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Résumé

Le problème de la détermination de la qualité d’une solution partielle se pose dans presque toutes
les approches algorithmiques qui calculent progressivement une solution globale. L’élagage
des arbres de recherche, la preuve des garanties d’approximation et l’efficacité des stratégies
d’énumération sont des approches algorithmiques qui exigent souvent un moyen approprié de
décider si une solution partielle donnée est un candidat raisonnable à l’extension à une solution
globale, de qualité assurée. Dans cette thèse, nous considérons cette exigence d’"extensibilité"
dans le contexte des problèmes d’optimisation de graphes.

Nous étudions un type particulier de problèmes d’optimisation, appelés problèmes d’extension

pour la classe des problèmes de graphes héréditaires et anti-héréditaires. Dans la version
d’extension d’un problème Π de graphe anti-héréditaire ou héréditaire, nous considérons une
instance G = (V, E) de Π avec un ensemble supplémentaire spécifié de pré-solution U (qui est un
sous-ensemble de E ou V , selon le problème) et le but est de faire de la pré-solution une solution
minimal (ou maximal) de valeur optimum.

Nous considérons un grand nombre de problèmes d’optimisation sur les graphes dans le
cadre des problèmes d’extension. Contredisant peut-être l’intuition, ces problèmes ont ten-
dance à être NP-difficile, même quand le problème d’optimisation sous-jacent peut être résolu en
temps polynomial. Nous présentons de nombreux résultats positifs et négatifs de NP-difficulté
et d’approximation pour différents scénarios d’entrée. De plus, nous étudions la complex-
ité paramétrée des problèmes d’extension par rapport à la taille des pré-solutions, ainsi que
l’optimalité de certains algorithmes exacts sous l’hypothèse de temps exponentielle.

Parfois, il n’y a pas de solution réalisable à un problème d’extension, ce qui rend la question
de l’existence de telles extensions intéressante. Ainsi, la version de décision d’un problème

d’extension pour un problème de graphe Π anti-héréditaire (ou héréditaire), peut être formulé
comme suit: Étant donnés un graphe G et une pré-solution U, le problème consiste à trouver une
solution minimale (resp. maximale) S tel que S ⊇ U (resp. S ⊆ U). À cet égard, nous étudions
quelques problèmes classiques de graphes tels que le problème de couverture par sommets,

de stable, d’ensemble dominant, de couplages et de couverture par arêtes. Nous présentons
aussi quelques résultats positifs et négatifs de NP-difficulté et de complexité paramétrée. Nous
considérons des scénarios très restreints, tels que des restrictions de degré ou de topologie,
ainsi que la complexité paramétrée par rapport à la taille de la pré-solution et à la largeur
d’arborescence du graphe. Considérant la possibilité que certains ensembles U ne soient pas
extensibles à une solution minimale, on pourrait se demander si U est un mauvais choix pour un
problème d’extension. Pour cela, nous avons défini le concept du prix de l’extension (PoE), et
proposé quelques résultats d’inapproximation.

Nous étudions également quelques problèmes de graphes dans le cadre de minimum-maximal

et maximum-minimal, qui est un cas particulier des problèmes d’optimisation naturels liés au
PoE, lorsque la pré-solution U est vide ou lorsque U = V (resp. U = E selon le problème).
Enfin, nous proposons un cadre général basé sur les ordres partiels.
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Abstract

The problem of determining the quality of a partial solution occurs in almost every algorithmic
approach that gradually computes a global solution. Pruning search trees, proving approximation
guarantees, or the efficiency of enumeration strategies usually require a suitable way to decide if a
given partial solution is a reasonable candidate to pursue for extension to a global one, of assured
quality. In this thesis, we consider this “extendibility” requirement for efficient computation,
especially in the context of graph optimization problems.

We study a special type of optimization problems, called extension problems for the class
of hereditary and anti-hereditary graph problems. Informally, in the extension version of an
anti-hereditary (resp. a hereditary) graph problem Π, we consider an instance G = (V, E) of Π
with an additionally specified set of pre-solutions U (which is a subset of E or V , depending on
the problem), while the goal is to extend the pre-solution to an (inclusion-wise) minimal (resp.
maximal) one of optimum value.

We consider a large number of optimization problems on graphs within the framework of
extension problems. Possibly contradicting intuition, these problems tend to be NP-hard, even
for problems where the underlying optimization problem can be solved in polynomial time. We
present many positive/negative hardness and approximation results for different input scenarios.
Moreover, the parameterized complexity of extension problems with respect to the size of the
pre-solutions, as well as the optimality of some exact algorithms under the Exponential-Time
Hypothesis (ETH) are studied.

Sometimes there is no feasible solution for an instance of an extension problem which makes
the question of the existence of such extensions interesting. Hence, the decision extension problem

for an anti-hereditary (resp. a hereditary) graph problemΠ, is given in advance a graph G together
with a pre-solution U, and it is asked whether a minimal (resp. maximal) solution S exists such
that S ⊇ U (resp. S ⊆ U). In this regard, we investigate some classical graph problems such
as vertex cover, independent set, dominating set, edge matching and edge cover, etc, and present
some positive and negative hardness and parameterized results. All complexity considerations
took place in very restricted scenarios, such as degree or topological restrictions, as well as in
a parameterized setting with respect to the size of pre-solution along with the treewidth of the
given graph. Considering the possibility that some set U might not be extendable to any minimal
solution, one might ask how wrong U is as a choice for an extension problem. We defined the
concept price of extension (PoE), and find some (in-)approximability results in this regard.

We also study some graph problems in the framework of minimum-maximal and maximum-

minimal, which is a particular case of the natural optimization problems related to PoE in our
framework, when the pre-solution is empty-set or whole-set. Finally, we propose a general
framework based on partial-ordering.
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Résumé étendu

Ce manuscrit retrace une étude générale du comportement des problèmes d’optimisation dans
les graphes avec une solution partielle donnée, plus généralement connus sous le nom de prob-

lèmes d’extension. De nombreux problèmes d’extension sont étudiés dans la littérature – de
tels problèmes impliquent généralement l’optimisation d’une fonction objectif dans l’espace des
solutions réalisables contenant une solution partielle ou excluant d’autres éléments. Pour les
problèmes d’extension contenant une solution partielle (également appelés problèmes de com-
plétion), il existe de nombreux résultats concernant les problèmes de coloration [23, 109], de
planification [84], de routage [7, 8, 113] ainsi que d’autres problèmes combinatoires examinés
dans [64, 161]. Une recherche approfondie a été menée sur le fameux problème d’ Extension

de pré-coloration (en anglais Precoloring Extension) dans différentes classes de graphes.
Dans ce problème, on considère un graphe et une coloration propre partielle donnés en entrée
et on cherche à l’étendre à l’ensemble du graphe. [139, 109, 146, 14, 159, 138, 23]. À titre
d’exemple, dans les articles de [139, 109], il a été démontré que ce problème est NP-difficile
dans les graphes d’intervalles propres lorsque le nombre de couleurs de la solution partielle n’est
pas borné. Toujours à titre d’exemple, le problème Precoloring Extension est polynomial
dans graphes d’intervalles lorsque chaque couleur n’apparaît qu’une seule fois dans la solution
partielle mais il devient NP-difficile dès lors qu’une couleur de l’ensemble pré-coloré est utilisée
deux fois [23]. Pour les graphes bipartis, le problème est NP-difficile si l’ensemble pré-coloré
comprend 3 sommets de couleurs distinctes.

Une variante d’extension du problème du plus court cycle (Shortest Cycle) consiste en un
graphe pondéré G = (V, E,w) et un chemin U ⊆ (E∪V), le but étant d’étendre U à un cycle simple
ayant un poids minimum. Bien que ce problème soit NP-difficile, il s’avère FPT pour le paramètre
naturel qui est le nombre de sommets ou arêtes dans le cycle le plus court [24]. Dans le cadre
des problèmes d’extension, une version généralisée du Problème du voyageur de commerce

(Travelling salesman Problem (TSP)) connu sous le nom du Problème général de routage

(General routing problem (GPR) a été considéré du point de vue de l’approximation. Etant
donné un graphe G = (V, E) et deux sous-ensembles V ′ ⊆ V , E′ ⊆ E, l’objectif du GRP est de
trouver un cycle de coût minimum qui passe par tous les sommets de V ′ et qui contient chaque
arête de E′. Dans [113], à l’aide de l’algorithme de Christofides pour le TSP avec inégalité
triangulaire, les auteurs présentent une 3

2
-approximation pour le GRP. En outre, le problème

du Cluster ordonné du voyageur de commerce (Ordered Cluster Traveling Salesman

(OCTSP] a également été étudié dans la littérature [7, 8, 91, 99]. Nous considérons comme entrée
dans ce problème un graphe pondéré G = (V, E,w) et une partition ordonnée des sommets de
G en k groupes C1, · · · ,Ck. Le but de l’OCTSP est de trouver un tour simple passant par tous
les sommets et ayant un poids minimum de telle sorte que l’ordre des sommets soit respecté, en
d’autres termes, le tour visite d’abord tous les sommets en C1, puis tous les sommets en C2 , · · · ,
et enfin tous les sommets du cluster Ck. D’autres types d’extension s’intéressent aux problèmes
d’optimisation dans des graphes de forçage ou de conflit [62], dans lesquels, pour une instance
donnée du problème du chemin le plus court, une contrainte pour une paire de sommets distincts
{u, v} est appelée une contrainte de conflit (resp. forçage) si au maximum (resp. Au moins) un
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sommet parmi u ou v est traversé par ce chemin.

Dans cette thèse, de nombreux problèmes d’optimisation héréditaires et anti-héréditaires
sont étudiés dans le cadre des problèmes d’extension. Formellement, un problème d’optimisation
Π = 〈I, F, opt,m〉 est héréditaire (resp.anti-héréditaire) si pour toute instance x ∈ I, l’ensemble
des solutions réalisables F(x) est fermé pour l’inclusion d’ensemble (resp.l’exclusion), c’est-à-
dire pour toute instance x ∈ I et toute solution réalisable y ∈ F(x) y′ ∈ F(x) pour chaque y′ ⊆ y

(resp. y′ ⊇ y). Dans notre cas, l’instance x représente un graphe G = (V, E) et F(G) ⊆ 2V

ou F(G) ⊆ 2E selon le contexte. Par exemple, Maximum Independant Set est un problème
héréditaire de graphe, car dans un graphe G = (V, E), l’ensemble S ′ ⊆ S est indépendant si S ⊆ V

est un ensemble indépendant, tandis que Min VC est un problème anti-héréditaire car pour un
graphe donné G = (V, E), S ′ ⊇ S est une couverture par sommets de G si S ⊆ V l’est aussi.

Dans le cadre de notre étude, nous nous concentrons sur des solutions minimales et maximales
en termes d’inclusion. Étant donné un problème d’optimisation de graphes Π = 〈I, F, opt,m〉,
pour une instance G ∈ I et un ensemble de solutions réalisables F(G), l’ensemble des solutions
réalisables minimales (resp. Maximales) en termes d’inclusion est désigné par µ(G) (resp. ψ(G))
et défini comme suit :

• µ(G) = {y ∈ F(G) : ((y′ ⊆ y) ∧ (y′ ∈ F(G))→ y′ = y}

• ψ(G) = {y ∈ F(G) : ((y′ ⊇ y) ∧ (y′ ∈ F(G))→ y′ = y}

Soit Π un problème d’optimisation anti-héréditaire (resp. héréditaire). Pour une instance
G ∈ I de Π, une instance du problème d’extension Π′ inclut G ainsi qu’une pré-solution U. Cette
dernière représente un sous-ensemble d’un élément de l’entrée correctement choisi en fonction du
problème considéré. Par exemple, pour le problème Minimum Vertex Cover, chaque instance
contient un graphe G = (V, E) et un sous-ensemble U ⊆ V , alors que pour le problème Max EM,
l’instance inclut un graphe G = (V, E) et une solution partielle U ⊆ E. Ainsi, lorsqu’il s’agit
d’un problème anti-héréditaire Π (resp. un problème héréditaire), la pré-solution U, est appelée
un ensemble forcé. (resp.un ensemble co-interdit).

Dans ce chapitre, nous présentons une définition formelle de tout type de problème d’optimisation
ou de décision dans le cadre de l’extension. Nous essayons également de passer en revue toutes
les études connexes dans chaque section. Nous clôturons un chapitre par un bref aperçu des
résultats et des problèmes qui seront présentés dans les chapitres suivants.

Problèmes d’optimisation d’extension

Dans cette partie, nous définissons les problèmes d’optimisation de graphes liés aux problèmes
d’extension. Soit Π un problème d’optimisation de graphe anti-héréditaire (resp. héréditaire).
Le problème d’extension Π′ noté par Min Ext Π (resp.Max Ext Π) se compose d’une instance
G de Π alliant un ensemble forcé (forced set) (resp. un ensemble co-interdit (a co-forbidden

set)1 U ⊆ V (ou E selon le contexte) comme entrée, et le but de Π′ est de trouver une solution

1U est appelé ensemble co-interdit(co forbidden set).
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Figure 1: Le graphe G = (V, E) comme une instance de Max Ext IS et Min Ext VC.

minimale (resp. maximale) S de sorte que U ⊆ S (resp. U ⊇ S ). Par exemple, pour les deux
problèmes Min VC et Max IS, les variantes d’extension sont définies comme suit :

Min Ext VC

Entrée: Un graphe G = (V, E), un forced set U ⊆ V .
Solution: Une couverture par sommets minimale S ⊆ V telle que U ⊆ S .
Sortie: |S | minimisé.

Max Ext IS

Entrée : Un graphe G = (V, E), un co-forbidden set U ⊆ V .
Solution : un stable maximal S ⊆ V telle que S ⊆ U.
Sortie : |S | maximisé.

Il est important de noter que la minimalité et la maximalité sont considérées par rapport à
l’ensemble des solutions réalisables. Ainsi, pour une instance (G,U) de Min Ext VC, un sous-
ensemble S ⊇ U est une couverture par sommet minimale si S − v n’est pas une couverture par
sommet pour tout v ∈ S . Un autre problème d’extension associé à la couverture par sommet
est défini par S ⊇ U, où S est une couverture par sommet et S − v n’est pas une couverture
par sommet pour tout v ∈ S \ U. Dans ce cas, nous limitons toutes les solutions réalisables
pour contenir U, avec le but est d’optimiser la partie solution de U ; cette variante a été étudiée
dans [161, 64]. Weller et al. ont défini une variante des problèmes d’extension, où, pour une
solution réalisable S du problème, le but est d’optimiser la partie résiduelle (S \ U) [161].
Ces auteurs ont étudié quelques problèmes classiques d’optimisation ainsi que la description de
l’approximation résiduelle dans le cadre des problèmes d’extension. Dans [64], les auteurs ont
ajouté une autre contrainte au problème, dans laquelle, pour une instance (G,U, F) d’un problème
Π, toute solution possible S contient tous les membres de U tandis que S ∩ F = ∅. De nombreux
problèmes d’optimisation dans les graphes ont été étudiés dans ce cadre du point de vue de
complexité exacte et de l’approximation. Concernant un autre type de problème d’extension
considéré dans [57], pour un problème de graphe Π. Dans ce contexte, une instance consiste en
un graphe G = (V, E) et une partition ΠV (resp. ΠE) de ses sommets (resp. de ses arêtes), et toute
solution S contenant un élément (sommet ou arête) de toute partition doit également contenir
toutes les autres. Donnons maintenant un exemple illustrant le contexte de notre étude.

Example 0.1. Considérons le graphe présenté dans la Figure 1 comme exemple pour Min Ext

VC et Max Ext IS. Supposons d’abord que G ainsi que l’ensemble forcé U = {a, b} est une
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instance de Min Ext VC. La seule couverture par somment minimale qui puisse contenir {a, b},
est {a, b, e, d}, par conséquent la taille de la solution optimale de Min Ext VC pour l’instance
(G,U) est 4. Cependant, dans le cadre de l’extension proposée par Weller et al. [161]. (en se
concentrant uniquement sur la partie résiduelle), la couverture par sommets optimale contenant
U est {a, b, c}. Il y a deux couvertures par sommets minimale de G contenant U, {a, b, d} et
{a, b, c, e, f }. Comme notre but est de trouver une solution réalisable de taille minimum, {a, b, d}
est la solution optimale. Supposons maintenant que le graphe G avec l’ensemble co-interdit
U = {c, d, e, a} est une instance de Max Ext IS. Dans ce cas, il y a deux ensembles indépendants
maximaux qui incluent U à savoir, {a, e, d}, et {c}. Ainsi, la taille de la solution optimale de Max

Ext IS pour l’instance (G,U) est de 3.

Dans ce qui suit, nous définissons formellement extΠ(G,U) pour les problèmes héréditaires et
anti-héréditaires. Soit Π un problème de graphes anti-héréditaire (resp. héréditaire), G = (V, E)

est un graphe simple et U ⊆ V ou E (selon le contexte),et extΠ(G,U) est un sous-ensemble
S ⊆ V or E (selon le contexte) de solutions minimales (resp. maximales) de Π telles que S ⊇ U

(resp. S ⊆ U). SoitΠ un problème de graphe anti-héréditaire, soit G = (V, E) un graphe simple et
soit U ⊆ V ou E (selon le contexte). Alors, extΠ(G,U) est un sous-ensemble S ⊆ V ou E (selon
le contexte) de solutions minimales de Π telles que S ⊇ U. Maintenant que Π est défini comme
un problème de graphe héréditaire, où G = (V, E) est un graphe simple et U ⊆ V ou E (selon le
contexte). Dès lors, extΠ(G,U) est un sous-ensemble S ⊆ V or E (selon le contexte) de solutions
maximales de Π telles que S ⊆ U.

Parfois, pour une instance (G,U) d’un problème d’extension Π, extΠ(G,U) = ∅, en d’autres
termes il n’existe pas de solution possible pour le problème, ceci suscite un intérêt particulier
pour la question d’existence de ces extensions. Cependant, si l’on commence par une solution
partielle triviale, il est généralement facile de trouver la réponse à cette question. Dans la section
suivante, nous définissons les problèmes de décision associés aux problèmes abordés dans le
cadre de cette thèse.

Problèmes de décision associés aux problèmes d’extension

La question de savoir si une solution partielle donnée à un problème peut être raisonnablement
étendue a été développée dans de nombreuses approches algorithmiques destinées aux problèmes
d’optimisation. Par exemple, en énumérant les ensembles dominants minimaux d’un graphe
G = (V, E), on arrive généralement au problème de décision dans lequel on cherche à savoir
étant donné pour ensemble de sommets U ⊆ V , s’il existe un ensemble dominant minimal S avec
U ⊆ S . Pour un problème héréditaire (resp. anti-héréditaire) donné Π, le problème de décision

d’extension pour Π est dénoté Ext Π. De manière informelle, une entrée de Ext Π consiste
en une instance G = (V, E) de Π, avec une pré-solution U ⊆ V( ou E selon le contexte) et le
problème de décision associé s’intéresse à l’existence d’une solution minimale (resp. maximale)
S de sorte que U ⊆ S (resp. U ⊇ S ). Par exemple, pour les problèmes de couverture par sommets
et de stable, les versions d’extension qui leur sont associées Ext VC et Ext IS sont formellement
définies comme suit :
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Ext VC

Entrée: Un graphe G = (V, E) et un ensemble forcé U ⊆ V .
Question: Existe-t-il une couverture par sommet minimale S de telle sorte que U ⊆ S ?

Ext IS

Entrée: Un graphe G = (V, E) et un ensemble co-interdit U ⊆ V .
Question: Existe-t-il un stable maximal S telle que U ⊇ S ?

Dans la Remark 4.1, nous montrerons que (G,U) est une instance positive d’ Ext VC si
et seulement si (G,V \ U) est une instance positive du problème Ext IS. Pour clarifier, nous
présentons un exemple ci-après.

Example 0.2. Considérons le graphe G illustré dans la Figure 2, et supposons que (G, {g, h, f })
et (G, {g, a, e}) sont deux instances de ExtVC. Il est clair que {g, h, f } peut être étendu à une
couverture par sommet minimale pour G, car {g, h, h, f , d, b} est une couverture par sommet
minimale contenant U. Par contre, (G, {g, a, e}) est une instance négative de Ext VC, c’est à
dire qu’il n’existe aucune couverture par sommet minimale dans G qui peut contenir {g, a, e, e}.
Supposons que (G, {a, h, c, f , e}) et (G, {b, h, c, f , d}) sont deux instances de Ext IS. Il est facile
de montrer que (G, {a, h, c, f , e}) est une instance positive de Ext IS, car {a, c, e} est un stable
maximal. Toutefois, il n’existe pas de stable maximal inclus dans {b, h, c, f , d}, car au moins un
des sommets {a, e, g} doit être ajouté au stable de {b, h, c, f , d}. Celui-là appartient forcément à
un ensemble indépendant plus grand, donc (G, {b, h, c, f , d}) est une non-instance de ExtIS.

a b c d e

fgh

Figure 2: Le graphe G = (V, E) comme une instance de Ext IS et Ext VC.

Ce type de problème de décision lié à un problème d’optimisation d’extension est rencontré
dans de nombreux algorithmes d’énumération efficaces : lors de l’énumération de toutes les
solutions minimales pour une instance d’un problème, il est généralement supposé qu’on dispose
d’une pré-solution U, s’il existe une solution minimale S avec U ⊆ S . Ce problème de décision
a été examiné dans de nombreuses études dans le cadre du dénombrement, par exemple, dans les
travaux suivants: [31, 32, 33, 59, 80, 92, 93, 95, 120, 119, 142, 152]. Le problème d’extension
du problème de couverture par sommet appelé Minimal Vertex Cover Extension(MVCExt),
consiste en un graphe G = (V, E) et un ensemble Y ⊆ V en entrée avec l’objectif de trouver tous
les ensembles X jouissant de ces deux propriétés : (1) X ⊇ Y , et (2) X est une couverture par
sommet minimale de G. Soit k-MVCExt le même problème avec une contrainte supplémentaire
(3) |X| ≤ k. Ces deux problèmes ont été étudiés dans [59]. Plus généralement, la question
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de l’extension des solutions minimales s’est posée dans le contexte des preuves de complexité
pour les algorithmes de dénombrement (efficace) des formules booléennes, des matroïdes ainsi
d’autres cas similaires; voir [32, 120].

D’ailleurs, dans [32], il est démontré que l’extension des solutions partielles est NP-difficile
pour calculer les principaux impliquants du dual d’une fonction booléenne; un problème qui
peut aussi être vu comme une tentative pour trouver un ensemble intersectant minimal (hitting
set) pour les principaux impliquants de la fonction d’entrée. Interprétée de cette façon, la
preuve de [32] résulte en la preuve de la NP-difficulté pour le problème d’extension minimale
pour 3-Hitting Set (bien que ce problème peut être résolu en temps polynomial quand |U | est
constant). Ce résultat a été étendu dans [17] pour prouver la NP-difficulté de calculer l’extension
de sous-ensembles de sommets à des ensembles dominants minimaux (Ext DS), même limitées
aux graphes planaire cubiques. De même, il a été montré dans [16] que les extensions des
couvertures de sommets minimales limitées aux graphes cubiques planaires sont NP-difficile.
La première étudesystématique de ce type de problèmes a été présentée dans [41] fournissant un
certain nombre d’exemples de ce type de problèmes.

Un système indépendant est un système défini comme suit: (V, E), E ⊆ 2V , qui est héréditaire
pour l’inclusion. Le problème d’extension Ext Ind Sys (aussi appelé Flashlight) du système
indépendant a été proposé dans [131]. Dans ce problème, étant donné en entrée deux sous-
ensembles X,Y ⊆ V , on cherche l’existence d’un stable maximal incluant X qui n’intersecte pas
Y . Lawler et al. ont prouvé que Ext Ind Sys est NP-complet, même si X = ∅ [131]. Afin
d’énumérer tous les ensembles dominants minimaux (en termes d’inclusion) pour un graphe
donné, Kanté et al. ont étudié une restriction de Ext Ind Sys qui consiste à trouver un ensemble
dominant minimal contenant X. Les auteurs ont prouvé que Ext DS est NP-complet, et ce même
pour les classes de graphes spéciales comme les split graphs, les graphes cordaux et les line
graphs [117, 116]. De plus, ils ont proposé un algorithme linéaire pour les split graphs lorsque
X,Y est une partition de la partie clique du graphe [115].

Un système indépendant est un système défini comme suit: (V, E), E ⊆ 2V , qui est héréditaire
pour l’inclusion. Le problème d’extension Ext Ind Sys (aussi appelé Flashlight) du système
indépendant a été proposé dans [131]. Dans ce problème, étant donné en entrée deux sous-
ensembles X,Y ⊆ V , on cherche l’existence d’un stable maximal incluant X qui n’intersecte pas
Y . Lawler et al. ont prouvé que Ext Ind Sys est NP-complet, même si X = ∅ [131]. Afin
d’énumérer tous les ensembles dominants minimaux (en termes d’inclusion) pour un graphe
donné, Kanté et al. ont étudié une restriction de Ext Ind Sys qui consiste à trouver un ensemble
dominant minimal contenant X. Les auteurs ont prouvé que Ext DS est NP-complet, et ce même
pour les classes de graphes spéciales comme les split graphs, les graphes cordaux et les line
graphs [117, 116]. De plus, ils ont proposé un algorithme linéaire pour les split graphs lorsque
X,Y est une partition de la clique. Le cas où l’ensemble forcé U satisfait certaines propriétés
comme le fait d’être une clique ou un stable a déjà été étudié sous un certains aspects :

• Clique Forte (Strong Clique) Une clique forte (strong clique) dans un graphe est une clique
qui intersecte tout stable maximal. Dans [107], Hujdurovic et al. ont étudié six problèmes
de décision liés aux cliques fortes. Ils ont prouvé qu’une clique C dans un graphe G n’est

12



pas forte si et seulement si elle est dominée par un stable I ⊆ V(G) \C. En d’autres termes,
ils ont montré qu’une clique C est forte si et seulement s’il y a une couverture par sommet
minimale de G s’étendant à C. De plus, en introduisant la variante d’extension du problème
de la clique forte, les auteurs ont décrit une version généralisée de leurs problèmes. Ext

Clique prend en entrée un graphe G et une clique C de G, et cherche si G contient une forte
clique C′ ⊇ C. Un aperçu de la clique forte se trouve dans [M. Milanič, Strong cliques and
strong stable sets in graphs, chapitre à paraître en: Topics in Algorithmic Graph Theory,
Cambridge University Press, edited by L. Beineke, M. Golumbic, R. Wilson].

• Stable disjoint (Disjoint Independent set) Le problème de décision qui cherche si un
graphe contient une paire de stables maximum et disjoints est un vieux problème dans la
théorie des graphes qui a été introduit par Berge au début des années 70. Récemment, de
nombreuses études ont été réalisées afin de trouver une paire de sous-ensembles disjoints
maximum/minimum de graphes satisfaisant la même propriété [53, 65, 150, 108]. Par
exemple, dans [105], les auteurs prouvent que le problème de décision qui cherche si un
graphe a deux stables maximums disjoints est un problème NP-complet. En supposant
que l’un des sous-ensembles disjoints est donné à l’avance, le problème se transforme
en problème de décision d’extension. De cette version, on suppose qu’on a un graphe
G = (V, E) ayant un stable maximal x ⊆ V connu a priori, et on demande si G a un stable
maximal inclus dans V \ X.

• Extension de représentation partielle (Extension of partial representation). Dans le
contexte de d’étendre une représentation partielle donnée en une représentation complète
pour une sous-classe de graphes d’intersection, plusieurs résultats sont proposés dans
[6, 124, 124, 124, 121, 123, 48]. Par exemple, dans [124, 122], le problème s’intéresse
à la question de si la représentation partielle peut être étendue à une représentation du
graphe entier et ce dans un graphe d’intervalle donné avec quelques intervalles pré-dessinés
en entrée. Dans [122, 124], les auteurs proposent un algorithme linéaire pour étendre
respectivement les représentations d’intervalles propre et des graphes d’intervalles en
utilisant des arbres PQ. Dans [122], les auteurs ont également introduit un problème plus
général de représentations bornées des graphes d’intervalles unitaires qui s’avère NP-
complet, où l’entrée limite les positions de certains intervalles par des bornes inférieure et
supérieure.

Prix de l’extension

Il est possible que certains ensembles U ne soient pas extensibles à une solution minimale
ou maximale, une question triviale qui se pose tente de savoir à quelle point l’ensemble U

se rapproche d’un ensemble extensible. Afin d’évaluer la distance séparant U d’un ensemble
extensible, on peut estimer le nombre d’élements de U qui doivent être modifiés pour avoir
une solution minimale. Décrit de manière différente pour les problèmes d’extension que nous
abordons, nous voulons discuter les méthodes de quantification qui permettent d’évaluer le
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nombre d’éléments de U qui nécessitent d’être supprimés (resp. le nombre d’éléments de X \ U

qui doivent être ajoutés, où X est l’univers) pour un problème anti-héréditaire (resp. héréditaire),
afin d’obtenir une instance positive en termes d’inclusion pour le problème d’extension. A cet
égard, nous définissons une nouvelle notion de prix d’extension (Price of extension PoE), afin
d’expliquer l’effet de la contrainte supplémentaire (sur la solution partielle) sur la possibilité de
trouver des solutions minimales (resp. maximales). Une approche similaire a déjà été utilisée
dans le passé sous le nom du prix de connectivité (the Price of Connectivity) dans [38] pour
le contexte de la connectivité. Ceci est dû à son importance majeure dans les applications
de routage; cette notion a été introduite dans [38] pour Min VC et est définie comme le ratio
maximum exprimé par le rapport entre le nombre de sommets constituant une couverture par
sommets connectés et le nombre de sommets d’une couverture par sommets simple. Dans notre
contexte, le but de la PoEest d’évaluer le rapprochement entre les sous-ensembles extensibles,
calculables à partir de la solution partielle connue, sont proches de U ou des sous-ensembles
extensibles les plus larges possibles obtenus à partir de U. Pour aborder formellement ce
concept, nous présentons les problèmes d’optimisation suivants. À partir d’une instance (G,U)

d’un problème anti-héréditaire (resp. héréditaire) Π, deux nouveaux problèmes d’optimisation
dénotés par ExtmaxΠ (resp.ExtminΠ) et définis comme suit :

ExtmaxΠ

Entrée: Une instance x ainsi qu’un ensemble forcé U.
Solutions: Une solution minimale S de G = (V, E).
Sortie: Une solution S qui maximise |S ∩ U |.

ExtminΠ

Entrée: une instance x avec un ensemble co-interdit U.
Solutions: Une solution Maximale S de x.
Sortie: Une solution S qui minimise |S ∪ U |.

Pour éclaircir les définitions développées ci-avant, nous introduisant l’exemple suivant.

Example 0.3. Supposons que (G,U) est une instance de Extmax VC où G = (V, E) est le graphe
représenté dans la Figure 3 et U ⊆ V = {c, d, e}. On peut voir que (G,U) est une instance négative
de Ext VC alors que les ensembles de sommets {c, d}, {e} sont extensibles à une couverture par
sommet minimale. Comme notre objectif est de trouver une couverture par sommet minimale
contenant un nombre maximal de sommets de U, la solution optimale est {b, c, d}. A présent,
considérons (G,U), où U = {a, b}, comme une instance de ExtminIS. Supposons que S est un
stable maximal de G. Si a ∈ S , alors par maximalité e ∈ S , et si b ∈ S , alors {c, d} ⊂ S . De
manière similaire au problème ExtminIS, nous cherchons un stable maximal qui inclut un nombre
minimal de sommets en dehors de U, alors la solution optimale de ExtminIS pour (G,U) est {a, e}.

Pour S = ExtmaxΠ ou ExtminΠ, on note optS (x,U) la valeur de la solution optimale. Notons
que dans les deux problèmes mentionnés optS (x,U) = |U | si et seulement si (x,U) est une instance
postive de Ext Π. Ainsi, on peut conclure qu’un problème anti-héréditaires (resp. héréditaires)
Π, ExtmaxΠ (resp.ExtminΠ) est NP-difficile dès lors que Ext Π est NP-complet.
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c d e

Figure 3: Le graphe G = (V, E) comme instance pour ExtmaxVC et ExtmaxIS.

Il est aisé de voir que les solutions optimales de ExtmaxVC et ExtminIS sont liés par une
relation analogue à celle existante entre α(G) et τ(G) (i.e. le nombre de sommets dans la
couverture par sommets). Par conséquent, pour tout graphe G = (V, E) ayant n sommets, nous
avons optExtmaxVC(G,U) + optExtminIS(G,V \ U) = n.

Le prix de l’extension PoE est défini comme le ratio d’approximation, i.e. apx

opt
. Nous stipulons

que Π admets un ρ-PoE polynomial si pour toute instance (x,U), on peut trouver une solution
S de G en temps polynomial qui satisfait PoE(S ) ≥ ρ pour ExtmaxΠ (resp. PoE(S ) ≤ ρ pour
ExtminΠ). Ceci est présenté formellement dans la définition ci-après :

Definition 0.4. Pour une instance (x,U) de ExtmaxΠ et (resp. ExtminΠ), le prix de l’extension

(PoE) d’une solution minimale (resp. maximale) S deΠ sur x est défini par PoE(S ) := |S∩U |
optExtmaxΠ(x,U)

(resp. PoE(S ) := |S∪U |
optExtminΠ

(x,U)
).

Dans la section qui suit, nous introduirons un cadre de travail de maximum-minimal (max-
min) et minimum-maximal (min-max) et nous montrons la relation qui peut exister entre ExtmaxΠ

et ExtminΠ dans ce contexte.

Problèmes d’optimisation max-min et min-max dans les graphes

Dans cette section, nous abordons des problèmes d’optimisation dits max-min, min-max dans les
graphes issus de la thèse de Manlove [136]. Par la suite, nous décrivons la relation entre les
problèmes d’extension et d’optimisation min-max ou max-min. Nous terminons cette section
par un passage en revue des principaux résultats liés aux problèmes d’optimisation max-min ou
min-max.

Nous présentons dans cette partie la manière qui nous permet d’obtenir un problème d’optimisation
Π
′ de min-max à partir d’un problème source Π.

Definition 0.5. SoitΠ = 〈I, F, opt,m〉 un problème d’optimisation héréditaire ou anti-héréditaire.

Alors le nouveau problème d’optimisation estΠ′ = 〈I, F′, opt′,m〉, où pour chaque instance G ∈ I:

• F′(G) :=















µ(G) si Π est un problème anti-héréditaire

ψ(G) si Π est un problème héréditaire

• opt′ :=















min si opt = max

max si opt = min

15



a

b

c

d

e

f

Figure 4: Le graphe G comme instance de Max-min VC and Min-Max IS.

Si opt = max alors le nouveau problème Π′ est un problème min-max appelé aussi lower Π

et si opt = min, Π′ est un problème max-min appelé aussi upper Π dans le cadre proposé par
Manlove dans [136]. L’auteur a étudié de nombreux problèmes de manière systématique, en
considérant différents ordres partiels( voir [137, 112] pour la coloration et 12 pour les problèmes
de couverture et d’indépendance dans les graphes. Comme exemples d’ordres partiels qui ne
sont pas héréditaires ou anti-héréditaires le problème de k-échange pour un stable[135] ou les
problèmes appelés Somme de sous-ensemble maximale avec contraintes digraphique [97]. Une
série d’autres problèmes qui ne sont ni héréditaires ni anti-héréditaires peuvent être trouvés dans
[136]. Ceux-là sont discutés dans le Chapitre 6. Par exemple, si Π est Min VC (resp. Max IS),
alors Π′ s’intéresse à trouver une couverture par sommet minimale (resp. stable maximal) de
taille maximum (resp. minimum). Les deux nouveaux problèmes ont été formellement définis
comme suit:

Max-Min VC (aussi appelé Upper VC)
Entrée: Un graphe G = (V, E).
Solution: une couverture par sommet minimale S ⊆ V .
Sortie: |S | maximisé.

Min-Max IS (aussi appelé Lower IS)
Entrée: Un graphe G = (V, E).
Solution: Un stable maximal S ⊆ V .
Sortie: |S | minimisé.

Considérons l’exemple suivant pour plus de clarté.

Example 0.6. Soit le graphe de la Figure 4 qu’on considère comme une instance des deux prob-
lèmes Max-Min VC et Min-Max IS. Il y a 3 couvertures par sommets minimales différentes de
G, {a, e, f }, {a, d} et {d, b, c} alors que dans le problème Max-Min VC, on cherche une couver-
ture par sommet minimale de taille maximum, alors la taille d’une solution optimale est 3 dans
ce cas précis. En ce qui concerne le Min-Max IS il existe aussi 3 solutions réalisables pour
G, {b, c, d}, {a, e, f } et {b, c, e, f }, car on cherche, pour le problème de Min-Max IS, un stable
maximum de taille minimale, donc la taille d’une solution optimale est de 3.

Un cas particulier de ExtminΠ (resp.ExtmaxΠ) pour une instance (x,U) se produit quand la
solution partielle U est l’ensemble vide (resp. l’ensemble entier). Ainsi, si Π est un problème
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anti-héréditaire, tel ExtmaxΠ ayant (x,U) comme instance, alors celui-ci est exactement équivalent
au fameux problème Max-MinΠ ou bien au UpperΠ quand U est l’ensemble entier. De plus, siΠ
est un problème héréditaire, comme ExtminΠ avec (x,U) comme instance, celui-ci est exactement
équivalent à Min-Max Π ou Lower Π quand U est l’ensemble entier. Par conséquent, ExtmaxΠ

contient le Max-Min Π pour un problème anti-héréditaire ExtminΠ contient le Min-Max Π pour
un problème héréditaire Π.

Supposons que G = (V, E) est une instance de deux problèmes Min VC et Max IS. Le but
de Extmaxmax

VC, dans le cas où la solution partielle U = V , est de trouver une couverture par
sommet minimale contenant le nombre maximum de sommets de V , qui est une solution pour
Max-Min VC, tandis que le but de ExtminIS, quand U = ∅, est de trouver une couverture par
sommet maximale contenant le nombre minimum de sommets de V qui est une solution pour
Min-Max IS.

Considérer une version max-min ou min-max d’un problème en "retournant" l’objectif n’est
pas une idée nouvelle; en effet, une telle question a déjà été abordée pour de nombreux problèmes
classiques d’optimisation. Certains des exemples les plus connus incluent le problème Min-

Max IS [34]. Le problème Min-MaxVC [30, 163], le problème Lazy Bureaucrat qui est
une version min-max du problème Somme de sous-ensemble qui cherche à savoir si pour un
ensemble d’entiers w1, · · · ,wn et une valeur W, il existe un sous-ensemble dont la somme des
éléments est exactement W? [86, 96], le problème Max-Min DS [2, 17], et le problème Min-Max

Matching [162].

Le problème Min-Max IS, aussi appelé l’ensemble dominant et stable minimum (minimum

independent dominating set) (Min ISDS) cherche, étant donné un graphe G = (V, E), un sous-
ensemble S ⊆ V de taille minimale qui est simultanément indépendant et dominant. Du point
de vue complexité, la difficulté de la résolution exacte de Min ISDS est équivalente à Upper

VC[137]. Toutefois, ces deux problèmes semblent avoir des comportements qui divergent en
termes d’approximation et de complexité paramétrée [12]. Bien que Min ISDS soit polynomial
dans les graphes cordaux [77], il est difficile de se rapprocher de n(ǫ−1), pour tout ǫ > 0, dans
certaines classes de graphes [77, ?]. En ce qui concerne la complexité paramétrée, Fernau [81]
a présenté un algorithme FPT pour Upper VC avec un temps d’exécution O∗(2k), où k est la
taille d’une solution optimale, alors qu’il a été prouvé que Min ISSDS est W[2]-difficile pour
le paramètre standard. En outre, Boria et al. [30] ont fourni un fort résultat d’approximation
pour Upper VC dans les graphes simples: les auteurs ont, non seulement, décrit un algorithme
d’approximation avec un ratio de n

−1
2 mais aussi prouvé qu’il est NP-difficile d’approximer que le

problème Upper VC à n(ǫ− 1
2

), pour tout ǫ > 0. De plus, ils ont présenté un algorithme paramétré
avec un temps d’exécution (1.5397k) où k est le paramètre standard et en modifiant l’algorithme
proposé par [81]; les auteurs ont aussi montré que les versions pondérées de Upper VC et Min

ISDS sont FPT par rapport à la largeur arborescente.

Le problème Min-Max Matching a été étudié dès 1980, lorsque Yannakakis et Gavril ont
prouvé qu’il est NP-difficile même dans des cas très restreints [162]. Min-Max Matching est
équivalent au minimum edge dominating set (l’ensemble d’arêtes dominant minimum (dénoté par
Min EDS) ; le problème s’intéresse à déterminer si , étant donné un graphe G = (V, E), pour
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un sous-ensemble S ⊆ E qui domine toutes les arêtes du graphe, cet ensemble S est de taille
minimale. Un ensemble dominant et stable d’arêtes est un ensemble dominant d’arêtes dans
lequel il n’existe pas deux éléments adjacents. Le problème Min-Max Matching, aussi connu
sous le nom de minimum independent edge dominating set et noté par Min ISEDS) s’intéresse
à trouver si, étant donné un graphe G = (V, E), le sous-ensemble S ⊆ E qui est simultanément
indépendant et dominant est de taille minimale. En 2006, il a été prouvé qu’il est NP-difficile
d’approximer le Min-Max Matching par un meilleur facteur que 7

6
[50]. Plus tard, dans [75],

les auteurs proposent un résultat amélioré qui prouve que le problème est difficile à approximer
avec un ratio supérieur à 1.18, en supposant que P , NP. Enfin, Dudycz et al. ont prouvé que
le Min-Max Matching est difficile à approximer avec un ratio de 2, en supposant la conjecture
des jeux unique (Unique Games Conjecture (UGC)) [73].

Aperçu

Dans cette thèse, nous étudions un type particulier de problèmes d’optimisation, appelés prob-

lèmes d’extension. Nous étudions certains problèmes d’optimisation héréditaires et anti-héréditaires
dans les graphes du point de vue de la complexité, de l’(in-)approximation et de la complexité
paramétrée. De manière générale, quand il s’agit de la version d’extension d’un problème
d’optimisation anti-héréditaire (ou héréditaire) Π, nous considérons une instance de Π avec un
ensemble supplémentaire (spécifié) U appelé solution partielle, le but étant d’obtenir une solution
S minimal pour l’inclusion (resp. maximal) et de valeur optimale telle que U ⊆ S (resp. U ⊇ S ).

Concernant la recherche d’une solution minimale contenant un ensemble forcé, avec une
valeur optimale, nous étudions le problème pondéré de la couverture par arêtes dans le Chapitre
3. Pour un graphe donné G = (V, E), l’ensemble S ⊆ E est une couverture par arêtes si et
seulement si S couvre tous les sommets de V , c.-à-d. chaque sommet v ∈ V est incident à au
moins un e ∈ S . Le but de la version d’optimisation du problème est de trouver une couverture
par arête de taille minimale. La variante pondérée de la couverture par arêtes prend G = (V, E,w)

un graphe et une pondération sur les arêtes en entrée, le but étant de trouver une couverture par
arête S avec une valeur optimale, i.e. en minimisant w(S ) =

∑

e∈S w(e). Dans ce chapitre, nous
étudions la version pondérée de la couverture par arêtes dans le cadre des problèmes d’extension.

L’entrée de la version d’extension de la couverture par arêtes pondérée comprend à la fois
un graphe pondéré sur les arêtes G = (V, E,w) ainsi qu’un ensemble forcé U ⊆ E, la tâche est
d’étendre U à une couverture par arête minimale de valeur optimale, du point de vue inclusion.
Les variantes de maximisation et de minimisation du problème sont étudiées dans ce chapitre.
Nous étudions les deux problèmes du point de vue complexité et de l’(in)-approximation.

En premier lieu, nous montrons que pour un graphe donné G et un ensemble forcé U, ExtEC

est NP-complet même pour les graphes bipartis de degré maximum 3. Ensuite, nous considérons
les variantes de maximisation et de minimisation du problème dans les graphes complets. Pour
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une fonction de poids générale, nous montrons que Min Ext WEC n’est pas approximable, mais
Max Ext WEC est approximable avec un ratio de 0, 5. Par suite, nous considérons d’autres
fonctions de poids et nous montrons que Min Ext WEC est dans APX lorsque la fonction de
poids satisfait l’inégalité triangulaire c-relaxée (ou c-relaxée et étendue) pour c > 1. De plus,
le problème devient polynomial lorsque la fonction de poids satisfait l’inégalité triangulaire du
c-relaxée (resp. c-relaxée étendue) et que c ≤ 1 (resp. c = 1). En outre, nous démontrons que les
deux problèmes d’optimisation peuvent être résolus en un temps polynomial dans les graphes à
largeur arborescente bornée. La Table 1 résume les résultats de complexité des deux problèmes
d’optimisation dans les graphes complets.

w-générale c-relaxée c-relaxée et étendue

NP-difficile NP-difficile c > 1 NP-difficle c > 1

Min Ext WEC non-apx polynomial 1
2
≤ c ≤ 1 polynomial c = 1

FPT p.r |U | c ratio-apx c+1
2

ratio-apx
7+c

8
− ǫ in-apx 7+c

8
− ǫ non-apx

0.5 ratio-apx

Max Ext WEC
7
8
+ ǫ in-apx − −

Table 1: Résultats pour les graphes complets

Nous nous concentrons sur un cas particulier de Max Ext WEC, Weighted Upper EC,
lorsque l’ensemble forcé est vide. Etant donné un graphe avec arêtes pondérées, l’objectif est
de trouver une couverture par arêtes minimale ayant un poids total maximum. Nous étudions
ce problème dans certaines classes de graphes d’un point de vue de l’(in)approximation : nous
montrons que Weighted Upper EC dans les graphes complets est équivalent au problème de
Max Star Forest dans les graphes simples. Nous montrons également que, Weighted Upper

EC dans les graphes bipartis et les split graph ayant pour poids 0 ou 1 est aussi difficile que Max

IS dans les graphes simples. De plus, nous montrons que ce problème est APX complet dans les
k-arbres et dans les graphes de degré borné.

Nous considérons les variantes d’extension de certains problèmes de sommets dans le Chapitre
4. Nous étudions le problème de décision Ext Π lorsque Π fait partie d’un des problèmes de
sommets suivants : vertex Cover (couverture par sommets), Independent Set (stable),
Connected Vertex Cover (couverture par sommets connexe), Non Separating indepen-

dent set (stable non-séparant) et Dominating Set (ensemble dominant) . Un sous-ensemble
S ⊆ V d’un graphe connexe donné G = (V, E) est une couverture par sommets connexe (Con-
nected Vertex Cover) (resp. un stable non-séparant) si S est une couverture par sommets et le
graphe G[S ] induit par S est connexe (resp. si S est un stable et n’est pas une coupe de G). Le
but de la variante d’optimisation des deux problèmes précédents est de trouver une couverture
par sommets connexe (resp. un stable non séparant) de taille minimale (resp. maximale). En
d’autres termes, pour un problème de sommets héréditaire (resp. anti-héréditaire)Π, le problème
de décision noté Ext Π, dans lequel une paire (G,U) est donnée en entrée telle que G = (V, E) et
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U ⊆ V , celui-là détermine s’il existe une solution S de sorte que S ⊆ U (resp. U ⊆ S ) avec un
poids maximum (resp. minimum).

En ce qui concerne ces problèmes de décision, nous obtenons des résultats de complexité
même pour des instances restreintes à des graphes bipartis ou planaires. La plupart de nos résultats
de NP-difficulté se traduisent également en des résultats ETH-difficile. Le Table 2 résume les
résultats de complexité obtenus pour ces problèmes.

NP-complet Polynomial

graphes bipartis sous-cubiques et

planaires

graphe cordaux

Ext VC/IS graphes bipartis cubiques graphes avec arcs circulaires

graphes bipartis sous-cubiques graphes cordaux

Ext CVC/NSIS graphes faiblement triangulaires

Ext DS graphes bipartis sous-cubiques et

planaires

Table 2: Résultats de complexité

De plus, nous étudions la complexité paramétrée de ces problèmes, que ce soit par rapport
à la taille de la solution partielle U ou celle de l’ensemble dual U. Nous étudions l’impact de
ces paramètres dans des scénarios et classes restreints, qu’il s’agisse de degrés ou de restrictions
topologiques (graphes bipartis, planaires ou cordaux). Le Table 3 résume les résultats paramétrés
obtenus pour ces problèmes.

Ext VC Ext IS Ext CVC Ext NSIS Ext DS

paramètre standard W[1]-com FPT W[1]-com FPT W[3]-com

paramètre dual FPT W[1]-com FPT W[1]-com FPT

Table 3: résultats de complexité paramétrée

D’autre part, nous étudions le prix de l’extension (PoE), une mesure qui reflète la distance
d’un ensemble de sommets U d’un de sous-ensemble maximum qui peut être étendu à une solution
minimale/maximale, et qui fournit des résultats négatifs et positifs du point de vue approximation
pour la PoE dans différentes classes de graphes.

Nous introduisons la notion de prix de l’extension (PoE), qui permet de quantifier la distance
de U de l’ensemble le plus proche qui peut être étendu pour obtenir une solution. Ceci résulte
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naturellement en l’apparition de problèmes d’optimisation liés aux problèmes d’extension pour
lesquels nous fournissons des résultats d’approximation. De plus, pour certains problèmes tels
la Couverture par sommets connectés, nous nous concentrons sur un cas particulier (G, ∅)
de ExtmaxCVC, qui est aussi connu sous le nom de Max-Min CVC. Nous étudions ce dernier
problème d’un point de vue de l’(in)approximation et présentons quelques résultats intéressants.

Dans le Chapitre 5, nous abordons en détails les extensions de problèmes d’arêtes dans les
graphes. Plus précisément, nous considérons les problèmes d’extension lié à plusieurs problèmes
d’optimisation d’arêtes classiques dans les graphes, à savoir Edge Cover, Matching et Edge

Dominating Set. Étant donné un graphe G = (V, E) et un ensemble d’arêtes U ⊆ E, on essaie de
déterminer s’il existe une solution minimale (en termes d’inclusion) (resp. maximale) réalisable
E′ qui satisfait une propriété donnée, par exemple, étant donné un ensemble dominant (resp.
un matching d’arêtes) et contenant un ensemble forcé (resp. ou être inclus dans le ensemble

co-interdit) U.

Soit G = (V, E) un graphe où le degré minimum est d’au moins r ≥ 1. Pour une constante fixe r:

• S ⊆ E est appelé une couverture de G, si chaque sommet v ∈ V est incident à au moins r

arêtes de S . Le cas spécial r = 1 est connu sous le nom de couverture par arêtes (Edge

cover).

• S ⊆ E est appelé un ensemble dominant de r-arêtes si chaque arête e ∈ E est incidente
à au moins r arêtes de S . Le cas spécial r = 1 est connu le nom d’ensemble dominant

(Dominating Set).

• S ⊆ E est appelé un sous-graphe partiel à contrainte de degré r si aucun des sommets en
V n’est incident à plus de r arêtes en S . Le cas spécial r = 1 est connu sous le nom de
couplage.

De fait, nous considérons les variantes d’extension des problèmes d’arêtes ci-dessus dans leur
version généralisée, lorsque la r-contrainte est incluse dans la définition du problème et ne figure
pas dans la description de l’entrée de l’instance. Par exemple, pour un graphe donné G = (V, E)

avec un degré minimum d’au moins r et un ensemble d’arêtes forcées U ⊆ E comme instance de
la version d’extension de la couverture par r arêtes dénotée Ext r-EC, le but est de déterminer s’il
existe une couverture minimale (pour l’inclusion) de r arêtes E′ contenant l’ensemble d’arêtes
forcées U.

Nous présentons différents résultats de complexité pour ces problèmes, et nous prouvons
que ces problèmes restent NP-complets, même dans les graphes bipartis de degré limité avec
certaines contraintes imposées sur l’ensemble des arêtes forcées/co-interdites. La planarité ne
diminue en rien la difficulté du problème, nous montrons effectivement que ces problèmes restent
difficiles sur les graphes planaires bipartis sous-cubiques. En contrepartie, nous fournissons des
résultats de complexité paramétrée qui contrebalancent les résultats négatifs développés, il est à
noter que nous considérons la taille de l’ensemble forcé des arêtes (resp. ensemble co-interdit)
comme paramètre standard pour la variante d’extension de Edge Cover et de Edge Dominating

Set. (resp. Matching). Nous considérons également le prix de l’extension (PoE), qui est une
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variante naturelle des problèmes d’optimisation d’extension et qui conduit à certains résultats
d’approximation.

De même, nous montrons que Ext r-EC, Ext r-EDS et Ext r-DCPS sont NP-complets pour
les graphes de degré maximum r + 2, et nous prouvons que pour le cas particulier où r = 1,
tous les problèmes mentionnés sont NP-complet pour les instances de graphes bipartis planaires
sous-cubiques. Nous étudions également la complexité paramétrée de ces problèmes, par rapport
à la taille de la solution partielle U ou de son dual U, qui conduit à des résultats de complexité
paramétrée positifs. Le Table 4 résume les résultats de complexité et les résultats de complexité
paramétrée obtenus pour ces problèmes.

NP-complétude Complexité

r ≥ 2 r = 1 Paramétrée

Ext r-EC graphes bipartis avec ∆ = r + 2 graphes bipartis planaires sous-cubiques FPT par |U |

Ext r-EDS graphes bipartis planaires graphes bipartis planaires sous-cubiques W[1]-difficile par |U |
avec ∆ = r + 2

Ext r-DCPS graphes bipartis avec ∆ = r + 1 graphes bipartis planaires sous-cubiques FPT par |Ū |

Table 4: Résultas de complexité et de complexité paramétrée.

Nous avons porté une attention particulière à la discussion du prix de l’extension (PoE), qui
est une mesure de la distance entre l’ensemble U et l’ensemble le plus proche qui peut être étendu.
Ceci génère de nouveaux problèmes d’optimisation liés aux problèmes d’extension pour lesquels
nous développons des résultats d’approximation.

Les résultats que nous exposons dans le Chapitre 5 vont être particulièrement utiles pour la
communauté des algorithmes d’énumération (sensibles par rapport à l’entrée) qui n’a jusqu’à
présent pas accordé une attention particulière aux problèmes sur les arêtes des graphes; les seuls
travaux sur ce sujet étant [95]. À l’inverse, les algorithmes d’énumération sensibles à la sortie,
comme pour les correspondances, existent depuis plus de vingt ans [157]. Quelques réflexions
sur l’énumération de la couverture par arêtes peuvent être trouvées dans [160].

