties of a social choice procedure. 9

axis (≻) linear order on A used for single-peaked or single-dippedness. 93, 94, 129
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Backus-Naur method for describing context free grammars, e.g. A ::= a | aA generates all

strings containing only ‘a’. 47

binary independence can restrict attention to pairs of alternatives: RRR ↾{x,y}=RRR′ ↾{x,y} implies

F(RRR) ↾{x,y}= F(RRR′) ↾{x,y}. 6, 26, 40, 83, 85, 103, 125

binary relation (Q) set of ordered pairs, subset of Cartesian square. 15, 123, 125

binary relations, properties of given R ⊆ X ×X :

antisymmetric (xRy and yRx) implies x = y, all x,y ∈ X . 126

asymmetric (not xRy) or (not yRx), all x,y ∈ X . 130

complete xRy or yRx, all x,y ∈ X . 123, 125, 126

connected xRy or yRx or x = y, all x,y ∈ X . 15, 126, 130

irreflexive not xRx, all x ∈ X . 126

symmetric if xRy then yRx, all x,y ∈ X . 125

transitive (xRy and yRz) implies xRz, all x,y,z ∈ X . 123, 125, 126, 130, 131

binary tree (τ) structure containing nodes and leaves, each node has two children, each child

is a node or leaf. 44, 46–48, 50, 56, 57, 129

binary trees, families of defined recursively for all lists of alternatives:

balanced tree (ft) ft(12 . . .m) = ft
(

1 . . .
⌊

m
2

⌋)(

ft
(⌈

m
2

⌉

. . .m
))

. 48, 58

Banks tree (bn) bn(12 . . .m) = bn(13 . . .m)(bn(23 . . .m)). 47, 48, 53, 58, 59

iterative Condorcet tree (ic) ic(12 . . .m) = 12 . . .m ic(2 . . .m). 48, 53, 54, 57–59, 133

simple tree (st) st(12 . . .m) = 1(st(2 . . .m)). 48, 53, 57–59, 133

two-leaf tree (tt) tt(12 . . .m) = 12. 48, 53, 57–59

binary trees, properties of

complete every alternative a ∈ A appears at least once as a leaf. 48

repetitive some alternative a ∈ A appears more than once as a leaf. 48, 55

binary trees, set of all (τA) for fixed A, generated by τ ::= a ∈ A | (ττ). 47, 48, 50, 121,

127

Blau equivalence for k 6= l, k, l < m, k-IND and l-IND are equivalent. 83, 93, 94, 97

Blau impossibility for k < m, k-IND and the Pareto criterion and together imply dictatorial-

ity. 83, 93

Blau partition equivalence class on integers determining where k-IND is equivalent to l-

IND, the partition of {2, . . . ,m} determined by (k, l)-equivalence. 84, 90–95, 97,

98

Borda scoring vector the vector (m−1,m−2, . . . ,0) or, in canonical form,

(1,(|A|−2)/(|A|−1), . . . ,1/(|A|−1),0). 15, 87, 97, 122

Borda social choice function scoring function using the Borda scoring vector. 69

Cartesian domain (D) DN , where, for example, D ∈ {W(A),L(A),Π}. 84–87, 89–92,

94–98, 121, 123, 125

clear winner condition an athlete who always defeats another should be considered better.

15, 40, alias for Pareto criterion
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complete preorder (R) transitive and complete binary relation. 6, 7, 14–16, 18–20, 26, 27,

30, 84–87, 89–96, 106, 113, 121, 123, 124, 126–130

coincide R and R′ coincide on X if R ↾ X = R′ ↾ X . 85, 86

extend R ∈W(X) extends R′ ∈W(Y ), Y ⊆ X , if R and R′ coincide on X . 85, 86, 125

ordered construction (↓) given A as context, R↓ = a1a2 . . .am . 92, 93, 123

ordered construction, alternative to bottom (↓ ·) as ordered construction and send

alternative to bottom, R↓k =
(

R↓∪{(ai,ak) : i 6= k}
)

\{(ak,ai) : i 6= k} . 92, 93, 123

complete preorder, asymmetric part of (R∗) for R ∈W(X) the set R∗ = R\{(x,x) : x ∈ X}.