Enfin, dans le Chapitre 6, nous introduisons un cadre général d’étude basé sur l’ordre partiel
pour modéliser l’extension de problèmes monotones. Nous y soulignerons les nombreuses
similarités identifiées entre ces problème dans des scénarios divers. La question "une solution
partielle donnée à un problème peut-elle être étendue ?" se pose dans de nombreuses approches
algorithmiques pour les problèmes d’optimisation. Dans le Chapitre 4 et le Chapitre 5, nous avons
étudié quelques problèmes d’optimisation de sommets et d’arêtes dans les graphes. Cependant,
il existe un grand nombre de problèmes d’optimisation NP tels que les problèmes de chaînes de
caractères, les problèmes de logique, de coloration de graphe, etc., dont les variantes d’extension
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semblent intéressantes. Il est vrai qu’une abondance de ces problèmes ont été considérés dans
le cadre des problèmes d’extension [23, 109, 84, 7, 8, 113, 139, 109, 146, 14, 159, 138, 23],
toutefois, notre approche est fondamentalement différente dans le sens où nous imposons des
conditions de minimalité.

Le sujet principal du Chapitre 6 est de proposer un cadre général pour ce type de problèmes
d’extension. L’idée derrière est basée sur une approche d’ordre partiel, rappelant ce qui a été
fait dans le cadre de cette thématique [136]. Essentiellement, nous considérons les problèmes
d’optimisation dans NPO avec un ensemble de solutions partielles spécifiées que nous appelons
solutions partielles (y compris l’ensemble des solutions) et un ordre partiel sur celles-ci. Cet
ordre partiel ≤ reflète non seulement la notion d’extension mais aussi de minimalité. Pour une
solution partielle U et une solution S , S étend U si U ≤ S . Une solution S est minimale s’il
n’existe pas de solution S ′ , S avec S ′ ≤ S . Le problème d’extension qui en résulte est défini
comme étant le problème de décision que si nous disposons d’une pré-solution donnée U, il existe
une solution minimale S qui étend U. Nous ajoutons également des résultats de complexité pour
des problèmes tels que Bin Packing, Feedback Vertex Set et Feedback Edge Set.

Bien que l’étude que nous avons menée ne couvre pas la totalité des problèmes qui puissent
être reliée au sujet en questions, des problèmes similaires ont été examinés, par exemple, dans
le domaine de la coloration de graphes, sous le nom de pre-coloring extension. Ce dernier
contient l’étude de la complétion des carrés latins partiels comme un cas particulier [23, 54, 138].
Cependant, il y a une différence majeure avec notre approche qui réside dans le fait qu’à l’instar
des problèmes que nous avons évoqués où la condition de minimalité sur les extensions autorisées
est essentielle, elle devient néanmoins pourvue de son intérêt dans le meilleur des cas pour les
problèmes d’extension de pré-coloration. Il n’est ainsi pas difficile de définir un ordre partiel sur
les pré-colorations pour garantir que l’ensemble des couleurs propres soit fermé comme requis
dans le contexte de nos travaux. Il serait alors intéressant de considérer ce type de problèmes
d’extension dans un contexte plus approfondi permettant d’obtenir des résultats généraux, des
méta-théorèmes, etc.
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In this chapter, we give some basic notions of graph theory as well as some basic background
on optimization problems, computational complexity, (in-)approximability and parameterized
complexity.

1.1 Graphs

1.1.1 Basics of graphs

A graph is a pair of sets (V, E) where E is a set of unordered pairs of V . Throughout this thesis,
we consider a simple graph1 G = (V, E) where V is called vertex set and E is called edge set.
Sometimes we assume that G is an edge-weighted (resp. a vertex-weighted) graph. In this case,
it is denoted by a tuple G = (V, E,w) where w is a set of non-negative values on the edge set E

(resp. the vertex set V) of G. For simplicity, we denote every edge {u, v} ∈ E by uv for any pair
of vertices u, v ∈ V . The graph G = (V, E) is directed if each edge e ∈ E is ordered. We denote
by (u, v) a directed edge from vertex u to vertex v. The complement of the graph G = (V, E), is

1without multiple edges and loops.
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denoted by G = (V, E) in which uv ∈ E if and only if uv < E for all pairs of vertices u, v ∈ V ,
u , v.

Every edge e = uv has two endpoints u and v. If v is an endpoint of the edge e, we say that e and
v are incident. Let G = (V, E) be a graph and U ⊆ V , NG(U) = {v ∈ V : vu ∈ E, for some u ∈ U}
denotes the neighborhood of U in G and NG[U] = U ∪ NG(U) denotes the closed neighborhood

of U. For singleton sets U = {u}, we simply write NG(u) or NG[u], even omitting G if it is clear
from the context. The cardinality of NG(u) is called degree of u, and denoted by dG(u) and for
a subset U ⊆ V , dU(v) is the number of neighbors of v belonging to U. A graph G = (V, E) is
said to be of maximum (resp. minimum) degree p, if and only if for any vertex v ∈ V , dG(v) ≤ p

(resp. dG(v) ≥ p). If all vertices have degree p, it is called p-regular. 3-regular graphs are called
also cubic and if 3 upper-bounds the degree of all vertices we speak of subcubic graphs. The
maximum degree of the graph G is denoted ∆(G) = maxv∈V dG(v). A leaf is a vertex of degree
one, it is also called pendant vertex and the edge incident to a pendant vertex is called pendant

edge.

A subgraph of G is a graph H = (VH, EH) such that VH ⊆ V and EH ⊆ E where uv ∈ EH

implies that u, v ∈ VH . It is called induced by vertices VH and denoted by G[VH], if for each pair
of vertices u, v ∈ VH, uv ∈ EH if and only if uv ∈ E.

For a given graph G = (V, E) and a subset E′ ⊆ E, the set of endpoints of E′, is denoted by
V(E′), i.e. V(E′) = {u, v : uv ∈ E′}. The subgraph induced by edges E′, denoted G[E′], is defined
by G[E′] = (V(E′), E′), when E′ is full that is uv ∈ E \ E′ implies u < V(E′) or v < V(E′); in this
case, we have G[E′] = G[V(E′)]. Finally, the partial graph induced by E′ denoted GE′ is defined
by GE′ = (V, E′).

For a given graph G = (V, E), a path is a sequence of distinct vertices (v1, . . . , vk) of V such
that vivi+1 ∈ E for 1 ≤ i ≤ k − 1 and a cycle is a path v1, . . . , vk of V such that v1 = vk. The length

of a path (resp. cycle) involving a sequence of k vertices, is k − 1 (resp. k) and such a path (resp,
cycle) is denoted by Pk (resp. Ck).

A graph G is connected if for each pair of vertices u, v, there exists a path between u and v. A
graph is k-connected if by removing any subset of k−1 vertices of the graph, it remains connected.
A 2-connected graph, is also called bi-connected. A connected component (resp. k-connected

component) of a graph G is an inclusion-wise maximal connected (resp. k-connected) induced
subgraph of G.

A graph G = (V, E) with |V | = n is called c-dense if it contains at least c n2

2
edges and it is

called everywhere-c-dense if the minimum degree is cn; when c ∈ (0; 1) is a constant, we say
dense and everywhere-dense graphs.

A cut-set (also called vertex separator) is a subset of vertices such that deleting them from G

strictly increases the number of connected components. A cut-set which is a singleton is called
a cut-vertex (or articulation point). Hence, a graph is bi-connected if and only if it is connected
and it does not contain any cut-vertex.

A partition of a vertex set V is a set of subsets {V1, . . . ,Vk} of V for some integer k such that
∪k

i=1
Vi = V and Vi ∩V j = ∅ for any pair i, j ∈ {1, . . . , k} and i , j. A vertex-coloring (or coloring)
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of a graph G = (V, E) is an assignment of colors to V . A coloring f is proper, if f (u) = f (v) for
any two vertices u, v ∈ V , then uv < E. A proper coloring which uses at most k colors is called
k-coloring. The smallest number of colors to make a proper coloring of G is called chromatic

number and denoted by χ(G).

For a graph G = (V, E), a subset C ⊆ V is a clique if for any two vertices u, v ∈ C, uv ∈ E; a
subset I ⊆ V is an independent set if for any two vertices u, v ∈ I, uv < E; a subset M ⊆ E is a
matching if any two edges of M are pairwise non-adjacent; a matching M of G is perfect if M is
incident to all vertices of V; a claw is a K1,3, a graph with 4 vertices, one of degree 3 and 3 others
of degree 1.

Two graphs are said to be isomorphic if they have equal number of components (vertices and
edges) and also their edge connectivity is retained. In other words, an isomorphism of graphs
G = (VG, EG) and H = (VH, EH) is a bijection f : VG → VH such that uv ∈ EG if and only if
f (u) f (v) ∈ EH.

1.1.2 Some graph classes

A graph class G is the set of all graphs satisfying a certain property. In the following, we define
all classes of graphs which will be seen throughout this thesis.

A graph G = (V, E) is called complete and denoted by Kn where |V | = n, if for any pair
u, v ∈ V , uv ∈ E. An undirected graph where any two vertices of it are connected by exactly one
path is called tree, and a graph which is a collection of trees is called a forest.

A bipartite graph G = (V, E) is an undirected graph in which the vertex set can be partitioned
into two parts L and R such that the induced graph of each part makes an independent set. If in
a bipartite graph, NG(u) = R for each vertex u ∈ L, it is called complete bipartite graph and is
denoted by KL,R. A split graph G = (C ∪ I, E) is an undirected graph where the vertex set C ∪ I

is decomposable into a clique C and an independent set I.

A star is a tree where at most one vertex has a degree greater than 1 or, equivalently, it is
isomorphic to K1,ℓ for some ℓ ≥ 0. The vertices of degree 1 are called leaves of the star while
the remaining vertex is called center of the star; for the case ℓ = 1, we choose one vertex to be
the center and the other to be the leaf (so there are not two leaves in K1,1). A ℓ-star is a star of ℓ
leaves; when ℓ = 0, the star is called trivial and it is reduced to a single vertex (the center).

A k-tree is a graph which can be formed by starting from a k-clique and then repeatedly
adding vertices in such a way that each added vertex has exactly k neighbors completely connected
together (this neighborhood is a k-clique). A graph is a partial k-tree if it is a subgraph of a
k-tree.

A graph is planar if it can be embedded in a plane. It means that it can be drawn on the plane
in such a way that all the edge intersections are placed at the endpoints of edges.

An interval graph is a graph in which there exists a family of intervals on the real line and
there is a bijection between the vertices of the graph and the family of intervals such that there
is an edge in the graph if and only if the corresponding intervals have a non-empty intersection.
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Circular-arc graphs are a natural generalization of interval graphs. A circular-arc graph is the
intersection graph of a set of arcs on the circle. It has one vertex for each arc in the set, and an
edge between every pair of vertices corresponding to arcs that intersect.

If for all cycles of four or more vertices of graph G, there is an edge that is not part of the
cycle but connects two vertices of the cycle, the graph and the connected edge is called a chordal

graph and a chord respectively. There are many characterizations of chordal graphs. One of
them, known as Dirac’s theorem, affirms that a graph G is chordal if and only if each minimal
vertex separator of G is a clique. For any integer k ≥ 3, a graph is called k-chordal if it has no
induced cycle of length greater than k. Thus, chordal graphs are precisely the 3-chordal graphs.
In particular the class of 4-chordal graphs contains another well known class of graphs called
weakly triangulated graphs or also weakly chordal. This class is introduced in [102], in view
of extending chordal graphs as the class with no chordless cycle on five or more vertices in
G = (V, E) or in its complement G = (V, E), or equivalently, the graph contains neither a hole nor
an anti-hole.

Given a graph H, a graph is H-free, if it does not contain H as an induced subgraph. A cograph

is a graph which can be formed by starting from a single vertex and by repeating application of
complementation and vertex-disjoint union. These are precisely the P4-free graphs. A line graph

of a graph G, denoted by L(G) is a graph whose vertices represent the edges of G and two vertices
of L(G) are adjacent if and only if their corresponding edges share a common endpoint in G.

1.1.3 Tree decomposition

A tree decomposition of an original graph G = (V, E), denoted by (T, B) where T = (VT , ET ) is a
tree and B consists a subset Bt ⊆ V associated with each node t ∈ VT . The subsets Bt are called
bags of the tree decomposition. (T, B) must satisfy the following conditions:

1− (vertex coverage) Every vertex of V belongs to at least one bag Bt.

2− (edge coverage) For every edge e = uv ∈ E, there is some bag Bt containing both u, v.

3− (coherence) For each {t1,t2, t3} ⊆ VT where t2 lies on the path from t1 to t3 in T , if a vertex
v ∈ (Bt1 ∩ Bt3), then v ∈ Bt2 .

The width of a tree decomposition (T, B), is termed by width(T, B) and equals maxt∈VT
|Bt| −

1. The tree-width of a graph G is the minimum width of any decomposition of G. A tree
decomposition in which the underlying tree is a path, is called a path decomposition and the
width parameter derived from a path decomposition is known as path-width.

Figure 1.1 presents two different tree decompositions for a given graph G. The tree in the
middle part of the figure has width 3, while width of the other tree is 2.

A tree decomposition is converted easily into a nice tree decomposition, to decrease the
possible transactions between bags [125]. A tree decomposition is nice if every node t ∈ VT be
one of the following types:
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Figure 1.1: On the left, a graph G = (V, E) is shown. Two tree decompositions of G are presented
on the middle and right part. The nodes inside each rectangle show the associated bag.

• Leaf: a node with no children, |Bt| = 1.

• Introduce: a node with one child t′ such that Bt = Bt′ ∪ {v} for some v ∈ V .

• Forget: a node with one child t′ such that Bt = Bt′ \ {v} for some v ∈ V .

• Join: a node with two children t′ and t′′ such that Bt = Bt′ = Bt′′ .

Sometimes, instead of operating an algorithm on a given graph, we should operate it on a
(not unique) tree decomposition of the original graph. For a given graph G and an integer k, it is
NP-hard to determine whether G has a tree decomposition with width at most k [9]. However, if
k is a fixed constant, the former decision problem is linear time solvable [27].

For more information about tree decomposition, we recommend [28, 125].

1.2 Computational complexity

An instance of a problem, includes an exact specification of the data which are involved in the
problem. An algorithm for Π is a procedure which takes an instance as an input and gives an
output. The running time of an algorithm for a specific input depends on the number of operations
executed and the running time of an algorithm is the worst case input scenario, i.e. the greatest
number of operations executed for some instance. Usually, instead of using the exact number of
executed operations, we use the notation of "big-O", "big-Ω", "big-Θ", "little-o" and "little-ω",
to express a bound for general running time. For two positive function f , g, the notations are
defined as follows:

• f (n) = O(g(n)) means that there exist positive constants c and k, such that f (n) ≤ cg(n) for
all n ≥ k.

• f (n) = Ω(g(n)) means that there exist positive constants c and k, such that f (n) ≥ cg(n) for
all n ≥ k.

• f (n) = Θ(g(n)) means that f (n) = O(g(n)) and f (n) = Ω(g(n)).
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• f (n) = o(g(n)) if limn→∞
f (n)

g(n)
= 0 and f (n) = ω(g(n)) if limn→∞

f (n)

g(n)
= ∞.

An algorithm is called deterministic if for each given input, its execution and output is unique,
and an algorithm is non-deterministic if for the same input, it can exhibit different behaviors and
executions.

1.2.1 NP-hardness and polynomial solvability

We study computational complexity theory to be able to categorize the problems into classes of
running times that are achieved by some algorithms which solve them optimally.

Decision problems

A decision problem is a yes or no question on a finite set of inputs, i.e. the answer is yes or no for
any instance of the set. Throughout this thesis, we use the following standard structure to define
a new decision problem:

Decision Problem’s Name

Input: An instance of the new decision problem.
Question: A yes-no question that relies on the input.

The class of all decision problems that can be solved by a non-deterministic algorithm
in polynomial time is called NP and the class of decision problems that can be solved by a
deterministic algorithm in polynomial time is called P. A decision problem D1 polynomially
reduces to a decision problem D2, if there exists an algorithm which takes an instance X1 of D1

as an input and produces an instance x2 of D2 in polynomial time such that, x1 is a yes-instance
of D1 if and only if x2 is a yes-instance of D2. The concept of NP-completeness was introduced
in 1971 by Cook [55], when he proved that any problem in NP can be polynomially reduced to a
famous decision problem Sat, which is defined as follows:

Sat

Input: A set C of CNF clauses over a set X of Boolean variables.
Question: Is there an assignment that satisfies all clauses of C?

Cook showed that all NP problems can be solved in polynomial time if Sat can be, and if
any of the problems in this class is intractable, then Sat also can not be solved in polynomial
time. John Hopcroft brought many scientists at the conference STOC in 1971 to discuss about
whether an NP problem can be solved in polynomial time on a deterministic Turing machine. No
one could answer this and the question of whether P = NP is known as an open question now.
In 1972, Karp proposed some reductions from some problems in NP to other problems in this
class [118]. Thus, he introduced the term NP-complete for these problems which is defined as
follows: A decision problem D is NP-complete if (i) D ∈ NP and (ii) every problem D′ in NP
can be reduced in polynomial time to D. If the decision problem D just satisfies the condition
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(ii), it is called NP-hard. After Karp’s results, many well-known decision problems were proved
NP-complete. Many of these problems are gathered by Garey and Johnson and presented in
"Computers and Intractability" in 1979 [88].

Optimization problems

An optimization problem Π is a tuple 〈I, F, opt,m〉 where:

• I is the set of instances of the problem.

• F(x) is a set of feasible solutions for instance x ∈ I.

• opt is the goal of the optimization problem (either maximization or minimization).

• m is a measure function that associates with any instance x ∈ I and with any y ∈ F(x) a
natural number m(x, y).

For an optimization problem, an optimal solution is a feasible solution that carries out the
goal of the problem, it means that maximizes (or minimize) the measure function.

An optimization problem Π is called hereditary, if for any feasible solution S of a given
instance x, each S ′ ⊆ S is also a feasible solution. An optimization problem Π is called anti-

hereditary, if for any feasible solution S of a given instance x, each S ′ ⊇ S is also a feasible
solution. An optimization problem is monotone if either it is hereditary or anti-hereditary.

Throughout this manuscript, we use the following standard structure to define a new opti-
mization problem:

Optimization Problem’s Name

Input: A description of an instance x ∈ I.
Solution: A description of a feasible solution y ∈ F(x).
Output: Maximize or minimize (according to opt) the measure m(x, y).

There is a relation between the optimization and decision variants of a problem. Given a
maximization (resp. minimization) problem Π and by introducing a parameter k, we can define
the corresponding decision problem D as follows: "Is there a solution of value at least (resp. at
most) k?". In the following, we propose some well-known optimization problems that are used
many times throughout the manuscript.

Min Vertex Cover (Min VC for short)
Input: A graph G = (V, E).
Solution: A subset S ⊆ V such that each e ∈ E is incident to at least one v ∈ S .
Output: Minimize |S |.

35



CHAPTER 1. PRELIMINARIES

Max Independent Set (Max IS for short)
Input: A graph G = (V, E).
Solution: A subset I ⊆ V such that G[I] contains no edges.
Output: Maximize |I|.

Min Dominating Set (Min DS for short)
Input: A graph G = (V, E).
Solution: A subset D ⊆ V such that NG[D] = V .
Output: Minimize |D|.

Max Edge Matching (Max EM for short)
Input: A graph G = (V, E).
Solution: A subset M ⊆ E such that none of the vertices of V is incident to more than one
edge in M.
Output: Maximize |M|.

NP-Optimization (NPO) is the class of optimization problems where the associated decision
problems are in NP. An optimization problem is polynomial-time solvable if there exists an
algorithm which computes the optimal solution for every instance of the problem in polynomial
time. The class of all optimization problems that are polynomial-time solvable is called P-
Optimization (PO).

For most of our NP-hardness proofs in the next chapters, we use the structure of a bipartite
graph which can be made from an instance I = (C,X ) of Sat, using the following definition:

Definition 1.1. Let I = (C,X ) be an instance of Sat with clause set C = {c1, . . . , cm} and variable

set X = {x1, . . . , xn}, the corresponding variable-clause-graph BP = (X ∪C, E(BP)) is a bipartite

graph with C = {c1, . . . , cm}, X = {x1, . . . , xn} and E(BP) = {c jxi : xi or ¬xi is literal of c j}.

Let us here introduce two variants of Sat which will be used for our NP-hardness proofs later.

• The first is known as 2-Balanced 3-Sat, denoted by (3, B2)-Sat. An instance I = (C,X )

of (3, B2)-Sat is given by a set C of CNF clauses defined over a set X of Boolean variables
such that each clause has exactly 3 literals, and each variable appears exactly 4 times in C,
twice negated and twice unnegated.

• The other problem is 4-Bounded Planar 3-Connected Sat (4P3C3Sat for short). Let
I = (C,X ) be an instance of 4P3C3Sat, where C = {c1, . . . , cm} and X = {x1, . . . , xn} are
the clause set and variable set of I, respectively, then each clause has exactly 3 literals
and each variable occurs in at most 4 clauses (at least one time negated and one time
unnegated). Moreover, the corresponding variable-clause-graph BP = (X ∪ C, E(BP))

with C = {c1, . . . , cm}, X = {x1, . . . , xn} and E(BP) = {c jxi : xi or ¬xi is a literal of c j}, is
planar bipartite of maximum degree 4.
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In [21, 127] it is proved that, deciding whether an instance of (3, B2)-Sat and 4P3C3Sat

respectively, is satisfiable is NP-complete.

By Definition 1.1, the associated variable-clause-graph BP = (C ∪ X, E(BP)) corresponding
to an instance I of (3, B2)-Sat (resp. 4P3C3Sat) is bipartite, the left part C is 3-regular and the
right part X is 4-regular (resp. is planar bipartite of maximum degree 4.) In this chapter, we
always assume that the planar graph comes with an embedding in the plane. Informally, we are
building a new graph (corresponding to each problem) by putting some variable (resp. clause)
gadgets instead of vertices xi (resp. c j) of BP which satisfy the following two conditions:

• the construction distinguishes between the cases that a variable xi appears positively and
negatively in some clauses,

• the construction preserves planarity.

Using a Karp reduction from an NP-complete problem, we are able to prove the NP-hardness
for a new problem. However, some other reductions are "approximation preserving reductions"
which help us to prove there is no polynomial algorithm obtaining a certain ratio for a given
problem which will be explained in the next section.

1.2.2 Approximation of NP optimization problems

Unfortunately, most interesting optimization problems are NP-hard. Thus, under the widely
believed conjecture that P , NP, computing their exact solution is excessively time consuming.
So, instead of spending exponential time to find the optimal solution, the goal is to give an
algorithm that runs in polynomial time and outputs a solution whose value is closed to the
optimum value with a certain ratio called the approximation ratio, which gives a guarantee for
the quality of the given solution.

A ρ-approximation algorithm for an optimization problem is a polynomial time algorithm that
for every instance of the problem, gives a solution whose value will not be more (or less, depends
on whether opt is maximize or minimize) than a factor ρ times the value the optimal solution.
More formally, for a given NP-optimization problem Π, A is an approximation algorithm for Π,
if A returns a feasible solution A(I) for each instance I. Let m(I,A(I)) and opt(I) be the value
of the approximate solution A(I) and the value of the optimal solution respectively, then the
approximation ratio2 of A with respect to I for optimization problem Π is: rA(I) =

m(I,A(I))

opt(I)
. For

a constant ρ ≥ 1 in the case of a minimization problem (resp. ρ ≤ 1 in the case of a maximization
problem), A is an ρ-approximation algorithm, if ρ ≥ rA(I) (resp. ρ ≤ rA(I)) for every instance I

of minimization (resp. maximization) problem Π. We say also that Π is ρ-approximable, if A is
an approximation algorithm with ρ ratio.

In addition, regarding to the theoretical issues for approximation, we need to answer what is
the best performance ratio of any polynomial-time approximation algorithm for a special NPO

2Performance ratio is defined by |m(I,A(I))−opt(I)|
opt(I)

.
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problem. Motivated by this theoretical question, a variety of classes for NPO problems were
defined, depending on their approximability properties.

An approximation scheme for a minimization (resp. maximization) problem Π, is a family of
polynomial-time approximation algorithms with ratio (1 + ǫ) (resp. (1 − ǫ)) for any ǫ > 0 given
in the input. A polynomial time approximation scheme PTAS for problem Π is an approximation
scheme with a polynomial time complexity with respect to the input size. A fully polynomial time

approximation scheme FPTAS for problemΠ is an approximation scheme with a polynomial time
complexity with respect to the input size and also with respect to 1

ǫ
. Hence, for a PTAS it would

be acceptable to have an algorithm with time complexity n
1
ǫ where n is the input size, but it is not

admissible for an FPTAS, since it is polynomial in the size of the input but it is exponential in 1
ǫ
.

An efficient polynomial time approximation scheme EPTAS for problem Π is an approximation
scheme such that for a given instance of length n, one can find a solution in time f (ǫ)p(n), where
p is a polynomial and f is arbitrary. So, every EPTAS is also a PTAS and every FPTAS is also
an EPTAS.

Given an NPO problemΠ, it belongs to the class APX if there is a polynomial-time algorithm
with approximation ratio bounded by a constant. An NPO problem Π belongs to the class log-

APX (resp. poly-APX) if there is a polynomial-time algorithm with approximation ratio bounded
by c · log(|x|) (resp. c · p(|x|) where p is a polynomial function), for some constant c and where |x|
is the size of the instance.

Some examples for each of the above classes are proposed in [13]. We can deduce the
following inclusions:

PO ⊆ FPTAS ⊆ EPTAS ⊆ PTAS ⊆ APX ⊆ log-APX ⊆ poly-APX ⊆ NPO

It is possible that the NPO problems that are reducible to each other in polynomial time, have
different approximability properties. For instance, the two optimization problems Max IS and
Min VC, are equivalent to each other in complexity point of view (both are NP-complete and
S ⊆ V is an independent set of G = (V, E) if and only if S = V \ S is a vertex cover of G) but they
have quite different properties when it comes to approximation: Max IS is non-approximable
within nε−1 unless P = NP, where n is the number of vertices of the input graph and 0 < ε < 1

(i.e. there is no polynomial-time algorithm which guarantees an approximation ratio better than
O(n) for all the instances of the problem) [164], while one can find a 1

2
-approximation ratio for

Min VC by repeatedly taking both endpoints of an edge into the solution and deleting adjacent
edges.

An NPO problem Π is PTAS-hard (resp. APX-hard), if it is not in FPTAS (resp. PTAS). In
order to construct reductions between NPO problems which preserve approximability, many re-
searches have been done and different types of approximation-preserving reductions have been de-
fined over the years, such as AP-reduction, A-reduction, F-reduction, P-reduction, R-reduction, L-
reduction, etc [114, 12]. In the following, we propose a more practical approximation-preserving
reduction which is called L-reduction, and proposed by Papadimitriou and Yannakakis [147]:
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Definition 1.2. LetΠ andΠ′ be two optimization problems in NPO. There is an L-reduction with

parameters α and β with α, β > 0 from Π to Π′ if:

(i) For each instance I of Π, we can compute in polynomial-time an instance I′ of Π′ such that

opt
Π′(I

′) ≤ α opt
Π

(I).

(ii) Given a solution S ′ of I′ of value m(I′, S ′), we can compute a solution S of I of value

m(I, S ) in polynomial time such that | opt
Π

(I) − m(I, S )| ≤ β| opt
Π′(I

′) − m(I′, S ′)|.

According to Definition 1.2, if Π and Π′ are two maximization problems and if Π′ is ρ-
approximable, there is a (ρβ(α − 1) + 1)-approximation algorithm for Π. Moreover, if there is an
L-reduction from Π to Π′, and if Π′ is in PTAS (resp. belongs to APX), then Π is in PTAS (resp.
belongs to APX). Equivalently, if Π is PTAS-hard (resp. APX-hard), then Π′ is also PTAS-hard
(resp. APX-hard).

For more information about approximation algorithms, we recommand [106, 158].

1.2.3 Parameterized complexity

When we have to handle an NP-hard problem, it can be interesting to investigate parameterized
complexity. Usually, we always express the running time of an algorithm depending on the size
of the instance (for example, in graphs, it is often the number of vertices or edges). Parameterized
complexity is a new approach for handling NP-hard problems. Within the last 20 years, a view-
point was introduced by Downey and Fellows [78], where one can measure the time complexity
of an algorithm not only in terms of the input size but also respect to multiple parameters of the
input or output. Formally, a parameterized problem is a language L ⊆ Σ∗ ×N, where Σ is a finite
set of alphabet and the second component is the parameter of the problem.

A lot of problems admit an algorithm with running time bounded by c|x|k where x is an input,
c is a constant and k is the size of solution. As an example, let us consider the decision problem
Clique which is defined as follows:

Clique

Input: A graph G = (V, E) and an integer k.
Question: Does G contain a clique (complete subgraph) of size at least k?

Deciding whether there is a clique of size at least k in a graph G = (V, E) can be easily solved
in O(|V |k) by checking any subset of size k in G. More generally, the set of all parameterized
problems which admit some algorithms with running time O( f (k)|x|k), is called XP, where f is
an arbitrary computable function and |x| is the size of the input. Unlike that, there are some
parameterized problems for which it is unlikely that algorithms with such a running times exist.
This class of problems is called XP-hard (or not in XP). As an example of these problems, let us
consider a decision problem in coloring, namely to if a given graph G has chromatic number at
most k. The problem is formally defined as follows:
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k-Coloring

Input: A graph G = (V, E) and a fixed integer k.
Question: Is G k-colorable? (i.e. is there a proper coloring with at most k colors of G?)

It is proved that the k-Coloring problem in general graphs for fixed k ≥ 3 is NP-hard
assuming P , NP [134]. Now, suppose k-Coloring is in XP– this means that for a given graph
G of order n and a fixed integer k ≥ 3, there is an algorithm with running time O( f (k)nk), which
contradicts the hardness of k-Coloring. However, it can be even more interesting to design an
algorithm with a running time that separates the size of the instance x by a parameter k. In that
way, the class of all parameterized problems which can be decided by an algorithm with running
time f (k)|x|O(1) time is called FPT, where |x| is the input size and f is a computable function and
k is a parameter. Such an algorithm is called fixed parameter tractable algorithm (fpt-algorithm
for short). Hence, if k is fixed and small, such problems can be considered "tractable" whereas,
they were considered "intractable" in the traditional classification.

As well as the problems that belong to FPT, there are some problems that belong to XP, but
unbelievably admit an fpt-algorithm. In this regard, we need a notion of reduction which transfers
a negative evidence for fixed-parameter tractability from one parameterized problem to another
one.

Definition 1.3 ([66, 67, 68]). Let Π,Π′ be two parameterized problems. A parameterized reduc-

tion from Π to Π′ is an algorithm that, for a given instance (x, k) of Π, gives an instance (x′, k′)
of Π′ such that:

• (x, k) is a yes-instance of Π if and only if (x′, k′) is a yes-instance of Π′,

• k′ ≤ g(k) for some computable function g,

• the running time is f (k).|x|O(1) for some computable function f .

So, if there is a parameterized reduction from Π to Π′ and Π′ is FPT, then Π is FPT as well,
and equivalently, if Π is not FPT, then Π′ is not FPT either.

Most of the NP-hard problems (all that belong to NP) are equivalent to each other with respect
to classical polynomial-time reductions, but this does not seem to be true for parameterized point of
view. Downey and Fellows introduced a hierarchy to classify parameterized problems according
to their hardness [70, 68, 66, 67, 69]. They mentioned that NP-hard problems may appear in
different classes of parameterized intractability. For example two NP-complete problems Clique

and Independent Set with respect to the natural parameter (the size of the optimal solution) are
W[1]-hard [36, 140], while the other NP-complete problem Dominating Set is W[2]-hard with
respect to the same parameter [70]. It shows that, unlike in the case of classical complexity,
Independent Set and Dominating Set occupy different levels of this hierarchy. In the following
we introduce the W-hierarchy proposed by Downey and Fellows:

P ⊆ FPT ⊆ W[1] ⊆ W[2] · · · ⊆ W[t] · · · ⊆ XP.
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A parameterized problem is W[t]-hard if every problem of W[t] FPT-reduces to it. It is W[t]-
complete if it is W[t]-hard and belongs to W[t]. In the following, we want to show how we can
prove that a parameterized problem belongs to a specific class in the parameterized hierarchy.

In order to prove that a problem Π belongs to a W[t]-class, we always pick a problem Π′

already in the class and try to construct a reduction from Π to Π′. Usually finding this kind of
reduction is difficult since the two problems can be very different. In the following we introduce
two types of parameterized problems, namely circuit satisfiability and Turing machine, which
help us to construct such parameterized reductions.

We need first to define preliminary concepts. A Boolean circuit is a directed acyclic graph
where the nodes are labeled in the following way:

• every node of in-degree 0 is an input node,

• every node of in-degree 1 is a negation node,

• every node of in-degree ≥ 2 is either an and-node or an or-node.

Additionally, there is exactly one node of out-degree 0 called output. A node with in-degree
bounded by a constant is said to be small, and otherwise it is called large. The weft of a boolean
circuit is the maximum number of large nodes on a path from an input to the output. The depth
is the maximum number of all nodes on a path from an input to the output. Assigning true-false
values to the input nodes determines the value of every node in the obvious way. Particularly, if
a given assignment to the input nodes leads to a true value for the output node, then we say that
the assignment satisfies the circuit and the weight of this assignment is the number of input nodes
that are assigned true.

Deciding if a boolean circuit has a satisfying assignment is an NP-complete problem since
(i) Sat is a special case of the problem and (ii) it can be easily checked in polynomial time if a
given assignment satisfies the circuit. A parameterized version of finding a satisfying assignment
denoted by Weft-t Circuit Satisfiability (W-tCS for short) defined in the following way.

Weft-t Circuit Satisfiability (W-tCS)
Input: A boolean circuit C with constant depth and weft at most t and an integer k.
Question: Is there a truth assignment of weight k that satisfies C?

Definition 1.4. For t ≥ 1, a parameterized problem Q belongs to W[t] if there is a parameterized

reduction from Q to W-tCS.

A way to prove that a parameterized problem belongs to W[t] is to construct a parameterized
reduction from the problem to a problem known to be in W[t]. Here, we propose two parameterized
reductions from the decision problems Independent Set and Dominating Set to W-1CS and
W-2CS respectively, which are established in [58].
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Independent Set belongs to W[1]:

Let G = (V, E) with V = {v1, · · · , vn} be an instance of Independent Set, we construct a boolean
circuit C = (VC, AC) as an instance of W-1CS as follows:

• Introduce n input nodes a1, · · · , an of in-degree 0 corresponding to vertices v1, · · · , vn.

• For each node ai, introduce a node bi labeled by "not" and add an arc (ai, bi) to AC.

• For any two vertices vi, v j in V that viv j ∈ E, create a node ci j labeled by "or" and add two
arcs (bi, ci j) and (b j, ci j) to AC.

• Add a node d labeled by "and" and add the arcs (ci j, d) for all ci j to AC.

Using a simple example in Figure 1.2, we illustrate the construction. Notice that, the depth
of the boolean circuit C is 4, and the boolean circuit has weft 1 since, the only large node in C

is node d. Moreover, notice that there is an independent set of size at least k in G if and only if
there is a truth assignment of weight k that satisfies C.

v1 v2 v3

v4v5

a1 a2 a3 a4 a5

¬ ¬ ¬ ¬ ¬

∨ ∨ ∨ ∨ ∨ ∨

∧

Figure 1.2: The construction of the boolean circuit C = (VC, AC) from an instance G = (V, E) of
Independent Set.

Dominating Set belongs to W[2]:

Let G = (V, E) with V = {v1, · · · , vn} be an instance of Dominating Set, we construct a boolean
circuit C = (VC, AC) as an instance of W-2CS as follows:

• Introduce n input nodes a1, · · · , an of in-degree 0 corresponding to vertices v1, · · · , vn.

• For each node ai, introduce a node bi labeled by "or" and for each v j ∈ NG[vi], add the arc
(ai, b j) to AC.

• Add a node c labeled by "and" and add the arcs (bi, c) for all 1 ≤ i ≤ n to AC.
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v1 v2 v3

v4v5

a1 a2 a3 a4 a5
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∧

Figure 1.3: The construction of the boolean circuit C = (VC, AC) from an instance G = (V, E) of
Dominating Set.

Using a simple example in Figure 1.3, we illustrate the construction. Notice that, the depth
of the boolean circuit C is 2, and the boolean circuit has weft 2, since all bi and c have in-degree
greater than 2. Moreover, notice that there is a dominating set of size at most k in G if and only
if there is a truth assignment of weight k that satisfies C.

In the above examples, we made two different parameterized reductions from Independent

Set and Dominating Set to W-1CS and W-2CS which are known to belong to W[1] and W[2]
respectively. In the following, we introduce a class of different Turing machine problems which
belong to levels of the parameterized complexity hierarchy.

A Turing machine is a mathematical model of computation that defines an abstract machine,
which was invented in 1936 by Alan Turing. A Turing machine consists of a tape of infinite
length where read and write operations can be performed. The tape consists of infinite cells on
which each cell either contains input symbol or a special symbol called blank. It also consists of
a head pointer which points to cell currently being read and it can move in both directions. A
Turing machine is expressed as a 7-tuple (Q,T, B,Σ, δ, q0, F) where:

• Q is a finite set of states

• T is the tape alphabet (symbols that can be written on the tape)

• B is blank symbol (every cell is filled with B except where the input symbols are written
onto the tape initially)

• Σ is the tape alphabet

• δ is a transition function which maps Q×T → Q×T ×{L,R}. Depending on its present state
and present tape alphabet (pointed by head pointer), it will move to a new state, change the
tape symbol (this is optional) and move the head pointer to either left or right. Multi-tape
Turing Machines have multiple tapes where each tape is accessed with a separate head.
Each head can move independently of the other heads. The transition function for a k-tape
Turing Machine is modeled by Q × T k → Q × T k × {L,R}k.

• q0 is the initial state

• F is the set of final states. If any state of F is reached, input string is accepted.
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A Turing machine is deterministic if the set of rules prescribes at most one action to be
performed for any given situation. By contrast, in a nondeterministic Turing machine, the set
of rules may prescribe more than one action to be performed for any given situation. In the
following we introduce two types of nondeterministic Turing machine problems which are known
in parameterized complexity.

Short Nondeterministic Turing Machine

Input: A single-tape nondeterministic Turing machine M, a word x over the alphabet of M

and a positive integer k.
Question: Is there a computation of M on x that reaches a final accepting state in at most k

steps?

In [37, 72], it is proved that Short Nondeterministic Turing Machine problem is W[1]-
complete. In order to show that a parameterized problem Π belongs to W[1], one can devise
a parameterized reduction from Π to the Short Nondeterministic Turing Machine problem
(see some examples in [42]). Turing machines can be also useful in constructing membership
results for the class W[2]. In [43] it is proved that a natural variation of the short nondeterministic
Turing machine problem in which the machine has many read/write tapes is W[2]-hard. This
version of the problem is defined formally as follows:

Short Multi-tape Nondeterministic Turing Machine

Input: A multi-tape nondeterministic Turing machine M, a word x over the alphabet of M

and a positive integer k.
Question: Is there a computation of M on x that reaches a final accepting state in at most k

steps?

In order to show that a parameterized problemΠ belongs to W[2], one can devise a parameter-
ized reduction from Π to Short Multi-tape Nondeterministic Turing Machine problem (see
some examples in [42]). Finally, a special kind of Turing machine problems is named Bounded

Nondeterministic Turing Machine proposed in [42] to be useful in establishing membership
results for the class W[t].

There are a lot of fixed-parameter tractable problems, which have FPT algorithms with
running times like O∗(2k), O∗(3k log k), O∗(2k2

), · · · 3. Hence, we need an inner hierarchy for
the FPT problems to give asymptotic lower bounds for running times of these problems. The
assumption that FPT,W[1] seems too weak to achieve this goal. Therefore two stronger (widely
believed) assumption were introduced.

Let us here recall the Satisfiability problem. An instance of Sat consists of a CNF-formula over
the variables x1, · · · , xn, i.e. a conjunction (AND) of clauses, where each clause is a disjunction
(OR) of some literals, where a literal is a variable xi or the negation of the variable. The output is
yes or no according to whether there exists a truth assignment for the formula i.e. an assignment

3Throughout this manuscript, the O∗ notation is extensively used in the running times of parameterized algorithms
that suppresses polynomial factors in the input size. For example, O∗(3k) instead of O(poly(n)3k).
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of true/false to each variable such that the formula being true. By restricting the number of
variables appearing in each clause to some constant q, we arrive at the q-Sat problem. The q-Sat

problem is NP-complete for q ≥ 3. So, we do not expect to find a polynomial algorithm for
the problem. Moreover, by trying all possible true/false assignments, we can solve any q-Sat

problem in O∗(2n) time, where n is the number of variables. Additionally, no one has proposed
an algorithm for 3-Sat that is substantially faster than the brute-force algorithm.

The Exponential Time Hypothesis (ETH for short) is a conjecture stating that there is no
sub-exponential algorithm in the number of variables for 3-Sat. It means that an n-variable
3-Sat cannot be solved in time 2o(n). Generally, ETH allows us to show some significant results
in different forms. For example, one can prove that a problem cannot be solved in time 2o(n), or
a parameterized problem cannot be solved in time f (k)no(k), or an FPT problem does not admit
a 2o(k)nO(1)-time algorithm by (assuming ETH). The Strong Exponential Time Hypothesis (SETH
for short) is a conjecture stating that general Sat can not be solved in running time O((2− ǫ)n) for
any constant ǫ > 0. In other words, let δq be the infimum of the set of constants c for which there
exists an algorithm solving q-Sat in time O∗(2cn) for q ≥ 3. From ETH, we deduce that δ3 > 0,
and from SETH we derive limq→∞ δq = 1.

These two conjectures were first introduced by Impagliazzo and Paturi [110]. In order to
propose some negative results, we can use ETH and SETH, via a particular hardness reduction, to
show that there is not any algorithm of some specific running time. Some examples of using one
of these conjectures in order to prove a lower bound for the time complexity of some problems are
presented in [132, 133]. The reader can find more information about parameterized complexity
in [71, 145, 58].
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This manuscript presents a general study of the behavior of graph optimization problems
when a partial solution is given, generally known as extension problems. Several extension
problems have already been studied in the literature– such problems generally involve optimizing
an objective function among the feasible solutions containing a partial solution and/or excluding
some other elements. For extension problems containing a partial solution (also called comple-
tion problems), existing results dealt with coloring [23, 109], scheduling problem [84], routing
problems [7, 8, 113] and many other combinatorial problems completion have been studied in
[64, 161]. A series of researches have been done related to the well-known Precoloring Ex-

tension problem on different graph classes, in which, a graph and a partial proper coloring are
given in advance, and it asks to find a proper coloring of the whole graph extending the partial
one and using the same colors [139, 109, 146, 14, 159, 138, 23]. For example, in [139, 109], it is
shown that the problem on proper interval graphs is NP-hard when the number of colors of the
precolored set is unbounded. It is proved that Precoloring Extension problem on general in-
terval graphs is solvable in polynomial time when each color appears only once in the precolored
set, while it is NP-hard if each color of the precolored set used twice [23]. For bipartite graphs,
the NP-completeness result holds if the precolored set comprises 3 vertices of distinct colors.

An extension variant of the Shortest Cycle problem consists of a weighted graph G =

(V, E,w) together with a set of specified elements U ⊆ (E ∪ V) and the goal is to extend U to
a simple cycle with minimum weight. The problem is NP-hard but is in FPT by the natural
parameter (the number of vertices or edges in the shortest cycle) [24]. A generalized version of
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the Travelling Salesman Problem (TSP for short) in the framework of extension problems is
known as the General Routing Problem (GRP for short), and has been considered from an
approximability point of view. The goal of the GRP for a given graph G = (V, E) and two subsets
V ′ ⊆ V and E′ ⊆ E, is to find a cycle of minimum cost in G = (V, E) which visits all the vertices
in a required subset V ′ exactly once and covers all the edges in a required subset E′ at least once.
In [113], using Christofides’ algorithm for the TSP with triangle inequality, the authors presented
a 3

2
approximation algorithm for GRP. Further, the Ordered Cluster Traveling Salesman

Problem (OCTSP for short) have been studied in the literature [7, 8, 91, 99]. In this problem,
the input contains a weighted graph G = (V, E,w) plus an ordered partition of vertices of G into
k clusters C1, · · · ,Ck. The goal of OCTSP is to find a simple tour of all vertices with minimum
weight such that it first visits all vertices in C1, then all vertices in C2 , · · · , and finally all the
vertices in cluster Ck. Other types of extension involve optimization problems subject to a forcing
graph or conflict graph [62], where for an instance dealing with the shortest path problem, a
constraint between distinct pair {u, v} of vertices is called a conflict (resp. forcing) constraint if at
most (resp. at least) one vertex among u, v is traversed by the path.

In this thesis, a large number of hereditary and anti-hereditary graph optimization problems
will be studied under a framework of extension problems. Formally, an optimization problem
Π = 〈I, F, opt,m〉 is hereditary (resp. anti-hereditary) if for any instance x ∈ I, the set of
feasible solutions F(x) is closed under set-inclusion (resp. set-exclusion), i.e. for any instance
x ∈ I and any feasible solution y ∈ F(x), y′ ∈ F(x) for every y′ ⊆ y (resp. y′ ⊇ y). In our setting
the instance x is a graph G = (V, E) and F(G) ⊆ 2V or F(G) ⊆ 2E depending on the context. For
example, Max IS is a graph hereditary problem, since for any given graph G = (V, E), S ′ ⊆ S

is an independent set if S ⊆ V is an independent set, and Min VC is a graph anti-hereditary
problem, since for any given graph G = (V, E), S ′ ⊇ S is a vertex cover of G if S ⊆ V is too.

In our framework, we focus on inclusion-wise minimal and maximal solutions. Given a graph
optimization problem Π = 〈I, F, opt,m〉, for an instance G ∈ I and a set of feasible solutions
F(G), the set of inclusion-wise minimal (resp. maximal) feasible solution is denoted by µ(G)

(resp. ψ(G)) and is defined as follows:

• µ(G) = {y ∈ F(G) : ((y′ ⊆ y) ∧ (y′ ∈ F(G))→ y′ = y}

• ψ(G) = {y ∈ F(G) : ((y′ ⊇ y) ∧ (y′ ∈ F(G))→ y′ = y}

Let Π be an anti-hereditary (resp. a hereditary) optimization problem. For an instance G ∈ I

of Π, an instance of the extension problem Π′ includes G together with a pre-solution U, that is a
subset of an appropriately chosen part of the input for each particular problem. For instance, for
the Min VC problem, the instance contains a graph G = (V, E) and a subset U ⊆ V , while for Max

EM, the instance includes a graph G = (V, E) and the pre-solution U ⊆ E. In this framework, the
pre-solution U when Π is an anti-hereditary (resp. a hereditary) problem, is called a forced set

(resp. co-forbidden set).

In this chapter, a formal definition of any kind of optimization / decision problems within the
extension framework is presented. We also try to review all the related studies in each section.
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We finish this chapter with an brief overview of the results and problems which will be presented
in the following chapters.

2.1 Extension optimization problems

Here, we define a graph optimization problem related to the extension problems. Let Π be
an anti-hereditary (resp. hereditary) graph optimization problem. The extension optimization
problem Π′ denoted by Min Ext Π (resp. Max Ext Π) consists of an instance G of Π together
with a forced set (resp. a co-forbidden set1) U ⊆ V (or E depending the context) as an input,
and the goal of Π′ is to find a minimal (resp. maximal) solution S such that U ⊆ S (resp. U ⊇ S ).
For example, for two problems Min VC and Max IS, the extension variants are formally defined
as follows:

Min Ext VC

Input: A graph G = (V, E) together with a forced set U ⊆ V .
Solution: A minimal vertex cover S ⊆ V such that U ⊆ S .
Output: Minimize |S |.

Max Ext IS

Input: A graph G = (V, E) together with a co-forbidden set U ⊆ V .
Solution: A maximal independent set S ⊆ V such that S ⊆ U.
Output: Maximize |S |.

Here, it is important to notice that minimality and maximality are considered with respect
to the whole set of feasible solutions. Hence, for an instance (G,U) of Min Ext VC, a subset
S ⊇ U is a minimal vertex cover if S − v is not a vertex cover for any v ∈ S . Another extension
problem associated to vertex cover is defined by S ⊇ U, where S is a vertex cover and S − v is
not a vertex cover for any v ∈ S \ U. In this latter case, we restrict all the feasible solutions to
contain U, and the goal is to optimize the solution part out of U; this variant has been studied in
[161, 64]. Weller et al. defined a residue variant of the extension problems, where for a feasible
solution S of the problem, the goal is to optimize the residue part (S \ U) [161]. They studied
some classical optimization problems together with the description of residue-approximation in
the framework of extension problem. In [64], authors added another constraint to the problem,
in which, for an instance (G,U, F) of a graph problem Π, any feasible solution S contains all
members of U whilst S ∩ F = ∅. Many graph optimization problems have been studied in this
framework from computational complexity and (in-)approximability points of view. Regarding
another type of extension problem considered in [57], for a graph problem Π in this framework,
the instance consists of a graph G = (V, E) together with a partition ΠV (resp. ΠE) of its vertices
(resp. of its edges), and any solution S containing an element (vertex or edge) of any partition
must also contain all the other ones. Let us now give an example illustrating our framework.

1U is called forbidden set.
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a
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Figure 2.1: The graph G = (V, E) as a part of the instances of Max Ext IS and Min Ext VC.

Example 2.1. Consider the graph given in Figure 2.1 as an example for Min Ext VC and Max

Ext IS. First, suppose G together with the forced set U = {a, b} is an instance of Min Ext VC. The
only minimal vertex cover containing {a, b}, is {a, b, e, d}, so the size of optimal solution of Min

Ext VC for the instance (G,U) is 4. However, for the extension framework proposed by Weller
et al. [161] (focusing just on the residue part), the optimal vertex cover containing U is {a, b, c}.
Now, suppose the graph G together with the co-forbidden set U = {c, d, e, a} is an instance of
Max Ext IS. In this case, there are 2 maximal independent sets included in U namely, {a, e, d},
and {c}. Thus, the size of optimal solution of Max Ext IS for the instance (G,U) is 3.

We now define formally extΠ(G,U) for hereditary and anti-hereditary problems. Let Π be an
anti-hereditary graph problem, let G = (V, E) be a simple graph and let U ⊆ V or E (depending
on the context). Then extΠ(G,U) is a subset S ⊆ V or E (depending on the context) of minimal
solutions of Π such that S ⊇ U. Now let Π be a hereditary graph problem, let G = (V, E) be
a simple graph and let U ⊆ V or E (depending on the context). Then extΠ(G,U) is a subset
S ⊆ V or E (depending on the context) of maximal solutions of Π such that S ⊆ U.

Sometimes, for an instance (G,U) of a graph extension problem Π, extΠ(G,U) = ∅ (i.e. there
is no feasible solution), which makes the question of the existence of such extensions interesting.
However, if one starts with a trivial pre-solution, then the question is usually easy. In the next
section, we define decision problems associated with our framework.

2.2 Decision problems associated with extension optimization

problems

The question as to whether a given partial solution to a problem can be extended reasonably has
been developed in many algorithmic approaches for optimization problems. For instance, when
enumerating minimal dominating sets of a graph G = (V, E), one usually arrives at the problem
to decide for a vertex set U ⊆ V , if there exists a minimal dominating set S with U ⊆ S . For a
given hereditary (resp. anti-hereditary) graph problem Π, the extension decision problem for Π
is written Ext Π. Informally, an input of Ext Π consists of an instance G = (V, E) of Π, together
with a pre-solution U ⊆ (V or E depending the context), and the associated decision problem
asks if there is a minimal (resp. maximal) solution S for an anti-hereditary (resp. hereditary)
problem Π such that U ⊆ S (resp. U ⊇ S ). For example, for two problems vertex cover and
independent set, Ext VC and Ext IS formally defined as follows:
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Ext VC

Input: A graph G = (V, E) together with a forced set U ⊆ V .
Question: Is there a minimal vertex cover S such that U ⊆ S ?

Ext IS

Input: A graph G = (V, E) together with a co-forbidden set U ⊆ V .
Question: Is there a maximal independent set S such that U ⊇ S ?

In Remark 4.1, we will show that (G,U) is a yes-instance of Ext VC if and only if (G,V \U)

is a yes-instance of Ext IS. To be clear, let us give an example.

Example 2.2. Consider the graph G illustrated in Figure 2.2, and suppose that (G, {g, h, f }) and
(G, {g, a, e}) are two instances of Ext VC. It is clear that {g, h, f } can be extended to a minimal
vertex cover in G, as {g, h, f , d, b} is a minimal vertex cover containing U, but (G, {g, a, e}) is a
no-instance of Ext VC, i.e. there is no minimal vertex cover of G which contains {g, a, e}. Now,
suppose (G, {a, h, c, f , e}) and (G, {b, h, c, f , d}) are two instances of Ext IS. It is easy to show
that (G, {a, h, c, f , e}) is a yes-instance of Ext IS, because {a, c, e} is a maximal independent set.
But there is no maximal independent set included in {b, h, c, f , d}, since at least one of vertices
{a, e, g} can be added to any independent set of {b, h, c, f , d} and makes a bigger independent set,
so (G, {b, h, c, f , d}) is a no-instance of Ext IS.

a b c d e

fgh

Figure 2.2: The graph G = (V, E) as a part of the instances of Ext IS and Ext VC.

This type of decision problem related to an extension optimization problem is encountered in
many efficient enumeration algorithms: when enumerating all minimal solutions for an instance
of a problem, one usually asks for a given of pre-solution U, if there exists a minimal solution
S with U ⊆ S . This decision problem has been considered in many studies in the framework of
enumeration, for example, see [31, 32, 33, 59, 80, 92, 93, 95, 120, 119, 142, 152]. For instance,
Minimal Vertex Cover Extension (MVCExt for short) consists of a graph G = (V, E) and a
set Y ⊆ V as an input, and the goal is to find all sets X enjoying these two properties: (1) X ⊇ Y ,
and (2) X is a minimal vertex cover in G. Let k-MVCExt be the same problem with the additional
demand (3) |X| ≤ k. These two problems have been studied in [59]. More generally, the question
of finding extensions to minimal solutions was encountered in the context of proving hardness
results for (efficient) enumeration algorithms for Boolean formulae, in the context of matroids
and similar situations; see [32, 120].
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Moreover, in [32], it is shown that extension of partial solutions is NP-hard for computing
prime implicants of the dual of a Boolean function; a problem which can also be seen as trying
to find a minimal hitting set for the prime implicants of the input function. Interpreted in this
way, the proof from [32] yields NP-hardness for the minimal extension problem for 3-Hitting

Set (but polynomial-time solvable if |U | is constant). This result was extended in [17] to prove
NP-hardness for computing the extensions of vertex subsets to minimal dominating sets (Ext

DS), even restricted to planar cubic graphs. Similarly, it was shown in [16] that extensions to
minimal vertex covers restricted to planar cubic graphs is NP-hard.

An independent system is a set system (V, E), E ⊆ 2V , that is hereditary under inclusion. The
extension problem Ext Ind Sys (also called Flashlight) for independent system was proposed
in [131]. In this problem, given as input X,Y ⊆ V , one asks for the existence of a maximal
independent set including X that does not intersect with Y . Lawler et al. proved that Ext Ind

Sys is NP-complete, even when X = ∅ [131]. In order to enumerate all (inclusion-wise) minimal
dominating sets of a given graph, Kanté et al. studied a restriction of Ext Ind Sys: finding
a minimal dominating set containing X. They proved that Ext DS is NP-complete, even in
special graph classes like split graphs, chordal graphs and line graphs [117, 116]. Moreover, they
proposed a linear algorithm for split graphs when X,Y is a partition of the clique part [115].

The case where the forced set U satisfies some graph property like being a clique or an
independent set has already been studied in some context:

• Strong clique. A strong clique in a graph is a clique intersecting every maximal independent
set. In [107], Hujdurovic et al. have studied six algorithmic decision problems related to
strong cliques. They proved that a clique C in a graph G is not strong if and only if it is
dominated by an independent set I ⊆ V(G) \ C. In other words, they showed that a clique
C is strong if and only if there is a minimal vertex cover of G extending C. Moreover,
by introducing the extension variant of the strong clique problem, the authors made a
generalized version of their problems. Ext Strong Clique consists of a graph G and a
clique C in G, and it asks whether G contains a strong clique C′ ⊇ C. A survey of Strong
clique can be found in [M. Milanič, Strong cliques and strong stable sets in graphs, chapter
to appear in: Topics in Algorithmic Graph Theory, Cambridge University Press, edited by
L. Beineke, M. Golumbic, R. Wilson]

• Disjoint independent set. The problem of decising whether a graph has a pair of disjoint
maximal independent sets is an old problem in graph theory which was introduced by Berge
in early 70’s. Moreover, recently, many studies have been done in order to find a pair of
disjoint maximal/minimal subsets of graphs satisfying same property [53, 65, 150, 108].
For example in [105], it is shown that deciding whether a graph has two disjoint maximal
independent sets is NP-complete problem. By assuming that one of the disjoint subsets is
given in advance, the problem transforms to the extension decision problem. For example,
suppose a graph G = (V, E) together with a maximal independent set x ⊆ V is given in
advance and it is asked whether G has a maximal independent set included in V \ X.

• Extension of partial representation. In the context of extending a given partial represen-
tation into a full one for a subclass of intersection graphs, several results are proposed in
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[6, 124, 122, 121, 123, 48]. For instance, in [124, 122], for interval graphs, the problem
asks, for a given interval graph with some intervals pre-drawn by the input, whether the
partial representation can be extended to a representation of the entire graph. In [122, 124],
the authors gave a linear-time algorithm for respectively extending proper interval repre-
sentations and interval graphs using PQ-trees. In [122], the authors also introduced a more
general problem of bounded representations of unit interval graphs which is NP-complete,
where the input constrains the positions of some intervals by lower and upper bounds.

2.3 Price of extension

Considering the possibility that some set U might not be extensible to any minimal or maximal
solution, one might ask how far is U from an extensible set. One idea to evaluate this, is to ask
how much U has to be altered when aiming for a minimal solution. Described differently for our
extension problems at hand, we want to discuss how many elements of U have to be deleted (resp.
how many elements of X \ U have to be added where X is the universe) for an anti-hereditary
(resp. hereditary) problem, in order to arrive at a yes-instance of the extension problem. In this
regard, we define a new notion price of extension (PoE), in an attempt to understand what effect
the additional pre-solution constraint has on the possibility of finding minimal (resp. maximal)
solutions. A similar approach has already been used in the past under the name the Price of

Connectivity in [38] for the context of connectivity because it is a crucial issue in networking
applications; this notion has been introduced in [38] for Min VC and is defined as the maximum
ratio between the connected vertex cover number and the vertex cover number. In our context,
the goal of PoE is to quantify how close efficiently computable extensible subsets of the given
pre-solution U are to U or to the largest possible extensible subsets of U. To formally discuss
this concept, we introduce the following optimization problems. From an instance (G,U) of
an anti-hereditary (resp. a hereditary) problem Π, two new optimization problems denoted by
ExtmaxΠ (resp. ExtminΠ) and defined as follows:

ExtmaxΠ

Input: An instance x together with a forced set U.
Solutions: Minimal solution S of G = (V, E).
Output: Solution S that maximizes |S ∩ U |.

ExtminΠ

Input: An instance x together with a co-forbidden set U.
Solutions: Maximal solution S of x.
Output: Solution S that minimizes |S ∪ U |.

To be clear, let us give an example.
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Example 2.3. Suppose that (G,U) is an instance of ExtmaxVC where G = (V, E) is presented
in Figure 2.3 and U ⊆ V = {c, d, e}. Easily, one can see that (G,U) is a no-instance of Ext

VC while vertex sets {c, d}, {e} are extendible to a minimal vertex cover. Since we are seeking a
minimal vertex cover containing a maximum number of vertices in U, then the optimal solution
is {b, c, d}. Now, consider (G,U) with U = {a, b} as an instance of ExtminIS. Suppose S is a
maximal independent set of G. If a ∈ S , by maximality e ∈ S too, and if b ∈ S , then {c, d} ⊂ S .
Since for ExtminIS, we are looking for a maximal independent set including a minimum number
of vertices outside of U, then the optimal solution of ExtminIS for (G,U) is {a, e}.

a b

c d e

Figure 2.3: The graph G = (V, E) as a part of the instances of ExtmaxVC and ExtmaxIS.

For S = ExtmaxΠ or ExtminΠ, we denote by optS (x,U) the value of an optimal solution. Since
for both of the problems optS (x,U) = |U | if and only if (x,U) is a yes-instance of Ext Π, we
deduce that for an anti-hereditary (resp. a hereditary) problem Π, ExtmaxΠ (resp. ExtminΠ) is
NP-hard as soon as Ext Π is NP-complete.

It is easy to see that the optimal solutions of ExtmaxVC and ExtminIS are related similarly to
the existing relation between α(G) and τ(G) (i.e. the vertex cover number). Hence for any graph
G = (V, E) of n vertices, we have optExtmaxVC(G,U) + optExtminIS(G,V \ U) = n.

The price of extension PoE is defined exactly as the ratio of approximation, i.e. apx

opt
. We say

that Π admits a polynomial ρ-PoE if for every instance (x,U), we can compute a solution S of
G in polynomial time which satisfies PoE(S ) ≥ ρ for ExtmaxΠ (resp. PoE(S ) ≤ ρ for ExtminΠ).
Formally, we define it as follows:

Definition 2.4. For an instance (x,U) of ExtmaxΠ and (resp. ExtminΠ), the price of extension

(PoE) of a minimal (resp. maximal) solution S of Π on x is defined by PoE(S ) := |S∩U |
optExtmaxΠ(x,U)

(resp. PoE(S ) := |S∪U |
optExtminΠ

(x,U)
).

In the next section, we will introduce a framework of maximum-minimal (max-min for short)
and minimum-maximal (min-max for short) graph optimization problems and we will show the
relation between a problem in this framework and ExtmaxΠ and ExtminΠ.

2.4 Max-min and min-max optimization problems in graphs

In this Section a framework of max-min, min-max optimization problems in graphs adapted
from Manlove’s thesis [136] will be proposed, then we will clarify the relation between the
two frameworks of extension problems and min-max or max-min optimization problems. We
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finish this section by reviewing most of the interesting results related to max-min or min-max
optimization problems.

In the following, we show how to obtain a max-min or min-max graph optimization problem
Π
′, from a source graph problem Π.

Definition 2.5. Let Π = 〈I, F, opt,m〉 be an hereditary or an anti-hereditary graph optimization

problem. Then the new optimization problem is Π′ = 〈I, F′, opt′,m〉, where for any instance

G ∈ I:

• F′(G) :=















µ(G) if Π is an anti-hereditary problem

ψ(G) if Π is a hereditary problem

• opt′ :=















min if opt = max

max if opt = min

If opt = max then new problemΠ′ is a min-max problem also called lowerΠ and if opt = min,
Π
′ is a max-min problem also called upper Π. In fact, this is the framework proposed by Manlove

in [136]. He systematically studied a lot of problems, considering many different partial orders
in this framework, for example see [137, 112] for coloring and 12 problems on coverings and
independence problems in graphs. Some examples of partial orderings that are not hereditary
or anti-hereditary are for instance k-exchange for independence set[135] or the problems called
Maximal subset sum with digraph constraints[97]. A series of other problems that are neither
hereditary nor anti-hereditary can be found in [136] and will be discussed in Chapter 6. As an
example, ifΠ is Min VC (resp. Max IS), thenΠ′ looks for a minimal vertex cover (resp. maximal
independent set) of maximum (resp. minimum) size. The two new problems defined formally as
follows:

Max-Min VC (also called Upper VC)
Input: A graph G = (V, E).
Solution: A minimal vertex cover S ⊆ V .
Output: Maximize |S |.

Min-Max IS (also called Lower IS)
Input: A graph G = (V, E).
Solution: A maximal independent set S ⊆ V .
Output: Minimize |S |.

To be clear, consider the following example.

Example 2.6. Consider the graph proposed in Figure 2.4 as an instance for both problems Max-

Min VC and Min-Max IS. There are 3 different minimal vertex covers of G, {a, e, f }, {a, d} and
{d, b, c} and whereas in Max-Min VC, we seek a minimal vertex cover of maximum size, so
the size of an optimal solution is 3. For Min-Max IS there are also 3 feasible solutions for G,
{b, c, d}, {a, e, f } and {b, c, e, f }, since in Min-Max IS, we seek a maximal independent set of
minimum size, so the size of an optimal solution equals 3.
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a

b

c

d

e

f

Figure 2.4: The graph G as an instance of Max-min VC and Min-Max IS.

A particular case of ExtminΠ (resp. ExtmaxΠ) for an instance (x,U) occurs when the pre-
solution U is "empty-set" (resp. "whole-set"). So, if Π is an anti-hereditary problem, ExtmaxΠ

with (x,U) as an instance, is exactly equivalent to the well known problem Max-MinΠ or Upper

Π when U is "whole-set", and if Π is a hereditary problem, ExtminΠ with (x,U) as an instance
is exactly equivalent to Min-Max Π or Lower Π when U is "empty-set". Therefore, ExtmaxΠ

contains the Max-Min Π for an anti-hereditary problem Π and ExtminΠ contains the Min-Max

Π for a hereditary problem Π.

Suppose G = (V, E) is the instance of two problems Min VC and Max IS. The goal of
ExtmaxVC for the case that the partial solution U = V is to find a minimal vertex cover containing
the maximum number of vertices of V , which is a solution for Max-Min VC, while the goal
of ExtminIS when U = ∅ is to find a maximal vertex cover containing the minimum number of
vertices of V which is a solution for Min-Max IS.

Considering a max-min or min-max version of a problem by “flipping” the objective is not a
new idea; in fact, such questions have been posed before for many classical optimisation problems.
Some of the most well known examples include the Min-Max IS problem [34], the Min-Max

VC problem [30, 163], the Lazy Bureaucrat problem which is a min-max version of Subset

Sum problem which asks for a given set of integers w1, · · · ,wn and a value W, does any subset
of them sum to precisely W? [86, 96], the Max-Min DS problem [2, 17], and the Min-Max

Matching problem [162].

The Min-Max IS problem, also called minimum independent dominating set (Min ISDS) asks,
given a graph G = (V, E), for a subset S ⊆ V of minimum size that is simultaneously independent
and dominating. From the NP-hardness and exact solvability point of views, Min ISDS is
equivalent to Upper VC [137], but they seem to behave differently in terms of approximability
and parameterized complexity [12]. Although Min ISDS is polynomially solvable in strongly
chordal graphs [77], it is hard to approximate within n(ǫ−1), for any ǫ > 0, in certain graph
classes [77, 61]. Regarding parameterized complexity, Fernau [81] presented an fpt-algorithm
for Upper VC with running time O∗(2k), where k is the size of an optimum solution, while it is
proved that Min ISDS with respect to the standard parameter is W[2]-hard. Moreover, Boria et
al. [30] provided a tight approximation result for Upper VC in general graphs: they presented
a n

−1
2 approximation algorithm together with a proof that the Upper VC problem is NP-hard to

approximate within n(ǫ− 1
2

), for any ǫ > 0. Furthermore, they presented a parameterized algorithm
with running time (1.5397k) where k is the standard parameter, by modifying the algorithm of
[81]; they also showed that the weighted versions of Upper VC and Min ISDS are in FPT with
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respect to the treewidth.

The Min-Max Matching problem was studied as early as 1980, when Yannakakis and Gavril
showed that it is NP-hard even in some restricted cases [162]. Min-Max Matching problem
is polynomially equivalent to the minimum edge dominating set (denoted by Min EDS); the
problems asks, given a graph G = (V, E), for a subset S ⊆ E of minimum size dominates all edges
of G. An independent edge dominating set is an edge dominating set in which no two elements
are adjacent. The Min-Max Matching problem is also known minimum independent edge

dominating set (denoted by Min ISEDS)and asks, given a graph G = (V, E), for a subset S ⊆ E

of minimum size that is simultaneously independent and dominating. In 2006, it was proved that
Min-Max Matching is NP-hard to approximate within a factor better than 7

6
[50]. Later, in [75],

the result improved, where the authors proved that the problem is hard to approximate with ratio
better than 1.18, assuming P , NP. Finally, Dudycz et al. proved that the Min-Max Matching

is hard to approximate within ratio 2, assuming Unique Games Conjecture (UGC) [73].

2.5 Overview

In this thesis, we study a special type of optimization problems, called extension problems. We
study some graph hereditary and graph anti-hereditary optimization problems in this framework
from a computational complexity, (in-)approximability and parameterized complexity points of
view. Informally, in the extension version of an anti-hereditary (resp. a hereditary) optimization
problem Π, we consider an instance of Π with an additionally - specified set U which is called a
pre-solution, while the goal is to obtain an inclusion-wise minimal (resp. maximal) solution S of
optimum value such that U ⊆ S (resp. U ⊇ S ).

Concerning finding a minimal solution containing a forced set, with optimal value, we study
the weighted edge cover problem in Chapter 3. The input of an extension version of weighted
edge cover consists of both a weighted graph G = (V, E,w) and a forced set U ⊆ E, and the task
is to extend U to an inclusion-wise minimal edge cover of optimal value. First we show that for a
given graph G and a forced set U, Ext EC is an NP-complete problem even for bipartite graphs
of maximum degree 3. Next, we consider both maximization and minimization variants of the
problem in complete graphs. For a general weight function, we show that Min Ext WEC is not
approximable at all, but Max Ext WEC is 0.5 approximable. Moreover, we consider some other
weight functions, and show that Min Ext WEC when the weight function satisfies the c-relaxed
(or extended c-relaxed) triangle inequality for c > 1 is in APX while when it satisfies the c-relaxed
triangle (resp. extended c-relaxed) triangle inequality for c ≤ 1 (resp. c = 1) it is polynomial-time
solvable. Furthermore, we show that both optimization problems are polynomial-time solvable
in graphs with bounded tree-width.

Further, we focus on a particular case of Max Ext WEC when the forced set is empty.
The problem is called Weighted Upper EC in which, for a given edge weighted graph, the
aim is to find a minimal edge cover of maximum total weight. We study the problem for some
graph classes from an (in-)approximability point of view: we prove that Weighted Upper EC in
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complete graphs is equivalent to Max Star Forest problem in general graphs. We also show
that, Weighted Upper EC in bipartite graphs and split graphs with binary weights is as hard
as Max IS in general graphs. Moreover, we show that the problem in k-trees and in graphs of
bounded degree is APX-complete.

We consider the extension variants of some vertex graph problems in Chapter 4. We study the
decision problem Ext Π when Π is one of the following vertex graph problems: vertex Cover,
Independent Set, Connected Vertex Cover, Non Separating independent set and Domi-

nating Set. For all of these problems we show that the problems are NP-complete for restricted
cases of input graphs. Also, we find many graph classes where the problems are solvable in
polynomial time. Furthermore, we study the parameterized complexity of these problems, with
respect to the size of the pre-solution U as well as the dual set U. All these complexity consid-
erations are also carried out in very restricted scenarios, be it degree or topological restrictions
(bipartite, planar or chordal graphs). We further introduce the price of extension (PoE), measur-
ing the distance of U to the closest set that can be extended, which results in natural optimization
problems related to extension problems for which we discuss polynomial-time approximability.
Moreover, for some of the problems like Connected Vertex Cover, we focus on a particular
case (G, ∅) of ExtmaxCVC, which is also known with Max-Min CVC. We study the latter problem
from an (in-)approximability point of view and present some interesting results.

In Chapter 5, we concentrate on some problems related to edges in graphs. Particularly, we
consider the extension variant of the generalizations of Edge Cover, Edge Dominating Set

and Edge Matching, denoted by Ext r-EC, Ext r-EDS and Ext r-DCPS respectively. In the
generalized version of edge cover (resp. edge dominating set) denoted by r-Edge Cover (resp.
r-Edge Dominating Set), for a given graph G = (V, E), S ⊆ E is a feasible solution if ∀v ∈ V , v

is covered by (resp. ∀e ∈ E, e is dominated by) at least r edges in S . In the generalized version of
Edge Matching denoted by r-DCPS, for a given graph G = (V, E), S ⊆ E is a feasible solution
if ∀v ∈ V , v is incident to at most r vertices of S .

We show all of Ext r-EC, Ext r-EDS and Ext r-DCPS are NP-complete for graphs of
maximum degree r+2, moreover we prove for the particular case r = 1, all the mentioned problems
are NP-complete for subcubic planar bipartite instances. We also study the parameterized
complexity of theses problems, with respect to the size of pre-solution U or its dual set U,
which leads to some positive parameterized results. Furthermore, we discuss the concept price

of extension (PoE) for all the mentioned problems, and establish some hardness results in terms
of approximability for corresponding natural optimization problems.

Finally, in Chapter 6, we introduce a general partial-order based framework to model extension
for monotone problems with the attempt to highlight the unified structure of such types of
problems that seem to appear in many different scenarios. Informally, in the extension version of
an optimization problem Π, we consider an instance of Π with additionally a pre-solution and a
partial order on those as an input, while the goal is to extend the pre-solution to a minimal one
of optimum value. This partial order ≤ reflects not only the notion of extension but also that of
minimality such that, for a pre-solution U and a solution S , S extends U if U ≤ S . A solution
S is minimal if there exists no solution S ′ , S with S ′ ≤ S . Admittedly, our framework does
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not cover all problems of this flavor. We also add some hardness results for problems like Bin

Packing, Feedback Vertex Set and Feedback Edge Set.
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• Complexity and approximability of extended Spanning Star Forest problems in general and
complete graphs. Journal of Theoretical Computer Science, 2019. Joint work with Kaveh
Khoshkhah, Jerome Monnot and Dirk Oliver Theis.

•Weighted Upper Edge Cover: Complexity and Approximability. Journal of Graph Algorithms
and Applications (submitted, invited to the special issue of WALCOM 2019), Joint work with
Kaveh Khoshkhah, Jerome Monnot and Florian Sikora.

3.1 Introduction

For a given graph G = (V, E), a set S ⊆ E is called an edge cover if and only if S covers all
vertices of V , i.e. each v ∈ V is incident to at least one e ∈ S . The goal of the optimization version
of the problem is to find an edge cover of minimum size. The weighted variant of edge cover
consists of an edge weighted graph G = (V, E,w) as an input and the goal is to find an edge cover
S with optimal value, i.e. minimizing w(S ) =

∑

e∈S w(e). In this chapter, we study the weighted
version of edge cover in the framework of extension problems.

The input of an extension version of weighted edge cover consists of both a weighted graph
G = (V, E,w) and a forced set U ⊆ E, and the task is to extend U to an inclusion-wise minimal edge
cover of optimal value. Both maximization and minimization variants of the problem are studied
in this chapter. We study the two problems in computational complexity and (in)-approximability
points of view. The minimization (resp. maximization) variant is denoted by Min Ext WEC

(resp. Max Ext WEC) and is formally defined as follows:

Max Ext WEC

Input: A weighted graph G(V, E,w) with a forced set U ⊆ E where w(e) ≥ 0 for e ∈ E.
Solution: A minimal edge cover S ⊆ E such that U ⊆ S .
Output: Maximizing w(S ) =

∑

e∈S w(e).

Min Ext WEC

Input: A weighted graph G(V, E,w) with a forced set U ⊆ E where w(e) ≥ 0 for e ∈ E.
Solution: A minimal edge cover S ⊆ E such that U ⊆ S .
Output: Minimizing w(S ) =

∑

e∈S w(e).

By minimality, each minimal edge cover does not contain any P4 or C3 as a subgraph (induced),
thus, any minimal edge cover is a collection of stars. Hence, for an instance (G,U) if the forced
set U contains a P4 or C3 as an induced subgraph, easily one can deduces that there do not exist
any minimal edge cover of G which contains U. Therefore, along this chapter, we assume that
the forced set U is a packing of stars and the goal of Max Ext WEC (resp. Min Ext WEC) is to
find a collection of non-trivial stars1, maximizing (resp. minimizing) its weight.

Notice also that a minimal edge cover containing a given forced set may not exist even if U

is just a matching. For example consider a P4 where the forced set U is the middle edge of the

1A star is non-trivial if it forms a K1,ℓ with ℓ ≥ 1.
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c1 . . . ck p1 q1 . . . pk′ qk′

x1 x2 . . . xt

Figure 3.1: Bold edges corresponds to forced edges of U: sets S U containing stars with at least 2
leaves and MU containing stars with one leaf, are indicated on the left side and on the right side
of the figure respectively. Set X = {x1, ..., xt} is the vertices of the graph that are outside of U.

path. To cover both endpoints of the path, two pendant edges must be in any edge cover, although,
adding these edges contradicts to the minimality. However, for complete graphs when the forced
set U is a collection of non-trivial stars, there always exists some minimal edge cover containing
U. From now, we assume that the forced set U = MU ∪ S U is decomposed into a matching
MU = {piqi : i = 1, · · · , k′} of k′ edges and a set S U = {F1, · · · , Fk} of k vertex-disjoint stars with
at least two leaves (ci will be the center of Fi and C = {c1, . . . , ck} is the set of centers in S U). An
illustration of these definitions is depicted in Figure 3.1.

Min Ext WEC when U = ∅ is equivalent to Min WEC and it can be described as follows:
Given a weighted graph G = (V, E,w), the Min WEC problem consists of finding an edge cover
S ⊆ E of G minimizing w(S ) =

∑

e∈S w(e). This problem is polynomial-time solvable (see
chapters 33 and 34 volume A of [151]). Max Ext WEC, when the forced set U = ∅, is called
Weighted Upper EC. For a given weighted graph G = (V, E,w) as an instance of Weighted

Upper EC, the goal is to find a minimal edge cover S ⊆ E of G, maximizing w(S ) =
∑

e∈S w(e).
We study this problem for different graph classes in the framework of (in)-approximability, in
Section 3.5. By minimality, any minimal edge cover is a collection of non-trivial stars. Max Ext

WEC when the forced set U = ∅ and trivial stars (isolated vertices) are allowed to be in feasible
solutions is known as Max Star Forest problem. The former problem has been investigated
intensively recently for unweighted and weighted graphs. The problem is defined formally as
follows:

Max Star Forest

Input: A weighted graph (G,w) where G = (V, E) and w(e) ≥ 0 for e ∈ E.
Solution: A spanning star forest S = {S 1, . . . , S p} ⊆ E.
Output: Maximizing w(S ) =

∑

e∈S w(e) =
∑p

i=1

∑

e∈S i
w(e).

In Section 3.5, we attempt to show the relation between Weighted Upper EC problem and
Max Star Forest problem in (in)-approximability point of view. In other words, we try to
understand how much Max Star Forest problem can be intractable when having trivial stars in
feasible solutions are not allowed.
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3.1.1 Some general definitions

Residue approximation ratio

For algorithms finding an optimal solution containing a pre-solution U, it often does not matter
whether we are optimizing the weight of the overall solution S or the additional part S \U, which
is called residue. Nevertheless, in approximation point of view, this difference can be significant
in a way that an algorithm which is producing an approximation residue can be more intractable
than one is producing an approximation containing the given pre-solution. This motivated Weller
et al. to propose a new definition of approximability for extension problems [161].

Definition 3.1 ([161]). Let x be an instance of an extension optimization problem Π. Let R and

U be such that R ∪ U is a solution of Π for x. Then, we call R a residue for (x,U). Let R∗ be a

residue of optimal value for (x,U), then the residue approximation ratio is defined by ρr :=
m(R)

m(R∗)

where m is the measure function.

By Definition 3.1, Weller et al. mentioned that an extension problem Π belongs to RAPX if
and only if it admits a polynomial algorithm with constant residue approximation ratio [161].
They also noted that RAPX = APX for the special case R = ∅, so generally for any arbitrary
set R, RAPX ⊆ APX. They also showed that the extension variant of Vertex Cover is in
(RAPX ∩ APX), while the extension variant of Bin Packing is in APX ⊆ RAPX. The input of
Bin Packing consists of a set X = {x1, . . . , xn} of items and a weight function w that associates
rational numbers w(xi) ∈ (0, 1) to items. A feasible solution is a partition π of X such that, for
each set Y ∈ π,

∑

y∈Y w(y) ≤ 1. The traditional aim is to find a feasible π such that |π| is minimized.

Cost Function Variants

In this chapter, we consider different variants of the problem according to the weight (or cost)
function w : E → IR for some different classes of graph G = (V, E,w). The general version
assumes that w is any non-negative integer weight function. We also make some variations
of the problem, by considering univaluate weights, bivaluate weights and trivaluate weights

corresponding to the case w(e) ∈ {a} with 0 ≤ a, w(e) ∈ {a, b} with 0 ≤ a < b and w(e) ∈ {a, b, c}
where 0 ≤ a < b < c are 3 reals respectively. The particular cases (a = 1) and (a = 0, b = 1)

are more interesting and called here unary weights and binary weights, respectively. The Min

Ext WEC (resp. Max Ext WEC) for the case of binary weights is denoted by Min {0, 1}-Ext

WEC (resp. Max {0, 1}-Ext WEC). It is easy to see that Min Ext WEC (resp. Max Ext WEC)
in general graphs with unary weights is equivalent to Min Ext WEC (resp. Max Ext WEC) in
complete graphs with binary weights; keep all the edges of the general graphs in the complete
graph with weight 1 and add all nonexistence edges with weight 0. In these cases, the size of a
minimal edge cover is the number of leaves in all its components, and the goal in this case is to
find a packing of stars with minimum (resp. maximum) number of leaves.

In addition, in Section 3.3, another version of weight function w is considered: w satisfies
the c-relaxed triangle inequality. Mainly consider that the c-relaxed triangle inequality might be
satisfied outside the subgraph induced by V(U) where V(U) = {u, v : uv ∈ U}, i.e. inside V \V(U)

because the structure of feasible solutions are strongly constrained by subset U.
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Definition 3.2 (c-relaxed triangle inequality). For a fixed c > 1/2, a weight function w on Kn

satisfies the c-relaxed triangle inequality, if:

∀x, y, z ∈ V(Kn), w(x, y) ≤ c (w(x, z) + w(z, y)) (3.1)

The case c = 1 is usually called in the literature triangle inequality while for c ∈ (1/2; 1)

it is called sharpened triangle inequality. Note that the extreme case c = 1/2 becomes trivial
since all edges must have the same weight. A detailed motivation of the study of the Traveling

Salesman Problem satisfying sharpened triangle inequalities is given in [26]. In the context of
extended problems, Definition 3.2 leads to a new definition called the Extended c-relaxed triangle

inequality:

Definition 3.3 (extended c-relaxed triangle inequality). For a fixed c ≥ 1, a weight function w on

Kn satisfies the extended c-relaxed triangle inequality, if:

(i) w(e) = 0 for e ∈ U;

(ii) for all {x, y, z} * V(U), w satisfies the c-relaxed triangle inequality.

Condition (i) of Definition 3.3 refers to the discussion in [161] which argues regarding the
fixed forced set U in any feasible solution S , the “residue” part of S (i.e. the part given in S \U),
is important to valuate. Another consequence of conditions (i) and (ii) concerns the valuation
of w restricted to the subgraph induced by V(U) (except for edges of U): this function does not
satisfy any specified property. The main reason is that they could never contribute in any minimal
edge cover containing U. Finally, the reason for assuming c ≥ 1 is that condition (ii) implies
max{w(xz),w(yz)} ≤ c min{w(xz),w(yz)} when xy ∈ U and z < V(U).

It is well known that an optimization problem is easier to approximate when the input is
a complete weighted graph satisfying the triangle inequality, for example in the Traveling

Salesman Problem[52]. In Section 3.5, we make a new variant of the problem by introducing
a generalization of this notion which works for any class of graphs.

Definition 3.4. An edge weighted graph G = (V, E,w) satisfies the cycle inequality, if for every

cycle C in G we have:

∀e ∈ C, 2w(e) ≤ w(C) =
∑

e′∈C
w(e′).

Clearly, for complete graphs, cycle and triangle inequality notions coincide. Definition 3.4
is interesting when focusing on classes of graphs which are close to complete graphs, like split
graphs or k-trees.

3.1.2 Related work

For a given edge weighted graph, finding an edge cover of minimum value can be computed in
polynomial time (see Chapters 19 and 27 in [151]), but, to the best of our knowledge, the extended
version of edge cover has not been studied in the literature.
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Upper EC problem is closely-related to Max Star Forest problem and minimum dominating

set problem that have been investigated intensively in unweighted graphs. Max Star Forest

problem looks for a collection of vertex disjoint stars with maximum number of leaves. The
minimum dominating set problem (denoted Min DS) seeks the smallest dominating set of G.
Let ms f (G) and γ(G)denote the size of optimal solution of Max Star Forest and Min DS for
an unweighted graph G (without isolated vertices) of order n, respectively, we have ms f (G) =

np − γ(G). On the other hand, Upper EC problem in unweighted graph was firstly investigated
in [137], where it is proven that the problem is equivalent to Min DS. Let uec(G) denote the size
of optimal solution of Upper EC for an unweighted graph G (without isolated vertices) of order
n, respectively, we have uec(G) = n − γ(G). Thus, using the complexity results known on Min

DS, we deduce that Upper EC are NP-hard in planar graphs of maximum degree 3 [88], chordal
graphs [29] (even in undirected path graphs, the class of vertex intersection graphs of a collection
of paths in a tree), bipartite graphs, split graphs [22] and k-trees with arbitrary k [56], and they are
polynomial solvable in k-trees with fixed k, convex bipartite graphs [60], strongly chordal graphs
[77]. Concerning the approximability, an APX-hardness proof with explicit inapproximability
bound as well as a combinatorial 0.6-approximation algorithm for Upper EC problem proposed
in [143]. Better algorithms with approximation ratio 0.71 and 0.803 are given respectively in
[49] and [11]. For any ε > 0, Upper EC is hard to approximate within a factor of 259

260
+ ε unless

P = NP, while it admits a PTAS in k-trees (with arbitrary fixed k) [143]. A graph of order n is
called c-dense if it contains at least cn2

2
edges and it is called everywhere-c-dense if the minimum

degree is cn; when c ∈ (0; 1) is a constant, we say dense and everywhere-dense graphs [10].
In [104], it is proved that Upper EC remains APX-complete in c-dense graphs; they proposed
an approximation algorithm with ratio 0.804 + 0.196

√
c for c-dense graphs, while proving that

the problem does not admit a PTAS assuming P , NP. He and Liang in [103] claimed that
Upper EC on everywhere-c-dense graphs are easier than c-dense graph; they proved the claim by
proving that for a given graph of order n and minimum degree δ(n) for every vertex, Upper EC is
APX-complete when 1 ≤ δ(n) ≤ O(1), is NP-hard but allows a PTAS whenω(1) ≤ δ(n) ≤ O(n1−ǫ)

for some constant ǫ, and is not NP-hard assuming ETH when δ(n) ≥ ω(n1−ǫ) for every constant
ǫ > 0.

In contrast, to the best of our knowledge, for edge weighted graphs with non-negative weights,
no result for Weighted Upper EC is known, although some results are given for Max Star

Forest problem: a 0.5-approximation is given in [143] (which is the best ratio obtained so far)
and polynomial-time algorithms for special classes of graphs such as trees and cactus graphs
are presented in [143, 144]. Negative approximation results are presented in [143, 44, 49]. For
any ε > 0, the edge weighted version is NP-hard to approximate within 10

11
+ ε [44]. A subset

of vertices V ′ is called non-blocking if every vertex in V ′ has at least one neighbor in V \ V ′.
Actually, non-blocking is dual of dominating set and vice versa. For a given graph G = (V, E) and
a positive integer k, the Non-blocker problem asks if there is a non-blocking set V ′ ⊆ V with
|V ′| ≥ k. Hence, for unweighted graphs, optimal values of Non-blocking and Upper EC are
equal. In [63], Dehne et al. propose a parameterized perspective of the Non-blocker problem.
They give a linear kernel and an fpt-algorithm running in time O∗(2.5154k). They also give faster
algorithms for planar and bipartite graphs.
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3.1.3 Contributions

In this chapter, we investigated the extension variant of weighted edge cover problem. In Section
3.2, we show that the decision variant of the problem in NP-hard in general graphs, while we show
that the problem is solvable in polynomial time in graphs with bounded tree width. In Section
3.3 and Section 3.4, the optimization variants of the problem is studied in weighted complete
graphs with considering different weight functions. Particularly, in Section 3.3, we will show that
the Min Ext WEC problem for general weight function w is not approximable at all, while the
problem is APX-complete when w satisfies c-relaxed (or extended c-relaxed) triangle inequality
for c > 1. Further, we will propose a polynomial time algorithm for the Min Ext WEC problem
when the weight function w satisfies c-relaxed (resp. extended c-relaxed) triangle inequality for
c ≤ 1 (resp. c = 1). The Max Ext WEC will be considered from the (in-)approximability
point of view in Section 3.4: we will show that there is no approximation algorithm with ratio
better than 7

8
for general weight function, while we propose a simple polynomial algorithm with

a approximation ratio 1
2
.

Furthermore, in Section 3.5, we will study (in-)approximability of the Max Ext WEC problem
in a particular case, when the forced set U = ∅. We first will show that Weighted Upper EC

in complete graphs is equivalent for its approximation to Max Star Forest problem in general
graphs. Moreover, we will show that the Weighted Upper EC problem is hard to approximate in
bipartite and split graphs by giving an approximation preserving reduction from Max IS. Further,
we will prove the problem is APX-complete in k-trees with a constant k as well as in graph with
bounded degree.

3.2 Extended weighted edge cover in general graphs

In this section we show that for a given graph G = (V, E) and a packing of stars U ⊆ E, even
deciding the existence of a minimal edge cover containing U is hard. However, we will show
that when the input restricted to graphs with bounded tree-width, not only the decision version
of the problem is decidable in polynomial time but also both Min Ext WEC and Max Ext WEC

problems are polynomial-time solvable. The decision version of the problem denoted by Ext EC

defined as follows.

Ext EC

Input: A graph G = (V, E) and a packing of non-trivial stars U ⊆ E.
Question: Does G admit a minimal edge cover containing U?

As a first result in this section, we show that Ext EC is NP-hard, even if the forced set U

induces a matching.

Theorem 3.5. Ext EC is NP-complete for general graphs even if U induces a matching in G.

Proof. Clearly, Ext EC is in NP. For, given a graph G = (V, E), a subset U ⊆ E, and a set
S ⊆ E, it is straightforward to verify in polynomial time that S is a minimal edge cover of G
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containing U. To show NP-hardness, we propose a simple reduction from Sat to the Ext EC. As
it is already mentioned in Section 1.2, Sat is an NP-complete problem which consists of deciding
if an instance I = (C,X ) of Sat is satisfiable. Here, C = {c1, · · · , cm} and X = {x1, · · · , xn} are the
set of clauses and variables respectively; a variable xi which appears negatively will be denoted
¬xi. From I = (C,X ), we build an instance I′ = (G,U) of Ext EC as follows:

• V(G) = V(C) ∪ V(X) where V(C) = {w j : c j ∈ C} and V(X) = {v0
i
, v1

i : i = 1, · · · , n},

• U = {v0
i
v1

i : xi ∈ X},

• M =
m
⋃

j=1

({w jv
1
i : xi ∈ c j} ∪ {w jv

0
i

: ¬xi ∈ c j}),

• E(G) = U ∪ M.

It is clear that I′ is built in polynomial-time.

Suppose that I is satisfiable and let T be a satisfying truth assignment of I. For each clause c j,
we define f ( j) as an index of a variable x f ( j) which satisfies clause c j in T , we build a minimal
edge cover S containing U as follows: S = {v1

f ( j)
w j : c j ∈ C ∧ T (x f ( j)) = true} ∪ {v0

f ( j)
w j : c j ∈

C ∧ T (x f ( j)) = false} ∪ U.

Conversely let S be a minimal edge cover containing U. Define an initial truth assignment T by
setting T (xi) = true for all xi ∈ X . For each j (1 ≤ j ≤ m), by minimality w j is incident to
exactly one edge of S , since S ⊆ U- let this edge be w jv

r
i . If r = 0, set T (xi) = false. T is a

well-defined truth assignment, since by minimality of S , and since S ⊆ U, it is impossible that
v0

i
w j ∈ S and v1

i w j ∈ S for any xi ∈ X. Clearly T is a satisfying truth assignment for I. �

From the result of Theorem 3.5, we can easily derive:

Corollary 3.6. Ext EC is NP-complete for general graphs of maximum degree 3 and even if the

packing of forced set U induces a matching.

Proof. Instead of Sat, we start the reduction from a particular case of Sat, known as 2-Balanced

3-Sat, denoted by (3, B2)-Sat which is already explained in Chapter 1. An instance I = (C,X ) of
(3, B2)-Sat is given by a set C of CNF clauses defined over a set X of Boolean variables such that
each clause has exactly 3 literals, and each variable appears exactly 4 times in C, twice negated
and twice unnegated. Deciding whether an instance of (3, B2)-Sat is satisfiable is NP-complete
[21, Theorem 1]. The reduction and proof remains the same as in Theorem 3.5 �

As a point, in Chapter 5 (Theorem 5.2), we will prove that Ext EC is NP-complete for planar
bipartite graphs of maximum degree 3.

Considering Corollary 3.6, we should focus on some instances which has always some feasible
solutions for both Min Ext WEC and Max Ext WEC problems. Here, we propose a polynomial
algorithm using dynamic programming for the two problems for bounded tree-width graphs.
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Instead of operating an algorithm on the input graph, we operate it on the tree decomposition of
the original graph. A short description of tree decomposition is proposed in Section 1.1.3.

As it is mentioned before, any minimal edge cover is a packing of non-trivial stars. To keep
things simpler, we use the terminology of spanning star forest in our dynamic programming
method. A spanning star forest of a given graph G = (V, E), is a partition of V into some disjoint
non-trivial stars. We distinguish among the cases that a vertex is labeled by leaf, center and
isolated. Furthermore, we should pay attention to the cases that an edge belongs to the forced set
U. By considering above two points, it is not hard to design a dynamic programming algorithm
that solves Min Ext WEC in time O∗(ctw) for an instance (G,U), where G is an edge weighted
graph with a tree decomposition of width tw and c is a constant. We start our method by some
definitions as follows.

Definition 3.7. For any vertex v ∈ V of a given graph G = (V, E) and a spanning star forest f ,

we assign a labeling of v as follows:

l f (v,G) :=



























center if v is a center of a star in f ,

lea f if v is a leaf of a star in f ,

isolated if v is a single vertex in f .

Since both endpoints of each K1,1 in the spanning star forest f can be center and leaf, one of
them is labeled in arbitrary with center and the other with lea f . In the following, we propose
a dynamic programming in order to find a spanning star forest containing the forced set with
minimum total value.

Definition 3.8. For a weighted graph G = (V, E,w), packing of stars U and a sub-labeling

function l from S ⊆ V to {center, lea f , isolated}, the value of minimum extended spanning star

forest of G such that satisfies l and is allowed to have isolated vertices in S is defined as follows:

F l
S (G,U) := min

f∈ES S FI (G,U)
{w( f )|∀s ∈ S , l f (s,G) = l(s)

and ∀s < S , l f (s,G) , isolated} ∪ {∞}.
(3.2)

In order to decrease the possible transactions between bags, we use a nice tree decomposition
of G which is already explained in Section 1.1.3. Let T be a nice tree decomposition of G by
rooted r. We note that, Bx and Vx are vertices appearing in node x and vertices appearing in the
subtree rooted at x respectively. Actually, a minimum spanning star forest of G containing U

is obtained from minl∈L F l
r(G,U) where L is a family of sub-labeling on Br such that no vertex

in Br is labeled with isolated. The computation progresses from leaves of T to the root r by a
postorder traversal and all valid sub-labelings of x are achieved by the possible sub-labelings of
it’s children. For each node x of T , let Gx = G[Vx] and Ux = Gx[E(Gx) ∩ E(U)]. We need to
calculate F l

x(Gx,Ux) for all valid sub-labelings l on Bx for each node x in T . Since, there are four
different types of nodes in T , we propose four types of function F l

x(Gx,Ux) as follows:

� Leaf node
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Suppose that Bx = {u} is a leaf in T . It is clear that |Vx| = 1, Gx = u and the only valid sub-labeling
is l(u) = isolated, so we have:

F l
x(Gx,Ux) =















0 if l(u) = isolated,

∞ otherwise.

� Introduce node

Suppose that y is the only child of x in T and Bx = By ∪ {a}. The important thing here is the label
of node a for all valid sub-labelings on Bx. Node a can accept all the three labels isolated, leaf

and center:

• if l(a) = isolated and node a is not in V(Ux), then by keeping all valid sub-labelings on By

and adding a label ”isolated” for node a we make some valid sub-labeling on Bx.

• if l(a) = lea f , it means that node a is a leaf of a star s in G[Vx], so by considering the
structure of tree decomposition, center of s has to be in By. Every node b ∈ By such that ab ∈ E

and b has one of the labels {isolated, center} on By can be a candidate for the center of s.

• if l(a) = center, it means that node a is a center of a star s in G[Vx], so by considering the
structure of tree decomposition, all of its leaves must be appeared in By. So every subset M of
vertices with label isolated on By such that M ⊆ NG(a) can be a candidate for leaves of s.

In addition, we have to consider all above cases that whether node a ∈ V(Ux) or not. Thus
based on the label of a in the valid sub-labeling l on Bx, we consider following cases:

� if l(a) = isolated,

F l
x(Gx,Ux) :=















F l′
y (Gy,Uy) if a < V(Ux)

∞ otherwise.

where l′(v) = l(v) for each v ∈ By.

� if l(a) = lea f ,

F l
x(Gx,Ux) :=



































min
l(b)=center,ab∈E(Gx)

{F l′
b

y (Gy,Uy) + w(ab), F
l′′
b

y (Gy,Uy) + w(ab)} if a < V(Ux)

min
l(b)=center,ab∈E(Ux)

{F l′
b

y (Gy,Uy) + w(ab), F
l′′
b

y (Gy,Uy) + w(ab)} if dUx
(a) = 1

∞ if dUx
(a) > 1

where l′
b
(v) := l(v) for v ∈ By \ {b} and is isolated when v = b and l′′

b
(v) := l(v) for v ∈ By \ {b} and

is center when v = b.

� if l(a) = center, let S = {v ∈ Vx : l(v) = lea f and va ∈ E},

F l
x(Gx,Ux) :=











































∞ if S = ∅,
∞ if ∃b ∈ Ux : ab ∈ E(Ux)

and dUx
(b) > 1

min
∅,M⊆S ,NUx (a)⊆M

{F l′
M

y (Gy,Uy) +
∑

v∈M

w(av)} otherwise.
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where l′M(v) := isolated for every v ∈ M and equals l(v) if v ∈ By \ M.

� Forget node

Suppose that y is the only child of x in T and By = Bx∪{a} for a < Bx. Because of the structure of
tree decomposition, we will not see again node a in other bags in the following of the algorithm.
On the other hand, notice that the final solution does not contain any non-trivial stars (an isolated
vertex). Hence, label a can not be isolated and all valid sub-labelings on By with l(a) = isolated

will be invalid on Bx. Therefore, for each valid sub-labeling l on Bx we have:

F l
x(Gx,Ux) := min{F l′

y (Gy,Uy), F
l′′

y (Gy,Uy)}

where l′(v) = l′′(v) = l(v) for v ∈ Bx and l′(a) = center and l′′(a) = lea f .

� Join node

In the last case, suppose that y1 and y2 are children of x in T and Bx = By1
= By2

. Since, in the
Join node x, two subgraphs Vy1

and Vy2
will be merged then the two sub-labelings l1, l2 defined on

By1
and By2

respectively, have to be adapted to each other. For example, for a node v ∈ Bx, with
l1(v) = lea f and l2(v) = lea f does not lead to a valid sub-labeling for Bx, because it makes a P3

in Gx. Thus, for each valid sub-labeling l on Bx we have:

F l
x(Gx,Ux) := min

<l1,l2>∈L
{F l1

y1
(Gy1

Uy1
) + F l2

y2
(Gy2

,Uy2
)}

< l1, l2 >∈ L iff



























{l1(v), l2(v)} = {isolated, lea f } if l(v) = lea f ,

{l1(v), l2(v)} = {isolated, center} or {center} if l(v) = center,

{l1(v), l2(v)} = {isolated} if l(v) = isolated.

Theorem 3.9. Min Ext WEC is solvable in polynomial time for bounded tree-width graphs.

Proof. Now, we show that our proposed algorithm gives an optimal solution for Min Ext WEC

for a given weighted graph G = (V, E,w) and a packing of non-trivial stars U as an instance.
Actually, the output of the algorithm is a minimum spanning star forest of G contains U. We
focus on recursive functions F and show that the algorithm for each node x of tree decomposition,
calculate and stores the optimal solution of each valid sub-labeling of Bx on G[Vx]. Hence, in the
last step of the algorithm, the optimal solution of each valid sub-labeling of Br on G = G[Vr] is
achieved. Among these optimal solutions, one which does not contain the label isolated for all
vertices in Br and has maximum amount of F, is the final solution of Min Ext WEC on (G,U).
Here we show that how F obtains the amount of optimal solution for each types of node and for
every labeling in tree decomposition.

For the case that x is a Leaf node in the tree decomposition, it is trivial. Assume that x is
an Introduce node with Bx = By ∪ {a} and suppose that the algorithm calculated and stored the
optimal amount of F for all valid sub-labeling of By on G[Vy]. Concerning the labeling for vertex
a (center, lea f , isolated) and all valid sub-labelling of By on G[Vy] and also by considering Ux,
we obtain optimal amount of F for all sub-labeling of Bx on G[Vx]: If l(a) = isolated and vertex
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a is not an endpoint of Ux, then the amount of F is not changed and if a ∈ V(Ux), since the
final solution must contains U, the amount of F is ∞; If l(a) = lea f , the number of edges in Ux

incident to a can not be more than 1 and for other cases we can easily calculate the amount of
F; If l(a) = center, for every neighbor v of a, dUx

(v) ≤ 1 and also a must have some neighbors
M with label lea f in Bx which have label isolated in By. For all of these cases we calculate the
amount of F and store the labeling.

Suppose node x is Forget and parent of node y in the tree decomposition such that Bx = By\{a}.
Since vertex a will not be appeared in the following steps of the algorithm, then we do not consider
the cases that the label of vertex a was isolated among valid sub-labeling of By on G[Vy], but by
considering other cases (when the label of vertex a was leaf, center, we obtain an optimal amount
of function F for all valid sub-labelings of Bx on G[Vx].

Now assume that x is a Join node with two children y1 and y2 in the tree decomposition such
that Bx = By1

= By2
. Suppose that the algorithm calculated and stored the optimal amount of

F for all valid sub-labelings of By1
and By2

on G[Vy1
] and G[Vy2

] respectively. Recall that by
construction of the tree decomposition, Vy1

∩Vy2
= Bx and also there is no edges between vertices

of Vy1
\ Bx and Vy2

\ Bx in G. Hence, the optimal amount of F for all valid sub-labelings of Bx on
G[Vx] is obtained by checking all valid sub-labelings of By1

and By2
. A valid sub-labeling of Bx

does not contain three following cases:

1− there is a vertex v ∈ Bx, with label lea f in By1
and By2

,

2− there is a vertex v ∈ Bx, with label lea f in By1
and label center in By2

,

3− there is a vertex v ∈ Bx, with label lea f in By2
and label center in By1

.

For all valid sub-labelings in Bx we calculate optimal amounts of F.

Assuming that the size of tree-width of the input graph is bounded by k. Since, for each vertex
v ∈ Bx there are three labels, we have 3k different labelings for each Bx. Moreover, by considering
the calculating method of F for each node type, the worst case for time complexity happens for
join nodes where we have to consider three different cases when l(u) = center and two different
cases when l(u) = lea f for each u ∈ Bx. Let z1 (resp. z2, z3) be the number of vertices with
labeling center (resp., lea f , isolated) in Bx for a join node x. All possible sub-labelings for Bx

where |Bx| = k can be computed as follows:

∑

z1+z2+z3=k

(

k

z1, z2, z3

)

.3z1 .2z2 .1z3 = (1 + 2 + 3)k
= 6k (3.3)

Thus, the time complexity of the proposed algorithm is O∗(6k). �

By changing function F of the algorithm such that putting max instead of min and −∞ instead
of∞, we can solve Max Ext WEC.

Corollary 3.10. Max Ext WEC is solvable in polynomial time for bounded tree-width graphs.
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c1 . . . ck r1 . . . rk′

x1 x2 . . . xt

C R

Kt

Figure 3.2: Illustration of the construction of the split graph H = (X, (C ∪ R), EH).

If forced set U is a packing of non-trivial stars, then there exists some feasible solution for
both Min Ext WEC and Max Ext WEC in complete graphs. Hence, in the next section, we will
study both minimization and maximization versions of the problem on complete graphs.

3.3 Min Ext WEC in complete graphs

Let us start this section by a definition of a special transformation on weighted complete graphs,
called H-extended procedure.

H-extended procedure In several parts of this section, we will consider the weighted graph
I′ = (H,wH) built from an instance I = (Kn,w,U) of the Min Ext WEC where U = S U ∪ MU is
a packing of non-trivial stars (see Figure 3.1). H = (VH, EH) is a complete weighted split graph
defined as follows:

• VH = X ∪ (R ∪C) where X = V(Kn) \ V(U), C = {c1, · · · , ck} is the set of centers of stars
in S U and R = {r1, · · · , rk′} is a set of vertices corresponding to stars in MU .

• EH is the set of edges of a complete split graph where the left side is a complete graph on
X, the right side is an independent set on R ∪ C and we have a complete bipartite graph
between them.

• wH(uv) =



























w(uv) if u, v < R ∪C, u , v

w(uv) if u < R ∪C, v ∈ C

min{w(upi),w(uqi)} if u < R ∪C, v = ri. (pi, qi, ri are illustrated in Figure 3.1 )

Figure 3.2 gives an illustration of the construction. The H-extended procedure transforms
any subset F ⊆ E(H) into a subset F′ ⊆ E(Kn) by adding the edges U. Precisely, each vertex
ri ∈ R is replaced by a K1,1 with endpoints pi, qi and each ci ∈ C is replaced by a star K1,ℓ, ℓ ≥ 2

with center ci. Also, any edge xri ∈ F is replaced by the edge xpi if w(xri) = w(xpi), otherwise,
by xqi in F′. Obviously, these two constructions (H and H-extension procedure) are done in
polynomial-time. Figure 3.3 proposes an example of the H-extended procedure. As one can see,
instead of each vertex ci of H, we add the corresponding star in the new graph. Moreover any ri

in H is replaced by an edge pigi and any edge cix j is replaced by either edge pix j or qix j not both.
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c1 c2 . . . ck r1 r2 . . . rk′

x1 x2 x3 . . . xt

C R

F ⊆ EH

c1 c2 . . . ck p1 q1 p2 q2 . . . p′
k

q′
k

x1 x2 x3 . . . xt

F′ ⊆ E(Kn)

Figure 3.3: H-extended procedure. Bold edges are in U.

We now prove that the extended version of Min Ext WEC can be much harder than the
classical version, even in complete graphs. Actually, we will give a dichotomy result depending
on parameter c of the c-relaxed (and extended c-relaxed) triangle inequality.

Theorem 3.11. Min Ext WEC in complete graphs is NP-hard for both extended c-relaxed (and

c-relaxed) triangle inequality when c > 1.

Proof. Let c > 1 be a constant. For both cases, we propose a reduction similar to what we did in
Theorem 3.5. Given an instance I = (X , C) of Sat with variable set X = {x1, · · · , xn} and clause
set C = {c1, · · · , cm}, we build an instance I′ = (K2n+m,w,U) of Min Ext WEC as follows:

• V(K2n+m) = V(C) ∪ V(X) where V(C) = {v j : c j ∈ C} and V(X) = {v0
i
, v1

i : i = 1, . . . , n},

• U = {v0
i
v1

i : xi ∈ X},

• M =
m
⋃

j=1

{v jv
1
i : xi ∈ c j} ∪ {v jv

0
i

: ¬xi ∈ c j}.