6, 14, 16, 85, 92, 102, 106, 114, 115, 127, 128, 130

complete preorder, list notation of elements in parentheses are indifferent, otherwise left-

wards elements are preferred, e.g. (a1a3)a2 is the complete preorder

{(a1,a3),(a3,a1),(a1,a3),(a3,a2)}. 48, 67, 123

complete preorders, set of (W) over X , W(X). 6, 7, 14, 15, 27, 30, 84–86, 92, 123, 128,

129

composition consistency for any T = (T ′;T1, . . . ,Tm), index i and alternative a ∈ Ai, a ∈

f (T ) iff ai ∈ f (T ′) and a ∈ f (T i). 52, see also weak composition consistency

computational complexity study of resources required to execute algorithms. 3, 123

computational social choice theory interdisciplinary field, adds theoretical computer sci-

ence notions to social choice theory, e.g. computational complexity. 3

Condorcet consistency if Condorcet winner exists, must be unique output. 52

Condorcet domain Cartesian domain for which for all profiles, the majority relation is al-

ways transitive. 98

Condorcet independence of irrelevant alternatives if arbitrary top pairs are ranked the

same in two profiles, then one of the pair cannot not be selected for one profile and

selected for the other. 27, 125

Condorcet loser unique minimum of majority relation, if exists. 13

Condorcet paradox the observation that in a profile of three voters such that aP1bP1P1c,

bP2cP2P2a, and cP3aP3P3b, comparing the alternatives by pairwise majorities creates

a cycle. 100

Condorcet winner unique maximum of majority relation, if exists. 13, 123

consistent preference-evaluation (v) a preference-evaluation such that xRy implies s(x) �

s(y). 113

consistent preference-evaluations, set of (Ω) set equipped with a linear order �. 113, 114,

128

covering relation given a tournament T , a covers b if aT b and (bT x implies aT x). 51, 55

decision theory formal study of individual rational choice. 18

decisiveness how (small/close to linear) is output of social choice procedure, informal. 4, 5,

8, 10, 31, 44, 62
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decomposability a social choice procedure aggregating a composite structure can be split

into multiple social choice procedures, which combine to produce a consistent out-

put. 100

decomposability of approval aggregator α = (αx)x∈A if ∀x ∈ A ∃αx such that x ∈ α(BBB)⇔

αx(1B1
(x), . . . ,1

Bn
(x)) = 1. 103

determined some discipline’s top rank is always reproduced. 16, 40, see also top dictator

dictator (d) privileged agent d ∈ N. 113, 124, 129, 130

dictatorial function has dictator of given type. 85–87

dictatorial preference-approval aggregator if for ppp = ((R1,B1), . . . ,(Rn,Bn)), ω(ppp) =

(R,Bd) and R ⊆ Rd . 102

dictatorial preference-evaluation aggregator if for vvv = ((R1,s1), . . . ,(Rn,sn)), ω(ppp) =

(R,sd) and R ⊆ Rd . 113

dictatorial social welfare function if F(RRR)⊆ Rd . 102, 103

discipline single competition between athletes. 8, 14–18, 20, 24–27, 30, 31, 40, 129, alias

for agent

discipline aggregator (F) method for ranking athletes given results in disciplines. 9, 14–16,

18, 20, 24, 40, 124, alias for social welfare function

discipline manipulation condition athlete a can manipulate from sincere profile PPP to PPP′,

R = F(PPP), R′ = F(PPP′) if rR′(a)< rR(a). 18

egoistic manipulation requires rR′(b)< rR(b). 18, 40

altruistic manipulation for some b, requires rR′(b)< rR(b). 19, 40

without sacrifice requires rR′(a)≤ rR(a). 19, 20, 40

completely without sacrifice requires |{x ∈ A : xR′a}| ≥ |{x ∈ A : xRa}|. 19, 20

spoiler requires rR′(b)< rR(a), a spoils result for better competitors. 20, 40

discipline-neutrality treat disciplines symmetrically. 16, 40, alias for anonymity

disciplines, set of (N) a set such that |N| = n. 14–18, 20, 24, 27, 30, 129, alias for agents,

set of

domain (D) set of possible inputs, e.g. W(A)N , L(A)N , (2A)N , L(A)N , ΠN . 64, 69, 72, 73,

125, 129

domain restriction a restriction applied to the domain of a social choice function, social

welfare function, preference-approval aggregator. 5, 83

egoistic manipulation manipulation that aids the manipulator. 18, see discipline manipula-

tion condition

elementary approval aggregator (αx) for x ∈ A, αx : {0,1}N →{0,1}. 102

elementary evaluation aggregator (ηx) of type ηx : EN → E. 113–115, 125

empty set ( /0) contains no elements, {}. 7, 33, 37, 38, 46, 51, 52, 68, 69, 72, 73, 109, 112,

127, 129, 131

equivalence class given an equivalence relation ∼ ⊆ X ×X , the equivalence class of x ∈ X

is {y ∈ X : x ∼ y}. 89–91, 93, 97, 98, 126
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equivalence relation (∼) a symmetric, transitive and complete binary relation. 89

evaluation unanimity ηx(t, . . . , t) = t for all t ∈ E. 114

ex ante before the resolution of a chance event. 44

ex post after the resolution of a chance event. 44

exogeneous tiebreaker method selecting from tied alternatives external to choice procedure.

13, 63

expressible (by basis) f expressible by ∼ if for all PPP,PPP′ ∈ D , PPP ∼ PPP′ implies that f (PPP) =

f (PPP′) . 64

finite initial sequences of natural numbers (N ) set of initial subsets of N,

N = {{0},{0,1},{0,1,2}, . . .}. 64–69, 71, 127, 129–131

free triple {a,b,c} ∈ A such that every possible (linear order/complete preorder) over the

three alternatives extend to some member in a Cartesian domain D. 86, 93

game theory formal study of rational choice amongst multiple agents. 18

Gibbard-Satterthwaite impossibility resolute social choice functions are manipulable or

dictatorial, and variations. 18

Gibbard-Satterthwaite manipulation changing a single agents ranking in a preference pro-

file results in a better outcome for this agent, according to their original ranking. 40

hardness result e.g. if an oracle can solve problem, then can solve NP problem in polyno-

mial time, unfeasible on large inputs if P6=NP. 4

impartial culture generate preferences uniformly at random. 21

impossibility result conditions that cannot simultaneously hold. 4, 10, 23

independence of irrelevant alternatives (IIA) can restrict attention to any subset of alter-

natives: RRR ↾X= RRR′ ↾X implies F(RRR) ↾X= F(RRR′) ↾X . 5, 10, 83, 125

independence properties family concerning local information, includes binary indepen-

dence, Condorcet independence of irrelevant alternatives, independence of irrelevant

alternatives (IIA), k-independence. 83

indicator function (1X ) of X ⊆ A, the function 1
X

: A→{0,1} defined by 1
X
(x) = 1 if x∈ X ;

0 otherwise. 103, 124

infimum (∧) given Y and reference binary relation R over X ⊇ Y , maximal by R element

x ∈ X such that yRx for all y ∈ Y . 73, 78, 134

informational basis (∼) equivalence class of profiles. 64–66, 69, 73–76, 125, 126

informational restriction ignore some information from a profile, treat different profiles as

equivalent. 64

integers (Z) whole numbers, 0, 1, 2,. . . , -1, -2. . . 66, 67, 77, 130

interpersonal comparison of utility measure preferences, well-being across different agents.