Clearly, I′ is built in polynomial-time. The weight function w, is defined ∀xy ∈ E(K2n+m), by

w(xy) =







































0 if xy ∈ U,

1 if xy ∈ M,

c if xy < M, x ∈ V(C), y ∈ V(X),

2c otherwise.

We can easily verify that w satisfies the extended c-relaxed (and c-relaxed) triangle inequality.
Let optWEC(I′) be the value of an optimal solution of Min Ext WEC on the instance I′. We claim
that I is satisfiable if and only if optWEC(I′) ≤ m.

Suppose I is satisfiable and let T be a satisfying truth assignment of I. For each clause c j, we
define f ( j) as an index of a variable x f ( j) which satisfies clause c j in T . We build a minimal
edge cover S containing U such that w(S ) =

∑

e∈S w(e) = m as follows: S = {v1
f ( j)

v j : c j ∈
C ∧ T (x f ( j)) = true} ∪ {v0

f ( j)
v j : c j ∈ C ∧ T (x f ( j)) = false} ∪ U.
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Conversely, assume that S is a minimal edge cover of K2n+m containing U with w(S ) ≤ m. Since
U is a matching of size n, and considering the weights of the graph, if S contains ℓ edges of weight
2c, then w(S ) ≥ 2cℓ+ (m−2ℓ) = m+2ℓ(c−1) because, these ℓ edges cover at most 2ℓ vertices of
V(C) and the weight of any edge incident to a vertex in V(C) is at least 1 (recall c > 1). The term
(m − 2ℓ) comes from the fact that each vertex in V(C) must be covered, and each vertex in V(C)

must be incident to at most one edge of S by minimality, since U ⊆ S . Hence, we deduce ℓ = 0.
Now, if S contains ℓ′ edges of weight c > 1, then these ℓ′ edges cover exactly ℓ′ vertices of V(C)

(since these edges connect a vertex of V(C) to a vertex in V(X)) and w(S ) ≥ ℓ′c + (m − ℓ′) > m.
Evidently this comes from the fact that each vertex in V(C) must be covered, and each vertex in
V(C) must be incident to at most one edge of S by minimality, since U ⊆ S . Hence, we deduce
that ℓ′ = 0. Thus, S only contains unit weights. So, we define an initial truth assignment T by
setting T (xi) = true for all xi ∈ X . For each j(1 ≤ j ≤ m), by minimality v j is incident to exactly
one edge of S , since S ⊆ U - let this edge be v jv

r
i . If r = 0, set T (xi) = false. T is a well-defined

truth assignment, since by minimality of S , and since S ⊆ U, it is impossible that v0
i
v j ∈ S and

v1
i v j ∈ S for any xi ∈ X. Clearly T is a satisfying truth assignment for I. �

Corollary 3.12. The Min Ext WEC for general weight function w is not approximable at all

unless P = NP.

Proof. Revisit the proof of Theorem 3.11 by replacing the weight of any edge e by w′(e) = 0 if
e ∈ (M ∪U and w′(e) = 1 otherwise. Now, this restriction becomes the Min Ext {0, 1}-WEC and
it is NP-complete to distinguish between optWEC(I′) = 0 and optWEC(I′) > 0 where optWEC(I′) is
the size of optimal solution. �

In the following, in order to get some positive results, we will use the Min weighted lower-

upper-cover problem which is defined as follows:

Min weighted lower-upper-cover

Input: A weighted graph (V, E,w) and two non-negative integer functions a, b on V such that
∀v ∈ V , 0 ≤ a(v) ≤ b(v) ≤ dG(v).
Solution: A subset M ⊆ E such that the subgraph GM = (V,M) induced by M satisfies a(v) ≤
dGM

(v) ≤ b(v).
Output: Minimizing w(M) =

∑

e∈M w(e). (if any)

The Min weighted lower-upper-cover problem is known to be solvable in polynomial-
time (Theorem 35.2 Chapter 35 of Volume A in [151]). For an instance I = (G,w) of the Min

weighted lower-upper-cover problem, let optLUC(I) denotes the value of an optimal solution.

Definition 3.13. Let I = (Kn,w,U) be an instance of Min Ext WEC. Solution S is called claw

U-free if for each claw F = K1,3 subset of S , at least two edges of the claw F belongs to U, i.e.

|F ∩ U | ≥ 2.
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c1 . . . ck p1 q1 . . . pk′ qk′

x1 x2 . . . xt

I = (Kn,U,w)

c1 . . . ck r1 . . . rk′

x1 x2 . . . xt

I′ = (H = (VH, EH), a, b)

a(v) = 1
b(v) = 2

a(v) = 0 , b(v) = 1

Figure 3.4: An instance I′ of the Min weighted lower-upper-cover is shown on the right hand.
Bold edges are in U.

Theorem 3.14. Min Ext WEC in complete graphs is solvable in polynomial-time for the c-relaxed

and extended c-relaxed triangle inequality when 1/2 ≤ c ≤ 1 and c = 1 respectively.

Proof. We only deal with the c-relaxed triangle inequality case, because the other case is simpler.
Let c be a constant with 1/2 ≤ c ≤ 1. We solve Min Ext WEC for the c-relaxed triangle inequality
by solving Min weighted lower-upper-cover.

Let I = (Kn,w,U) be an instance of the Min Ext WEC where w satisfies the c-relaxed triangle
inequality and let U be a packing of non-trivial stars. From I, we build an instance I′ = (H,wH)

where H is a complete split graph as described in H-extended procedure. Moreover, we consider
two functions a, b of the Min weighted lower-upper-cover as follows: if v ∈ VH \ (R ∪C),
then a(v) = 1 and b(v) = 2. Otherwise, v ∈ R∪C and a(v) = 0 and b(v) = 1. Figure 3.4 proposes
an illustration of the construction.

By construction of I′, an optimal lower-upper-cover with parameters a, b is {P4,C3}-free and then
is an extended minimal edge cover of I. Hence, by letting optLUC and optWEC as the optimal value
of Min weighted lower-upper-cover and Min Ext WEC respectively, we have:

optLUC(I′) ≥ optWEC(I) (3.4)

Conversely, let S∗ be an optimal solution of Min Ext WEC of I. The next property allows us to
focus on minimal edge cover claw U-free.

Property 3.15. There is an optimal solution of Min Ext WEC of I which is claw U-free.

Proof. Let S be an optimal solution of Min Ext WEC which is not claw U-free and let S = {uvi :

i = 1, 2, 3} be a claw in S which is not U-free, w.l.o.g. suppose uvi < U for i = 1, 2. In particular,
vertices v1 and v2 are not adjacent to U; hence, S∗ = (S \ S )∪ {v1v2, uv3} is a minimal edge cover
with w(S∗) ≤ w(S). By repeating this process for all such claws S in S , we get the expected
result. Note that if c < 1, all optimal solution of Min Ext WEC are indeed claw U-free. �

Hence, we can assume that S∗ is claw U-free, and then it is a lower-upper-cover with parameters
a, b of I′:
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optWEC(I) = w(S∗) ≥ wH(S ∗) ≥ optLUC(I′) (3.5)

Inequalities (3.4) and (3.5) give the expected result. �

We finish this subsection by giving a parameterized complexity result depending on the
number of forced edges.

Theorem 3.16. Min Ext WEC in complete graphs, parameterized by |U | is in FPT and under the

ETH, Min Ext WEC cannot be solved in time O∗(2o(|U |))

Proof. Let I = (Kn,w,U) be an instance of the Min Ext WEC where we recall that U = MU ∪S U

with MU = {piqi : i = 1, . . . , k′} and S U = {F1, . . . , Fk}. The set of centers is C = {c1, . . . , ck}
where ci is the center of star Fi. As in Theorem 3.14, we solve several instances IJ of the Min

weighted lower-upper-cover for each set J ⊆ {1, . . . , k′}. At the end, we return the solution
minimizing w(SJ) = optLUC(IJ) among all possible sets J, that is S = argminJoptLUC(IJ) where
optLUC(IJ) is the optimal value of the Min weighted lower-upper-cover problem on instance
IJ.

Let I = (Kn,w,U) be an instance of the Min Ext WEC where U is a packing of stars. From I

and a set J ⊆ {1, . . . , k′}, we built an instance IJ = (HJ,w) where HJ = (VHJ
, EHJ

) is a complete
subgraph of Kn and two functions aJ, bJ of the Min weighted lower-upper-cover as follows:
VHJ
= (V(Kn) \ V(U))∪

(

{p j : j ∈ J} ∪ {q j : j ∈ {1, . . . , k′} \ J} ∪C
)

. Finally, if v ∈ V(Kn)\V(U),
then aJ(v) = 1 and bJ(v) = dHJ

(v). Otherwise, for v ∈ {p j : j ∈ J} ∪ {q j : j ∈ {1, . . . , k′} \ J} ∪C,
aJ(v) = 0 and bJ(v) = dHJ

(v). Let SJ be an optimal solution of the Min weighted lower-upper-

cover problem on (IJ, aJ, bJ). Clearly, SJ is a minimal edge cover on I and by construction
there exists J∗ such that w(SJ∗) = w(S∗) = optWEC(I). The complexity of the whole algorithm is
O∗(2|MU |) = O∗(2|U |) and then Min Ext WEC is in FPT.

The second part of the proof is a direct consequence of Corollary 3.12 for the Min Ext {0, 1}-WEC

and ETH. Moreover, since the reduction is of linear size and by the Sparsification Lemma [111],
we get the expected result. �

Regarding Corollary 3.12 and Theorem 3.14, we focus on the approximation of the Min Ext

WEC for both c-relaxed (and extended c-relaxed) triangle inequality. Hence, let c > 1 be a fixed
constant. We propose the following algorithm:

Algorithm 1: Approx 1
Input: I = (Kn,w,U) where U is a packing of forced stars.
Output: A minimal edge cover S of I containing U.

1 Build instance I′ = (H,wH) from I as is described in H-extended procedure, where
H = (X, (R ∪C), EH) is a split complete graph;

2 Find an optimal solution S∗H ⊆ EH of the Min weighted lower-upper-cover problem on
(I′, a1, b1) with a1(v) = 1 and b1(v) = dH(v) if v ∈ X, a1(v) = 0 and b1(v) = 1 for v ∈ R and
a1(v) = 0 and b1(v) = dH(v) for v ∈ C;

3 Convert S∗H into S using the H-extended procedure;
4 Return S .
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In Algorithm 1 we use optimal solution of the Min weighted lower-upper-cover problem
as subroutine which is already explained in Theorem 3.14.

Theorem 3.17. Algorithm 1 is a c-approximation of Min Ext WEC in complete graphs for both

c-relaxed (and extended c-relaxed) triangle inequality.

Proof. Let I = (Kn,w,U) be an instance of the Min Ext WEC which satisfies the c-relaxed
(resp. extended c-relaxed) triangle inequality. Clearly, for c > 1, a ρ-approximation algorithm
for the case of extended c-relaxed triangle is also a ρ-approximation algorithm for the c-relaxed
triangle. Hence, we will prove the correctness of Approx 1 only when the weight function satisfies
extended c-relaxed triangle inequality. Considering the H-extended procedure which is already
explained in the beginning of Section 3.3, we have:

• S contains U and the degree of each vertex in S is at least 1, since a1(v) = 1 for v ∈ X.

• by the minimality and since b1(v) = 1 for v ∈ R, S is P3-free.

So, S is a spanning star forest of Kn containing U.

Let S∗ be an optimal minimal weighted edge cover on I, we show how we can convert S∗ into a
claw U-free SH ⊆ EH which is also a feasible solution of the Min weighted lower-upper-cover

problem on (I′, a1, b1) by losing at most a factor c.

For each piqi ∈ MU , let S ∗i is the star of S∗ containing edge piqi; without loss of generality,
assume that pi is the center of S ∗i , and L∗i denotes the leafs of S ∗i except qi. If |L∗i | ≥ 2 and x, y ∈ L∗i
are two distinct leafs, we replace edges pix and piy of S ∗i by two stars S ∗i \ {pix, piy} and {xy}.
By repeating this process until the star S ∗i (containing piqi) satisfies |L∗i | ≤ 1 for each piqi ∈ MU ,
we obtain a packing of stars S ′i such that w(S ′i ) ≤ cw(S ∗i ) since w(xy) ≤ c (w(pix) + w(piy)). By
summing up these inequalities for all such stars, at the end we get a spanning star forest (minimal
edge cover) SH (which is the union of S ′i ) with w(SH) ≤ cw(S∗) = coptWEC(I). This spanning
star forest SH is by construction a feasible lower-upper-cover of (H,wH) with parameters (a1, b1).
In conclusion,

w(S) = w(S∗H) ≤ w(SH) ≤ cw(S∗).

�

Corollary 3.18. For complete graphs, Min Ext WEC is in RAPX for both c-relaxed (and extended

c-relaxed) triangle inequality.

Proof. Using the proof of Theorem 3.17 and the extended c-relaxed triangle inequality, we deduce
that Algorithm 1 is a residue c-approximation [161]. �
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pi qi

. . . . . .

Li

Fi

pi qi

. . .

Li

S 1
i

pi qi

. . .

Li

S 2
i

Figure 3.5: Illustration of construction of stars S 1
i and S 2

i from Fi. Bold edges are in U .

We propose a new algorithm the following for the case that weight function w only satisfies
the extended c-relaxed triangle inequality:

Algorithm 2: Approx 2
Input: I = (Kn,w,U) where U is a packing of forced stars.
Output: A minimal edge cover S of I containing U.

1 Build instance I′ = (H,wH) from I as is described in H-extended procedure, where
H = (X, (R ∪C), EH) is a split complete graph;

2 Find an optimal solution S ∗H ⊆ EH of the Min weighted lower-upper-cover problem on
(I′, a2, b2) with a2(v) = 1 and b′(v) = dH(v) if v ∈ X and a2(v) = 0 and b2(v) = dH(v) for
v ∈ R ∪C;

3 Convert S ∗H into S using the H-extended procedure;
4 for (each connected component Fi of S with Li as leafs such that piqi ∈ Fi and

Li ∩ {pi, qi} = ∅) do

5 Build two stars S 1
i = {pix : x ∈ (Li ∪ {qi})} and S 2

i = {qix : x ∈ (Li ∪ {pi})};
6 if w(S 1

i ) ≤ w(S 2
i ) then S ← (S \ Fi) ∪ S 1

i ;
7 else S ← (S \ Fi) ∪ S 2

i ;

8 Return S ← S .

By construction, each connected component Fi of S with piqi ∈ Fi and Li ∩ {pi, qi} = ∅ has
a diameter equals to 3 (some leaves are connected to pi while the others leaves are connected to
qi). The other connected components are stars. Hence, S is a minimal edge cover of I. Figure
3.5 proposes an illustration of the construction of stars S 1

i and S 2
i .

Theorem 3.19. Algorithm 2 is a c+1
2

-approximation of Min Ext WEC in complete graphs for

extended c-relaxed triangle inequality.

Proof. Let I = (Kn,w,U) be an instance of the Min Ext WEC which satisfies the extended
c-relaxed triangle inequality. Assume that S contains ℓ ≤ k′ connected components F1, . . . , Fℓ

during Step 4. of Algorithm 2 and without loss of generality, assume that w(S 1
i ) ≤ w(S 2

i ) for
all i ≤ ℓ. Hence, the spanning star forest S outputted by Algorithm 2 can be decomposed into
S 1

1
, . . . , S 1

ℓ and S ′ where S ′ = S \
(

∪ℓ
i=1

Fi

)

. By construction and using the extended c-relaxed
triangle inequality, we have:

79



CHAPTER 3. EXTENDED WEIGHTED EDGE COVER PROBLEM

2w(S 1
i ) ≤ w(S 1

i ) + w(S 2
i ) ≤

∑

x∈Li

w(pix) +
∑

x∈Li

w(qix) ≤
∑

x∈Li

w(pix) + w(qix)

≤
∑

x∈Li

(c + 1) min{w(pix),w(qix)} ≤ (1 + c)w(Fi)
(3.6)

Summing up inequality (3.6) for all i ≤ ℓ and adding twice w(S ′), we obtain:

2w(S) = 2w(S ′) + 2

ℓ
∑

i=1

w(S 1
i ) ≤ (1 + c)w(S ′) + (1 + c)

ℓ
∑

i=1

w(Fi)

≤ (1 + c)w(S ∗H) = (1 + c)optLUC(I′).

Let S∗ be an optimal solution of Min Ext WEC on I of value optWEC(I); S∗ is a feasible
lower upper cover on (H, a2, b2). Hence, we deduce optLUC(I′) ≤ w(S∗) = optWEC(I). The two
last inequalities provide the expected result. �

Theorem 3.20. For any ǫ > 0 it is NP-hard to approximate and residue approximate the Min

Ext WEC in complete graphs within 7+c
8
− ǫ for both c-relaxed (and extended c-relaxed) triangle

inequalities.

Proof. Here, we use an in-approximability result of the optimization problem Max 3-Sat. For
an instance a 3-CNF-formula φ (i.e. with at most 3 variables in each clause), the goal is to find an
assignment that satisfies the largest number of clauses. Let φ be an instance of Max 3-Sat with
variable set X = {x1, . . . , xn} and clause set C = {c1, . . . , cm}. Without loss of generality, assume
m > n (otherwise, we duplicate the clauses c1, . . . , cm till m > n). Using the result of [101], we
know, for every ǫ > 0, given a 3-CNF-formula φ of 3-Sat, it is NP-hard to distinguish between
two following cases:

• (Yes-instance) There exist an assignment satisfying (1 − ǫ) fraction of the clauses in φ.

• (No-instance) No assignment satisfies more than (7
8
+ ǫ) fraction of clauses in φ.

Let ε > 0 and consider the reduction given in Theorem 3.11 for instances Iφ satisfying both
c-relaxed (and extended c-relaxed) triangle inequalities when c > 1. Recall that

w(xy) =







































0 if xy ∈ U,

1 if xy ∈ M,

c if xy < M, x ∈ V(C), y ∈ V(X),

2c otherwise.

Completeness: Suppose there is an assignment of variables {x1, . . . , xn}which satisfies (1−ǫ)
fraction of clauses (i.e. a Yes-instance). We build a minimal edge cover S of n stars containing
U as follows: suppose T (φ) is an assignment satisfies (1 − ǫ)m clauses = C′ = {c1, . . . , c(1−ǫ)m}.
We start the construction of these n stars with total weight (1 − ǫ)m by taking the matching
{v0

i
v1

i : i = 1, . . . , n} then, for each satisfied clause c j ∈ C′ we connect v j to either v0
i

or v1
i
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depending on whether c j is satisfied by ¬vi or vi; then, we complete these n stars into a minimal
edge cover by connecting arbitrarily the ǫm remaining vertices (corresponding to other clauses
which are not satisfied) to some centers. Hence, S is a minimal edge cover which contain U with
w(S ) = (1 − ǫ)m + cǫm, thus we have:

optWEC(Iφ) ≤ m(1 − ǫ + cǫ) (3.7)

Soundness: Consider an optimal minimal weighted edge cover S ∗ of Iφ with value optWEC(Iφ).
Clearly, for each 1 ≤ i ≤ n, at least one vertex of {v0

i
, v1

i } is a leaf of the star s∗i of S ∗. From S ∗

we build a truth assignment T for φ as follows: T (xi) = true if v0
i

is a leaf and T (xi) = false

otherwise. If vertex v j is a leaf of star s∗i , then clause c j is satisfied by assignment T . Hence, the
total weight of S ∗ is:

optWEC(Iφ) ≥ |{c j : c j is satisfied}| + c|{c j : c j is not satisfied}|

Furthermore, if at most ( 7
8
+ ǫ)m clauses are satisfied in φ, the weight of optWEC(Iφ) is at least:

optWEC(Iφ) ≥(
7

8
+ ǫ)m + (

1

8
− ǫ)cm

≥m(
7

8
+ ǫ +

1

8
c − cǫ)

(3.8)

The completeness and soundness arguments imply that it is NP-hard to distinguish whether
instance Iφ has a minimal edge cover with weight at least m(1−ǫ+cǫ) or at most m( 7

8
+ǫ+ 1

8
c−cǫ).

Therefore, we can conclude that it is NP-hard to approximate the Min Ext WEC within factor:

β ≥
7
8
+ ǫ + 1

8
c − cǫ

(1 − ǫ + cǫ)
(3.9)

By picking a small enough ǫ, we get the expected result. �

3.4 Max Ext WEC in complete graphs

Now, we study the maximization case when the weight function w is general, but non-negative
and the graph is complete. Usually, the Max Star Forest problem is defined in general graphs
(i.e. not necessarily complete), and allowing trivial stars. This assumption is not restrictive
because by completing the graph by weights 0, Max Ext WEC becomes equivalent to Max Star

Forest problem. Moreover, by replacing the weights of required edges U by a large enough
value, then Max Star Forest problem and Max Ext WEC are completely equivalent from a
computational complexity point of view. However, these modifications affect the approximability
of the problem. Hence, here we are interested in the hardest case which corresponds to w(e) = 0

for ∀e ∈ U. This means that the obtained results will be valid for the residual approximation

[161]. Recall that U = {U1, . . . ,Ur} = MU ∪ S U where r = k + k′, MU = {ei : i = 1, . . . , k′} is
a matching of k′ edges and S U = {F1, . . . , Fk} is a set of k vertex-disjoint stars with at least two
leaves each. The set of centers is C = {c1, . . . , ck} and Li are the leaves of Fi.
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We study an intermediary problem called here Extended Disjoint Spanning Forest because
it will provide an upper bound of our problem:

Extended Disjoint Spanning Forest

Input: A weighted connected graph (G,w) and a packing of non trivial stars U =

{U1, . . . ,Ur}.
Solution: Spanning forest S = {S 1, . . . , S r} ⊆ E of G such that Ui ⊆ S i.
Output: Maximizing w(S ) =

∑

e∈S w(e) =
∑r

i=1

∑

e∈S i
w(e).

Obviously any feasible solution of Max Ext WEC for an instance I = (G,U) is a feasible
solution for Extended Disjoint Spanning Forest, but the reverse is not essentially true because
the solution is a collection of trees (not essentially stars). In the following we show that Extended

Disjoint Spanning Forest is solvable in polynomial time.

Algorithm 3: Approx 3
Input: I = (Kn,w,U) where U is a packing of forced stars.
Output: A minimal edge cover S of I containing U.

1 Build instance I′ = (G,w,U) of Extended Disjoint Spanning Forest;
2 Find an optimal solution S∗

1
= {S ∗

1
, . . . , S ∗r } such that Ui ⊆ S ∗i of Extended Disjoint

Spanning Forest;
3 for (each subtree S ∗i ) do

4 if S ∗i = Ui then S ← S ∪ S ∗i ;
5 else

6 Split S ∗i into two spanning star forest (with possibly trivial stars) S 1
i and S 2

i such
that S 1

i ∩ S 2
i = Ui and S 1

i ∪ S 2
i = S ∗i by dividing subtree S ∗i into alternating levels

(even and odd from center of Ui);
7 if w(S 1

i ) ≥ w(S 2
i ) then S ← S ∪ S 1

i ;
8 else S ← S ∪ S 2

i ;

9 Complete S into a minimal edge cover by connecting each isolated vertex to some center;
10 Return S ← S .

Lemma 3.21. There is a linear-time algorithm that solves Extended Disjoint Spanning Forest.

Proof. The algorithm starts from U, sorts the edges by non increasing weights and iteratively adds
edges satisfying condition Ui ⊆ S i for all i ≤ r. The arguments of optimality are the standard ones
and more generally are valid for matroids. We present them for sake of completeness. Consider
a connected weighted graph I = (G,w) and let S∗

1
be an optimal solution of Max Ext WEC,

S∗
1
= {S ∗

1
, . . . , S ∗r } of G such that Ui ⊆ S ∗i . Consider S1 = {S 1, . . . , S r} the solution returned by

the greedy algorithm; let e ∈ S∗
1
\ S1. The addition of e∗ to S1 leads to either the creation of a

cycle or the fusion of two subtrees S ℓ and S ℓ′ . In any case, all edges of that cycle or the path
between Uℓ and Uℓ′ are larger or equals than w(e∗). �
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(a) (b)

Figure 3.6: Construction of solutions S 1
i and S 2

i depending whether S ∗i contains piqi (case (b))
or not (case (a)); bold edges are in Ui. For each case, both solutions S 1

i and S 2
i are indicated (at

this stage, trivial stars are allowed).

From I = (Kn,w,U), we delete all edges xy < U with x ∈ Li for some i ≤ k and y ∈ V(Kn).
Let G = (V, E) be the resulting connected graph and I′ = (G,w,U) be the instance of Extended

Disjoint Spanning Forest. Consider the Algorithm 3.

Let us formally explain how solutions are built during Step 5. Here, Ui ⊂ S ∗i ; first we root subtree
S ∗i at the center of Ui (if Ui = {piqi}, we root S ∗i at pi). Then, we construct a first partial solution
which consider edges of S ∗i \ Ui with odd levels and another partial solution with even levels.
At the end of this Step 5. we add edges of Ui for both partial solutions. Figure 3.6 propose an
illustration on the construction of the two spanning star forests (containing trivial stars at this
stage) S 1

i and S 2
i of the induced subgraph (V, S ∗i ) according to the structure of Ui.

Theorem 3.22. Algorithm 3 is a 1
2
-approximation of Max Ext WEC in complete graphs.

Proof. Let I = (Kn,w,U) be an instance of the Max Ext WEC, where w(x, y) ≥ 0 for all
xy ∈ E(Kn). Consider a subtree S ∗i , Ui of the optimal solution S∗

1
found by Algorithm 3 for the

Extended Disjoint Spanning Forest problem on instance (G,w). Clearly, either S∗
1
\Ui has two

subtrees (one containing pi, the other containing qi) and in this case Ui = {piqi} or S∗
1
\Ui remains

a subtree. Without loss of generality, assume that w(S 1
i ) ≥ w(S 2

i ) (Step 7 of Algorithm 3); since
S 1

i and S 2
i are two spanning star forests (possibly containing trivial stars at this stage) such that

S 1
i ∩ S 2

i = Ui and S 1
i ∪ S 2

i = S ∗i , we get: ∀i ≤ r, 2w(S 1
i ) ≥ w(S 1

i ) + w(S 2
i ) ≥ w(S ∗i ) + w(Ui). By

summing up inequality (3.10) for all i ≤ ℓ (note this inequality also holds when S ∗i = Ui), and
using w(e) ≥ 0, we obtain:

2w(S) ≥
r

∑

ℓ=1

w(S ∗i ) = w(S∗1) (3.10)

On the other hand, suppose S∗ = {s∗
1
, s∗

2
, · · · , s∗m} is an optimal solution of Max Ext WEC on I

with value w(S∗) = optWEC(I), and suppose only r starts r ≤ m among S∗ have some intersections
with U. In this case, we make a particular feasible solution of Extended Disjoint Spanning

Forest on I′ = (G,w,U) by adding m − r new edges which connect the m − r remaining stars to
the center of star which has an intersection with U. Since the weights are non-negative, we have:

w(S∗1) ≥ optWEC(I) (3.11)

combining inequalities (3.10) and (3.11) gives the result. �
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Setting w(e) = 0 for e ∈ U leads to the following corollary.

Corollary 3.23. Max Ext WEC in complete graphs is in RAPX.

Theorem 3.24. For any ǫ > 0 it is NP-hard to approximate and residue approximate Max Ext

WEC in complete graphs within 7
8
+ ǫ.

Proof. The reduction given in Corollary 3.12 is indeed a reduction preserving approximation
from 3-Sat to Max {0, 1}-Ext WEC. Hence, using [101], we obtain the result. �

So far, we have studied both maximization and minimization versions of extended edge cover
problems in general and complete graphs. In the following, we will study Max Ext WEC in the
particular case U = ∅ for some different graph classes.

3.5 Weighted upper edge cover

In this section we study a particular case of Max Ext WEC, when the forced set is an empty-set.
Formally, the associated optimization problem is called Weighted Upper EC and asks to find
the largest weighted minimal edge cover of an edge-weighted graph.

Weighted Upper EC

Input: A weighted connected graph G = (V, E,w), where w(e) ≥ 0 for e ∈ E.
Solution: Minimal edge cover S ⊆ E.
Output: Maximize w(S ) =

∑

e∈S w(e).

The unweighted variant of the problem denoted by Upper EC is equivalent to Min DS

in general graphs without iso;lated vertices [137]. Let optUEC(G) and γ(G) be the sizes of
optimal solution of Upper EC and Min DS for a given graph G = (V, E) respectively, then
optUEC(G) = |V | − γ(G). We will consider the implications of this important remark afterwards
in the section.

In the beginning of this chapter, we defined the optimization problem Max Star Forest

problem, which consists in a weighted graph G = (V, E,w) as an input, and the goal is to find a
spanning star forest of maximum total weight. The un-weighted version (corresponding to the
case w(e) = 1 for all edges e) of Max Star Forest problem, denoted by Max {1}-Star Forest

Problem, seeks a spanning star forest with maximum number of leaves. Let opt{1}−S F(G) denotes
the value of Max {1}-Star Forest Problem for a given graph G then, opt{1}−S F(G) = optUEC(G),
since any spanning star forest (with possible trivial stars) can be (polynomially) converted into a
star spanning forest without trivial stars (i.e. a minimal edge cover) with same size [137]. Hence,
these two problems are completely equivalent even from an approximation point of view.

Concerning edge-weighted graphs, the relationship between Weighted Upper EC and Max

Star Forest Problem is less obvious. Let optS F(G) and optUWEC(G) be the optimal values of
Max Star Forest problem and Weighted Upper EC of a given weighted graph G = (V, E,w)

respectively, we only have optS F(G,w) ≥ optUWEC, because any minimal edge cover is a particular
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Figure 3.7: (a) : The weighted graph G = (V, E,w). (b) : The optimal solution of Max Star

Forest problem with value 2 + ǫ. (c) : The optimal solution of Weighted Upper EC with value
uec(G,w) = 2.

spanning star forest. However, the difference between these two values can be arbitrarily large as
indicated in Figure 3.7 (in the graph drawn in Figure 3.7.(b), v4 is an isolated vertex) when ε goes
to Infinity. This means that isolated vertices play an important role in feasible solutions.

Given a spanning star forest S = {S 1, . . . , S r} of (G = (V, E,w)), we rename vertices such that
there is some p, 0 ≤ p < r such that S i = {vi} are trivial stars for all 1 ≤ i ≤ p (if p = 0, then there
is no trivial stars), and S j are non-trivial stars whose c j is the center for all j > p (if S j is a single
edge, both endpoints are considered as possible centers). We define Triv = {vi : i ≤ p} as the set
of isolated vertices of (V, E(S )) where E(S ) = ∪r

j>pS j; moreover, Vl and Vc are respectively the
set of leaves and the set of centers of stars in V \ Triv. Finally, for v ∈ Vl, ev(S ) = c′v ∈ E(S )

denotes the edge linking the center c′ to the leaf v.

We mainly focus on specific solutions of Max Star Forest problem called nice spanning

star forests defined as follows:

Definition 3.25. S is a nice spanning star forest of G = (V, E,w) if Triv = {vi : i ≤ p} is an

independent set in G and all edges of G starting at Triv are linked to leaves of some ℓ-stars of S

with ℓ ≥ 2. Moreover, w(uv) ≤ w(ev(S )) for u ∈ Triv, v ∈ Vl.

Property 3.26. Any spanning star forest of G = (V, E,w) can be polynomially converted into a

nice one with at least the same weight.

Proof. The weights of (G,w) are non-negative. Thus, if Triv is not an an independent set or if
some vertex of Triv is linked to some center of S , we could obtain a better spanning star forest
with less isolated vertices. In particular, it implies that no vertex of Triv is linked to a 1-star (i.e.
a K2 of S ). Finally, if w(uv) > w(ev(S )), then S ′ = (S \ {ev(S )}) ∪ {uv} is a better spanning star
forest. �

In the remaining part of this chapter, we will study the approximability of Weighted Upper

EC in some different graph classes.

3.5.1 Weighted Upper EC in complete graphs

In this section, we deal with edge-weighted complete graphs. This case seems to be the simplest
one, because the equivalence between Weighted Upper EC and Max Star Forest problem
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for the unweighted case proven in [137] remains valid for the weighted case as proven in the
following.

Theorem 3.27. Max Star Forest problem in general graphs is equivalent to approximate

Weighted Upper EC in complete graphs.

Proof. We propose two approximation preserving reductions, one from Max Star Forest prob-
lem in general graphs to Weighted Upper EC in complete graphs and the other from Weighted

Upper EC to Max Star Forest problem in complete graphs.

• Reduction from Max Star Forest problem to Weighted Upper EC in complete graphs.

Let (G,w) be an instance of Max Star Forest problem where G = (V, E) is a connected graph
with n vertices, edge-weighted using w. We build an instance (Kn,w

′) of Weighted Upper EC

where Kn is an edge-weighted complete graph (V, E(Kn)) over n vertices, edge-weighted with w′,
by keeping same weight for existing edges of G and assigning weight 0 for any non-existing edge
of G. In other words, ∀u, v ∈ V with u , v, w′(uv) = w(uv) if uv ∈ E and w′(uv) = 0 otherwise.

Let optS F and optWUEC be values of optimal solution of Max Star Forest problem and
Weighted Upper EC problems respectively. Suppose that S ′ ⊆ E(Kn) is a minimal edge cover of
Weighted Upper EC with weight w′(S ′). The restriction of S ′ to G gives a star spanning forest
(with eventually trivial stars) S . Obviously, by construction we have:

w(S ) = w′(S ′) (3.12)

Thus, from equality (3.12), we deduce optS F(G,w) ≥ optWUEC(Kn,w
′). Conversely, assume that

S ∗ be an optimal star spanning forest of Max Star Forest problem on (G,w). By adding some
edges from the center of some stars to the isolated vertices of S ∗, we obtain a minimal edge cover
of Kn of at least same value. Hence, optWUEC(Kn,w

′) ≥ optS F(G,w). So, we can deduce:

optWUEC(Kn,w
′) = optS F(G,w) (3.13)

Using equations (3.12) and (3.13), we can deduce that any ρ approximation of Weighted Upper

EC for (Kn,w
′) can be polynomially converted into a ρ approximation of Max Star Forest

problem for (G,w).

• Reduction from Weighted Upper EC to Max Star Forest problem in complete graphs.

From an instance (Kn,w) of Weighted Upper EC, we set (G,w′) = (Kn,w) as an instance of
Max Star Forest problem. Since the graph is complete, the weights are non-negative and the
goal is maximization, we can only consider star spanning forests without trivial stars, i.e. minimal
edge covers. Hence, Weighted Upper EC can be seen as a sub-problem of Max Star Forest

problem, even from an approximation point of view. �

From Theorem 3.27 and using known results for Max Star Forest problem given in [143, 44],
we have:

Corollary 3.28. In complete graphs, Weighted Upper EC is 1/2-approximable but not approx-

imable within 10
11
+ ε unless P = NP.
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H = (VH, EH,w)

Figure 3.8: Construction of H from G. The binary weights are indicated on edges.

3.5.2 Weighted Upper EC in bipartite graphs

Let us now focus on bipartite graphs. We prove that, even in bipartite graphs with binary weights,
Weighted Upper EC is not O(n

1
2
−ε) approximable unless P = NP. Also, we show the problem

is APX-complete even for bipartite graphs with fixed maximum degree ∆.

Theorem 3.29. Weighted Upper EC in bipartite graphs with binary weights and the cycle

inequality is as hard2 as Max IS in general graphs.

Proof. We propose an approximation preserving APX-reduction from Max IS to Weighted

Upper EC. Computing α(G) (the size of the largest set of independent vertices in G) is NP-hard
and it is not constant approximable within polynomial-time [88].

Given a connected graph G = (V, E) with n vertices and m edges where V = {v1, . . . , vn}, instance
of Max IS, we build a connected bipartite edge-weighted graph H = (VH, EH,w) as follows (see
also Figure 3.8):

• For each vi ∈ V , add a P3 with edge set {vivi,1, vi,1vi,2}.

• For each edge e = viv j ∈ E where i < j, add a middle vertex vi j on edge e.

• w(e) :=















1 if e = vivi,1 for some vi ∈ V

0 otherwise.

Clearly, H is a connected bipartite graph on |VH | = 3n + m vertices and |EH | = 2(m + n) edges.
Moreover, the weight function is binary and the instance satisfies the cycle inequality.

Let S ∗ be a maximum independent set of G with size α(G). For each e ∈ E, let ve ∈ V \ S ∗

be a vertex which covers e; it is possible since V \ S ∗ is a vertex cover of G. Moreover,
{ve : e ∈ E} = V \ S ∗ since S ∗ is a maximum independent set of G. Now, S ′ = {vev

e : e ∈
E} ∪ {vi1vi2 : vi ∈ V} ∪ {vivi,1 : vi ∈ S ∗} is a minimal edge cover of H. By construction,
w(S ′) = |S ∗| = α(G). Hence, we deduce:

2The reduction is actually a Strict-reduction and it is a particular A-reduction which preserves constant approxi-
mation.
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optWUEC(H,w) ≥ α(G) (3.14)

Conversely, suppose S ′ is a minimal edge cover of H with weight w(S ′). Let us make some
simple observations of every minimal edge cover of H. Clearly, {vi1vi2 : vi ∈ V} is part of every
feasible solution because vi2 for vi ∈ V are leaves of H. Moreover, for each e = viv j ∈ E with
i < j, at least one edge between vivi j or v jvi j belongs to any minimal edge cover of H. If vivi j < S ′,
it implies that v jv j,1 < S ′ is not a part of the feasible solution because of minimality of S ′. Hence,
S = {vi : vivi j ∈ S ′} is an independent set of G with size |S | = w(S ′). We deduce,

α(G) ≥ optWUEC(H,w) (3.15)

Using inequalities (3.14) and (3.15) we deduce:

α(G) = optWUEC(H,w) (3.16)

In conclusion, for each minimal edge cover S ′ on H, there is an independent set S of G (computed
in polynomial-time) such that |S | ≥ w(S ′). �

From Theorem 3.29, we immediately deduce that Weighted Upper EC in bipartite graphs
is not in APX unless P = NP. However, using several results [88, 4] concerning the APX-
completeness of Max IS in connected graph G with constant maximum degree ∆(G) ≥ 3 or
NP-completeness of Max IS in planar graphs, we obtain:

Corollary 3.30. Weighted Upper EC in bipartite (resp. planar bipartite) graphs of maximum

degree ∆ for any fixed ∆ ≥ 4 and binary weights is APX-complete (resp. NP-complete).

Proof. Let us revisit the construction given in Theorem 3.29. If the instance of Max IS has
maximum degree 3 (resp. is planar with maximum degree 3), then the constructed instance of
Weighted Upper EC is a bipartite (resp. planar bipartite) graph of maximum degree 4. �

Using the strong in-approximability result for Max IS given in [165], and by the reduction
given in the previous theorem which is a gap-reduction, we also deduce:

Corollary 3.31. For any ε > 0, Weighted Upper EC in bipartite graphs of n vertices is not

O(nε−
1
2 ) approximable unless P = NP, even for binary weights and cycle inequality.

Proof. We use the reduction given in Theorem 3.29 and the inapproximability of Max IS. Max

IS is known to be, in a sense, completely non-approximable [165]. In particular, it is known
that, for all ε > 0, it is NP-hard to distinguish for an n-vertex graph G between α(G) > n1−ε and
α(G) < nε.
In the construction of H (see Figure 3.8), we know that |VH | = m+ 3n and |EH | = 2(m+ n) where
m, n are numbers of the edges and vertices of G respectively. Hence, we deduce |VH | ≤ 2n2, and
the claimed result follows. �

We can also deduce one inapproximability result depending on the maximum degree.
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Corollary 3.32. For any constant ε > 0, unless NP ⊆ZPTIME(npoly log n), it is hard to approximate

Weighted Upper EC on bipartite graphs of maximum degree ∆ within a factor of Θ
(

1
∆1−ε

)

.

Proof. We will prove that it is difficult for a graph H (even bipartite with binary weights) of
maximum degree ∆ to distinguish between the following two cases:

• (Yes-Instance)uec(H,w) ≥ |V(H)|
∆(G)1+ε ,

• (No-Instance) uec(H,w) ≤ |V(H)|
∆(G)2−ε .

Hence, the result consists of showing that the transformation given in Theorem 3.29 is a gap
reduction. In [45], it is proved that let τ(n) be any function from integers to integers and assuming
NP *ZPTIME(nO(τ(n))), then there is no polynomial-time algorithm that can solve the following
problem (Theorem 5.7, adapted from [154]).

For any constant ε > 0 and any integer q, given a regular graph G of size qO(τ(n)) such that all
vertices have degree ∆ = 2O(τ(n)), the goal is to distinguish between the following two cases:

• (Yes-Instance) α(G) ≥ |V(G)|
∆ε

,

• (No-Instance) α(G) ≤ |V(G)|
∆1−ε .

Note that if G is a ∆-regular graph, then graph H resulting of Theorem 3.29 is a bipartite graph of
maximum degree ∆ + 1 = Θ(∆). Thus, since α(G) = uec(H,w) and |V(H)| = 3|V(G)| + |E(G)| =
Θ(∆|V(G)|), we get the expected result. �

Let us note that in the case of regular bipartite graphs, we can easily get a simple positive
approximation result. A graph is called k-regular if all vertices have the same degree k. For such
bipartite graph G = (V, E), it is well known that G is k-factorable that is E is decomposable into k

perfect matchings (E1, . . . , Ek). Since, any perfect matching is a particular minimal edge cover, we
deduce the maximum weighted perfect matching M of the graph satisfies k×w(M) ≥ ∑k

i=1 w(Ei) =

w(E) ≥ uec(G,w). In conclusion, there is a polynomial 1
∆
-approximation for Weighted Upper

EC in ∆-regular bipartite graphs. A 1
2∆

-approximation for general graphs of bounded degree ∆
will be given later (Section 3.5.5 Corollary 3.44).

3.5.3 Weighted Upper EC in split graphs

We will now focus on split graphs. Recall that a graph G = (L ∪ R, E) is a split graph if the
subgraph induced by L and R is a maximum clique and an independent set respectively. A graph
is called ∆-subregular split graph if for v ∈ L, dG(v) ≤ ∆ + |L| − 1 and for v ∈ R, dG(v) ≤ ∆. This
means that the graph induced by crossing edges is of maximum degree at most ∆. We prove that
Weighted Upper EC in split graphs as well as bipartite graphs which has already been proved
above, is as hard as Max IS in general graphs in terms of approximation.
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Figure 3.9: Construction of split graph H = (VH, EH) from a P3. The weights of thick edges in
H are 1 and for the others are 0.

Theorem 3.33. Weighted Upper EC in split graphs with binary weights and cycle inequality is

as hard3 as Max IS in general graphs.

Proof. The proof is based on a reduction from Max IS. Given a graph G = (V, E) of n vertices
and m edges where V = {v1, . . . , vn} and E = {e1, . . . , em}, instance of Max IS, we build a split
weighted graph H = (VH, EH,w) as follows:

• Put two copies of vertices V in H, indicated by C = {c1, . . . , cn} and C′ = {c′
1
, . . . , c′n} and

make two cliques of size n such that all pairs of vertices in C and C′ are connected to each
other with edges of weight 0.

• Connect all pairs cic
′
j for 1 ≤ i, j ≤ n with edges of weight 1 to make a clique of size 2n.

• Add a set of m new vertices {p1, . . . , pm} corresponding to edges of E and connect pi to
c j, ck with edges of weight 0 if ei = v jvk ∈ E.

• Add a set of n new vertices {t1, . . . , tn} and connect each ti to c′i with edges of weight 0.

It is easy to check that H is a weighted split graph with binary weights and cycle inequality which
contains a clique of size 2n and an independent set of size n +m. Figure 3.9 gives an illustration
of the construction of H from a P3. Now, we claim that G has an independent set of size k if and
only if there exists a minimal edge cover of H with total weight k.

Let S be an independent set of G with size |S |. For each ei ∈ E, there is vei
< S which covers ei,

since S is an independent set of G. Consider the set {cei
: vei
< S } of vertices in C corresponding

to vertices of V \S ,. S ′ = {cei
pi : ei ∈ E} ∪ {c′i ti : vi ∈ V} ∪ {cic

′
i : vi ∈ S ∗} is a minimal edge cover

of H. By construction, w(S ′) = |S |. Let optWUEC and α denotes the values of optimal solution of
Weighted Upper EC and Max IS respectively then, we deduce:

optWUEC(H,w) ≥ α(G) (3.17)

3The reduction is actually a Strict-reduction and it is a particular A-reduction which preserves constant approxi-
mation.
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Conversely, let be a minimal edge cover of H with weight w(S ′). Since, for 1 ≤ i ≤ n, tis are
leaves in H, {tic

′
i : vi ∈ V} is a part of S ′. Moreover, for each ek = viv j ∈ E with i < j, at least one

edge among ci pk or c j pk belongs to S ′. Without loss of generality, assume that ci pk ∈ S ′; this
means that cic

′
j < S ′ for all 1 ≤ j ≤ n. Furthermore, for each ci ∈ C at most one edge cic

′
j ∈ S ′

for 1 ≤ j ≤ n. Hence, S = {vi : cic
′
j ∈ S ′} is an independent set of G with size |S | = w(S ′). We

deduce,

α(G) ≥ optWUEC(H,w) (3.18)

Using inequalities (3.17) and (3.18) we deduce α(G) = optWUEC(H,w). �

If G has a maximum degree 3, then (H′,w) is a 3-subregular split graph. Similar results to
Corollary 3.30 and Corollary 3.31 can be derived:

Corollary 3.34. Weighted Upper EC in 3-subregular split graphs is APX-complete and for any

ε > 0, Weighted Upper EC in split graphs of n vertices is not O(nε−
1
2 ) approximable unless

P = NP.

3.5.4 Weighted Upper EC in k-trees

Recall that a k-tree is a graph which results from the following inductive definition:

• A Kk+1 is a k-tree,

• If a graph G is a k-tree, then the addition of a new vertex which has exactly k neighbors in
G such that these k + 1 vertices induce a Kk+1 forms a k-tree.

As a main result in this section, we prove Weighted Upper EC is APX-complete in weighted-
dense k-trees even for binary weights.

Negative approximation result

From Corollary 3.28, we already know that Weighted Upper EC is NP-hard to approximate
within a ratio strictly better than 10

11
because the class of all k-trees contains the class of complete

graphs. However, this lower bound needs a non-constant number of distinct values [44]. Moreover,
in Theorem 3.27, we showed that Weighted Upper EC in weighted complete graphs is equivalent
to Max Star Forest problem in general graphs. In [143, Theorem 3.6], it is proved that Max

Star Forest problem is hard to approximate in general graphs within ratio 259
260
+ ε for any

ε > 0, so Weighted Upper EC in complete graphs and k-trees with binary weights is not strictly
approximable within ratio better than 259

260
≈ 0.9961. Here, we propose a new approximation

preserving reduction for Weighted Upper EC in k-trees. Our reduction does not improve the
existed bound 259

260
, but help us to find some new upper bounds for Weighted Upper EC in

weighted-dense k-trees and Upper EC in dense graphs.

Recall that a graph G = (V, E) with |V | = n is called c-dense if |E| ≥ cn2

2
[10, 104]. This

concept can be adapted to edge-weighted maximization problems as follows. For a non-negative
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edge-weighted graph (G,w), we assume w(x, y) = 0 for a non-edge xy < E and for all the p

distinct weights wi > 0, i = 1, . . . , p of the instance, the denote by w̄ the average weight such that

w̄ =
∑p

i=1
wi

p
.

Definition 3.35. An edge weighted graph G = (V, E,w) with w ≥ 0 is c-weighted-dense if

∑

x,y∈V
w(x, y) ≥ cn2 × w̄

This notion captures the fact that a huge number of edges with average weight are available in
the graph. In particular, using Definition 3.35, we deduce that a c-dense graph is also weighted
c-dense by taking w(xy) = 1 if xy ∈ E.

Theorem 3.36. Weighted Upper EC is APX-hard in the class of weighted c-dense k-trees, even

for binary weights and c = 4
25

.

Proof. We give an approximation preserving reduction from independent set problem. It is
known that Max IS is APX-complete in graphs of maximum degree ∆ with ∆ ≥ 3 [4].

Let G = (V, E) be an instance of Max IS where G is a connected graph of maximum degree ∆
of n ≥ 3 vertices and m edges. We build a weighted dense graph G′ = (V ′, E′,w) for Weighted

Upper EC problem where V ′ = V ′C ∪ V ′E and E′ = E′C ∪ (∪e∈EE′e) as follows:

• V ′C = {v′ : v ∈ V} and V ′E = ∪e∈EV ′e where V ′e = {ve1
, . . . , vex

} for any integer 1 ≤ x ≤ n − 1.

• The subgraph G′[V ′C] = (V ′C, E
′
C) induced by V ′C is a Kn.

• For each e = uv ∈ E, let us describe the edge set E′e:

– for every i = 1, . . . , x, vertex vei
is linked to u′ and v′.

– vertex ve1
is linked to the subset S e1

= V ′C \ {u′, v′}.
– for every i = 2, . . . , x, vertex vei

is linked to {ve1
, . . . , vei−1

} and an arbitrary subset
S ei
⊂ S ei−1

of size n − i − 1.

The weight w(yz) for yz ∈ E′ is assigned by:

w(yz) =



























x yz ∈ E′C,

1 yz ∈ E′e with e = uv ∈ E and y ∈ {u′, v′}, z ∈ V ′e,

0 otherwise.

Note that |V ′| = n + mx and clearly G′ can be constructed from G in polynomial time. G′ is a
n-tree because initially all V ′C ∪{ve1

} are clique of size n+1 for e ∈ E and at each step the addition
of ve,i+1 maintains a Kn+1 containing vei+1

in the subgraph induced by V ′C ∪ {ve j
: e ∈ E, j ≤ i}.

Figure 3.10 proposes an illustration of this construction for a P3 where x = 2.

We are going to prove that any ρ-approximation for Weighted Upper EC in k-trees can be
polynomially converted into a (1 + ∆

2

2
)ρ − ∆2

2
approximation ratio for Max IS in graphs of

maximum degree ∆.
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a

b

c

z y

a′

b′

c′

vz1

vz2

vy1

vy2

Figure 3.10: The constructed weighted graph G′ = (V ′, E′,w) (right side) build from a P3

G = (V = {a, b, c}, E = {z, y}) (left side). The weight function w for bold, normal and dashed
edges are 2, 1 and 0 respectively.

First, consider an arbitrary independent set S of G. From S , we make a minimal edge cover F of
G′ of size at least x(|S |+m). For each e = uv ∈ E, there is a vertex f (e) ∈ ((V \S )∩{u, v}) because
S is an independent set. Let X = { f (e) : e ∈ E}, then choose arbitrarily a vertex r ∈ X. We set
F = { f (e)′vei

: e ∈ E, i ≤ x} ∪ {r′v′ : v ∈ (V \ X)}. We deduce uec(G′,w) ≥ w(F) = x(m + |S |)
and considering S as a maximum independent set induces:

uec(G′,w) ≥ x(m + α(G)) (3.19)

Conversely, assume that F is a minimal edge cover of G′. We will polynomially modify F into
another minimal edge cover F′ such that w(F′) ≥ w(F) and holds the following property.

Property 3.37. We can assume that F satisfies the following facts:

(a) for each e = uv ∈ E at least one of u′ or v′ is a center of a star in F.

(b) for each e = uv ∈ E, any vertex of V ′e is a leaf and its center is u′ or v′.

Remind that for an star K1,1, both endpoints can be center and leaf.

Proof. For (a), suppose there exist some edges e = uv ∈ E such that none of u′ and v′ is a center
in F. We modify F into F′′ by repeating the following process for all of such edges. We make
a new star S ′ with center t as follows: if none of the centers of u′ and v′ are in V ′e, then t = u,
otherwise t is one of u′ or v′ which its center is in V ′e. Let S = {ab ∈ F : a ∈ V ′e ∪ {t}} and
S ′ = {tr : r ∈ V ′e}, then F′′ = (F \ S ) ∪ S ′. Since F is a minimal edge cover of G then F′′ is
a spanning star forest in G′ with possibly some isolated vertices in V ′C. Considering the weight
function w, w(F′′) ≥ w(F). Easily by connecting all of the trivial stars in F′′ to t, we make a new
minimal edge cover F′ such that w(F′) ≥ w(F′′) ≥ w(F).

For (b), by considering (a), w.l.o.g. suppose u′ is a center in F. Let S = {ab : a ∈ V ′e} and
S ′ = {ur : r ∈ V ′e}. Now F′′ = (F \S ′)∪S is a spanning star forest with possibly trivial stars of G′

with w(F′′) ≥ w(F) which satisfies (b). Notice after these stages, we may create of some isolated
vertices included in V ′C. However, connecting every isolated vertices in V ′C to an arbitrary center
in V ′C induces a minimal edge cover F′ with larger weight. �

Let X′ = {v : vu ∈ F, u ∈ V ′E} and I′ = V ′C\X′. By considering (a) in Property 3.37, I = {v : v′ ∈ I′}
is an independent set of G. Since for each minimal edge cover F, there exist a minimal edge cover
F′ such that:
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w(F) ≤ w(F′) = x(m + |I|) ≤ x(m + α(G)) (3.20)

Hence by considering inequality (3.19) uec(G′,w) = x(m + α(G)).

Let F be a ρ-approximation solution for Weighted Upper EC for (G′,w) and I be an independent
set of G which made by F then:

ρ ≤ w(F)

uec(G′,w)
≤ w(F′)

uec(G′,w)
=

x(m + |I|)
x(m + α(G))

=
m + |I|

m + α(G)
(3.21)

since G is connected of maximum degree ∆, we know n ≤ ∆α(G) (using Brook’s Theorem), and
then m ≤ ∆2

2
α(G). So, we can deduce that:

⇒ 1 − ρ ≥ α(G) − |I|
m + α(G)

≥ α(G) − |I|
(1 + ∆

2

2
)α(G)

⇒ (1 +
∆

2

2
)ρ − ∆

2

2
≤ |I|
α(G)

or equivalently |I|
α(G)
≥ (1 + ∆

2

2
) · w(F)

uec(G′,w)
− ∆2

2
. Remind that for the case x = 1, G′ is a binary

weighted graph and w ∈ {0, 1} and |V ′| = n + m. In the following property, we show that G′ for
the case that x = 1 is a c-dense graph with c ≥ 4

(2+∆)2 .

Property 3.38. The graph G′ when x = 1 is a c-dense graph with c ≤ 4
(2+∆)2 .