5
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interval partition (J·K) partition of {2, . . . ,m} whose equivalence classes are integer inter-

vals, concisely expressed by maxima of equivalence classes: for {{2, . . . ,q1},{q1 +

1, . . . ,q2}, . . . ,{qt−1 +1, . . . ,qt}} where q1 < q2 < · · ·< qt = m, we write

Jq1,q2, . . . ,qt K. 90–92, 94, 126

k-independence can restrict attention to sets of alternatives of cardinality k: for X such that

|X | = k, RRR ↾X= RRR′ ↾X implies F(RRR) ↾X= F(RRR′) ↾X . 26, 85–87, 89–91, 93, 95–98,

121, 125

lambda notation λx. f (x) = f . 114

left associativity if parentheses missing, apply first to leftmost elements, we assume left

associativity of algebraic formulas, xyz = (xy)z. 47, 48, see also right associativity

linear order (R) transitive, complete and antisymmetric relation. 48, 50, 56, 93, 121, 127,

130, see also complete preorder

linear orders, set of (L) over X , L(X). 6, 48, 50, 56, 121, 127, 128

majority cycle loop in majority relation e.g. aT bT cTa, equivalently set with no Condorcet

loser and no Condorcet winner. 9, 12

majority relation (T ) connected and irreflexive T ⊂ A×A. 12, 123, 130, see also majority

relation of a profile

majority relation of a profile (T ) T : W∗(A)N → 2pairs defined by (x,y) ∈ T (PPP) iff

|{i ∈ N : xPiy}| ≥ |{i ∈ N : yPix}|. 15, 16, 46, 65, 66, 68, 123, see also majority

relation

manipulation distortion of input of social choice procedure for gain. 4, 9, 129

maxima (max) undominated elements of a (normally transitive) binary relation, for R ∈

W(A), max(R) = {x ∈ A : ∀y ∈ A,yRx ⇒ xRy}. 16, 123, 129, 130

maxima of set (max) overload notation, add restriction to set e.g. max(R)(X)=max(R | X),

if no binary relation take natural ordering on numbers e.g. maxX = max(>)(X). 90,

126, 130

maximal single-peaked domain the largest (by cardinality and inclusion) single-peaked

domain with respect to some axis. 94

maximally decisive for basis ∼ if for any profile RRR such that a,b ∈ f (RRR), there is a permu-

tation σ such that σ(a) = b and RRR ∼ σ(RRR). 5, 74

membership (∈) x ∈ X if x is in X . 6, 7, 14–21, 24–27, 30, 31, 33–38, 47, 48, 50–52, 56,

64–74, 76, 77, 79, 81, 84–87, 89–94, 96, 101–115, 121–131

minima (min) undominating elements of a (normally transitive) binary relation, e.g. min(R)=

{x ∈ A : ∀y ∈ A,xPy}. 123

monotonic increasing the input in some manner cannot decrease the output in some manner.

18

monotonicity for tournament functions if a ∈ f (T ) and bTa, then a ∈ f (T〈a,b〉). 52, 53,

57, 59, 60
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monotonicity, of ranks increasing an alternative’s rank in the profile, with no other changes,

cannot decrease this alternative’s rank in the output. 18, 40, see also egoistic manip-

ulation

Nash product take the product of multiple utilities. 15

natural numbers (N) numbers used for counting, we include 0, then 1, 2,. . . . 64, 65, 67–70,

73, 125, 128, 131

neutrality treat alternatives symmetrically. 5, 16, 40, 44, 129

non-reducible tournament tournament with a cycle through all alternatives. 59

null representation of a profile (null) of type L
∗(A)N →{ /0}. 68

odds description of probabilities using weights, e.g. w1 : w2 : w3 . . . where probability of the

event associated with wi is wi/(∑ j w j). 21

ordered pairs distinct of alternatives (pairs) the set {(a,b) : a,b ∈ A,a 6= b}. 65–67, 126,

130, 131

parallel universe concept run a procedure in all possible universes and take the union of the

results. 43, 44, 121

parallel universe function given a set of possible universes X and function g : X → Y → Z,

the function gPU : Y → 2Z is . 44

parallel universe tree function (PU) given gA : L(A)→ τA, define gPUA (T ) = {gA(R)(T ) :

R ∈ L(A)}. 50, 53, 56, 57, 59, 61

Pareto criterion prefer Pareto optimal outcomes, for F , RRR, if ∀i ∈ N,aR∗
ib then aF∗(RRR)b.

16, 40, 42, 85–87, 93, 95, 97, 98, 102

permutation onto function with identical domain and range. 7, 16

permutation of agents (ρ) we abuse notation:

ρ((R1, . . . ,Rn)) = (Rρ(1), . . . ,Rρ(n)) . 7, 16, 127

permutation of alternatives (σ ) we abuse notation: σ(R) = {(σ(x),σ(y)) : (x,y) ∈ R} and

σ((R1, . . . ,Rn)) = (σ(R1), . . . ,σ(Rn)) . 7, 16, 74, 126, 127

Plackett-Luce model generate linear orders according to each alternative’s probability of

being selected/ranked first: write pi for the probability that ai is selected/ranked

first, given that a j for j ∈ J ⊂ {1, . . . ,m}, i /∈ J were selected/ranked in some specific

order before ai then ai has a pi/(1−∑i∈J p j) chance of being selected/ranked next.

21

possible universe one given instance among a set of different possibilities. 121, 127

power set (2) for X , 2X contains all subsets of X . 7, 46, 50, 51, 65, 69, 101, 121, 129

preference-approval (p) object p= (R,B)∈W(A)×2A such that (∀x,y∈A) ( (xRiy and y∈

Bi)⇒ x ∈ Bi ). 99, 101

preference-approval aggregator (π) function π : DN → Π, where D ⊆ Π. 102–105, 124,

130
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preference-approvals, set of (Π) all consistent preference-approvals for fixed A and N. 101–

106, 127, 128

preference-evaluation (v) a pair (R,s). 113, 123

preference-evaluation aggregator (ω) of type ω : ΩN → Ω. 113–115, 124

profile vector with indices in N. 3, 125, 129

profile of complete preorders (RRR) member of W(A)N . 3, 7, 26, 74, 84–86, 89–91, 106, 122,

124–130

profile of preference-approvals (ppp) member of ΠN . 104, 124

profile of preference-evaluations (vvv) member of ΩN . 113, 124

profile of strict linear orders (PPP) member of L(A)N . 14–16, 20, 24–27, 30, 33, 64–73, 76,

77, 124, 125, 128–131

projected image of a profile (proj) where proji : L∗(A)N → L
∗(A) is proji(PPP) = Pi. 68, 80

proper refinement a binary relation R properly refines R′ if R′ ⊂ R. 90

properly maximally decisive for basis maximally decisive and expressible by a basis. 75

quota rule fix q ∈ N, (select/approve) a ∈ A if more than q agents (rank a first/approve a).

30

rank function (r) the number of alternatives ranked above an alternative plus one, r(R)(a) =

rR(a) = |{x ∈ A : xPa}|+1, if context clear ri = r(Ri) = r(R∗
i) . 14–16, 18–20, 24,

27, 30, 69, 124, 129

real numbers (R) rational numbers and friends (irrational, transcendental). 68, 69

refinement a binary relation R refines R′ if R′ ⊆ R. 66, 73, 89

relevant set defined with respect to social welfare function that satisfies the Pareto criterion

g : DN →W(X), where D⊆W(X); a relevant set for a pair {x,y} ⊆ X is the minimal

(by inclusion) set of alternatives Y ⊇ {x,y}, Y ⊆ X , such that for all profiles RRR,RRR′ ∈

D ⊆W(X), if RRR | {x,y} = RRR′ | {x,y} then g(RRR) | {x,y} = f (RRR′) | {x,y}. 104

resolute for a social choice function output is always singleton, for a social welfare function

output is always a linear order. 11, 31, 42, 44, 62

restrictions given a subset of some set, produces subsets of sets of structures.

restrictions applied to function domain (↿) e.g. for Y ⊆ X , Z ⊂W X , we have

Z ↿ Y = {(x,w) ∈ Z : x ∈ Y}. 124, 128

restrictions applied to function range (↾) e.g. for Y ⊂X , and Z ⊆Xk, Z ↾Y= {(x1, . . . ,xk)∈

Z : x1, . . . ,xk ∈ Y}. 52, 84–87, 89–94, 121–123, 125, 126, 128, 129

restrictions applied to structure (|) context dependent: for profile RRR = (R1, . . . ,Rn) and