Proof. Regarding the construction of G′ = (V ′, E′,w), we have

N = |V ′| = n + m ≤ n +
∆

2
n = (

2 + ∆

2
)n. (3.22)

On the other hand, since G′ is a binary graph, then w̄ = 1 and we have
∑

u,v∈V′ w(u, v) =

2(
n(n−1)

2
+ 2m) ≥ n2. Using inequality (3.22), we have:

∑

u,v∈V′
w(u, v) ≥ 4

(2 + ∆)2
N2 (3.23)

�

So G′ is a c-dense graph with c = 4
(2+∆)2 . Putting ∆ = 3 deduces c = 4

25
. �

He and Liang in [104], studied the Max Star Forest problem in c-dense unweighted graphs
where c ∈ (0, 1). They have shown that Max Star Forest problem in c-dense graphs does not
admit a polynomial time approximation scheme (PTAS) unless P = NP, specifically, they proved
that for any c ∈ (0, 1), there exists ε = ε(c) > 0 such that approximating Max Star Forest

problem in c-dense graphs within a factor (1 − ε) is NP-hard. Here, we strengthen the result by
proving the existence of a constant lower bounds for Weighted Upper EC in c-dense graphs and
particularly in c-dense k-trees for some different constants c.
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Corollary 3.39. Weighted Upper EC is not approximable within 1043
1045
+ ε, 431

432
+ ε, 620

621
+ ε and

835
836
+ ε for every ε > 0 unless P=NP in the class of weighted c-dense k-trees with c equals to

4
25
, 1

9
, 4

49
and 1

16
respectively, even for binary weight function.

Proof. By Property 3.38, we know that the construction proposed in Theorem 3.36, for the case
x = 1 is a c-dense graph with c = 4

(2+∆)2 . Thus, by Theorem 3.36, we deduce that a (
(1+∆2)

2
ρ− ∆2

2
)-

approximation for Max IS in graphs of maximum degree ∆ is reachable in polynomial time from
a ρ-approximation algorithm of Weighted Upper EC on c-dense k-trees with c ≤ 4

(2+∆)2 . On the

other hand, in [51] it is proved Max IS is not approximable within ratio 94
95
+ ε, 47

48
+ ε, 45

46
+ ε and

43
44
+ ε in graphs of maximum degree 3, 4, 5 and 6 respectively. Hence, by a simple calculation,

we complete the proof. �

By considering x = 1 and by deleting all edges of weight 0 in the graph G′ given in Theorem
3.36 (let H be the resulting graph), we can infer that all the above bounds are valid for Upper EC

(or equivalently Max Star Forest problem) in c-dense unweighted graphs.

Corollary 3.40. Upper EC is not approximable within 1043
1045
+ ε, 431

432
+ ε, 620

621
+ ε and 835

836
+ ε for

every ε > 0 unless P=NP in c-dense graphs with c equals to 4
25
, 1

9
, 4

49
and 1

16
respectively.

Proof. By the Property 3.38, the construction G′ = (V ′, E′,w) proposed in Theorem 3.36 for the
case x = 1 is a binary weighted c-dense graph with c ≤ 4

(2+∆)2 . Hence, the graph H = (V ′, E′′)
with E′′ = e ∈ E′ : w(e) = 1 is a c-dense unweighted graph. On the other hand, in the proof of
Theorem 3.36, it is shown that any optimal solution of Weighted Upper EC F of G′ is a subset
of edges with weight 1. So, all the upper bounds of 3.39 is valid for Upper EC. �

He and Liang in [104], proposed an approximation algorithm for unweighted variant of
spanning star forest problem in c-dense graph with ratio 0.804 + 0.196

√
c. Note that this factor

is larger than 0.835 when c = 4
25

. Nevertheless however, we showed that in Corollary 3.40, for
c = 4

25
, it is hard to approximate Max Star Forest problem within ratio 1043

1045
+ε ≈ 0.998. Finally,

note that Upper Edge Cover has at least a PTAS on everywhere-c-dense graphs using the result
given in [103].

Positive approximation result

Now, we propose a positive approximation result of Weighted Upper EC via the use of an approx-
imation preserving reduction from Max Star Forest problem which polynomially transforms
any ρ-approximation into a k−1

k+1
ρ-approximation for weighted upper EC.

Theorem 3.41. In k-trees, Weighted Upper EC is k−1
2(k+1)

-approximable.

Proof. The proof uses an approximation preserving reduction from Max Star Forest problem
which polynomially transforms any ρ-approximation into a k−1

k+1
ρ-approximation for Weighted

Upper EC. Then, using the 0.5-approximation of Max Star Forest problem given in [143], we
will get the expected result.
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Consider an edge-weighted k-tree (G,w) where G = (V, E) and assume G is not complete. Let
S = {S 1, . . . , S r} ⊆ E be a nice spanning star forest of (G,w) (see Property 3.26) which is a
ρ-approximation of Max Star Forest problem. Let optMax SFP denotes the value of optimal
solution of Max Star Forest problem, then we have:

w(S) ≥ ρ · optMax SFP(G,w) (3.24)

Now, we show how to modify S into a minimal edge cover S without loosing "too much".

Before, we need to introduce some definitions and notations. A vertex-coloring C = (C1, . . . ,Cq)

of a graph G is a partition of vertices into independent sets (called colors). The chromatic number

of G, denoted χ(G), is the minimum number of colors used in a vertex-coloring. If G is a k-tree,
it is well known that χ(G) = k + 1 and such an optimal vertex-coloring can be done in linear
time; hence, consider any optimal vertex-coloring C = {C1, . . . ,Ck+1} of G. Moreover, in k-trees
we know that each vertex u ∈ Ci of color i is adjacent to some vertex v ∈ C j of color j for every
j , i.

We color the edges of E(S) incident to every isolated vertices of Triv using the k+1 colors where
the color of such edge is given by the same color of its leaf. Formally, let E′ = {uv ∈ E : v ∈
Triv} ⊆ E(S) be the subset of edges incident to isolated vertices Triv and let Ei = {cv = ev(S) ∈
E(S) : v ∈ Ci \ Triv} for every i ≤ k + 1 where c is some center of S . The key property is the
following:

Property 3.42. for any i < i′, by deleting some edges of Ei ∪ Ei′ and by adding edges from E′ we

obtain a minimal edge cover.

Proof. It is valid because each vertex of color i is adjacent to some vertices of every other colors.
Formally, fix two indices 1 ≤ i < i′ ≤ k + 1. Iteratively apply the following procedure: consider
v ∈ Triv; there is u ∈ V \ Triv such that u ∈ Ci ∪ Ci′ (say Ci) and vu ∈ E. By hypothesis, u is a
leaf of some ℓ-star S r of S . If at this stage ℓ ≥ 2, then add edge uv ∈ E′ and delete edge uc ∈ Ei

of color i; otherwise ℓ = 1 and we just add edge uv ∈ E′. At the end, we get a minimal edge
cover. �

Now, consider i1, i2 with i1 < i2 such that w(Ei1 ∪ Ei2) = min{w(Ei ∪ Ei′) : 1 ≤ i < i′ ≤ k + 1}.
Using Property 3.42 we can polynomially find a minimal edge cover S of (G,w). By construction,
∑k+1

i=1 w(Ei) ≤ w(E(S)) and then:

w(Ei1 ∪ Ei2) ≤
2

k + 1
w(E(S)) (3.25)

Hence using inequalities (3.24) and (3.25), we get:

w(S ′) ≥ w(E(S)) − w(Ei1 ∪ Ei2) ≥
k − 1

k + 1
w(E(S)) ≥ k − 1

k + 1
ρ · optMaxWS S F(G,w)

Finally, since optMaxWS S F(G,w) ≥ uec(G,w) we get the expected result. �
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3.5.5 Weighted Upper EC in bounded degree graphs

In this section, we propose some positive approximation results for graphs of bounded degree in
complement to those give in Corollary 3.32.

Theorem 3.43. In general graphs with maximum degree ∆, there is an approximation preserving

reduction from Weighted Upper EC to Max Ext WEC with expansion c(ρ) = 1
∆
× ρ.

Proof. Consider an edge-weighted graph (G,w) of maximum degree ∆(G) bounded by ∆ as an
instance of Weighted Upper EC. We make an instance (G,w,U) of Max Ext WEC by putting all
pendant edges of G in the forced set U. Property 3.26 also works in this context since U is the set of
pendant edges. Let optEWEC and optWUEC be the values of optimal solutions of Max Ext WEC and
Weighted Upper EC respectively. In particular, we deduce optEWEC(G,w,U) ≥ optWUEC(G,w)

because, U belongs to any minimal edge cover. Let S = {S 1, . . . , S r} ⊆ E be a nice spanning star
forest of (G,w) containing U satisfying:

w(S) ≥ ρ × optEWEC(G,w,U) ≥ ρ × optWUEC(G,w) (3.26)

For each t ∈ Triv, we choose two edges incident to it with maximum weights et
1
= txt and et

2
= tyt

in E \ E(S) (since by construction dG(v) ≥ 2), i.e. w(et
1
) ≥ w(et

2
) ≥ w(tv) for all possible v;

let W =
∑

t∈Triv

(

w(et
1
) + w(et

2
)
)

be this global quantity. Also, recall that Vc and Vl are the set
of vertices labeled by centers and leaves respectively according to S . We build a new vertex
weighted graph G(S) = G′ = (V ′, E′,w′) with maximum degree ∆(G′) ≤ ∆(G) − 1 as follows:

• V ′ = Vl.

• uv ∈ E′ if and only if there exists t ∈ Triv with txt = tu and tyt = tv.

• For v ∈ V ′, we set w′(v) = w (ev(S))4.

Clearly, G′ is a graph with bounded degree ∆ − 1. We mainly prove that from any independent
set I ⊆ V ′ we can polynomially build an upper edge cover S I of G satisfying:

w(S I) ≥ w′(I) +















W −
∑

t∈Triv

w(et
1)















≥ w′(I) (3.27)

Let I ⊆ V ′ be a maximal independent set of G′. This implies V ′ \ I is a vertex cover of G′. By
construction of G′, for every t ∈ Triv, at least one vertex xt or yt is not in I (say xt in the worst
case). Recall ext

(S) is the edge of spanning star forest incident to xt (since xt ∈ Vl). We will
iteratively apply the following procedure for all t ∈ Triv to build S I: if the current ℓ-star S r of S
containing ext

(S) satisfies ℓ ≥ 2 (it is true initially by hypothesis), then delete edge ext
(S) from

S , add edge et
1

and update spanning star forest S . Otherwise, ℓ = 1 and only add et
1
. At the end

of the procedure, we get a minimal edge cover S I of G satisfying inequality (3.27).

4We recall ev(S) is the edge of S linking leaf v to its center.
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Now, in order to propose a feasible solution of Max IS for G′, apply a greedy algorithm: at each
step, taking one vertex with maximum weight w′ and removing all the remaining neighbors of it.
Thus, we have:

w′(I) ≥ w′(V ′)

∆(G′) + 1
≥ w(S)

∆(G)
(3.28)

Hence, using inequalities (3.26), (3.27) and (3.28), we get the expected result. �

Using the 0.5-approximation of Max Ext WEC presented in Section 3.4, we deduce:

Corollary 3.44. Weighted Upper EC is 1
2∆

-approximable in graphs with bounded degree ∆.

Now, assume that the weight function w just contains 1, 2 then for every t ∈ Triv, removing
ext

(S) from S and adding txt to it, gives a minimal edge cover S I of G which satisfies:

w(S I) ≥ w(S) − ((2 − 1)(V ′ \ I)) ≥ 1

2
w(S) (3.29)

So for general graphs with w ∈ {1, 2}, we can easily deduce:

Corollary 3.45. Weighted Upper EC in graphs with w ∈ {1, 2} is 1
4
-approximable.

3.6 Conclusion

In this chapter, we considered the extension version of weighted edge cover problem. Both
maximization and minimization versions of the problem are studied. We showed that for a
given graph G = (V, E) and a forced set U ⊆ E, even deciding the existence of a minimal edge
cover containing U is a NP-hard problem. However, by introducing a dynamic programming
algorithm for bounded tree-width graphs, we show that not only the decision version is decidable
in polynomial time but also both Min Ext WEC and Max Ext WEC are solvable in polynomial
time. Since the decision variants of the problems are NP-hard, we just focus on the complete
weighted graph to ensure that finding some feasible solutions can be done in polynomial time (if
any).

w-general c-relaxed extended c-relaxed

NP-hard NP-hard c > 1 NP-hard c > 1

Min Ext WEC non-apx at all poly-time 1
2
≤ c ≤ 1 poly-time c = 1

FPT w.r.t. |U | c apx-ratio c+1
2

apx-ratio
7+c

8
− ǫ in-apx 7+c

8
− ǫ non-apx

0.5 apx-ratio

Max Ext WEC
7
8
+ ǫ in-apx − −

Table 3.1: The results given for complete graphs
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Moreover, we have studied the problem in the framework of approximability. Table 3.1
summarizes the results obtained for the two optimization problems on complete graphs.

Further, we have proposed some positive and negative approximability results of Weighted

Upper EC for special classes of graphs as well as bounded degree graphs. This problem is a
particular case of Max Ext WEC, when the forced set U = ∅.

We finish this chapter with a remark regarding the complexity of Weighted Upper EC with
respect to the tree-width. We showed that Max Ext EC is solvable in time O∗(6k) for graphs with
tree-width bounded by k. So, Weighted Upper EC is solvable in O∗(6k) too. On the other hand,
Lokshtanov et al. proved in [132] that, assuming SETH, there is no O∗((3 − ǫ)k) algorithm with
ǫ > 0 for Min DS. It means that, assuming SETH, Upper EC does not admit any O∗((3 − ǫ)k)

algorithm. Since we focused on weighted version of the problem, it would be interesting to reduce
this gap.

99





4
Extension of Some Vertex Graph Problems

Contents

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.1.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.2 Ext VC, Ext IS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.2.1 Computational complexity . . . . . . . . . . . . . . . . . . . . . . . . 106

4.2.2 Parameterized complexity . . . . . . . . . . . . . . . . . . . . . . . . 113

4.2.3 Price of extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.2.4 Generalizations to extensions of H-graph cover and H-free subgraph . . 118

4.3 Ext CVC and Ext NSIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.3.1 Computational complexity . . . . . . . . . . . . . . . . . . . . . . . . 121

4.3.2 Price of extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.3.3 Upper CVC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.4 Ext DS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.4.1 Computational complexity . . . . . . . . . . . . . . . . . . . . . . . . 133

4.4.2 Parameterized complexity . . . . . . . . . . . . . . . . . . . . . . . . 137

4.4.3 Price of extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Most of the results presented in this chapter appeared in the following conference papers:
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Katrin Casel, Henning Fernau, Jerome Monnot and Florian Sikora.
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• Extension and its price for the connected vertex cover problem. In Proceedings of the 30th
International Workshop on Combinatorial Algorithms, IWOCA 2019. Joint work with Nikolaos
Melissinos, Jerome Monnot and Aris Pagourtzis.

4.1 Introduction

In this chapter, we consider extension problems related to several vertex optimization problems in
graphs, namely Vertex Cover, Independent Set, Connected Vertex Cover, Non Separating

Independent Set and Dominating Set. Some of these problem are already introduced in Chapter
1. A subset S ⊆ V of a given connected graph G = (V, E) is a connected vertex cover (resp.
a non separating independent set) if S is a vertex cover and the subgraph G[S ] induced by S

is connected (resp. if S is an independent set and it is not a cut-set of G). The goal of the
optimization variant of the two former problems is to find a connected vertex cover (resp. a
non separating independent set) of minimum (resp. maximum) size. Informally, for a hereditary
(resp. anti-hereditary) vertex graph problem Π, the noticed decision problem denoted by Ext

Π, in which a pair (G,U) is given as an input where G = (V, E) and U ⊆ V , and it is asked if
there is a maximal (resp. minimal) solution S such that S ⊆ U (resp. U ⊆ S ). Regarding this
decision problem, we obtain some NP-hardness results for all the mentioned problems even for
restricted instances to bipartite or planar graphs. Most of our NP-hardness results translate into
ETH-hardness results as well. Moreover, we consider the problems in parameterized complexity
point of view with respect to the size of forced set or forbidden set1 and their dual. Furthermore,
we study the Price of Extension (PoE), a measure that reflects the distance of a vertex set U to
its maximum efficiently computable subset that is extensible to a minimal/maximal solution, and
provide negative and positive results from approximation point of view for PoE in general and
special graphs.

4.1.1 Related work

The extension variants of some classical graph problem have been studied in the literature
[32, 17, 16]. In [17], an NP-hardness proof for the extension of minimal dominating set (denoted
by Ext DS here), when the instance is restricted to planar cubic graphs was presented. Similarly,
it was shown in [16] that extension of minimal vertex cover (Ext VC) is NP-hard, even restricted
to planar cubic graphs, which leads to an NP-hardness proof of Ext IS in our consideration.
Further, in order to enumerate all (inclusion-wise) minimal dominating sets of a given graph,
Kanté et al. studied an extension variant of dominating set, in which, for a given graph G and
two subsets of vertices X,Y , the goal is to find all minimal dominating set containing X but
excluding Y (In our setting of Ext DS, Y = ∅). They proved that Ext DS is NP-complete, even
in special graph classes like split graphs, chordal graphs and line graphs [117, 116]. Moreover,
they proposed a linear algorithm for split graphs when X,Y is a partition of the clique part [115].

1we recall that forbidden set is defined as U, i.e. V \ U in our context.
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Min VC and Max IS are two classical graph optimization problems which have been studied
in many researches. The problems are NP-hard in planar graphs [88], but they are polynomial
solvable for several graph classes like bipartite graphs, chordal graphs and graphs with bounded
tree-width [89, 35]. From (in-)approximability point of view, Min VC is known to be APX-
complete in cubic graphs [5], 2-approximable in general graphs [12, 106] and admits a polynomial
approximation scheme in planar graphs [15] and it is proved that Max IS in general graphs is not
approximable within ratio nε−1 for any ε > 0 unless P = NP [165], while it is APX-complete in
bounded degree graphs [154].

Garey and Johnson proved that minimum connected vertex cover problem denoted by Min

CVC is NP-hard in planar graphs of maximum degree 4 [87]. Moreover, it is shown in [153, 156]
that the problem is polynomially solvable for graphs of maximum degree 3, while NP-hardness
proofs for bipartite and for bi-connected planar graphs of maximum degree 4, are presented
in [74, 83, 148]. The approximability of Min CVC has been considered in some more recent
studies. The NP-hardness of approximating Min CVC within 10

√
5 − 21 is proven in [83] while

a 2-approximation algorithm is presented in [149]. Moreover, in [74] the problem is proven
APX-complete in bipartite graphs of maximum degree 4. They also propose a 5

3
-approximation

algorithm for Min CVC for any class of graphs where Min VC is polynomial-time solvable.
Parameterized complexity for Min CVC and maximum non separating indepedent set denoted by
Max NSIS have been studied in [126, 130] while the enumeration of minimal connected vertex
covers is investigated in [94] where it is shown that the number of minimal connected vertex
covers of a graph of n vertices is at most 1.8668n, and these sets can be enumerated in time
O(1.8668n). For chordal graphs (even for chordality at most 5), the authors are able to give a
better upper bound. Finally, one can find problems that are quite related to Min CVC in [39]. To
the best of our knowledge, the extension variant of connected vertex cover has not been studied
in the literature.

Max-Min or Min-Max optimization variants have been studied for many classical graph
problems from the (in-)approximability point of view in recent years. For example, in Manlove
thesis [136] a framework and a systematic studies have been proposed. Dealing with Upper VC

in [30, 141], a tight approximation result in general graphs is provided: a n−
1
2 approximation

algorithm together with a proof for in-approximability of the problem within factor nε−
1
2 , for

any ǫ > 0. The Min-Max IS problem or equivalently min independent dominating set denoted
by Min ISDS asks, given a graph G = (V, E), for a subset S ⊆ V of minimum size that is
simultaneously independent and dominating. From the NP-hardness and exact solvability point
of views, Min ISDS is equivalent to Upper VC [137], but they seem to behave differently in terms
of approximability and parameterized complexity [12]. Although Min ISDS is polynomially
solvable in strongly chordal graphs [77], it is hard to approximate within nε−1, for any ǫ > 0, in
certain graph classes [77, 61]. Upper DS is considered from the approximation perspective [17],
where it is shown the problem does not admit an nε−1 approximation for any ε > 0, unless P = NP.
It is also proved that Upper DS remains APX-hard on cubic graphs. The authors complemented
their results by proposing an APX-algorithm for bounded degree graphs, as well as an EPTAS on
planar graphs.
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4.1.2 Contributions

We study the associated decision problem to extension problems for some vertex graph problems
in this chapter. We prove that the Ext Π for any vertex problem Π which is mentioned above,
is NP-complete in general, even for some restricted cases. We also study the parameterised
complexity of these problems with respect to parameters related to the pre-solution is well as
the optimality of simple exact algorithms under the Exponential-Time Hypothesis (ETH). We
further focus on bounds for PoE, providing inapproximability results for new natural optimization
problems corresponding to the decision versions.

We organize our results in this chapter as follows. In Section 4.2, the extension variant
of two classic graph problems Vertex Cover, Independent Set is studied. By proposing a
characterization of a yes-instance of Ext VC, we show that the two above problems are equivalent.
Then, we prove that the problems are NP-complete to decide even for sub-cubic planar bipartite
graphs while they are polynomial-time decidable in chordal graphs, circular-arc graphs and trees.
We also study parameterized complexity of these problems in this section and comment on lower
bound results based on ETH. Concerning the new concept price of extension, we introduce two
optimization problems and discuss (in-)approximability for the according optimization problems.
Finally, we generalize our results to H-free graphs for some fixed H.

In Section 4.3, we focus on the extension variant of two problems Connected Vertex

Cover and Non Separating Independent Set. After showing the relation between Ext VC and
Ext CVC, we provide additional hardness results for Ext CVC in bipartite graphs and weakly
triangulated graphs, the latter leading to hardness results for Upper VC and Upper CVC. We then
focus on bounds for PoE, providing in-approximability results for ExtmaxCVC in general and
bipartite graphs. Finally, we discuss the (in-)approximability of a special case of ExtmaxCVC,
namely Upper CVC in this chapter.

We study the extension variant of Dominating Set in Section 4.4. We prove the Ext DS is
NP-hard in planar bipartite graphs of maximum degree 3. Moreover, we show that Ext DS is
W[3]-complete with respect to the size of forced set, as we show that the problem is equivalent to
the extension variant of Hitting Set in parameterized complexity point of view. We finally focus
on bounds for PoE, providing in-approximability results for ExtmaxDS in general and bipartite
graphs as well as graphs with bounded degree.

4.2 Ext VC, Ext IS

In this section, we consider extension variants of the classical graph problems Vertex Cover

and Independent Set. For a given graph G = (V, E), a subset S ⊆ V is called vertex cover (resp.
independent set) if each edge e ∈ E is incident to at least one vertex v ∈ S (resp. if G[S ] contains
no edges.) Here, for a given graph G = (V, E) and a vertex set U ⊆ V , it is asked if there exists
a minimal vertex cover (resp. maximal independent set) S with U ⊆ S (resp. U ⊇ S ). These
problems formally defined as follows:
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Ext VC

Input: A graph G = (V, E) together with a forced set U ⊆ V .
Question: Is there a minimal vertex cover S ⊆ V such that U ⊆ S ?

Ext IS

Input: A graph G = (V, E) together with a co-forbidden set U ⊆ V .
Question: Is there a maximal independent set S ⊆ V such that U ⊇ S ?

Recall that, in Ext VC (resp. Ext IS), the set U is also referred to as the set of forced (resp.
co-forbidden) vertices. Since complements of a maximal independent set is a minimal vertex
cover, we can conclude:

Remark 4.1. (G,U) is a yes-instance of Ext VC if and only if (G,V \ U) is a yes-instance of
Ext IS.

Since adding or deleting edges between vertices of U does not change the minimality of
feasible solutions of Ext VC, we can first state the following.

Remark 4.2. For Ext VC (and for Ext IS) one can always assume G[U] (resp. G[V \ U]) is
either a clique or an independent set.

The following theorem gives a combinatorial characterization of yes-instances of Ext VC

that is quite important in our subsequent discussions.

Theorem 4.3. Let G = (V, E) be a graph and U ⊆ V be a set of vertices. The three following

conditions are equivalent:

(i) (G,U) is a yes-instance of Ext VC.

(ii) (G[NG[U]],NG[U] \ U) is a yes-instance of Ext IS.

(iii) There exists an independent dominating set S ′ ⊆ NG[U] \ U of G[NG[U]].

Proof. In the following arguments, let G = (V, E) be a graph. Let us first look at conditions
(ii) and (iii). By our previous discussions, condition (ii) is equivalent to: (G[NG[U]],U) is a
yes-instance of Ext VC. Assume there is a minimal vertex cover S of G[NG[U]] with U ⊆ S .
Hence, in particular we deduce NG[v] * U for every v ∈ U by minimality of S . Condition (ii)

therefore entails the existence of an independent set S ′ of G[NG[U]] with S ′ ⊆ (NG[U] \ U)

and U ⊆ NG[S ′]. Hence, condition (ii) implies condition (iii). Conversely, let S ′ ⊆ NG[U] \ U

be an independent dominating set of G[NG[U]]. Clearly, S = NG[U] \ S ′ is a vertex cover of
G[NG[U]]. If S were not minimal, then there would be a vertex v ∈ S with NG[NG[U]](v) ⊆ S , as
then v would not possess a private edge. But then v would not be dominated by any vertex from
S ′, violating the assumption that S ′ is a dominating set of G[NG[U]]. Hence, conditions (ii) and
(iii) are equivalent.

Now, we will prove the equivalence between items (i) and (iii). Let S be a minimal vertex
cover of G with U ⊆ S . Clearly, S ∩ NG[U] is a vertex cover of G[NG[U]], but notice that it need
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not be minimal, as private edges of v ∈ S ∩ NG[U] need not lie in the graph induced by NG[U].
The set S ′ = (V \S )∩NG[U] ⊆ NG[U]\U is an independent set (as the complement of S ∩NG[U]

within G[NG[U]]) which dominates all the vertices in U. Namely, consider any u ∈ U and assume
that u < NG[S ′]. Then, NG[u] ⊆ S , contradicting minimality of S . We turn S ′ into a maximal
independent set of the induced graph G[NG[U] \ U], by adding some vertices from NG[U] \ U to
S ′. Observe that the resulting set S ′′ is also a maximal independent set in G[NG[U]] and hence
satisfies condition (iii), because each u ∈ U has a private edge (as being part of the minimal vertex
cover S of G, connecting u to some v ∈ S ′. Conversely, assume the existence of an independent
dominating set R of G satisfying (iii). Hence, R is an independent set with R ⊆ (NG[U] \ U) and
U ⊆ NG[R]. Let X be any maximal independents set of G[V \ NG[R]], for instance, produced by
some greedy procedure. Let S ′ := R ∪ X. By construction, S ′ is an independent set in G. If S ′

were not maximal, then we would find some x ∈ S ′ with NG(x)∩S ′ = ∅. Clearly, x < NG[R]. But
as x has no neighbors in X, it could have been added to X by the mentioned greedy procedure. In
conclusion, S ′ is a maximal independent set. Hence, S = V \ S ′ satisfies the condition (i). �

4.2.1 Computational complexity

Here, we study hardness of Ext VC and Ext IS in some different graph classes. Due to Remark
4.1, two extension problems are equivalent in (in)-tractability point of view, so in each proof, we
just focus on one of the problems.

Ext VC and Ext IS in bipartite graphs

In this section, we deal with bipartite graphs. In the following, We will show that Ext VC is
NP-complete, even if restricted to cubic, or planar subcubic graphs. We add some algorithmic
notes on planar graphs that are also valid for the non-bipartite case.

Theorem 4.4. Ext VC is NP-complete in cubic bipartite graphs.

Proof. We make a reduction from (3, B2)-Sat to Ext VC. For an instance I = (C,X ) of (3, B2)-

Sat where C = {c1, . . . , cm} and X = {x1, . . . , xn} are the set of clauses and variables respectively,
we build a cubic bipartite graph G = (V, E) by duplicating instance I as follows:

• make two vertices ci, c
′
i for each clause ci ∈ C.

• make two paths, < xi, li,mi, ri,¬xi > and < x′i , l
′
i ,m

′
i , r
′
i ,¬x′i > by adding 10 new vertices for

each variable xi ∈ X .

• add 3 new edges lil
′
i , mim

′
i and rir

′
i for i = 1, . . . , n.

• for each variable xi appears positively (resp. negatively) in each clause c j, add two new
edges xic j, x

′
ic
′
j (resp. ¬xic j,¬x′ic

′
j). These new edges, called crossing edge.

The construction is illustrated in Figure 4.1 and clearly, G is a cubic bipartite graph. Finally
we set U = {ci, c

′
i : i = 1, . . . ,m}∪ {m j,m

′
j : j = 1, . . . , n}. We claim that I is satisfiable if and only

if G admits a minimal vertex cover containing U.
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Figure 4.1: Graph G = (V, E) for Ext VC built from I. Vertices of U have a bold border.

Assume I is satisfiable and let T be a truth assignment which satisfies all clauses. We set
S = {¬xi, li,¬x′i , r

′
i : T (xi) = true} ∪ {xi, ri, x

′
i , l
′
i : T (xi) = false} ∪ U. We can easily check

that S is a vertex cover containing U. By the construction, is it easy to see that every vertex in
S \ (C ∪ C′) covers at least one private edge of G. So, for minimality, we just need to show that
for any ci (resp. c′i , 1 ≤ i ≤ m, there is at least one crossing edge which is covered by ci (resp.
c′i). If not, then there is a vertex ci or c′i which all of the three crossing edges incident to it are
covered by other vertices in S , hence, considering the assignment T , the clause ci is not satisfied.
Therefore, S is a minimal vertex cover.

Conversely, assume that G possesses a minimal vertex cover S containing U. For a fixed i, we
know that |{li, l

′
i , ri, r

′
i } ∩ S | ≥ 2 to cover the edges lil

′
i and rir

′
i . If {li, ri} ⊆ S (resp. {l′i , r′i } ⊆ S ),

then S is not a minimal vertex cover because mi (resp. m′i) can be deleted, a contradiction. If
{li, l

′
i} ⊆ S (resp. {ri, r

′
i } ⊆ S ), then S must contain another vertex to cover rir

′
i (resp. lil

′
i), leading

to the previous case, a contradiction. Hence, if {li, r
′
i } ⊆ S (resp. {ri, l

′
i} ⊆ S ), then {¬xi,¬x′i} ⊆ S

(resp. {xi, x
′
i} ⊆ S ), since the edges l′i¬x′i and ri¬xi (resp. lixi and r′i xi) must be covered. Finally, by

setting T (xi) = true if¬xi ∈ S and T (xi) = false if xi ∈ S we obtain a truth assignment T which
satisfies all clauses. The assignment T is a satisfying truth assignment follows by minimality
rather than by the fact that any particular edge needs to be covered. �

Corollary 4.5. Ext IS is NP-complete in cubic bipartite graphs.

In the following, we discuss restriction to planar graphs. In order to prove our results, we
will present a new reduction from 4P3C3Sat, which is already explained in the beginning of this
chapter.

Theorem 4.6. Ext IS is NP-complete on planar bipartite subcubic graphs.

Proof. The proof is based on a reduction from 4P3C3Sat. Let I = (C,X ) be an instance of
4P3C3Sat, where C = {c1, . . . , cm} and X = {x1, . . . , xn} are the set of clauses and variables of I
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Figure 4.2: Construction of Theorem 4.6. On the left: A variable xi appearing in four clauses
c1, c2, c3, c4 in I. On the right, cases 1, 2, 3: The gadgets H(xi) in the constructed instance,
depending on how xi appears (negative or positive) in the four clauses. Black vertices denote
elements of U.

respectively. W.l.o.g. suppose that variable xi appears in clauses c1, c2, c3, c4 of instance I such
that in the induced (embedded) subgraph Gi = G[{xi, c1, c2, c3, c4}] of the graph BP defined in
Definition 1.1, c1xi, c2xi, c3xi, c4xi is an anti-clockwise ordering of edges around xi. By looking
at Gi and considering xi appears positively and negatively, the construction should satisfy one of
the following cases:

• case 1: xi ∈ c1, c2 and ¬xi ∈ c3, c4;

• case 2: xi ∈ c1, c3 and ¬xi ∈ c2, c4;

• case 3: xi ∈ c1, c2, c3 and ¬xi ∈ c4.

Note that all other cases are included in these by rotations or replacing xi with ¬xi or vice versa.

We start from the associated graph BP = (X ∪C, E(BP)), and build a planar bipartite graph H by
replacing every node xi in BP with one of the three gadgets H(xi) which are depicted in Figure
4.2. Let

F1 = {mi : H(xi) complies with cases 1 or 3}
and let

F2 = {m1
i ,m

2
i ,m

3
i ,m

4
i : H(xi) complies with case 2} .

The co-forbidden set U = V(H) \ (F1 ∪ F2 ∪C), where C = {ci : 1 ≤ i ≤ m}. This construction is
polynomial-time computable and H is a planar bipartite subcubic graph. We claim that H has a
maximal independent set which contains only vertices from U if and only if I is satisfiable.

If T is a truth assignment of I which satisfies all clauses, then depending on T (xi) = true or
T (xi) = false, we define the independent set S i corresponding to three different variable gadgets
H(xi) as follows:
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S i :=































































{ti, ri} if H(xi) adapts to case 1 and T (xi) = true,

{t1
i , r

1
i , l

2
i , t

2
i , r

3
i
, r4

i } if H(xi) adapts to case 2 and T (xi) = true,

{t1
i , t

2
i , ri} if H(xi) adapts to case 3 and T (xi) = true,

{ fi, li} if H(xi) adapts to case 1 and T (xi) = false,

{l1
i , f 1

i , r
2
i , l

3
i
, f 2

i , l
4
i } if H(xi) adapts to case 2 and T (xi) = false,

{li, fi} if H(xi) adapts to case 3 and T (xi) = false.

We can see that S =
⋃

1≤i≤n S i is a maximal independent set of H which contains only vertices of
U.

Conversely, suppose S ⊆ U is a maximal independent set of H. By using maximality of S , we
define an assignment T for I depending on different types of variable gadgets of H as follows:

• for case 1, one of li, ri must be in S , hence we set T (xi) = true (resp. T (xi) = false) if
ri ∈ S (resp. li ∈ S ).

• for case 2, at least one of vertices in each pair {(l j

i
, r

j

i
) : 1 ≤ j ≤ 4}) must be in S . Hence,

at most one of (S ∩ {t1
i , t

2
i }) , ∅ and (S ∩ { f 1

i , f 2
i }) , ∅ is true. Thus we set T (xi) = true

(resp. T (xi) = false) if (S ∩ {t1
i , t

2
i }) , ∅ (resp. (S ∩ { f 1

i , f 2
i }) , ∅).

• for case 3, one can see, similar to the previous two cases: if one of t1
i , t

2
i (resp. fi) is in S ,

then none of fi (resp. t1
i , t

2
i ) are in S , then we set T (xi) = true (resp. T (xi) = false) if

(S ∩ {t1
i , t

2
i }) , ∅ (resp. fi ∈ S ).

We obtain a valid assignment T . This assignment satisfies all clauses of I, since for all c j ∈ C,
(N(c j) ∩ S ) , ∅ (by maximality of S ). �

Corollary 4.7. Ext VC is NP-complete in sub-cubic planar bipartite graphs.

Ext VC and Ext IS in chordal and circular-arc graphs

An undirected graph G = (V, E) is chordal if and only if each cycle of G with a length at least
four has a chord (an edge linking two non-consecutive vertices of the cycle) and G is circular-arc

if it is the intersection graph of a collection of n arcs around a circle. We will need the following
problem definition.

Minimum Independent Dominating Set (Min ISDS for short)
Input: A graph G = (V, E).
Solution: Subset of vertices S ⊆ V which is independent and dominating.
Output: Solution S that minimizes |S |.

Weighted Minimum Independent Dominating Set (or WMin ISDS for short) corresponds
to the vertex-weighted variant of Min ISDS, where each vertex v ∈ V has a non-negative weight
w(v) ≥ 0 associated to it and the goal consists in minimizing w(S ) =

∑

v∈S w(v). If w(v) ∈ {a, b}
with 0 ≤ a < b, the weights are called bivaluate, and a = 0 and b = 1 corresponds to binary

weights.
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Remark 4.8. Min ISDS for chordal graphs has been studied in [76], where it is shown that the
restriction to binary weights is solvable in polynomial-time. Bivalued Min ISDS with a > 0

however is already NP-hard on chordal graphs, see [46]. WMin ISDS (without any restriction
on the number of distinct weights) is also polynomial-time solvable in circular-arc graphs [47].

Using the mentioned polynomial-time result of binary independent dominating set on
chordal graphs [76] and circular-arc graphs [47], we deduce:

Corollary 4.9. Ext VC is polynomial-time decidable in chordal and in circular-arc graphs.

Proof. By Remark 4.8, we can find, within polynomial-time, an independent dominating set S ∗

minimizing w(S ∗) =
∑

v∈S ∗ w(v) among the independent dominating sets of a weighted chordal
graph or circular-arc graph (G,w) where G = (V, E) and ∀v ∈ V , w(v) ∈ {0, 1}.
Let (G,U) be an instance of Ext VC where G = (V, E) is a chordal graph (resp. a circular-arc
graph). We will apply the result of [76] (resp. [47]) for (G′,w), where G′ is the subgraph of G

induced by NG[U] and w(v) = 1 if v ∈ U and w(v) = 0 for v ∈ NG[U] \U. Obviously, (G′,w) is a
binary-weighted chordal graph (resp. circular-arc graph). So, an optimal independent dominating
set S ∗ of (G′,w) has a weight 0 if and only if S ∗ ⊆ NG[U] \ U is a maximal independent set of
G′, otherwise w(S ∗) ≥ 1. Using Theorem 4.3, the result follows. �

Corollary 4.10. Ext IS are polynomial-time decidable in chordal and in circular-arc graphs.

Farber’s algorithm [76] (used in Corollary 4.10) runs in linear-time and is based on the
resolution of a linear programming using primal and dual programs. Yet, it would be nice to find
a (direct) combinatorial linear-time algorithm for chordal and circular-arc graphs, as this is quite
common in that area. In the next section, we give a first step in this direction by presenting a
characterization of yes-instances of Ext VC on trees.

Ext VC and Ext IS in trees

In this subsection, for any instance (G,U) of Ext VC, we assume that the forced vertex set U

is an independent set because if a graph is a forest, after applying Remark 4.2, the new graph
remains a forest.

Given an undirected tree Tr = (V, E), where r ∈ V is a specified vertex called root, we denote
by fai

Tr
(v) of v ∈ V for i ≥ 1 the i-th visited vertex different from v in the unique path from v to

r in Tr. For instance, fa1
Tr

(v) is called father of v while fa2
Tr

(v) is called grandfather of v. The
set chTr

(v) = NT (v) \ {fa1
Tr

(v)} is called the set of children of v. The root has no father and its
neighbors are its children. A leaf of T is a vertex v without children, i.e. NTr

(v) = {fa1
Tr

(v)}. The
level of a vertex v in Tr is the distance dTr

(v, r), i.e., the number of edges in the path between v

and r. For v ∈ V , Tv is the subtree of Tr containing v once the edge between v and its father has
been deleted from Tr. Hence, v will be considered as a root of the subtree Tv.

Let us fix arbitrarily the vertex 1 as the root of the tree T1; in Figure 4.3, we have a directed
edge from a vertex v to its father. Then fa1

T1
(1) = ∅, fa1

T1
(5) = 2 and fa2

T1
(5) = 1. For instance,

vertices 5, 6 are leaves. T2 is the subtree of T1 rooted at 2, containing vertices {2, 4, 5}.
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1

2

4 5

3

6 7 8

Figure 4.3: Example of a tree T1 rooted at vertex 1.

We now characterize the yes-instances of Ext VC in forests by a kind of forbidden structure.
Consider a tree T = (V, E) and a set of vertices U. A subtree T ′ = (V ′, E′) of a tree T is called full

with respect to (T,U) if U ⊆ V ′, dT ′(u) = dT (u) for all u ∈ U. T ′ is minimally full with respect

to (T,U) if it is full with respect to U and for any e ∈ E′, T ′ − e is not full with respect to U.
Finally, a subtree T ′ = (V ′, E′) is induced full with respect to of (T,U) if it is full with respect to
(T,U ∩ V ′).

Consider the following class of trees T containing black and white vertices (where the
resulting 2-coloring is not proper but each vertex has a color white or black), defined inductively
by:

• Base case: A tree with a single vertex x belongs to T if x is black.

• If T ∈ T , then the tree resulting from the addition of a P3 (3 new vertices that form a path
p) where one endpoint of p is black, the two other vertices are white and the white endpoint
of p is linked to any black vertex of T is in T .

Example 4.11. There are five black-and-white trees on at most ten vertices in T : four paths (on
one, four, seven and ten vertices), where the endpoints are black and otherwise every third vertex
is black, and one is a subdivided star, whose center is black and of degree three, and the three
black leaves are at distance three from the center (see Figure 4.4).

Figure 4.4: Five different black-and-white trees on at most ten vertices in T .

Clearly, we can define a 2-coloring by describing the set of black vertices. More specifically,
if T = (V, E) is a tree and X ⊆ V , then T [X → black] denotes the black-and-white tree where
exactly the vertices from X are colored black.

Remark 4.12. By induction, it is easy to see that any leaf of any tree in T is black. Again
inductively, one sees that for any black-and-white tree T ∈ T , all vertices at distance one or two
from a black vertex v are white, while all vertices at distance three from v are black.
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We are ready now to characterize the solutions in trees.

Theorem 4.13. Let T = (V, E) be a tree and U ⊆ V be an independent set. Then, (T,U) is a

yes-instance of Ext VC if and only if there is no subtree T ′ = (V ′, E′) of T that is induced full

with respect to (T,U) such that T ′[U → black] ∈ T .

Proof. First, observe that if U = ∅, then (T,U) is clearly a yes-instances of Ext VC, while
subtrees T ′[U → black] would contain white vertices only and hence would never belong to T .
Hence, in this case, the assertion of the theorem is clearly satisfied, so that we can assume U , ∅
in the following reasoning.

The condition is necessary. Consider an instance (T,U) of Ext VC such that T contains a subtree
T ′[U → black] ∈ T that is induced full with respect to (T,U). Then, the leaves of T ′ are some
leaves of T . By Remark 4.12, these vertices belong to U. If (T,U) is a yes-instance of Ext

VC, then, according to item (iii) of Theorem 4.3, there exists an independent dominating set
S ′ ⊆ NT [U] \ U of T [NT [U]]. Consider a black leaf u. Its neighbor v necessarily belongs to the
independent dominating set S ′ and then the neighborhood N of v (other than u) does not belong
to S ′. Then, using inductive definition of T , one new black vertex u′ is a neighbor of N and then
by repeating the process one neighbor of u′ must be a part of the independent dominating set, and
so on. At the end of the process we get a contradiction because we end by a leaf which is black
and which is not dominated by S ′.

The other direction is proved by induction on n, the number of vertices of the considered tree T .
If n ≤ 3, then an exhaustive search proves that the only black-and-white subtree in T contains one
(black) vertex only (see Example 4.11). This can be a subtree that is induced full with respect
to a vertex set that clearly contains this black vertex only (by construction) if and only if n = 1.
In that case, (T,U) is a no-instance of Ext VC. If T contains two or three vertices, then there is
no way to find a black-and-white subtree in T that is induced full with respect to (T,U); observe
that U necessarily contains one or two vertices, because U is independent. Yet, it is also clear
that (T,U) is a yes-instance to Ext VC if T has two or three vertices and U is independent.

Assume the result is valid for any tree of at most n vertices satisfying the hypothesis of
Theorem 4.13 and let (T,U) be an instance of Ext VC, where T is a tree of n+ 1 ≥ 4 vertices, U

is an independent set, and T does not contain any subtree T ′ that is induced full with respect to
(T,U), such that T ′[U → black] ∈ T . As said above, we can assume U , ∅. Moreover, T is not
a star K1,p because one of the two minimal vertex cover containing U is a certificate (recall U is
supposed to be an independent set).

Set r = v ∈ V \ U with dT (v) ≥ 2 be a root of T = Tr using previous notations. There is such
vertex since n ≥ 4, U is an independent set and T , K1,p. Consider two cases:

• T has no leaves in U. For each u ∈ U, let vu ∈ chTr
(u) be any child of u. The set

S = {vu : u ∈ U} satisfies item (iii) of Theorem 4.3 and then (T,U) is a yes-instance of Ext

VC.

• T admits some leaves in U. Let u ∈ U be a leaf which has a grandfather in Tr different from
r; if such vertex does not exist, then S = {vu : u ∈ U} ∪ {r} satisfies item (iii) of Theorem
4.3, where vu is defined as in the previous item.
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Otherwise, let v = fa2
Tr

(u) be the grandfather of u with v , r. Consider the two following cases:
v ∈ U and v < U. If v ∈ U, then let Tv = T − {u}. By construction, (Tv,U \ {u}) satisfies the
hypothesis of Theorem and Tv has strictly less than n + 1 vertices. Hence, there is a minimal
vertex cover S in Tv which contain U \ {u} (and then not faTr

(u)). So, S ∪ {u} is a minimal vertex
cover of T containing U.

Now, assume v < U and consider the two subtrees Tv and Tw resulting from the deletion of the
edge between v and its father w = fa3

Tr
(u). Let Uv and Uw be the vertices of U inside Tv and

Tw, respectively. These two trees have strictly less than n + 1 vertices. By construction, (Tv,Uv)

satisfies the condition of the theorem because it is induced full with respect to (T,U). Then by
inductive hypothesis, there is a minimal vertex cover S v of Tv with Uv ⊆ S v. Now, assume that
(Tw,Uw) does not satisfy the condition of the theorem.

This means that w ∈ Uw, is a leaf of Tw and there is T ′ ∈ T containing w. Since U is an independent
set, (T ′ ∪ {ufa1

Tr
(u), fa1

Tr
(u)fa2

Tr
(u), fa2

Tr
(u)fa3

Tr
(u)}) ∈ T and is induced full with respect to (T,U)

which is a contradiction.

Hence, using the induction hypothesis, there is a minimal vertex cover S w of Tw with Uw ⊆ S w.
In conclusion, S v ∪ S w is a certificate. �

Using Theorem 4.13, we are able to produce a linear-time algorithm:

Theorem 4.14. Ext VC can be solved in linear-time in forests.

Proof. We proceed as in the last part of Theorem 4.13. First, we delete edges between the
required vertices of the given instance in order to obtain an independent set U; see Remark 4.2.
Also, we (arbitrarily) define roots for every tree (connected component) of the forest. For each
connected component T with root r of the forest, we find (if any) a leaf in u ∈ U with largest
level. We separate T into Tv and T1 where v = fa2

Tr
(u). In Tv, we search a path p in T on four

vertices which contains v. If one has been found, we return no and otherwise we apply the same
procedure on T1, that is, if T1 is not a leaf in U (corresponding to a base case graph of T ) we find
(if any) a leaf in u ∈ U with largest possible level and so on. �

In the following, we study the parameterized complexity of Ext VC (resp. Ext IS) with
respect to the size of U (resp. V \U) for a given graph G = (V, E) and a forced (co-forbidden) set
U.

4.2.2 Parameterized complexity

We now study our problems in the framework of parameterized complexity where we consider
the size of the set of forced vertices as standard parameter for our extension problems. For
our hardness proof we give a reduction from Multicolored Independent Set. The input of
Multicolored Independent Set consists of a graph G, an integer k, and a partition (V1, · · · ,Vk)

of the vertices of G; the task is to decide if there is an independent set of size k, containing exactly
one vertex from each set Vi.

Theorem 4.15. Ext VC with standard parameter is W[1]-complete, even when restricted to

bipartite instances.
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Proof. We show hardness by reduction from Multicolored Independent Set. So let G = (V, E)

be an instance of Multicolored Independent Set, with partition V1, . . . ,Vk for V . W.l.o.g.,
assume that each Vi induces a clique and |Vi| ≥ 2. Construct G′ = (V ′, E′) from G with
V ′ built from two copies of V , denoted V and V̄ := {v̄ : v ∈ V}, and 2k additional vertices
{wi, w̄i : 1 ≤ i ≤ k}, and E′ containing uv̄ for all uv ∈ E and uw̄i and ūwi for all u ∈ Vi,
i ∈ {1, . . . , k} (see Figure 4.5). G′ is bipartite with partition into V ∪ {wi : 1 ≤ i ≤ k} and
V̄ ∪ {w̄i : 1 ≤ i ≤ k}. Set U = {wi, w̄i : 1 ≤ i ≤ k} and consider (G′,U) as instance of Ext

VC. We claim that (G′,U) is a yes-instance for Ext VC if and only if G is a yes-instance for
Multicolored Independent Set. Since Multicolored Independent Set is W[1]-hard [79],2
this FPT-reduction shows W[1]-hardness for Ext VC with standard parameterization.

Suppose (G′,U) is a yes-instance for Ext VC, so there exists a minimal vertex cover S for G′ with
U ⊆ S . Consider S ′ := V ′ \ S . Since S is minimal, N(u) * S for all u ∈ S , so especially for each
i ∈ {1, . . . , k} there exists at least one vertex from N(wi) = V̄i in S ′ and also at least one vertex from
N(w̄i) = Vi in S ′. Since S ′ has to be an independent set in G′ and vū ∈ E′ for all u, v ∈ Vi, u , v

(recall that Vi is a clique in G), it follows that if v ∈ S ′ ∩ Vi, then v̄ is the only vertex independent
from v in V̄i. This means that |S ′ ∩ Vi| = 1 for all i ∈ {1, . . . , k} and if S ′ ∩ V = {v1, . . . , vk}, then
S ′ ∩ V̄ = {v̄1, . . . , v̄k}. The set S ′ ∩V hence is a multicolored independent set in G, since viv j ∈ E

for i, j ∈ {1, . . . , k} would imply that viv̄ j ∈ E′ which is not possible since S ′ is an independent set
in G′. Conversely, it is not hard to see that if there exists a multicolored independent set S in G,
then the set V ′ \ (S ∪ S̄ ) (with S̄ := {v̄ : v ∈ S }) is a minimal vertex cover for G′ containing U.

Membership in W[1] is seen as follows. As suggested in [42], we describe a reduction to Short

Nondeterministic Turing Machine problem which is already explained in Chapter 1. Given a
graph G = (V, E) and a pre-solution U = {u1, . . . , uk} ⊆ V , the constructed Turing machine first
guesses vertices u′

1
, . . . , u′

k
, with u′i ∈ N(ui) \ U and then verifies in time O(k2) if the guessed set

U′ is an independent set. As {u′
1
, . . . , u′

k
} can be greedily extended to an independent dominating

set for N[U] which, by Theorem 4.3, is equivalent to (G,U) being a yes-instance of Ext VC, U

can be extended to a minimal vertex cover if and only if one of the guesses is successful. �

Considering condition (ii) in Theorem 4.3, it is obvious to see that for an instance (G =

(V, E),U), Ext IS with respect to the dual parameter |(V \ U)| is W[1]-complete.

Corollary 4.16. Ext IS with respect to the dual parameter is W[1]-complete, even when restricted

to bipartite instances.

As a remark, it is obvious to see that considering the parameter |U | instead of |V \U | leads to
an FPT-result for Ext IS, as it is sufficient to test if any of the subsets of V \U, forms a maximal
independent set. However, this algorithm is quite trivial and we can do it in time O∗(2|U |).

Remark 4.17. Ext IS with standard parameter is in FPT.

Considering condition (ii) in Theorem 4.3, we easily deduce:

2The proof is for Multicolored Clique; taking the complement graph is a parameterized reduction showing
that Multicolored Independent Set is W[1]-hard.
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Figure 4.5: The graph G′ = (V ′, E′) for Ext VC. Vertices in U are drawn bold.

Remark 4.18. Ext VC with dual parameter is in FPT.

By distinguishing between whether a vertex belongs to the cover or not and further, when it
belongs to the cover, if it already has a private edge or not, it is not hard to design a dynamic
programming algorithm that decides in time O∗(ct) if (G,U) is a yes-instance of Ext VC or not,
given a graph G together with a tree decomposition of width t. Similar to what we did in Chapter
3 in the dynamic programming algorithm, we consider two different labels cover and independent

for any vertex in the tree decomposition, and try to keep all possible labelings which leads to
a minimal vertex cover by considering that all the vertices in U are already labeled with cover.
With some more care, even c = 2 can be achieved, but this is not so important here. Moreover,
it is well known that planar graphs of order n have treewidth bounded by O(

√
n) [98]. In fact,

we can obtain a corresponding tree decomposition in polynomial time, given a planar graph G.
Piecing things together, we obtain:

Theorem 4.19. Ext VC can be solved in time O∗(2O(
√

n)) on planar graphs of order n.

Let (G,U) be an instance of Ext VC such that G is planar. By Theorem 4.3, it suffices to
solve Ext VC on (G′,U), where G′ is the graph induced by NG[U]. Clearly, G′ is also planar.
Moreover, the diameter of each connected component of G′ is upper-bounded by 3|U |, observe
that we only consider for the graph G′ the neighborhood of the independent set U. Therefore,
G′ is (at most) 3|U |-outerplanar and hence according to [27], the treewidth of G′ is at most 9|U |.
Our previous remarks show that Ext VC can be solved in time O∗(2O(|U |)).

Theorem 4.20. Ext VC (resp. Ext IS) with standard parameter (resp. dual parameter) is in FPT

on planar graphs.

4.2.3 Price of extension

From an instance I = (G,U) of Ext VC and Ext IS, we define two new optimization problems
respectively as follows:
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ExtmaxVC

Input: A graph G = (V, E), a set of vertices U ⊆ V .
Solutions: Minimal vertex cover S of G.
Output: Solution S that maximizes |S ∩ U |.

ExtminIS

Input: A graph G = (V, E), a set of vertices U ⊆ V .
Solutions: Maximal independent set S of G.
Output: Solution S that minimizes |S ∪ U |.