X ⊆ A, RRR |X= (R1 ↾ X , . . . ,Rn ↾ X); for set D ⊆W(A), D |X= {R ↾ X : R ∈ D} . 27,

84–86, 89, 90, 92, 93, 103, 104, 114, 126, 128, 130

right associativity if parentheses missing, apply first to rightmost elements, we assume right

associativity of types, f : X →Y → Z = f : X → (Y → Z). see also left associativity



Glossary 129

scoring function ( fxxx) given D ∈ {L∗(A)N ,L∗(A)N }, a function f xxx : D → 2A\{ /0} defined

by f xxx(PPP) = argmaxb∈A ∑i∈N xri(a) where ri(a) = |{b ∈ A : bPia}|+1. . 69, 122

scoring rule assigns points based upon positions in a neutral and anonymous fashion, better

alternatives have higher sums of points. 15

scoring vector (xxx) vector of real numbers used to assign points for a scoring function. 68,

69, 122, 129

set of categories (E) set equipped with a linear order �. 113–115, 123–125, 130

sets of binary relations typeset using calligraphic symbols, e.g. W. 1

simulation artificial (computer generated) model of (social) state. 10

sincere profile non-manipulated profile. 17, 124

single-crossing domain preferences can be listed R1,R2, . . . ,Rt such that if xR1y and yRsx,

then xRiy for s ≤ i ≤ t. 96, 98

single-dipped domain set of complete preorders that are single-dipped with respect to some

axis. 93, 95, 98

single-peaked domain set of complete preorders that are single-peaked with respect to some

axis. 83, 93, 98

single-peaked with respect to ≻ if(x ≻ y ≻ z or z ≻ y ≻ x) implies (xRy implies yRz). 93

singleton set contains a unique element. 89, 91

singleton tree function (τ) function based on binary tree, of type τ : T(A) → A, defined

x : T 7→ x | xy : T 7→ ( if xTy : x; otherwise y) | ττ ′ : T 7→ τ(T )τ ′(T )(T ). 50

social choice function ( f ) selects alternatives, f : D → 2A\{ /0}. 7, 46, 64, 74, 124–126,

128–130

social choice functions, examples of

constant function ∃a, ∀RRR, f (RRR) = a. 27

dictatorship ∃d, ∀RRR, f (RRR) = max(Rd). 27, 68

instant runoff voting (irv) successively eliminate alternatives with least first places. 5,

30, 43, 68

inverse-Borda-Nash (ibn) order alternatives increasingly (smaller is better) by product

of inverse Borda scores, breaking ties by majorities if possible, i.e. define Q ⊆ A×A

by xQy iff Πi∈nri(x) > Πi∈nri(y) or (Πi∈nri(x) = Πi∈nri(y) and xTPPPy); and define

ibn(PPP) = Q+∪{(x,x) : x ∈ A} . 4, 15, 21, 23

iterative first place elimination (ifpe) let localwin(PPP)= ( if ∃a∈A, |{i ∈ N : ri(a) = 1}|>

n/2 7→ {a}; otherwise {x ∈ A : ∃i ∈ N,ri(x) = 1}), let PPP1 = PPP, for t ≥ 1, recursively

define PPPt+1 = PPPt ↾ A\localwin(PPPt), define x(ifpe(PPP))y iff there are integers s, t such that

s ≤ t and x ∈ localwin(PPPs) and y ∈ localwin(PPPt). 27, 30

iterative successive last removal (isr) For an arbitrary profile PPP, let loset(PPP) = {a ∈ A :

rt(a) is maximal}. Let PPP1 =PPP, and for t ≥ 1 recursively define PPPt+1 as the restriction

of PPPt to A\loset mod n(PPP
t). Writing P = isr(PPP), for x,y ∈ A, define xRy iff there are

integers s, t ≤ m such that s ≥ t and x ∈ loses mod n(PPP
s) and y ∈ loset mod n(PPP

t). 27
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social choice procedure formal method from social state to structure over alternatives, e.g.

social choice function, social welfare function, approval aggregator, preference-

approval aggregator. 3, 123, 126, 130

social choice theory formal study of voting methods, choice procedures. 3, 8, 123

social choice theory, evaluative approach aggregate evaluations expressed as classifica-

tions. 6, 99, 121

social choice theory, ordinal/traditional/Arrovian approach aggregate preferences ex-

pressed as binary relations. 3, 8, 83, 99

social choice theory, paradox of undesirable behaviour of social choice procedure. 9

social welfare function (F) aggregates complete preorders F : W(A)N →W(A). 7, 26, 40,

83–86, 89–91, 93, 97, 98, 102–106, 114, 115, 121, 122, 124–128, 130, 131

social welfare function, asymmetric part of (F∗) as for complete preorder, asymmetric

part of. 84, 85

social welfare function, winners of alternatives ranked top in the output, max(F(RRR)). 15

sorting function (s) function from alternatives to categories, type s : A → E. 113, 123, 128

stability given a variable agenda social choice function and sensible notion of restriction

of a profile structure QQQ, requires that for all nonempty X ,Y ⊆ A and Z ⊆ X ∩Y ,

Z = f (QQQ | X) = f (QQQ | Y ) if and only if Z = f (QQQ | X∪Y ). 52

strict linear order (P) transitive, connected and asymmetric relation, asymmetric part of

some linear order. 7, 14–20, 24, 27, 65, 67–69, 128, 129, 131, see also strict weak

order

strict linear orders, set of (L∗) over X , L∗(X). 7, 14, 15, 27, 30, 64–69, 71, 80, 127–131

strict weak orders, set of (W∗) over X , W∗(X). 7, 126

supremum (∨) given Y and reference binary relation R over X ⊇ Y , minimal by R element

x ∈ X such that xRy for all y ∈ Y . 73

symmetric weighted majority relation of a profile (symW ) symW : L∗(A)N → Zpairs is

symW (PPP)(x,y) =W (PPP)(x,y)−W (PPP)(y,x). 66–68, 71, 72

tabular presentation of profile of linear orders Columns correspond to agents, higher

alternatives are more preferred. 43, 65, 75

tie two or more alternatives that cannot be chosen between. 9, 63

top dictator d with top preferences reproduced, maxF(RRR) = maxRd . 40

tournament (T ) asymmetric majority relation. 45–47, 50–52, 54, 56, 57, 59, 121, 123, 127,

130, 131

tournament function ( f ) non-variable agenda method to select alternatives from tourna-

ments, a type of social choice function. 51, 52, 123, 131

tournament solution variable agenda method to select alternatives from tournaments. 5, 44

tournament solutions, examples of defined in terms of T :

Banks set the maximal elements (by T ) of maximal (by inclusion) subsets of A that are

transitive according to T . 51
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Copeland set argmax a |{x ∈ A : aT x}|. 51

Markov solution concept alternatives with maximally probability in the stationary dis-

tribution of the Markov chain with transition probabilities determined by T . 59

set of Condorcet non-losers all alternatives that dominate at least one other alternative

according to T . 51, 53, 59

top cycle smallest set B ⊆ A such that bTa for all b ∈ B and a ∈ A\B. 51, 53

tournament solutions based on binary trees 50, see binary tree, functions based on

uncovered set contains every a such that there is no element b such that bTa and for all

x such that aT x, bT x. 51

tournament with one inversion (〈·, ·〉) T 〈a,b〉 is T with relation between a, b inverted. 51,

52, 56, 131

tournament, summary of Let T ′ ∈ T({a1, . . . ,am}), and, for each i, Ti ∈ T(Ai) for pairwise

disjoint sets of alternatives Ai. we write T = (T ′;T1, . . . ,Tm) to refer to the tourna-

ment over
⋃

Ai defined by, for each a ∈ Ai and b ∈ A j, if i = j then aT b iff aTib and

if i 6= j then aT b iff aiT
′a j. 51, 123

tournaments, set of (T) over A, T(A). 46, 50, 51, 129, 131

transitive closure (+) given a relation R, the smallest transitive relation R+ such that R⊆R+.