For Π =ExtmaxVC or ExtminIS, we denote by optΠ(I,U) the value of an optimal solution. Notice
that alternatively these two optimal quantities can be expressed as

• optExtmaxVC(G,U) = arg max{U′ ⊆ U : (G,U′) is a yes-instance of Ext VC},

• optExtminIS (G,U) = arg min{U′ ⊇ U : (G,U′) is a yes-instance of Ext IS}.

Since for both of them optΠ(G,U) = |U | if and only if (G,U) is a yes-instance of the extension
variant, we deduce that ExtmaxVC and ExtminIS are NP-hard since Ext VC and Ext IS are
NP-complete. Similarly to Remark 4.1, one observes that the decision variants of ExtmaxVC and
ExtminIS are indeed completely equivalent. More precisely,

optExtmaxVC(G,U) + optExtminIS (G,U′) = |V | (4.1)

Adapted by Definition 2.4, we define the concept of price of extension for two ExtmaxVC and
ExtminIS as follows:

Definition 4.21. For an instance (G,U) of ExtmaxVC, PoE(S ) of a minimal vertex cover S of G

is defined by PoE(S ) := |S∩U |
optExtmaxVC(G,U)

. Similarly, PoE(S ) := |S∪U |
optExtminIS (G,U)

is the price of extension

of a maximal independent set S for an instance (G,U) of ExtminIS.

Negative results on the price of extension

Now, we propose negative bounds of the price of extension even in special cases. Dealing with
ExtmaxVC on graph G = (V, E) and the particular subset U = V (resp. ExtminIS with U = ∅), we
obtain two well known optimization problems called Upper Vertex Cover or maximum minimal

vertex cover, denoted by Max-Min VC and Minimum Independent Dominating Set or minimum

maximal independent set, denoted by Min-Max IS. In [137], the computational complexity of
these problems are studied (among 12 problems), and (in)approximability results are given in
[141, 30] for Max-Min VC and in [100] for Min-Max IS where lower bounds of O(nε−1/2) and
O(nε−1), respectively, for graphs on n vertices are given for every ε > 0. Analogous bounds can
be derived depending on the maximum degree ∆. In particular, we deduce:

Corollary 4.22. For any constant ε > 0, any ρ ∈ Ω
(

nε−1
)

and ρ ∈ Ω
(

∆
ε−1

)

, there is no

polynomial-time ρ-approximation for ExtminIS on general graphs of n vertices and maximum

degree ∆, even when U = ∅, unless P = NP.
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Now, we strengthen the lower bounds of Ω(nε−1/2) and Ω(∆ε−1/2) for for ExtmaxVC.

Theorem 4.23. ExtmaxVC is as hard as Max IS to approximate in general graphs even if the set

U of forced vertices forms an independent set.

Proof. The proof is based on a simple reduction from Max IS. Let G = (V, E) be an instance of
Max IS, construct the graph H = (VH, EH) from G, where vertex set VH contains two copies of
V , denoted by V and V ′ = {v′ : v ∈ V}. The edge set EH contains E together with vv′ for all v ∈ V ,
formally, EH = E ∪ {vv′ : v ∈ V}. Consider I = (H,U) as instance of ExtmaxVC, where the forced
vertex subset is given by U = V ′. We claim, H has a minimal vertex cover containing k vertices
from U if and only if G has a maximal independent set of size k.

Let S be a maximal independent set of G of size k; then S ′ = {v : v < S } ∪ {v′ : v ∈ S } is a
minimal vertex cover of H containing k vertices from U. Conversely, let S ′ be a minimal vertex
cover of H extending U, with U′ = U ∩ S ′. By construction, the set S ′ \ U′ is a vertex cover
of G and then S = V \ S ′ is an independent set of G of size |U′|. In particular, we deduce
α(G) = optExtmaxVC(H,U). �

Using the strong inapproximability results for Max IS given in [154, 165], observing ∆(H) =

∆(G) + 1 and |VH | = 2|V |, we deduce the following result.

Corollary 4.24. For any constant ε > 0, any ρ ∈ Ω
(

∆
1−ε

)

and ρ ∈ Ω
(

n1−ε
)

, there is no

polynomial-time ρ-approximation for ExtmaxVC on general graphs of n vertices and maximum

degree ∆, unless P = NP.

Positive results on the price of extension

In contrast to the hardness results on these restricted graph classes from the previous sections,
we find that restriction to bipartite graphs or graphs of bounded degree improve approximability
of ExtmaxVC. For the following results, we assume, w.l.o.g., that the input graph is connected,
non-trivial and therefore without isolated vertices, as we can solve our problems separately on
each connected component and then combine the results.

Theorem 4.25. A 2-approximation for ExtmaxVC on bipartite graphs can be computed in poly-

nomial time.

Proof. Let G = ((V = Vl ∪ Vr), E) and U ⊆ V be an instance of ExtmaxVC, where E contains
only edges connecting Vl and Vr. Since Vl and Vr are both minimal vertex covers (G is without
isolated vertices) and also a partition of V , then taking one of them containing the largest number
of vertices from U (assume it is Vl), we get a 2-approximation, because 2 × |Vl ∩ U | ≥ |V ∩ U | ≥
optExtmaxVC(G,U). �

Theorem 4.26. A ∆-approximation for ExtmaxVC on graphs of maximum degree ∆ can be com-

puted in polynomial time.
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Proof. Let G = (V, E) be connected of maximum degree ∆, and U ⊆ V be an instance of
ExtmaxVC. If ∆ ≤ 2, or if G = K∆+1 (the complete graph on ∆ + 1 vertices), it is easy to
check ExtmaxVC is polynomial-time solvable; actually in these two cases, G is either chordal
or circular-arc and Theorem 4.27 gives the conclusion. Hence, assume ∆ ≥ 3 and G , K∆+1.
By Brooks’s Theorem, we can color G properly with at most ∆ colors in polynomial-time (even
linear). Let (S 1, . . . , S ℓ) be such coloring of G with ℓ ≤ ∆. For i ≤ ℓ, set Ui = U ∩ NG(S i)

where we recall NG(S i) is the open neighborhood of S i. By construction, S i is an independent
set which dominates Ui in G so it can be extended to satisfy (iii) of Theorem 4.3, so (G,Ui) is a
yes-instance of Ext VC. Choosing U′ = arg max |Ui| yields a ∆-approximation, since on the one
hand

∑ℓ
i=1 |Ui| ≥ |U ∩

(

∪ℓ
i=1

NG(S i)
)

| = |U ∩ V | and on the other hand ∆ × |U′| ≥ ∑ℓ
i=1 |Ui| ≥ |U | ≥

optExtmaxVC(G,U). �

Along the lines of Corollary 4.10 with more careful arguments, we can prove:

Theorem 4.27. ExtmaxVC can be solved optimally for chordal graphs and circular-arc graphs in

polynomial time.

Proof. Let (G,U) be an instance of ExtmaxVC where G = (V, E) is a chordal graph (resp. a
circular-arc graph) and U is an independent set. We build a weighted graph G′ for WMin ISDS

such that G′ is the subgraph of G induced by NG[U] and the weights on vertices are given by
w(v) = 1 if v ∈ U and w(v) = 0 for v ∈ NG[U] \ U. Thus, we get: optWMin IS DS (G′,w) =

|U | − optExtmaxVC(G,U). �

4.2.4 Generalizations to extensions of H-graph cover and H-free subgraph

Assume that graph H = (VH, EH) is fixed; the maximum induced H-free subgraph problem,
Induced H-free for short, asks, given a graph G = (V, E), to find the largest subset of vertices
S ⊆ V such that the subgraph G[S ] induced by S is H-free, i.e. it does not contain any copy of
H. A corresponding extension version is given by:

Ext Induced H-free

Input: A graph G = (V, E), a set of vertices U ⊆ V .
Question: Does G have a maximal subgraph G[S ] induced by S with S ⊆ U which is
H-free?

The particular case of H = K2 corresponds to Ext IS, because S induces a K2-free subgraph if
and only if it is an independent set. We now generalize our previous results on the complexity of
Ext IS towards this more general setting. Recall that a graph is biconnected if it stays connected
after deleting any single vertex.

Theorem 4.28. If H is biconnected with at least 2 vertices, then Ext Induced H-free is NP-

complete.

Proof. Let H = (VH, EH) with nH = |VH | vertices be a biconnected graph and assume nH ≥ 3

(nH = 2 corresponds to Ext IS which has been proved NP-complete in Theorem 4.4). The
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proof is based on a reduction from H-free 2-colorability, denoted by H-2Col for short. With
fixed H, the problem H-2Col consists in deciding if the vertices of a given graph G = (V, E)

can be partitioned into two H-free induced subgraphs GVi
, i = 1, 2 (so V = V1 ∪ V2). H-2Col

is NP-complete if and only if H contains at least 3 vertices; see [3]. From G = (V, E) with n

vertices, as an instance of H-2Col, we build an instance of Ext Induced H-free as follows:

Let u and w be two distinct vertices of H. We consider two copies G1 and G2 of G where v1

and v2 are copies of vertex v ∈ V and 2n copies Hi of H (where ui and wi are copies of u and
w). We collapse together two copies Hi and Hn+i by merging vertices wi and wn+i; Let H′i be the
resulting graph and w′i be the vertex corresponding to wi and wn+i after the merging. Now, we
merge vertices v1

i with ui and v2
i with un+i and we get the graph G′ as part of an instance of Ext

Induced H-free. Hence, G′ contains G1, G2 and the graphs H′i for i = 1, . . . , n. Finally, we set
U = V(G′) \ {w′i : 1 ≤ i ≤ n}.

Now, we claim that G is a yes-instance of H-2Col if and only if (G′,U) is a yes-instance of Ext

Induced H-free. Assume that (V1,V2) is an H-free 2-coloring (bipartition) of G. Consider any
maximal H-free subgraph of G containing V1 (resp. V2) and call it V ′

1
(resp. V ′

2
). Finally, let us

denote by V(H′i ) the set of vertices of subgraph H′i for each i ∈ {1, . . . , n}. We claim that the set
S =

⋃n
i=1(V(H′i ) \ {w′i , v1

i , v
2
i })∪

⋃2
j=1{v

j

i
: vi ∈ V ′j} induces a maximal H-free subgraph of G′ with

S ⊆ U. Actually, this is clear inside either each copy of G or each V(H′i ) \ {w′i}. An assumed copy
R of H in S must hence include vertices in a copy G j with j = 1, 2 and also vertices in a copy H′i
for some i = 1, . . . , n. Hence, to be connected, R has to contain some v

j

i
which is a cut-vertex of

R, separating the vertices in R from V(G j) \ {v j

i
}, for some j ∈ {1, 2}, from V(H′i ) \ {v

j

i
}, which is

a contradiction to H being biconnected.

Conversely, assume that there exists a set S ⊆ U which induces a maximal H-free subgraph of
G′. Let S i for i = 1, 2 be the vertices of S included in copy Gi. Let V1 = {v j : v1

j ∈ S 1} and
V2 = {v j : v2

j ∈ S 2 and v1
j < S 1}. We claim that (V1,V2) is an H-free 2-coloring of G. Obviously,

each subgraph of G induced by Vi is H-free for i = 1, 2. If (V1,V2) is not a vertex partition of
G, then there exists some i ∈ {1, . . . , n} such that v

j

i
< S for both j = 1 and j = 2 for some

i = 1, . . . , n. This however implies that (V(H′i ) \ {v1
i , v

2
i }) ⊆ S because (V(H′i ) \ {v1

i , v
2
i }) is H-free

(recall that H is assumed to be biconnected). Thus, w′i ∈ S which is a contradiction to S ⊆ U. �

We are now considering a covering analogue to Ext Induced H-free.

Ext H-cover

Input: A graph G = (V, E), a set of vertices U ⊆ V .
Question: Does G have a minimal subset S which covers all copies of H with U ⊆ S ?

Similarly to previous remark, we have Ext K2-cover = Ext VC. More generally for any
fixed graph H, S is a minimal H-cover of G = (V, E) if and only if V \ S is a maximal H-free
subgraph. Hence, using same the reasoning that the one given in Remark 4.1, we deduce:

Proposition 4.29. If H is biconnected, then Ext H-cover is NP-complete.
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Notice that this last assertion is interesting, as for the corresponding classical problem H-

cover, no easy conditions like biconnectivity are known to yield NP-completeness results, see
[1, 128, 129]. We are now stating a characterization of graphs admitting an H-cover extension
that could be compared to Theorem 4.3.

Theorem 4.30. Let G = (V, E) be a graph and U ⊆ V be a set of vertices. There is a minimal

H-cover S of G extending U if and only if the two following conditions hold:

(i) For every u ∈ U, there is a copy Hu = (V(Hu), Eu) of H in G such that V(Hu) ∩ U = {u}.

(ii) If V ′ =
⋃

u∈U V(Hu), then the subgraph G′ of G induced by V ′ \ U is H-free.

Proof. Let G = (V, E) be a graph and a set U ⊆ V be a set of vertices. The condition is sufficient;
indeed, let S ′ be any maximal H-free subgraph containing V ′ where V ′ is defined according to
conditions (i) and (ii) (via Hu). The set V \ S ′ is a minimal H-cover of G extending U.

Conversely, assume that S is a minimal H-cover of G extending U. Let us prove that S satisfies
conditions (i) and (ii). Since U ⊆ S is a minimal H-cover of G, then for every u ∈ U, there
exists a copy Hu = (V(Hu), Eu) of H in G such that u ∈ V(Hu) and S \ {u} does not cover Hu.
In particular, we deduce V(Hu) ∩ U = {u}. Now, let V ′ =

⋃

u∈U V(Hu); if the subgraph G′ of
G induced by V ′ \ U is not H-free, then ∃v ∈ (V ′ ∩ S ) \ U, such that v lies in V(Hu0

) for some
u0 ∈ U, contradicting the fact that S \ {u0} does not cover Hu0

. �

Corollary 4.31. For every fixed H, Ext H-cover parameterized by |U | is in XP.

Proof. Using exhaustive search, finding V ′ =
⋃

u∈U V(Hu) can be done in time O(nk+nH ), where
k = |U | and nH = |V(H)|. The remaining steps can be performed in O(nk+nH ) = O(nk) time, as H

is fixed. �

4.3 Ext CVC and Ext NSIS

In this section, we consider the extension variants of two optimization problems Connected

Vertex Cover problem and Non Separating Independent Set problem. A subset S ⊆ V of a
connected graph G = (V, E) is a connected vertex cover if S is a vertex cover (i.e. each edge of
G is incident to at least a vertex of S ) and the subgraph G[S ] induced by S is connected. The
corresponding optimization problem Minimum Connected Vertex Cover (Min CVC for short)
consists in finding a connected vertex cover of minimum size. A non separating independent set
S of a connected graph G = (V, E) is a subset of vertices of G which is independent (i.e. any
two vertices in S are non adjacent) and S is not a cut-set of G. The corresponding optimization
problem Maximum Non Separating Independent Set (Max NSIS for short) asks to find a non
separating independent set of maximum size. Min CVC and Max NSIS have been studied in
[87, 74, 156, 83, 148] where it is proved that the problems are polynomially solvable in graphs of
maximum degree 3, while in graphs of maximum degree 4 they are NP-hard. Here, we study the
extension variant of these two problems: extension connected vertex cover denoted by Ext CVC
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consists of a connected graph G = (V, E) together with a subset U ⊆ V of vertices as an input,
and the goal is to decide whether there exists a minimal connected vertex cover of G containing
U. A subset S ⊆ V is a minimal connected vertex cover if and only if for any S ′ ⊂ S , either S ′

is not a vertex cover or it is not connected. Extension non separating independent set denoted by
Ext NSIS consists of a connected graph G = (V, E) together with a subset U ⊆ V of vertices as
an input, and the goal is to decide whether there exists a maximal non separating independent set
of G excluding vertices from V \ U. The formal definitions of two problems are as follows:

Ext CVC

Input: A connected graph G = (V, E) and a subset U ⊆ V .
Question: Does G have a minimal connnected vertex cover S with U ⊆ S ?

Ext-NSIS

Input: A connected graph G = (V, E) and a subset U ⊆ V .
Question: Does G have a maximal non separating independent set S with S ⊆ U?

Recall that, in Ext CVC (resp. Ext NSIS), the set U is also referred to as the set of forced

(resp. co-forbidden). In the following, we will study the two problems in the framework of
computational complexity.

4.3.1 Computational complexity

Let us begin by some simple observations: (G,U) with G = (V, E) and U ⊆ V is a yes-instance
of Ext CVC if and only if (G,V \ U) is a yes-instance of Ext NSIS. Hence, all complexity
results given in this section for Ext CVC are valid for Ext NSIS as well. A leaf (v ∈ Vl) never
belongs to a minimal connected vertex cover S (apart from the extreme case where G consists
of a single edge), while any cut-vertex v ∈ Vc necessarily belongs to S . This implies that for
trees, we have a simple characterization of yes-instances for n ≥ 3: (T,U), where T = (V, E) is
a tree, is a yes-instance of Ext CVC if and only if U is a subset of cut-set Vc, or equivalently
U ⊆ Vc = V \ Vl. For an edge or a cycle Cn = (V, E), (Cn,U) is a yes-instance if and only if
U , V; for a path Pn = (V, E), (Pn,U) is a yes-instance if and only if U ⊆ V \Vl, which settles the
case of graphs of maximum degree 2. Dealing with split graphs, a similar but more complicated
characterization can be given. In the following, we will deduce more general results for Ext CVC

by showing and exploiting relations to Ext VC.

Relation between Ext VC and Ext CVC

The following two properties allow to make use of known results for Ext VC to obtain results for
Ext CVC.

Proposition 4.32. Ext CVC is polynomially reducible to Ext VC.

Proof. We propose a simple reduction from Ext CVC to Ext VC in chordal graphs. Let (G,U)

be an instance of Ext CVC where G = (V, E) is a chordal graph and U ⊆ V . From G we build an
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Figure 4.6: The additional component H.

instance (G′,U′) of Ext VC where G′ = (V ′, E′) contains V by adding to G a new vertex v′ and
a pendant edge vv′ for each vertex v ∈ Vc (recall that Vc is the set of cut-vertices of G); it is easy
to see G′ is also chordal with |V ′| = |V | + |Vc|. Finally, we set U′ = U ∪ Vc. We claim (G,U) is a
yes-instance of Ext CVC if and only if (G′,U′) is a yes-instance of Ext VC.

We mainly prove S is a minimal connected vertex cover of G with U ⊆ S if and only if S is a
minimal vertex cover of G′ containing U′. If S is a minimal connected vertex cover of G, then
obviously S is a vertex cover of G and U′ ⊆ S because Vc is the set of cut-vertex If S is not a
minimal vertex cover in G′, then S \ {v} remains a vertex cover of G′ for some v ∈ S . Clearly,
v < Vc because v′ needs to be covered and hence this implies by minimality S \ {v} is disconnected
in G which is impossible. Actually, if S \ {v} is disconnected, then there is a minimal cut-set X of
G with X ∩ S = {v} and |X| ≥ 2 (because v < Vc is not a cut-vertex). Now, X is a clique because
G is chordal and then v has a private edge which is a contradiction.

Conversely, if S is a minimal vertex cover of G′ containing U′, then v′ < S for every v ∈ Vc.
Thus, by contradiction if S is not connected in G, then there exists a minimal cut-set X of G with
X∩S = ∅which separate two distinct components of S . In particular, we must have |X| ≥ 2 since
X does not contain any cut-vertex (which are in S ). The set X is a clique outside S (recall G is
chordal) and then an edge of G′ is not covered by S which is impossible. �

Proposition 4.33. Ext CVC is NP-complete in graphs of maximum degree ∆ + 1 if Ext VC is

NP-complete in graphs of maximum degree ∆, even for bipartite graphs.

Proof. Given an instance (G,U) of Ext VC, where G = (V, E) with V = {v1, . . . , vn} and U ⊆ V ,
we build an instance (G′ = (V ′, E′),U′) of Ext CVC by adding a component H = (VH, EH) to the
original graph G.

The construction of H is depicted Figure 4.6 where VH = {v′i , v′′i : 1 ≤ i ≤ n} is the vertex set. The
new instance of Ext CVC is given by (G′,U′) and consists of connecting the component H to G

by linking viv
′
i for each 1 ≤ i ≤ n and by setting U′ = U.

Clearly G′ is of maximum degree ∆+1 if G is of maximum degree ∆. Moreover, it is not difficult
to see that (G,U) is a yes-instance of Ext VC if and only if (G′,U′) is a yes-instance of Ext CVC.

To maintain bipartiteness, we apply an appropriate subdivision of H. Assume V = L ∪ R and
R = {r1, . . . , rp} and L = {l1, . . . , lq} with p ≤ q; then, we get 4q vertices in VH where the main
path is {v′i : 1 ≤ i ≤ 2q} and we alternate in this path vertices from L and R and we link ri to v′

2i

for i ≤ p and l j to v′
2 j−1

for j ≤ q. �
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Using polynomial time decidability of Ext VC in chordal graphs, parameterized complexity
results (considering that the reduction increases the size of the instances only linearly), and
NP-completeness in cubic bipartite graphs [40], we deduce:

Corollary 4.34. Ext CVC is polynomial-time decidable in chordal graphs and NP-complete in

bipartite graphs of maximum degree 4.

Corollary 4.35. Ext CVC parameterized with |U | is W[1]-complete, and there is no 2o(n+m)-

algorithm for n-vertex, m-edge bipartite graphs of maximum degree 4, unless ETH fails.

Additional hardness results

We first strengthen the hardness result of Corollary 4.34 to bipartite graphs of maximum degree
3. This result may be surprising since the optimization problem Min CVC is polynomial-time
solvable in graphs of maximum degree 3.

Theorem 4.36. Ext CVC is NP-complete in bipartite graphs of maximum degree 3 even if U is

an independent set.

Proof. We make a reduction from (3, B2)-Sat to Ext CVC. Consider an instance (3, B2)-SAT

which clauses C = {c1, . . . , cm} and variables X = {x1, . . . , xn}. We build a bipartite graph
G = (V, E) together with a set of forced vertices U as follows:

• For each clause c = ℓ1 ∨ ℓ2 ∨ ℓ3 where ℓ1, ℓ2, ℓ3 are literals, introduce a subgraph H(c) =

(Vc, Ec) with 6 vertices and 6 edges. Vc contains three specified literal vertices ℓ1
c , ℓ

2
c , ℓ

3
c .

The set of forced vertices in H(c), denoted by Uc is given by Uc = {ℓ1
c , ℓ

2
c , ℓ

3
c}. The gadget

H(c) is illustrated in the left part of Figure 4.7.

• For each variable x introduce 21 new vertices which induce the subgraph H(x) = (Vx, Ex)

illustrated in Figure 4.7. The vertex set Vx contains four special vertices t
c1
x , t

c2
x , f

c3
x and f

c4
x ,

where it is implicitly assumed (w.l.o.g.) that variable x appears positively in clauses c1, c2

and negatively in clauses c3, c4. The independent set Ux = {1x, 3x, 5x, 6x, 8x, 10x, 12x} is in
U (i.e., forced to be in each feasible solution). The subgraph Hx − Ux induced by Vx \ Ux

consists of an induced matching of size 5 and of 4 isolated vertices.

• We connect each gadget H(xi) to H(xi+1) by linking vertex 12xi
to vertex 6xi+1

using an
intermediate vertex ri,i+1 for all 1 ≤ i ≤ n − 1. We also add a pendant edge incident to each
ri,i+1 with leaf r′

i,i+1
; an illustration of this connection is depicted on the right of Figure 4.7.

• We interconnect H(x) and H(c) where x is a variable occurring in literal ℓi of clause c by
adding edge ℓi

ct
c
x (resp., ℓi

c f c
x ), where tc

x (resp., f c
x ) is in H(x) and ℓi

c is in H(c), if x appears
positively (resp., negatively) in clause c. These edges are called crossing edges.
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Let U = (
⋃

c∈C Uc) ∪ (
⋃

x∈X Ux). This construction takes polynomial time and G is a bipartite
graph of maximum degree 3. Now, we claim that I = (C, X) is satisfiable if and only if G admits
a minimal connected vertex cover containing U.

Suppose that I is satisfiable and let T be a truth assignment of I satisfying all clauses. Let
us introduce some notation: from T , we consider a minimal truth literal assignment L which
assigns to each variable x a set of at least one literal and at most two literals according to T such
that each clause remains satisfied by L. More formally, for any variable x, ∅ , L(x) ⊆ {tc1

x , t
c2
x }

if T (x) = true and ∅ , L(x) ⊆ { f c3
x , f

c4
x } if T (x) = false. Minimality means here when

L(x) = {a, b} for some variable x ∈ X, then L(x) \ {a} or L(x) \ {b} does not permit to satisfy all
clauses (i.e. there is a clause only satisfied by a or b when we consider truth literal assignment
L). From L and for each clause c j, we denote by cL( j) the set of indices of variables from X

satisfying clause c j in the truth literal assignment L and ncL( j) = |cL( j)| its size. By construction,
1 ≤ ncL( j) ≤ 3. Finally, cL( j) = ct( j) ∪ c f ( j) with i ∈ ct( j) (resp. i ∈ c f ( j)) if and only if
L(xi) ⊆ {tc1

x , t
c2
x } (resp. L(xi) ⊆ { f c3

x , f
c4
x }).

We build a connected vertex cover S containing U as follows. First, S contains vertices {ix : 1 ≤
i ≤ 12} for every variable gadget H(x), vertex set {ri,i+1 : i = 1, . . . , n} and subset Uc for every
clause c. At this stage, we get a minimal vertex cover of G. The new added vertices ensure
connectivity of the solution.

1− for each variable xi, add vertices in L(xi).

2− for each clause c j, depending on the value of ncL( j), we add exactly 3 − ncL( j) vertices
among {1c j

, 2c j
, 3c j
} to S as follows:

• if ncL( j) = 3, then we add nothing,

• if ncL( j) = 2, then assume that literal ℓi
c j

does not satisfy clause c j with i ∈ {1, 2, 3}.
Now, we add to S exactly one arbitrary vertex among {1c j

, 2c j
, 3c j
} \ {ic j

},
• if ncL( j) = 1, then we add two vertices of {1c j

, 2c j
, 3c j
} arbitrarily to S .

It is not difficult to see that S is a minimal connected vertex cover of G containing U.

Conversely, let S be a minimal connected vertex cover of G containing U. By setting, T (x) =

false if S ∩{ f c3
x , f

c4
x } , ∅ and T (x) = true if S ∩{tc1

x , t
c2
x } , ∅, we get a truth assignment satisfying

all clauses. Actually, it is not possible to get simultaneously T (x) = false and T (x) = true

since otherwise S \ {3x} shall remain a connected vertex cover of G. �

Now, we will prove that the polynomial-time decidability of Ext CVC in chordal graphs
given in Corollary 4.34 cannot be extended to the slightly larger class of weakly chordal (also
called weakly triangulated 3) graphs which are contained in the class of 4-chordal graphs. For
any integer k ≥ 3, a graph is called k-chordal if it has no induced cycle of length greater than k.
Thus, chordal graphs are precisely the 3-chordal graphs. The problem of determining whether a
graph is k-chordal is known to be co-NP-complete when k is a part of the instance [155].

3This class is introduced in [102], as the class of graphs G = (V, E) with no chordless cycle of five or more
vertices in G or in its complement G = (V, E).
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H(c) for c = (ℓ1 ∨ ℓ2 ∨ ℓ3)
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Figure 4.7: Clause gadget H(c) and variable gadget H(x) for Ext-CVC are shown on the left and
in the middle of the figure respectively. Forced vertices (in U) are marked in black. On the right,
the way of connecting variable gadgets is depicted. Crossing edges between H(c) and H(x) are
marked with dashed lines.

Theorem 4.37. Ext CVC is NP-complete in weakly triangulated graphs.

Proof. We propose a simple reduction from (3, B2)-Sat. Consider an instance I = (C,X ) of
(3, B2)-Sat with clauses C = {c1, . . . , cm} and variables X = {x1, . . . , xn}. We build a weakly
triangulated graph G = (V, E) together with a set of forced vertices U as follows:

• V = Z ∪ {vi, v
′
i : i = 1, . . . , n} where Z = {z1, . . . , zm}.

• The subgraph G[Z] is a clique Km and viv
′
i ∈ E for i = 1 ≤ n.

• z jvi ∈ E (resp. z jv
′
i ∈ E) if xi appears positively (resp. negatively) in clause c j and we set

U = Z.

Property 4.38. Graph G is weakly triangulated.

Proof. By contradiction, we show that neither G nor G possess an induced cycle of length at least
5. First suppose C is a chordless cycle containing at least 5 vertices in G. By considering the
construction, C contains exactly 2 consecutive vertices of Z, because, on the one hand there is no
cycle of length at least 4 in G containing at most one vertex from Z and on the other hand, if C

contains at least three vertices of Z, by the structure of G[Z], C has one chord. Hence, we can even
conclude that uv ∈ C, since Z is a clique and then the length of C is at most four, contradiction.

Now, assume C is a chordless cycle of G of length at least 5. By the construction of G, in
the subgraph induced by V \ Z, C either only contains consecutive vertices or at most 2 non
consecutive vertices (corresponding to an edge G) because G(V \ Z) is isomorphic to K2n − nK2.
If C contains at most 2 vertices from V \ Z, then C is of size at most 4 since Z is an independent
set in G, which is impossible. Otherwise, in G(V \ Z) the induced cycle C contains consecutive
vertices and it is 3 vertices, x, y, z with xz ∈ E (so, {xy, yz} ⊂ C). One more time, |C| = 4 which
is a contradiction because Z is an independent set in G. Therefore, G is weakly triangulated. �
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We here claim that I = (C,X ) is satisfiable if and only if (G,U) is a yes-instance of Ext CVC.
Actually, S is a minimal vertex cover including Z if and only if the truth assignment T satisfies
all clauses of C. In this regard, first suppose that T is a truth assignment of I, then we make a
minimal connected vertex cover S of G containing Z such that vi ∈ S if T (xi) = false and v′i ∈ S

if T (xi) = true. Obviously, S is a connected vertex cover, because, all vi and v′i are connected
to Z with two different edges and also S covers all edges of G. Moreover, since for each vertex
in S there is at least one private edge to cover, then S is also minimal. If xi appears negated
(resp. unnegated) in clause c j and satisfy this clause, then the edge z jv

′
i (resp. z jvi) is a private

edge to cover for z j, and the edge viv
′
i is a private edge for vi or v′i to cover. Conversely, suppose

S is a minimal connected vertex cover of G containing Z. By minimality, exactly one of vi and
v′i for each i ≤ n is in S , so we make a truth assignment T such that T (xi) = true if v′i ∈ S and
T (xi) = false if vi ∈ S . By minimality of S , we can easily deduce that T satisfies all clauses of
C. �

4.3.2 Price of extension

Regarding the concept price of extension, we define two optimization problems as follows:

ExtmaxCVC

Input: A connected graph G = (V, E) and a set of vertices U ⊆ V .
Solutions: Minimal connected vertex cover S of G.
Output: Maximize |S ∩ U |.

ExtminNSIS

Input: A connected graph G = (V, E) and a set of vertices U ⊆ V .
Solutions: Maximal non separating independent set S of G.
Output: Minimize |U ∪ S |.

For Π =ExtmaxCVC or ExtminNSIS, we denote by optΠ(G,U) the value of an optimal solution.
Since for both of them optΠ(G,U) = |U | if and only if (G,U) is a yes-instance of the extension
variant, we deduce that ExtmaxCVC and ExtminNSIS are NP-hard since Ext CVC and Ext NSIS

are NP-complete. Actually, for any class of graphs G, ExtmaxCVC is NP-hard in G if and only if
ExtminNSIS is NP-hard in G since for any graph G ∈ G it can be shown that:

optExtmaxCVC(G,U) + optExtminNS IS (G,V \ U) = |V | . (4.2)

Adapted by Definition 2.4, we define the concept of price of extension for ExtmaxCVC and
ExtminNSIS as follows:

Definition 4.39. For an instance (G,U) of ExtmaxCVC and ExtminNSIS, PoE(S ) of a minimal

connected vertex cover and a non separating independent set S of G is defined by PoE(S ) :=
|S∩U |

optExtmaxCVC(G,U)
and PoE(S ) := |S∪U |

optExtminNS IS (G,U)
respectively.
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Using Propositions 4.32 and 4.33, we can derive negative and positive approximation results
for ExtmaxCVC.

First, let us observe ExtminNSIS does not admit O(n1−ε)-PoE even in the simplest case U = ∅
because there is a simple reduction from Min ISDS (which defined in Section 4.2.1) to ExtminNSIS

when U = ∅ by adding to the original graph G = (V, E) two new vertices ℓ0, ℓ1 and edges ℓ0ℓ1

together with ℓ1v for v ∈ V (so, ℓ1 is an universal vertex); ℓ1 never belongs to a non separating
independent set (or equivalently ℓ0 is a part of all maximal non separating independent set)
because otherwise ℓ0 will become isolated. For general graphs, the price of extension associated
to ExtmaxCVC is hard to approximate.

Theorem 4.40. For any constant ε > 0 and any ρ ∈ Ω
(

1
∆1−ε

)

and ρ ∈ Ω
(

1
n1−ε

)

, ExtmaxCVC does

not admit a polynomial ρ-PoE for general graphs of n vertices and maximum degree ∆, unless

P = NP.

Proof. The proof uses the reduction given in Proposition 4.33 since actually it is an approximation
preserving reduction from ExtmaxVC to ExtmaxCVC. We have S is a minimal vertex cover of G if
and only if S ′ = S ∪ {v′

1
, . . . , v′n} is a minimal connected vertex cover of G′. Then, since U′ = U,

we deduce |S ′∩U′| = |S ∩U |. Finally, n′ = 3n and ∆(G′) = ∆(G)+1, together with lower bounds
given in Corollary 4.24 give the expected result. �

Although Proposition 4.33 preserves bipartiteness, we cannot immediately conclude the same
kind of result since in Theorem 4.25, we proved that ExtmaxVC admits a polynomial 1

2
-PoE for

bipartite graphs. The next theorem proposes a stronger lower bound.

Theorem 4.41. For any constant ε > 0 and any ρ ∈ Ω
(

1
n1/2−ε

)

, ExtmaxCVC does not admit a

polynomial ρ-PoE for bipartite graphs of n vertices, unless P = NP.

Proof. The proof is based on a gap reduction from Max IS. Given a connected graph G = (V, E)

where V = {v1, . . . , vn} and E = {e1, . . . , em}, we build an instance (H,U) of ExtmaxCVC as
follows: H = (V(H), E(H)) is a connected bipartite graph together with a subset U ⊆ V(H).
First, we consider the incidence graph G′ = (V ′, E′) of G where V ′ = {v1, . . . , vn} ∪ {e1, . . . , em}
and E′ = {viek, v jek : ek = viv j ∈ E}. Then, for each vi ∈ V ′, we add two vertices v1

i , v
2
i and connect

them to vi; after that, we add a new vertex vn+1 and link it to 2n vertices {v1
i , v

2
i : 1 ≤ i ≤ n}; then,

we add m+ n+ 1 new vertices p1, . . . , pm+n+1 such that p j is linked to e j for j = 1, . . . ,m and pm+i

is linked to v1
i for i = 1, . . . , n. Finally, pm+n+1 is connected to vn+1 and U = {v2

i : i = 1, . . . , n}. An
illustration of this construction is indicated in Figure 4.8.

Clearly H is a connected bipartite graph and it can be built in polynomial time. We now claim
that, there is an independent set of size k of G if and only if a subset U′ ⊆ U of k vertices can be
extended into a minimal connected vertex cover of H.

First of all, let us give some simple properties satisfied for each minimal connected vertex cover
S of H. By minimality, S includes all non-leaf vertices incident to pendant edges of H, i.e.
{e1, . . . , em} ∪ {v1

1
, . . . , v1

n} ∪ vn+1 ⊂ S . Also, by connectivity, S ′ = S ∩ {v1 . . . , vn} is a vertex cover
of G. Furthermore, by minimality vi ∈ S if and only if v2

i < S .
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pm+n

Incident graph G′

vn+1pn+m+1

Figure 4.8: The graph H = (V(H), E(H)) built from G = (V, E) with n vertices and m edges.
Black vertices denote elements of U.

Hence, S is a minimal connected vertex cover of H with |U ∩ S | = k if and only if V \ S ′ is an
independent set of G with |V \ S ′| = k. In conclusion:

optExtmaxCVC(H,U) = α(G) (4.3)

Let ε > 0 be any constant. Given a graph G = (V, E) on n vertices, by the hardness inapprox-
imability result for Max IS given in [165], there is no polynomial time algorithm distinguishing
between the following two cases even when the graph is very dense, i.e. m = n2−O(1/n) , unless
NP = P:

• (Yes-Instance) α(G) ≥ nε−1,

• (No-Instance) α(G) < nε.

Since in the worst case |V(H)| = O(n2), we get ExtmaxCVC is not O( 1
n1/2−ε )-approximable in

polynomial time for bipartite graphs on n vertices unless, P = NP. �

We next present a positive result, showing that the price of extension is equal to 1 in chordal
graphs.

Proposition 4.42. ExtmaxCVC is polynomial-time solvable in chordal graphs.

Proof. Let (G,U) be an instance of ExtmaxCVC. We show that Proposition 4.32 can be adapted
in the context of price of extension. Instead of adding a new pendent edge vv′ for each cut-vertex
v of G, we will add a new subtree Tk(v) with special vertices U′v = {v1, . . . , vk} filled in black in the
component Tk(v) depicted on the left of Figure 4.9. After, the reduction proposed in Proposition
4.32 keeps the same, that is (G,U) instance of ExtmaxCVC where G = (V, E) is transformed into
(G′,U′) where U′ = U ∪ (Vc \U)∪U′T where U′T = ∪v∈Vc

U′v and k = ∆(G) (recall k is the number
of leaves v1, . . . , vk of Tk(v) and hence |U′| = |U | + ∆(G)|Vc| + |Vc \ U |). We mainly prove the
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. . .

v

v′

v1 v2 vk

a b

c

de

fg

a b

c

de

fg

Figure 4.9: On the left side, tree Tk(v) is depicted. Graph G and G′ are drawn on the middle and
on the right of the figure respectively. Vc = {a, d} and U = {d, f }; forced vertices (i.e. U and U′)
are filled in black.

equality (4.4) given below which will conclude the proof since it is proved in Theorem 4.27 that
ExtmaxVC is linear-time solvable.

optExtmaxVC(G′,U′) = optExtmaxCVC(G,U) + ∆(G)|Vc| + |Vc \ U | (4.4)

Clearly, optExtmaxVC(G′,U′) ≥ optExtmaxCVC(G,U) + ∆(G)|Vc| + |Vc \ U | because any minimal con-
nected vertex cover S of G has to contain the whole cut-vertices set Vc of G. Hence, S ′ = S ∪U′T
is a minimal vertex cover of G′ with |S ′ ∩ U′| = |S ∩ U | + ∆(G)|Vc| + |Vc \ U |.

Conversely, let S ⋆′ be an optimal minimal vertex cover of instance I = (G′,U′) for ExtmaxVC.
Inequality optExtmaxCVC(G,U) ≥ optExtmaxVC(G′,U′)−∆(G)|Vc|−|Vc\U | comes from the assumption
U′T ⊆ S ⋆′. Actually, we will prove the simple following claim:

Claim 4.43. ∀v ∈ Vc, either {v} ∪ Uv ⊆ S ⋆′ or ({v} ∪ Uv) ∩ S ⋆′
= ∅.

Proof. Let v ∈ Vc. We study two cases v ∈ S ⋆′ and v < S ⋆′. If v ∈ S ⋆′, then we can
assume {v1, . . . , v∆(G)} ⊂ S ⋆′ since otherwise by minimality we would have v′ ∈ S ⋆′ and S ⋆′ ∩
{v1, . . . , v∆(G)} = ∅. Flipping these two sets into S ⋆′ (i.e. adding {v1, . . . , v∆(G)} and deleting {v′})
leads to another minimal vertex cover containing ∆(G) more vertices from U′. If v < S ⋆′, then
S ⋆′ ∩ U′v = ∅ by minimality. �

From previous claim, assume by contradiction S ⋆′ ∩U′v = ∅ (and then, v′ ∈ S ⋆′) for some v ∈ Vc.
We prove that we can build another minimal vertex cover S ′ which is better than S ⋆′. First, we
flip these two sets (i.e. adding {v}∪U′v and deleting {v′}); then, iteratively by deleting from S ⋆′ the
neighbors of v which do not have a private edge, we get another minimal vertex cover S ′ of G′ with
|S ′ ∩U′| ≥ |S ⋆′ ∩U′|+ |U′v|+ 1− |NU(v)| > |S ⋆′ ∩U′| which is impossible. Hence, the restriction
S of S ⋆′ to G is a connected vertex cover with |S ∩U | = optExtmaxVC(G′,U′)+∆(G)|Vc|+ |Vc \U |.
In conclusion, equality (4.4) holds and the expected result follows. �

Considering ExtmaxCVC on G = (V, E) in the particular case U = V , we obtain a new problem
called Upper Connected Vertex Cover (Upper CVC for short) where the goal is to find the
largest minimal connected vertex cover. To the best of our knowledge this problem has not been
studied. In the next section we will study the (in)approximability of this problem.
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Figure 4.10: The graph H = (V(H), E(H)) built from G = (V, E) with n vertices and m edges.

4.3.3 Upper CVC

Let start this section by a formal definition of Upper CVC.

Upper CVC

Input: A connected graph G = (V, E).
Solutions: Minimal connected vertex cover S ⊆ V .
Output: Maximize |S |.

Upper CVC is a special case of ExtmaxCVC where U = V . Regarding the approximability of
Upper CVC, we first show that an adaptation of Theorem 4.41 allows us to derive:

Corollary 4.44. For any constant ε > 0, unless NP = P, Upper CVC is notΩ( 1
n1/3−ε )-approximable

in polynomial time for bipartite graphs on n vertices.

Proof. The reduction is similar to the one given Theorem 4.41 where we replace each vertex v2
i

for i = 2, . . . , n by the subset {v2
i , . . . , v

n2

i
}. Each vertex vℓ

i
for i = 1, . . . , n and ℓ = 2, . . . , n2 is

linked to vi and vn+1. Let H be the graph built. An illustration is given in Figure 4.10.
If optUpper CVC(H) denotes the optimal value of Upper CVC on H, the equality (4.3) becomes:

optUpper CVC(H) = 1 + 2n + m + α(G)(n2 − 2). (4.5)

So, some simple calculus gives n2α(G) ≤ optUpper CVC(H) ≤ 2n2α(G) and n3 ≤ |V(H)| ≤ 2n3. In
conclusion, we deduce it is hard to distinguish between two following cases:
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• (Yes-Instance) optUpper CVC(H) ≥ 1
2
|V(H)|1− ε3 ,

• (No-Instance) optUpper CVC(H) < 2|V(H)| 2+ε3 .

�

On the positive side, we show that any minimal connected vertex cover is a 2
∆(G)

approximation for
Upper CVC. To do this, we first give a structural property that holds for any minimal connected
vertex cover. For a given connected graph G = (V, E) let S ⋆ be an optimal solution of Upper CVC

and S be a minimal connected vertex cover of G. Denote by A⋆
= S ⋆\S and A = S \S ⋆ the proper

parts of S ⋆ and S respectively, while B = S ∩ S ⋆ is the common part. Finally, R = V \ (S ⋆ ∪ S )

denotes the rest of vertices. Also, for X = A⋆ or X = A, we set Xc = {v ∈ X : NG(v) ⊆ B} which is
exactly the vertices of X not having a neighbor in (S ∪ S ⋆) \ X. Actually, (S ∪ S ⋆) \ X is either
S or S ⋆.

Lemma 4.45. The following properties hold:

(i) For X = A⋆ or X = A, X ∪ R is an independent set of G, G[X ∪ B] is connected and Xc is a

subset of cut-set of G[X ∪ B].

(ii) Set B is a dominating set of G.

Proof. For (i). By construction, X ∪ R = V \ S or V \ S ⋆ and it is an independent set of G.
Moreover, since ({A⋆, A}) ∪ B = {S ⋆, S }, then G[X ∪ B] is connected by hypothesis. Finally,
if there is a vertex x of Xc which is not a cut-vertex of G[X ∪ B], then (B ∪ X) \ {x} remains a
connected vertex cover of G[X∪B] which is a contradiction with minimality of (B∪X). Actually,
we know vertices from X are only neighbors in B or in (A⋆ ∪ A) \ X.

For (ii). We prove V \ B ⊆ NG(B). On the one hand, using Property (i), two sets {A⋆, A} are
independent and since S and S ⋆ induce connected subgraphs, then (A⋆ ∪ A) ⊆ NG(B). On the
other hand, since S ⋆ and S are vertex covers then R ⊆ NG(B) (because otherwise one edge will
be not covered by S ⋆ or S ). In conclusion, V \ B = R ∪ (

A⋆ ∪ A
) ⊆ NG(B) or equivalently B is a

dominating set of G. �

The following theorem describes an interesting graph theoretic property. It relates the size
of an arbitrary minimal connected vertex cover of a (connected) graph to the size of the largest
minimal connected vertex cover.

Theorem 4.46. Any minimal connected vertex cover of a connected graph G is a
2

∆(G)
-

approximation for Upper CVC.

Proof. Let G = (V, E) be a connected graph. Let S and S ⋆ be a minimal CVC and an optimal one
for Upper CVC, respectively, and w.l.o.g., assume |S | < |S ⋆|. We prove the following inequalities:

|A⋆| ≤ (∆(G) − 1)|B| and |A⋆| ≤ (∆(G) − 1)|A| (4.6)
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Let us prove the first part |A⋆| ≤ (∆(G)−1)|B| of inequality (4.6). Consider v1 ∈ B maximizing its
number of neighbors in A⋆, i.e. v1 = arg max{|NA⋆(v)| : v ∈ B}. Since S is a minimal connected
vertex cover with |S | < |S ⋆|, we have ∆(G) ≥ |NA⋆(v1)| + 1 from (i) of Lemma 4.45 (otherwise
B = {v1}with dG(v1) = ∆(G)). In addition, from (ii) of Lemma 4.45 we have NA⋆(B) = A⋆ and then
∑

v∈B |NA⋆(v)| ≥ |NA⋆(B)| = |A⋆|. Putting together these inequalities we get |A⋆| ≤ |B|(∆(G) − 1).

Let us prove the second part |A⋆| ≤ (∆(G) − 1)|A| of inequality (4.6) using the following claim:

Claim 4.47. There are at least |A⋆
c | + |A| edges between A and B in G[S ].

Proof. This claim come from connectivity of S and Lemma 4.45. First, we know each v ∈ A

has at least one neighbor in B. Moreover, since A⋆
C

is an independent set set only containing
cut-vertices in G[S ⋆], we deduce B has at least |A⋆

C
|+ 1 connected components in G[B]. So there

are at least |A⋆
C
| other edges between A and B in G[S ] for linking the connected components in

G[B]. �

Each vertex in A⋆ \ A⋆
c has by definition at least one neighbor in A, so we deduce:

∑

v∈A |N(v)| ≥
|A⋆ \ A⋆

c |+ |A|+ |A⋆
c | = |A|+ |A⋆|. Now, by setting a1 = arg max{|NG(v)| : v ∈ A}, we obviously get

|A||N(a1)| ≥ ∑

v∈A |N(v)|. Putting together these inequalities, we obtain: |A|∆(G) ≥ |A||N(a1)| ≥
|A⋆| + |A| which leads to |A⋆| ≤ (∆(G) − 1)|A|. The inequality |S | ≥ 2

∆(G)
follows by considering

the two cases |A| ≥ |B| and |A| < |B|.

• Suppose |A| ≥ |B|. By adding two inequalities |A⋆| ≤ (∆(G)−1)|A| and |A⋆| ≤ (∆(G)−1)|B|
proved previously in inequalities (4.6) we get:

2|A⋆| ≤(∆(G) − 1)|A| + (∆(G) − 1)|B|
2|A⋆| + 2|B| ≤(∆(G) − 1)|A| + (∆(G) + 1)|B|

2|S ⋆| ≤∆(G)|S |.
(4.7)

• Suppose |A| < |B|. The following ratio is increasing in |B| since |A⋆| > |A|. Then,

|S |
|S ⋆| =

|A| + |B|
|A⋆| + |B| ≥

|A| + |A|
|A⋆| + |A|

≥ 2|A|
(∆(G) − 1)|A| + |A| =

2

∆(G)
.

(4.8)

In any case, we conclude that |S | ≥ 2

∆
|S ⋆|. Furthermore this ratio is tight for any ∆(G) ≥ 3. �

A tight example of Theorem 4.46 for any ∆(G) ≥ 3 is illustrated in Figure 4.11. The optimal
solution for Upper CVC contains ∆(G) vertices {a} ∪ {v1, . . . , v∆(G)−1} while {a, b} is a minimal
connected vertex cover of size 2.

Corollary 4.48. Upper CVC is APX-complete for bounded degree graphs.
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. . .
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v1 v2 v3 v∆(G)−1

Figure 4.11: Graph G with ∆(G) + 1 vertices and maximum degree ∆(G).

4.4 Ext DS

In this section, we consider extension variants of the classical graph problem Dominating Set.
For a given graph G = (V, E), a subset S ⊆ V is called dominating set if for each vertex v ∈ V ,
v is in S or has at least one neighbor is S , i.e. N[S ] = V . Here, for a given graph G = (V, E)

and a vertex set U ⊆ V , it is asked if there exists a minimal dominating set S with U ⊆ S . This
problem formally defined as follows:

Ext DS

Input: A graph G = (V, E) together with a forced set U ⊆ V .
Question: Is there a minimal dominating set D such that U ⊆ D?

We continue the section by proposing some hardness results for this problem.

4.4.1 Computational complexity

Here, we study hardness of Ext DS in general and some restricted graph classes.

Bipartite graphs

Theorem 4.49. Ext DS is NP-complete on bipartite graphs of maximum degree 3, even if the

subgraph G[U] induced by the pre-solution U is an induced matching.

Proof. The proof is based on a reduction from (3, B2)-Sat as defined before. For an instance I of
(3, B2)-Sat with clause set C = {c1, . . . , cm} and variable set X = {x1, . . . , xn}, we build a bipartite
graph G = (V, E) with maximum degree 3, together with a set U ⊆ V of forced vertices as an
instance of EXT DS as follows:

• For each clause c = ℓ1 ∨ ℓ2 ∨ ℓ3 where ℓ1, ℓ2, ℓ3 are literals, we introduce the subgraph
H(c) = (Vc, Ec) with 7 vertices and 6 edges as illustrated on the left side of Figure 4.12.
The vertices 1′c and 2′c represent literals in clause c (1′c represents literals ℓ1 and ℓ2 while 2′c
represents ℓ3) and the vertices {3c, 4c} are included in the forced set Uc.

• For each variable x, we introduce a gadget H(x) = (Vx, Ex) which is a path of length 2. The
vertex 1x is in the set of forced vertices Ux. An illustration of variable subgraph H(x) is on
the right side of Figure 4.12.
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H(c) for c = ℓ1 ∨ ℓ2 ∨ ℓ3

1′c

2′c

1c

2c

3c4c5c

H(x)

x

¬x

1x

Figure 4.12: The Gadgets H(c) and H(x) for Ext DS. Vertices in U illustrated by their bold
border.

• We interconnect the subgraphs H(x) and H(c) in the following way: for each clause c with
literals ℓ1, ℓ2, ℓ3, corresponding to variables x1, x2, x3, respectively, connect 1′c (representing
ℓ1 and ℓ2) to the literal vertices ℓ1 in H(x1) and ℓ2 in H(x2) and connect 2′c (representing ℓ3)
to the literal vertex ℓ3 in H(x3).

• Also we set U = (
⋃

c∈C Uc) ∪ (
⋃

x∈X Ux).

This construction computes, in polynomial-time, a bipartite graph G with maximum degree
3. Moreover, G[U] is an induced matching. In the following we can prove that there exists a
satisfying assignment T for I if and only if (G,U) is a yes-instance of Ext DS.

Suppose T is a satisfying assignment for I. Create a dominating set S from U by adding for
each x ∈ X the literal vertex x if T (x) = true and the literal vertex ¬x if T (x) = false. Also,
add to S for each clause c ∈ C the vertex 1c if 1′c is not dominated by a literal vertex in S and
2c if 2′c is not dominated by a literal vertex in S . The resulting set S is obviously a dominating
set for G which contains U. Since T satisfies all clauses in I, S does not contain both 1c and
2c for any clause c, so the vertex 3c has at least one private neighbor for each c ∈ C. Since T

further is a valid assignment, S only contains x or ¬x for each variable x ∈ X, so 1x also has a
private neighbor. If S is not minimal, it can hence be turned into a minimal dominating set S ′ by
successively removing vertices without private neighbors from the ones that we added to U. This
could happen if there is a variable x whose setting does not matter, as all clauses that contain x or
¬x are already satisfied by the other literals. Then, the corresponding literal vertex (x or ¬x) put
into S can be removed. The resulting minimal dominating set S ′ still contains all vertices from
U; observe that vertices 4c also have a private neighbor 5c. The vertices 4c and 5c are present in
the gadgets to prevent 3c to consider itself as its private neighbor.

Conversely, assume that S is a minimal dominating set of G with U ⊆ S . Because of minimality, 3c

needs a private neighbor, either 1c or 2c. Hence, S contains at most one vertex from {1c, 1
′
c, 2c, 2

′
c}

for each clause c. In particular, there is at least one vertex among {1′c, 2′c} which needs to be
dominated by a literal vertex. Again by minimality, 1x needs a private neighbor, either x or ¬x.
Hence, the two literal vertices x and ¬x cannot be together in S . Thus, by setting T (x) = true

(resp. false) if x ∈ S (resp. x < S ), we arrive at a partial truth assignment of I, satisfying all
clauses, that can be easily completed. �
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Planar graphs

Here, we show that Ext DS is NP-complete in planar bipartite graphs of maximum degree 3. We
present a new reduction, similar to what we did in Section 4.2 from 4P3C3SAT to Ext DS.

Theorem 4.50. Ext DS is NP-hard for planar bipartite graphs of maximum degree 3.

Proof. The proof is based on a reduction from 4P3C3Sat. For an instance I of 4P3C3Sat with
clause set C = {c1, . . . , cm} and variable set X = {x1, . . . , xn}, we build a planar bipartite graph
H = (VH, EH) with maximum degree 3 together with a set U ⊆ VH of forced vertices as an
instance of Ext DS.

W.l.o.g. suppose that variable xi appears in clauses c1, c2, c3, c4 of instance I such that in the
induced (embedded) subgraph Gi = G[{xi, c1, c2, c3, c4}] of the graph BP defined in Definition
1.1, c1xi, c2xi, c3xi, c4xi is an anti-clockwise ordering of edges around xi. By looking at Gi

and considering xi appears positively and negatively, the construction should satisfy one of the
following cases:

• case 1: xi ∈ c1, c2 and ¬xi ∈ c3, c4;

• case 2: xi ∈ c1, c3 and ¬xi ∈ c2, c4;

• case 3: xi ∈ c1, c2, c3 and ¬xi ∈ c4.

Note that all other cases are included in these 3 cases by rotations and/or replacing xi(¬xi)

with ¬xi(xi).

For each variable xi, we propose 3 different gadgets H(xi) which are illustrated in Figure 4.13.
As is depicted in the figure, the forced vertex set Uxi

corresponding to gadget H(xi) contains mi

for case 1, {p1
i , p2

i ,m
1
i ,m

2
i } for case 2 and {p1

i , p2
i , p3

i
} for case 3.

For each clause c j ∈ C, we consider a clause gadget H(c j) together with a forced vertex set
Uc j

completely similar to what is defined before in Theorem 4.49 and illustrated in Figure 4.12.
Moreover we interconnect with some crossing edges, the subgraphs H(xi) and H(c j) using the
proposed instructions in Theorem 4.49. We also set the forced vertex set U = (

⋃

xi∈X Uxi
) ∪

(
⋃

c j∈C Uc j
).

This construction computes in polynomial time, a planar bipartite graph with maximum degree 3.
We now claim that (H,U) is a yes-instance of Ext DS if and only if I has a satisfying assignment
T .

Suppose T is a truth assignment of I which satisfies all clauses. We construct a minimal
dominating set S from U as follows:

• For each variable gadget H(xi) complies with "case 1", add ti (resp. fi) to S if T (xi) = true

(resp., T (xi) = true).

• For each variable gadget H(xi) complies with "case 2" add t1
i , t

2
i (resp. f 1

i , f 2
i ) to S if

T (xi) = true (resp., T (xi) = true).
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Figure 4.13: Variable gadgets H(xi) of Theorem 4.50. On the left: A variable xi appearing in
four clauses c1, c2, c3, c4 in I. On the right, cases 1, 2, 3 are corresponding to H(xi), depending
on how xi appears (negated or non-negated) in the four clauses (Here case 3 is rotated). Black
vertices denote elements of Uxi

. Crossing edges are marked with dashed lines.

• For each variable gadget H(xi) complies with "case 3" add t1
i , t

2
i ,mi (resp. fi, l

2
i , r

2
i ) to S if

T (xi) = true (resp. T (xi) = true).

• For each clause c ∈ C, add vertex 1c to S if 1′c is not dominated by a variable vertex of S

and add 2c to S if 2′c is not dominated by a variable vertex of S .

Since T is satisfiable, for each clause gadget H(c), at least one of 1′c, 2
′
c is dominated by a variable

vertex of S . Thus, S is a dominating set that contains U of H. If S is not minimal, it can hence
be turned into a minimal dominating set S ′ by successively removing vertices without private
neighbors from the ones that we added to U.

Conversely, suppose S is a minimal dominating set of H with U ⊆ S . We show that in Theorem
4.49, for each clause gadget H(c) at least one of 1′c, 2

′
c needs to be dominated by a variable gadget

vertex thus there is an assignment T which satisfies all clauses of I. We now show that T is a
valid assignment, in order to this, we consider all variable gadgets independently:

• If H(xi) complies with case 1, by minimality, S cannot contain both ti, fi, So we set
T (xi) = true if { fi} ∩ S = ∅ and otherwise we set T (xi) = false.

• If H(xi) complies with case 2, by minimality, S cannot contain both vertices in each
pair (t1

i , f 1
i ), (t1

i , f 2
i ), (t2

i , f 1
i ), (t2

i , f 2
i ), because we can remove the vertices p1

i ,m
2
i ,m

1
i , p2

i re-
spectively from S . So we set T (xi) = true if S ∩ { f 1

i , f 2
i } = ∅ and otherwise we set

T (xi) = false.

• If H(xi) complies with case 3, by minimality, S cannot contain both vertices in each pair
(t1

i , fi), (t
2
i , fi), because we can remove one of vertices in pairs (p1

i , p2
i ), (p1

i , p3
i
) respectively

from S . Hence, we set T (xi) = true if S ∩ { fi} = ∅ and otherwise, we set T (xi) = false.

�
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...

X

...

S

yy′

z1

z2

z3

z4

Figure 4.14: The graph G = (V, E) for Ext DS, vertices in the forced set U′ are drawn bold.

4.4.2 Parameterized complexity

We now study Ext DS in the framework of parameterized complexity where we consider the
size of the set of forced vertices as standard parameter for our extension problems. We make a
reduction from the extension variant of Hitting Set to Ext DS. Hitting Set as an NPO problem
is defined by instances I = (X,S) where X is a finite ground set and S = {S 1, . . . , S m} is a
collection of sets S i ⊆ X (usually referred to as hyperedges) and feasible solutions are subsets
H ⊆ X such that H ∩ S i , ∅ for all i ∈ {1, . . . ,m}. In the optimization variant of the problem
denoted by Min HS, the goal is to find a subset H of minimum size. The extension variant of
Hitting Set denoted by Ext HS defined formally as follows:

Ext HS

Input: A instance I = (X,S) together with a forced set U ⊆ X.
Question: Is there an inclusion-wise minimal hitting set H such that U ⊆ H?

In [25], the extension variant of Hitting Set appears as a subproblem for the enumeration
of minimal hitting sets in lexicographical order and Ext HS is there shown to be W[3]-complete
with respect to the standard parameter |U |. By a slight adjustment of the classical reduction from
the Min HS to Min DS, this result transfers and formally yields:

Theorem 4.51. Ext DS with standard parameter is W[3]-complete, even when restricted to

bipartite instances.

Proof. Ext DS can obviously be modeled as special case of Ext HS by interpreting the closed
neighborhoods as subsets of the ground set of vertices. This immediately gives membership in
W[3] for Ext DS.

Conversely, given an instance (I,U) with I = (X,S), S = {S 1, . . . , S m} for Ext HS we create a
graph for the corresponding instance for Ext DS as follows:

• Start with the bipartite graph on vertices X ∪ {s1, . . . , sm} containing edges xsi if and only
if x ∈ S i.
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• Add two new vertices y, y′ with edges y′y and xy for all x ∈ X.

• Add four new vertices z1, z2, z3, z4 with edges z1z2, z2z3, z3z4 and z1si for all 1 ≤ i ≤ m.

The construction is illustrated in Figure 4.14. Let G = (V, E) denotes the obviously still
bipartite graph created in this way. With the set U′ containing the vertex y to dominate X, z2

and z3 to forbid including any vertex si in the extension (as this would make z2 obsolete) and
the vertices corresponding to the forced set U for Ext HS, it is not hard to see that (G,U′) is a
yes-instance for Ext DS if and only if (I,U) is a yes-instance for Ext HS. As the parameters relate
by |U′| = |U | + 3, this reduction transfers the W[3]-hardness of Ext HS to Ext DS on bipartite
graphs. �

4.4.3 Price of extension

Regarding the concept price of extension for Ext DS, we define a new optimization problem as
follows:

ExtmaxDS

Input: A graph G = (V, E), a set of vertices U ⊆ V .
Solutions: Minimal dominating set S of G.
Output: Solution S that maximizes |S ∩ U |.

We denote the value of optimal solution for an instance (G,U) of ExtmaxDS, by optExtmaxDS (G,U).
Formally, it is arg max{U′ ⊆ U : (G,U′) is a yes-instance of Ext VC}.

Since optExtmaxDS (G,U) = |U | if and only if (G,U) is a yes-instance of Ext DS, we deduce
that ExtmaxDS is NP-hard since Ext DS is NP-complete. Adapted by Definition 2.4, we define
the concept of price of extension for ExtmaxDS as follows:

Definition 4.52. For an instance (G,U) of ExtmaxDS, PoE(S ) of a minimal dominating set S of

G is defined by PoE(S ) := |S∩U |
optExtmaxDS (G,U)

.

Dealing with ExtmaxDS on graph G = (V, E) and the particular forced set U = V , we
obtain a well known optimization problem called maximum minimal dominating set or Upper

Dominating Set, denoted by Max-Min DS. Max-Min DS has been studied extensively in recent
years. In [137], it is shown that, the problem is NP-complete in Cubic bipartite graphs. Two
inapproximability results nε−1 for graphs of order n and every ε > 0 and APX-hardness for cubic
graphs are proposed in [18] for Max-Min DS. hence, we deduce:

Corollary 4.53. For any ε > 0, any ρ ∈ Ω(nε−1), there is no polynomial-time ρ-approximation

for ExtmaxDS on general graphs of n vertices, unless P = NP.

In contrast to inapproximability result on the general graphs, we find that restriction to bipartite
graphs or bounded degree graphs improves the approximability of ExtmaxDS. If the instance is a
bipartite graph. Since each part of the graph is a minimal dominating set, simply by selecting one
side containing the largest number of vertices from the forced set U, we can show the following
result:
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Theorem 4.54. A 2-approximation for ExtmaxDS on bipartite graphs can be computed in poly-

nomial time.

Theorem 4.55. A∆-approximation for ExtmaxDS on graphs of bounded degree∆ can be computed

in polynomial time.

Proof. Let (G,U) be an instance of ExtmaxDS, where G = (V, E) is a graph of maximum degree
∆ and U ⊆ V . If G is a complete graph on ∆ + 1 vertices, by minimality G cannot include more
than one vertex of U, hence ExtmaxDS is trivial. If ∆ ≤ 2, a maximum independent set of G[U],
keeps at least half of the vertices of U, and can be extended to a minimal dominating set easily,
so polynomially we have a 1

2
-approximation algorithm for ExtmaxDS in this case. Now, assume

∆ ≥ 3 and G , K∆+1. By Brooks’s Theorem, we can color G[U] properly with at most ∆ colors
in linear time. Let (S 1, . . . , S ℓ) be such coloring with ℓ ≤ ∆. Since each S i is an independent set
in G[U], then (G, S i) for 1 ≤ i ≤ ℓ is a yes-instance of Ext DS. Thus, choosing U′ = arg max |S i|
yields a ∆-approximation. �

4.5 Conclusion

In this chapter, we considered the extension variant of some vertex graph problems. Given a
graph G = (V, E) and a subset U ⊆ V as an input of an anti-hereditary (resp. a hereditary)
problemΠ, it is asked, if there exists a minimal (resp. maximal) solution S such that U ⊆ S (resp.
U ⊇ S ). Particularly, we considered the extension variant of Vertex Cover, Independent Set,
Dominating Set, Connected Vertex Cover and Non Separating Independent Set.

We have found many graph classes where the extension problems remains NP-complete, but
also many classes where these problems are solvable in polynomial-time. Table 4.1 summarizes
the complexity results obtained for the these problems.

NP-complete Polynomial

sub-cubic planar bipartite graph chordal graph

Ext VC/IS cubic bipartite graph circular-arc graph

sub-cubic bipartite graph chordal graph

Ext CVC/NSIS weakly triangulated graph

Ext DS sub-cubic planar bipartite graph

Table 4.1: The computational complexity results

We also studied the parameterized complexity of theses problems, with parameter |U |. All
these complexity considerations are also carried out in very restricted scenarios, be it degree or
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topological restrictions (bipartite, planar or chordal graphs). Table 4.2 summarizes the parame-
terised results obtained for the these problems.

Ext VC Ext IS Ext CVC Ext NSIS Ext DS

standard parameter W[1]-com FPT W[1]-com FPT W[3]-com

dual parameter FPT W[1]-com FPT W[1]-com FPT

Table 4.2: The parameterised complexity results

We further discuss the price of extension (PoE), measuring the distance of U to the closest
set that can be extended, which results in natural optimization problems related to extension
problems for which we discuss polynomial-time approximability.

It would be also interesting to study further optimization problems that could be related to our
extension problems, for instance, given an instance G,U, k of an anti-hereditary or a hereditary
problem Π, is it possible to add at most k edges to the graph such that (G,U) becomes a yes-
instance of ExtΠ? Recall that adding edges among vertices from U does not change our problem,
as they can never be private edges, but adding edges elsewhere might create private edges for
certain vertices. Such problems would be defined according to the general idea of graph editing
problems studied quite extensively in recent years. These problems are particularly interesting in
graph classes where Ext Π is solvable in polynomial time.
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5.1 Introduction

In this chapter, we focus on edges extensions in graphs. More precisely, we consider extension

problems related to several classical edge optimization problems in graphs, namely Edge Cover,
Matching and Edge Dominating Set. Given a graph G = (V, E) and an edge set U ⊆ E,
it is asked whether there exists an (inclusion-wise) minimal (resp. maximal) feasible solution
E′ which satisfies a given property, for instance, being an edge dominating set (resp. an edge
matching) and containing the forced edge set (resp. included in the co-forbidden edge set) U.

Let G = (V, E) be a graph where the minimum degree is at least r ≥ 1. For a fixed constant r:

• S ⊆ E is called an r-edge cover of G, if each vertex v ∈ V is incident to at least r edges of
S . The special case r = 1 is known as an edge cover.

• S ⊆ E is called an r-edge dominating set if any edge e ∈ E is incident to at least r edges of
S . The special case r = 1 is known as an edge dominating set.

• S ⊆ E is called an r-degree constrained partial subgraph such that none of the vertices
in V is incident to more than r edges in S . The special case r = 1 is known as an edge

matching. (see Chapter 1 for the definition)

Actually, we consider the extension variants of the above edge graph problems in generalized
version, when the constraint r is added to the problem’s definition but not in the inputs of the
instance. For example, for a given a graph G = (V, E) with minimum degree at least r and an
edge forced set U ⊆ E as an instance of the extension version of r-edge cover denoted by Ext

r-EC, it is asked whether there exists an (inclusion-wise) minimal r-edge cover E′ containing the
forced edge set U.

We present hardness results for these problems, we prove that these problems remain NP-
complete, even in bipartite graphs of bounded degree and with some constraints on the forced/co-
forbidden set of edges. Having a planar embedding does not help much either, as we show that
these problems remain hard on subcubic bipartite planar graphs. We counter-balance these nega-
tive results with parameterized complexity results where we consider the size of the set of forced
edges (resp. co-forbidden set) as standard parameter for the extension variant of Edge Cover

and Edge Dominating Set (resp. Matching). We also consider the price of extension (PoE),
a natural optimization problem variant of extension problems, leading to some approximation
results.

5.1.1 Related work

A well-studied generalization of Edge Cover, known as the Min weighted lower-upper-cover

which is already defined in Section 3.3. The Min weighted lower-upper-cover problem is
known to be solvable in polynomial time (Chapter 35 in [151]). For the unweighted version
i.e. w(e) ∈ {0, 1}, the goal is to minimize the cardinality |M|. Hence, an r-edge cover solution
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corresponds to a lower-upper-cover with a(v) = r and b(v) = dG(v) for every v ∈ V . The Minimum

r-Edge Dominating Set problem (Min r-EDS for short) consists in finding an r-edge dominating
set of minimum size for a given graph. The classical Min Edge Dominating Set problem (Min

EDS for short), is NP-hard in general graphs (problem [GT2] in [88]). The generalization to
Min r-EDS has been studied in [19, 20] (under the name b-EDS) from approximation point of
view, when r is a part of the input. Two linear time approximation algorithms with ratios 8

3

and 2 have been proposed for b-EDS problem in general graphs respectively in [19, 20]. In this
latter case, the problem contains Min EDS for particular case (corresponding to r = 1) and then
is NP-hard. When r is a constant which is a part of the problem and not of the instance, the
same approximation ratios can be derived, but not hardness result. However, to the best of our
knowledge, Min r-EDS for every r ≥ 2 was not proved NP-hard so far. The optimization problem
associated to r-degree constrained partial subgraph, denoted Max r-DCPS, consists of finding
an edge subset E′ of maximum cardinality that is a solution to r-DCPS. It is also refered to as the
Degree Constraint Subgraph Problem [85]. Max r-DCPS is known to be solvable in polynomial
time even for the edge weighted version (here, we want to maximize the weight of E′) [85]. When
additionally the constraint r is not uniform and depends on each vertex (i.e. at most b(v) = rv

edges incident to vertex v), Max r-DCPS is usually known as Simple b-Matching and remains
solvable in polynomial time even for the edge weighted version (Chapter 33 in [151]).

5.1.2 Contributions

We organize our results in this chapter as follows. In Section 5.2, the extension variant of Edge

Cover and its generalization is studied. We show that Ext r-EC for any r > 1 (resp. r = 1) is
NP-hard in bipartite (resp. planar bipartite) graphs. In parameterized complexity, we show that
Ext r-EC is in FPT respect to standard parameter, size of the forced set U. We further focus on
the Price of Extension (PoE), and show that Extmaxr-EC in bipartite graphs is as hard as Max

IS in general graphs. We consider Ext r-EDS in Section 5.3, where we show that the problem is
NP-hard for any r ≥ 1 in planar bipartite graphs. We also show that the problem parameterized
by the size of forced set U is W[1]-hard even in bipartite instances. Moreover, concerning PoE,
we introduce a natural optimization problem corresponding to the Ext r-EDS and show that
the problem in approximability is as hard as Max IS in general graphs. We further in Section
5.4 focus on the extension variant of the well known problem Edge Matching, The problem
is NP-hard in bipartite graphs, and is in FPT with dual parameter |U |. We also show that the
optimization problem concerning PoE is in APX.

5.2 Ext EC and its generalization

In this section, we consider extension variant of the classical graph problems Edge Cover and
its generalization which is called r-Edge Cover. A subset S of edges of the a graph is called
edge cover if each vertex of graph is incident to at least one edge in S . Let G = (V, E) be a
graph where the minimum degree is at least r ≥ 1. For a fixed constant r, S is called an r-edge
cover of G, if each vertex v ∈ V is incident to at least r edges of S . Ext EC has been partially
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studied in Chapter 3 entitled "Extended Weighted Edge Cover Problem" in Section 3.2. Here, we
complement these results to r-EC. To the best of our knowledge, the extension variant of r-EC has
not been studied in the literature. We are considering the following extension problem associated
to r-Edge Cover.

Ext r-EC

Input: A graph G = (V, E) and U ⊆ E.
Question: Does there exists S ⊇ U such that the partial subgraph GS is a minimal r-edge
cover in G?

We continue this section by proposing some hardness result.

5.2.1 Computational complexity

For our first NP-hardness proof we make reduction from (3, B2)-Sat.

Theorem 5.1. For every fixed r ≥ 1, Ext r-EC is NP-complete in bipartite graphs with maximum

degree r + 2, even if the forced edge set U is a matching.

Proof. The proof is based on a reduction from (3, B2)-Sat. A main building block B2r(v)

(or B2r+1(v)) in our construction is based on a complete bipartite subgraph of 2r (or 2r + 1)
vertices where one specified edge between two special vertices v and v′ has been deleted. So,
B2r(v) = Kr,r − {vv′} and B2r+1(v) = Kr+1,r − {vv′}. Except for these two vertices v, v′, the other
vertices of B2r(v) are not linked to any other vertex in the whole construction, while for B2r+1(v),
it is only the case of v (i.e. only v is also linked outside B2r+1(v)). Block B2r(v) will appear five
times in each variable gadget H(x), and block B2r+1(v) will correspond to each clause gadget

(see Figure 5.1 for an illustration). By construction, all edges of B2r(v) will belong to any r-edge
cover solution (in fact, vertices v and v′ still need one more edge to satisfy the minimum degree
constraint) and for B2r+1(v), it will be almost the case (except for few edges of B2r+1(v) incident to
v, as all neighbors of v in B2r+1(v) have degree r+1, and all edges between N(v) and N(N(v)) \ {v}
have to be in the edge cover; v will need one more incident edge in the edge cover besides (some
of) the edges from B2r+1(v)).

Now, consider an instance I of (3, B2)-Sat with clauses C = {c1, . . . , cm} and variables X =

{x1, . . . , xn}. We build a bipartite graph G = (V, E) of maximum degree r + 2, together with a set
U of permitted edges as follows:

• For each clause c ∈ C, we build a clause gadget B2r+1(c) which is a component Kr,r−1 plus
two vertices c, c′. An illustration of B2r+1(c) is given in the left side of Figure 5.1.

• For each variable x ∈ X , we construct a subgraph H(x) = (Vx, Ex) as follows: build two
P6 denoted P = (x, l,m, r,¬x) and P′ = (x′, l′,m′, r′,¬x′) respectively; then between each
pair of vertices v, v′ of P and P′ a block B2r(v) is added for each v on P; this interconnects v

on P with the corresponding vertex v′ on P′, as v and v′ are special to B2r(v). The variable
gadget H(x) = (Vx, Ex) is illustrated to the right of Figure 5.1.
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Figure 5.1: Block B2r+1(c) for clause c is depicted on the left-hand side. The subgraph H(x) =

(Vx, Ex) is shown on the right-hand side. Edges of U are drawn in bold.

• We interconnect H(x) and B2r+1(c) where x is a literal of clause c by adding edge xc if x

appears positively in c and the edge ¬xc if x appears negated. Such edges will be called
crossing.

Now, it is easy to see that G is bipartite of maximum degree r+2. Finally, let U = {xili,¬xiri : 1 ≤
i ≤ n}, picking the corresponding vertices and edges in each H(xi).
We claim that there is a truth assignment T of I which satisfies all clauses if and only if G admits
a minimal r-edge cover solution H = (V, S ) where U ⊆ S of G.

If T is a truth assignment of I which satisfies all clauses, a minimal r-EC solution H = (V, S ) can
be constructed as follows:

• For each variable x, if T (x) = true, {xc : x appears positively in c} ∪ (Ex \ {lm, l′m′}) ⊆ S ,
and if T (x) = false, {¬xc : x appears negatively in c} ∪ (Ex \ {mr,m′r′}) ⊆ S .

• Since T is a satisfying assignment, we have already added in the previous step k ≥ 1

crossing edges connected to block B2r+1(c) for each clause c. Then, we delete arbitrarily
k − 1 edges S c of B2r+1(c) incident to c, and we add E(B2r+1(c)) \ S c to S .

Conversely, assume that H = (V, S ) is a minimal r-edge cover solution of G containing U. By
considering the variable gadget H(x) and in order to keep minimality S contains either lm or rm

(not both since {xl,¬xr} ⊂ S by hypothesis and since all edges in the block B2r(v) for v ∈ {l,m, r}
have to be included into the edge cover by our previous observations). Hence, we set T (xi) = true

if rm ∈ S and T (xi) = false if lm ∈ S . Since H has to get a minimum degree at least r for each
vertex and vertex c has a degree r − 1 in clause gadget B2r+1(c), then the partial graph H contains
at least one crossing edge incident to each c and hence T is a valid assignment of I. �

In the following, we propose a reduction from 4P3C3Sat to Ext r-EC for the case that r = 1.
The Ext 1-EC is same as Ext EC.

Theorem 5.2. Ext 1-EC is NP-complete for planar bipartite subcubic graphs.
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Figure 5.2: Construction for Ext 1-EC (planar). On the left: A variable xi appearing in four
clauses c1, c2, c3, c4 in I. On the right, cases 1, 2, 3: The gadgets H(xi) in the constructed instance
depend on how xi appears (negated or non-negated) in the four clauses. Bold edges denote
elements of U.

Proof. The proof is based on a reduction from 4P3C3Sat. Let I = (C,X ) be an instance of
4P3C3Sat, where C = {c1, . . . , cm} and X = {x1, . . . , xn} are the set of clauses and variables of I

respectively. W.l.o.g. suppose that variable xi appears in clauses c1, c2, c3, c4 of instance I such
that in the induced (embedded) subgraph Gi = G[{xi, c1, c2, c3, c4}] of the graph BP defined in
Definition 1.1, c1xi, c2xi, c3xi, c4xi is an anti-clockwise ordering of edges around xi. By looking
at Gi and considering xi appears positively and negatively, the construction should satisfy one of
the following cases:

• case 1: xi ∈ c1, c2 and ¬xi ∈ c3, c4;

• case 2: xi ∈ c1, c3 and ¬xi ∈ c2, c4;

• case 3: xi ∈ c1, c2, c3 and ¬xi ∈ c4.

Note that all other cases are included in these by rotations or replacing xi with ¬xi or vice versa.
We illustrate how these cases are used in the reductions explicitly for Ext 1-EC. For each clause
ci ∈ C, we consider a vertex ci as a clause gadget. We connect each variable gadget H(x) to the
corresponding clause gadgets according differences to the cases listed above, see Figure 5.2.
We start from graph G and build a planar bipartite graph H = (VH, EH) by replacing every
node xi in G with one of the three variable gadgets H(xi) which are illustrated in Figure 5.2.
The forced edge set Ui, corresponding to variable gadget H(xi), contains tili, ri fi for case (1),
t1
i l1

i , r
1
i f 1

i , t
2
i l2

i , r
2
i t2

i for case (2) and t1
i l1

i , t
2
i l2

i , ri fi for case (3). Let U =
⋃

1≤i≤n Ui, the set of forced
edges of H. This construction can be done in polynomial time and the final graph H is planar
bipartite with maximum degree 3. We now claim that I is satisfiable if and only if H admits a
minimal edge cover containing U.
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Suppose T is a truth assignment of I which satisfies all clauses. For each clause c j, let h( j) be
an index such that variable xh( j) satisfies clause c j for T and let J = [n] \ h([m]) be the unused
indices by mapping h. We construct a minimal edge cover S of H by considering all possibilities
of H(xi):

• for each variable gadget H(xi) which complies with "case (1)" we set:

S 1 :={th( j)c j,mh( j)rh( j) : T (xh( j)) = true, xh( j) appears positively in c j}
∪{ fh( j)c j,mh( j)lh( j) : T (xh( j)) = false, xh( j) appears negatively in c j}
∪{miri : i ∈ J}.

• for each variable gadget H(xi) which complies with "case (2)" by assuming h( j) = k we set:

S 2 :={t1
kc j (t2

kc j),m
1
kr1

k , r
1
k p1

k ,m
2
kr2

k , r
2
k p2

k : T (xk) = true ∧ t1
kc j ∈ EH (t2

kc j ∈ EH)}
∪{ f 1

k c j ( f 2
k c j),m

1
kl1

k , l
2
k p1

k ,m
2
kl2

k , l
1
k p2

k : T (xk) = false ∧ f 1
k c j ∈ EH ( f 2

k c j ∈ EH)}
∪{l1

i p2
i , l

1
i m1

i , l
2
i m2

i , l
2
i p1

i : i ∈ J}.

• for each variable gadget H(xi) which complies with "case (3)" by assuming h( j) = k we set:

S 3 :={t1
kc j (t2

kc j),m
1
krk,m

2
krk : T (xk) = true ∧ t1

kc j ∈ EH (t2
kc j ∈ EH)}

∪{ fkc j,m
1
kl1

k ,m
2
kl2

k : T (xk) = false}
∪{l1

i m1
i , l

2
i m2

i : i ∈ J}.

Finally we set S = S 1 ∪ S 2 ∪ S 3 ∪U. One can easily check that S is a minimal edge cover of H.

Conversely, suppose S is a minimal edge cover of H containing U. By minimality of S we
propose an assignment T of I depending on different types of variable gadgets of H as follows:

• If H(xi) complies with case (1), in order to cover vertex mi, the edge cover S either
contains miri or mili (not both by minimality). This means that we set T (xi) = true (resp.
T (xi) = false) if miri ∈ S (resp. mili ∈ S ).

• If H(xi) complies with case (2), in order to cover vertices m1
i ,m

2
i , p1

i , p2
i , the edge cover

S contains exactly one of edges in pairs (l1
i m1

i , r
1
i m1

i ), (l2
i m2

i , r
2
i m2

i ), (l1
i p2

i , r
2
i p2

i ), (r1
i p1

i , l
2
i p1

i ).
Hence, we set

– T (xi) = true if {l1
i m1

i , l
1
i p2

i , l
2
i p1

i , l
2
i m2

i } ∩ S = ∅, and

– T (xi) = false if |{l1
i m1

i , l
1
i p2

i , l
2
i p1

i , l
2
i m2

i } ∩ S | ≥ 1.

• If H(xi) complies with 3, in order to cover vertices m1
i ,m

2
i , S contains exactly one of edges

in the pairs (rim
1
i , l

1
i m1

i ), (rim
2
i , l

2
i m2

i ). This means that we set

– T (xi) = false if S ∩ {m1
i ri,m

2
i ri} = ∅, and

– T (xi) = true otherwise.

We obtain a valid assignment T . Since S covers all vertices of C, T satisfies all clauses of I. �

147



CHAPTER 5. EXTENSION OF SOME EDGE GRAPH PROBLEMS

5.2.2 Parameterized complexity

We now study our problem in the framework of parameterized complexity. The next result is
quite simple and characterizes the yes-instances of Ext r-EC.

Lemma 5.3. (G,U) is a yes-instance of Ext r-EC if and only if there is an r-edge cover solution

G′ = (V, E′) where E′ ⊇ U such that S G′ = {v ∈ V(U) : dG′(v) > r} is an independent set of GU .

Proof. The condition is obviously necessary, as an edge among two vertices x, y ∈ U of a minimal
extension X ⊇ U certifying that "(G,U) is a yes-instance", can only exist if x or y is, or both x

and y are, incident to at most r edges from X because of minimality.

Let us look into the other direction. Let G′ = (V, E′) be a partial subgraph of G with U ⊆ E′

and dG′(v) ≥ r for all v ∈ V . Moreover, assume S G′ = {v ∈ V(U) : dG′(v) > r} is an independent
set of GU . Consider any minimal partial subgraph H = (V, EH) of G′ = (V, E′) maintaining the
property dG′(v) ≥ r for all v ∈ V . Since S G′ is an independent set of GU , U ⊆ EH and therefore,
EH is a minimal r-edge cover containing U. �

This structural property can be used to design an fpt-algorithm for Ext r-EC. More precisely,
our proposed algorithm lists all 3|U | many independent sets of G[U] included in V(U) from
an instance I = (G,U) of Ext r-EC. In each case, we produce an equivalent instance of Min

weighted lower-upper-cover that can be solved in polynomial time which gives the following
result.

Theorem 5.4. Ext r-EC, with standard parameter, is in FPT.

Proof. Let us establish a relation between the instances of the two problems Ext r-EC and Min

weighted lower-upper-cover. Let (G,U) be a yes-instance of Ext r-EC where G = (V, E) is
a graph of minimum degree at least r and U ⊆ E. So, it implies by Lemma 5.3 the existence
of a particular independent set S of GU . We build an instance (GU , a, b), U = E \ U, of Min

weighted lower-upper-cover, where a, b are two non-negative functions defined as follows:

a(v) :=















r if v ∈ V \ V(U)

r − dGU
(v) if v ∈ V(U),

and

b(v) :=















dG(v) if v ∈ (V \ V(U)) ∪ S

r − dGU
(v) if v ∈ V(U) \ S .

The next property is rather immediate.

Property 5.5. If there is a solution of Min weighted lower-upper-cover for the instance

(GU , a, b), then (G,U) is a yes-instance of Ext r-EC.

Proof. Assume that instance (GU , a, b) of Min weighted lower-upper-cover admits a feasible
solution and let G∗ = (V, E∗) be an optimal solution. Then, the partial graph H = (V, E∗ ∪ U)

satisfies the hypothesis of Lemma 5.3 (actually, H is already minimal with respect to property
∀v ∈ V , dH(v) ≥ r). �
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Using the outcome given in Theorem 5.5, the next result is rather straightforward. Consider the
algorithm that lists all possible instances (G[U], a, b) for Min weighted lower-upper-cover by
checking all independent sets of G[U] included in V(U) from an instance I = (G,U) of Ext r-EC.
This means that we try different values for function b. Since Min weighted lower-upper-cover

is solvable in polynomial time [151], then the running time is dominated by the procedure that
lists all possible independent sets of G[U], i.e. there are 3|U | possibilities: each vertex of each edge
in U can be either included or excluded of the independent set, except for taking both endpoints
in. �

5.2.3 Price of extension

Regarding the concept price of extension, we define a new optimization problem in the following.
Actually, since we mainly propose negative results, we only focus on the case r = 1:

ExtmaxEC

Input: A connected graph G = (V, E) and a set of edges U ⊆ E.
Solution: Minimal edge cover S of G.
Output: Maximize |S ∩ U |.

For ExtmaxEC, we denote the value of an optimal solution by optExtmaxEC(G,U). Since optExtmaxEC(G,U) ≤
|U | with equality if and only if (G,U) is a yes-instance of the extension variant, we deduce from
our previous results that ExtmaxEC is NP-hard. Adapted by Definition 2.4, we define the concept
of price of extension for ExtmaxEC as follows:

Definition 5.6. For an instance (G,U) of ExtmaxEC, PoE(S ) of a minimal edge cover S of G is

defined by PoE(S ) := |S∩U |
optExtmaxEC(G,U)

.

We say that ExtmaxEC admits a polynomial ρ-PoE if for every instance (G,U), we can compute
an edge cover S of G in polynomial time which satisfies PoE(S ) ≥ ρ.

Theorem 5.7. ExtmaxEC in bipartite graph is as hard as Max IS in general graphs.

Proof. The proof is based on a simple reduction from Max IS. Given a graph G = (V, E) with
n vertices and m edges where V = {v1, . . . , vn}, as an instance of Max IS, we build a connected
bipartite graph H = (VH, EH) as follows: for each vi ∈ V , add a P3 with edge set {viv

′
i , v
′
iv
′′
i },

and for each edge e = viv j ∈ E with i < j, add a middle vertex vi, j and connect vi to v j

via vi, j. Consider I = (H,U) as instance of ExtmaxEC, where the forced edge subset is given
by U = {viv

′
i : 1 ≤ i ≤ n}. Clearly, H is a bipartite graph with |VH | = 3n + m vertices and

|EH | = 2(m + n) edges. The construction illustrated by a simple example in Figure 5.3. We claim
that there is a solution of size k for ExtmaxEC on (H,U) if and only if G has an independent set
of size k.

Suppose that I is a maximal independent set of G of size k. For each e ∈ E, let ve ∈ V \ I be a
vertex which covers e; it is possible since V \I is a vertex cover of G. Moreover, {ve : e ∈ E} = V \I
since I is a maximal independent set of G. Clearly, S = {vi, jv

e : e = viv j ∈ E} ∪ {v′iv′′i : vi ∈
V} ∪ {viv

′
i : vi ∈ I} is a minimal edge cover of H contains k edges of U.
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v1 v2

v3v4

v1

v′
1

v′′
1

v1,2 v2
v′

2

v′′
2

v2,3

v3

v′
3

v′′
3

v3,4v4

v′
4

v′′
4

v1,4
v2,4

Figure 5.3: On the left side the graph G, an instance of Max IS and on the left side, the graph H,
the instance of ExtmaxEC is shown. The bold edges in H are the set of forced edges U.

Conversely, suppose S is a minimal edge cover of H such that |S ∩ U | = k. Let us make some
simple observations of every minimal edge cover of H. Since, v′′i for vi ∈ V are leaves of H, so
{v′iv′′i : vi ∈ V} is a part of every edge cover. Moreover, for each e = viv j ∈ E with i < j, at least
one edge between vivi j or v jvi, j belongs to any edge cover of H. Furthermore, if vivi, j ∈ S , by
minimality we deduce that viv

′
i < S . Hence, for each viv j ∈ E, at most one of viv

′
i , v jv

′
j can be in

S . Hence, I = {vi : viv
′
i ∈ S } is an independent set of G with size k. �

Using the strong inapproximability results for Max IS given in [154, 165], observing ∆(H) =

∆(G) + 1 and |VH | = 3|V | + |E| ≤ 2|V |2, we deduce the following result.

Corollary 5.8. For any constant ε > 0 and any ρ ∈ Ω
(

∆
ε−1

)

and ρ ∈ Ω
(

nε−
1
2

)

, ExtmaxEC does

not admit a polynomial ρ-PoE for general graphs of n vertices and maximum degree ∆, unless

P = NP.

5.3 Ext EDS and its generalization

An r-edge dominating set S ⊆ E of a simple graph G = (V, E) is a set S of edges such that for
any edge e ∈ E of G, at least r edges of S are incident to e (by definition, an edge dominates
itself one time). The Minimum r-Edge Dominating Set problem (Min r-EDS for short) consists
in finding an r-edge dominating set of minimum size. Obviously, Min 1-EDS is the classical
Edge Dominating Set problem, which is NP-hard in general graphs (problem [GT2] in [88]).
The generalization to Min r-EDS has been studied in [19, 20] (under the name b-EDS) from
approximation point of view. However, to the best of our knowledge, r-EDS for every r ≥ 2 was
not proved NP-hard so far. As associated extension problem, we formally study the following
problem.

Ext r-EDS

Input: Given a simple graph G = (V, E) and U ⊆ E.
Question: Is there a subset S ⊆ E such that U ⊆ S and S is a minimal r-edge dominating
set?

We continue this section by proposing some hardness for Ext r-EDS for planar graphs.
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5.3.1 Computational complexity

For the following NP-hardness result for Ext r-EDS we make reduction from 4P3C3Sat.

Theorem 5.9. For any r ≥ 1, Ext r-EDS is NP-complete for planar bipartite graphs of maximum

degree r + 2.

Proof. The proof is based on a reduction from 4P3C3Sat. Let I = (C,X ) be an instance of
4P3C3Sat, where C = {c1, . . . , cm} and X = {x1, . . . , xn} are the set of clauses and variables of I

respectively. W.l.o.g. suppose that variable xi appears in clauses c1, c2, c3, c4 of instance I such
that in the induced (embedded) subgraph Gi = G[{xi, c1, c2, c3, c4}] of the planar vertex-clause-

graph G, c1xi, c2xi, c3xi, c4xi is an anti-clockwise ordering of edges around xi. By looking at Gi

and considering xi appears positively and negatively, the construction should satisfy one of the
following cases:

• case 1: xi ∈ c1, c2 and ¬xi ∈ c3, c4;

• case 2: xi ∈ c1, c3 and ¬xi ∈ c2, c4;

• case 3: xi ∈ c1, c2, c3 and ¬xi ∈ c4.

Note that all other cases are included in these by rotations or replacing xi with ¬xi or vice versa.
In the following, we illustrate how these cases are used in the reductions explicitly for Ext r-EDS.

Consider first r = 1, corresponding to Ext EDS. We build a planar bipartite graph H = (VH, EH)

with maximum degree 3 together with a set U ⊆ EH of forced edges as an instance of Ext EDS.
For each variable xi we introduce a corresponding gadget H(xi) as depicted in Figure 5.4, the
forced edge set Uxi

contains {miri, ri pi} for case (1), {p j

i
r

j

i
, r

j

i
m

j

i
: 1 ≤ j ≤ 4} for case (2) and

{p1
i p2

i , p2
i p3

i
, p5

i
p6

i
, p6

i
p7

i
,m2

i fi} for case (3).

For each clause c j ∈ C, we construct a clause gadget H(c j) as depicted on the right side of Figure
5.5, and a forced edge set Uc j

, each clause gadget H(c j) contains 8 vertices and 7 edges where
|Uc j
| = 2.

Moreover, we interconnect with some crossing edges the subgraphs H(xi) and H(c j) by linking
xi (or ¬xi) to c j according to how it appears in the clause. These crossing edges are incident to
vertices 1′c and 2′c of clause gadget H(c) in order to keep the planarity and by considering that
the maximum degree remained 3. We also set the forced edge set U = (

⋃

xi∈X Uxi
) ∪ (

⋃

c j∈C Uc j
).

This construction is built in polynomial time, giving a planar bipartite graph of maximum degree
3. By considering the construction of clause gadget H(c), by minimality at most one of the edges
1′c1c, 2

′
c2c can be a part of any minimal edge dominating set of H so, for each clause gadget H(c)

at least one of the crossing edges incident to 1′c or 2′c is contained in any minimal solution. On the
other hand, by considering the 3 different variable gadgets H(x), by minimality, one can see that
for the case that the minimal solution S contains two crossing edges incident to a variable gadget
H(x), these edges have to be connected to the vertex (or vertices based on the H(x)) corresponding
to positive appearance (t) or negative appearance ( f ), not both. By the above explanation, it is
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xi
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c4
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ti fi

H(c1) H(c2) H(c3) H(c4)
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t1
i

p1
i

r1
i

m1
i

l1
i

f 1
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i
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i

l3
i

f 2
i
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i

r4
i

m4
i

l4
i

H(c1) H(c2) H(c3) H(c4)

case (2)

t1
i

p1
i

p2
i

p3
i

p4
i

l2
i

l1
i

t2
i

p5
i

p6
i

p7
i

p8
i

r2
i

r1
i

m1
i

m2
i

fi

H(c2) H(c3) H(c1)H(c4)

case (3)

Figure 5.4: Variable gadgets H(xi) of Theorem 5.9. Cases (1), (2), (3) are corresponding to H(xi),
depending on how xi appears (as a negative or positive literal) in the four clauses (here, case 3 is
rotated). Bold edges denote elements of Uxi

. Crossing edges are marked by dashed lines.

easy to see that I has a satisfying assignment T if and only if H has a minimal edge dominating
set containing U.

For r ≥ 2, we start with the instance I = (H,U) given in the above construction for r = 1. Recall
H = (VH, EH) is a bipartite graph with bipartition VH = L∪R, while U ⊆ EH is a subset of forced
edges. Now, for each vertex v of the left part L, we add the gadget Br(v) depicted to the left side
of Figure 5.5. Denote by H′ the resulting bipartite graph and consider I′ = (H′,U) as an instance
of Ext r-EDS. Let B =

⋃

v∈L Br(v) be the added edges from H to H′. Note that any r-EDS S ′

of H′ must contain B. Moreover, S ′ is a minimal r-EDS of H′ if and only if S ′ \ B is a minimal
EDS of H. �

5.3.2 Parameterized complexity

We now study Ext r-EDS in the framework of parameterized complexity.

Theorem 5.10. For any r ≥ 1, Ext r-EDS with standard parameter (size of forced set U) is

W[1]-hard, even when restricted to bipartite graphs.

Proof. We only consider r = 1. For r ≥ 2, we can use the gadget Br(v) as in Theorem 5.9.
The hardness result comes from a reduction from Ext VC on bipartite graphs which proposed in
Chapter 4. Let I = (G,U) be an instance of Ext VC, where G = (V, E) is a bipartite graph with
partition (V1,V2) of V and U ⊆ V . We build an instance I′ = (G′,U′) of Ext EDS as follows.
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H(c) for clause c = ℓ1 ∨ ℓ2 ∨ ℓ3

1′c

2′c

1c

2c

3c4c5c6c

Br(v)

v

...

...

...

...

r − 1

r − 1

Figure 5.5: The component Br(v) and the clause gadget H(c) of Theorem 5.9. In the clause gadget
H(c), forced edges are drawn in bold.

Let us first construct a new graph G′ = (V ′, E′) with V ′ = V ∪ {xi, yi, zi : i = 1, 2} and

E′ = E ∪
⋃

i=1,2

({xiyi, yizi} ∪ {vxi : v ∈ Vi}
)

.

G′ is bipartite with partition into V ′
1
= V1 ∪ {x2, y1, z2} and V ′

2
= V2 ∪ {x1, y2, z1}. Set U′ =

{ux1 : u ∈ U ∩ V1} ∪ {ux2 : u ∈ U ∩ V2} ∪ {x1y1, x2y2} so, |U′| = |U | + 2. This construction is
illustrated in Figure 5.6. We claim that (G′,U′) is a yes-instance of Ext EDS if and only if (G,U)

is a yes-instance of Ext VC.

v1 v2

v3v4

v5 v6 v5 v1 v2 v6

v3v4

x1 y1 z1

x2 y2 z2

Figure 5.6: (G,U) as an instance of Ext VC is shown on the left, with V1 = {v2, v4, v5} and
V2 = {v1, v3, v6} and U = {v2}. The constructed instance (G′,U′) of Ext EDS is shown on the
right. The vertices and edges of U and U′ are in marked with bold lines.

Suppose (G,U) is a yes-instance for Ext VC; so there exists a minimal vertex cover S for G with
U ⊆ S . The set S ′ = {vx1 : v ∈ V1∩S }∪ {vx2 : v ∈ V2∩S }∪ {x1y1, x2y2} is an edge dominating set
of G′ which includes U′ because S contains U. Since S is minimal, S ′ is minimal, too; observe
that private edges of a vertex v ∈ S ∩ V1 translate to private edges of vx1 ∈ S ′, analogously for
x ∈ S ∩ V2. By construction, yizi is a private edge for xiyi, i = 1, 2.
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Conversely, suppose S ′ is a minimal edge dominating set of G′ containing U′. Since S ′ is
minimal, then for each e ∈ S ′ there is a private edge set S e ⊆ E′, S e , ∅, which is dominated
only by e. Moreover, we have, for i ∈ {1, 2}:

∀v ∈ Vi

(

(vxi ∈ S ′) ⇐⇒ (∀u ∈ V3−i(vu < S ′ ∩ E)
)

since S ′ is minimal and {x1y1, x2y2} ⊆ U′. We now show how to safely modify S ′ such that
S ′ ∩ E = ∅. If it is not already the case, there is some edge, without loss of generality,
e = uv ∈ S ′ ∩ E with u ∈ V1 and v ∈ V2. In particular from the above observations, we deduce
u < U, v < U and S e ⊆ E. Modify S ′ by the following procedure.

• If the private solution set S e \{e} contains some edges incident to u and some edges incident
to v, then e ∈ S ′ will be replaced by ux1 and vx2;

• if every edge in the private solution S e is adjacent to u, replace e in S ′ by ux1, otherwise if
every edge in the private solution S e is adjacent to v, replace e in S ′ by vx2.

The case distinction is necessary to guarantee that S ′ stays a minimal edge dominating set
after each modification step. We repeat this procedure until S ′∩E = ∅. At the end of the process,
every vertex v ∈ V covers the same set of edges as vx1 or vx2 dominates. Hence, by setting
S = {v ∈ V : vx1 ∈ S ′ or vx2 ∈ S ′}, we build a minimal vertex cover of G containing U. �

Remark 5.11. Note that the procedure of local modifications given in Theorem 5.10 does not
preserve optimality, but only inclusion-wise minimality.

5.3.3 Price of extension

Regarding the concept price of extension, we define a new optimization problem in the following.
Indeed, we only attend to the case r = 1 since we mainly propose negative results:

ExtmaxEDS

Input: A connected graph G = (V, E) and a set of edges U ⊆ E.
Solution: Minimal edge dominating set S of G.
Output: Maximize |S ∩ U |.

For ExtmaxEDS, we denote the value of an optimal solution by optExtmaxEDS (G,U). Since
optExtmaxEDS (G,U) = |U | if and only if (G,U) is a yes-instance of the extension variant, hence,
from our hardness result for Ext r-EDS, we deduce that ExtmaxEC is NP-hard. Adapted by
Definition 2.4, we define the concept of price of extension for ExtmaxEDS as follows:

Definition 5.12. For an instance (G,U) of ExtmaxEDS, PoE(S ) of a minimal edge dominating set

S of G is defined by PoE(S ) := |S∩U |
optExtmaxEDS (G,U)

.

We say that ExtmaxEDS admits a polynomial ρ-PoE if for every instance (G,U), we can
compute an edge cover S of G in polynomial time which satisfies PoE(S ) ≥ ρ.

The next result is obtained by a simple approximation preserving reduction from ExtmaxVC

to ExtmaxEDS.
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Theorem 5.13. For any constant ε ∈ (0, 1) and any ρ ∈ Ω
(

nε−1
)

, ExtmaxEDS does not admit a

polynomial ρ-PoE for general graphs of n vertices, unless P = NP.

Proof. Here, we propose a simple approximation preserving reduction from ExtmaxVC to ExtmaxEDS

similar to Theorem 5.10. In Chapter 4, it is shown that ExtmaxVC is hard to approximate within
ratio nε−1 for any constant ε ∈ (0; 1) for a graph of order n. Let (G = (V, E),U) be an instance of
ExtmaxVC, we build an instance (G′ = (V ′, E′),U′) of ExtmaxEDS such that V ′ = V ∪ {v′} and
E′ = E ∪ {uv′ : u ∈ V}. Let U′ = {uv′ : u ∈ U}. So G′ is a graph with |V ′| = |V |+ 1 and |U′| = |U |.

We claim that there is a solution of size k for ExtmaxVC on (G,U) if and only if ExtmaxEDS has
a solution of size k on (G′,U′). Without loss of generality, suppose U , ∅.

Suppose S is a minimal vertex cover of G such that |S ∩U | = k, so S ′ = {uv′ : u ∈ S } is a minimal
edge dominating set where |S ′ ∩ U′| = k. Since S is a minimal vertex cover, so for any u ∈ S ,
there is at least a private edge eu ∈ E which is only covered by u, hence eu will be a private edge
for any uv′ ∈ S ′. Conversely, suppose S ′ is a minimal edge dominating set of G′ containing k

edges of U′. In the following, we will show that how we replace any minimal edge dominating
set S ′ of G′ with a new minimal solution S ′′ including just some edges incident to v′ such that
S ′∩U′ = S ′′∩U′′. The procedure is completely similar to what we did in Theorem 5.10, keeping
all edges incident to v′ in S ′ and replacing any edges non-incident to v′ with some edges incident
to v′ as follows. For an non-incident edge e = xy ∈ S ′, not incident to v′:

• if the private solution set S e \{e} contains some edges incident to x and some edges incident
to y, then e ∈ S ′ will be replaced by xv′ and yv′.

• if every edge in the private solution S e is adjacent to x, replace e in S ′ by xv′, otherwise if
every edge in the private solution S e is adjacent to y, replace e in S ′ by yv′.

Now, by setting S = {u : uv′ ∈ S ′′}, we make a minimal vertex cover of G, such that |S ′′ ∩ U′| =
|S ∩ U |. Since |V ′| = |V + 1| and by considering the in-approximability result of ExtmaxVC

proposed in Chapter 4, the proof is completed. �

In contrast to the last hardness result, we give a simple approximation depending on the
maximum degree ∆(G).

Theorem 5.14. ExtmaxEDS is 1
∆(GU )+1

-approximable for instance (G,U) of maximum degree ∆.

Proof. Let (G = (V, E),U) be an instance of MExtmaxEDS, where the maximum degree of
partial subgraph GU induced by U is bounded by ∆. Compute a maximum matching M of GU and
transform it into a maximal matching M′ of G containing M. It is well known that any maximal
matching is an edge dominating set. Obviously, (∆(GU) + 1)|M| ≥ |U | ≥ optExtmaxEDS (G,U) since
GU is (∆(GU) + 1)-edge colorable. �
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5.4 Ext EM and its generalization

Let G = (V, E) be a graph where the minimum degree is at least r ≥ 1. An r-degree constrained

partial subgraph is defined as an edge subset S ⊆ E such that none of the vertices in V is incident
to more than r edges in S . The problem of finding such a set S of size at least k is termed r-DCPS.
For the particular cases of r = 1, 1-DCPS corresponds to the famous Edge Matching problem.

The optimization problem associated to r-DCPS, denoted Max r-DCPS, consists of finding
an edge subset E′ of maximum cardinality that is a solution to r-DCPS. Max r-DCPS is known to
be solvable in polynomial time even for the edge weighted version [85, 151]. We are considering
the following extension problem associated to r-DCPS.

Ext r-DCPS

Input: A graph G = (V, E) and U ⊆ E.
Question: Does there exists S ⊆ U such that the partial graph GS has maximum degree at
most r and is maximal in G?

We continue this section by proposing some hardness results.

5.4.1 Computational complexity

For our first NP-hardness proof we make a reduction from (3, B2)-Sat.

Theorem 5.15. For every fixed r ≥ 1, Ext r-DCPS is NP-complete in bipartite graphs with

maximum degree max{3, r + 1}, even if U is an induced matching for r ≥ 2 or an induced

collection of paths of length at most 2 for r = 1.

Proof. We consider two different cases: r = 1 and r ≥ 2.

First suppose r = 1. Consider an instance of (3, B2)-sat with clauses C = {c1, . . . , cm} and
variables X = {x1, . . . , xn}. We build a bipartite graph G = (V, E) of maximum degree 3 as
follows:

• For each clause c = x∨ y∨ z, where x, y, z are literals, introduce a subgraph H(c) = (Vc, Ec)

with 8 vertices and 9 edges. Vc contains three specified vertices xc, yc and zc corresponding
to literals of the clause c. Moreover, Uc = {xc1c, yc2c, zc3c} is a set of three forbidden edges
included in H(c). The gadget H(c) is illustrated in the left part of Figure 5.7.

• For each variable x, introduce 12 new vertices. They induce the subgraph H(x) = (Vx, Ex)

illustrated in Figure 5.7. The vertex set Vx contains four special vertices xc1 , xc2 , ¬xc3 and
¬xc4 , where it is implicitly assumed that variable x appears as a positive literal in clauses
c1, c2 and as a negative literal in clauses c3, c4. Finally, there are two sets of free edges (co-
forbidden edges): Fx = {ex} ∪ {2c3

x ¬xc3 , 2c4
x ¬xc4} and F¬x = {e¬x} ∪ {1c1

x xc1 , 1c2
x xc2}. Hence,

the forbidden edges Ux in H(x) are given by U x = Ex \ (Fx ∪ F¬x).
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H(c) for c = x ∨ y ∨ z

xc yc zc

1c 2c 3c

H(x)

1x

1c1
x 1c2

x

xc1 xc2

2x

2
c3
x 2c4

x

¬xc3 ¬xc4

3x

4x

ex e¬x

Figure 5.7: The Gadgets H(c) and H(x). Edges not in U are drawn as thicker lines.

• We interconnect H(x) and H(c), where x is a literal of clause c, by adding edge xcxc if x

appears as a positive literal and edge xc¬xc if x appears as a negative literal. We call these
edges crossing edges.

We set U = E \ (
⋃

c∈C Uc)∪ ((
⋃

x∈X U x). This construction is computable within polynomial time
and G is a bipartite graph of maximum degree 3. We claim that there is a truth assignment of I

which satisfies all clauses if and only if there is a maximal matching S ⊆ U of G.