12, 15, 129

unanimity if all agents are in agreement, this should be reflected in the social outcome. 100,

102

undominated element given binary relation R over X , element x ∈ X such that ∀y ∈ X if yRx

then xRy. 126

variable agenda allow the set of alternatives to vary. 50, 51, 130

variable electorate allow the set of agents to vary. 46, see also finite initial sequences of

natural numbers

vector values in coordinates, given in bold type, e.g. xxx. 69, 128

vector value substitution the vector (xxx−i,x
′) is xxx with xi replaced by x′. 7

voting situation an anonymous profile, where the names of the voters are not recorded. 67

voting situation representation of a profile (vs) where vs : L∗(A)N →NL
∗(A) and vs(PPP)(P)=

|{i ∈ N : Pi = P}|. 67, 68

weak composition consistency for all {x,y}⊆Y ⊆ X , (1) f (T )∩(X\Y ) = f (T〈x,y〉)∩(X\Y )

and (2) f (T )∩Y 6= /0 ↔ f (T〈x,y〉)∩Y 6= /0. 52, see also composition consistency

weakly determined some discipline’s top rank is always partially reproduced. 16, alias for

weak top dictator of F

weighted majority relation of a profile (W ) W : L∗(A)N →Npairs is defined by W (PPP)(x,y)=

|{i ∈ N : xPiy}|. 65–68, 76, 77, 130
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zero-line marker in a ranking, alternatives above which are approved, below which disap-

proved. 99
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Résumé

Le choix social repose sur

l’agrégation de préférences, par-

fois conflictuelles, afin de produire

une décision collective pour le

groupe. Nous examinons dans

quelle mesure une procédure de

choix social peut être décisive—

c’est-à-dire renvoyer une décision

sans ex-æquo. Pour introduire cette

question, nous prenons l’exemple

d’un concours sportif, pour lequel on

ne veut qu’un seul gagnant.

De manière générale, nous dé-

crivons une méthode pour ren-

dre des procédures plus décisives.

En particulier nous étudions des

procédures basées sur les tournois,

une répresentation spécifique des

préférences.

Avec une interprétation globale des

informations sur les préférences,

nous definissons un concept abstrait,

saisissant le caractère décisif d’une

procédure. D’un autre côté, en

nous basant sur une interprétation

locale des informations disponibles,

nous rendons la propriété célèbre

d’«independance des alternatives

non pertinentes» plus faible en util-

isant certaines restrictions de do-

maine sur les préférences.

Enfin nous combinons deux cadres

d’aggrégation: l’approche «Arrovian»

qui s’appuie sur des préférences

relatives, où les alternatives sont

comparées par paire; et l’approche

que nous nommons «évaluative», où

les alternatives sont jugées dans

l’absolu, indépendamment les uns

des autres.

Mots Clés

théorie du choix social; tournois, car-

actère décisif

Abstract

The problem of social choice con-

cerns aggregating multiple, perhaps

conflicting preferences into a collec-

tive preferences or outcome. We

consider how the information utilised

affects how decisive the procedure

can be—that is, to what extent ties

can be avoided. As an introduction

to these problems, we consider the

problem of selecting the winners of a

sports competition, for which a single

winner is a desirable property.

We describe a general method for

making social choice procedures

more decisive. In particular, we

study procedures based upon pref-

erences represented as structures

called tournaments.

Taking a global view of available in-

formation, we define an abstract con-

cept which captures the notion of the

decisiveness of a procedure. On

the other hand, taking a local view

of available information, we success-

fully weaken the property known as

“(Arrovian) independence of irrele-

vant alternatives” in conjunction with

domain restrictions.

Finally we combine two frame-

works of aggregation; the “Arrovian”

approach wherein preferences are

taken to be binary relations, for which

alternatives are compared in pairs;

and the approach that we call “eval-

uative”, where the alternatives are

given absolute evaluations, each al-

ternative evaluated independently of

the others.

Keywords

social choice theory; tournaments,

decisiveness
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