If T is a truth assignment of I which satisfies all clauses, then we add the set of edges xcxc and Fx

if T (x) = true; otherwise, if T (x) = false, we add the edge xc¬xc and all edges in F¬x. For each
clause c, we choose the literals which satisfy the clause (either one, two or three; let ♯c be the
number of such literals); then, we add 3− ♯c edges saturating vertices 1c, 2c and 3c. For instance,
assume it is only y (thus, ♯c = 1); then, we add two edges saturating vertices 1c and 3c and the
white vertices in the gadget clause H(c). The resulting matching S is maximal with S ∩ U = ∅.
Conversely, assume the existence of a maximal matching S with S ⊆ U. Hence, for each variable
x ∈ X exactly one edge between ex and e¬x belongs to S (in order to block edge 3x4x). If it is
ex ∈ S (resp. e¬x ∈ S ), then Fx ⊂ S (resp. F¬x ⊂ S ). Hence, S does not contain any crossing
edges saturating ¬xc (resp. xc). Now for each clause c = x ∨ y ∨ z, at least one vertex among
xc, yc, zc must be adjacent to a crossing edge of S . In conclusion, by setting T (x) = true if at
least one vertex xc1 or xc2 of H(x) is saturated by S and T (x) = false otherwise, we get a valid
assignment T satisfying all clauses.

Assume now r ≥ 2. The construction is an adaptation of the previous proof. A main building
block of our construction is a subgraph, denoted Bk(v) with k < r, containing (kr) + 1 vertices
which are arranged as a tree of depth 2 with root v such that v has k children within this gadget and
each child w of v has r children. For each child w of v one edge connecting w to a leaf in Bk(v) will
be forbidden in our construction, and we will use FBk(v) to denote a fixed set of k edges in Bk(v)

such that each child of v is adjacent to an edge in FBk(v) and v is not adjacent to an edge in FBk(v).
The left part of Figure 5.8 gives an illustration of Bk(v). The purpose of this construction is that
the root v will connect to other parts of the graph, and the structure of Bk(v) with the forbidden
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Bk(v)

v

...

...

...

...

r

k

H′(x)

x

¬x

x′

¬x′

v1
x

v2
x

...

vr
x

. . .
r − 2

. . .

Figure 5.8: The gadgets Bk(v) and H′(x). Edges from the forbidden subset in FBk(v) are marked
with bold line of the left side and more generally, edges not in U are marked with bold line.

edges will make sure that a maximum r-degree constrained partial subgraph contains all edges
between v and its children in Bk(v), and can consequently only contain r − k edges connecting v

to a vertex outside Bk(v). Namely, if one edge e would be missing from the edges incident to v in
Bk(v) in any maximal edge set E′, say, e = vv′, then E′ would have to include the forbidden edge
incident to v′ by maximality.

Consider now an instance I of (3, B2)-Sat with clauses C = {c1, . . . , cm} and variables X =

{x1, . . . , xn}. We build a bipartite graph G = (V, E) of maximum degree r + 1, together with a set
U of permitted edges (among which a maximal partial subgraph of degree at most r should be
chosen) as follows:

• For each clause c ∈ C, build a clause gadget H(c) = (Vc, Ec) which is a B(r−2)(c) (the root c

of B(r−2)(c) has r − 2 children). Hence, we denote Uc = Ec \ FB(r−2)(c) set of permitted edges
in H(c).

• For each variable x introduce 3r new vertices which induce the primary subgraph denoted
H′(x) = (V ′x, E

′
x). The vertex set V ′x contains four special vertices x, x′,¬x,¬x′. The vertices

x and ¬x have r − 2 distinct vertices in its neighborhoods and x′ and ¬x′ are connected to
r common vertices v1

x, v
2
x, . . . , v

r
x. Also we connect x,¬x to x′,¬x′ respectively with two

forbidden edges in H′(x). The right part of Figure 5.8 gives an illustration of H′(x). By
adding a component B(r−1)(y) for each vertex y ∈ {vi

x : 1 ≤ i ≤ r} and identifying the root
of B(r−1)(y) with y, we construct a new subgraph H(x) = (Vx, Ex). We define the set of
forbidden edges in H(x) by Fx = {xx′,¬x¬x′} ∪ (

⋃

1≤i≤r FB(r−1)(v
i
x)) and hence Ux = Ex \ Fx

denotes the set of permitted edges in H(x).

• We interconnect H(x) and H(c) by adding edge xc if x appears positively in clause c and
¬xc if x appears negatively. These crossing edges are always permitted and collected in
the set Ucross.

Let U = (
⋃

c∈C Uc) ∪ (
⋃

x∈X(Ux) ∪ Ucross be the global set of forced edges. This construction is
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computable in polynomial time, yielding a graph G that is a bipartite graph of maximum degree
r + 1.

We claim that there is a truth assignment T of I which satisfies all clauses if and only if there is a
maximal r-degree constrained partial subgraph GS = (V, S ) where S ⊆ U of G.

If T is a truth assignment of I which satisfies all clauses, a maximal r-degree constrained partial
subgraph GS = (V, S ) with S ⊆ U can be constructed as follows:

1. For each variable gadget H(c), by maximality Uc ⊆ S .

2. For each variable x we add edges according to the assignment as follows: If T (x) = true,
we add vi

xx′ for all 1 ≤ i ≤ r and the two crossing edges connecting ¬x with their respective
clause gadgets. If T (x) = false, we add vi

x¬x′ for all 1 ≤ i ≤ r and the two crossing edges
connecting x with their respective clause gadgets. In both cases by maximality we add
2(r − 2) pendent edges incident to x and ¬x and also all permitted edges in B(r−1)(y) for all
y ∈ {vi

x : 1 ≤ i ≤ r}.

3. At last, for each variable c which has more than one true literal in assignment T , add some
arbitrary crossing edges to c such that dGS

(c) = r.

The resulting subgraph is a maximal r-degree constrained partial subgraph GS = (V, S ) with
S ⊆ U.

Conversely, assume the existence of a maximal r-degree partial subgraph GS = (V, S ) with S ⊆ U.
First, recall that for every gadget Bk(v), we must have E(Bk(v)) \ FBk(v) ⊆ S for k ∈ {r − 1, r − 2}.
Moreover, for each variable gadget H(x), at least one of the pairs of crossing edges incident to
x and ¬x have to be in S (by maximality). Hence we set T (x) = true if both crossing edges
incident to ¬x are in S and otherwise we set T (x) = false (if both, we choose arbitrarily one of
them). This assignment is valid and since for each clause c, at most two crossing edges incident
to vertex c are in S (GS is a subgraph with maximum degree r), then T satisfies all clauses of
I. �

In Theorem 5.15, we showed that, for every fixed r ≥ 2, Ext r-DCPS is hard even when
the set of forbidden edges E \ U is an induced matching. In the following, we prove the same
result does not hold when r = 1, by reducing this problem to the problem of finding a maximum
matching in a bipartite graph.

Proposition 5.16. Ext 1-DCPS is polynomial-time decidable when the forbidden edges U = E\U
form an induced matching.

Proof. Here, we reduce this problem to the problem of finding a maximum matching in a
bipartite graph. Let G = (V, E) along with U ⊆ E be an instance of Ext 1-DCPS where the
partial graph GU induced by E \U is a collection of disjoint edges and isolated vertices. Consider
the bipartite graph G′ = ((L ∪ R), E′) build as follows: the vertex set is L = {le : e < U} and
R = {rv : v ∈ V \ V(E \ U)}; lerv ∈ E′ if and only if vx ∈ E or vy ∈ E with e = xy < U.
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Now, we claim that, (G,U) is a yes-instance of Ext 1-DCPS if and only if there is a matching M′

of G′ with |M′| = |L|.

The condition is trivially sufficient because a matching M′ of G′ with |M′| = |L| corresponds to a
matching M of G which is adjacent to every edge of E \ U. Hence, by considering any maximal
matching S of G which extend M, we get S ⊆ U. The condition is necessary. Suppose S is a
maximal matching of G such that S ⊆ U; this implies that every edge e = xy ∈ E \U is adjacent
to some edge e′ = xv (or yv) of S . Since GU is an induced matching, v < V(E \U) or equivalently
lerv ∈ E′. Hence, this subset of edges lerv ∈ E′ for e ∈ (E \ U) forms a matching M′ in G′

saturating all vertices in L. �

Remark 5.17. Proposition 5.16 can be extended to the case where U is a matching and GU does
not contain an alternating path of length at least 5. The complexity of Ext 1-DCPS when U is a
matching remains unsettled.

In Chapter 4, several results are proposed for Ext IS and Ext VC in bipartite graphs, planar
graphs, chordal graphs, etc. Here, we deduce a new result for a subclass of claw-free graphs.

Corollary 5.18. Ext IS is NP-complete restricted to line graphs of bipartite graphs of maximum

degree 3.

Proof. Let G = (V, E) be a bipartite graph of maximum degree 3 and L(G) = (V ′, E′) its line
graph. It is well known that any matching S of G corresponds to an independent set S ′ = L(S ) of
G′ and vice versa. In particular, S is a maximal matching of G if and only if L(S ) is a maximal
independent set. Hence, (G,U) is a yes-instance of Ext 1-DCPS if and only if (L(G), L(U)) is a
yes-instance of Ext IS. Theorem 5.15 with r = 1 concludes the proof. �

Corollary 5.19. Ext VC is NP-complete restricted to line graphs of bipartite graphs of maximum

degree 3.

In the following, we propose a reduction from 4P3C3Sat to Ext r-DCPS for the case that
r = 1. The Ext 1-DCPS is same as Ext EM.

Theorem 5.20. Ext 1-DCPS is NP-complete for planar bipartite subcubic graphs.

Proof. The proof is based on a reduction from 4P3C3Sat. Let I = (C,X ) be an instance of
4P3C3Sat, where C = {c1, . . . , cm} and X = {x1, . . . , xn} are the set of clauses and variables of I

respectively. W.l.o.g. suppose that variable xi appears in clauses c1, c2, c3, c4 of instance I such
that in the induced (embedded) subgraph Gi = G[{xi, c1, c2, c3, c4}] of the graph BP defined in
Definition 1.1, c1xi, c2xi, c3xi, c4xi is an anti-clockwise ordering of edges around xi. By looking
at Gi and considering xi appears positively and negatively, the construction should satisfy one of
the following cases:

• case 1: xi ∈ c1, c2 and ¬xi ∈ c3, c4;

• case 2: xi ∈ c1, c3 and ¬xi ∈ c2, c4;
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Figure 5.9: Variable gadgets H(xi) of Theorem 5.20. Cases (1), (2), (3) are corresponding to
H(xi), depending on how xi appears (negated or non-negated) in the four clauses. Edges not in
Uxi

are drawn bold. Crossing edges are marked with dashed lines.

• case 3: xi ∈ c1, c2, c3 and ¬xi ∈ c4.

Note that all other cases are included in these by rotations or replacing xi with ¬xi or vice versa.

We build a planar bipartite graph H = (VH, EH) with maximum degree 3 together with a set
U ⊆ EH of permitted edges as an instance of Ext 1-DCPS as follows.

• For each clause c j, we introduce a clause gadget H(c j) together with a permitted edge set
Uc j

which is already explained in detail in Theorem 5.15 for r = 1.

• For each variable xi depending on how xi appears (negated or non-negated) in clauses,
we introduce 3 different gadgets H(xi) together with a set of permitted edges Uxi

which is
depicted in Figure 5.9.

• We also interconnect H(xi) to H(c j), where xi appears positively or negatively in clause c j

by crossing edges like in the proof of Theorem 5.15. Let Ucross be the set of all crossing
edges.

Let U = (
⋃

c j∈C Uc j
) ∪ (

⋃

xi∈X Uxi
) ∪ Ucross. This construction computes in polynomial time a

planar bipartite graph of maximum degree 3. We now claim that (H,U) is a yes-instance of Ext

1-DCPS if and only if T is a satisfying assignment of I.

Suppose T is a truth assignment of I which satisfies all clauses. We produce a maximal edge
matching S ⊆ U as follows: the method of choosing edges from clause gadgets and crossing
edges is already explained in Theorem 5.15 for r = 1, so we here just show which edges of each
H(xi) should be in S :

• If H(xi) complies with case (1), we add {mil
1
i , h

1
i f 1

i , h
2
i f 2

i } (resp. {mil
2
i , g

1
i t1

i , g
2
i t2

i }) if T (xi) =

true (resp. T (xi) = false),
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• If H(xi) complies with case (2), we add { f 1
i h1

i , p1
i p3

i
,m2

i r2
i , f 2

i h2
i , p5

i
p7

i
, l1

i m1
i } if T (xi) = true;

if T (xi) = false, we add {p2
i p3

i
, t1

i g1
i , l

2
i m2

i , p6
i
p7

i
, t2

i g2
i ,m

1
i r1

i },

• If H(xi) complies with case (3), we add {l1
i m1

i , l
2
i m2

i , l
3
i
m3

i
, fihi} if T (xi) = true; otherwise,

if T (xi) = false, we add
⋃

1≤ j≤3{r
j

i
m

j

i
, t

j

i
g

j

i
}.

Conversely, suppose S ⊆ U is a maximal edge matching of H. Because of maximality, for each
clause gadget H(x j) there exists at least one crossing edge in S incident to a vertex of H(x j). This
means that there is an assignment T which satisfies all clauses of I. We now show that T is a
valid assignment:

• If H(xi) complies with case (1), by maximality either l1
i mi or l2

i mi (not both) is in S , hence
we set T (xi) = true (resp. T (xi) = false) if l1

i m1
i ∈ S (resp. l2

i mi),

• If H(xi) complies with case (2), by maximality either S 1 = {p1
i p3

i
,m2

i r2
i , p5

i
p7

i
, l1

i m1
i } or S 2 =

{p2
i p3

i
, l2

i m2
i , p6

i
p7

i
,m1

i r1
i } (not both) is in S , so we set T (xi) = true (resp. T (xi) = false)if

S 1 ∈ S (resp. S 2 ∈ S ),

• If H(xi) complies with case (3), by maximality either S 1 =
⋃

1≤ j≤3{l
j

i
m

j

i
} or S 2 =

⋃

1≤ j≤3{r
j

i
m

j

i
}

(not both) is in S , hence we set T (xi) = true (resp. T (xi) = false) if S 1 ∈ S (resp. S 2 ∈ S ).

�

5.4.2 Parameterized complexity

We now study Ext r-DCPS in the framework of parameterized complexity. For Ext r-DCPS,
we can exploit structural properties of yes-instances and use the polynomial solvability of Simple

b-Matching to show the following.

We are dealing with the dual parameterization of EXT r-DCPS. It is sometimes more con-
venient to think about this problem as follows: Given is a graph G = (V, E) and an edge set
U = E \ U; the question is if there exists an inclusion-wise maximal edge subset S ⊆ E of G

such that the partial subgraph GS has maximum degree r and avoids U, i.e. S ∩ U = ∅. Our
parameter is |U |. Assume there is an inclusion-wise maximal partial subgraph GE′ = (V, E′) of G

with maximum degree r such that E′ ∩ U = ∅. The next property is quite immediate.

Lemma 5.21. The set {v ∈ V : v is incident to U and to r edges in E′} is a vertex cover of

GU = (V,U).

Proof. By contradiction, suppose there is an edge xy ∈ U such that x and y are both incident to
less than r edges in E′. Then E′ ∪ {e} is a new solution of r-DCPS; this is a contradiction to the
maximality of E′. �

We now introduce some notations useful in the following. For a minimal vertex cover V ′ of
GU , let (G′,w′) be the edge-weighted graph of (V,U) defined as follows: for v ∈ V , d′(v) = 0

if v < V ′, and d′(v) = 1 if v ∈ V ′. We define w′, the edge weight by: w′(e) = d′(x) + d′(y) for
e = xy ∈ U. Figure 5.10 proposes an illustration on the construction of (G′,w′) from an original
graph G and a specified vertex cover V ′ of GU .
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Figure 5.10: Graph G = (V, E) and forbidden set U ⊂ E (edges are marked with bold line). A
vertex cover V ′ of GU (vertices with a bold border) is shown on the left side. On the right side,
the weighted graph G′ = (V,U) built from G and V ′.

Theorem 5.22. There is a maximal r-DCPS set S for G such that S ∩ U = ∅ if and only if there

is a vertex cover V ′ of GU such that there exists an r-DCPS set S ′ for the corresponding weighted

graph G′ such that w′(S ′) ≥ |V ′| × r.

Proof. Let G = (V, E) be a graph and let U ⊆ E. Let GS = (V, S ) be any maximal partial
subgraph with maximum degree r of G such that S ∩ U = ∅ (if any). First observe that since S

is an r-DCPS set for G which avoids U, it is is also an r-DCPS set for G′. From Lemma 5.21,
we know V ′ = {v ∈ V : v is incident once to U and r times to S } is a vertex cover of GU , and
let V ′′ ⊆ V ′ be a minimal vertex cover of GU . Hence, for the graph G′′ with edge-weight w′′

associated to the minimal vertex cover V ′′ of GU , it follows that w′′(S ) ≥ ∑

v∈V′′ dGS
(v) = |V ′′| × r.

Conversely, assume that V ′ is a minimal vertex cover of GU such that there exists an r-DCPS set
S ′ for G′ such that w′(S ′) ≥ |V ′| × r. By the definition of the edge-weights w′, it follows that
w′(S ′) =

∑

v∈V′ dGS ′ (v). As the subgraph GS ′ has maximum degree r, the weight w′(S ′) ≥ |V ′| × r

is only possible if dGS ′ (v) = r for all v ∈ V ′. Greedily extending S ′ to an r-DCPS set for the
original graph G hence gives a solution for Ext r-DCPS on (G,U); observe that the edges in U

can not be chosen by the greedy procedure, as each edge in U is already incident to at least one
vertex in V ′ which already has degree r. �

Using the characterization given in Theorem 5.22, the next result is straightforward.

Theorem 5.23. Ext r-DCPS, with dual parameter, is in FPT.

Proof. Given an instance (G,U) of Ext r-DCPS, consider an algorithm that lists all minimal
vertex covers V ′ of GU and checks if the optimal value of Max r-DCPS on (G′,w′) is at least
|V ′| × r. According to Theorem 5.22, this procedure suffices to decide if there exists an r-DCPS

set S with S ∩ U = ∅, i.e. if (G,U) is a yes-instance for Ext r-DCPS.
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The running time is dominated by the procedure that lists all minimal vertex covers as solving
Max r-DCPS can be done in polynomial time by [85]. As the number of edges in a graph is
an upper bound on any minimal vertex cover of that graph, it is clear that we can enumerate all
minimal vertex covers of GU in time O∗(2|U |) by [59, 80, 82]. �

When bounding the degree of the graphs, we can consider an even smaller parameter and
obtain feasibility results.

Proposition 5.24. For graphs with maximum degree r + 1, Ext r-DCPS is polynomial-time

decidable when r = 1 and is in FPT with respect to the number of isolated edges in U for r ≥ 2.

Proof. Consider the partial subgraph G′ = GU = (V, E\U), i.e. the graph induced by the forbidden
edges. Since maximum degree of G is r + 1, so if G′ contains a triangle or a path of length at
least 3, the answer is no. Therefore, we can suppose that G′ is a collection of stars. If one leaf of
a star of G′ has a degree at most r in G, then this star might be an isolated edge in G′ and it is
exactly for one of these two endpoints (otherwise, the answer is no). Hence, let PG′ be the set of
the stars which are isolated edges in G′ and such that both endpoints are of degree r + 1 in G.

• For r ≥ 2, for the set of stars of G′ with more than one edge, leaves and center are clearly
determined and for for each single edge of G′ not in PG′ , the endpoint with degree less than r

is chosen as a center. Now, for each star in PG′ we have to determine one of the endpoints as a
center and the other one as a leaf. We can now build the set L of leaves for all stars of G′. Let
E′L = {uv ∈ E : u ∈ L} and G′L = (V, E′L). We check for all possible labelings, if there is a label
which satisfies two following conditions the answer is yes, else the answer is no.

1. for each v ∈ L, dG′
L
=(v) = r + 1.

2. for each vertex v ∈ V \ L, dG′
L
(v) ≤ r.

• For r = 1, we construct a new graph H by omitting all sets of vertices {u′i , ui, vi,wi,w
′
i} for the

stars [ui, vi,wi] of G′ (with center vi) where u′i ,w
′
i are neighbors of the leaves ui,wi (without vi).

Notice at each time u′i , v
′
i have to be disjoint from one star to another one, otherwise the answer is

no. Now H is a collection of paths (maybe trivial) and cycles where the forbidden edges induce
a matching. Remove from H all cycles and the paths where both end edges are in U. Now H is a
collection of paths where at least one of end edges is forbidden. For all of these paths, start from
one side and satisfy the maximality by assigning the first possible edge to a forbidden edge, if
there is a path does not satisfy the maximality, the answer is no, else the answer is yes. �

Remark 5.25. For graphs with maximum degree r + 1, Ext r-DCPS with r ≥ 2 is parameterized
equivalent to Sat with respect to the number of isolated edges in E \U and variables, respectively.

5.4.3 Price of extension

Considering Ext 1-DCPS, we need to adapt the notion of the price of extension because we have
to consider subset of forbidden edges (i.e. U); more precisely, we want to increase |U | as few as
possible. Hence, the optimization problem called Min Ext 1-DCPS is defined as follows:
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Extmin1-DCPS

Input: A graph G = (V, E) and a set of edges U ⊆ E.
Solution: Maximal matching S of G.
Output: Minimize |U ∪ S |.

For Extmin1-DCPS, we denote the value of an optimal solution by optExtmin1−DCPS (G,U). Since
optExtmin1−DCPS (G,U) ≤ |U | with equality if and only if (G,U) is a yes-instance of Ext 1-DCPS,
we deduce that Extmin1-DCPS is NP-hard. Adapted by Definition 2.4, we define the concept of
price of extension for ExtmaxEC as follows:

Definition 5.26. For an instance (G,U) of Extmin1-DCPS, PoE(S ) of a maximal matching S of

G is defined by PoE(S ) := |S∪U |
optExtmin1−DCPS (G,U)

.

We say that Extmin1-DCPS admits a polynomial ρ-PoE if for every instance (G,U), we can
compute a matching S of G in polynomial time which satisfies PoE(S ) ≤ ρ. In the particular case
U = ∅, Extmin1-DCPS is exactly the well known problem minimum maximal matching denoted
by Min-Max Matching where the goal is to find the smallest maximal matching. In [73, 75], it
is shown that Min-Max Matching is hard to approximate with a factor better than 2 and 1.18,
assuming Unique Games Conjecture (UGC) and P , NP, respectively. We complement this
bound by showing the following.

Theorem 5.27. A 2-approximation for Extmin1-DCPS can be computed in polynomial time.

Proof. Let (G = (V, E),U) be an instance of Extmin1-DCPS. The approximate solution for
Extmin1-DCPS consists in outputting a maximal matching M′ of G in the following way: we build
first a maximum matching in GU and then we extend it into a maximal matching of the whole graph.
Let M∗ be an optimal solution of Extmin1-DCPS with value optExtmin1−DCPS (G,U) = |U ∪ M∗|,
i.e. a maximal matching of G containing a minimum number of edges outside of U. For a subset
A ∈ {U,U}, and a matching M, let MA = A ∩ M. Now we claim that M′ is a 2-approximation
algorithm for Extmin1-DCPS.

By the decreasing of PoE in term of U, and considering that |M∗
U | ≤ |U | together with |M∗

U | ≤ |M′
U |

(M′
U is a maximum matching in GU), we deduce:

PoE =
|U | + |M′

U
|

|U | + |M∗
U
| ≤
|M∗

U | + |M′
U
|

|M∗
U
| + |M∗

U
| ≤
|M′|
|M∗| (5.1)

It is well known that that |M1| ≤ 2|M2| for any pair M1,M2 of maximal matchings. So in
particular, putting this inequality with M1 = M′ and M2 = M∗ in inequality (5.1), gives the
expected result. �

5.5 Conclusion

In this chapter, we considered the extension variant of some edge graph problems. Given a graph
G = (V, E) and a subset U ⊆ E as an input of an anti-hereditary (resp. a hereditary) problem
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Π, it is asked, if there exists a minimal (resp. maximal) solution S such that U ⊆ S (resp.
U ⊇ S ). Particularly, we considered the extension variant of the generalizations of Edge Cover,
Matching and Edge Dominating Set, denoted by Ext r-EC, Ext r-EDS and Ext r-DCPS

respectively.

We have shown all the problems are NP-complete for graphs of maximum degree r + 2,
moreover we proved for the particular case r = 1, all of them are NP-complete for sub-cubic
planar bipartite instances. We also studied the parameterized complexity of theses problems,
with parameter |U | or |U |. We proposed some positive parameterized results, Ext r-EC and Ext

r-EDS (resp. Ext r-DCPS) with respect to the standard parameter (resp. the dual parameter) are
in FPT. Table 5.1 summarizes the complexity and parameterized results obtained for the these
problems.

NP-completeness Parameterized

r ≥ 2 r = 1 Complexity

Ext r-EC bipartite graphs with ∆ = r + 2 sub-cubic planar bipartite graphs FPT by |U |

Ext r-EDS planar bipartite graphs sub-cubic planar bipartite graphs W[1]-hard by |U |
with ∆ = r + 2

Ext r-DCPS bipartite graphs with ∆ = r + 1 sub-cubic planar bipartite graphs FPT by |Ū |

Table 5.1: The computational complexity and parameterized results.

Furthermore, we have discussed the price of extension (PoE), measuring the distance of U

to the closest set that can be extended, which results in natural optimization problems related to
extension problems for which we discuss polynomial-time approximability.

Our results should be useful in particular to the (input-sensitive) enumeration algorithms
community that has so far not put that much attention on edge graph problems; we are only aware
of [95] in this direction. Conversely, output-sensitive enumeration algorithms, say, for matchings
have been around of more than twenty years [157]. Some thoughts on edge cover enumeration
can be found in [160].
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The question "if a given partial solution to a problem can be extended" occurs in many
algorithmic approaches for optimization problems. In Chapters 4 and 5, we studied some vertex
and edge graph optimization problems in this framework. However, there exists a great number of
NP optimization problems like string problems, logic problems and graph coloring problems, etc,
whose extension variants are interesting. Actually, many of these problems have been considered
in the framework of extension problems [23, 109, 84, 7, 8, 113, 139, 109, 146, 14, 159, 138,
23] however, there is a crucial difference with our approach embodied by the necessity of the
minimality condition in our framework. Our main intention in this chapter is to propose a general
framework of such extension problems. This framework is based on a partial order approach,
reminiscent of what has been endeavored for max-min or min-max framework in [136]. In essence,
we consider optimisation problems in NPO with an additionally specified set of partial solutions
which we call pre-solutions (including the set of solutions) and a partial order on those. This
partial order ≤ reflects not only the notion of extension but also of minimality as follows. For a
pre-solution U and a solution S , S extends U if U ≤ S . A solution S is minimal if there exists
no solution S ′ , S with S ′ ≤ S . The resulting extension problem is defined as the task to decide
for a given pre-solution U, if there exits a minimal solution S which extends U.

The chapter is organized as follows. We introduce a general framework for extension problems
based on partial order in Section 6.1. In Section 6.2, we will present some interesting partial
orders for NP optimization problem. We finish this chapter, by proposing some new hardness
results for the extension version for problems like Bin Packing, Feedback Vertex Set and
Feedback Edge Set.
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6.1 A General framework of extension problems

We begin here by giving a general definition of partial order.

Definition 6.1. A relation ≤ is a partial order on a set X if it has:

• for each S , S ′ ∈ X, S ≤ S ′ and S ′ ≤ S implies S = S ′,

• for each S , S ′, S ′′ ∈ X, S ≤ S ′ and S ′ ≤ S ′′ implies S ≤ S ′′.

In order to formally define our concept of minimal extension, we define what we call monotone

problems which can be thought as problems in NPO with the addition of a set of pre-solutions
(which includes the set of feasible solutions) together with a partial ordering on this new set.
Formally we define such problems as 5-tuples Π = (I, presol, F,≤,m) (where I, F,m with an
additional opt ∈ {min,max} yields an NPO problem) is defined by:

• I is the set of instances, recognizable in polynomial time.

• For x ∈ I, presol(x) is the set of pre-solutions and, in a reasonable representation of
instances and pre-solutions, the length of the encoding of any y ∈ presol(x) is polynomially
bounded in the length of the encoding of x.

• For x ∈ I, F(x) is the set of feasible solutions, which is a subset of presol(x)

• There exists an algorithm which, given (x, y), decides in polynomial time if y ∈ presol(x);
similarly there is an algorithm which decides in polynomial time if y ∈ F(x). This is
important for the purposes of showing membership in NP or NPO.

• For x ∈ I, ≤x is a partial ordering on presol(x) and there exists an algorithm that, given an
instance x and y, z ∈ presol(x), can decide in polynomial time if y ≤I z.

• For each x ∈ I, the set of solutions F(x) is upward closed with respect to the partial ordering
≤I , i.e. U ∈ F(x) implies U′ ∈ F(x) for all U,U′ ∈ presol(x) with U ≤x U′.

• m is a polynomial-time computable function which maps pairs (x, y) with x ∈ I and
y ∈ presol(x) to non-negative rational numbers; m(x, y) is the value of y.

• For x ∈ I, m(x, ·) is monotone with respect to ≤x, meaning that the property y ≤x z for some
y, z ∈ presol(x) either always implies m(x, y) ≤ m(x, z) or m(x, y) ≥ m(x, z).

The requirement that the set of solutions is upward closed with respect to the partial ordering
relates to independence systems, see [151].

Definition 6.2. Let Π = (I, presol, F,≤,m) be a monotone problem. For an instance x ∈ I, the

set of minimal feasible solutions of x denoted by µ(x,≤x) is:

µ(x,≤x) = {S ∈ F(x) : ((S ′ ≤x S ) ∧ (S ′ ∈ F(x))→ S ′ = S } .
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Further, given U ∈ presol(x), we define ext(x,U) = {U′ ∈ µ(x,≤x) : U ≤x U′} to be the set of
extensions of U. Sometimes, ext(x,U) = ∅, which makes the question of the existence of such
extensions interesting. Hence, finally, the extension problem for Π, written Ext Π, is defined as
follows:

Ext Π

Input: An instance x ∈ I, a pre-solution U ∈ presol(x) and a partial order ≤x.
Question: Does x have a ≤x-minimal solution S , such that U ≤x S ?

Although we strongly linked the definition of monotone problems to NPO, the corresponding
extension problems do not generally belong to NP (in contrast to the canonical decision problems
associated to NPO problems). Consider the monotone problem Πτ = (I, presol, F,≤,m) with:

• I = {x : x is a Boolean formula}.

• For a formula x ∈ I on n variables, presol(x) = F(x) = {φ | φ : {1, . . . , n} → {0, 1}}.

• For φ, ψ ∈ presol(x), φ ≤x ψ if either φ = ψ, or assigning variables according to ψ satisfies
x while an assignment according to φ does not.

• m ≡ 1 (plays no role for the extension problem)

The associated extension problem Ext Πτ corresponds to the co-NP-complete Tautology

Problem in the following way: Given a Boolean formula x which, w.l.o.g., is satisfied by the
all-ones assignment ψ1 ≡ 1, it follows that (x, ψ1) is a yes-instance for Ext Πτ if and only if x is a
tautology, as ψ1 is in µ(x,≤x) if and only if there does not exist some ψ1 , φ ∈ F(x) with φ ≤x ψ1,
so, by definition of the partial ordering, an assignment φ which does not satisfy x. Consequently
Ext Πτ is not in NP, unless co-NP = NP.

In Chapter 4 and Chapter 5, we have mentioned some well-known monotone graph problems,
for which I is the set of undirected graphs, denoting instances by x = G(V, E), and m(x,U) = |U |
for all U ∈ presol(x). In the following, we remind all of these problems:

• Vertex Cover (VC): ≤x=⊆, presol(x) = 2V , S ∈ F(x) if and only if each e ∈ E is incident
to at least one v ∈ S ;

• Edge Cover (EC): ≤x=⊆, presol(x) = 2E, S ∈ F(x) if and only if each v ∈ V is incident to
at least one e ∈ S ;

• Dominating Set (DS): ≤x=⊆, presol(x) = 2V , S ∈ F(x) if and only if N[S ] = V;

• Edge Dominating Set (EDS): ≤x=⊆, presol(x) = 2E, S ∈ F(x) if and only if each edge
belongs to S or is adjacent to some e ∈ S .

• Connected Vertex Cover (CVC): ≤x=⊆, presol(x) = 2V , S ∈ F(x) if and only if each
e ∈ E is incident to at least one v ∈ V and G[S ] is connected.
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• Independent Set (IS): ≤x=⊇, presol(x) = 2V , S ∈ F(x) if and only if G[S ] contains no
edges;

• Edge Matching (EM): ≤x=⊇, presol(x) = 2E, S ∈ F(x) if and only if none of the vertices
in V is incident to more than one edge in S ;

• Non Separating Independent Set (NSIS): ≤x=⊇, presol(x) = 2V , S ∈ F(x) if and only
if S is an independent set and it is not a cut-set of G.

We hence arrived at problems like Ext VC (resp. Ext IS), where the instance is specified by
a graph G = (V, E) and a vertex set U, and the question is if there is some minimal vertex cover
S ⊇ U (resp. some maximal independent set I ⊆ U), or for the problems like Ext EC (resp. Ext

EM), where the instance is specified by a graph G = (V, E) and an edge set U, and the question
is if there is some minimal edge cover S ⊇ U (resp. some maximal matching M ⊆ U). So far,
we only considered problems with ≤=⊆ or ≤=⊇. In [136], a rich source of instance ordering for
different problems were proposed. Some of the most interesting is introduced in the following.

6.2 Some partial orders

Some partial orders related to maximum-minimal and minimum-maximal optimization problems
were proposed by Manlove in [136]: He applied the partial order set inclusion on 12 distinct
covering and independent problems. He also proposed many other partial orders on different
types of optimization problems, some of them are represented in the following:

Coloring problems. two partial orders on the set of all proper coloring for a given graph G:

• The partial order "partition merge" gives rise to Achromatic Number problem which is
finding a proper coloring of G with maximum number of colors such that every pairs of
colors appears at the endpoints of some edge of G.

• The partial order "partition redistribution" gives rise to Bchromatic Number problem
which is finding a proper coloring with maximum number of colors such that for each color
i, there is a distinguished vertex of color i which has the vertices of every colors in his
neighborhood.

Graph problems with another partial order. the partial order (k − 1, k)-replacement is applied
to the set of all independent set for a given graph G = (V, E).

• An independent set S ⊆ V is maximal respect to the partial order (k − 1, k)-replacement if
removing of any r − 1 vertices from S , together with adding of any r vertices from V \ S

(for any r ≤ k), leads to a non-independent set.

String problems. the partial orders "subsequence", "substring", "supersequence" and "super-

string" concerning source string problems.
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• For a given set of strings S , s is a maximal common subsequence (resp. substring) of S

if (i) s is a subsequence (resp. substring) of each string t ∈ S , (ii) there does not exist a
common string s′, supersequence (resp. superstring) of s. The definition of minimality is
analogous.

Data storage problems. two partial orders concerning a source well-known optimization problem
Bin Packing. The input of Bin Packing consists of a set X = {x1, . . . , xn} of items, a weight
function w that associates non-negative integers to items and a positive integer B which shows
the capacity of every bin. A feasible solution is a partition π of X such that, for each set Y ∈ π,
∑

y∈Y w(y) ≤ B. The traditional aim is to find a feasible π such that |π| is minimized.

• given an instance of minimum bin packing, a partition π is minimal respect to the partial
order "partition merge", if it is not possible to merge the content of any two bins of π into
a single bin, without exceeding the bin capacity.

• a partition π is minimal respect to the partial order "partition redistribution", if it is not
possible to redistribute the content of a bin of π amongst the remaining bins, without
exceeding the bin capacity.

Logic problems. two partial orders "truth assignment-1" and "truth assignment-2" concerning
source logic problem Sat.

• for an instance I = (C,X ) of Sat, let ≤I="truth assignment-1", then for two truth assign-
ments f , g of I, f ≤I g if g satisfies all of clauses of C satisfied by f , plus at least one more,
and f , g give the same assignment for all the variables which appear in the true clauses of
f .

• the partial order "truth assignment-2" has the same definition of "truth assignment-1",
but not requiring the two truth assignments f , g to have the same assignments for all the
variables which appear in the true clauses of f .

6.3 Some new extension problems

In this section, we introduce some new extension problems which didn’t fit in Chapters 4 and 5
and proposed some hardness results for each of them.

A feedback vertex set in a graph G = (V, E) is a subset S of vertices such that G[V \ S ]

is acyclic. Two variants of this problem, depending on G is directed or undirected, have been
introduced in the literature. In [88], it is shown that it is NP-hard to find a feedback vertex set
or feedback arc set of minimum size for a given graph. In the following, we formally define the
extension variant of feedback vertex set and directed feedback vertex set problems denoted by
Ext FVS and Ext DFVS respectively.
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Figure 6.1: Gadget H(e) for e = xy. The vertex ve
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is in U′

Ext FVS

Input: A graph G = (V, E) together with a pre-solution U ⊆ V .
Question: Does G have a minimal feedback vertex set S with S ⊇ U?

Ext DFVS

Input: A directed graph G = (V, A) together with a pre-solution U ⊆ V .
Question: Does G have a minimal feedback vertex set S with S ⊇ U?

Here, we show that the extension variant of both problems are NP-hard in graphs of bounded
degree.

Theorem 6.3. Ext FVS is NP-complete in bipartite graphs of maximum degree 6.

Proof. We make a simple reduction from Ext VC to Ext FVS. Let (G,U) be an instance of Ext

VC where G = (V, E) is a bipartite graph of maximum degree 3 and U ⊆ V is a forced set, we
make a new graph G′ = (V ′, E′) by adding a gadget H(e) = (Ve, Ee) containing 4 new vertices
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An illustration of gadget H(e) for e = xy is described in Figure 6.1. Obviously, G′ is a bipartite
graph of maximum degree 6 and can be made easily from G in polynomial time. Now, we claim
that (G,U) is a yes-instance of Ext VC if and only if (G′,U′) with U′ = U ∪ {ve

3
: e ∈ E} is a

yes-instance of Ext FVS.

Suppose S is a minimal vertex cover containing U, then easily one can see that S ′ = S∪{ve
3
: e ∈ E}

is a minimal feedback vertex set of G′ containing U′. Conversely, suppose that S be a minimal
feedback vertex containing U′, by minimality, for each e ∈ E, S ∩ Ve = ve

3
, so to remove all the

cycles of the graph, at least one of x, y is in S . �

Theorem 6.4. Ext DFVS is NP-complete in bipartite graphs of maximum in-degree and out-

degree 3.
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Proof. For Ext DFVS, we use a reduction from Ext VC adapted by Karp’s reduction [118]. Let
(G,U) with G = (V, E) and U ⊆ V be an instance of Ext VC, we transform G into a digraph
G′ = (V, A), with the same vertices as G and replacing two arcs (u, v) and (v, u) to A for each
edge uv ∈ E. Note that G′ is bipartite of maximum in-degree and out-degree 3 if G is bipartite of
maximum degree 3. For each edge uv ∈ E, at least one of vertices u or v is in any minimal vertex
cover. Further, since for each edge in G, we make a directed cycle in G′, so for each edge uv ∈ E

at least one of vertices u or v is in any minimal directed feedback vertex set of G′. Hence, it is
easy to see that (G,U) is a yes-instance of Ext VC if and only if (G′,U) is a yes-instance of Ext

DFVS. �

A feedback edge set in a graph G = (V, E) is a subset S of edges such that the deletion of
G[V \S ] is acyclic. Two variations of the problem, depending on G is directed or undirected have
been considered in the literature. In [90], it is shown that Min Directed Feedback Edge Set

(Min DFES for short) is NP-hard in graphs of maximum in-degree and out-degree 3, while Min

Feedback Edge Set (Min FES for short) in polynomial solvable even for edge weighted graph.
Actually the former problem is equivalent to find a spanning tree of maximum size for a given
edge weighted graph. The extension variant of feedback edge set and directed feedback edge set,
denoted by Ext FES and Ext DFES are as follows:

Ext FES

Input: A graph G = (V, E) together with a pre-solution U ⊆ E.
Question: Does G have a minimal feedback edge set S with S ⊇ U?

Ext DFES

Input: A directed graph G = (V, A) together with a pre-solution U ⊆ A.
Question: Does G have a minimal feedback edge set S with S ⊇ U?

Theorem 6.5. Ext DFES is NP-complete in bipartite graphs.

Proof. We propose a reduction from Ext VC adapted by the reduction given in [118]. Let
(G,U) with G = (V,G) and U ⊆ V be an instance of Ext VC, we transform G into a digraph
GA = (VA, A) by duplicating each vertex of G and by adding a set of circuit of size 2. More
precisely, VA = V ∪ {v′ : v ∈ V} and the arc set A = A′ ∪ A′′ where A′ = {(u, u′), (v, v′)} and
A′′ = {(u, v′), (v′, u), (v, u′), (u′, v) : e = uv ∈ E}. An illustration of this reduction for an edge
e = uv in depicted in Figure 6.2. Finally, we define a forced set of arcs UA = {(u, v′), (v, u′) : e =

uv ∈ E} ∪ {(u, u′) : u ∈ U}. Obviously, GA is bipartite of maximum in-degree and out-degree 4 if
G is bipartite of maximum degree 3. Now, we claim that (G,U) is a yes-instance of Ext VC if
and only if (GA,UA) is a yes-instance of Ext DFES.

Suppose S is a minimal vertex cover of G containing U. By setting S ′ = {uu′ : u ∈ S } ∪ UA, we
obtain a minimal directed feedback edge set of GA. Conversely, if S is a minimal directed feedback
edge set of GA containing UA. Note that any minimal feedback edge set of GA that includes UA

cannot contain any other edge from A′′. Hence, easily by setting S ′ = {u ∈ V : uu′ ∈ S } we have
a minimal connected vertex cover of G which contains U. �
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u u′

vv′

Figure 6.2: Example of construction of GA if G is a single edge e = uv. Arcs drawn in bold are
in UA.

Theorem 6.6. Ext FES is polynomial solvable.

Proof. Note that a feedback edge set S of a given connected graph G = (V, E) is minimal if
the partial graph (V, E \ S ) is a tree. Hence, for a given connected graph G = (V, E) and a
subset of forced edges U ⊆ E, there is a minimal feedback edge set of G containing U if the
partial graph (V, E \ U) is a connected component. Generally, let (G,U) be an instance of Ext

FES where G = (V, E) is a simple graph and U ⊆ E, then the answer is yes if and only if the
number of connected components of partial graph (V, E \U) is equals to the number of connected
components of G. �

So far, only the partial ordering set-inclusion is used in our examples. However, the reader
can refer to [136] as a rich source of further instance orderings. Here, we mention one other
example.

Bin Packing. Here, we make use of the well-known partition ordering. We already introduced a
definition of a well known optimization problem Bin Packing together with two different partial
orderings. Here, we propose an equivalent definition for the problem and define the extension
variant of the problem. The input of Bin Packing consists of a set X = {x1, . . . , xn} of items and
a weight function w that associates rational numbers w(xi) ∈ (0, 1) to items. A feasible solution
is a partition π of X such that, for each set Y ∈ π,

∑

y∈Y w(y) ≤ 1. The traditional aim is to find a
feasible π such that |π| is minimized.

Now, presol(X) collects all partitions of X. For two partitions π1, π2 of X, we write π1 ≤X π2

if π2 is a refinement of π1, i.e. π2 can be obtained from π1 by splitting up its sets into a larger
number of smaller sets. Hence, {X} is the smallest partition with respect to ≤X. As a partition π
is a set, we can measure its size by its cardinality. Clearly, the set of solutions is upward closed.
Now, a solution is minimal if merging any two of its sets into a single set yields a partition π such
that there is some Y ∈ π with w(Y) :=

∑

y∈Y w(y) > 1. In the extension variant, we are given a
partition πU of X (together with X and w) and ask if there is any minimal feasible partition π′U
with πU ≤X π′U . This describes the problem Ext BP. One could think of encoding knowledge
about which items should not be put together in one bin within the given partition πU . To be
clear, let us to give an example.

Example 6.7. Let X = {x1, x2, x3, x4, x5}, a set of items where w(x1) = 0.2,w(x2) = 0.4,w(x3) =

0.5,w(x4) = 0.7,w(x5) = 0.9 be an instance of bin packing problem. Consider two pre-solution
πU1
= {{x1, x2, x3}, {x4, x5}} and πU2

= {{x1, x5}, {x2, x3, x4}}.
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• (X, πU1
) is a yes-instance of Ext BP, because we can make a partition π = {{x1, x2}, {x3},

{x4}, {x5}} which is πU1
≤X π and is minimal.

• (X, πU2
) is a no-instance of Ext BP, because to have a feasible solution for bin packing, we

have to split each of {x1, x5} and {x2, x3, x4} into some new sets. the new partition is not
minimal, as we can join x1 and x4.

In the following, we show that the Ext BP is an NP-hard problem. In this regard, we make
a reduction from 3-Partition which asks for a given multiset S = {s1, . . . , s3m} of integers and
b ∈ N if S can be partitioned into m triples such that the sum of each subset equals b.

Theorem 6.8. Ext BP is NP-hard, even if the pre-solution πU contains only two sets.

Proof. The proof consists of a reduction from 3-Partition which is defined as follows: given a
multiset S = {s1, . . . , s3m} of positive integers and a positive integer b as input, decide if S can be
partitioned into m triples S 1, . . . , S m such that the sum of each subset equals b. 3-Partition is
NP-complete even if each integer satisfies b/4 < si < b/2; see [88].

Let (S = {s1, . . . , s3m}, b) be the input of 3-Partition, where b/4 < si < b/2 for each 1 ≤ i ≤ 3m.
We build a set X = {x0, x1, . . . , x3m} of items and a weight function w where w(x0) = 1

m+1
and

w(xi) =
si

b
for each 1 ≤ i ≤ 3m and set πU = {{x0}, {x1, . . . , x3m}} as a partial partition of X. We

claim that (S , b) is a yes-instance of 3-Partition if and only if (X, πU) is a yes-instance of Ext

BP.

Suppose first that S can be partitioned into m triples S 1, . . . , S m where
∑

s j∈S i
s j = b for each

S i ∈ S . We build a set Xi = {x j : 1 ≤ j ≤ 3m, s j ∈ S i}, 1 ≤ i ≤ m. Considering πU ,
π′U = {{x0}, X1, . . . , Xm} is a feasible partition and since for each S i ∈ S ,

∑

s j∈S i
s j = b, we have

w(Xi) = 1 for each Xi ∈ π′U . Hence π′U is not the refinement of any other feasible partition for
(S , b), as especially x0 cannot be added to any subset Xi ∈ π′U . Since π′U is obviously a refinement
of πU , π′U is a minimal feasible partition with πU ≤X π

′
U .

Conversely, assume that π′U is a minimal partition of X as a refinement of πU . As the set
{x0} in the partition πU can not be split up further, it follows that the extension π′U is of the form
{{x0}, X1, . . . , Xk}. By using the minimality of π′U , it follows especially that

∑

xl∈Xi
w(xl)+w(x0) > 1

for all i ∈ {1, . . . , k}, as otherwise π′′U = {X1, . . . , Xi−1, Xi ∪ {x0}, Xi+1, . . . , Xk} would be a feasible
partition of X with π′′U ≤X π

′
U . We claim that k = m. As k < m is not possible, assume that k > m.

Since
∑3m

i=1 w(xi) =
1
b

∑3m
i=1 si = m, this means that

∑

xl∈X j
xlw(X j) ≤ m

k
for at least one j ∈ {1, . . . , k},

which contradicts
∑

xl∈X j
w(xl) + w(x0) > 1 by the definition of x0. Consider the collection of the

sets S i = {s j : 1 ≤ j ≤ 3m, x j ∈ Xi}, 1 ≤ i ≤ m as a partition for S . By feasibility of π′U , it follows
that w(Xi) ≤ 1, which means

∑

sl∈S i
sl ≤ b and k = m implies that indeed

∑

sl∈S i
sl = b for each

i ∈ {1, . . . ,m}. The requirement b/4 < si < b/2 for each 1 ≤ i ≤ 3m then implies that the size of
each Xi equals 3, which overall means that S 1, . . . , S m is a solution for 3-Partition on (S , b). �
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6.4 Conclusion

In this chapter, we introduced a general framework to model extension for monotone problems
with the attempt to highlight the unified structure of such types of problems that seem to appear
in many different scenarios. Admittedly, our framework does not cover all problems of this flavor.
Quite similar problems have for example been considered in the area of graph coloring, under
the name of pre-coloring extension, which contains the completion of partial Latin squares as
a special case [23, 54, 138]. However, there is a crucial difference with our approach: while
with our problems, the minimality condition on the permissible extensions is essential for all our
considerations, they become at best uninteresting for pre-coloring extension problems, although
it is not difficult to define partial orderings on pre-colorings so that the set of proper colorings
is upward closed as required in our setting. It would be interesting to consider such kinds of
extension problems in a wider framework to have general results, meta-theorems, etc.
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7
Conclusion and Future Work

In this manuscript, we have presented a general study of a special type of graph optimization
problems known as extension problems. Generally, an instance of an extension graph problem in
our framework consists of a graph G = (V, E) together with a pre-solution U which is a subset of
edges or vertices of G, depending on the problem, and the goal is to extend U to a feasible solution.
More precisely, we study the framework of extension problems on hereditary and anti-hereditary
graph optimization problems, in which, the goal is to extend the pre-solution to an inclusion-wise
maximal and minimal solution, respectively. For an anti-hereditary (resp. a hereditary) extension
problem, the pre-solution U is called forced set (resp. co-forbidden set) and any feasible solution
S is extended of U if S ⊇ U (resp. S ⊆ U).

We have studied different types of optimization/decision problems in the framework of ex-
tension problems on a large number of hereditary and anti-hereditary graph problems. A natural
optimization problem for an anti-hereditary (resp. a hereditary) graph problem Π and for an
instance (G,U), asks a minimal solution containing U (resp. a maximal solution is included in
U) while optimizing the objective function. For instance, for an anti-hereditary problem like
Vertex Cover, the input consists of a graph G = (V, E) and the forced set U ⊆ V , and the goal
is to find a minimal vertex cover S with minimum size such that S ⊇ V , while for a hereditary
problem like Edge Matching, the input consists of a graph G = (V, E) and a co-forbidden set
U ⊆ E and the goal is to find a maximal matching included in U with maximum cardinality. In
Chapter 3, we studied this optimization problem for Weighted Edge Cover problem and have
considered both minimization and maximization variants of the problem on complete graphs.

Sometimes, for an instance (G,U) of a graph extension problem, there is no feasible solution,
which makes an interesting decision problem, denoted by Ext Π in this manuscript. For an
anti-hereditary (resp. a hereditary) problemΠ, the decision problem ExtΠ for an instance (G,U)

asks does G have a minimal (resp. a maximal) solution S such that extended of U, i.e. S ⊇ U

(resp. S ⊆ U). Concerning the former decision problem, we have studied a large number of
vertex and edge graph problems respectively.

We have investigated the decision problem Ext Π for vertex graph problems like Vertex

Cover, Independent Set, Connected Vertex Cover, Non Separating Independent Set and
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Dominating set. We proved that the mentioned problems are NP-complete in very restricted
scenarios, be it degree or topological restrictions (bipartite, planar or chordal graphs), while we
have found many graph classes where the extension problems remains solvable in polynomial-
time. We also have studied the parameterized complexity of these problems, with respect to
parameter |U | as well as |U |.

Moreover, we have studied the decision problem Ext Π for some edge graph problems like
Edge Cover, Edge Dominating Set and Edge Matching and the generalized version of them.
We have proposed some hardness proofs for general input graphs and also when the input graphs
are restricted by degree or typologies. We also have shown some positive and negative results in
parameterized complexity point of view.

Considering the possibility that some pre-solutions U might not be extensible to any minimal
or maximal solution, one might ask how far is U from an extensible set. We have tried to
discuss how many elements of U have to be deleted (resp. added) for an anti-hereditary (resp.
a hereditary) problem Π, in order to arrive at a yes-instance of Ext Π. Concerning this, we
have defined a new notion price of extension (PoE for short), in an attempt to understand what
effect the additional pre-solution constraint has on the possibility of finding minimal or maximal
solutions. In this regard, for an anti-hereditary and a hereditary problem Π, we have introduced
two new optimization problems denoted by ExtminΠ and ExtmaxΠ respectively, and have studied
these optimization problems for all the aforementioned vertex and edge graph problems from an
(in-)approximability point of view. We also studied some graph problems in the framework of
Max-Min and Min-Max optimization problems as a particular case of ExtminΠ (resp. ExtmaxΠ)
for an instance (x,U) occurs when the pre-solution U is "empty-set" (resp. "whole-set").

Moreover, we have introduced a general partial-order based framework for extension problems
with the attempt to highlight a unified structure of such types of problems which might be appeared
in different scenarios. Informally, in the extension version of an optimization problemΠ, an input
of the corresponding extension problem consists of an instance of Π with an additionally pre-
solution and a partial order, and the goal is to extend the pre-solution to a minimal solution with
respect to the partial order. A solution S is minimal, if there exists no solution S ′ , S with
S ′ ≤ S . We also have introduced an extension variant of Bin Packing with a new partial-order
partition refinement and proposed a hardness proof for the decision problem Ext BP.

As a future work, it would be a good idea to study further optimization problems that could be
related to our extension problems, for instance, given an instance (G,U, k) of an anti-hereditary
or a hereditary problem Π, is it possible to add at most k edges to the graph such that (G,U)

becomes a yes-instance of Ext Π? Such problems would be defined according to the general
idea of graph editing problems studied quite extensively in recent years. These problems are
particularly interesting in graph classes where Ext Π is solvable in polynomial time.

We have proposed a partial order based on general framework for extension problems, however,
we have studied only hereditary and anti-hereditary graph problems when the partial-order is set

inclusion or set exclusion. There are some potentially good problems like string problems or logic

problems where can be considered with different partial-orders in our framework. Certainly, our
framework does not cover all problems of this flavor. For example, in the area of graph coloring, a
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problem under the name pre-coloring extension has been considered in the framework of extension
problems with different approach where the minimality condition become meaningless. Although
it is pretty straightforward to define partial orderings on pre-colorings so that the set of proper
colorings is upward closed as required in our setting. It would be interesting to study such forms
of extension problems also in a wider framework to have general results, meta-theorems, etc.
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